]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
x86: fold ILP32 output of "opts" tests
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
191
192/* GNU_PROPERTY_X86_ISA_1_USED. */
193static unsigned int x86_isa_1_used;
194/* GNU_PROPERTY_X86_FEATURE_2_USED. */
195static unsigned int x86_feature_2_used;
196/* Generate x86 used ISA and feature properties. */
197static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 198#endif
252b5132 199
a847613f 200static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 201
43234a1e
L
202/* This struct describes rounding control and SAE in the instruction. */
203struct RC_Operation
204{
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214};
215
216static struct RC_Operation rc_op;
217
218/* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221struct Mask_Operation
222{
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227};
228
229static struct Mask_Operation mask_op;
230
231/* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233struct Broadcast_Operation
234{
8e6e0792 235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
4a1b91ea
L
240
241 /* Number of bytes to broadcast. */
242 int bytes;
43234a1e
L
243};
244
245static struct Broadcast_Operation broadcast_op;
246
c0f3af97
L
247/* VEX prefix. */
248typedef struct
249{
43234a1e
L
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
c0f3af97
L
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255} vex_prefix;
256
252b5132 257/* 'md_assemble ()' gathers together information and puts it into a
47926f60 258 i386_insn. */
252b5132 259
520dc8e8
AM
260union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
a65babc9
L
267enum i386_error
268 {
86e026a4 269 operand_size_mismatch,
a65babc9
L
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
a65babc9
L
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
6c30d220
L
277 unsupported,
278 invalid_vsib_address,
7bab8ab5 279 invalid_vector_register_set,
43234a1e
L
280 unsupported_vector_index_register,
281 unsupported_broadcast,
43234a1e
L
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
a65babc9
L
289 };
290
252b5132
RH
291struct _i386_insn
292 {
47926f60 293 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 294 insn_template tm;
252b5132 295
7d5e4556
L
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
252b5132
RH
298 char suffix;
299
47926f60 300 /* OPERANDS gives the number of given operands. */
252b5132
RH
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
47926f60 305 operands. */
252b5132
RH
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 309 use OP[i] for the corresponding operand. */
40fb9820 310 i386_operand_type types[MAX_OPERANDS];
252b5132 311
520dc8e8
AM
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
252b5132 315
3e73aa7c
JH
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318#define Operand_PCrel 1
c48dadc9 319#define Operand_Mem 2
3e73aa7c 320
252b5132 321 /* Relocation type for operand */
f86103b7 322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 323
252b5132
RH
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 331 explicit segment overrides are given. */
ce8a8b2f 332 const seg_entry *seg[2];
252b5132 333
8325cc63
JB
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
252b5132
RH
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
b4a3a7b4
L
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
252b5132 354 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 355 addressing modes of this insn are encoded. */
252b5132 356 modrm_byte rm;
3e73aa7c 357 rex_byte rex;
43234a1e 358 rex_byte vrex;
252b5132 359 sib_byte sib;
c0f3af97 360 vex_prefix vex;
b6169b20 361
43234a1e
L
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
86fa6981
L
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
64c49ab3
JB
379 dir_encoding_store,
380 dir_encoding_swap
86fa6981 381 } dir_encoding;
891edac4 382
a501d77e
L
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
f8a5c266 390
6b6b6807
L
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
b6f8c7c4
L
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
86fa6981
L
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
d5de92cf
L
406 /* REP prefix. */
407 const char *rep_prefix;
408
165de32a
L
409 /* HLE prefix. */
410 const char *hle_prefix;
42164a71 411
7e8b059b
L
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
04ef582a
L
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
891edac4 418 /* Error message. */
a65babc9 419 enum i386_error error;
252b5132
RH
420 };
421
422typedef struct _i386_insn i386_insn;
423
43234a1e
L
424/* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426struct RC_name
427{
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431};
432
433static const struct RC_name RC_NamesTable[] =
434{
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440};
441
252b5132
RH
442/* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 444const char extra_symbol_chars[] = "*%-([{}"
252b5132 445#ifdef LEX_AT
32137342
NC
446 "@"
447#endif
448#ifdef LEX_QM
449 "?"
252b5132 450#endif
32137342 451 ;
252b5132 452
29b0f896
AM
453#if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 455 && !defined (TE_GNU) \
29b0f896 456 && !defined (TE_LINUX) \
8d63c93e 457 && !defined (TE_NACL) \
29b0f896 458 && !defined (TE_FreeBSD) \
5b806d27 459 && !defined (TE_DragonFly) \
29b0f896 460 && !defined (TE_NetBSD)))
252b5132 461/* This array holds the chars that always start a comment. If the
b3b91714
AM
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464const char *i386_comment_chars = "#/";
465#define SVR4_COMMENT_CHARS 1
252b5132 466#define PREFIX_SEPARATOR '\\'
252b5132 467
b3b91714
AM
468#else
469const char *i386_comment_chars = "#";
470#define PREFIX_SEPARATOR '/'
471#endif
472
252b5132
RH
473/* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 477 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
252b5132 480 '/' isn't otherwise defined. */
b3b91714 481const char line_comment_chars[] = "#/";
252b5132 482
63a0b638 483const char line_separator_chars[] = ";";
252b5132 484
ce8a8b2f
AM
485/* Chars that can be used to separate mant from exp in floating point
486 nums. */
252b5132
RH
487const char EXP_CHARS[] = "eE";
488
ce8a8b2f
AM
489/* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
252b5132
RH
492const char FLT_CHARS[] = "fFdDxX";
493
ce8a8b2f 494/* Tables for lexical analysis. */
252b5132
RH
495static char mnemonic_chars[256];
496static char register_chars[256];
497static char operand_chars[256];
498static char identifier_chars[256];
499static char digit_chars[256];
500
ce8a8b2f 501/* Lexical macros. */
252b5132
RH
502#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503#define is_operand_char(x) (operand_chars[(unsigned char) x])
504#define is_register_char(x) (register_chars[(unsigned char) x])
505#define is_space_char(x) ((x) == ' ')
506#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507#define is_digit_char(x) (digit_chars[(unsigned char) x])
508
0234cb7c 509/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
510static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512/* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
47926f60 515 assembler instruction). */
252b5132 516static char save_stack[32];
ce8a8b2f 517static char *save_stack_p;
252b5132
RH
518#define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520#define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
47926f60 523/* The instruction we're assembling. */
252b5132
RH
524static i386_insn i;
525
526/* Possible templates for current insn. */
527static const templates *current_templates;
528
31b2323c
L
529/* Per instruction expressionS buffers: max displacements & immediates. */
530static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 532
47926f60 533/* Current operand we are working on. */
ee86248c 534static int this_operand = -1;
252b5132 535
3e73aa7c
JH
536/* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544static enum flag_code flag_code;
4fa24527 545static unsigned int object_64bit;
862be3fb 546static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
547static int use_rela_relocations = 0;
548
7af8ed2d
NC
549#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
351f65ca
L
553/* The ELF ABI to use. */
554enum x86_elf_abi
555{
556 I386_ABI,
7f56bc95
L
557 X86_64_ABI,
558 X86_64_X32_ABI
351f65ca
L
559};
560
561static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 562#endif
351f65ca 563
167ad85b
TG
564#if defined (TE_PE) || defined (TE_PEP)
565/* Use big object file format. */
566static int use_big_obj = 0;
567#endif
568
8dcea932
L
569#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570/* 1 if generating code for a shared library. */
571static int shared = 0;
572#endif
573
47926f60
KH
574/* 1 for intel syntax,
575 0 if att syntax. */
576static int intel_syntax = 0;
252b5132 577
e89c5eaa
L
578/* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580static int intel64;
581
1efbbeb4
L
582/* 1 for intel mnemonic,
583 0 if att mnemonic. */
584static int intel_mnemonic = !SYSV386_COMPAT;
585
a60de03c
JB
586/* 1 if pseudo registers are permitted. */
587static int allow_pseudo_reg = 0;
588
47926f60
KH
589/* 1 if register prefix % not required. */
590static int allow_naked_reg = 0;
252b5132 591
33eaf5de 592/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595static int add_bnd_prefix = 0;
596
ba104c83 597/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
598static int allow_index_reg = 0;
599
d022bddd
IT
600/* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602static int omit_lock_prefix = 0;
603
e4e00185
AS
604/* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606static int avoid_fence = 0;
607
0cb4071e
L
608/* 1 if the assembler should generate relax relocations. */
609
610static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
7bab8ab5 613static enum check_kind
daf50ae7 614 {
7bab8ab5
JB
615 check_none = 0,
616 check_warning,
617 check_error
daf50ae7 618 }
7bab8ab5 619sse_check, operand_check = check_warning;
daf50ae7 620
b6f8c7c4
L
621/* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626static int optimize = 0;
627
628/* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635static int optimize_for_space = 0;
636
2ca3ace5
L
637/* Register prefix used for error message. */
638static const char *register_prefix = "%";
639
47926f60
KH
640/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643static char stackop_size = '\0';
eecb386c 644
12b55ccc
L
645/* Non-zero to optimize code alignment. */
646int optimize_align_code = 1;
647
47926f60
KH
648/* Non-zero to quieten some warnings. */
649static int quiet_warnings = 0;
a38cf1db 650
47926f60
KH
651/* CPU name. */
652static const char *cpu_arch_name = NULL;
6305a203 653static char *cpu_sub_arch_name = NULL;
a38cf1db 654
47926f60 655/* CPU feature flags. */
40fb9820
L
656static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
ccc9c027
L
658/* If we have selected a cpu we are generating instructions for. */
659static int cpu_arch_tune_set = 0;
660
9103f4f4 661/* Cpu we are generating instructions for. */
fbf3f584 662enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
663
664/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 665static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 666
ccc9c027 667/* CPU instruction set architecture used. */
fbf3f584 668enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 669
9103f4f4 670/* CPU feature flags of instruction set architecture used. */
fbf3f584 671i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 672
fddf5b5b
AM
673/* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675static unsigned int no_cond_jump_promotion = 0;
676
c0f3af97
L
677/* Encode SSE instructions with VEX prefix. */
678static unsigned int sse2avx;
679
539f890d
L
680/* Encode scalar AVX instructions with specific vector length. */
681static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
43234a1e
L
687/* Encode scalar EVEX LIG instructions with specific vector length. */
688static enum
689 {
690 evexl128 = 0,
691 evexl256,
692 evexl512
693 } evexlig;
694
695/* Encode EVEX WIG instructions with specific evex.w. */
696static enum
697 {
698 evexw0 = 0,
699 evexw1
700 } evexwig;
701
d3d3c6db
IT
702/* Value to encode in EVEX RC bits, for SAE-only instructions. */
703static enum rc_type evexrcig = rne;
704
29b0f896 705/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 706static symbolS *GOT_symbol;
29b0f896 707
a4447b93
RH
708/* The dwarf2 return column, adjusted for 32 or 64 bit. */
709unsigned int x86_dwarf2_return_column;
710
711/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
712int x86_cie_data_alignment;
713
252b5132 714/* Interface to relax_segment.
fddf5b5b
AM
715 There are 3 major relax states for 386 jump insns because the
716 different types of jumps add different sizes to frags when we're
717 figuring out what sort of jump to choose to reach a given label. */
252b5132 718
47926f60 719/* Types. */
93c2a809
AM
720#define UNCOND_JUMP 0
721#define COND_JUMP 1
722#define COND_JUMP86 2
fddf5b5b 723
47926f60 724/* Sizes. */
252b5132
RH
725#define CODE16 1
726#define SMALL 0
29b0f896 727#define SMALL16 (SMALL | CODE16)
252b5132 728#define BIG 2
29b0f896 729#define BIG16 (BIG | CODE16)
252b5132
RH
730
731#ifndef INLINE
732#ifdef __GNUC__
733#define INLINE __inline__
734#else
735#define INLINE
736#endif
737#endif
738
fddf5b5b
AM
739#define ENCODE_RELAX_STATE(type, size) \
740 ((relax_substateT) (((type) << 2) | (size)))
741#define TYPE_FROM_RELAX_STATE(s) \
742 ((s) >> 2)
743#define DISP_SIZE_FROM_RELAX_STATE(s) \
744 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
745
746/* This table is used by relax_frag to promote short jumps to long
747 ones where necessary. SMALL (short) jumps may be promoted to BIG
748 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
749 don't allow a short jump in a 32 bit code segment to be promoted to
750 a 16 bit offset jump because it's slower (requires data size
751 prefix), and doesn't work, unless the destination is in the bottom
752 64k of the code segment (The top 16 bits of eip are zeroed). */
753
754const relax_typeS md_relax_table[] =
755{
24eab124
AM
756 /* The fields are:
757 1) most positive reach of this state,
758 2) most negative reach of this state,
93c2a809 759 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 760 4) which index into the table to try if we can't fit into this one. */
252b5132 761
fddf5b5b 762 /* UNCOND_JUMP states. */
93c2a809
AM
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
764 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
765 /* dword jmp adds 4 bytes to frag:
766 0 extra opcode bytes, 4 displacement bytes. */
252b5132 767 {0, 0, 4, 0},
93c2a809
AM
768 /* word jmp adds 2 byte2 to frag:
769 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
770 {0, 0, 2, 0},
771
93c2a809
AM
772 /* COND_JUMP states. */
773 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
774 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
775 /* dword conditionals adds 5 bytes to frag:
776 1 extra opcode byte, 4 displacement bytes. */
777 {0, 0, 5, 0},
fddf5b5b 778 /* word conditionals add 3 bytes to frag:
93c2a809
AM
779 1 extra opcode byte, 2 displacement bytes. */
780 {0, 0, 3, 0},
781
782 /* COND_JUMP86 states. */
783 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
785 /* dword conditionals adds 5 bytes to frag:
786 1 extra opcode byte, 4 displacement bytes. */
787 {0, 0, 5, 0},
788 /* word conditionals add 4 bytes to frag:
789 1 displacement byte and a 3 byte long branch insn. */
790 {0, 0, 4, 0}
252b5132
RH
791};
792
9103f4f4
L
793static const arch_entry cpu_arch[] =
794{
89507696
JB
795 /* Do not replace the first two entries - i386_target_format()
796 relies on them being there in this order. */
8a2c8fef 797 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 798 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 799 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 800 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 801 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 802 CPU_NONE_FLAGS, 0 },
8a2c8fef 803 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 804 CPU_I186_FLAGS, 0 },
8a2c8fef 805 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 806 CPU_I286_FLAGS, 0 },
8a2c8fef 807 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 808 CPU_I386_FLAGS, 0 },
8a2c8fef 809 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 810 CPU_I486_FLAGS, 0 },
8a2c8fef 811 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 812 CPU_I586_FLAGS, 0 },
8a2c8fef 813 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 814 CPU_I686_FLAGS, 0 },
8a2c8fef 815 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 816 CPU_I586_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 818 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 820 CPU_P2_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 822 CPU_P3_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 824 CPU_P4_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 826 CPU_CORE_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 828 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 830 CPU_CORE_FLAGS, 1 },
8a2c8fef 831 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 832 CPU_CORE_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 834 CPU_CORE2_FLAGS, 1 },
8a2c8fef 835 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 836 CPU_CORE2_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 838 CPU_COREI7_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 840 CPU_L1OM_FLAGS, 0 },
7a9068fe 841 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 842 CPU_K1OM_FLAGS, 0 },
81486035 843 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 844 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 846 CPU_K6_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 848 CPU_K6_2_FLAGS, 0 },
8a2c8fef 849 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 850 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 852 CPU_K8_FLAGS, 1 },
8a2c8fef 853 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 854 CPU_K8_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 856 CPU_K8_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 858 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 859 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 860 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 861 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 862 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 863 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 864 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 865 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 866 CPU_BDVER4_FLAGS, 0 },
029f3522 867 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 868 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
869 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
870 CPU_ZNVER2_FLAGS, 0 },
7b458c12 871 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 872 CPU_BTVER1_FLAGS, 0 },
7b458c12 873 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 874 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 876 CPU_8087_FLAGS, 0 },
8a2c8fef 877 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 878 CPU_287_FLAGS, 0 },
8a2c8fef 879 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 880 CPU_387_FLAGS, 0 },
1848e567
L
881 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
882 CPU_687_FLAGS, 0 },
d871f3f4
L
883 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
884 CPU_CMOV_FLAGS, 0 },
885 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
886 CPU_FXSR_FLAGS, 0 },
8a2c8fef 887 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 888 CPU_MMX_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 890 CPU_SSE_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_SSE2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_SSE3_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_AVX_FLAGS, 0 },
6c30d220 905 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_AVX2_FLAGS, 0 },
43234a1e 907 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_AVX512F_FLAGS, 0 },
43234a1e 909 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_AVX512CD_FLAGS, 0 },
43234a1e 911 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_AVX512ER_FLAGS, 0 },
43234a1e 913 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 915 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 917 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 919 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_VMX_FLAGS, 0 },
8729a6f6 923 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_SMX_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 929 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 931 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 933 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AES_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 941 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 943 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 945 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_F16C_FLAGS, 0 },
6c30d220 947 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_BMI2_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_FMA_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_FMA4_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_XOP_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_LWP_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_MOVBE_FLAGS, 0 },
60aa667e 959 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_CX16_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_EPT_FLAGS, 0 },
6c30d220 963 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_LZCNT_FLAGS, 0 },
42164a71 965 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_HLE_FLAGS, 0 },
42164a71 967 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_RTM_FLAGS, 0 },
6c30d220 969 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_CLFLUSH_FLAGS, 0 },
22109423 973 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_NOP_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SVME_FLAGS, 1 },
8a2c8fef 987 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SVME_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_ABM_FLAGS, 0 },
87973e9f 993 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_BMI_FLAGS, 0 },
2a2a0f38 995 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_TBM_FLAGS, 0 },
e2e1fcde 997 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_ADX_FLAGS, 0 },
e2e1fcde 999 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1001 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1003 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SMAP_FLAGS, 0 },
7e8b059b 1005 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_MPX_FLAGS, 0 },
a0046408 1007 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_SHA_FLAGS, 0 },
963f3586 1009 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1011 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1013 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_SE1_FLAGS, 0 },
c5e7287a 1015 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1017 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1019 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1021 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1023 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1025 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1027 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1029 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1031 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1033 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLZERO_FLAGS, 0 },
9916071f 1035 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_MWAITX_FLAGS, 0 },
8eab4136 1037 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_OSPKE_FLAGS, 0 },
8bc52696 1039 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1041 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1042 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1043 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1044 CPU_IBT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1046 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1047 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1048 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1049 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1050 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1051 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1052 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1053 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1054 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1055 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1056 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1057 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1058 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1059 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1060 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1061 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1062 CPU_MOVDIRI_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1064 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1065};
1066
1067static const noarch_entry cpu_noarch[] =
1068{
1069 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1070 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1071 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1072 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1073 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1074 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1075 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1076 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1077 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1078 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1079 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1080 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1081 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1082 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1083 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1084 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1085 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1086 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1087 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1088 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1089 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1090 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1091 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1092 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1094 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1095 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1096 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1097 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1098 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1099 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1100 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1101 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1102 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1103 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1104};
1105
704209c0 1106#ifdef I386COFF
a6c24e68
NC
1107/* Like s_lcomm_internal in gas/read.c but the alignment string
1108 is allowed to be optional. */
1109
1110static symbolS *
1111pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1112{
1113 addressT align = 0;
1114
1115 SKIP_WHITESPACE ();
1116
7ab9ffdd 1117 if (needs_align
a6c24e68
NC
1118 && *input_line_pointer == ',')
1119 {
1120 align = parse_align (needs_align - 1);
7ab9ffdd 1121
a6c24e68
NC
1122 if (align == (addressT) -1)
1123 return NULL;
1124 }
1125 else
1126 {
1127 if (size >= 8)
1128 align = 3;
1129 else if (size >= 4)
1130 align = 2;
1131 else if (size >= 2)
1132 align = 1;
1133 else
1134 align = 0;
1135 }
1136
1137 bss_alloc (symbolP, size, align);
1138 return symbolP;
1139}
1140
704209c0 1141static void
a6c24e68
NC
1142pe_lcomm (int needs_align)
1143{
1144 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1145}
704209c0 1146#endif
a6c24e68 1147
29b0f896
AM
1148const pseudo_typeS md_pseudo_table[] =
1149{
1150#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1151 {"align", s_align_bytes, 0},
1152#else
1153 {"align", s_align_ptwo, 0},
1154#endif
1155 {"arch", set_cpu_arch, 0},
1156#ifndef I386COFF
1157 {"bss", s_bss, 0},
a6c24e68
NC
1158#else
1159 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1160#endif
1161 {"ffloat", float_cons, 'f'},
1162 {"dfloat", float_cons, 'd'},
1163 {"tfloat", float_cons, 'x'},
1164 {"value", cons, 2},
d182319b 1165 {"slong", signed_cons, 4},
29b0f896
AM
1166 {"noopt", s_ignore, 0},
1167 {"optim", s_ignore, 0},
1168 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1169 {"code16", set_code_flag, CODE_16BIT},
1170 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1171#ifdef BFD64
29b0f896 1172 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1173#endif
29b0f896
AM
1174 {"intel_syntax", set_intel_syntax, 1},
1175 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1176 {"intel_mnemonic", set_intel_mnemonic, 1},
1177 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1178 {"allow_index_reg", set_allow_index_reg, 1},
1179 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1180 {"sse_check", set_check, 0},
1181 {"operand_check", set_check, 1},
3b22753a
L
1182#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1183 {"largecomm", handle_large_common, 0},
07a53e5c 1184#else
68d20676 1185 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1186 {"loc", dwarf2_directive_loc, 0},
1187 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1188#endif
6482c264
NC
1189#ifdef TE_PE
1190 {"secrel32", pe_directive_secrel, 0},
1191#endif
29b0f896
AM
1192 {0, 0, 0}
1193};
1194
1195/* For interface with expression (). */
1196extern char *input_line_pointer;
1197
1198/* Hash table for instruction mnemonic lookup. */
1199static struct hash_control *op_hash;
1200
1201/* Hash table for register lookup. */
1202static struct hash_control *reg_hash;
1203\f
ce8a8b2f
AM
1204 /* Various efficient no-op patterns for aligning code labels.
1205 Note: Don't try to assemble the instructions in the comments.
1206 0L and 0w are not legal. */
62a02d25
L
1207static const unsigned char f32_1[] =
1208 {0x90}; /* nop */
1209static const unsigned char f32_2[] =
1210 {0x66,0x90}; /* xchg %ax,%ax */
1211static const unsigned char f32_3[] =
1212 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1213static const unsigned char f32_4[] =
1214 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1215static const unsigned char f32_6[] =
1216 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1217static const unsigned char f32_7[] =
1218 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1219static const unsigned char f16_3[] =
3ae729d5 1220 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1221static const unsigned char f16_4[] =
3ae729d5
L
1222 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1223static const unsigned char jump_disp8[] =
1224 {0xeb}; /* jmp disp8 */
1225static const unsigned char jump32_disp32[] =
1226 {0xe9}; /* jmp disp32 */
1227static const unsigned char jump16_disp32[] =
1228 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1229/* 32-bit NOPs patterns. */
1230static const unsigned char *const f32_patt[] = {
3ae729d5 1231 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1232};
1233/* 16-bit NOPs patterns. */
1234static const unsigned char *const f16_patt[] = {
3ae729d5 1235 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1236};
1237/* nopl (%[re]ax) */
1238static const unsigned char alt_3[] =
1239 {0x0f,0x1f,0x00};
1240/* nopl 0(%[re]ax) */
1241static const unsigned char alt_4[] =
1242 {0x0f,0x1f,0x40,0x00};
1243/* nopl 0(%[re]ax,%[re]ax,1) */
1244static const unsigned char alt_5[] =
1245 {0x0f,0x1f,0x44,0x00,0x00};
1246/* nopw 0(%[re]ax,%[re]ax,1) */
1247static const unsigned char alt_6[] =
1248 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1249/* nopl 0L(%[re]ax) */
1250static const unsigned char alt_7[] =
1251 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1252/* nopl 0L(%[re]ax,%[re]ax,1) */
1253static const unsigned char alt_8[] =
1254 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1255/* nopw 0L(%[re]ax,%[re]ax,1) */
1256static const unsigned char alt_9[] =
1257 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1258/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1259static const unsigned char alt_10[] =
1260 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1261/* data16 nopw %cs:0L(%eax,%eax,1) */
1262static const unsigned char alt_11[] =
1263 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1264/* 32-bit and 64-bit NOPs patterns. */
1265static const unsigned char *const alt_patt[] = {
1266 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1267 alt_9, alt_10, alt_11
62a02d25
L
1268};
1269
1270/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1271 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1272
1273static void
1274i386_output_nops (char *where, const unsigned char *const *patt,
1275 int count, int max_single_nop_size)
1276
1277{
3ae729d5
L
1278 /* Place the longer NOP first. */
1279 int last;
1280 int offset;
1281 const unsigned char *nops = patt[max_single_nop_size - 1];
1282
1283 /* Use the smaller one if the requsted one isn't available. */
1284 if (nops == NULL)
62a02d25 1285 {
3ae729d5
L
1286 max_single_nop_size--;
1287 nops = patt[max_single_nop_size - 1];
62a02d25
L
1288 }
1289
3ae729d5
L
1290 last = count % max_single_nop_size;
1291
1292 count -= last;
1293 for (offset = 0; offset < count; offset += max_single_nop_size)
1294 memcpy (where + offset, nops, max_single_nop_size);
1295
1296 if (last)
1297 {
1298 nops = patt[last - 1];
1299 if (nops == NULL)
1300 {
1301 /* Use the smaller one plus one-byte NOP if the needed one
1302 isn't available. */
1303 last--;
1304 nops = patt[last - 1];
1305 memcpy (where + offset, nops, last);
1306 where[offset + last] = *patt[0];
1307 }
1308 else
1309 memcpy (where + offset, nops, last);
1310 }
62a02d25
L
1311}
1312
3ae729d5
L
1313static INLINE int
1314fits_in_imm7 (offsetT num)
1315{
1316 return (num & 0x7f) == num;
1317}
1318
1319static INLINE int
1320fits_in_imm31 (offsetT num)
1321{
1322 return (num & 0x7fffffff) == num;
1323}
62a02d25
L
1324
1325/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1326 single NOP instruction LIMIT. */
1327
1328void
3ae729d5 1329i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1330{
3ae729d5 1331 const unsigned char *const *patt = NULL;
62a02d25 1332 int max_single_nop_size;
3ae729d5
L
1333 /* Maximum number of NOPs before switching to jump over NOPs. */
1334 int max_number_of_nops;
62a02d25 1335
3ae729d5 1336 switch (fragP->fr_type)
62a02d25 1337 {
3ae729d5
L
1338 case rs_fill_nop:
1339 case rs_align_code:
1340 break;
1341 default:
62a02d25
L
1342 return;
1343 }
1344
ccc9c027
L
1345 /* We need to decide which NOP sequence to use for 32bit and
1346 64bit. When -mtune= is used:
4eed87de 1347
76bc74dc
L
1348 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1349 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1350 2. For the rest, alt_patt will be used.
1351
1352 When -mtune= isn't used, alt_patt will be used if
22109423 1353 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1354 be used.
ccc9c027
L
1355
1356 When -march= or .arch is used, we can't use anything beyond
1357 cpu_arch_isa_flags. */
1358
1359 if (flag_code == CODE_16BIT)
1360 {
3ae729d5
L
1361 patt = f16_patt;
1362 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1363 /* Limit number of NOPs to 2 in 16-bit mode. */
1364 max_number_of_nops = 2;
252b5132 1365 }
33fef721 1366 else
ccc9c027 1367 {
fbf3f584 1368 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1369 {
1370 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1371 switch (cpu_arch_tune)
1372 {
1373 case PROCESSOR_UNKNOWN:
1374 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1375 optimize with nops. */
1376 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1377 patt = alt_patt;
ccc9c027
L
1378 else
1379 patt = f32_patt;
1380 break;
ccc9c027
L
1381 case PROCESSOR_PENTIUM4:
1382 case PROCESSOR_NOCONA:
ef05d495 1383 case PROCESSOR_CORE:
76bc74dc 1384 case PROCESSOR_CORE2:
bd5295b2 1385 case PROCESSOR_COREI7:
3632d14b 1386 case PROCESSOR_L1OM:
7a9068fe 1387 case PROCESSOR_K1OM:
76bc74dc 1388 case PROCESSOR_GENERIC64:
ccc9c027
L
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
4eed87de 1392 case PROCESSOR_AMDFAM10:
8aedb9fe 1393 case PROCESSOR_BD:
029f3522 1394 case PROCESSOR_ZNVER:
7b458c12 1395 case PROCESSOR_BT:
80b8656c 1396 patt = alt_patt;
ccc9c027 1397 break;
76bc74dc 1398 case PROCESSOR_I386:
ccc9c027
L
1399 case PROCESSOR_I486:
1400 case PROCESSOR_PENTIUM:
2dde1948 1401 case PROCESSOR_PENTIUMPRO:
81486035 1402 case PROCESSOR_IAMCU:
ccc9c027
L
1403 case PROCESSOR_GENERIC32:
1404 patt = f32_patt;
1405 break;
4eed87de 1406 }
ccc9c027
L
1407 }
1408 else
1409 {
fbf3f584 1410 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1411 {
1412 case PROCESSOR_UNKNOWN:
e6a14101 1413 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1414 PROCESSOR_UNKNOWN. */
1415 abort ();
1416 break;
1417
76bc74dc 1418 case PROCESSOR_I386:
ccc9c027
L
1419 case PROCESSOR_I486:
1420 case PROCESSOR_PENTIUM:
81486035 1421 case PROCESSOR_IAMCU:
ccc9c027
L
1422 case PROCESSOR_K6:
1423 case PROCESSOR_ATHLON:
1424 case PROCESSOR_K8:
4eed87de 1425 case PROCESSOR_AMDFAM10:
8aedb9fe 1426 case PROCESSOR_BD:
029f3522 1427 case PROCESSOR_ZNVER:
7b458c12 1428 case PROCESSOR_BT:
ccc9c027
L
1429 case PROCESSOR_GENERIC32:
1430 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1431 with nops. */
1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1433 patt = alt_patt;
ccc9c027
L
1434 else
1435 patt = f32_patt;
1436 break;
76bc74dc
L
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_PENTIUM4:
1439 case PROCESSOR_NOCONA:
1440 case PROCESSOR_CORE:
ef05d495 1441 case PROCESSOR_CORE2:
bd5295b2 1442 case PROCESSOR_COREI7:
3632d14b 1443 case PROCESSOR_L1OM:
7a9068fe 1444 case PROCESSOR_K1OM:
22109423 1445 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1446 patt = alt_patt;
ccc9c027
L
1447 else
1448 patt = f32_patt;
1449 break;
1450 case PROCESSOR_GENERIC64:
80b8656c 1451 patt = alt_patt;
ccc9c027 1452 break;
4eed87de 1453 }
ccc9c027
L
1454 }
1455
76bc74dc
L
1456 if (patt == f32_patt)
1457 {
3ae729d5
L
1458 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1459 /* Limit number of NOPs to 2 for older processors. */
1460 max_number_of_nops = 2;
76bc74dc
L
1461 }
1462 else
1463 {
3ae729d5
L
1464 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1465 /* Limit number of NOPs to 7 for newer processors. */
1466 max_number_of_nops = 7;
1467 }
1468 }
1469
1470 if (limit == 0)
1471 limit = max_single_nop_size;
1472
1473 if (fragP->fr_type == rs_fill_nop)
1474 {
1475 /* Output NOPs for .nop directive. */
1476 if (limit > max_single_nop_size)
1477 {
1478 as_bad_where (fragP->fr_file, fragP->fr_line,
1479 _("invalid single nop size: %d "
1480 "(expect within [0, %d])"),
1481 limit, max_single_nop_size);
1482 return;
1483 }
1484 }
1485 else
1486 fragP->fr_var = count;
1487
1488 if ((count / max_single_nop_size) > max_number_of_nops)
1489 {
1490 /* Generate jump over NOPs. */
1491 offsetT disp = count - 2;
1492 if (fits_in_imm7 (disp))
1493 {
1494 /* Use "jmp disp8" if possible. */
1495 count = disp;
1496 where[0] = jump_disp8[0];
1497 where[1] = count;
1498 where += 2;
1499 }
1500 else
1501 {
1502 unsigned int size_of_jump;
1503
1504 if (flag_code == CODE_16BIT)
1505 {
1506 where[0] = jump16_disp32[0];
1507 where[1] = jump16_disp32[1];
1508 size_of_jump = 2;
1509 }
1510 else
1511 {
1512 where[0] = jump32_disp32[0];
1513 size_of_jump = 1;
1514 }
1515
1516 count -= size_of_jump + 4;
1517 if (!fits_in_imm31 (count))
1518 {
1519 as_bad_where (fragP->fr_file, fragP->fr_line,
1520 _("jump over nop padding out of range"));
1521 return;
1522 }
1523
1524 md_number_to_chars (where + size_of_jump, count, 4);
1525 where += size_of_jump + 4;
76bc74dc 1526 }
ccc9c027 1527 }
3ae729d5
L
1528
1529 /* Generate multiple NOPs. */
1530 i386_output_nops (where, patt, count, limit);
252b5132
RH
1531}
1532
c6fb90c8 1533static INLINE int
0dfbf9d7 1534operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1535{
0dfbf9d7 1536 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1537 {
1538 case 3:
0dfbf9d7 1539 if (x->array[2])
c6fb90c8 1540 return 0;
1a0670f3 1541 /* Fall through. */
c6fb90c8 1542 case 2:
0dfbf9d7 1543 if (x->array[1])
c6fb90c8 1544 return 0;
1a0670f3 1545 /* Fall through. */
c6fb90c8 1546 case 1:
0dfbf9d7 1547 return !x->array[0];
c6fb90c8
L
1548 default:
1549 abort ();
1550 }
40fb9820
L
1551}
1552
c6fb90c8 1553static INLINE void
0dfbf9d7 1554operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1555{
0dfbf9d7 1556 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1557 {
1558 case 3:
0dfbf9d7 1559 x->array[2] = v;
1a0670f3 1560 /* Fall through. */
c6fb90c8 1561 case 2:
0dfbf9d7 1562 x->array[1] = v;
1a0670f3 1563 /* Fall through. */
c6fb90c8 1564 case 1:
0dfbf9d7 1565 x->array[0] = v;
1a0670f3 1566 /* Fall through. */
c6fb90c8
L
1567 break;
1568 default:
1569 abort ();
1570 }
1571}
40fb9820 1572
c6fb90c8 1573static INLINE int
0dfbf9d7
L
1574operand_type_equal (const union i386_operand_type *x,
1575 const union i386_operand_type *y)
c6fb90c8 1576{
0dfbf9d7 1577 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1578 {
1579 case 3:
0dfbf9d7 1580 if (x->array[2] != y->array[2])
c6fb90c8 1581 return 0;
1a0670f3 1582 /* Fall through. */
c6fb90c8 1583 case 2:
0dfbf9d7 1584 if (x->array[1] != y->array[1])
c6fb90c8 1585 return 0;
1a0670f3 1586 /* Fall through. */
c6fb90c8 1587 case 1:
0dfbf9d7 1588 return x->array[0] == y->array[0];
c6fb90c8
L
1589 break;
1590 default:
1591 abort ();
1592 }
1593}
40fb9820 1594
0dfbf9d7
L
1595static INLINE int
1596cpu_flags_all_zero (const union i386_cpu_flags *x)
1597{
1598 switch (ARRAY_SIZE(x->array))
1599 {
53467f57
IT
1600 case 4:
1601 if (x->array[3])
1602 return 0;
1603 /* Fall through. */
0dfbf9d7
L
1604 case 3:
1605 if (x->array[2])
1606 return 0;
1a0670f3 1607 /* Fall through. */
0dfbf9d7
L
1608 case 2:
1609 if (x->array[1])
1610 return 0;
1a0670f3 1611 /* Fall through. */
0dfbf9d7
L
1612 case 1:
1613 return !x->array[0];
1614 default:
1615 abort ();
1616 }
1617}
1618
0dfbf9d7
L
1619static INLINE int
1620cpu_flags_equal (const union i386_cpu_flags *x,
1621 const union i386_cpu_flags *y)
1622{
1623 switch (ARRAY_SIZE(x->array))
1624 {
53467f57
IT
1625 case 4:
1626 if (x->array[3] != y->array[3])
1627 return 0;
1628 /* Fall through. */
0dfbf9d7
L
1629 case 3:
1630 if (x->array[2] != y->array[2])
1631 return 0;
1a0670f3 1632 /* Fall through. */
0dfbf9d7
L
1633 case 2:
1634 if (x->array[1] != y->array[1])
1635 return 0;
1a0670f3 1636 /* Fall through. */
0dfbf9d7
L
1637 case 1:
1638 return x->array[0] == y->array[0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643}
c6fb90c8
L
1644
1645static INLINE int
1646cpu_flags_check_cpu64 (i386_cpu_flags f)
1647{
1648 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1649 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1650}
1651
c6fb90c8
L
1652static INLINE i386_cpu_flags
1653cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1654{
c6fb90c8
L
1655 switch (ARRAY_SIZE (x.array))
1656 {
53467f57
IT
1657 case 4:
1658 x.array [3] &= y.array [3];
1659 /* Fall through. */
c6fb90c8
L
1660 case 3:
1661 x.array [2] &= y.array [2];
1a0670f3 1662 /* Fall through. */
c6fb90c8
L
1663 case 2:
1664 x.array [1] &= y.array [1];
1a0670f3 1665 /* Fall through. */
c6fb90c8
L
1666 case 1:
1667 x.array [0] &= y.array [0];
1668 break;
1669 default:
1670 abort ();
1671 }
1672 return x;
1673}
40fb9820 1674
c6fb90c8
L
1675static INLINE i386_cpu_flags
1676cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1677{
c6fb90c8 1678 switch (ARRAY_SIZE (x.array))
40fb9820 1679 {
53467f57
IT
1680 case 4:
1681 x.array [3] |= y.array [3];
1682 /* Fall through. */
c6fb90c8
L
1683 case 3:
1684 x.array [2] |= y.array [2];
1a0670f3 1685 /* Fall through. */
c6fb90c8
L
1686 case 2:
1687 x.array [1] |= y.array [1];
1a0670f3 1688 /* Fall through. */
c6fb90c8
L
1689 case 1:
1690 x.array [0] |= y.array [0];
40fb9820
L
1691 break;
1692 default:
1693 abort ();
1694 }
40fb9820
L
1695 return x;
1696}
1697
309d3373
JB
1698static INLINE i386_cpu_flags
1699cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1700{
1701 switch (ARRAY_SIZE (x.array))
1702 {
53467f57
IT
1703 case 4:
1704 x.array [3] &= ~y.array [3];
1705 /* Fall through. */
309d3373
JB
1706 case 3:
1707 x.array [2] &= ~y.array [2];
1a0670f3 1708 /* Fall through. */
309d3373
JB
1709 case 2:
1710 x.array [1] &= ~y.array [1];
1a0670f3 1711 /* Fall through. */
309d3373
JB
1712 case 1:
1713 x.array [0] &= ~y.array [0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 return x;
1719}
1720
c0f3af97
L
1721#define CPU_FLAGS_ARCH_MATCH 0x1
1722#define CPU_FLAGS_64BIT_MATCH 0x2
1723
c0f3af97 1724#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1725 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1726
1727/* Return CPU flags match bits. */
3629bb00 1728
40fb9820 1729static int
d3ce72d0 1730cpu_flags_match (const insn_template *t)
40fb9820 1731{
c0f3af97
L
1732 i386_cpu_flags x = t->cpu_flags;
1733 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1734
1735 x.bitfield.cpu64 = 0;
1736 x.bitfield.cpuno64 = 0;
1737
0dfbf9d7 1738 if (cpu_flags_all_zero (&x))
c0f3af97
L
1739 {
1740 /* This instruction is available on all archs. */
db12e14e 1741 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1742 }
3629bb00
L
1743 else
1744 {
c0f3af97 1745 /* This instruction is available only on some archs. */
3629bb00
L
1746 i386_cpu_flags cpu = cpu_arch_flags;
1747
ab592e75
JB
1748 /* AVX512VL is no standalone feature - match it and then strip it. */
1749 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1750 return match;
1751 x.bitfield.cpuavx512vl = 0;
1752
3629bb00 1753 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1754 if (!cpu_flags_all_zero (&cpu))
1755 {
a5ff0eb2
L
1756 if (x.bitfield.cpuavx)
1757 {
929f69fa 1758 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1759 if (cpu.bitfield.cpuavx
1760 && (!t->opcode_modifier.sse2avx || sse2avx)
1761 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1762 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1763 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1764 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1765 }
929f69fa
JB
1766 else if (x.bitfield.cpuavx512f)
1767 {
1768 /* We need to check a few extra flags with AVX512F. */
1769 if (cpu.bitfield.cpuavx512f
1770 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1771 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1772 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1773 match |= CPU_FLAGS_ARCH_MATCH;
1774 }
a5ff0eb2 1775 else
db12e14e 1776 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1777 }
3629bb00 1778 }
c0f3af97 1779 return match;
40fb9820
L
1780}
1781
c6fb90c8
L
1782static INLINE i386_operand_type
1783operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1784{
c6fb90c8
L
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] &= y.array [2];
1a0670f3 1789 /* Fall through. */
c6fb90c8
L
1790 case 2:
1791 x.array [1] &= y.array [1];
1a0670f3 1792 /* Fall through. */
c6fb90c8
L
1793 case 1:
1794 x.array [0] &= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
40fb9820
L
1800}
1801
73053c1f
JB
1802static INLINE i386_operand_type
1803operand_type_and_not (i386_operand_type x, i386_operand_type y)
1804{
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] &= ~y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] &= ~y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] &= ~y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820}
1821
c6fb90c8
L
1822static INLINE i386_operand_type
1823operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1824{
c6fb90c8 1825 switch (ARRAY_SIZE (x.array))
40fb9820 1826 {
c6fb90c8
L
1827 case 3:
1828 x.array [2] |= y.array [2];
1a0670f3 1829 /* Fall through. */
c6fb90c8
L
1830 case 2:
1831 x.array [1] |= y.array [1];
1a0670f3 1832 /* Fall through. */
c6fb90c8
L
1833 case 1:
1834 x.array [0] |= y.array [0];
40fb9820
L
1835 break;
1836 default:
1837 abort ();
1838 }
c6fb90c8
L
1839 return x;
1840}
40fb9820 1841
c6fb90c8
L
1842static INLINE i386_operand_type
1843operand_type_xor (i386_operand_type x, i386_operand_type y)
1844{
1845 switch (ARRAY_SIZE (x.array))
1846 {
1847 case 3:
1848 x.array [2] ^= y.array [2];
1a0670f3 1849 /* Fall through. */
c6fb90c8
L
1850 case 2:
1851 x.array [1] ^= y.array [1];
1a0670f3 1852 /* Fall through. */
c6fb90c8
L
1853 case 1:
1854 x.array [0] ^= y.array [0];
1855 break;
1856 default:
1857 abort ();
1858 }
40fb9820
L
1859 return x;
1860}
1861
1862static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1863static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1864static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1865static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1866static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1867static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1868static const i386_operand_type anydisp
1869 = OPERAND_TYPE_ANYDISP;
40fb9820 1870static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1871static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1872static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1873static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1874static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1875static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1876static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1877static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1878static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1879static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1880static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1881static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1882
1883enum operand_type
1884{
1885 reg,
40fb9820
L
1886 imm,
1887 disp,
1888 anymem
1889};
1890
c6fb90c8 1891static INLINE int
40fb9820
L
1892operand_type_check (i386_operand_type t, enum operand_type c)
1893{
1894 switch (c)
1895 {
1896 case reg:
dc821c5f 1897 return t.bitfield.reg;
40fb9820 1898
40fb9820
L
1899 case imm:
1900 return (t.bitfield.imm8
1901 || t.bitfield.imm8s
1902 || t.bitfield.imm16
1903 || t.bitfield.imm32
1904 || t.bitfield.imm32s
1905 || t.bitfield.imm64);
1906
1907 case disp:
1908 return (t.bitfield.disp8
1909 || t.bitfield.disp16
1910 || t.bitfield.disp32
1911 || t.bitfield.disp32s
1912 || t.bitfield.disp64);
1913
1914 case anymem:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64
1920 || t.bitfield.baseindex);
1921
1922 default:
1923 abort ();
1924 }
2cfe26b6
AM
1925
1926 return 0;
40fb9820
L
1927}
1928
7a54636a
L
1929/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1930 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1931
1932static INLINE int
7a54636a
L
1933match_operand_size (const insn_template *t, unsigned int wanted,
1934 unsigned int given)
5c07affc 1935{
3ac21baa
JB
1936 return !((i.types[given].bitfield.byte
1937 && !t->operand_types[wanted].bitfield.byte)
1938 || (i.types[given].bitfield.word
1939 && !t->operand_types[wanted].bitfield.word)
1940 || (i.types[given].bitfield.dword
1941 && !t->operand_types[wanted].bitfield.dword)
1942 || (i.types[given].bitfield.qword
1943 && !t->operand_types[wanted].bitfield.qword)
1944 || (i.types[given].bitfield.tbyte
1945 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1946}
1947
dd40ce22
L
1948/* Return 1 if there is no conflict in SIMD register between operand
1949 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1950
1951static INLINE int
dd40ce22
L
1952match_simd_size (const insn_template *t, unsigned int wanted,
1953 unsigned int given)
1b54b8d7 1954{
3ac21baa
JB
1955 return !((i.types[given].bitfield.xmmword
1956 && !t->operand_types[wanted].bitfield.xmmword)
1957 || (i.types[given].bitfield.ymmword
1958 && !t->operand_types[wanted].bitfield.ymmword)
1959 || (i.types[given].bitfield.zmmword
1960 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1961}
1962
7a54636a
L
1963/* Return 1 if there is no conflict in any size between operand GIVEN
1964 and opeand WANTED for instruction template T. */
5c07affc
L
1965
1966static INLINE int
dd40ce22
L
1967match_mem_size (const insn_template *t, unsigned int wanted,
1968 unsigned int given)
5c07affc 1969{
7a54636a 1970 return (match_operand_size (t, wanted, given)
3ac21baa 1971 && !((i.types[given].bitfield.unspecified
af508cb9 1972 && !i.broadcast
3ac21baa
JB
1973 && !t->operand_types[wanted].bitfield.unspecified)
1974 || (i.types[given].bitfield.fword
1975 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1976 /* For scalar opcode templates to allow register and memory
1977 operands at the same time, some special casing is needed
d6793fa1
JB
1978 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1979 down-conversion vpmov*. */
3ac21baa 1980 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1981 && !t->opcode_modifier.broadcast
3ac21baa
JB
1982 && (t->operand_types[wanted].bitfield.byte
1983 || t->operand_types[wanted].bitfield.word
1984 || t->operand_types[wanted].bitfield.dword
1985 || t->operand_types[wanted].bitfield.qword))
1986 ? (i.types[given].bitfield.xmmword
1987 || i.types[given].bitfield.ymmword
1988 || i.types[given].bitfield.zmmword)
1989 : !match_simd_size(t, wanted, given))));
5c07affc
L
1990}
1991
3ac21baa
JB
1992/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1993 operands for instruction template T, and it has MATCH_REVERSE set if there
1994 is no size conflict on any operands for the template with operands reversed
1995 (and the template allows for reversing in the first place). */
5c07affc 1996
3ac21baa
JB
1997#define MATCH_STRAIGHT 1
1998#define MATCH_REVERSE 2
1999
2000static INLINE unsigned int
d3ce72d0 2001operand_size_match (const insn_template *t)
5c07affc 2002{
3ac21baa 2003 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2004
2005 /* Don't check jump instructions. */
2006 if (t->opcode_modifier.jump
2007 || t->opcode_modifier.jumpbyte
2008 || t->opcode_modifier.jumpdword
2009 || t->opcode_modifier.jumpintersegment)
2010 return match;
2011
2012 /* Check memory and accumulator operand size. */
2013 for (j = 0; j < i.operands; j++)
2014 {
1b54b8d7
JB
2015 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2016 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2017 continue;
2018
1b54b8d7 2019 if (t->operand_types[j].bitfield.reg
7a54636a 2020 && !match_operand_size (t, j, j))
5c07affc
L
2021 {
2022 match = 0;
2023 break;
2024 }
2025
1b54b8d7 2026 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2027 && !match_simd_size (t, j, j))
1b54b8d7
JB
2028 {
2029 match = 0;
2030 break;
2031 }
2032
2033 if (t->operand_types[j].bitfield.acc
7a54636a 2034 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2035 {
2036 match = 0;
2037 break;
2038 }
2039
c48dadc9 2040 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2041 {
2042 match = 0;
2043 break;
2044 }
2045 }
2046
3ac21baa 2047 if (!t->opcode_modifier.d)
891edac4
L
2048 {
2049mismatch:
3ac21baa
JB
2050 if (!match)
2051 i.error = operand_size_mismatch;
2052 return match;
891edac4 2053 }
5c07affc
L
2054
2055 /* Check reverse. */
9c2799c2 2056 gas_assert (i.operands == 2);
5c07affc 2057
5c07affc
L
2058 for (j = 0; j < 2; j++)
2059 {
dc821c5f
JB
2060 if ((t->operand_types[j].bitfield.reg
2061 || t->operand_types[j].bitfield.acc)
7a54636a 2062 && !match_operand_size (t, j, !j))
891edac4 2063 goto mismatch;
5c07affc 2064
c48dadc9 2065 if ((i.flags[!j] & Operand_Mem) && !match_mem_size (t, j, !j))
891edac4 2066 goto mismatch;
5c07affc
L
2067 }
2068
3ac21baa 2069 return match | MATCH_REVERSE;
5c07affc
L
2070}
2071
c6fb90c8 2072static INLINE int
40fb9820
L
2073operand_type_match (i386_operand_type overlap,
2074 i386_operand_type given)
2075{
2076 i386_operand_type temp = overlap;
2077
2078 temp.bitfield.jumpabsolute = 0;
7d5e4556 2079 temp.bitfield.unspecified = 0;
5c07affc
L
2080 temp.bitfield.byte = 0;
2081 temp.bitfield.word = 0;
2082 temp.bitfield.dword = 0;
2083 temp.bitfield.fword = 0;
2084 temp.bitfield.qword = 0;
2085 temp.bitfield.tbyte = 0;
2086 temp.bitfield.xmmword = 0;
c0f3af97 2087 temp.bitfield.ymmword = 0;
43234a1e 2088 temp.bitfield.zmmword = 0;
0dfbf9d7 2089 if (operand_type_all_zero (&temp))
891edac4 2090 goto mismatch;
40fb9820 2091
891edac4
L
2092 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2093 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2094 return 1;
2095
2096mismatch:
a65babc9 2097 i.error = operand_type_mismatch;
891edac4 2098 return 0;
40fb9820
L
2099}
2100
7d5e4556 2101/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2102 unless the expected operand type register overlap is null.
2103 Memory operand size of certain SIMD instructions is also being checked
2104 here. */
40fb9820 2105
c6fb90c8 2106static INLINE int
dc821c5f 2107operand_type_register_match (i386_operand_type g0,
40fb9820 2108 i386_operand_type t0,
40fb9820
L
2109 i386_operand_type g1,
2110 i386_operand_type t1)
2111{
10c17abd
JB
2112 if (!g0.bitfield.reg
2113 && !g0.bitfield.regsimd
2114 && (!operand_type_check (g0, anymem)
2115 || g0.bitfield.unspecified
2116 || !t0.bitfield.regsimd))
40fb9820
L
2117 return 1;
2118
10c17abd
JB
2119 if (!g1.bitfield.reg
2120 && !g1.bitfield.regsimd
2121 && (!operand_type_check (g1, anymem)
2122 || g1.bitfield.unspecified
2123 || !t1.bitfield.regsimd))
40fb9820
L
2124 return 1;
2125
dc821c5f
JB
2126 if (g0.bitfield.byte == g1.bitfield.byte
2127 && g0.bitfield.word == g1.bitfield.word
2128 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2129 && g0.bitfield.qword == g1.bitfield.qword
2130 && g0.bitfield.xmmword == g1.bitfield.xmmword
2131 && g0.bitfield.ymmword == g1.bitfield.ymmword
2132 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2133 return 1;
2134
dc821c5f
JB
2135 if (!(t0.bitfield.byte & t1.bitfield.byte)
2136 && !(t0.bitfield.word & t1.bitfield.word)
2137 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2138 && !(t0.bitfield.qword & t1.bitfield.qword)
2139 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2140 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2141 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2142 return 1;
2143
a65babc9 2144 i.error = register_type_mismatch;
891edac4
L
2145
2146 return 0;
40fb9820
L
2147}
2148
4c692bc7
JB
2149static INLINE unsigned int
2150register_number (const reg_entry *r)
2151{
2152 unsigned int nr = r->reg_num;
2153
2154 if (r->reg_flags & RegRex)
2155 nr += 8;
2156
200cbe0f
L
2157 if (r->reg_flags & RegVRex)
2158 nr += 16;
2159
4c692bc7
JB
2160 return nr;
2161}
2162
252b5132 2163static INLINE unsigned int
40fb9820 2164mode_from_disp_size (i386_operand_type t)
252b5132 2165{
b5014f7a 2166 if (t.bitfield.disp8)
40fb9820
L
2167 return 1;
2168 else if (t.bitfield.disp16
2169 || t.bitfield.disp32
2170 || t.bitfield.disp32s)
2171 return 2;
2172 else
2173 return 0;
252b5132
RH
2174}
2175
2176static INLINE int
65879393 2177fits_in_signed_byte (addressT num)
252b5132 2178{
65879393 2179 return num + 0x80 <= 0xff;
47926f60 2180}
252b5132
RH
2181
2182static INLINE int
65879393 2183fits_in_unsigned_byte (addressT num)
252b5132 2184{
65879393 2185 return num <= 0xff;
47926f60 2186}
252b5132
RH
2187
2188static INLINE int
65879393 2189fits_in_unsigned_word (addressT num)
252b5132 2190{
65879393 2191 return num <= 0xffff;
47926f60 2192}
252b5132
RH
2193
2194static INLINE int
65879393 2195fits_in_signed_word (addressT num)
252b5132 2196{
65879393 2197 return num + 0x8000 <= 0xffff;
47926f60 2198}
2a962e6d 2199
3e73aa7c 2200static INLINE int
65879393 2201fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2202{
2203#ifndef BFD64
2204 return 1;
2205#else
65879393 2206 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2207#endif
2208} /* fits_in_signed_long() */
2a962e6d 2209
3e73aa7c 2210static INLINE int
65879393 2211fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2212{
2213#ifndef BFD64
2214 return 1;
2215#else
65879393 2216 return num <= 0xffffffff;
3e73aa7c
JH
2217#endif
2218} /* fits_in_unsigned_long() */
252b5132 2219
43234a1e 2220static INLINE int
b5014f7a 2221fits_in_disp8 (offsetT num)
43234a1e
L
2222{
2223 int shift = i.memshift;
2224 unsigned int mask;
2225
2226 if (shift == -1)
2227 abort ();
2228
2229 mask = (1 << shift) - 1;
2230
2231 /* Return 0 if NUM isn't properly aligned. */
2232 if ((num & mask))
2233 return 0;
2234
2235 /* Check if NUM will fit in 8bit after shift. */
2236 return fits_in_signed_byte (num >> shift);
2237}
2238
a683cc34
SP
2239static INLINE int
2240fits_in_imm4 (offsetT num)
2241{
2242 return (num & 0xf) == num;
2243}
2244
40fb9820 2245static i386_operand_type
e3bb37b5 2246smallest_imm_type (offsetT num)
252b5132 2247{
40fb9820 2248 i386_operand_type t;
7ab9ffdd 2249
0dfbf9d7 2250 operand_type_set (&t, 0);
40fb9820
L
2251 t.bitfield.imm64 = 1;
2252
2253 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2254 {
2255 /* This code is disabled on the 486 because all the Imm1 forms
2256 in the opcode table are slower on the i486. They're the
2257 versions with the implicitly specified single-position
2258 displacement, which has another syntax if you really want to
2259 use that form. */
40fb9820
L
2260 t.bitfield.imm1 = 1;
2261 t.bitfield.imm8 = 1;
2262 t.bitfield.imm8s = 1;
2263 t.bitfield.imm16 = 1;
2264 t.bitfield.imm32 = 1;
2265 t.bitfield.imm32s = 1;
2266 }
2267 else if (fits_in_signed_byte (num))
2268 {
2269 t.bitfield.imm8 = 1;
2270 t.bitfield.imm8s = 1;
2271 t.bitfield.imm16 = 1;
2272 t.bitfield.imm32 = 1;
2273 t.bitfield.imm32s = 1;
2274 }
2275 else if (fits_in_unsigned_byte (num))
2276 {
2277 t.bitfield.imm8 = 1;
2278 t.bitfield.imm16 = 1;
2279 t.bitfield.imm32 = 1;
2280 t.bitfield.imm32s = 1;
2281 }
2282 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2283 {
2284 t.bitfield.imm16 = 1;
2285 t.bitfield.imm32 = 1;
2286 t.bitfield.imm32s = 1;
2287 }
2288 else if (fits_in_signed_long (num))
2289 {
2290 t.bitfield.imm32 = 1;
2291 t.bitfield.imm32s = 1;
2292 }
2293 else if (fits_in_unsigned_long (num))
2294 t.bitfield.imm32 = 1;
2295
2296 return t;
47926f60 2297}
252b5132 2298
847f7ad4 2299static offsetT
e3bb37b5 2300offset_in_range (offsetT val, int size)
847f7ad4 2301{
508866be 2302 addressT mask;
ba2adb93 2303
847f7ad4
AM
2304 switch (size)
2305 {
508866be
L
2306 case 1: mask = ((addressT) 1 << 8) - 1; break;
2307 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2308 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2309#ifdef BFD64
2310 case 8: mask = ((addressT) 2 << 63) - 1; break;
2311#endif
47926f60 2312 default: abort ();
847f7ad4
AM
2313 }
2314
9de868bf
L
2315#ifdef BFD64
2316 /* If BFD64, sign extend val for 32bit address mode. */
2317 if (flag_code != CODE_64BIT
2318 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2319 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2320 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2321#endif
ba2adb93 2322
47926f60 2323 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2324 {
2325 char buf1[40], buf2[40];
2326
2327 sprint_value (buf1, val);
2328 sprint_value (buf2, val & mask);
2329 as_warn (_("%s shortened to %s"), buf1, buf2);
2330 }
2331 return val & mask;
2332}
2333
c32fa91d
L
2334enum PREFIX_GROUP
2335{
2336 PREFIX_EXIST = 0,
2337 PREFIX_LOCK,
2338 PREFIX_REP,
04ef582a 2339 PREFIX_DS,
c32fa91d
L
2340 PREFIX_OTHER
2341};
2342
2343/* Returns
2344 a. PREFIX_EXIST if attempting to add a prefix where one from the
2345 same class already exists.
2346 b. PREFIX_LOCK if lock prefix is added.
2347 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2348 d. PREFIX_DS if ds prefix is added.
2349 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2350 */
2351
2352static enum PREFIX_GROUP
e3bb37b5 2353add_prefix (unsigned int prefix)
252b5132 2354{
c32fa91d 2355 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2356 unsigned int q;
252b5132 2357
29b0f896
AM
2358 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2359 && flag_code == CODE_64BIT)
b1905489 2360 {
161a04f6 2361 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2362 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2363 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2364 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2365 ret = PREFIX_EXIST;
b1905489
JB
2366 q = REX_PREFIX;
2367 }
3e73aa7c 2368 else
b1905489
JB
2369 {
2370 switch (prefix)
2371 {
2372 default:
2373 abort ();
2374
b1905489 2375 case DS_PREFIX_OPCODE:
04ef582a
L
2376 ret = PREFIX_DS;
2377 /* Fall through. */
2378 case CS_PREFIX_OPCODE:
b1905489
JB
2379 case ES_PREFIX_OPCODE:
2380 case FS_PREFIX_OPCODE:
2381 case GS_PREFIX_OPCODE:
2382 case SS_PREFIX_OPCODE:
2383 q = SEG_PREFIX;
2384 break;
2385
2386 case REPNE_PREFIX_OPCODE:
2387 case REPE_PREFIX_OPCODE:
c32fa91d
L
2388 q = REP_PREFIX;
2389 ret = PREFIX_REP;
2390 break;
2391
b1905489 2392 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2393 q = LOCK_PREFIX;
2394 ret = PREFIX_LOCK;
b1905489
JB
2395 break;
2396
2397 case FWAIT_OPCODE:
2398 q = WAIT_PREFIX;
2399 break;
2400
2401 case ADDR_PREFIX_OPCODE:
2402 q = ADDR_PREFIX;
2403 break;
2404
2405 case DATA_PREFIX_OPCODE:
2406 q = DATA_PREFIX;
2407 break;
2408 }
2409 if (i.prefix[q] != 0)
c32fa91d 2410 ret = PREFIX_EXIST;
b1905489 2411 }
252b5132 2412
b1905489 2413 if (ret)
252b5132 2414 {
b1905489
JB
2415 if (!i.prefix[q])
2416 ++i.prefixes;
2417 i.prefix[q] |= prefix;
252b5132 2418 }
b1905489
JB
2419 else
2420 as_bad (_("same type of prefix used twice"));
252b5132 2421
252b5132
RH
2422 return ret;
2423}
2424
2425static void
78f12dd3 2426update_code_flag (int value, int check)
eecb386c 2427{
78f12dd3
L
2428 PRINTF_LIKE ((*as_error));
2429
1e9cc1c2 2430 flag_code = (enum flag_code) value;
40fb9820
L
2431 if (flag_code == CODE_64BIT)
2432 {
2433 cpu_arch_flags.bitfield.cpu64 = 1;
2434 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2435 }
2436 else
2437 {
2438 cpu_arch_flags.bitfield.cpu64 = 0;
2439 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2440 }
2441 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2442 {
78f12dd3
L
2443 if (check)
2444 as_error = as_fatal;
2445 else
2446 as_error = as_bad;
2447 (*as_error) (_("64bit mode not supported on `%s'."),
2448 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2449 }
40fb9820 2450 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2451 {
78f12dd3
L
2452 if (check)
2453 as_error = as_fatal;
2454 else
2455 as_error = as_bad;
2456 (*as_error) (_("32bit mode not supported on `%s'."),
2457 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2458 }
eecb386c
AM
2459 stackop_size = '\0';
2460}
2461
78f12dd3
L
2462static void
2463set_code_flag (int value)
2464{
2465 update_code_flag (value, 0);
2466}
2467
eecb386c 2468static void
e3bb37b5 2469set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2470{
1e9cc1c2 2471 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2472 if (flag_code != CODE_16BIT)
2473 abort ();
2474 cpu_arch_flags.bitfield.cpu64 = 0;
2475 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2476 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2477}
2478
2479static void
e3bb37b5 2480set_intel_syntax (int syntax_flag)
252b5132
RH
2481{
2482 /* Find out if register prefixing is specified. */
2483 int ask_naked_reg = 0;
2484
2485 SKIP_WHITESPACE ();
29b0f896 2486 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2487 {
d02603dc
NC
2488 char *string;
2489 int e = get_symbol_name (&string);
252b5132 2490
47926f60 2491 if (strcmp (string, "prefix") == 0)
252b5132 2492 ask_naked_reg = 1;
47926f60 2493 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2494 ask_naked_reg = -1;
2495 else
d0b47220 2496 as_bad (_("bad argument to syntax directive."));
d02603dc 2497 (void) restore_line_pointer (e);
252b5132
RH
2498 }
2499 demand_empty_rest_of_line ();
c3332e24 2500
252b5132
RH
2501 intel_syntax = syntax_flag;
2502
2503 if (ask_naked_reg == 0)
f86103b7
AM
2504 allow_naked_reg = (intel_syntax
2505 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2506 else
2507 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2508
ee86248c 2509 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2510
e4a3b5a4 2511 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2512 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2513 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2514}
2515
1efbbeb4
L
2516static void
2517set_intel_mnemonic (int mnemonic_flag)
2518{
e1d4d893 2519 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2520}
2521
db51cc60
L
2522static void
2523set_allow_index_reg (int flag)
2524{
2525 allow_index_reg = flag;
2526}
2527
cb19c032 2528static void
7bab8ab5 2529set_check (int what)
cb19c032 2530{
7bab8ab5
JB
2531 enum check_kind *kind;
2532 const char *str;
2533
2534 if (what)
2535 {
2536 kind = &operand_check;
2537 str = "operand";
2538 }
2539 else
2540 {
2541 kind = &sse_check;
2542 str = "sse";
2543 }
2544
cb19c032
L
2545 SKIP_WHITESPACE ();
2546
2547 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2548 {
d02603dc
NC
2549 char *string;
2550 int e = get_symbol_name (&string);
cb19c032
L
2551
2552 if (strcmp (string, "none") == 0)
7bab8ab5 2553 *kind = check_none;
cb19c032 2554 else if (strcmp (string, "warning") == 0)
7bab8ab5 2555 *kind = check_warning;
cb19c032 2556 else if (strcmp (string, "error") == 0)
7bab8ab5 2557 *kind = check_error;
cb19c032 2558 else
7bab8ab5 2559 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2560 (void) restore_line_pointer (e);
cb19c032
L
2561 }
2562 else
7bab8ab5 2563 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2564
2565 demand_empty_rest_of_line ();
2566}
2567
8a9036a4
L
2568static void
2569check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2570 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2571{
2572#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2573 static const char *arch;
2574
2575 /* Intel LIOM is only supported on ELF. */
2576 if (!IS_ELF)
2577 return;
2578
2579 if (!arch)
2580 {
2581 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2582 use default_arch. */
2583 arch = cpu_arch_name;
2584 if (!arch)
2585 arch = default_arch;
2586 }
2587
81486035
L
2588 /* If we are targeting Intel MCU, we must enable it. */
2589 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2590 || new_flag.bitfield.cpuiamcu)
2591 return;
2592
3632d14b 2593 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2594 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2595 || new_flag.bitfield.cpul1om)
8a9036a4 2596 return;
76ba9986 2597
7a9068fe
L
2598 /* If we are targeting Intel K1OM, we must enable it. */
2599 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2600 || new_flag.bitfield.cpuk1om)
2601 return;
2602
8a9036a4
L
2603 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2604#endif
2605}
2606
e413e4e9 2607static void
e3bb37b5 2608set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2609{
47926f60 2610 SKIP_WHITESPACE ();
e413e4e9 2611
29b0f896 2612 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2613 {
d02603dc
NC
2614 char *string;
2615 int e = get_symbol_name (&string);
91d6fa6a 2616 unsigned int j;
40fb9820 2617 i386_cpu_flags flags;
e413e4e9 2618
91d6fa6a 2619 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2620 {
91d6fa6a 2621 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2622 {
91d6fa6a 2623 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2624
5c6af06e
JB
2625 if (*string != '.')
2626 {
91d6fa6a 2627 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2628 cpu_sub_arch_name = NULL;
91d6fa6a 2629 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2630 if (flag_code == CODE_64BIT)
2631 {
2632 cpu_arch_flags.bitfield.cpu64 = 1;
2633 cpu_arch_flags.bitfield.cpuno64 = 0;
2634 }
2635 else
2636 {
2637 cpu_arch_flags.bitfield.cpu64 = 0;
2638 cpu_arch_flags.bitfield.cpuno64 = 1;
2639 }
91d6fa6a
NC
2640 cpu_arch_isa = cpu_arch[j].type;
2641 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2642 if (!cpu_arch_tune_set)
2643 {
2644 cpu_arch_tune = cpu_arch_isa;
2645 cpu_arch_tune_flags = cpu_arch_isa_flags;
2646 }
5c6af06e
JB
2647 break;
2648 }
40fb9820 2649
293f5f65
L
2650 flags = cpu_flags_or (cpu_arch_flags,
2651 cpu_arch[j].flags);
81486035 2652
5b64d091 2653 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2654 {
6305a203
L
2655 if (cpu_sub_arch_name)
2656 {
2657 char *name = cpu_sub_arch_name;
2658 cpu_sub_arch_name = concat (name,
91d6fa6a 2659 cpu_arch[j].name,
1bf57e9f 2660 (const char *) NULL);
6305a203
L
2661 free (name);
2662 }
2663 else
91d6fa6a 2664 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2665 cpu_arch_flags = flags;
a586129e 2666 cpu_arch_isa_flags = flags;
5c6af06e 2667 }
0089dace
L
2668 else
2669 cpu_arch_isa_flags
2670 = cpu_flags_or (cpu_arch_isa_flags,
2671 cpu_arch[j].flags);
d02603dc 2672 (void) restore_line_pointer (e);
5c6af06e
JB
2673 demand_empty_rest_of_line ();
2674 return;
e413e4e9
AM
2675 }
2676 }
293f5f65
L
2677
2678 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2679 {
33eaf5de 2680 /* Disable an ISA extension. */
293f5f65
L
2681 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2682 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2683 {
2684 flags = cpu_flags_and_not (cpu_arch_flags,
2685 cpu_noarch[j].flags);
2686 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2687 {
2688 if (cpu_sub_arch_name)
2689 {
2690 char *name = cpu_sub_arch_name;
2691 cpu_sub_arch_name = concat (name, string,
2692 (const char *) NULL);
2693 free (name);
2694 }
2695 else
2696 cpu_sub_arch_name = xstrdup (string);
2697 cpu_arch_flags = flags;
2698 cpu_arch_isa_flags = flags;
2699 }
2700 (void) restore_line_pointer (e);
2701 demand_empty_rest_of_line ();
2702 return;
2703 }
2704
2705 j = ARRAY_SIZE (cpu_arch);
2706 }
2707
91d6fa6a 2708 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2709 as_bad (_("no such architecture: `%s'"), string);
2710
2711 *input_line_pointer = e;
2712 }
2713 else
2714 as_bad (_("missing cpu architecture"));
2715
fddf5b5b
AM
2716 no_cond_jump_promotion = 0;
2717 if (*input_line_pointer == ','
29b0f896 2718 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2719 {
d02603dc
NC
2720 char *string;
2721 char e;
2722
2723 ++input_line_pointer;
2724 e = get_symbol_name (&string);
fddf5b5b
AM
2725
2726 if (strcmp (string, "nojumps") == 0)
2727 no_cond_jump_promotion = 1;
2728 else if (strcmp (string, "jumps") == 0)
2729 ;
2730 else
2731 as_bad (_("no such architecture modifier: `%s'"), string);
2732
d02603dc 2733 (void) restore_line_pointer (e);
fddf5b5b
AM
2734 }
2735
e413e4e9
AM
2736 demand_empty_rest_of_line ();
2737}
2738
8a9036a4
L
2739enum bfd_architecture
2740i386_arch (void)
2741{
3632d14b 2742 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2743 {
2744 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2745 || flag_code != CODE_64BIT)
2746 as_fatal (_("Intel L1OM is 64bit ELF only"));
2747 return bfd_arch_l1om;
2748 }
7a9068fe
L
2749 else if (cpu_arch_isa == PROCESSOR_K1OM)
2750 {
2751 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2752 || flag_code != CODE_64BIT)
2753 as_fatal (_("Intel K1OM is 64bit ELF only"));
2754 return bfd_arch_k1om;
2755 }
81486035
L
2756 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2757 {
2758 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2759 || flag_code == CODE_64BIT)
2760 as_fatal (_("Intel MCU is 32bit ELF only"));
2761 return bfd_arch_iamcu;
2762 }
8a9036a4
L
2763 else
2764 return bfd_arch_i386;
2765}
2766
b9d79e03 2767unsigned long
7016a5d5 2768i386_mach (void)
b9d79e03 2769{
351f65ca 2770 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2771 {
3632d14b 2772 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2773 {
351f65ca
L
2774 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2775 || default_arch[6] != '\0')
8a9036a4
L
2776 as_fatal (_("Intel L1OM is 64bit ELF only"));
2777 return bfd_mach_l1om;
2778 }
7a9068fe
L
2779 else if (cpu_arch_isa == PROCESSOR_K1OM)
2780 {
2781 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2782 || default_arch[6] != '\0')
2783 as_fatal (_("Intel K1OM is 64bit ELF only"));
2784 return bfd_mach_k1om;
2785 }
351f65ca 2786 else if (default_arch[6] == '\0')
8a9036a4 2787 return bfd_mach_x86_64;
351f65ca
L
2788 else
2789 return bfd_mach_x64_32;
8a9036a4 2790 }
5197d474
L
2791 else if (!strcmp (default_arch, "i386")
2792 || !strcmp (default_arch, "iamcu"))
81486035
L
2793 {
2794 if (cpu_arch_isa == PROCESSOR_IAMCU)
2795 {
2796 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2797 as_fatal (_("Intel MCU is 32bit ELF only"));
2798 return bfd_mach_i386_iamcu;
2799 }
2800 else
2801 return bfd_mach_i386_i386;
2802 }
b9d79e03 2803 else
2b5d6a91 2804 as_fatal (_("unknown architecture"));
b9d79e03 2805}
b9d79e03 2806\f
252b5132 2807void
7016a5d5 2808md_begin (void)
252b5132
RH
2809{
2810 const char *hash_err;
2811
86fa6981
L
2812 /* Support pseudo prefixes like {disp32}. */
2813 lex_type ['{'] = LEX_BEGIN_NAME;
2814
47926f60 2815 /* Initialize op_hash hash table. */
252b5132
RH
2816 op_hash = hash_new ();
2817
2818 {
d3ce72d0 2819 const insn_template *optab;
29b0f896 2820 templates *core_optab;
252b5132 2821
47926f60
KH
2822 /* Setup for loop. */
2823 optab = i386_optab;
add39d23 2824 core_optab = XNEW (templates);
252b5132
RH
2825 core_optab->start = optab;
2826
2827 while (1)
2828 {
2829 ++optab;
2830 if (optab->name == NULL
2831 || strcmp (optab->name, (optab - 1)->name) != 0)
2832 {
2833 /* different name --> ship out current template list;
47926f60 2834 add to hash table; & begin anew. */
252b5132
RH
2835 core_optab->end = optab;
2836 hash_err = hash_insert (op_hash,
2837 (optab - 1)->name,
5a49b8ac 2838 (void *) core_optab);
252b5132
RH
2839 if (hash_err)
2840 {
b37df7c4 2841 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2842 (optab - 1)->name,
2843 hash_err);
2844 }
2845 if (optab->name == NULL)
2846 break;
add39d23 2847 core_optab = XNEW (templates);
252b5132
RH
2848 core_optab->start = optab;
2849 }
2850 }
2851 }
2852
47926f60 2853 /* Initialize reg_hash hash table. */
252b5132
RH
2854 reg_hash = hash_new ();
2855 {
29b0f896 2856 const reg_entry *regtab;
c3fe08fa 2857 unsigned int regtab_size = i386_regtab_size;
252b5132 2858
c3fe08fa 2859 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2860 {
5a49b8ac 2861 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2862 if (hash_err)
b37df7c4 2863 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2864 regtab->reg_name,
2865 hash_err);
252b5132
RH
2866 }
2867 }
2868
47926f60 2869 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2870 {
29b0f896
AM
2871 int c;
2872 char *p;
252b5132
RH
2873
2874 for (c = 0; c < 256; c++)
2875 {
3882b010 2876 if (ISDIGIT (c))
252b5132
RH
2877 {
2878 digit_chars[c] = c;
2879 mnemonic_chars[c] = c;
2880 register_chars[c] = c;
2881 operand_chars[c] = c;
2882 }
3882b010 2883 else if (ISLOWER (c))
252b5132
RH
2884 {
2885 mnemonic_chars[c] = c;
2886 register_chars[c] = c;
2887 operand_chars[c] = c;
2888 }
3882b010 2889 else if (ISUPPER (c))
252b5132 2890 {
3882b010 2891 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2892 register_chars[c] = mnemonic_chars[c];
2893 operand_chars[c] = c;
2894 }
43234a1e 2895 else if (c == '{' || c == '}')
86fa6981
L
2896 {
2897 mnemonic_chars[c] = c;
2898 operand_chars[c] = c;
2899 }
252b5132 2900
3882b010 2901 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2902 identifier_chars[c] = c;
2903 else if (c >= 128)
2904 {
2905 identifier_chars[c] = c;
2906 operand_chars[c] = c;
2907 }
2908 }
2909
2910#ifdef LEX_AT
2911 identifier_chars['@'] = '@';
32137342
NC
2912#endif
2913#ifdef LEX_QM
2914 identifier_chars['?'] = '?';
2915 operand_chars['?'] = '?';
252b5132 2916#endif
252b5132 2917 digit_chars['-'] = '-';
c0f3af97 2918 mnemonic_chars['_'] = '_';
791fe849 2919 mnemonic_chars['-'] = '-';
0003779b 2920 mnemonic_chars['.'] = '.';
252b5132
RH
2921 identifier_chars['_'] = '_';
2922 identifier_chars['.'] = '.';
2923
2924 for (p = operand_special_chars; *p != '\0'; p++)
2925 operand_chars[(unsigned char) *p] = *p;
2926 }
2927
a4447b93
RH
2928 if (flag_code == CODE_64BIT)
2929 {
ca19b261
KT
2930#if defined (OBJ_COFF) && defined (TE_PE)
2931 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2932 ? 32 : 16);
2933#else
a4447b93 2934 x86_dwarf2_return_column = 16;
ca19b261 2935#endif
61ff971f 2936 x86_cie_data_alignment = -8;
a4447b93
RH
2937 }
2938 else
2939 {
2940 x86_dwarf2_return_column = 8;
2941 x86_cie_data_alignment = -4;
2942 }
252b5132
RH
2943}
2944
2945void
e3bb37b5 2946i386_print_statistics (FILE *file)
252b5132
RH
2947{
2948 hash_print_statistics (file, "i386 opcode", op_hash);
2949 hash_print_statistics (file, "i386 register", reg_hash);
2950}
2951\f
252b5132
RH
2952#ifdef DEBUG386
2953
ce8a8b2f 2954/* Debugging routines for md_assemble. */
d3ce72d0 2955static void pte (insn_template *);
40fb9820 2956static void pt (i386_operand_type);
e3bb37b5
L
2957static void pe (expressionS *);
2958static void ps (symbolS *);
252b5132
RH
2959
2960static void
e3bb37b5 2961pi (char *line, i386_insn *x)
252b5132 2962{
09137c09 2963 unsigned int j;
252b5132
RH
2964
2965 fprintf (stdout, "%s: template ", line);
2966 pte (&x->tm);
09f131f2
JH
2967 fprintf (stdout, " address: base %s index %s scale %x\n",
2968 x->base_reg ? x->base_reg->reg_name : "none",
2969 x->index_reg ? x->index_reg->reg_name : "none",
2970 x->log2_scale_factor);
2971 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2972 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2973 fprintf (stdout, " sib: base %x index %x scale %x\n",
2974 x->sib.base, x->sib.index, x->sib.scale);
2975 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2976 (x->rex & REX_W) != 0,
2977 (x->rex & REX_R) != 0,
2978 (x->rex & REX_X) != 0,
2979 (x->rex & REX_B) != 0);
09137c09 2980 for (j = 0; j < x->operands; j++)
252b5132 2981 {
09137c09
SP
2982 fprintf (stdout, " #%d: ", j + 1);
2983 pt (x->types[j]);
252b5132 2984 fprintf (stdout, "\n");
dc821c5f 2985 if (x->types[j].bitfield.reg
09137c09 2986 || x->types[j].bitfield.regmmx
1b54b8d7 2987 || x->types[j].bitfield.regsimd
09137c09
SP
2988 || x->types[j].bitfield.sreg2
2989 || x->types[j].bitfield.sreg3
2990 || x->types[j].bitfield.control
2991 || x->types[j].bitfield.debug
2992 || x->types[j].bitfield.test)
2993 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2994 if (operand_type_check (x->types[j], imm))
2995 pe (x->op[j].imms);
2996 if (operand_type_check (x->types[j], disp))
2997 pe (x->op[j].disps);
252b5132
RH
2998 }
2999}
3000
3001static void
d3ce72d0 3002pte (insn_template *t)
252b5132 3003{
09137c09 3004 unsigned int j;
252b5132 3005 fprintf (stdout, " %d operands ", t->operands);
47926f60 3006 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3007 if (t->extension_opcode != None)
3008 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3009 if (t->opcode_modifier.d)
252b5132 3010 fprintf (stdout, "D");
40fb9820 3011 if (t->opcode_modifier.w)
252b5132
RH
3012 fprintf (stdout, "W");
3013 fprintf (stdout, "\n");
09137c09 3014 for (j = 0; j < t->operands; j++)
252b5132 3015 {
09137c09
SP
3016 fprintf (stdout, " #%d type ", j + 1);
3017 pt (t->operand_types[j]);
252b5132
RH
3018 fprintf (stdout, "\n");
3019 }
3020}
3021
3022static void
e3bb37b5 3023pe (expressionS *e)
252b5132 3024{
24eab124 3025 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3026 fprintf (stdout, " add_number %ld (%lx)\n",
3027 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3028 if (e->X_add_symbol)
3029 {
3030 fprintf (stdout, " add_symbol ");
3031 ps (e->X_add_symbol);
3032 fprintf (stdout, "\n");
3033 }
3034 if (e->X_op_symbol)
3035 {
3036 fprintf (stdout, " op_symbol ");
3037 ps (e->X_op_symbol);
3038 fprintf (stdout, "\n");
3039 }
3040}
3041
3042static void
e3bb37b5 3043ps (symbolS *s)
252b5132
RH
3044{
3045 fprintf (stdout, "%s type %s%s",
3046 S_GET_NAME (s),
3047 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3048 segment_name (S_GET_SEGMENT (s)));
3049}
3050
7b81dfbb 3051static struct type_name
252b5132 3052 {
40fb9820
L
3053 i386_operand_type mask;
3054 const char *name;
252b5132 3055 }
7b81dfbb 3056const type_names[] =
252b5132 3057{
40fb9820
L
3058 { OPERAND_TYPE_REG8, "r8" },
3059 { OPERAND_TYPE_REG16, "r16" },
3060 { OPERAND_TYPE_REG32, "r32" },
3061 { OPERAND_TYPE_REG64, "r64" },
3062 { OPERAND_TYPE_IMM8, "i8" },
3063 { OPERAND_TYPE_IMM8, "i8s" },
3064 { OPERAND_TYPE_IMM16, "i16" },
3065 { OPERAND_TYPE_IMM32, "i32" },
3066 { OPERAND_TYPE_IMM32S, "i32s" },
3067 { OPERAND_TYPE_IMM64, "i64" },
3068 { OPERAND_TYPE_IMM1, "i1" },
3069 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3070 { OPERAND_TYPE_DISP8, "d8" },
3071 { OPERAND_TYPE_DISP16, "d16" },
3072 { OPERAND_TYPE_DISP32, "d32" },
3073 { OPERAND_TYPE_DISP32S, "d32s" },
3074 { OPERAND_TYPE_DISP64, "d64" },
3075 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3076 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3077 { OPERAND_TYPE_CONTROL, "control reg" },
3078 { OPERAND_TYPE_TEST, "test reg" },
3079 { OPERAND_TYPE_DEBUG, "debug reg" },
3080 { OPERAND_TYPE_FLOATREG, "FReg" },
3081 { OPERAND_TYPE_FLOATACC, "FAcc" },
3082 { OPERAND_TYPE_SREG2, "SReg2" },
3083 { OPERAND_TYPE_SREG3, "SReg3" },
3084 { OPERAND_TYPE_ACC, "Acc" },
3085 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3086 { OPERAND_TYPE_REGMMX, "rMMX" },
3087 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3088 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3089 { OPERAND_TYPE_REGZMM, "rZMM" },
3090 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3091 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3092};
3093
3094static void
40fb9820 3095pt (i386_operand_type t)
252b5132 3096{
40fb9820 3097 unsigned int j;
c6fb90c8 3098 i386_operand_type a;
252b5132 3099
40fb9820 3100 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3101 {
3102 a = operand_type_and (t, type_names[j].mask);
0349dc08 3103 if (!operand_type_all_zero (&a))
c6fb90c8
L
3104 fprintf (stdout, "%s, ", type_names[j].name);
3105 }
252b5132
RH
3106 fflush (stdout);
3107}
3108
3109#endif /* DEBUG386 */
3110\f
252b5132 3111static bfd_reloc_code_real_type
3956db08 3112reloc (unsigned int size,
64e74474
AM
3113 int pcrel,
3114 int sign,
3115 bfd_reloc_code_real_type other)
252b5132 3116{
47926f60 3117 if (other != NO_RELOC)
3956db08 3118 {
91d6fa6a 3119 reloc_howto_type *rel;
3956db08
JB
3120
3121 if (size == 8)
3122 switch (other)
3123 {
64e74474
AM
3124 case BFD_RELOC_X86_64_GOT32:
3125 return BFD_RELOC_X86_64_GOT64;
3126 break;
553d1284
L
3127 case BFD_RELOC_X86_64_GOTPLT64:
3128 return BFD_RELOC_X86_64_GOTPLT64;
3129 break;
64e74474
AM
3130 case BFD_RELOC_X86_64_PLTOFF64:
3131 return BFD_RELOC_X86_64_PLTOFF64;
3132 break;
3133 case BFD_RELOC_X86_64_GOTPC32:
3134 other = BFD_RELOC_X86_64_GOTPC64;
3135 break;
3136 case BFD_RELOC_X86_64_GOTPCREL:
3137 other = BFD_RELOC_X86_64_GOTPCREL64;
3138 break;
3139 case BFD_RELOC_X86_64_TPOFF32:
3140 other = BFD_RELOC_X86_64_TPOFF64;
3141 break;
3142 case BFD_RELOC_X86_64_DTPOFF32:
3143 other = BFD_RELOC_X86_64_DTPOFF64;
3144 break;
3145 default:
3146 break;
3956db08 3147 }
e05278af 3148
8ce3d284 3149#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3150 if (other == BFD_RELOC_SIZE32)
3151 {
3152 if (size == 8)
1ab668bf 3153 other = BFD_RELOC_SIZE64;
8fd4256d 3154 if (pcrel)
1ab668bf
AM
3155 {
3156 as_bad (_("there are no pc-relative size relocations"));
3157 return NO_RELOC;
3158 }
8fd4256d 3159 }
8ce3d284 3160#endif
8fd4256d 3161
e05278af 3162 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3163 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3164 sign = -1;
3165
91d6fa6a
NC
3166 rel = bfd_reloc_type_lookup (stdoutput, other);
3167 if (!rel)
3956db08 3168 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3169 else if (size != bfd_get_reloc_size (rel))
3956db08 3170 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3171 bfd_get_reloc_size (rel),
3956db08 3172 size);
91d6fa6a 3173 else if (pcrel && !rel->pc_relative)
3956db08 3174 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3175 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3176 && !sign)
91d6fa6a 3177 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3178 && sign > 0))
3956db08
JB
3179 as_bad (_("relocated field and relocation type differ in signedness"));
3180 else
3181 return other;
3182 return NO_RELOC;
3183 }
252b5132
RH
3184
3185 if (pcrel)
3186 {
3e73aa7c 3187 if (!sign)
3956db08 3188 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3189 switch (size)
3190 {
3191 case 1: return BFD_RELOC_8_PCREL;
3192 case 2: return BFD_RELOC_16_PCREL;
d258b828 3193 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3194 case 8: return BFD_RELOC_64_PCREL;
252b5132 3195 }
3956db08 3196 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3197 }
3198 else
3199 {
3956db08 3200 if (sign > 0)
e5cb08ac 3201 switch (size)
3e73aa7c
JH
3202 {
3203 case 4: return BFD_RELOC_X86_64_32S;
3204 }
3205 else
3206 switch (size)
3207 {
3208 case 1: return BFD_RELOC_8;
3209 case 2: return BFD_RELOC_16;
3210 case 4: return BFD_RELOC_32;
3211 case 8: return BFD_RELOC_64;
3212 }
3956db08
JB
3213 as_bad (_("cannot do %s %u byte relocation"),
3214 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3215 }
3216
0cc9e1d3 3217 return NO_RELOC;
252b5132
RH
3218}
3219
47926f60
KH
3220/* Here we decide which fixups can be adjusted to make them relative to
3221 the beginning of the section instead of the symbol. Basically we need
3222 to make sure that the dynamic relocations are done correctly, so in
3223 some cases we force the original symbol to be used. */
3224
252b5132 3225int
e3bb37b5 3226tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3227{
6d249963 3228#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3229 if (!IS_ELF)
31312f95
AM
3230 return 1;
3231
a161fe53
AM
3232 /* Don't adjust pc-relative references to merge sections in 64-bit
3233 mode. */
3234 if (use_rela_relocations
3235 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3236 && fixP->fx_pcrel)
252b5132 3237 return 0;
31312f95 3238
8d01d9a9
AJ
3239 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3240 and changed later by validate_fix. */
3241 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3242 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3243 return 0;
3244
8fd4256d
L
3245 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3246 for size relocations. */
3247 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3248 || fixP->fx_r_type == BFD_RELOC_SIZE64
3249 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3250 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3251 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3252 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3253 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3254 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3256 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3257 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3258 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3259 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3260 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3261 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3262 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3263 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3264 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3265 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3266 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3267 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3268 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3269 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3270 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3271 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3272 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3273 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3274 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3275 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3276 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3277 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3278 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3279 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3280 return 0;
31312f95 3281#endif
252b5132
RH
3282 return 1;
3283}
252b5132 3284
b4cac588 3285static int
e3bb37b5 3286intel_float_operand (const char *mnemonic)
252b5132 3287{
9306ca4a
JB
3288 /* Note that the value returned is meaningful only for opcodes with (memory)
3289 operands, hence the code here is free to improperly handle opcodes that
3290 have no operands (for better performance and smaller code). */
3291
3292 if (mnemonic[0] != 'f')
3293 return 0; /* non-math */
3294
3295 switch (mnemonic[1])
3296 {
3297 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3298 the fs segment override prefix not currently handled because no
3299 call path can make opcodes without operands get here */
3300 case 'i':
3301 return 2 /* integer op */;
3302 case 'l':
3303 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3304 return 3; /* fldcw/fldenv */
3305 break;
3306 case 'n':
3307 if (mnemonic[2] != 'o' /* fnop */)
3308 return 3; /* non-waiting control op */
3309 break;
3310 case 'r':
3311 if (mnemonic[2] == 's')
3312 return 3; /* frstor/frstpm */
3313 break;
3314 case 's':
3315 if (mnemonic[2] == 'a')
3316 return 3; /* fsave */
3317 if (mnemonic[2] == 't')
3318 {
3319 switch (mnemonic[3])
3320 {
3321 case 'c': /* fstcw */
3322 case 'd': /* fstdw */
3323 case 'e': /* fstenv */
3324 case 's': /* fsts[gw] */
3325 return 3;
3326 }
3327 }
3328 break;
3329 case 'x':
3330 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3331 return 0; /* fxsave/fxrstor are not really math ops */
3332 break;
3333 }
252b5132 3334
9306ca4a 3335 return 1;
252b5132
RH
3336}
3337
c0f3af97
L
3338/* Build the VEX prefix. */
3339
3340static void
d3ce72d0 3341build_vex_prefix (const insn_template *t)
c0f3af97
L
3342{
3343 unsigned int register_specifier;
3344 unsigned int implied_prefix;
3345 unsigned int vector_length;
3346
3347 /* Check register specifier. */
3348 if (i.vex.register_specifier)
43234a1e
L
3349 {
3350 register_specifier =
3351 ~register_number (i.vex.register_specifier) & 0xf;
3352 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3353 }
c0f3af97
L
3354 else
3355 register_specifier = 0xf;
3356
33eaf5de 3357 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3358 operand. */
86fa6981
L
3359 if (i.vec_encoding != vex_encoding_vex3
3360 && i.dir_encoding == dir_encoding_default
fa99fab2 3361 && i.operands == i.reg_operands
7f399153 3362 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3363 && i.tm.opcode_modifier.load
fa99fab2
L
3364 && i.rex == REX_B)
3365 {
3366 unsigned int xchg = i.operands - 1;
3367 union i386_op temp_op;
3368 i386_operand_type temp_type;
3369
3370 temp_type = i.types[xchg];
3371 i.types[xchg] = i.types[0];
3372 i.types[0] = temp_type;
3373 temp_op = i.op[xchg];
3374 i.op[xchg] = i.op[0];
3375 i.op[0] = temp_op;
3376
9c2799c2 3377 gas_assert (i.rm.mode == 3);
fa99fab2
L
3378
3379 i.rex = REX_R;
3380 xchg = i.rm.regmem;
3381 i.rm.regmem = i.rm.reg;
3382 i.rm.reg = xchg;
3383
3384 /* Use the next insn. */
3385 i.tm = t[1];
3386 }
3387
539f890d
L
3388 if (i.tm.opcode_modifier.vex == VEXScalar)
3389 vector_length = avxscalar;
10c17abd
JB
3390 else if (i.tm.opcode_modifier.vex == VEX256)
3391 vector_length = 1;
539f890d 3392 else
10c17abd 3393 {
56522fc5 3394 unsigned int op;
10c17abd 3395
c7213af9
L
3396 /* Determine vector length from the last multi-length vector
3397 operand. */
10c17abd 3398 vector_length = 0;
56522fc5 3399 for (op = t->operands; op--;)
10c17abd
JB
3400 if (t->operand_types[op].bitfield.xmmword
3401 && t->operand_types[op].bitfield.ymmword
3402 && i.types[op].bitfield.ymmword)
3403 {
3404 vector_length = 1;
3405 break;
3406 }
3407 }
c0f3af97
L
3408
3409 switch ((i.tm.base_opcode >> 8) & 0xff)
3410 {
3411 case 0:
3412 implied_prefix = 0;
3413 break;
3414 case DATA_PREFIX_OPCODE:
3415 implied_prefix = 1;
3416 break;
3417 case REPE_PREFIX_OPCODE:
3418 implied_prefix = 2;
3419 break;
3420 case REPNE_PREFIX_OPCODE:
3421 implied_prefix = 3;
3422 break;
3423 default:
3424 abort ();
3425 }
3426
3427 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3428 if (i.vec_encoding != vex_encoding_vex3
3429 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3430 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3431 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3432 {
3433 /* 2-byte VEX prefix. */
3434 unsigned int r;
3435
3436 i.vex.length = 2;
3437 i.vex.bytes[0] = 0xc5;
3438
3439 /* Check the REX.R bit. */
3440 r = (i.rex & REX_R) ? 0 : 1;
3441 i.vex.bytes[1] = (r << 7
3442 | register_specifier << 3
3443 | vector_length << 2
3444 | implied_prefix);
3445 }
3446 else
3447 {
3448 /* 3-byte VEX prefix. */
3449 unsigned int m, w;
3450
f88c9eb0 3451 i.vex.length = 3;
f88c9eb0 3452
7f399153 3453 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3454 {
7f399153
L
3455 case VEX0F:
3456 m = 0x1;
80de6e00 3457 i.vex.bytes[0] = 0xc4;
7f399153
L
3458 break;
3459 case VEX0F38:
3460 m = 0x2;
80de6e00 3461 i.vex.bytes[0] = 0xc4;
7f399153
L
3462 break;
3463 case VEX0F3A:
3464 m = 0x3;
80de6e00 3465 i.vex.bytes[0] = 0xc4;
7f399153
L
3466 break;
3467 case XOP08:
5dd85c99
SP
3468 m = 0x8;
3469 i.vex.bytes[0] = 0x8f;
7f399153
L
3470 break;
3471 case XOP09:
f88c9eb0
SP
3472 m = 0x9;
3473 i.vex.bytes[0] = 0x8f;
7f399153
L
3474 break;
3475 case XOP0A:
f88c9eb0
SP
3476 m = 0xa;
3477 i.vex.bytes[0] = 0x8f;
7f399153
L
3478 break;
3479 default:
3480 abort ();
f88c9eb0 3481 }
c0f3af97 3482
c0f3af97
L
3483 /* The high 3 bits of the second VEX byte are 1's compliment
3484 of RXB bits from REX. */
3485 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3486
3487 /* Check the REX.W bit. */
3488 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3489 if (i.tm.opcode_modifier.vexw == VEXW1)
3490 w = 1;
c0f3af97
L
3491
3492 i.vex.bytes[2] = (w << 7
3493 | register_specifier << 3
3494 | vector_length << 2
3495 | implied_prefix);
3496 }
3497}
3498
e771e7c9
JB
3499static INLINE bfd_boolean
3500is_evex_encoding (const insn_template *t)
3501{
7091c612 3502 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3503 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3504 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3505}
3506
7a8655d2
JB
3507static INLINE bfd_boolean
3508is_any_vex_encoding (const insn_template *t)
3509{
3510 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3511 || is_evex_encoding (t);
3512}
3513
43234a1e
L
3514/* Build the EVEX prefix. */
3515
3516static void
3517build_evex_prefix (void)
3518{
3519 unsigned int register_specifier;
3520 unsigned int implied_prefix;
3521 unsigned int m, w;
3522 rex_byte vrex_used = 0;
3523
3524 /* Check register specifier. */
3525 if (i.vex.register_specifier)
3526 {
3527 gas_assert ((i.vrex & REX_X) == 0);
3528
3529 register_specifier = i.vex.register_specifier->reg_num;
3530 if ((i.vex.register_specifier->reg_flags & RegRex))
3531 register_specifier += 8;
3532 /* The upper 16 registers are encoded in the fourth byte of the
3533 EVEX prefix. */
3534 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3535 i.vex.bytes[3] = 0x8;
3536 register_specifier = ~register_specifier & 0xf;
3537 }
3538 else
3539 {
3540 register_specifier = 0xf;
3541
3542 /* Encode upper 16 vector index register in the fourth byte of
3543 the EVEX prefix. */
3544 if (!(i.vrex & REX_X))
3545 i.vex.bytes[3] = 0x8;
3546 else
3547 vrex_used |= REX_X;
3548 }
3549
3550 switch ((i.tm.base_opcode >> 8) & 0xff)
3551 {
3552 case 0:
3553 implied_prefix = 0;
3554 break;
3555 case DATA_PREFIX_OPCODE:
3556 implied_prefix = 1;
3557 break;
3558 case REPE_PREFIX_OPCODE:
3559 implied_prefix = 2;
3560 break;
3561 case REPNE_PREFIX_OPCODE:
3562 implied_prefix = 3;
3563 break;
3564 default:
3565 abort ();
3566 }
3567
3568 /* 4 byte EVEX prefix. */
3569 i.vex.length = 4;
3570 i.vex.bytes[0] = 0x62;
3571
3572 /* mmmm bits. */
3573 switch (i.tm.opcode_modifier.vexopcode)
3574 {
3575 case VEX0F:
3576 m = 1;
3577 break;
3578 case VEX0F38:
3579 m = 2;
3580 break;
3581 case VEX0F3A:
3582 m = 3;
3583 break;
3584 default:
3585 abort ();
3586 break;
3587 }
3588
3589 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3590 bits from REX. */
3591 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3592
3593 /* The fifth bit of the second EVEX byte is 1's compliment of the
3594 REX_R bit in VREX. */
3595 if (!(i.vrex & REX_R))
3596 i.vex.bytes[1] |= 0x10;
3597 else
3598 vrex_used |= REX_R;
3599
3600 if ((i.reg_operands + i.imm_operands) == i.operands)
3601 {
3602 /* When all operands are registers, the REX_X bit in REX is not
3603 used. We reuse it to encode the upper 16 registers, which is
3604 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3605 as 1's compliment. */
3606 if ((i.vrex & REX_B))
3607 {
3608 vrex_used |= REX_B;
3609 i.vex.bytes[1] &= ~0x40;
3610 }
3611 }
3612
3613 /* EVEX instructions shouldn't need the REX prefix. */
3614 i.vrex &= ~vrex_used;
3615 gas_assert (i.vrex == 0);
3616
3617 /* Check the REX.W bit. */
3618 w = (i.rex & REX_W) ? 1 : 0;
3619 if (i.tm.opcode_modifier.vexw)
3620 {
3621 if (i.tm.opcode_modifier.vexw == VEXW1)
3622 w = 1;
3623 }
3624 /* If w is not set it means we are dealing with WIG instruction. */
3625 else if (!w)
3626 {
3627 if (evexwig == evexw1)
3628 w = 1;
3629 }
3630
3631 /* Encode the U bit. */
3632 implied_prefix |= 0x4;
3633
3634 /* The third byte of the EVEX prefix. */
3635 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3636
3637 /* The fourth byte of the EVEX prefix. */
3638 /* The zeroing-masking bit. */
3639 if (i.mask && i.mask->zeroing)
3640 i.vex.bytes[3] |= 0x80;
3641
3642 /* Don't always set the broadcast bit if there is no RC. */
3643 if (!i.rounding)
3644 {
3645 /* Encode the vector length. */
3646 unsigned int vec_length;
3647
e771e7c9
JB
3648 if (!i.tm.opcode_modifier.evex
3649 || i.tm.opcode_modifier.evex == EVEXDYN)
3650 {
56522fc5 3651 unsigned int op;
e771e7c9 3652
c7213af9
L
3653 /* Determine vector length from the last multi-length vector
3654 operand. */
e771e7c9 3655 vec_length = 0;
56522fc5 3656 for (op = i.operands; op--;)
e771e7c9
JB
3657 if (i.tm.operand_types[op].bitfield.xmmword
3658 + i.tm.operand_types[op].bitfield.ymmword
3659 + i.tm.operand_types[op].bitfield.zmmword > 1)
3660 {
3661 if (i.types[op].bitfield.zmmword)
c7213af9
L
3662 {
3663 i.tm.opcode_modifier.evex = EVEX512;
3664 break;
3665 }
e771e7c9 3666 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3667 {
3668 i.tm.opcode_modifier.evex = EVEX256;
3669 break;
3670 }
e771e7c9 3671 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3672 {
3673 i.tm.opcode_modifier.evex = EVEX128;
3674 break;
3675 }
625cbd7a
JB
3676 else if (i.broadcast && (int) op == i.broadcast->operand)
3677 {
4a1b91ea 3678 switch (i.broadcast->bytes)
625cbd7a
JB
3679 {
3680 case 64:
3681 i.tm.opcode_modifier.evex = EVEX512;
3682 break;
3683 case 32:
3684 i.tm.opcode_modifier.evex = EVEX256;
3685 break;
3686 case 16:
3687 i.tm.opcode_modifier.evex = EVEX128;
3688 break;
3689 default:
c7213af9 3690 abort ();
625cbd7a 3691 }
c7213af9 3692 break;
625cbd7a 3693 }
e771e7c9 3694 }
c7213af9 3695
56522fc5 3696 if (op >= MAX_OPERANDS)
c7213af9 3697 abort ();
e771e7c9
JB
3698 }
3699
43234a1e
L
3700 switch (i.tm.opcode_modifier.evex)
3701 {
3702 case EVEXLIG: /* LL' is ignored */
3703 vec_length = evexlig << 5;
3704 break;
3705 case EVEX128:
3706 vec_length = 0 << 5;
3707 break;
3708 case EVEX256:
3709 vec_length = 1 << 5;
3710 break;
3711 case EVEX512:
3712 vec_length = 2 << 5;
3713 break;
3714 default:
3715 abort ();
3716 break;
3717 }
3718 i.vex.bytes[3] |= vec_length;
3719 /* Encode the broadcast bit. */
3720 if (i.broadcast)
3721 i.vex.bytes[3] |= 0x10;
3722 }
3723 else
3724 {
3725 if (i.rounding->type != saeonly)
3726 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3727 else
d3d3c6db 3728 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3729 }
3730
3731 if (i.mask && i.mask->mask)
3732 i.vex.bytes[3] |= i.mask->mask->reg_num;
3733}
3734
65da13b5
L
3735static void
3736process_immext (void)
3737{
3738 expressionS *exp;
3739
4c692bc7
JB
3740 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3741 && i.operands > 0)
65da13b5 3742 {
4c692bc7
JB
3743 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3744 with an opcode suffix which is coded in the same place as an
3745 8-bit immediate field would be.
3746 Here we check those operands and remove them afterwards. */
65da13b5
L
3747 unsigned int x;
3748
3749 for (x = 0; x < i.operands; x++)
4c692bc7 3750 if (register_number (i.op[x].regs) != x)
65da13b5 3751 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3752 register_prefix, i.op[x].regs->reg_name, x + 1,
3753 i.tm.name);
3754
3755 i.operands = 0;
65da13b5
L
3756 }
3757
9916071f
AP
3758 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3759 {
3760 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3761 suffix which is coded in the same place as an 8-bit immediate
3762 field would be.
3763 Here we check those operands and remove them afterwards. */
3764 unsigned int x;
3765
3766 if (i.operands != 3)
3767 abort();
3768
3769 for (x = 0; x < 2; x++)
3770 if (register_number (i.op[x].regs) != x)
3771 goto bad_register_operand;
3772
3773 /* Check for third operand for mwaitx/monitorx insn. */
3774 if (register_number (i.op[x].regs)
3775 != (x + (i.tm.extension_opcode == 0xfb)))
3776 {
3777bad_register_operand:
3778 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3779 register_prefix, i.op[x].regs->reg_name, x+1,
3780 i.tm.name);
3781 }
3782
3783 i.operands = 0;
3784 }
3785
c0f3af97 3786 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3787 which is coded in the same place as an 8-bit immediate field
3788 would be. Here we fake an 8-bit immediate operand from the
3789 opcode suffix stored in tm.extension_opcode.
3790
c1e679ec 3791 AVX instructions also use this encoding, for some of
c0f3af97 3792 3 argument instructions. */
65da13b5 3793
43234a1e 3794 gas_assert (i.imm_operands <= 1
7ab9ffdd 3795 && (i.operands <= 2
7a8655d2 3796 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3797 && i.operands <= 4)));
65da13b5
L
3798
3799 exp = &im_expressions[i.imm_operands++];
3800 i.op[i.operands].imms = exp;
3801 i.types[i.operands] = imm8;
3802 i.operands++;
3803 exp->X_op = O_constant;
3804 exp->X_add_number = i.tm.extension_opcode;
3805 i.tm.extension_opcode = None;
3806}
3807
42164a71
L
3808
3809static int
3810check_hle (void)
3811{
3812 switch (i.tm.opcode_modifier.hleprefixok)
3813 {
3814 default:
3815 abort ();
82c2def5 3816 case HLEPrefixNone:
165de32a
L
3817 as_bad (_("invalid instruction `%s' after `%s'"),
3818 i.tm.name, i.hle_prefix);
42164a71 3819 return 0;
82c2def5 3820 case HLEPrefixLock:
42164a71
L
3821 if (i.prefix[LOCK_PREFIX])
3822 return 1;
165de32a 3823 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3824 return 0;
82c2def5 3825 case HLEPrefixAny:
42164a71 3826 return 1;
82c2def5 3827 case HLEPrefixRelease:
42164a71
L
3828 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3829 {
3830 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3831 i.tm.name);
3832 return 0;
3833 }
3834 if (i.mem_operands == 0
3835 || !operand_type_check (i.types[i.operands - 1], anymem))
3836 {
3837 as_bad (_("memory destination needed for instruction `%s'"
3838 " after `xrelease'"), i.tm.name);
3839 return 0;
3840 }
3841 return 1;
3842 }
3843}
3844
b6f8c7c4
L
3845/* Try the shortest encoding by shortening operand size. */
3846
3847static void
3848optimize_encoding (void)
3849{
3850 int j;
3851
3852 if (optimize_for_space
3853 && i.reg_operands == 1
3854 && i.imm_operands == 1
3855 && !i.types[1].bitfield.byte
3856 && i.op[0].imms->X_op == O_constant
3857 && fits_in_imm7 (i.op[0].imms->X_add_number)
3858 && ((i.tm.base_opcode == 0xa8
3859 && i.tm.extension_opcode == None)
3860 || (i.tm.base_opcode == 0xf6
3861 && i.tm.extension_opcode == 0x0)))
3862 {
3863 /* Optimize: -Os:
3864 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3865 */
3866 unsigned int base_regnum = i.op[1].regs->reg_num;
3867 if (flag_code == CODE_64BIT || base_regnum < 4)
3868 {
3869 i.types[1].bitfield.byte = 1;
3870 /* Ignore the suffix. */
3871 i.suffix = 0;
3872 if (base_regnum >= 4
3873 && !(i.op[1].regs->reg_flags & RegRex))
3874 {
3875 /* Handle SP, BP, SI and DI registers. */
3876 if (i.types[1].bitfield.word)
3877 j = 16;
3878 else if (i.types[1].bitfield.dword)
3879 j = 32;
3880 else
3881 j = 48;
3882 i.op[1].regs -= j;
3883 }
3884 }
3885 }
3886 else if (flag_code == CODE_64BIT
d3d50934
L
3887 && ((i.types[1].bitfield.qword
3888 && i.reg_operands == 1
b6f8c7c4
L
3889 && i.imm_operands == 1
3890 && i.op[0].imms->X_op == O_constant
3891 && ((i.tm.base_opcode == 0xb0
3892 && i.tm.extension_opcode == None
3893 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3894 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3895 && (((i.tm.base_opcode == 0x24
3896 || i.tm.base_opcode == 0xa8)
3897 && i.tm.extension_opcode == None)
3898 || (i.tm.base_opcode == 0x80
3899 && i.tm.extension_opcode == 0x4)
3900 || ((i.tm.base_opcode == 0xf6
3901 || i.tm.base_opcode == 0xc6)
3902 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3903 || (i.types[0].bitfield.qword
3904 && ((i.reg_operands == 2
3905 && i.op[0].regs == i.op[1].regs
3906 && ((i.tm.base_opcode == 0x30
3907 || i.tm.base_opcode == 0x28)
3908 && i.tm.extension_opcode == None))
3909 || (i.reg_operands == 1
3910 && i.operands == 1
3911 && i.tm.base_opcode == 0x30
3912 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3913 {
3914 /* Optimize: -O:
3915 andq $imm31, %r64 -> andl $imm31, %r32
3916 testq $imm31, %r64 -> testl $imm31, %r32
3917 xorq %r64, %r64 -> xorl %r32, %r32
3918 subq %r64, %r64 -> subl %r32, %r32
3919 movq $imm31, %r64 -> movl $imm31, %r32
3920 movq $imm32, %r64 -> movl $imm32, %r32
3921 */
3922 i.tm.opcode_modifier.norex64 = 1;
3923 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3924 {
3925 /* Handle
3926 movq $imm31, %r64 -> movl $imm31, %r32
3927 movq $imm32, %r64 -> movl $imm32, %r32
3928 */
3929 i.tm.operand_types[0].bitfield.imm32 = 1;
3930 i.tm.operand_types[0].bitfield.imm32s = 0;
3931 i.tm.operand_types[0].bitfield.imm64 = 0;
3932 i.types[0].bitfield.imm32 = 1;
3933 i.types[0].bitfield.imm32s = 0;
3934 i.types[0].bitfield.imm64 = 0;
3935 i.types[1].bitfield.dword = 1;
3936 i.types[1].bitfield.qword = 0;
3937 if (i.tm.base_opcode == 0xc6)
3938 {
3939 /* Handle
3940 movq $imm31, %r64 -> movl $imm31, %r32
3941 */
3942 i.tm.base_opcode = 0xb0;
3943 i.tm.extension_opcode = None;
3944 i.tm.opcode_modifier.shortform = 1;
3945 i.tm.opcode_modifier.modrm = 0;
3946 }
3947 }
3948 }
3949 else if (optimize > 1
3950 && i.reg_operands == 3
3951 && i.op[0].regs == i.op[1].regs
3952 && !i.types[2].bitfield.xmmword
3953 && (i.tm.opcode_modifier.vex
7a69eac3 3954 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3955 && !i.rounding
e771e7c9 3956 && is_evex_encoding (&i.tm)
80c34c38
L
3957 && (i.vec_encoding != vex_encoding_evex
3958 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3959 || (i.tm.operand_types[2].bitfield.zmmword
3960 && i.types[2].bitfield.ymmword)
0089dace 3961 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3962 && ((i.tm.base_opcode == 0x55
3963 || i.tm.base_opcode == 0x6655
3964 || i.tm.base_opcode == 0x66df
3965 || i.tm.base_opcode == 0x57
3966 || i.tm.base_opcode == 0x6657
8305403a
L
3967 || i.tm.base_opcode == 0x66ef
3968 || i.tm.base_opcode == 0x66f8
3969 || i.tm.base_opcode == 0x66f9
3970 || i.tm.base_opcode == 0x66fa
1424ad86
JB
3971 || i.tm.base_opcode == 0x66fb
3972 || i.tm.base_opcode == 0x42
3973 || i.tm.base_opcode == 0x6642
3974 || i.tm.base_opcode == 0x47
3975 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
3976 && i.tm.extension_opcode == None))
3977 {
3978 /* Optimize: -O2:
8305403a
L
3979 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3980 vpsubq and vpsubw:
b6f8c7c4
L
3981 EVEX VOP %zmmM, %zmmM, %zmmN
3982 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3983 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3984 EVEX VOP %ymmM, %ymmM, %ymmN
3985 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3986 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3987 VEX VOP %ymmM, %ymmM, %ymmN
3988 -> VEX VOP %xmmM, %xmmM, %xmmN
3989 VOP, one of vpandn and vpxor:
3990 VEX VOP %ymmM, %ymmM, %ymmN
3991 -> VEX VOP %xmmM, %xmmM, %xmmN
3992 VOP, one of vpandnd and vpandnq:
3993 EVEX VOP %zmmM, %zmmM, %zmmN
3994 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3995 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3996 EVEX VOP %ymmM, %ymmM, %ymmN
3997 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3998 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3999 VOP, one of vpxord and vpxorq:
4000 EVEX VOP %zmmM, %zmmM, %zmmN
4001 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4002 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4003 EVEX VOP %ymmM, %ymmM, %ymmN
4004 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4005 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
1424ad86
JB
4006 VOP, one of kxord and kxorq:
4007 VEX VOP %kM, %kM, %kN
4008 -> VEX kxorw %kM, %kM, %kN
4009 VOP, one of kandnd and kandnq:
4010 VEX VOP %kM, %kM, %kN
4011 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4012 */
e771e7c9 4013 if (is_evex_encoding (&i.tm))
b6f8c7c4 4014 {
0089dace 4015 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
4016 i.tm.opcode_modifier.evex = EVEX128;
4017 else
4018 {
4019 i.tm.opcode_modifier.vex = VEX128;
4020 i.tm.opcode_modifier.vexw = VEXW0;
4021 i.tm.opcode_modifier.evex = 0;
4022 }
4023 }
1424ad86
JB
4024 else if (i.tm.operand_types[0].bitfield.regmask)
4025 {
4026 i.tm.base_opcode &= 0xff;
4027 i.tm.opcode_modifier.vexw = VEXW0;
4028 }
b6f8c7c4
L
4029 else
4030 i.tm.opcode_modifier.vex = VEX128;
4031
4032 if (i.tm.opcode_modifier.vex)
4033 for (j = 0; j < 3; j++)
4034 {
4035 i.types[j].bitfield.xmmword = 1;
4036 i.types[j].bitfield.ymmword = 0;
4037 }
4038 }
4039}
4040
252b5132
RH
4041/* This is the guts of the machine-dependent assembler. LINE points to a
4042 machine dependent instruction. This function is supposed to emit
4043 the frags/bytes it assembles to. */
4044
4045void
65da13b5 4046md_assemble (char *line)
252b5132 4047{
40fb9820 4048 unsigned int j;
83b16ac6 4049 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4050 const insn_template *t;
252b5132 4051
47926f60 4052 /* Initialize globals. */
252b5132
RH
4053 memset (&i, '\0', sizeof (i));
4054 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4055 i.reloc[j] = NO_RELOC;
252b5132
RH
4056 memset (disp_expressions, '\0', sizeof (disp_expressions));
4057 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4058 save_stack_p = save_stack;
252b5132
RH
4059
4060 /* First parse an instruction mnemonic & call i386_operand for the operands.
4061 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4062 start of a (possibly prefixed) mnemonic. */
252b5132 4063
29b0f896
AM
4064 line = parse_insn (line, mnemonic);
4065 if (line == NULL)
4066 return;
83b16ac6 4067 mnem_suffix = i.suffix;
252b5132 4068
29b0f896 4069 line = parse_operands (line, mnemonic);
ee86248c 4070 this_operand = -1;
8325cc63
JB
4071 xfree (i.memop1_string);
4072 i.memop1_string = NULL;
29b0f896
AM
4073 if (line == NULL)
4074 return;
252b5132 4075
29b0f896
AM
4076 /* Now we've parsed the mnemonic into a set of templates, and have the
4077 operands at hand. */
4078
4079 /* All intel opcodes have reversed operands except for "bound" and
4080 "enter". We also don't reverse intersegment "jmp" and "call"
4081 instructions with 2 immediate operands so that the immediate segment
050dfa73 4082 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4083 if (intel_syntax
4084 && i.operands > 1
29b0f896 4085 && (strcmp (mnemonic, "bound") != 0)
30123838 4086 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4087 && !(operand_type_check (i.types[0], imm)
4088 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4089 swap_operands ();
4090
ec56d5c0
JB
4091 /* The order of the immediates should be reversed
4092 for 2 immediates extrq and insertq instructions */
4093 if (i.imm_operands == 2
4094 && (strcmp (mnemonic, "extrq") == 0
4095 || strcmp (mnemonic, "insertq") == 0))
4096 swap_2_operands (0, 1);
4097
29b0f896
AM
4098 if (i.imm_operands)
4099 optimize_imm ();
4100
b300c311
L
4101 /* Don't optimize displacement for movabs since it only takes 64bit
4102 displacement. */
4103 if (i.disp_operands
a501d77e 4104 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4105 && (flag_code != CODE_64BIT
4106 || strcmp (mnemonic, "movabs") != 0))
4107 optimize_disp ();
29b0f896
AM
4108
4109 /* Next, we find a template that matches the given insn,
4110 making sure the overlap of the given operands types is consistent
4111 with the template operand types. */
252b5132 4112
83b16ac6 4113 if (!(t = match_template (mnem_suffix)))
29b0f896 4114 return;
252b5132 4115
7bab8ab5 4116 if (sse_check != check_none
81f8a913 4117 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4118 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4119 && (i.tm.cpu_flags.bitfield.cpusse
4120 || i.tm.cpu_flags.bitfield.cpusse2
4121 || i.tm.cpu_flags.bitfield.cpusse3
4122 || i.tm.cpu_flags.bitfield.cpussse3
4123 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4124 || i.tm.cpu_flags.bitfield.cpusse4_2
4125 || i.tm.cpu_flags.bitfield.cpupclmul
4126 || i.tm.cpu_flags.bitfield.cpuaes
4127 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4128 {
7bab8ab5 4129 (sse_check == check_warning
daf50ae7
L
4130 ? as_warn
4131 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4132 }
4133
321fd21e
L
4134 /* Zap movzx and movsx suffix. The suffix has been set from
4135 "word ptr" or "byte ptr" on the source operand in Intel syntax
4136 or extracted from mnemonic in AT&T syntax. But we'll use
4137 the destination register to choose the suffix for encoding. */
4138 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4139 {
321fd21e
L
4140 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4141 there is no suffix, the default will be byte extension. */
4142 if (i.reg_operands != 2
4143 && !i.suffix
7ab9ffdd 4144 && intel_syntax)
321fd21e
L
4145 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4146
4147 i.suffix = 0;
cd61ebfe 4148 }
24eab124 4149
40fb9820 4150 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4151 if (!add_prefix (FWAIT_OPCODE))
4152 return;
252b5132 4153
d5de92cf
L
4154 /* Check if REP prefix is OK. */
4155 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4156 {
4157 as_bad (_("invalid instruction `%s' after `%s'"),
4158 i.tm.name, i.rep_prefix);
4159 return;
4160 }
4161
c1ba0266
L
4162 /* Check for lock without a lockable instruction. Destination operand
4163 must be memory unless it is xchg (0x86). */
c32fa91d
L
4164 if (i.prefix[LOCK_PREFIX]
4165 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4166 || i.mem_operands == 0
4167 || (i.tm.base_opcode != 0x86
4168 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4169 {
4170 as_bad (_("expecting lockable instruction after `lock'"));
4171 return;
4172 }
4173
7a8655d2
JB
4174 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4175 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4176 {
4177 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4178 return;
4179 }
4180
42164a71 4181 /* Check if HLE prefix is OK. */
165de32a 4182 if (i.hle_prefix && !check_hle ())
42164a71
L
4183 return;
4184
7e8b059b
L
4185 /* Check BND prefix. */
4186 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4187 as_bad (_("expecting valid branch instruction after `bnd'"));
4188
04ef582a 4189 /* Check NOTRACK prefix. */
9fef80d6
L
4190 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4191 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4192
327e8c42
JB
4193 if (i.tm.cpu_flags.bitfield.cpumpx)
4194 {
4195 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4196 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4197 else if (flag_code != CODE_16BIT
4198 ? i.prefix[ADDR_PREFIX]
4199 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4200 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4201 }
7e8b059b
L
4202
4203 /* Insert BND prefix. */
76d3a78a
JB
4204 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4205 {
4206 if (!i.prefix[BND_PREFIX])
4207 add_prefix (BND_PREFIX_OPCODE);
4208 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4209 {
4210 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4211 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4212 }
4213 }
7e8b059b 4214
29b0f896 4215 /* Check string instruction segment overrides. */
40fb9820 4216 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4217 {
4218 if (!check_string ())
5dd0794d 4219 return;
fc0763e6 4220 i.disp_operands = 0;
29b0f896 4221 }
5dd0794d 4222
b6f8c7c4
L
4223 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4224 optimize_encoding ();
4225
29b0f896
AM
4226 if (!process_suffix ())
4227 return;
e413e4e9 4228
bc0844ae
L
4229 /* Update operand types. */
4230 for (j = 0; j < i.operands; j++)
4231 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4232
29b0f896
AM
4233 /* Make still unresolved immediate matches conform to size of immediate
4234 given in i.suffix. */
4235 if (!finalize_imm ())
4236 return;
252b5132 4237
40fb9820 4238 if (i.types[0].bitfield.imm1)
29b0f896 4239 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4240
9afe6eb8
L
4241 /* We only need to check those implicit registers for instructions
4242 with 3 operands or less. */
4243 if (i.operands <= 3)
4244 for (j = 0; j < i.operands; j++)
4245 if (i.types[j].bitfield.inoutportreg
4246 || i.types[j].bitfield.shiftcount
1b54b8d7 4247 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4248 i.reg_operands--;
40fb9820 4249
c0f3af97
L
4250 /* ImmExt should be processed after SSE2AVX. */
4251 if (!i.tm.opcode_modifier.sse2avx
4252 && i.tm.opcode_modifier.immext)
65da13b5 4253 process_immext ();
252b5132 4254
29b0f896
AM
4255 /* For insns with operands there are more diddles to do to the opcode. */
4256 if (i.operands)
4257 {
4258 if (!process_operands ())
4259 return;
4260 }
40fb9820 4261 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4262 {
4263 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4264 as_warn (_("translating to `%sp'"), i.tm.name);
4265 }
252b5132 4266
7a8655d2 4267 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4268 {
4269 if (flag_code == CODE_16BIT)
4270 {
4271 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4272 i.tm.name);
4273 return;
4274 }
c0f3af97 4275
9e5e5283
L
4276 if (i.tm.opcode_modifier.vex)
4277 build_vex_prefix (t);
4278 else
4279 build_evex_prefix ();
4280 }
43234a1e 4281
5dd85c99
SP
4282 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4283 instructions may define INT_OPCODE as well, so avoid this corner
4284 case for those instructions that use MODRM. */
4285 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4286 && !i.tm.opcode_modifier.modrm
4287 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4288 {
4289 i.tm.base_opcode = INT3_OPCODE;
4290 i.imm_operands = 0;
4291 }
252b5132 4292
40fb9820
L
4293 if ((i.tm.opcode_modifier.jump
4294 || i.tm.opcode_modifier.jumpbyte
4295 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4296 && i.op[0].disps->X_op == O_constant)
4297 {
4298 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4299 the absolute address given by the constant. Since ix86 jumps and
4300 calls are pc relative, we need to generate a reloc. */
4301 i.op[0].disps->X_add_symbol = &abs_symbol;
4302 i.op[0].disps->X_op = O_symbol;
4303 }
252b5132 4304
40fb9820 4305 if (i.tm.opcode_modifier.rex64)
161a04f6 4306 i.rex |= REX_W;
252b5132 4307
29b0f896
AM
4308 /* For 8 bit registers we need an empty rex prefix. Also if the
4309 instruction already has a prefix, we need to convert old
4310 registers to new ones. */
773f551c 4311
dc821c5f 4312 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4313 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4314 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4315 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4316 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4317 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4318 && i.rex != 0))
4319 {
4320 int x;
726c5dcd 4321
29b0f896
AM
4322 i.rex |= REX_OPCODE;
4323 for (x = 0; x < 2; x++)
4324 {
4325 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4326 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4327 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4328 {
29b0f896
AM
4329 /* In case it is "hi" register, give up. */
4330 if (i.op[x].regs->reg_num > 3)
a540244d 4331 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4332 "instruction requiring REX prefix."),
a540244d 4333 register_prefix, i.op[x].regs->reg_name);
773f551c 4334
29b0f896
AM
4335 /* Otherwise it is equivalent to the extended register.
4336 Since the encoding doesn't change this is merely
4337 cosmetic cleanup for debug output. */
4338
4339 i.op[x].regs = i.op[x].regs + 8;
773f551c 4340 }
29b0f896
AM
4341 }
4342 }
773f551c 4343
6b6b6807
L
4344 if (i.rex == 0 && i.rex_encoding)
4345 {
4346 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4347 that uses legacy register. If it is "hi" register, don't add
4348 the REX_OPCODE byte. */
4349 int x;
4350 for (x = 0; x < 2; x++)
4351 if (i.types[x].bitfield.reg
4352 && i.types[x].bitfield.byte
4353 && (i.op[x].regs->reg_flags & RegRex64) == 0
4354 && i.op[x].regs->reg_num > 3)
4355 {
4356 i.rex_encoding = FALSE;
4357 break;
4358 }
4359
4360 if (i.rex_encoding)
4361 i.rex = REX_OPCODE;
4362 }
4363
7ab9ffdd 4364 if (i.rex != 0)
29b0f896
AM
4365 add_prefix (REX_OPCODE | i.rex);
4366
4367 /* We are ready to output the insn. */
4368 output_insn ();
4369}
4370
4371static char *
e3bb37b5 4372parse_insn (char *line, char *mnemonic)
29b0f896
AM
4373{
4374 char *l = line;
4375 char *token_start = l;
4376 char *mnem_p;
5c6af06e 4377 int supported;
d3ce72d0 4378 const insn_template *t;
b6169b20 4379 char *dot_p = NULL;
29b0f896 4380
29b0f896
AM
4381 while (1)
4382 {
4383 mnem_p = mnemonic;
4384 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4385 {
b6169b20
L
4386 if (*mnem_p == '.')
4387 dot_p = mnem_p;
29b0f896
AM
4388 mnem_p++;
4389 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4390 {
29b0f896
AM
4391 as_bad (_("no such instruction: `%s'"), token_start);
4392 return NULL;
4393 }
4394 l++;
4395 }
4396 if (!is_space_char (*l)
4397 && *l != END_OF_INSN
e44823cf
JB
4398 && (intel_syntax
4399 || (*l != PREFIX_SEPARATOR
4400 && *l != ',')))
29b0f896
AM
4401 {
4402 as_bad (_("invalid character %s in mnemonic"),
4403 output_invalid (*l));
4404 return NULL;
4405 }
4406 if (token_start == l)
4407 {
e44823cf 4408 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4409 as_bad (_("expecting prefix; got nothing"));
4410 else
4411 as_bad (_("expecting mnemonic; got nothing"));
4412 return NULL;
4413 }
45288df1 4414
29b0f896 4415 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4416 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4417
29b0f896
AM
4418 if (*l != END_OF_INSN
4419 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4420 && current_templates
40fb9820 4421 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4422 {
c6fb90c8 4423 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4424 {
4425 as_bad ((flag_code != CODE_64BIT
4426 ? _("`%s' is only supported in 64-bit mode")
4427 : _("`%s' is not supported in 64-bit mode")),
4428 current_templates->start->name);
4429 return NULL;
4430 }
29b0f896
AM
4431 /* If we are in 16-bit mode, do not allow addr16 or data16.
4432 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4433 if ((current_templates->start->opcode_modifier.size16
4434 || current_templates->start->opcode_modifier.size32)
29b0f896 4435 && flag_code != CODE_64BIT
40fb9820 4436 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4437 ^ (flag_code == CODE_16BIT)))
4438 {
4439 as_bad (_("redundant %s prefix"),
4440 current_templates->start->name);
4441 return NULL;
45288df1 4442 }
86fa6981 4443 if (current_templates->start->opcode_length == 0)
29b0f896 4444 {
86fa6981
L
4445 /* Handle pseudo prefixes. */
4446 switch (current_templates->start->base_opcode)
4447 {
4448 case 0x0:
4449 /* {disp8} */
4450 i.disp_encoding = disp_encoding_8bit;
4451 break;
4452 case 0x1:
4453 /* {disp32} */
4454 i.disp_encoding = disp_encoding_32bit;
4455 break;
4456 case 0x2:
4457 /* {load} */
4458 i.dir_encoding = dir_encoding_load;
4459 break;
4460 case 0x3:
4461 /* {store} */
4462 i.dir_encoding = dir_encoding_store;
4463 break;
4464 case 0x4:
4465 /* {vex2} */
4466 i.vec_encoding = vex_encoding_vex2;
4467 break;
4468 case 0x5:
4469 /* {vex3} */
4470 i.vec_encoding = vex_encoding_vex3;
4471 break;
4472 case 0x6:
4473 /* {evex} */
4474 i.vec_encoding = vex_encoding_evex;
4475 break;
6b6b6807
L
4476 case 0x7:
4477 /* {rex} */
4478 i.rex_encoding = TRUE;
4479 break;
b6f8c7c4
L
4480 case 0x8:
4481 /* {nooptimize} */
4482 i.no_optimize = TRUE;
4483 break;
86fa6981
L
4484 default:
4485 abort ();
4486 }
4487 }
4488 else
4489 {
4490 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4491 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4492 {
4e9ac44a
L
4493 case PREFIX_EXIST:
4494 return NULL;
4495 case PREFIX_DS:
d777820b 4496 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4497 i.notrack_prefix = current_templates->start->name;
4498 break;
4499 case PREFIX_REP:
4500 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4501 i.hle_prefix = current_templates->start->name;
4502 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4503 i.bnd_prefix = current_templates->start->name;
4504 else
4505 i.rep_prefix = current_templates->start->name;
4506 break;
4507 default:
4508 break;
86fa6981 4509 }
29b0f896
AM
4510 }
4511 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4512 token_start = ++l;
4513 }
4514 else
4515 break;
4516 }
45288df1 4517
30a55f88 4518 if (!current_templates)
b6169b20 4519 {
07d5e953
JB
4520 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4521 Check if we should swap operand or force 32bit displacement in
f8a5c266 4522 encoding. */
30a55f88 4523 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4524 i.dir_encoding = dir_encoding_swap;
8d63c93e 4525 else if (mnem_p - 3 == dot_p
a501d77e
L
4526 && dot_p[1] == 'd'
4527 && dot_p[2] == '8')
4528 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4529 else if (mnem_p - 4 == dot_p
f8a5c266
L
4530 && dot_p[1] == 'd'
4531 && dot_p[2] == '3'
4532 && dot_p[3] == '2')
a501d77e 4533 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4534 else
4535 goto check_suffix;
4536 mnem_p = dot_p;
4537 *dot_p = '\0';
d3ce72d0 4538 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4539 }
4540
29b0f896
AM
4541 if (!current_templates)
4542 {
b6169b20 4543check_suffix:
29b0f896
AM
4544 /* See if we can get a match by trimming off a suffix. */
4545 switch (mnem_p[-1])
4546 {
4547 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4548 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4549 i.suffix = SHORT_MNEM_SUFFIX;
4550 else
1a0670f3 4551 /* Fall through. */
29b0f896
AM
4552 case BYTE_MNEM_SUFFIX:
4553 case QWORD_MNEM_SUFFIX:
4554 i.suffix = mnem_p[-1];
4555 mnem_p[-1] = '\0';
d3ce72d0
NC
4556 current_templates = (const templates *) hash_find (op_hash,
4557 mnemonic);
29b0f896
AM
4558 break;
4559 case SHORT_MNEM_SUFFIX:
4560 case LONG_MNEM_SUFFIX:
4561 if (!intel_syntax)
4562 {
4563 i.suffix = mnem_p[-1];
4564 mnem_p[-1] = '\0';
d3ce72d0
NC
4565 current_templates = (const templates *) hash_find (op_hash,
4566 mnemonic);
29b0f896
AM
4567 }
4568 break;
252b5132 4569
29b0f896
AM
4570 /* Intel Syntax. */
4571 case 'd':
4572 if (intel_syntax)
4573 {
9306ca4a 4574 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4575 i.suffix = SHORT_MNEM_SUFFIX;
4576 else
4577 i.suffix = LONG_MNEM_SUFFIX;
4578 mnem_p[-1] = '\0';
d3ce72d0
NC
4579 current_templates = (const templates *) hash_find (op_hash,
4580 mnemonic);
29b0f896
AM
4581 }
4582 break;
4583 }
4584 if (!current_templates)
4585 {
4586 as_bad (_("no such instruction: `%s'"), token_start);
4587 return NULL;
4588 }
4589 }
252b5132 4590
40fb9820
L
4591 if (current_templates->start->opcode_modifier.jump
4592 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4593 {
4594 /* Check for a branch hint. We allow ",pt" and ",pn" for
4595 predict taken and predict not taken respectively.
4596 I'm not sure that branch hints actually do anything on loop
4597 and jcxz insns (JumpByte) for current Pentium4 chips. They
4598 may work in the future and it doesn't hurt to accept them
4599 now. */
4600 if (l[0] == ',' && l[1] == 'p')
4601 {
4602 if (l[2] == 't')
4603 {
4604 if (!add_prefix (DS_PREFIX_OPCODE))
4605 return NULL;
4606 l += 3;
4607 }
4608 else if (l[2] == 'n')
4609 {
4610 if (!add_prefix (CS_PREFIX_OPCODE))
4611 return NULL;
4612 l += 3;
4613 }
4614 }
4615 }
4616 /* Any other comma loses. */
4617 if (*l == ',')
4618 {
4619 as_bad (_("invalid character %s in mnemonic"),
4620 output_invalid (*l));
4621 return NULL;
4622 }
252b5132 4623
29b0f896 4624 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4625 supported = 0;
4626 for (t = current_templates->start; t < current_templates->end; ++t)
4627 {
c0f3af97
L
4628 supported |= cpu_flags_match (t);
4629 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4630 {
4631 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4632 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4633
548d0ee6
JB
4634 return l;
4635 }
29b0f896 4636 }
3629bb00 4637
548d0ee6
JB
4638 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4639 as_bad (flag_code == CODE_64BIT
4640 ? _("`%s' is not supported in 64-bit mode")
4641 : _("`%s' is only supported in 64-bit mode"),
4642 current_templates->start->name);
4643 else
4644 as_bad (_("`%s' is not supported on `%s%s'"),
4645 current_templates->start->name,
4646 cpu_arch_name ? cpu_arch_name : default_arch,
4647 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4648
548d0ee6 4649 return NULL;
29b0f896 4650}
252b5132 4651
29b0f896 4652static char *
e3bb37b5 4653parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4654{
4655 char *token_start;
3138f287 4656
29b0f896
AM
4657 /* 1 if operand is pending after ','. */
4658 unsigned int expecting_operand = 0;
252b5132 4659
29b0f896
AM
4660 /* Non-zero if operand parens not balanced. */
4661 unsigned int paren_not_balanced;
4662
4663 while (*l != END_OF_INSN)
4664 {
4665 /* Skip optional white space before operand. */
4666 if (is_space_char (*l))
4667 ++l;
d02603dc 4668 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4669 {
4670 as_bad (_("invalid character %s before operand %d"),
4671 output_invalid (*l),
4672 i.operands + 1);
4673 return NULL;
4674 }
d02603dc 4675 token_start = l; /* After white space. */
29b0f896
AM
4676 paren_not_balanced = 0;
4677 while (paren_not_balanced || *l != ',')
4678 {
4679 if (*l == END_OF_INSN)
4680 {
4681 if (paren_not_balanced)
4682 {
4683 if (!intel_syntax)
4684 as_bad (_("unbalanced parenthesis in operand %d."),
4685 i.operands + 1);
4686 else
4687 as_bad (_("unbalanced brackets in operand %d."),
4688 i.operands + 1);
4689 return NULL;
4690 }
4691 else
4692 break; /* we are done */
4693 }
d02603dc 4694 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4695 {
4696 as_bad (_("invalid character %s in operand %d"),
4697 output_invalid (*l),
4698 i.operands + 1);
4699 return NULL;
4700 }
4701 if (!intel_syntax)
4702 {
4703 if (*l == '(')
4704 ++paren_not_balanced;
4705 if (*l == ')')
4706 --paren_not_balanced;
4707 }
4708 else
4709 {
4710 if (*l == '[')
4711 ++paren_not_balanced;
4712 if (*l == ']')
4713 --paren_not_balanced;
4714 }
4715 l++;
4716 }
4717 if (l != token_start)
4718 { /* Yes, we've read in another operand. */
4719 unsigned int operand_ok;
4720 this_operand = i.operands++;
4721 if (i.operands > MAX_OPERANDS)
4722 {
4723 as_bad (_("spurious operands; (%d operands/instruction max)"),
4724 MAX_OPERANDS);
4725 return NULL;
4726 }
9d46ce34 4727 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4728 /* Now parse operand adding info to 'i' as we go along. */
4729 END_STRING_AND_SAVE (l);
4730
1286ab78
L
4731 if (i.mem_operands > 1)
4732 {
4733 as_bad (_("too many memory references for `%s'"),
4734 mnemonic);
4735 return 0;
4736 }
4737
29b0f896
AM
4738 if (intel_syntax)
4739 operand_ok =
4740 i386_intel_operand (token_start,
4741 intel_float_operand (mnemonic));
4742 else
a7619375 4743 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4744
4745 RESTORE_END_STRING (l);
4746 if (!operand_ok)
4747 return NULL;
4748 }
4749 else
4750 {
4751 if (expecting_operand)
4752 {
4753 expecting_operand_after_comma:
4754 as_bad (_("expecting operand after ','; got nothing"));
4755 return NULL;
4756 }
4757 if (*l == ',')
4758 {
4759 as_bad (_("expecting operand before ','; got nothing"));
4760 return NULL;
4761 }
4762 }
7f3f1ea2 4763
29b0f896
AM
4764 /* Now *l must be either ',' or END_OF_INSN. */
4765 if (*l == ',')
4766 {
4767 if (*++l == END_OF_INSN)
4768 {
4769 /* Just skip it, if it's \n complain. */
4770 goto expecting_operand_after_comma;
4771 }
4772 expecting_operand = 1;
4773 }
4774 }
4775 return l;
4776}
7f3f1ea2 4777
050dfa73 4778static void
4d456e3d 4779swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4780{
4781 union i386_op temp_op;
40fb9820 4782 i386_operand_type temp_type;
c48dadc9 4783 unsigned int temp_flags;
050dfa73 4784 enum bfd_reloc_code_real temp_reloc;
4eed87de 4785
050dfa73
MM
4786 temp_type = i.types[xchg2];
4787 i.types[xchg2] = i.types[xchg1];
4788 i.types[xchg1] = temp_type;
c48dadc9
JB
4789
4790 temp_flags = i.flags[xchg2];
4791 i.flags[xchg2] = i.flags[xchg1];
4792 i.flags[xchg1] = temp_flags;
4793
050dfa73
MM
4794 temp_op = i.op[xchg2];
4795 i.op[xchg2] = i.op[xchg1];
4796 i.op[xchg1] = temp_op;
c48dadc9 4797
050dfa73
MM
4798 temp_reloc = i.reloc[xchg2];
4799 i.reloc[xchg2] = i.reloc[xchg1];
4800 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4801
4802 if (i.mask)
4803 {
4804 if (i.mask->operand == xchg1)
4805 i.mask->operand = xchg2;
4806 else if (i.mask->operand == xchg2)
4807 i.mask->operand = xchg1;
4808 }
4809 if (i.broadcast)
4810 {
4811 if (i.broadcast->operand == xchg1)
4812 i.broadcast->operand = xchg2;
4813 else if (i.broadcast->operand == xchg2)
4814 i.broadcast->operand = xchg1;
4815 }
4816 if (i.rounding)
4817 {
4818 if (i.rounding->operand == xchg1)
4819 i.rounding->operand = xchg2;
4820 else if (i.rounding->operand == xchg2)
4821 i.rounding->operand = xchg1;
4822 }
050dfa73
MM
4823}
4824
29b0f896 4825static void
e3bb37b5 4826swap_operands (void)
29b0f896 4827{
b7c61d9a 4828 switch (i.operands)
050dfa73 4829 {
c0f3af97 4830 case 5:
b7c61d9a 4831 case 4:
4d456e3d 4832 swap_2_operands (1, i.operands - 2);
1a0670f3 4833 /* Fall through. */
b7c61d9a
L
4834 case 3:
4835 case 2:
4d456e3d 4836 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4837 break;
4838 default:
4839 abort ();
29b0f896 4840 }
29b0f896
AM
4841
4842 if (i.mem_operands == 2)
4843 {
4844 const seg_entry *temp_seg;
4845 temp_seg = i.seg[0];
4846 i.seg[0] = i.seg[1];
4847 i.seg[1] = temp_seg;
4848 }
4849}
252b5132 4850
29b0f896
AM
4851/* Try to ensure constant immediates are represented in the smallest
4852 opcode possible. */
4853static void
e3bb37b5 4854optimize_imm (void)
29b0f896
AM
4855{
4856 char guess_suffix = 0;
4857 int op;
252b5132 4858
29b0f896
AM
4859 if (i.suffix)
4860 guess_suffix = i.suffix;
4861 else if (i.reg_operands)
4862 {
4863 /* Figure out a suffix from the last register operand specified.
4864 We can't do this properly yet, ie. excluding InOutPortReg,
4865 but the following works for instructions with immediates.
4866 In any case, we can't set i.suffix yet. */
4867 for (op = i.operands; --op >= 0;)
dc821c5f 4868 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4869 {
40fb9820
L
4870 guess_suffix = BYTE_MNEM_SUFFIX;
4871 break;
4872 }
dc821c5f 4873 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4874 {
40fb9820
L
4875 guess_suffix = WORD_MNEM_SUFFIX;
4876 break;
4877 }
dc821c5f 4878 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4879 {
4880 guess_suffix = LONG_MNEM_SUFFIX;
4881 break;
4882 }
dc821c5f 4883 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4884 {
4885 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4886 break;
252b5132 4887 }
29b0f896
AM
4888 }
4889 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4890 guess_suffix = WORD_MNEM_SUFFIX;
4891
4892 for (op = i.operands; --op >= 0;)
40fb9820 4893 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4894 {
4895 switch (i.op[op].imms->X_op)
252b5132 4896 {
29b0f896
AM
4897 case O_constant:
4898 /* If a suffix is given, this operand may be shortened. */
4899 switch (guess_suffix)
252b5132 4900 {
29b0f896 4901 case LONG_MNEM_SUFFIX:
40fb9820
L
4902 i.types[op].bitfield.imm32 = 1;
4903 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4904 break;
4905 case WORD_MNEM_SUFFIX:
40fb9820
L
4906 i.types[op].bitfield.imm16 = 1;
4907 i.types[op].bitfield.imm32 = 1;
4908 i.types[op].bitfield.imm32s = 1;
4909 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4910 break;
4911 case BYTE_MNEM_SUFFIX:
40fb9820
L
4912 i.types[op].bitfield.imm8 = 1;
4913 i.types[op].bitfield.imm8s = 1;
4914 i.types[op].bitfield.imm16 = 1;
4915 i.types[op].bitfield.imm32 = 1;
4916 i.types[op].bitfield.imm32s = 1;
4917 i.types[op].bitfield.imm64 = 1;
29b0f896 4918 break;
252b5132 4919 }
252b5132 4920
29b0f896
AM
4921 /* If this operand is at most 16 bits, convert it
4922 to a signed 16 bit number before trying to see
4923 whether it will fit in an even smaller size.
4924 This allows a 16-bit operand such as $0xffe0 to
4925 be recognised as within Imm8S range. */
40fb9820 4926 if ((i.types[op].bitfield.imm16)
29b0f896 4927 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4928 {
29b0f896
AM
4929 i.op[op].imms->X_add_number =
4930 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4931 }
a28def75
L
4932#ifdef BFD64
4933 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4934 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4935 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4936 == 0))
4937 {
4938 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4939 ^ ((offsetT) 1 << 31))
4940 - ((offsetT) 1 << 31));
4941 }
a28def75 4942#endif
40fb9820 4943 i.types[op]
c6fb90c8
L
4944 = operand_type_or (i.types[op],
4945 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4946
29b0f896
AM
4947 /* We must avoid matching of Imm32 templates when 64bit
4948 only immediate is available. */
4949 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4950 i.types[op].bitfield.imm32 = 0;
29b0f896 4951 break;
252b5132 4952
29b0f896
AM
4953 case O_absent:
4954 case O_register:
4955 abort ();
4956
4957 /* Symbols and expressions. */
4958 default:
9cd96992
JB
4959 /* Convert symbolic operand to proper sizes for matching, but don't
4960 prevent matching a set of insns that only supports sizes other
4961 than those matching the insn suffix. */
4962 {
40fb9820 4963 i386_operand_type mask, allowed;
d3ce72d0 4964 const insn_template *t;
9cd96992 4965
0dfbf9d7
L
4966 operand_type_set (&mask, 0);
4967 operand_type_set (&allowed, 0);
40fb9820 4968
4eed87de
AM
4969 for (t = current_templates->start;
4970 t < current_templates->end;
4971 ++t)
c6fb90c8
L
4972 allowed = operand_type_or (allowed,
4973 t->operand_types[op]);
9cd96992
JB
4974 switch (guess_suffix)
4975 {
4976 case QWORD_MNEM_SUFFIX:
40fb9820
L
4977 mask.bitfield.imm64 = 1;
4978 mask.bitfield.imm32s = 1;
9cd96992
JB
4979 break;
4980 case LONG_MNEM_SUFFIX:
40fb9820 4981 mask.bitfield.imm32 = 1;
9cd96992
JB
4982 break;
4983 case WORD_MNEM_SUFFIX:
40fb9820 4984 mask.bitfield.imm16 = 1;
9cd96992
JB
4985 break;
4986 case BYTE_MNEM_SUFFIX:
40fb9820 4987 mask.bitfield.imm8 = 1;
9cd96992
JB
4988 break;
4989 default:
9cd96992
JB
4990 break;
4991 }
c6fb90c8 4992 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4993 if (!operand_type_all_zero (&allowed))
c6fb90c8 4994 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4995 }
29b0f896 4996 break;
252b5132 4997 }
29b0f896
AM
4998 }
4999}
47926f60 5000
29b0f896
AM
5001/* Try to use the smallest displacement type too. */
5002static void
e3bb37b5 5003optimize_disp (void)
29b0f896
AM
5004{
5005 int op;
3e73aa7c 5006
29b0f896 5007 for (op = i.operands; --op >= 0;)
40fb9820 5008 if (operand_type_check (i.types[op], disp))
252b5132 5009 {
b300c311 5010 if (i.op[op].disps->X_op == O_constant)
252b5132 5011 {
91d6fa6a 5012 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5013
40fb9820 5014 if (i.types[op].bitfield.disp16
91d6fa6a 5015 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5016 {
5017 /* If this operand is at most 16 bits, convert
5018 to a signed 16 bit number and don't use 64bit
5019 displacement. */
91d6fa6a 5020 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5021 i.types[op].bitfield.disp64 = 0;
b300c311 5022 }
a28def75
L
5023#ifdef BFD64
5024 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5025 if (i.types[op].bitfield.disp32
91d6fa6a 5026 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5027 {
5028 /* If this operand is at most 32 bits, convert
5029 to a signed 32 bit number and don't use 64bit
5030 displacement. */
91d6fa6a
NC
5031 op_disp &= (((offsetT) 2 << 31) - 1);
5032 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5033 i.types[op].bitfield.disp64 = 0;
b300c311 5034 }
a28def75 5035#endif
91d6fa6a 5036 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5037 {
40fb9820
L
5038 i.types[op].bitfield.disp8 = 0;
5039 i.types[op].bitfield.disp16 = 0;
5040 i.types[op].bitfield.disp32 = 0;
5041 i.types[op].bitfield.disp32s = 0;
5042 i.types[op].bitfield.disp64 = 0;
b300c311
L
5043 i.op[op].disps = 0;
5044 i.disp_operands--;
5045 }
5046 else if (flag_code == CODE_64BIT)
5047 {
91d6fa6a 5048 if (fits_in_signed_long (op_disp))
28a9d8f5 5049 {
40fb9820
L
5050 i.types[op].bitfield.disp64 = 0;
5051 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5052 }
0e1147d9 5053 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5054 && fits_in_unsigned_long (op_disp))
40fb9820 5055 i.types[op].bitfield.disp32 = 1;
b300c311 5056 }
40fb9820
L
5057 if ((i.types[op].bitfield.disp32
5058 || i.types[op].bitfield.disp32s
5059 || i.types[op].bitfield.disp16)
b5014f7a 5060 && fits_in_disp8 (op_disp))
40fb9820 5061 i.types[op].bitfield.disp8 = 1;
252b5132 5062 }
67a4f2b7
AO
5063 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5064 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5065 {
5066 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5067 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5068 i.types[op].bitfield.disp8 = 0;
5069 i.types[op].bitfield.disp16 = 0;
5070 i.types[op].bitfield.disp32 = 0;
5071 i.types[op].bitfield.disp32s = 0;
5072 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5073 }
5074 else
b300c311 5075 /* We only support 64bit displacement on constants. */
40fb9820 5076 i.types[op].bitfield.disp64 = 0;
252b5132 5077 }
29b0f896
AM
5078}
5079
4a1b91ea
L
5080/* Return 1 if there is a match in broadcast bytes between operand
5081 GIVEN and instruction template T. */
5082
5083static INLINE int
5084match_broadcast_size (const insn_template *t, unsigned int given)
5085{
5086 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5087 && i.types[given].bitfield.byte)
5088 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5089 && i.types[given].bitfield.word)
5090 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5091 && i.types[given].bitfield.dword)
5092 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5093 && i.types[given].bitfield.qword));
5094}
5095
6c30d220
L
5096/* Check if operands are valid for the instruction. */
5097
5098static int
5099check_VecOperands (const insn_template *t)
5100{
43234a1e 5101 unsigned int op;
e2195274
JB
5102 i386_cpu_flags cpu;
5103 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5104
5105 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5106 any one operand are implicity requiring AVX512VL support if the actual
5107 operand size is YMMword or XMMword. Since this function runs after
5108 template matching, there's no need to check for YMMword/XMMword in
5109 the template. */
5110 cpu = cpu_flags_and (t->cpu_flags, avx512);
5111 if (!cpu_flags_all_zero (&cpu)
5112 && !t->cpu_flags.bitfield.cpuavx512vl
5113 && !cpu_arch_flags.bitfield.cpuavx512vl)
5114 {
5115 for (op = 0; op < t->operands; ++op)
5116 {
5117 if (t->operand_types[op].bitfield.zmmword
5118 && (i.types[op].bitfield.ymmword
5119 || i.types[op].bitfield.xmmword))
5120 {
5121 i.error = unsupported;
5122 return 1;
5123 }
5124 }
5125 }
43234a1e 5126
6c30d220
L
5127 /* Without VSIB byte, we can't have a vector register for index. */
5128 if (!t->opcode_modifier.vecsib
5129 && i.index_reg
1b54b8d7
JB
5130 && (i.index_reg->reg_type.bitfield.xmmword
5131 || i.index_reg->reg_type.bitfield.ymmword
5132 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5133 {
5134 i.error = unsupported_vector_index_register;
5135 return 1;
5136 }
5137
ad8ecc81
MZ
5138 /* Check if default mask is allowed. */
5139 if (t->opcode_modifier.nodefmask
5140 && (!i.mask || i.mask->mask->reg_num == 0))
5141 {
5142 i.error = no_default_mask;
5143 return 1;
5144 }
5145
7bab8ab5
JB
5146 /* For VSIB byte, we need a vector register for index, and all vector
5147 registers must be distinct. */
5148 if (t->opcode_modifier.vecsib)
5149 {
5150 if (!i.index_reg
6c30d220 5151 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5152 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5153 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5154 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5155 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5156 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5157 {
5158 i.error = invalid_vsib_address;
5159 return 1;
5160 }
5161
43234a1e
L
5162 gas_assert (i.reg_operands == 2 || i.mask);
5163 if (i.reg_operands == 2 && !i.mask)
5164 {
1b54b8d7
JB
5165 gas_assert (i.types[0].bitfield.regsimd);
5166 gas_assert (i.types[0].bitfield.xmmword
5167 || i.types[0].bitfield.ymmword);
5168 gas_assert (i.types[2].bitfield.regsimd);
5169 gas_assert (i.types[2].bitfield.xmmword
5170 || i.types[2].bitfield.ymmword);
43234a1e
L
5171 if (operand_check == check_none)
5172 return 0;
5173 if (register_number (i.op[0].regs)
5174 != register_number (i.index_reg)
5175 && register_number (i.op[2].regs)
5176 != register_number (i.index_reg)
5177 && register_number (i.op[0].regs)
5178 != register_number (i.op[2].regs))
5179 return 0;
5180 if (operand_check == check_error)
5181 {
5182 i.error = invalid_vector_register_set;
5183 return 1;
5184 }
5185 as_warn (_("mask, index, and destination registers should be distinct"));
5186 }
8444f82a
MZ
5187 else if (i.reg_operands == 1 && i.mask)
5188 {
1b54b8d7
JB
5189 if (i.types[1].bitfield.regsimd
5190 && (i.types[1].bitfield.xmmword
5191 || i.types[1].bitfield.ymmword
5192 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5193 && (register_number (i.op[1].regs)
5194 == register_number (i.index_reg)))
5195 {
5196 if (operand_check == check_error)
5197 {
5198 i.error = invalid_vector_register_set;
5199 return 1;
5200 }
5201 if (operand_check != check_none)
5202 as_warn (_("index and destination registers should be distinct"));
5203 }
5204 }
43234a1e 5205 }
7bab8ab5 5206
43234a1e
L
5207 /* Check if broadcast is supported by the instruction and is applied
5208 to the memory operand. */
5209 if (i.broadcast)
5210 {
8e6e0792 5211 i386_operand_type type, overlap;
43234a1e
L
5212
5213 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5214 and its broadcast bytes match the memory operand. */
32546502 5215 op = i.broadcast->operand;
8e6e0792 5216 if (!t->opcode_modifier.broadcast
c48dadc9 5217 || !(i.flags[op] & Operand_Mem)
c39e5b26 5218 || (!i.types[op].bitfield.unspecified
4a1b91ea 5219 && !match_broadcast_size (t, op)))
43234a1e
L
5220 {
5221 bad_broadcast:
5222 i.error = unsupported_broadcast;
5223 return 1;
5224 }
8e6e0792 5225
4a1b91ea
L
5226 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5227 * i.broadcast->type);
8e6e0792 5228 operand_type_set (&type, 0);
4a1b91ea 5229 switch (i.broadcast->bytes)
8e6e0792 5230 {
4a1b91ea
L
5231 case 2:
5232 type.bitfield.word = 1;
5233 break;
5234 case 4:
5235 type.bitfield.dword = 1;
5236 break;
8e6e0792
JB
5237 case 8:
5238 type.bitfield.qword = 1;
5239 break;
5240 case 16:
5241 type.bitfield.xmmword = 1;
5242 break;
5243 case 32:
5244 type.bitfield.ymmword = 1;
5245 break;
5246 case 64:
5247 type.bitfield.zmmword = 1;
5248 break;
5249 default:
5250 goto bad_broadcast;
5251 }
5252
5253 overlap = operand_type_and (type, t->operand_types[op]);
5254 if (operand_type_all_zero (&overlap))
5255 goto bad_broadcast;
5256
5257 if (t->opcode_modifier.checkregsize)
5258 {
5259 unsigned int j;
5260
e2195274 5261 type.bitfield.baseindex = 1;
8e6e0792
JB
5262 for (j = 0; j < i.operands; ++j)
5263 {
5264 if (j != op
5265 && !operand_type_register_match(i.types[j],
5266 t->operand_types[j],
5267 type,
5268 t->operand_types[op]))
5269 goto bad_broadcast;
5270 }
5271 }
43234a1e
L
5272 }
5273 /* If broadcast is supported in this instruction, we need to check if
5274 operand of one-element size isn't specified without broadcast. */
5275 else if (t->opcode_modifier.broadcast && i.mem_operands)
5276 {
5277 /* Find memory operand. */
5278 for (op = 0; op < i.operands; op++)
5279 if (operand_type_check (i.types[op], anymem))
5280 break;
5281 gas_assert (op < i.operands);
5282 /* Check size of the memory operand. */
4a1b91ea 5283 if (match_broadcast_size (t, op))
43234a1e
L
5284 {
5285 i.error = broadcast_needed;
5286 return 1;
5287 }
5288 }
c39e5b26
JB
5289 else
5290 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5291
5292 /* Check if requested masking is supported. */
ae2387fe 5293 if (i.mask)
43234a1e 5294 {
ae2387fe
JB
5295 switch (t->opcode_modifier.masking)
5296 {
5297 case BOTH_MASKING:
5298 break;
5299 case MERGING_MASKING:
5300 if (i.mask->zeroing)
5301 {
5302 case 0:
5303 i.error = unsupported_masking;
5304 return 1;
5305 }
5306 break;
5307 case DYNAMIC_MASKING:
5308 /* Memory destinations allow only merging masking. */
5309 if (i.mask->zeroing && i.mem_operands)
5310 {
5311 /* Find memory operand. */
5312 for (op = 0; op < i.operands; op++)
c48dadc9 5313 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5314 break;
5315 gas_assert (op < i.operands);
5316 if (op == i.operands - 1)
5317 {
5318 i.error = unsupported_masking;
5319 return 1;
5320 }
5321 }
5322 break;
5323 default:
5324 abort ();
5325 }
43234a1e
L
5326 }
5327
5328 /* Check if masking is applied to dest operand. */
5329 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5330 {
5331 i.error = mask_not_on_destination;
5332 return 1;
5333 }
5334
43234a1e
L
5335 /* Check RC/SAE. */
5336 if (i.rounding)
5337 {
5338 if ((i.rounding->type != saeonly
5339 && !t->opcode_modifier.staticrounding)
5340 || (i.rounding->type == saeonly
5341 && (t->opcode_modifier.staticrounding
5342 || !t->opcode_modifier.sae)))
5343 {
5344 i.error = unsupported_rc_sae;
5345 return 1;
5346 }
5347 /* If the instruction has several immediate operands and one of
5348 them is rounding, the rounding operand should be the last
5349 immediate operand. */
5350 if (i.imm_operands > 1
5351 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5352 {
43234a1e 5353 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5354 return 1;
5355 }
6c30d220
L
5356 }
5357
43234a1e 5358 /* Check vector Disp8 operand. */
b5014f7a
JB
5359 if (t->opcode_modifier.disp8memshift
5360 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5361 {
5362 if (i.broadcast)
4a1b91ea 5363 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5364 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5365 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5366 else
5367 {
5368 const i386_operand_type *type = NULL;
5369
5370 i.memshift = 0;
5371 for (op = 0; op < i.operands; op++)
5372 if (operand_type_check (i.types[op], anymem))
5373 {
4174bfff
JB
5374 if (t->opcode_modifier.evex == EVEXLIG)
5375 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5376 else if (t->operand_types[op].bitfield.xmmword
5377 + t->operand_types[op].bitfield.ymmword
5378 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5379 type = &t->operand_types[op];
5380 else if (!i.types[op].bitfield.unspecified)
5381 type = &i.types[op];
5382 }
4174bfff
JB
5383 else if (i.types[op].bitfield.regsimd
5384 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5385 {
5386 if (i.types[op].bitfield.zmmword)
5387 i.memshift = 6;
5388 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5389 i.memshift = 5;
5390 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5391 i.memshift = 4;
5392 }
5393
5394 if (type)
5395 {
5396 if (type->bitfield.zmmword)
5397 i.memshift = 6;
5398 else if (type->bitfield.ymmword)
5399 i.memshift = 5;
5400 else if (type->bitfield.xmmword)
5401 i.memshift = 4;
5402 }
5403
5404 /* For the check in fits_in_disp8(). */
5405 if (i.memshift == 0)
5406 i.memshift = -1;
5407 }
43234a1e
L
5408
5409 for (op = 0; op < i.operands; op++)
5410 if (operand_type_check (i.types[op], disp)
5411 && i.op[op].disps->X_op == O_constant)
5412 {
b5014f7a 5413 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5414 {
b5014f7a
JB
5415 i.types[op].bitfield.disp8 = 1;
5416 return 0;
43234a1e 5417 }
b5014f7a 5418 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5419 }
5420 }
b5014f7a
JB
5421
5422 i.memshift = 0;
43234a1e 5423
6c30d220
L
5424 return 0;
5425}
5426
43f3e2ee 5427/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5428 operand types. */
5429
5430static int
5431VEX_check_operands (const insn_template *t)
5432{
86fa6981 5433 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5434 {
86fa6981 5435 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5436 if (!is_evex_encoding (t))
86fa6981
L
5437 {
5438 i.error = unsupported;
5439 return 1;
5440 }
5441 return 0;
43234a1e
L
5442 }
5443
a683cc34 5444 if (!t->opcode_modifier.vex)
86fa6981
L
5445 {
5446 /* This instruction template doesn't have VEX prefix. */
5447 if (i.vec_encoding != vex_encoding_default)
5448 {
5449 i.error = unsupported;
5450 return 1;
5451 }
5452 return 0;
5453 }
a683cc34
SP
5454
5455 /* Only check VEX_Imm4, which must be the first operand. */
5456 if (t->operand_types[0].bitfield.vec_imm4)
5457 {
5458 if (i.op[0].imms->X_op != O_constant
5459 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5460 {
a65babc9 5461 i.error = bad_imm4;
891edac4
L
5462 return 1;
5463 }
a683cc34
SP
5464
5465 /* Turn off Imm8 so that update_imm won't complain. */
5466 i.types[0] = vec_imm4;
5467 }
5468
5469 return 0;
5470}
5471
d3ce72d0 5472static const insn_template *
83b16ac6 5473match_template (char mnem_suffix)
29b0f896
AM
5474{
5475 /* Points to template once we've found it. */
d3ce72d0 5476 const insn_template *t;
40fb9820 5477 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5478 i386_operand_type overlap4;
29b0f896 5479 unsigned int found_reverse_match;
83b16ac6 5480 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5481 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5482 int addr_prefix_disp;
a5c311ca 5483 unsigned int j;
3ac21baa 5484 unsigned int found_cpu_match, size_match;
45664ddb 5485 unsigned int check_register;
5614d22c 5486 enum i386_error specific_error = 0;
29b0f896 5487
c0f3af97
L
5488#if MAX_OPERANDS != 5
5489# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5490#endif
5491
29b0f896 5492 found_reverse_match = 0;
539e75ad 5493 addr_prefix_disp = -1;
40fb9820
L
5494
5495 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5496 if (intel_syntax && i.broadcast)
5497 /* nothing */;
5498 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5499 suffix_check.no_bsuf = 1;
5500 else if (i.suffix == WORD_MNEM_SUFFIX)
5501 suffix_check.no_wsuf = 1;
5502 else if (i.suffix == SHORT_MNEM_SUFFIX)
5503 suffix_check.no_ssuf = 1;
5504 else if (i.suffix == LONG_MNEM_SUFFIX)
5505 suffix_check.no_lsuf = 1;
5506 else if (i.suffix == QWORD_MNEM_SUFFIX)
5507 suffix_check.no_qsuf = 1;
5508 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5509 suffix_check.no_ldsuf = 1;
29b0f896 5510
83b16ac6
JB
5511 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5512 if (intel_syntax)
5513 {
5514 switch (mnem_suffix)
5515 {
5516 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5517 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5518 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5519 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5520 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5521 }
5522 }
5523
01559ecc
L
5524 /* Must have right number of operands. */
5525 i.error = number_of_operands_mismatch;
5526
45aa61fe 5527 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5528 {
539e75ad
L
5529 addr_prefix_disp = -1;
5530
29b0f896
AM
5531 if (i.operands != t->operands)
5532 continue;
5533
50aecf8c 5534 /* Check processor support. */
a65babc9 5535 i.error = unsupported;
c0f3af97
L
5536 found_cpu_match = (cpu_flags_match (t)
5537 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5538 if (!found_cpu_match)
5539 continue;
5540
e1d4d893 5541 /* Check AT&T mnemonic. */
a65babc9 5542 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5543 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5544 continue;
5545
e92bae62 5546 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5547 i.error = unsupported_syntax;
5c07affc 5548 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5549 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5550 || (intel64 && t->opcode_modifier.amd64)
5551 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5552 continue;
5553
20592a94 5554 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5555 i.error = invalid_instruction_suffix;
567e4e96
L
5556 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5557 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5558 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5559 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5560 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5561 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5562 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5563 continue;
83b16ac6
JB
5564 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5565 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5566 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5567 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5568 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5569 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5570 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5571 continue;
29b0f896 5572
3ac21baa
JB
5573 size_match = operand_size_match (t);
5574 if (!size_match)
7d5e4556 5575 continue;
539e75ad 5576
5c07affc
L
5577 for (j = 0; j < MAX_OPERANDS; j++)
5578 operand_types[j] = t->operand_types[j];
5579
45aa61fe
AM
5580 /* In general, don't allow 64-bit operands in 32-bit mode. */
5581 if (i.suffix == QWORD_MNEM_SUFFIX
5582 && flag_code != CODE_64BIT
5583 && (intel_syntax
40fb9820 5584 ? (!t->opcode_modifier.ignoresize
625cbd7a 5585 && !t->opcode_modifier.broadcast
45aa61fe
AM
5586 && !intel_float_operand (t->name))
5587 : intel_float_operand (t->name) != 2)
40fb9820 5588 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5589 && !operand_types[0].bitfield.regsimd)
40fb9820 5590 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5591 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5592 && (t->base_opcode != 0x0fc7
5593 || t->extension_opcode != 1 /* cmpxchg8b */))
5594 continue;
5595
192dc9c6
JB
5596 /* In general, don't allow 32-bit operands on pre-386. */
5597 else if (i.suffix == LONG_MNEM_SUFFIX
5598 && !cpu_arch_flags.bitfield.cpui386
5599 && (intel_syntax
5600 ? (!t->opcode_modifier.ignoresize
5601 && !intel_float_operand (t->name))
5602 : intel_float_operand (t->name) != 2)
5603 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5604 && !operand_types[0].bitfield.regsimd)
192dc9c6 5605 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5606 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5607 continue;
5608
29b0f896 5609 /* Do not verify operands when there are none. */
50aecf8c 5610 else
29b0f896 5611 {
c6fb90c8 5612 if (!t->operands)
2dbab7d5
L
5613 /* We've found a match; break out of loop. */
5614 break;
29b0f896 5615 }
252b5132 5616
539e75ad
L
5617 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5618 into Disp32/Disp16/Disp32 operand. */
5619 if (i.prefix[ADDR_PREFIX] != 0)
5620 {
40fb9820 5621 /* There should be only one Disp operand. */
539e75ad
L
5622 switch (flag_code)
5623 {
5624 case CODE_16BIT:
40fb9820
L
5625 for (j = 0; j < MAX_OPERANDS; j++)
5626 {
5627 if (operand_types[j].bitfield.disp16)
5628 {
5629 addr_prefix_disp = j;
5630 operand_types[j].bitfield.disp32 = 1;
5631 operand_types[j].bitfield.disp16 = 0;
5632 break;
5633 }
5634 }
539e75ad
L
5635 break;
5636 case CODE_32BIT:
40fb9820
L
5637 for (j = 0; j < MAX_OPERANDS; j++)
5638 {
5639 if (operand_types[j].bitfield.disp32)
5640 {
5641 addr_prefix_disp = j;
5642 operand_types[j].bitfield.disp32 = 0;
5643 operand_types[j].bitfield.disp16 = 1;
5644 break;
5645 }
5646 }
539e75ad
L
5647 break;
5648 case CODE_64BIT:
40fb9820
L
5649 for (j = 0; j < MAX_OPERANDS; j++)
5650 {
5651 if (operand_types[j].bitfield.disp64)
5652 {
5653 addr_prefix_disp = j;
5654 operand_types[j].bitfield.disp64 = 0;
5655 operand_types[j].bitfield.disp32 = 1;
5656 break;
5657 }
5658 }
539e75ad
L
5659 break;
5660 }
539e75ad
L
5661 }
5662
02a86693
L
5663 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5664 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5665 continue;
5666
56ffb741 5667 /* We check register size if needed. */
e2195274
JB
5668 if (t->opcode_modifier.checkregsize)
5669 {
5670 check_register = (1 << t->operands) - 1;
5671 if (i.broadcast)
5672 check_register &= ~(1 << i.broadcast->operand);
5673 }
5674 else
5675 check_register = 0;
5676
c6fb90c8 5677 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5678 switch (t->operands)
5679 {
5680 case 1:
40fb9820 5681 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5682 continue;
5683 break;
5684 case 2:
33eaf5de 5685 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5686 only in 32bit mode and we can use opcode 0x90. In 64bit
5687 mode, we can't use 0x90 for xchg %eax, %eax since it should
5688 zero-extend %eax to %rax. */
5689 if (flag_code == CODE_64BIT
5690 && t->base_opcode == 0x90
0dfbf9d7
L
5691 && operand_type_equal (&i.types [0], &acc32)
5692 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5693 continue;
1212781b
JB
5694 /* xrelease mov %eax, <disp> is another special case. It must not
5695 match the accumulator-only encoding of mov. */
5696 if (flag_code != CODE_64BIT
5697 && i.hle_prefix
5698 && t->base_opcode == 0xa0
5699 && i.types[0].bitfield.acc
5700 && operand_type_check (i.types[1], anymem))
5701 continue;
3ac21baa
JB
5702 if (!(size_match & MATCH_STRAIGHT))
5703 goto check_reverse;
64c49ab3
JB
5704 /* Reverse direction of operands if swapping is possible in the first
5705 place (operands need to be symmetric) and
5706 - the load form is requested, and the template is a store form,
5707 - the store form is requested, and the template is a load form,
5708 - the non-default (swapped) form is requested. */
5709 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5710 if (t->opcode_modifier.d && i.reg_operands == 2
5711 && !operand_type_all_zero (&overlap1))
5712 switch (i.dir_encoding)
5713 {
5714 case dir_encoding_load:
5715 if (operand_type_check (operand_types[i.operands - 1], anymem)
5716 || operand_types[i.operands - 1].bitfield.regmem)
5717 goto check_reverse;
5718 break;
5719
5720 case dir_encoding_store:
5721 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5722 && !operand_types[i.operands - 1].bitfield.regmem)
5723 goto check_reverse;
5724 break;
5725
5726 case dir_encoding_swap:
5727 goto check_reverse;
5728
5729 case dir_encoding_default:
5730 break;
5731 }
1a0670f3 5732 /* Fall through. */
b6169b20 5733
29b0f896 5734 case 3:
86fa6981 5735 /* If we want store form, we skip the current load. */
64c49ab3
JB
5736 if ((i.dir_encoding == dir_encoding_store
5737 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5738 && i.mem_operands == 0
5739 && t->opcode_modifier.load)
fa99fab2 5740 continue;
1a0670f3 5741 /* Fall through. */
f48ff2ae 5742 case 4:
c0f3af97 5743 case 5:
c6fb90c8 5744 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5745 if (!operand_type_match (overlap0, i.types[0])
5746 || !operand_type_match (overlap1, i.types[1])
e2195274 5747 || ((check_register & 3) == 3
dc821c5f 5748 && !operand_type_register_match (i.types[0],
40fb9820 5749 operand_types[0],
dc821c5f 5750 i.types[1],
40fb9820 5751 operand_types[1])))
29b0f896
AM
5752 {
5753 /* Check if other direction is valid ... */
38e314eb 5754 if (!t->opcode_modifier.d)
29b0f896
AM
5755 continue;
5756
b6169b20 5757check_reverse:
3ac21baa
JB
5758 if (!(size_match & MATCH_REVERSE))
5759 continue;
29b0f896 5760 /* Try reversing direction of operands. */
c6fb90c8
L
5761 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5762 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5763 if (!operand_type_match (overlap0, i.types[0])
5764 || !operand_type_match (overlap1, i.types[1])
45664ddb 5765 || (check_register
dc821c5f 5766 && !operand_type_register_match (i.types[0],
45664ddb 5767 operand_types[1],
45664ddb
L
5768 i.types[1],
5769 operand_types[0])))
29b0f896
AM
5770 {
5771 /* Does not match either direction. */
5772 continue;
5773 }
38e314eb 5774 /* found_reverse_match holds which of D or FloatR
29b0f896 5775 we've found. */
38e314eb
JB
5776 if (!t->opcode_modifier.d)
5777 found_reverse_match = 0;
5778 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5779 found_reverse_match = Opcode_FloatD;
5780 else
38e314eb 5781 found_reverse_match = Opcode_D;
40fb9820 5782 if (t->opcode_modifier.floatr)
8a2ed489 5783 found_reverse_match |= Opcode_FloatR;
29b0f896 5784 }
f48ff2ae 5785 else
29b0f896 5786 {
f48ff2ae 5787 /* Found a forward 2 operand match here. */
d1cbb4db
L
5788 switch (t->operands)
5789 {
c0f3af97
L
5790 case 5:
5791 overlap4 = operand_type_and (i.types[4],
5792 operand_types[4]);
1a0670f3 5793 /* Fall through. */
d1cbb4db 5794 case 4:
c6fb90c8
L
5795 overlap3 = operand_type_and (i.types[3],
5796 operand_types[3]);
1a0670f3 5797 /* Fall through. */
d1cbb4db 5798 case 3:
c6fb90c8
L
5799 overlap2 = operand_type_and (i.types[2],
5800 operand_types[2]);
d1cbb4db
L
5801 break;
5802 }
29b0f896 5803
f48ff2ae
L
5804 switch (t->operands)
5805 {
c0f3af97
L
5806 case 5:
5807 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5808 || !operand_type_register_match (i.types[3],
c0f3af97 5809 operand_types[3],
c0f3af97
L
5810 i.types[4],
5811 operand_types[4]))
5812 continue;
1a0670f3 5813 /* Fall through. */
f48ff2ae 5814 case 4:
40fb9820 5815 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5816 || ((check_register & 0xa) == 0xa
5817 && !operand_type_register_match (i.types[1],
f7768225
JB
5818 operand_types[1],
5819 i.types[3],
e2195274
JB
5820 operand_types[3]))
5821 || ((check_register & 0xc) == 0xc
5822 && !operand_type_register_match (i.types[2],
5823 operand_types[2],
5824 i.types[3],
5825 operand_types[3])))
f48ff2ae 5826 continue;
1a0670f3 5827 /* Fall through. */
f48ff2ae
L
5828 case 3:
5829 /* Here we make use of the fact that there are no
23e42951 5830 reverse match 3 operand instructions. */
40fb9820 5831 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5832 || ((check_register & 5) == 5
5833 && !operand_type_register_match (i.types[0],
23e42951
JB
5834 operand_types[0],
5835 i.types[2],
e2195274
JB
5836 operand_types[2]))
5837 || ((check_register & 6) == 6
5838 && !operand_type_register_match (i.types[1],
5839 operand_types[1],
5840 i.types[2],
5841 operand_types[2])))
f48ff2ae
L
5842 continue;
5843 break;
5844 }
29b0f896 5845 }
f48ff2ae 5846 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5847 slip through to break. */
5848 }
3629bb00 5849 if (!found_cpu_match)
29b0f896
AM
5850 {
5851 found_reverse_match = 0;
5852 continue;
5853 }
c0f3af97 5854
5614d22c
JB
5855 /* Check if vector and VEX operands are valid. */
5856 if (check_VecOperands (t) || VEX_check_operands (t))
5857 {
5858 specific_error = i.error;
5859 continue;
5860 }
a683cc34 5861
29b0f896
AM
5862 /* We've found a match; break out of loop. */
5863 break;
5864 }
5865
5866 if (t == current_templates->end)
5867 {
5868 /* We found no match. */
a65babc9 5869 const char *err_msg;
5614d22c 5870 switch (specific_error ? specific_error : i.error)
a65babc9
L
5871 {
5872 default:
5873 abort ();
86e026a4 5874 case operand_size_mismatch:
a65babc9
L
5875 err_msg = _("operand size mismatch");
5876 break;
5877 case operand_type_mismatch:
5878 err_msg = _("operand type mismatch");
5879 break;
5880 case register_type_mismatch:
5881 err_msg = _("register type mismatch");
5882 break;
5883 case number_of_operands_mismatch:
5884 err_msg = _("number of operands mismatch");
5885 break;
5886 case invalid_instruction_suffix:
5887 err_msg = _("invalid instruction suffix");
5888 break;
5889 case bad_imm4:
4a2608e3 5890 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5891 break;
a65babc9
L
5892 case unsupported_with_intel_mnemonic:
5893 err_msg = _("unsupported with Intel mnemonic");
5894 break;
5895 case unsupported_syntax:
5896 err_msg = _("unsupported syntax");
5897 break;
5898 case unsupported:
35262a23 5899 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5900 current_templates->start->name);
5901 return NULL;
6c30d220
L
5902 case invalid_vsib_address:
5903 err_msg = _("invalid VSIB address");
5904 break;
7bab8ab5
JB
5905 case invalid_vector_register_set:
5906 err_msg = _("mask, index, and destination registers must be distinct");
5907 break;
6c30d220
L
5908 case unsupported_vector_index_register:
5909 err_msg = _("unsupported vector index register");
5910 break;
43234a1e
L
5911 case unsupported_broadcast:
5912 err_msg = _("unsupported broadcast");
5913 break;
43234a1e
L
5914 case broadcast_needed:
5915 err_msg = _("broadcast is needed for operand of such type");
5916 break;
5917 case unsupported_masking:
5918 err_msg = _("unsupported masking");
5919 break;
5920 case mask_not_on_destination:
5921 err_msg = _("mask not on destination operand");
5922 break;
5923 case no_default_mask:
5924 err_msg = _("default mask isn't allowed");
5925 break;
5926 case unsupported_rc_sae:
5927 err_msg = _("unsupported static rounding/sae");
5928 break;
5929 case rc_sae_operand_not_last_imm:
5930 if (intel_syntax)
5931 err_msg = _("RC/SAE operand must precede immediate operands");
5932 else
5933 err_msg = _("RC/SAE operand must follow immediate operands");
5934 break;
5935 case invalid_register_operand:
5936 err_msg = _("invalid register operand");
5937 break;
a65babc9
L
5938 }
5939 as_bad (_("%s for `%s'"), err_msg,
891edac4 5940 current_templates->start->name);
fa99fab2 5941 return NULL;
29b0f896 5942 }
252b5132 5943
29b0f896
AM
5944 if (!quiet_warnings)
5945 {
5946 if (!intel_syntax
40fb9820
L
5947 && (i.types[0].bitfield.jumpabsolute
5948 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5949 {
5950 as_warn (_("indirect %s without `*'"), t->name);
5951 }
5952
40fb9820
L
5953 if (t->opcode_modifier.isprefix
5954 && t->opcode_modifier.ignoresize)
29b0f896
AM
5955 {
5956 /* Warn them that a data or address size prefix doesn't
5957 affect assembly of the next line of code. */
5958 as_warn (_("stand-alone `%s' prefix"), t->name);
5959 }
5960 }
5961
5962 /* Copy the template we found. */
5963 i.tm = *t;
539e75ad
L
5964
5965 if (addr_prefix_disp != -1)
5966 i.tm.operand_types[addr_prefix_disp]
5967 = operand_types[addr_prefix_disp];
5968
29b0f896
AM
5969 if (found_reverse_match)
5970 {
5971 /* If we found a reverse match we must alter the opcode
5972 direction bit. found_reverse_match holds bits to change
5973 (different for int & float insns). */
5974
5975 i.tm.base_opcode ^= found_reverse_match;
5976
539e75ad
L
5977 i.tm.operand_types[0] = operand_types[1];
5978 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5979 }
5980
fa99fab2 5981 return t;
29b0f896
AM
5982}
5983
5984static int
e3bb37b5 5985check_string (void)
29b0f896 5986{
40fb9820
L
5987 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5988 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5989 {
5990 if (i.seg[0] != NULL && i.seg[0] != &es)
5991 {
a87af027 5992 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5993 i.tm.name,
a87af027
JB
5994 mem_op + 1,
5995 register_prefix);
29b0f896
AM
5996 return 0;
5997 }
5998 /* There's only ever one segment override allowed per instruction.
5999 This instruction possibly has a legal segment override on the
6000 second operand, so copy the segment to where non-string
6001 instructions store it, allowing common code. */
6002 i.seg[0] = i.seg[1];
6003 }
40fb9820 6004 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6005 {
6006 if (i.seg[1] != NULL && i.seg[1] != &es)
6007 {
a87af027 6008 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6009 i.tm.name,
a87af027
JB
6010 mem_op + 2,
6011 register_prefix);
29b0f896
AM
6012 return 0;
6013 }
6014 }
6015 return 1;
6016}
6017
6018static int
543613e9 6019process_suffix (void)
29b0f896
AM
6020{
6021 /* If matched instruction specifies an explicit instruction mnemonic
6022 suffix, use it. */
40fb9820
L
6023 if (i.tm.opcode_modifier.size16)
6024 i.suffix = WORD_MNEM_SUFFIX;
6025 else if (i.tm.opcode_modifier.size32)
6026 i.suffix = LONG_MNEM_SUFFIX;
6027 else if (i.tm.opcode_modifier.size64)
6028 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6029 else if (i.reg_operands)
6030 {
6031 /* If there's no instruction mnemonic suffix we try to invent one
6032 based on register operands. */
6033 if (!i.suffix)
6034 {
6035 /* We take i.suffix from the last register operand specified,
6036 Destination register type is more significant than source
381d071f
L
6037 register type. crc32 in SSE4.2 prefers source register
6038 type. */
6039 if (i.tm.base_opcode == 0xf20f38f1)
6040 {
dc821c5f 6041 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 6042 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 6043 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 6044 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 6045 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 6046 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 6047 }
9344ff29 6048 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 6049 {
dc821c5f 6050 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
6051 i.suffix = BYTE_MNEM_SUFFIX;
6052 }
381d071f
L
6053
6054 if (!i.suffix)
6055 {
6056 int op;
6057
20592a94
L
6058 if (i.tm.base_opcode == 0xf20f38f1
6059 || i.tm.base_opcode == 0xf20f38f0)
6060 {
6061 /* We have to know the operand size for crc32. */
6062 as_bad (_("ambiguous memory operand size for `%s`"),
6063 i.tm.name);
6064 return 0;
6065 }
6066
381d071f 6067 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6068 if (!i.tm.operand_types[op].bitfield.inoutportreg
6069 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6070 {
8819ada6
JB
6071 if (!i.types[op].bitfield.reg)
6072 continue;
6073 if (i.types[op].bitfield.byte)
6074 i.suffix = BYTE_MNEM_SUFFIX;
6075 else if (i.types[op].bitfield.word)
6076 i.suffix = WORD_MNEM_SUFFIX;
6077 else if (i.types[op].bitfield.dword)
6078 i.suffix = LONG_MNEM_SUFFIX;
6079 else if (i.types[op].bitfield.qword)
6080 i.suffix = QWORD_MNEM_SUFFIX;
6081 else
6082 continue;
6083 break;
381d071f
L
6084 }
6085 }
29b0f896
AM
6086 }
6087 else if (i.suffix == BYTE_MNEM_SUFFIX)
6088 {
2eb952a4
L
6089 if (intel_syntax
6090 && i.tm.opcode_modifier.ignoresize
6091 && i.tm.opcode_modifier.no_bsuf)
6092 i.suffix = 0;
6093 else if (!check_byte_reg ())
29b0f896
AM
6094 return 0;
6095 }
6096 else if (i.suffix == LONG_MNEM_SUFFIX)
6097 {
2eb952a4
L
6098 if (intel_syntax
6099 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6100 && i.tm.opcode_modifier.no_lsuf
6101 && !i.tm.opcode_modifier.todword
6102 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6103 i.suffix = 0;
6104 else if (!check_long_reg ())
29b0f896
AM
6105 return 0;
6106 }
6107 else if (i.suffix == QWORD_MNEM_SUFFIX)
6108 {
955e1e6a
L
6109 if (intel_syntax
6110 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6111 && i.tm.opcode_modifier.no_qsuf
6112 && !i.tm.opcode_modifier.todword
6113 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6114 i.suffix = 0;
6115 else if (!check_qword_reg ())
29b0f896
AM
6116 return 0;
6117 }
6118 else if (i.suffix == WORD_MNEM_SUFFIX)
6119 {
2eb952a4
L
6120 if (intel_syntax
6121 && i.tm.opcode_modifier.ignoresize
6122 && i.tm.opcode_modifier.no_wsuf)
6123 i.suffix = 0;
6124 else if (!check_word_reg ())
29b0f896
AM
6125 return 0;
6126 }
40fb9820 6127 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6128 /* Do nothing if the instruction is going to ignore the prefix. */
6129 ;
6130 else
6131 abort ();
6132 }
40fb9820 6133 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6134 && !i.suffix
6135 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6136 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6137 {
6138 i.suffix = stackop_size;
6139 }
9306ca4a
JB
6140 else if (intel_syntax
6141 && !i.suffix
40fb9820
L
6142 && (i.tm.operand_types[0].bitfield.jumpabsolute
6143 || i.tm.opcode_modifier.jumpbyte
6144 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6145 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6146 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6147 {
6148 switch (flag_code)
6149 {
6150 case CODE_64BIT:
40fb9820 6151 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6152 {
6153 i.suffix = QWORD_MNEM_SUFFIX;
6154 break;
6155 }
1a0670f3 6156 /* Fall through. */
9306ca4a 6157 case CODE_32BIT:
40fb9820 6158 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6159 i.suffix = LONG_MNEM_SUFFIX;
6160 break;
6161 case CODE_16BIT:
40fb9820 6162 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6163 i.suffix = WORD_MNEM_SUFFIX;
6164 break;
6165 }
6166 }
252b5132 6167
9306ca4a 6168 if (!i.suffix)
29b0f896 6169 {
9306ca4a
JB
6170 if (!intel_syntax)
6171 {
40fb9820 6172 if (i.tm.opcode_modifier.w)
9306ca4a 6173 {
4eed87de
AM
6174 as_bad (_("no instruction mnemonic suffix given and "
6175 "no register operands; can't size instruction"));
9306ca4a
JB
6176 return 0;
6177 }
6178 }
6179 else
6180 {
40fb9820 6181 unsigned int suffixes;
7ab9ffdd 6182
40fb9820
L
6183 suffixes = !i.tm.opcode_modifier.no_bsuf;
6184 if (!i.tm.opcode_modifier.no_wsuf)
6185 suffixes |= 1 << 1;
6186 if (!i.tm.opcode_modifier.no_lsuf)
6187 suffixes |= 1 << 2;
fc4adea1 6188 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6189 suffixes |= 1 << 3;
6190 if (!i.tm.opcode_modifier.no_ssuf)
6191 suffixes |= 1 << 4;
c2b9da16 6192 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6193 suffixes |= 1 << 5;
6194
6195 /* There are more than suffix matches. */
6196 if (i.tm.opcode_modifier.w
9306ca4a 6197 || ((suffixes & (suffixes - 1))
40fb9820
L
6198 && !i.tm.opcode_modifier.defaultsize
6199 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6200 {
6201 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6202 return 0;
6203 }
6204 }
29b0f896 6205 }
252b5132 6206
d2224064
JB
6207 /* Change the opcode based on the operand size given by i.suffix. */
6208 switch (i.suffix)
29b0f896 6209 {
d2224064
JB
6210 /* Size floating point instruction. */
6211 case LONG_MNEM_SUFFIX:
6212 if (i.tm.opcode_modifier.floatmf)
6213 {
6214 i.tm.base_opcode ^= 4;
6215 break;
6216 }
6217 /* fall through */
6218 case WORD_MNEM_SUFFIX:
6219 case QWORD_MNEM_SUFFIX:
29b0f896 6220 /* It's not a byte, select word/dword operation. */
40fb9820 6221 if (i.tm.opcode_modifier.w)
29b0f896 6222 {
40fb9820 6223 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6224 i.tm.base_opcode |= 8;
6225 else
6226 i.tm.base_opcode |= 1;
6227 }
d2224064
JB
6228 /* fall through */
6229 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6230 /* Now select between word & dword operations via the operand
6231 size prefix, except for instructions that will ignore this
6232 prefix anyway. */
75c0a438
L
6233 if (i.reg_operands > 0
6234 && i.types[0].bitfield.reg
6235 && i.tm.opcode_modifier.addrprefixopreg
6236 && (i.tm.opcode_modifier.immext
6237 || i.operands == 1))
cb712a9e 6238 {
ca61edf2
L
6239 /* The address size override prefix changes the size of the
6240 first operand. */
40fb9820 6241 if ((flag_code == CODE_32BIT
75c0a438 6242 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6243 || (flag_code != CODE_32BIT
75c0a438 6244 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6245 if (!add_prefix (ADDR_PREFIX_OPCODE))
6246 return 0;
6247 }
6248 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6249 && !i.tm.opcode_modifier.ignoresize
6250 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6251 && !i.tm.opcode_modifier.vex
6252 && !i.tm.opcode_modifier.vexopcode
6253 && !is_evex_encoding (&i.tm)
cb712a9e
L
6254 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6255 || (flag_code == CODE_64BIT
40fb9820 6256 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6257 {
6258 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6259
40fb9820 6260 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6261 prefix = ADDR_PREFIX_OPCODE;
252b5132 6262
29b0f896
AM
6263 if (!add_prefix (prefix))
6264 return 0;
24eab124 6265 }
252b5132 6266
29b0f896
AM
6267 /* Set mode64 for an operand. */
6268 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6269 && flag_code == CODE_64BIT
d2224064 6270 && !i.tm.opcode_modifier.norex64
46e883c5 6271 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6272 need rex64. */
6273 && ! (i.operands == 2
6274 && i.tm.base_opcode == 0x90
6275 && i.tm.extension_opcode == None
6276 && operand_type_equal (&i.types [0], &acc64)
6277 && operand_type_equal (&i.types [1], &acc64)))
6278 i.rex |= REX_W;
3e73aa7c 6279
d2224064 6280 break;
29b0f896 6281 }
7ecd2f8b 6282
c0a30a9f
L
6283 if (i.reg_operands != 0
6284 && i.operands > 1
6285 && i.tm.opcode_modifier.addrprefixopreg
6286 && !i.tm.opcode_modifier.immext)
6287 {
6288 /* Check invalid register operand when the address size override
6289 prefix changes the size of register operands. */
6290 unsigned int op;
6291 enum { need_word, need_dword, need_qword } need;
6292
6293 if (flag_code == CODE_32BIT)
6294 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6295 else
6296 {
6297 if (i.prefix[ADDR_PREFIX])
6298 need = need_dword;
6299 else
6300 need = flag_code == CODE_64BIT ? need_qword : need_word;
6301 }
6302
6303 for (op = 0; op < i.operands; op++)
6304 if (i.types[op].bitfield.reg
6305 && ((need == need_word
6306 && !i.op[op].regs->reg_type.bitfield.word)
6307 || (need == need_dword
6308 && !i.op[op].regs->reg_type.bitfield.dword)
6309 || (need == need_qword
6310 && !i.op[op].regs->reg_type.bitfield.qword)))
6311 {
6312 as_bad (_("invalid register operand size for `%s'"),
6313 i.tm.name);
6314 return 0;
6315 }
6316 }
6317
29b0f896
AM
6318 return 1;
6319}
3e73aa7c 6320
29b0f896 6321static int
543613e9 6322check_byte_reg (void)
29b0f896
AM
6323{
6324 int op;
543613e9 6325
29b0f896
AM
6326 for (op = i.operands; --op >= 0;)
6327 {
dc821c5f
JB
6328 /* Skip non-register operands. */
6329 if (!i.types[op].bitfield.reg)
6330 continue;
6331
29b0f896
AM
6332 /* If this is an eight bit register, it's OK. If it's the 16 or
6333 32 bit version of an eight bit register, we will just use the
6334 low portion, and that's OK too. */
dc821c5f 6335 if (i.types[op].bitfield.byte)
29b0f896
AM
6336 continue;
6337
5a819eb9
JB
6338 /* I/O port address operands are OK too. */
6339 if (i.tm.operand_types[op].bitfield.inoutportreg)
6340 continue;
6341
9344ff29
L
6342 /* crc32 doesn't generate this warning. */
6343 if (i.tm.base_opcode == 0xf20f38f0)
6344 continue;
6345
dc821c5f
JB
6346 if ((i.types[op].bitfield.word
6347 || i.types[op].bitfield.dword
6348 || i.types[op].bitfield.qword)
5a819eb9
JB
6349 && i.op[op].regs->reg_num < 4
6350 /* Prohibit these changes in 64bit mode, since the lowering
6351 would be more complicated. */
6352 && flag_code != CODE_64BIT)
29b0f896 6353 {
29b0f896 6354#if REGISTER_WARNINGS
5a819eb9 6355 if (!quiet_warnings)
a540244d
L
6356 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6357 register_prefix,
dc821c5f 6358 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6359 ? REGNAM_AL - REGNAM_AX
6360 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6361 register_prefix,
29b0f896
AM
6362 i.op[op].regs->reg_name,
6363 i.suffix);
6364#endif
6365 continue;
6366 }
6367 /* Any other register is bad. */
dc821c5f 6368 if (i.types[op].bitfield.reg
40fb9820 6369 || i.types[op].bitfield.regmmx
1b54b8d7 6370 || i.types[op].bitfield.regsimd
40fb9820
L
6371 || i.types[op].bitfield.sreg2
6372 || i.types[op].bitfield.sreg3
6373 || i.types[op].bitfield.control
6374 || i.types[op].bitfield.debug
ca0d63fe 6375 || i.types[op].bitfield.test)
29b0f896 6376 {
a540244d
L
6377 as_bad (_("`%s%s' not allowed with `%s%c'"),
6378 register_prefix,
29b0f896
AM
6379 i.op[op].regs->reg_name,
6380 i.tm.name,
6381 i.suffix);
6382 return 0;
6383 }
6384 }
6385 return 1;
6386}
6387
6388static int
e3bb37b5 6389check_long_reg (void)
29b0f896
AM
6390{
6391 int op;
6392
6393 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6394 /* Skip non-register operands. */
6395 if (!i.types[op].bitfield.reg)
6396 continue;
29b0f896
AM
6397 /* Reject eight bit registers, except where the template requires
6398 them. (eg. movzb) */
dc821c5f
JB
6399 else if (i.types[op].bitfield.byte
6400 && (i.tm.operand_types[op].bitfield.reg
6401 || i.tm.operand_types[op].bitfield.acc)
6402 && (i.tm.operand_types[op].bitfield.word
6403 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6404 {
a540244d
L
6405 as_bad (_("`%s%s' not allowed with `%s%c'"),
6406 register_prefix,
29b0f896
AM
6407 i.op[op].regs->reg_name,
6408 i.tm.name,
6409 i.suffix);
6410 return 0;
6411 }
e4630f71 6412 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6413 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6414 && i.types[op].bitfield.word
6415 && (i.tm.operand_types[op].bitfield.reg
6416 || i.tm.operand_types[op].bitfield.acc)
6417 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6418 {
6419 /* Prohibit these changes in the 64bit mode, since the
6420 lowering is more complicated. */
6421 if (flag_code == CODE_64BIT)
252b5132 6422 {
2b5d6a91 6423 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6424 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6425 i.suffix);
6426 return 0;
252b5132 6427 }
29b0f896 6428#if REGISTER_WARNINGS
cecf1424
JB
6429 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6430 register_prefix,
6431 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6432 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6433#endif
252b5132 6434 }
e4630f71 6435 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6436 else if (i.types[op].bitfield.qword
6437 && (i.tm.operand_types[op].bitfield.reg
6438 || i.tm.operand_types[op].bitfield.acc)
6439 && i.tm.operand_types[op].bitfield.dword)
252b5132 6440 {
34828aad 6441 if (intel_syntax
ca61edf2 6442 && i.tm.opcode_modifier.toqword
1b54b8d7 6443 && !i.types[0].bitfield.regsimd)
34828aad 6444 {
ca61edf2 6445 /* Convert to QWORD. We want REX byte. */
34828aad
L
6446 i.suffix = QWORD_MNEM_SUFFIX;
6447 }
6448 else
6449 {
2b5d6a91 6450 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6451 register_prefix, i.op[op].regs->reg_name,
6452 i.suffix);
6453 return 0;
6454 }
29b0f896
AM
6455 }
6456 return 1;
6457}
252b5132 6458
29b0f896 6459static int
e3bb37b5 6460check_qword_reg (void)
29b0f896
AM
6461{
6462 int op;
252b5132 6463
29b0f896 6464 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6465 /* Skip non-register operands. */
6466 if (!i.types[op].bitfield.reg)
6467 continue;
29b0f896
AM
6468 /* Reject eight bit registers, except where the template requires
6469 them. (eg. movzb) */
dc821c5f
JB
6470 else if (i.types[op].bitfield.byte
6471 && (i.tm.operand_types[op].bitfield.reg
6472 || i.tm.operand_types[op].bitfield.acc)
6473 && (i.tm.operand_types[op].bitfield.word
6474 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6475 {
a540244d
L
6476 as_bad (_("`%s%s' not allowed with `%s%c'"),
6477 register_prefix,
29b0f896
AM
6478 i.op[op].regs->reg_name,
6479 i.tm.name,
6480 i.suffix);
6481 return 0;
6482 }
e4630f71 6483 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6484 else if ((i.types[op].bitfield.word
6485 || i.types[op].bitfield.dword)
6486 && (i.tm.operand_types[op].bitfield.reg
6487 || i.tm.operand_types[op].bitfield.acc)
6488 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6489 {
6490 /* Prohibit these changes in the 64bit mode, since the
6491 lowering is more complicated. */
34828aad 6492 if (intel_syntax
ca61edf2 6493 && i.tm.opcode_modifier.todword
1b54b8d7 6494 && !i.types[0].bitfield.regsimd)
34828aad 6495 {
ca61edf2 6496 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6497 i.suffix = LONG_MNEM_SUFFIX;
6498 }
6499 else
6500 {
2b5d6a91 6501 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6502 register_prefix, i.op[op].regs->reg_name,
6503 i.suffix);
6504 return 0;
6505 }
252b5132 6506 }
29b0f896
AM
6507 return 1;
6508}
252b5132 6509
29b0f896 6510static int
e3bb37b5 6511check_word_reg (void)
29b0f896
AM
6512{
6513 int op;
6514 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6515 /* Skip non-register operands. */
6516 if (!i.types[op].bitfield.reg)
6517 continue;
29b0f896
AM
6518 /* Reject eight bit registers, except where the template requires
6519 them. (eg. movzb) */
dc821c5f
JB
6520 else if (i.types[op].bitfield.byte
6521 && (i.tm.operand_types[op].bitfield.reg
6522 || i.tm.operand_types[op].bitfield.acc)
6523 && (i.tm.operand_types[op].bitfield.word
6524 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6525 {
a540244d
L
6526 as_bad (_("`%s%s' not allowed with `%s%c'"),
6527 register_prefix,
29b0f896
AM
6528 i.op[op].regs->reg_name,
6529 i.tm.name,
6530 i.suffix);
6531 return 0;
6532 }
e4630f71 6533 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6534 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6535 && (i.types[op].bitfield.dword
6536 || i.types[op].bitfield.qword)
6537 && (i.tm.operand_types[op].bitfield.reg
6538 || i.tm.operand_types[op].bitfield.acc)
6539 && i.tm.operand_types[op].bitfield.word)
252b5132 6540 {
29b0f896
AM
6541 /* Prohibit these changes in the 64bit mode, since the
6542 lowering is more complicated. */
6543 if (flag_code == CODE_64BIT)
252b5132 6544 {
2b5d6a91 6545 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6546 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6547 i.suffix);
6548 return 0;
252b5132 6549 }
29b0f896 6550#if REGISTER_WARNINGS
cecf1424
JB
6551 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6552 register_prefix,
6553 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6554 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6555#endif
6556 }
6557 return 1;
6558}
252b5132 6559
29b0f896 6560static int
40fb9820 6561update_imm (unsigned int j)
29b0f896 6562{
bc0844ae 6563 i386_operand_type overlap = i.types[j];
40fb9820
L
6564 if ((overlap.bitfield.imm8
6565 || overlap.bitfield.imm8s
6566 || overlap.bitfield.imm16
6567 || overlap.bitfield.imm32
6568 || overlap.bitfield.imm32s
6569 || overlap.bitfield.imm64)
0dfbf9d7
L
6570 && !operand_type_equal (&overlap, &imm8)
6571 && !operand_type_equal (&overlap, &imm8s)
6572 && !operand_type_equal (&overlap, &imm16)
6573 && !operand_type_equal (&overlap, &imm32)
6574 && !operand_type_equal (&overlap, &imm32s)
6575 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6576 {
6577 if (i.suffix)
6578 {
40fb9820
L
6579 i386_operand_type temp;
6580
0dfbf9d7 6581 operand_type_set (&temp, 0);
7ab9ffdd 6582 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6583 {
6584 temp.bitfield.imm8 = overlap.bitfield.imm8;
6585 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6586 }
6587 else if (i.suffix == WORD_MNEM_SUFFIX)
6588 temp.bitfield.imm16 = overlap.bitfield.imm16;
6589 else if (i.suffix == QWORD_MNEM_SUFFIX)
6590 {
6591 temp.bitfield.imm64 = overlap.bitfield.imm64;
6592 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6593 }
6594 else
6595 temp.bitfield.imm32 = overlap.bitfield.imm32;
6596 overlap = temp;
29b0f896 6597 }
0dfbf9d7
L
6598 else if (operand_type_equal (&overlap, &imm16_32_32s)
6599 || operand_type_equal (&overlap, &imm16_32)
6600 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6601 {
40fb9820 6602 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6603 overlap = imm16;
40fb9820 6604 else
65da13b5 6605 overlap = imm32s;
29b0f896 6606 }
0dfbf9d7
L
6607 if (!operand_type_equal (&overlap, &imm8)
6608 && !operand_type_equal (&overlap, &imm8s)
6609 && !operand_type_equal (&overlap, &imm16)
6610 && !operand_type_equal (&overlap, &imm32)
6611 && !operand_type_equal (&overlap, &imm32s)
6612 && !operand_type_equal (&overlap, &imm64))
29b0f896 6613 {
4eed87de
AM
6614 as_bad (_("no instruction mnemonic suffix given; "
6615 "can't determine immediate size"));
29b0f896
AM
6616 return 0;
6617 }
6618 }
40fb9820 6619 i.types[j] = overlap;
29b0f896 6620
40fb9820
L
6621 return 1;
6622}
6623
6624static int
6625finalize_imm (void)
6626{
bc0844ae 6627 unsigned int j, n;
29b0f896 6628
bc0844ae
L
6629 /* Update the first 2 immediate operands. */
6630 n = i.operands > 2 ? 2 : i.operands;
6631 if (n)
6632 {
6633 for (j = 0; j < n; j++)
6634 if (update_imm (j) == 0)
6635 return 0;
40fb9820 6636
bc0844ae
L
6637 /* The 3rd operand can't be immediate operand. */
6638 gas_assert (operand_type_check (i.types[2], imm) == 0);
6639 }
29b0f896
AM
6640
6641 return 1;
6642}
6643
6644static int
e3bb37b5 6645process_operands (void)
29b0f896
AM
6646{
6647 /* Default segment register this instruction will use for memory
6648 accesses. 0 means unknown. This is only for optimizing out
6649 unnecessary segment overrides. */
6650 const seg_entry *default_seg = 0;
6651
2426c15f 6652 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6653 {
91d6fa6a
NC
6654 unsigned int dupl = i.operands;
6655 unsigned int dest = dupl - 1;
9fcfb3d7
L
6656 unsigned int j;
6657
c0f3af97 6658 /* The destination must be an xmm register. */
9c2799c2 6659 gas_assert (i.reg_operands
91d6fa6a 6660 && MAX_OPERANDS > dupl
7ab9ffdd 6661 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6662
1b54b8d7
JB
6663 if (i.tm.operand_types[0].bitfield.acc
6664 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6665 {
8cd7925b 6666 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6667 {
6668 /* Keep xmm0 for instructions with VEX prefix and 3
6669 sources. */
1b54b8d7
JB
6670 i.tm.operand_types[0].bitfield.acc = 0;
6671 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6672 goto duplicate;
6673 }
e2ec9d29 6674 else
c0f3af97
L
6675 {
6676 /* We remove the first xmm0 and keep the number of
6677 operands unchanged, which in fact duplicates the
6678 destination. */
6679 for (j = 1; j < i.operands; j++)
6680 {
6681 i.op[j - 1] = i.op[j];
6682 i.types[j - 1] = i.types[j];
6683 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6684 }
6685 }
6686 }
6687 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6688 {
91d6fa6a 6689 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6690 && (i.tm.opcode_modifier.vexsources
6691 == VEX3SOURCES));
c0f3af97
L
6692
6693 /* Add the implicit xmm0 for instructions with VEX prefix
6694 and 3 sources. */
6695 for (j = i.operands; j > 0; j--)
6696 {
6697 i.op[j] = i.op[j - 1];
6698 i.types[j] = i.types[j - 1];
6699 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6700 }
6701 i.op[0].regs
6702 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6703 i.types[0] = regxmm;
c0f3af97
L
6704 i.tm.operand_types[0] = regxmm;
6705
6706 i.operands += 2;
6707 i.reg_operands += 2;
6708 i.tm.operands += 2;
6709
91d6fa6a 6710 dupl++;
c0f3af97 6711 dest++;
91d6fa6a
NC
6712 i.op[dupl] = i.op[dest];
6713 i.types[dupl] = i.types[dest];
6714 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6715 }
c0f3af97
L
6716 else
6717 {
6718duplicate:
6719 i.operands++;
6720 i.reg_operands++;
6721 i.tm.operands++;
6722
91d6fa6a
NC
6723 i.op[dupl] = i.op[dest];
6724 i.types[dupl] = i.types[dest];
6725 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6726 }
6727
6728 if (i.tm.opcode_modifier.immext)
6729 process_immext ();
6730 }
1b54b8d7
JB
6731 else if (i.tm.operand_types[0].bitfield.acc
6732 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6733 {
6734 unsigned int j;
6735
9fcfb3d7
L
6736 for (j = 1; j < i.operands; j++)
6737 {
6738 i.op[j - 1] = i.op[j];
6739 i.types[j - 1] = i.types[j];
6740
6741 /* We need to adjust fields in i.tm since they are used by
6742 build_modrm_byte. */
6743 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6744 }
6745
e2ec9d29
L
6746 i.operands--;
6747 i.reg_operands--;
e2ec9d29
L
6748 i.tm.operands--;
6749 }
920d2ddc
IT
6750 else if (i.tm.opcode_modifier.implicitquadgroup)
6751 {
a477a8c4
JB
6752 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6753
920d2ddc 6754 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6755 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6756 regnum = register_number (i.op[1].regs);
6757 first_reg_in_group = regnum & ~3;
6758 last_reg_in_group = first_reg_in_group + 3;
6759 if (regnum != first_reg_in_group)
6760 as_warn (_("source register `%s%s' implicitly denotes"
6761 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6762 register_prefix, i.op[1].regs->reg_name,
6763 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6764 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6765 i.tm.name);
6766 }
e2ec9d29
L
6767 else if (i.tm.opcode_modifier.regkludge)
6768 {
6769 /* The imul $imm, %reg instruction is converted into
6770 imul $imm, %reg, %reg, and the clr %reg instruction
6771 is converted into xor %reg, %reg. */
6772
6773 unsigned int first_reg_op;
6774
6775 if (operand_type_check (i.types[0], reg))
6776 first_reg_op = 0;
6777 else
6778 first_reg_op = 1;
6779 /* Pretend we saw the extra register operand. */
9c2799c2 6780 gas_assert (i.reg_operands == 1
7ab9ffdd 6781 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6782 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6783 i.types[first_reg_op + 1] = i.types[first_reg_op];
6784 i.operands++;
6785 i.reg_operands++;
29b0f896
AM
6786 }
6787
40fb9820 6788 if (i.tm.opcode_modifier.shortform)
29b0f896 6789 {
40fb9820
L
6790 if (i.types[0].bitfield.sreg2
6791 || i.types[0].bitfield.sreg3)
29b0f896 6792 {
4eed87de
AM
6793 if (i.tm.base_opcode == POP_SEG_SHORT
6794 && i.op[0].regs->reg_num == 1)
29b0f896 6795 {
a87af027 6796 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6797 return 0;
29b0f896 6798 }
4eed87de
AM
6799 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6800 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6801 i.rex |= REX_B;
4eed87de
AM
6802 }
6803 else
6804 {
7ab9ffdd 6805 /* The register or float register operand is in operand
85f10a01 6806 0 or 1. */
40fb9820 6807 unsigned int op;
7ab9ffdd 6808
ca0d63fe 6809 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6810 || operand_type_check (i.types[0], reg))
6811 op = 0;
6812 else
6813 op = 1;
4eed87de
AM
6814 /* Register goes in low 3 bits of opcode. */
6815 i.tm.base_opcode |= i.op[op].regs->reg_num;
6816 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6817 i.rex |= REX_B;
40fb9820 6818 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6819 {
4eed87de
AM
6820 /* Warn about some common errors, but press on regardless.
6821 The first case can be generated by gcc (<= 2.8.1). */
6822 if (i.operands == 2)
6823 {
6824 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6825 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6826 register_prefix, i.op[!intel_syntax].regs->reg_name,
6827 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6828 }
6829 else
6830 {
6831 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6832 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6833 register_prefix, i.op[0].regs->reg_name);
4eed87de 6834 }
29b0f896
AM
6835 }
6836 }
6837 }
40fb9820 6838 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6839 {
6840 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6841 must be put into the modrm byte). Now, we make the modrm and
6842 index base bytes based on all the info we've collected. */
29b0f896
AM
6843
6844 default_seg = build_modrm_byte ();
6845 }
8a2ed489 6846 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6847 {
6848 default_seg = &ds;
6849 }
40fb9820 6850 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6851 {
6852 /* For the string instructions that allow a segment override
6853 on one of their operands, the default segment is ds. */
6854 default_seg = &ds;
6855 }
6856
75178d9d
L
6857 if (i.tm.base_opcode == 0x8d /* lea */
6858 && i.seg[0]
6859 && !quiet_warnings)
30123838 6860 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6861
6862 /* If a segment was explicitly specified, and the specified segment
6863 is not the default, use an opcode prefix to select it. If we
6864 never figured out what the default segment is, then default_seg
6865 will be zero at this point, and the specified segment prefix will
6866 always be used. */
29b0f896
AM
6867 if ((i.seg[0]) && (i.seg[0] != default_seg))
6868 {
6869 if (!add_prefix (i.seg[0]->seg_prefix))
6870 return 0;
6871 }
6872 return 1;
6873}
6874
6875static const seg_entry *
e3bb37b5 6876build_modrm_byte (void)
29b0f896
AM
6877{
6878 const seg_entry *default_seg = 0;
c0f3af97 6879 unsigned int source, dest;
8cd7925b 6880 int vex_3_sources;
c0f3af97 6881
8cd7925b 6882 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6883 if (vex_3_sources)
6884 {
91d6fa6a 6885 unsigned int nds, reg_slot;
4c2c6516 6886 expressionS *exp;
c0f3af97 6887
6b8d3588 6888 dest = i.operands - 1;
c0f3af97 6889 nds = dest - 1;
922d8de8 6890
a683cc34 6891 /* There are 2 kinds of instructions:
bed3d976
JB
6892 1. 5 operands: 4 register operands or 3 register operands
6893 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6894 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6895 ZMM register.
bed3d976 6896 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6897 plus 1 memory operand, with VexXDS. */
922d8de8 6898 gas_assert ((i.reg_operands == 4
bed3d976
JB
6899 || (i.reg_operands == 3 && i.mem_operands == 1))
6900 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6901 && i.tm.opcode_modifier.vexw
6902 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6903
48db9223
JB
6904 /* If VexW1 is set, the first non-immediate operand is the source and
6905 the second non-immediate one is encoded in the immediate operand. */
6906 if (i.tm.opcode_modifier.vexw == VEXW1)
6907 {
6908 source = i.imm_operands;
6909 reg_slot = i.imm_operands + 1;
6910 }
6911 else
6912 {
6913 source = i.imm_operands + 1;
6914 reg_slot = i.imm_operands;
6915 }
6916
a683cc34 6917 if (i.imm_operands == 0)
bed3d976
JB
6918 {
6919 /* When there is no immediate operand, generate an 8bit
6920 immediate operand to encode the first operand. */
6921 exp = &im_expressions[i.imm_operands++];
6922 i.op[i.operands].imms = exp;
6923 i.types[i.operands] = imm8;
6924 i.operands++;
6925
6926 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6927 exp->X_op = O_constant;
6928 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6929 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6930 }
922d8de8 6931 else
bed3d976
JB
6932 {
6933 unsigned int imm_slot;
a683cc34 6934
2f1bada2
JB
6935 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6936
bed3d976
JB
6937 if (i.tm.opcode_modifier.immext)
6938 {
6939 /* When ImmExt is set, the immediate byte is the last
6940 operand. */
6941 imm_slot = i.operands - 1;
6942 source--;
6943 reg_slot--;
6944 }
6945 else
6946 {
6947 imm_slot = 0;
6948
6949 /* Turn on Imm8 so that output_imm will generate it. */
6950 i.types[imm_slot].bitfield.imm8 = 1;
6951 }
6952
6953 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6954 i.op[imm_slot].imms->X_add_number
6955 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6956 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6957 }
a683cc34 6958
10c17abd 6959 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6960 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6961 }
6962 else
6963 source = dest = 0;
29b0f896
AM
6964
6965 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6966 implicit registers do not count. If there are 3 register
6967 operands, it must be a instruction with VexNDS. For a
6968 instruction with VexNDD, the destination register is encoded
6969 in VEX prefix. If there are 4 register operands, it must be
6970 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6971 if (i.mem_operands == 0
6972 && ((i.reg_operands == 2
2426c15f 6973 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6974 || (i.reg_operands == 3
2426c15f 6975 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6976 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6977 {
cab737b9
L
6978 switch (i.operands)
6979 {
6980 case 2:
6981 source = 0;
6982 break;
6983 case 3:
c81128dc
L
6984 /* When there are 3 operands, one of them may be immediate,
6985 which may be the first or the last operand. Otherwise,
c0f3af97
L
6986 the first operand must be shift count register (cl) or it
6987 is an instruction with VexNDS. */
9c2799c2 6988 gas_assert (i.imm_operands == 1
7ab9ffdd 6989 || (i.imm_operands == 0
2426c15f 6990 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6991 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6992 if (operand_type_check (i.types[0], imm)
6993 || i.types[0].bitfield.shiftcount)
6994 source = 1;
6995 else
6996 source = 0;
cab737b9
L
6997 break;
6998 case 4:
368d64cc
L
6999 /* When there are 4 operands, the first two must be 8bit
7000 immediate operands. The source operand will be the 3rd
c0f3af97
L
7001 one.
7002
7003 For instructions with VexNDS, if the first operand
7004 an imm8, the source operand is the 2nd one. If the last
7005 operand is imm8, the source operand is the first one. */
9c2799c2 7006 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7007 && i.types[0].bitfield.imm8
7008 && i.types[1].bitfield.imm8)
2426c15f 7009 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7010 && i.imm_operands == 1
7011 && (i.types[0].bitfield.imm8
43234a1e
L
7012 || i.types[i.operands - 1].bitfield.imm8
7013 || i.rounding)));
9f2670f2
L
7014 if (i.imm_operands == 2)
7015 source = 2;
7016 else
c0f3af97
L
7017 {
7018 if (i.types[0].bitfield.imm8)
7019 source = 1;
7020 else
7021 source = 0;
7022 }
c0f3af97
L
7023 break;
7024 case 5:
e771e7c9 7025 if (is_evex_encoding (&i.tm))
43234a1e
L
7026 {
7027 /* For EVEX instructions, when there are 5 operands, the
7028 first one must be immediate operand. If the second one
7029 is immediate operand, the source operand is the 3th
7030 one. If the last one is immediate operand, the source
7031 operand is the 2nd one. */
7032 gas_assert (i.imm_operands == 2
7033 && i.tm.opcode_modifier.sae
7034 && operand_type_check (i.types[0], imm));
7035 if (operand_type_check (i.types[1], imm))
7036 source = 2;
7037 else if (operand_type_check (i.types[4], imm))
7038 source = 1;
7039 else
7040 abort ();
7041 }
cab737b9
L
7042 break;
7043 default:
7044 abort ();
7045 }
7046
c0f3af97
L
7047 if (!vex_3_sources)
7048 {
7049 dest = source + 1;
7050
43234a1e
L
7051 /* RC/SAE operand could be between DEST and SRC. That happens
7052 when one operand is GPR and the other one is XMM/YMM/ZMM
7053 register. */
7054 if (i.rounding && i.rounding->operand == (int) dest)
7055 dest++;
7056
2426c15f 7057 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7058 {
43234a1e 7059 /* For instructions with VexNDS, the register-only source
c5d0745b 7060 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7061 register. It is encoded in VEX prefix. We need to
7062 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7063
7064 i386_operand_type op;
7065 unsigned int vvvv;
7066
7067 /* Check register-only source operand when two source
7068 operands are swapped. */
7069 if (!i.tm.operand_types[source].bitfield.baseindex
7070 && i.tm.operand_types[dest].bitfield.baseindex)
7071 {
7072 vvvv = source;
7073 source = dest;
7074 }
7075 else
7076 vvvv = dest;
7077
7078 op = i.tm.operand_types[vvvv];
fa99fab2 7079 op.bitfield.regmem = 0;
c0f3af97 7080 if ((dest + 1) >= i.operands
dc821c5f
JB
7081 || ((!op.bitfield.reg
7082 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7083 && !op.bitfield.regsimd
43234a1e 7084 && !operand_type_equal (&op, &regmask)))
c0f3af97 7085 abort ();
f12dc422 7086 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7087 dest++;
7088 }
7089 }
29b0f896
AM
7090
7091 i.rm.mode = 3;
7092 /* One of the register operands will be encoded in the i.tm.reg
7093 field, the other in the combined i.tm.mode and i.tm.regmem
7094 fields. If no form of this instruction supports a memory
7095 destination operand, then we assume the source operand may
7096 sometimes be a memory operand and so we need to store the
7097 destination in the i.rm.reg field. */
40fb9820
L
7098 if (!i.tm.operand_types[dest].bitfield.regmem
7099 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7100 {
7101 i.rm.reg = i.op[dest].regs->reg_num;
7102 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7103 if (i.op[dest].regs->reg_type.bitfield.regmmx
7104 || i.op[source].regs->reg_type.bitfield.regmmx)
7105 i.has_regmmx = TRUE;
7106 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7107 || i.op[source].regs->reg_type.bitfield.regsimd)
7108 {
7109 if (i.types[dest].bitfield.zmmword
7110 || i.types[source].bitfield.zmmword)
7111 i.has_regzmm = TRUE;
7112 else if (i.types[dest].bitfield.ymmword
7113 || i.types[source].bitfield.ymmword)
7114 i.has_regymm = TRUE;
7115 else
7116 i.has_regxmm = TRUE;
7117 }
29b0f896 7118 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7119 i.rex |= REX_R;
43234a1e
L
7120 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7121 i.vrex |= REX_R;
29b0f896 7122 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7123 i.rex |= REX_B;
43234a1e
L
7124 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7125 i.vrex |= REX_B;
29b0f896
AM
7126 }
7127 else
7128 {
7129 i.rm.reg = i.op[source].regs->reg_num;
7130 i.rm.regmem = i.op[dest].regs->reg_num;
7131 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7132 i.rex |= REX_B;
43234a1e
L
7133 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7134 i.vrex |= REX_B;
29b0f896 7135 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7136 i.rex |= REX_R;
43234a1e
L
7137 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7138 i.vrex |= REX_R;
29b0f896 7139 }
e0c7f900 7140 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7141 {
e0c7f900 7142 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7143 abort ();
e0c7f900 7144 i.rex &= ~REX_R;
c4a530c5
JB
7145 add_prefix (LOCK_PREFIX_OPCODE);
7146 }
29b0f896
AM
7147 }
7148 else
7149 { /* If it's not 2 reg operands... */
c0f3af97
L
7150 unsigned int mem;
7151
29b0f896
AM
7152 if (i.mem_operands)
7153 {
7154 unsigned int fake_zero_displacement = 0;
99018f42 7155 unsigned int op;
4eed87de 7156
7ab9ffdd
L
7157 for (op = 0; op < i.operands; op++)
7158 if (operand_type_check (i.types[op], anymem))
7159 break;
7ab9ffdd 7160 gas_assert (op < i.operands);
29b0f896 7161
6c30d220
L
7162 if (i.tm.opcode_modifier.vecsib)
7163 {
e968fc9b 7164 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7165 abort ();
7166
7167 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7168 if (!i.base_reg)
7169 {
7170 i.sib.base = NO_BASE_REGISTER;
7171 i.sib.scale = i.log2_scale_factor;
7172 i.types[op].bitfield.disp8 = 0;
7173 i.types[op].bitfield.disp16 = 0;
7174 i.types[op].bitfield.disp64 = 0;
43083a50 7175 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7176 {
7177 /* Must be 32 bit */
7178 i.types[op].bitfield.disp32 = 1;
7179 i.types[op].bitfield.disp32s = 0;
7180 }
7181 else
7182 {
7183 i.types[op].bitfield.disp32 = 0;
7184 i.types[op].bitfield.disp32s = 1;
7185 }
7186 }
7187 i.sib.index = i.index_reg->reg_num;
7188 if ((i.index_reg->reg_flags & RegRex) != 0)
7189 i.rex |= REX_X;
43234a1e
L
7190 if ((i.index_reg->reg_flags & RegVRex) != 0)
7191 i.vrex |= REX_X;
6c30d220
L
7192 }
7193
29b0f896
AM
7194 default_seg = &ds;
7195
7196 if (i.base_reg == 0)
7197 {
7198 i.rm.mode = 0;
7199 if (!i.disp_operands)
9bb129e8 7200 fake_zero_displacement = 1;
29b0f896
AM
7201 if (i.index_reg == 0)
7202 {
73053c1f
JB
7203 i386_operand_type newdisp;
7204
6c30d220 7205 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7206 /* Operand is just <disp> */
20f0a1fc 7207 if (flag_code == CODE_64BIT)
29b0f896
AM
7208 {
7209 /* 64bit mode overwrites the 32bit absolute
7210 addressing by RIP relative addressing and
7211 absolute addressing is encoded by one of the
7212 redundant SIB forms. */
7213 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7214 i.sib.base = NO_BASE_REGISTER;
7215 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7216 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7217 }
fc225355
L
7218 else if ((flag_code == CODE_16BIT)
7219 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7220 {
7221 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7222 newdisp = disp16;
20f0a1fc
NC
7223 }
7224 else
7225 {
7226 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7227 newdisp = disp32;
29b0f896 7228 }
73053c1f
JB
7229 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7230 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7231 }
6c30d220 7232 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7233 {
6c30d220 7234 /* !i.base_reg && i.index_reg */
e968fc9b 7235 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7236 i.sib.index = NO_INDEX_REGISTER;
7237 else
7238 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7239 i.sib.base = NO_BASE_REGISTER;
7240 i.sib.scale = i.log2_scale_factor;
7241 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7242 i.types[op].bitfield.disp8 = 0;
7243 i.types[op].bitfield.disp16 = 0;
7244 i.types[op].bitfield.disp64 = 0;
43083a50 7245 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7246 {
7247 /* Must be 32 bit */
7248 i.types[op].bitfield.disp32 = 1;
7249 i.types[op].bitfield.disp32s = 0;
7250 }
29b0f896 7251 else
40fb9820
L
7252 {
7253 i.types[op].bitfield.disp32 = 0;
7254 i.types[op].bitfield.disp32s = 1;
7255 }
29b0f896 7256 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7257 i.rex |= REX_X;
29b0f896
AM
7258 }
7259 }
7260 /* RIP addressing for 64bit mode. */
e968fc9b 7261 else if (i.base_reg->reg_num == RegIP)
29b0f896 7262 {
6c30d220 7263 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7264 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7265 i.types[op].bitfield.disp8 = 0;
7266 i.types[op].bitfield.disp16 = 0;
7267 i.types[op].bitfield.disp32 = 0;
7268 i.types[op].bitfield.disp32s = 1;
7269 i.types[op].bitfield.disp64 = 0;
71903a11 7270 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7271 if (! i.disp_operands)
7272 fake_zero_displacement = 1;
29b0f896 7273 }
dc821c5f 7274 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7275 {
6c30d220 7276 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7277 switch (i.base_reg->reg_num)
7278 {
7279 case 3: /* (%bx) */
7280 if (i.index_reg == 0)
7281 i.rm.regmem = 7;
7282 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7283 i.rm.regmem = i.index_reg->reg_num - 6;
7284 break;
7285 case 5: /* (%bp) */
7286 default_seg = &ss;
7287 if (i.index_reg == 0)
7288 {
7289 i.rm.regmem = 6;
40fb9820 7290 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7291 {
7292 /* fake (%bp) into 0(%bp) */
b5014f7a 7293 i.types[op].bitfield.disp8 = 1;
252b5132 7294 fake_zero_displacement = 1;
29b0f896
AM
7295 }
7296 }
7297 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7298 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7299 break;
7300 default: /* (%si) -> 4 or (%di) -> 5 */
7301 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7302 }
7303 i.rm.mode = mode_from_disp_size (i.types[op]);
7304 }
7305 else /* i.base_reg and 32/64 bit mode */
7306 {
7307 if (flag_code == CODE_64BIT
40fb9820
L
7308 && operand_type_check (i.types[op], disp))
7309 {
73053c1f
JB
7310 i.types[op].bitfield.disp16 = 0;
7311 i.types[op].bitfield.disp64 = 0;
40fb9820 7312 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7313 {
7314 i.types[op].bitfield.disp32 = 0;
7315 i.types[op].bitfield.disp32s = 1;
7316 }
40fb9820 7317 else
73053c1f
JB
7318 {
7319 i.types[op].bitfield.disp32 = 1;
7320 i.types[op].bitfield.disp32s = 0;
7321 }
40fb9820 7322 }
20f0a1fc 7323
6c30d220
L
7324 if (!i.tm.opcode_modifier.vecsib)
7325 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7326 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7327 i.rex |= REX_B;
29b0f896
AM
7328 i.sib.base = i.base_reg->reg_num;
7329 /* x86-64 ignores REX prefix bit here to avoid decoder
7330 complications. */
848930b2
JB
7331 if (!(i.base_reg->reg_flags & RegRex)
7332 && (i.base_reg->reg_num == EBP_REG_NUM
7333 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7334 default_seg = &ss;
848930b2 7335 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7336 {
848930b2 7337 fake_zero_displacement = 1;
b5014f7a 7338 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7339 }
7340 i.sib.scale = i.log2_scale_factor;
7341 if (i.index_reg == 0)
7342 {
6c30d220 7343 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7344 /* <disp>(%esp) becomes two byte modrm with no index
7345 register. We've already stored the code for esp
7346 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7347 Any base register besides %esp will not use the
7348 extra modrm byte. */
7349 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7350 }
6c30d220 7351 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7352 {
e968fc9b 7353 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7354 i.sib.index = NO_INDEX_REGISTER;
7355 else
7356 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7357 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7358 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7359 i.rex |= REX_X;
29b0f896 7360 }
67a4f2b7
AO
7361
7362 if (i.disp_operands
7363 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7364 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7365 i.rm.mode = 0;
7366 else
a501d77e
L
7367 {
7368 if (!fake_zero_displacement
7369 && !i.disp_operands
7370 && i.disp_encoding)
7371 {
7372 fake_zero_displacement = 1;
7373 if (i.disp_encoding == disp_encoding_8bit)
7374 i.types[op].bitfield.disp8 = 1;
7375 else
7376 i.types[op].bitfield.disp32 = 1;
7377 }
7378 i.rm.mode = mode_from_disp_size (i.types[op]);
7379 }
29b0f896 7380 }
252b5132 7381
29b0f896
AM
7382 if (fake_zero_displacement)
7383 {
7384 /* Fakes a zero displacement assuming that i.types[op]
7385 holds the correct displacement size. */
7386 expressionS *exp;
7387
9c2799c2 7388 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7389 exp = &disp_expressions[i.disp_operands++];
7390 i.op[op].disps = exp;
7391 exp->X_op = O_constant;
7392 exp->X_add_number = 0;
7393 exp->X_add_symbol = (symbolS *) 0;
7394 exp->X_op_symbol = (symbolS *) 0;
7395 }
c0f3af97
L
7396
7397 mem = op;
29b0f896 7398 }
c0f3af97
L
7399 else
7400 mem = ~0;
252b5132 7401
8c43a48b 7402 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7403 {
7404 if (operand_type_check (i.types[0], imm))
7405 i.vex.register_specifier = NULL;
7406 else
7407 {
7408 /* VEX.vvvv encodes one of the sources when the first
7409 operand is not an immediate. */
1ef99a7b 7410 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7411 i.vex.register_specifier = i.op[0].regs;
7412 else
7413 i.vex.register_specifier = i.op[1].regs;
7414 }
7415
7416 /* Destination is a XMM register encoded in the ModRM.reg
7417 and VEX.R bit. */
7418 i.rm.reg = i.op[2].regs->reg_num;
7419 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7420 i.rex |= REX_R;
7421
7422 /* ModRM.rm and VEX.B encodes the other source. */
7423 if (!i.mem_operands)
7424 {
7425 i.rm.mode = 3;
7426
1ef99a7b 7427 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7428 i.rm.regmem = i.op[1].regs->reg_num;
7429 else
7430 i.rm.regmem = i.op[0].regs->reg_num;
7431
7432 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7433 i.rex |= REX_B;
7434 }
7435 }
2426c15f 7436 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7437 {
7438 i.vex.register_specifier = i.op[2].regs;
7439 if (!i.mem_operands)
7440 {
7441 i.rm.mode = 3;
7442 i.rm.regmem = i.op[1].regs->reg_num;
7443 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7444 i.rex |= REX_B;
7445 }
7446 }
29b0f896
AM
7447 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7448 (if any) based on i.tm.extension_opcode. Again, we must be
7449 careful to make sure that segment/control/debug/test/MMX
7450 registers are coded into the i.rm.reg field. */
f88c9eb0 7451 else if (i.reg_operands)
29b0f896 7452 {
99018f42 7453 unsigned int op;
7ab9ffdd
L
7454 unsigned int vex_reg = ~0;
7455
7456 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7457 {
7458 if (i.types[op].bitfield.reg
7459 || i.types[op].bitfield.regbnd
7460 || i.types[op].bitfield.regmask
7461 || i.types[op].bitfield.sreg2
7462 || i.types[op].bitfield.sreg3
7463 || i.types[op].bitfield.control
7464 || i.types[op].bitfield.debug
7465 || i.types[op].bitfield.test)
7466 break;
7467 if (i.types[op].bitfield.regsimd)
7468 {
7469 if (i.types[op].bitfield.zmmword)
7470 i.has_regzmm = TRUE;
7471 else if (i.types[op].bitfield.ymmword)
7472 i.has_regymm = TRUE;
7473 else
7474 i.has_regxmm = TRUE;
7475 break;
7476 }
7477 if (i.types[op].bitfield.regmmx)
7478 {
7479 i.has_regmmx = TRUE;
7480 break;
7481 }
7482 }
c0209578 7483
7ab9ffdd
L
7484 if (vex_3_sources)
7485 op = dest;
2426c15f 7486 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7487 {
7488 /* For instructions with VexNDS, the register-only
7489 source operand is encoded in VEX prefix. */
7490 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7491
7ab9ffdd 7492 if (op > mem)
c0f3af97 7493 {
7ab9ffdd
L
7494 vex_reg = op++;
7495 gas_assert (op < i.operands);
c0f3af97
L
7496 }
7497 else
c0f3af97 7498 {
f12dc422
L
7499 /* Check register-only source operand when two source
7500 operands are swapped. */
7501 if (!i.tm.operand_types[op].bitfield.baseindex
7502 && i.tm.operand_types[op + 1].bitfield.baseindex)
7503 {
7504 vex_reg = op;
7505 op += 2;
7506 gas_assert (mem == (vex_reg + 1)
7507 && op < i.operands);
7508 }
7509 else
7510 {
7511 vex_reg = op + 1;
7512 gas_assert (vex_reg < i.operands);
7513 }
c0f3af97 7514 }
7ab9ffdd 7515 }
2426c15f 7516 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7517 {
f12dc422 7518 /* For instructions with VexNDD, the register destination
7ab9ffdd 7519 is encoded in VEX prefix. */
f12dc422
L
7520 if (i.mem_operands == 0)
7521 {
7522 /* There is no memory operand. */
7523 gas_assert ((op + 2) == i.operands);
7524 vex_reg = op + 1;
7525 }
7526 else
8d63c93e 7527 {
ed438a93
JB
7528 /* There are only 2 non-immediate operands. */
7529 gas_assert (op < i.imm_operands + 2
7530 && i.operands == i.imm_operands + 2);
7531 vex_reg = i.imm_operands + 1;
f12dc422 7532 }
7ab9ffdd
L
7533 }
7534 else
7535 gas_assert (op < i.operands);
99018f42 7536
7ab9ffdd
L
7537 if (vex_reg != (unsigned int) ~0)
7538 {
f12dc422 7539 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7540
dc821c5f
JB
7541 if ((!type->bitfield.reg
7542 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7543 && !type->bitfield.regsimd
43234a1e 7544 && !operand_type_equal (type, &regmask))
7ab9ffdd 7545 abort ();
f88c9eb0 7546
7ab9ffdd
L
7547 i.vex.register_specifier = i.op[vex_reg].regs;
7548 }
7549
1b9f0c97
L
7550 /* Don't set OP operand twice. */
7551 if (vex_reg != op)
7ab9ffdd 7552 {
1b9f0c97
L
7553 /* If there is an extension opcode to put here, the
7554 register number must be put into the regmem field. */
7555 if (i.tm.extension_opcode != None)
7556 {
7557 i.rm.regmem = i.op[op].regs->reg_num;
7558 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7559 i.rex |= REX_B;
43234a1e
L
7560 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7561 i.vrex |= REX_B;
1b9f0c97
L
7562 }
7563 else
7564 {
7565 i.rm.reg = i.op[op].regs->reg_num;
7566 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7567 i.rex |= REX_R;
43234a1e
L
7568 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7569 i.vrex |= REX_R;
1b9f0c97 7570 }
7ab9ffdd 7571 }
252b5132 7572
29b0f896
AM
7573 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7574 must set it to 3 to indicate this is a register operand
7575 in the regmem field. */
7576 if (!i.mem_operands)
7577 i.rm.mode = 3;
7578 }
252b5132 7579
29b0f896 7580 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7581 if (i.tm.extension_opcode != None)
29b0f896
AM
7582 i.rm.reg = i.tm.extension_opcode;
7583 }
7584 return default_seg;
7585}
252b5132 7586
29b0f896 7587static void
e3bb37b5 7588output_branch (void)
29b0f896
AM
7589{
7590 char *p;
f8a5c266 7591 int size;
29b0f896
AM
7592 int code16;
7593 int prefix;
7594 relax_substateT subtype;
7595 symbolS *sym;
7596 offsetT off;
7597
f8a5c266 7598 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7599 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7600
7601 prefix = 0;
7602 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7603 {
29b0f896
AM
7604 prefix = 1;
7605 i.prefixes -= 1;
7606 code16 ^= CODE16;
252b5132 7607 }
29b0f896
AM
7608 /* Pentium4 branch hints. */
7609 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7610 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7611 {
29b0f896
AM
7612 prefix++;
7613 i.prefixes--;
7614 }
7615 if (i.prefix[REX_PREFIX] != 0)
7616 {
7617 prefix++;
7618 i.prefixes--;
2f66722d
AM
7619 }
7620
7e8b059b
L
7621 /* BND prefixed jump. */
7622 if (i.prefix[BND_PREFIX] != 0)
7623 {
7624 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7625 i.prefixes -= 1;
7626 }
7627
29b0f896
AM
7628 if (i.prefixes != 0 && !intel_syntax)
7629 as_warn (_("skipping prefixes on this instruction"));
7630
7631 /* It's always a symbol; End frag & setup for relax.
7632 Make sure there is enough room in this frag for the largest
7633 instruction we may generate in md_convert_frag. This is 2
7634 bytes for the opcode and room for the prefix and largest
7635 displacement. */
7636 frag_grow (prefix + 2 + 4);
7637 /* Prefix and 1 opcode byte go in fr_fix. */
7638 p = frag_more (prefix + 1);
7639 if (i.prefix[DATA_PREFIX] != 0)
7640 *p++ = DATA_PREFIX_OPCODE;
7641 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7642 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7643 *p++ = i.prefix[SEG_PREFIX];
7644 if (i.prefix[REX_PREFIX] != 0)
7645 *p++ = i.prefix[REX_PREFIX];
7646 *p = i.tm.base_opcode;
7647
7648 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7649 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7650 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7651 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7652 else
f8a5c266 7653 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7654 subtype |= code16;
3e73aa7c 7655
29b0f896
AM
7656 sym = i.op[0].disps->X_add_symbol;
7657 off = i.op[0].disps->X_add_number;
3e73aa7c 7658
29b0f896
AM
7659 if (i.op[0].disps->X_op != O_constant
7660 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7661 {
29b0f896
AM
7662 /* Handle complex expressions. */
7663 sym = make_expr_symbol (i.op[0].disps);
7664 off = 0;
7665 }
3e73aa7c 7666
29b0f896
AM
7667 /* 1 possible extra opcode + 4 byte displacement go in var part.
7668 Pass reloc in fr_var. */
d258b828 7669 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7670}
3e73aa7c 7671
bd7ab16b
L
7672#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7673/* Return TRUE iff PLT32 relocation should be used for branching to
7674 symbol S. */
7675
7676static bfd_boolean
7677need_plt32_p (symbolS *s)
7678{
7679 /* PLT32 relocation is ELF only. */
7680 if (!IS_ELF)
7681 return FALSE;
7682
7683 /* Since there is no need to prepare for PLT branch on x86-64, we
7684 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7685 be used as a marker for 32-bit PC-relative branches. */
7686 if (!object_64bit)
7687 return FALSE;
7688
7689 /* Weak or undefined symbol need PLT32 relocation. */
7690 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7691 return TRUE;
7692
7693 /* Non-global symbol doesn't need PLT32 relocation. */
7694 if (! S_IS_EXTERNAL (s))
7695 return FALSE;
7696
7697 /* Other global symbols need PLT32 relocation. NB: Symbol with
7698 non-default visibilities are treated as normal global symbol
7699 so that PLT32 relocation can be used as a marker for 32-bit
7700 PC-relative branches. It is useful for linker relaxation. */
7701 return TRUE;
7702}
7703#endif
7704
29b0f896 7705static void
e3bb37b5 7706output_jump (void)
29b0f896
AM
7707{
7708 char *p;
7709 int size;
3e02c1cc 7710 fixS *fixP;
bd7ab16b 7711 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7712
40fb9820 7713 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7714 {
7715 /* This is a loop or jecxz type instruction. */
7716 size = 1;
7717 if (i.prefix[ADDR_PREFIX] != 0)
7718 {
7719 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7720 i.prefixes -= 1;
7721 }
7722 /* Pentium4 branch hints. */
7723 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7724 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7725 {
7726 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7727 i.prefixes--;
3e73aa7c
JH
7728 }
7729 }
29b0f896
AM
7730 else
7731 {
7732 int code16;
3e73aa7c 7733
29b0f896
AM
7734 code16 = 0;
7735 if (flag_code == CODE_16BIT)
7736 code16 = CODE16;
3e73aa7c 7737
29b0f896
AM
7738 if (i.prefix[DATA_PREFIX] != 0)
7739 {
7740 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7741 i.prefixes -= 1;
7742 code16 ^= CODE16;
7743 }
252b5132 7744
29b0f896
AM
7745 size = 4;
7746 if (code16)
7747 size = 2;
7748 }
9fcc94b6 7749
29b0f896
AM
7750 if (i.prefix[REX_PREFIX] != 0)
7751 {
7752 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7753 i.prefixes -= 1;
7754 }
252b5132 7755
7e8b059b
L
7756 /* BND prefixed jump. */
7757 if (i.prefix[BND_PREFIX] != 0)
7758 {
7759 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7760 i.prefixes -= 1;
7761 }
7762
29b0f896
AM
7763 if (i.prefixes != 0 && !intel_syntax)
7764 as_warn (_("skipping prefixes on this instruction"));
e0890092 7765
42164a71
L
7766 p = frag_more (i.tm.opcode_length + size);
7767 switch (i.tm.opcode_length)
7768 {
7769 case 2:
7770 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7771 /* Fall through. */
42164a71
L
7772 case 1:
7773 *p++ = i.tm.base_opcode;
7774 break;
7775 default:
7776 abort ();
7777 }
e0890092 7778
bd7ab16b
L
7779#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7780 if (size == 4
7781 && jump_reloc == NO_RELOC
7782 && need_plt32_p (i.op[0].disps->X_add_symbol))
7783 jump_reloc = BFD_RELOC_X86_64_PLT32;
7784#endif
7785
7786 jump_reloc = reloc (size, 1, 1, jump_reloc);
7787
3e02c1cc 7788 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7789 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7790
7791 /* All jumps handled here are signed, but don't use a signed limit
7792 check for 32 and 16 bit jumps as we want to allow wrap around at
7793 4G and 64k respectively. */
7794 if (size == 1)
7795 fixP->fx_signed = 1;
29b0f896 7796}
e0890092 7797
29b0f896 7798static void
e3bb37b5 7799output_interseg_jump (void)
29b0f896
AM
7800{
7801 char *p;
7802 int size;
7803 int prefix;
7804 int code16;
252b5132 7805
29b0f896
AM
7806 code16 = 0;
7807 if (flag_code == CODE_16BIT)
7808 code16 = CODE16;
a217f122 7809
29b0f896
AM
7810 prefix = 0;
7811 if (i.prefix[DATA_PREFIX] != 0)
7812 {
7813 prefix = 1;
7814 i.prefixes -= 1;
7815 code16 ^= CODE16;
7816 }
7817 if (i.prefix[REX_PREFIX] != 0)
7818 {
7819 prefix++;
7820 i.prefixes -= 1;
7821 }
252b5132 7822
29b0f896
AM
7823 size = 4;
7824 if (code16)
7825 size = 2;
252b5132 7826
29b0f896
AM
7827 if (i.prefixes != 0 && !intel_syntax)
7828 as_warn (_("skipping prefixes on this instruction"));
252b5132 7829
29b0f896
AM
7830 /* 1 opcode; 2 segment; offset */
7831 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7832
29b0f896
AM
7833 if (i.prefix[DATA_PREFIX] != 0)
7834 *p++ = DATA_PREFIX_OPCODE;
252b5132 7835
29b0f896
AM
7836 if (i.prefix[REX_PREFIX] != 0)
7837 *p++ = i.prefix[REX_PREFIX];
252b5132 7838
29b0f896
AM
7839 *p++ = i.tm.base_opcode;
7840 if (i.op[1].imms->X_op == O_constant)
7841 {
7842 offsetT n = i.op[1].imms->X_add_number;
252b5132 7843
29b0f896
AM
7844 if (size == 2
7845 && !fits_in_unsigned_word (n)
7846 && !fits_in_signed_word (n))
7847 {
7848 as_bad (_("16-bit jump out of range"));
7849 return;
7850 }
7851 md_number_to_chars (p, n, size);
7852 }
7853 else
7854 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7855 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7856 if (i.op[0].imms->X_op != O_constant)
7857 as_bad (_("can't handle non absolute segment in `%s'"),
7858 i.tm.name);
7859 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7860}
a217f122 7861
b4a3a7b4
L
7862#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7863void
7864x86_cleanup (void)
7865{
7866 char *p;
7867 asection *seg = now_seg;
7868 subsegT subseg = now_subseg;
7869 asection *sec;
7870 unsigned int alignment, align_size_1;
7871 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7872 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7873 unsigned int padding;
7874
7875 if (!IS_ELF || !x86_used_note)
7876 return;
7877
7878 x86_isa_1_used |= GNU_PROPERTY_X86_UINT32_VALID;
7879 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7880
7881 /* The .note.gnu.property section layout:
7882
7883 Field Length Contents
7884 ---- ---- ----
7885 n_namsz 4 4
7886 n_descsz 4 The note descriptor size
7887 n_type 4 NT_GNU_PROPERTY_TYPE_0
7888 n_name 4 "GNU"
7889 n_desc n_descsz The program property array
7890 .... .... ....
7891 */
7892
7893 /* Create the .note.gnu.property section. */
7894 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7895 bfd_set_section_flags (stdoutput, sec,
7896 (SEC_ALLOC
7897 | SEC_LOAD
7898 | SEC_DATA
7899 | SEC_HAS_CONTENTS
7900 | SEC_READONLY));
7901
7902 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7903 {
7904 align_size_1 = 7;
7905 alignment = 3;
7906 }
7907 else
7908 {
7909 align_size_1 = 3;
7910 alignment = 2;
7911 }
7912
7913 bfd_set_section_alignment (stdoutput, sec, alignment);
7914 elf_section_type (sec) = SHT_NOTE;
7915
7916 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7917 + 4-byte data */
7918 isa_1_descsz_raw = 4 + 4 + 4;
7919 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7920 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7921
7922 feature_2_descsz_raw = isa_1_descsz;
7923 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7924 + 4-byte data */
7925 feature_2_descsz_raw += 4 + 4 + 4;
7926 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7927 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7928 & ~align_size_1);
7929
7930 descsz = feature_2_descsz;
7931 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7932 p = frag_more (4 + 4 + 4 + 4 + descsz);
7933
7934 /* Write n_namsz. */
7935 md_number_to_chars (p, (valueT) 4, 4);
7936
7937 /* Write n_descsz. */
7938 md_number_to_chars (p + 4, (valueT) descsz, 4);
7939
7940 /* Write n_type. */
7941 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7942
7943 /* Write n_name. */
7944 memcpy (p + 4 * 3, "GNU", 4);
7945
7946 /* Write 4-byte type. */
7947 md_number_to_chars (p + 4 * 4,
7948 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7949
7950 /* Write 4-byte data size. */
7951 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7952
7953 /* Write 4-byte data. */
7954 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7955
7956 /* Zero out paddings. */
7957 padding = isa_1_descsz - isa_1_descsz_raw;
7958 if (padding)
7959 memset (p + 4 * 7, 0, padding);
7960
7961 /* Write 4-byte type. */
7962 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7963 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7964
7965 /* Write 4-byte data size. */
7966 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7967
7968 /* Write 4-byte data. */
7969 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7970 (valueT) x86_feature_2_used, 4);
7971
7972 /* Zero out paddings. */
7973 padding = feature_2_descsz - feature_2_descsz_raw;
7974 if (padding)
7975 memset (p + isa_1_descsz + 4 * 7, 0, padding);
7976
7977 /* We probably can't restore the current segment, for there likely
7978 isn't one yet... */
7979 if (seg && subseg)
7980 subseg_set (seg, subseg);
7981}
7982#endif
7983
29b0f896 7984static void
e3bb37b5 7985output_insn (void)
29b0f896 7986{
2bbd9c25
JJ
7987 fragS *insn_start_frag;
7988 offsetT insn_start_off;
7989
b4a3a7b4
L
7990#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7991 if (IS_ELF && x86_used_note)
7992 {
7993 if (i.tm.cpu_flags.bitfield.cpucmov)
7994 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
7995 if (i.tm.cpu_flags.bitfield.cpusse)
7996 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
7997 if (i.tm.cpu_flags.bitfield.cpusse2)
7998 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
7999 if (i.tm.cpu_flags.bitfield.cpusse3)
8000 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8001 if (i.tm.cpu_flags.bitfield.cpussse3)
8002 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8003 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8004 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8005 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8006 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8007 if (i.tm.cpu_flags.bitfield.cpuavx)
8008 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8009 if (i.tm.cpu_flags.bitfield.cpuavx2)
8010 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8011 if (i.tm.cpu_flags.bitfield.cpufma)
8012 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8013 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8014 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8015 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8016 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8017 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8019 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8021 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8023 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8025 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8027 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8029 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8031 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8033 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8035 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8037 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8039 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8041
8042 if (i.tm.cpu_flags.bitfield.cpu8087
8043 || i.tm.cpu_flags.bitfield.cpu287
8044 || i.tm.cpu_flags.bitfield.cpu387
8045 || i.tm.cpu_flags.bitfield.cpu687
8046 || i.tm.cpu_flags.bitfield.cpufisttp)
8047 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8048 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8049 Xfence instructions. */
8050 if (i.tm.base_opcode != 0xf18
8051 && i.tm.base_opcode != 0xf0d
8052 && i.tm.base_opcode != 0xfae
8053 && (i.has_regmmx
8054 || i.tm.cpu_flags.bitfield.cpummx
8055 || i.tm.cpu_flags.bitfield.cpua3dnow
8056 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8057 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8058 if (i.has_regxmm)
8059 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8060 if (i.has_regymm)
8061 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8062 if (i.has_regzmm)
8063 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8064 if (i.tm.cpu_flags.bitfield.cpufxsr)
8065 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8066 if (i.tm.cpu_flags.bitfield.cpuxsave)
8067 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8068 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8069 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8070 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8071 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8072 }
8073#endif
8074
29b0f896
AM
8075 /* Tie dwarf2 debug info to the address at the start of the insn.
8076 We can't do this after the insn has been output as the current
8077 frag may have been closed off. eg. by frag_var. */
8078 dwarf2_emit_insn (0);
8079
2bbd9c25
JJ
8080 insn_start_frag = frag_now;
8081 insn_start_off = frag_now_fix ();
8082
29b0f896 8083 /* Output jumps. */
40fb9820 8084 if (i.tm.opcode_modifier.jump)
29b0f896 8085 output_branch ();
40fb9820
L
8086 else if (i.tm.opcode_modifier.jumpbyte
8087 || i.tm.opcode_modifier.jumpdword)
29b0f896 8088 output_jump ();
40fb9820 8089 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8090 output_interseg_jump ();
8091 else
8092 {
8093 /* Output normal instructions here. */
8094 char *p;
8095 unsigned char *q;
47465058 8096 unsigned int j;
331d2d0d 8097 unsigned int prefix;
4dffcebc 8098
e4e00185
AS
8099 if (avoid_fence
8100 && i.tm.base_opcode == 0xfae
8101 && i.operands == 1
8102 && i.imm_operands == 1
8103 && (i.op[0].imms->X_add_number == 0xe8
8104 || i.op[0].imms->X_add_number == 0xf0
8105 || i.op[0].imms->X_add_number == 0xf8))
8106 {
8107 /* Encode lfence, mfence, and sfence as
8108 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8109 offsetT val = 0x240483f0ULL;
8110 p = frag_more (5);
8111 md_number_to_chars (p, val, 5);
8112 return;
8113 }
8114
d022bddd
IT
8115 /* Some processors fail on LOCK prefix. This options makes
8116 assembler ignore LOCK prefix and serves as a workaround. */
8117 if (omit_lock_prefix)
8118 {
8119 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8120 return;
8121 i.prefix[LOCK_PREFIX] = 0;
8122 }
8123
43234a1e
L
8124 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8125 don't need the explicit prefix. */
8126 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8127 {
c0f3af97 8128 switch (i.tm.opcode_length)
bc4bd9ab 8129 {
c0f3af97
L
8130 case 3:
8131 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8132 {
c0f3af97 8133 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8134 add_prefix (prefix);
c0f3af97
L
8135 }
8136 break;
8137 case 2:
8138 if ((i.tm.base_opcode & 0xff0000) != 0)
8139 {
8140 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8141 if (!i.tm.cpu_flags.bitfield.cpupadlock
8142 || prefix != REPE_PREFIX_OPCODE
8143 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8144 add_prefix (prefix);
8145 }
c0f3af97
L
8146 break;
8147 case 1:
8148 break;
390c91cf
L
8149 case 0:
8150 /* Check for pseudo prefixes. */
8151 as_bad_where (insn_start_frag->fr_file,
8152 insn_start_frag->fr_line,
8153 _("pseudo prefix without instruction"));
8154 return;
c0f3af97
L
8155 default:
8156 abort ();
bc4bd9ab 8157 }
c0f3af97 8158
6d19a37a 8159#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8160 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8161 R_X86_64_GOTTPOFF relocation so that linker can safely
8162 perform IE->LE optimization. */
8163 if (x86_elf_abi == X86_64_X32_ABI
8164 && i.operands == 2
8165 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8166 && i.prefix[REX_PREFIX] == 0)
8167 add_prefix (REX_OPCODE);
6d19a37a 8168#endif
cf61b747 8169
c0f3af97
L
8170 /* The prefix bytes. */
8171 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8172 if (*q)
8173 FRAG_APPEND_1_CHAR (*q);
0f10071e 8174 }
ae5c1c7b 8175 else
c0f3af97
L
8176 {
8177 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8178 if (*q)
8179 switch (j)
8180 {
8181 case REX_PREFIX:
8182 /* REX byte is encoded in VEX prefix. */
8183 break;
8184 case SEG_PREFIX:
8185 case ADDR_PREFIX:
8186 FRAG_APPEND_1_CHAR (*q);
8187 break;
8188 default:
8189 /* There should be no other prefixes for instructions
8190 with VEX prefix. */
8191 abort ();
8192 }
8193
43234a1e
L
8194 /* For EVEX instructions i.vrex should become 0 after
8195 build_evex_prefix. For VEX instructions upper 16 registers
8196 aren't available, so VREX should be 0. */
8197 if (i.vrex)
8198 abort ();
c0f3af97
L
8199 /* Now the VEX prefix. */
8200 p = frag_more (i.vex.length);
8201 for (j = 0; j < i.vex.length; j++)
8202 p[j] = i.vex.bytes[j];
8203 }
252b5132 8204
29b0f896 8205 /* Now the opcode; be careful about word order here! */
4dffcebc 8206 if (i.tm.opcode_length == 1)
29b0f896
AM
8207 {
8208 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8209 }
8210 else
8211 {
4dffcebc 8212 switch (i.tm.opcode_length)
331d2d0d 8213 {
43234a1e
L
8214 case 4:
8215 p = frag_more (4);
8216 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8217 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8218 break;
4dffcebc 8219 case 3:
331d2d0d
L
8220 p = frag_more (3);
8221 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8222 break;
8223 case 2:
8224 p = frag_more (2);
8225 break;
8226 default:
8227 abort ();
8228 break;
331d2d0d 8229 }
0f10071e 8230
29b0f896
AM
8231 /* Put out high byte first: can't use md_number_to_chars! */
8232 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8233 *p = i.tm.base_opcode & 0xff;
8234 }
3e73aa7c 8235
29b0f896 8236 /* Now the modrm byte and sib byte (if present). */
40fb9820 8237 if (i.tm.opcode_modifier.modrm)
29b0f896 8238 {
4a3523fa
L
8239 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8240 | i.rm.reg << 3
8241 | i.rm.mode << 6));
29b0f896
AM
8242 /* If i.rm.regmem == ESP (4)
8243 && i.rm.mode != (Register mode)
8244 && not 16 bit
8245 ==> need second modrm byte. */
8246 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8247 && i.rm.mode != 3
dc821c5f 8248 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8249 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8250 | i.sib.index << 3
8251 | i.sib.scale << 6));
29b0f896 8252 }
3e73aa7c 8253
29b0f896 8254 if (i.disp_operands)
2bbd9c25 8255 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8256
29b0f896 8257 if (i.imm_operands)
2bbd9c25 8258 output_imm (insn_start_frag, insn_start_off);
29b0f896 8259 }
252b5132 8260
29b0f896
AM
8261#ifdef DEBUG386
8262 if (flag_debug)
8263 {
7b81dfbb 8264 pi ("" /*line*/, &i);
29b0f896
AM
8265 }
8266#endif /* DEBUG386 */
8267}
252b5132 8268
e205caa7
L
8269/* Return the size of the displacement operand N. */
8270
8271static int
8272disp_size (unsigned int n)
8273{
8274 int size = 4;
43234a1e 8275
b5014f7a 8276 if (i.types[n].bitfield.disp64)
40fb9820
L
8277 size = 8;
8278 else if (i.types[n].bitfield.disp8)
8279 size = 1;
8280 else if (i.types[n].bitfield.disp16)
8281 size = 2;
e205caa7
L
8282 return size;
8283}
8284
8285/* Return the size of the immediate operand N. */
8286
8287static int
8288imm_size (unsigned int n)
8289{
8290 int size = 4;
40fb9820
L
8291 if (i.types[n].bitfield.imm64)
8292 size = 8;
8293 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8294 size = 1;
8295 else if (i.types[n].bitfield.imm16)
8296 size = 2;
e205caa7
L
8297 return size;
8298}
8299
29b0f896 8300static void
64e74474 8301output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8302{
8303 char *p;
8304 unsigned int n;
252b5132 8305
29b0f896
AM
8306 for (n = 0; n < i.operands; n++)
8307 {
b5014f7a 8308 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8309 {
8310 if (i.op[n].disps->X_op == O_constant)
8311 {
e205caa7 8312 int size = disp_size (n);
43234a1e 8313 offsetT val = i.op[n].disps->X_add_number;
252b5132 8314
629cfaf1
JB
8315 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8316 size);
29b0f896
AM
8317 p = frag_more (size);
8318 md_number_to_chars (p, val, size);
8319 }
8320 else
8321 {
f86103b7 8322 enum bfd_reloc_code_real reloc_type;
e205caa7 8323 int size = disp_size (n);
40fb9820 8324 int sign = i.types[n].bitfield.disp32s;
29b0f896 8325 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8326 fixS *fixP;
29b0f896 8327
e205caa7 8328 /* We can't have 8 bit displacement here. */
9c2799c2 8329 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8330
29b0f896
AM
8331 /* The PC relative address is computed relative
8332 to the instruction boundary, so in case immediate
8333 fields follows, we need to adjust the value. */
8334 if (pcrel && i.imm_operands)
8335 {
29b0f896 8336 unsigned int n1;
e205caa7 8337 int sz = 0;
252b5132 8338
29b0f896 8339 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8340 if (operand_type_check (i.types[n1], imm))
252b5132 8341 {
e205caa7
L
8342 /* Only one immediate is allowed for PC
8343 relative address. */
9c2799c2 8344 gas_assert (sz == 0);
e205caa7
L
8345 sz = imm_size (n1);
8346 i.op[n].disps->X_add_number -= sz;
252b5132 8347 }
29b0f896 8348 /* We should find the immediate. */
9c2799c2 8349 gas_assert (sz != 0);
29b0f896 8350 }
520dc8e8 8351
29b0f896 8352 p = frag_more (size);
d258b828 8353 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8354 if (GOT_symbol
2bbd9c25 8355 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8356 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8357 || reloc_type == BFD_RELOC_X86_64_32S
8358 || (reloc_type == BFD_RELOC_64
8359 && object_64bit))
d6ab8113
JB
8360 && (i.op[n].disps->X_op == O_symbol
8361 || (i.op[n].disps->X_op == O_add
8362 && ((symbol_get_value_expression
8363 (i.op[n].disps->X_op_symbol)->X_op)
8364 == O_subtract))))
8365 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8366 {
8367 offsetT add;
8368
8369 if (insn_start_frag == frag_now)
8370 add = (p - frag_now->fr_literal) - insn_start_off;
8371 else
8372 {
8373 fragS *fr;
8374
8375 add = insn_start_frag->fr_fix - insn_start_off;
8376 for (fr = insn_start_frag->fr_next;
8377 fr && fr != frag_now; fr = fr->fr_next)
8378 add += fr->fr_fix;
8379 add += p - frag_now->fr_literal;
8380 }
8381
4fa24527 8382 if (!object_64bit)
7b81dfbb
AJ
8383 {
8384 reloc_type = BFD_RELOC_386_GOTPC;
8385 i.op[n].imms->X_add_number += add;
8386 }
8387 else if (reloc_type == BFD_RELOC_64)
8388 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8389 else
7b81dfbb
AJ
8390 /* Don't do the adjustment for x86-64, as there
8391 the pcrel addressing is relative to the _next_
8392 insn, and that is taken care of in other code. */
d6ab8113 8393 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8394 }
02a86693
L
8395 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8396 size, i.op[n].disps, pcrel,
8397 reloc_type);
8398 /* Check for "call/jmp *mem", "mov mem, %reg",
8399 "test %reg, mem" and "binop mem, %reg" where binop
8400 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
8401 instructions. Always generate R_386_GOT32X for
8402 "sym*GOT" operand in 32-bit mode. */
8403 if ((generate_relax_relocations
8404 || (!object_64bit
8405 && i.rm.mode == 0
8406 && i.rm.regmem == 5))
8407 && (i.rm.mode == 2
8408 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8409 && ((i.operands == 1
8410 && i.tm.base_opcode == 0xff
8411 && (i.rm.reg == 2 || i.rm.reg == 4))
8412 || (i.operands == 2
8413 && (i.tm.base_opcode == 0x8b
8414 || i.tm.base_opcode == 0x85
8415 || (i.tm.base_opcode & 0xc7) == 0x03))))
8416 {
8417 if (object_64bit)
8418 {
8419 fixP->fx_tcbit = i.rex != 0;
8420 if (i.base_reg
e968fc9b 8421 && (i.base_reg->reg_num == RegIP))
02a86693
L
8422 fixP->fx_tcbit2 = 1;
8423 }
8424 else
8425 fixP->fx_tcbit2 = 1;
8426 }
29b0f896
AM
8427 }
8428 }
8429 }
8430}
252b5132 8431
29b0f896 8432static void
64e74474 8433output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8434{
8435 char *p;
8436 unsigned int n;
252b5132 8437
29b0f896
AM
8438 for (n = 0; n < i.operands; n++)
8439 {
43234a1e
L
8440 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8441 if (i.rounding && (int) n == i.rounding->operand)
8442 continue;
8443
40fb9820 8444 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8445 {
8446 if (i.op[n].imms->X_op == O_constant)
8447 {
e205caa7 8448 int size = imm_size (n);
29b0f896 8449 offsetT val;
b4cac588 8450
29b0f896
AM
8451 val = offset_in_range (i.op[n].imms->X_add_number,
8452 size);
8453 p = frag_more (size);
8454 md_number_to_chars (p, val, size);
8455 }
8456 else
8457 {
8458 /* Not absolute_section.
8459 Need a 32-bit fixup (don't support 8bit
8460 non-absolute imms). Try to support other
8461 sizes ... */
f86103b7 8462 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8463 int size = imm_size (n);
8464 int sign;
29b0f896 8465
40fb9820 8466 if (i.types[n].bitfield.imm32s
a7d61044 8467 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8468 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8469 sign = 1;
e205caa7
L
8470 else
8471 sign = 0;
520dc8e8 8472
29b0f896 8473 p = frag_more (size);
d258b828 8474 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8475
2bbd9c25
JJ
8476 /* This is tough to explain. We end up with this one if we
8477 * have operands that look like
8478 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8479 * obtain the absolute address of the GOT, and it is strongly
8480 * preferable from a performance point of view to avoid using
8481 * a runtime relocation for this. The actual sequence of
8482 * instructions often look something like:
8483 *
8484 * call .L66
8485 * .L66:
8486 * popl %ebx
8487 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8488 *
8489 * The call and pop essentially return the absolute address
8490 * of the label .L66 and store it in %ebx. The linker itself
8491 * will ultimately change the first operand of the addl so
8492 * that %ebx points to the GOT, but to keep things simple, the
8493 * .o file must have this operand set so that it generates not
8494 * the absolute address of .L66, but the absolute address of
8495 * itself. This allows the linker itself simply treat a GOTPC
8496 * relocation as asking for a pcrel offset to the GOT to be
8497 * added in, and the addend of the relocation is stored in the
8498 * operand field for the instruction itself.
8499 *
8500 * Our job here is to fix the operand so that it would add
8501 * the correct offset so that %ebx would point to itself. The
8502 * thing that is tricky is that .-.L66 will point to the
8503 * beginning of the instruction, so we need to further modify
8504 * the operand so that it will point to itself. There are
8505 * other cases where you have something like:
8506 *
8507 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8508 *
8509 * and here no correction would be required. Internally in
8510 * the assembler we treat operands of this form as not being
8511 * pcrel since the '.' is explicitly mentioned, and I wonder
8512 * whether it would simplify matters to do it this way. Who
8513 * knows. In earlier versions of the PIC patches, the
8514 * pcrel_adjust field was used to store the correction, but
8515 * since the expression is not pcrel, I felt it would be
8516 * confusing to do it this way. */
8517
d6ab8113 8518 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8519 || reloc_type == BFD_RELOC_X86_64_32S
8520 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8521 && GOT_symbol
8522 && GOT_symbol == i.op[n].imms->X_add_symbol
8523 && (i.op[n].imms->X_op == O_symbol
8524 || (i.op[n].imms->X_op == O_add
8525 && ((symbol_get_value_expression
8526 (i.op[n].imms->X_op_symbol)->X_op)
8527 == O_subtract))))
8528 {
2bbd9c25
JJ
8529 offsetT add;
8530
8531 if (insn_start_frag == frag_now)
8532 add = (p - frag_now->fr_literal) - insn_start_off;
8533 else
8534 {
8535 fragS *fr;
8536
8537 add = insn_start_frag->fr_fix - insn_start_off;
8538 for (fr = insn_start_frag->fr_next;
8539 fr && fr != frag_now; fr = fr->fr_next)
8540 add += fr->fr_fix;
8541 add += p - frag_now->fr_literal;
8542 }
8543
4fa24527 8544 if (!object_64bit)
d6ab8113 8545 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8546 else if (size == 4)
d6ab8113 8547 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8548 else if (size == 8)
8549 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8550 i.op[n].imms->X_add_number += add;
29b0f896 8551 }
29b0f896
AM
8552 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8553 i.op[n].imms, 0, reloc_type);
8554 }
8555 }
8556 }
252b5132
RH
8557}
8558\f
d182319b
JB
8559/* x86_cons_fix_new is called via the expression parsing code when a
8560 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8561static int cons_sign = -1;
8562
8563void
e3bb37b5 8564x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8565 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8566{
d258b828 8567 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8568
8569#ifdef TE_PE
8570 if (exp->X_op == O_secrel)
8571 {
8572 exp->X_op = O_symbol;
8573 r = BFD_RELOC_32_SECREL;
8574 }
8575#endif
8576
8577 fix_new_exp (frag, off, len, exp, 0, r);
8578}
8579
357d1bd8
L
8580/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8581 purpose of the `.dc.a' internal pseudo-op. */
8582
8583int
8584x86_address_bytes (void)
8585{
8586 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8587 return 4;
8588 return stdoutput->arch_info->bits_per_address / 8;
8589}
8590
d382c579
TG
8591#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8592 || defined (LEX_AT)
d258b828 8593# define lex_got(reloc, adjust, types) NULL
718ddfc0 8594#else
f3c180ae
AM
8595/* Parse operands of the form
8596 <symbol>@GOTOFF+<nnn>
8597 and similar .plt or .got references.
8598
8599 If we find one, set up the correct relocation in RELOC and copy the
8600 input string, minus the `@GOTOFF' into a malloc'd buffer for
8601 parsing by the calling routine. Return this buffer, and if ADJUST
8602 is non-null set it to the length of the string we removed from the
8603 input line. Otherwise return NULL. */
8604static char *
91d6fa6a 8605lex_got (enum bfd_reloc_code_real *rel,
64e74474 8606 int *adjust,
d258b828 8607 i386_operand_type *types)
f3c180ae 8608{
7b81dfbb
AJ
8609 /* Some of the relocations depend on the size of what field is to
8610 be relocated. But in our callers i386_immediate and i386_displacement
8611 we don't yet know the operand size (this will be set by insn
8612 matching). Hence we record the word32 relocation here,
8613 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8614 static const struct {
8615 const char *str;
cff8d58a 8616 int len;
4fa24527 8617 const enum bfd_reloc_code_real rel[2];
40fb9820 8618 const i386_operand_type types64;
f3c180ae 8619 } gotrel[] = {
8ce3d284 8620#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8621 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8622 BFD_RELOC_SIZE32 },
8623 OPERAND_TYPE_IMM32_64 },
8ce3d284 8624#endif
cff8d58a
L
8625 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8626 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8627 OPERAND_TYPE_IMM64 },
cff8d58a
L
8628 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8629 BFD_RELOC_X86_64_PLT32 },
40fb9820 8630 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8631 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8632 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8633 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8634 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8635 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8636 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8637 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8638 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8639 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8640 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8641 BFD_RELOC_X86_64_TLSGD },
40fb9820 8642 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8643 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8644 _dummy_first_bfd_reloc_code_real },
40fb9820 8645 OPERAND_TYPE_NONE },
cff8d58a
L
8646 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8647 BFD_RELOC_X86_64_TLSLD },
40fb9820 8648 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8649 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8650 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8651 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8652 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8653 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8654 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8655 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8656 _dummy_first_bfd_reloc_code_real },
40fb9820 8657 OPERAND_TYPE_NONE },
cff8d58a
L
8658 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8659 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8660 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8661 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8662 _dummy_first_bfd_reloc_code_real },
40fb9820 8663 OPERAND_TYPE_NONE },
cff8d58a
L
8664 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8665 _dummy_first_bfd_reloc_code_real },
40fb9820 8666 OPERAND_TYPE_NONE },
cff8d58a
L
8667 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8668 BFD_RELOC_X86_64_GOT32 },
40fb9820 8669 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8670 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8671 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8672 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8673 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8674 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8675 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8676 };
8677 char *cp;
8678 unsigned int j;
8679
d382c579 8680#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8681 if (!IS_ELF)
8682 return NULL;
d382c579 8683#endif
718ddfc0 8684
f3c180ae 8685 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8686 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8687 return NULL;
8688
47465058 8689 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8690 {
cff8d58a 8691 int len = gotrel[j].len;
28f81592 8692 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8693 {
4fa24527 8694 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8695 {
28f81592
AM
8696 int first, second;
8697 char *tmpbuf, *past_reloc;
f3c180ae 8698
91d6fa6a 8699 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8700
3956db08
JB
8701 if (types)
8702 {
8703 if (flag_code != CODE_64BIT)
40fb9820
L
8704 {
8705 types->bitfield.imm32 = 1;
8706 types->bitfield.disp32 = 1;
8707 }
3956db08
JB
8708 else
8709 *types = gotrel[j].types64;
8710 }
8711
8fd4256d 8712 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8713 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8714
28f81592 8715 /* The length of the first part of our input line. */
f3c180ae 8716 first = cp - input_line_pointer;
28f81592
AM
8717
8718 /* The second part goes from after the reloc token until
67c11a9b 8719 (and including) an end_of_line char or comma. */
28f81592 8720 past_reloc = cp + 1 + len;
67c11a9b
AM
8721 cp = past_reloc;
8722 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8723 ++cp;
8724 second = cp + 1 - past_reloc;
28f81592
AM
8725
8726 /* Allocate and copy string. The trailing NUL shouldn't
8727 be necessary, but be safe. */
add39d23 8728 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8729 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8730 if (second != 0 && *past_reloc != ' ')
8731 /* Replace the relocation token with ' ', so that
8732 errors like foo@GOTOFF1 will be detected. */
8733 tmpbuf[first++] = ' ';
af89796a
L
8734 else
8735 /* Increment length by 1 if the relocation token is
8736 removed. */
8737 len++;
8738 if (adjust)
8739 *adjust = len;
0787a12d
AM
8740 memcpy (tmpbuf + first, past_reloc, second);
8741 tmpbuf[first + second] = '\0';
f3c180ae
AM
8742 return tmpbuf;
8743 }
8744
4fa24527
JB
8745 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8746 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8747 return NULL;
8748 }
8749 }
8750
8751 /* Might be a symbol version string. Don't as_bad here. */
8752 return NULL;
8753}
4e4f7c87 8754#endif
f3c180ae 8755
a988325c
NC
8756#ifdef TE_PE
8757#ifdef lex_got
8758#undef lex_got
8759#endif
8760/* Parse operands of the form
8761 <symbol>@SECREL32+<nnn>
8762
8763 If we find one, set up the correct relocation in RELOC and copy the
8764 input string, minus the `@SECREL32' into a malloc'd buffer for
8765 parsing by the calling routine. Return this buffer, and if ADJUST
8766 is non-null set it to the length of the string we removed from the
34bca508
L
8767 input line. Otherwise return NULL.
8768
a988325c
NC
8769 This function is copied from the ELF version above adjusted for PE targets. */
8770
8771static char *
8772lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8773 int *adjust ATTRIBUTE_UNUSED,
d258b828 8774 i386_operand_type *types)
a988325c
NC
8775{
8776 static const struct
8777 {
8778 const char *str;
8779 int len;
8780 const enum bfd_reloc_code_real rel[2];
8781 const i386_operand_type types64;
8782 }
8783 gotrel[] =
8784 {
8785 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8786 BFD_RELOC_32_SECREL },
8787 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8788 };
8789
8790 char *cp;
8791 unsigned j;
8792
8793 for (cp = input_line_pointer; *cp != '@'; cp++)
8794 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8795 return NULL;
8796
8797 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8798 {
8799 int len = gotrel[j].len;
8800
8801 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8802 {
8803 if (gotrel[j].rel[object_64bit] != 0)
8804 {
8805 int first, second;
8806 char *tmpbuf, *past_reloc;
8807
8808 *rel = gotrel[j].rel[object_64bit];
8809 if (adjust)
8810 *adjust = len;
8811
8812 if (types)
8813 {
8814 if (flag_code != CODE_64BIT)
8815 {
8816 types->bitfield.imm32 = 1;
8817 types->bitfield.disp32 = 1;
8818 }
8819 else
8820 *types = gotrel[j].types64;
8821 }
8822
8823 /* The length of the first part of our input line. */
8824 first = cp - input_line_pointer;
8825
8826 /* The second part goes from after the reloc token until
8827 (and including) an end_of_line char or comma. */
8828 past_reloc = cp + 1 + len;
8829 cp = past_reloc;
8830 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8831 ++cp;
8832 second = cp + 1 - past_reloc;
8833
8834 /* Allocate and copy string. The trailing NUL shouldn't
8835 be necessary, but be safe. */
add39d23 8836 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8837 memcpy (tmpbuf, input_line_pointer, first);
8838 if (second != 0 && *past_reloc != ' ')
8839 /* Replace the relocation token with ' ', so that
8840 errors like foo@SECLREL321 will be detected. */
8841 tmpbuf[first++] = ' ';
8842 memcpy (tmpbuf + first, past_reloc, second);
8843 tmpbuf[first + second] = '\0';
8844 return tmpbuf;
8845 }
8846
8847 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8848 gotrel[j].str, 1 << (5 + object_64bit));
8849 return NULL;
8850 }
8851 }
8852
8853 /* Might be a symbol version string. Don't as_bad here. */
8854 return NULL;
8855}
8856
8857#endif /* TE_PE */
8858
62ebcb5c 8859bfd_reloc_code_real_type
e3bb37b5 8860x86_cons (expressionS *exp, int size)
f3c180ae 8861{
62ebcb5c
AM
8862 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8863
ee86248c
JB
8864 intel_syntax = -intel_syntax;
8865
3c7b9c2c 8866 exp->X_md = 0;
4fa24527 8867 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8868 {
8869 /* Handle @GOTOFF and the like in an expression. */
8870 char *save;
8871 char *gotfree_input_line;
4a57f2cf 8872 int adjust = 0;
f3c180ae
AM
8873
8874 save = input_line_pointer;
d258b828 8875 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8876 if (gotfree_input_line)
8877 input_line_pointer = gotfree_input_line;
8878
8879 expression (exp);
8880
8881 if (gotfree_input_line)
8882 {
8883 /* expression () has merrily parsed up to the end of line,
8884 or a comma - in the wrong buffer. Transfer how far
8885 input_line_pointer has moved to the right buffer. */
8886 input_line_pointer = (save
8887 + (input_line_pointer - gotfree_input_line)
8888 + adjust);
8889 free (gotfree_input_line);
3992d3b7
AM
8890 if (exp->X_op == O_constant
8891 || exp->X_op == O_absent
8892 || exp->X_op == O_illegal
0398aac5 8893 || exp->X_op == O_register
3992d3b7
AM
8894 || exp->X_op == O_big)
8895 {
8896 char c = *input_line_pointer;
8897 *input_line_pointer = 0;
8898 as_bad (_("missing or invalid expression `%s'"), save);
8899 *input_line_pointer = c;
8900 }
f3c180ae
AM
8901 }
8902 }
8903 else
8904 expression (exp);
ee86248c
JB
8905
8906 intel_syntax = -intel_syntax;
8907
8908 if (intel_syntax)
8909 i386_intel_simplify (exp);
62ebcb5c
AM
8910
8911 return got_reloc;
f3c180ae 8912}
f3c180ae 8913
9f32dd5b
L
8914static void
8915signed_cons (int size)
6482c264 8916{
d182319b
JB
8917 if (flag_code == CODE_64BIT)
8918 cons_sign = 1;
8919 cons (size);
8920 cons_sign = -1;
6482c264
NC
8921}
8922
d182319b 8923#ifdef TE_PE
6482c264 8924static void
7016a5d5 8925pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8926{
8927 expressionS exp;
8928
8929 do
8930 {
8931 expression (&exp);
8932 if (exp.X_op == O_symbol)
8933 exp.X_op = O_secrel;
8934
8935 emit_expr (&exp, 4);
8936 }
8937 while (*input_line_pointer++ == ',');
8938
8939 input_line_pointer--;
8940 demand_empty_rest_of_line ();
8941}
6482c264
NC
8942#endif
8943
43234a1e
L
8944/* Handle Vector operations. */
8945
8946static char *
8947check_VecOperations (char *op_string, char *op_end)
8948{
8949 const reg_entry *mask;
8950 const char *saved;
8951 char *end_op;
8952
8953 while (*op_string
8954 && (op_end == NULL || op_string < op_end))
8955 {
8956 saved = op_string;
8957 if (*op_string == '{')
8958 {
8959 op_string++;
8960
8961 /* Check broadcasts. */
8962 if (strncmp (op_string, "1to", 3) == 0)
8963 {
8964 int bcst_type;
8965
8966 if (i.broadcast)
8967 goto duplicated_vec_op;
8968
8969 op_string += 3;
8970 if (*op_string == '8')
8e6e0792 8971 bcst_type = 8;
b28d1bda 8972 else if (*op_string == '4')
8e6e0792 8973 bcst_type = 4;
b28d1bda 8974 else if (*op_string == '2')
8e6e0792 8975 bcst_type = 2;
43234a1e
L
8976 else if (*op_string == '1'
8977 && *(op_string+1) == '6')
8978 {
8e6e0792 8979 bcst_type = 16;
43234a1e
L
8980 op_string++;
8981 }
8982 else
8983 {
8984 as_bad (_("Unsupported broadcast: `%s'"), saved);
8985 return NULL;
8986 }
8987 op_string++;
8988
8989 broadcast_op.type = bcst_type;
8990 broadcast_op.operand = this_operand;
1f75763a 8991 broadcast_op.bytes = 0;
43234a1e
L
8992 i.broadcast = &broadcast_op;
8993 }
8994 /* Check masking operation. */
8995 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8996 {
8997 /* k0 can't be used for write mask. */
6d2cd6b2 8998 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8999 {
6d2cd6b2
JB
9000 as_bad (_("`%s%s' can't be used for write mask"),
9001 register_prefix, mask->reg_name);
43234a1e
L
9002 return NULL;
9003 }
9004
9005 if (!i.mask)
9006 {
9007 mask_op.mask = mask;
9008 mask_op.zeroing = 0;
9009 mask_op.operand = this_operand;
9010 i.mask = &mask_op;
9011 }
9012 else
9013 {
9014 if (i.mask->mask)
9015 goto duplicated_vec_op;
9016
9017 i.mask->mask = mask;
9018
9019 /* Only "{z}" is allowed here. No need to check
9020 zeroing mask explicitly. */
9021 if (i.mask->operand != this_operand)
9022 {
9023 as_bad (_("invalid write mask `%s'"), saved);
9024 return NULL;
9025 }
9026 }
9027
9028 op_string = end_op;
9029 }
9030 /* Check zeroing-flag for masking operation. */
9031 else if (*op_string == 'z')
9032 {
9033 if (!i.mask)
9034 {
9035 mask_op.mask = NULL;
9036 mask_op.zeroing = 1;
9037 mask_op.operand = this_operand;
9038 i.mask = &mask_op;
9039 }
9040 else
9041 {
9042 if (i.mask->zeroing)
9043 {
9044 duplicated_vec_op:
9045 as_bad (_("duplicated `%s'"), saved);
9046 return NULL;
9047 }
9048
9049 i.mask->zeroing = 1;
9050
9051 /* Only "{%k}" is allowed here. No need to check mask
9052 register explicitly. */
9053 if (i.mask->operand != this_operand)
9054 {
9055 as_bad (_("invalid zeroing-masking `%s'"),
9056 saved);
9057 return NULL;
9058 }
9059 }
9060
9061 op_string++;
9062 }
9063 else
9064 goto unknown_vec_op;
9065
9066 if (*op_string != '}')
9067 {
9068 as_bad (_("missing `}' in `%s'"), saved);
9069 return NULL;
9070 }
9071 op_string++;
0ba3a731
L
9072
9073 /* Strip whitespace since the addition of pseudo prefixes
9074 changed how the scrubber treats '{'. */
9075 if (is_space_char (*op_string))
9076 ++op_string;
9077
43234a1e
L
9078 continue;
9079 }
9080 unknown_vec_op:
9081 /* We don't know this one. */
9082 as_bad (_("unknown vector operation: `%s'"), saved);
9083 return NULL;
9084 }
9085
6d2cd6b2
JB
9086 if (i.mask && i.mask->zeroing && !i.mask->mask)
9087 {
9088 as_bad (_("zeroing-masking only allowed with write mask"));
9089 return NULL;
9090 }
9091
43234a1e
L
9092 return op_string;
9093}
9094
252b5132 9095static int
70e41ade 9096i386_immediate (char *imm_start)
252b5132
RH
9097{
9098 char *save_input_line_pointer;
f3c180ae 9099 char *gotfree_input_line;
252b5132 9100 segT exp_seg = 0;
47926f60 9101 expressionS *exp;
40fb9820
L
9102 i386_operand_type types;
9103
0dfbf9d7 9104 operand_type_set (&types, ~0);
252b5132
RH
9105
9106 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9107 {
31b2323c
L
9108 as_bad (_("at most %d immediate operands are allowed"),
9109 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9110 return 0;
9111 }
9112
9113 exp = &im_expressions[i.imm_operands++];
520dc8e8 9114 i.op[this_operand].imms = exp;
252b5132
RH
9115
9116 if (is_space_char (*imm_start))
9117 ++imm_start;
9118
9119 save_input_line_pointer = input_line_pointer;
9120 input_line_pointer = imm_start;
9121
d258b828 9122 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9123 if (gotfree_input_line)
9124 input_line_pointer = gotfree_input_line;
252b5132
RH
9125
9126 exp_seg = expression (exp);
9127
83183c0c 9128 SKIP_WHITESPACE ();
43234a1e
L
9129
9130 /* Handle vector operations. */
9131 if (*input_line_pointer == '{')
9132 {
9133 input_line_pointer = check_VecOperations (input_line_pointer,
9134 NULL);
9135 if (input_line_pointer == NULL)
9136 return 0;
9137 }
9138
252b5132 9139 if (*input_line_pointer)
f3c180ae 9140 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9141
9142 input_line_pointer = save_input_line_pointer;
f3c180ae 9143 if (gotfree_input_line)
ee86248c
JB
9144 {
9145 free (gotfree_input_line);
9146
9147 if (exp->X_op == O_constant || exp->X_op == O_register)
9148 exp->X_op = O_illegal;
9149 }
9150
9151 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9152}
252b5132 9153
ee86248c
JB
9154static int
9155i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9156 i386_operand_type types, const char *imm_start)
9157{
9158 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9159 {
313c53d1
L
9160 if (imm_start)
9161 as_bad (_("missing or invalid immediate expression `%s'"),
9162 imm_start);
3992d3b7 9163 return 0;
252b5132 9164 }
3e73aa7c 9165 else if (exp->X_op == O_constant)
252b5132 9166 {
47926f60 9167 /* Size it properly later. */
40fb9820 9168 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9169 /* If not 64bit, sign extend val. */
9170 if (flag_code != CODE_64BIT
4eed87de
AM
9171 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9172 exp->X_add_number
9173 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9174 }
4c63da97 9175#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9176 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9177 && exp_seg != absolute_section
47926f60 9178 && exp_seg != text_section
24eab124
AM
9179 && exp_seg != data_section
9180 && exp_seg != bss_section
9181 && exp_seg != undefined_section
f86103b7 9182 && !bfd_is_com_section (exp_seg))
252b5132 9183 {
d0b47220 9184 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9185 return 0;
9186 }
9187#endif
a841bdf5 9188 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9189 {
313c53d1
L
9190 if (imm_start)
9191 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9192 return 0;
9193 }
252b5132
RH
9194 else
9195 {
9196 /* This is an address. The size of the address will be
24eab124 9197 determined later, depending on destination register,
3e73aa7c 9198 suffix, or the default for the section. */
40fb9820
L
9199 i.types[this_operand].bitfield.imm8 = 1;
9200 i.types[this_operand].bitfield.imm16 = 1;
9201 i.types[this_operand].bitfield.imm32 = 1;
9202 i.types[this_operand].bitfield.imm32s = 1;
9203 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9204 i.types[this_operand] = operand_type_and (i.types[this_operand],
9205 types);
252b5132
RH
9206 }
9207
9208 return 1;
9209}
9210
551c1ca1 9211static char *
e3bb37b5 9212i386_scale (char *scale)
252b5132 9213{
551c1ca1
AM
9214 offsetT val;
9215 char *save = input_line_pointer;
252b5132 9216
551c1ca1
AM
9217 input_line_pointer = scale;
9218 val = get_absolute_expression ();
9219
9220 switch (val)
252b5132 9221 {
551c1ca1 9222 case 1:
252b5132
RH
9223 i.log2_scale_factor = 0;
9224 break;
551c1ca1 9225 case 2:
252b5132
RH
9226 i.log2_scale_factor = 1;
9227 break;
551c1ca1 9228 case 4:
252b5132
RH
9229 i.log2_scale_factor = 2;
9230 break;
551c1ca1 9231 case 8:
252b5132
RH
9232 i.log2_scale_factor = 3;
9233 break;
9234 default:
a724f0f4
JB
9235 {
9236 char sep = *input_line_pointer;
9237
9238 *input_line_pointer = '\0';
9239 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9240 scale);
9241 *input_line_pointer = sep;
9242 input_line_pointer = save;
9243 return NULL;
9244 }
252b5132 9245 }
29b0f896 9246 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9247 {
9248 as_warn (_("scale factor of %d without an index register"),
24eab124 9249 1 << i.log2_scale_factor);
252b5132 9250 i.log2_scale_factor = 0;
252b5132 9251 }
551c1ca1
AM
9252 scale = input_line_pointer;
9253 input_line_pointer = save;
9254 return scale;
252b5132
RH
9255}
9256
252b5132 9257static int
e3bb37b5 9258i386_displacement (char *disp_start, char *disp_end)
252b5132 9259{
29b0f896 9260 expressionS *exp;
252b5132
RH
9261 segT exp_seg = 0;
9262 char *save_input_line_pointer;
f3c180ae 9263 char *gotfree_input_line;
40fb9820
L
9264 int override;
9265 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9266 int ret;
252b5132 9267
31b2323c
L
9268 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9269 {
9270 as_bad (_("at most %d displacement operands are allowed"),
9271 MAX_MEMORY_OPERANDS);
9272 return 0;
9273 }
9274
0dfbf9d7 9275 operand_type_set (&bigdisp, 0);
40fb9820
L
9276 if ((i.types[this_operand].bitfield.jumpabsolute)
9277 || (!current_templates->start->opcode_modifier.jump
9278 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9279 {
40fb9820 9280 bigdisp.bitfield.disp32 = 1;
e05278af 9281 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9282 if (flag_code == CODE_64BIT)
9283 {
9284 if (!override)
9285 {
9286 bigdisp.bitfield.disp32s = 1;
9287 bigdisp.bitfield.disp64 = 1;
9288 }
9289 }
9290 else if ((flag_code == CODE_16BIT) ^ override)
9291 {
9292 bigdisp.bitfield.disp32 = 0;
9293 bigdisp.bitfield.disp16 = 1;
9294 }
e05278af
JB
9295 }
9296 else
9297 {
9298 /* For PC-relative branches, the width of the displacement
9299 is dependent upon data size, not address size. */
e05278af 9300 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9301 if (flag_code == CODE_64BIT)
9302 {
9303 if (override || i.suffix == WORD_MNEM_SUFFIX)
9304 bigdisp.bitfield.disp16 = 1;
9305 else
9306 {
9307 bigdisp.bitfield.disp32 = 1;
9308 bigdisp.bitfield.disp32s = 1;
9309 }
9310 }
9311 else
e05278af
JB
9312 {
9313 if (!override)
9314 override = (i.suffix == (flag_code != CODE_16BIT
9315 ? WORD_MNEM_SUFFIX
9316 : LONG_MNEM_SUFFIX));
40fb9820
L
9317 bigdisp.bitfield.disp32 = 1;
9318 if ((flag_code == CODE_16BIT) ^ override)
9319 {
9320 bigdisp.bitfield.disp32 = 0;
9321 bigdisp.bitfield.disp16 = 1;
9322 }
e05278af 9323 }
e05278af 9324 }
c6fb90c8
L
9325 i.types[this_operand] = operand_type_or (i.types[this_operand],
9326 bigdisp);
252b5132
RH
9327
9328 exp = &disp_expressions[i.disp_operands];
520dc8e8 9329 i.op[this_operand].disps = exp;
252b5132
RH
9330 i.disp_operands++;
9331 save_input_line_pointer = input_line_pointer;
9332 input_line_pointer = disp_start;
9333 END_STRING_AND_SAVE (disp_end);
9334
9335#ifndef GCC_ASM_O_HACK
9336#define GCC_ASM_O_HACK 0
9337#endif
9338#if GCC_ASM_O_HACK
9339 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9340 if (i.types[this_operand].bitfield.baseIndex
24eab124 9341 && displacement_string_end[-1] == '+')
252b5132
RH
9342 {
9343 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9344 constraint within gcc asm statements.
9345 For instance:
9346
9347 #define _set_tssldt_desc(n,addr,limit,type) \
9348 __asm__ __volatile__ ( \
9349 "movw %w2,%0\n\t" \
9350 "movw %w1,2+%0\n\t" \
9351 "rorl $16,%1\n\t" \
9352 "movb %b1,4+%0\n\t" \
9353 "movb %4,5+%0\n\t" \
9354 "movb $0,6+%0\n\t" \
9355 "movb %h1,7+%0\n\t" \
9356 "rorl $16,%1" \
9357 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9358
9359 This works great except that the output assembler ends
9360 up looking a bit weird if it turns out that there is
9361 no offset. You end up producing code that looks like:
9362
9363 #APP
9364 movw $235,(%eax)
9365 movw %dx,2+(%eax)
9366 rorl $16,%edx
9367 movb %dl,4+(%eax)
9368 movb $137,5+(%eax)
9369 movb $0,6+(%eax)
9370 movb %dh,7+(%eax)
9371 rorl $16,%edx
9372 #NO_APP
9373
47926f60 9374 So here we provide the missing zero. */
24eab124
AM
9375
9376 *displacement_string_end = '0';
252b5132
RH
9377 }
9378#endif
d258b828 9379 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9380 if (gotfree_input_line)
9381 input_line_pointer = gotfree_input_line;
252b5132 9382
24eab124 9383 exp_seg = expression (exp);
252b5132 9384
636c26b0
AM
9385 SKIP_WHITESPACE ();
9386 if (*input_line_pointer)
9387 as_bad (_("junk `%s' after expression"), input_line_pointer);
9388#if GCC_ASM_O_HACK
9389 RESTORE_END_STRING (disp_end + 1);
9390#endif
636c26b0 9391 input_line_pointer = save_input_line_pointer;
636c26b0 9392 if (gotfree_input_line)
ee86248c
JB
9393 {
9394 free (gotfree_input_line);
9395
9396 if (exp->X_op == O_constant || exp->X_op == O_register)
9397 exp->X_op = O_illegal;
9398 }
9399
9400 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9401
9402 RESTORE_END_STRING (disp_end);
9403
9404 return ret;
9405}
9406
9407static int
9408i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9409 i386_operand_type types, const char *disp_start)
9410{
9411 i386_operand_type bigdisp;
9412 int ret = 1;
636c26b0 9413
24eab124
AM
9414 /* We do this to make sure that the section symbol is in
9415 the symbol table. We will ultimately change the relocation
47926f60 9416 to be relative to the beginning of the section. */
1ae12ab7 9417 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9418 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9419 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9420 {
636c26b0 9421 if (exp->X_op != O_symbol)
3992d3b7 9422 goto inv_disp;
636c26b0 9423
e5cb08ac 9424 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9425 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9426 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9427 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9428 exp->X_op = O_subtract;
9429 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9430 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9431 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9432 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9433 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9434 else
29b0f896 9435 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9436 }
252b5132 9437
3992d3b7
AM
9438 else if (exp->X_op == O_absent
9439 || exp->X_op == O_illegal
ee86248c 9440 || exp->X_op == O_big)
2daf4fd8 9441 {
3992d3b7
AM
9442 inv_disp:
9443 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9444 disp_start);
3992d3b7 9445 ret = 0;
2daf4fd8
AM
9446 }
9447
0e1147d9
L
9448 else if (flag_code == CODE_64BIT
9449 && !i.prefix[ADDR_PREFIX]
9450 && exp->X_op == O_constant)
9451 {
9452 /* Since displacement is signed extended to 64bit, don't allow
9453 disp32 and turn off disp32s if they are out of range. */
9454 i.types[this_operand].bitfield.disp32 = 0;
9455 if (!fits_in_signed_long (exp->X_add_number))
9456 {
9457 i.types[this_operand].bitfield.disp32s = 0;
9458 if (i.types[this_operand].bitfield.baseindex)
9459 {
9460 as_bad (_("0x%lx out range of signed 32bit displacement"),
9461 (long) exp->X_add_number);
9462 ret = 0;
9463 }
9464 }
9465 }
9466
4c63da97 9467#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9468 else if (exp->X_op != O_constant
9469 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9470 && exp_seg != absolute_section
9471 && exp_seg != text_section
9472 && exp_seg != data_section
9473 && exp_seg != bss_section
9474 && exp_seg != undefined_section
9475 && !bfd_is_com_section (exp_seg))
24eab124 9476 {
d0b47220 9477 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9478 ret = 0;
24eab124 9479 }
252b5132 9480#endif
3956db08 9481
40fb9820
L
9482 /* Check if this is a displacement only operand. */
9483 bigdisp = i.types[this_operand];
9484 bigdisp.bitfield.disp8 = 0;
9485 bigdisp.bitfield.disp16 = 0;
9486 bigdisp.bitfield.disp32 = 0;
9487 bigdisp.bitfield.disp32s = 0;
9488 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9489 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9490 i.types[this_operand] = operand_type_and (i.types[this_operand],
9491 types);
3956db08 9492
3992d3b7 9493 return ret;
252b5132
RH
9494}
9495
2abc2bec
JB
9496/* Return the active addressing mode, taking address override and
9497 registers forming the address into consideration. Update the
9498 address override prefix if necessary. */
47926f60 9499
2abc2bec
JB
9500static enum flag_code
9501i386_addressing_mode (void)
252b5132 9502{
be05d201
L
9503 enum flag_code addr_mode;
9504
9505 if (i.prefix[ADDR_PREFIX])
9506 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9507 else
9508 {
9509 addr_mode = flag_code;
9510
24eab124 9511#if INFER_ADDR_PREFIX
be05d201
L
9512 if (i.mem_operands == 0)
9513 {
9514 /* Infer address prefix from the first memory operand. */
9515 const reg_entry *addr_reg = i.base_reg;
9516
9517 if (addr_reg == NULL)
9518 addr_reg = i.index_reg;
eecb386c 9519
be05d201
L
9520 if (addr_reg)
9521 {
e968fc9b 9522 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9523 addr_mode = CODE_32BIT;
9524 else if (flag_code != CODE_64BIT
dc821c5f 9525 && addr_reg->reg_type.bitfield.word)
be05d201
L
9526 addr_mode = CODE_16BIT;
9527
9528 if (addr_mode != flag_code)
9529 {
9530 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9531 i.prefixes += 1;
9532 /* Change the size of any displacement too. At most one
9533 of Disp16 or Disp32 is set.
9534 FIXME. There doesn't seem to be any real need for
9535 separate Disp16 and Disp32 flags. The same goes for
9536 Imm16 and Imm32. Removing them would probably clean
9537 up the code quite a lot. */
9538 if (flag_code != CODE_64BIT
9539 && (i.types[this_operand].bitfield.disp16
9540 || i.types[this_operand].bitfield.disp32))
9541 i.types[this_operand]
9542 = operand_type_xor (i.types[this_operand], disp16_32);
9543 }
9544 }
9545 }
24eab124 9546#endif
be05d201
L
9547 }
9548
2abc2bec
JB
9549 return addr_mode;
9550}
9551
9552/* Make sure the memory operand we've been dealt is valid.
9553 Return 1 on success, 0 on a failure. */
9554
9555static int
9556i386_index_check (const char *operand_string)
9557{
9558 const char *kind = "base/index";
9559 enum flag_code addr_mode = i386_addressing_mode ();
9560
fc0763e6
JB
9561 if (current_templates->start->opcode_modifier.isstring
9562 && !current_templates->start->opcode_modifier.immext
9563 && (current_templates->end[-1].opcode_modifier.isstring
9564 || i.mem_operands))
9565 {
9566 /* Memory operands of string insns are special in that they only allow
9567 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9568 const reg_entry *expected_reg;
9569 static const char *di_si[][2] =
9570 {
9571 { "esi", "edi" },
9572 { "si", "di" },
9573 { "rsi", "rdi" }
9574 };
9575 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9576
9577 kind = "string address";
9578
8325cc63 9579 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9580 {
9581 i386_operand_type type = current_templates->end[-1].operand_types[0];
9582
9583 if (!type.bitfield.baseindex
9584 || ((!i.mem_operands != !intel_syntax)
9585 && current_templates->end[-1].operand_types[1]
9586 .bitfield.baseindex))
9587 type = current_templates->end[-1].operand_types[1];
be05d201
L
9588 expected_reg = hash_find (reg_hash,
9589 di_si[addr_mode][type.bitfield.esseg]);
9590
fc0763e6
JB
9591 }
9592 else
be05d201 9593 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9594
be05d201
L
9595 if (i.base_reg != expected_reg
9596 || i.index_reg
fc0763e6 9597 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9598 {
be05d201
L
9599 /* The second memory operand must have the same size as
9600 the first one. */
9601 if (i.mem_operands
9602 && i.base_reg
9603 && !((addr_mode == CODE_64BIT
dc821c5f 9604 && i.base_reg->reg_type.bitfield.qword)
be05d201 9605 || (addr_mode == CODE_32BIT
dc821c5f
JB
9606 ? i.base_reg->reg_type.bitfield.dword
9607 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9608 goto bad_address;
9609
fc0763e6
JB
9610 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9611 operand_string,
9612 intel_syntax ? '[' : '(',
9613 register_prefix,
be05d201 9614 expected_reg->reg_name,
fc0763e6 9615 intel_syntax ? ']' : ')');
be05d201 9616 return 1;
fc0763e6 9617 }
be05d201
L
9618 else
9619 return 1;
9620
9621bad_address:
9622 as_bad (_("`%s' is not a valid %s expression"),
9623 operand_string, kind);
9624 return 0;
3e73aa7c
JH
9625 }
9626 else
9627 {
be05d201
L
9628 if (addr_mode != CODE_16BIT)
9629 {
9630 /* 32-bit/64-bit checks. */
9631 if ((i.base_reg
e968fc9b
JB
9632 && ((addr_mode == CODE_64BIT
9633 ? !i.base_reg->reg_type.bitfield.qword
9634 : !i.base_reg->reg_type.bitfield.dword)
9635 || (i.index_reg && i.base_reg->reg_num == RegIP)
9636 || i.base_reg->reg_num == RegIZ))
be05d201 9637 || (i.index_reg
1b54b8d7
JB
9638 && !i.index_reg->reg_type.bitfield.xmmword
9639 && !i.index_reg->reg_type.bitfield.ymmword
9640 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9641 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9642 ? !i.index_reg->reg_type.bitfield.qword
9643 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9644 || !i.index_reg->reg_type.bitfield.baseindex)))
9645 goto bad_address;
8178be5b
JB
9646
9647 /* bndmk, bndldx, and bndstx have special restrictions. */
9648 if (current_templates->start->base_opcode == 0xf30f1b
9649 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9650 {
9651 /* They cannot use RIP-relative addressing. */
e968fc9b 9652 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9653 {
9654 as_bad (_("`%s' cannot be used here"), operand_string);
9655 return 0;
9656 }
9657
9658 /* bndldx and bndstx ignore their scale factor. */
9659 if (current_templates->start->base_opcode != 0xf30f1b
9660 && i.log2_scale_factor)
9661 as_warn (_("register scaling is being ignored here"));
9662 }
be05d201
L
9663 }
9664 else
3e73aa7c 9665 {
be05d201 9666 /* 16-bit checks. */
3e73aa7c 9667 if ((i.base_reg
dc821c5f 9668 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9669 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9670 || (i.index_reg
dc821c5f 9671 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9672 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9673 || !(i.base_reg
9674 && i.base_reg->reg_num < 6
9675 && i.index_reg->reg_num >= 6
9676 && i.log2_scale_factor == 0))))
be05d201 9677 goto bad_address;
3e73aa7c
JH
9678 }
9679 }
be05d201 9680 return 1;
24eab124 9681}
252b5132 9682
43234a1e
L
9683/* Handle vector immediates. */
9684
9685static int
9686RC_SAE_immediate (const char *imm_start)
9687{
9688 unsigned int match_found, j;
9689 const char *pstr = imm_start;
9690 expressionS *exp;
9691
9692 if (*pstr != '{')
9693 return 0;
9694
9695 pstr++;
9696 match_found = 0;
9697 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9698 {
9699 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9700 {
9701 if (!i.rounding)
9702 {
9703 rc_op.type = RC_NamesTable[j].type;
9704 rc_op.operand = this_operand;
9705 i.rounding = &rc_op;
9706 }
9707 else
9708 {
9709 as_bad (_("duplicated `%s'"), imm_start);
9710 return 0;
9711 }
9712 pstr += RC_NamesTable[j].len;
9713 match_found = 1;
9714 break;
9715 }
9716 }
9717 if (!match_found)
9718 return 0;
9719
9720 if (*pstr++ != '}')
9721 {
9722 as_bad (_("Missing '}': '%s'"), imm_start);
9723 return 0;
9724 }
9725 /* RC/SAE immediate string should contain nothing more. */;
9726 if (*pstr != 0)
9727 {
9728 as_bad (_("Junk after '}': '%s'"), imm_start);
9729 return 0;
9730 }
9731
9732 exp = &im_expressions[i.imm_operands++];
9733 i.op[this_operand].imms = exp;
9734
9735 exp->X_op = O_constant;
9736 exp->X_add_number = 0;
9737 exp->X_add_symbol = (symbolS *) 0;
9738 exp->X_op_symbol = (symbolS *) 0;
9739
9740 i.types[this_operand].bitfield.imm8 = 1;
9741 return 1;
9742}
9743
8325cc63
JB
9744/* Only string instructions can have a second memory operand, so
9745 reduce current_templates to just those if it contains any. */
9746static int
9747maybe_adjust_templates (void)
9748{
9749 const insn_template *t;
9750
9751 gas_assert (i.mem_operands == 1);
9752
9753 for (t = current_templates->start; t < current_templates->end; ++t)
9754 if (t->opcode_modifier.isstring)
9755 break;
9756
9757 if (t < current_templates->end)
9758 {
9759 static templates aux_templates;
9760 bfd_boolean recheck;
9761
9762 aux_templates.start = t;
9763 for (; t < current_templates->end; ++t)
9764 if (!t->opcode_modifier.isstring)
9765 break;
9766 aux_templates.end = t;
9767
9768 /* Determine whether to re-check the first memory operand. */
9769 recheck = (aux_templates.start != current_templates->start
9770 || t != current_templates->end);
9771
9772 current_templates = &aux_templates;
9773
9774 if (recheck)
9775 {
9776 i.mem_operands = 0;
9777 if (i.memop1_string != NULL
9778 && i386_index_check (i.memop1_string) == 0)
9779 return 0;
9780 i.mem_operands = 1;
9781 }
9782 }
9783
9784 return 1;
9785}
9786
fc0763e6 9787/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9788 on error. */
252b5132 9789
252b5132 9790static int
a7619375 9791i386_att_operand (char *operand_string)
252b5132 9792{
af6bdddf
AM
9793 const reg_entry *r;
9794 char *end_op;
24eab124 9795 char *op_string = operand_string;
252b5132 9796
24eab124 9797 if (is_space_char (*op_string))
252b5132
RH
9798 ++op_string;
9799
24eab124 9800 /* We check for an absolute prefix (differentiating,
47926f60 9801 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9802 if (*op_string == ABSOLUTE_PREFIX)
9803 {
9804 ++op_string;
9805 if (is_space_char (*op_string))
9806 ++op_string;
40fb9820 9807 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9808 }
252b5132 9809
47926f60 9810 /* Check if operand is a register. */
4d1bb795 9811 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9812 {
40fb9820
L
9813 i386_operand_type temp;
9814
24eab124
AM
9815 /* Check for a segment override by searching for ':' after a
9816 segment register. */
9817 op_string = end_op;
9818 if (is_space_char (*op_string))
9819 ++op_string;
40fb9820
L
9820 if (*op_string == ':'
9821 && (r->reg_type.bitfield.sreg2
9822 || r->reg_type.bitfield.sreg3))
24eab124
AM
9823 {
9824 switch (r->reg_num)
9825 {
9826 case 0:
9827 i.seg[i.mem_operands] = &es;
9828 break;
9829 case 1:
9830 i.seg[i.mem_operands] = &cs;
9831 break;
9832 case 2:
9833 i.seg[i.mem_operands] = &ss;
9834 break;
9835 case 3:
9836 i.seg[i.mem_operands] = &ds;
9837 break;
9838 case 4:
9839 i.seg[i.mem_operands] = &fs;
9840 break;
9841 case 5:
9842 i.seg[i.mem_operands] = &gs;
9843 break;
9844 }
252b5132 9845
24eab124 9846 /* Skip the ':' and whitespace. */
252b5132
RH
9847 ++op_string;
9848 if (is_space_char (*op_string))
24eab124 9849 ++op_string;
252b5132 9850
24eab124
AM
9851 if (!is_digit_char (*op_string)
9852 && !is_identifier_char (*op_string)
9853 && *op_string != '('
9854 && *op_string != ABSOLUTE_PREFIX)
9855 {
9856 as_bad (_("bad memory operand `%s'"), op_string);
9857 return 0;
9858 }
47926f60 9859 /* Handle case of %es:*foo. */
24eab124
AM
9860 if (*op_string == ABSOLUTE_PREFIX)
9861 {
9862 ++op_string;
9863 if (is_space_char (*op_string))
9864 ++op_string;
40fb9820 9865 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9866 }
9867 goto do_memory_reference;
9868 }
43234a1e
L
9869
9870 /* Handle vector operations. */
9871 if (*op_string == '{')
9872 {
9873 op_string = check_VecOperations (op_string, NULL);
9874 if (op_string == NULL)
9875 return 0;
9876 }
9877
24eab124
AM
9878 if (*op_string)
9879 {
d0b47220 9880 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9881 return 0;
9882 }
40fb9820
L
9883 temp = r->reg_type;
9884 temp.bitfield.baseindex = 0;
c6fb90c8
L
9885 i.types[this_operand] = operand_type_or (i.types[this_operand],
9886 temp);
7d5e4556 9887 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9888 i.op[this_operand].regs = r;
24eab124
AM
9889 i.reg_operands++;
9890 }
af6bdddf
AM
9891 else if (*op_string == REGISTER_PREFIX)
9892 {
9893 as_bad (_("bad register name `%s'"), op_string);
9894 return 0;
9895 }
24eab124 9896 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9897 {
24eab124 9898 ++op_string;
40fb9820 9899 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9900 {
d0b47220 9901 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9902 return 0;
9903 }
9904 if (!i386_immediate (op_string))
9905 return 0;
9906 }
43234a1e
L
9907 else if (RC_SAE_immediate (operand_string))
9908 {
9909 /* If it is a RC or SAE immediate, do nothing. */
9910 ;
9911 }
24eab124
AM
9912 else if (is_digit_char (*op_string)
9913 || is_identifier_char (*op_string)
d02603dc 9914 || *op_string == '"'
e5cb08ac 9915 || *op_string == '(')
24eab124 9916 {
47926f60 9917 /* This is a memory reference of some sort. */
af6bdddf 9918 char *base_string;
252b5132 9919
47926f60 9920 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9921 char *displacement_string_start;
9922 char *displacement_string_end;
43234a1e 9923 char *vop_start;
252b5132 9924
24eab124 9925 do_memory_reference:
8325cc63
JB
9926 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9927 return 0;
24eab124 9928 if ((i.mem_operands == 1
40fb9820 9929 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9930 || i.mem_operands == 2)
9931 {
9932 as_bad (_("too many memory references for `%s'"),
9933 current_templates->start->name);
9934 return 0;
9935 }
252b5132 9936
24eab124
AM
9937 /* Check for base index form. We detect the base index form by
9938 looking for an ')' at the end of the operand, searching
9939 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9940 after the '('. */
af6bdddf 9941 base_string = op_string + strlen (op_string);
c3332e24 9942
43234a1e
L
9943 /* Handle vector operations. */
9944 vop_start = strchr (op_string, '{');
9945 if (vop_start && vop_start < base_string)
9946 {
9947 if (check_VecOperations (vop_start, base_string) == NULL)
9948 return 0;
9949 base_string = vop_start;
9950 }
9951
af6bdddf
AM
9952 --base_string;
9953 if (is_space_char (*base_string))
9954 --base_string;
252b5132 9955
47926f60 9956 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9957 displacement_string_start = op_string;
9958 displacement_string_end = base_string + 1;
252b5132 9959
24eab124
AM
9960 if (*base_string == ')')
9961 {
af6bdddf 9962 char *temp_string;
24eab124
AM
9963 unsigned int parens_balanced = 1;
9964 /* We've already checked that the number of left & right ()'s are
47926f60 9965 equal, so this loop will not be infinite. */
24eab124
AM
9966 do
9967 {
9968 base_string--;
9969 if (*base_string == ')')
9970 parens_balanced++;
9971 if (*base_string == '(')
9972 parens_balanced--;
9973 }
9974 while (parens_balanced);
c3332e24 9975
af6bdddf 9976 temp_string = base_string;
c3332e24 9977
24eab124 9978 /* Skip past '(' and whitespace. */
252b5132
RH
9979 ++base_string;
9980 if (is_space_char (*base_string))
24eab124 9981 ++base_string;
252b5132 9982
af6bdddf 9983 if (*base_string == ','
4eed87de
AM
9984 || ((i.base_reg = parse_register (base_string, &end_op))
9985 != NULL))
252b5132 9986 {
af6bdddf 9987 displacement_string_end = temp_string;
252b5132 9988
40fb9820 9989 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9990
af6bdddf 9991 if (i.base_reg)
24eab124 9992 {
24eab124
AM
9993 base_string = end_op;
9994 if (is_space_char (*base_string))
9995 ++base_string;
af6bdddf
AM
9996 }
9997
9998 /* There may be an index reg or scale factor here. */
9999 if (*base_string == ',')
10000 {
10001 ++base_string;
10002 if (is_space_char (*base_string))
10003 ++base_string;
10004
4eed87de
AM
10005 if ((i.index_reg = parse_register (base_string, &end_op))
10006 != NULL)
24eab124 10007 {
af6bdddf 10008 base_string = end_op;
24eab124
AM
10009 if (is_space_char (*base_string))
10010 ++base_string;
af6bdddf
AM
10011 if (*base_string == ',')
10012 {
10013 ++base_string;
10014 if (is_space_char (*base_string))
10015 ++base_string;
10016 }
e5cb08ac 10017 else if (*base_string != ')')
af6bdddf 10018 {
4eed87de
AM
10019 as_bad (_("expecting `,' or `)' "
10020 "after index register in `%s'"),
af6bdddf
AM
10021 operand_string);
10022 return 0;
10023 }
24eab124 10024 }
af6bdddf 10025 else if (*base_string == REGISTER_PREFIX)
24eab124 10026 {
f76bf5e0
L
10027 end_op = strchr (base_string, ',');
10028 if (end_op)
10029 *end_op = '\0';
af6bdddf 10030 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10031 return 0;
10032 }
252b5132 10033
47926f60 10034 /* Check for scale factor. */
551c1ca1 10035 if (*base_string != ')')
af6bdddf 10036 {
551c1ca1
AM
10037 char *end_scale = i386_scale (base_string);
10038
10039 if (!end_scale)
af6bdddf 10040 return 0;
24eab124 10041
551c1ca1 10042 base_string = end_scale;
af6bdddf
AM
10043 if (is_space_char (*base_string))
10044 ++base_string;
10045 if (*base_string != ')')
10046 {
4eed87de
AM
10047 as_bad (_("expecting `)' "
10048 "after scale factor in `%s'"),
af6bdddf
AM
10049 operand_string);
10050 return 0;
10051 }
10052 }
10053 else if (!i.index_reg)
24eab124 10054 {
4eed87de
AM
10055 as_bad (_("expecting index register or scale factor "
10056 "after `,'; got '%c'"),
af6bdddf 10057 *base_string);
24eab124
AM
10058 return 0;
10059 }
10060 }
af6bdddf 10061 else if (*base_string != ')')
24eab124 10062 {
4eed87de
AM
10063 as_bad (_("expecting `,' or `)' "
10064 "after base register in `%s'"),
af6bdddf 10065 operand_string);
24eab124
AM
10066 return 0;
10067 }
c3332e24 10068 }
af6bdddf 10069 else if (*base_string == REGISTER_PREFIX)
c3332e24 10070 {
f76bf5e0
L
10071 end_op = strchr (base_string, ',');
10072 if (end_op)
10073 *end_op = '\0';
af6bdddf 10074 as_bad (_("bad register name `%s'"), base_string);
24eab124 10075 return 0;
c3332e24 10076 }
24eab124
AM
10077 }
10078
10079 /* If there's an expression beginning the operand, parse it,
10080 assuming displacement_string_start and
10081 displacement_string_end are meaningful. */
10082 if (displacement_string_start != displacement_string_end)
10083 {
10084 if (!i386_displacement (displacement_string_start,
10085 displacement_string_end))
10086 return 0;
10087 }
10088
10089 /* Special case for (%dx) while doing input/output op. */
10090 if (i.base_reg
2fb5be8d 10091 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10092 && i.index_reg == 0
10093 && i.log2_scale_factor == 0
10094 && i.seg[i.mem_operands] == 0
40fb9820 10095 && !operand_type_check (i.types[this_operand], disp))
24eab124 10096 {
2fb5be8d 10097 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10098 return 1;
10099 }
10100
eecb386c
AM
10101 if (i386_index_check (operand_string) == 0)
10102 return 0;
c48dadc9 10103 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10104 if (i.mem_operands == 0)
10105 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10106 i.mem_operands++;
10107 }
10108 else
ce8a8b2f
AM
10109 {
10110 /* It's not a memory operand; argh! */
24eab124
AM
10111 as_bad (_("invalid char %s beginning operand %d `%s'"),
10112 output_invalid (*op_string),
10113 this_operand + 1,
10114 op_string);
10115 return 0;
10116 }
47926f60 10117 return 1; /* Normal return. */
252b5132
RH
10118}
10119\f
fa94de6b
RM
10120/* Calculate the maximum variable size (i.e., excluding fr_fix)
10121 that an rs_machine_dependent frag may reach. */
10122
10123unsigned int
10124i386_frag_max_var (fragS *frag)
10125{
10126 /* The only relaxable frags are for jumps.
10127 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10128 gas_assert (frag->fr_type == rs_machine_dependent);
10129 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10130}
10131
b084df0b
L
10132#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10133static int
8dcea932 10134elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10135{
10136 /* STT_GNU_IFUNC symbol must go through PLT. */
10137 if ((symbol_get_bfdsym (fr_symbol)->flags
10138 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10139 return 0;
10140
10141 if (!S_IS_EXTERNAL (fr_symbol))
10142 /* Symbol may be weak or local. */
10143 return !S_IS_WEAK (fr_symbol);
10144
8dcea932
L
10145 /* Global symbols with non-default visibility can't be preempted. */
10146 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10147 return 1;
10148
10149 if (fr_var != NO_RELOC)
10150 switch ((enum bfd_reloc_code_real) fr_var)
10151 {
10152 case BFD_RELOC_386_PLT32:
10153 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10154 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10155 return 0;
10156 default:
10157 abort ();
10158 }
10159
b084df0b
L
10160 /* Global symbols with default visibility in a shared library may be
10161 preempted by another definition. */
8dcea932 10162 return !shared;
b084df0b
L
10163}
10164#endif
10165
ee7fcc42
AM
10166/* md_estimate_size_before_relax()
10167
10168 Called just before relax() for rs_machine_dependent frags. The x86
10169 assembler uses these frags to handle variable size jump
10170 instructions.
10171
10172 Any symbol that is now undefined will not become defined.
10173 Return the correct fr_subtype in the frag.
10174 Return the initial "guess for variable size of frag" to caller.
10175 The guess is actually the growth beyond the fixed part. Whatever
10176 we do to grow the fixed or variable part contributes to our
10177 returned value. */
10178
252b5132 10179int
7016a5d5 10180md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10181{
252b5132 10182 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10183 check for un-relaxable symbols. On an ELF system, we can't relax
10184 an externally visible symbol, because it may be overridden by a
10185 shared library. */
10186 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10187#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10188 || (IS_ELF
8dcea932
L
10189 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10190 fragP->fr_var))
fbeb56a4
DK
10191#endif
10192#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10193 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10194 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10195#endif
10196 )
252b5132 10197 {
b98ef147
AM
10198 /* Symbol is undefined in this segment, or we need to keep a
10199 reloc so that weak symbols can be overridden. */
10200 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10201 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10202 unsigned char *opcode;
10203 int old_fr_fix;
f6af82bd 10204
ee7fcc42 10205 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10206 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10207 else if (size == 2)
f6af82bd 10208 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10209#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10210 else if (need_plt32_p (fragP->fr_symbol))
10211 reloc_type = BFD_RELOC_X86_64_PLT32;
10212#endif
f6af82bd
AM
10213 else
10214 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10215
ee7fcc42
AM
10216 old_fr_fix = fragP->fr_fix;
10217 opcode = (unsigned char *) fragP->fr_opcode;
10218
fddf5b5b 10219 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10220 {
fddf5b5b
AM
10221 case UNCOND_JUMP:
10222 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10223 opcode[0] = 0xe9;
252b5132 10224 fragP->fr_fix += size;
062cd5e7
AS
10225 fix_new (fragP, old_fr_fix, size,
10226 fragP->fr_symbol,
10227 fragP->fr_offset, 1,
10228 reloc_type);
252b5132
RH
10229 break;
10230
fddf5b5b 10231 case COND_JUMP86:
412167cb
AM
10232 if (size == 2
10233 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10234 {
10235 /* Negate the condition, and branch past an
10236 unconditional jump. */
10237 opcode[0] ^= 1;
10238 opcode[1] = 3;
10239 /* Insert an unconditional jump. */
10240 opcode[2] = 0xe9;
10241 /* We added two extra opcode bytes, and have a two byte
10242 offset. */
10243 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10244 fix_new (fragP, old_fr_fix + 2, 2,
10245 fragP->fr_symbol,
10246 fragP->fr_offset, 1,
10247 reloc_type);
fddf5b5b
AM
10248 break;
10249 }
10250 /* Fall through. */
10251
10252 case COND_JUMP:
412167cb
AM
10253 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10254 {
3e02c1cc
AM
10255 fixS *fixP;
10256
412167cb 10257 fragP->fr_fix += 1;
3e02c1cc
AM
10258 fixP = fix_new (fragP, old_fr_fix, 1,
10259 fragP->fr_symbol,
10260 fragP->fr_offset, 1,
10261 BFD_RELOC_8_PCREL);
10262 fixP->fx_signed = 1;
412167cb
AM
10263 break;
10264 }
93c2a809 10265
24eab124 10266 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10267 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10268 opcode[1] = opcode[0] + 0x10;
f6af82bd 10269 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10270 /* We've added an opcode byte. */
10271 fragP->fr_fix += 1 + size;
062cd5e7
AS
10272 fix_new (fragP, old_fr_fix + 1, size,
10273 fragP->fr_symbol,
10274 fragP->fr_offset, 1,
10275 reloc_type);
252b5132 10276 break;
fddf5b5b
AM
10277
10278 default:
10279 BAD_CASE (fragP->fr_subtype);
10280 break;
252b5132
RH
10281 }
10282 frag_wane (fragP);
ee7fcc42 10283 return fragP->fr_fix - old_fr_fix;
252b5132 10284 }
93c2a809 10285
93c2a809
AM
10286 /* Guess size depending on current relax state. Initially the relax
10287 state will correspond to a short jump and we return 1, because
10288 the variable part of the frag (the branch offset) is one byte
10289 long. However, we can relax a section more than once and in that
10290 case we must either set fr_subtype back to the unrelaxed state,
10291 or return the value for the appropriate branch. */
10292 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10293}
10294
47926f60
KH
10295/* Called after relax() is finished.
10296
10297 In: Address of frag.
10298 fr_type == rs_machine_dependent.
10299 fr_subtype is what the address relaxed to.
10300
10301 Out: Any fixSs and constants are set up.
10302 Caller will turn frag into a ".space 0". */
10303
252b5132 10304void
7016a5d5
TG
10305md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10306 fragS *fragP)
252b5132 10307{
29b0f896 10308 unsigned char *opcode;
252b5132 10309 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10310 offsetT target_address;
10311 offsetT opcode_address;
252b5132 10312 unsigned int extension = 0;
847f7ad4 10313 offsetT displacement_from_opcode_start;
252b5132
RH
10314
10315 opcode = (unsigned char *) fragP->fr_opcode;
10316
47926f60 10317 /* Address we want to reach in file space. */
252b5132 10318 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10319
47926f60 10320 /* Address opcode resides at in file space. */
252b5132
RH
10321 opcode_address = fragP->fr_address + fragP->fr_fix;
10322
47926f60 10323 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10324 displacement_from_opcode_start = target_address - opcode_address;
10325
fddf5b5b 10326 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10327 {
47926f60
KH
10328 /* Don't have to change opcode. */
10329 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10330 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10331 }
10332 else
10333 {
10334 if (no_cond_jump_promotion
10335 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10336 as_warn_where (fragP->fr_file, fragP->fr_line,
10337 _("long jump required"));
252b5132 10338
fddf5b5b
AM
10339 switch (fragP->fr_subtype)
10340 {
10341 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10342 extension = 4; /* 1 opcode + 4 displacement */
10343 opcode[0] = 0xe9;
10344 where_to_put_displacement = &opcode[1];
10345 break;
252b5132 10346
fddf5b5b
AM
10347 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10348 extension = 2; /* 1 opcode + 2 displacement */
10349 opcode[0] = 0xe9;
10350 where_to_put_displacement = &opcode[1];
10351 break;
252b5132 10352
fddf5b5b
AM
10353 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10354 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10355 extension = 5; /* 2 opcode + 4 displacement */
10356 opcode[1] = opcode[0] + 0x10;
10357 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10358 where_to_put_displacement = &opcode[2];
10359 break;
252b5132 10360
fddf5b5b
AM
10361 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10362 extension = 3; /* 2 opcode + 2 displacement */
10363 opcode[1] = opcode[0] + 0x10;
10364 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10365 where_to_put_displacement = &opcode[2];
10366 break;
252b5132 10367
fddf5b5b
AM
10368 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10369 extension = 4;
10370 opcode[0] ^= 1;
10371 opcode[1] = 3;
10372 opcode[2] = 0xe9;
10373 where_to_put_displacement = &opcode[3];
10374 break;
10375
10376 default:
10377 BAD_CASE (fragP->fr_subtype);
10378 break;
10379 }
252b5132 10380 }
fddf5b5b 10381
7b81dfbb
AJ
10382 /* If size if less then four we are sure that the operand fits,
10383 but if it's 4, then it could be that the displacement is larger
10384 then -/+ 2GB. */
10385 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10386 && object_64bit
10387 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10388 + ((addressT) 1 << 31))
10389 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10390 {
10391 as_bad_where (fragP->fr_file, fragP->fr_line,
10392 _("jump target out of range"));
10393 /* Make us emit 0. */
10394 displacement_from_opcode_start = extension;
10395 }
47926f60 10396 /* Now put displacement after opcode. */
252b5132
RH
10397 md_number_to_chars ((char *) where_to_put_displacement,
10398 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10399 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10400 fragP->fr_fix += extension;
10401}
10402\f
7016a5d5 10403/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10404 by our caller that we have all the info we need to fix it up.
10405
7016a5d5
TG
10406 Parameter valP is the pointer to the value of the bits.
10407
252b5132
RH
10408 On the 386, immediates, displacements, and data pointers are all in
10409 the same (little-endian) format, so we don't need to care about which
10410 we are handling. */
10411
94f592af 10412void
7016a5d5 10413md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10414{
94f592af 10415 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10416 valueT value = *valP;
252b5132 10417
f86103b7 10418#if !defined (TE_Mach)
93382f6d
AM
10419 if (fixP->fx_pcrel)
10420 {
10421 switch (fixP->fx_r_type)
10422 {
5865bb77
ILT
10423 default:
10424 break;
10425
d6ab8113
JB
10426 case BFD_RELOC_64:
10427 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10428 break;
93382f6d 10429 case BFD_RELOC_32:
ae8887b5 10430 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10431 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10432 break;
10433 case BFD_RELOC_16:
10434 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10435 break;
10436 case BFD_RELOC_8:
10437 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10438 break;
10439 }
10440 }
252b5132 10441
a161fe53 10442 if (fixP->fx_addsy != NULL
31312f95 10443 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10444 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10445 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10446 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10447 && !use_rela_relocations)
252b5132 10448 {
31312f95
AM
10449 /* This is a hack. There should be a better way to handle this.
10450 This covers for the fact that bfd_install_relocation will
10451 subtract the current location (for partial_inplace, PC relative
10452 relocations); see more below. */
252b5132 10453#ifndef OBJ_AOUT
718ddfc0 10454 if (IS_ELF
252b5132
RH
10455#ifdef TE_PE
10456 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10457#endif
10458 )
10459 value += fixP->fx_where + fixP->fx_frag->fr_address;
10460#endif
10461#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10462 if (IS_ELF)
252b5132 10463 {
6539b54b 10464 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10465
6539b54b 10466 if ((sym_seg == seg
2f66722d 10467 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10468 && sym_seg != absolute_section))
af65af87 10469 && !generic_force_reloc (fixP))
2f66722d
AM
10470 {
10471 /* Yes, we add the values in twice. This is because
6539b54b
AM
10472 bfd_install_relocation subtracts them out again. I think
10473 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10474 it. FIXME. */
10475 value += fixP->fx_where + fixP->fx_frag->fr_address;
10476 }
252b5132
RH
10477 }
10478#endif
10479#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10480 /* For some reason, the PE format does not store a
10481 section address offset for a PC relative symbol. */
10482 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10483 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10484 value += md_pcrel_from (fixP);
10485#endif
10486 }
fbeb56a4 10487#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10488 if (fixP->fx_addsy != NULL
10489 && S_IS_WEAK (fixP->fx_addsy)
10490 /* PR 16858: Do not modify weak function references. */
10491 && ! fixP->fx_pcrel)
fbeb56a4 10492 {
296a8689
NC
10493#if !defined (TE_PEP)
10494 /* For x86 PE weak function symbols are neither PC-relative
10495 nor do they set S_IS_FUNCTION. So the only reliable way
10496 to detect them is to check the flags of their containing
10497 section. */
10498 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10499 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10500 ;
10501 else
10502#endif
fbeb56a4
DK
10503 value -= S_GET_VALUE (fixP->fx_addsy);
10504 }
10505#endif
252b5132
RH
10506
10507 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10508 and we must not disappoint it. */
252b5132 10509#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10510 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10511 switch (fixP->fx_r_type)
10512 {
10513 case BFD_RELOC_386_PLT32:
3e73aa7c 10514 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
10515 /* Make the jump instruction point to the address of the operand. At
10516 runtime we merely add the offset to the actual PLT entry. */
10517 value = -4;
10518 break;
31312f95 10519
13ae64f3
JJ
10520 case BFD_RELOC_386_TLS_GD:
10521 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10522 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10523 case BFD_RELOC_386_TLS_IE:
10524 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10525 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10526 case BFD_RELOC_X86_64_TLSGD:
10527 case BFD_RELOC_X86_64_TLSLD:
10528 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10529 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10530 value = 0; /* Fully resolved at runtime. No addend. */
10531 /* Fallthrough */
10532 case BFD_RELOC_386_TLS_LE:
10533 case BFD_RELOC_386_TLS_LDO_32:
10534 case BFD_RELOC_386_TLS_LE_32:
10535 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10536 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10537 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10538 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10539 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10540 break;
10541
67a4f2b7
AO
10542 case BFD_RELOC_386_TLS_DESC_CALL:
10543 case BFD_RELOC_X86_64_TLSDESC_CALL:
10544 value = 0; /* Fully resolved at runtime. No addend. */
10545 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10546 fixP->fx_done = 0;
10547 return;
10548
47926f60
KH
10549 case BFD_RELOC_VTABLE_INHERIT:
10550 case BFD_RELOC_VTABLE_ENTRY:
10551 fixP->fx_done = 0;
94f592af 10552 return;
47926f60
KH
10553
10554 default:
10555 break;
10556 }
10557#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10558 *valP = value;
f86103b7 10559#endif /* !defined (TE_Mach) */
3e73aa7c 10560
3e73aa7c 10561 /* Are we finished with this relocation now? */
c6682705 10562 if (fixP->fx_addsy == NULL)
3e73aa7c 10563 fixP->fx_done = 1;
fbeb56a4
DK
10564#if defined (OBJ_COFF) && defined (TE_PE)
10565 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10566 {
10567 fixP->fx_done = 0;
10568 /* Remember value for tc_gen_reloc. */
10569 fixP->fx_addnumber = value;
10570 /* Clear out the frag for now. */
10571 value = 0;
10572 }
10573#endif
3e73aa7c
JH
10574 else if (use_rela_relocations)
10575 {
10576 fixP->fx_no_overflow = 1;
062cd5e7
AS
10577 /* Remember value for tc_gen_reloc. */
10578 fixP->fx_addnumber = value;
3e73aa7c
JH
10579 value = 0;
10580 }
f86103b7 10581
94f592af 10582 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10583}
252b5132 10584\f
6d4af3c2 10585const char *
499ac353 10586md_atof (int type, char *litP, int *sizeP)
252b5132 10587{
499ac353
NC
10588 /* This outputs the LITTLENUMs in REVERSE order;
10589 in accord with the bigendian 386. */
10590 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10591}
10592\f
2d545b82 10593static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10594
252b5132 10595static char *
e3bb37b5 10596output_invalid (int c)
252b5132 10597{
3882b010 10598 if (ISPRINT (c))
f9f21a03
L
10599 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10600 "'%c'", c);
252b5132 10601 else
f9f21a03 10602 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10603 "(0x%x)", (unsigned char) c);
252b5132
RH
10604 return output_invalid_buf;
10605}
10606
af6bdddf 10607/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10608
10609static const reg_entry *
4d1bb795 10610parse_real_register (char *reg_string, char **end_op)
252b5132 10611{
af6bdddf
AM
10612 char *s = reg_string;
10613 char *p;
252b5132
RH
10614 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10615 const reg_entry *r;
10616
10617 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10618 if (*s == REGISTER_PREFIX)
10619 ++s;
10620
10621 if (is_space_char (*s))
10622 ++s;
10623
10624 p = reg_name_given;
af6bdddf 10625 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10626 {
10627 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10628 return (const reg_entry *) NULL;
10629 s++;
252b5132
RH
10630 }
10631
6588847e
DN
10632 /* For naked regs, make sure that we are not dealing with an identifier.
10633 This prevents confusing an identifier like `eax_var' with register
10634 `eax'. */
10635 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10636 return (const reg_entry *) NULL;
10637
af6bdddf 10638 *end_op = s;
252b5132
RH
10639
10640 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10641
5f47d35b 10642 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10643 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10644 {
0e0eea78
JB
10645 if (!cpu_arch_flags.bitfield.cpu8087
10646 && !cpu_arch_flags.bitfield.cpu287
10647 && !cpu_arch_flags.bitfield.cpu387)
10648 return (const reg_entry *) NULL;
10649
5f47d35b
AM
10650 if (is_space_char (*s))
10651 ++s;
10652 if (*s == '(')
10653 {
af6bdddf 10654 ++s;
5f47d35b
AM
10655 if (is_space_char (*s))
10656 ++s;
10657 if (*s >= '0' && *s <= '7')
10658 {
db557034 10659 int fpr = *s - '0';
af6bdddf 10660 ++s;
5f47d35b
AM
10661 if (is_space_char (*s))
10662 ++s;
10663 if (*s == ')')
10664 {
10665 *end_op = s + 1;
1e9cc1c2 10666 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10667 know (r);
10668 return r + fpr;
5f47d35b 10669 }
5f47d35b 10670 }
47926f60 10671 /* We have "%st(" then garbage. */
5f47d35b
AM
10672 return (const reg_entry *) NULL;
10673 }
10674 }
10675
a60de03c
JB
10676 if (r == NULL || allow_pseudo_reg)
10677 return r;
10678
0dfbf9d7 10679 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10680 return (const reg_entry *) NULL;
10681
dc821c5f 10682 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10683 || r->reg_type.bitfield.sreg3
10684 || r->reg_type.bitfield.control
10685 || r->reg_type.bitfield.debug
10686 || r->reg_type.bitfield.test)
10687 && !cpu_arch_flags.bitfield.cpui386)
10688 return (const reg_entry *) NULL;
10689
6e041cf4 10690 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10691 return (const reg_entry *) NULL;
10692
6e041cf4
JB
10693 if (!cpu_arch_flags.bitfield.cpuavx512f)
10694 {
10695 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10696 return (const reg_entry *) NULL;
40f12533 10697
6e041cf4
JB
10698 if (!cpu_arch_flags.bitfield.cpuavx)
10699 {
10700 if (r->reg_type.bitfield.ymmword)
10701 return (const reg_entry *) NULL;
1848e567 10702
6e041cf4
JB
10703 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10704 return (const reg_entry *) NULL;
10705 }
10706 }
43234a1e 10707
1adf7f56
JB
10708 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10709 return (const reg_entry *) NULL;
10710
db51cc60 10711 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10712 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10713 return (const reg_entry *) NULL;
10714
1d3f8286
JB
10715 /* Upper 16 vector registers are only available with VREX in 64bit
10716 mode, and require EVEX encoding. */
10717 if (r->reg_flags & RegVRex)
43234a1e 10718 {
e951d5ca 10719 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10720 || flag_code != CODE_64BIT)
10721 return (const reg_entry *) NULL;
1d3f8286
JB
10722
10723 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10724 }
10725
4787f4a5
JB
10726 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10727 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10728 && flag_code != CODE_64BIT)
20f0a1fc 10729 return (const reg_entry *) NULL;
1ae00879 10730
b7240065
JB
10731 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10732 return (const reg_entry *) NULL;
10733
252b5132
RH
10734 return r;
10735}
4d1bb795
JB
10736
10737/* REG_STRING starts *before* REGISTER_PREFIX. */
10738
10739static const reg_entry *
10740parse_register (char *reg_string, char **end_op)
10741{
10742 const reg_entry *r;
10743
10744 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10745 r = parse_real_register (reg_string, end_op);
10746 else
10747 r = NULL;
10748 if (!r)
10749 {
10750 char *save = input_line_pointer;
10751 char c;
10752 symbolS *symbolP;
10753
10754 input_line_pointer = reg_string;
d02603dc 10755 c = get_symbol_name (&reg_string);
4d1bb795
JB
10756 symbolP = symbol_find (reg_string);
10757 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10758 {
10759 const expressionS *e = symbol_get_value_expression (symbolP);
10760
0398aac5 10761 know (e->X_op == O_register);
4eed87de 10762 know (e->X_add_number >= 0
c3fe08fa 10763 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10764 r = i386_regtab + e->X_add_number;
d3bb6b49 10765 if ((r->reg_flags & RegVRex))
86fa6981 10766 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10767 *end_op = input_line_pointer;
10768 }
10769 *input_line_pointer = c;
10770 input_line_pointer = save;
10771 }
10772 return r;
10773}
10774
10775int
10776i386_parse_name (char *name, expressionS *e, char *nextcharP)
10777{
10778 const reg_entry *r;
10779 char *end = input_line_pointer;
10780
10781 *end = *nextcharP;
10782 r = parse_register (name, &input_line_pointer);
10783 if (r && end <= input_line_pointer)
10784 {
10785 *nextcharP = *input_line_pointer;
10786 *input_line_pointer = 0;
10787 e->X_op = O_register;
10788 e->X_add_number = r - i386_regtab;
10789 return 1;
10790 }
10791 input_line_pointer = end;
10792 *end = 0;
ee86248c 10793 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10794}
10795
10796void
10797md_operand (expressionS *e)
10798{
ee86248c
JB
10799 char *end;
10800 const reg_entry *r;
4d1bb795 10801
ee86248c
JB
10802 switch (*input_line_pointer)
10803 {
10804 case REGISTER_PREFIX:
10805 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10806 if (r)
10807 {
10808 e->X_op = O_register;
10809 e->X_add_number = r - i386_regtab;
10810 input_line_pointer = end;
10811 }
ee86248c
JB
10812 break;
10813
10814 case '[':
9c2799c2 10815 gas_assert (intel_syntax);
ee86248c
JB
10816 end = input_line_pointer++;
10817 expression (e);
10818 if (*input_line_pointer == ']')
10819 {
10820 ++input_line_pointer;
10821 e->X_op_symbol = make_expr_symbol (e);
10822 e->X_add_symbol = NULL;
10823 e->X_add_number = 0;
10824 e->X_op = O_index;
10825 }
10826 else
10827 {
10828 e->X_op = O_absent;
10829 input_line_pointer = end;
10830 }
10831 break;
4d1bb795
JB
10832 }
10833}
10834
252b5132 10835\f
4cc782b5 10836#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10837const char *md_shortopts = "kVQ:sqnO::";
252b5132 10838#else
b6f8c7c4 10839const char *md_shortopts = "qnO::";
252b5132 10840#endif
6e0b89ee 10841
3e73aa7c 10842#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10843#define OPTION_64 (OPTION_MD_BASE + 1)
10844#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10845#define OPTION_MARCH (OPTION_MD_BASE + 3)
10846#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10847#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10848#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10849#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10850#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10851#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10852#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10853#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10854#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10855#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10856#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10857#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10858#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10859#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10860#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10861#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10862#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10863#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10864#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10865#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10866#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 10867#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
b3b91714 10868
99ad8390
NC
10869struct option md_longopts[] =
10870{
3e73aa7c 10871 {"32", no_argument, NULL, OPTION_32},
321098a5 10872#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10873 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10874 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10875#endif
10876#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10877 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10878 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 10879 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 10880#endif
b3b91714 10881 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10882 {"march", required_argument, NULL, OPTION_MARCH},
10883 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10884 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10885 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10886 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10887 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10888 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10889 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10890 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10891 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10892 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10893 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10894 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10895# if defined (TE_PE) || defined (TE_PEP)
10896 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10897#endif
d1982f93 10898 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10899 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10900 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10901 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10902 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10903 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10904 {NULL, no_argument, NULL, 0}
10905};
10906size_t md_longopts_size = sizeof (md_longopts);
10907
10908int
17b9d67d 10909md_parse_option (int c, const char *arg)
252b5132 10910{
91d6fa6a 10911 unsigned int j;
293f5f65 10912 char *arch, *next, *saved;
9103f4f4 10913
252b5132
RH
10914 switch (c)
10915 {
12b55ccc
L
10916 case 'n':
10917 optimize_align_code = 0;
10918 break;
10919
a38cf1db
AM
10920 case 'q':
10921 quiet_warnings = 1;
252b5132
RH
10922 break;
10923
10924#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10925 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10926 should be emitted or not. FIXME: Not implemented. */
10927 case 'Q':
252b5132
RH
10928 break;
10929
10930 /* -V: SVR4 argument to print version ID. */
10931 case 'V':
10932 print_version_id ();
10933 break;
10934
a38cf1db
AM
10935 /* -k: Ignore for FreeBSD compatibility. */
10936 case 'k':
252b5132 10937 break;
4cc782b5
ILT
10938
10939 case 's':
10940 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10941 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10942 break;
8dcea932
L
10943
10944 case OPTION_MSHARED:
10945 shared = 1;
10946 break;
b4a3a7b4
L
10947
10948 case OPTION_X86_USED_NOTE:
10949 if (strcasecmp (arg, "yes") == 0)
10950 x86_used_note = 1;
10951 else if (strcasecmp (arg, "no") == 0)
10952 x86_used_note = 0;
10953 else
10954 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10955 break;
10956
10957
99ad8390 10958#endif
321098a5 10959#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10960 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10961 case OPTION_64:
10962 {
10963 const char **list, **l;
10964
3e73aa7c
JH
10965 list = bfd_target_list ();
10966 for (l = list; *l != NULL; l++)
8620418b 10967 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10968 || strcmp (*l, "coff-x86-64") == 0
10969 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10970 || strcmp (*l, "pei-x86-64") == 0
10971 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10972 {
10973 default_arch = "x86_64";
10974 break;
10975 }
3e73aa7c 10976 if (*l == NULL)
2b5d6a91 10977 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10978 free (list);
10979 }
10980 break;
10981#endif
252b5132 10982
351f65ca 10983#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10984 case OPTION_X32:
351f65ca
L
10985 if (IS_ELF)
10986 {
10987 const char **list, **l;
10988
10989 list = bfd_target_list ();
10990 for (l = list; *l != NULL; l++)
10991 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10992 {
10993 default_arch = "x86_64:32";
10994 break;
10995 }
10996 if (*l == NULL)
2b5d6a91 10997 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10998 free (list);
10999 }
11000 else
11001 as_fatal (_("32bit x86_64 is only supported for ELF"));
11002 break;
11003#endif
11004
6e0b89ee
AM
11005 case OPTION_32:
11006 default_arch = "i386";
11007 break;
11008
b3b91714
AM
11009 case OPTION_DIVIDE:
11010#ifdef SVR4_COMMENT_CHARS
11011 {
11012 char *n, *t;
11013 const char *s;
11014
add39d23 11015 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11016 t = n;
11017 for (s = i386_comment_chars; *s != '\0'; s++)
11018 if (*s != '/')
11019 *t++ = *s;
11020 *t = '\0';
11021 i386_comment_chars = n;
11022 }
11023#endif
11024 break;
11025
9103f4f4 11026 case OPTION_MARCH:
293f5f65
L
11027 saved = xstrdup (arg);
11028 arch = saved;
11029 /* Allow -march=+nosse. */
11030 if (*arch == '+')
11031 arch++;
6305a203 11032 do
9103f4f4 11033 {
6305a203 11034 if (*arch == '.')
2b5d6a91 11035 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11036 next = strchr (arch, '+');
11037 if (next)
11038 *next++ = '\0';
91d6fa6a 11039 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11040 {
91d6fa6a 11041 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11042 {
6305a203 11043 /* Processor. */
1ded5609
JB
11044 if (! cpu_arch[j].flags.bitfield.cpui386)
11045 continue;
11046
91d6fa6a 11047 cpu_arch_name = cpu_arch[j].name;
6305a203 11048 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11049 cpu_arch_flags = cpu_arch[j].flags;
11050 cpu_arch_isa = cpu_arch[j].type;
11051 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11052 if (!cpu_arch_tune_set)
11053 {
11054 cpu_arch_tune = cpu_arch_isa;
11055 cpu_arch_tune_flags = cpu_arch_isa_flags;
11056 }
11057 break;
11058 }
91d6fa6a
NC
11059 else if (*cpu_arch [j].name == '.'
11060 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11061 {
33eaf5de 11062 /* ISA extension. */
6305a203 11063 i386_cpu_flags flags;
309d3373 11064
293f5f65
L
11065 flags = cpu_flags_or (cpu_arch_flags,
11066 cpu_arch[j].flags);
81486035 11067
5b64d091 11068 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11069 {
11070 if (cpu_sub_arch_name)
11071 {
11072 char *name = cpu_sub_arch_name;
11073 cpu_sub_arch_name = concat (name,
91d6fa6a 11074 cpu_arch[j].name,
1bf57e9f 11075 (const char *) NULL);
6305a203
L
11076 free (name);
11077 }
11078 else
91d6fa6a 11079 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11080 cpu_arch_flags = flags;
a586129e 11081 cpu_arch_isa_flags = flags;
6305a203 11082 }
0089dace
L
11083 else
11084 cpu_arch_isa_flags
11085 = cpu_flags_or (cpu_arch_isa_flags,
11086 cpu_arch[j].flags);
6305a203 11087 break;
ccc9c027 11088 }
9103f4f4 11089 }
6305a203 11090
293f5f65
L
11091 if (j >= ARRAY_SIZE (cpu_arch))
11092 {
33eaf5de 11093 /* Disable an ISA extension. */
293f5f65
L
11094 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11095 if (strcmp (arch, cpu_noarch [j].name) == 0)
11096 {
11097 i386_cpu_flags flags;
11098
11099 flags = cpu_flags_and_not (cpu_arch_flags,
11100 cpu_noarch[j].flags);
11101 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11102 {
11103 if (cpu_sub_arch_name)
11104 {
11105 char *name = cpu_sub_arch_name;
11106 cpu_sub_arch_name = concat (arch,
11107 (const char *) NULL);
11108 free (name);
11109 }
11110 else
11111 cpu_sub_arch_name = xstrdup (arch);
11112 cpu_arch_flags = flags;
11113 cpu_arch_isa_flags = flags;
11114 }
11115 break;
11116 }
11117
11118 if (j >= ARRAY_SIZE (cpu_noarch))
11119 j = ARRAY_SIZE (cpu_arch);
11120 }
11121
91d6fa6a 11122 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11123 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11124
11125 arch = next;
9103f4f4 11126 }
293f5f65
L
11127 while (next != NULL);
11128 free (saved);
9103f4f4
L
11129 break;
11130
11131 case OPTION_MTUNE:
11132 if (*arg == '.')
2b5d6a91 11133 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11134 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11135 {
91d6fa6a 11136 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11137 {
ccc9c027 11138 cpu_arch_tune_set = 1;
91d6fa6a
NC
11139 cpu_arch_tune = cpu_arch [j].type;
11140 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11141 break;
11142 }
11143 }
91d6fa6a 11144 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11145 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11146 break;
11147
1efbbeb4
L
11148 case OPTION_MMNEMONIC:
11149 if (strcasecmp (arg, "att") == 0)
11150 intel_mnemonic = 0;
11151 else if (strcasecmp (arg, "intel") == 0)
11152 intel_mnemonic = 1;
11153 else
2b5d6a91 11154 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11155 break;
11156
11157 case OPTION_MSYNTAX:
11158 if (strcasecmp (arg, "att") == 0)
11159 intel_syntax = 0;
11160 else if (strcasecmp (arg, "intel") == 0)
11161 intel_syntax = 1;
11162 else
2b5d6a91 11163 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11164 break;
11165
11166 case OPTION_MINDEX_REG:
11167 allow_index_reg = 1;
11168 break;
11169
11170 case OPTION_MNAKED_REG:
11171 allow_naked_reg = 1;
11172 break;
11173
c0f3af97
L
11174 case OPTION_MSSE2AVX:
11175 sse2avx = 1;
11176 break;
11177
daf50ae7
L
11178 case OPTION_MSSE_CHECK:
11179 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11180 sse_check = check_error;
daf50ae7 11181 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11182 sse_check = check_warning;
daf50ae7 11183 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11184 sse_check = check_none;
daf50ae7 11185 else
2b5d6a91 11186 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11187 break;
11188
7bab8ab5
JB
11189 case OPTION_MOPERAND_CHECK:
11190 if (strcasecmp (arg, "error") == 0)
11191 operand_check = check_error;
11192 else if (strcasecmp (arg, "warning") == 0)
11193 operand_check = check_warning;
11194 else if (strcasecmp (arg, "none") == 0)
11195 operand_check = check_none;
11196 else
11197 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11198 break;
11199
539f890d
L
11200 case OPTION_MAVXSCALAR:
11201 if (strcasecmp (arg, "128") == 0)
11202 avxscalar = vex128;
11203 else if (strcasecmp (arg, "256") == 0)
11204 avxscalar = vex256;
11205 else
2b5d6a91 11206 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11207 break;
11208
7e8b059b
L
11209 case OPTION_MADD_BND_PREFIX:
11210 add_bnd_prefix = 1;
11211 break;
11212
43234a1e
L
11213 case OPTION_MEVEXLIG:
11214 if (strcmp (arg, "128") == 0)
11215 evexlig = evexl128;
11216 else if (strcmp (arg, "256") == 0)
11217 evexlig = evexl256;
11218 else if (strcmp (arg, "512") == 0)
11219 evexlig = evexl512;
11220 else
11221 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11222 break;
11223
d3d3c6db
IT
11224 case OPTION_MEVEXRCIG:
11225 if (strcmp (arg, "rne") == 0)
11226 evexrcig = rne;
11227 else if (strcmp (arg, "rd") == 0)
11228 evexrcig = rd;
11229 else if (strcmp (arg, "ru") == 0)
11230 evexrcig = ru;
11231 else if (strcmp (arg, "rz") == 0)
11232 evexrcig = rz;
11233 else
11234 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11235 break;
11236
43234a1e
L
11237 case OPTION_MEVEXWIG:
11238 if (strcmp (arg, "0") == 0)
11239 evexwig = evexw0;
11240 else if (strcmp (arg, "1") == 0)
11241 evexwig = evexw1;
11242 else
11243 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11244 break;
11245
167ad85b
TG
11246# if defined (TE_PE) || defined (TE_PEP)
11247 case OPTION_MBIG_OBJ:
11248 use_big_obj = 1;
11249 break;
11250#endif
11251
d1982f93 11252 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11253 if (strcasecmp (arg, "yes") == 0)
11254 omit_lock_prefix = 1;
11255 else if (strcasecmp (arg, "no") == 0)
11256 omit_lock_prefix = 0;
11257 else
11258 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11259 break;
11260
e4e00185
AS
11261 case OPTION_MFENCE_AS_LOCK_ADD:
11262 if (strcasecmp (arg, "yes") == 0)
11263 avoid_fence = 1;
11264 else if (strcasecmp (arg, "no") == 0)
11265 avoid_fence = 0;
11266 else
11267 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11268 break;
11269
0cb4071e
L
11270 case OPTION_MRELAX_RELOCATIONS:
11271 if (strcasecmp (arg, "yes") == 0)
11272 generate_relax_relocations = 1;
11273 else if (strcasecmp (arg, "no") == 0)
11274 generate_relax_relocations = 0;
11275 else
11276 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11277 break;
11278
5db04b09 11279 case OPTION_MAMD64:
e89c5eaa 11280 intel64 = 0;
5db04b09
L
11281 break;
11282
11283 case OPTION_MINTEL64:
e89c5eaa 11284 intel64 = 1;
5db04b09
L
11285 break;
11286
b6f8c7c4
L
11287 case 'O':
11288 if (arg == NULL)
11289 {
11290 optimize = 1;
11291 /* Turn off -Os. */
11292 optimize_for_space = 0;
11293 }
11294 else if (*arg == 's')
11295 {
11296 optimize_for_space = 1;
11297 /* Turn on all encoding optimizations. */
11298 optimize = -1;
11299 }
11300 else
11301 {
11302 optimize = atoi (arg);
11303 /* Turn off -Os. */
11304 optimize_for_space = 0;
11305 }
11306 break;
11307
252b5132
RH
11308 default:
11309 return 0;
11310 }
11311 return 1;
11312}
11313
8a2c8fef
L
11314#define MESSAGE_TEMPLATE \
11315" "
11316
293f5f65
L
11317static char *
11318output_message (FILE *stream, char *p, char *message, char *start,
11319 int *left_p, const char *name, int len)
11320{
11321 int size = sizeof (MESSAGE_TEMPLATE);
11322 int left = *left_p;
11323
11324 /* Reserve 2 spaces for ", " or ",\0" */
11325 left -= len + 2;
11326
11327 /* Check if there is any room. */
11328 if (left >= 0)
11329 {
11330 if (p != start)
11331 {
11332 *p++ = ',';
11333 *p++ = ' ';
11334 }
11335 p = mempcpy (p, name, len);
11336 }
11337 else
11338 {
11339 /* Output the current message now and start a new one. */
11340 *p++ = ',';
11341 *p = '\0';
11342 fprintf (stream, "%s\n", message);
11343 p = start;
11344 left = size - (start - message) - len - 2;
11345
11346 gas_assert (left >= 0);
11347
11348 p = mempcpy (p, name, len);
11349 }
11350
11351 *left_p = left;
11352 return p;
11353}
11354
8a2c8fef 11355static void
1ded5609 11356show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11357{
11358 static char message[] = MESSAGE_TEMPLATE;
11359 char *start = message + 27;
11360 char *p;
11361 int size = sizeof (MESSAGE_TEMPLATE);
11362 int left;
11363 const char *name;
11364 int len;
11365 unsigned int j;
11366
11367 p = start;
11368 left = size - (start - message);
11369 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11370 {
11371 /* Should it be skipped? */
11372 if (cpu_arch [j].skip)
11373 continue;
11374
11375 name = cpu_arch [j].name;
11376 len = cpu_arch [j].len;
11377 if (*name == '.')
11378 {
11379 /* It is an extension. Skip if we aren't asked to show it. */
11380 if (ext)
11381 {
11382 name++;
11383 len--;
11384 }
11385 else
11386 continue;
11387 }
11388 else if (ext)
11389 {
11390 /* It is an processor. Skip if we show only extension. */
11391 continue;
11392 }
1ded5609
JB
11393 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11394 {
11395 /* It is an impossible processor - skip. */
11396 continue;
11397 }
8a2c8fef 11398
293f5f65 11399 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11400 }
11401
293f5f65
L
11402 /* Display disabled extensions. */
11403 if (ext)
11404 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11405 {
11406 name = cpu_noarch [j].name;
11407 len = cpu_noarch [j].len;
11408 p = output_message (stream, p, message, start, &left, name,
11409 len);
11410 }
11411
8a2c8fef
L
11412 *p = '\0';
11413 fprintf (stream, "%s\n", message);
11414}
11415
252b5132 11416void
8a2c8fef 11417md_show_usage (FILE *stream)
252b5132 11418{
4cc782b5
ILT
11419#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11420 fprintf (stream, _("\
a38cf1db
AM
11421 -Q ignored\n\
11422 -V print assembler version number\n\
b3b91714
AM
11423 -k ignored\n"));
11424#endif
11425 fprintf (stream, _("\
12b55ccc 11426 -n Do not optimize code alignment\n\
b3b91714
AM
11427 -q quieten some warnings\n"));
11428#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11429 fprintf (stream, _("\
a38cf1db 11430 -s ignored\n"));
b3b91714 11431#endif
d7f449c0
L
11432#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11433 || defined (TE_PE) || defined (TE_PEP))
751d281c 11434 fprintf (stream, _("\
570561f7 11435 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11436#endif
b3b91714
AM
11437#ifdef SVR4_COMMENT_CHARS
11438 fprintf (stream, _("\
11439 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11440#else
11441 fprintf (stream, _("\
b3b91714 11442 --divide ignored\n"));
4cc782b5 11443#endif
9103f4f4 11444 fprintf (stream, _("\
6305a203 11445 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11446 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11447 show_arch (stream, 0, 1);
8a2c8fef
L
11448 fprintf (stream, _("\
11449 EXTENSION is combination of:\n"));
1ded5609 11450 show_arch (stream, 1, 0);
6305a203 11451 fprintf (stream, _("\
8a2c8fef 11452 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11453 show_arch (stream, 0, 0);
ba104c83 11454 fprintf (stream, _("\
c0f3af97
L
11455 -msse2avx encode SSE instructions with VEX prefix\n"));
11456 fprintf (stream, _("\
7c5c05ef 11457 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11458 check SSE instructions\n"));
11459 fprintf (stream, _("\
7c5c05ef 11460 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11461 check operand combinations for validity\n"));
11462 fprintf (stream, _("\
7c5c05ef
L
11463 -mavxscalar=[128|256] (default: 128)\n\
11464 encode scalar AVX instructions with specific vector\n\
539f890d
L
11465 length\n"));
11466 fprintf (stream, _("\
7c5c05ef
L
11467 -mevexlig=[128|256|512] (default: 128)\n\
11468 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11469 length\n"));
11470 fprintf (stream, _("\
7c5c05ef
L
11471 -mevexwig=[0|1] (default: 0)\n\
11472 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11473 for EVEX.W bit ignored instructions\n"));
11474 fprintf (stream, _("\
7c5c05ef 11475 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11476 encode EVEX instructions with specific EVEX.RC value\n\
11477 for SAE-only ignored instructions\n"));
11478 fprintf (stream, _("\
7c5c05ef
L
11479 -mmnemonic=[att|intel] "));
11480 if (SYSV386_COMPAT)
11481 fprintf (stream, _("(default: att)\n"));
11482 else
11483 fprintf (stream, _("(default: intel)\n"));
11484 fprintf (stream, _("\
11485 use AT&T/Intel mnemonic\n"));
ba104c83 11486 fprintf (stream, _("\
7c5c05ef
L
11487 -msyntax=[att|intel] (default: att)\n\
11488 use AT&T/Intel syntax\n"));
ba104c83
L
11489 fprintf (stream, _("\
11490 -mindex-reg support pseudo index registers\n"));
11491 fprintf (stream, _("\
11492 -mnaked-reg don't require `%%' prefix for registers\n"));
11493 fprintf (stream, _("\
7e8b059b 11494 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11495#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11496 fprintf (stream, _("\
11497 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11498 fprintf (stream, _("\
11499 -mx86-used-note=[no|yes] "));
11500 if (DEFAULT_X86_USED_NOTE)
11501 fprintf (stream, _("(default: yes)\n"));
11502 else
11503 fprintf (stream, _("(default: no)\n"));
11504 fprintf (stream, _("\
11505 generate x86 used ISA and feature properties\n"));
11506#endif
11507#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11508 fprintf (stream, _("\
11509 -mbig-obj generate big object files\n"));
11510#endif
d022bddd 11511 fprintf (stream, _("\
7c5c05ef 11512 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11513 strip all lock prefixes\n"));
5db04b09 11514 fprintf (stream, _("\
7c5c05ef 11515 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11516 encode lfence, mfence and sfence as\n\
11517 lock addl $0x0, (%%{re}sp)\n"));
11518 fprintf (stream, _("\
7c5c05ef
L
11519 -mrelax-relocations=[no|yes] "));
11520 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11521 fprintf (stream, _("(default: yes)\n"));
11522 else
11523 fprintf (stream, _("(default: no)\n"));
11524 fprintf (stream, _("\
0cb4071e
L
11525 generate relax relocations\n"));
11526 fprintf (stream, _("\
7c5c05ef 11527 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11528 fprintf (stream, _("\
11529 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11530}
11531
3e73aa7c 11532#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11533 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11534 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11535
11536/* Pick the target format to use. */
11537
47926f60 11538const char *
e3bb37b5 11539i386_target_format (void)
252b5132 11540{
351f65ca
L
11541 if (!strncmp (default_arch, "x86_64", 6))
11542 {
11543 update_code_flag (CODE_64BIT, 1);
11544 if (default_arch[6] == '\0')
7f56bc95 11545 x86_elf_abi = X86_64_ABI;
351f65ca 11546 else
7f56bc95 11547 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11548 }
3e73aa7c 11549 else if (!strcmp (default_arch, "i386"))
78f12dd3 11550 update_code_flag (CODE_32BIT, 1);
5197d474
L
11551 else if (!strcmp (default_arch, "iamcu"))
11552 {
11553 update_code_flag (CODE_32BIT, 1);
11554 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11555 {
11556 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11557 cpu_arch_name = "iamcu";
11558 cpu_sub_arch_name = NULL;
11559 cpu_arch_flags = iamcu_flags;
11560 cpu_arch_isa = PROCESSOR_IAMCU;
11561 cpu_arch_isa_flags = iamcu_flags;
11562 if (!cpu_arch_tune_set)
11563 {
11564 cpu_arch_tune = cpu_arch_isa;
11565 cpu_arch_tune_flags = cpu_arch_isa_flags;
11566 }
11567 }
8d471ec1 11568 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11569 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11570 cpu_arch_name);
11571 }
3e73aa7c 11572 else
2b5d6a91 11573 as_fatal (_("unknown architecture"));
89507696
JB
11574
11575 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11576 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11577 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11578 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11579
252b5132
RH
11580 switch (OUTPUT_FLAVOR)
11581 {
9384f2ff 11582#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11583 case bfd_target_aout_flavour:
47926f60 11584 return AOUT_TARGET_FORMAT;
4c63da97 11585#endif
9384f2ff
AM
11586#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11587# if defined (TE_PE) || defined (TE_PEP)
11588 case bfd_target_coff_flavour:
167ad85b
TG
11589 if (flag_code == CODE_64BIT)
11590 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11591 else
11592 return "pe-i386";
9384f2ff 11593# elif defined (TE_GO32)
0561d57c
JK
11594 case bfd_target_coff_flavour:
11595 return "coff-go32";
9384f2ff 11596# else
252b5132
RH
11597 case bfd_target_coff_flavour:
11598 return "coff-i386";
9384f2ff 11599# endif
4c63da97 11600#endif
3e73aa7c 11601#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11602 case bfd_target_elf_flavour:
3e73aa7c 11603 {
351f65ca
L
11604 const char *format;
11605
11606 switch (x86_elf_abi)
4fa24527 11607 {
351f65ca
L
11608 default:
11609 format = ELF_TARGET_FORMAT;
11610 break;
7f56bc95 11611 case X86_64_ABI:
351f65ca 11612 use_rela_relocations = 1;
4fa24527 11613 object_64bit = 1;
351f65ca
L
11614 format = ELF_TARGET_FORMAT64;
11615 break;
7f56bc95 11616 case X86_64_X32_ABI:
4fa24527 11617 use_rela_relocations = 1;
351f65ca 11618 object_64bit = 1;
862be3fb 11619 disallow_64bit_reloc = 1;
351f65ca
L
11620 format = ELF_TARGET_FORMAT32;
11621 break;
4fa24527 11622 }
3632d14b 11623 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11624 {
7f56bc95 11625 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11626 as_fatal (_("Intel L1OM is 64bit only"));
11627 return ELF_TARGET_L1OM_FORMAT;
11628 }
b49f93f6 11629 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11630 {
11631 if (x86_elf_abi != X86_64_ABI)
11632 as_fatal (_("Intel K1OM is 64bit only"));
11633 return ELF_TARGET_K1OM_FORMAT;
11634 }
81486035
L
11635 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11636 {
11637 if (x86_elf_abi != I386_ABI)
11638 as_fatal (_("Intel MCU is 32bit only"));
11639 return ELF_TARGET_IAMCU_FORMAT;
11640 }
8a9036a4 11641 else
351f65ca 11642 return format;
3e73aa7c 11643 }
e57f8c65
TG
11644#endif
11645#if defined (OBJ_MACH_O)
11646 case bfd_target_mach_o_flavour:
d382c579
TG
11647 if (flag_code == CODE_64BIT)
11648 {
11649 use_rela_relocations = 1;
11650 object_64bit = 1;
11651 return "mach-o-x86-64";
11652 }
11653 else
11654 return "mach-o-i386";
4c63da97 11655#endif
252b5132
RH
11656 default:
11657 abort ();
11658 return NULL;
11659 }
11660}
11661
47926f60 11662#endif /* OBJ_MAYBE_ more than one */
252b5132 11663\f
252b5132 11664symbolS *
7016a5d5 11665md_undefined_symbol (char *name)
252b5132 11666{
18dc2407
ILT
11667 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11668 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11669 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11670 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11671 {
11672 if (!GOT_symbol)
11673 {
11674 if (symbol_find (name))
11675 as_bad (_("GOT already in symbol table"));
11676 GOT_symbol = symbol_new (name, undefined_section,
11677 (valueT) 0, &zero_address_frag);
11678 };
11679 return GOT_symbol;
11680 }
252b5132
RH
11681 return 0;
11682}
11683
11684/* Round up a section size to the appropriate boundary. */
47926f60 11685
252b5132 11686valueT
7016a5d5 11687md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11688{
4c63da97
AM
11689#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11690 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11691 {
11692 /* For a.out, force the section size to be aligned. If we don't do
11693 this, BFD will align it for us, but it will not write out the
11694 final bytes of the section. This may be a bug in BFD, but it is
11695 easier to fix it here since that is how the other a.out targets
11696 work. */
11697 int align;
11698
11699 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11700 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11701 }
252b5132
RH
11702#endif
11703
11704 return size;
11705}
11706
11707/* On the i386, PC-relative offsets are relative to the start of the
11708 next instruction. That is, the address of the offset, plus its
11709 size, since the offset is always the last part of the insn. */
11710
11711long
e3bb37b5 11712md_pcrel_from (fixS *fixP)
252b5132
RH
11713{
11714 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11715}
11716
11717#ifndef I386COFF
11718
11719static void
e3bb37b5 11720s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11721{
29b0f896 11722 int temp;
252b5132 11723
8a75718c
JB
11724#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11725 if (IS_ELF)
11726 obj_elf_section_change_hook ();
11727#endif
252b5132
RH
11728 temp = get_absolute_expression ();
11729 subseg_set (bss_section, (subsegT) temp);
11730 demand_empty_rest_of_line ();
11731}
11732
11733#endif
11734
252b5132 11735void
e3bb37b5 11736i386_validate_fix (fixS *fixp)
252b5132 11737{
02a86693 11738 if (fixp->fx_subsy)
252b5132 11739 {
02a86693 11740 if (fixp->fx_subsy == GOT_symbol)
23df1078 11741 {
02a86693
L
11742 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11743 {
11744 if (!object_64bit)
11745 abort ();
11746#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11747 if (fixp->fx_tcbit2)
56ceb5b5
L
11748 fixp->fx_r_type = (fixp->fx_tcbit
11749 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11750 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11751 else
11752#endif
11753 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11754 }
d6ab8113 11755 else
02a86693
L
11756 {
11757 if (!object_64bit)
11758 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11759 else
11760 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11761 }
11762 fixp->fx_subsy = 0;
23df1078 11763 }
252b5132 11764 }
02a86693
L
11765#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11766 else if (!object_64bit)
11767 {
11768 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11769 && fixp->fx_tcbit2)
11770 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11771 }
11772#endif
252b5132
RH
11773}
11774
252b5132 11775arelent *
7016a5d5 11776tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11777{
11778 arelent *rel;
11779 bfd_reloc_code_real_type code;
11780
11781 switch (fixp->fx_r_type)
11782 {
8ce3d284 11783#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11784 case BFD_RELOC_SIZE32:
11785 case BFD_RELOC_SIZE64:
11786 if (S_IS_DEFINED (fixp->fx_addsy)
11787 && !S_IS_EXTERNAL (fixp->fx_addsy))
11788 {
11789 /* Resolve size relocation against local symbol to size of
11790 the symbol plus addend. */
11791 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11792 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11793 && !fits_in_unsigned_long (value))
11794 as_bad_where (fixp->fx_file, fixp->fx_line,
11795 _("symbol size computation overflow"));
11796 fixp->fx_addsy = NULL;
11797 fixp->fx_subsy = NULL;
11798 md_apply_fix (fixp, (valueT *) &value, NULL);
11799 return NULL;
11800 }
8ce3d284 11801#endif
1a0670f3 11802 /* Fall through. */
8fd4256d 11803
3e73aa7c
JH
11804 case BFD_RELOC_X86_64_PLT32:
11805 case BFD_RELOC_X86_64_GOT32:
11806 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11807 case BFD_RELOC_X86_64_GOTPCRELX:
11808 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11809 case BFD_RELOC_386_PLT32:
11810 case BFD_RELOC_386_GOT32:
02a86693 11811 case BFD_RELOC_386_GOT32X:
252b5132
RH
11812 case BFD_RELOC_386_GOTOFF:
11813 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11814 case BFD_RELOC_386_TLS_GD:
11815 case BFD_RELOC_386_TLS_LDM:
11816 case BFD_RELOC_386_TLS_LDO_32:
11817 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11818 case BFD_RELOC_386_TLS_IE:
11819 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11820 case BFD_RELOC_386_TLS_LE_32:
11821 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11822 case BFD_RELOC_386_TLS_GOTDESC:
11823 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11824 case BFD_RELOC_X86_64_TLSGD:
11825 case BFD_RELOC_X86_64_TLSLD:
11826 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11827 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11828 case BFD_RELOC_X86_64_GOTTPOFF:
11829 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11830 case BFD_RELOC_X86_64_TPOFF64:
11831 case BFD_RELOC_X86_64_GOTOFF64:
11832 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11833 case BFD_RELOC_X86_64_GOT64:
11834 case BFD_RELOC_X86_64_GOTPCREL64:
11835 case BFD_RELOC_X86_64_GOTPC64:
11836 case BFD_RELOC_X86_64_GOTPLT64:
11837 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11838 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11839 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11840 case BFD_RELOC_RVA:
11841 case BFD_RELOC_VTABLE_ENTRY:
11842 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11843#ifdef TE_PE
11844 case BFD_RELOC_32_SECREL:
11845#endif
252b5132
RH
11846 code = fixp->fx_r_type;
11847 break;
dbbaec26
L
11848 case BFD_RELOC_X86_64_32S:
11849 if (!fixp->fx_pcrel)
11850 {
11851 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11852 code = fixp->fx_r_type;
11853 break;
11854 }
1a0670f3 11855 /* Fall through. */
252b5132 11856 default:
93382f6d 11857 if (fixp->fx_pcrel)
252b5132 11858 {
93382f6d
AM
11859 switch (fixp->fx_size)
11860 {
11861 default:
b091f402
AM
11862 as_bad_where (fixp->fx_file, fixp->fx_line,
11863 _("can not do %d byte pc-relative relocation"),
11864 fixp->fx_size);
93382f6d
AM
11865 code = BFD_RELOC_32_PCREL;
11866 break;
11867 case 1: code = BFD_RELOC_8_PCREL; break;
11868 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11869 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11870#ifdef BFD64
11871 case 8: code = BFD_RELOC_64_PCREL; break;
11872#endif
93382f6d
AM
11873 }
11874 }
11875 else
11876 {
11877 switch (fixp->fx_size)
11878 {
11879 default:
b091f402
AM
11880 as_bad_where (fixp->fx_file, fixp->fx_line,
11881 _("can not do %d byte relocation"),
11882 fixp->fx_size);
93382f6d
AM
11883 code = BFD_RELOC_32;
11884 break;
11885 case 1: code = BFD_RELOC_8; break;
11886 case 2: code = BFD_RELOC_16; break;
11887 case 4: code = BFD_RELOC_32; break;
937149dd 11888#ifdef BFD64
3e73aa7c 11889 case 8: code = BFD_RELOC_64; break;
937149dd 11890#endif
93382f6d 11891 }
252b5132
RH
11892 }
11893 break;
11894 }
252b5132 11895
d182319b
JB
11896 if ((code == BFD_RELOC_32
11897 || code == BFD_RELOC_32_PCREL
11898 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11899 && GOT_symbol
11900 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11901 {
4fa24527 11902 if (!object_64bit)
d6ab8113
JB
11903 code = BFD_RELOC_386_GOTPC;
11904 else
11905 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11906 }
7b81dfbb
AJ
11907 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11908 && GOT_symbol
11909 && fixp->fx_addsy == GOT_symbol)
11910 {
11911 code = BFD_RELOC_X86_64_GOTPC64;
11912 }
252b5132 11913
add39d23
TS
11914 rel = XNEW (arelent);
11915 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11916 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11917
11918 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11919
3e73aa7c
JH
11920 if (!use_rela_relocations)
11921 {
11922 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11923 vtable entry to be used in the relocation's section offset. */
11924 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11925 rel->address = fixp->fx_offset;
fbeb56a4
DK
11926#if defined (OBJ_COFF) && defined (TE_PE)
11927 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11928 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11929 else
11930#endif
c6682705 11931 rel->addend = 0;
3e73aa7c
JH
11932 }
11933 /* Use the rela in 64bit mode. */
252b5132 11934 else
3e73aa7c 11935 {
862be3fb
L
11936 if (disallow_64bit_reloc)
11937 switch (code)
11938 {
862be3fb
L
11939 case BFD_RELOC_X86_64_DTPOFF64:
11940 case BFD_RELOC_X86_64_TPOFF64:
11941 case BFD_RELOC_64_PCREL:
11942 case BFD_RELOC_X86_64_GOTOFF64:
11943 case BFD_RELOC_X86_64_GOT64:
11944 case BFD_RELOC_X86_64_GOTPCREL64:
11945 case BFD_RELOC_X86_64_GOTPC64:
11946 case BFD_RELOC_X86_64_GOTPLT64:
11947 case BFD_RELOC_X86_64_PLTOFF64:
11948 as_bad_where (fixp->fx_file, fixp->fx_line,
11949 _("cannot represent relocation type %s in x32 mode"),
11950 bfd_get_reloc_code_name (code));
11951 break;
11952 default:
11953 break;
11954 }
11955
062cd5e7
AS
11956 if (!fixp->fx_pcrel)
11957 rel->addend = fixp->fx_offset;
11958 else
11959 switch (code)
11960 {
11961 case BFD_RELOC_X86_64_PLT32:
11962 case BFD_RELOC_X86_64_GOT32:
11963 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11964 case BFD_RELOC_X86_64_GOTPCRELX:
11965 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11966 case BFD_RELOC_X86_64_TLSGD:
11967 case BFD_RELOC_X86_64_TLSLD:
11968 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11969 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11970 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11971 rel->addend = fixp->fx_offset - fixp->fx_size;
11972 break;
11973 default:
11974 rel->addend = (section->vma
11975 - fixp->fx_size
11976 + fixp->fx_addnumber
11977 + md_pcrel_from (fixp));
11978 break;
11979 }
3e73aa7c
JH
11980 }
11981
252b5132
RH
11982 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11983 if (rel->howto == NULL)
11984 {
11985 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11986 _("cannot represent relocation type %s"),
252b5132
RH
11987 bfd_get_reloc_code_name (code));
11988 /* Set howto to a garbage value so that we can keep going. */
11989 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11990 gas_assert (rel->howto != NULL);
252b5132
RH
11991 }
11992
11993 return rel;
11994}
11995
ee86248c 11996#include "tc-i386-intel.c"
54cfded0 11997
a60de03c
JB
11998void
11999tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12000{
a60de03c
JB
12001 int saved_naked_reg;
12002 char saved_register_dot;
54cfded0 12003
a60de03c
JB
12004 saved_naked_reg = allow_naked_reg;
12005 allow_naked_reg = 1;
12006 saved_register_dot = register_chars['.'];
12007 register_chars['.'] = '.';
12008 allow_pseudo_reg = 1;
12009 expression_and_evaluate (exp);
12010 allow_pseudo_reg = 0;
12011 register_chars['.'] = saved_register_dot;
12012 allow_naked_reg = saved_naked_reg;
12013
e96d56a1 12014 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12015 {
a60de03c
JB
12016 if ((addressT) exp->X_add_number < i386_regtab_size)
12017 {
12018 exp->X_op = O_constant;
12019 exp->X_add_number = i386_regtab[exp->X_add_number]
12020 .dw2_regnum[flag_code >> 1];
12021 }
12022 else
12023 exp->X_op = O_illegal;
54cfded0 12024 }
54cfded0
AM
12025}
12026
12027void
12028tc_x86_frame_initial_instructions (void)
12029{
a60de03c
JB
12030 static unsigned int sp_regno[2];
12031
12032 if (!sp_regno[flag_code >> 1])
12033 {
12034 char *saved_input = input_line_pointer;
12035 char sp[][4] = {"esp", "rsp"};
12036 expressionS exp;
a4447b93 12037
a60de03c
JB
12038 input_line_pointer = sp[flag_code >> 1];
12039 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12040 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12041 sp_regno[flag_code >> 1] = exp.X_add_number;
12042 input_line_pointer = saved_input;
12043 }
a4447b93 12044
61ff971f
L
12045 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12046 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12047}
d2b2c203 12048
d7921315
L
12049int
12050x86_dwarf2_addr_size (void)
12051{
12052#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12053 if (x86_elf_abi == X86_64_X32_ABI)
12054 return 4;
12055#endif
12056 return bfd_arch_bits_per_address (stdoutput) / 8;
12057}
12058
d2b2c203
DJ
12059int
12060i386_elf_section_type (const char *str, size_t len)
12061{
12062 if (flag_code == CODE_64BIT
12063 && len == sizeof ("unwind") - 1
12064 && strncmp (str, "unwind", 6) == 0)
12065 return SHT_X86_64_UNWIND;
12066
12067 return -1;
12068}
bb41ade5 12069
ad5fec3b
EB
12070#ifdef TE_SOLARIS
12071void
12072i386_solaris_fix_up_eh_frame (segT sec)
12073{
12074 if (flag_code == CODE_64BIT)
12075 elf_section_type (sec) = SHT_X86_64_UNWIND;
12076}
12077#endif
12078
bb41ade5
AM
12079#ifdef TE_PE
12080void
12081tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12082{
91d6fa6a 12083 expressionS exp;
bb41ade5 12084
91d6fa6a
NC
12085 exp.X_op = O_secrel;
12086 exp.X_add_symbol = symbol;
12087 exp.X_add_number = 0;
12088 emit_expr (&exp, size);
bb41ade5
AM
12089}
12090#endif
3b22753a
L
12091
12092#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12093/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12094
01e1a5bc 12095bfd_vma
6d4af3c2 12096x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12097{
12098 if (flag_code == CODE_64BIT)
12099 {
12100 if (letter == 'l')
12101 return SHF_X86_64_LARGE;
12102
8f3bae45 12103 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12104 }
3b22753a 12105 else
8f3bae45 12106 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12107 return -1;
12108}
12109
01e1a5bc 12110bfd_vma
3b22753a
L
12111x86_64_section_word (char *str, size_t len)
12112{
8620418b 12113 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12114 return SHF_X86_64_LARGE;
12115
12116 return -1;
12117}
12118
12119static void
12120handle_large_common (int small ATTRIBUTE_UNUSED)
12121{
12122 if (flag_code != CODE_64BIT)
12123 {
12124 s_comm_internal (0, elf_common_parse);
12125 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12126 }
12127 else
12128 {
12129 static segT lbss_section;
12130 asection *saved_com_section_ptr = elf_com_section_ptr;
12131 asection *saved_bss_section = bss_section;
12132
12133 if (lbss_section == NULL)
12134 {
12135 flagword applicable;
12136 segT seg = now_seg;
12137 subsegT subseg = now_subseg;
12138
12139 /* The .lbss section is for local .largecomm symbols. */
12140 lbss_section = subseg_new (".lbss", 0);
12141 applicable = bfd_applicable_section_flags (stdoutput);
12142 bfd_set_section_flags (stdoutput, lbss_section,
12143 applicable & SEC_ALLOC);
12144 seg_info (lbss_section)->bss = 1;
12145
12146 subseg_set (seg, subseg);
12147 }
12148
12149 elf_com_section_ptr = &_bfd_elf_large_com_section;
12150 bss_section = lbss_section;
12151
12152 s_comm_internal (0, elf_common_parse);
12153
12154 elf_com_section_ptr = saved_com_section_ptr;
12155 bss_section = saved_bss_section;
12156 }
12157}
12158#endif /* OBJ_ELF || OBJ_MAYBE_ELF */