]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-mips.c
Add macro expansions for ADD, SUB, DADD and DSUB for MIPS r6
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
82704155 2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
6f2117ba
PH
144 /* The name if this is an label. */
145 char label[16];
146
147 /* The target label name if this is an branch. */
148 char target[16];
149
47e39b9d
RS
150 /* The frag that contains the instruction. */
151 struct frag *frag;
152
153 /* The offset into FRAG of the first instruction byte. */
154 long where;
155
156 /* The relocs associated with the instruction, if any. */
157 fixS *fixp[3];
158
a38419a5
RS
159 /* True if this entry cannot be moved from its current position. */
160 unsigned int fixed_p : 1;
47e39b9d 161
708587a4 162 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
163 unsigned int noreorder_p : 1;
164
2fa15973
RS
165 /* True for mips16 instructions that jump to an absolute address. */
166 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
167
168 /* True if this instruction is complete. */
169 unsigned int complete_p : 1;
e407c74b
NC
170
171 /* True if this instruction is cleared from history by unconditional
172 branch. */
173 unsigned int cleared_p : 1;
47e39b9d
RS
174};
175
a325df1d
TS
176/* The ABI to use. */
177enum mips_abi_level
178{
179 NO_ABI = 0,
180 O32_ABI,
181 O64_ABI,
182 N32_ABI,
183 N64_ABI,
184 EABI_ABI
185};
186
187/* MIPS ABI we are using for this output file. */
316f5878 188static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 189
143d77c5
EC
190/* Whether or not we have code that can call pic code. */
191int mips_abicalls = FALSE;
192
aa6975fb
ILT
193/* Whether or not we have code which can be put into a shared
194 library. */
195static bfd_boolean mips_in_shared = TRUE;
196
252b5132
RH
197/* This is the set of options which may be modified by the .set
198 pseudo-op. We use a struct so that .set push and .set pop are more
199 reliable. */
200
e972090a
NC
201struct mips_set_options
202{
252b5132
RH
203 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
204 if it has not been initialized. Changed by `.set mipsN', and the
205 -mipsN command line option, and the default CPU. */
206 int isa;
846ef2d0
RS
207 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
208 <asename>', by command line options, and based on the default
209 architecture. */
210 int ase;
252b5132
RH
211 /* Whether we are assembling for the mips16 processor. 0 if we are
212 not, 1 if we are, and -1 if the value has not been initialized.
213 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
214 -nomips16 command line options, and the default CPU. */
215 int mips16;
df58fc94
RS
216 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
217 1 if we are, and -1 if the value has not been initialized. Changed
218 by `.set micromips' and `.set nomicromips', and the -mmicromips
219 and -mno-micromips command line options, and the default CPU. */
220 int micromips;
252b5132
RH
221 /* Non-zero if we should not reorder instructions. Changed by `.set
222 reorder' and `.set noreorder'. */
223 int noreorder;
741fe287
MR
224 /* Non-zero if we should not permit the register designated "assembler
225 temporary" to be used in instructions. The value is the register
226 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
227 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
228 unsigned int at;
252b5132
RH
229 /* Non-zero if we should warn when a macro instruction expands into
230 more than one machine instruction. Changed by `.set nomacro' and
231 `.set macro'. */
232 int warn_about_macros;
233 /* Non-zero if we should not move instructions. Changed by `.set
234 move', `.set volatile', `.set nomove', and `.set novolatile'. */
235 int nomove;
236 /* Non-zero if we should not optimize branches by moving the target
237 of the branch into the delay slot. Actually, we don't perform
238 this optimization anyhow. Changed by `.set bopt' and `.set
239 nobopt'. */
240 int nobopt;
241 /* Non-zero if we should not autoextend mips16 instructions.
242 Changed by `.set autoextend' and `.set noautoextend'. */
243 int noautoextend;
833794fc
MR
244 /* True if we should only emit 32-bit microMIPS instructions.
245 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
246 and -mno-insn32 command line options. */
247 bfd_boolean insn32;
a325df1d
TS
248 /* Restrict general purpose registers and floating point registers
249 to 32 bit. This is initially determined when -mgp32 or -mfp32
250 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 251 int gp;
0b35dfee 252 int fp;
fef14a42
TS
253 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
254 command line option, and the default CPU. */
255 int arch;
aed1a261
RS
256 /* True if ".set sym32" is in effect. */
257 bfd_boolean sym32;
037b32b9
AN
258 /* True if floating-point operations are not allowed. Changed by .set
259 softfloat or .set hardfloat, by command line options -msoft-float or
260 -mhard-float. The default is false. */
261 bfd_boolean soft_float;
262
263 /* True if only single-precision floating-point operations are allowed.
264 Changed by .set singlefloat or .set doublefloat, command-line options
265 -msingle-float or -mdouble-float. The default is false. */
266 bfd_boolean single_float;
351cdf24
MF
267
268 /* 1 if single-precision operations on odd-numbered registers are
269 allowed. */
270 int oddspreg;
3315614d
MF
271
272 /* The set of ASEs that should be enabled for the user specified
273 architecture. This cannot be inferred from 'arch' for all cores
274 as processors only have a unique 'arch' if they add architecture
275 specific instructions (UDI). */
276 int init_ase;
252b5132
RH
277};
278
919731af 279/* Specifies whether module level options have been checked yet. */
280static bfd_boolean file_mips_opts_checked = FALSE;
281
7361da2c
AB
282/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
283 value has not been initialized. Changed by `.nan legacy' and
284 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
285 options, and the default CPU. */
286static int mips_nan2008 = -1;
a325df1d 287
0b35dfee 288/* This is the struct we use to hold the module level set of options.
bad1aba3 289 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 290 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 291
0b35dfee 292static struct mips_set_options file_mips_opts =
293{
294 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
295 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
296 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 297 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
3315614d
MF
298 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1,
299 /* init_ase */ 0
0b35dfee 300};
252b5132 301
0b35dfee 302/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 303
e972090a
NC
304static struct mips_set_options mips_opts =
305{
846ef2d0 306 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 307 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 308 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 309 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
3315614d
MF
310 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1,
311 /* init_ase */ 0
e7af610e 312};
252b5132 313
846ef2d0
RS
314/* Which bits of file_ase were explicitly set or cleared by ASE options. */
315static unsigned int file_ase_explicit;
316
252b5132
RH
317/* These variables are filled in with the masks of registers used.
318 The object format code reads them and puts them in the appropriate
319 place. */
320unsigned long mips_gprmask;
321unsigned long mips_cprmask[4];
322
738f4d98 323/* True if any MIPS16 code was produced. */
a4672219
TS
324static int file_ase_mips16;
325
3994f87e
TS
326#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
327 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
328 || mips_opts.isa == ISA_MIPS32R3 \
329 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 330 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
331 || mips_opts.isa == ISA_MIPS64R2 \
332 || mips_opts.isa == ISA_MIPS64R3 \
333 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 334
df58fc94
RS
335/* True if any microMIPS code was produced. */
336static int file_ase_micromips;
337
b12dd2e4
CF
338/* True if we want to create R_MIPS_JALR for jalr $25. */
339#ifdef TE_IRIX
1180b5a4 340#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 341#else
1180b5a4
RS
342/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
343 because there's no place for any addend, the only acceptable
344 expression is a bare symbol. */
345#define MIPS_JALR_HINT_P(EXPR) \
346 (!HAVE_IN_PLACE_ADDENDS \
347 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
348#endif
349
ec68c924 350/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 351static const char *mips_arch_string;
ec68c924
EC
352
353/* The argument of the -mtune= flag. The architecture for which we
354 are optimizing. */
355static int mips_tune = CPU_UNKNOWN;
316f5878 356static const char *mips_tune_string;
ec68c924 357
316f5878 358/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
359static int mips_32bitmode = 0;
360
316f5878
RS
361/* True if the given ABI requires 32-bit registers. */
362#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
363
364/* Likewise 64-bit registers. */
707bfff6 365#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 366 ((ABI) == N32_ABI \
707bfff6 367 || (ABI) == N64_ABI \
316f5878
RS
368 || (ABI) == O64_ABI)
369
7361da2c
AB
370#define ISA_IS_R6(ISA) \
371 ((ISA) == ISA_MIPS32R6 \
372 || (ISA) == ISA_MIPS64R6)
373
ad3fea08 374/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
375#define ISA_HAS_64BIT_REGS(ISA) \
376 ((ISA) == ISA_MIPS3 \
377 || (ISA) == ISA_MIPS4 \
378 || (ISA) == ISA_MIPS5 \
379 || (ISA) == ISA_MIPS64 \
ae52f483
AB
380 || (ISA) == ISA_MIPS64R2 \
381 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
382 || (ISA) == ISA_MIPS64R5 \
383 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 384
ad3fea08
TS
385/* Return true if ISA supports 64 bit wide float registers. */
386#define ISA_HAS_64BIT_FPRS(ISA) \
387 ((ISA) == ISA_MIPS3 \
388 || (ISA) == ISA_MIPS4 \
389 || (ISA) == ISA_MIPS5 \
390 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
391 || (ISA) == ISA_MIPS32R3 \
392 || (ISA) == ISA_MIPS32R5 \
7361da2c 393 || (ISA) == ISA_MIPS32R6 \
ad3fea08 394 || (ISA) == ISA_MIPS64 \
ae52f483
AB
395 || (ISA) == ISA_MIPS64R2 \
396 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
397 || (ISA) == ISA_MIPS64R5 \
398 || (ISA) == ISA_MIPS64R6)
ad3fea08 399
af7ee8bf
CD
400/* Return true if ISA supports 64-bit right rotate (dror et al.)
401 instructions. */
707bfff6 402#define ISA_HAS_DROR(ISA) \
df58fc94 403 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
404 || (ISA) == ISA_MIPS64R3 \
405 || (ISA) == ISA_MIPS64R5 \
7361da2c 406 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
407 || (mips_opts.micromips \
408 && ISA_HAS_64BIT_REGS (ISA)) \
409 )
af7ee8bf
CD
410
411/* Return true if ISA supports 32-bit right rotate (ror et al.)
412 instructions. */
707bfff6
TS
413#define ISA_HAS_ROR(ISA) \
414 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
415 || (ISA) == ISA_MIPS32R3 \
416 || (ISA) == ISA_MIPS32R5 \
7361da2c 417 || (ISA) == ISA_MIPS32R6 \
707bfff6 418 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
419 || (ISA) == ISA_MIPS64R3 \
420 || (ISA) == ISA_MIPS64R5 \
7361da2c 421 || (ISA) == ISA_MIPS64R6 \
846ef2d0 422 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
423 || mips_opts.micromips \
424 )
707bfff6 425
7455baf8 426/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
427#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
428 (((ISA) == ISA_MIPS32 \
429 || (ISA) == ISA_MIPS32R2 \
430 || (ISA) == ISA_MIPS32R3 \
431 || (ISA) == ISA_MIPS32R5 \
7361da2c 432 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
433 || (ISA) == ISA_MIPS64 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
7361da2c 437 || (ISA) == ISA_MIPS64R6 \
351cdf24 438 || (CPU) == CPU_R5900) \
bd782c07 439 && ((CPU) != CPU_GS464 \
9108bc33
CX
440 || (CPU) != CPU_GS464E \
441 || (CPU) != CPU_GS264E))
af7ee8bf 442
ad3fea08
TS
443/* Return true if ISA supports move to/from high part of a 64-bit
444 floating-point register. */
445#define ISA_HAS_MXHC1(ISA) \
446 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
447 || (ISA) == ISA_MIPS32R3 \
448 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
449 || (ISA) == ISA_MIPS32R6 \
450 || (ISA) == ISA_MIPS64R2 \
451 || (ISA) == ISA_MIPS64R3 \
452 || (ISA) == ISA_MIPS64R5 \
453 || (ISA) == ISA_MIPS64R6)
454
455/* Return true if ISA supports legacy NAN. */
456#define ISA_HAS_LEGACY_NAN(ISA) \
457 ((ISA) == ISA_MIPS1 \
458 || (ISA) == ISA_MIPS2 \
459 || (ISA) == ISA_MIPS3 \
460 || (ISA) == ISA_MIPS4 \
461 || (ISA) == ISA_MIPS5 \
462 || (ISA) == ISA_MIPS32 \
463 || (ISA) == ISA_MIPS32R2 \
464 || (ISA) == ISA_MIPS32R3 \
465 || (ISA) == ISA_MIPS32R5 \
466 || (ISA) == ISA_MIPS64 \
ae52f483
AB
467 || (ISA) == ISA_MIPS64R2 \
468 || (ISA) == ISA_MIPS64R3 \
469 || (ISA) == ISA_MIPS64R5)
ad3fea08 470
bad1aba3 471#define GPR_SIZE \
472 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
473 ? 32 \
474 : mips_opts.gp)
ca4e0257 475
bad1aba3 476#define FPR_SIZE \
477 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
478 ? 32 \
479 : mips_opts.fp)
ca4e0257 480
316f5878 481#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 482
316f5878 483#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 484
3b91255e
RS
485/* True if relocations are stored in-place. */
486#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
487
aed1a261
RS
488/* The ABI-derived address size. */
489#define HAVE_64BIT_ADDRESSES \
bad1aba3 490 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 491#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 492
aed1a261
RS
493/* The size of symbolic constants (i.e., expressions of the form
494 "SYMBOL" or "SYMBOL + OFFSET"). */
495#define HAVE_32BIT_SYMBOLS \
496 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
497#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 498
b7c7d6c1
TS
499/* Addresses are loaded in different ways, depending on the address size
500 in use. The n32 ABI Documentation also mandates the use of additions
501 with overflow checking, but existing implementations don't follow it. */
f899b4b8 502#define ADDRESS_ADD_INSN \
b7c7d6c1 503 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
504
505#define ADDRESS_ADDI_INSN \
b7c7d6c1 506 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
507
508#define ADDRESS_LOAD_INSN \
509 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
510
511#define ADDRESS_STORE_INSN \
512 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
513
a4672219 514/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
515#define CPU_HAS_MIPS16(cpu) \
516 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
517 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 518
2309ddf2 519/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
520#define CPU_HAS_MICROMIPS(cpu) 0
521
60b63b72
RS
522/* True if CPU has a dror instruction. */
523#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
524
525/* True if CPU has a ror instruction. */
526#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
527
6f2117ba 528/* True if CPU is in the Octeon family. */
2c629856
N
529#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
530 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 531
dd3cbb7e 532/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 533#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 534
0aa27725
RS
535/* True, if CPU has support for ldc1 and sdc1. */
536#define CPU_HAS_LDC1_SDC1(CPU) \
537 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
538
c8978940
CD
539/* True if mflo and mfhi can be immediately followed by instructions
540 which write to the HI and LO registers.
541
542 According to MIPS specifications, MIPS ISAs I, II, and III need
543 (at least) two instructions between the reads of HI/LO and
544 instructions which write them, and later ISAs do not. Contradicting
545 the MIPS specifications, some MIPS IV processor user manuals (e.g.
546 the UM for the NEC Vr5000) document needing the instructions between
547 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
548 MIPS64 and later ISAs to have the interlocks, plus any specific
549 earlier-ISA CPUs for which CPU documentation declares that the
550 instructions are really interlocked. */
551#define hilo_interlocks \
552 (mips_opts.isa == ISA_MIPS32 \
553 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
554 || mips_opts.isa == ISA_MIPS32R3 \
555 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 556 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
557 || mips_opts.isa == ISA_MIPS64 \
558 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
559 || mips_opts.isa == ISA_MIPS64R3 \
560 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 561 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 562 || mips_opts.arch == CPU_R4010 \
e407c74b 563 || mips_opts.arch == CPU_R5900 \
c8978940
CD
564 || mips_opts.arch == CPU_R10000 \
565 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
566 || mips_opts.arch == CPU_R14000 \
567 || mips_opts.arch == CPU_R16000 \
c8978940 568 || mips_opts.arch == CPU_RM7000 \
c8978940 569 || mips_opts.arch == CPU_VR5500 \
df58fc94 570 || mips_opts.micromips \
c8978940 571 )
252b5132
RH
572
573/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
574 from the GPRs after they are loaded from memory, and thus does not
575 require nops to be inserted. This applies to instructions marked
67dc82bc 576 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
577 level I and microMIPS mode instructions are always interlocked. */
578#define gpr_interlocks \
579 (mips_opts.isa != ISA_MIPS1 \
580 || mips_opts.arch == CPU_R3900 \
e407c74b 581 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
582 || mips_opts.micromips \
583 )
252b5132 584
81912461
ILT
585/* Whether the processor uses hardware interlocks to avoid delays
586 required by coprocessor instructions, and thus does not require
587 nops to be inserted. This applies to instructions marked
43885403
MF
588 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
589 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 590 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
591 levels I, II, and III and microMIPS mode instructions are always
592 interlocked. */
bdaaa2e1 593/* Itbl support may require additional care here. */
81912461
ILT
594#define cop_interlocks \
595 ((mips_opts.isa != ISA_MIPS1 \
596 && mips_opts.isa != ISA_MIPS2 \
597 && mips_opts.isa != ISA_MIPS3) \
598 || mips_opts.arch == CPU_R4300 \
df58fc94 599 || mips_opts.micromips \
81912461
ILT
600 )
601
602/* Whether the processor uses hardware interlocks to protect reads
603 from coprocessor registers after they are loaded from memory, and
604 thus does not require nops to be inserted. This applies to
605 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
606 requires at MIPS ISA level I and microMIPS mode instructions are
607 always interlocked. */
608#define cop_mem_interlocks \
609 (mips_opts.isa != ISA_MIPS1 \
610 || mips_opts.micromips \
611 )
252b5132 612
6b76fefe
CM
613/* Is this a mfhi or mflo instruction? */
614#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
615 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
616
df58fc94
RS
617/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
618 has been selected. This implies, in particular, that addresses of text
619 labels have their LSB set. */
620#define HAVE_CODE_COMPRESSION \
621 ((mips_opts.mips16 | mips_opts.micromips) != 0)
622
42429eac 623/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 624#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
625#define GPR_SMIN (-GPR_SMAX - 1)
626
252b5132
RH
627/* MIPS PIC level. */
628
a161fe53 629enum mips_pic_level mips_pic;
252b5132 630
c9914766 631/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 632 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 633static int mips_big_got = 0;
252b5132
RH
634
635/* 1 if trap instructions should used for overflow rather than break
636 instructions. */
c9914766 637static int mips_trap = 0;
252b5132 638
119d663a 639/* 1 if double width floating point constants should not be constructed
b6ff326e 640 by assembling two single width halves into two single width floating
119d663a
NC
641 point registers which just happen to alias the double width destination
642 register. On some architectures this aliasing can be disabled by a bit
d547a75e 643 in the status register, and the setting of this bit cannot be determined
119d663a
NC
644 automatically at assemble time. */
645static int mips_disable_float_construction;
646
252b5132
RH
647/* Non-zero if any .set noreorder directives were used. */
648
649static int mips_any_noreorder;
650
6b76fefe
CM
651/* Non-zero if nops should be inserted when the register referenced in
652 an mfhi/mflo instruction is read in the next two instructions. */
653static int mips_7000_hilo_fix;
654
02ffd3e4 655/* The size of objects in the small data section. */
156c2f8b 656static unsigned int g_switch_value = 8;
252b5132
RH
657/* Whether the -G option was used. */
658static int g_switch_seen = 0;
659
660#define N_RMASK 0xc4
661#define N_VFP 0xd4
662
663/* If we can determine in advance that GP optimization won't be
664 possible, we can skip the relaxation stuff that tries to produce
665 GP-relative references. This makes delay slot optimization work
666 better.
667
668 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
669 gcc output. It needs to guess right for gcc, otherwise gcc
670 will put what it thinks is a GP-relative instruction in a branch
671 delay slot.
252b5132
RH
672
673 I don't know if a fix is needed for the SVR4_PIC mode. I've only
674 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 675static int nopic_need_relax (symbolS *, int);
252b5132 676
6f2117ba 677/* Handle of the OPCODE hash table. */
252b5132
RH
678static struct hash_control *op_hash = NULL;
679
680/* The opcode hash table we use for the mips16. */
681static struct hash_control *mips16_op_hash = NULL;
682
df58fc94
RS
683/* The opcode hash table we use for the microMIPS ASE. */
684static struct hash_control *micromips_op_hash = NULL;
685
252b5132 686/* This array holds the chars that always start a comment. If the
6f2117ba 687 pre-processor is disabled, these aren't very useful. */
252b5132
RH
688const char comment_chars[] = "#";
689
690/* This array holds the chars that only start a comment at the beginning of
691 a line. If the line seems to have the form '# 123 filename'
6f2117ba 692 .line and .file directives will appear in the pre-processed output. */
252b5132
RH
693/* Note that input_file.c hand checks for '#' at the beginning of the
694 first line of the input file. This is because the compiler outputs
bdaaa2e1 695 #NO_APP at the beginning of its output. */
252b5132
RH
696/* Also note that C style comments are always supported. */
697const char line_comment_chars[] = "#";
698
bdaaa2e1 699/* This array holds machine specific line separator characters. */
63a0b638 700const char line_separator_chars[] = ";";
252b5132 701
6f2117ba 702/* Chars that can be used to separate mant from exp in floating point nums. */
252b5132
RH
703const char EXP_CHARS[] = "eE";
704
6f2117ba
PH
705/* Chars that mean this number is a floating point constant.
706 As in 0f12.456
707 or 0d1.2345e12. */
252b5132
RH
708const char FLT_CHARS[] = "rRsSfFdDxXpP";
709
710/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
711 changed in read.c . Ideally it shouldn't have to know about it at all,
6f2117ba 712 but nothing is ideal around here. */
252b5132 713
e3de51ce 714/* Types of printf format used for instruction-related error messages.
6f2117ba
PH
715 "I" means int ("%d") and "S" means string ("%s"). */
716enum mips_insn_error_format
717{
e3de51ce
RS
718 ERR_FMT_PLAIN,
719 ERR_FMT_I,
720 ERR_FMT_SS,
721};
722
723/* Information about an error that was found while assembling the current
724 instruction. */
6f2117ba
PH
725struct mips_insn_error
726{
e3de51ce
RS
727 /* We sometimes need to match an instruction against more than one
728 opcode table entry. Errors found during this matching are reported
729 against a particular syntactic argument rather than against the
730 instruction as a whole. We grade these messages so that errors
731 against argument N have a greater priority than an error against
732 any argument < N, since the former implies that arguments up to N
733 were acceptable and that the opcode entry was therefore a closer match.
734 If several matches report an error against the same argument,
735 we only use that error if it is the same in all cases.
736
737 min_argnum is the minimum argument number for which an error message
738 should be accepted. It is 0 if MSG is against the instruction as
739 a whole. */
740 int min_argnum;
741
742 /* The printf()-style message, including its format and arguments. */
743 enum mips_insn_error_format format;
744 const char *msg;
6f2117ba
PH
745 union
746 {
e3de51ce
RS
747 int i;
748 const char *ss[2];
749 } u;
750};
751
752/* The error that should be reported for the current instruction. */
753static struct mips_insn_error insn_error;
252b5132
RH
754
755static int auto_align = 1;
756
757/* When outputting SVR4 PIC code, the assembler needs to know the
758 offset in the stack frame from which to restore the $gp register.
759 This is set by the .cprestore pseudo-op, and saved in this
760 variable. */
761static offsetT mips_cprestore_offset = -1;
762
67c1ffbe 763/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 764 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 765 offset and even an other register than $gp as global pointer. */
6478892d
TS
766static offsetT mips_cpreturn_offset = -1;
767static int mips_cpreturn_register = -1;
768static int mips_gp_register = GP;
def2e0dd 769static int mips_gprel_offset = 0;
6478892d 770
7a621144
DJ
771/* Whether mips_cprestore_offset has been set in the current function
772 (or whether it has already been warned about, if not). */
773static int mips_cprestore_valid = 0;
774
252b5132
RH
775/* This is the register which holds the stack frame, as set by the
776 .frame pseudo-op. This is needed to implement .cprestore. */
777static int mips_frame_reg = SP;
778
7a621144
DJ
779/* Whether mips_frame_reg has been set in the current function
780 (or whether it has already been warned about, if not). */
781static int mips_frame_reg_valid = 0;
782
252b5132
RH
783/* To output NOP instructions correctly, we need to keep information
784 about the previous two instructions. */
785
786/* Whether we are optimizing. The default value of 2 means to remove
787 unneeded NOPs and swap branch instructions when possible. A value
788 of 1 means to not swap branches. A value of 0 means to always
789 insert NOPs. */
790static int mips_optimize = 2;
791
792/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
793 equivalent to seeing no -g option at all. */
794static int mips_debug = 0;
795
7d8e00cf
RS
796/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
797#define MAX_VR4130_NOPS 4
798
799/* The maximum number of NOPs needed to fill delay slots. */
800#define MAX_DELAY_NOPS 2
801
802/* The maximum number of NOPs needed for any purpose. */
803#define MAX_NOPS 4
71400594 804
6f2117ba
PH
805/* The maximum range of context length of ll/sc. */
806#define MAX_LLSC_RANGE 20
807
71400594
RS
808/* A list of previous instructions, with index 0 being the most recent.
809 We need to look back MAX_NOPS instructions when filling delay slots
810 or working around processor errata. We need to look back one
811 instruction further if we're thinking about using history[0] to
812 fill a branch delay slot. */
6f2117ba 813static struct mips_cl_insn history[1 + MAX_NOPS + MAX_LLSC_RANGE];
252b5132 814
fc76e730 815/* Arrays of operands for each instruction. */
14daeee3 816#define MAX_OPERANDS 6
6f2117ba
PH
817struct mips_operand_array
818{
fc76e730
RS
819 const struct mips_operand *operand[MAX_OPERANDS];
820};
821static struct mips_operand_array *mips_operands;
822static struct mips_operand_array *mips16_operands;
823static struct mips_operand_array *micromips_operands;
824
1e915849 825/* Nop instructions used by emit_nop. */
df58fc94
RS
826static struct mips_cl_insn nop_insn;
827static struct mips_cl_insn mips16_nop_insn;
828static struct mips_cl_insn micromips_nop16_insn;
829static struct mips_cl_insn micromips_nop32_insn;
1e915849 830
6f2117ba
PH
831/* Sync instructions used by insert sync. */
832static struct mips_cl_insn sync_insn;
833
1e915849 834/* The appropriate nop for the current mode. */
833794fc
MR
835#define NOP_INSN (mips_opts.mips16 \
836 ? &mips16_nop_insn \
837 : (mips_opts.micromips \
838 ? (mips_opts.insn32 \
839 ? &micromips_nop32_insn \
840 : &micromips_nop16_insn) \
841 : &nop_insn))
df58fc94
RS
842
843/* The size of NOP_INSN in bytes. */
833794fc
MR
844#define NOP_INSN_SIZE ((mips_opts.mips16 \
845 || (mips_opts.micromips && !mips_opts.insn32)) \
846 ? 2 : 4)
252b5132 847
252b5132
RH
848/* If this is set, it points to a frag holding nop instructions which
849 were inserted before the start of a noreorder section. If those
850 nops turn out to be unnecessary, the size of the frag can be
851 decreased. */
852static fragS *prev_nop_frag;
853
854/* The number of nop instructions we created in prev_nop_frag. */
855static int prev_nop_frag_holds;
856
857/* The number of nop instructions that we know we need in
bdaaa2e1 858 prev_nop_frag. */
252b5132
RH
859static int prev_nop_frag_required;
860
861/* The number of instructions we've seen since prev_nop_frag. */
862static int prev_nop_frag_since;
863
e8044f35
RS
864/* Relocations against symbols are sometimes done in two parts, with a HI
865 relocation and a LO relocation. Each relocation has only 16 bits of
866 space to store an addend. This means that in order for the linker to
867 handle carries correctly, it must be able to locate both the HI and
868 the LO relocation. This means that the relocations must appear in
869 order in the relocation table.
252b5132
RH
870
871 In order to implement this, we keep track of each unmatched HI
872 relocation. We then sort them so that they immediately precede the
bdaaa2e1 873 corresponding LO relocation. */
252b5132 874
e972090a
NC
875struct mips_hi_fixup
876{
252b5132
RH
877 /* Next HI fixup. */
878 struct mips_hi_fixup *next;
879 /* This fixup. */
880 fixS *fixp;
881 /* The section this fixup is in. */
882 segT seg;
883};
884
885/* The list of unmatched HI relocs. */
886
887static struct mips_hi_fixup *mips_hi_fixup_list;
888
64bdfcaf
RS
889/* The frag containing the last explicit relocation operator.
890 Null if explicit relocations have not been used. */
891
892static fragS *prev_reloc_op_frag;
893
252b5132
RH
894/* Map mips16 register numbers to normal MIPS register numbers. */
895
e972090a
NC
896static const unsigned int mips16_to_32_reg_map[] =
897{
252b5132
RH
898 16, 17, 2, 3, 4, 5, 6, 7
899};
60b63b72 900
df58fc94
RS
901/* Map microMIPS register numbers to normal MIPS register numbers. */
902
df58fc94 903#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
904
905/* The microMIPS registers with type h. */
e76ff5ab 906static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
907{
908 5, 5, 6, 4, 4, 4, 4, 4
909};
e76ff5ab 910static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
911{
912 6, 7, 7, 21, 22, 5, 6, 7
913};
914
df58fc94
RS
915/* The microMIPS registers with type m. */
916static const unsigned int micromips_to_32_reg_m_map[] =
917{
918 0, 17, 2, 3, 16, 18, 19, 20
919};
920
921#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
922
71400594
RS
923/* Classifies the kind of instructions we're interested in when
924 implementing -mfix-vr4120. */
c67a084a
NC
925enum fix_vr4120_class
926{
71400594
RS
927 FIX_VR4120_MACC,
928 FIX_VR4120_DMACC,
929 FIX_VR4120_MULT,
930 FIX_VR4120_DMULT,
931 FIX_VR4120_DIV,
932 FIX_VR4120_MTHILO,
933 NUM_FIX_VR4120_CLASSES
934};
935
c67a084a
NC
936/* ...likewise -mfix-loongson2f-jump. */
937static bfd_boolean mips_fix_loongson2f_jump;
938
939/* ...likewise -mfix-loongson2f-nop. */
940static bfd_boolean mips_fix_loongson2f_nop;
941
942/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
943static bfd_boolean mips_fix_loongson2f;
944
71400594
RS
945/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
946 there must be at least one other instruction between an instruction
947 of type X and an instruction of type Y. */
948static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
949
950/* True if -mfix-vr4120 is in force. */
d766e8ec 951static int mips_fix_vr4120;
4a6a3df4 952
7d8e00cf
RS
953/* ...likewise -mfix-vr4130. */
954static int mips_fix_vr4130;
955
6a32d874
CM
956/* ...likewise -mfix-24k. */
957static int mips_fix_24k;
958
a8d14a88
CM
959/* ...likewise -mfix-rm7000 */
960static int mips_fix_rm7000;
961
d954098f
DD
962/* ...likewise -mfix-cn63xxp1 */
963static bfd_boolean mips_fix_cn63xxp1;
964
27c634e0
FN
965/* ...likewise -mfix-r5900 */
966static bfd_boolean mips_fix_r5900;
967static bfd_boolean mips_fix_r5900_explicit;
968
6f2117ba
PH
969/* ...likewise -mfix-loongson3-llsc. */
970static bfd_boolean mips_fix_loongson3_llsc = DEFAULT_MIPS_FIX_LOONGSON3_LLSC;
971
4a6a3df4
AO
972/* We don't relax branches by default, since this causes us to expand
973 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
974 fail to compute the offset before expanding the macro to the most
975 efficient expansion. */
976
977static int mips_relax_branch;
8b10b0b3
MR
978
979/* TRUE if checks are suppressed for invalid branches between ISA modes.
980 Needed for broken assembly produced by some GCC versions and some
981 sloppy code out there, where branches to data labels are present. */
982static bfd_boolean mips_ignore_branch_isa;
252b5132 983\f
4d7206a2
RS
984/* The expansion of many macros depends on the type of symbol that
985 they refer to. For example, when generating position-dependent code,
986 a macro that refers to a symbol may have two different expansions,
987 one which uses GP-relative addresses and one which uses absolute
988 addresses. When generating SVR4-style PIC, a macro may have
989 different expansions for local and global symbols.
990
991 We handle these situations by generating both sequences and putting
992 them in variant frags. In position-dependent code, the first sequence
993 will be the GP-relative one and the second sequence will be the
994 absolute one. In SVR4 PIC, the first sequence will be for global
995 symbols and the second will be for local symbols.
996
584892a6
RS
997 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
998 SECOND are the lengths of the two sequences in bytes. These fields
999 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
1000 the subtype has the following flags:
4d7206a2 1001
ce8ad872
MR
1002 RELAX_PIC
1003 Set if generating PIC code.
1004
584892a6
RS
1005 RELAX_USE_SECOND
1006 Set if it has been decided that we should use the second
1007 sequence instead of the first.
1008
1009 RELAX_SECOND_LONGER
1010 Set in the first variant frag if the macro's second implementation
1011 is longer than its first. This refers to the macro as a whole,
1012 not an individual relaxation.
1013
1014 RELAX_NOMACRO
1015 Set in the first variant frag if the macro appeared in a .set nomacro
1016 block and if one alternative requires a warning but the other does not.
1017
1018 RELAX_DELAY_SLOT
1019 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
1020 delay slot.
4d7206a2 1021
df58fc94
RS
1022 RELAX_DELAY_SLOT_16BIT
1023 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
1024 16-bit instruction.
1025
1026 RELAX_DELAY_SLOT_SIZE_FIRST
1027 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
1028 the macro is of the wrong size for the branch delay slot.
1029
1030 RELAX_DELAY_SLOT_SIZE_SECOND
1031 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1032 the macro is of the wrong size for the branch delay slot.
1033
4d7206a2
RS
1034 The frag's "opcode" points to the first fixup for relaxable code.
1035
1036 Relaxable macros are generated using a sequence such as:
1037
1038 relax_start (SYMBOL);
1039 ... generate first expansion ...
1040 relax_switch ();
1041 ... generate second expansion ...
1042 relax_end ();
1043
1044 The code and fixups for the unwanted alternative are discarded
1045 by md_convert_frag. */
ce8ad872
MR
1046#define RELAX_ENCODE(FIRST, SECOND, PIC) \
1047 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
4d7206a2 1048
584892a6
RS
1049#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1050#define RELAX_SECOND(X) ((X) & 0xff)
ce8ad872
MR
1051#define RELAX_PIC(X) (((X) & 0x10000) != 0)
1052#define RELAX_USE_SECOND 0x20000
1053#define RELAX_SECOND_LONGER 0x40000
1054#define RELAX_NOMACRO 0x80000
1055#define RELAX_DELAY_SLOT 0x100000
1056#define RELAX_DELAY_SLOT_16BIT 0x200000
1057#define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1058#define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
252b5132 1059
4a6a3df4
AO
1060/* Branch without likely bit. If label is out of range, we turn:
1061
134c0c8b 1062 beq reg1, reg2, label
4a6a3df4
AO
1063 delay slot
1064
1065 into
1066
1067 bne reg1, reg2, 0f
1068 nop
1069 j label
1070 0: delay slot
1071
1072 with the following opcode replacements:
1073
1074 beq <-> bne
1075 blez <-> bgtz
1076 bltz <-> bgez
1077 bc1f <-> bc1t
1078
1079 bltzal <-> bgezal (with jal label instead of j label)
1080
1081 Even though keeping the delay slot instruction in the delay slot of
1082 the branch would be more efficient, it would be very tricky to do
1083 correctly, because we'd have to introduce a variable frag *after*
1084 the delay slot instruction, and expand that instead. Let's do it
1085 the easy way for now, even if the branch-not-taken case now costs
1086 one additional instruction. Out-of-range branches are not supposed
1087 to be common, anyway.
1088
1089 Branch likely. If label is out of range, we turn:
1090
1091 beql reg1, reg2, label
1092 delay slot (annulled if branch not taken)
1093
1094 into
1095
1096 beql reg1, reg2, 1f
1097 nop
1098 beql $0, $0, 2f
1099 nop
1100 1: j[al] label
1101 delay slot (executed only if branch taken)
1102 2:
1103
1104 It would be possible to generate a shorter sequence by losing the
1105 likely bit, generating something like:
b34976b6 1106
4a6a3df4
AO
1107 bne reg1, reg2, 0f
1108 nop
1109 j[al] label
1110 delay slot (executed only if branch taken)
1111 0:
1112
1113 beql -> bne
1114 bnel -> beq
1115 blezl -> bgtz
1116 bgtzl -> blez
1117 bltzl -> bgez
1118 bgezl -> bltz
1119 bc1fl -> bc1t
1120 bc1tl -> bc1f
1121
1122 bltzall -> bgezal (with jal label instead of j label)
1123 bgezall -> bltzal (ditto)
1124
1125
1126 but it's not clear that it would actually improve performance. */
ce8ad872
MR
1127#define RELAX_BRANCH_ENCODE(at, pic, \
1128 uncond, likely, link, toofar) \
66b3e8da
MR
1129 ((relax_substateT) \
1130 (0xc0000000 \
1131 | ((at) & 0x1f) \
ce8ad872
MR
1132 | ((pic) ? 0x20 : 0) \
1133 | ((toofar) ? 0x40 : 0) \
1134 | ((link) ? 0x80 : 0) \
1135 | ((likely) ? 0x100 : 0) \
1136 | ((uncond) ? 0x200 : 0)))
4a6a3df4 1137#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
ce8ad872
MR
1138#define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1139#define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1140#define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1141#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1142#define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
66b3e8da 1143#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1144
252b5132
RH
1145/* For mips16 code, we use an entirely different form of relaxation.
1146 mips16 supports two versions of most instructions which take
1147 immediate values: a small one which takes some small value, and a
1148 larger one which takes a 16 bit value. Since branches also follow
1149 this pattern, relaxing these values is required.
1150
1151 We can assemble both mips16 and normal MIPS code in a single
1152 object. Therefore, we need to support this type of relaxation at
1153 the same time that we support the relaxation described above. We
1154 use the high bit of the subtype field to distinguish these cases.
1155
1156 The information we store for this type of relaxation is the
1157 argument code found in the opcode file for this relocation, whether
1158 the user explicitly requested a small or extended form, and whether
1159 the relocation is in a jump or jal delay slot. That tells us the
1160 size of the value, and how it should be stored. We also store
1161 whether the fragment is considered to be extended or not. We also
1162 store whether this is known to be a branch to a different section,
1163 whether we have tried to relax this frag yet, and whether we have
1164 ever extended a PC relative fragment because of a shift count. */
25499ac7 1165#define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
8507b6e7
MR
1166 small, ext, \
1167 dslot, jal_dslot) \
252b5132
RH
1168 (0x80000000 \
1169 | ((type) & 0xff) \
25499ac7
MR
1170 | ((e2) ? 0x100 : 0) \
1171 | ((pic) ? 0x200 : 0) \
1172 | ((sym32) ? 0x400 : 0) \
1173 | ((nomacro) ? 0x800 : 0) \
1174 | ((small) ? 0x1000 : 0) \
1175 | ((ext) ? 0x2000 : 0) \
1176 | ((dslot) ? 0x4000 : 0) \
1177 | ((jal_dslot) ? 0x8000 : 0))
8507b6e7 1178
4a6a3df4 1179#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132 1180#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
25499ac7
MR
1181#define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1182#define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1183#define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1184#define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1185#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1186#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1187#define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1188#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1189
1190#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1191#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1192#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1193#define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1194#define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1195#define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1196#define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1197#define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1198#define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
885add95 1199
df58fc94
RS
1200/* For microMIPS code, we use relaxation similar to one we use for
1201 MIPS16 code. Some instructions that take immediate values support
1202 two encodings: a small one which takes some small value, and a
1203 larger one which takes a 16 bit value. As some branches also follow
1204 this pattern, relaxing these values is required.
1205
1206 We can assemble both microMIPS and normal MIPS code in a single
1207 object. Therefore, we need to support this type of relaxation at
1208 the same time that we support the relaxation described above. We
1209 use one of the high bits of the subtype field to distinguish these
1210 cases.
1211
1212 The information we store for this type of relaxation is the argument
1213 code found in the opcode file for this relocation, the register
8484fb75
MR
1214 selected as the assembler temporary, whether in the 32-bit
1215 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1216 compact, whether there is no delay-slot instruction available to fill
1217 in, whether it stores the link address implicitly in $ra, whether
1218 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1219 instructions is enabled, and whether the displacement of a branch is
1220 too large to fit as an immediate argument of a 16-bit and a 32-bit
1221 branch, respectively. */
ce8ad872 1222#define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
7bd374a4 1223 uncond, compact, link, nods, \
40209cad
MR
1224 relax32, toofar16, toofar32) \
1225 (0x40000000 \
1226 | ((type) & 0xff) \
1227 | (((at) & 0x1f) << 8) \
8484fb75 1228 | ((insn32) ? 0x2000 : 0) \
ce8ad872
MR
1229 | ((pic) ? 0x4000 : 0) \
1230 | ((uncond) ? 0x8000 : 0) \
1231 | ((compact) ? 0x10000 : 0) \
1232 | ((link) ? 0x20000 : 0) \
1233 | ((nods) ? 0x40000 : 0) \
1234 | ((relax32) ? 0x80000 : 0) \
1235 | ((toofar16) ? 0x100000 : 0) \
1236 | ((toofar32) ? 0x200000 : 0))
df58fc94
RS
1237#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1238#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1239#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75 1240#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
ce8ad872
MR
1241#define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1242#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1243#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1244#define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1245#define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1246#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1247
1248#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1249#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1250#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1251#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1252#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1253#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
df58fc94 1254
43c0598f
RS
1255/* Sign-extend 16-bit value X. */
1256#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1257
885add95
CD
1258/* Is the given value a sign-extended 32-bit value? */
1259#define IS_SEXT_32BIT_NUM(x) \
1260 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1261 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1262
1263/* Is the given value a sign-extended 16-bit value? */
1264#define IS_SEXT_16BIT_NUM(x) \
1265 (((x) &~ (offsetT) 0x7fff) == 0 \
1266 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1267
df58fc94
RS
1268/* Is the given value a sign-extended 12-bit value? */
1269#define IS_SEXT_12BIT_NUM(x) \
1270 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1271
7f3c4072
CM
1272/* Is the given value a sign-extended 9-bit value? */
1273#define IS_SEXT_9BIT_NUM(x) \
1274 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1275
2051e8c4
MR
1276/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1277#define IS_ZEXT_32BIT_NUM(x) \
1278 (((x) &~ (offsetT) 0xffffffff) == 0 \
1279 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1280
bf12938e
RS
1281/* Extract bits MASK << SHIFT from STRUCT and shift them right
1282 SHIFT places. */
1283#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1284 (((STRUCT) >> (SHIFT)) & (MASK))
1285
bf12938e 1286/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1287#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1288 (!(MICROMIPS) \
1289 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1290 : EXTRACT_BITS ((INSN).insn_opcode, \
1291 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1292#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1293 EXTRACT_BITS ((INSN).insn_opcode, \
1294 MIPS16OP_MASK_##FIELD, \
1295 MIPS16OP_SH_##FIELD)
5c04167a
RS
1296
1297/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1298#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1299\f
df58fc94
RS
1300/* Whether or not we are emitting a branch-likely macro. */
1301static bfd_boolean emit_branch_likely_macro = FALSE;
1302
4d7206a2
RS
1303/* Global variables used when generating relaxable macros. See the
1304 comment above RELAX_ENCODE for more details about how relaxation
1305 is used. */
1306static struct {
1307 /* 0 if we're not emitting a relaxable macro.
1308 1 if we're emitting the first of the two relaxation alternatives.
1309 2 if we're emitting the second alternative. */
1310 int sequence;
1311
1312 /* The first relaxable fixup in the current frag. (In other words,
1313 the first fixup that refers to relaxable code.) */
1314 fixS *first_fixup;
1315
1316 /* sizes[0] says how many bytes of the first alternative are stored in
1317 the current frag. Likewise sizes[1] for the second alternative. */
1318 unsigned int sizes[2];
1319
1320 /* The symbol on which the choice of sequence depends. */
1321 symbolS *symbol;
1322} mips_relax;
252b5132 1323\f
584892a6
RS
1324/* Global variables used to decide whether a macro needs a warning. */
1325static struct {
1326 /* True if the macro is in a branch delay slot. */
1327 bfd_boolean delay_slot_p;
1328
df58fc94
RS
1329 /* Set to the length in bytes required if the macro is in a delay slot
1330 that requires a specific length of instruction, otherwise zero. */
1331 unsigned int delay_slot_length;
1332
584892a6
RS
1333 /* For relaxable macros, sizes[0] is the length of the first alternative
1334 in bytes and sizes[1] is the length of the second alternative.
1335 For non-relaxable macros, both elements give the length of the
1336 macro in bytes. */
1337 unsigned int sizes[2];
1338
df58fc94
RS
1339 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1340 instruction of the first alternative in bytes and first_insn_sizes[1]
1341 is the length of the first instruction of the second alternative.
1342 For non-relaxable macros, both elements give the length of the first
1343 instruction in bytes.
1344
1345 Set to zero if we haven't yet seen the first instruction. */
1346 unsigned int first_insn_sizes[2];
1347
1348 /* For relaxable macros, insns[0] is the number of instructions for the
1349 first alternative and insns[1] is the number of instructions for the
1350 second alternative.
1351
1352 For non-relaxable macros, both elements give the number of
1353 instructions for the macro. */
1354 unsigned int insns[2];
1355
584892a6
RS
1356 /* The first variant frag for this macro. */
1357 fragS *first_frag;
1358} mips_macro_warning;
1359\f
252b5132
RH
1360/* Prototypes for static functions. */
1361
252b5132
RH
1362enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1363
b34976b6 1364static void append_insn
df58fc94
RS
1365 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1366 bfd_boolean expansionp);
7d10b47d 1367static void mips_no_prev_insn (void);
c67a084a 1368static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1369static void mips16_macro_build
03ea81db 1370 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1371static void load_register (int, expressionS *, int);
584892a6
RS
1372static void macro_start (void);
1373static void macro_end (void);
833794fc 1374static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1375static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1376static void mips_ip (char *str, struct mips_cl_insn * ip);
1377static void mips16_ip (char *str, struct mips_cl_insn * ip);
25499ac7 1378static unsigned long mips16_immed_extend (offsetT, unsigned int);
b34976b6 1379static void mips16_immed
3b4dbbbf 1380 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1381 unsigned int, unsigned long *);
5e0116d5 1382static size_t my_getSmallExpression
17a2f251
TS
1383 (expressionS *, bfd_reloc_code_real_type *, char *);
1384static void my_getExpression (expressionS *, char *);
1385static void s_align (int);
1386static void s_change_sec (int);
1387static void s_change_section (int);
1388static void s_cons (int);
1389static void s_float_cons (int);
1390static void s_mips_globl (int);
1391static void s_option (int);
1392static void s_mipsset (int);
1393static void s_abicalls (int);
1394static void s_cpload (int);
1395static void s_cpsetup (int);
1396static void s_cplocal (int);
1397static void s_cprestore (int);
1398static void s_cpreturn (int);
741d6ea8
JM
1399static void s_dtprelword (int);
1400static void s_dtpreldword (int);
d0f13682
CLT
1401static void s_tprelword (int);
1402static void s_tpreldword (int);
17a2f251
TS
1403static void s_gpvalue (int);
1404static void s_gpword (int);
1405static void s_gpdword (int);
a3f278e2 1406static void s_ehword (int);
17a2f251
TS
1407static void s_cpadd (int);
1408static void s_insn (int);
ba92f887 1409static void s_nan (int);
919731af 1410static void s_module (int);
17a2f251
TS
1411static void s_mips_ent (int);
1412static void s_mips_end (int);
1413static void s_mips_frame (int);
1414static void s_mips_mask (int reg_type);
1415static void s_mips_stab (int);
1416static void s_mips_weakext (int);
1417static void s_mips_file (int);
1418static void s_mips_loc (int);
9e009953 1419static bfd_boolean pic_need_relax (symbolS *);
4a6a3df4 1420static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1421static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1422static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1423static void file_mips_check_options (void);
e7af610e
NC
1424
1425/* Table and functions used to map between CPU/ISA names, and
1426 ISA levels, and CPU numbers. */
1427
e972090a
NC
1428struct mips_cpu_info
1429{
e7af610e 1430 const char *name; /* CPU or ISA name. */
d16afab6
RS
1431 int flags; /* MIPS_CPU_* flags. */
1432 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1433 int isa; /* ISA level. */
1434 int cpu; /* CPU number (default CPU if ISA). */
1435};
1436
ad3fea08 1437#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1438
17a2f251
TS
1439static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1440static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1441static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1442\f
c31f3936
RS
1443/* Command-line options. */
1444const char *md_shortopts = "O::g::G:";
1445
1446enum options
1447 {
1448 OPTION_MARCH = OPTION_MD_BASE,
1449 OPTION_MTUNE,
1450 OPTION_MIPS1,
1451 OPTION_MIPS2,
1452 OPTION_MIPS3,
1453 OPTION_MIPS4,
1454 OPTION_MIPS5,
1455 OPTION_MIPS32,
1456 OPTION_MIPS64,
1457 OPTION_MIPS32R2,
ae52f483
AB
1458 OPTION_MIPS32R3,
1459 OPTION_MIPS32R5,
7361da2c 1460 OPTION_MIPS32R6,
c31f3936 1461 OPTION_MIPS64R2,
ae52f483
AB
1462 OPTION_MIPS64R3,
1463 OPTION_MIPS64R5,
7361da2c 1464 OPTION_MIPS64R6,
c31f3936
RS
1465 OPTION_MIPS16,
1466 OPTION_NO_MIPS16,
1467 OPTION_MIPS3D,
1468 OPTION_NO_MIPS3D,
1469 OPTION_MDMX,
1470 OPTION_NO_MDMX,
1471 OPTION_DSP,
1472 OPTION_NO_DSP,
1473 OPTION_MT,
1474 OPTION_NO_MT,
1475 OPTION_VIRT,
1476 OPTION_NO_VIRT,
56d438b1
CF
1477 OPTION_MSA,
1478 OPTION_NO_MSA,
c31f3936
RS
1479 OPTION_SMARTMIPS,
1480 OPTION_NO_SMARTMIPS,
1481 OPTION_DSPR2,
1482 OPTION_NO_DSPR2,
8f4f9071
MF
1483 OPTION_DSPR3,
1484 OPTION_NO_DSPR3,
c31f3936
RS
1485 OPTION_EVA,
1486 OPTION_NO_EVA,
7d64c587
AB
1487 OPTION_XPA,
1488 OPTION_NO_XPA,
c31f3936
RS
1489 OPTION_MICROMIPS,
1490 OPTION_NO_MICROMIPS,
1491 OPTION_MCU,
1492 OPTION_NO_MCU,
25499ac7
MR
1493 OPTION_MIPS16E2,
1494 OPTION_NO_MIPS16E2,
730c3174
SE
1495 OPTION_CRC,
1496 OPTION_NO_CRC,
c31f3936
RS
1497 OPTION_M4650,
1498 OPTION_NO_M4650,
1499 OPTION_M4010,
1500 OPTION_NO_M4010,
1501 OPTION_M4100,
1502 OPTION_NO_M4100,
1503 OPTION_M3900,
1504 OPTION_NO_M3900,
1505 OPTION_M7000_HILO_FIX,
1506 OPTION_MNO_7000_HILO_FIX,
1507 OPTION_FIX_24K,
1508 OPTION_NO_FIX_24K,
a8d14a88
CM
1509 OPTION_FIX_RM7000,
1510 OPTION_NO_FIX_RM7000,
6f2117ba
PH
1511 OPTION_FIX_LOONGSON3_LLSC,
1512 OPTION_NO_FIX_LOONGSON3_LLSC,
c31f3936
RS
1513 OPTION_FIX_LOONGSON2F_JUMP,
1514 OPTION_NO_FIX_LOONGSON2F_JUMP,
1515 OPTION_FIX_LOONGSON2F_NOP,
1516 OPTION_NO_FIX_LOONGSON2F_NOP,
1517 OPTION_FIX_VR4120,
1518 OPTION_NO_FIX_VR4120,
1519 OPTION_FIX_VR4130,
1520 OPTION_NO_FIX_VR4130,
1521 OPTION_FIX_CN63XXP1,
1522 OPTION_NO_FIX_CN63XXP1,
27c634e0
FN
1523 OPTION_FIX_R5900,
1524 OPTION_NO_FIX_R5900,
c31f3936
RS
1525 OPTION_TRAP,
1526 OPTION_BREAK,
1527 OPTION_EB,
1528 OPTION_EL,
1529 OPTION_FP32,
1530 OPTION_GP32,
1531 OPTION_CONSTRUCT_FLOATS,
1532 OPTION_NO_CONSTRUCT_FLOATS,
1533 OPTION_FP64,
351cdf24 1534 OPTION_FPXX,
c31f3936
RS
1535 OPTION_GP64,
1536 OPTION_RELAX_BRANCH,
1537 OPTION_NO_RELAX_BRANCH,
8b10b0b3
MR
1538 OPTION_IGNORE_BRANCH_ISA,
1539 OPTION_NO_IGNORE_BRANCH_ISA,
833794fc
MR
1540 OPTION_INSN32,
1541 OPTION_NO_INSN32,
c31f3936
RS
1542 OPTION_MSHARED,
1543 OPTION_MNO_SHARED,
1544 OPTION_MSYM32,
1545 OPTION_MNO_SYM32,
1546 OPTION_SOFT_FLOAT,
1547 OPTION_HARD_FLOAT,
1548 OPTION_SINGLE_FLOAT,
1549 OPTION_DOUBLE_FLOAT,
1550 OPTION_32,
c31f3936
RS
1551 OPTION_CALL_SHARED,
1552 OPTION_CALL_NONPIC,
1553 OPTION_NON_SHARED,
1554 OPTION_XGOT,
1555 OPTION_MABI,
1556 OPTION_N32,
1557 OPTION_64,
1558 OPTION_MDEBUG,
1559 OPTION_NO_MDEBUG,
1560 OPTION_PDR,
1561 OPTION_NO_PDR,
1562 OPTION_MVXWORKS_PIC,
ba92f887 1563 OPTION_NAN,
351cdf24
MF
1564 OPTION_ODD_SPREG,
1565 OPTION_NO_ODD_SPREG,
6f20c942
FS
1566 OPTION_GINV,
1567 OPTION_NO_GINV,
8095d2f7
CX
1568 OPTION_LOONGSON_MMI,
1569 OPTION_NO_LOONGSON_MMI,
716c08de
CX
1570 OPTION_LOONGSON_CAM,
1571 OPTION_NO_LOONGSON_CAM,
bdc6c06e
CX
1572 OPTION_LOONGSON_EXT,
1573 OPTION_NO_LOONGSON_EXT,
a693765e
CX
1574 OPTION_LOONGSON_EXT2,
1575 OPTION_NO_LOONGSON_EXT2,
c31f3936
RS
1576 OPTION_END_OF_ENUM
1577 };
1578
1579struct option md_longopts[] =
1580{
1581 /* Options which specify architecture. */
1582 {"march", required_argument, NULL, OPTION_MARCH},
1583 {"mtune", required_argument, NULL, OPTION_MTUNE},
1584 {"mips0", no_argument, NULL, OPTION_MIPS1},
1585 {"mips1", no_argument, NULL, OPTION_MIPS1},
1586 {"mips2", no_argument, NULL, OPTION_MIPS2},
1587 {"mips3", no_argument, NULL, OPTION_MIPS3},
1588 {"mips4", no_argument, NULL, OPTION_MIPS4},
1589 {"mips5", no_argument, NULL, OPTION_MIPS5},
1590 {"mips32", no_argument, NULL, OPTION_MIPS32},
1591 {"mips64", no_argument, NULL, OPTION_MIPS64},
1592 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1593 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1594 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1595 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1596 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1597 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1598 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1599 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1600
1601 /* Options which specify Application Specific Extensions (ASEs). */
1602 {"mips16", no_argument, NULL, OPTION_MIPS16},
1603 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1604 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1605 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1606 {"mdmx", no_argument, NULL, OPTION_MDMX},
1607 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1608 {"mdsp", no_argument, NULL, OPTION_DSP},
1609 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1610 {"mmt", no_argument, NULL, OPTION_MT},
1611 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1612 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1613 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1614 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1615 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1616 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1617 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1618 {"meva", no_argument, NULL, OPTION_EVA},
1619 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1620 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1621 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1622 {"mmcu", no_argument, NULL, OPTION_MCU},
1623 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1624 {"mvirt", no_argument, NULL, OPTION_VIRT},
1625 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1626 {"mmsa", no_argument, NULL, OPTION_MSA},
1627 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1628 {"mxpa", no_argument, NULL, OPTION_XPA},
1629 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
25499ac7
MR
1630 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1631 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
730c3174
SE
1632 {"mcrc", no_argument, NULL, OPTION_CRC},
1633 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
6f20c942
FS
1634 {"mginv", no_argument, NULL, OPTION_GINV},
1635 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
8095d2f7
CX
1636 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1637 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
716c08de
CX
1638 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1639 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
bdc6c06e
CX
1640 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1641 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
a693765e
CX
1642 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1643 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
c31f3936
RS
1644
1645 /* Old-style architecture options. Don't add more of these. */
1646 {"m4650", no_argument, NULL, OPTION_M4650},
1647 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1648 {"m4010", no_argument, NULL, OPTION_M4010},
1649 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1650 {"m4100", no_argument, NULL, OPTION_M4100},
1651 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1652 {"m3900", no_argument, NULL, OPTION_M3900},
1653 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1654
1655 /* Options which enable bug fixes. */
1656 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1657 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1658 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
6f2117ba
PH
1659 {"mfix-loongson3-llsc", no_argument, NULL, OPTION_FIX_LOONGSON3_LLSC},
1660 {"mno-fix-loongson3-llsc", no_argument, NULL, OPTION_NO_FIX_LOONGSON3_LLSC},
c31f3936
RS
1661 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1662 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1663 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1664 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1665 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1666 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1667 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1668 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1669 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1670 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1671 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1672 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1673 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1674 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
27c634e0
FN
1675 {"mfix-r5900", no_argument, NULL, OPTION_FIX_R5900},
1676 {"mno-fix-r5900", no_argument, NULL, OPTION_NO_FIX_R5900},
c31f3936
RS
1677
1678 /* Miscellaneous options. */
1679 {"trap", no_argument, NULL, OPTION_TRAP},
1680 {"no-break", no_argument, NULL, OPTION_TRAP},
1681 {"break", no_argument, NULL, OPTION_BREAK},
1682 {"no-trap", no_argument, NULL, OPTION_BREAK},
1683 {"EB", no_argument, NULL, OPTION_EB},
1684 {"EL", no_argument, NULL, OPTION_EL},
1685 {"mfp32", no_argument, NULL, OPTION_FP32},
1686 {"mgp32", no_argument, NULL, OPTION_GP32},
1687 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1688 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1689 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1690 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1691 {"mgp64", no_argument, NULL, OPTION_GP64},
1692 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1693 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
8b10b0b3
MR
1694 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1695 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
833794fc
MR
1696 {"minsn32", no_argument, NULL, OPTION_INSN32},
1697 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1698 {"mshared", no_argument, NULL, OPTION_MSHARED},
1699 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1700 {"msym32", no_argument, NULL, OPTION_MSYM32},
1701 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1702 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1703 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1704 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1705 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1706 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1707 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1708
1709 /* Strictly speaking this next option is ELF specific,
1710 but we allow it for other ports as well in order to
1711 make testing easier. */
1712 {"32", no_argument, NULL, OPTION_32},
1713
1714 /* ELF-specific options. */
c31f3936
RS
1715 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1716 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1717 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1718 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1719 {"xgot", no_argument, NULL, OPTION_XGOT},
1720 {"mabi", required_argument, NULL, OPTION_MABI},
1721 {"n32", no_argument, NULL, OPTION_N32},
1722 {"64", no_argument, NULL, OPTION_64},
1723 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1724 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1725 {"mpdr", no_argument, NULL, OPTION_PDR},
1726 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1727 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1728 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1729
1730 {NULL, no_argument, NULL, 0}
1731};
1732size_t md_longopts_size = sizeof (md_longopts);
1733\f
c6278170
RS
1734/* Information about either an Application Specific Extension or an
1735 optional architecture feature that, for simplicity, we treat in the
1736 same way as an ASE. */
1737struct mips_ase
1738{
1739 /* The name of the ASE, used in both the command-line and .set options. */
1740 const char *name;
1741
1742 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1743 and 64-bit architectures, the flags here refer to the subset that
1744 is available on both. */
1745 unsigned int flags;
1746
1747 /* The ASE_* flag used for instructions that are available on 64-bit
1748 architectures but that are not included in FLAGS. */
1749 unsigned int flags64;
1750
1751 /* The command-line options that turn the ASE on and off. */
1752 int option_on;
1753 int option_off;
1754
1755 /* The minimum required architecture revisions for MIPS32, MIPS64,
1756 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1757 int mips32_rev;
1758 int mips64_rev;
1759 int micromips32_rev;
1760 int micromips64_rev;
7361da2c
AB
1761
1762 /* The architecture where the ASE was removed or -1 if the extension has not
1763 been removed. */
1764 int rem_rev;
c6278170
RS
1765};
1766
1767/* A table of all supported ASEs. */
1768static const struct mips_ase mips_ases[] = {
1769 { "dsp", ASE_DSP, ASE_DSP64,
1770 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1771 2, 2, 2, 2,
1772 -1 },
c6278170
RS
1773
1774 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1775 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1776 2, 2, 2, 2,
1777 -1 },
c6278170 1778
8f4f9071
MF
1779 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1780 OPTION_DSPR3, OPTION_NO_DSPR3,
1781 6, 6, -1, -1,
1782 -1 },
1783
c6278170
RS
1784 { "eva", ASE_EVA, 0,
1785 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1786 2, 2, 2, 2,
1787 -1 },
c6278170
RS
1788
1789 { "mcu", ASE_MCU, 0,
1790 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1791 2, 2, 2, 2,
1792 -1 },
c6278170
RS
1793
1794 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1795 { "mdmx", ASE_MDMX, 0,
1796 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1797 -1, 1, -1, -1,
1798 6 },
c6278170
RS
1799
1800 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1801 { "mips3d", ASE_MIPS3D, 0,
1802 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1803 2, 1, -1, -1,
1804 6 },
c6278170
RS
1805
1806 { "mt", ASE_MT, 0,
1807 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1808 2, 2, -1, -1,
1809 -1 },
c6278170
RS
1810
1811 { "smartmips", ASE_SMARTMIPS, 0,
1812 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1813 1, -1, -1, -1,
1814 6 },
c6278170
RS
1815
1816 { "virt", ASE_VIRT, ASE_VIRT64,
1817 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1818 2, 2, 2, 2,
1819 -1 },
56d438b1
CF
1820
1821 { "msa", ASE_MSA, ASE_MSA64,
1822 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1823 2, 2, 2, 2,
1824 -1 },
7d64c587
AB
1825
1826 { "xpa", ASE_XPA, 0,
1827 OPTION_XPA, OPTION_NO_XPA,
909b4e3d 1828 2, 2, 2, 2,
7361da2c 1829 -1 },
25499ac7
MR
1830
1831 { "mips16e2", ASE_MIPS16E2, 0,
1832 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1833 2, 2, -1, -1,
1834 6 },
730c3174
SE
1835
1836 { "crc", ASE_CRC, ASE_CRC64,
1837 OPTION_CRC, OPTION_NO_CRC,
1838 6, 6, -1, -1,
1839 -1 },
6f20c942
FS
1840
1841 { "ginv", ASE_GINV, 0,
1842 OPTION_GINV, OPTION_NO_GINV,
1843 6, 6, 6, 6,
1844 -1 },
8095d2f7
CX
1845
1846 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1847 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1848 0, 0, -1, -1,
1849 -1 },
716c08de
CX
1850
1851 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1852 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1853 0, 0, -1, -1,
1854 -1 },
bdc6c06e
CX
1855
1856 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1857 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1858 0, 0, -1, -1,
1859 -1 },
a693765e
CX
1860
1861 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1862 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1863 0, 0, -1, -1,
1864 -1 },
c6278170
RS
1865};
1866
1867/* The set of ASEs that require -mfp64. */
82bda27b 1868#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1869
1870/* Groups of ASE_* flags that represent different revisions of an ASE. */
1871static const unsigned int mips_ase_groups[] = {
a693765e
CX
1872 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1873 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
c6278170
RS
1874};
1875\f
252b5132
RH
1876/* Pseudo-op table.
1877
1878 The following pseudo-ops from the Kane and Heinrich MIPS book
1879 should be defined here, but are currently unsupported: .alias,
1880 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1881
1882 The following pseudo-ops from the Kane and Heinrich MIPS book are
1883 specific to the type of debugging information being generated, and
1884 should be defined by the object format: .aent, .begin, .bend,
1885 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1886 .vreg.
1887
1888 The following pseudo-ops from the Kane and Heinrich MIPS book are
1889 not MIPS CPU specific, but are also not specific to the object file
1890 format. This file is probably the best place to define them, but
d84bcf09 1891 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1892
e972090a
NC
1893static const pseudo_typeS mips_pseudo_table[] =
1894{
beae10d5 1895 /* MIPS specific pseudo-ops. */
252b5132
RH
1896 {"option", s_option, 0},
1897 {"set", s_mipsset, 0},
1898 {"rdata", s_change_sec, 'r'},
1899 {"sdata", s_change_sec, 's'},
1900 {"livereg", s_ignore, 0},
1901 {"abicalls", s_abicalls, 0},
1902 {"cpload", s_cpload, 0},
6478892d
TS
1903 {"cpsetup", s_cpsetup, 0},
1904 {"cplocal", s_cplocal, 0},
252b5132 1905 {"cprestore", s_cprestore, 0},
6478892d 1906 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1907 {"dtprelword", s_dtprelword, 0},
1908 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1909 {"tprelword", s_tprelword, 0},
1910 {"tpreldword", s_tpreldword, 0},
6478892d 1911 {"gpvalue", s_gpvalue, 0},
252b5132 1912 {"gpword", s_gpword, 0},
10181a0d 1913 {"gpdword", s_gpdword, 0},
a3f278e2 1914 {"ehword", s_ehword, 0},
252b5132
RH
1915 {"cpadd", s_cpadd, 0},
1916 {"insn", s_insn, 0},
ba92f887 1917 {"nan", s_nan, 0},
919731af 1918 {"module", s_module, 0},
252b5132 1919
beae10d5 1920 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1921 chips. */
38a57ae7 1922 {"asciiz", stringer, 8 + 1},
252b5132
RH
1923 {"bss", s_change_sec, 'b'},
1924 {"err", s_err, 0},
1925 {"half", s_cons, 1},
1926 {"dword", s_cons, 3},
1927 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1928 {"origin", s_org, 0},
1929 {"repeat", s_rept, 0},
252b5132 1930
998b3c36
MR
1931 /* For MIPS this is non-standard, but we define it for consistency. */
1932 {"sbss", s_change_sec, 'B'},
1933
beae10d5 1934 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1935 here for one reason or another. */
1936 {"align", s_align, 0},
1937 {"byte", s_cons, 0},
1938 {"data", s_change_sec, 'd'},
1939 {"double", s_float_cons, 'd'},
1940 {"float", s_float_cons, 'f'},
1941 {"globl", s_mips_globl, 0},
1942 {"global", s_mips_globl, 0},
1943 {"hword", s_cons, 1},
1944 {"int", s_cons, 2},
1945 {"long", s_cons, 2},
1946 {"octa", s_cons, 4},
1947 {"quad", s_cons, 3},
cca86cc8 1948 {"section", s_change_section, 0},
252b5132
RH
1949 {"short", s_cons, 1},
1950 {"single", s_float_cons, 'f'},
754e2bb9 1951 {"stabd", s_mips_stab, 'd'},
252b5132 1952 {"stabn", s_mips_stab, 'n'},
754e2bb9 1953 {"stabs", s_mips_stab, 's'},
252b5132
RH
1954 {"text", s_change_sec, 't'},
1955 {"word", s_cons, 2},
add56521 1956
add56521 1957 { "extern", ecoff_directive_extern, 0},
add56521 1958
43841e91 1959 { NULL, NULL, 0 },
252b5132
RH
1960};
1961
e972090a
NC
1962static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1963{
beae10d5
KH
1964 /* These pseudo-ops should be defined by the object file format.
1965 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1966 {"aent", s_mips_ent, 1},
1967 {"bgnb", s_ignore, 0},
1968 {"end", s_mips_end, 0},
1969 {"endb", s_ignore, 0},
1970 {"ent", s_mips_ent, 0},
c5dd6aab 1971 {"file", s_mips_file, 0},
252b5132
RH
1972 {"fmask", s_mips_mask, 'F'},
1973 {"frame", s_mips_frame, 0},
c5dd6aab 1974 {"loc", s_mips_loc, 0},
252b5132
RH
1975 {"mask", s_mips_mask, 'R'},
1976 {"verstamp", s_ignore, 0},
43841e91 1977 { NULL, NULL, 0 },
252b5132
RH
1978};
1979
3ae8dd8d
MR
1980/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1981 purpose of the `.dc.a' internal pseudo-op. */
1982
1983int
1984mips_address_bytes (void)
1985{
919731af 1986 file_mips_check_options ();
3ae8dd8d
MR
1987 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1988}
1989
17a2f251 1990extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1991
1992void
17a2f251 1993mips_pop_insert (void)
252b5132
RH
1994{
1995 pop_insert (mips_pseudo_table);
1996 if (! ECOFF_DEBUGGING)
1997 pop_insert (mips_nonecoff_pseudo_table);
1998}
1999\f
2000/* Symbols labelling the current insn. */
2001
e972090a
NC
2002struct insn_label_list
2003{
252b5132
RH
2004 struct insn_label_list *next;
2005 symbolS *label;
2006};
2007
252b5132 2008static struct insn_label_list *free_insn_labels;
742a56fe 2009#define label_list tc_segment_info_data.labels
252b5132 2010
17a2f251 2011static void mips_clear_insn_labels (void);
df58fc94
RS
2012static void mips_mark_labels (void);
2013static void mips_compressed_mark_labels (void);
252b5132
RH
2014
2015static inline void
17a2f251 2016mips_clear_insn_labels (void)
252b5132 2017{
ed9e98c2 2018 struct insn_label_list **pl;
a8dbcb85 2019 segment_info_type *si;
252b5132 2020
a8dbcb85
TS
2021 if (now_seg)
2022 {
2023 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
2024 ;
3739860c 2025
a8dbcb85
TS
2026 si = seg_info (now_seg);
2027 *pl = si->label_list;
2028 si->label_list = NULL;
2029 }
252b5132 2030}
a8dbcb85 2031
df58fc94
RS
2032/* Mark instruction labels in MIPS16/microMIPS mode. */
2033
2034static inline void
2035mips_mark_labels (void)
2036{
2037 if (HAVE_CODE_COMPRESSION)
2038 mips_compressed_mark_labels ();
2039}
252b5132
RH
2040\f
2041static char *expr_end;
2042
e423441d 2043/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 2044 mips16_ip and when populated is always an O_constant. */
252b5132
RH
2045
2046static expressionS imm_expr;
252b5132 2047
77bd4346
RS
2048/* The relocatable field in an instruction and the relocs associated
2049 with it. These variables are used for instructions like LUI and
2050 JAL as well as true offsets. They are also used for address
2051 operands in macros. */
252b5132 2052
77bd4346 2053static expressionS offset_expr;
f6688943
TS
2054static bfd_reloc_code_real_type offset_reloc[3]
2055 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 2056
df58fc94
RS
2057/* This is set to the resulting size of the instruction to be produced
2058 by mips16_ip if an explicit extension is used or by mips_ip if an
2059 explicit size is supplied. */
252b5132 2060
df58fc94 2061static unsigned int forced_insn_length;
252b5132 2062
e1b47bd5
RS
2063/* True if we are assembling an instruction. All dot symbols defined during
2064 this time should be treated as code labels. */
2065
2066static bfd_boolean mips_assembling_insn;
2067
ecb4347a
DJ
2068/* The pdr segment for per procedure frame/regmask info. Not used for
2069 ECOFF debugging. */
252b5132
RH
2070
2071static segT pdr_seg;
252b5132 2072
e013f690
TS
2073/* The default target format to use. */
2074
aeffff67
RS
2075#if defined (TE_FreeBSD)
2076#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2077#elif defined (TE_TMIPS)
2078#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2079#else
2080#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2081#endif
2082
e013f690 2083const char *
17a2f251 2084mips_target_format (void)
e013f690
TS
2085{
2086 switch (OUTPUT_FLAVOR)
2087 {
e013f690 2088 case bfd_target_elf_flavour:
0a44bf69
RS
2089#ifdef TE_VXWORKS
2090 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2091 return (target_big_endian
2092 ? "elf32-bigmips-vxworks"
2093 : "elf32-littlemips-vxworks");
2094#endif
e013f690 2095 return (target_big_endian
cfe86eaa 2096 ? (HAVE_64BIT_OBJECTS
aeffff67 2097 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 2098 : (HAVE_NEWABI
aeffff67
RS
2099 ? ELF_TARGET ("elf32-n", "big")
2100 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 2101 : (HAVE_64BIT_OBJECTS
aeffff67 2102 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 2103 : (HAVE_NEWABI
aeffff67
RS
2104 ? ELF_TARGET ("elf32-n", "little")
2105 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
2106 default:
2107 abort ();
2108 return NULL;
2109 }
2110}
2111
c6278170
RS
2112/* Return the ISA revision that is currently in use, or 0 if we are
2113 generating code for MIPS V or below. */
2114
2115static int
2116mips_isa_rev (void)
2117{
2118 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2119 return 2;
2120
ae52f483
AB
2121 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2122 return 3;
2123
2124 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2125 return 5;
2126
7361da2c
AB
2127 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2128 return 6;
2129
c6278170
RS
2130 /* microMIPS implies revision 2 or above. */
2131 if (mips_opts.micromips)
2132 return 2;
2133
2134 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2135 return 1;
2136
2137 return 0;
2138}
2139
2140/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2141
2142static unsigned int
2143mips_ase_mask (unsigned int flags)
2144{
2145 unsigned int i;
2146
2147 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2148 if (flags & mips_ase_groups[i])
2149 flags |= mips_ase_groups[i];
2150 return flags;
2151}
2152
2153/* Check whether the current ISA supports ASE. Issue a warning if
2154 appropriate. */
2155
2156static void
2157mips_check_isa_supports_ase (const struct mips_ase *ase)
2158{
2159 const char *base;
2160 int min_rev, size;
2161 static unsigned int warned_isa;
2162 static unsigned int warned_fp32;
2163
2164 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2165 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2166 else
2167 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2168 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2169 && (warned_isa & ase->flags) != ase->flags)
2170 {
2171 warned_isa |= ase->flags;
2172 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2173 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2174 if (min_rev < 0)
1661c76c 2175 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2176 " `%s' extension"), size, base, ase->name);
2177 else
1661c76c 2178 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2179 ase->name, base, size, min_rev);
2180 }
7361da2c
AB
2181 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2182 && (warned_isa & ase->flags) != ase->flags)
2183 {
2184 warned_isa |= ase->flags;
2185 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2186 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2187 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2188 ase->name, base, size, ase->rem_rev);
2189 }
2190
c6278170 2191 if ((ase->flags & FP64_ASES)
0b35dfee 2192 && mips_opts.fp != 64
c6278170
RS
2193 && (warned_fp32 & ase->flags) != ase->flags)
2194 {
2195 warned_fp32 |= ase->flags;
1661c76c 2196 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2197 }
2198}
2199
2200/* Check all enabled ASEs to see whether they are supported by the
2201 chosen architecture. */
2202
2203static void
2204mips_check_isa_supports_ases (void)
2205{
2206 unsigned int i, mask;
2207
2208 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2209 {
2210 mask = mips_ase_mask (mips_ases[i].flags);
2211 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2212 mips_check_isa_supports_ase (&mips_ases[i]);
2213 }
2214}
2215
2216/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2217 that were affected. */
2218
2219static unsigned int
919731af 2220mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2221 bfd_boolean enabled_p)
c6278170
RS
2222{
2223 unsigned int mask;
2224
2225 mask = mips_ase_mask (ase->flags);
919731af 2226 opts->ase &= ~mask;
92cebb3d
MR
2227
2228 /* Clear combination ASE flags, which need to be recalculated based on
2229 updated regular ASE settings. */
41cee089 2230 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT | ASE_EVA_R6);
92cebb3d 2231
c6278170 2232 if (enabled_p)
919731af 2233 opts->ase |= ase->flags;
25499ac7 2234
9785fc2a
MR
2235 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2236 instructions which are only valid when both ASEs are enabled.
2237 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2238 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2239 {
2240 opts->ase |= ASE_XPA_VIRT;
2241 mask |= ASE_XPA_VIRT;
2242 }
25499ac7
MR
2243 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2244 {
2245 opts->ase |= ASE_MIPS16E2_MT;
2246 mask |= ASE_MIPS16E2_MT;
2247 }
2248
41cee089
FS
2249 /* The EVA Extension has instructions which are only valid when the R6 ISA
2250 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
2251 present. */
2252 if (((opts->ase & ASE_EVA) != 0) && ISA_IS_R6 (opts->isa))
2253 {
2254 opts->ase |= ASE_EVA_R6;
2255 mask |= ASE_EVA_R6;
2256 }
2257
c6278170
RS
2258 return mask;
2259}
2260
2261/* Return the ASE called NAME, or null if none. */
2262
2263static const struct mips_ase *
2264mips_lookup_ase (const char *name)
2265{
2266 unsigned int i;
2267
2268 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2269 if (strcmp (name, mips_ases[i].name) == 0)
2270 return &mips_ases[i];
2271 return NULL;
2272}
2273
df58fc94 2274/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2275 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2276 otherwise it is a 32-bit instruction. */
df58fc94
RS
2277
2278static inline unsigned int
2279micromips_insn_length (const struct mips_opcode *mo)
2280{
7fd53920 2281 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2282}
2283
5c04167a
RS
2284/* Return the length of MIPS16 instruction OPCODE. */
2285
2286static inline unsigned int
2287mips16_opcode_length (unsigned long opcode)
2288{
2289 return (opcode >> 16) == 0 ? 2 : 4;
2290}
2291
1e915849
RS
2292/* Return the length of instruction INSN. */
2293
2294static inline unsigned int
2295insn_length (const struct mips_cl_insn *insn)
2296{
df58fc94
RS
2297 if (mips_opts.micromips)
2298 return micromips_insn_length (insn->insn_mo);
2299 else if (mips_opts.mips16)
5c04167a 2300 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2301 else
1e915849 2302 return 4;
1e915849
RS
2303}
2304
2305/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2306
2307static void
2308create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2309{
2310 size_t i;
2311
2312 insn->insn_mo = mo;
1e915849
RS
2313 insn->insn_opcode = mo->match;
2314 insn->frag = NULL;
2315 insn->where = 0;
2316 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2317 insn->fixp[i] = NULL;
2318 insn->fixed_p = (mips_opts.noreorder > 0);
2319 insn->noreorder_p = (mips_opts.noreorder > 0);
2320 insn->mips16_absolute_jump_p = 0;
15be625d 2321 insn->complete_p = 0;
e407c74b 2322 insn->cleared_p = 0;
1e915849
RS
2323}
2324
fc76e730
RS
2325/* Get a list of all the operands in INSN. */
2326
2327static const struct mips_operand_array *
2328insn_operands (const struct mips_cl_insn *insn)
2329{
2330 if (insn->insn_mo >= &mips_opcodes[0]
2331 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2332 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2333
2334 if (insn->insn_mo >= &mips16_opcodes[0]
2335 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2336 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2337
2338 if (insn->insn_mo >= &micromips_opcodes[0]
2339 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2340 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2341
2342 abort ();
2343}
2344
2345/* Get a description of operand OPNO of INSN. */
2346
2347static const struct mips_operand *
2348insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2349{
2350 const struct mips_operand_array *operands;
2351
2352 operands = insn_operands (insn);
2353 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2354 abort ();
2355 return operands->operand[opno];
2356}
2357
e077a1c8
RS
2358/* Install UVAL as the value of OPERAND in INSN. */
2359
2360static inline void
2361insn_insert_operand (struct mips_cl_insn *insn,
2362 const struct mips_operand *operand, unsigned int uval)
2363{
25499ac7
MR
2364 if (mips_opts.mips16
2365 && operand->type == OP_INT && operand->lsb == 0
2366 && mips_opcode_32bit_p (insn->insn_mo))
2367 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2368 else
2369 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
e077a1c8
RS
2370}
2371
fc76e730
RS
2372/* Extract the value of OPERAND from INSN. */
2373
2374static inline unsigned
2375insn_extract_operand (const struct mips_cl_insn *insn,
2376 const struct mips_operand *operand)
2377{
2378 return mips_extract_operand (operand, insn->insn_opcode);
2379}
2380
df58fc94 2381/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2382
2383static void
df58fc94 2384mips_record_compressed_mode (void)
742a56fe
RS
2385{
2386 segment_info_type *si;
2387
2388 si = seg_info (now_seg);
2389 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2390 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2391 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2392 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2393}
2394
4d68580a
RS
2395/* Read a standard MIPS instruction from BUF. */
2396
2397static unsigned long
2398read_insn (char *buf)
2399{
2400 if (target_big_endian)
2401 return bfd_getb32 ((bfd_byte *) buf);
2402 else
2403 return bfd_getl32 ((bfd_byte *) buf);
2404}
2405
2406/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2407 the next byte. */
2408
2409static char *
2410write_insn (char *buf, unsigned int insn)
2411{
2412 md_number_to_chars (buf, insn, 4);
2413 return buf + 4;
2414}
2415
2416/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2417 has length LENGTH. */
2418
2419static unsigned long
2420read_compressed_insn (char *buf, unsigned int length)
2421{
2422 unsigned long insn;
2423 unsigned int i;
2424
2425 insn = 0;
2426 for (i = 0; i < length; i += 2)
2427 {
2428 insn <<= 16;
2429 if (target_big_endian)
2430 insn |= bfd_getb16 ((char *) buf);
2431 else
2432 insn |= bfd_getl16 ((char *) buf);
2433 buf += 2;
2434 }
2435 return insn;
2436}
2437
5c04167a
RS
2438/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2439 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2440
2441static char *
2442write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2443{
2444 unsigned int i;
2445
2446 for (i = 0; i < length; i += 2)
2447 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2448 return buf + length;
2449}
2450
1e915849
RS
2451/* Install INSN at the location specified by its "frag" and "where" fields. */
2452
2453static void
2454install_insn (const struct mips_cl_insn *insn)
2455{
2456 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2457 if (HAVE_CODE_COMPRESSION)
2458 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2459 else
4d68580a 2460 write_insn (f, insn->insn_opcode);
df58fc94 2461 mips_record_compressed_mode ();
1e915849
RS
2462}
2463
2464/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2465 and install the opcode in the new location. */
2466
2467static void
2468move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2469{
2470 size_t i;
2471
2472 insn->frag = frag;
2473 insn->where = where;
2474 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2475 if (insn->fixp[i] != NULL)
2476 {
2477 insn->fixp[i]->fx_frag = frag;
2478 insn->fixp[i]->fx_where = where;
2479 }
2480 install_insn (insn);
2481}
2482
2483/* Add INSN to the end of the output. */
2484
2485static void
2486add_fixed_insn (struct mips_cl_insn *insn)
2487{
2488 char *f = frag_more (insn_length (insn));
2489 move_insn (insn, frag_now, f - frag_now->fr_literal);
2490}
2491
2492/* Start a variant frag and move INSN to the start of the variant part,
2493 marking it as fixed. The other arguments are as for frag_var. */
2494
2495static void
2496add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2497 relax_substateT subtype, symbolS *symbol, offsetT offset)
2498{
2499 frag_grow (max_chars);
2500 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2501 insn->fixed_p = 1;
2502 frag_var (rs_machine_dependent, max_chars, var,
2503 subtype, symbol, offset, NULL);
2504}
2505
2506/* Insert N copies of INSN into the history buffer, starting at
2507 position FIRST. Neither FIRST nor N need to be clipped. */
2508
2509static void
2510insert_into_history (unsigned int first, unsigned int n,
2511 const struct mips_cl_insn *insn)
2512{
2513 if (mips_relax.sequence != 2)
2514 {
2515 unsigned int i;
2516
2517 for (i = ARRAY_SIZE (history); i-- > first;)
2518 if (i >= first + n)
2519 history[i] = history[i - n];
2520 else
2521 history[i] = *insn;
2522 }
2523}
2524
e3de51ce
RS
2525/* Clear the error in insn_error. */
2526
2527static void
2528clear_insn_error (void)
2529{
2530 memset (&insn_error, 0, sizeof (insn_error));
2531}
2532
2533/* Possibly record error message MSG for the current instruction.
2534 If the error is about a particular argument, ARGNUM is the 1-based
2535 number of that argument, otherwise it is 0. FORMAT is the format
2536 of MSG. Return true if MSG was used, false if the current message
2537 was kept. */
2538
2539static bfd_boolean
2540set_insn_error_format (int argnum, enum mips_insn_error_format format,
2541 const char *msg)
2542{
2543 if (argnum == 0)
2544 {
2545 /* Give priority to errors against specific arguments, and to
2546 the first whole-instruction message. */
2547 if (insn_error.msg)
2548 return FALSE;
2549 }
2550 else
2551 {
2552 /* Keep insn_error if it is against a later argument. */
2553 if (argnum < insn_error.min_argnum)
2554 return FALSE;
2555
2556 /* If both errors are against the same argument but are different,
2557 give up on reporting a specific error for this argument.
2558 See the comment about mips_insn_error for details. */
2559 if (argnum == insn_error.min_argnum
2560 && insn_error.msg
2561 && strcmp (insn_error.msg, msg) != 0)
2562 {
2563 insn_error.msg = 0;
2564 insn_error.min_argnum += 1;
2565 return FALSE;
2566 }
2567 }
2568 insn_error.min_argnum = argnum;
2569 insn_error.format = format;
2570 insn_error.msg = msg;
2571 return TRUE;
2572}
2573
2574/* Record an instruction error with no % format fields. ARGNUM and MSG are
2575 as for set_insn_error_format. */
2576
2577static void
2578set_insn_error (int argnum, const char *msg)
2579{
2580 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2581}
2582
2583/* Record an instruction error with one %d field I. ARGNUM and MSG are
2584 as for set_insn_error_format. */
2585
2586static void
2587set_insn_error_i (int argnum, const char *msg, int i)
2588{
2589 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2590 insn_error.u.i = i;
2591}
2592
2593/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2594 are as for set_insn_error_format. */
2595
2596static void
2597set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2598{
2599 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2600 {
2601 insn_error.u.ss[0] = s1;
2602 insn_error.u.ss[1] = s2;
2603 }
2604}
2605
2606/* Report the error in insn_error, which is against assembly code STR. */
2607
2608static void
2609report_insn_error (const char *str)
2610{
e1fa0163 2611 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2612
e3de51ce
RS
2613 switch (insn_error.format)
2614 {
2615 case ERR_FMT_PLAIN:
2616 as_bad (msg, str);
2617 break;
2618
2619 case ERR_FMT_I:
2620 as_bad (msg, insn_error.u.i, str);
2621 break;
2622
2623 case ERR_FMT_SS:
2624 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2625 break;
2626 }
e1fa0163
NC
2627
2628 free ((char *) msg);
e3de51ce
RS
2629}
2630
71400594
RS
2631/* Initialize vr4120_conflicts. There is a bit of duplication here:
2632 the idea is to make it obvious at a glance that each errata is
2633 included. */
2634
2635static void
2636init_vr4120_conflicts (void)
2637{
2638#define CONFLICT(FIRST, SECOND) \
2639 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2640
2641 /* Errata 21 - [D]DIV[U] after [D]MACC */
2642 CONFLICT (MACC, DIV);
2643 CONFLICT (DMACC, DIV);
2644
2645 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2646 CONFLICT (DMULT, DMULT);
2647 CONFLICT (DMULT, DMACC);
2648 CONFLICT (DMACC, DMULT);
2649 CONFLICT (DMACC, DMACC);
2650
2651 /* Errata 24 - MT{LO,HI} after [D]MACC */
2652 CONFLICT (MACC, MTHILO);
2653 CONFLICT (DMACC, MTHILO);
2654
2655 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2656 instruction is executed immediately after a MACC or DMACC
2657 instruction, the result of [either instruction] is incorrect." */
2658 CONFLICT (MACC, MULT);
2659 CONFLICT (MACC, DMULT);
2660 CONFLICT (DMACC, MULT);
2661 CONFLICT (DMACC, DMULT);
2662
2663 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2664 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2665 DDIV or DDIVU instruction, the result of the MACC or
2666 DMACC instruction is incorrect.". */
2667 CONFLICT (DMULT, MACC);
2668 CONFLICT (DMULT, DMACC);
2669 CONFLICT (DIV, MACC);
2670 CONFLICT (DIV, DMACC);
2671
2672#undef CONFLICT
2673}
2674
707bfff6
TS
2675struct regname {
2676 const char *name;
2677 unsigned int num;
2678};
2679
14daeee3 2680#define RNUM_MASK 0x00000ff
56d438b1 2681#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2682#define RTYPE_NUM 0x0000100
2683#define RTYPE_FPU 0x0000200
2684#define RTYPE_FCC 0x0000400
2685#define RTYPE_VEC 0x0000800
2686#define RTYPE_GP 0x0001000
2687#define RTYPE_CP0 0x0002000
2688#define RTYPE_PC 0x0004000
2689#define RTYPE_ACC 0x0008000
2690#define RTYPE_CCC 0x0010000
2691#define RTYPE_VI 0x0020000
2692#define RTYPE_VF 0x0040000
2693#define RTYPE_R5900_I 0x0080000
2694#define RTYPE_R5900_Q 0x0100000
2695#define RTYPE_R5900_R 0x0200000
2696#define RTYPE_R5900_ACC 0x0400000
56d438b1 2697#define RTYPE_MSA 0x0800000
14daeee3 2698#define RWARN 0x8000000
707bfff6
TS
2699
2700#define GENERIC_REGISTER_NUMBERS \
2701 {"$0", RTYPE_NUM | 0}, \
2702 {"$1", RTYPE_NUM | 1}, \
2703 {"$2", RTYPE_NUM | 2}, \
2704 {"$3", RTYPE_NUM | 3}, \
2705 {"$4", RTYPE_NUM | 4}, \
2706 {"$5", RTYPE_NUM | 5}, \
2707 {"$6", RTYPE_NUM | 6}, \
2708 {"$7", RTYPE_NUM | 7}, \
2709 {"$8", RTYPE_NUM | 8}, \
2710 {"$9", RTYPE_NUM | 9}, \
2711 {"$10", RTYPE_NUM | 10}, \
2712 {"$11", RTYPE_NUM | 11}, \
2713 {"$12", RTYPE_NUM | 12}, \
2714 {"$13", RTYPE_NUM | 13}, \
2715 {"$14", RTYPE_NUM | 14}, \
2716 {"$15", RTYPE_NUM | 15}, \
2717 {"$16", RTYPE_NUM | 16}, \
2718 {"$17", RTYPE_NUM | 17}, \
2719 {"$18", RTYPE_NUM | 18}, \
2720 {"$19", RTYPE_NUM | 19}, \
2721 {"$20", RTYPE_NUM | 20}, \
2722 {"$21", RTYPE_NUM | 21}, \
2723 {"$22", RTYPE_NUM | 22}, \
2724 {"$23", RTYPE_NUM | 23}, \
2725 {"$24", RTYPE_NUM | 24}, \
2726 {"$25", RTYPE_NUM | 25}, \
2727 {"$26", RTYPE_NUM | 26}, \
2728 {"$27", RTYPE_NUM | 27}, \
2729 {"$28", RTYPE_NUM | 28}, \
2730 {"$29", RTYPE_NUM | 29}, \
2731 {"$30", RTYPE_NUM | 30}, \
3739860c 2732 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2733
2734#define FPU_REGISTER_NAMES \
2735 {"$f0", RTYPE_FPU | 0}, \
2736 {"$f1", RTYPE_FPU | 1}, \
2737 {"$f2", RTYPE_FPU | 2}, \
2738 {"$f3", RTYPE_FPU | 3}, \
2739 {"$f4", RTYPE_FPU | 4}, \
2740 {"$f5", RTYPE_FPU | 5}, \
2741 {"$f6", RTYPE_FPU | 6}, \
2742 {"$f7", RTYPE_FPU | 7}, \
2743 {"$f8", RTYPE_FPU | 8}, \
2744 {"$f9", RTYPE_FPU | 9}, \
2745 {"$f10", RTYPE_FPU | 10}, \
2746 {"$f11", RTYPE_FPU | 11}, \
2747 {"$f12", RTYPE_FPU | 12}, \
2748 {"$f13", RTYPE_FPU | 13}, \
2749 {"$f14", RTYPE_FPU | 14}, \
2750 {"$f15", RTYPE_FPU | 15}, \
2751 {"$f16", RTYPE_FPU | 16}, \
2752 {"$f17", RTYPE_FPU | 17}, \
2753 {"$f18", RTYPE_FPU | 18}, \
2754 {"$f19", RTYPE_FPU | 19}, \
2755 {"$f20", RTYPE_FPU | 20}, \
2756 {"$f21", RTYPE_FPU | 21}, \
2757 {"$f22", RTYPE_FPU | 22}, \
2758 {"$f23", RTYPE_FPU | 23}, \
2759 {"$f24", RTYPE_FPU | 24}, \
2760 {"$f25", RTYPE_FPU | 25}, \
2761 {"$f26", RTYPE_FPU | 26}, \
2762 {"$f27", RTYPE_FPU | 27}, \
2763 {"$f28", RTYPE_FPU | 28}, \
2764 {"$f29", RTYPE_FPU | 29}, \
2765 {"$f30", RTYPE_FPU | 30}, \
2766 {"$f31", RTYPE_FPU | 31}
2767
2768#define FPU_CONDITION_CODE_NAMES \
2769 {"$fcc0", RTYPE_FCC | 0}, \
2770 {"$fcc1", RTYPE_FCC | 1}, \
2771 {"$fcc2", RTYPE_FCC | 2}, \
2772 {"$fcc3", RTYPE_FCC | 3}, \
2773 {"$fcc4", RTYPE_FCC | 4}, \
2774 {"$fcc5", RTYPE_FCC | 5}, \
2775 {"$fcc6", RTYPE_FCC | 6}, \
2776 {"$fcc7", RTYPE_FCC | 7}
2777
2778#define COPROC_CONDITION_CODE_NAMES \
2779 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2780 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2781 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2782 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2783 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2784 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2785 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2786 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2787
2788#define N32N64_SYMBOLIC_REGISTER_NAMES \
2789 {"$a4", RTYPE_GP | 8}, \
2790 {"$a5", RTYPE_GP | 9}, \
2791 {"$a6", RTYPE_GP | 10}, \
2792 {"$a7", RTYPE_GP | 11}, \
2793 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2794 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2795 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2796 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2797 {"$t0", RTYPE_GP | 12}, \
2798 {"$t1", RTYPE_GP | 13}, \
2799 {"$t2", RTYPE_GP | 14}, \
2800 {"$t3", RTYPE_GP | 15}
2801
2802#define O32_SYMBOLIC_REGISTER_NAMES \
2803 {"$t0", RTYPE_GP | 8}, \
2804 {"$t1", RTYPE_GP | 9}, \
2805 {"$t2", RTYPE_GP | 10}, \
2806 {"$t3", RTYPE_GP | 11}, \
2807 {"$t4", RTYPE_GP | 12}, \
2808 {"$t5", RTYPE_GP | 13}, \
2809 {"$t6", RTYPE_GP | 14}, \
2810 {"$t7", RTYPE_GP | 15}, \
2811 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2812 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2813 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2814 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6 2815
6f2117ba 2816/* Remaining symbolic register names. */
707bfff6
TS
2817#define SYMBOLIC_REGISTER_NAMES \
2818 {"$zero", RTYPE_GP | 0}, \
2819 {"$at", RTYPE_GP | 1}, \
2820 {"$AT", RTYPE_GP | 1}, \
2821 {"$v0", RTYPE_GP | 2}, \
2822 {"$v1", RTYPE_GP | 3}, \
2823 {"$a0", RTYPE_GP | 4}, \
2824 {"$a1", RTYPE_GP | 5}, \
2825 {"$a2", RTYPE_GP | 6}, \
2826 {"$a3", RTYPE_GP | 7}, \
2827 {"$s0", RTYPE_GP | 16}, \
2828 {"$s1", RTYPE_GP | 17}, \
2829 {"$s2", RTYPE_GP | 18}, \
2830 {"$s3", RTYPE_GP | 19}, \
2831 {"$s4", RTYPE_GP | 20}, \
2832 {"$s5", RTYPE_GP | 21}, \
2833 {"$s6", RTYPE_GP | 22}, \
2834 {"$s7", RTYPE_GP | 23}, \
2835 {"$t8", RTYPE_GP | 24}, \
2836 {"$t9", RTYPE_GP | 25}, \
2837 {"$k0", RTYPE_GP | 26}, \
2838 {"$kt0", RTYPE_GP | 26}, \
2839 {"$k1", RTYPE_GP | 27}, \
2840 {"$kt1", RTYPE_GP | 27}, \
2841 {"$gp", RTYPE_GP | 28}, \
2842 {"$sp", RTYPE_GP | 29}, \
2843 {"$s8", RTYPE_GP | 30}, \
2844 {"$fp", RTYPE_GP | 30}, \
2845 {"$ra", RTYPE_GP | 31}
2846
2847#define MIPS16_SPECIAL_REGISTER_NAMES \
2848 {"$pc", RTYPE_PC | 0}
2849
2850#define MDMX_VECTOR_REGISTER_NAMES \
6f2117ba
PH
2851 /* {"$v0", RTYPE_VEC | 0}, Clash with REG 2 above. */ \
2852 /* {"$v1", RTYPE_VEC | 1}, Clash with REG 3 above. */ \
707bfff6
TS
2853 {"$v2", RTYPE_VEC | 2}, \
2854 {"$v3", RTYPE_VEC | 3}, \
2855 {"$v4", RTYPE_VEC | 4}, \
2856 {"$v5", RTYPE_VEC | 5}, \
2857 {"$v6", RTYPE_VEC | 6}, \
2858 {"$v7", RTYPE_VEC | 7}, \
2859 {"$v8", RTYPE_VEC | 8}, \
2860 {"$v9", RTYPE_VEC | 9}, \
2861 {"$v10", RTYPE_VEC | 10}, \
2862 {"$v11", RTYPE_VEC | 11}, \
2863 {"$v12", RTYPE_VEC | 12}, \
2864 {"$v13", RTYPE_VEC | 13}, \
2865 {"$v14", RTYPE_VEC | 14}, \
2866 {"$v15", RTYPE_VEC | 15}, \
2867 {"$v16", RTYPE_VEC | 16}, \
2868 {"$v17", RTYPE_VEC | 17}, \
2869 {"$v18", RTYPE_VEC | 18}, \
2870 {"$v19", RTYPE_VEC | 19}, \
2871 {"$v20", RTYPE_VEC | 20}, \
2872 {"$v21", RTYPE_VEC | 21}, \
2873 {"$v22", RTYPE_VEC | 22}, \
2874 {"$v23", RTYPE_VEC | 23}, \
2875 {"$v24", RTYPE_VEC | 24}, \
2876 {"$v25", RTYPE_VEC | 25}, \
2877 {"$v26", RTYPE_VEC | 26}, \
2878 {"$v27", RTYPE_VEC | 27}, \
2879 {"$v28", RTYPE_VEC | 28}, \
2880 {"$v29", RTYPE_VEC | 29}, \
2881 {"$v30", RTYPE_VEC | 30}, \
2882 {"$v31", RTYPE_VEC | 31}
2883
14daeee3
RS
2884#define R5900_I_NAMES \
2885 {"$I", RTYPE_R5900_I | 0}
2886
2887#define R5900_Q_NAMES \
2888 {"$Q", RTYPE_R5900_Q | 0}
2889
2890#define R5900_R_NAMES \
2891 {"$R", RTYPE_R5900_R | 0}
2892
2893#define R5900_ACC_NAMES \
2894 {"$ACC", RTYPE_R5900_ACC | 0 }
2895
707bfff6
TS
2896#define MIPS_DSP_ACCUMULATOR_NAMES \
2897 {"$ac0", RTYPE_ACC | 0}, \
2898 {"$ac1", RTYPE_ACC | 1}, \
2899 {"$ac2", RTYPE_ACC | 2}, \
2900 {"$ac3", RTYPE_ACC | 3}
2901
2902static const struct regname reg_names[] = {
2903 GENERIC_REGISTER_NUMBERS,
2904 FPU_REGISTER_NAMES,
2905 FPU_CONDITION_CODE_NAMES,
2906 COPROC_CONDITION_CODE_NAMES,
2907
2908 /* The $txx registers depends on the abi,
2909 these will be added later into the symbol table from
3739860c 2910 one of the tables below once mips_abi is set after
707bfff6
TS
2911 parsing of arguments from the command line. */
2912 SYMBOLIC_REGISTER_NAMES,
2913
2914 MIPS16_SPECIAL_REGISTER_NAMES,
2915 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2916 R5900_I_NAMES,
2917 R5900_Q_NAMES,
2918 R5900_R_NAMES,
2919 R5900_ACC_NAMES,
707bfff6
TS
2920 MIPS_DSP_ACCUMULATOR_NAMES,
2921 {0, 0}
2922};
2923
2924static const struct regname reg_names_o32[] = {
2925 O32_SYMBOLIC_REGISTER_NAMES,
2926 {0, 0}
2927};
2928
2929static const struct regname reg_names_n32n64[] = {
2930 N32N64_SYMBOLIC_REGISTER_NAMES,
2931 {0, 0}
2932};
2933
a92713e6
RS
2934/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2935 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2936 of these register symbols, return the associated vector register,
2937 otherwise return SYMVAL itself. */
df58fc94 2938
a92713e6
RS
2939static unsigned int
2940mips_prefer_vec_regno (unsigned int symval)
707bfff6 2941{
a92713e6
RS
2942 if ((symval & -2) == (RTYPE_GP | 2))
2943 return RTYPE_VEC | (symval & 1);
2944 return symval;
2945}
2946
14daeee3
RS
2947/* Return true if string [S, E) is a valid register name, storing its
2948 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2949
2950static bfd_boolean
14daeee3 2951mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2952{
707bfff6 2953 char save_c;
14daeee3 2954 symbolS *symbol;
707bfff6
TS
2955
2956 /* Terminate name. */
2957 save_c = *e;
2958 *e = '\0';
2959
a92713e6
RS
2960 /* Look up the name. */
2961 symbol = symbol_find (s);
2962 *e = save_c;
2963
2964 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2965 return FALSE;
2966
14daeee3
RS
2967 *symval_ptr = S_GET_VALUE (symbol);
2968 return TRUE;
2969}
2970
2971/* Return true if the string at *SPTR is a valid register name. Allow it
2972 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2973 is nonnull.
2974
2975 When returning true, move *SPTR past the register, store the
2976 register's symbol value in *SYMVAL_PTR and the channel mask in
2977 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2978 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2979 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2980
2981static bfd_boolean
2982mips_parse_register (char **sptr, unsigned int *symval_ptr,
2983 unsigned int *channels_ptr)
2984{
2985 char *s, *e, *m;
2986 const char *q;
2987 unsigned int channels, symval, bit;
2988
2989 /* Find end of name. */
2990 s = e = *sptr;
2991 if (is_name_beginner (*e))
2992 ++e;
2993 while (is_part_of_name (*e))
2994 ++e;
2995
2996 channels = 0;
2997 if (!mips_parse_register_1 (s, e, &symval))
2998 {
2999 if (!channels_ptr)
3000 return FALSE;
3001
3002 /* Eat characters from the end of the string that are valid
3003 channel suffixes. The preceding register must be $ACC or
3004 end with a digit, so there is no ambiguity. */
3005 bit = 1;
3006 m = e;
3007 for (q = "wzyx"; *q; q++, bit <<= 1)
3008 if (m > s && m[-1] == *q)
3009 {
3010 --m;
3011 channels |= bit;
3012 }
3013
3014 if (channels == 0
3015 || !mips_parse_register_1 (s, m, &symval)
3016 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
3017 return FALSE;
3018 }
3019
a92713e6 3020 *sptr = e;
14daeee3
RS
3021 *symval_ptr = symval;
3022 if (channels_ptr)
3023 *channels_ptr = channels;
a92713e6
RS
3024 return TRUE;
3025}
3026
3027/* Check if SPTR points at a valid register specifier according to TYPES.
3028 If so, then return 1, advance S to consume the specifier and store
3029 the register's number in REGNOP, otherwise return 0. */
3030
3031static int
3032reg_lookup (char **s, unsigned int types, unsigned int *regnop)
3033{
3034 unsigned int regno;
3035
14daeee3 3036 if (mips_parse_register (s, &regno, NULL))
707bfff6 3037 {
a92713e6
RS
3038 if (types & RTYPE_VEC)
3039 regno = mips_prefer_vec_regno (regno);
3040 if (regno & types)
3041 regno &= RNUM_MASK;
3042 else
3043 regno = ~0;
707bfff6 3044 }
a92713e6 3045 else
707bfff6 3046 {
a92713e6 3047 if (types & RWARN)
1661c76c 3048 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 3049 regno = ~0;
707bfff6 3050 }
707bfff6 3051 if (regnop)
a92713e6
RS
3052 *regnop = regno;
3053 return regno <= RNUM_MASK;
707bfff6
TS
3054}
3055
14daeee3
RS
3056/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3057 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3058
3059static char *
3060mips_parse_vu0_channels (char *s, unsigned int *channels)
3061{
3062 unsigned int i;
3063
3064 *channels = 0;
3065 for (i = 0; i < 4; i++)
3066 if (*s == "xyzw"[i])
3067 {
3068 *channels |= 1 << (3 - i);
3069 ++s;
3070 }
3071 return s;
3072}
3073
a92713e6
RS
3074/* Token types for parsed operand lists. */
3075enum mips_operand_token_type {
3076 /* A plain register, e.g. $f2. */
3077 OT_REG,
df58fc94 3078
14daeee3
RS
3079 /* A 4-bit XYZW channel mask. */
3080 OT_CHANNELS,
3081
56d438b1
CF
3082 /* A constant vector index, e.g. [1]. */
3083 OT_INTEGER_INDEX,
3084
3085 /* A register vector index, e.g. [$2]. */
3086 OT_REG_INDEX,
df58fc94 3087
a92713e6
RS
3088 /* A continuous range of registers, e.g. $s0-$s4. */
3089 OT_REG_RANGE,
3090
3091 /* A (possibly relocated) expression. */
3092 OT_INTEGER,
3093
3094 /* A floating-point value. */
3095 OT_FLOAT,
3096
3097 /* A single character. This can be '(', ')' or ',', but '(' only appears
3098 before OT_REGs. */
3099 OT_CHAR,
3100
14daeee3
RS
3101 /* A doubled character, either "--" or "++". */
3102 OT_DOUBLE_CHAR,
3103
a92713e6
RS
3104 /* The end of the operand list. */
3105 OT_END
3106};
3107
3108/* A parsed operand token. */
3109struct mips_operand_token
3110{
3111 /* The type of token. */
3112 enum mips_operand_token_type type;
3113 union
3114 {
56d438b1 3115 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
3116 unsigned int regno;
3117
14daeee3
RS
3118 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3119 unsigned int channels;
3120
56d438b1
CF
3121 /* The integer value of an OT_INTEGER_INDEX. */
3122 addressT index;
a92713e6
RS
3123
3124 /* The two register symbol values involved in an OT_REG_RANGE. */
3125 struct {
3126 unsigned int regno1;
3127 unsigned int regno2;
3128 } reg_range;
3129
3130 /* The value of an OT_INTEGER. The value is represented as an
3131 expression and the relocation operators that were applied to
3132 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3133 relocation operators were used. */
3134 struct {
3135 expressionS value;
3136 bfd_reloc_code_real_type relocs[3];
3137 } integer;
3138
3139 /* The binary data for an OT_FLOAT constant, and the number of bytes
3140 in the constant. */
3141 struct {
3142 unsigned char data[8];
3143 int length;
3144 } flt;
3145
14daeee3 3146 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
3147 char ch;
3148 } u;
3149};
3150
3151/* An obstack used to construct lists of mips_operand_tokens. */
3152static struct obstack mips_operand_tokens;
3153
3154/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3155
3156static void
3157mips_add_token (struct mips_operand_token *token,
3158 enum mips_operand_token_type type)
3159{
3160 token->type = type;
3161 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3162}
3163
3164/* Check whether S is '(' followed by a register name. Add OT_CHAR
3165 and OT_REG tokens for them if so, and return a pointer to the first
3166 unconsumed character. Return null otherwise. */
3167
3168static char *
3169mips_parse_base_start (char *s)
3170{
3171 struct mips_operand_token token;
14daeee3
RS
3172 unsigned int regno, channels;
3173 bfd_boolean decrement_p;
df58fc94 3174
a92713e6
RS
3175 if (*s != '(')
3176 return 0;
3177
3178 ++s;
3179 SKIP_SPACE_TABS (s);
14daeee3
RS
3180
3181 /* Only match "--" as part of a base expression. In other contexts "--X"
3182 is a double negative. */
3183 decrement_p = (s[0] == '-' && s[1] == '-');
3184 if (decrement_p)
3185 {
3186 s += 2;
3187 SKIP_SPACE_TABS (s);
3188 }
3189
3190 /* Allow a channel specifier because that leads to better error messages
3191 than treating something like "$vf0x++" as an expression. */
3192 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3193 return 0;
3194
3195 token.u.ch = '(';
3196 mips_add_token (&token, OT_CHAR);
3197
14daeee3
RS
3198 if (decrement_p)
3199 {
3200 token.u.ch = '-';
3201 mips_add_token (&token, OT_DOUBLE_CHAR);
3202 }
3203
a92713e6
RS
3204 token.u.regno = regno;
3205 mips_add_token (&token, OT_REG);
3206
14daeee3
RS
3207 if (channels)
3208 {
3209 token.u.channels = channels;
3210 mips_add_token (&token, OT_CHANNELS);
3211 }
3212
3213 /* For consistency, only match "++" as part of base expressions too. */
3214 SKIP_SPACE_TABS (s);
3215 if (s[0] == '+' && s[1] == '+')
3216 {
3217 s += 2;
3218 token.u.ch = '+';
3219 mips_add_token (&token, OT_DOUBLE_CHAR);
3220 }
3221
a92713e6
RS
3222 return s;
3223}
3224
3225/* Parse one or more tokens from S. Return a pointer to the first
3226 unconsumed character on success. Return null if an error was found
3227 and store the error text in insn_error. FLOAT_FORMAT is as for
3228 mips_parse_arguments. */
3229
3230static char *
3231mips_parse_argument_token (char *s, char float_format)
3232{
6d4af3c2
AM
3233 char *end, *save_in;
3234 const char *err;
14daeee3 3235 unsigned int regno1, regno2, channels;
a92713e6
RS
3236 struct mips_operand_token token;
3237
3238 /* First look for "($reg", since we want to treat that as an
3239 OT_CHAR and OT_REG rather than an expression. */
3240 end = mips_parse_base_start (s);
3241 if (end)
3242 return end;
3243
3244 /* Handle other characters that end up as OT_CHARs. */
3245 if (*s == ')' || *s == ',')
3246 {
3247 token.u.ch = *s;
3248 mips_add_token (&token, OT_CHAR);
3249 ++s;
3250 return s;
3251 }
3252
3253 /* Handle tokens that start with a register. */
14daeee3 3254 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3255 {
14daeee3
RS
3256 if (channels)
3257 {
3258 /* A register and a VU0 channel suffix. */
3259 token.u.regno = regno1;
3260 mips_add_token (&token, OT_REG);
3261
3262 token.u.channels = channels;
3263 mips_add_token (&token, OT_CHANNELS);
3264 return s;
3265 }
3266
a92713e6
RS
3267 SKIP_SPACE_TABS (s);
3268 if (*s == '-')
df58fc94 3269 {
a92713e6
RS
3270 /* A register range. */
3271 ++s;
3272 SKIP_SPACE_TABS (s);
14daeee3 3273 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3274 {
1661c76c 3275 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3276 return 0;
3277 }
df58fc94 3278
a92713e6
RS
3279 token.u.reg_range.regno1 = regno1;
3280 token.u.reg_range.regno2 = regno2;
3281 mips_add_token (&token, OT_REG_RANGE);
3282 return s;
3283 }
a92713e6 3284
56d438b1
CF
3285 /* Add the register itself. */
3286 token.u.regno = regno1;
3287 mips_add_token (&token, OT_REG);
3288
3289 /* Check for a vector index. */
3290 if (*s == '[')
3291 {
a92713e6
RS
3292 ++s;
3293 SKIP_SPACE_TABS (s);
56d438b1
CF
3294 if (mips_parse_register (&s, &token.u.regno, NULL))
3295 mips_add_token (&token, OT_REG_INDEX);
3296 else
a92713e6 3297 {
56d438b1
CF
3298 expressionS element;
3299
3300 my_getExpression (&element, s);
3301 if (element.X_op != O_constant)
3302 {
3303 set_insn_error (0, _("vector element must be constant"));
3304 return 0;
3305 }
3306 s = expr_end;
3307 token.u.index = element.X_add_number;
3308 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3309 }
a92713e6
RS
3310 SKIP_SPACE_TABS (s);
3311 if (*s != ']')
3312 {
1661c76c 3313 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3314 return 0;
3315 }
3316 ++s;
df58fc94 3317 }
a92713e6 3318 return s;
df58fc94
RS
3319 }
3320
a92713e6
RS
3321 if (float_format)
3322 {
3323 /* First try to treat expressions as floats. */
3324 save_in = input_line_pointer;
3325 input_line_pointer = s;
3326 err = md_atof (float_format, (char *) token.u.flt.data,
3327 &token.u.flt.length);
3328 end = input_line_pointer;
3329 input_line_pointer = save_in;
3330 if (err && *err)
3331 {
e3de51ce 3332 set_insn_error (0, err);
a92713e6
RS
3333 return 0;
3334 }
3335 if (s != end)
3336 {
3337 mips_add_token (&token, OT_FLOAT);
3338 return end;
3339 }
3340 }
3341
3342 /* Treat everything else as an integer expression. */
3343 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3344 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3345 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3346 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3347 s = expr_end;
3348 mips_add_token (&token, OT_INTEGER);
3349 return s;
3350}
3351
3352/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3353 if expressions should be treated as 32-bit floating-point constants,
3354 'd' if they should be treated as 64-bit floating-point constants,
3355 or 0 if they should be treated as integer expressions (the usual case).
3356
3357 Return a list of tokens on success, otherwise return 0. The caller
3358 must obstack_free the list after use. */
3359
3360static struct mips_operand_token *
3361mips_parse_arguments (char *s, char float_format)
3362{
3363 struct mips_operand_token token;
3364
3365 SKIP_SPACE_TABS (s);
3366 while (*s)
3367 {
3368 s = mips_parse_argument_token (s, float_format);
3369 if (!s)
3370 {
3371 obstack_free (&mips_operand_tokens,
3372 obstack_finish (&mips_operand_tokens));
3373 return 0;
3374 }
3375 SKIP_SPACE_TABS (s);
3376 }
3377 mips_add_token (&token, OT_END);
3378 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3379}
3380
d301a56b
RS
3381/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3382 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3383
3384static bfd_boolean
f79e2745 3385is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3386{
3387 int isa = mips_opts.isa;
846ef2d0 3388 int ase = mips_opts.ase;
037b32b9 3389 int fp_s, fp_d;
c6278170 3390 unsigned int i;
037b32b9 3391
be0fcbee 3392 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3393 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3394 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3395 ase |= mips_ases[i].flags64;
037b32b9 3396
d301a56b 3397 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3398 return FALSE;
3399
3400 /* Check whether the instruction or macro requires single-precision or
3401 double-precision floating-point support. Note that this information is
3402 stored differently in the opcode table for insns and macros. */
3403 if (mo->pinfo == INSN_MACRO)
3404 {
3405 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3406 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3407 }
3408 else
3409 {
3410 fp_s = mo->pinfo & FP_S;
3411 fp_d = mo->pinfo & FP_D;
3412 }
3413
3414 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3415 return FALSE;
3416
3417 if (fp_s && mips_opts.soft_float)
3418 return FALSE;
3419
3420 return TRUE;
3421}
3422
3423/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3424 selected ISA and architecture. */
3425
3426static bfd_boolean
3427is_opcode_valid_16 (const struct mips_opcode *mo)
3428{
25499ac7
MR
3429 int isa = mips_opts.isa;
3430 int ase = mips_opts.ase;
3431 unsigned int i;
3432
3433 if (ISA_HAS_64BIT_REGS (isa))
3434 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3435 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3436 ase |= mips_ases[i].flags64;
3437
3438 return opcode_is_member (mo, isa, ase, mips_opts.arch);
037b32b9
AN
3439}
3440
df58fc94 3441/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3442 explicitly requested. Always TRUE in the standard MIPS mode.
3443 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94
RS
3444
3445static bfd_boolean
3446is_size_valid (const struct mips_opcode *mo)
3447{
3448 if (!mips_opts.micromips)
3449 return TRUE;
3450
833794fc
MR
3451 if (mips_opts.insn32)
3452 {
3453 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3454 return FALSE;
3455 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3456 return FALSE;
3457 }
df58fc94
RS
3458 if (!forced_insn_length)
3459 return TRUE;
3460 if (mo->pinfo == INSN_MACRO)
3461 return FALSE;
3462 return forced_insn_length == micromips_insn_length (mo);
3463}
3464
7fd53920
MR
3465/* Return TRUE if the size of the MIPS16 opcode MO matches one
3466 explicitly requested. */
3467
3468static bfd_boolean
3469is_size_valid_16 (const struct mips_opcode *mo)
3470{
3471 if (!forced_insn_length)
3472 return TRUE;
3473 if (mo->pinfo == INSN_MACRO)
3474 return FALSE;
3475 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3476 return FALSE;
0674ee5d
MR
3477 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3478 return FALSE;
7fd53920
MR
3479 return TRUE;
3480}
3481
df58fc94 3482/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3483 of the preceding instruction. Always TRUE in the standard MIPS mode.
3484
3485 We don't accept macros in 16-bit delay slots to avoid a case where
3486 a macro expansion fails because it relies on a preceding 32-bit real
3487 instruction to have matched and does not handle the operands correctly.
3488 The only macros that may expand to 16-bit instructions are JAL that
3489 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3490 and BGT (that likewise cannot be placed in a delay slot) that decay to
3491 a NOP. In all these cases the macros precede any corresponding real
3492 instruction definitions in the opcode table, so they will match in the
3493 second pass where the size of the delay slot is ignored and therefore
3494 produce correct code. */
df58fc94
RS
3495
3496static bfd_boolean
3497is_delay_slot_valid (const struct mips_opcode *mo)
3498{
3499 if (!mips_opts.micromips)
3500 return TRUE;
3501
3502 if (mo->pinfo == INSN_MACRO)
c06dec14 3503 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3504 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3505 && micromips_insn_length (mo) != 4)
3506 return FALSE;
3507 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3508 && micromips_insn_length (mo) != 2)
3509 return FALSE;
3510
3511 return TRUE;
3512}
3513
fc76e730
RS
3514/* For consistency checking, verify that all bits of OPCODE are specified
3515 either by the match/mask part of the instruction definition, or by the
3516 operand list. Also build up a list of operands in OPERANDS.
3517
3518 INSN_BITS says which bits of the instruction are significant.
3519 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3520 provides the mips_operand description of each operand. DECODE_OPERAND
3521 is null for MIPS16 instructions. */
ab902481
RS
3522
3523static int
3524validate_mips_insn (const struct mips_opcode *opcode,
3525 unsigned long insn_bits,
fc76e730
RS
3526 const struct mips_operand *(*decode_operand) (const char *),
3527 struct mips_operand_array *operands)
ab902481
RS
3528{
3529 const char *s;
fc76e730 3530 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3531 const struct mips_operand *operand;
3532
fc76e730
RS
3533 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3534 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3535 {
3536 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3537 opcode->name, opcode->args);
3538 return 0;
3539 }
3540 used_bits = 0;
fc76e730 3541 opno = 0;
14daeee3
RS
3542 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3543 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3544 for (s = opcode->args; *s; ++s)
3545 switch (*s)
3546 {
3547 case ',':
3548 case '(':
3549 case ')':
3550 break;
3551
14daeee3
RS
3552 case '#':
3553 s++;
3554 break;
3555
ab902481 3556 default:
fc76e730 3557 if (!decode_operand)
7fd53920 3558 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3559 else
3560 operand = decode_operand (s);
3561 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3562 {
3563 as_bad (_("internal: unknown operand type: %s %s"),
3564 opcode->name, opcode->args);
3565 return 0;
3566 }
fc76e730
RS
3567 gas_assert (opno < MAX_OPERANDS);
3568 operands->operand[opno] = operand;
25499ac7
MR
3569 if (!decode_operand && operand
3570 && operand->type == OP_INT && operand->lsb == 0
3571 && mips_opcode_32bit_p (opcode))
3572 used_bits |= mips16_immed_extend (-1, operand->size);
3573 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3574 {
14daeee3 3575 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3576 if (operand->type == OP_MDMX_IMM_REG)
3577 /* Bit 5 is the format selector (OB vs QH). The opcode table
3578 has separate entries for each format. */
3579 used_bits &= ~(1 << (operand->lsb + 5));
3580 if (operand->type == OP_ENTRY_EXIT_LIST)
3581 used_bits &= ~(mask & 0x700);
38bf472a
MR
3582 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3583 operand field that cannot be fully described with LSB/SIZE. */
3584 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3585 used_bits &= ~0x6000;
fc76e730 3586 }
ab902481 3587 /* Skip prefix characters. */
7361da2c 3588 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3589 ++s;
fc76e730 3590 opno += 1;
ab902481
RS
3591 break;
3592 }
fc76e730 3593 doubled = used_bits & mask & insn_bits;
ab902481
RS
3594 if (doubled)
3595 {
3596 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3597 " %s %s"), doubled, opcode->name, opcode->args);
3598 return 0;
3599 }
fc76e730 3600 used_bits |= mask;
ab902481 3601 undefined = ~used_bits & insn_bits;
fc76e730 3602 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3603 {
3604 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3605 undefined, opcode->name, opcode->args);
3606 return 0;
3607 }
3608 used_bits &= ~insn_bits;
3609 if (used_bits)
3610 {
3611 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3612 used_bits, opcode->name, opcode->args);
3613 return 0;
3614 }
3615 return 1;
3616}
3617
fc76e730
RS
3618/* The MIPS16 version of validate_mips_insn. */
3619
3620static int
3621validate_mips16_insn (const struct mips_opcode *opcode,
3622 struct mips_operand_array *operands)
3623{
7fd53920 3624 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3625
7fd53920 3626 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3627}
3628
ab902481
RS
3629/* The microMIPS version of validate_mips_insn. */
3630
3631static int
fc76e730
RS
3632validate_micromips_insn (const struct mips_opcode *opc,
3633 struct mips_operand_array *operands)
ab902481
RS
3634{
3635 unsigned long insn_bits;
3636 unsigned long major;
3637 unsigned int length;
3638
fc76e730
RS
3639 if (opc->pinfo == INSN_MACRO)
3640 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3641 operands);
3642
ab902481
RS
3643 length = micromips_insn_length (opc);
3644 if (length != 2 && length != 4)
3645 {
1661c76c 3646 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3647 "%s %s"), length, opc->name, opc->args);
3648 return 0;
3649 }
3650 major = opc->match >> (10 + 8 * (length - 2));
3651 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3652 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3653 {
1661c76c 3654 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3655 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3656 return 0;
3657 }
3658
3659 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3660 insn_bits = 1 << 4 * length;
3661 insn_bits <<= 4 * length;
3662 insn_bits -= 1;
fc76e730
RS
3663 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3664 operands);
ab902481
RS
3665}
3666
707bfff6
TS
3667/* This function is called once, at assembler startup time. It should set up
3668 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3669
252b5132 3670void
17a2f251 3671md_begin (void)
252b5132 3672{
3994f87e 3673 const char *retval = NULL;
156c2f8b 3674 int i = 0;
252b5132 3675 int broken = 0;
1f25f5d3 3676
0a44bf69
RS
3677 if (mips_pic != NO_PIC)
3678 {
3679 if (g_switch_seen && g_switch_value != 0)
3680 as_bad (_("-G may not be used in position-independent code"));
3681 g_switch_value = 0;
3682 }
00acd688
CM
3683 else if (mips_abicalls)
3684 {
3685 if (g_switch_seen && g_switch_value != 0)
3686 as_bad (_("-G may not be used with abicalls"));
3687 g_switch_value = 0;
3688 }
0a44bf69 3689
0b35dfee 3690 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3691 as_warn (_("could not set architecture and machine"));
252b5132 3692
252b5132
RH
3693 op_hash = hash_new ();
3694
fc76e730 3695 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3696 for (i = 0; i < NUMOPCODES;)
3697 {
3698 const char *name = mips_opcodes[i].name;
3699
17a2f251 3700 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3701 if (retval != NULL)
3702 {
3703 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3704 mips_opcodes[i].name, retval);
3705 /* Probably a memory allocation problem? Give up now. */
1661c76c 3706 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3707 }
3708 do
3709 {
fc76e730
RS
3710 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3711 decode_mips_operand, &mips_operands[i]))
3712 broken = 1;
6f2117ba 3713
fc76e730 3714 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3715 {
fc76e730
RS
3716 create_insn (&nop_insn, mips_opcodes + i);
3717 if (mips_fix_loongson2f_nop)
3718 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3719 nop_insn.fixed_p = 1;
252b5132 3720 }
6f2117ba
PH
3721
3722 if (sync_insn.insn_mo == NULL && strcmp (name, "sync") == 0)
3723 create_insn (&sync_insn, mips_opcodes + i);
3724
252b5132
RH
3725 ++i;
3726 }
3727 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3728 }
3729
3730 mips16_op_hash = hash_new ();
fc76e730
RS
3731 mips16_operands = XCNEWVEC (struct mips_operand_array,
3732 bfd_mips16_num_opcodes);
252b5132
RH
3733
3734 i = 0;
3735 while (i < bfd_mips16_num_opcodes)
3736 {
3737 const char *name = mips16_opcodes[i].name;
3738
17a2f251 3739 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3740 if (retval != NULL)
3741 as_fatal (_("internal: can't hash `%s': %s"),
3742 mips16_opcodes[i].name, retval);
3743 do
3744 {
fc76e730
RS
3745 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3746 broken = 1;
1e915849
RS
3747 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3748 {
3749 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3750 mips16_nop_insn.fixed_p = 1;
3751 }
252b5132
RH
3752 ++i;
3753 }
3754 while (i < bfd_mips16_num_opcodes
3755 && strcmp (mips16_opcodes[i].name, name) == 0);
3756 }
3757
df58fc94 3758 micromips_op_hash = hash_new ();
fc76e730
RS
3759 micromips_operands = XCNEWVEC (struct mips_operand_array,
3760 bfd_micromips_num_opcodes);
df58fc94
RS
3761
3762 i = 0;
3763 while (i < bfd_micromips_num_opcodes)
3764 {
3765 const char *name = micromips_opcodes[i].name;
3766
3767 retval = hash_insert (micromips_op_hash, name,
3768 (void *) &micromips_opcodes[i]);
3769 if (retval != NULL)
3770 as_fatal (_("internal: can't hash `%s': %s"),
3771 micromips_opcodes[i].name, retval);
3772 do
fc76e730
RS
3773 {
3774 struct mips_cl_insn *micromips_nop_insn;
3775
3776 if (!validate_micromips_insn (&micromips_opcodes[i],
3777 &micromips_operands[i]))
3778 broken = 1;
3779
3780 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3781 {
3782 if (micromips_insn_length (micromips_opcodes + i) == 2)
3783 micromips_nop_insn = &micromips_nop16_insn;
3784 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3785 micromips_nop_insn = &micromips_nop32_insn;
3786 else
3787 continue;
3788
3789 if (micromips_nop_insn->insn_mo == NULL
3790 && strcmp (name, "nop") == 0)
3791 {
3792 create_insn (micromips_nop_insn, micromips_opcodes + i);
3793 micromips_nop_insn->fixed_p = 1;
3794 }
3795 }
3796 }
df58fc94
RS
3797 while (++i < bfd_micromips_num_opcodes
3798 && strcmp (micromips_opcodes[i].name, name) == 0);
3799 }
3800
252b5132 3801 if (broken)
1661c76c 3802 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3803
3804 /* We add all the general register names to the symbol table. This
3805 helps us detect invalid uses of them. */
3739860c 3806 for (i = 0; reg_names[i].name; i++)
707bfff6 3807 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3808 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3809 &zero_address_frag));
3810 if (HAVE_NEWABI)
3739860c 3811 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3812 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3813 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3814 &zero_address_frag));
707bfff6 3815 else
3739860c 3816 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3817 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3818 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3819 &zero_address_frag));
6047c971 3820
14daeee3
RS
3821 for (i = 0; i < 32; i++)
3822 {
92fce9bd 3823 char regname[6];
14daeee3
RS
3824
3825 /* R5900 VU0 floating-point register. */
92fce9bd 3826 sprintf (regname, "$vf%d", i);
14daeee3
RS
3827 symbol_table_insert (symbol_new (regname, reg_section,
3828 RTYPE_VF | i, &zero_address_frag));
3829
3830 /* R5900 VU0 integer register. */
92fce9bd 3831 sprintf (regname, "$vi%d", i);
14daeee3
RS
3832 symbol_table_insert (symbol_new (regname, reg_section,
3833 RTYPE_VI | i, &zero_address_frag));
3834
56d438b1 3835 /* MSA register. */
92fce9bd 3836 sprintf (regname, "$w%d", i);
56d438b1
CF
3837 symbol_table_insert (symbol_new (regname, reg_section,
3838 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3839 }
3840
a92713e6
RS
3841 obstack_init (&mips_operand_tokens);
3842
7d10b47d 3843 mips_no_prev_insn ();
252b5132
RH
3844
3845 mips_gprmask = 0;
3846 mips_cprmask[0] = 0;
3847 mips_cprmask[1] = 0;
3848 mips_cprmask[2] = 0;
3849 mips_cprmask[3] = 0;
3850
3851 /* set the default alignment for the text section (2**2) */
3852 record_alignment (text_section, 2);
3853
4d0d148d 3854 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3855
f3ded42a
RS
3856 /* On a native system other than VxWorks, sections must be aligned
3857 to 16 byte boundaries. When configured for an embedded ELF
3858 target, we don't bother. */
3859 if (strncmp (TARGET_OS, "elf", 3) != 0
3860 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3861 {
f3ded42a
RS
3862 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3863 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3864 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3865 }
252b5132 3866
f3ded42a
RS
3867 /* Create a .reginfo section for register masks and a .mdebug
3868 section for debugging information. */
3869 {
3870 segT seg;
3871 subsegT subseg;
3872 flagword flags;
3873 segT sec;
3874
3875 seg = now_seg;
3876 subseg = now_subseg;
3877
3878 /* The ABI says this section should be loaded so that the
3879 running program can access it. However, we don't load it
6f2117ba 3880 if we are configured for an embedded target. */
f3ded42a
RS
3881 flags = SEC_READONLY | SEC_DATA;
3882 if (strncmp (TARGET_OS, "elf", 3) != 0)
3883 flags |= SEC_ALLOC | SEC_LOAD;
3884
3885 if (mips_abi != N64_ABI)
252b5132 3886 {
f3ded42a 3887 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3888
f3ded42a
RS
3889 bfd_set_section_flags (stdoutput, sec, flags);
3890 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3891
f3ded42a
RS
3892 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3893 }
3894 else
3895 {
3896 /* The 64-bit ABI uses a .MIPS.options section rather than
3897 .reginfo section. */
3898 sec = subseg_new (".MIPS.options", (subsegT) 0);
3899 bfd_set_section_flags (stdoutput, sec, flags);
3900 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3901
f3ded42a
RS
3902 /* Set up the option header. */
3903 {
3904 Elf_Internal_Options opthdr;
3905 char *f;
3906
3907 opthdr.kind = ODK_REGINFO;
3908 opthdr.size = (sizeof (Elf_External_Options)
3909 + sizeof (Elf64_External_RegInfo));
3910 opthdr.section = 0;
3911 opthdr.info = 0;
3912 f = frag_more (sizeof (Elf_External_Options));
3913 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3914 (Elf_External_Options *) f);
3915
3916 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3917 }
3918 }
252b5132 3919
351cdf24
MF
3920 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3921 bfd_set_section_flags (stdoutput, sec,
3922 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3923 bfd_set_section_alignment (stdoutput, sec, 3);
3924 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3925
f3ded42a
RS
3926 if (ECOFF_DEBUGGING)
3927 {
3928 sec = subseg_new (".mdebug", (subsegT) 0);
3929 (void) bfd_set_section_flags (stdoutput, sec,
3930 SEC_HAS_CONTENTS | SEC_READONLY);
3931 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3932 }
f3ded42a
RS
3933 else if (mips_flag_pdr)
3934 {
3935 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3936 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3937 SEC_READONLY | SEC_RELOC
3938 | SEC_DEBUGGING);
3939 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3940 }
3941
3942 subseg_set (seg, subseg);
3943 }
252b5132 3944
71400594
RS
3945 if (mips_fix_vr4120)
3946 init_vr4120_conflicts ();
252b5132
RH
3947}
3948
351cdf24
MF
3949static inline void
3950fpabi_incompatible_with (int fpabi, const char *what)
3951{
3952 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3953 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3954}
3955
3956static inline void
3957fpabi_requires (int fpabi, const char *what)
3958{
3959 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3960 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3961}
3962
3963/* Check -mabi and register sizes against the specified FP ABI. */
3964static void
3965check_fpabi (int fpabi)
3966{
351cdf24
MF
3967 switch (fpabi)
3968 {
3969 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3970 if (file_mips_opts.soft_float)
3971 fpabi_incompatible_with (fpabi, "softfloat");
3972 else if (file_mips_opts.single_float)
3973 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3974 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3975 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3976 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3977 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3978 break;
3979
3980 case Val_GNU_MIPS_ABI_FP_XX:
3981 if (mips_abi != O32_ABI)
3982 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3983 else if (file_mips_opts.soft_float)
3984 fpabi_incompatible_with (fpabi, "softfloat");
3985 else if (file_mips_opts.single_float)
3986 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3987 else if (file_mips_opts.fp != 0)
3988 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3989 break;
3990
3991 case Val_GNU_MIPS_ABI_FP_64A:
3992 case Val_GNU_MIPS_ABI_FP_64:
3993 if (mips_abi != O32_ABI)
3994 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3995 else if (file_mips_opts.soft_float)
3996 fpabi_incompatible_with (fpabi, "softfloat");
3997 else if (file_mips_opts.single_float)
3998 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3999 else if (file_mips_opts.fp != 64)
4000 fpabi_requires (fpabi, "fp=64");
4001 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
4002 fpabi_incompatible_with (fpabi, "nooddspreg");
4003 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
4004 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
4005 break;
4006
4007 case Val_GNU_MIPS_ABI_FP_SINGLE:
4008 if (file_mips_opts.soft_float)
4009 fpabi_incompatible_with (fpabi, "softfloat");
4010 else if (!file_mips_opts.single_float)
4011 fpabi_requires (fpabi, "singlefloat");
4012 break;
4013
4014 case Val_GNU_MIPS_ABI_FP_SOFT:
4015 if (!file_mips_opts.soft_float)
4016 fpabi_requires (fpabi, "softfloat");
4017 break;
4018
4019 case Val_GNU_MIPS_ABI_FP_OLD_64:
4020 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
4021 Tag_GNU_MIPS_ABI_FP, fpabi);
4022 break;
4023
3350cc01
CM
4024 case Val_GNU_MIPS_ABI_FP_NAN2008:
4025 /* Silently ignore compatibility value. */
4026 break;
4027
351cdf24
MF
4028 default:
4029 as_warn (_(".gnu_attribute %d,%d is not a recognized"
4030 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
4031 break;
4032 }
351cdf24
MF
4033}
4034
919731af 4035/* Perform consistency checks on the current options. */
4036
4037static void
4038mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
4039{
4040 /* Check the size of integer registers agrees with the ABI and ISA. */
4041 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
4042 as_bad (_("`gp=64' used with a 32-bit processor"));
4043 else if (abi_checks
4044 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
4045 as_bad (_("`gp=32' used with a 64-bit ABI"));
4046 else if (abi_checks
4047 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
4048 as_bad (_("`gp=64' used with a 32-bit ABI"));
4049
4050 /* Check the size of the float registers agrees with the ABI and ISA. */
4051 switch (opts->fp)
4052 {
351cdf24
MF
4053 case 0:
4054 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4055 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4056 else if (opts->single_float == 1)
4057 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4058 break;
919731af 4059 case 64:
4060 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4061 as_bad (_("`fp=64' used with a 32-bit fpu"));
4062 else if (abi_checks
4063 && ABI_NEEDS_32BIT_REGS (mips_abi)
4064 && !ISA_HAS_MXHC1 (opts->isa))
4065 as_warn (_("`fp=64' used with a 32-bit ABI"));
4066 break;
4067 case 32:
4068 if (abi_checks
4069 && ABI_NEEDS_64BIT_REGS (mips_abi))
4070 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 4071 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 4072 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 4073 break;
4074 default:
4075 as_bad (_("Unknown size of floating point registers"));
4076 break;
4077 }
4078
351cdf24
MF
4079 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4080 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4081
919731af 4082 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 4083 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 4084 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
4085 && (opts->micromips == 1
4086 || opts->mips16 == 1))
1357373c 4087 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 4088 opts->micromips ? "micromips" : "mips16",
5f4678bb 4089 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
4090
4091 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4092 as_fatal (_("branch relaxation is not supported in `%s'"),
4093 mips_cpu_info_from_isa (opts->isa)->name);
919731af 4094}
4095
4096/* Perform consistency checks on the module level options exactly once.
4097 This is a deferred check that happens:
4098 at the first .set directive
4099 or, at the first pseudo op that generates code (inc .dc.a)
4100 or, at the first instruction
4101 or, at the end. */
4102
4103static void
4104file_mips_check_options (void)
4105{
919731af 4106 if (file_mips_opts_checked)
4107 return;
4108
4109 /* The following code determines the register size.
4110 Similar code was added to GCC 3.3 (see override_options() in
4111 config/mips/mips.c). The GAS and GCC code should be kept in sync
4112 as much as possible. */
4113
4114 if (file_mips_opts.gp < 0)
4115 {
4116 /* Infer the integer register size from the ABI and processor.
4117 Restrict ourselves to 32-bit registers if that's all the
4118 processor has, or if the ABI cannot handle 64-bit registers. */
4119 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4120 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4121 ? 32 : 64;
4122 }
4123
4124 if (file_mips_opts.fp < 0)
4125 {
4126 /* No user specified float register size.
4127 ??? GAS treats single-float processors as though they had 64-bit
4128 float registers (although it complains when double-precision
4129 instructions are used). As things stand, saying they have 32-bit
4130 registers would lead to spurious "register must be even" messages.
4131 So here we assume float registers are never smaller than the
4132 integer ones. */
4133 if (file_mips_opts.gp == 64)
4134 /* 64-bit integer registers implies 64-bit float registers. */
4135 file_mips_opts.fp = 64;
4136 else if ((file_mips_opts.ase & FP64_ASES)
4137 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4138 /* Handle ASEs that require 64-bit float registers, if possible. */
4139 file_mips_opts.fp = 64;
7361da2c
AB
4140 else if (ISA_IS_R6 (mips_opts.isa))
4141 /* R6 implies 64-bit float registers. */
4142 file_mips_opts.fp = 64;
919731af 4143 else
4144 /* 32-bit float registers. */
4145 file_mips_opts.fp = 32;
4146 }
4147
351cdf24
MF
4148 /* Disable operations on odd-numbered floating-point registers by default
4149 when using the FPXX ABI. */
4150 if (file_mips_opts.oddspreg < 0)
4151 {
4152 if (file_mips_opts.fp == 0)
4153 file_mips_opts.oddspreg = 0;
4154 else
4155 file_mips_opts.oddspreg = 1;
4156 }
4157
919731af 4158 /* End of GCC-shared inference code. */
4159
4160 /* This flag is set when we have a 64-bit capable CPU but use only
4161 32-bit wide registers. Note that EABI does not use it. */
4162 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4163 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4164 || mips_abi == O32_ABI))
4165 mips_32bitmode = 1;
4166
4167 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4168 as_bad (_("trap exception not supported at ISA 1"));
4169
4170 /* If the selected architecture includes support for ASEs, enable
4171 generation of code for them. */
4172 if (file_mips_opts.mips16 == -1)
4173 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4174 if (file_mips_opts.micromips == -1)
4175 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4176 ? 1 : 0;
4177
7361da2c
AB
4178 if (mips_nan2008 == -1)
4179 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4180 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4181 as_fatal (_("`%s' does not support legacy NaN"),
4182 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4183
919731af 4184 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4185 being selected implicitly. */
4186 if (file_mips_opts.fp != 64)
4187 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4188
4189 /* If the user didn't explicitly select or deselect a particular ASE,
4190 use the default setting for the CPU. */
3315614d 4191 file_mips_opts.ase |= (file_mips_opts.init_ase & ~file_ase_explicit);
919731af 4192
4193 /* Set up the current options. These may change throughout assembly. */
4194 mips_opts = file_mips_opts;
4195
4196 mips_check_isa_supports_ases ();
4197 mips_check_options (&file_mips_opts, TRUE);
4198 file_mips_opts_checked = TRUE;
4199
4200 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4201 as_warn (_("could not set architecture and machine"));
4202}
4203
252b5132 4204void
17a2f251 4205md_assemble (char *str)
252b5132
RH
4206{
4207 struct mips_cl_insn insn;
f6688943
TS
4208 bfd_reloc_code_real_type unused_reloc[3]
4209 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4210
919731af 4211 file_mips_check_options ();
4212
252b5132 4213 imm_expr.X_op = O_absent;
252b5132 4214 offset_expr.X_op = O_absent;
f6688943
TS
4215 offset_reloc[0] = BFD_RELOC_UNUSED;
4216 offset_reloc[1] = BFD_RELOC_UNUSED;
4217 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4218
e1b47bd5
RS
4219 mips_mark_labels ();
4220 mips_assembling_insn = TRUE;
e3de51ce 4221 clear_insn_error ();
e1b47bd5 4222
252b5132
RH
4223 if (mips_opts.mips16)
4224 mips16_ip (str, &insn);
4225 else
4226 {
4227 mips_ip (str, &insn);
beae10d5
KH
4228 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4229 str, insn.insn_opcode));
252b5132
RH
4230 }
4231
e3de51ce
RS
4232 if (insn_error.msg)
4233 report_insn_error (str);
e1b47bd5 4234 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4235 {
584892a6 4236 macro_start ();
252b5132
RH
4237 if (mips_opts.mips16)
4238 mips16_macro (&insn);
4239 else
833794fc 4240 macro (&insn, str);
584892a6 4241 macro_end ();
252b5132
RH
4242 }
4243 else
4244 {
77bd4346 4245 if (offset_expr.X_op != O_absent)
df58fc94 4246 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4247 else
df58fc94 4248 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4249 }
e1b47bd5
RS
4250
4251 mips_assembling_insn = FALSE;
252b5132
RH
4252}
4253
738e5348
RS
4254/* Convenience functions for abstracting away the differences between
4255 MIPS16 and non-MIPS16 relocations. */
4256
4257static inline bfd_boolean
4258mips16_reloc_p (bfd_reloc_code_real_type reloc)
4259{
4260 switch (reloc)
4261 {
4262 case BFD_RELOC_MIPS16_JMP:
4263 case BFD_RELOC_MIPS16_GPREL:
4264 case BFD_RELOC_MIPS16_GOT16:
4265 case BFD_RELOC_MIPS16_CALL16:
4266 case BFD_RELOC_MIPS16_HI16_S:
4267 case BFD_RELOC_MIPS16_HI16:
4268 case BFD_RELOC_MIPS16_LO16:
c9775dde 4269 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4270 return TRUE;
4271
4272 default:
4273 return FALSE;
4274 }
4275}
4276
df58fc94
RS
4277static inline bfd_boolean
4278micromips_reloc_p (bfd_reloc_code_real_type reloc)
4279{
4280 switch (reloc)
4281 {
4282 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4283 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4284 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4285 case BFD_RELOC_MICROMIPS_GPREL16:
4286 case BFD_RELOC_MICROMIPS_JMP:
4287 case BFD_RELOC_MICROMIPS_HI16:
4288 case BFD_RELOC_MICROMIPS_HI16_S:
4289 case BFD_RELOC_MICROMIPS_LO16:
4290 case BFD_RELOC_MICROMIPS_LITERAL:
4291 case BFD_RELOC_MICROMIPS_GOT16:
4292 case BFD_RELOC_MICROMIPS_CALL16:
4293 case BFD_RELOC_MICROMIPS_GOT_HI16:
4294 case BFD_RELOC_MICROMIPS_GOT_LO16:
4295 case BFD_RELOC_MICROMIPS_CALL_HI16:
4296 case BFD_RELOC_MICROMIPS_CALL_LO16:
4297 case BFD_RELOC_MICROMIPS_SUB:
4298 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4299 case BFD_RELOC_MICROMIPS_GOT_OFST:
4300 case BFD_RELOC_MICROMIPS_GOT_DISP:
4301 case BFD_RELOC_MICROMIPS_HIGHEST:
4302 case BFD_RELOC_MICROMIPS_HIGHER:
4303 case BFD_RELOC_MICROMIPS_SCN_DISP:
4304 case BFD_RELOC_MICROMIPS_JALR:
4305 return TRUE;
4306
4307 default:
4308 return FALSE;
4309 }
4310}
4311
2309ddf2
MR
4312static inline bfd_boolean
4313jmp_reloc_p (bfd_reloc_code_real_type reloc)
4314{
4315 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4316}
4317
0e9c5a5c
MR
4318static inline bfd_boolean
4319b_reloc_p (bfd_reloc_code_real_type reloc)
4320{
4321 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4322 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4323 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4324 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4325 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4326 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4327 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4328}
4329
738e5348
RS
4330static inline bfd_boolean
4331got16_reloc_p (bfd_reloc_code_real_type reloc)
4332{
2309ddf2 4333 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4334 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4335}
4336
4337static inline bfd_boolean
4338hi16_reloc_p (bfd_reloc_code_real_type reloc)
4339{
2309ddf2 4340 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4341 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4342}
4343
4344static inline bfd_boolean
4345lo16_reloc_p (bfd_reloc_code_real_type reloc)
4346{
2309ddf2 4347 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4348 || reloc == BFD_RELOC_MICROMIPS_LO16);
4349}
4350
df58fc94
RS
4351static inline bfd_boolean
4352jalr_reloc_p (bfd_reloc_code_real_type reloc)
4353{
2309ddf2 4354 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4355}
4356
f2ae14a1
RS
4357static inline bfd_boolean
4358gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4359{
4360 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4361 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4362}
4363
2de39019
CM
4364/* Return true if RELOC is a PC-relative relocation that does not have
4365 full address range. */
4366
4367static inline bfd_boolean
4368limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4369{
4370 switch (reloc)
4371 {
4372 case BFD_RELOC_16_PCREL_S2:
c9775dde 4373 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4374 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4375 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4376 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4377 case BFD_RELOC_MIPS_21_PCREL_S2:
4378 case BFD_RELOC_MIPS_26_PCREL_S2:
4379 case BFD_RELOC_MIPS_18_PCREL_S3:
4380 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4381 return TRUE;
4382
b47468a6 4383 case BFD_RELOC_32_PCREL:
7361da2c
AB
4384 case BFD_RELOC_HI16_S_PCREL:
4385 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4386 return HAVE_64BIT_ADDRESSES;
4387
2de39019
CM
4388 default:
4389 return FALSE;
4390 }
4391}
b47468a6 4392
5919d012 4393/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4394 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4395 need a matching %lo() when applied to local symbols. */
5919d012
RS
4396
4397static inline bfd_boolean
17a2f251 4398reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4399{
3b91255e 4400 return (HAVE_IN_PLACE_ADDENDS
738e5348 4401 && (hi16_reloc_p (reloc)
0a44bf69
RS
4402 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4403 all GOT16 relocations evaluate to "G". */
738e5348
RS
4404 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4405}
4406
4407/* Return the type of %lo() reloc needed by RELOC, given that
4408 reloc_needs_lo_p. */
4409
4410static inline bfd_reloc_code_real_type
4411matching_lo_reloc (bfd_reloc_code_real_type reloc)
4412{
df58fc94
RS
4413 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4414 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4415 : BFD_RELOC_LO16));
5919d012
RS
4416}
4417
4418/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4419 relocation. */
4420
4421static inline bfd_boolean
17a2f251 4422fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4423{
4424 return (fixp->fx_next != NULL
738e5348 4425 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4426 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4427 && fixp->fx_offset == fixp->fx_next->fx_offset);
4428}
4429
462427c4
RS
4430/* Move all labels in LABELS to the current insertion point. TEXT_P
4431 says whether the labels refer to text or data. */
404a8071
RS
4432
4433static void
462427c4 4434mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4435{
4436 struct insn_label_list *l;
4437 valueT val;
4438
462427c4 4439 for (l = labels; l != NULL; l = l->next)
404a8071 4440 {
9c2799c2 4441 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4442 symbol_set_frag (l->label, frag_now);
4443 val = (valueT) frag_now_fix ();
df58fc94 4444 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4445 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4446 ++val;
4447 S_SET_VALUE (l->label, val);
4448 }
4449}
4450
462427c4
RS
4451/* Move all labels in insn_labels to the current insertion point
4452 and treat them as text labels. */
4453
4454static void
4455mips_move_text_labels (void)
4456{
4457 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4458}
4459
9e009953
MR
4460/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4461
5f0fe04b
TS
4462static bfd_boolean
4463s_is_linkonce (symbolS *sym, segT from_seg)
4464{
4465 bfd_boolean linkonce = FALSE;
4466 segT symseg = S_GET_SEGMENT (sym);
4467
4468 if (symseg != from_seg && !S_IS_LOCAL (sym))
4469 {
4470 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4471 linkonce = TRUE;
5f0fe04b
TS
4472 /* The GNU toolchain uses an extension for ELF: a section
4473 beginning with the magic string .gnu.linkonce is a
4474 linkonce section. */
4475 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4476 sizeof ".gnu.linkonce" - 1) == 0)
4477 linkonce = TRUE;
5f0fe04b
TS
4478 }
4479 return linkonce;
4480}
4481
e1b47bd5 4482/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4483 linker to handle them specially, such as generating jalx instructions
4484 when needed. We also make them odd for the duration of the assembly,
4485 in order to generate the right sort of code. We will make them even
252b5132
RH
4486 in the adjust_symtab routine, while leaving them marked. This is
4487 convenient for the debugger and the disassembler. The linker knows
4488 to make them odd again. */
4489
4490static void
e1b47bd5 4491mips_compressed_mark_label (symbolS *label)
252b5132 4492{
df58fc94 4493 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4494
f3ded42a
RS
4495 if (mips_opts.mips16)
4496 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4497 else
4498 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4499 if ((S_GET_VALUE (label) & 1) == 0
4500 /* Don't adjust the address if the label is global or weak, or
4501 in a link-once section, since we'll be emitting symbol reloc
4502 references to it which will be patched up by the linker, and
4503 the final value of the symbol may or may not be MIPS16/microMIPS. */
4504 && !S_IS_WEAK (label)
4505 && !S_IS_EXTERNAL (label)
4506 && !s_is_linkonce (label, now_seg))
4507 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4508}
4509
4510/* Mark preceding MIPS16 or microMIPS instruction labels. */
4511
4512static void
4513mips_compressed_mark_labels (void)
4514{
4515 struct insn_label_list *l;
4516
4517 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4518 mips_compressed_mark_label (l->label);
252b5132
RH
4519}
4520
4d7206a2
RS
4521/* End the current frag. Make it a variant frag and record the
4522 relaxation info. */
4523
4524static void
4525relax_close_frag (void)
4526{
584892a6 4527 mips_macro_warning.first_frag = frag_now;
4d7206a2 4528 frag_var (rs_machine_dependent, 0, 0,
ce8ad872
MR
4529 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4530 mips_pic != NO_PIC),
4d7206a2
RS
4531 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4532
4533 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4534 mips_relax.first_fixup = 0;
4535}
4536
4537/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4538 See the comment above RELAX_ENCODE for more details. */
4539
4540static void
4541relax_start (symbolS *symbol)
4542{
9c2799c2 4543 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4544 mips_relax.sequence = 1;
4545 mips_relax.symbol = symbol;
4546}
4547
4548/* Start generating the second version of a relaxable sequence.
4549 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4550
4551static void
4d7206a2
RS
4552relax_switch (void)
4553{
9c2799c2 4554 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4555 mips_relax.sequence = 2;
4556}
4557
4558/* End the current relaxable sequence. */
4559
4560static void
4561relax_end (void)
4562{
9c2799c2 4563 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4564 relax_close_frag ();
4565 mips_relax.sequence = 0;
4566}
4567
11625dd8
RS
4568/* Return true if IP is a delayed branch or jump. */
4569
4570static inline bfd_boolean
4571delayed_branch_p (const struct mips_cl_insn *ip)
4572{
4573 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4574 | INSN_COND_BRANCH_DELAY
4575 | INSN_COND_BRANCH_LIKELY)) != 0;
4576}
4577
4578/* Return true if IP is a compact branch or jump. */
4579
4580static inline bfd_boolean
4581compact_branch_p (const struct mips_cl_insn *ip)
4582{
26545944
RS
4583 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4584 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4585}
4586
4587/* Return true if IP is an unconditional branch or jump. */
4588
4589static inline bfd_boolean
4590uncond_branch_p (const struct mips_cl_insn *ip)
4591{
4592 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4593 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4594}
4595
4596/* Return true if IP is a branch-likely instruction. */
4597
4598static inline bfd_boolean
4599branch_likely_p (const struct mips_cl_insn *ip)
4600{
4601 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4602}
4603
14fe068b
RS
4604/* Return the type of nop that should be used to fill the delay slot
4605 of delayed branch IP. */
4606
4607static struct mips_cl_insn *
4608get_delay_slot_nop (const struct mips_cl_insn *ip)
4609{
4610 if (mips_opts.micromips
4611 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4612 return &micromips_nop32_insn;
4613 return NOP_INSN;
4614}
4615
fc76e730
RS
4616/* Return a mask that has bit N set if OPCODE reads the register(s)
4617 in operand N. */
df58fc94
RS
4618
4619static unsigned int
fc76e730 4620insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4621{
fc76e730
RS
4622 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4623}
df58fc94 4624
fc76e730
RS
4625/* Return a mask that has bit N set if OPCODE writes to the register(s)
4626 in operand N. */
4627
4628static unsigned int
4629insn_write_mask (const struct mips_opcode *opcode)
4630{
4631 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4632}
4633
4634/* Return a mask of the registers specified by operand OPERAND of INSN.
4635 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4636 is set. */
4637
4638static unsigned int
4639operand_reg_mask (const struct mips_cl_insn *insn,
4640 const struct mips_operand *operand,
4641 unsigned int type_mask)
4642{
4643 unsigned int uval, vsel;
4644
4645 switch (operand->type)
df58fc94 4646 {
fc76e730
RS
4647 case OP_INT:
4648 case OP_MAPPED_INT:
4649 case OP_MSB:
4650 case OP_PCREL:
4651 case OP_PERF_REG:
4652 case OP_ADDIUSP_INT:
4653 case OP_ENTRY_EXIT_LIST:
4654 case OP_REPEAT_DEST_REG:
4655 case OP_REPEAT_PREV_REG:
4656 case OP_PC:
14daeee3
RS
4657 case OP_VU0_SUFFIX:
4658 case OP_VU0_MATCH_SUFFIX:
56d438b1 4659 case OP_IMM_INDEX:
fc76e730
RS
4660 abort ();
4661
25499ac7
MR
4662 case OP_REG28:
4663 return 1 << 28;
4664
fc76e730 4665 case OP_REG:
0f35dbc4 4666 case OP_OPTIONAL_REG:
fc76e730
RS
4667 {
4668 const struct mips_reg_operand *reg_op;
4669
4670 reg_op = (const struct mips_reg_operand *) operand;
4671 if (!(type_mask & (1 << reg_op->reg_type)))
4672 return 0;
4673 uval = insn_extract_operand (insn, operand);
4674 return 1 << mips_decode_reg_operand (reg_op, uval);
4675 }
4676
4677 case OP_REG_PAIR:
4678 {
4679 const struct mips_reg_pair_operand *pair_op;
4680
4681 pair_op = (const struct mips_reg_pair_operand *) operand;
4682 if (!(type_mask & (1 << pair_op->reg_type)))
4683 return 0;
4684 uval = insn_extract_operand (insn, operand);
4685 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4686 }
4687
4688 case OP_CLO_CLZ_DEST:
4689 if (!(type_mask & (1 << OP_REG_GP)))
4690 return 0;
4691 uval = insn_extract_operand (insn, operand);
4692 return (1 << (uval & 31)) | (1 << (uval >> 5));
4693
7361da2c
AB
4694 case OP_SAME_RS_RT:
4695 if (!(type_mask & (1 << OP_REG_GP)))
4696 return 0;
4697 uval = insn_extract_operand (insn, operand);
4698 gas_assert ((uval & 31) == (uval >> 5));
4699 return 1 << (uval & 31);
4700
4701 case OP_CHECK_PREV:
4702 case OP_NON_ZERO_REG:
4703 if (!(type_mask & (1 << OP_REG_GP)))
4704 return 0;
4705 uval = insn_extract_operand (insn, operand);
4706 return 1 << (uval & 31);
4707
fc76e730
RS
4708 case OP_LWM_SWM_LIST:
4709 abort ();
4710
4711 case OP_SAVE_RESTORE_LIST:
4712 abort ();
4713
4714 case OP_MDMX_IMM_REG:
4715 if (!(type_mask & (1 << OP_REG_VEC)))
4716 return 0;
4717 uval = insn_extract_operand (insn, operand);
4718 vsel = uval >> 5;
4719 if ((vsel & 0x18) == 0x18)
4720 return 0;
4721 return 1 << (uval & 31);
56d438b1
CF
4722
4723 case OP_REG_INDEX:
4724 if (!(type_mask & (1 << OP_REG_GP)))
4725 return 0;
4726 return 1 << insn_extract_operand (insn, operand);
df58fc94 4727 }
fc76e730
RS
4728 abort ();
4729}
4730
4731/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4732 where bit N of OPNO_MASK is set if operand N should be included.
4733 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4734 is set. */
4735
4736static unsigned int
4737insn_reg_mask (const struct mips_cl_insn *insn,
4738 unsigned int type_mask, unsigned int opno_mask)
4739{
4740 unsigned int opno, reg_mask;
4741
4742 opno = 0;
4743 reg_mask = 0;
4744 while (opno_mask != 0)
4745 {
4746 if (opno_mask & 1)
4747 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4748 opno_mask >>= 1;
4749 opno += 1;
4750 }
4751 return reg_mask;
df58fc94
RS
4752}
4753
4c260379
RS
4754/* Return the mask of core registers that IP reads. */
4755
4756static unsigned int
4757gpr_read_mask (const struct mips_cl_insn *ip)
4758{
4759 unsigned long pinfo, pinfo2;
4760 unsigned int mask;
4761
fc76e730 4762 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4763 pinfo = ip->insn_mo->pinfo;
4764 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4765 if (pinfo & INSN_UDI)
4c260379 4766 {
fc76e730
RS
4767 /* UDI instructions have traditionally been assumed to read RS
4768 and RT. */
4769 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4770 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4771 }
fc76e730
RS
4772 if (pinfo & INSN_READ_GPR_24)
4773 mask |= 1 << 24;
4774 if (pinfo2 & INSN2_READ_GPR_16)
4775 mask |= 1 << 16;
4776 if (pinfo2 & INSN2_READ_SP)
4777 mask |= 1 << SP;
26545944 4778 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4779 mask |= 1 << 31;
fe35f09f
RS
4780 /* Don't include register 0. */
4781 return mask & ~1;
4c260379
RS
4782}
4783
4784/* Return the mask of core registers that IP writes. */
4785
4786static unsigned int
4787gpr_write_mask (const struct mips_cl_insn *ip)
4788{
4789 unsigned long pinfo, pinfo2;
4790 unsigned int mask;
4791
fc76e730 4792 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4793 pinfo = ip->insn_mo->pinfo;
4794 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4795 if (pinfo & INSN_WRITE_GPR_24)
4796 mask |= 1 << 24;
4797 if (pinfo & INSN_WRITE_GPR_31)
4798 mask |= 1 << 31;
4799 if (pinfo & INSN_UDI)
4800 /* UDI instructions have traditionally been assumed to write to RD. */
4801 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4802 if (pinfo2 & INSN2_WRITE_SP)
4803 mask |= 1 << SP;
fe35f09f
RS
4804 /* Don't include register 0. */
4805 return mask & ~1;
4c260379
RS
4806}
4807
4808/* Return the mask of floating-point registers that IP reads. */
4809
4810static unsigned int
4811fpr_read_mask (const struct mips_cl_insn *ip)
4812{
fc76e730 4813 unsigned long pinfo;
4c260379
RS
4814 unsigned int mask;
4815
9d5de888
CF
4816 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4817 | (1 << OP_REG_MSA)),
fc76e730 4818 insn_read_mask (ip->insn_mo));
4c260379 4819 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4820 /* Conservatively treat all operands to an FP_D instruction are doubles.
4821 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4822 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4823 mask |= mask << 1;
4824 return mask;
4825}
4826
4827/* Return the mask of floating-point registers that IP writes. */
4828
4829static unsigned int
4830fpr_write_mask (const struct mips_cl_insn *ip)
4831{
fc76e730 4832 unsigned long pinfo;
4c260379
RS
4833 unsigned int mask;
4834
9d5de888
CF
4835 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4836 | (1 << OP_REG_MSA)),
fc76e730 4837 insn_write_mask (ip->insn_mo));
4c260379 4838 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4839 /* Conservatively treat all operands to an FP_D instruction are doubles.
4840 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4841 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4842 mask |= mask << 1;
4843 return mask;
4844}
4845
a1d78564
RS
4846/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4847 Check whether that is allowed. */
4848
4849static bfd_boolean
4850mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4851{
4852 const char *s = insn->name;
351cdf24
MF
4853 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4854 || FPR_SIZE == 64)
4855 && mips_opts.oddspreg;
a1d78564
RS
4856
4857 if (insn->pinfo == INSN_MACRO)
4858 /* Let a macro pass, we'll catch it later when it is expanded. */
4859 return TRUE;
4860
351cdf24
MF
4861 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4862 otherwise it depends on oddspreg. */
4863 if ((insn->pinfo & FP_S)
4864 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4865 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4866 return FPR_SIZE == 32 || oddspreg;
a1d78564 4867
351cdf24
MF
4868 /* Allow odd registers for single-precision ops and double-precision if the
4869 floating-point registers are 64-bit wide. */
4870 switch (insn->pinfo & (FP_S | FP_D))
4871 {
4872 case FP_S:
4873 case 0:
4874 return oddspreg;
4875 case FP_D:
4876 return FPR_SIZE == 64;
4877 default:
4878 break;
a1d78564
RS
4879 }
4880
351cdf24
MF
4881 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4882 s = strchr (insn->name, '.');
4883 if (s != NULL && opnum == 2)
4884 s = strchr (s + 1, '.');
4885 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4886 return oddspreg;
a1d78564 4887
351cdf24 4888 return FPR_SIZE == 64;
a1d78564
RS
4889}
4890
a1d78564
RS
4891/* Information about an instruction argument that we're trying to match. */
4892struct mips_arg_info
4893{
4894 /* The instruction so far. */
4895 struct mips_cl_insn *insn;
4896
a92713e6
RS
4897 /* The first unconsumed operand token. */
4898 struct mips_operand_token *token;
4899
a1d78564
RS
4900 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4901 int opnum;
4902
4903 /* The 1-based argument number, for error reporting. This does not
4904 count elided optional registers, etc.. */
4905 int argnum;
4906
4907 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4908 unsigned int last_regno;
4909
4910 /* If the first operand was an OP_REG, this is the register that it
4911 specified, otherwise it is ILLEGAL_REG. */
4912 unsigned int dest_regno;
4913
4914 /* The value of the last OP_INT operand. Only used for OP_MSB,
4915 where it gives the lsb position. */
4916 unsigned int last_op_int;
4917
60f20e8b 4918 /* If true, match routines should assume that no later instruction
2b0f3761 4919 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4920 possible. Match routines should not report errors if something
4921 is only invalid for !LAX_MATCH. */
4922 bfd_boolean lax_match;
a1d78564 4923
a1d78564
RS
4924 /* True if a reference to the current AT register was seen. */
4925 bfd_boolean seen_at;
4926};
4927
1a00e612
RS
4928/* Record that the argument is out of range. */
4929
4930static void
4931match_out_of_range (struct mips_arg_info *arg)
4932{
4933 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4934}
4935
4936/* Record that the argument isn't constant but needs to be. */
4937
4938static void
4939match_not_constant (struct mips_arg_info *arg)
4940{
4941 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4942 arg->argnum);
4943}
4944
a92713e6
RS
4945/* Try to match an OT_CHAR token for character CH. Consume the token
4946 and return true on success, otherwise return false. */
a1d78564 4947
a92713e6
RS
4948static bfd_boolean
4949match_char (struct mips_arg_info *arg, char ch)
a1d78564 4950{
a92713e6
RS
4951 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4952 {
4953 ++arg->token;
4954 if (ch == ',')
4955 arg->argnum += 1;
4956 return TRUE;
4957 }
4958 return FALSE;
4959}
a1d78564 4960
a92713e6
RS
4961/* Try to get an expression from the next tokens in ARG. Consume the
4962 tokens and return true on success, storing the expression value in
4963 VALUE and relocation types in R. */
4964
4965static bfd_boolean
4966match_expression (struct mips_arg_info *arg, expressionS *value,
4967 bfd_reloc_code_real_type *r)
4968{
d436c1c2
RS
4969 /* If the next token is a '(' that was parsed as being part of a base
4970 expression, assume we have an elided offset. The later match will fail
4971 if this turns out to be wrong. */
4972 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4973 {
d436c1c2
RS
4974 value->X_op = O_constant;
4975 value->X_add_number = 0;
4976 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4977 return TRUE;
4978 }
4979
d436c1c2
RS
4980 /* Reject register-based expressions such as "0+$2" and "(($2))".
4981 For plain registers the default error seems more appropriate. */
4982 if (arg->token->type == OT_INTEGER
4983 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4984 {
d436c1c2
RS
4985 set_insn_error (arg->argnum, _("register value used as expression"));
4986 return FALSE;
a1d78564 4987 }
d436c1c2
RS
4988
4989 if (arg->token->type == OT_INTEGER)
a92713e6 4990 {
d436c1c2
RS
4991 *value = arg->token->u.integer.value;
4992 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4993 ++arg->token;
4994 return TRUE;
a92713e6 4995 }
a92713e6 4996
d436c1c2
RS
4997 set_insn_error_i
4998 (arg->argnum, _("operand %d must be an immediate expression"),
4999 arg->argnum);
5000 return FALSE;
a92713e6
RS
5001}
5002
5003/* Try to get a constant expression from the next tokens in ARG. Consume
de194d85 5004 the tokens and return true on success, storing the constant value
a54d5f8b 5005 in *VALUE. */
a92713e6
RS
5006
5007static bfd_boolean
1a00e612 5008match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
5009{
5010 expressionS ex;
5011 bfd_reloc_code_real_type r[3];
a1d78564 5012
a92713e6
RS
5013 if (!match_expression (arg, &ex, r))
5014 return FALSE;
5015
5016 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
5017 *value = ex.X_add_number;
5018 else
5019 {
c96425c5
MR
5020 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
5021 match_out_of_range (arg);
5022 else
5023 match_not_constant (arg);
1a00e612 5024 return FALSE;
a1d78564 5025 }
a92713e6 5026 return TRUE;
a1d78564
RS
5027}
5028
5029/* Return the RTYPE_* flags for a register operand of type TYPE that
5030 appears in instruction OPCODE. */
5031
5032static unsigned int
5033convert_reg_type (const struct mips_opcode *opcode,
5034 enum mips_reg_operand_type type)
5035{
5036 switch (type)
5037 {
5038 case OP_REG_GP:
5039 return RTYPE_NUM | RTYPE_GP;
5040
5041 case OP_REG_FP:
5042 /* Allow vector register names for MDMX if the instruction is a 64-bit
5043 FPR load, store or move (including moves to and from GPRs). */
5044 if ((mips_opts.ase & ASE_MDMX)
5045 && (opcode->pinfo & FP_D)
43885403 5046 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 5047 | INSN_COPROC_MEMORY_DELAY
43885403 5048 | INSN_LOAD_COPROC
67dc82bc 5049 | INSN_LOAD_MEMORY
a1d78564
RS
5050 | INSN_STORE_MEMORY)))
5051 return RTYPE_FPU | RTYPE_VEC;
5052 return RTYPE_FPU;
5053
5054 case OP_REG_CCC:
5055 if (opcode->pinfo & (FP_D | FP_S))
5056 return RTYPE_CCC | RTYPE_FCC;
5057 return RTYPE_CCC;
5058
5059 case OP_REG_VEC:
5060 if (opcode->membership & INSN_5400)
5061 return RTYPE_FPU;
5062 return RTYPE_FPU | RTYPE_VEC;
5063
5064 case OP_REG_ACC:
5065 return RTYPE_ACC;
5066
5067 case OP_REG_COPRO:
5068 if (opcode->name[strlen (opcode->name) - 1] == '0')
5069 return RTYPE_NUM | RTYPE_CP0;
5070 return RTYPE_NUM;
5071
5072 case OP_REG_HW:
5073 return RTYPE_NUM;
14daeee3
RS
5074
5075 case OP_REG_VI:
5076 return RTYPE_NUM | RTYPE_VI;
5077
5078 case OP_REG_VF:
5079 return RTYPE_NUM | RTYPE_VF;
5080
5081 case OP_REG_R5900_I:
5082 return RTYPE_R5900_I;
5083
5084 case OP_REG_R5900_Q:
5085 return RTYPE_R5900_Q;
5086
5087 case OP_REG_R5900_R:
5088 return RTYPE_R5900_R;
5089
5090 case OP_REG_R5900_ACC:
5091 return RTYPE_R5900_ACC;
56d438b1
CF
5092
5093 case OP_REG_MSA:
5094 return RTYPE_MSA;
5095
5096 case OP_REG_MSA_CTRL:
5097 return RTYPE_NUM;
a1d78564
RS
5098 }
5099 abort ();
5100}
5101
5102/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5103
5104static void
5105check_regno (struct mips_arg_info *arg,
5106 enum mips_reg_operand_type type, unsigned int regno)
5107{
5108 if (AT && type == OP_REG_GP && regno == AT)
5109 arg->seen_at = TRUE;
5110
5111 if (type == OP_REG_FP
5112 && (regno & 1) != 0
a1d78564 5113 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
5114 {
5115 /* This was a warning prior to introducing O32 FPXX and FP64 support
5116 so maintain a warning for FP32 but raise an error for the new
5117 cases. */
5118 if (FPR_SIZE == 32)
5119 as_warn (_("float register should be even, was %d"), regno);
5120 else
5121 as_bad (_("float register should be even, was %d"), regno);
5122 }
a1d78564
RS
5123
5124 if (type == OP_REG_CCC)
5125 {
5126 const char *name;
5127 size_t length;
5128
5129 name = arg->insn->insn_mo->name;
5130 length = strlen (name);
5131 if ((regno & 1) != 0
5132 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5133 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 5134 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
5135 name, regno);
5136
5137 if ((regno & 3) != 0
5138 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 5139 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
5140 name, regno);
5141 }
5142}
5143
a92713e6
RS
5144/* ARG is a register with symbol value SYMVAL. Try to interpret it as
5145 a register of type TYPE. Return true on success, storing the register
5146 number in *REGNO and warning about any dubious uses. */
5147
5148static bfd_boolean
5149match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5150 unsigned int symval, unsigned int *regno)
5151{
5152 if (type == OP_REG_VEC)
5153 symval = mips_prefer_vec_regno (symval);
5154 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5155 return FALSE;
5156
5157 *regno = symval & RNUM_MASK;
5158 check_regno (arg, type, *regno);
5159 return TRUE;
5160}
5161
5162/* Try to interpret the next token in ARG as a register of type TYPE.
5163 Consume the token and return true on success, storing the register
5164 number in *REGNO. Return false on failure. */
5165
5166static bfd_boolean
5167match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5168 unsigned int *regno)
5169{
5170 if (arg->token->type == OT_REG
5171 && match_regno (arg, type, arg->token->u.regno, regno))
5172 {
5173 ++arg->token;
5174 return TRUE;
5175 }
5176 return FALSE;
5177}
5178
5179/* Try to interpret the next token in ARG as a range of registers of type TYPE.
5180 Consume the token and return true on success, storing the register numbers
5181 in *REGNO1 and *REGNO2. Return false on failure. */
5182
5183static bfd_boolean
5184match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5185 unsigned int *regno1, unsigned int *regno2)
5186{
5187 if (match_reg (arg, type, regno1))
5188 {
5189 *regno2 = *regno1;
5190 return TRUE;
5191 }
5192 if (arg->token->type == OT_REG_RANGE
5193 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5194 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5195 && *regno1 <= *regno2)
5196 {
5197 ++arg->token;
5198 return TRUE;
5199 }
5200 return FALSE;
5201}
5202
a1d78564
RS
5203/* OP_INT matcher. */
5204
a92713e6 5205static bfd_boolean
a1d78564 5206match_int_operand (struct mips_arg_info *arg,
a92713e6 5207 const struct mips_operand *operand_base)
a1d78564
RS
5208{
5209 const struct mips_int_operand *operand;
3ccad066 5210 unsigned int uval;
a1d78564
RS
5211 int min_val, max_val, factor;
5212 offsetT sval;
a1d78564
RS
5213
5214 operand = (const struct mips_int_operand *) operand_base;
5215 factor = 1 << operand->shift;
3ccad066
RS
5216 min_val = mips_int_operand_min (operand);
5217 max_val = mips_int_operand_max (operand);
a1d78564 5218
d436c1c2
RS
5219 if (operand_base->lsb == 0
5220 && operand_base->size == 16
5221 && operand->shift == 0
5222 && operand->bias == 0
5223 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5224 {
5225 /* The operand can be relocated. */
a92713e6
RS
5226 if (!match_expression (arg, &offset_expr, offset_reloc))
5227 return FALSE;
5228
c96425c5
MR
5229 if (offset_expr.X_op == O_big)
5230 {
5231 match_out_of_range (arg);
5232 return FALSE;
5233 }
5234
a92713e6 5235 if (offset_reloc[0] != BFD_RELOC_UNUSED)
33eaf5de 5236 /* Relocation operators were used. Accept the argument and
a1d78564
RS
5237 leave the relocation value in offset_expr and offset_relocs
5238 for the caller to process. */
a92713e6
RS
5239 return TRUE;
5240
5241 if (offset_expr.X_op != O_constant)
a1d78564 5242 {
60f20e8b
RS
5243 /* Accept non-constant operands if no later alternative matches,
5244 leaving it for the caller to process. */
5245 if (!arg->lax_match)
602b88e3
MR
5246 {
5247 match_not_constant (arg);
5248 return FALSE;
5249 }
a92713e6
RS
5250 offset_reloc[0] = BFD_RELOC_LO16;
5251 return TRUE;
a1d78564 5252 }
a92713e6 5253
a1d78564
RS
5254 /* Clear the global state; we're going to install the operand
5255 ourselves. */
a92713e6 5256 sval = offset_expr.X_add_number;
a1d78564 5257 offset_expr.X_op = O_absent;
60f20e8b
RS
5258
5259 /* For compatibility with older assemblers, we accept
5260 0x8000-0xffff as signed 16-bit numbers when only
5261 signed numbers are allowed. */
5262 if (sval > max_val)
5263 {
5264 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5265 if (!arg->lax_match && sval <= max_val)
20c59b84
MR
5266 {
5267 match_out_of_range (arg);
5268 return FALSE;
5269 }
60f20e8b 5270 }
a1d78564
RS
5271 }
5272 else
5273 {
1a00e612 5274 if (!match_const_int (arg, &sval))
a92713e6 5275 return FALSE;
a1d78564
RS
5276 }
5277
5278 arg->last_op_int = sval;
5279
1a00e612 5280 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5281 {
1a00e612
RS
5282 match_out_of_range (arg);
5283 return FALSE;
a1d78564
RS
5284 }
5285
5286 uval = (unsigned int) sval >> operand->shift;
5287 uval -= operand->bias;
5288
5289 /* Handle -mfix-cn63xxp1. */
5290 if (arg->opnum == 1
5291 && mips_fix_cn63xxp1
5292 && !mips_opts.micromips
5293 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5294 switch (uval)
5295 {
5296 case 5:
5297 case 25:
5298 case 26:
5299 case 27:
5300 case 28:
5301 case 29:
5302 case 30:
5303 case 31:
5304 /* These are ok. */
5305 break;
5306
5307 default:
5308 /* The rest must be changed to 28. */
5309 uval = 28;
5310 break;
5311 }
5312
5313 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5314 return TRUE;
a1d78564
RS
5315}
5316
5317/* OP_MAPPED_INT matcher. */
5318
a92713e6 5319static bfd_boolean
a1d78564 5320match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5321 const struct mips_operand *operand_base)
a1d78564
RS
5322{
5323 const struct mips_mapped_int_operand *operand;
5324 unsigned int uval, num_vals;
5325 offsetT sval;
5326
5327 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5328 if (!match_const_int (arg, &sval))
a92713e6 5329 return FALSE;
a1d78564
RS
5330
5331 num_vals = 1 << operand_base->size;
5332 for (uval = 0; uval < num_vals; uval++)
5333 if (operand->int_map[uval] == sval)
5334 break;
5335 if (uval == num_vals)
1a00e612
RS
5336 {
5337 match_out_of_range (arg);
5338 return FALSE;
5339 }
a1d78564
RS
5340
5341 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5342 return TRUE;
a1d78564
RS
5343}
5344
5345/* OP_MSB matcher. */
5346
a92713e6 5347static bfd_boolean
a1d78564 5348match_msb_operand (struct mips_arg_info *arg,
a92713e6 5349 const struct mips_operand *operand_base)
a1d78564
RS
5350{
5351 const struct mips_msb_operand *operand;
5352 int min_val, max_val, max_high;
5353 offsetT size, sval, high;
5354
5355 operand = (const struct mips_msb_operand *) operand_base;
5356 min_val = operand->bias;
5357 max_val = min_val + (1 << operand_base->size) - 1;
5358 max_high = operand->opsize;
5359
1a00e612 5360 if (!match_const_int (arg, &size))
a92713e6 5361 return FALSE;
a1d78564
RS
5362
5363 high = size + arg->last_op_int;
5364 sval = operand->add_lsb ? high : size;
5365
5366 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5367 {
1a00e612
RS
5368 match_out_of_range (arg);
5369 return FALSE;
a1d78564
RS
5370 }
5371 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5372 return TRUE;
a1d78564
RS
5373}
5374
5375/* OP_REG matcher. */
5376
a92713e6 5377static bfd_boolean
a1d78564 5378match_reg_operand (struct mips_arg_info *arg,
a92713e6 5379 const struct mips_operand *operand_base)
a1d78564
RS
5380{
5381 const struct mips_reg_operand *operand;
a92713e6 5382 unsigned int regno, uval, num_vals;
a1d78564
RS
5383
5384 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5385 if (!match_reg (arg, operand->reg_type, &regno))
5386 return FALSE;
a1d78564
RS
5387
5388 if (operand->reg_map)
5389 {
5390 num_vals = 1 << operand->root.size;
5391 for (uval = 0; uval < num_vals; uval++)
5392 if (operand->reg_map[uval] == regno)
5393 break;
5394 if (num_vals == uval)
a92713e6 5395 return FALSE;
a1d78564
RS
5396 }
5397 else
5398 uval = regno;
5399
a1d78564
RS
5400 arg->last_regno = regno;
5401 if (arg->opnum == 1)
5402 arg->dest_regno = regno;
5403 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5404 return TRUE;
a1d78564
RS
5405}
5406
5407/* OP_REG_PAIR matcher. */
5408
a92713e6 5409static bfd_boolean
a1d78564 5410match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5411 const struct mips_operand *operand_base)
a1d78564
RS
5412{
5413 const struct mips_reg_pair_operand *operand;
a92713e6 5414 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5415
5416 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5417 if (!match_reg (arg, operand->reg_type, &regno1)
5418 || !match_char (arg, ',')
5419 || !match_reg (arg, operand->reg_type, &regno2))
5420 return FALSE;
a1d78564
RS
5421
5422 num_vals = 1 << operand_base->size;
5423 for (uval = 0; uval < num_vals; uval++)
5424 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5425 break;
5426 if (uval == num_vals)
a92713e6 5427 return FALSE;
a1d78564 5428
a1d78564 5429 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5430 return TRUE;
a1d78564
RS
5431}
5432
5433/* OP_PCREL matcher. The caller chooses the relocation type. */
5434
a92713e6
RS
5435static bfd_boolean
5436match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5437{
a92713e6
RS
5438 bfd_reloc_code_real_type r[3];
5439
5440 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5441}
5442
5443/* OP_PERF_REG matcher. */
5444
a92713e6 5445static bfd_boolean
a1d78564 5446match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5447 const struct mips_operand *operand)
a1d78564
RS
5448{
5449 offsetT sval;
5450
1a00e612 5451 if (!match_const_int (arg, &sval))
a92713e6 5452 return FALSE;
a1d78564
RS
5453
5454 if (sval != 0
5455 && (sval != 1
5456 || (mips_opts.arch == CPU_R5900
5457 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5458 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5459 {
1a00e612
RS
5460 set_insn_error (arg->argnum, _("invalid performance register"));
5461 return FALSE;
a1d78564
RS
5462 }
5463
5464 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5465 return TRUE;
a1d78564
RS
5466}
5467
5468/* OP_ADDIUSP matcher. */
5469
a92713e6 5470static bfd_boolean
a1d78564 5471match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5472 const struct mips_operand *operand)
a1d78564
RS
5473{
5474 offsetT sval;
5475 unsigned int uval;
5476
1a00e612 5477 if (!match_const_int (arg, &sval))
a92713e6 5478 return FALSE;
a1d78564
RS
5479
5480 if (sval % 4)
1a00e612
RS
5481 {
5482 match_out_of_range (arg);
5483 return FALSE;
5484 }
a1d78564
RS
5485
5486 sval /= 4;
5487 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5488 {
5489 match_out_of_range (arg);
5490 return FALSE;
5491 }
a1d78564
RS
5492
5493 uval = (unsigned int) sval;
5494 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5495 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5496 return TRUE;
a1d78564
RS
5497}
5498
5499/* OP_CLO_CLZ_DEST matcher. */
5500
a92713e6 5501static bfd_boolean
a1d78564 5502match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5503 const struct mips_operand *operand)
a1d78564
RS
5504{
5505 unsigned int regno;
5506
a92713e6
RS
5507 if (!match_reg (arg, OP_REG_GP, &regno))
5508 return FALSE;
a1d78564 5509
a1d78564 5510 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5511 return TRUE;
a1d78564
RS
5512}
5513
7361da2c
AB
5514/* OP_CHECK_PREV matcher. */
5515
5516static bfd_boolean
5517match_check_prev_operand (struct mips_arg_info *arg,
5518 const struct mips_operand *operand_base)
5519{
5520 const struct mips_check_prev_operand *operand;
5521 unsigned int regno;
5522
5523 operand = (const struct mips_check_prev_operand *) operand_base;
5524
5525 if (!match_reg (arg, OP_REG_GP, &regno))
5526 return FALSE;
5527
5528 if (!operand->zero_ok && regno == 0)
5529 return FALSE;
5530
5531 if ((operand->less_than_ok && regno < arg->last_regno)
5532 || (operand->greater_than_ok && regno > arg->last_regno)
5533 || (operand->equal_ok && regno == arg->last_regno))
5534 {
5535 arg->last_regno = regno;
5536 insn_insert_operand (arg->insn, operand_base, regno);
5537 return TRUE;
5538 }
5539
5540 return FALSE;
5541}
5542
5543/* OP_SAME_RS_RT matcher. */
5544
5545static bfd_boolean
5546match_same_rs_rt_operand (struct mips_arg_info *arg,
5547 const struct mips_operand *operand)
5548{
5549 unsigned int regno;
5550
5551 if (!match_reg (arg, OP_REG_GP, &regno))
5552 return FALSE;
5553
5554 if (regno == 0)
5555 {
5556 set_insn_error (arg->argnum, _("the source register must not be $0"));
5557 return FALSE;
5558 }
5559
5560 arg->last_regno = regno;
5561
5562 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5563 return TRUE;
5564}
5565
a1d78564
RS
5566/* OP_LWM_SWM_LIST matcher. */
5567
a92713e6 5568static bfd_boolean
a1d78564 5569match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5570 const struct mips_operand *operand)
a1d78564 5571{
a92713e6
RS
5572 unsigned int reglist, sregs, ra, regno1, regno2;
5573 struct mips_arg_info reset;
a1d78564 5574
a92713e6
RS
5575 reglist = 0;
5576 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5577 return FALSE;
5578 do
5579 {
5580 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5581 {
5582 reglist |= 1 << FP;
5583 regno2 = S7;
5584 }
5585 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5586 reset = *arg;
5587 }
5588 while (match_char (arg, ',')
5589 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5590 *arg = reset;
a1d78564
RS
5591
5592 if (operand->size == 2)
5593 {
5594 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5595
5596 s0, ra
5597 s0, s1, ra, s2, s3
5598 s0-s2, ra
5599
5600 and any permutations of these. */
5601 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5602 return FALSE;
a1d78564
RS
5603
5604 sregs = (reglist >> 17) & 7;
5605 ra = 0;
5606 }
5607 else
5608 {
5609 /* The list must include at least one of ra and s0-sN,
5610 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5611 which are $23 and $30 respectively.) E.g.:
5612
5613 ra
5614 s0
5615 ra, s0, s1, s2
5616 s0-s8
5617 s0-s5, ra
5618
5619 and any permutations of these. */
5620 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5621 return FALSE;
a1d78564
RS
5622
5623 ra = (reglist >> 27) & 0x10;
5624 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5625 }
5626 sregs += 1;
5627 if ((sregs & -sregs) != sregs)
a92713e6 5628 return FALSE;
a1d78564
RS
5629
5630 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5631 return TRUE;
a1d78564
RS
5632}
5633
364215c8
RS
5634/* OP_ENTRY_EXIT_LIST matcher. */
5635
a92713e6 5636static unsigned int
364215c8 5637match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5638 const struct mips_operand *operand)
364215c8
RS
5639{
5640 unsigned int mask;
5641 bfd_boolean is_exit;
5642
5643 /* The format is the same for both ENTRY and EXIT, but the constraints
5644 are different. */
5645 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5646 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5647 do
364215c8
RS
5648 {
5649 unsigned int regno1, regno2;
5650 bfd_boolean is_freg;
5651
a92713e6 5652 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5653 is_freg = FALSE;
a92713e6 5654 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5655 is_freg = TRUE;
5656 else
a92713e6 5657 return FALSE;
364215c8
RS
5658
5659 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5660 {
5661 mask &= ~(7 << 3);
5662 mask |= (5 + regno2) << 3;
5663 }
5664 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5665 mask |= (regno2 - 3) << 3;
5666 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5667 mask |= (regno2 - 15) << 1;
5668 else if (regno1 == RA && regno2 == RA)
5669 mask |= 1;
5670 else
a92713e6 5671 return FALSE;
364215c8 5672 }
a92713e6
RS
5673 while (match_char (arg, ','));
5674
364215c8 5675 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5676 return TRUE;
364215c8
RS
5677}
5678
38bf472a
MR
5679/* Encode regular MIPS SAVE/RESTORE instruction operands according to
5680 the argument register mask AMASK, the number of static registers
5681 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5682 respectively, and the frame size FRAME_SIZE. */
5683
5684static unsigned int
5685mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5686 unsigned int ra, unsigned int s0, unsigned int s1,
5687 unsigned int frame_size)
5688{
5689 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5690 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5691}
5692
5693/* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5694 argument register mask AMASK, the number of static registers saved
5695 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5696 respectively, and the frame size FRAME_SIZE. */
5697
5698static unsigned int
5699mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5700 unsigned int ra, unsigned int s0, unsigned int s1,
5701 unsigned int frame_size)
5702{
5703 unsigned int args;
5704
5705 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5706 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5707 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5708 | ((frame_size & 0xf0) << 16));
5709 return args;
5710}
5711
364215c8
RS
5712/* OP_SAVE_RESTORE_LIST matcher. */
5713
a92713e6
RS
5714static bfd_boolean
5715match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5716{
5717 unsigned int opcode, args, statics, sregs;
5718 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
38bf472a 5719 unsigned int arg_mask, ra, s0, s1;
364215c8 5720 offsetT frame_size;
364215c8 5721
364215c8
RS
5722 opcode = arg->insn->insn_opcode;
5723 frame_size = 0;
5724 num_frame_sizes = 0;
5725 args = 0;
5726 statics = 0;
5727 sregs = 0;
38bf472a
MR
5728 ra = 0;
5729 s0 = 0;
5730 s1 = 0;
a92713e6 5731 do
364215c8
RS
5732 {
5733 unsigned int regno1, regno2;
5734
a92713e6 5735 if (arg->token->type == OT_INTEGER)
364215c8
RS
5736 {
5737 /* Handle the frame size. */
1a00e612 5738 if (!match_const_int (arg, &frame_size))
a92713e6 5739 return FALSE;
364215c8 5740 num_frame_sizes += 1;
364215c8
RS
5741 }
5742 else
5743 {
a92713e6
RS
5744 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5745 return FALSE;
364215c8
RS
5746
5747 while (regno1 <= regno2)
5748 {
5749 if (regno1 >= 4 && regno1 <= 7)
5750 {
5751 if (num_frame_sizes == 0)
5752 /* args $a0-$a3 */
5753 args |= 1 << (regno1 - 4);
5754 else
5755 /* statics $a0-$a3 */
5756 statics |= 1 << (regno1 - 4);
5757 }
5758 else if (regno1 >= 16 && regno1 <= 23)
5759 /* $s0-$s7 */
5760 sregs |= 1 << (regno1 - 16);
5761 else if (regno1 == 30)
5762 /* $s8 */
5763 sregs |= 1 << 8;
5764 else if (regno1 == 31)
5765 /* Add $ra to insn. */
38bf472a 5766 ra = 1;
364215c8 5767 else
a92713e6 5768 return FALSE;
364215c8
RS
5769 regno1 += 1;
5770 if (regno1 == 24)
5771 regno1 = 30;
5772 }
5773 }
364215c8 5774 }
a92713e6 5775 while (match_char (arg, ','));
364215c8
RS
5776
5777 /* Encode args/statics combination. */
5778 if (args & statics)
a92713e6 5779 return FALSE;
364215c8
RS
5780 else if (args == 0xf)
5781 /* All $a0-$a3 are args. */
38bf472a 5782 arg_mask = MIPS_SVRS_ALL_ARGS;
364215c8
RS
5783 else if (statics == 0xf)
5784 /* All $a0-$a3 are statics. */
38bf472a 5785 arg_mask = MIPS_SVRS_ALL_STATICS;
364215c8
RS
5786 else
5787 {
5788 /* Count arg registers. */
5789 num_args = 0;
5790 while (args & 0x1)
5791 {
5792 args >>= 1;
5793 num_args += 1;
5794 }
5795 if (args != 0)
a92713e6 5796 return FALSE;
364215c8
RS
5797
5798 /* Count static registers. */
5799 num_statics = 0;
5800 while (statics & 0x8)
5801 {
5802 statics = (statics << 1) & 0xf;
5803 num_statics += 1;
5804 }
5805 if (statics != 0)
a92713e6 5806 return FALSE;
364215c8
RS
5807
5808 /* Encode args/statics. */
38bf472a 5809 arg_mask = (num_args << 2) | num_statics;
364215c8
RS
5810 }
5811
5812 /* Encode $s0/$s1. */
5813 if (sregs & (1 << 0)) /* $s0 */
38bf472a 5814 s0 = 1;
364215c8 5815 if (sregs & (1 << 1)) /* $s1 */
38bf472a 5816 s1 = 1;
364215c8
RS
5817 sregs >>= 2;
5818
5819 /* Encode $s2-$s8. */
5820 num_sregs = 0;
5821 while (sregs & 1)
5822 {
5823 sregs >>= 1;
5824 num_sregs += 1;
5825 }
5826 if (sregs != 0)
a92713e6 5827 return FALSE;
364215c8
RS
5828
5829 /* Encode frame size. */
5830 if (num_frame_sizes == 0)
1a00e612
RS
5831 {
5832 set_insn_error (arg->argnum, _("missing frame size"));
5833 return FALSE;
5834 }
5835 if (num_frame_sizes > 1)
5836 {
5837 set_insn_error (arg->argnum, _("frame size specified twice"));
5838 return FALSE;
5839 }
5840 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5841 {
5842 set_insn_error (arg->argnum, _("invalid frame size"));
5843 return FALSE;
5844 }
38bf472a 5845 frame_size /= 8;
364215c8 5846
364215c8 5847 /* Finally build the instruction. */
38bf472a
MR
5848 if (mips_opts.mips16)
5849 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5850 frame_size);
5851 else if (!mips_opts.micromips)
5852 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5853 frame_size);
5854 else
5855 abort ();
5856
364215c8 5857 arg->insn->insn_opcode = opcode;
a92713e6 5858 return TRUE;
364215c8
RS
5859}
5860
a1d78564
RS
5861/* OP_MDMX_IMM_REG matcher. */
5862
a92713e6 5863static bfd_boolean
a1d78564 5864match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5865 const struct mips_operand *operand)
a1d78564 5866{
a92713e6 5867 unsigned int regno, uval;
a1d78564
RS
5868 bfd_boolean is_qh;
5869 const struct mips_opcode *opcode;
5870
5871 /* The mips_opcode records whether this is an octobyte or quadhalf
5872 instruction. Start out with that bit in place. */
5873 opcode = arg->insn->insn_mo;
5874 uval = mips_extract_operand (operand, opcode->match);
5875 is_qh = (uval != 0);
5876
56d438b1 5877 if (arg->token->type == OT_REG)
a1d78564
RS
5878 {
5879 if ((opcode->membership & INSN_5400)
5880 && strcmp (opcode->name, "rzu.ob") == 0)
5881 {
1a00e612
RS
5882 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5883 arg->argnum);
5884 return FALSE;
a1d78564
RS
5885 }
5886
56d438b1
CF
5887 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5888 return FALSE;
5889 ++arg->token;
5890
a1d78564
RS
5891 /* Check whether this is a vector register or a broadcast of
5892 a single element. */
56d438b1 5893 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5894 {
56d438b1 5895 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5896 {
1a00e612
RS
5897 set_insn_error (arg->argnum, _("invalid element selector"));
5898 return FALSE;
a1d78564 5899 }
56d438b1
CF
5900 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5901 ++arg->token;
a1d78564
RS
5902 }
5903 else
5904 {
5905 /* A full vector. */
5906 if ((opcode->membership & INSN_5400)
5907 && (strcmp (opcode->name, "sll.ob") == 0
5908 || strcmp (opcode->name, "srl.ob") == 0))
5909 {
1a00e612
RS
5910 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5911 arg->argnum);
5912 return FALSE;
a1d78564
RS
5913 }
5914
5915 if (is_qh)
5916 uval |= MDMX_FMTSEL_VEC_QH << 5;
5917 else
5918 uval |= MDMX_FMTSEL_VEC_OB << 5;
5919 }
a1d78564
RS
5920 uval |= regno;
5921 }
5922 else
5923 {
5924 offsetT sval;
5925
1a00e612 5926 if (!match_const_int (arg, &sval))
a92713e6 5927 return FALSE;
a1d78564
RS
5928 if (sval < 0 || sval > 31)
5929 {
1a00e612
RS
5930 match_out_of_range (arg);
5931 return FALSE;
a1d78564
RS
5932 }
5933 uval |= (sval & 31);
5934 if (is_qh)
5935 uval |= MDMX_FMTSEL_IMM_QH << 5;
5936 else
5937 uval |= MDMX_FMTSEL_IMM_OB << 5;
5938 }
5939 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5940 return TRUE;
a1d78564
RS
5941}
5942
56d438b1
CF
5943/* OP_IMM_INDEX matcher. */
5944
5945static bfd_boolean
5946match_imm_index_operand (struct mips_arg_info *arg,
5947 const struct mips_operand *operand)
5948{
5949 unsigned int max_val;
5950
5951 if (arg->token->type != OT_INTEGER_INDEX)
5952 return FALSE;
5953
5954 max_val = (1 << operand->size) - 1;
5955 if (arg->token->u.index > max_val)
5956 {
5957 match_out_of_range (arg);
5958 return FALSE;
5959 }
5960 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5961 ++arg->token;
5962 return TRUE;
5963}
5964
5965/* OP_REG_INDEX matcher. */
5966
5967static bfd_boolean
5968match_reg_index_operand (struct mips_arg_info *arg,
5969 const struct mips_operand *operand)
5970{
5971 unsigned int regno;
5972
5973 if (arg->token->type != OT_REG_INDEX)
5974 return FALSE;
5975
5976 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5977 return FALSE;
5978
5979 insn_insert_operand (arg->insn, operand, regno);
5980 ++arg->token;
5981 return TRUE;
5982}
5983
a1d78564
RS
5984/* OP_PC matcher. */
5985
a92713e6
RS
5986static bfd_boolean
5987match_pc_operand (struct mips_arg_info *arg)
a1d78564 5988{
a92713e6
RS
5989 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5990 {
5991 ++arg->token;
5992 return TRUE;
5993 }
5994 return FALSE;
a1d78564
RS
5995}
5996
25499ac7
MR
5997/* OP_REG28 matcher. */
5998
5999static bfd_boolean
6000match_reg28_operand (struct mips_arg_info *arg)
6001{
6002 unsigned int regno;
6003
6004 if (arg->token->type == OT_REG
6005 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
6006 && regno == GP)
6007 {
6008 ++arg->token;
6009 return TRUE;
6010 }
6011 return FALSE;
6012}
6013
7361da2c
AB
6014/* OP_NON_ZERO_REG matcher. */
6015
6016static bfd_boolean
6017match_non_zero_reg_operand (struct mips_arg_info *arg,
6018 const struct mips_operand *operand)
6019{
6020 unsigned int regno;
6021
6022 if (!match_reg (arg, OP_REG_GP, &regno))
6023 return FALSE;
6024
6025 if (regno == 0)
85bec12d
MF
6026 {
6027 set_insn_error (arg->argnum, _("the source register must not be $0"));
6028 return FALSE;
6029 }
7361da2c
AB
6030
6031 arg->last_regno = regno;
6032 insn_insert_operand (arg->insn, operand, regno);
6033 return TRUE;
6034}
6035
a1d78564
RS
6036/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
6037 register that we need to match. */
6038
a92713e6
RS
6039static bfd_boolean
6040match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
6041{
6042 unsigned int regno;
6043
a92713e6 6044 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
6045}
6046
33f46696
MR
6047/* Try to match a floating-point constant from ARG for LI.S or LI.D.
6048 LENGTH is the length of the value in bytes (4 for float, 8 for double)
6049 and USING_GPRS says whether the destination is a GPR rather than an FPR.
89565f1b
RS
6050
6051 Return the constant in IMM and OFFSET as follows:
6052
6053 - If the constant should be loaded via memory, set IMM to O_absent and
6054 OFFSET to the memory address.
6055
6056 - Otherwise, if the constant should be loaded into two 32-bit registers,
6057 set IMM to the O_constant to load into the high register and OFFSET
6058 to the corresponding value for the low register.
6059
6060 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6061
6062 These constants only appear as the last operand in an instruction,
6063 and every instruction that accepts them in any variant accepts them
6064 in all variants. This means we don't have to worry about backing out
6065 any changes if the instruction does not match. We just match
6066 unconditionally and report an error if the constant is invalid. */
6067
a92713e6
RS
6068static bfd_boolean
6069match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6070 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 6071{
a92713e6 6072 char *p;
89565f1b
RS
6073 segT seg, new_seg;
6074 subsegT subseg;
6075 const char *newname;
a92713e6 6076 unsigned char *data;
89565f1b
RS
6077
6078 /* Where the constant is placed is based on how the MIPS assembler
6079 does things:
6080
6081 length == 4 && using_gprs -- immediate value only
6082 length == 8 && using_gprs -- .rdata or immediate value
6083 length == 4 && !using_gprs -- .lit4 or immediate value
6084 length == 8 && !using_gprs -- .lit8 or immediate value
6085
6086 The .lit4 and .lit8 sections are only used if permitted by the
6087 -G argument. */
a92713e6 6088 if (arg->token->type != OT_FLOAT)
1a00e612
RS
6089 {
6090 set_insn_error (arg->argnum, _("floating-point expression required"));
6091 return FALSE;
6092 }
a92713e6
RS
6093
6094 gas_assert (arg->token->u.flt.length == length);
6095 data = arg->token->u.flt.data;
6096 ++arg->token;
89565f1b
RS
6097
6098 /* Handle 32-bit constants for which an immediate value is best. */
6099 if (length == 4
6100 && (using_gprs
6101 || g_switch_value < 4
6102 || (data[0] == 0 && data[1] == 0)
6103 || (data[2] == 0 && data[3] == 0)))
6104 {
6105 imm->X_op = O_constant;
6106 if (!target_big_endian)
6107 imm->X_add_number = bfd_getl32 (data);
6108 else
6109 imm->X_add_number = bfd_getb32 (data);
6110 offset->X_op = O_absent;
a92713e6 6111 return TRUE;
89565f1b
RS
6112 }
6113
6114 /* Handle 64-bit constants for which an immediate value is best. */
6115 if (length == 8
6116 && !mips_disable_float_construction
351cdf24
MF
6117 /* Constants can only be constructed in GPRs and copied to FPRs if the
6118 GPRs are at least as wide as the FPRs or MTHC1 is available.
6119 Unlike most tests for 32-bit floating-point registers this check
6120 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6121 permit 64-bit moves without MXHC1.
6122 Force the constant into memory otherwise. */
6123 && (using_gprs
6124 || GPR_SIZE == 64
6125 || ISA_HAS_MXHC1 (mips_opts.isa)
6126 || FPR_SIZE == 32)
89565f1b
RS
6127 && ((data[0] == 0 && data[1] == 0)
6128 || (data[2] == 0 && data[3] == 0))
6129 && ((data[4] == 0 && data[5] == 0)
6130 || (data[6] == 0 && data[7] == 0)))
6131 {
6132 /* The value is simple enough to load with a couple of instructions.
6133 If using 32-bit registers, set IMM to the high order 32 bits and
6134 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6135 64 bit constant. */
351cdf24 6136 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
6137 {
6138 imm->X_op = O_constant;
6139 offset->X_op = O_constant;
6140 if (!target_big_endian)
6141 {
6142 imm->X_add_number = bfd_getl32 (data + 4);
6143 offset->X_add_number = bfd_getl32 (data);
6144 }
6145 else
6146 {
6147 imm->X_add_number = bfd_getb32 (data);
6148 offset->X_add_number = bfd_getb32 (data + 4);
6149 }
6150 if (offset->X_add_number == 0)
6151 offset->X_op = O_absent;
6152 }
6153 else
6154 {
6155 imm->X_op = O_constant;
6156 if (!target_big_endian)
6157 imm->X_add_number = bfd_getl64 (data);
6158 else
6159 imm->X_add_number = bfd_getb64 (data);
6160 offset->X_op = O_absent;
6161 }
a92713e6 6162 return TRUE;
89565f1b
RS
6163 }
6164
6165 /* Switch to the right section. */
6166 seg = now_seg;
6167 subseg = now_subseg;
6168 if (length == 4)
6169 {
6170 gas_assert (!using_gprs && g_switch_value >= 4);
6171 newname = ".lit4";
6172 }
6173 else
6174 {
6175 if (using_gprs || g_switch_value < 8)
6176 newname = RDATA_SECTION_NAME;
6177 else
6178 newname = ".lit8";
6179 }
6180
6181 new_seg = subseg_new (newname, (subsegT) 0);
6182 bfd_set_section_flags (stdoutput, new_seg,
6183 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6184 frag_align (length == 4 ? 2 : 3, 0, 0);
6185 if (strncmp (TARGET_OS, "elf", 3) != 0)
6186 record_alignment (new_seg, 4);
6187 else
6188 record_alignment (new_seg, length == 4 ? 2 : 3);
6189 if (seg == now_seg)
1661c76c 6190 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
6191
6192 /* Set the argument to the current address in the section. */
6193 imm->X_op = O_absent;
6194 offset->X_op = O_symbol;
6195 offset->X_add_symbol = symbol_temp_new_now ();
6196 offset->X_add_number = 0;
6197
6198 /* Put the floating point number into the section. */
6199 p = frag_more (length);
6200 memcpy (p, data, length);
6201
6202 /* Switch back to the original section. */
6203 subseg_set (seg, subseg);
a92713e6 6204 return TRUE;
89565f1b
RS
6205}
6206
14daeee3
RS
6207/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6208 them. */
6209
6210static bfd_boolean
6211match_vu0_suffix_operand (struct mips_arg_info *arg,
6212 const struct mips_operand *operand,
6213 bfd_boolean match_p)
6214{
6215 unsigned int uval;
6216
6217 /* The operand can be an XYZW mask or a single 2-bit channel index
6218 (with X being 0). */
6219 gas_assert (operand->size == 2 || operand->size == 4);
6220
ee5734f0 6221 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 6222 if (arg->token->type != OT_CHANNELS)
ee5734f0 6223 return match_p;
14daeee3
RS
6224
6225 uval = arg->token->u.channels;
6226 if (operand->size == 2)
6227 {
6228 /* Check that a single bit is set and convert it into a 2-bit index. */
6229 if ((uval & -uval) != uval)
6230 return FALSE;
6231 uval = 4 - ffs (uval);
6232 }
6233
6234 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6235 return FALSE;
6236
6237 ++arg->token;
6238 if (!match_p)
6239 insn_insert_operand (arg->insn, operand, uval);
6240 return TRUE;
6241}
6242
33f46696
MR
6243/* Try to match a token from ARG against OPERAND. Consume the token
6244 and return true on success, otherwise return false. */
a1d78564 6245
a92713e6 6246static bfd_boolean
a1d78564 6247match_operand (struct mips_arg_info *arg,
a92713e6 6248 const struct mips_operand *operand)
a1d78564
RS
6249{
6250 switch (operand->type)
6251 {
6252 case OP_INT:
a92713e6 6253 return match_int_operand (arg, operand);
a1d78564
RS
6254
6255 case OP_MAPPED_INT:
a92713e6 6256 return match_mapped_int_operand (arg, operand);
a1d78564
RS
6257
6258 case OP_MSB:
a92713e6 6259 return match_msb_operand (arg, operand);
a1d78564
RS
6260
6261 case OP_REG:
0f35dbc4 6262 case OP_OPTIONAL_REG:
a92713e6 6263 return match_reg_operand (arg, operand);
a1d78564
RS
6264
6265 case OP_REG_PAIR:
a92713e6 6266 return match_reg_pair_operand (arg, operand);
a1d78564
RS
6267
6268 case OP_PCREL:
a92713e6 6269 return match_pcrel_operand (arg);
a1d78564
RS
6270
6271 case OP_PERF_REG:
a92713e6 6272 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6273
6274 case OP_ADDIUSP_INT:
a92713e6 6275 return match_addiusp_operand (arg, operand);
a1d78564
RS
6276
6277 case OP_CLO_CLZ_DEST:
a92713e6 6278 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6279
6280 case OP_LWM_SWM_LIST:
a92713e6 6281 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6282
6283 case OP_ENTRY_EXIT_LIST:
a92713e6 6284 return match_entry_exit_operand (arg, operand);
364215c8 6285
a1d78564 6286 case OP_SAVE_RESTORE_LIST:
a92713e6 6287 return match_save_restore_list_operand (arg);
a1d78564
RS
6288
6289 case OP_MDMX_IMM_REG:
a92713e6 6290 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6291
6292 case OP_REPEAT_DEST_REG:
a92713e6 6293 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6294
6295 case OP_REPEAT_PREV_REG:
a92713e6 6296 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6297
6298 case OP_PC:
a92713e6 6299 return match_pc_operand (arg);
14daeee3 6300
25499ac7
MR
6301 case OP_REG28:
6302 return match_reg28_operand (arg);
6303
14daeee3
RS
6304 case OP_VU0_SUFFIX:
6305 return match_vu0_suffix_operand (arg, operand, FALSE);
6306
6307 case OP_VU0_MATCH_SUFFIX:
6308 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6309
6310 case OP_IMM_INDEX:
6311 return match_imm_index_operand (arg, operand);
6312
6313 case OP_REG_INDEX:
6314 return match_reg_index_operand (arg, operand);
7361da2c
AB
6315
6316 case OP_SAME_RS_RT:
6317 return match_same_rs_rt_operand (arg, operand);
6318
6319 case OP_CHECK_PREV:
6320 return match_check_prev_operand (arg, operand);
6321
6322 case OP_NON_ZERO_REG:
6323 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6324 }
6325 abort ();
6326}
6327
6328/* ARG is the state after successfully matching an instruction.
6329 Issue any queued-up warnings. */
6330
6331static void
6332check_completed_insn (struct mips_arg_info *arg)
6333{
6334 if (arg->seen_at)
6335 {
6336 if (AT == ATREG)
1661c76c 6337 as_warn (_("used $at without \".set noat\""));
a1d78564 6338 else
1661c76c 6339 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6340 }
6341}
a1d78564 6342
85fcb30f
RS
6343/* Return true if modifying general-purpose register REG needs a delay. */
6344
6345static bfd_boolean
6346reg_needs_delay (unsigned int reg)
6347{
6348 unsigned long prev_pinfo;
6349
6350 prev_pinfo = history[0].insn_mo->pinfo;
6351 if (!mips_opts.noreorder
67dc82bc 6352 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6353 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6354 && (gpr_write_mask (&history[0]) & (1 << reg)))
6355 return TRUE;
6356
6357 return FALSE;
6358}
6359
71400594
RS
6360/* Classify an instruction according to the FIX_VR4120_* enumeration.
6361 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6362 by VR4120 errata. */
4d7206a2 6363
71400594
RS
6364static unsigned int
6365classify_vr4120_insn (const char *name)
252b5132 6366{
71400594
RS
6367 if (strncmp (name, "macc", 4) == 0)
6368 return FIX_VR4120_MACC;
6369 if (strncmp (name, "dmacc", 5) == 0)
6370 return FIX_VR4120_DMACC;
6371 if (strncmp (name, "mult", 4) == 0)
6372 return FIX_VR4120_MULT;
6373 if (strncmp (name, "dmult", 5) == 0)
6374 return FIX_VR4120_DMULT;
6375 if (strstr (name, "div"))
6376 return FIX_VR4120_DIV;
6377 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6378 return FIX_VR4120_MTHILO;
6379 return NUM_FIX_VR4120_CLASSES;
6380}
252b5132 6381
a8d14a88
CM
6382#define INSN_ERET 0x42000018
6383#define INSN_DERET 0x4200001f
6384#define INSN_DMULT 0x1c
6385#define INSN_DMULTU 0x1d
ff239038 6386
71400594
RS
6387/* Return the number of instructions that must separate INSN1 and INSN2,
6388 where INSN1 is the earlier instruction. Return the worst-case value
6389 for any INSN2 if INSN2 is null. */
252b5132 6390
71400594
RS
6391static unsigned int
6392insns_between (const struct mips_cl_insn *insn1,
6393 const struct mips_cl_insn *insn2)
6394{
6395 unsigned long pinfo1, pinfo2;
4c260379 6396 unsigned int mask;
71400594 6397
85fcb30f
RS
6398 /* If INFO2 is null, pessimistically assume that all flags are set for
6399 the second instruction. */
71400594
RS
6400 pinfo1 = insn1->insn_mo->pinfo;
6401 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6402
71400594
RS
6403 /* For most targets, write-after-read dependencies on the HI and LO
6404 registers must be separated by at least two instructions. */
6405 if (!hilo_interlocks)
252b5132 6406 {
71400594
RS
6407 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6408 return 2;
6409 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6410 return 2;
6411 }
6412
6413 /* If we're working around r7000 errata, there must be two instructions
6414 between an mfhi or mflo and any instruction that uses the result. */
6415 if (mips_7000_hilo_fix
df58fc94 6416 && !mips_opts.micromips
71400594 6417 && MF_HILO_INSN (pinfo1)
85fcb30f 6418 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6419 return 2;
6420
ff239038
CM
6421 /* If we're working around 24K errata, one instruction is required
6422 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6423 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6424 {
6425 if (insn1->insn_opcode == INSN_ERET
6426 || insn1->insn_opcode == INSN_DERET)
6427 {
6428 if (insn2 == NULL
6429 || insn2->insn_opcode == INSN_ERET
6430 || insn2->insn_opcode == INSN_DERET
11625dd8 6431 || delayed_branch_p (insn2))
ff239038
CM
6432 return 1;
6433 }
6434 }
6435
a8d14a88
CM
6436 /* If we're working around PMC RM7000 errata, there must be three
6437 nops between a dmult and a load instruction. */
6438 if (mips_fix_rm7000 && !mips_opts.micromips)
6439 {
6440 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6441 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6442 {
6443 if (pinfo2 & INSN_LOAD_MEMORY)
6444 return 3;
6445 }
6446 }
6447
71400594
RS
6448 /* If working around VR4120 errata, check for combinations that need
6449 a single intervening instruction. */
df58fc94 6450 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6451 {
6452 unsigned int class1, class2;
252b5132 6453
71400594
RS
6454 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6455 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6456 {
71400594
RS
6457 if (insn2 == NULL)
6458 return 1;
6459 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6460 if (vr4120_conflicts[class1] & (1 << class2))
6461 return 1;
252b5132 6462 }
71400594
RS
6463 }
6464
df58fc94 6465 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6466 {
6467 /* Check for GPR or coprocessor load delays. All such delays
6468 are on the RT register. */
6469 /* Itbl support may require additional care here. */
67dc82bc 6470 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6471 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6472 {
85fcb30f 6473 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6474 return 1;
6475 }
6476
6477 /* Check for generic coprocessor hazards.
6478
6479 This case is not handled very well. There is no special
6480 knowledge of CP0 handling, and the coprocessors other than
6481 the floating point unit are not distinguished at all. */
6482 /* Itbl support may require additional care here. FIXME!
6483 Need to modify this to include knowledge about
6484 user specified delays! */
43885403 6485 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6486 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6487 {
6488 /* Handle cases where INSN1 writes to a known general coprocessor
6489 register. There must be a one instruction delay before INSN2
6490 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6491 mask = fpr_write_mask (insn1);
6492 if (mask != 0)
252b5132 6493 {
4c260379 6494 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6495 return 1;
252b5132
RH
6496 }
6497 else
6498 {
71400594
RS
6499 /* Read-after-write dependencies on the control registers
6500 require a two-instruction gap. */
6501 if ((pinfo1 & INSN_WRITE_COND_CODE)
6502 && (pinfo2 & INSN_READ_COND_CODE))
6503 return 2;
6504
6505 /* We don't know exactly what INSN1 does. If INSN2 is
6506 also a coprocessor instruction, assume there must be
6507 a one instruction gap. */
6508 if (pinfo2 & INSN_COP)
6509 return 1;
252b5132
RH
6510 }
6511 }
6b76fefe 6512
71400594
RS
6513 /* Check for read-after-write dependencies on the coprocessor
6514 control registers in cases where INSN1 does not need a general
6515 coprocessor delay. This means that INSN1 is a floating point
6516 comparison instruction. */
6517 /* Itbl support may require additional care here. */
6518 else if (!cop_interlocks
6519 && (pinfo1 & INSN_WRITE_COND_CODE)
6520 && (pinfo2 & INSN_READ_COND_CODE))
6521 return 1;
6522 }
6b76fefe 6523
7361da2c
AB
6524 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6525 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6526 and pause. */
6527 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6528 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6529 || (insn2 && delayed_branch_p (insn2))))
6530 return 1;
6531
71400594
RS
6532 return 0;
6533}
6b76fefe 6534
7d8e00cf
RS
6535/* Return the number of nops that would be needed to work around the
6536 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6537 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6538 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6539
6540static int
932d1a1b 6541nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6542 const struct mips_cl_insn *insn)
6543{
4c260379
RS
6544 int i, j;
6545 unsigned int mask;
7d8e00cf
RS
6546
6547 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6548 are not affected by the errata. */
6549 if (insn != 0
6550 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6551 || strcmp (insn->insn_mo->name, "mtlo") == 0
6552 || strcmp (insn->insn_mo->name, "mthi") == 0))
6553 return 0;
6554
6555 /* Search for the first MFLO or MFHI. */
6556 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6557 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6558 {
6559 /* Extract the destination register. */
4c260379 6560 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6561
6562 /* No nops are needed if INSN reads that register. */
4c260379 6563 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6564 return 0;
6565
6566 /* ...or if any of the intervening instructions do. */
6567 for (j = 0; j < i; j++)
4c260379 6568 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6569 return 0;
6570
932d1a1b
RS
6571 if (i >= ignore)
6572 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6573 }
6574 return 0;
6575}
6576
134c0c8b
MR
6577#define BASE_REG_EQ(INSN1, INSN2) \
6578 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6579 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6580
6581/* Return the minimum alignment for this store instruction. */
6582
6583static int
6584fix_24k_align_to (const struct mips_opcode *mo)
6585{
6586 if (strcmp (mo->name, "sh") == 0)
6587 return 2;
6588
6589 if (strcmp (mo->name, "swc1") == 0
6590 || strcmp (mo->name, "swc2") == 0
6591 || strcmp (mo->name, "sw") == 0
6592 || strcmp (mo->name, "sc") == 0
6593 || strcmp (mo->name, "s.s") == 0)
6594 return 4;
6595
6596 if (strcmp (mo->name, "sdc1") == 0
6597 || strcmp (mo->name, "sdc2") == 0
6598 || strcmp (mo->name, "s.d") == 0)
6599 return 8;
6600
6601 /* sb, swl, swr */
6602 return 1;
6603}
6604
6605struct fix_24k_store_info
6606 {
6607 /* Immediate offset, if any, for this store instruction. */
6608 short off;
6609 /* Alignment required by this store instruction. */
6610 int align_to;
6611 /* True for register offsets. */
6612 int register_offset;
6613 };
6614
6615/* Comparison function used by qsort. */
6616
6617static int
6618fix_24k_sort (const void *a, const void *b)
6619{
6620 const struct fix_24k_store_info *pos1 = a;
6621 const struct fix_24k_store_info *pos2 = b;
6622
6623 return (pos1->off - pos2->off);
6624}
6625
6626/* INSN is a store instruction. Try to record the store information
6627 in STINFO. Return false if the information isn't known. */
6628
6629static bfd_boolean
6630fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6631 const struct mips_cl_insn *insn)
15be625d
CM
6632{
6633 /* The instruction must have a known offset. */
6634 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6635 return FALSE;
6636
6637 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6638 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6639 return TRUE;
6640}
6641
932d1a1b
RS
6642/* Return the number of nops that would be needed to work around the 24k
6643 "lost data on stores during refill" errata if instruction INSN
6644 immediately followed the 2 instructions described by HIST.
6645 Ignore hazards that are contained within the first IGNORE
6646 instructions of HIST.
6647
6648 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6649 for the data cache refills and store data. The following describes
6650 the scenario where the store data could be lost.
6651
6652 * A data cache miss, due to either a load or a store, causing fill
6653 data to be supplied by the memory subsystem
6654 * The first three doublewords of fill data are returned and written
6655 into the cache
6656 * A sequence of four stores occurs in consecutive cycles around the
6657 final doubleword of the fill:
6658 * Store A
6659 * Store B
6660 * Store C
6661 * Zero, One or more instructions
6662 * Store D
6663
6664 The four stores A-D must be to different doublewords of the line that
6665 is being filled. The fourth instruction in the sequence above permits
6666 the fill of the final doubleword to be transferred from the FSB into
6667 the cache. In the sequence above, the stores may be either integer
6668 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6669 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6670 different doublewords on the line. If the floating point unit is
6671 running in 1:2 mode, it is not possible to create the sequence above
6672 using only floating point store instructions.
15be625d
CM
6673
6674 In this case, the cache line being filled is incorrectly marked
6675 invalid, thereby losing the data from any store to the line that
6676 occurs between the original miss and the completion of the five
6677 cycle sequence shown above.
6678
932d1a1b 6679 The workarounds are:
15be625d 6680
932d1a1b
RS
6681 * Run the data cache in write-through mode.
6682 * Insert a non-store instruction between
6683 Store A and Store B or Store B and Store C. */
3739860c 6684
15be625d 6685static int
932d1a1b 6686nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6687 const struct mips_cl_insn *insn)
6688{
6689 struct fix_24k_store_info pos[3];
6690 int align, i, base_offset;
6691
932d1a1b
RS
6692 if (ignore >= 2)
6693 return 0;
6694
ab9794cf
RS
6695 /* If the previous instruction wasn't a store, there's nothing to
6696 worry about. */
15be625d
CM
6697 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6698 return 0;
6699
ab9794cf
RS
6700 /* If the instructions after the previous one are unknown, we have
6701 to assume the worst. */
6702 if (!insn)
15be625d
CM
6703 return 1;
6704
ab9794cf
RS
6705 /* Check whether we are dealing with three consecutive stores. */
6706 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6707 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6708 return 0;
6709
6710 /* If we don't know the relationship between the store addresses,
6711 assume the worst. */
ab9794cf 6712 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6713 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6714 return 1;
6715
6716 if (!fix_24k_record_store_info (&pos[0], insn)
6717 || !fix_24k_record_store_info (&pos[1], &hist[0])
6718 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6719 return 1;
6720
6721 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6722
6723 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6724 X bytes and such that the base register + X is known to be aligned
6725 to align bytes. */
6726
6727 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6728 align = 8;
6729 else
6730 {
6731 align = pos[0].align_to;
6732 base_offset = pos[0].off;
6733 for (i = 1; i < 3; i++)
6734 if (align < pos[i].align_to)
6735 {
6736 align = pos[i].align_to;
6737 base_offset = pos[i].off;
6738 }
6739 for (i = 0; i < 3; i++)
6740 pos[i].off -= base_offset;
6741 }
6742
6743 pos[0].off &= ~align + 1;
6744 pos[1].off &= ~align + 1;
6745 pos[2].off &= ~align + 1;
6746
6747 /* If any two stores write to the same chunk, they also write to the
6748 same doubleword. The offsets are still sorted at this point. */
6749 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6750 return 0;
6751
6752 /* A range of at least 9 bytes is needed for the stores to be in
6753 non-overlapping doublewords. */
6754 if (pos[2].off - pos[0].off <= 8)
6755 return 0;
6756
6757 if (pos[2].off - pos[1].off >= 24
6758 || pos[1].off - pos[0].off >= 24
6759 || pos[2].off - pos[0].off >= 32)
6760 return 0;
6761
6762 return 1;
6763}
6764
71400594 6765/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6766 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6767 where HIST[0] is the most recent instruction. Ignore hazards
6768 between INSN and the first IGNORE instructions in HIST.
6769
6770 If INSN is null, return the worse-case number of nops for any
6771 instruction. */
bdaaa2e1 6772
71400594 6773static int
932d1a1b 6774nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6775 const struct mips_cl_insn *insn)
6776{
6777 int i, nops, tmp_nops;
bdaaa2e1 6778
71400594 6779 nops = 0;
932d1a1b 6780 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6781 {
91d6fa6a 6782 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6783 if (tmp_nops > nops)
6784 nops = tmp_nops;
6785 }
7d8e00cf 6786
df58fc94 6787 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6788 {
932d1a1b 6789 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6790 if (tmp_nops > nops)
6791 nops = tmp_nops;
6792 }
6793
df58fc94 6794 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6795 {
932d1a1b 6796 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6797 if (tmp_nops > nops)
6798 nops = tmp_nops;
6799 }
6800
71400594
RS
6801 return nops;
6802}
252b5132 6803
71400594 6804/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6805 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6806 would be needed after the extended sequence, ignoring hazards
6807 in the first IGNORE instructions. */
252b5132 6808
71400594 6809static int
932d1a1b
RS
6810nops_for_sequence (int num_insns, int ignore,
6811 const struct mips_cl_insn *hist, ...)
71400594
RS
6812{
6813 va_list args;
6814 struct mips_cl_insn buffer[MAX_NOPS];
6815 struct mips_cl_insn *cursor;
6816 int nops;
6817
91d6fa6a 6818 va_start (args, hist);
71400594 6819 cursor = buffer + num_insns;
91d6fa6a 6820 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6821 while (cursor > buffer)
6822 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6823
932d1a1b 6824 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6825 va_end (args);
6826 return nops;
6827}
252b5132 6828
71400594
RS
6829/* Like nops_for_insn, but if INSN is a branch, take into account the
6830 worst-case delay for the branch target. */
252b5132 6831
71400594 6832static int
932d1a1b 6833nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6834 const struct mips_cl_insn *insn)
6835{
6836 int nops, tmp_nops;
60b63b72 6837
932d1a1b 6838 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6839 if (delayed_branch_p (insn))
71400594 6840 {
932d1a1b 6841 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6842 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6843 if (tmp_nops > nops)
6844 nops = tmp_nops;
6845 }
11625dd8 6846 else if (compact_branch_p (insn))
71400594 6847 {
932d1a1b 6848 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6849 if (tmp_nops > nops)
6850 nops = tmp_nops;
6851 }
6852 return nops;
6853}
6854
c67a084a
NC
6855/* Fix NOP issue: Replace nops by "or at,at,zero". */
6856
6857static void
6858fix_loongson2f_nop (struct mips_cl_insn * ip)
6859{
df58fc94 6860 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6861 if (strcmp (ip->insn_mo->name, "nop") == 0)
6862 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6863}
6864
6865/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6866 jr target pc &= 'hffff_ffff_cfff_ffff. */
6867
6868static void
6869fix_loongson2f_jump (struct mips_cl_insn * ip)
6870{
df58fc94 6871 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6872 if (strcmp (ip->insn_mo->name, "j") == 0
6873 || strcmp (ip->insn_mo->name, "jr") == 0
6874 || strcmp (ip->insn_mo->name, "jalr") == 0)
6875 {
6876 int sreg;
6877 expressionS ep;
6878
6879 if (! mips_opts.at)
6880 return;
6881
df58fc94 6882 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6883 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6884 return;
6885
6886 ep.X_op = O_constant;
6887 ep.X_add_number = 0xcfff0000;
6888 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6889 ep.X_add_number = 0xffff;
6890 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6891 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6892 }
6893}
6894
6895static void
6896fix_loongson2f (struct mips_cl_insn * ip)
6897{
6898 if (mips_fix_loongson2f_nop)
6899 fix_loongson2f_nop (ip);
6900
6901 if (mips_fix_loongson2f_jump)
6902 fix_loongson2f_jump (ip);
6903}
6904
6f2117ba
PH
6905/* Fix loongson3 llsc errata: Insert sync before ll/lld. */
6906
6907static void
6908fix_loongson3_llsc (struct mips_cl_insn * ip)
6909{
6910 gas_assert (!HAVE_CODE_COMPRESSION);
6911
6912 /* If is an local label and the insn is not sync,
6913 look forward that whether an branch between ll/sc jump to here
6914 if so, insert a sync. */
6915 if (seg_info (now_seg)->label_list
6916 && S_IS_LOCAL (seg_info (now_seg)->label_list->label)
6917 && (strcmp (ip->insn_mo->name, "sync") != 0))
6918 {
6919 const char *label_name = S_GET_NAME (seg_info (now_seg)->label_list->label);
6920 unsigned long lookback = ARRAY_SIZE (history);
6921 unsigned long i;
6922
6923 for (i = 0; i < lookback; i++)
6924 {
6925 if (streq (history[i].insn_mo->name, "ll")
6926 || streq (history[i].insn_mo->name, "lld"))
6927 break;
6928
6929 if (streq (history[i].insn_mo->name, "sc")
6930 || streq (history[i].insn_mo->name, "scd"))
6931 {
6932 unsigned long j;
6933
6934 for (j = i + 1; j < lookback; j++)
6935 {
6936 if (streq (history[i].insn_mo->name, "ll")
6937 || streq (history[i].insn_mo->name, "lld"))
6938 break;
6939
6940 if (delayed_branch_p (&history[j]))
6941 {
6942 if (streq (history[j].target, label_name))
6943 {
6944 add_fixed_insn (&sync_insn);
6945 insert_into_history (0, 1, &sync_insn);
6946 i = lookback;
6947 break;
6948 }
6949 }
6950 }
6951 }
6952 }
6953 }
6954 /* If we find a sc, we look forward to look for an branch insn,
6955 and see whether it jump back and out of ll/sc. */
6956 else if (streq(ip->insn_mo->name, "sc") || streq(ip->insn_mo->name, "scd"))
6957 {
6958 unsigned long lookback = ARRAY_SIZE (history) - 1;
6959 unsigned long i;
6960
6961 for (i = 0; i < lookback; i++)
6962 {
6963 if (streq (history[i].insn_mo->name, "ll")
6964 || streq (history[i].insn_mo->name, "lld"))
6965 break;
6966
6967 if (delayed_branch_p (&history[i]))
6968 {
6969 unsigned long j;
6970
6971 for (j = i + 1; j < lookback; j++)
6972 {
6973 if (streq (history[j].insn_mo->name, "ll")
6974 || streq (history[i].insn_mo->name, "lld"))
6975 break;
6976 }
6977
6978 for (; j < lookback; j++)
6979 {
6980 if (history[j].label[0] != '\0'
6981 && streq (history[j].label, history[i].target)
6982 && strcmp (history[j+1].insn_mo->name, "sync") != 0)
6983 {
6984 add_fixed_insn (&sync_insn);
6985 insert_into_history (++j, 1, &sync_insn);
6986 }
6987 }
6988 }
6989 }
6990 }
6991
6992 /* Skip if there is a sync before ll/lld. */
6993 if ((strcmp (ip->insn_mo->name, "ll") == 0
6994 || strcmp (ip->insn_mo->name, "lld") == 0)
6995 && (strcmp (history[0].insn_mo->name, "sync") != 0))
6996 {
6997 add_fixed_insn (&sync_insn);
6998 insert_into_history (0, 1, &sync_insn);
6999 }
7000}
7001
a4e06468
RS
7002/* IP is a branch that has a delay slot, and we need to fill it
7003 automatically. Return true if we can do that by swapping IP
e407c74b
NC
7004 with the previous instruction.
7005 ADDRESS_EXPR is an operand of the instruction to be used with
7006 RELOC_TYPE. */
a4e06468
RS
7007
7008static bfd_boolean
e407c74b 7009can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 7010 bfd_reloc_code_real_type *reloc_type)
a4e06468 7011{
2b0c8b40 7012 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 7013 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 7014 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
7015
7016 /* -O2 and above is required for this optimization. */
7017 if (mips_optimize < 2)
7018 return FALSE;
7019
7020 /* If we have seen .set volatile or .set nomove, don't optimize. */
7021 if (mips_opts.nomove)
7022 return FALSE;
7023
7024 /* We can't swap if the previous instruction's position is fixed. */
7025 if (history[0].fixed_p)
7026 return FALSE;
7027
7028 /* If the previous previous insn was in a .set noreorder, we can't
7029 swap. Actually, the MIPS assembler will swap in this situation.
7030 However, gcc configured -with-gnu-as will generate code like
7031
7032 .set noreorder
7033 lw $4,XXX
7034 .set reorder
7035 INSN
7036 bne $4,$0,foo
7037
7038 in which we can not swap the bne and INSN. If gcc is not configured
7039 -with-gnu-as, it does not output the .set pseudo-ops. */
7040 if (history[1].noreorder_p)
7041 return FALSE;
7042
87333bb7
MR
7043 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
7044 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
7045 if (mips_opts.mips16 && history[0].fixp[0])
7046 return FALSE;
7047
7048 /* If the branch is itself the target of a branch, we can not swap.
7049 We cheat on this; all we check for is whether there is a label on
7050 this instruction. If there are any branches to anything other than
7051 a label, users must use .set noreorder. */
7052 if (seg_info (now_seg)->label_list)
7053 return FALSE;
7054
7055 /* If the previous instruction is in a variant frag other than this
2309ddf2 7056 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
7057 MIPS16 code, which uses variant frags for different purposes. */
7058 if (!mips_opts.mips16
a4e06468
RS
7059 && history[0].frag
7060 && history[0].frag->fr_type == rs_machine_dependent)
7061 return FALSE;
7062
bcd530a7
RS
7063 /* We do not swap with instructions that cannot architecturally
7064 be placed in a branch delay slot, such as SYNC or ERET. We
7065 also refrain from swapping with a trap instruction, since it
7066 complicates trap handlers to have the trap instruction be in
7067 a delay slot. */
a4e06468 7068 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 7069 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
7070 return FALSE;
7071
7072 /* Check for conflicts between the branch and the instructions
7073 before the candidate delay slot. */
7074 if (nops_for_insn (0, history + 1, ip) > 0)
7075 return FALSE;
7076
7077 /* Check for conflicts between the swapped sequence and the
7078 target of the branch. */
7079 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
7080 return FALSE;
7081
7082 /* If the branch reads a register that the previous
7083 instruction sets, we can not swap. */
7084 gpr_read = gpr_read_mask (ip);
7085 prev_gpr_write = gpr_write_mask (&history[0]);
7086 if (gpr_read & prev_gpr_write)
7087 return FALSE;
7088
9d5de888
CF
7089 fpr_read = fpr_read_mask (ip);
7090 prev_fpr_write = fpr_write_mask (&history[0]);
7091 if (fpr_read & prev_fpr_write)
7092 return FALSE;
7093
a4e06468
RS
7094 /* If the branch writes a register that the previous
7095 instruction sets, we can not swap. */
7096 gpr_write = gpr_write_mask (ip);
7097 if (gpr_write & prev_gpr_write)
7098 return FALSE;
7099
7100 /* If the branch writes a register that the previous
7101 instruction reads, we can not swap. */
7102 prev_gpr_read = gpr_read_mask (&history[0]);
7103 if (gpr_write & prev_gpr_read)
7104 return FALSE;
7105
7106 /* If one instruction sets a condition code and the
7107 other one uses a condition code, we can not swap. */
7108 pinfo = ip->insn_mo->pinfo;
7109 if ((pinfo & INSN_READ_COND_CODE)
7110 && (prev_pinfo & INSN_WRITE_COND_CODE))
7111 return FALSE;
7112 if ((pinfo & INSN_WRITE_COND_CODE)
7113 && (prev_pinfo & INSN_READ_COND_CODE))
7114 return FALSE;
7115
7116 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 7117 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 7118 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 7119 return FALSE;
a4e06468 7120
df58fc94
RS
7121 /* If the previous instruction has an incorrect size for a fixed
7122 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
7123 pinfo2 = ip->insn_mo->pinfo2;
7124 if (mips_opts.micromips
7125 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
7126 && insn_length (history) != 2)
7127 return FALSE;
7128 if (mips_opts.micromips
7129 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
7130 && insn_length (history) != 4)
7131 return FALSE;
7132
33d64ca5
FN
7133 /* On the R5900 short loops need to be fixed by inserting a NOP in the
7134 branch delay slot.
7135
7136 The short loop bug under certain conditions causes loops to execute
7137 only once or twice. We must ensure that the assembler never
7138 generates loops that satisfy all of the following conditions:
7139
7140 - a loop consists of less than or equal to six instructions
7141 (including the branch delay slot);
7142 - a loop contains only one conditional branch instruction at the end
7143 of the loop;
7144 - a loop does not contain any other branch or jump instructions;
7145 - a branch delay slot of the loop is not NOP (EE 2.9 or later).
7146
7147 We need to do this because of a hardware bug in the R5900 chip. */
27c634e0 7148 if (mips_fix_r5900
e407c74b
NC
7149 /* Check if instruction has a parameter, ignore "j $31". */
7150 && (address_expr != NULL)
7151 /* Parameter must be 16 bit. */
7152 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
7153 /* Branch to same segment. */
41065f5e 7154 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 7155 /* Branch to same code fragment. */
41065f5e 7156 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 7157 /* Can only calculate branch offset if value is known. */
41065f5e 7158 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
7159 /* Check if branch is really conditional. */
7160 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
7161 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7162 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7163 {
7164 int distance;
33d64ca5
FN
7165 /* Check if loop is shorter than or equal to 6 instructions
7166 including branch and delay slot. */
41065f5e 7167 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
7168 if (distance <= 20)
7169 {
7170 int i;
7171 int rv;
7172
7173 rv = FALSE;
7174 /* When the loop includes branches or jumps,
7175 it is not a short loop. */
7176 for (i = 0; i < (distance / 4); i++)
7177 {
7178 if ((history[i].cleared_p)
41065f5e 7179 || delayed_branch_p (&history[i]))
e407c74b
NC
7180 {
7181 rv = TRUE;
7182 break;
7183 }
7184 }
535b785f 7185 if (!rv)
e407c74b
NC
7186 {
7187 /* Insert nop after branch to fix short loop. */
7188 return FALSE;
7189 }
7190 }
7191 }
7192
a4e06468
RS
7193 return TRUE;
7194}
7195
e407c74b
NC
7196/* Decide how we should add IP to the instruction stream.
7197 ADDRESS_EXPR is an operand of the instruction to be used with
7198 RELOC_TYPE. */
a4e06468
RS
7199
7200static enum append_method
e407c74b 7201get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 7202 bfd_reloc_code_real_type *reloc_type)
a4e06468 7203{
a4e06468
RS
7204 /* The relaxed version of a macro sequence must be inherently
7205 hazard-free. */
7206 if (mips_relax.sequence == 2)
7207 return APPEND_ADD;
7208
3b821a28 7209 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
7210 if (mips_opts.noreorder)
7211 return APPEND_ADD;
7212
7213 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 7214 if (delayed_branch_p (ip))
a4e06468 7215 {
e407c74b
NC
7216 if (!branch_likely_p (ip)
7217 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
7218 return APPEND_SWAP;
7219
7220 if (mips_opts.mips16
7221 && ISA_SUPPORTS_MIPS16E
fc76e730 7222 && gpr_read_mask (ip) != 0)
a4e06468
RS
7223 return APPEND_ADD_COMPACT;
7224
7bd374a4
MR
7225 if (mips_opts.micromips
7226 && ((ip->insn_opcode & 0xffe0) == 0x4580
7227 || (!forced_insn_length
7228 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7229 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7230 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7231 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7232 return APPEND_ADD_COMPACT;
7233
a4e06468
RS
7234 return APPEND_ADD_WITH_NOP;
7235 }
7236
a4e06468
RS
7237 return APPEND_ADD;
7238}
7239
7bd374a4
MR
7240/* IP is an instruction whose opcode we have just changed, END points
7241 to the end of the opcode table processed. Point IP->insn_mo to the
7242 new opcode's definition. */
ceb94aa5
RS
7243
7244static void
7bd374a4 7245find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 7246{
7bd374a4 7247 const struct mips_opcode *mo;
ceb94aa5 7248
ceb94aa5 7249 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
7250 if (mo->pinfo != INSN_MACRO
7251 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
7252 {
7253 ip->insn_mo = mo;
7254 return;
7255 }
7256 abort ();
7257}
7258
7bd374a4
MR
7259/* IP is a MIPS16 instruction whose opcode we have just changed.
7260 Point IP->insn_mo to the new opcode's definition. */
7261
7262static void
7263find_altered_mips16_opcode (struct mips_cl_insn *ip)
7264{
7265 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7266}
7267
7268/* IP is a microMIPS instruction whose opcode we have just changed.
7269 Point IP->insn_mo to the new opcode's definition. */
7270
7271static void
7272find_altered_micromips_opcode (struct mips_cl_insn *ip)
7273{
7274 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7275}
7276
df58fc94
RS
7277/* For microMIPS macros, we need to generate a local number label
7278 as the target of branches. */
7279#define MICROMIPS_LABEL_CHAR '\037'
7280static unsigned long micromips_target_label;
7281static char micromips_target_name[32];
7282
7283static char *
7284micromips_label_name (void)
7285{
7286 char *p = micromips_target_name;
7287 char symbol_name_temporary[24];
7288 unsigned long l;
7289 int i;
7290
7291 if (*p)
7292 return p;
7293
7294 i = 0;
7295 l = micromips_target_label;
7296#ifdef LOCAL_LABEL_PREFIX
7297 *p++ = LOCAL_LABEL_PREFIX;
7298#endif
7299 *p++ = 'L';
7300 *p++ = MICROMIPS_LABEL_CHAR;
7301 do
7302 {
7303 symbol_name_temporary[i++] = l % 10 + '0';
7304 l /= 10;
7305 }
7306 while (l != 0);
7307 while (i > 0)
7308 *p++ = symbol_name_temporary[--i];
7309 *p = '\0';
7310
7311 return micromips_target_name;
7312}
7313
7314static void
7315micromips_label_expr (expressionS *label_expr)
7316{
7317 label_expr->X_op = O_symbol;
7318 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7319 label_expr->X_add_number = 0;
7320}
7321
7322static void
7323micromips_label_inc (void)
7324{
7325 micromips_target_label++;
7326 *micromips_target_name = '\0';
7327}
7328
7329static void
7330micromips_add_label (void)
7331{
7332 symbolS *s;
7333
7334 s = colon (micromips_label_name ());
7335 micromips_label_inc ();
f3ded42a 7336 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
7337}
7338
7339/* If assembling microMIPS code, then return the microMIPS reloc
7340 corresponding to the requested one if any. Otherwise return
7341 the reloc unchanged. */
7342
7343static bfd_reloc_code_real_type
7344micromips_map_reloc (bfd_reloc_code_real_type reloc)
7345{
7346 static const bfd_reloc_code_real_type relocs[][2] =
7347 {
7348 /* Keep sorted incrementally by the left-hand key. */
7349 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7350 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7351 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7352 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7353 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7354 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7355 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7356 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7357 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7358 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7359 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7360 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7361 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7362 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7363 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7364 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7365 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7366 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7367 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7368 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7369 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7370 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7371 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7372 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7373 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7374 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7375 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7376 };
7377 bfd_reloc_code_real_type r;
7378 size_t i;
7379
7380 if (!mips_opts.micromips)
7381 return reloc;
7382 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7383 {
7384 r = relocs[i][0];
7385 if (r > reloc)
7386 return reloc;
7387 if (r == reloc)
7388 return relocs[i][1];
7389 }
7390 return reloc;
7391}
7392
b886a2ab
RS
7393/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7394 Return true on success, storing the resolved value in RESULT. */
7395
7396static bfd_boolean
7397calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7398 offsetT *result)
7399{
7400 switch (reloc)
7401 {
7402 case BFD_RELOC_MIPS_HIGHEST:
7403 case BFD_RELOC_MICROMIPS_HIGHEST:
7404 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7405 return TRUE;
7406
7407 case BFD_RELOC_MIPS_HIGHER:
7408 case BFD_RELOC_MICROMIPS_HIGHER:
7409 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7410 return TRUE;
7411
7412 case BFD_RELOC_HI16_S:
41947d9e 7413 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7414 case BFD_RELOC_MICROMIPS_HI16_S:
7415 case BFD_RELOC_MIPS16_HI16_S:
7416 *result = ((operand + 0x8000) >> 16) & 0xffff;
7417 return TRUE;
7418
7419 case BFD_RELOC_HI16:
7420 case BFD_RELOC_MICROMIPS_HI16:
7421 case BFD_RELOC_MIPS16_HI16:
7422 *result = (operand >> 16) & 0xffff;
7423 return TRUE;
7424
7425 case BFD_RELOC_LO16:
41947d9e 7426 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7427 case BFD_RELOC_MICROMIPS_LO16:
7428 case BFD_RELOC_MIPS16_LO16:
7429 *result = operand & 0xffff;
7430 return TRUE;
7431
7432 case BFD_RELOC_UNUSED:
7433 *result = operand;
7434 return TRUE;
7435
7436 default:
7437 return FALSE;
7438 }
7439}
7440
71400594
RS
7441/* Output an instruction. IP is the instruction information.
7442 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7443 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7444 a macro expansion. */
71400594
RS
7445
7446static void
7447append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7448 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7449{
14fe068b 7450 unsigned long prev_pinfo2, pinfo;
71400594 7451 bfd_boolean relaxed_branch = FALSE;
a4e06468 7452 enum append_method method;
2309ddf2 7453 bfd_boolean relax32;
2b0c8b40 7454 int branch_disp;
71400594 7455
2309ddf2 7456 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7457 fix_loongson2f (ip);
7458
6f2117ba
PH
7459 ip->target[0] = '\0';
7460 if (offset_expr.X_op == O_symbol)
7461 strncpy (ip->target, S_GET_NAME (offset_expr.X_add_symbol), 15);
7462 ip->label[0] = '\0';
7463 if (seg_info (now_seg)->label_list)
7464 strncpy (ip->label, S_GET_NAME (seg_info (now_seg)->label_list->label), 15);
7465 if (mips_fix_loongson3_llsc && !HAVE_CODE_COMPRESSION)
7466 fix_loongson3_llsc (ip);
7467
738f4d98 7468 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7469 file_ase_micromips |= mips_opts.micromips;
738f4d98 7470
df58fc94 7471 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7472 pinfo = ip->insn_mo->pinfo;
df58fc94 7473
7bd374a4
MR
7474 /* Don't raise alarm about `nods' frags as they'll fill in the right
7475 kind of nop in relaxation if required. */
df58fc94
RS
7476 if (mips_opts.micromips
7477 && !expansionp
7bd374a4
MR
7478 && !(history[0].frag
7479 && history[0].frag->fr_type == rs_machine_dependent
7480 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7481 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7482 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7483 && micromips_insn_length (ip->insn_mo) != 2)
7484 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7485 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7486 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7487 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7488
15be625d
CM
7489 if (address_expr == NULL)
7490 ip->complete_p = 1;
b886a2ab
RS
7491 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7492 && reloc_type[1] == BFD_RELOC_UNUSED
7493 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7494 && address_expr->X_op == O_constant)
7495 {
15be625d
CM
7496 switch (*reloc_type)
7497 {
15be625d 7498 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7499 {
7500 int shift;
7501
17c6c9d9
MR
7502 /* Shift is 2, unusually, for microMIPS JALX. */
7503 shift = (mips_opts.micromips
7504 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7505 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7506 as_bad (_("jump to misaligned address (0x%lx)"),
7507 (unsigned long) address_expr->X_add_number);
7508 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7509 & 0x3ffffff);
335574df 7510 ip->complete_p = 1;
df58fc94 7511 }
15be625d
CM
7512 break;
7513
7514 case BFD_RELOC_MIPS16_JMP:
7515 if ((address_expr->X_add_number & 3) != 0)
7516 as_bad (_("jump to misaligned address (0x%lx)"),
7517 (unsigned long) address_expr->X_add_number);
7518 ip->insn_opcode |=
7519 (((address_expr->X_add_number & 0x7c0000) << 3)
7520 | ((address_expr->X_add_number & 0xf800000) >> 7)
7521 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7522 ip->complete_p = 1;
15be625d
CM
7523 break;
7524
7525 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7526 {
7527 int shift;
7528
7529 shift = mips_opts.micromips ? 1 : 2;
7530 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7531 as_bad (_("branch to misaligned address (0x%lx)"),
7532 (unsigned long) address_expr->X_add_number);
7533 if (!mips_relax_branch)
7534 {
7535 if ((address_expr->X_add_number + (1 << (shift + 15)))
7536 & ~((1 << (shift + 16)) - 1))
7537 as_bad (_("branch address range overflow (0x%lx)"),
7538 (unsigned long) address_expr->X_add_number);
7539 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7540 & 0xffff);
7541 }
df58fc94 7542 }
15be625d
CM
7543 break;
7544
7361da2c
AB
7545 case BFD_RELOC_MIPS_21_PCREL_S2:
7546 {
7547 int shift;
7548
7549 shift = 2;
7550 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7551 as_bad (_("branch to misaligned address (0x%lx)"),
7552 (unsigned long) address_expr->X_add_number);
7553 if ((address_expr->X_add_number + (1 << (shift + 20)))
7554 & ~((1 << (shift + 21)) - 1))
7555 as_bad (_("branch address range overflow (0x%lx)"),
7556 (unsigned long) address_expr->X_add_number);
7557 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7558 & 0x1fffff);
7559 }
7560 break;
7561
7562 case BFD_RELOC_MIPS_26_PCREL_S2:
7563 {
7564 int shift;
7565
7566 shift = 2;
7567 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7568 as_bad (_("branch to misaligned address (0x%lx)"),
7569 (unsigned long) address_expr->X_add_number);
7570 if ((address_expr->X_add_number + (1 << (shift + 25)))
7571 & ~((1 << (shift + 26)) - 1))
7572 as_bad (_("branch address range overflow (0x%lx)"),
7573 (unsigned long) address_expr->X_add_number);
7574 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7575 & 0x3ffffff);
7576 }
7577 break;
7578
15be625d 7579 default:
b886a2ab
RS
7580 {
7581 offsetT value;
7582
7583 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7584 &value))
7585 {
7586 ip->insn_opcode |= value & 0xffff;
7587 ip->complete_p = 1;
7588 }
7589 }
7590 break;
7591 }
15be625d
CM
7592 }
7593
71400594
RS
7594 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7595 {
7596 /* There are a lot of optimizations we could do that we don't.
7597 In particular, we do not, in general, reorder instructions.
7598 If you use gcc with optimization, it will reorder
7599 instructions and generally do much more optimization then we
7600 do here; repeating all that work in the assembler would only
7601 benefit hand written assembly code, and does not seem worth
7602 it. */
7603 int nops = (mips_optimize == 0
932d1a1b
RS
7604 ? nops_for_insn (0, history, NULL)
7605 : nops_for_insn_or_target (0, history, ip));
71400594 7606 if (nops > 0)
252b5132
RH
7607 {
7608 fragS *old_frag;
7609 unsigned long old_frag_offset;
7610 int i;
252b5132
RH
7611
7612 old_frag = frag_now;
7613 old_frag_offset = frag_now_fix ();
7614
7615 for (i = 0; i < nops; i++)
14fe068b
RS
7616 add_fixed_insn (NOP_INSN);
7617 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7618
7619 if (listing)
7620 {
7621 listing_prev_line ();
7622 /* We may be at the start of a variant frag. In case we
7623 are, make sure there is enough space for the frag
7624 after the frags created by listing_prev_line. The
7625 argument to frag_grow here must be at least as large
7626 as the argument to all other calls to frag_grow in
7627 this file. We don't have to worry about being in the
7628 middle of a variant frag, because the variants insert
7629 all needed nop instructions themselves. */
7630 frag_grow (40);
7631 }
7632
462427c4 7633 mips_move_text_labels ();
252b5132
RH
7634
7635#ifndef NO_ECOFF_DEBUGGING
7636 if (ECOFF_DEBUGGING)
7637 ecoff_fix_loc (old_frag, old_frag_offset);
7638#endif
7639 }
71400594
RS
7640 }
7641 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7642 {
932d1a1b
RS
7643 int nops;
7644
7645 /* Work out how many nops in prev_nop_frag are needed by IP,
7646 ignoring hazards generated by the first prev_nop_frag_since
7647 instructions. */
7648 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7649 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7650
71400594
RS
7651 /* Enforce NOPS as a minimum. */
7652 if (nops > prev_nop_frag_required)
7653 prev_nop_frag_required = nops;
252b5132 7654
71400594
RS
7655 if (prev_nop_frag_holds == prev_nop_frag_required)
7656 {
7657 /* Settle for the current number of nops. Update the history
7658 accordingly (for the benefit of any future .set reorder code). */
7659 prev_nop_frag = NULL;
7660 insert_into_history (prev_nop_frag_since,
7661 prev_nop_frag_holds, NOP_INSN);
7662 }
7663 else
7664 {
7665 /* Allow this instruction to replace one of the nops that was
7666 tentatively added to prev_nop_frag. */
df58fc94 7667 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7668 prev_nop_frag_holds--;
7669 prev_nop_frag_since++;
252b5132
RH
7670 }
7671 }
7672
e407c74b 7673 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7674 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7675
e410add4
RS
7676 dwarf2_emit_insn (0);
7677 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7678 so "move" the instruction address accordingly.
7679
7680 Also, it doesn't seem appropriate for the assembler to reorder .loc
7681 entries. If this instruction is a branch that we are going to swap
7682 with the previous instruction, the two instructions should be
7683 treated as a unit, and the debug information for both instructions
7684 should refer to the start of the branch sequence. Using the
7685 current position is certainly wrong when swapping a 32-bit branch
7686 and a 16-bit delay slot, since the current position would then be
7687 in the middle of a branch. */
7688 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7689
df58fc94
RS
7690 relax32 = (mips_relax_branch
7691 /* Don't try branch relaxation within .set nomacro, or within
7692 .set noat if we use $at for PIC computations. If it turns
7693 out that the branch was out-of-range, we'll get an error. */
7694 && !mips_opts.warn_about_macros
7695 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7696 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7697 as they have no complementing branches. */
7698 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7699
7700 if (!HAVE_CODE_COMPRESSION
7701 && address_expr
7702 && relax32
0b25d3e6 7703 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7704 && delayed_branch_p (ip))
4a6a3df4 7705 {
895921c9 7706 relaxed_branch = TRUE;
1e915849
RS
7707 add_relaxed_insn (ip, (relaxed_branch_length
7708 (NULL, NULL,
11625dd8
RS
7709 uncond_branch_p (ip) ? -1
7710 : branch_likely_p (ip) ? 1
1e915849
RS
7711 : 0)), 4,
7712 RELAX_BRANCH_ENCODE
ce8ad872 7713 (AT, mips_pic != NO_PIC,
11625dd8
RS
7714 uncond_branch_p (ip),
7715 branch_likely_p (ip),
1e915849
RS
7716 pinfo & INSN_WRITE_GPR_31,
7717 0),
7718 address_expr->X_add_symbol,
7719 address_expr->X_add_number);
4a6a3df4
AO
7720 *reloc_type = BFD_RELOC_UNUSED;
7721 }
df58fc94
RS
7722 else if (mips_opts.micromips
7723 && address_expr
7724 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7725 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7726 && (delayed_branch_p (ip) || compact_branch_p (ip))
7727 /* Don't try branch relaxation when users specify
7728 16-bit/32-bit instructions. */
7729 && !forced_insn_length)
df58fc94 7730 {
7bd374a4
MR
7731 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7732 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7733 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7734 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7735 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7736 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7737 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7738 int length32 = nods ? 8 : 4;
df58fc94
RS
7739
7740 gas_assert (address_expr != NULL);
7741 gas_assert (!mips_relax.sequence);
7742
2b0c8b40 7743 relaxed_branch = TRUE;
7bd374a4
MR
7744 if (nods)
7745 method = APPEND_ADD;
7746 if (relax32)
7747 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7748 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7749 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
ce8ad872 7750 mips_pic != NO_PIC,
7bd374a4 7751 uncond, compact, al, nods,
40209cad 7752 relax32, 0, 0),
df58fc94
RS
7753 address_expr->X_add_symbol,
7754 address_expr->X_add_number);
7755 *reloc_type = BFD_RELOC_UNUSED;
7756 }
7757 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7758 {
7fd53920
MR
7759 bfd_boolean require_unextended;
7760 bfd_boolean require_extended;
88a7ef16
MR
7761 symbolS *symbol;
7762 offsetT offset;
7763
7fd53920
MR
7764 if (forced_insn_length != 0)
7765 {
7766 require_unextended = forced_insn_length == 2;
7767 require_extended = forced_insn_length == 4;
7768 }
7769 else
7770 {
7771 require_unextended = (mips_opts.noautoextend
7772 && !mips_opcode_32bit_p (ip->insn_mo));
7773 require_extended = 0;
7774 }
7775
252b5132 7776 /* We need to set up a variant frag. */
df58fc94 7777 gas_assert (address_expr != NULL);
88a7ef16
MR
7778 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7779 symbol created by `make_expr_symbol' may not get a necessary
7780 external relocation produced. */
7781 if (address_expr->X_op == O_symbol)
7782 {
7783 symbol = address_expr->X_add_symbol;
7784 offset = address_expr->X_add_number;
7785 }
7786 else
7787 {
7788 symbol = make_expr_symbol (address_expr);
82d808ed 7789 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
88a7ef16
MR
7790 offset = 0;
7791 }
8507b6e7 7792 add_relaxed_insn (ip, 12, 0,
1e915849
RS
7793 RELAX_MIPS16_ENCODE
7794 (*reloc_type - BFD_RELOC_UNUSED,
25499ac7 7795 mips_opts.ase & ASE_MIPS16E2,
8507b6e7
MR
7796 mips_pic != NO_PIC,
7797 HAVE_32BIT_SYMBOLS,
7798 mips_opts.warn_about_macros,
7fd53920 7799 require_unextended, require_extended,
11625dd8 7800 delayed_branch_p (&history[0]),
1e915849 7801 history[0].mips16_absolute_jump_p),
88a7ef16 7802 symbol, offset);
252b5132 7803 }
5c04167a 7804 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7805 {
11625dd8 7806 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7807 /* Make sure there is enough room to swap this instruction with
7808 a following jump instruction. */
7809 frag_grow (6);
1e915849 7810 add_fixed_insn (ip);
252b5132
RH
7811 }
7812 else
7813 {
7814 if (mips_opts.mips16
7815 && mips_opts.noreorder
11625dd8 7816 && delayed_branch_p (&history[0]))
252b5132
RH
7817 as_warn (_("extended instruction in delay slot"));
7818
4d7206a2
RS
7819 if (mips_relax.sequence)
7820 {
7821 /* If we've reached the end of this frag, turn it into a variant
7822 frag and record the information for the instructions we've
7823 written so far. */
7824 if (frag_room () < 4)
7825 relax_close_frag ();
df58fc94 7826 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7827 }
7828
584892a6 7829 if (mips_relax.sequence != 2)
df58fc94
RS
7830 {
7831 if (mips_macro_warning.first_insn_sizes[0] == 0)
7832 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7833 mips_macro_warning.sizes[0] += insn_length (ip);
7834 mips_macro_warning.insns[0]++;
7835 }
584892a6 7836 if (mips_relax.sequence != 1)
df58fc94
RS
7837 {
7838 if (mips_macro_warning.first_insn_sizes[1] == 0)
7839 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7840 mips_macro_warning.sizes[1] += insn_length (ip);
7841 mips_macro_warning.insns[1]++;
7842 }
584892a6 7843
1e915849
RS
7844 if (mips_opts.mips16)
7845 {
7846 ip->fixed_p = 1;
7847 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7848 }
7849 add_fixed_insn (ip);
252b5132
RH
7850 }
7851
9fe77896 7852 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7853 {
df58fc94 7854 bfd_reloc_code_real_type final_type[3];
2309ddf2 7855 reloc_howto_type *howto0;
9fe77896
RS
7856 reloc_howto_type *howto;
7857 int i;
34ce925e 7858
df58fc94
RS
7859 /* Perform any necessary conversion to microMIPS relocations
7860 and find out how many relocations there actually are. */
7861 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7862 final_type[i] = micromips_map_reloc (reloc_type[i]);
7863
9fe77896
RS
7864 /* In a compound relocation, it is the final (outermost)
7865 operator that determines the relocated field. */
2309ddf2 7866 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7867 if (!howto)
7868 abort ();
2309ddf2
MR
7869
7870 if (i > 1)
7871 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7872 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7873 bfd_get_reloc_size (howto),
7874 address_expr,
2309ddf2
MR
7875 howto0 && howto0->pc_relative,
7876 final_type[0]);
ce8ad872
MR
7877 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7878 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
9fe77896
RS
7879
7880 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7881 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7882 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7883
7884 /* These relocations can have an addend that won't fit in
7885 4 octets for 64bit assembly. */
bad1aba3 7886 if (GPR_SIZE == 64
9fe77896
RS
7887 && ! howto->partial_inplace
7888 && (reloc_type[0] == BFD_RELOC_16
7889 || reloc_type[0] == BFD_RELOC_32
7890 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7891 || reloc_type[0] == BFD_RELOC_GPREL16
7892 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7893 || reloc_type[0] == BFD_RELOC_GPREL32
7894 || reloc_type[0] == BFD_RELOC_64
7895 || reloc_type[0] == BFD_RELOC_CTOR
7896 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7897 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7898 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7899 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7900 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7901 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7902 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7903 || hi16_reloc_p (reloc_type[0])
7904 || lo16_reloc_p (reloc_type[0])))
7905 ip->fixp[0]->fx_no_overflow = 1;
7906
ddaf2c41
MR
7907 /* These relocations can have an addend that won't fit in 2 octets. */
7908 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7909 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7910 ip->fixp[0]->fx_no_overflow = 1;
7911
9fe77896
RS
7912 if (mips_relax.sequence)
7913 {
7914 if (mips_relax.first_fixup == 0)
7915 mips_relax.first_fixup = ip->fixp[0];
7916 }
7917 else if (reloc_needs_lo_p (*reloc_type))
7918 {
7919 struct mips_hi_fixup *hi_fixup;
7920
7921 /* Reuse the last entry if it already has a matching %lo. */
7922 hi_fixup = mips_hi_fixup_list;
7923 if (hi_fixup == 0
7924 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7925 {
325801bd 7926 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7927 hi_fixup->next = mips_hi_fixup_list;
7928 mips_hi_fixup_list = hi_fixup;
4d7206a2 7929 }
9fe77896
RS
7930 hi_fixup->fixp = ip->fixp[0];
7931 hi_fixup->seg = now_seg;
7932 }
252b5132 7933
9fe77896
RS
7934 /* Add fixups for the second and third relocations, if given.
7935 Note that the ABI allows the second relocation to be
7936 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7937 moment we only use RSS_UNDEF, but we could add support
7938 for the others if it ever becomes necessary. */
7939 for (i = 1; i < 3; i++)
7940 if (reloc_type[i] != BFD_RELOC_UNUSED)
7941 {
7942 ip->fixp[i] = fix_new (ip->frag, ip->where,
7943 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7944 FALSE, final_type[i]);
f6688943 7945
9fe77896
RS
7946 /* Use fx_tcbit to mark compound relocs. */
7947 ip->fixp[0]->fx_tcbit = 1;
7948 ip->fixp[i]->fx_tcbit = 1;
7949 }
252b5132 7950 }
252b5132
RH
7951
7952 /* Update the register mask information. */
4c260379
RS
7953 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7954 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7955
a4e06468 7956 switch (method)
252b5132 7957 {
a4e06468
RS
7958 case APPEND_ADD:
7959 insert_into_history (0, 1, ip);
7960 break;
7961
7962 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7963 {
7964 struct mips_cl_insn *nop;
7965
7966 insert_into_history (0, 1, ip);
7967 nop = get_delay_slot_nop (ip);
7968 add_fixed_insn (nop);
7969 insert_into_history (0, 1, nop);
7970 if (mips_relax.sequence)
7971 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7972 }
a4e06468
RS
7973 break;
7974
7975 case APPEND_ADD_COMPACT:
7976 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7977 if (mips_opts.mips16)
7978 {
7979 ip->insn_opcode |= 0x0080;
7980 find_altered_mips16_opcode (ip);
7981 }
7982 /* Convert microMIPS instructions. */
7983 else if (mips_opts.micromips)
7984 {
7985 /* jr16->jrc */
7986 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7987 ip->insn_opcode |= 0x0020;
7988 /* b16->bc */
7989 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7990 ip->insn_opcode = 0x40e00000;
7991 /* beqz16->beqzc, bnez16->bnezc */
7992 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7993 {
7994 unsigned long regno;
7995
7996 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7997 regno &= MICROMIPSOP_MASK_MD;
7998 regno = micromips_to_32_reg_d_map[regno];
7999 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
8000 | (regno << MICROMIPSOP_SH_RS)
8001 | 0x40a00000) ^ 0x00400000;
8002 }
8003 /* beqz->beqzc, bnez->bnezc */
8004 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
8005 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
8006 | ((ip->insn_opcode >> 7) & 0x00400000)
8007 | 0x40a00000) ^ 0x00400000;
8008 /* beq $0->beqzc, bne $0->bnezc */
8009 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
8010 ip->insn_opcode = (((ip->insn_opcode >>
8011 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
8012 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
8013 | ((ip->insn_opcode >> 7) & 0x00400000)
8014 | 0x40a00000) ^ 0x00400000;
8015 else
8016 abort ();
8017 find_altered_micromips_opcode (ip);
8018 }
8019 else
8020 abort ();
a4e06468
RS
8021 install_insn (ip);
8022 insert_into_history (0, 1, ip);
8023 break;
8024
8025 case APPEND_SWAP:
8026 {
8027 struct mips_cl_insn delay = history[0];
99e7978b
MF
8028
8029 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
8030 {
8031 /* Add the delay slot instruction to the end of the
8032 current frag and shrink the fixed part of the
8033 original frag. If the branch occupies the tail of
8034 the latter, move it backwards to cover the gap. */
2b0c8b40 8035 delay.frag->fr_fix -= branch_disp;
a4e06468 8036 if (delay.frag == ip->frag)
2b0c8b40 8037 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
8038 add_fixed_insn (&delay);
8039 }
8040 else
8041 {
5e35670b
MR
8042 /* If this is not a relaxed branch and we are in the
8043 same frag, then just swap the instructions. */
8044 move_insn (ip, delay.frag, delay.where);
8045 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
8046 }
8047 history[0] = *ip;
8048 delay.fixed_p = 1;
8049 insert_into_history (0, 1, &delay);
8050 }
8051 break;
252b5132
RH
8052 }
8053
13408f1e 8054 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
8055 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
8056 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
8057 {
8058 unsigned int i;
8059
79850f26 8060 mips_no_prev_insn ();
13408f1e 8061
e407c74b 8062 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 8063 history[i].cleared_p = 1;
e407c74b
NC
8064 }
8065
df58fc94
RS
8066 /* We need to emit a label at the end of branch-likely macros. */
8067 if (emit_branch_likely_macro)
8068 {
8069 emit_branch_likely_macro = FALSE;
8070 micromips_add_label ();
8071 }
8072
252b5132
RH
8073 /* We just output an insn, so the next one doesn't have a label. */
8074 mips_clear_insn_labels ();
252b5132
RH
8075}
8076
e407c74b
NC
8077/* Forget that there was any previous instruction or label.
8078 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
8079
8080static void
7d10b47d 8081mips_no_prev_insn (void)
252b5132 8082{
7d10b47d
RS
8083 prev_nop_frag = NULL;
8084 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
8085 mips_clear_insn_labels ();
8086}
8087
7d10b47d
RS
8088/* This function must be called before we emit something other than
8089 instructions. It is like mips_no_prev_insn except that it inserts
8090 any NOPS that might be needed by previous instructions. */
252b5132 8091
7d10b47d
RS
8092void
8093mips_emit_delays (void)
252b5132
RH
8094{
8095 if (! mips_opts.noreorder)
8096 {
932d1a1b 8097 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
8098 if (nops > 0)
8099 {
7d10b47d
RS
8100 while (nops-- > 0)
8101 add_fixed_insn (NOP_INSN);
462427c4 8102 mips_move_text_labels ();
7d10b47d
RS
8103 }
8104 }
8105 mips_no_prev_insn ();
8106}
8107
8108/* Start a (possibly nested) noreorder block. */
8109
8110static void
8111start_noreorder (void)
8112{
8113 if (mips_opts.noreorder == 0)
8114 {
8115 unsigned int i;
8116 int nops;
8117
8118 /* None of the instructions before the .set noreorder can be moved. */
8119 for (i = 0; i < ARRAY_SIZE (history); i++)
8120 history[i].fixed_p = 1;
8121
8122 /* Insert any nops that might be needed between the .set noreorder
8123 block and the previous instructions. We will later remove any
8124 nops that turn out not to be needed. */
932d1a1b 8125 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
8126 if (nops > 0)
8127 {
8128 if (mips_optimize != 0)
252b5132
RH
8129 {
8130 /* Record the frag which holds the nop instructions, so
8131 that we can remove them if we don't need them. */
df58fc94 8132 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
8133 prev_nop_frag = frag_now;
8134 prev_nop_frag_holds = nops;
8135 prev_nop_frag_required = 0;
8136 prev_nop_frag_since = 0;
8137 }
8138
8139 for (; nops > 0; --nops)
1e915849 8140 add_fixed_insn (NOP_INSN);
252b5132 8141
7d10b47d
RS
8142 /* Move on to a new frag, so that it is safe to simply
8143 decrease the size of prev_nop_frag. */
8144 frag_wane (frag_now);
8145 frag_new (0);
462427c4 8146 mips_move_text_labels ();
252b5132 8147 }
df58fc94 8148 mips_mark_labels ();
7d10b47d 8149 mips_clear_insn_labels ();
252b5132 8150 }
7d10b47d
RS
8151 mips_opts.noreorder++;
8152 mips_any_noreorder = 1;
8153}
252b5132 8154
7d10b47d 8155/* End a nested noreorder block. */
252b5132 8156
7d10b47d
RS
8157static void
8158end_noreorder (void)
8159{
8160 mips_opts.noreorder--;
8161 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
8162 {
8163 /* Commit to inserting prev_nop_frag_required nops and go back to
8164 handling nop insertion the .set reorder way. */
8165 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 8166 * NOP_INSN_SIZE);
7d10b47d
RS
8167 insert_into_history (prev_nop_frag_since,
8168 prev_nop_frag_required, NOP_INSN);
8169 prev_nop_frag = NULL;
8170 }
252b5132
RH
8171}
8172
97d87491
RS
8173/* Sign-extend 32-bit mode constants that have bit 31 set and all
8174 higher bits unset. */
8175
8176static void
8177normalize_constant_expr (expressionS *ex)
8178{
8179 if (ex->X_op == O_constant
8180 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8181 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8182 - 0x80000000);
8183}
8184
8185/* Sign-extend 32-bit mode address offsets that have bit 31 set and
8186 all higher bits unset. */
8187
8188static void
8189normalize_address_expr (expressionS *ex)
8190{
8191 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8192 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8193 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8194 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8195 - 0x80000000);
8196}
8197
8198/* Try to match TOKENS against OPCODE, storing the result in INSN.
8199 Return true if the match was successful.
8200
8201 OPCODE_EXTRA is a value that should be ORed into the opcode
8202 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8203 there are more alternatives after OPCODE and SOFT_MATCH is
8204 as for mips_arg_info. */
8205
8206static bfd_boolean
8207match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8208 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 8209 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
8210{
8211 const char *args;
8212 struct mips_arg_info arg;
8213 const struct mips_operand *operand;
8214 char c;
8215
8216 imm_expr.X_op = O_absent;
97d87491
RS
8217 offset_expr.X_op = O_absent;
8218 offset_reloc[0] = BFD_RELOC_UNUSED;
8219 offset_reloc[1] = BFD_RELOC_UNUSED;
8220 offset_reloc[2] = BFD_RELOC_UNUSED;
8221
8222 create_insn (insn, opcode);
60f20e8b
RS
8223 /* When no opcode suffix is specified, assume ".xyzw". */
8224 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8225 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8226 else
8227 insn->insn_opcode |= opcode_extra;
97d87491
RS
8228 memset (&arg, 0, sizeof (arg));
8229 arg.insn = insn;
8230 arg.token = tokens;
8231 arg.argnum = 1;
8232 arg.last_regno = ILLEGAL_REG;
8233 arg.dest_regno = ILLEGAL_REG;
60f20e8b 8234 arg.lax_match = lax_match;
97d87491
RS
8235 for (args = opcode->args;; ++args)
8236 {
8237 if (arg.token->type == OT_END)
8238 {
8239 /* Handle unary instructions in which only one operand is given.
8240 The source is then the same as the destination. */
8241 if (arg.opnum == 1 && *args == ',')
8242 {
8243 operand = (mips_opts.micromips
8244 ? decode_micromips_operand (args + 1)
8245 : decode_mips_operand (args + 1));
8246 if (operand && mips_optional_operand_p (operand))
8247 {
8248 arg.token = tokens;
8249 arg.argnum = 1;
8250 continue;
8251 }
8252 }
8253
8254 /* Treat elided base registers as $0. */
8255 if (strcmp (args, "(b)") == 0)
8256 args += 3;
8257
8258 if (args[0] == '+')
8259 switch (args[1])
8260 {
8261 case 'K':
8262 case 'N':
8263 /* The register suffix is optional. */
8264 args += 2;
8265 break;
8266 }
8267
8268 /* Fail the match if there were too few operands. */
8269 if (*args)
8270 return FALSE;
8271
8272 /* Successful match. */
60f20e8b
RS
8273 if (!complete_p)
8274 return TRUE;
e3de51ce 8275 clear_insn_error ();
97d87491
RS
8276 if (arg.dest_regno == arg.last_regno
8277 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8278 {
8279 if (arg.opnum == 2)
e3de51ce 8280 set_insn_error
1661c76c 8281 (0, _("source and destination must be different"));
97d87491 8282 else if (arg.last_regno == 31)
e3de51ce 8283 set_insn_error
1661c76c 8284 (0, _("a destination register must be supplied"));
97d87491 8285 }
173d3447
CF
8286 else if (arg.last_regno == 31
8287 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8288 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8289 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
8290 check_completed_insn (&arg);
8291 return TRUE;
8292 }
8293
8294 /* Fail the match if the line has too many operands. */
8295 if (*args == 0)
8296 return FALSE;
8297
8298 /* Handle characters that need to match exactly. */
8299 if (*args == '(' || *args == ')' || *args == ',')
8300 {
8301 if (match_char (&arg, *args))
8302 continue;
8303 return FALSE;
8304 }
8305 if (*args == '#')
8306 {
8307 ++args;
8308 if (arg.token->type == OT_DOUBLE_CHAR
8309 && arg.token->u.ch == *args)
8310 {
8311 ++arg.token;
8312 continue;
8313 }
8314 return FALSE;
8315 }
8316
8317 /* Handle special macro operands. Work out the properties of
8318 other operands. */
8319 arg.opnum += 1;
97d87491
RS
8320 switch (*args)
8321 {
7361da2c
AB
8322 case '-':
8323 switch (args[1])
8324 {
8325 case 'A':
8326 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8327 break;
8328
8329 case 'B':
8330 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8331 break;
8332 }
8333 break;
8334
97d87491
RS
8335 case '+':
8336 switch (args[1])
8337 {
97d87491
RS
8338 case 'i':
8339 *offset_reloc = BFD_RELOC_MIPS_JMP;
8340 break;
7361da2c
AB
8341
8342 case '\'':
8343 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8344 break;
8345
8346 case '\"':
8347 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8348 break;
97d87491
RS
8349 }
8350 break;
8351
97d87491 8352 case 'I':
1a00e612
RS
8353 if (!match_const_int (&arg, &imm_expr.X_add_number))
8354 return FALSE;
8355 imm_expr.X_op = O_constant;
bad1aba3 8356 if (GPR_SIZE == 32)
97d87491
RS
8357 normalize_constant_expr (&imm_expr);
8358 continue;
8359
8360 case 'A':
8361 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8362 {
8363 /* Assume that the offset has been elided and that what
8364 we saw was a base register. The match will fail later
8365 if that assumption turns out to be wrong. */
8366 offset_expr.X_op = O_constant;
8367 offset_expr.X_add_number = 0;
8368 }
97d87491 8369 else
1a00e612
RS
8370 {
8371 if (!match_expression (&arg, &offset_expr, offset_reloc))
8372 return FALSE;
8373 normalize_address_expr (&offset_expr);
8374 }
97d87491
RS
8375 continue;
8376
8377 case 'F':
8378 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8379 8, TRUE))
1a00e612 8380 return FALSE;
97d87491
RS
8381 continue;
8382
8383 case 'L':
8384 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8385 8, FALSE))
1a00e612 8386 return FALSE;
97d87491
RS
8387 continue;
8388
8389 case 'f':
8390 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8391 4, TRUE))
1a00e612 8392 return FALSE;
97d87491
RS
8393 continue;
8394
8395 case 'l':
8396 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8397 4, FALSE))
1a00e612 8398 return FALSE;
97d87491
RS
8399 continue;
8400
97d87491
RS
8401 case 'p':
8402 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8403 break;
8404
8405 case 'a':
8406 *offset_reloc = BFD_RELOC_MIPS_JMP;
8407 break;
8408
8409 case 'm':
8410 gas_assert (mips_opts.micromips);
8411 c = args[1];
8412 switch (c)
8413 {
8414 case 'D':
8415 case 'E':
8416 if (!forced_insn_length)
8417 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8418 else if (c == 'D')
8419 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8420 else
8421 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8422 break;
8423 }
8424 break;
8425 }
8426
8427 operand = (mips_opts.micromips
8428 ? decode_micromips_operand (args)
8429 : decode_mips_operand (args));
8430 if (!operand)
8431 abort ();
8432
8433 /* Skip prefixes. */
7361da2c 8434 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8435 args++;
8436
8437 if (mips_optional_operand_p (operand)
8438 && args[1] == ','
8439 && (arg.token[0].type != OT_REG
8440 || arg.token[1].type == OT_END))
8441 {
8442 /* Assume that the register has been elided and is the
8443 same as the first operand. */
8444 arg.token = tokens;
8445 arg.argnum = 1;
8446 }
8447
8448 if (!match_operand (&arg, operand))
8449 return FALSE;
8450 }
8451}
8452
8453/* Like match_insn, but for MIPS16. */
8454
8455static bfd_boolean
8456match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8457 struct mips_operand_token *tokens)
97d87491
RS
8458{
8459 const char *args;
8460 const struct mips_operand *operand;
8461 const struct mips_operand *ext_operand;
82d808ed 8462 bfd_boolean pcrel = FALSE;
7fd53920 8463 int required_insn_length;
97d87491
RS
8464 struct mips_arg_info arg;
8465 int relax_char;
8466
7fd53920
MR
8467 if (forced_insn_length)
8468 required_insn_length = forced_insn_length;
8469 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8470 required_insn_length = 2;
8471 else
8472 required_insn_length = 0;
8473
97d87491
RS
8474 create_insn (insn, opcode);
8475 imm_expr.X_op = O_absent;
97d87491
RS
8476 offset_expr.X_op = O_absent;
8477 offset_reloc[0] = BFD_RELOC_UNUSED;
8478 offset_reloc[1] = BFD_RELOC_UNUSED;
8479 offset_reloc[2] = BFD_RELOC_UNUSED;
8480 relax_char = 0;
8481
8482 memset (&arg, 0, sizeof (arg));
8483 arg.insn = insn;
8484 arg.token = tokens;
8485 arg.argnum = 1;
8486 arg.last_regno = ILLEGAL_REG;
8487 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8488 relax_char = 0;
8489 for (args = opcode->args;; ++args)
8490 {
8491 int c;
8492
8493 if (arg.token->type == OT_END)
8494 {
8495 offsetT value;
8496
8497 /* Handle unary instructions in which only one operand is given.
8498 The source is then the same as the destination. */
8499 if (arg.opnum == 1 && *args == ',')
8500 {
8501 operand = decode_mips16_operand (args[1], FALSE);
8502 if (operand && mips_optional_operand_p (operand))
8503 {
8504 arg.token = tokens;
8505 arg.argnum = 1;
8506 continue;
8507 }
8508 }
8509
8510 /* Fail the match if there were too few operands. */
8511 if (*args)
8512 return FALSE;
8513
8514 /* Successful match. Stuff the immediate value in now, if
8515 we can. */
e3de51ce 8516 clear_insn_error ();
97d87491
RS
8517 if (opcode->pinfo == INSN_MACRO)
8518 {
8519 gas_assert (relax_char == 0 || relax_char == 'p');
8520 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8521 }
8522 else if (relax_char
8523 && offset_expr.X_op == O_constant
82d808ed 8524 && !pcrel
97d87491
RS
8525 && calculate_reloc (*offset_reloc,
8526 offset_expr.X_add_number,
8527 &value))
8528 {
8529 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8530 required_insn_length, &insn->insn_opcode);
97d87491
RS
8531 offset_expr.X_op = O_absent;
8532 *offset_reloc = BFD_RELOC_UNUSED;
8533 }
8534 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8535 {
7fd53920 8536 if (required_insn_length == 2)
e3de51ce 8537 set_insn_error (0, _("invalid unextended operand value"));
25499ac7 8538 else if (!mips_opcode_32bit_p (opcode))
1da43acc
MR
8539 {
8540 forced_insn_length = 4;
8541 insn->insn_opcode |= MIPS16_EXTEND;
8542 }
97d87491
RS
8543 }
8544 else if (relax_char)
8545 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8546
8547 check_completed_insn (&arg);
8548 return TRUE;
8549 }
8550
8551 /* Fail the match if the line has too many operands. */
8552 if (*args == 0)
8553 return FALSE;
8554
8555 /* Handle characters that need to match exactly. */
8556 if (*args == '(' || *args == ')' || *args == ',')
8557 {
8558 if (match_char (&arg, *args))
8559 continue;
8560 return FALSE;
8561 }
8562
8563 arg.opnum += 1;
8564 c = *args;
8565 switch (c)
8566 {
8567 case 'p':
8568 case 'q':
8569 case 'A':
8570 case 'B':
8571 case 'E':
25499ac7
MR
8572 case 'V':
8573 case 'u':
97d87491
RS
8574 relax_char = c;
8575 break;
8576
8577 case 'I':
1a00e612
RS
8578 if (!match_const_int (&arg, &imm_expr.X_add_number))
8579 return FALSE;
8580 imm_expr.X_op = O_constant;
bad1aba3 8581 if (GPR_SIZE == 32)
97d87491
RS
8582 normalize_constant_expr (&imm_expr);
8583 continue;
8584
8585 case 'a':
8586 case 'i':
8587 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8588 break;
8589 }
8590
7fd53920 8591 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8592 if (!operand)
8593 abort ();
8594
82d808ed
MR
8595 if (operand->type == OP_PCREL)
8596 pcrel = TRUE;
8597 else
97d87491
RS
8598 {
8599 ext_operand = decode_mips16_operand (c, TRUE);
8600 if (operand != ext_operand)
8601 {
8602 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8603 {
8604 offset_expr.X_op = O_constant;
8605 offset_expr.X_add_number = 0;
8606 relax_char = c;
8607 continue;
8608 }
8609
1a7bf198 8610 if (!match_expression (&arg, &offset_expr, offset_reloc))
97d87491
RS
8611 return FALSE;
8612
8613 /* '8' is used for SLTI(U) and has traditionally not
8614 been allowed to take relocation operators. */
8615 if (offset_reloc[0] != BFD_RELOC_UNUSED
8616 && (ext_operand->size != 16 || c == '8'))
e295202f
MR
8617 {
8618 match_not_constant (&arg);
8619 return FALSE;
8620 }
97d87491 8621
c96425c5
MR
8622 if (offset_expr.X_op == O_big)
8623 {
8624 match_out_of_range (&arg);
8625 return FALSE;
8626 }
8627
97d87491
RS
8628 relax_char = c;
8629 continue;
8630 }
8631 }
8632
8633 if (mips_optional_operand_p (operand)
8634 && args[1] == ','
8635 && (arg.token[0].type != OT_REG
8636 || arg.token[1].type == OT_END))
8637 {
8638 /* Assume that the register has been elided and is the
8639 same as the first operand. */
8640 arg.token = tokens;
8641 arg.argnum = 1;
8642 }
8643
8644 if (!match_operand (&arg, operand))
8645 return FALSE;
8646 }
8647}
8648
60f20e8b
RS
8649/* Record that the current instruction is invalid for the current ISA. */
8650
8651static void
8652match_invalid_for_isa (void)
8653{
8654 set_insn_error_ss
1661c76c 8655 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8656 mips_cpu_info_from_arch (mips_opts.arch)->name,
8657 mips_cpu_info_from_isa (mips_opts.isa)->name);
8658}
8659
8660/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8661 Return true if a definite match or failure was found, storing any match
8662 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8663 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8664 tried and failed to match under normal conditions and now want to try a
8665 more relaxed match. */
8666
8667static bfd_boolean
8668match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8669 const struct mips_opcode *past, struct mips_operand_token *tokens,
8670 int opcode_extra, bfd_boolean lax_match)
8671{
8672 const struct mips_opcode *opcode;
8673 const struct mips_opcode *invalid_delay_slot;
8674 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8675
8676 /* Search for a match, ignoring alternatives that don't satisfy the
8677 current ISA or forced_length. */
8678 invalid_delay_slot = 0;
8679 seen_valid_for_isa = FALSE;
8680 seen_valid_for_size = FALSE;
8681 opcode = first;
8682 do
8683 {
8684 gas_assert (strcmp (opcode->name, first->name) == 0);
8685 if (is_opcode_valid (opcode))
8686 {
8687 seen_valid_for_isa = TRUE;
8688 if (is_size_valid (opcode))
8689 {
8690 bfd_boolean delay_slot_ok;
8691
8692 seen_valid_for_size = TRUE;
8693 delay_slot_ok = is_delay_slot_valid (opcode);
8694 if (match_insn (insn, opcode, tokens, opcode_extra,
8695 lax_match, delay_slot_ok))
8696 {
8697 if (!delay_slot_ok)
8698 {
8699 if (!invalid_delay_slot)
8700 invalid_delay_slot = opcode;
8701 }
8702 else
8703 return TRUE;
8704 }
8705 }
8706 }
8707 ++opcode;
8708 }
8709 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8710
8711 /* If the only matches we found had the wrong length for the delay slot,
8712 pick the first such match. We'll issue an appropriate warning later. */
8713 if (invalid_delay_slot)
8714 {
8715 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8716 lax_match, TRUE))
8717 return TRUE;
8718 abort ();
8719 }
8720
8721 /* Handle the case where we didn't try to match an instruction because
8722 all the alternatives were incompatible with the current ISA. */
8723 if (!seen_valid_for_isa)
8724 {
8725 match_invalid_for_isa ();
8726 return TRUE;
8727 }
8728
8729 /* Handle the case where we didn't try to match an instruction because
8730 all the alternatives were of the wrong size. */
8731 if (!seen_valid_for_size)
8732 {
8733 if (mips_opts.insn32)
1661c76c 8734 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8735 else
8736 set_insn_error_i
1661c76c 8737 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8738 8 * forced_insn_length);
8739 return TRUE;
8740 }
8741
8742 return FALSE;
8743}
8744
8745/* Like match_insns, but for MIPS16. */
8746
8747static bfd_boolean
8748match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8749 struct mips_operand_token *tokens)
8750{
8751 const struct mips_opcode *opcode;
8752 bfd_boolean seen_valid_for_isa;
7fd53920 8753 bfd_boolean seen_valid_for_size;
60f20e8b
RS
8754
8755 /* Search for a match, ignoring alternatives that don't satisfy the
8756 current ISA. There are no separate entries for extended forms so
8757 we deal with forced_length later. */
8758 seen_valid_for_isa = FALSE;
7fd53920 8759 seen_valid_for_size = FALSE;
60f20e8b
RS
8760 opcode = first;
8761 do
8762 {
8763 gas_assert (strcmp (opcode->name, first->name) == 0);
8764 if (is_opcode_valid_16 (opcode))
8765 {
8766 seen_valid_for_isa = TRUE;
7fd53920
MR
8767 if (is_size_valid_16 (opcode))
8768 {
8769 seen_valid_for_size = TRUE;
8770 if (match_mips16_insn (insn, opcode, tokens))
8771 return TRUE;
8772 }
60f20e8b
RS
8773 }
8774 ++opcode;
8775 }
8776 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8777 && strcmp (opcode->name, first->name) == 0);
8778
8779 /* Handle the case where we didn't try to match an instruction because
8780 all the alternatives were incompatible with the current ISA. */
8781 if (!seen_valid_for_isa)
8782 {
8783 match_invalid_for_isa ();
8784 return TRUE;
8785 }
8786
7fd53920
MR
8787 /* Handle the case where we didn't try to match an instruction because
8788 all the alternatives were of the wrong size. */
8789 if (!seen_valid_for_size)
8790 {
8791 if (forced_insn_length == 2)
8792 set_insn_error
8793 (0, _("unrecognized unextended version of MIPS16 opcode"));
8794 else
8795 set_insn_error
8796 (0, _("unrecognized extended version of MIPS16 opcode"));
8797 return TRUE;
8798 }
8799
60f20e8b
RS
8800 return FALSE;
8801}
8802
584892a6
RS
8803/* Set up global variables for the start of a new macro. */
8804
8805static void
8806macro_start (void)
8807{
8808 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8809 memset (&mips_macro_warning.first_insn_sizes, 0,
8810 sizeof (mips_macro_warning.first_insn_sizes));
8811 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8812 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8813 && delayed_branch_p (&history[0]));
7bd374a4
MR
8814 if (history[0].frag
8815 && history[0].frag->fr_type == rs_machine_dependent
8816 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8817 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8818 mips_macro_warning.delay_slot_length = 0;
8819 else
8820 switch (history[0].insn_mo->pinfo2
8821 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8822 {
8823 case INSN2_BRANCH_DELAY_32BIT:
8824 mips_macro_warning.delay_slot_length = 4;
8825 break;
8826 case INSN2_BRANCH_DELAY_16BIT:
8827 mips_macro_warning.delay_slot_length = 2;
8828 break;
8829 default:
8830 mips_macro_warning.delay_slot_length = 0;
8831 break;
8832 }
df58fc94 8833 mips_macro_warning.first_frag = NULL;
584892a6
RS
8834}
8835
df58fc94
RS
8836/* Given that a macro is longer than one instruction or of the wrong size,
8837 return the appropriate warning for it. Return null if no warning is
8838 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8839 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8840 and RELAX_NOMACRO. */
584892a6
RS
8841
8842static const char *
8843macro_warning (relax_substateT subtype)
8844{
8845 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8846 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8847 " in a branch delay slot");
8848 else if (subtype & RELAX_NOMACRO)
1661c76c 8849 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8850 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8851 | RELAX_DELAY_SLOT_SIZE_SECOND))
8852 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8853 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8854 " in a 16-bit branch delay slot")
1661c76c 8855 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8856 " in a 32-bit branch delay slot"));
584892a6
RS
8857 else
8858 return 0;
8859}
8860
8861/* Finish up a macro. Emit warnings as appropriate. */
8862
8863static void
8864macro_end (void)
8865{
df58fc94
RS
8866 /* Relaxation warning flags. */
8867 relax_substateT subtype = 0;
8868
8869 /* Check delay slot size requirements. */
8870 if (mips_macro_warning.delay_slot_length == 2)
8871 subtype |= RELAX_DELAY_SLOT_16BIT;
8872 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8873 {
df58fc94
RS
8874 if (mips_macro_warning.delay_slot_length
8875 != mips_macro_warning.first_insn_sizes[0])
8876 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8877 if (mips_macro_warning.delay_slot_length
8878 != mips_macro_warning.first_insn_sizes[1])
8879 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8880 }
584892a6 8881
df58fc94
RS
8882 /* Check instruction count requirements. */
8883 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8884 {
8885 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8886 subtype |= RELAX_SECOND_LONGER;
8887 if (mips_opts.warn_about_macros)
8888 subtype |= RELAX_NOMACRO;
8889 if (mips_macro_warning.delay_slot_p)
8890 subtype |= RELAX_DELAY_SLOT;
df58fc94 8891 }
584892a6 8892
df58fc94
RS
8893 /* If both alternatives fail to fill a delay slot correctly,
8894 emit the warning now. */
8895 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8896 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8897 {
8898 relax_substateT s;
8899 const char *msg;
8900
8901 s = subtype & (RELAX_DELAY_SLOT_16BIT
8902 | RELAX_DELAY_SLOT_SIZE_FIRST
8903 | RELAX_DELAY_SLOT_SIZE_SECOND);
8904 msg = macro_warning (s);
8905 if (msg != NULL)
8906 as_warn ("%s", msg);
8907 subtype &= ~s;
8908 }
8909
8910 /* If both implementations are longer than 1 instruction, then emit the
8911 warning now. */
8912 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8913 {
8914 relax_substateT s;
8915 const char *msg;
8916
8917 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8918 msg = macro_warning (s);
8919 if (msg != NULL)
8920 as_warn ("%s", msg);
8921 subtype &= ~s;
584892a6 8922 }
df58fc94
RS
8923
8924 /* If any flags still set, then one implementation might need a warning
8925 and the other either will need one of a different kind or none at all.
8926 Pass any remaining flags over to relaxation. */
8927 if (mips_macro_warning.first_frag != NULL)
8928 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8929}
8930
df58fc94
RS
8931/* Instruction operand formats used in macros that vary between
8932 standard MIPS and microMIPS code. */
8933
833794fc 8934static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8935static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8936static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8937static const char * const lui_fmt[2] = { "t,u", "s,u" };
8938static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8939static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8940static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8941static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8942
833794fc 8943#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8944#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8945 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8946#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8947#define LUI_FMT (lui_fmt[mips_opts.micromips])
8948#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8949#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8950 : mem12_fmt[mips_opts.micromips])
833794fc 8951#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8952#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8953#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8954
6e1304d8
RS
8955/* Read a macro's relocation codes from *ARGS and store them in *R.
8956 The first argument in *ARGS will be either the code for a single
8957 relocation or -1 followed by the three codes that make up a
8958 composite relocation. */
8959
8960static void
8961macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8962{
8963 int i, next;
8964
8965 next = va_arg (*args, int);
8966 if (next >= 0)
8967 r[0] = (bfd_reloc_code_real_type) next;
8968 else
f2ae14a1
RS
8969 {
8970 for (i = 0; i < 3; i++)
8971 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8972 /* This function is only used for 16-bit relocation fields.
8973 To make the macro code simpler, treat an unrelocated value
8974 in the same way as BFD_RELOC_LO16. */
8975 if (r[0] == BFD_RELOC_UNUSED)
8976 r[0] = BFD_RELOC_LO16;
8977 }
6e1304d8
RS
8978}
8979
252b5132
RH
8980/* Build an instruction created by a macro expansion. This is passed
8981 a pointer to the count of instructions created so far, an
8982 expression, the name of the instruction to build, an operand format
8983 string, and corresponding arguments. */
8984
252b5132 8985static void
67c0d1eb 8986macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8987{
df58fc94 8988 const struct mips_opcode *mo = NULL;
f6688943 8989 bfd_reloc_code_real_type r[3];
df58fc94 8990 const struct mips_opcode *amo;
e077a1c8 8991 const struct mips_operand *operand;
df58fc94
RS
8992 struct hash_control *hash;
8993 struct mips_cl_insn insn;
252b5132 8994 va_list args;
e077a1c8 8995 unsigned int uval;
252b5132 8996
252b5132 8997 va_start (args, fmt);
252b5132 8998
252b5132
RH
8999 if (mips_opts.mips16)
9000 {
03ea81db 9001 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
9002 va_end (args);
9003 return;
9004 }
9005
f6688943
TS
9006 r[0] = BFD_RELOC_UNUSED;
9007 r[1] = BFD_RELOC_UNUSED;
9008 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
9009 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
9010 amo = (struct mips_opcode *) hash_find (hash, name);
9011 gas_assert (amo);
9012 gas_assert (strcmp (name, amo->name) == 0);
1e915849 9013
df58fc94 9014 do
8b082fb1
TS
9015 {
9016 /* Search until we get a match for NAME. It is assumed here that
df58fc94 9017 macros will never generate MDMX, MIPS-3D, or MT instructions.
33eaf5de 9018 We try to match an instruction that fulfills the branch delay
df58fc94
RS
9019 slot instruction length requirement (if any) of the previous
9020 instruction. While doing this we record the first instruction
9021 seen that matches all the other conditions and use it anyway
9022 if the requirement cannot be met; we will issue an appropriate
9023 warning later on. */
9024 if (strcmp (fmt, amo->args) == 0
9025 && amo->pinfo != INSN_MACRO
9026 && is_opcode_valid (amo)
9027 && is_size_valid (amo))
9028 {
9029 if (is_delay_slot_valid (amo))
9030 {
9031 mo = amo;
9032 break;
9033 }
9034 else if (!mo)
9035 mo = amo;
9036 }
8b082fb1 9037
df58fc94
RS
9038 ++amo;
9039 gas_assert (amo->name);
252b5132 9040 }
df58fc94 9041 while (strcmp (name, amo->name) == 0);
252b5132 9042
df58fc94 9043 gas_assert (mo);
1e915849 9044 create_insn (&insn, mo);
e077a1c8 9045 for (; *fmt; ++fmt)
252b5132 9046 {
e077a1c8 9047 switch (*fmt)
252b5132 9048 {
252b5132
RH
9049 case ',':
9050 case '(':
9051 case ')':
252b5132 9052 case 'z':
e077a1c8 9053 break;
252b5132
RH
9054
9055 case 'i':
9056 case 'j':
6e1304d8 9057 macro_read_relocs (&args, r);
9c2799c2 9058 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
9059 || *r == BFD_RELOC_MIPS_HIGHER
9060 || *r == BFD_RELOC_HI16_S
9061 || *r == BFD_RELOC_LO16
14c80123
MR
9062 || *r == BFD_RELOC_MIPS_GOT_OFST
9063 || (mips_opts.micromips
9064 && (*r == BFD_RELOC_16
9065 || *r == BFD_RELOC_MIPS_GOT16
9066 || *r == BFD_RELOC_MIPS_CALL16
9067 || *r == BFD_RELOC_MIPS_GOT_HI16
9068 || *r == BFD_RELOC_MIPS_GOT_LO16
9069 || *r == BFD_RELOC_MIPS_CALL_HI16
9070 || *r == BFD_RELOC_MIPS_CALL_LO16
9071 || *r == BFD_RELOC_MIPS_SUB
9072 || *r == BFD_RELOC_MIPS_GOT_PAGE
9073 || *r == BFD_RELOC_MIPS_HIGHEST
9074 || *r == BFD_RELOC_MIPS_GOT_DISP
9075 || *r == BFD_RELOC_MIPS_TLS_GD
9076 || *r == BFD_RELOC_MIPS_TLS_LDM
9077 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
9078 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
9079 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
9080 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
9081 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
e077a1c8 9082 break;
e391c024
RS
9083
9084 case 'o':
9085 macro_read_relocs (&args, r);
e077a1c8 9086 break;
252b5132
RH
9087
9088 case 'u':
6e1304d8 9089 macro_read_relocs (&args, r);
9c2799c2 9090 gas_assert (ep != NULL
90ecf173
MR
9091 && (ep->X_op == O_constant
9092 || (ep->X_op == O_symbol
9093 && (*r == BFD_RELOC_MIPS_HIGHEST
9094 || *r == BFD_RELOC_HI16_S
9095 || *r == BFD_RELOC_HI16
9096 || *r == BFD_RELOC_GPREL16
9097 || *r == BFD_RELOC_MIPS_GOT_HI16
9098 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 9099 break;
252b5132
RH
9100
9101 case 'p':
9c2799c2 9102 gas_assert (ep != NULL);
bad36eac 9103
252b5132
RH
9104 /*
9105 * This allows macro() to pass an immediate expression for
9106 * creating short branches without creating a symbol.
bad36eac
DJ
9107 *
9108 * We don't allow branch relaxation for these branches, as
9109 * they should only appear in ".set nomacro" anyway.
252b5132
RH
9110 */
9111 if (ep->X_op == O_constant)
9112 {
df58fc94
RS
9113 /* For microMIPS we always use relocations for branches.
9114 So we should not resolve immediate values. */
9115 gas_assert (!mips_opts.micromips);
9116
bad36eac
DJ
9117 if ((ep->X_add_number & 3) != 0)
9118 as_bad (_("branch to misaligned address (0x%lx)"),
9119 (unsigned long) ep->X_add_number);
9120 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
9121 as_bad (_("branch address range overflow (0x%lx)"),
9122 (unsigned long) ep->X_add_number);
252b5132
RH
9123 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
9124 ep = NULL;
9125 }
9126 else
0b25d3e6 9127 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 9128 break;
252b5132
RH
9129
9130 case 'a':
9c2799c2 9131 gas_assert (ep != NULL);
f6688943 9132 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 9133 break;
d43b4baf 9134
252b5132 9135 default:
e077a1c8
RS
9136 operand = (mips_opts.micromips
9137 ? decode_micromips_operand (fmt)
9138 : decode_mips_operand (fmt));
9139 if (!operand)
9140 abort ();
9141
9142 uval = va_arg (args, int);
9143 if (operand->type == OP_CLO_CLZ_DEST)
9144 uval |= (uval << 5);
9145 insn_insert_operand (&insn, operand, uval);
9146
7361da2c 9147 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
9148 ++fmt;
9149 break;
252b5132 9150 }
252b5132
RH
9151 }
9152 va_end (args);
9c2799c2 9153 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 9154
df58fc94 9155 append_insn (&insn, ep, r, TRUE);
252b5132
RH
9156}
9157
9158static void
67c0d1eb 9159mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 9160 va_list *args)
252b5132 9161{
1e915849 9162 struct mips_opcode *mo;
252b5132 9163 struct mips_cl_insn insn;
e077a1c8 9164 const struct mips_operand *operand;
f6688943
TS
9165 bfd_reloc_code_real_type r[3]
9166 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 9167
1e915849 9168 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
9169 gas_assert (mo);
9170 gas_assert (strcmp (name, mo->name) == 0);
252b5132 9171
1e915849 9172 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 9173 {
1e915849 9174 ++mo;
9c2799c2
NC
9175 gas_assert (mo->name);
9176 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
9177 }
9178
1e915849 9179 create_insn (&insn, mo);
e077a1c8 9180 for (; *fmt; ++fmt)
252b5132
RH
9181 {
9182 int c;
9183
e077a1c8 9184 c = *fmt;
252b5132
RH
9185 switch (c)
9186 {
252b5132
RH
9187 case ',':
9188 case '(':
9189 case ')':
e077a1c8 9190 break;
252b5132 9191
d8722d76 9192 case '.':
252b5132
RH
9193 case 'S':
9194 case 'P':
9195 case 'R':
e077a1c8 9196 break;
252b5132
RH
9197
9198 case '<':
252b5132 9199 case '5':
d8722d76 9200 case 'F':
252b5132
RH
9201 case 'H':
9202 case 'W':
9203 case 'D':
9204 case 'j':
9205 case '8':
9206 case 'V':
9207 case 'C':
9208 case 'U':
9209 case 'k':
9210 case 'K':
9211 case 'p':
9212 case 'q':
9213 {
b886a2ab
RS
9214 offsetT value;
9215
9c2799c2 9216 gas_assert (ep != NULL);
252b5132
RH
9217
9218 if (ep->X_op != O_constant)
874e8986 9219 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 9220 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 9221 {
b886a2ab 9222 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 9223 ep = NULL;
f6688943 9224 *r = BFD_RELOC_UNUSED;
252b5132
RH
9225 }
9226 }
e077a1c8 9227 break;
252b5132 9228
e077a1c8
RS
9229 default:
9230 operand = decode_mips16_operand (c, FALSE);
9231 if (!operand)
9232 abort ();
252b5132 9233
4a06e5a2 9234 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
9235 break;
9236 }
252b5132
RH
9237 }
9238
9c2799c2 9239 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 9240
df58fc94 9241 append_insn (&insn, ep, r, TRUE);
252b5132
RH
9242}
9243
438c16b8
TS
9244/*
9245 * Generate a "jalr" instruction with a relocation hint to the called
9246 * function. This occurs in NewABI PIC code.
9247 */
9248static void
df58fc94 9249macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 9250{
df58fc94
RS
9251 static const bfd_reloc_code_real_type jalr_relocs[2]
9252 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9253 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9254 const char *jalr;
685736be 9255 char *f = NULL;
b34976b6 9256
1180b5a4 9257 if (MIPS_JALR_HINT_P (ep))
f21f8242 9258 {
cc3d92a5 9259 frag_grow (8);
f21f8242
AO
9260 f = frag_more (0);
9261 }
2906b037 9262 if (mips_opts.micromips)
df58fc94 9263 {
833794fc
MR
9264 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9265 ? "jalr" : "jalrs");
e64af278 9266 if (MIPS_JALR_HINT_P (ep)
833794fc 9267 || mips_opts.insn32
e64af278 9268 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
9269 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9270 else
9271 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9272 }
2906b037
MR
9273 else
9274 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 9275 if (MIPS_JALR_HINT_P (ep))
df58fc94 9276 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
9277}
9278
252b5132
RH
9279/*
9280 * Generate a "lui" instruction.
9281 */
9282static void
67c0d1eb 9283macro_build_lui (expressionS *ep, int regnum)
252b5132 9284{
9c2799c2 9285 gas_assert (! mips_opts.mips16);
252b5132 9286
df58fc94 9287 if (ep->X_op != O_constant)
252b5132 9288 {
9c2799c2 9289 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
9290 /* _gp_disp is a special case, used from s_cpload.
9291 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 9292 gas_assert (mips_pic == NO_PIC
78e1bb40 9293 || (! HAVE_NEWABI
aa6975fb
ILT
9294 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9295 || (! mips_in_shared
bbe506e8
TS
9296 && strcmp (S_GET_NAME (ep->X_add_symbol),
9297 "__gnu_local_gp") == 0));
252b5132
RH
9298 }
9299
df58fc94 9300 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
9301}
9302
885add95
CD
9303/* Generate a sequence of instructions to do a load or store from a constant
9304 offset off of a base register (breg) into/from a target register (treg),
9305 using AT if necessary. */
9306static void
67c0d1eb
RS
9307macro_build_ldst_constoffset (expressionS *ep, const char *op,
9308 int treg, int breg, int dbl)
885add95 9309{
9c2799c2 9310 gas_assert (ep->X_op == O_constant);
885add95 9311
256ab948 9312 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9313 if (!dbl)
9314 normalize_constant_expr (ep);
256ab948 9315
67c1ffbe 9316 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 9317 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
9318 as_warn (_("operand overflow"));
9319
9320 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9321 {
9322 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 9323 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
9324 }
9325 else
9326 {
9327 /* 32-bit offset, need multiple instructions and AT, like:
9328 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9329 addu $tempreg,$tempreg,$breg
9330 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9331 to handle the complete offset. */
67c0d1eb
RS
9332 macro_build_lui (ep, AT);
9333 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9334 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 9335
741fe287 9336 if (!mips_opts.at)
1661c76c 9337 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
9338 }
9339}
9340
252b5132
RH
9341/* set_at()
9342 * Generates code to set the $at register to true (one)
9343 * if reg is less than the immediate expression.
9344 */
9345static void
67c0d1eb 9346set_at (int reg, int unsignedp)
252b5132 9347{
b0e6f033 9348 if (imm_expr.X_add_number >= -0x8000
252b5132 9349 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
9350 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9351 AT, reg, BFD_RELOC_LO16);
252b5132
RH
9352 else
9353 {
bad1aba3 9354 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 9355 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
9356 }
9357}
9358
252b5132
RH
9359/* Count the leading zeroes by performing a binary chop. This is a
9360 bulky bit of source, but performance is a LOT better for the
9361 majority of values than a simple loop to count the bits:
9362 for (lcnt = 0; (lcnt < 32); lcnt++)
9363 if ((v) & (1 << (31 - lcnt)))
9364 break;
9365 However it is not code size friendly, and the gain will drop a bit
9366 on certain cached systems.
9367*/
9368#define COUNT_TOP_ZEROES(v) \
9369 (((v) & ~0xffff) == 0 \
9370 ? ((v) & ~0xff) == 0 \
9371 ? ((v) & ~0xf) == 0 \
9372 ? ((v) & ~0x3) == 0 \
9373 ? ((v) & ~0x1) == 0 \
9374 ? !(v) \
9375 ? 32 \
9376 : 31 \
9377 : 30 \
9378 : ((v) & ~0x7) == 0 \
9379 ? 29 \
9380 : 28 \
9381 : ((v) & ~0x3f) == 0 \
9382 ? ((v) & ~0x1f) == 0 \
9383 ? 27 \
9384 : 26 \
9385 : ((v) & ~0x7f) == 0 \
9386 ? 25 \
9387 : 24 \
9388 : ((v) & ~0xfff) == 0 \
9389 ? ((v) & ~0x3ff) == 0 \
9390 ? ((v) & ~0x1ff) == 0 \
9391 ? 23 \
9392 : 22 \
9393 : ((v) & ~0x7ff) == 0 \
9394 ? 21 \
9395 : 20 \
9396 : ((v) & ~0x3fff) == 0 \
9397 ? ((v) & ~0x1fff) == 0 \
9398 ? 19 \
9399 : 18 \
9400 : ((v) & ~0x7fff) == 0 \
9401 ? 17 \
9402 : 16 \
9403 : ((v) & ~0xffffff) == 0 \
9404 ? ((v) & ~0xfffff) == 0 \
9405 ? ((v) & ~0x3ffff) == 0 \
9406 ? ((v) & ~0x1ffff) == 0 \
9407 ? 15 \
9408 : 14 \
9409 : ((v) & ~0x7ffff) == 0 \
9410 ? 13 \
9411 : 12 \
9412 : ((v) & ~0x3fffff) == 0 \
9413 ? ((v) & ~0x1fffff) == 0 \
9414 ? 11 \
9415 : 10 \
9416 : ((v) & ~0x7fffff) == 0 \
9417 ? 9 \
9418 : 8 \
9419 : ((v) & ~0xfffffff) == 0 \
9420 ? ((v) & ~0x3ffffff) == 0 \
9421 ? ((v) & ~0x1ffffff) == 0 \
9422 ? 7 \
9423 : 6 \
9424 : ((v) & ~0x7ffffff) == 0 \
9425 ? 5 \
9426 : 4 \
9427 : ((v) & ~0x3fffffff) == 0 \
9428 ? ((v) & ~0x1fffffff) == 0 \
9429 ? 3 \
9430 : 2 \
9431 : ((v) & ~0x7fffffff) == 0 \
9432 ? 1 \
9433 : 0)
9434
9435/* load_register()
67c1ffbe 9436 * This routine generates the least number of instructions necessary to load
252b5132
RH
9437 * an absolute expression value into a register.
9438 */
9439static void
67c0d1eb 9440load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9441{
9442 int freg;
9443 expressionS hi32, lo32;
9444
9445 if (ep->X_op != O_big)
9446 {
9c2799c2 9447 gas_assert (ep->X_op == O_constant);
256ab948
TS
9448
9449 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9450 if (!dbl)
9451 normalize_constant_expr (ep);
256ab948
TS
9452
9453 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9454 {
9455 /* We can handle 16 bit signed values with an addiu to
9456 $zero. No need to ever use daddiu here, since $zero and
9457 the result are always correct in 32 bit mode. */
67c0d1eb 9458 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9459 return;
9460 }
9461 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9462 {
9463 /* We can handle 16 bit unsigned values with an ori to
9464 $zero. */
67c0d1eb 9465 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9466 return;
9467 }
256ab948 9468 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9469 {
9470 /* 32 bit values require an lui. */
df58fc94 9471 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9472 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9473 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9474 return;
9475 }
9476 }
9477
9478 /* The value is larger than 32 bits. */
9479
bad1aba3 9480 if (!dbl || GPR_SIZE == 32)
252b5132 9481 {
55e08f71
NC
9482 char value[32];
9483
9484 sprintf_vma (value, ep->X_add_number);
1661c76c 9485 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9486 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9487 return;
9488 }
9489
9490 if (ep->X_op != O_big)
9491 {
9492 hi32 = *ep;
9493 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9494 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9495 hi32.X_add_number &= 0xffffffff;
9496 lo32 = *ep;
9497 lo32.X_add_number &= 0xffffffff;
9498 }
9499 else
9500 {
9c2799c2 9501 gas_assert (ep->X_add_number > 2);
252b5132
RH
9502 if (ep->X_add_number == 3)
9503 generic_bignum[3] = 0;
9504 else if (ep->X_add_number > 4)
1661c76c 9505 as_bad (_("number larger than 64 bits"));
252b5132
RH
9506 lo32.X_op = O_constant;
9507 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9508 hi32.X_op = O_constant;
9509 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9510 }
9511
9512 if (hi32.X_add_number == 0)
9513 freg = 0;
9514 else
9515 {
9516 int shift, bit;
9517 unsigned long hi, lo;
9518
956cd1d6 9519 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9520 {
9521 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9522 {
67c0d1eb 9523 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9524 return;
9525 }
9526 if (lo32.X_add_number & 0x80000000)
9527 {
df58fc94 9528 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9529 if (lo32.X_add_number & 0xffff)
67c0d1eb 9530 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9531 return;
9532 }
9533 }
252b5132
RH
9534
9535 /* Check for 16bit shifted constant. We know that hi32 is
9536 non-zero, so start the mask on the first bit of the hi32
9537 value. */
9538 shift = 17;
9539 do
beae10d5
KH
9540 {
9541 unsigned long himask, lomask;
9542
9543 if (shift < 32)
9544 {
9545 himask = 0xffff >> (32 - shift);
9546 lomask = (0xffff << shift) & 0xffffffff;
9547 }
9548 else
9549 {
9550 himask = 0xffff << (shift - 32);
9551 lomask = 0;
9552 }
9553 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9554 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9555 {
9556 expressionS tmp;
9557
9558 tmp.X_op = O_constant;
9559 if (shift < 32)
9560 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9561 | (lo32.X_add_number >> shift));
9562 else
9563 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9564 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9565 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9566 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9567 return;
9568 }
f9419b05 9569 ++shift;
beae10d5
KH
9570 }
9571 while (shift <= (64 - 16));
252b5132
RH
9572
9573 /* Find the bit number of the lowest one bit, and store the
9574 shifted value in hi/lo. */
9575 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9576 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9577 if (lo != 0)
9578 {
9579 bit = 0;
9580 while ((lo & 1) == 0)
9581 {
9582 lo >>= 1;
9583 ++bit;
9584 }
9585 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9586 hi >>= bit;
9587 }
9588 else
9589 {
9590 bit = 32;
9591 while ((hi & 1) == 0)
9592 {
9593 hi >>= 1;
9594 ++bit;
9595 }
9596 lo = hi;
9597 hi = 0;
9598 }
9599
9600 /* Optimize if the shifted value is a (power of 2) - 1. */
9601 if ((hi == 0 && ((lo + 1) & lo) == 0)
9602 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9603 {
9604 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9605 if (shift != 0)
beae10d5 9606 {
252b5132
RH
9607 expressionS tmp;
9608
9609 /* This instruction will set the register to be all
9610 ones. */
beae10d5
KH
9611 tmp.X_op = O_constant;
9612 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9613 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9614 if (bit != 0)
9615 {
9616 bit += shift;
df58fc94 9617 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9618 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9619 }
df58fc94 9620 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9621 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9622 return;
9623 }
9624 }
252b5132
RH
9625
9626 /* Sign extend hi32 before calling load_register, because we can
9627 generally get better code when we load a sign extended value. */
9628 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9629 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9630 load_register (reg, &hi32, 0);
252b5132
RH
9631 freg = reg;
9632 }
9633 if ((lo32.X_add_number & 0xffff0000) == 0)
9634 {
9635 if (freg != 0)
9636 {
df58fc94 9637 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9638 freg = reg;
9639 }
9640 }
9641 else
9642 {
9643 expressionS mid16;
9644
956cd1d6 9645 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9646 {
df58fc94
RS
9647 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9648 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9649 return;
9650 }
252b5132
RH
9651
9652 if (freg != 0)
9653 {
df58fc94 9654 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9655 freg = reg;
9656 }
9657 mid16 = lo32;
9658 mid16.X_add_number >>= 16;
67c0d1eb 9659 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9660 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9661 freg = reg;
9662 }
9663 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9664 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9665}
9666
269137b2
TS
9667static inline void
9668load_delay_nop (void)
9669{
9670 if (!gpr_interlocks)
9671 macro_build (NULL, "nop", "");
9672}
9673
252b5132
RH
9674/* Load an address into a register. */
9675
9676static void
67c0d1eb 9677load_address (int reg, expressionS *ep, int *used_at)
252b5132 9678{
252b5132
RH
9679 if (ep->X_op != O_constant
9680 && ep->X_op != O_symbol)
9681 {
9682 as_bad (_("expression too complex"));
9683 ep->X_op = O_constant;
9684 }
9685
9686 if (ep->X_op == O_constant)
9687 {
67c0d1eb 9688 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9689 return;
9690 }
9691
9692 if (mips_pic == NO_PIC)
9693 {
9694 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9695 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9696 Otherwise we want
9697 lui $reg,<sym> (BFD_RELOC_HI16_S)
9698 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9699 If we have an addend, we always use the latter form.
76b3015f 9700
d6bc6245
TS
9701 With 64bit address space and a usable $at we want
9702 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9703 lui $at,<sym> (BFD_RELOC_HI16_S)
9704 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9705 daddiu $at,<sym> (BFD_RELOC_LO16)
9706 dsll32 $reg,0
3a482fd5 9707 daddu $reg,$reg,$at
76b3015f 9708
c03099e6 9709 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9710 on superscalar processors.
9711 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9712 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9713 dsll $reg,16
9714 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9715 dsll $reg,16
9716 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9717
9718 For GP relative symbols in 64bit address space we can use
9719 the same sequence as in 32bit address space. */
aed1a261 9720 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9721 {
6caf9ef4
TS
9722 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9723 && !nopic_need_relax (ep->X_add_symbol, 1))
9724 {
9725 relax_start (ep->X_add_symbol);
9726 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9727 mips_gp_register, BFD_RELOC_GPREL16);
9728 relax_switch ();
9729 }
d6bc6245 9730
741fe287 9731 if (*used_at == 0 && mips_opts.at)
d6bc6245 9732 {
df58fc94
RS
9733 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9734 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9735 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9736 BFD_RELOC_MIPS_HIGHER);
9737 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9738 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9739 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9740 *used_at = 1;
9741 }
9742 else
9743 {
df58fc94 9744 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9745 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9746 BFD_RELOC_MIPS_HIGHER);
df58fc94 9747 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9748 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9749 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9750 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9751 }
6caf9ef4
TS
9752
9753 if (mips_relax.sequence)
9754 relax_end ();
d6bc6245 9755 }
252b5132
RH
9756 else
9757 {
d6bc6245 9758 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9759 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9760 {
4d7206a2 9761 relax_start (ep->X_add_symbol);
67c0d1eb 9762 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9763 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9764 relax_switch ();
d6bc6245 9765 }
67c0d1eb
RS
9766 macro_build_lui (ep, reg);
9767 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9768 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9769 if (mips_relax.sequence)
9770 relax_end ();
d6bc6245 9771 }
252b5132 9772 }
0a44bf69 9773 else if (!mips_big_got)
252b5132
RH
9774 {
9775 expressionS ex;
9776
9777 /* If this is a reference to an external symbol, we want
9778 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9779 Otherwise we want
9780 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9781 nop
9782 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9783 If there is a constant, it must be added in after.
9784
ed6fb7bd 9785 If we have NewABI, we want
f5040a92
AO
9786 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9787 unless we're referencing a global symbol with a non-zero
9788 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9789 if (HAVE_NEWABI)
9790 {
f5040a92
AO
9791 if (ep->X_add_number)
9792 {
4d7206a2 9793 ex.X_add_number = ep->X_add_number;
f5040a92 9794 ep->X_add_number = 0;
4d7206a2 9795 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9796 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9797 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9798 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9799 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9800 ex.X_op = O_constant;
67c0d1eb 9801 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9802 reg, reg, BFD_RELOC_LO16);
f5040a92 9803 ep->X_add_number = ex.X_add_number;
4d7206a2 9804 relax_switch ();
f5040a92 9805 }
67c0d1eb 9806 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9807 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9808 if (mips_relax.sequence)
9809 relax_end ();
ed6fb7bd
SC
9810 }
9811 else
9812 {
f5040a92
AO
9813 ex.X_add_number = ep->X_add_number;
9814 ep->X_add_number = 0;
67c0d1eb
RS
9815 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9816 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9817 load_delay_nop ();
4d7206a2
RS
9818 relax_start (ep->X_add_symbol);
9819 relax_switch ();
67c0d1eb 9820 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9821 BFD_RELOC_LO16);
4d7206a2 9822 relax_end ();
ed6fb7bd 9823
f5040a92
AO
9824 if (ex.X_add_number != 0)
9825 {
9826 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9827 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9828 ex.X_op = O_constant;
67c0d1eb 9829 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9830 reg, reg, BFD_RELOC_LO16);
f5040a92 9831 }
252b5132
RH
9832 }
9833 }
0a44bf69 9834 else if (mips_big_got)
252b5132
RH
9835 {
9836 expressionS ex;
252b5132
RH
9837
9838 /* This is the large GOT case. If this is a reference to an
9839 external symbol, we want
9840 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9841 addu $reg,$reg,$gp
9842 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9843
9844 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9845 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9846 nop
9847 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9848 If there is a constant, it must be added in after.
f5040a92
AO
9849
9850 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9851 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9852 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9853 */
438c16b8
TS
9854 if (HAVE_NEWABI)
9855 {
4d7206a2 9856 ex.X_add_number = ep->X_add_number;
f5040a92 9857 ep->X_add_number = 0;
4d7206a2 9858 relax_start (ep->X_add_symbol);
df58fc94 9859 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9861 reg, reg, mips_gp_register);
9862 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9863 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9864 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9865 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9866 else if (ex.X_add_number)
9867 {
9868 ex.X_op = O_constant;
67c0d1eb
RS
9869 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9870 BFD_RELOC_LO16);
f5040a92
AO
9871 }
9872
9873 ep->X_add_number = ex.X_add_number;
4d7206a2 9874 relax_switch ();
67c0d1eb 9875 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9876 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9877 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9878 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9879 relax_end ();
438c16b8 9880 }
252b5132 9881 else
438c16b8 9882 {
f5040a92
AO
9883 ex.X_add_number = ep->X_add_number;
9884 ep->X_add_number = 0;
4d7206a2 9885 relax_start (ep->X_add_symbol);
df58fc94 9886 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9887 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9888 reg, reg, mips_gp_register);
9889 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9890 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9891 relax_switch ();
9892 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9893 {
9894 /* We need a nop before loading from $gp. This special
9895 check is required because the lui which starts the main
9896 instruction stream does not refer to $gp, and so will not
9897 insert the nop which may be required. */
67c0d1eb 9898 macro_build (NULL, "nop", "");
438c16b8 9899 }
67c0d1eb 9900 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9901 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9902 load_delay_nop ();
67c0d1eb 9903 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9904 BFD_RELOC_LO16);
4d7206a2 9905 relax_end ();
438c16b8 9906
f5040a92
AO
9907 if (ex.X_add_number != 0)
9908 {
9909 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9910 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9911 ex.X_op = O_constant;
67c0d1eb
RS
9912 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9913 BFD_RELOC_LO16);
f5040a92 9914 }
252b5132
RH
9915 }
9916 }
252b5132
RH
9917 else
9918 abort ();
8fc2e39e 9919
741fe287 9920 if (!mips_opts.at && *used_at == 1)
1661c76c 9921 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9922}
9923
ea1fb5dc
RS
9924/* Move the contents of register SOURCE into register DEST. */
9925
9926static void
67c0d1eb 9927move_register (int dest, int source)
ea1fb5dc 9928{
df58fc94
RS
9929 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9930 instruction specifically requires a 32-bit one. */
9931 if (mips_opts.micromips
833794fc 9932 && !mips_opts.insn32
df58fc94 9933 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9934 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9935 else
40fc1451 9936 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9937}
9938
4d7206a2 9939/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9940 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9941 The two alternatives are:
4d7206a2 9942
33eaf5de 9943 Global symbol Local symbol
4d7206a2
RS
9944 ------------- ------------
9945 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9946 ... ...
9947 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9948
9949 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9950 emits the second for a 16-bit offset or add_got_offset_hilo emits
9951 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9952
9953static void
67c0d1eb 9954load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9955{
9956 expressionS global;
9957
9958 global = *local;
9959 global.X_add_number = 0;
9960
9961 relax_start (local->X_add_symbol);
67c0d1eb
RS
9962 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9963 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9964 relax_switch ();
67c0d1eb
RS
9965 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9966 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9967 relax_end ();
9968}
9969
9970static void
67c0d1eb 9971add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9972{
9973 expressionS global;
9974
9975 global.X_op = O_constant;
9976 global.X_op_symbol = NULL;
9977 global.X_add_symbol = NULL;
9978 global.X_add_number = local->X_add_number;
9979
9980 relax_start (local->X_add_symbol);
67c0d1eb 9981 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9982 dest, dest, BFD_RELOC_LO16);
9983 relax_switch ();
67c0d1eb 9984 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9985 relax_end ();
9986}
9987
f6a22291
MR
9988static void
9989add_got_offset_hilo (int dest, expressionS *local, int tmp)
9990{
9991 expressionS global;
9992 int hold_mips_optimize;
9993
9994 global.X_op = O_constant;
9995 global.X_op_symbol = NULL;
9996 global.X_add_symbol = NULL;
9997 global.X_add_number = local->X_add_number;
9998
9999 relax_start (local->X_add_symbol);
10000 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
10001 relax_switch ();
10002 /* Set mips_optimize around the lui instruction to avoid
10003 inserting an unnecessary nop after the lw. */
10004 hold_mips_optimize = mips_optimize;
10005 mips_optimize = 2;
10006 macro_build_lui (&global, tmp);
10007 mips_optimize = hold_mips_optimize;
10008 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
10009 relax_end ();
10010
10011 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
10012}
10013
df58fc94
RS
10014/* Emit a sequence of instructions to emulate a branch likely operation.
10015 BR is an ordinary branch corresponding to one to be emulated. BRNEG
10016 is its complementing branch with the original condition negated.
10017 CALL is set if the original branch specified the link operation.
10018 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
10019
10020 Code like this is produced in the noreorder mode:
10021
10022 BRNEG <args>, 1f
10023 nop
10024 b <sym>
10025 delay slot (executed only if branch taken)
10026 1:
10027
10028 or, if CALL is set:
10029
10030 BRNEG <args>, 1f
10031 nop
10032 bal <sym>
10033 delay slot (executed only if branch taken)
10034 1:
10035
10036 In the reorder mode the delay slot would be filled with a nop anyway,
10037 so code produced is simply:
10038
10039 BR <args>, <sym>
10040 nop
10041
10042 This function is used when producing code for the microMIPS ASE that
10043 does not implement branch likely instructions in hardware. */
10044
10045static void
10046macro_build_branch_likely (const char *br, const char *brneg,
10047 int call, expressionS *ep, const char *fmt,
10048 unsigned int sreg, unsigned int treg)
10049{
10050 int noreorder = mips_opts.noreorder;
10051 expressionS expr1;
10052
10053 gas_assert (mips_opts.micromips);
10054 start_noreorder ();
10055 if (noreorder)
10056 {
10057 micromips_label_expr (&expr1);
10058 macro_build (&expr1, brneg, fmt, sreg, treg);
10059 macro_build (NULL, "nop", "");
10060 macro_build (ep, call ? "bal" : "b", "p");
10061
10062 /* Set to true so that append_insn adds a label. */
10063 emit_branch_likely_macro = TRUE;
10064 }
10065 else
10066 {
10067 macro_build (ep, br, fmt, sreg, treg);
10068 macro_build (NULL, "nop", "");
10069 }
10070 end_noreorder ();
10071}
10072
10073/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
10074 the condition code tested. EP specifies the branch target. */
10075
10076static void
10077macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
10078{
10079 const int call = 0;
10080 const char *brneg;
10081 const char *br;
10082
10083 switch (type)
10084 {
10085 case M_BC1FL:
10086 br = "bc1f";
10087 brneg = "bc1t";
10088 break;
10089 case M_BC1TL:
10090 br = "bc1t";
10091 brneg = "bc1f";
10092 break;
10093 case M_BC2FL:
10094 br = "bc2f";
10095 brneg = "bc2t";
10096 break;
10097 case M_BC2TL:
10098 br = "bc2t";
10099 brneg = "bc2f";
10100 break;
10101 default:
10102 abort ();
10103 }
10104 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
10105}
10106
10107/* Emit a two-argument branch macro specified by TYPE, using SREG as
10108 the register tested. EP specifies the branch target. */
10109
10110static void
10111macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
10112{
10113 const char *brneg = NULL;
10114 const char *br;
10115 int call = 0;
10116
10117 switch (type)
10118 {
10119 case M_BGEZ:
10120 br = "bgez";
10121 break;
10122 case M_BGEZL:
10123 br = mips_opts.micromips ? "bgez" : "bgezl";
10124 brneg = "bltz";
10125 break;
10126 case M_BGEZALL:
10127 gas_assert (mips_opts.micromips);
833794fc 10128 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
10129 brneg = "bltz";
10130 call = 1;
10131 break;
10132 case M_BGTZ:
10133 br = "bgtz";
10134 break;
10135 case M_BGTZL:
10136 br = mips_opts.micromips ? "bgtz" : "bgtzl";
10137 brneg = "blez";
10138 break;
10139 case M_BLEZ:
10140 br = "blez";
10141 break;
10142 case M_BLEZL:
10143 br = mips_opts.micromips ? "blez" : "blezl";
10144 brneg = "bgtz";
10145 break;
10146 case M_BLTZ:
10147 br = "bltz";
10148 break;
10149 case M_BLTZL:
10150 br = mips_opts.micromips ? "bltz" : "bltzl";
10151 brneg = "bgez";
10152 break;
10153 case M_BLTZALL:
10154 gas_assert (mips_opts.micromips);
833794fc 10155 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
10156 brneg = "bgez";
10157 call = 1;
10158 break;
10159 default:
10160 abort ();
10161 }
10162 if (mips_opts.micromips && brneg)
10163 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
10164 else
10165 macro_build (ep, br, "s,p", sreg);
10166}
10167
10168/* Emit a three-argument branch macro specified by TYPE, using SREG and
10169 TREG as the registers tested. EP specifies the branch target. */
10170
10171static void
10172macro_build_branch_rsrt (int type, expressionS *ep,
10173 unsigned int sreg, unsigned int treg)
10174{
10175 const char *brneg = NULL;
10176 const int call = 0;
10177 const char *br;
10178
10179 switch (type)
10180 {
10181 case M_BEQ:
10182 case M_BEQ_I:
10183 br = "beq";
10184 break;
10185 case M_BEQL:
10186 case M_BEQL_I:
10187 br = mips_opts.micromips ? "beq" : "beql";
10188 brneg = "bne";
10189 break;
10190 case M_BNE:
10191 case M_BNE_I:
10192 br = "bne";
10193 break;
10194 case M_BNEL:
10195 case M_BNEL_I:
10196 br = mips_opts.micromips ? "bne" : "bnel";
10197 brneg = "beq";
10198 break;
10199 default:
10200 abort ();
10201 }
10202 if (mips_opts.micromips && brneg)
10203 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10204 else
10205 macro_build (ep, br, "s,t,p", sreg, treg);
10206}
10207
f2ae14a1
RS
10208/* Return the high part that should be loaded in order to make the low
10209 part of VALUE accessible using an offset of OFFBITS bits. */
10210
10211static offsetT
10212offset_high_part (offsetT value, unsigned int offbits)
10213{
10214 offsetT bias;
10215 addressT low_mask;
10216
10217 if (offbits == 0)
10218 return value;
10219 bias = 1 << (offbits - 1);
10220 low_mask = bias * 2 - 1;
10221 return (value + bias) & ~low_mask;
10222}
10223
10224/* Return true if the value stored in offset_expr and offset_reloc
10225 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10226 amount that the caller wants to add without inducing overflow
10227 and ALIGN is the known alignment of the value in bytes. */
10228
10229static bfd_boolean
10230small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10231{
10232 if (offbits == 16)
10233 {
10234 /* Accept any relocation operator if overflow isn't a concern. */
10235 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10236 return TRUE;
10237
10238 /* These relocations are guaranteed not to overflow in correct links. */
10239 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10240 || gprel16_reloc_p (*offset_reloc))
10241 return TRUE;
10242 }
10243 if (offset_expr.X_op == O_constant
10244 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10245 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10246 return TRUE;
10247 return FALSE;
10248}
10249
252b5132
RH
10250/*
10251 * Build macros
10252 * This routine implements the seemingly endless macro or synthesized
10253 * instructions and addressing modes in the mips assembly language. Many
10254 * of these macros are simple and are similar to each other. These could
67c1ffbe 10255 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
10256 * this verbose method. Others are not simple macros but are more like
10257 * optimizing code generation.
10258 * One interesting optimization is when several store macros appear
67c1ffbe 10259 * consecutively that would load AT with the upper half of the same address.
2b0f3761 10260 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
10261 * of global optimization. We currently only optimize within a single macro.
10262 * For many of the load and store macros if the address is specified as a
10263 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10264 * first load register 'at' with zero and use it as the base register. The
10265 * mips assembler simply uses register $zero. Just one tiny optimization
10266 * we're missing.
10267 */
10268static void
833794fc 10269macro (struct mips_cl_insn *ip, char *str)
252b5132 10270{
c0ebe874
RS
10271 const struct mips_operand_array *operands;
10272 unsigned int breg, i;
741fe287 10273 unsigned int tempreg;
252b5132 10274 int mask;
43841e91 10275 int used_at = 0;
df58fc94 10276 expressionS label_expr;
252b5132 10277 expressionS expr1;
df58fc94 10278 expressionS *ep;
252b5132
RH
10279 const char *s;
10280 const char *s2;
10281 const char *fmt;
10282 int likely = 0;
252b5132 10283 int coproc = 0;
7f3c4072 10284 int offbits = 16;
1abe91b1 10285 int call = 0;
df58fc94
RS
10286 int jals = 0;
10287 int dbl = 0;
10288 int imm = 0;
10289 int ust = 0;
10290 int lp = 0;
a45328b9 10291 int ll_sc_paired = 0;
f2ae14a1 10292 bfd_boolean large_offset;
252b5132 10293 int off;
252b5132 10294 int hold_mips_optimize;
f2ae14a1 10295 unsigned int align;
c0ebe874 10296 unsigned int op[MAX_OPERANDS];
252b5132 10297
9c2799c2 10298 gas_assert (! mips_opts.mips16);
252b5132 10299
c0ebe874
RS
10300 operands = insn_operands (ip);
10301 for (i = 0; i < MAX_OPERANDS; i++)
10302 if (operands->operand[i])
10303 op[i] = insn_extract_operand (ip, operands->operand[i]);
10304 else
10305 op[i] = -1;
10306
252b5132
RH
10307 mask = ip->insn_mo->mask;
10308
df58fc94
RS
10309 label_expr.X_op = O_constant;
10310 label_expr.X_op_symbol = NULL;
10311 label_expr.X_add_symbol = NULL;
10312 label_expr.X_add_number = 0;
10313
252b5132
RH
10314 expr1.X_op = O_constant;
10315 expr1.X_op_symbol = NULL;
10316 expr1.X_add_symbol = NULL;
10317 expr1.X_add_number = 1;
f2ae14a1 10318 align = 1;
252b5132
RH
10319
10320 switch (mask)
10321 {
10322 case M_DABS:
10323 dbl = 1;
1a0670f3 10324 /* Fall through. */
252b5132 10325 case M_ABS:
df58fc94
RS
10326 /* bgez $a0,1f
10327 move v0,$a0
10328 sub v0,$zero,$a0
10329 1:
10330 */
252b5132 10331
7d10b47d 10332 start_noreorder ();
252b5132 10333
df58fc94
RS
10334 if (mips_opts.micromips)
10335 micromips_label_expr (&label_expr);
10336 else
10337 label_expr.X_add_number = 8;
c0ebe874
RS
10338 macro_build (&label_expr, "bgez", "s,p", op[1]);
10339 if (op[0] == op[1])
a605d2b3 10340 macro_build (NULL, "nop", "");
252b5132 10341 else
c0ebe874
RS
10342 move_register (op[0], op[1]);
10343 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
10344 if (mips_opts.micromips)
10345 micromips_add_label ();
252b5132 10346
7d10b47d 10347 end_noreorder ();
8fc2e39e 10348 break;
252b5132
RH
10349
10350 case M_ADD_I:
10351 s = "addi";
10352 s2 = "add";
387e7624
FS
10353 if (ISA_IS_R6 (mips_opts.isa))
10354 goto do_addi_i;
10355 else
10356 goto do_addi;
252b5132
RH
10357 case M_ADDU_I:
10358 s = "addiu";
10359 s2 = "addu";
10360 goto do_addi;
10361 case M_DADD_I:
10362 dbl = 1;
10363 s = "daddi";
10364 s2 = "dadd";
387e7624 10365 if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
df58fc94 10366 goto do_addi;
b0e6f033 10367 if (imm_expr.X_add_number >= -0x200
387e7624
FS
10368 && imm_expr.X_add_number < 0x200
10369 && !ISA_IS_R6 (mips_opts.isa))
df58fc94 10370 {
b0e6f033
RS
10371 macro_build (NULL, s, "t,r,.", op[0], op[1],
10372 (int) imm_expr.X_add_number);
df58fc94
RS
10373 break;
10374 }
10375 goto do_addi_i;
252b5132
RH
10376 case M_DADDU_I:
10377 dbl = 1;
10378 s = "daddiu";
10379 s2 = "daddu";
10380 do_addi:
b0e6f033 10381 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
10382 && imm_expr.X_add_number < 0x8000)
10383 {
c0ebe874 10384 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 10385 break;
252b5132 10386 }
df58fc94 10387 do_addi_i:
8fc2e39e 10388 used_at = 1;
67c0d1eb 10389 load_register (AT, &imm_expr, dbl);
c0ebe874 10390 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10391 break;
10392
10393 case M_AND_I:
10394 s = "andi";
10395 s2 = "and";
10396 goto do_bit;
10397 case M_OR_I:
10398 s = "ori";
10399 s2 = "or";
10400 goto do_bit;
10401 case M_NOR_I:
10402 s = "";
10403 s2 = "nor";
10404 goto do_bit;
10405 case M_XOR_I:
10406 s = "xori";
10407 s2 = "xor";
10408 do_bit:
b0e6f033 10409 if (imm_expr.X_add_number >= 0
252b5132
RH
10410 && imm_expr.X_add_number < 0x10000)
10411 {
10412 if (mask != M_NOR_I)
c0ebe874 10413 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
10414 else
10415 {
67c0d1eb 10416 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
10417 op[0], op[1], BFD_RELOC_LO16);
10418 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 10419 }
8fc2e39e 10420 break;
252b5132
RH
10421 }
10422
8fc2e39e 10423 used_at = 1;
bad1aba3 10424 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 10425 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10426 break;
10427
8b082fb1
TS
10428 case M_BALIGN:
10429 switch (imm_expr.X_add_number)
10430 {
10431 case 0:
10432 macro_build (NULL, "nop", "");
10433 break;
10434 case 2:
c0ebe874 10435 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10436 break;
03f66e8a
MR
10437 case 1:
10438 case 3:
c0ebe874 10439 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10440 (int) imm_expr.X_add_number);
8b082fb1 10441 break;
03f66e8a
MR
10442 default:
10443 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10444 (unsigned long) imm_expr.X_add_number);
10445 break;
8b082fb1
TS
10446 }
10447 break;
10448
df58fc94
RS
10449 case M_BC1FL:
10450 case M_BC1TL:
10451 case M_BC2FL:
10452 case M_BC2TL:
10453 gas_assert (mips_opts.micromips);
10454 macro_build_branch_ccl (mask, &offset_expr,
10455 EXTRACT_OPERAND (1, BCC, *ip));
10456 break;
10457
252b5132 10458 case M_BEQ_I:
252b5132 10459 case M_BEQL_I:
252b5132 10460 case M_BNE_I:
252b5132 10461 case M_BNEL_I:
b0e6f033 10462 if (imm_expr.X_add_number == 0)
c0ebe874 10463 op[1] = 0;
df58fc94 10464 else
252b5132 10465 {
c0ebe874 10466 op[1] = AT;
df58fc94 10467 used_at = 1;
bad1aba3 10468 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10469 }
df58fc94
RS
10470 /* Fall through. */
10471 case M_BEQL:
10472 case M_BNEL:
c0ebe874 10473 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10474 break;
10475
10476 case M_BGEL:
10477 likely = 1;
1a0670f3 10478 /* Fall through. */
252b5132 10479 case M_BGE:
c0ebe874
RS
10480 if (op[1] == 0)
10481 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10482 else if (op[0] == 0)
10483 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10484 else
252b5132 10485 {
df58fc94 10486 used_at = 1;
c0ebe874 10487 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10488 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10489 &offset_expr, AT, ZERO);
252b5132 10490 }
df58fc94
RS
10491 break;
10492
10493 case M_BGEZL:
10494 case M_BGEZALL:
10495 case M_BGTZL:
10496 case M_BLEZL:
10497 case M_BLTZL:
10498 case M_BLTZALL:
c0ebe874 10499 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10500 break;
10501
10502 case M_BGTL_I:
10503 likely = 1;
1a0670f3 10504 /* Fall through. */
252b5132 10505 case M_BGT_I:
90ecf173 10506 /* Check for > max integer. */
b0e6f033 10507 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10508 {
10509 do_false:
90ecf173 10510 /* Result is always false. */
252b5132 10511 if (! likely)
a605d2b3 10512 macro_build (NULL, "nop", "");
252b5132 10513 else
df58fc94 10514 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10515 break;
252b5132 10516 }
f9419b05 10517 ++imm_expr.X_add_number;
6f2117ba 10518 /* Fall through. */
252b5132
RH
10519 case M_BGE_I:
10520 case M_BGEL_I:
10521 if (mask == M_BGEL_I)
10522 likely = 1;
b0e6f033 10523 if (imm_expr.X_add_number == 0)
252b5132 10524 {
df58fc94 10525 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10526 &offset_expr, op[0]);
8fc2e39e 10527 break;
252b5132 10528 }
b0e6f033 10529 if (imm_expr.X_add_number == 1)
252b5132 10530 {
df58fc94 10531 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10532 &offset_expr, op[0]);
8fc2e39e 10533 break;
252b5132 10534 }
b0e6f033 10535 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10536 {
10537 do_true:
6f2117ba 10538 /* Result is always true. */
1661c76c 10539 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10540 macro_build (&offset_expr, "b", "p");
8fc2e39e 10541 break;
252b5132 10542 }
8fc2e39e 10543 used_at = 1;
c0ebe874 10544 set_at (op[0], 0);
df58fc94
RS
10545 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10546 &offset_expr, AT, ZERO);
252b5132
RH
10547 break;
10548
10549 case M_BGEUL:
10550 likely = 1;
1a0670f3 10551 /* Fall through. */
252b5132 10552 case M_BGEU:
c0ebe874 10553 if (op[1] == 0)
252b5132 10554 goto do_true;
c0ebe874 10555 else if (op[0] == 0)
df58fc94 10556 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10557 &offset_expr, ZERO, op[1]);
df58fc94 10558 else
252b5132 10559 {
df58fc94 10560 used_at = 1;
c0ebe874 10561 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10562 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10563 &offset_expr, AT, ZERO);
252b5132 10564 }
252b5132
RH
10565 break;
10566
10567 case M_BGTUL_I:
10568 likely = 1;
1a0670f3 10569 /* Fall through. */
252b5132 10570 case M_BGTU_I:
c0ebe874 10571 if (op[0] == 0
bad1aba3 10572 || (GPR_SIZE == 32
f01dc953 10573 && imm_expr.X_add_number == -1))
252b5132 10574 goto do_false;
f9419b05 10575 ++imm_expr.X_add_number;
6f2117ba 10576 /* Fall through. */
252b5132
RH
10577 case M_BGEU_I:
10578 case M_BGEUL_I:
10579 if (mask == M_BGEUL_I)
10580 likely = 1;
b0e6f033 10581 if (imm_expr.X_add_number == 0)
252b5132 10582 goto do_true;
b0e6f033 10583 else if (imm_expr.X_add_number == 1)
df58fc94 10584 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10585 &offset_expr, op[0], ZERO);
df58fc94 10586 else
252b5132 10587 {
df58fc94 10588 used_at = 1;
c0ebe874 10589 set_at (op[0], 1);
df58fc94
RS
10590 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10591 &offset_expr, AT, ZERO);
252b5132 10592 }
252b5132
RH
10593 break;
10594
10595 case M_BGTL:
10596 likely = 1;
1a0670f3 10597 /* Fall through. */
252b5132 10598 case M_BGT:
c0ebe874
RS
10599 if (op[1] == 0)
10600 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10601 else if (op[0] == 0)
10602 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10603 else
252b5132 10604 {
df58fc94 10605 used_at = 1;
c0ebe874 10606 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10607 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10608 &offset_expr, AT, ZERO);
252b5132 10609 }
252b5132
RH
10610 break;
10611
10612 case M_BGTUL:
10613 likely = 1;
1a0670f3 10614 /* Fall through. */
252b5132 10615 case M_BGTU:
c0ebe874 10616 if (op[1] == 0)
df58fc94 10617 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10618 &offset_expr, op[0], ZERO);
10619 else if (op[0] == 0)
df58fc94
RS
10620 goto do_false;
10621 else
252b5132 10622 {
df58fc94 10623 used_at = 1;
c0ebe874 10624 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10625 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10626 &offset_expr, AT, ZERO);
252b5132 10627 }
252b5132
RH
10628 break;
10629
10630 case M_BLEL:
10631 likely = 1;
1a0670f3 10632 /* Fall through. */
252b5132 10633 case M_BLE:
c0ebe874
RS
10634 if (op[1] == 0)
10635 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10636 else if (op[0] == 0)
10637 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10638 else
252b5132 10639 {
df58fc94 10640 used_at = 1;
c0ebe874 10641 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10642 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10643 &offset_expr, AT, ZERO);
252b5132 10644 }
252b5132
RH
10645 break;
10646
10647 case M_BLEL_I:
10648 likely = 1;
1a0670f3 10649 /* Fall through. */
252b5132 10650 case M_BLE_I:
b0e6f033 10651 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10652 goto do_true;
f9419b05 10653 ++imm_expr.X_add_number;
6f2117ba 10654 /* Fall through. */
252b5132
RH
10655 case M_BLT_I:
10656 case M_BLTL_I:
10657 if (mask == M_BLTL_I)
10658 likely = 1;
b0e6f033 10659 if (imm_expr.X_add_number == 0)
c0ebe874 10660 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10661 else if (imm_expr.X_add_number == 1)
c0ebe874 10662 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10663 else
252b5132 10664 {
df58fc94 10665 used_at = 1;
c0ebe874 10666 set_at (op[0], 0);
df58fc94
RS
10667 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10668 &offset_expr, AT, ZERO);
252b5132 10669 }
252b5132
RH
10670 break;
10671
10672 case M_BLEUL:
10673 likely = 1;
1a0670f3 10674 /* Fall through. */
252b5132 10675 case M_BLEU:
c0ebe874 10676 if (op[1] == 0)
df58fc94 10677 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10678 &offset_expr, op[0], ZERO);
10679 else if (op[0] == 0)
df58fc94
RS
10680 goto do_true;
10681 else
252b5132 10682 {
df58fc94 10683 used_at = 1;
c0ebe874 10684 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10685 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10686 &offset_expr, AT, ZERO);
252b5132 10687 }
252b5132
RH
10688 break;
10689
10690 case M_BLEUL_I:
10691 likely = 1;
1a0670f3 10692 /* Fall through. */
252b5132 10693 case M_BLEU_I:
c0ebe874 10694 if (op[0] == 0
bad1aba3 10695 || (GPR_SIZE == 32
f01dc953 10696 && imm_expr.X_add_number == -1))
252b5132 10697 goto do_true;
f9419b05 10698 ++imm_expr.X_add_number;
6f2117ba 10699 /* Fall through. */
252b5132
RH
10700 case M_BLTU_I:
10701 case M_BLTUL_I:
10702 if (mask == M_BLTUL_I)
10703 likely = 1;
b0e6f033 10704 if (imm_expr.X_add_number == 0)
252b5132 10705 goto do_false;
b0e6f033 10706 else if (imm_expr.X_add_number == 1)
df58fc94 10707 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10708 &offset_expr, op[0], ZERO);
df58fc94 10709 else
252b5132 10710 {
df58fc94 10711 used_at = 1;
c0ebe874 10712 set_at (op[0], 1);
df58fc94
RS
10713 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10714 &offset_expr, AT, ZERO);
252b5132 10715 }
252b5132
RH
10716 break;
10717
10718 case M_BLTL:
10719 likely = 1;
1a0670f3 10720 /* Fall through. */
252b5132 10721 case M_BLT:
c0ebe874
RS
10722 if (op[1] == 0)
10723 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10724 else if (op[0] == 0)
10725 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10726 else
252b5132 10727 {
df58fc94 10728 used_at = 1;
c0ebe874 10729 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10730 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10731 &offset_expr, AT, ZERO);
252b5132 10732 }
252b5132
RH
10733 break;
10734
10735 case M_BLTUL:
10736 likely = 1;
1a0670f3 10737 /* Fall through. */
252b5132 10738 case M_BLTU:
c0ebe874 10739 if (op[1] == 0)
252b5132 10740 goto do_false;
c0ebe874 10741 else if (op[0] == 0)
df58fc94 10742 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10743 &offset_expr, ZERO, op[1]);
df58fc94 10744 else
252b5132 10745 {
df58fc94 10746 used_at = 1;
c0ebe874 10747 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10748 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10749 &offset_expr, AT, ZERO);
252b5132 10750 }
252b5132
RH
10751 break;
10752
10753 case M_DDIV_3:
10754 dbl = 1;
1a0670f3 10755 /* Fall through. */
252b5132
RH
10756 case M_DIV_3:
10757 s = "mflo";
10758 goto do_div3;
10759 case M_DREM_3:
10760 dbl = 1;
1a0670f3 10761 /* Fall through. */
252b5132
RH
10762 case M_REM_3:
10763 s = "mfhi";
10764 do_div3:
c0ebe874 10765 if (op[2] == 0)
252b5132 10766 {
1661c76c 10767 as_warn (_("divide by zero"));
252b5132 10768 if (mips_trap)
df58fc94 10769 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10770 else
df58fc94 10771 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10772 break;
252b5132
RH
10773 }
10774
7d10b47d 10775 start_noreorder ();
252b5132
RH
10776 if (mips_trap)
10777 {
c0ebe874
RS
10778 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10779 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10780 }
10781 else
10782 {
df58fc94
RS
10783 if (mips_opts.micromips)
10784 micromips_label_expr (&label_expr);
10785 else
10786 label_expr.X_add_number = 8;
c0ebe874
RS
10787 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10788 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10789 macro_build (NULL, "break", BRK_FMT, 7);
10790 if (mips_opts.micromips)
10791 micromips_add_label ();
252b5132
RH
10792 }
10793 expr1.X_add_number = -1;
8fc2e39e 10794 used_at = 1;
f6a22291 10795 load_register (AT, &expr1, dbl);
df58fc94
RS
10796 if (mips_opts.micromips)
10797 micromips_label_expr (&label_expr);
10798 else
10799 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10800 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10801 if (dbl)
10802 {
10803 expr1.X_add_number = 1;
f6a22291 10804 load_register (AT, &expr1, dbl);
df58fc94 10805 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10806 }
10807 else
10808 {
10809 expr1.X_add_number = 0x80000000;
df58fc94 10810 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10811 }
10812 if (mips_trap)
10813 {
c0ebe874 10814 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10815 /* We want to close the noreorder block as soon as possible, so
10816 that later insns are available for delay slot filling. */
7d10b47d 10817 end_noreorder ();
252b5132
RH
10818 }
10819 else
10820 {
df58fc94
RS
10821 if (mips_opts.micromips)
10822 micromips_label_expr (&label_expr);
10823 else
10824 label_expr.X_add_number = 8;
c0ebe874 10825 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10826 macro_build (NULL, "nop", "");
252b5132
RH
10827
10828 /* We want to close the noreorder block as soon as possible, so
10829 that later insns are available for delay slot filling. */
7d10b47d 10830 end_noreorder ();
252b5132 10831
df58fc94 10832 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10833 }
df58fc94
RS
10834 if (mips_opts.micromips)
10835 micromips_add_label ();
c0ebe874 10836 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10837 break;
10838
10839 case M_DIV_3I:
10840 s = "div";
10841 s2 = "mflo";
10842 goto do_divi;
10843 case M_DIVU_3I:
10844 s = "divu";
10845 s2 = "mflo";
10846 goto do_divi;
10847 case M_REM_3I:
10848 s = "div";
10849 s2 = "mfhi";
10850 goto do_divi;
10851 case M_REMU_3I:
10852 s = "divu";
10853 s2 = "mfhi";
10854 goto do_divi;
10855 case M_DDIV_3I:
10856 dbl = 1;
10857 s = "ddiv";
10858 s2 = "mflo";
10859 goto do_divi;
10860 case M_DDIVU_3I:
10861 dbl = 1;
10862 s = "ddivu";
10863 s2 = "mflo";
10864 goto do_divi;
10865 case M_DREM_3I:
10866 dbl = 1;
10867 s = "ddiv";
10868 s2 = "mfhi";
10869 goto do_divi;
10870 case M_DREMU_3I:
10871 dbl = 1;
10872 s = "ddivu";
10873 s2 = "mfhi";
10874 do_divi:
b0e6f033 10875 if (imm_expr.X_add_number == 0)
252b5132 10876 {
1661c76c 10877 as_warn (_("divide by zero"));
252b5132 10878 if (mips_trap)
df58fc94 10879 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10880 else
df58fc94 10881 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10882 break;
252b5132 10883 }
b0e6f033 10884 if (imm_expr.X_add_number == 1)
252b5132
RH
10885 {
10886 if (strcmp (s2, "mflo") == 0)
c0ebe874 10887 move_register (op[0], op[1]);
252b5132 10888 else
c0ebe874 10889 move_register (op[0], ZERO);
8fc2e39e 10890 break;
252b5132 10891 }
b0e6f033 10892 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10893 {
10894 if (strcmp (s2, "mflo") == 0)
c0ebe874 10895 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10896 else
c0ebe874 10897 move_register (op[0], ZERO);
8fc2e39e 10898 break;
252b5132
RH
10899 }
10900
8fc2e39e 10901 used_at = 1;
67c0d1eb 10902 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10903 macro_build (NULL, s, "z,s,t", op[1], AT);
10904 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10905 break;
10906
10907 case M_DIVU_3:
10908 s = "divu";
10909 s2 = "mflo";
10910 goto do_divu3;
10911 case M_REMU_3:
10912 s = "divu";
10913 s2 = "mfhi";
10914 goto do_divu3;
10915 case M_DDIVU_3:
10916 s = "ddivu";
10917 s2 = "mflo";
10918 goto do_divu3;
10919 case M_DREMU_3:
10920 s = "ddivu";
10921 s2 = "mfhi";
10922 do_divu3:
7d10b47d 10923 start_noreorder ();
252b5132
RH
10924 if (mips_trap)
10925 {
c0ebe874
RS
10926 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10927 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10928 /* We want to close the noreorder block as soon as possible, so
10929 that later insns are available for delay slot filling. */
7d10b47d 10930 end_noreorder ();
252b5132
RH
10931 }
10932 else
10933 {
df58fc94
RS
10934 if (mips_opts.micromips)
10935 micromips_label_expr (&label_expr);
10936 else
10937 label_expr.X_add_number = 8;
c0ebe874
RS
10938 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10939 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10940
10941 /* We want to close the noreorder block as soon as possible, so
10942 that later insns are available for delay slot filling. */
7d10b47d 10943 end_noreorder ();
df58fc94
RS
10944 macro_build (NULL, "break", BRK_FMT, 7);
10945 if (mips_opts.micromips)
10946 micromips_add_label ();
252b5132 10947 }
c0ebe874 10948 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10949 break;
252b5132 10950
1abe91b1
MR
10951 case M_DLCA_AB:
10952 dbl = 1;
1a0670f3 10953 /* Fall through. */
1abe91b1
MR
10954 case M_LCA_AB:
10955 call = 1;
10956 goto do_la;
252b5132
RH
10957 case M_DLA_AB:
10958 dbl = 1;
1a0670f3 10959 /* Fall through. */
252b5132 10960 case M_LA_AB:
1abe91b1 10961 do_la:
252b5132
RH
10962 /* Load the address of a symbol into a register. If breg is not
10963 zero, we then add a base register to it. */
10964
c0ebe874 10965 breg = op[2];
bad1aba3 10966 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10967 as_warn (_("dla used to load 32-bit register; recommend using la "
10968 "instead"));
3bec30a8 10969
90ecf173 10970 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10971 as_warn (_("la used to load 64-bit address; recommend using dla "
10972 "instead"));
3bec30a8 10973
f2ae14a1 10974 if (small_offset_p (0, align, 16))
0c11417f 10975 {
c0ebe874 10976 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10977 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10978 break;
0c11417f
MR
10979 }
10980
c0ebe874 10981 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10982 {
10983 tempreg = AT;
10984 used_at = 1;
10985 }
10986 else
c0ebe874 10987 tempreg = op[0];
afdbd6d0 10988
252b5132
RH
10989 if (offset_expr.X_op != O_symbol
10990 && offset_expr.X_op != O_constant)
10991 {
1661c76c 10992 as_bad (_("expression too complex"));
252b5132
RH
10993 offset_expr.X_op = O_constant;
10994 }
10995
252b5132 10996 if (offset_expr.X_op == O_constant)
aed1a261 10997 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10998 else if (mips_pic == NO_PIC)
10999 {
d6bc6245 11000 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 11001 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
11002 Otherwise we want
11003 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11004 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11005 If we have a constant, we need two instructions anyhow,
d6bc6245 11006 so we may as well always use the latter form.
76b3015f 11007
6caf9ef4
TS
11008 With 64bit address space and a usable $at we want
11009 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11010 lui $at,<sym> (BFD_RELOC_HI16_S)
11011 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11012 daddiu $at,<sym> (BFD_RELOC_LO16)
11013 dsll32 $tempreg,0
11014 daddu $tempreg,$tempreg,$at
11015
11016 If $at is already in use, we use a path which is suboptimal
11017 on superscalar processors.
11018 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11019 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11020 dsll $tempreg,16
11021 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11022 dsll $tempreg,16
11023 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
11024
11025 For GP relative symbols in 64bit address space we can use
11026 the same sequence as in 32bit address space. */
aed1a261 11027 if (HAVE_64BIT_SYMBOLS)
252b5132 11028 {
6caf9ef4
TS
11029 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11030 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11031 {
11032 relax_start (offset_expr.X_add_symbol);
11033 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11034 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
11035 relax_switch ();
11036 }
d6bc6245 11037
741fe287 11038 if (used_at == 0 && mips_opts.at)
98d3f06f 11039 {
df58fc94 11040 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 11041 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 11042 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 11043 AT, BFD_RELOC_HI16_S);
67c0d1eb 11044 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11045 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 11046 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11047 AT, AT, BFD_RELOC_LO16);
df58fc94 11048 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11049 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
11050 used_at = 1;
11051 }
11052 else
11053 {
df58fc94 11054 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 11055 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 11056 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11057 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11058 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 11059 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11060 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 11061 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 11062 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11063 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 11064 }
6caf9ef4
TS
11065
11066 if (mips_relax.sequence)
11067 relax_end ();
98d3f06f
KH
11068 }
11069 else
11070 {
11071 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11072 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 11073 {
4d7206a2 11074 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11075 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11076 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 11077 relax_switch ();
98d3f06f 11078 }
6943caf0 11079 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 11080 as_bad (_("offset too large"));
67c0d1eb
RS
11081 macro_build_lui (&offset_expr, tempreg);
11082 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11083 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11084 if (mips_relax.sequence)
11085 relax_end ();
98d3f06f 11086 }
252b5132 11087 }
0a44bf69 11088 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 11089 {
9117d219
NC
11090 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11091
252b5132
RH
11092 /* If this is a reference to an external symbol, and there
11093 is no constant, we want
11094 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 11095 or for lca or if tempreg is PIC_CALL_REG
9117d219 11096 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
11097 For a local symbol, we want
11098 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11099 nop
11100 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11101
11102 If we have a small constant, and this is a reference to
11103 an external symbol, we want
11104 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11105 nop
11106 addiu $tempreg,$tempreg,<constant>
11107 For a local symbol, we want the same instruction
11108 sequence, but we output a BFD_RELOC_LO16 reloc on the
11109 addiu instruction.
11110
11111 If we have a large constant, and this is a reference to
11112 an external symbol, we want
11113 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11114 lui $at,<hiconstant>
11115 addiu $at,$at,<loconstant>
11116 addu $tempreg,$tempreg,$at
11117 For a local symbol, we want the same instruction
11118 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 11119 addiu instruction.
ed6fb7bd
SC
11120 */
11121
4d7206a2 11122 if (offset_expr.X_add_number == 0)
252b5132 11123 {
0a44bf69
RS
11124 if (mips_pic == SVR4_PIC
11125 && breg == 0
11126 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
11127 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
11128
11129 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11130 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11131 lw_reloc_type, mips_gp_register);
4d7206a2 11132 if (breg != 0)
252b5132
RH
11133 {
11134 /* We're going to put in an addu instruction using
11135 tempreg, so we may as well insert the nop right
11136 now. */
269137b2 11137 load_delay_nop ();
252b5132 11138 }
4d7206a2 11139 relax_switch ();
67c0d1eb
RS
11140 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11141 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11142 load_delay_nop ();
67c0d1eb
RS
11143 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11144 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 11145 relax_end ();
252b5132
RH
11146 /* FIXME: If breg == 0, and the next instruction uses
11147 $tempreg, then if this variant case is used an extra
11148 nop will be generated. */
11149 }
4d7206a2
RS
11150 else if (offset_expr.X_add_number >= -0x8000
11151 && offset_expr.X_add_number < 0x8000)
252b5132 11152 {
67c0d1eb 11153 load_got_offset (tempreg, &offset_expr);
269137b2 11154 load_delay_nop ();
67c0d1eb 11155 add_got_offset (tempreg, &offset_expr);
252b5132
RH
11156 }
11157 else
11158 {
4d7206a2
RS
11159 expr1.X_add_number = offset_expr.X_add_number;
11160 offset_expr.X_add_number =
43c0598f 11161 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 11162 load_got_offset (tempreg, &offset_expr);
f6a22291 11163 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
11164 /* If we are going to add in a base register, and the
11165 target register and the base register are the same,
11166 then we are using AT as a temporary register. Since
11167 we want to load the constant into AT, we add our
11168 current AT (from the global offset table) and the
11169 register into the register now, and pretend we were
11170 not using a base register. */
c0ebe874 11171 if (breg == op[0])
252b5132 11172 {
269137b2 11173 load_delay_nop ();
67c0d1eb 11174 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11175 op[0], AT, breg);
252b5132 11176 breg = 0;
c0ebe874 11177 tempreg = op[0];
252b5132 11178 }
f6a22291 11179 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
11180 used_at = 1;
11181 }
11182 }
0a44bf69 11183 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 11184 {
67c0d1eb 11185 int add_breg_early = 0;
f5040a92
AO
11186
11187 /* If this is a reference to an external, and there is no
11188 constant, or local symbol (*), with or without a
11189 constant, we want
11190 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 11191 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11192 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11193
11194 If we have a small constant, and this is a reference to
11195 an external symbol, we want
11196 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11197 addiu $tempreg,$tempreg,<constant>
11198
11199 If we have a large constant, and this is a reference to
11200 an external symbol, we want
11201 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11202 lui $at,<hiconstant>
11203 addiu $at,$at,<loconstant>
11204 addu $tempreg,$tempreg,$at
11205
11206 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11207 local symbols, even though it introduces an additional
11208 instruction. */
11209
f5040a92
AO
11210 if (offset_expr.X_add_number)
11211 {
4d7206a2 11212 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11213 offset_expr.X_add_number = 0;
11214
4d7206a2 11215 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11216 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11217 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
11218
11219 if (expr1.X_add_number >= -0x8000
11220 && expr1.X_add_number < 0x8000)
11221 {
67c0d1eb
RS
11222 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11223 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11224 }
ecd13cd3 11225 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11226 {
c0ebe874
RS
11227 unsigned int dreg;
11228
f5040a92
AO
11229 /* If we are going to add in a base register, and the
11230 target register and the base register are the same,
11231 then we are using AT as a temporary register. Since
11232 we want to load the constant into AT, we add our
11233 current AT (from the global offset table) and the
11234 register into the register now, and pretend we were
11235 not using a base register. */
c0ebe874 11236 if (breg != op[0])
f5040a92
AO
11237 dreg = tempreg;
11238 else
11239 {
9c2799c2 11240 gas_assert (tempreg == AT);
67c0d1eb 11241 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11242 op[0], AT, breg);
11243 dreg = op[0];
67c0d1eb 11244 add_breg_early = 1;
f5040a92
AO
11245 }
11246
f6a22291 11247 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11248 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11249 dreg, dreg, AT);
f5040a92 11250
f5040a92
AO
11251 used_at = 1;
11252 }
11253 else
11254 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11255
4d7206a2 11256 relax_switch ();
f5040a92
AO
11257 offset_expr.X_add_number = expr1.X_add_number;
11258
67c0d1eb
RS
11259 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11260 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11261 if (add_breg_early)
f5040a92 11262 {
67c0d1eb 11263 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11264 op[0], tempreg, breg);
f5040a92 11265 breg = 0;
c0ebe874 11266 tempreg = op[0];
f5040a92 11267 }
4d7206a2 11268 relax_end ();
f5040a92 11269 }
4d7206a2 11270 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 11271 {
4d7206a2 11272 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11273 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11274 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 11275 relax_switch ();
67c0d1eb
RS
11276 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11277 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 11278 relax_end ();
f5040a92 11279 }
4d7206a2 11280 else
f5040a92 11281 {
67c0d1eb
RS
11282 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11283 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
11284 }
11285 }
0a44bf69 11286 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11287 {
67c0d1eb 11288 int gpdelay;
9117d219
NC
11289 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11290 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 11291 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
11292
11293 /* This is the large GOT case. If this is a reference to an
11294 external symbol, and there is no constant, we want
11295 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11296 addu $tempreg,$tempreg,$gp
11297 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11298 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
11299 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11300 addu $tempreg,$tempreg,$gp
11301 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
11302 For a local symbol, we want
11303 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11304 nop
11305 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11306
11307 If we have a small constant, and this is a reference to
11308 an external symbol, we want
11309 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11310 addu $tempreg,$tempreg,$gp
11311 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11312 nop
11313 addiu $tempreg,$tempreg,<constant>
11314 For a local symbol, we want
11315 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11316 nop
11317 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11318
11319 If we have a large constant, and this is a reference to
11320 an external symbol, we want
11321 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11322 addu $tempreg,$tempreg,$gp
11323 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11324 lui $at,<hiconstant>
11325 addiu $at,$at,<loconstant>
11326 addu $tempreg,$tempreg,$at
11327 For a local symbol, we want
11328 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11329 lui $at,<hiconstant>
11330 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11331 addu $tempreg,$tempreg,$at
f5040a92 11332 */
438c16b8 11333
252b5132
RH
11334 expr1.X_add_number = offset_expr.X_add_number;
11335 offset_expr.X_add_number = 0;
4d7206a2 11336 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11337 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
11338 if (expr1.X_add_number == 0 && breg == 0
11339 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
11340 {
11341 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11342 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11343 }
df58fc94 11344 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11345 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11346 tempreg, tempreg, mips_gp_register);
67c0d1eb 11347 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 11348 tempreg, lw_reloc_type, tempreg);
252b5132
RH
11349 if (expr1.X_add_number == 0)
11350 {
67c0d1eb 11351 if (breg != 0)
252b5132
RH
11352 {
11353 /* We're going to put in an addu instruction using
11354 tempreg, so we may as well insert the nop right
11355 now. */
269137b2 11356 load_delay_nop ();
252b5132 11357 }
252b5132
RH
11358 }
11359 else if (expr1.X_add_number >= -0x8000
11360 && expr1.X_add_number < 0x8000)
11361 {
269137b2 11362 load_delay_nop ();
67c0d1eb 11363 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11364 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
11365 }
11366 else
11367 {
c0ebe874
RS
11368 unsigned int dreg;
11369
252b5132
RH
11370 /* If we are going to add in a base register, and the
11371 target register and the base register are the same,
11372 then we are using AT as a temporary register. Since
11373 we want to load the constant into AT, we add our
11374 current AT (from the global offset table) and the
11375 register into the register now, and pretend we were
11376 not using a base register. */
c0ebe874 11377 if (breg != op[0])
67c0d1eb 11378 dreg = tempreg;
252b5132
RH
11379 else
11380 {
9c2799c2 11381 gas_assert (tempreg == AT);
269137b2 11382 load_delay_nop ();
67c0d1eb 11383 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11384 op[0], AT, breg);
11385 dreg = op[0];
252b5132
RH
11386 }
11387
f6a22291 11388 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11389 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 11390
252b5132
RH
11391 used_at = 1;
11392 }
43c0598f 11393 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 11394 relax_switch ();
252b5132 11395
67c0d1eb 11396 if (gpdelay)
252b5132
RH
11397 {
11398 /* This is needed because this instruction uses $gp, but
f5040a92 11399 the first instruction on the main stream does not. */
67c0d1eb 11400 macro_build (NULL, "nop", "");
252b5132 11401 }
ed6fb7bd 11402
67c0d1eb
RS
11403 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11404 local_reloc_type, mips_gp_register);
f5040a92 11405 if (expr1.X_add_number >= -0x8000
252b5132
RH
11406 && expr1.X_add_number < 0x8000)
11407 {
269137b2 11408 load_delay_nop ();
67c0d1eb
RS
11409 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11410 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 11411 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
11412 register, the external symbol case ended with a load,
11413 so if the symbol turns out to not be external, and
11414 the next instruction uses tempreg, an unnecessary nop
11415 will be inserted. */
252b5132
RH
11416 }
11417 else
11418 {
c0ebe874 11419 if (breg == op[0])
252b5132
RH
11420 {
11421 /* We must add in the base register now, as in the
f5040a92 11422 external symbol case. */
9c2799c2 11423 gas_assert (tempreg == AT);
269137b2 11424 load_delay_nop ();
67c0d1eb 11425 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11426 op[0], AT, breg);
11427 tempreg = op[0];
252b5132 11428 /* We set breg to 0 because we have arranged to add
f5040a92 11429 it in in both cases. */
252b5132
RH
11430 breg = 0;
11431 }
11432
67c0d1eb
RS
11433 macro_build_lui (&expr1, AT);
11434 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11435 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11436 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11437 tempreg, tempreg, AT);
8fc2e39e 11438 used_at = 1;
252b5132 11439 }
4d7206a2 11440 relax_end ();
252b5132 11441 }
0a44bf69 11442 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11443 {
f5040a92
AO
11444 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11445 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11446 int add_breg_early = 0;
f5040a92
AO
11447
11448 /* This is the large GOT case. If this is a reference to an
11449 external symbol, and there is no constant, we want
11450 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11451 add $tempreg,$tempreg,$gp
11452 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11453 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11454 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11455 add $tempreg,$tempreg,$gp
11456 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11457
11458 If we have a small constant, and this is a reference to
11459 an external symbol, we want
11460 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11461 add $tempreg,$tempreg,$gp
11462 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11463 addi $tempreg,$tempreg,<constant>
11464
11465 If we have a large constant, and this is a reference to
11466 an external symbol, we want
11467 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11468 addu $tempreg,$tempreg,$gp
11469 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11470 lui $at,<hiconstant>
11471 addi $at,$at,<loconstant>
11472 add $tempreg,$tempreg,$at
11473
11474 If we have NewABI, and we know it's a local symbol, we want
11475 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11476 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11477 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11478
4d7206a2 11479 relax_start (offset_expr.X_add_symbol);
f5040a92 11480
4d7206a2 11481 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11482 offset_expr.X_add_number = 0;
11483
1abe91b1
MR
11484 if (expr1.X_add_number == 0 && breg == 0
11485 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11486 {
11487 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11488 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11489 }
df58fc94 11490 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11491 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11492 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11493 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11494 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11495
11496 if (expr1.X_add_number == 0)
4d7206a2 11497 ;
f5040a92
AO
11498 else if (expr1.X_add_number >= -0x8000
11499 && expr1.X_add_number < 0x8000)
11500 {
67c0d1eb 11501 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11502 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11503 }
ecd13cd3 11504 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11505 {
c0ebe874
RS
11506 unsigned int dreg;
11507
f5040a92
AO
11508 /* If we are going to add in a base register, and the
11509 target register and the base register are the same,
11510 then we are using AT as a temporary register. Since
11511 we want to load the constant into AT, we add our
11512 current AT (from the global offset table) and the
11513 register into the register now, and pretend we were
11514 not using a base register. */
c0ebe874 11515 if (breg != op[0])
f5040a92
AO
11516 dreg = tempreg;
11517 else
11518 {
9c2799c2 11519 gas_assert (tempreg == AT);
67c0d1eb 11520 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11521 op[0], AT, breg);
11522 dreg = op[0];
67c0d1eb 11523 add_breg_early = 1;
f5040a92
AO
11524 }
11525
f6a22291 11526 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11527 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11528
f5040a92
AO
11529 used_at = 1;
11530 }
11531 else
11532 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11533
4d7206a2 11534 relax_switch ();
f5040a92 11535 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11536 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11537 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11538 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11539 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11540 if (add_breg_early)
f5040a92 11541 {
67c0d1eb 11542 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11543 op[0], tempreg, breg);
f5040a92 11544 breg = 0;
c0ebe874 11545 tempreg = op[0];
f5040a92 11546 }
4d7206a2 11547 relax_end ();
f5040a92 11548 }
252b5132
RH
11549 else
11550 abort ();
11551
11552 if (breg != 0)
c0ebe874 11553 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11554 break;
11555
52b6b6b9 11556 case M_MSGSND:
df58fc94 11557 gas_assert (!mips_opts.micromips);
c0ebe874 11558 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11559 break;
52b6b6b9
JM
11560
11561 case M_MSGLD:
df58fc94 11562 gas_assert (!mips_opts.micromips);
c8276761 11563 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11564 break;
52b6b6b9
JM
11565
11566 case M_MSGLD_T:
df58fc94 11567 gas_assert (!mips_opts.micromips);
c0ebe874 11568 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11569 break;
52b6b6b9
JM
11570
11571 case M_MSGWAIT:
df58fc94 11572 gas_assert (!mips_opts.micromips);
52b6b6b9 11573 macro_build (NULL, "c2", "C", 3);
c7af4273 11574 break;
52b6b6b9
JM
11575
11576 case M_MSGWAIT_T:
df58fc94 11577 gas_assert (!mips_opts.micromips);
c0ebe874 11578 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11579 break;
52b6b6b9 11580
252b5132
RH
11581 case M_J_A:
11582 /* The j instruction may not be used in PIC code, since it
11583 requires an absolute address. We convert it to a b
11584 instruction. */
11585 if (mips_pic == NO_PIC)
67c0d1eb 11586 macro_build (&offset_expr, "j", "a");
252b5132 11587 else
67c0d1eb 11588 macro_build (&offset_expr, "b", "p");
8fc2e39e 11589 break;
252b5132
RH
11590
11591 /* The jal instructions must be handled as macros because when
11592 generating PIC code they expand to multi-instruction
11593 sequences. Normally they are simple instructions. */
df58fc94 11594 case M_JALS_1:
c0ebe874
RS
11595 op[1] = op[0];
11596 op[0] = RA;
df58fc94
RS
11597 /* Fall through. */
11598 case M_JALS_2:
11599 gas_assert (mips_opts.micromips);
833794fc
MR
11600 if (mips_opts.insn32)
11601 {
1661c76c 11602 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11603 break;
11604 }
df58fc94
RS
11605 jals = 1;
11606 goto jal;
252b5132 11607 case M_JAL_1:
c0ebe874
RS
11608 op[1] = op[0];
11609 op[0] = RA;
252b5132
RH
11610 /* Fall through. */
11611 case M_JAL_2:
df58fc94 11612 jal:
3e722fb5 11613 if (mips_pic == NO_PIC)
df58fc94
RS
11614 {
11615 s = jals ? "jalrs" : "jalr";
e64af278 11616 if (mips_opts.micromips
833794fc 11617 && !mips_opts.insn32
c0ebe874 11618 && op[0] == RA
e64af278 11619 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11620 macro_build (NULL, s, "mj", op[1]);
df58fc94 11621 else
c0ebe874 11622 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11623 }
0a44bf69 11624 else
252b5132 11625 {
df58fc94
RS
11626 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11627 && mips_cprestore_offset >= 0);
11628
c0ebe874 11629 if (op[1] != PIC_CALL_REG)
252b5132 11630 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11631
833794fc
MR
11632 s = ((mips_opts.micromips
11633 && !mips_opts.insn32
11634 && (!mips_opts.noreorder || cprestore))
df58fc94 11635 ? "jalrs" : "jalr");
e64af278 11636 if (mips_opts.micromips
833794fc 11637 && !mips_opts.insn32
c0ebe874 11638 && op[0] == RA
e64af278 11639 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11640 macro_build (NULL, s, "mj", op[1]);
df58fc94 11641 else
c0ebe874 11642 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11643 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11644 {
6478892d 11645 if (mips_cprestore_offset < 0)
1661c76c 11646 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11647 else
11648 {
90ecf173 11649 if (!mips_frame_reg_valid)
7a621144 11650 {
1661c76c 11651 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11652 /* Quiet this warning. */
11653 mips_frame_reg_valid = 1;
11654 }
90ecf173 11655 if (!mips_cprestore_valid)
7a621144 11656 {
1661c76c 11657 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11658 /* Quiet this warning. */
11659 mips_cprestore_valid = 1;
11660 }
d3fca0b5
MR
11661 if (mips_opts.noreorder)
11662 macro_build (NULL, "nop", "");
6478892d 11663 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11664 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11665 mips_gp_register,
256ab948
TS
11666 mips_frame_reg,
11667 HAVE_64BIT_ADDRESSES);
6478892d 11668 }
252b5132
RH
11669 }
11670 }
252b5132 11671
8fc2e39e 11672 break;
252b5132 11673
df58fc94
RS
11674 case M_JALS_A:
11675 gas_assert (mips_opts.micromips);
833794fc
MR
11676 if (mips_opts.insn32)
11677 {
1661c76c 11678 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11679 break;
11680 }
df58fc94
RS
11681 jals = 1;
11682 /* Fall through. */
252b5132
RH
11683 case M_JAL_A:
11684 if (mips_pic == NO_PIC)
df58fc94 11685 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11686 else if (mips_pic == SVR4_PIC)
11687 {
11688 /* If this is a reference to an external symbol, and we are
11689 using a small GOT, we want
11690 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11691 nop
f9419b05 11692 jalr $ra,$25
252b5132
RH
11693 nop
11694 lw $gp,cprestore($sp)
11695 The cprestore value is set using the .cprestore
11696 pseudo-op. If we are using a big GOT, we want
11697 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11698 addu $25,$25,$gp
11699 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11700 nop
f9419b05 11701 jalr $ra,$25
252b5132
RH
11702 nop
11703 lw $gp,cprestore($sp)
11704 If the symbol is not external, we want
11705 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11706 nop
11707 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11708 jalr $ra,$25
252b5132 11709 nop
438c16b8 11710 lw $gp,cprestore($sp)
f5040a92
AO
11711
11712 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11713 sequences above, minus nops, unless the symbol is local,
11714 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11715 GOT_DISP. */
438c16b8 11716 if (HAVE_NEWABI)
252b5132 11717 {
90ecf173 11718 if (!mips_big_got)
f5040a92 11719 {
4d7206a2 11720 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11721 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11722 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11723 mips_gp_register);
4d7206a2 11724 relax_switch ();
67c0d1eb
RS
11725 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11726 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11727 mips_gp_register);
11728 relax_end ();
f5040a92
AO
11729 }
11730 else
11731 {
4d7206a2 11732 relax_start (offset_expr.X_add_symbol);
df58fc94 11733 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11734 BFD_RELOC_MIPS_CALL_HI16);
11735 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11736 PIC_CALL_REG, mips_gp_register);
11737 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11738 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11739 PIC_CALL_REG);
4d7206a2 11740 relax_switch ();
67c0d1eb
RS
11741 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11742 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11743 mips_gp_register);
11744 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11745 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11746 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11747 relax_end ();
f5040a92 11748 }
684022ea 11749
df58fc94 11750 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11751 }
11752 else
11753 {
4d7206a2 11754 relax_start (offset_expr.X_add_symbol);
90ecf173 11755 if (!mips_big_got)
438c16b8 11756 {
67c0d1eb
RS
11757 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11758 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11759 mips_gp_register);
269137b2 11760 load_delay_nop ();
4d7206a2 11761 relax_switch ();
438c16b8 11762 }
252b5132 11763 else
252b5132 11764 {
67c0d1eb
RS
11765 int gpdelay;
11766
11767 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11768 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11769 BFD_RELOC_MIPS_CALL_HI16);
11770 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11771 PIC_CALL_REG, mips_gp_register);
11772 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11773 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11774 PIC_CALL_REG);
269137b2 11775 load_delay_nop ();
4d7206a2 11776 relax_switch ();
67c0d1eb
RS
11777 if (gpdelay)
11778 macro_build (NULL, "nop", "");
252b5132 11779 }
67c0d1eb
RS
11780 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11781 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11782 mips_gp_register);
269137b2 11783 load_delay_nop ();
67c0d1eb
RS
11784 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11785 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11786 relax_end ();
df58fc94 11787 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11788
6478892d 11789 if (mips_cprestore_offset < 0)
1661c76c 11790 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11791 else
11792 {
90ecf173 11793 if (!mips_frame_reg_valid)
7a621144 11794 {
1661c76c 11795 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11796 /* Quiet this warning. */
11797 mips_frame_reg_valid = 1;
11798 }
90ecf173 11799 if (!mips_cprestore_valid)
7a621144 11800 {
1661c76c 11801 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11802 /* Quiet this warning. */
11803 mips_cprestore_valid = 1;
11804 }
6478892d 11805 if (mips_opts.noreorder)
67c0d1eb 11806 macro_build (NULL, "nop", "");
6478892d 11807 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11808 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11809 mips_gp_register,
256ab948
TS
11810 mips_frame_reg,
11811 HAVE_64BIT_ADDRESSES);
6478892d 11812 }
252b5132
RH
11813 }
11814 }
0a44bf69 11815 else if (mips_pic == VXWORKS_PIC)
1661c76c 11816 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11817 else
11818 abort ();
11819
8fc2e39e 11820 break;
252b5132 11821
7f3c4072 11822 case M_LBUE_AB:
7f3c4072
CM
11823 s = "lbue";
11824 fmt = "t,+j(b)";
11825 offbits = 9;
11826 goto ld_st;
11827 case M_LHUE_AB:
7f3c4072
CM
11828 s = "lhue";
11829 fmt = "t,+j(b)";
11830 offbits = 9;
11831 goto ld_st;
11832 case M_LBE_AB:
7f3c4072
CM
11833 s = "lbe";
11834 fmt = "t,+j(b)";
11835 offbits = 9;
11836 goto ld_st;
11837 case M_LHE_AB:
7f3c4072
CM
11838 s = "lhe";
11839 fmt = "t,+j(b)";
11840 offbits = 9;
11841 goto ld_st;
11842 case M_LLE_AB:
7f3c4072
CM
11843 s = "lle";
11844 fmt = "t,+j(b)";
11845 offbits = 9;
11846 goto ld_st;
11847 case M_LWE_AB:
7f3c4072
CM
11848 s = "lwe";
11849 fmt = "t,+j(b)";
11850 offbits = 9;
11851 goto ld_st;
11852 case M_LWLE_AB:
7f3c4072
CM
11853 s = "lwle";
11854 fmt = "t,+j(b)";
11855 offbits = 9;
11856 goto ld_st;
11857 case M_LWRE_AB:
7f3c4072
CM
11858 s = "lwre";
11859 fmt = "t,+j(b)";
11860 offbits = 9;
11861 goto ld_st;
11862 case M_SBE_AB:
7f3c4072
CM
11863 s = "sbe";
11864 fmt = "t,+j(b)";
11865 offbits = 9;
11866 goto ld_st;
11867 case M_SCE_AB:
7f3c4072
CM
11868 s = "sce";
11869 fmt = "t,+j(b)";
11870 offbits = 9;
11871 goto ld_st;
11872 case M_SHE_AB:
7f3c4072
CM
11873 s = "she";
11874 fmt = "t,+j(b)";
11875 offbits = 9;
11876 goto ld_st;
11877 case M_SWE_AB:
7f3c4072
CM
11878 s = "swe";
11879 fmt = "t,+j(b)";
11880 offbits = 9;
11881 goto ld_st;
11882 case M_SWLE_AB:
7f3c4072
CM
11883 s = "swle";
11884 fmt = "t,+j(b)";
11885 offbits = 9;
11886 goto ld_st;
11887 case M_SWRE_AB:
7f3c4072
CM
11888 s = "swre";
11889 fmt = "t,+j(b)";
11890 offbits = 9;
11891 goto ld_st;
dec0624d 11892 case M_ACLR_AB:
dec0624d 11893 s = "aclr";
dec0624d 11894 fmt = "\\,~(b)";
7f3c4072 11895 offbits = 12;
dec0624d
MR
11896 goto ld_st;
11897 case M_ASET_AB:
dec0624d 11898 s = "aset";
dec0624d 11899 fmt = "\\,~(b)";
7f3c4072 11900 offbits = 12;
dec0624d 11901 goto ld_st;
252b5132
RH
11902 case M_LB_AB:
11903 s = "lb";
df58fc94 11904 fmt = "t,o(b)";
252b5132
RH
11905 goto ld;
11906 case M_LBU_AB:
11907 s = "lbu";
df58fc94 11908 fmt = "t,o(b)";
252b5132
RH
11909 goto ld;
11910 case M_LH_AB:
11911 s = "lh";
df58fc94 11912 fmt = "t,o(b)";
252b5132
RH
11913 goto ld;
11914 case M_LHU_AB:
11915 s = "lhu";
df58fc94 11916 fmt = "t,o(b)";
252b5132
RH
11917 goto ld;
11918 case M_LW_AB:
11919 s = "lw";
df58fc94 11920 fmt = "t,o(b)";
252b5132
RH
11921 goto ld;
11922 case M_LWC0_AB:
df58fc94 11923 gas_assert (!mips_opts.micromips);
252b5132 11924 s = "lwc0";
df58fc94 11925 fmt = "E,o(b)";
bdaaa2e1 11926 /* Itbl support may require additional care here. */
252b5132 11927 coproc = 1;
df58fc94 11928 goto ld_st;
252b5132
RH
11929 case M_LWC1_AB:
11930 s = "lwc1";
df58fc94 11931 fmt = "T,o(b)";
bdaaa2e1 11932 /* Itbl support may require additional care here. */
252b5132 11933 coproc = 1;
df58fc94 11934 goto ld_st;
252b5132
RH
11935 case M_LWC2_AB:
11936 s = "lwc2";
df58fc94 11937 fmt = COP12_FMT;
7361da2c
AB
11938 offbits = (mips_opts.micromips ? 12
11939 : ISA_IS_R6 (mips_opts.isa) ? 11
11940 : 16);
bdaaa2e1 11941 /* Itbl support may require additional care here. */
252b5132 11942 coproc = 1;
df58fc94 11943 goto ld_st;
252b5132 11944 case M_LWC3_AB:
df58fc94 11945 gas_assert (!mips_opts.micromips);
252b5132 11946 s = "lwc3";
df58fc94 11947 fmt = "E,o(b)";
bdaaa2e1 11948 /* Itbl support may require additional care here. */
252b5132 11949 coproc = 1;
df58fc94 11950 goto ld_st;
252b5132
RH
11951 case M_LWL_AB:
11952 s = "lwl";
df58fc94 11953 fmt = MEM12_FMT;
7f3c4072 11954 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11955 goto ld_st;
252b5132
RH
11956 case M_LWR_AB:
11957 s = "lwr";
df58fc94 11958 fmt = MEM12_FMT;
7f3c4072 11959 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11960 goto ld_st;
252b5132 11961 case M_LDC1_AB:
252b5132 11962 s = "ldc1";
df58fc94 11963 fmt = "T,o(b)";
bdaaa2e1 11964 /* Itbl support may require additional care here. */
252b5132 11965 coproc = 1;
df58fc94 11966 goto ld_st;
252b5132
RH
11967 case M_LDC2_AB:
11968 s = "ldc2";
df58fc94 11969 fmt = COP12_FMT;
7361da2c
AB
11970 offbits = (mips_opts.micromips ? 12
11971 : ISA_IS_R6 (mips_opts.isa) ? 11
11972 : 16);
bdaaa2e1 11973 /* Itbl support may require additional care here. */
252b5132 11974 coproc = 1;
df58fc94 11975 goto ld_st;
c77c0862 11976 case M_LQC2_AB:
c77c0862 11977 s = "lqc2";
14daeee3 11978 fmt = "+7,o(b)";
c77c0862
RS
11979 /* Itbl support may require additional care here. */
11980 coproc = 1;
11981 goto ld_st;
252b5132
RH
11982 case M_LDC3_AB:
11983 s = "ldc3";
df58fc94 11984 fmt = "E,o(b)";
bdaaa2e1 11985 /* Itbl support may require additional care here. */
252b5132 11986 coproc = 1;
df58fc94 11987 goto ld_st;
252b5132
RH
11988 case M_LDL_AB:
11989 s = "ldl";
df58fc94 11990 fmt = MEM12_FMT;
7f3c4072 11991 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11992 goto ld_st;
252b5132
RH
11993 case M_LDR_AB:
11994 s = "ldr";
df58fc94 11995 fmt = MEM12_FMT;
7f3c4072 11996 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11997 goto ld_st;
252b5132
RH
11998 case M_LL_AB:
11999 s = "ll";
7361da2c
AB
12000 fmt = LL_SC_FMT;
12001 offbits = (mips_opts.micromips ? 12
12002 : ISA_IS_R6 (mips_opts.isa) ? 9
12003 : 16);
252b5132
RH
12004 goto ld;
12005 case M_LLD_AB:
12006 s = "lld";
7361da2c
AB
12007 fmt = LL_SC_FMT;
12008 offbits = (mips_opts.micromips ? 12
12009 : ISA_IS_R6 (mips_opts.isa) ? 9
12010 : 16);
252b5132
RH
12011 goto ld;
12012 case M_LWU_AB:
12013 s = "lwu";
df58fc94 12014 fmt = MEM12_FMT;
7f3c4072 12015 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
12016 goto ld;
12017 case M_LWP_AB:
df58fc94
RS
12018 gas_assert (mips_opts.micromips);
12019 s = "lwp";
12020 fmt = "t,~(b)";
7f3c4072 12021 offbits = 12;
df58fc94
RS
12022 lp = 1;
12023 goto ld;
12024 case M_LDP_AB:
df58fc94
RS
12025 gas_assert (mips_opts.micromips);
12026 s = "ldp";
12027 fmt = "t,~(b)";
7f3c4072 12028 offbits = 12;
df58fc94
RS
12029 lp = 1;
12030 goto ld;
a45328b9
AB
12031 case M_LLDP_AB:
12032 case M_LLWP_AB:
41cee089 12033 case M_LLWPE_AB:
a45328b9
AB
12034 s = ip->insn_mo->name;
12035 fmt = "t,d,s";
12036 ll_sc_paired = 1;
12037 offbits = 0;
12038 goto ld;
df58fc94 12039 case M_LWM_AB:
df58fc94
RS
12040 gas_assert (mips_opts.micromips);
12041 s = "lwm";
12042 fmt = "n,~(b)";
7f3c4072 12043 offbits = 12;
df58fc94
RS
12044 goto ld_st;
12045 case M_LDM_AB:
df58fc94
RS
12046 gas_assert (mips_opts.micromips);
12047 s = "ldm";
12048 fmt = "n,~(b)";
7f3c4072 12049 offbits = 12;
df58fc94
RS
12050 goto ld_st;
12051
252b5132 12052 ld:
a45328b9
AB
12053 /* Try to use one the the load registers to compute the base address.
12054 We don't want to use $0 as tempreg. */
12055 if (ll_sc_paired)
12056 {
12057 if ((op[0] == ZERO && op[3] == op[1])
12058 || (op[1] == ZERO && op[3] == op[0])
12059 || (op[0] == ZERO && op[1] == ZERO))
12060 goto ld_st;
12061 else if (op[0] != op[3] && op[0] != ZERO)
12062 tempreg = op[0];
12063 else
12064 tempreg = op[1];
12065 }
252b5132 12066 else
a45328b9
AB
12067 {
12068 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
12069 goto ld_st;
12070 else
12071 tempreg = op[0] + lp;
12072 }
df58fc94
RS
12073 goto ld_noat;
12074
252b5132
RH
12075 case M_SB_AB:
12076 s = "sb";
df58fc94
RS
12077 fmt = "t,o(b)";
12078 goto ld_st;
252b5132
RH
12079 case M_SH_AB:
12080 s = "sh";
df58fc94
RS
12081 fmt = "t,o(b)";
12082 goto ld_st;
252b5132
RH
12083 case M_SW_AB:
12084 s = "sw";
df58fc94
RS
12085 fmt = "t,o(b)";
12086 goto ld_st;
252b5132 12087 case M_SWC0_AB:
df58fc94 12088 gas_assert (!mips_opts.micromips);
252b5132 12089 s = "swc0";
df58fc94 12090 fmt = "E,o(b)";
bdaaa2e1 12091 /* Itbl support may require additional care here. */
252b5132 12092 coproc = 1;
df58fc94 12093 goto ld_st;
252b5132
RH
12094 case M_SWC1_AB:
12095 s = "swc1";
df58fc94 12096 fmt = "T,o(b)";
bdaaa2e1 12097 /* Itbl support may require additional care here. */
252b5132 12098 coproc = 1;
df58fc94 12099 goto ld_st;
252b5132
RH
12100 case M_SWC2_AB:
12101 s = "swc2";
df58fc94 12102 fmt = COP12_FMT;
7361da2c
AB
12103 offbits = (mips_opts.micromips ? 12
12104 : ISA_IS_R6 (mips_opts.isa) ? 11
12105 : 16);
bdaaa2e1 12106 /* Itbl support may require additional care here. */
252b5132 12107 coproc = 1;
df58fc94 12108 goto ld_st;
252b5132 12109 case M_SWC3_AB:
df58fc94 12110 gas_assert (!mips_opts.micromips);
252b5132 12111 s = "swc3";
df58fc94 12112 fmt = "E,o(b)";
bdaaa2e1 12113 /* Itbl support may require additional care here. */
252b5132 12114 coproc = 1;
df58fc94 12115 goto ld_st;
252b5132
RH
12116 case M_SWL_AB:
12117 s = "swl";
df58fc94 12118 fmt = MEM12_FMT;
7f3c4072 12119 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12120 goto ld_st;
252b5132
RH
12121 case M_SWR_AB:
12122 s = "swr";
df58fc94 12123 fmt = MEM12_FMT;
7f3c4072 12124 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12125 goto ld_st;
252b5132
RH
12126 case M_SC_AB:
12127 s = "sc";
7361da2c
AB
12128 fmt = LL_SC_FMT;
12129 offbits = (mips_opts.micromips ? 12
12130 : ISA_IS_R6 (mips_opts.isa) ? 9
12131 : 16);
df58fc94 12132 goto ld_st;
252b5132
RH
12133 case M_SCD_AB:
12134 s = "scd";
7361da2c
AB
12135 fmt = LL_SC_FMT;
12136 offbits = (mips_opts.micromips ? 12
12137 : ISA_IS_R6 (mips_opts.isa) ? 9
12138 : 16);
df58fc94 12139 goto ld_st;
a45328b9
AB
12140 case M_SCDP_AB:
12141 case M_SCWP_AB:
41cee089 12142 case M_SCWPE_AB:
a45328b9
AB
12143 s = ip->insn_mo->name;
12144 fmt = "t,d,s";
12145 ll_sc_paired = 1;
12146 offbits = 0;
12147 goto ld_st;
d43b4baf
TS
12148 case M_CACHE_AB:
12149 s = "cache";
7361da2c
AB
12150 fmt = (mips_opts.micromips ? "k,~(b)"
12151 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12152 : "k,o(b)");
12153 offbits = (mips_opts.micromips ? 12
12154 : ISA_IS_R6 (mips_opts.isa) ? 9
12155 : 16);
7f3c4072
CM
12156 goto ld_st;
12157 case M_CACHEE_AB:
7f3c4072
CM
12158 s = "cachee";
12159 fmt = "k,+j(b)";
12160 offbits = 9;
df58fc94 12161 goto ld_st;
3eebd5eb
MR
12162 case M_PREF_AB:
12163 s = "pref";
7361da2c
AB
12164 fmt = (mips_opts.micromips ? "k,~(b)"
12165 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12166 : "k,o(b)");
12167 offbits = (mips_opts.micromips ? 12
12168 : ISA_IS_R6 (mips_opts.isa) ? 9
12169 : 16);
7f3c4072
CM
12170 goto ld_st;
12171 case M_PREFE_AB:
7f3c4072
CM
12172 s = "prefe";
12173 fmt = "k,+j(b)";
12174 offbits = 9;
df58fc94 12175 goto ld_st;
252b5132 12176 case M_SDC1_AB:
252b5132 12177 s = "sdc1";
df58fc94 12178 fmt = "T,o(b)";
252b5132 12179 coproc = 1;
bdaaa2e1 12180 /* Itbl support may require additional care here. */
df58fc94 12181 goto ld_st;
252b5132
RH
12182 case M_SDC2_AB:
12183 s = "sdc2";
df58fc94 12184 fmt = COP12_FMT;
7361da2c
AB
12185 offbits = (mips_opts.micromips ? 12
12186 : ISA_IS_R6 (mips_opts.isa) ? 11
12187 : 16);
c77c0862
RS
12188 /* Itbl support may require additional care here. */
12189 coproc = 1;
12190 goto ld_st;
12191 case M_SQC2_AB:
c77c0862 12192 s = "sqc2";
14daeee3 12193 fmt = "+7,o(b)";
bdaaa2e1 12194 /* Itbl support may require additional care here. */
252b5132 12195 coproc = 1;
df58fc94 12196 goto ld_st;
252b5132 12197 case M_SDC3_AB:
df58fc94 12198 gas_assert (!mips_opts.micromips);
252b5132 12199 s = "sdc3";
df58fc94 12200 fmt = "E,o(b)";
bdaaa2e1 12201 /* Itbl support may require additional care here. */
252b5132 12202 coproc = 1;
df58fc94 12203 goto ld_st;
252b5132
RH
12204 case M_SDL_AB:
12205 s = "sdl";
df58fc94 12206 fmt = MEM12_FMT;
7f3c4072 12207 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12208 goto ld_st;
252b5132
RH
12209 case M_SDR_AB:
12210 s = "sdr";
df58fc94 12211 fmt = MEM12_FMT;
7f3c4072 12212 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
12213 goto ld_st;
12214 case M_SWP_AB:
df58fc94
RS
12215 gas_assert (mips_opts.micromips);
12216 s = "swp";
12217 fmt = "t,~(b)";
7f3c4072 12218 offbits = 12;
df58fc94
RS
12219 goto ld_st;
12220 case M_SDP_AB:
df58fc94
RS
12221 gas_assert (mips_opts.micromips);
12222 s = "sdp";
12223 fmt = "t,~(b)";
7f3c4072 12224 offbits = 12;
df58fc94
RS
12225 goto ld_st;
12226 case M_SWM_AB:
df58fc94
RS
12227 gas_assert (mips_opts.micromips);
12228 s = "swm";
12229 fmt = "n,~(b)";
7f3c4072 12230 offbits = 12;
df58fc94
RS
12231 goto ld_st;
12232 case M_SDM_AB:
df58fc94
RS
12233 gas_assert (mips_opts.micromips);
12234 s = "sdm";
12235 fmt = "n,~(b)";
7f3c4072 12236 offbits = 12;
df58fc94
RS
12237
12238 ld_st:
8fc2e39e 12239 tempreg = AT;
df58fc94 12240 ld_noat:
a45328b9 12241 breg = ll_sc_paired ? op[3] : op[2];
f2ae14a1
RS
12242 if (small_offset_p (0, align, 16))
12243 {
12244 /* The first case exists for M_LD_AB and M_SD_AB, which are
12245 macros for o32 but which should act like normal instructions
12246 otherwise. */
12247 if (offbits == 16)
c0ebe874 12248 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12249 offset_reloc[1], offset_reloc[2], breg);
12250 else if (small_offset_p (0, align, offbits))
12251 {
12252 if (offbits == 0)
a45328b9
AB
12253 {
12254 if (ll_sc_paired)
12255 macro_build (NULL, s, fmt, op[0], op[1], breg);
12256 else
12257 macro_build (NULL, s, fmt, op[0], breg);
12258 }
f2ae14a1 12259 else
c0ebe874 12260 macro_build (NULL, s, fmt, op[0],
c8276761 12261 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
12262 }
12263 else
12264 {
12265 if (tempreg == AT)
12266 used_at = 1;
12267 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12268 tempreg, breg, -1, offset_reloc[0],
12269 offset_reloc[1], offset_reloc[2]);
12270 if (offbits == 0)
a45328b9
AB
12271 {
12272 if (ll_sc_paired)
12273 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12274 else
12275 macro_build (NULL, s, fmt, op[0], tempreg);
12276 }
f2ae14a1 12277 else
c0ebe874 12278 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
12279 }
12280 break;
12281 }
12282
12283 if (tempreg == AT)
12284 used_at = 1;
12285
252b5132
RH
12286 if (offset_expr.X_op != O_constant
12287 && offset_expr.X_op != O_symbol)
12288 {
1661c76c 12289 as_bad (_("expression too complex"));
252b5132
RH
12290 offset_expr.X_op = O_constant;
12291 }
12292
2051e8c4
MR
12293 if (HAVE_32BIT_ADDRESSES
12294 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12295 {
12296 char value [32];
12297
12298 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12299 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12300 }
2051e8c4 12301
252b5132
RH
12302 /* A constant expression in PIC code can be handled just as it
12303 is in non PIC code. */
aed1a261
RS
12304 if (offset_expr.X_op == O_constant)
12305 {
f2ae14a1
RS
12306 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12307 offbits == 0 ? 16 : offbits);
12308 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 12309
f2ae14a1
RS
12310 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12311 if (breg != 0)
12312 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12313 tempreg, tempreg, breg);
7f3c4072 12314 if (offbits == 0)
dd6a37e7 12315 {
f2ae14a1 12316 if (offset_expr.X_add_number != 0)
dd6a37e7 12317 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 12318 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
a45328b9
AB
12319 if (ll_sc_paired)
12320 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12321 else
12322 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 12323 }
7f3c4072 12324 else if (offbits == 16)
c0ebe874 12325 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 12326 else
c0ebe874 12327 macro_build (NULL, s, fmt, op[0],
c8276761 12328 (int) offset_expr.X_add_number, tempreg);
df58fc94 12329 }
7f3c4072 12330 else if (offbits != 16)
df58fc94 12331 {
7f3c4072 12332 /* The offset field is too narrow to be used for a low-part
2b0f3761 12333 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
12334 register. */
12335 load_address (tempreg, &offset_expr, &used_at);
12336 if (breg != 0)
12337 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12338 tempreg, tempreg, breg);
7f3c4072 12339 if (offbits == 0)
a45328b9
AB
12340 {
12341 if (ll_sc_paired)
12342 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12343 else
12344 macro_build (NULL, s, fmt, op[0], tempreg);
12345 }
dd6a37e7 12346 else
c0ebe874 12347 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
12348 }
12349 else if (mips_pic == NO_PIC)
252b5132
RH
12350 {
12351 /* If this is a reference to a GP relative symbol, and there
12352 is no base register, we want
c0ebe874 12353 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12354 Otherwise, if there is no base register, we want
12355 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 12356 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
12357 If we have a constant, we need two instructions anyhow,
12358 so we always use the latter form.
12359
12360 If we have a base register, and this is a reference to a
12361 GP relative symbol, we want
12362 addu $tempreg,$breg,$gp
c0ebe874 12363 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
12364 Otherwise we want
12365 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12366 addu $tempreg,$tempreg,$breg
c0ebe874 12367 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 12368 With a constant we always use the latter case.
76b3015f 12369
d6bc6245
TS
12370 With 64bit address space and no base register and $at usable,
12371 we want
12372 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12373 lui $at,<sym> (BFD_RELOC_HI16_S)
12374 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12375 dsll32 $tempreg,0
12376 daddu $tempreg,$at
c0ebe874 12377 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12378 If we have a base register, we want
12379 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12380 lui $at,<sym> (BFD_RELOC_HI16_S)
12381 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12382 daddu $at,$breg
12383 dsll32 $tempreg,0
12384 daddu $tempreg,$at
c0ebe874 12385 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12386
12387 Without $at we can't generate the optimal path for superscalar
12388 processors here since this would require two temporary registers.
12389 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12390 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12391 dsll $tempreg,16
12392 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12393 dsll $tempreg,16
c0ebe874 12394 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12395 If we have a base register, we want
12396 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12397 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12398 dsll $tempreg,16
12399 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12400 dsll $tempreg,16
12401 daddu $tempreg,$tempreg,$breg
c0ebe874 12402 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 12403
6caf9ef4 12404 For GP relative symbols in 64bit address space we can use
aed1a261
RS
12405 the same sequence as in 32bit address space. */
12406 if (HAVE_64BIT_SYMBOLS)
d6bc6245 12407 {
aed1a261 12408 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
12409 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12410 {
12411 relax_start (offset_expr.X_add_symbol);
12412 if (breg == 0)
12413 {
c0ebe874 12414 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
12415 BFD_RELOC_GPREL16, mips_gp_register);
12416 }
12417 else
12418 {
12419 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12420 tempreg, breg, mips_gp_register);
c0ebe874 12421 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
12422 BFD_RELOC_GPREL16, tempreg);
12423 }
12424 relax_switch ();
12425 }
d6bc6245 12426
741fe287 12427 if (used_at == 0 && mips_opts.at)
d6bc6245 12428 {
df58fc94 12429 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 12430 BFD_RELOC_MIPS_HIGHEST);
df58fc94 12431 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
12432 BFD_RELOC_HI16_S);
12433 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12434 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 12435 if (breg != 0)
67c0d1eb 12436 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 12437 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 12438 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 12439 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 12440 tempreg);
d6bc6245
TS
12441 used_at = 1;
12442 }
12443 else
12444 {
df58fc94 12445 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
12446 BFD_RELOC_MIPS_HIGHEST);
12447 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12448 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 12449 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
12450 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12451 tempreg, BFD_RELOC_HI16_S);
df58fc94 12452 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 12453 if (breg != 0)
67c0d1eb 12454 macro_build (NULL, "daddu", "d,v,t",
17a2f251 12455 tempreg, tempreg, breg);
c0ebe874 12456 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12457 BFD_RELOC_LO16, tempreg);
d6bc6245 12458 }
6caf9ef4
TS
12459
12460 if (mips_relax.sequence)
12461 relax_end ();
8fc2e39e 12462 break;
d6bc6245 12463 }
256ab948 12464
252b5132
RH
12465 if (breg == 0)
12466 {
67c0d1eb 12467 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12468 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12469 {
4d7206a2 12470 relax_start (offset_expr.X_add_symbol);
c0ebe874 12471 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 12472 mips_gp_register);
4d7206a2 12473 relax_switch ();
252b5132 12474 }
67c0d1eb 12475 macro_build_lui (&offset_expr, tempreg);
c0ebe874 12476 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12477 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12478 if (mips_relax.sequence)
12479 relax_end ();
252b5132
RH
12480 }
12481 else
12482 {
67c0d1eb 12483 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12484 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12485 {
4d7206a2 12486 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12487 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12488 tempreg, breg, mips_gp_register);
c0ebe874 12489 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12490 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12491 relax_switch ();
252b5132 12492 }
67c0d1eb
RS
12493 macro_build_lui (&offset_expr, tempreg);
12494 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12495 tempreg, tempreg, breg);
c0ebe874 12496 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12497 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12498 if (mips_relax.sequence)
12499 relax_end ();
252b5132
RH
12500 }
12501 }
0a44bf69 12502 else if (!mips_big_got)
252b5132 12503 {
ed6fb7bd 12504 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12505
252b5132
RH
12506 /* If this is a reference to an external symbol, we want
12507 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12508 nop
c0ebe874 12509 <op> op[0],0($tempreg)
252b5132
RH
12510 Otherwise we want
12511 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12512 nop
12513 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12514 <op> op[0],0($tempreg)
f5040a92
AO
12515
12516 For NewABI, we want
12517 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12518 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12519
252b5132
RH
12520 If there is a base register, we add it to $tempreg before
12521 the <op>. If there is a constant, we stick it in the
12522 <op> instruction. We don't handle constants larger than
12523 16 bits, because we have no way to load the upper 16 bits
12524 (actually, we could handle them for the subset of cases
12525 in which we are not using $at). */
9c2799c2 12526 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12527 if (HAVE_NEWABI)
12528 {
67c0d1eb
RS
12529 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12530 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12531 if (breg != 0)
67c0d1eb 12532 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12533 tempreg, tempreg, breg);
c0ebe874 12534 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12535 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12536 break;
12537 }
252b5132
RH
12538 expr1.X_add_number = offset_expr.X_add_number;
12539 offset_expr.X_add_number = 0;
12540 if (expr1.X_add_number < -0x8000
12541 || expr1.X_add_number >= 0x8000)
12542 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12543 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12544 lw_reloc_type, mips_gp_register);
269137b2 12545 load_delay_nop ();
4d7206a2
RS
12546 relax_start (offset_expr.X_add_symbol);
12547 relax_switch ();
67c0d1eb
RS
12548 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12549 tempreg, BFD_RELOC_LO16);
4d7206a2 12550 relax_end ();
252b5132 12551 if (breg != 0)
67c0d1eb 12552 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12553 tempreg, tempreg, breg);
c0ebe874 12554 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12555 }
0a44bf69 12556 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12557 {
67c0d1eb 12558 int gpdelay;
252b5132
RH
12559
12560 /* If this is a reference to an external symbol, we want
12561 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12562 addu $tempreg,$tempreg,$gp
12563 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12564 <op> op[0],0($tempreg)
252b5132
RH
12565 Otherwise we want
12566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12567 nop
12568 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12569 <op> op[0],0($tempreg)
252b5132
RH
12570 If there is a base register, we add it to $tempreg before
12571 the <op>. If there is a constant, we stick it in the
12572 <op> instruction. We don't handle constants larger than
12573 16 bits, because we have no way to load the upper 16 bits
12574 (actually, we could handle them for the subset of cases
f5040a92 12575 in which we are not using $at). */
9c2799c2 12576 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12577 expr1.X_add_number = offset_expr.X_add_number;
12578 offset_expr.X_add_number = 0;
12579 if (expr1.X_add_number < -0x8000
12580 || expr1.X_add_number >= 0x8000)
12581 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12582 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12583 relax_start (offset_expr.X_add_symbol);
df58fc94 12584 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12585 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12587 mips_gp_register);
12588 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12589 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12590 relax_switch ();
67c0d1eb
RS
12591 if (gpdelay)
12592 macro_build (NULL, "nop", "");
12593 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12594 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12595 load_delay_nop ();
67c0d1eb
RS
12596 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12597 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12598 relax_end ();
12599
252b5132 12600 if (breg != 0)
67c0d1eb 12601 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12602 tempreg, tempreg, breg);
c0ebe874 12603 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12604 }
0a44bf69 12605 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12606 {
f5040a92
AO
12607 /* If this is a reference to an external symbol, we want
12608 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12609 add $tempreg,$tempreg,$gp
12610 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12611 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12612 Otherwise, for local symbols, we want:
12613 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12614 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12615 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12616 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12617 offset_expr.X_add_number = 0;
12618 if (expr1.X_add_number < -0x8000
12619 || expr1.X_add_number >= 0x8000)
12620 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12621 relax_start (offset_expr.X_add_symbol);
df58fc94 12622 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12623 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12624 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12625 mips_gp_register);
12626 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12627 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12628 if (breg != 0)
67c0d1eb 12629 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12630 tempreg, tempreg, breg);
c0ebe874 12631 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12632
4d7206a2 12633 relax_switch ();
f5040a92 12634 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12635 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12636 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12637 if (breg != 0)
67c0d1eb 12638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12639 tempreg, tempreg, breg);
c0ebe874 12640 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12641 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12642 relax_end ();
f5040a92 12643 }
252b5132
RH
12644 else
12645 abort ();
12646
252b5132
RH
12647 break;
12648
833794fc
MR
12649 case M_JRADDIUSP:
12650 gas_assert (mips_opts.micromips);
12651 gas_assert (mips_opts.insn32);
12652 start_noreorder ();
12653 macro_build (NULL, "jr", "s", RA);
c0ebe874 12654 expr1.X_add_number = op[0] << 2;
833794fc
MR
12655 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12656 end_noreorder ();
12657 break;
12658
12659 case M_JRC:
12660 gas_assert (mips_opts.micromips);
12661 gas_assert (mips_opts.insn32);
c0ebe874 12662 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12663 if (mips_opts.noreorder)
12664 macro_build (NULL, "nop", "");
12665 break;
12666
252b5132
RH
12667 case M_LI:
12668 case M_LI_S:
c0ebe874 12669 load_register (op[0], &imm_expr, 0);
8fc2e39e 12670 break;
252b5132
RH
12671
12672 case M_DLI:
c0ebe874 12673 load_register (op[0], &imm_expr, 1);
8fc2e39e 12674 break;
252b5132
RH
12675
12676 case M_LI_SS:
12677 if (imm_expr.X_op == O_constant)
12678 {
8fc2e39e 12679 used_at = 1;
67c0d1eb 12680 load_register (AT, &imm_expr, 0);
c0ebe874 12681 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12682 break;
12683 }
12684 else
12685 {
b0e6f033
RS
12686 gas_assert (imm_expr.X_op == O_absent
12687 && offset_expr.X_op == O_symbol
90ecf173
MR
12688 && strcmp (segment_name (S_GET_SEGMENT
12689 (offset_expr.X_add_symbol)),
12690 ".lit4") == 0
12691 && offset_expr.X_add_number == 0);
c0ebe874 12692 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12693 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12694 break;
252b5132
RH
12695 }
12696
12697 case M_LI_D:
ca4e0257
RS
12698 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12699 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12700 order 32 bits of the value and the low order 32 bits are either
12701 zero or in OFFSET_EXPR. */
b0e6f033 12702 if (imm_expr.X_op == O_constant)
252b5132 12703 {
bad1aba3 12704 if (GPR_SIZE == 64)
c0ebe874 12705 load_register (op[0], &imm_expr, 1);
252b5132
RH
12706 else
12707 {
12708 int hreg, lreg;
12709
12710 if (target_big_endian)
12711 {
c0ebe874
RS
12712 hreg = op[0];
12713 lreg = op[0] + 1;
252b5132
RH
12714 }
12715 else
12716 {
c0ebe874
RS
12717 hreg = op[0] + 1;
12718 lreg = op[0];
252b5132
RH
12719 }
12720
12721 if (hreg <= 31)
67c0d1eb 12722 load_register (hreg, &imm_expr, 0);
252b5132
RH
12723 if (lreg <= 31)
12724 {
12725 if (offset_expr.X_op == O_absent)
67c0d1eb 12726 move_register (lreg, 0);
252b5132
RH
12727 else
12728 {
9c2799c2 12729 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12730 load_register (lreg, &offset_expr, 0);
252b5132
RH
12731 }
12732 }
12733 }
8fc2e39e 12734 break;
252b5132 12735 }
b0e6f033 12736 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12737
12738 /* We know that sym is in the .rdata section. First we get the
12739 upper 16 bits of the address. */
12740 if (mips_pic == NO_PIC)
12741 {
67c0d1eb 12742 macro_build_lui (&offset_expr, AT);
8fc2e39e 12743 used_at = 1;
252b5132 12744 }
0a44bf69 12745 else
252b5132 12746 {
67c0d1eb
RS
12747 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12748 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12749 used_at = 1;
252b5132 12750 }
bdaaa2e1 12751
252b5132 12752 /* Now we load the register(s). */
bad1aba3 12753 if (GPR_SIZE == 64)
8fc2e39e
TS
12754 {
12755 used_at = 1;
c0ebe874
RS
12756 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12757 BFD_RELOC_LO16, AT);
8fc2e39e 12758 }
252b5132
RH
12759 else
12760 {
8fc2e39e 12761 used_at = 1;
c0ebe874
RS
12762 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12763 BFD_RELOC_LO16, AT);
12764 if (op[0] != RA)
252b5132
RH
12765 {
12766 /* FIXME: How in the world do we deal with the possible
12767 overflow here? */
12768 offset_expr.X_add_number += 4;
67c0d1eb 12769 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12770 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12771 }
12772 }
252b5132
RH
12773 break;
12774
12775 case M_LI_DD:
ca4e0257
RS
12776 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12777 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12778 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12779 the value and the low order 32 bits are either zero or in
12780 OFFSET_EXPR. */
b0e6f033 12781 if (imm_expr.X_op == O_constant)
252b5132 12782 {
8fc2e39e 12783 used_at = 1;
bad1aba3 12784 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12785 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12786 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12787 else
12788 {
351cdf24
MF
12789 if (ISA_HAS_MXHC1 (mips_opts.isa))
12790 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12791 else if (FPR_SIZE != 32)
12792 as_bad (_("Unable to generate `%s' compliant code "
12793 "without mthc1"),
12794 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12795 else
12796 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12797 if (offset_expr.X_op == O_absent)
c0ebe874 12798 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12799 else
12800 {
9c2799c2 12801 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12802 load_register (AT, &offset_expr, 0);
c0ebe874 12803 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12804 }
12805 }
12806 break;
12807 }
12808
b0e6f033
RS
12809 gas_assert (imm_expr.X_op == O_absent
12810 && offset_expr.X_op == O_symbol
90ecf173 12811 && offset_expr.X_add_number == 0);
252b5132
RH
12812 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12813 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12814 {
12815 op[2] = mips_gp_register;
f2ae14a1
RS
12816 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12817 offset_reloc[1] = BFD_RELOC_UNUSED;
12818 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12819 }
12820 else
12821 {
9c2799c2 12822 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12823 used_at = 1;
0a44bf69 12824 if (mips_pic != NO_PIC)
67c0d1eb
RS
12825 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12826 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12827 else
12828 {
12829 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12830 macro_build_lui (&offset_expr, AT);
252b5132 12831 }
bdaaa2e1 12832
c0ebe874 12833 op[2] = AT;
f2ae14a1
RS
12834 offset_reloc[0] = BFD_RELOC_LO16;
12835 offset_reloc[1] = BFD_RELOC_UNUSED;
12836 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12837 }
f2ae14a1 12838 align = 8;
6f2117ba 12839 /* Fall through. */
c4a68bea 12840
252b5132 12841 case M_L_DAB:
6f2117ba
PH
12842 /* The MIPS assembler seems to check for X_add_number not
12843 being double aligned and generating:
12844 lui at,%hi(foo+1)
12845 addu at,at,v1
12846 addiu at,at,%lo(foo+1)
12847 lwc1 f2,0(at)
12848 lwc1 f3,4(at)
12849 But, the resulting address is the same after relocation so why
12850 generate the extra instruction? */
bdaaa2e1 12851 /* Itbl support may require additional care here. */
252b5132 12852 coproc = 1;
df58fc94 12853 fmt = "T,o(b)";
0aa27725 12854 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12855 {
12856 s = "ldc1";
df58fc94 12857 goto ld_st;
252b5132 12858 }
252b5132 12859 s = "lwc1";
252b5132
RH
12860 goto ldd_std;
12861
12862 case M_S_DAB:
df58fc94
RS
12863 gas_assert (!mips_opts.micromips);
12864 /* Itbl support may require additional care here. */
12865 coproc = 1;
12866 fmt = "T,o(b)";
0aa27725 12867 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12868 {
12869 s = "sdc1";
df58fc94 12870 goto ld_st;
252b5132 12871 }
252b5132 12872 s = "swc1";
252b5132
RH
12873 goto ldd_std;
12874
e407c74b
NC
12875 case M_LQ_AB:
12876 fmt = "t,o(b)";
12877 s = "lq";
12878 goto ld;
12879
12880 case M_SQ_AB:
12881 fmt = "t,o(b)";
12882 s = "sq";
12883 goto ld_st;
12884
252b5132 12885 case M_LD_AB:
df58fc94 12886 fmt = "t,o(b)";
bad1aba3 12887 if (GPR_SIZE == 64)
252b5132
RH
12888 {
12889 s = "ld";
12890 goto ld;
12891 }
252b5132 12892 s = "lw";
252b5132
RH
12893 goto ldd_std;
12894
12895 case M_SD_AB:
df58fc94 12896 fmt = "t,o(b)";
bad1aba3 12897 if (GPR_SIZE == 64)
252b5132
RH
12898 {
12899 s = "sd";
df58fc94 12900 goto ld_st;
252b5132 12901 }
252b5132 12902 s = "sw";
252b5132
RH
12903
12904 ldd_std:
f2ae14a1
RS
12905 /* Even on a big endian machine $fn comes before $fn+1. We have
12906 to adjust when loading from memory. We set coproc if we must
12907 load $fn+1 first. */
12908 /* Itbl support may require additional care here. */
12909 if (!target_big_endian)
12910 coproc = 0;
12911
c0ebe874 12912 breg = op[2];
f2ae14a1
RS
12913 if (small_offset_p (0, align, 16))
12914 {
12915 ep = &offset_expr;
12916 if (!small_offset_p (4, align, 16))
12917 {
12918 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12919 -1, offset_reloc[0], offset_reloc[1],
12920 offset_reloc[2]);
12921 expr1.X_add_number = 0;
12922 ep = &expr1;
12923 breg = AT;
12924 used_at = 1;
12925 offset_reloc[0] = BFD_RELOC_LO16;
12926 offset_reloc[1] = BFD_RELOC_UNUSED;
12927 offset_reloc[2] = BFD_RELOC_UNUSED;
12928 }
c0ebe874 12929 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12930 {
12931 ep->X_add_number += 4;
c0ebe874 12932 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12933 offset_reloc[1], offset_reloc[2], breg);
12934 ep->X_add_number -= 4;
c0ebe874 12935 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12936 offset_reloc[1], offset_reloc[2], breg);
12937 }
12938 else
12939 {
c0ebe874 12940 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12941 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12942 breg);
12943 ep->X_add_number += 4;
c0ebe874 12944 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12945 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12946 breg);
12947 }
12948 break;
12949 }
12950
252b5132
RH
12951 if (offset_expr.X_op != O_symbol
12952 && offset_expr.X_op != O_constant)
12953 {
1661c76c 12954 as_bad (_("expression too complex"));
252b5132
RH
12955 offset_expr.X_op = O_constant;
12956 }
12957
2051e8c4
MR
12958 if (HAVE_32BIT_ADDRESSES
12959 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12960 {
12961 char value [32];
12962
12963 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12964 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12965 }
2051e8c4 12966
90ecf173 12967 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12968 {
12969 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12970 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12971 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12972 If we have a base register, we use this
12973 addu $at,$breg,$gp
c0ebe874
RS
12974 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12975 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12976 If this is not a GP relative symbol, we want
12977 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12978 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12979 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12980 If there is a base register, we add it to $at after the
12981 lui instruction. If there is a constant, we always use
12982 the last case. */
39a59cf8
MR
12983 if (offset_expr.X_op == O_symbol
12984 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12985 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12986 {
4d7206a2 12987 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12988 if (breg == 0)
12989 {
c9914766 12990 tempreg = mips_gp_register;
252b5132
RH
12991 }
12992 else
12993 {
67c0d1eb 12994 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12995 AT, breg, mips_gp_register);
252b5132 12996 tempreg = AT;
252b5132
RH
12997 used_at = 1;
12998 }
12999
beae10d5 13000 /* Itbl support may require additional care here. */
c0ebe874 13001 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 13002 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
13003 offset_expr.X_add_number += 4;
13004
13005 /* Set mips_optimize to 2 to avoid inserting an
13006 undesired nop. */
13007 hold_mips_optimize = mips_optimize;
13008 mips_optimize = 2;
beae10d5 13009 /* Itbl support may require additional care here. */
c0ebe874 13010 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 13011 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
13012 mips_optimize = hold_mips_optimize;
13013
4d7206a2 13014 relax_switch ();
252b5132 13015
0970e49e 13016 offset_expr.X_add_number -= 4;
252b5132 13017 }
8fc2e39e 13018 used_at = 1;
f2ae14a1
RS
13019 if (offset_high_part (offset_expr.X_add_number, 16)
13020 != offset_high_part (offset_expr.X_add_number + 4, 16))
13021 {
13022 load_address (AT, &offset_expr, &used_at);
13023 offset_expr.X_op = O_constant;
13024 offset_expr.X_add_number = 0;
13025 }
13026 else
13027 macro_build_lui (&offset_expr, AT);
252b5132 13028 if (breg != 0)
67c0d1eb 13029 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 13030 /* Itbl support may require additional care here. */
c0ebe874 13031 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 13032 BFD_RELOC_LO16, AT);
252b5132
RH
13033 /* FIXME: How do we handle overflow here? */
13034 offset_expr.X_add_number += 4;
beae10d5 13035 /* Itbl support may require additional care here. */
c0ebe874 13036 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 13037 BFD_RELOC_LO16, AT);
4d7206a2
RS
13038 if (mips_relax.sequence)
13039 relax_end ();
bdaaa2e1 13040 }
0a44bf69 13041 else if (!mips_big_got)
252b5132 13042 {
252b5132
RH
13043 /* If this is a reference to an external symbol, we want
13044 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13045 nop
c0ebe874
RS
13046 <op> op[0],0($at)
13047 <op> op[0]+1,4($at)
252b5132
RH
13048 Otherwise we want
13049 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13050 nop
c0ebe874
RS
13051 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13052 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
13053 If there is a base register we add it to $at before the
13054 lwc1 instructions. If there is a constant we include it
13055 in the lwc1 instructions. */
13056 used_at = 1;
13057 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
13058 if (expr1.X_add_number < -0x8000
13059 || expr1.X_add_number >= 0x8000 - 4)
13060 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 13061 load_got_offset (AT, &offset_expr);
269137b2 13062 load_delay_nop ();
252b5132 13063 if (breg != 0)
67c0d1eb 13064 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
13065
13066 /* Set mips_optimize to 2 to avoid inserting an undesired
13067 nop. */
13068 hold_mips_optimize = mips_optimize;
13069 mips_optimize = 2;
4d7206a2 13070
beae10d5 13071 /* Itbl support may require additional care here. */
4d7206a2 13072 relax_start (offset_expr.X_add_symbol);
c0ebe874 13073 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 13074 BFD_RELOC_LO16, AT);
4d7206a2 13075 expr1.X_add_number += 4;
c0ebe874 13076 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 13077 BFD_RELOC_LO16, AT);
4d7206a2 13078 relax_switch ();
c0ebe874 13079 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 13080 BFD_RELOC_LO16, AT);
4d7206a2 13081 offset_expr.X_add_number += 4;
c0ebe874 13082 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 13083 BFD_RELOC_LO16, AT);
4d7206a2 13084 relax_end ();
252b5132 13085
4d7206a2 13086 mips_optimize = hold_mips_optimize;
252b5132 13087 }
0a44bf69 13088 else if (mips_big_got)
252b5132 13089 {
67c0d1eb 13090 int gpdelay;
252b5132
RH
13091
13092 /* If this is a reference to an external symbol, we want
13093 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
13094 addu $at,$at,$gp
13095 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
13096 nop
c0ebe874
RS
13097 <op> op[0],0($at)
13098 <op> op[0]+1,4($at)
252b5132
RH
13099 Otherwise we want
13100 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13101 nop
c0ebe874
RS
13102 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13103 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
13104 If there is a base register we add it to $at before the
13105 lwc1 instructions. If there is a constant we include it
13106 in the lwc1 instructions. */
13107 used_at = 1;
13108 expr1.X_add_number = offset_expr.X_add_number;
13109 offset_expr.X_add_number = 0;
13110 if (expr1.X_add_number < -0x8000
13111 || expr1.X_add_number >= 0x8000 - 4)
13112 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 13113 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 13114 relax_start (offset_expr.X_add_symbol);
df58fc94 13115 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
13116 AT, BFD_RELOC_MIPS_GOT_HI16);
13117 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 13118 AT, AT, mips_gp_register);
67c0d1eb 13119 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 13120 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 13121 load_delay_nop ();
252b5132 13122 if (breg != 0)
67c0d1eb 13123 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 13124 /* Itbl support may require additional care here. */
c0ebe874 13125 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 13126 BFD_RELOC_LO16, AT);
252b5132
RH
13127 expr1.X_add_number += 4;
13128
13129 /* Set mips_optimize to 2 to avoid inserting an undesired
13130 nop. */
13131 hold_mips_optimize = mips_optimize;
13132 mips_optimize = 2;
beae10d5 13133 /* Itbl support may require additional care here. */
c0ebe874 13134 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 13135 BFD_RELOC_LO16, AT);
252b5132
RH
13136 mips_optimize = hold_mips_optimize;
13137 expr1.X_add_number -= 4;
13138
4d7206a2
RS
13139 relax_switch ();
13140 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
13141 if (gpdelay)
13142 macro_build (NULL, "nop", "");
13143 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
13144 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 13145 load_delay_nop ();
252b5132 13146 if (breg != 0)
67c0d1eb 13147 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 13148 /* Itbl support may require additional care here. */
c0ebe874 13149 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 13150 BFD_RELOC_LO16, AT);
4d7206a2 13151 offset_expr.X_add_number += 4;
252b5132
RH
13152
13153 /* Set mips_optimize to 2 to avoid inserting an undesired
13154 nop. */
13155 hold_mips_optimize = mips_optimize;
13156 mips_optimize = 2;
beae10d5 13157 /* Itbl support may require additional care here. */
c0ebe874 13158 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 13159 BFD_RELOC_LO16, AT);
252b5132 13160 mips_optimize = hold_mips_optimize;
4d7206a2 13161 relax_end ();
252b5132 13162 }
252b5132
RH
13163 else
13164 abort ();
13165
252b5132 13166 break;
3739860c 13167
dd6a37e7 13168 case M_SAA_AB:
dd6a37e7 13169 s = "saa";
0db377d0 13170 goto saa_saad;
dd6a37e7 13171 case M_SAAD_AB:
dd6a37e7 13172 s = "saad";
0db377d0
MR
13173 saa_saad:
13174 gas_assert (!mips_opts.micromips);
7f3c4072 13175 offbits = 0;
dd6a37e7
AP
13176 fmt = "t,(b)";
13177 goto ld_st;
13178
252b5132
RH
13179 /* New code added to support COPZ instructions.
13180 This code builds table entries out of the macros in mip_opcodes.
13181 R4000 uses interlocks to handle coproc delays.
13182 Other chips (like the R3000) require nops to be inserted for delays.
13183
f72c8c98 13184 FIXME: Currently, we require that the user handle delays.
252b5132
RH
13185 In order to fill delay slots for non-interlocked chips,
13186 we must have a way to specify delays based on the coprocessor.
13187 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
13188 What are the side-effects of the cop instruction?
13189 What cache support might we have and what are its effects?
13190 Both coprocessor & memory require delays. how long???
bdaaa2e1 13191 What registers are read/set/modified?
252b5132
RH
13192
13193 If an itbl is provided to interpret cop instructions,
bdaaa2e1 13194 this knowledge can be encoded in the itbl spec. */
252b5132
RH
13195
13196 case M_COP0:
13197 s = "c0";
13198 goto copz;
13199 case M_COP1:
13200 s = "c1";
13201 goto copz;
13202 case M_COP2:
13203 s = "c2";
13204 goto copz;
13205 case M_COP3:
13206 s = "c3";
13207 copz:
df58fc94 13208 gas_assert (!mips_opts.micromips);
252b5132
RH
13209 /* For now we just do C (same as Cz). The parameter will be
13210 stored in insn_opcode by mips_ip. */
c8276761 13211 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 13212 break;
252b5132 13213
ea1fb5dc 13214 case M_MOVE:
c0ebe874 13215 move_register (op[0], op[1]);
8fc2e39e 13216 break;
ea1fb5dc 13217
833794fc
MR
13218 case M_MOVEP:
13219 gas_assert (mips_opts.micromips);
13220 gas_assert (mips_opts.insn32);
c0ebe874
RS
13221 move_register (micromips_to_32_reg_h_map1[op[0]],
13222 micromips_to_32_reg_m_map[op[1]]);
13223 move_register (micromips_to_32_reg_h_map2[op[0]],
13224 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
13225 break;
13226
252b5132
RH
13227 case M_DMUL:
13228 dbl = 1;
1a0670f3 13229 /* Fall through. */
252b5132 13230 case M_MUL:
e407c74b 13231 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
13232 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13233 op[2]);
e407c74b
NC
13234 else
13235 {
c0ebe874
RS
13236 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13237 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 13238 }
8fc2e39e 13239 break;
252b5132
RH
13240
13241 case M_DMUL_I:
13242 dbl = 1;
1a0670f3 13243 /* Fall through. */
252b5132
RH
13244 case M_MUL_I:
13245 /* The MIPS assembler some times generates shifts and adds. I'm
13246 not trying to be that fancy. GCC should do this for us
13247 anyway. */
8fc2e39e 13248 used_at = 1;
67c0d1eb 13249 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
13250 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13251 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
13252 break;
13253
13254 case M_DMULO_I:
13255 dbl = 1;
1a0670f3 13256 /* Fall through. */
252b5132
RH
13257 case M_MULO_I:
13258 imm = 1;
13259 goto do_mulo;
13260
13261 case M_DMULO:
13262 dbl = 1;
1a0670f3 13263 /* Fall through. */
252b5132
RH
13264 case M_MULO:
13265 do_mulo:
7d10b47d 13266 start_noreorder ();
8fc2e39e 13267 used_at = 1;
252b5132 13268 if (imm)
67c0d1eb 13269 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
13270 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13271 op[1], imm ? AT : op[2]);
13272 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13273 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 13274 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 13275 if (mips_trap)
c0ebe874 13276 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
13277 else
13278 {
df58fc94
RS
13279 if (mips_opts.micromips)
13280 micromips_label_expr (&label_expr);
13281 else
13282 label_expr.X_add_number = 8;
c0ebe874 13283 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 13284 macro_build (NULL, "nop", "");
df58fc94
RS
13285 macro_build (NULL, "break", BRK_FMT, 6);
13286 if (mips_opts.micromips)
13287 micromips_add_label ();
252b5132 13288 }
7d10b47d 13289 end_noreorder ();
c0ebe874 13290 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
13291 break;
13292
13293 case M_DMULOU_I:
13294 dbl = 1;
1a0670f3 13295 /* Fall through. */
252b5132
RH
13296 case M_MULOU_I:
13297 imm = 1;
13298 goto do_mulou;
13299
13300 case M_DMULOU:
13301 dbl = 1;
1a0670f3 13302 /* Fall through. */
252b5132
RH
13303 case M_MULOU:
13304 do_mulou:
7d10b47d 13305 start_noreorder ();
8fc2e39e 13306 used_at = 1;
252b5132 13307 if (imm)
67c0d1eb
RS
13308 load_register (AT, &imm_expr, dbl);
13309 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 13310 op[1], imm ? AT : op[2]);
df58fc94 13311 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 13312 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 13313 if (mips_trap)
df58fc94 13314 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
13315 else
13316 {
df58fc94
RS
13317 if (mips_opts.micromips)
13318 micromips_label_expr (&label_expr);
13319 else
13320 label_expr.X_add_number = 8;
13321 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 13322 macro_build (NULL, "nop", "");
df58fc94
RS
13323 macro_build (NULL, "break", BRK_FMT, 6);
13324 if (mips_opts.micromips)
13325 micromips_add_label ();
252b5132 13326 }
7d10b47d 13327 end_noreorder ();
252b5132
RH
13328 break;
13329
771c7ce4 13330 case M_DROL:
fef14a42 13331 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 13332 {
c0ebe874 13333 if (op[0] == op[1])
82dd0097
CD
13334 {
13335 tempreg = AT;
13336 used_at = 1;
13337 }
13338 else
c0ebe874
RS
13339 tempreg = op[0];
13340 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13341 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 13342 break;
82dd0097 13343 }
8fc2e39e 13344 used_at = 1;
c0ebe874
RS
13345 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13346 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13347 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13348 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13349 break;
13350
252b5132 13351 case M_ROL:
fef14a42 13352 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13353 {
c0ebe874 13354 if (op[0] == op[1])
82dd0097
CD
13355 {
13356 tempreg = AT;
13357 used_at = 1;
13358 }
13359 else
c0ebe874
RS
13360 tempreg = op[0];
13361 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13362 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 13363 break;
82dd0097 13364 }
8fc2e39e 13365 used_at = 1;
c0ebe874
RS
13366 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13367 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13368 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13369 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13370 break;
13371
771c7ce4
TS
13372 case M_DROL_I:
13373 {
13374 unsigned int rot;
e0471c16
TS
13375 const char *l;
13376 const char *rr;
771c7ce4 13377
771c7ce4 13378 rot = imm_expr.X_add_number & 0x3f;
fef14a42 13379 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
13380 {
13381 rot = (64 - rot) & 0x3f;
13382 if (rot >= 32)
c0ebe874 13383 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 13384 else
c0ebe874 13385 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13386 break;
60b63b72 13387 }
483fc7cd 13388 if (rot == 0)
483fc7cd 13389 {
c0ebe874 13390 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13391 break;
483fc7cd 13392 }
82dd0097 13393 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 13394 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 13395 rot &= 0x1f;
8fc2e39e 13396 used_at = 1;
c0ebe874
RS
13397 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13398 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13399 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13400 }
13401 break;
13402
252b5132 13403 case M_ROL_I:
771c7ce4
TS
13404 {
13405 unsigned int rot;
13406
771c7ce4 13407 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13408 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 13409 {
c0ebe874
RS
13410 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13411 (32 - rot) & 0x1f);
8fc2e39e 13412 break;
60b63b72 13413 }
483fc7cd 13414 if (rot == 0)
483fc7cd 13415 {
c0ebe874 13416 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13417 break;
483fc7cd 13418 }
8fc2e39e 13419 used_at = 1;
c0ebe874
RS
13420 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13421 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13422 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13423 }
13424 break;
13425
13426 case M_DROR:
fef14a42 13427 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 13428 {
c0ebe874 13429 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 13430 break;
82dd0097 13431 }
8fc2e39e 13432 used_at = 1;
c0ebe874
RS
13433 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13434 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13435 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13436 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13437 break;
13438
13439 case M_ROR:
fef14a42 13440 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13441 {
c0ebe874 13442 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 13443 break;
82dd0097 13444 }
8fc2e39e 13445 used_at = 1;
c0ebe874
RS
13446 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13447 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13448 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13449 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13450 break;
13451
771c7ce4
TS
13452 case M_DROR_I:
13453 {
13454 unsigned int rot;
e0471c16
TS
13455 const char *l;
13456 const char *rr;
771c7ce4 13457
771c7ce4 13458 rot = imm_expr.X_add_number & 0x3f;
fef14a42 13459 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
13460 {
13461 if (rot >= 32)
c0ebe874 13462 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 13463 else
c0ebe874 13464 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13465 break;
82dd0097 13466 }
483fc7cd 13467 if (rot == 0)
483fc7cd 13468 {
c0ebe874 13469 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13470 break;
483fc7cd 13471 }
91d6fa6a 13472 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
13473 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13474 rot &= 0x1f;
8fc2e39e 13475 used_at = 1;
c0ebe874
RS
13476 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13477 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13478 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13479 }
13480 break;
13481
252b5132 13482 case M_ROR_I:
771c7ce4
TS
13483 {
13484 unsigned int rot;
13485
771c7ce4 13486 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13487 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13488 {
c0ebe874 13489 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13490 break;
82dd0097 13491 }
483fc7cd 13492 if (rot == 0)
483fc7cd 13493 {
c0ebe874 13494 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13495 break;
483fc7cd 13496 }
8fc2e39e 13497 used_at = 1;
c0ebe874
RS
13498 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13499 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13500 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13501 }
252b5132
RH
13502 break;
13503
252b5132 13504 case M_SEQ:
c0ebe874
RS
13505 if (op[1] == 0)
13506 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13507 else if (op[2] == 0)
13508 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13509 else
13510 {
c0ebe874
RS
13511 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13512 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13513 }
8fc2e39e 13514 break;
252b5132
RH
13515
13516 case M_SEQ_I:
b0e6f033 13517 if (imm_expr.X_add_number == 0)
252b5132 13518 {
c0ebe874 13519 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13520 break;
252b5132 13521 }
c0ebe874 13522 if (op[1] == 0)
252b5132 13523 {
1661c76c 13524 as_warn (_("instruction %s: result is always false"),
252b5132 13525 ip->insn_mo->name);
c0ebe874 13526 move_register (op[0], 0);
8fc2e39e 13527 break;
252b5132 13528 }
dd3cbb7e
NC
13529 if (CPU_HAS_SEQ (mips_opts.arch)
13530 && -512 <= imm_expr.X_add_number
13531 && imm_expr.X_add_number < 512)
13532 {
c0ebe874 13533 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13534 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13535 break;
13536 }
b0e6f033 13537 if (imm_expr.X_add_number >= 0
252b5132 13538 && imm_expr.X_add_number < 0x10000)
c0ebe874 13539 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13540 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13541 && imm_expr.X_add_number < 0)
13542 {
13543 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13544 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13545 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13546 }
dd3cbb7e
NC
13547 else if (CPU_HAS_SEQ (mips_opts.arch))
13548 {
13549 used_at = 1;
bad1aba3 13550 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13551 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13552 break;
13553 }
252b5132
RH
13554 else
13555 {
bad1aba3 13556 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13557 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13558 used_at = 1;
13559 }
c0ebe874 13560 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13561 break;
252b5132 13562
c0ebe874 13563 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13564 s = "slt";
13565 goto sge;
13566 case M_SGEU:
13567 s = "sltu";
13568 sge:
c0ebe874
RS
13569 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13570 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13571 break;
252b5132 13572
6f2117ba 13573 case M_SGE_I: /* X >= I <==> not (X < I). */
252b5132 13574 case M_SGEU_I:
b0e6f033 13575 if (imm_expr.X_add_number >= -0x8000
252b5132 13576 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13577 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13578 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13579 else
13580 {
bad1aba3 13581 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13582 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13583 op[0], op[1], AT);
252b5132
RH
13584 used_at = 1;
13585 }
c0ebe874 13586 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13587 break;
252b5132 13588
6f2117ba 13589 case M_SGT: /* X > Y <==> Y < X. */
252b5132
RH
13590 s = "slt";
13591 goto sgt;
13592 case M_SGTU:
13593 s = "sltu";
13594 sgt:
c0ebe874 13595 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13596 break;
252b5132 13597
6f2117ba 13598 case M_SGT_I: /* X > I <==> I < X. */
252b5132
RH
13599 s = "slt";
13600 goto sgti;
13601 case M_SGTU_I:
13602 s = "sltu";
13603 sgti:
8fc2e39e 13604 used_at = 1;
bad1aba3 13605 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13606 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13607 break;
13608
6f2117ba 13609 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X). */
252b5132
RH
13610 s = "slt";
13611 goto sle;
13612 case M_SLEU:
13613 s = "sltu";
13614 sle:
c0ebe874
RS
13615 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13616 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13617 break;
252b5132 13618
c0ebe874 13619 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13620 s = "slt";
13621 goto slei;
13622 case M_SLEU_I:
13623 s = "sltu";
13624 slei:
8fc2e39e 13625 used_at = 1;
bad1aba3 13626 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13627 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13628 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13629 break;
13630
13631 case M_SLT_I:
b0e6f033 13632 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13633 && imm_expr.X_add_number < 0x8000)
13634 {
c0ebe874
RS
13635 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13636 BFD_RELOC_LO16);
8fc2e39e 13637 break;
252b5132 13638 }
8fc2e39e 13639 used_at = 1;
bad1aba3 13640 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13641 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13642 break;
13643
13644 case M_SLTU_I:
b0e6f033 13645 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13646 && imm_expr.X_add_number < 0x8000)
13647 {
c0ebe874 13648 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13649 BFD_RELOC_LO16);
8fc2e39e 13650 break;
252b5132 13651 }
8fc2e39e 13652 used_at = 1;
bad1aba3 13653 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13654 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13655 break;
13656
13657 case M_SNE:
c0ebe874
RS
13658 if (op[1] == 0)
13659 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13660 else if (op[2] == 0)
13661 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13662 else
13663 {
c0ebe874
RS
13664 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13665 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13666 }
8fc2e39e 13667 break;
252b5132
RH
13668
13669 case M_SNE_I:
b0e6f033 13670 if (imm_expr.X_add_number == 0)
252b5132 13671 {
c0ebe874 13672 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13673 break;
252b5132 13674 }
c0ebe874 13675 if (op[1] == 0)
252b5132 13676 {
1661c76c 13677 as_warn (_("instruction %s: result is always true"),
252b5132 13678 ip->insn_mo->name);
bad1aba3 13679 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13680 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13681 break;
252b5132 13682 }
dd3cbb7e
NC
13683 if (CPU_HAS_SEQ (mips_opts.arch)
13684 && -512 <= imm_expr.X_add_number
13685 && imm_expr.X_add_number < 512)
13686 {
c0ebe874 13687 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13688 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13689 break;
13690 }
b0e6f033 13691 if (imm_expr.X_add_number >= 0
252b5132
RH
13692 && imm_expr.X_add_number < 0x10000)
13693 {
c0ebe874
RS
13694 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13695 BFD_RELOC_LO16);
252b5132 13696 }
b0e6f033 13697 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13698 && imm_expr.X_add_number < 0)
13699 {
13700 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13701 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13702 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13703 }
dd3cbb7e
NC
13704 else if (CPU_HAS_SEQ (mips_opts.arch))
13705 {
13706 used_at = 1;
bad1aba3 13707 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13708 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13709 break;
13710 }
252b5132
RH
13711 else
13712 {
bad1aba3 13713 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13714 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13715 used_at = 1;
13716 }
c0ebe874 13717 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13718 break;
252b5132 13719
df58fc94
RS
13720 case M_SUB_I:
13721 s = "addi";
13722 s2 = "sub";
387e7624
FS
13723 if (ISA_IS_R6 (mips_opts.isa))
13724 goto do_subi_i;
13725 else
13726 goto do_subi;
df58fc94
RS
13727 case M_SUBU_I:
13728 s = "addiu";
13729 s2 = "subu";
13730 goto do_subi;
252b5132
RH
13731 case M_DSUB_I:
13732 dbl = 1;
df58fc94
RS
13733 s = "daddi";
13734 s2 = "dsub";
387e7624 13735 if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
df58fc94 13736 goto do_subi;
b0e6f033 13737 if (imm_expr.X_add_number > -0x200
387e7624
FS
13738 && imm_expr.X_add_number <= 0x200
13739 && !ISA_IS_R6 (mips_opts.isa))
252b5132 13740 {
b0e6f033
RS
13741 macro_build (NULL, s, "t,r,.", op[0], op[1],
13742 (int) -imm_expr.X_add_number);
8fc2e39e 13743 break;
252b5132 13744 }
df58fc94 13745 goto do_subi_i;
252b5132
RH
13746 case M_DSUBU_I:
13747 dbl = 1;
df58fc94
RS
13748 s = "daddiu";
13749 s2 = "dsubu";
13750 do_subi:
b0e6f033 13751 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13752 && imm_expr.X_add_number <= 0x8000)
13753 {
13754 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13755 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13756 break;
252b5132 13757 }
df58fc94 13758 do_subi_i:
8fc2e39e 13759 used_at = 1;
67c0d1eb 13760 load_register (AT, &imm_expr, dbl);
c0ebe874 13761 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13762 break;
13763
13764 case M_TEQ_I:
13765 s = "teq";
13766 goto trap;
13767 case M_TGE_I:
13768 s = "tge";
13769 goto trap;
13770 case M_TGEU_I:
13771 s = "tgeu";
13772 goto trap;
13773 case M_TLT_I:
13774 s = "tlt";
13775 goto trap;
13776 case M_TLTU_I:
13777 s = "tltu";
13778 goto trap;
13779 case M_TNE_I:
13780 s = "tne";
13781 trap:
8fc2e39e 13782 used_at = 1;
bad1aba3 13783 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13784 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13785 break;
13786
252b5132 13787 case M_TRUNCWS:
43841e91 13788 case M_TRUNCWD:
df58fc94 13789 gas_assert (!mips_opts.micromips);
0aa27725 13790 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13791 used_at = 1;
252b5132
RH
13792
13793 /*
13794 * Is the double cfc1 instruction a bug in the mips assembler;
13795 * or is there a reason for it?
13796 */
7d10b47d 13797 start_noreorder ();
c0ebe874
RS
13798 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13799 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13800 macro_build (NULL, "nop", "");
252b5132 13801 expr1.X_add_number = 3;
c0ebe874 13802 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13803 expr1.X_add_number = 2;
67c0d1eb
RS
13804 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13805 macro_build (NULL, "ctc1", "t,G", AT, RA);
13806 macro_build (NULL, "nop", "");
13807 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13808 op[0], op[1]);
13809 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13810 macro_build (NULL, "nop", "");
7d10b47d 13811 end_noreorder ();
252b5132
RH
13812 break;
13813
f2ae14a1 13814 case M_ULH_AB:
252b5132 13815 s = "lb";
df58fc94
RS
13816 s2 = "lbu";
13817 off = 1;
13818 goto uld_st;
f2ae14a1 13819 case M_ULHU_AB:
252b5132 13820 s = "lbu";
df58fc94
RS
13821 s2 = "lbu";
13822 off = 1;
13823 goto uld_st;
f2ae14a1 13824 case M_ULW_AB:
df58fc94
RS
13825 s = "lwl";
13826 s2 = "lwr";
7f3c4072 13827 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13828 off = 3;
13829 goto uld_st;
f2ae14a1 13830 case M_ULD_AB:
252b5132
RH
13831 s = "ldl";
13832 s2 = "ldr";
7f3c4072 13833 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13834 off = 7;
df58fc94 13835 goto uld_st;
f2ae14a1 13836 case M_USH_AB:
df58fc94
RS
13837 s = "sb";
13838 s2 = "sb";
13839 off = 1;
13840 ust = 1;
13841 goto uld_st;
f2ae14a1 13842 case M_USW_AB:
df58fc94
RS
13843 s = "swl";
13844 s2 = "swr";
7f3c4072 13845 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13846 off = 3;
df58fc94
RS
13847 ust = 1;
13848 goto uld_st;
f2ae14a1 13849 case M_USD_AB:
df58fc94
RS
13850 s = "sdl";
13851 s2 = "sdr";
7f3c4072 13852 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13853 off = 7;
13854 ust = 1;
13855
13856 uld_st:
c0ebe874 13857 breg = op[2];
f2ae14a1 13858 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13859 ep = &offset_expr;
13860 expr1.X_add_number = 0;
f2ae14a1 13861 if (large_offset)
df58fc94
RS
13862 {
13863 used_at = 1;
13864 tempreg = AT;
f2ae14a1
RS
13865 if (small_offset_p (0, align, 16))
13866 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13867 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13868 else
13869 {
13870 load_address (tempreg, ep, &used_at);
13871 if (breg != 0)
13872 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13873 tempreg, tempreg, breg);
13874 }
13875 offset_reloc[0] = BFD_RELOC_LO16;
13876 offset_reloc[1] = BFD_RELOC_UNUSED;
13877 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13878 breg = tempreg;
c0ebe874 13879 tempreg = op[0];
df58fc94
RS
13880 ep = &expr1;
13881 }
c0ebe874 13882 else if (!ust && op[0] == breg)
8fc2e39e
TS
13883 {
13884 used_at = 1;
13885 tempreg = AT;
13886 }
252b5132 13887 else
c0ebe874 13888 tempreg = op[0];
af22f5b2 13889
df58fc94
RS
13890 if (off == 1)
13891 goto ulh_sh;
252b5132 13892
90ecf173 13893 if (!target_big_endian)
df58fc94 13894 ep->X_add_number += off;
f2ae14a1 13895 if (offbits == 12)
c8276761 13896 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13897 else
13898 macro_build (ep, s, "t,o(b)", tempreg, -1,
13899 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13900
90ecf173 13901 if (!target_big_endian)
df58fc94 13902 ep->X_add_number -= off;
252b5132 13903 else
df58fc94 13904 ep->X_add_number += off;
f2ae14a1 13905 if (offbits == 12)
df58fc94 13906 macro_build (NULL, s2, "t,~(b)",
c8276761 13907 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13908 else
13909 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13910 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13911
df58fc94 13912 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13913 if (!ust && op[0] != tempreg)
df58fc94
RS
13914 {
13915 /* Protect second load's delay slot. */
13916 load_delay_nop ();
c0ebe874 13917 move_register (op[0], tempreg);
df58fc94 13918 }
8fc2e39e 13919 break;
252b5132 13920
df58fc94 13921 ulh_sh:
d6bc6245 13922 used_at = 1;
df58fc94
RS
13923 if (target_big_endian == ust)
13924 ep->X_add_number += off;
c0ebe874 13925 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13926 macro_build (ep, s, "t,o(b)", tempreg, -1,
13927 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13928
13929 /* For halfword transfers we need a temporary register to shuffle
13930 bytes. Unfortunately for M_USH_A we have none available before
13931 the next store as AT holds the base address. We deal with this
13932 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13933 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13934 if (ust)
c0ebe874 13935 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13936
13937 if (target_big_endian == ust)
13938 ep->X_add_number -= off;
252b5132 13939 else
df58fc94 13940 ep->X_add_number += off;
f2ae14a1
RS
13941 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13942 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13943
df58fc94 13944 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13945 if (ust && large_offset)
df58fc94
RS
13946 {
13947 if (target_big_endian)
13948 ep->X_add_number += off;
13949 else
13950 ep->X_add_number -= off;
f2ae14a1
RS
13951 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13952 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13953 }
13954 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13955 if (!ust || large_offset)
df58fc94 13956 {
c0ebe874 13957 tempreg = !large_offset ? AT : op[0];
df58fc94 13958 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13959 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13960 }
252b5132
RH
13961 break;
13962
13963 default:
13964 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13965 are added dynamically. */
1661c76c 13966 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13967 break;
13968 }
741fe287 13969 if (!mips_opts.at && used_at)
1661c76c 13970 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13971}
13972
13973/* Implement macros in mips16 mode. */
13974
13975static void
17a2f251 13976mips16_macro (struct mips_cl_insn *ip)
252b5132 13977{
c0ebe874 13978 const struct mips_operand_array *operands;
252b5132 13979 int mask;
c0ebe874 13980 int tmp;
252b5132
RH
13981 expressionS expr1;
13982 int dbl;
13983 const char *s, *s2, *s3;
c0ebe874
RS
13984 unsigned int op[MAX_OPERANDS];
13985 unsigned int i;
252b5132
RH
13986
13987 mask = ip->insn_mo->mask;
13988
c0ebe874
RS
13989 operands = insn_operands (ip);
13990 for (i = 0; i < MAX_OPERANDS; i++)
13991 if (operands->operand[i])
13992 op[i] = insn_extract_operand (ip, operands->operand[i]);
13993 else
13994 op[i] = -1;
252b5132 13995
252b5132
RH
13996 expr1.X_op = O_constant;
13997 expr1.X_op_symbol = NULL;
13998 expr1.X_add_symbol = NULL;
13999 expr1.X_add_number = 1;
14000
14001 dbl = 0;
14002
14003 switch (mask)
14004 {
14005 default:
b37df7c4 14006 abort ();
252b5132
RH
14007
14008 case M_DDIV_3:
14009 dbl = 1;
1a0670f3 14010 /* Fall through. */
252b5132
RH
14011 case M_DIV_3:
14012 s = "mflo";
14013 goto do_div3;
14014 case M_DREM_3:
14015 dbl = 1;
1a0670f3 14016 /* Fall through. */
252b5132
RH
14017 case M_REM_3:
14018 s = "mfhi";
14019 do_div3:
7d10b47d 14020 start_noreorder ();
d8722d76 14021 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
252b5132 14022 expr1.X_add_number = 2;
c0ebe874 14023 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 14024 macro_build (NULL, "break", "6", 7);
bdaaa2e1 14025
252b5132
RH
14026 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
14027 since that causes an overflow. We should do that as well,
14028 but I don't see how to do the comparisons without a temporary
14029 register. */
7d10b47d 14030 end_noreorder ();
c0ebe874 14031 macro_build (NULL, s, "x", op[0]);
252b5132
RH
14032 break;
14033
14034 case M_DIVU_3:
14035 s = "divu";
14036 s2 = "mflo";
14037 goto do_divu3;
14038 case M_REMU_3:
14039 s = "divu";
14040 s2 = "mfhi";
14041 goto do_divu3;
14042 case M_DDIVU_3:
14043 s = "ddivu";
14044 s2 = "mflo";
14045 goto do_divu3;
14046 case M_DREMU_3:
14047 s = "ddivu";
14048 s2 = "mfhi";
14049 do_divu3:
7d10b47d 14050 start_noreorder ();
d8722d76 14051 macro_build (NULL, s, ".,x,y", op[1], op[2]);
252b5132 14052 expr1.X_add_number = 2;
c0ebe874 14053 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 14054 macro_build (NULL, "break", "6", 7);
7d10b47d 14055 end_noreorder ();
c0ebe874 14056 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
14057 break;
14058
14059 case M_DMUL:
14060 dbl = 1;
1a0670f3 14061 /* Fall through. */
252b5132 14062 case M_MUL:
c0ebe874
RS
14063 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
14064 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 14065 break;
252b5132
RH
14066
14067 case M_DSUBU_I:
14068 dbl = 1;
14069 goto do_subu;
14070 case M_SUBU_I:
14071 do_subu:
252b5132 14072 imm_expr.X_add_number = -imm_expr.X_add_number;
d8722d76 14073 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
252b5132
RH
14074 break;
14075
14076 case M_SUBU_I_2:
252b5132 14077 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 14078 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
14079 break;
14080
14081 case M_DSUBU_I_2:
252b5132 14082 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 14083 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
14084 break;
14085
14086 case M_BEQ:
14087 s = "cmp";
14088 s2 = "bteqz";
14089 goto do_branch;
14090 case M_BNE:
14091 s = "cmp";
14092 s2 = "btnez";
14093 goto do_branch;
14094 case M_BLT:
14095 s = "slt";
14096 s2 = "btnez";
14097 goto do_branch;
14098 case M_BLTU:
14099 s = "sltu";
14100 s2 = "btnez";
14101 goto do_branch;
14102 case M_BLE:
14103 s = "slt";
14104 s2 = "bteqz";
14105 goto do_reverse_branch;
14106 case M_BLEU:
14107 s = "sltu";
14108 s2 = "bteqz";
14109 goto do_reverse_branch;
14110 case M_BGE:
14111 s = "slt";
14112 s2 = "bteqz";
14113 goto do_branch;
14114 case M_BGEU:
14115 s = "sltu";
14116 s2 = "bteqz";
14117 goto do_branch;
14118 case M_BGT:
14119 s = "slt";
14120 s2 = "btnez";
14121 goto do_reverse_branch;
14122 case M_BGTU:
14123 s = "sltu";
14124 s2 = "btnez";
14125
14126 do_reverse_branch:
c0ebe874
RS
14127 tmp = op[1];
14128 op[1] = op[0];
14129 op[0] = tmp;
252b5132
RH
14130
14131 do_branch:
c0ebe874 14132 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 14133 macro_build (&offset_expr, s2, "p");
252b5132
RH
14134 break;
14135
14136 case M_BEQ_I:
14137 s = "cmpi";
14138 s2 = "bteqz";
14139 s3 = "x,U";
14140 goto do_branch_i;
14141 case M_BNE_I:
14142 s = "cmpi";
14143 s2 = "btnez";
14144 s3 = "x,U";
14145 goto do_branch_i;
14146 case M_BLT_I:
14147 s = "slti";
14148 s2 = "btnez";
14149 s3 = "x,8";
14150 goto do_branch_i;
14151 case M_BLTU_I:
14152 s = "sltiu";
14153 s2 = "btnez";
14154 s3 = "x,8";
14155 goto do_branch_i;
14156 case M_BLE_I:
14157 s = "slti";
14158 s2 = "btnez";
14159 s3 = "x,8";
14160 goto do_addone_branch_i;
14161 case M_BLEU_I:
14162 s = "sltiu";
14163 s2 = "btnez";
14164 s3 = "x,8";
14165 goto do_addone_branch_i;
14166 case M_BGE_I:
14167 s = "slti";
14168 s2 = "bteqz";
14169 s3 = "x,8";
14170 goto do_branch_i;
14171 case M_BGEU_I:
14172 s = "sltiu";
14173 s2 = "bteqz";
14174 s3 = "x,8";
14175 goto do_branch_i;
14176 case M_BGT_I:
14177 s = "slti";
14178 s2 = "bteqz";
14179 s3 = "x,8";
14180 goto do_addone_branch_i;
14181 case M_BGTU_I:
14182 s = "sltiu";
14183 s2 = "bteqz";
14184 s3 = "x,8";
14185
14186 do_addone_branch_i:
252b5132
RH
14187 ++imm_expr.X_add_number;
14188
14189 do_branch_i:
c0ebe874 14190 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 14191 macro_build (&offset_expr, s2, "p");
252b5132
RH
14192 break;
14193
14194 case M_ABS:
14195 expr1.X_add_number = 0;
c0ebe874
RS
14196 macro_build (&expr1, "slti", "x,8", op[1]);
14197 if (op[0] != op[1])
14198 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 14199 expr1.X_add_number = 2;
67c0d1eb 14200 macro_build (&expr1, "bteqz", "p");
c0ebe874 14201 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 14202 break;
252b5132
RH
14203 }
14204}
14205
14daeee3
RS
14206/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
14207 opcode bits in *OPCODE_EXTRA. */
14208
14209static struct mips_opcode *
14210mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 14211 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
14212{
14213 char *name, *dot, *p;
14214 unsigned int mask, suffix;
da8bca91 14215 ssize_t opend;
14daeee3
RS
14216 struct mips_opcode *insn;
14217
14218 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 14219 name = xstrndup (start, length);
14daeee3
RS
14220
14221 /* Look up the instruction as-is. */
14222 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 14223 if (insn)
e1fa0163 14224 goto end;
14daeee3
RS
14225
14226 dot = strchr (name, '.');
14227 if (dot && dot[1])
14228 {
14229 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14230 p = mips_parse_vu0_channels (dot + 1, &mask);
14231 if (*p == 0 && mask != 0)
14232 {
14233 *dot = 0;
14234 insn = (struct mips_opcode *) hash_find (hash, name);
14235 *dot = '.';
14236 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14237 {
14238 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 14239 goto end;
14daeee3
RS
14240 }
14241 }
14242 }
14243
14244 if (mips_opts.micromips)
14245 {
14246 /* See if there's an instruction size override suffix,
14247 either `16' or `32', at the end of the mnemonic proper,
14248 that defines the operation, i.e. before the first `.'
14249 character if any. Strip it and retry. */
14250 opend = dot != NULL ? dot - name : length;
14251 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14252 suffix = 2;
14253 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
14254 suffix = 4;
14255 else
14256 suffix = 0;
14257 if (suffix)
14258 {
39334a61 14259 memmove (name + opend - 2, name + opend, length - opend + 1);
14daeee3 14260 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 14261 if (insn)
14daeee3
RS
14262 {
14263 forced_insn_length = suffix;
e1fa0163 14264 goto end;
14daeee3
RS
14265 }
14266 }
14267 }
14268
e1fa0163
NC
14269 insn = NULL;
14270 end:
14271 free (name);
14272 return insn;
14daeee3
RS
14273}
14274
77bd4346 14275/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
14276 is a macro, set imm_expr and offset_expr to the values associated
14277 with "I" and "A" operands respectively. Otherwise store the value
14278 of the relocatable field (if any) in offset_expr. In both cases
14279 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
14280
14281static void
60f20e8b 14282mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 14283{
60f20e8b 14284 const struct mips_opcode *first, *past;
df58fc94 14285 struct hash_control *hash;
a92713e6 14286 char format;
14daeee3 14287 size_t end;
a92713e6 14288 struct mips_operand_token *tokens;
14daeee3 14289 unsigned int opcode_extra;
252b5132 14290
df58fc94
RS
14291 if (mips_opts.micromips)
14292 {
14293 hash = micromips_op_hash;
14294 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14295 }
14296 else
14297 {
14298 hash = op_hash;
14299 past = &mips_opcodes[NUMOPCODES];
14300 }
14301 forced_insn_length = 0;
14daeee3 14302 opcode_extra = 0;
252b5132 14303
df58fc94 14304 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
14305 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14306 continue;
bdaaa2e1 14307
60f20e8b
RS
14308 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14309 if (first == NULL)
252b5132 14310 {
1661c76c 14311 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 14312 return;
252b5132
RH
14313 }
14314
60f20e8b 14315 if (strcmp (first->name, "li.s") == 0)
a92713e6 14316 format = 'f';
60f20e8b 14317 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
14318 format = 'd';
14319 else
14320 format = 0;
14321 tokens = mips_parse_arguments (str + end, format);
14322 if (!tokens)
14323 return;
14324
60f20e8b
RS
14325 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14326 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 14327 set_insn_error (0, _("invalid operands"));
df58fc94 14328
e3de51ce 14329 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
14330}
14331
77bd4346
RS
14332/* As for mips_ip, but used when assembling MIPS16 code.
14333 Also set forced_insn_length to the resulting instruction size in
14334 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
14335
14336static void
60f20e8b 14337mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 14338{
1a00e612 14339 char *end, *s, c;
60f20e8b 14340 struct mips_opcode *first;
a92713e6 14341 struct mips_operand_token *tokens;
3fb49709 14342 unsigned int l;
252b5132 14343
25499ac7 14344 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
252b5132 14345 ;
1a00e612
RS
14346 end = s;
14347 c = *end;
3fb49709
MR
14348
14349 l = 0;
1a00e612 14350 switch (c)
252b5132
RH
14351 {
14352 case '\0':
14353 break;
14354
14355 case ' ':
1a00e612 14356 s++;
252b5132
RH
14357 break;
14358
14359 case '.':
3fb49709
MR
14360 s++;
14361 if (*s == 't')
252b5132 14362 {
3fb49709
MR
14363 l = 2;
14364 s++;
252b5132 14365 }
3fb49709 14366 else if (*s == 'e')
252b5132 14367 {
3fb49709
MR
14368 l = 4;
14369 s++;
252b5132 14370 }
3fb49709
MR
14371 if (*s == '\0')
14372 break;
14373 else if (*s++ == ' ')
14374 break;
1661c76c 14375 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
14376 return;
14377 }
3fb49709 14378 forced_insn_length = l;
252b5132 14379
1a00e612 14380 *end = 0;
60f20e8b 14381 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
14382 *end = c;
14383
60f20e8b 14384 if (!first)
252b5132 14385 {
1661c76c 14386 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
14387 return;
14388 }
14389
a92713e6
RS
14390 tokens = mips_parse_arguments (s, 0);
14391 if (!tokens)
14392 return;
14393
60f20e8b 14394 if (!match_mips16_insns (insn, first, tokens))
1661c76c 14395 set_insn_error (0, _("invalid operands"));
252b5132 14396
e3de51ce 14397 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
14398}
14399
b886a2ab
RS
14400/* Marshal immediate value VAL for an extended MIPS16 instruction.
14401 NBITS is the number of significant bits in VAL. */
14402
14403static unsigned long
14404mips16_immed_extend (offsetT val, unsigned int nbits)
14405{
14406 int extval;
25499ac7
MR
14407
14408 extval = 0;
14409 val &= (1U << nbits) - 1;
14410 if (nbits == 16 || nbits == 9)
b886a2ab
RS
14411 {
14412 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14413 val &= 0x1f;
14414 }
14415 else if (nbits == 15)
14416 {
14417 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14418 val &= 0xf;
14419 }
25499ac7 14420 else if (nbits == 6)
b886a2ab
RS
14421 {
14422 extval = ((val & 0x1f) << 6) | (val & 0x20);
14423 val = 0;
14424 }
14425 return (extval << 16) | val;
14426}
14427
3ccad066
RS
14428/* Like decode_mips16_operand, but require the operand to be defined and
14429 require it to be an integer. */
14430
14431static const struct mips_int_operand *
14432mips16_immed_operand (int type, bfd_boolean extended_p)
14433{
14434 const struct mips_operand *operand;
14435
14436 operand = decode_mips16_operand (type, extended_p);
14437 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14438 abort ();
14439 return (const struct mips_int_operand *) operand;
14440}
14441
14442/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14443
14444static bfd_boolean
14445mips16_immed_in_range_p (const struct mips_int_operand *operand,
14446 bfd_reloc_code_real_type reloc, offsetT sval)
14447{
14448 int min_val, max_val;
14449
14450 min_val = mips_int_operand_min (operand);
14451 max_val = mips_int_operand_max (operand);
14452 if (reloc != BFD_RELOC_UNUSED)
14453 {
14454 if (min_val < 0)
14455 sval = SEXT_16BIT (sval);
14456 else
14457 sval &= 0xffff;
14458 }
14459
14460 return (sval >= min_val
14461 && sval <= max_val
14462 && (sval & ((1 << operand->shift) - 1)) == 0);
14463}
14464
5c04167a
RS
14465/* Install immediate value VAL into MIPS16 instruction *INSN,
14466 extending it if necessary. The instruction in *INSN may
14467 already be extended.
14468
43c0598f
RS
14469 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14470 if none. In the former case, VAL is a 16-bit number with no
14471 defined signedness.
14472
14473 TYPE is the type of the immediate field. USER_INSN_LENGTH
14474 is the length that the user requested, or 0 if none. */
252b5132
RH
14475
14476static void
3b4dbbbf 14477mips16_immed (const char *file, unsigned int line, int type,
43c0598f 14478 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 14479 unsigned int user_insn_length, unsigned long *insn)
252b5132 14480{
3ccad066
RS
14481 const struct mips_int_operand *operand;
14482 unsigned int uval, length;
252b5132 14483
3ccad066
RS
14484 operand = mips16_immed_operand (type, FALSE);
14485 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
14486 {
14487 /* We need an extended instruction. */
14488 if (user_insn_length == 2)
14489 as_bad_where (file, line, _("invalid unextended operand value"));
14490 else
14491 *insn |= MIPS16_EXTEND;
14492 }
14493 else if (user_insn_length == 4)
14494 {
14495 /* The operand doesn't force an unextended instruction to be extended.
14496 Warn if the user wanted an extended instruction anyway. */
14497 *insn |= MIPS16_EXTEND;
14498 as_warn_where (file, line,
14499 _("extended operand requested but not required"));
14500 }
252b5132 14501
3ccad066
RS
14502 length = mips16_opcode_length (*insn);
14503 if (length == 4)
252b5132 14504 {
3ccad066
RS
14505 operand = mips16_immed_operand (type, TRUE);
14506 if (!mips16_immed_in_range_p (operand, reloc, val))
14507 as_bad_where (file, line,
14508 _("operand value out of range for instruction"));
252b5132 14509 }
3ccad066 14510 uval = ((unsigned int) val >> operand->shift) - operand->bias;
bdd15286 14511 if (length == 2 || operand->root.lsb != 0)
3ccad066 14512 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14513 else
3ccad066 14514 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14515}
14516\f
d6f16593 14517struct percent_op_match
ad8d3bb3 14518{
5e0116d5
RS
14519 const char *str;
14520 bfd_reloc_code_real_type reloc;
d6f16593
MR
14521};
14522
14523static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14524{
5e0116d5 14525 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14526 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14527 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14528 {"%call16", BFD_RELOC_MIPS_CALL16},
14529 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14530 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14531 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14532 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14533 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14534 {"%got", BFD_RELOC_MIPS_GOT16},
14535 {"%gp_rel", BFD_RELOC_GPREL16},
be3f1006 14536 {"%gprel", BFD_RELOC_GPREL16},
5e0116d5
RS
14537 {"%half", BFD_RELOC_16},
14538 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14539 {"%higher", BFD_RELOC_MIPS_HIGHER},
14540 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14541 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14542 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14543 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14544 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14545 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14546 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14547 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14548 {"%hi", BFD_RELOC_HI16_S},
14549 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14550 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14551};
14552
d6f16593
MR
14553static const struct percent_op_match mips16_percent_op[] =
14554{
14555 {"%lo", BFD_RELOC_MIPS16_LO16},
be3f1006 14556 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
d6f16593 14557 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14558 {"%got", BFD_RELOC_MIPS16_GOT16},
14559 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14560 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14561 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14562 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14563 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14564 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14565 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14566 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14567 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14568};
14569
252b5132 14570
5e0116d5
RS
14571/* Return true if *STR points to a relocation operator. When returning true,
14572 move *STR over the operator and store its relocation code in *RELOC.
14573 Leave both *STR and *RELOC alone when returning false. */
14574
14575static bfd_boolean
17a2f251 14576parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14577{
d6f16593
MR
14578 const struct percent_op_match *percent_op;
14579 size_t limit, i;
14580
14581 if (mips_opts.mips16)
14582 {
14583 percent_op = mips16_percent_op;
14584 limit = ARRAY_SIZE (mips16_percent_op);
14585 }
14586 else
14587 {
14588 percent_op = mips_percent_op;
14589 limit = ARRAY_SIZE (mips_percent_op);
14590 }
76b3015f 14591
d6f16593 14592 for (i = 0; i < limit; i++)
5e0116d5 14593 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14594 {
3f98094e
DJ
14595 int len = strlen (percent_op[i].str);
14596
14597 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14598 continue;
14599
5e0116d5
RS
14600 *str += strlen (percent_op[i].str);
14601 *reloc = percent_op[i].reloc;
394f9b3a 14602
5e0116d5
RS
14603 /* Check whether the output BFD supports this relocation.
14604 If not, issue an error and fall back on something safe. */
14605 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14606 {
20203fb9 14607 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14608 percent_op[i].str);
01a3f561 14609 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14610 }
5e0116d5 14611 return TRUE;
394f9b3a 14612 }
5e0116d5 14613 return FALSE;
394f9b3a 14614}
ad8d3bb3 14615
ad8d3bb3 14616
5e0116d5
RS
14617/* Parse string STR as a 16-bit relocatable operand. Store the
14618 expression in *EP and the relocations in the array starting
14619 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14620
01a3f561 14621 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14622
5e0116d5 14623static size_t
17a2f251
TS
14624my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14625 char *str)
ad8d3bb3 14626{
5e0116d5
RS
14627 bfd_reloc_code_real_type reversed_reloc[3];
14628 size_t reloc_index, i;
09b8f35a
RS
14629 int crux_depth, str_depth;
14630 char *crux;
5e0116d5
RS
14631
14632 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14633 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14634 of the main expression and with CRUX_DEPTH containing the number
14635 of open brackets at that point. */
14636 reloc_index = -1;
14637 str_depth = 0;
14638 do
fb1b3232 14639 {
09b8f35a
RS
14640 reloc_index++;
14641 crux = str;
14642 crux_depth = str_depth;
14643
14644 /* Skip over whitespace and brackets, keeping count of the number
14645 of brackets. */
14646 while (*str == ' ' || *str == '\t' || *str == '(')
14647 if (*str++ == '(')
14648 str_depth++;
5e0116d5 14649 }
09b8f35a
RS
14650 while (*str == '%'
14651 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14652 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14653
09b8f35a 14654 my_getExpression (ep, crux);
5e0116d5 14655 str = expr_end;
394f9b3a 14656
5e0116d5 14657 /* Match every open bracket. */
09b8f35a 14658 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14659 if (*str++ == ')')
09b8f35a 14660 crux_depth--;
394f9b3a 14661
09b8f35a 14662 if (crux_depth > 0)
20203fb9 14663 as_bad (_("unclosed '('"));
394f9b3a 14664
5e0116d5 14665 expr_end = str;
252b5132 14666
01a3f561 14667 if (reloc_index != 0)
64bdfcaf
RS
14668 {
14669 prev_reloc_op_frag = frag_now;
14670 for (i = 0; i < reloc_index; i++)
14671 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14672 }
fb1b3232 14673
5e0116d5 14674 return reloc_index;
252b5132
RH
14675}
14676
14677static void
17a2f251 14678my_getExpression (expressionS *ep, char *str)
252b5132
RH
14679{
14680 char *save_in;
14681
14682 save_in = input_line_pointer;
14683 input_line_pointer = str;
14684 expression (ep);
14685 expr_end = input_line_pointer;
14686 input_line_pointer = save_in;
252b5132
RH
14687}
14688
6d4af3c2 14689const char *
17a2f251 14690md_atof (int type, char *litP, int *sizeP)
252b5132 14691{
499ac353 14692 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14693}
14694
14695void
17a2f251 14696md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14697{
14698 if (target_big_endian)
14699 number_to_chars_bigendian (buf, val, n);
14700 else
14701 number_to_chars_littleendian (buf, val, n);
14702}
14703\f
e013f690
TS
14704static int support_64bit_objects(void)
14705{
14706 const char **list, **l;
aa3d8fdf 14707 int yes;
e013f690
TS
14708
14709 list = bfd_target_list ();
14710 for (l = list; *l != NULL; l++)
aeffff67
RS
14711 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14712 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14713 break;
aa3d8fdf 14714 yes = (*l != NULL);
e013f690 14715 free (list);
aa3d8fdf 14716 return yes;
e013f690
TS
14717}
14718
316f5878
RS
14719/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14720 NEW_VALUE. Warn if another value was already specified. Note:
14721 we have to defer parsing the -march and -mtune arguments in order
14722 to handle 'from-abi' correctly, since the ABI might be specified
14723 in a later argument. */
14724
14725static void
17a2f251 14726mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14727{
14728 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14729 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14730 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14731 new_value);
14732
14733 *string_ptr = new_value;
14734}
14735
252b5132 14736int
17b9d67d 14737md_parse_option (int c, const char *arg)
252b5132 14738{
c6278170
RS
14739 unsigned int i;
14740
14741 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14742 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14743 {
919731af 14744 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14745 c == mips_ases[i].option_on);
14746 return 1;
14747 }
14748
252b5132
RH
14749 switch (c)
14750 {
119d663a
NC
14751 case OPTION_CONSTRUCT_FLOATS:
14752 mips_disable_float_construction = 0;
14753 break;
bdaaa2e1 14754
119d663a
NC
14755 case OPTION_NO_CONSTRUCT_FLOATS:
14756 mips_disable_float_construction = 1;
14757 break;
bdaaa2e1 14758
252b5132
RH
14759 case OPTION_TRAP:
14760 mips_trap = 1;
14761 break;
14762
14763 case OPTION_BREAK:
14764 mips_trap = 0;
14765 break;
14766
14767 case OPTION_EB:
14768 target_big_endian = 1;
14769 break;
14770
14771 case OPTION_EL:
14772 target_big_endian = 0;
14773 break;
14774
14775 case 'O':
4ffff32f
TS
14776 if (arg == NULL)
14777 mips_optimize = 1;
14778 else if (arg[0] == '0')
14779 mips_optimize = 0;
14780 else if (arg[0] == '1')
252b5132
RH
14781 mips_optimize = 1;
14782 else
14783 mips_optimize = 2;
14784 break;
14785
14786 case 'g':
14787 if (arg == NULL)
14788 mips_debug = 2;
14789 else
14790 mips_debug = atoi (arg);
252b5132
RH
14791 break;
14792
14793 case OPTION_MIPS1:
0b35dfee 14794 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14795 break;
14796
14797 case OPTION_MIPS2:
0b35dfee 14798 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14799 break;
14800
14801 case OPTION_MIPS3:
0b35dfee 14802 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14803 break;
14804
14805 case OPTION_MIPS4:
0b35dfee 14806 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14807 break;
14808
84ea6cf2 14809 case OPTION_MIPS5:
0b35dfee 14810 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14811 break;
14812
e7af610e 14813 case OPTION_MIPS32:
0b35dfee 14814 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14815 break;
14816
af7ee8bf 14817 case OPTION_MIPS32R2:
0b35dfee 14818 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14819 break;
14820
ae52f483 14821 case OPTION_MIPS32R3:
0ae19f05 14822 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14823 break;
14824
14825 case OPTION_MIPS32R5:
0ae19f05 14826 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14827 break;
14828
7361da2c
AB
14829 case OPTION_MIPS32R6:
14830 file_mips_opts.isa = ISA_MIPS32R6;
14831 break;
14832
5f74bc13 14833 case OPTION_MIPS64R2:
0b35dfee 14834 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14835 break;
14836
ae52f483 14837 case OPTION_MIPS64R3:
0ae19f05 14838 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14839 break;
14840
14841 case OPTION_MIPS64R5:
0ae19f05 14842 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14843 break;
14844
7361da2c
AB
14845 case OPTION_MIPS64R6:
14846 file_mips_opts.isa = ISA_MIPS64R6;
14847 break;
14848
84ea6cf2 14849 case OPTION_MIPS64:
0b35dfee 14850 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14851 break;
14852
ec68c924 14853 case OPTION_MTUNE:
316f5878
RS
14854 mips_set_option_string (&mips_tune_string, arg);
14855 break;
ec68c924 14856
316f5878
RS
14857 case OPTION_MARCH:
14858 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14859 break;
14860
14861 case OPTION_M4650:
316f5878
RS
14862 mips_set_option_string (&mips_arch_string, "4650");
14863 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14864 break;
14865
14866 case OPTION_NO_M4650:
14867 break;
14868
14869 case OPTION_M4010:
316f5878
RS
14870 mips_set_option_string (&mips_arch_string, "4010");
14871 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14872 break;
14873
14874 case OPTION_NO_M4010:
14875 break;
14876
14877 case OPTION_M4100:
316f5878
RS
14878 mips_set_option_string (&mips_arch_string, "4100");
14879 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14880 break;
14881
14882 case OPTION_NO_M4100:
14883 break;
14884
252b5132 14885 case OPTION_M3900:
316f5878
RS
14886 mips_set_option_string (&mips_arch_string, "3900");
14887 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14888 break;
bdaaa2e1 14889
252b5132
RH
14890 case OPTION_NO_M3900:
14891 break;
14892
df58fc94 14893 case OPTION_MICROMIPS:
919731af 14894 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14895 {
14896 as_bad (_("-mmicromips cannot be used with -mips16"));
14897 return 0;
14898 }
919731af 14899 file_mips_opts.micromips = 1;
df58fc94
RS
14900 mips_no_prev_insn ();
14901 break;
14902
14903 case OPTION_NO_MICROMIPS:
919731af 14904 file_mips_opts.micromips = 0;
df58fc94
RS
14905 mips_no_prev_insn ();
14906 break;
14907
252b5132 14908 case OPTION_MIPS16:
919731af 14909 if (file_mips_opts.micromips == 1)
df58fc94
RS
14910 {
14911 as_bad (_("-mips16 cannot be used with -micromips"));
14912 return 0;
14913 }
919731af 14914 file_mips_opts.mips16 = 1;
7d10b47d 14915 mips_no_prev_insn ();
252b5132
RH
14916 break;
14917
14918 case OPTION_NO_MIPS16:
919731af 14919 file_mips_opts.mips16 = 0;
7d10b47d 14920 mips_no_prev_insn ();
252b5132
RH
14921 break;
14922
6a32d874
CM
14923 case OPTION_FIX_24K:
14924 mips_fix_24k = 1;
14925 break;
14926
14927 case OPTION_NO_FIX_24K:
14928 mips_fix_24k = 0;
14929 break;
14930
a8d14a88
CM
14931 case OPTION_FIX_RM7000:
14932 mips_fix_rm7000 = 1;
14933 break;
14934
14935 case OPTION_NO_FIX_RM7000:
14936 mips_fix_rm7000 = 0;
14937 break;
14938
6f2117ba
PH
14939 case OPTION_FIX_LOONGSON3_LLSC:
14940 mips_fix_loongson3_llsc = TRUE;
14941 break;
14942
14943 case OPTION_NO_FIX_LOONGSON3_LLSC:
14944 mips_fix_loongson3_llsc = FALSE;
14945 break;
14946
c67a084a
NC
14947 case OPTION_FIX_LOONGSON2F_JUMP:
14948 mips_fix_loongson2f_jump = TRUE;
14949 break;
14950
14951 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14952 mips_fix_loongson2f_jump = FALSE;
14953 break;
14954
14955 case OPTION_FIX_LOONGSON2F_NOP:
14956 mips_fix_loongson2f_nop = TRUE;
14957 break;
14958
14959 case OPTION_NO_FIX_LOONGSON2F_NOP:
14960 mips_fix_loongson2f_nop = FALSE;
14961 break;
14962
d766e8ec
RS
14963 case OPTION_FIX_VR4120:
14964 mips_fix_vr4120 = 1;
60b63b72
RS
14965 break;
14966
d766e8ec
RS
14967 case OPTION_NO_FIX_VR4120:
14968 mips_fix_vr4120 = 0;
60b63b72
RS
14969 break;
14970
7d8e00cf
RS
14971 case OPTION_FIX_VR4130:
14972 mips_fix_vr4130 = 1;
14973 break;
14974
14975 case OPTION_NO_FIX_VR4130:
14976 mips_fix_vr4130 = 0;
14977 break;
14978
d954098f
DD
14979 case OPTION_FIX_CN63XXP1:
14980 mips_fix_cn63xxp1 = TRUE;
14981 break;
14982
14983 case OPTION_NO_FIX_CN63XXP1:
14984 mips_fix_cn63xxp1 = FALSE;
14985 break;
14986
27c634e0
FN
14987 case OPTION_FIX_R5900:
14988 mips_fix_r5900 = TRUE;
14989 mips_fix_r5900_explicit = TRUE;
14990 break;
14991
14992 case OPTION_NO_FIX_R5900:
14993 mips_fix_r5900 = FALSE;
14994 mips_fix_r5900_explicit = TRUE;
14995 break;
14996
4a6a3df4
AO
14997 case OPTION_RELAX_BRANCH:
14998 mips_relax_branch = 1;
14999 break;
15000
15001 case OPTION_NO_RELAX_BRANCH:
15002 mips_relax_branch = 0;
15003 break;
15004
8b10b0b3
MR
15005 case OPTION_IGNORE_BRANCH_ISA:
15006 mips_ignore_branch_isa = TRUE;
15007 break;
15008
15009 case OPTION_NO_IGNORE_BRANCH_ISA:
15010 mips_ignore_branch_isa = FALSE;
15011 break;
15012
833794fc 15013 case OPTION_INSN32:
919731af 15014 file_mips_opts.insn32 = TRUE;
833794fc
MR
15015 break;
15016
15017 case OPTION_NO_INSN32:
919731af 15018 file_mips_opts.insn32 = FALSE;
833794fc
MR
15019 break;
15020
aa6975fb
ILT
15021 case OPTION_MSHARED:
15022 mips_in_shared = TRUE;
15023 break;
15024
15025 case OPTION_MNO_SHARED:
15026 mips_in_shared = FALSE;
15027 break;
15028
aed1a261 15029 case OPTION_MSYM32:
919731af 15030 file_mips_opts.sym32 = TRUE;
aed1a261
RS
15031 break;
15032
15033 case OPTION_MNO_SYM32:
919731af 15034 file_mips_opts.sym32 = FALSE;
aed1a261
RS
15035 break;
15036
252b5132
RH
15037 /* When generating ELF code, we permit -KPIC and -call_shared to
15038 select SVR4_PIC, and -non_shared to select no PIC. This is
15039 intended to be compatible with Irix 5. */
15040 case OPTION_CALL_SHARED:
252b5132 15041 mips_pic = SVR4_PIC;
143d77c5 15042 mips_abicalls = TRUE;
252b5132
RH
15043 break;
15044
861fb55a 15045 case OPTION_CALL_NONPIC:
861fb55a
DJ
15046 mips_pic = NO_PIC;
15047 mips_abicalls = TRUE;
15048 break;
15049
252b5132 15050 case OPTION_NON_SHARED:
252b5132 15051 mips_pic = NO_PIC;
143d77c5 15052 mips_abicalls = FALSE;
252b5132
RH
15053 break;
15054
44075ae2
TS
15055 /* The -xgot option tells the assembler to use 32 bit offsets
15056 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
15057 compatibility. */
15058 case OPTION_XGOT:
15059 mips_big_got = 1;
15060 break;
15061
15062 case 'G':
6caf9ef4
TS
15063 g_switch_value = atoi (arg);
15064 g_switch_seen = 1;
252b5132
RH
15065 break;
15066
34ba82a8
TS
15067 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15068 and -mabi=64. */
252b5132 15069 case OPTION_32:
f3ded42a 15070 mips_abi = O32_ABI;
252b5132
RH
15071 break;
15072
e013f690 15073 case OPTION_N32:
316f5878 15074 mips_abi = N32_ABI;
e013f690 15075 break;
252b5132 15076
e013f690 15077 case OPTION_64:
316f5878 15078 mips_abi = N64_ABI;
f43abd2b 15079 if (!support_64bit_objects())
1661c76c 15080 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
15081 break;
15082
c97ef257 15083 case OPTION_GP32:
bad1aba3 15084 file_mips_opts.gp = 32;
c97ef257
AH
15085 break;
15086
15087 case OPTION_GP64:
bad1aba3 15088 file_mips_opts.gp = 64;
c97ef257 15089 break;
252b5132 15090
ca4e0257 15091 case OPTION_FP32:
0b35dfee 15092 file_mips_opts.fp = 32;
316f5878
RS
15093 break;
15094
351cdf24
MF
15095 case OPTION_FPXX:
15096 file_mips_opts.fp = 0;
15097 break;
15098
316f5878 15099 case OPTION_FP64:
0b35dfee 15100 file_mips_opts.fp = 64;
ca4e0257
RS
15101 break;
15102
351cdf24
MF
15103 case OPTION_ODD_SPREG:
15104 file_mips_opts.oddspreg = 1;
15105 break;
15106
15107 case OPTION_NO_ODD_SPREG:
15108 file_mips_opts.oddspreg = 0;
15109 break;
15110
037b32b9 15111 case OPTION_SINGLE_FLOAT:
0b35dfee 15112 file_mips_opts.single_float = 1;
037b32b9
AN
15113 break;
15114
15115 case OPTION_DOUBLE_FLOAT:
0b35dfee 15116 file_mips_opts.single_float = 0;
037b32b9
AN
15117 break;
15118
15119 case OPTION_SOFT_FLOAT:
0b35dfee 15120 file_mips_opts.soft_float = 1;
037b32b9
AN
15121 break;
15122
15123 case OPTION_HARD_FLOAT:
0b35dfee 15124 file_mips_opts.soft_float = 0;
037b32b9
AN
15125 break;
15126
252b5132 15127 case OPTION_MABI:
e013f690 15128 if (strcmp (arg, "32") == 0)
316f5878 15129 mips_abi = O32_ABI;
e013f690 15130 else if (strcmp (arg, "o64") == 0)
316f5878 15131 mips_abi = O64_ABI;
e013f690 15132 else if (strcmp (arg, "n32") == 0)
316f5878 15133 mips_abi = N32_ABI;
e013f690
TS
15134 else if (strcmp (arg, "64") == 0)
15135 {
316f5878 15136 mips_abi = N64_ABI;
e013f690 15137 if (! support_64bit_objects())
1661c76c 15138 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
15139 "format"));
15140 }
15141 else if (strcmp (arg, "eabi") == 0)
316f5878 15142 mips_abi = EABI_ABI;
e013f690 15143 else
da0e507f
TS
15144 {
15145 as_fatal (_("invalid abi -mabi=%s"), arg);
15146 return 0;
15147 }
252b5132
RH
15148 break;
15149
6b76fefe 15150 case OPTION_M7000_HILO_FIX:
b34976b6 15151 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
15152 break;
15153
9ee72ff1 15154 case OPTION_MNO_7000_HILO_FIX:
b34976b6 15155 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
15156 break;
15157
ecb4347a 15158 case OPTION_MDEBUG:
b34976b6 15159 mips_flag_mdebug = TRUE;
ecb4347a
DJ
15160 break;
15161
15162 case OPTION_NO_MDEBUG:
b34976b6 15163 mips_flag_mdebug = FALSE;
ecb4347a 15164 break;
dcd410fe
RO
15165
15166 case OPTION_PDR:
15167 mips_flag_pdr = TRUE;
15168 break;
15169
15170 case OPTION_NO_PDR:
15171 mips_flag_pdr = FALSE;
15172 break;
0a44bf69
RS
15173
15174 case OPTION_MVXWORKS_PIC:
15175 mips_pic = VXWORKS_PIC;
15176 break;
ecb4347a 15177
ba92f887
MR
15178 case OPTION_NAN:
15179 if (strcmp (arg, "2008") == 0)
7361da2c 15180 mips_nan2008 = 1;
ba92f887 15181 else if (strcmp (arg, "legacy") == 0)
7361da2c 15182 mips_nan2008 = 0;
ba92f887
MR
15183 else
15184 {
1661c76c 15185 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
15186 return 0;
15187 }
15188 break;
15189
252b5132
RH
15190 default:
15191 return 0;
15192 }
15193
c67a084a
NC
15194 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15195
252b5132
RH
15196 return 1;
15197}
316f5878 15198\f
919731af 15199/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 15200
316f5878 15201static void
17a2f251 15202mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
15203{
15204 if (info != 0)
fef14a42 15205 mips_tune = info->cpu;
316f5878 15206}
80cc45a5 15207
34ba82a8 15208
252b5132 15209void
17a2f251 15210mips_after_parse_args (void)
e9670677 15211{
fef14a42
TS
15212 const struct mips_cpu_info *arch_info = 0;
15213 const struct mips_cpu_info *tune_info = 0;
15214
6f2117ba 15215 /* GP relative stuff not working for PE. */
6caf9ef4 15216 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 15217 {
6caf9ef4 15218 if (g_switch_seen && g_switch_value != 0)
1661c76c 15219 as_bad (_("-G not supported in this configuration"));
e9670677
MR
15220 g_switch_value = 0;
15221 }
15222
cac012d6
AO
15223 if (mips_abi == NO_ABI)
15224 mips_abi = MIPS_DEFAULT_ABI;
15225
919731af 15226 /* The following code determines the architecture.
22923709
RS
15227 Similar code was added to GCC 3.3 (see override_options() in
15228 config/mips/mips.c). The GAS and GCC code should be kept in sync
15229 as much as possible. */
e9670677 15230
316f5878 15231 if (mips_arch_string != 0)
fef14a42 15232 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 15233
0b35dfee 15234 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 15235 {
0b35dfee 15236 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 15237 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 15238 the -march selection (if any). */
fef14a42 15239 if (arch_info != 0)
e9670677 15240 {
316f5878
RS
15241 /* -march takes precedence over -mipsN, since it is more descriptive.
15242 There's no harm in specifying both as long as the ISA levels
15243 are the same. */
0b35dfee 15244 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
15245 as_bad (_("-%s conflicts with the other architecture options,"
15246 " which imply -%s"),
0b35dfee 15247 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 15248 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 15249 }
316f5878 15250 else
0b35dfee 15251 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
15252 }
15253
fef14a42 15254 if (arch_info == 0)
95bfe26e
MF
15255 {
15256 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15257 gas_assert (arch_info);
15258 }
e9670677 15259
fef14a42 15260 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 15261 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
15262 arch_info->name);
15263
919731af 15264 file_mips_opts.arch = arch_info->cpu;
15265 file_mips_opts.isa = arch_info->isa;
3315614d 15266 file_mips_opts.init_ase = arch_info->ase;
919731af 15267
41cee089
FS
15268 /* The EVA Extension has instructions which are only valid when the R6 ISA
15269 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
15270 present. */
15271 if (((file_mips_opts.ase & ASE_EVA) != 0) && ISA_IS_R6 (file_mips_opts.isa))
15272 file_mips_opts.ase |= ASE_EVA_R6;
15273
919731af 15274 /* Set up initial mips_opts state. */
15275 mips_opts = file_mips_opts;
15276
27c634e0
FN
15277 /* For the R5900 default to `-mfix-r5900' unless the user told otherwise. */
15278 if (!mips_fix_r5900_explicit)
15279 mips_fix_r5900 = file_mips_opts.arch == CPU_R5900;
15280
919731af 15281 /* The register size inference code is now placed in
15282 file_mips_check_options. */
fef14a42 15283
0b35dfee 15284 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15285 processor. */
fef14a42
TS
15286 if (mips_tune_string != 0)
15287 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 15288
fef14a42
TS
15289 if (tune_info == 0)
15290 mips_set_tune (arch_info);
15291 else
15292 mips_set_tune (tune_info);
e9670677 15293
ecb4347a 15294 if (mips_flag_mdebug < 0)
e8044f35 15295 mips_flag_mdebug = 0;
e9670677
MR
15296}
15297\f
15298void
17a2f251 15299mips_init_after_args (void)
252b5132 15300{
6f2117ba 15301 /* Initialize opcodes. */
252b5132 15302 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 15303 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
15304}
15305
15306long
17a2f251 15307md_pcrel_from (fixS *fixP)
252b5132 15308{
a7ebbfdf 15309 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
6f2117ba 15310
a7ebbfdf
TS
15311 switch (fixP->fx_r_type)
15312 {
df58fc94
RS
15313 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15314 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15315 /* Return the address of the delay slot. */
15316 return addr + 2;
15317
15318 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15319 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 15320 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 15321 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
15322 case BFD_RELOC_MIPS_21_PCREL_S2:
15323 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
15324 case BFD_RELOC_MIPS_JMP:
15325 /* Return the address of the delay slot. */
15326 return addr + 4;
df58fc94 15327
51f6035b
MR
15328 case BFD_RELOC_MIPS_18_PCREL_S3:
15329 /* Return the aligned address of the doubleword containing
15330 the instruction. */
15331 return addr & ~7;
15332
a7ebbfdf
TS
15333 default:
15334 return addr;
15335 }
252b5132
RH
15336}
15337
252b5132
RH
15338/* This is called before the symbol table is processed. In order to
15339 work with gcc when using mips-tfile, we must keep all local labels.
15340 However, in other cases, we want to discard them. If we were
15341 called with -g, but we didn't see any debugging information, it may
15342 mean that gcc is smuggling debugging information through to
15343 mips-tfile, in which case we must generate all local labels. */
15344
15345void
17a2f251 15346mips_frob_file_before_adjust (void)
252b5132
RH
15347{
15348#ifndef NO_ECOFF_DEBUGGING
15349 if (ECOFF_DEBUGGING
15350 && mips_debug != 0
15351 && ! ecoff_debugging_seen)
15352 flag_keep_locals = 1;
15353#endif
15354}
15355
3b91255e 15356/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 15357 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
15358 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15359 relocation operators.
15360
15361 For our purposes, a %lo() expression matches a %got() or %hi()
15362 expression if:
15363
15364 (a) it refers to the same symbol; and
15365 (b) the offset applied in the %lo() expression is no lower than
15366 the offset applied in the %got() or %hi().
15367
15368 (b) allows us to cope with code like:
15369
15370 lui $4,%hi(foo)
15371 lh $4,%lo(foo+2)($4)
15372
15373 ...which is legal on RELA targets, and has a well-defined behaviour
15374 if the user knows that adding 2 to "foo" will not induce a carry to
15375 the high 16 bits.
15376
15377 When several %lo()s match a particular %got() or %hi(), we use the
15378 following rules to distinguish them:
15379
15380 (1) %lo()s with smaller offsets are a better match than %lo()s with
15381 higher offsets.
15382
15383 (2) %lo()s with no matching %got() or %hi() are better than those
15384 that already have a matching %got() or %hi().
15385
15386 (3) later %lo()s are better than earlier %lo()s.
15387
15388 These rules are applied in order.
15389
15390 (1) means, among other things, that %lo()s with identical offsets are
15391 chosen if they exist.
15392
15393 (2) means that we won't associate several high-part relocations with
15394 the same low-part relocation unless there's no alternative. Having
15395 several high parts for the same low part is a GNU extension; this rule
15396 allows careful users to avoid it.
15397
15398 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15399 with the last high-part relocation being at the front of the list.
15400 It therefore makes sense to choose the last matching low-part
15401 relocation, all other things being equal. It's also easier
15402 to code that way. */
252b5132
RH
15403
15404void
17a2f251 15405mips_frob_file (void)
252b5132
RH
15406{
15407 struct mips_hi_fixup *l;
35903be0 15408 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
15409
15410 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15411 {
15412 segment_info_type *seginfo;
3b91255e
RS
15413 bfd_boolean matched_lo_p;
15414 fixS **hi_pos, **lo_pos, **pos;
252b5132 15415
9c2799c2 15416 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 15417
5919d012 15418 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
15419 there isn't supposed to be a matching LO. Ignore %gots against
15420 constants; we'll report an error for those later. */
738e5348 15421 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab 15422 && !(l->fixp->fx_addsy
9e009953 15423 && pic_need_relax (l->fixp->fx_addsy)))
5919d012
RS
15424 continue;
15425
15426 /* Check quickly whether the next fixup happens to be a matching %lo. */
15427 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
15428 continue;
15429
252b5132 15430 seginfo = seg_info (l->seg);
252b5132 15431
3b91255e
RS
15432 /* Set HI_POS to the position of this relocation in the chain.
15433 Set LO_POS to the position of the chosen low-part relocation.
15434 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15435 relocation that matches an immediately-preceding high-part
15436 relocation. */
15437 hi_pos = NULL;
15438 lo_pos = NULL;
15439 matched_lo_p = FALSE;
738e5348 15440 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 15441
3b91255e
RS
15442 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15443 {
15444 if (*pos == l->fixp)
15445 hi_pos = pos;
15446
35903be0 15447 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 15448 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
15449 && (*pos)->fx_offset >= l->fixp->fx_offset
15450 && (lo_pos == NULL
15451 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15452 || (!matched_lo_p
15453 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15454 lo_pos = pos;
15455
15456 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15457 && fixup_has_matching_lo_p (*pos));
15458 }
15459
15460 /* If we found a match, remove the high-part relocation from its
15461 current position and insert it before the low-part relocation.
15462 Make the offsets match so that fixup_has_matching_lo_p()
15463 will return true.
15464
15465 We don't warn about unmatched high-part relocations since some
15466 versions of gcc have been known to emit dead "lui ...%hi(...)"
15467 instructions. */
15468 if (lo_pos != NULL)
15469 {
15470 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15471 if (l->fixp->fx_next != *lo_pos)
252b5132 15472 {
3b91255e
RS
15473 *hi_pos = l->fixp->fx_next;
15474 l->fixp->fx_next = *lo_pos;
15475 *lo_pos = l->fixp;
252b5132 15476 }
252b5132
RH
15477 }
15478 }
15479}
15480
252b5132 15481int
17a2f251 15482mips_force_relocation (fixS *fixp)
252b5132 15483{
ae6063d4 15484 if (generic_force_reloc (fixp))
252b5132
RH
15485 return 1;
15486
df58fc94
RS
15487 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15488 so that the linker relaxation can update targets. */
15489 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15490 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15491 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15492 return 1;
15493
5caa2b07
MR
15494 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15495 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15496 microMIPS symbols so that we can do cross-mode branch diagnostics
15497 and BAL to JALX conversion by the linker. */
15498 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
15499 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15500 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15501 && fixp->fx_addsy
15502 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15503 return 1;
15504
7361da2c 15505 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 15506 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
15507 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15508 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15509 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15510 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15511 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15512 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15513 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15514 return 1;
15515
3e722fb5 15516 return 0;
252b5132
RH
15517}
15518
b416ba9b
MR
15519/* Implement TC_FORCE_RELOCATION_ABS. */
15520
15521bfd_boolean
15522mips_force_relocation_abs (fixS *fixp)
15523{
15524 if (generic_force_reloc (fixp))
15525 return TRUE;
15526
15527 /* These relocations do not have enough bits in the in-place addend
15528 to hold an arbitrary absolute section's offset. */
15529 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15530 return TRUE;
15531
15532 return FALSE;
15533}
15534
b886a2ab
RS
15535/* Read the instruction associated with RELOC from BUF. */
15536
15537static unsigned int
15538read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15539{
15540 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15541 return read_compressed_insn (buf, 4);
15542 else
15543 return read_insn (buf);
15544}
15545
15546/* Write instruction INSN to BUF, given that it has been relocated
15547 by RELOC. */
15548
15549static void
15550write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15551 unsigned long insn)
15552{
15553 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15554 write_compressed_insn (buf, insn, 4);
15555 else
15556 write_insn (buf, insn);
15557}
15558
9d862524
MR
15559/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15560 to a symbol in another ISA mode, which cannot be converted to JALX. */
15561
15562static bfd_boolean
15563fix_bad_cross_mode_jump_p (fixS *fixP)
15564{
15565 unsigned long opcode;
15566 int other;
15567 char *buf;
15568
15569 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15570 return FALSE;
15571
15572 other = S_GET_OTHER (fixP->fx_addsy);
15573 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15574 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15575 switch (fixP->fx_r_type)
15576 {
15577 case BFD_RELOC_MIPS_JMP:
15578 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15579 case BFD_RELOC_MICROMIPS_JMP:
15580 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15581 default:
15582 return FALSE;
15583 }
15584}
15585
15586/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15587 jump to a symbol in the same ISA mode. */
15588
15589static bfd_boolean
15590fix_bad_same_mode_jalx_p (fixS *fixP)
15591{
15592 unsigned long opcode;
15593 int other;
15594 char *buf;
15595
15596 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15597 return FALSE;
15598
15599 other = S_GET_OTHER (fixP->fx_addsy);
15600 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15601 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15602 switch (fixP->fx_r_type)
15603 {
15604 case BFD_RELOC_MIPS_JMP:
15605 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15606 case BFD_RELOC_MIPS16_JMP:
15607 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15608 case BFD_RELOC_MICROMIPS_JMP:
15609 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15610 default:
15611 return FALSE;
15612 }
15613}
15614
15615/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15616 to a symbol whose value plus addend is not aligned according to the
15617 ultimate (after linker relaxation) jump instruction's immediate field
15618 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15619 regular MIPS code, to (1 << 2). */
15620
15621static bfd_boolean
15622fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15623{
15624 bfd_boolean micro_to_mips_p;
15625 valueT val;
15626 int other;
15627
15628 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15629 return FALSE;
15630
15631 other = S_GET_OTHER (fixP->fx_addsy);
15632 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15633 val += fixP->fx_offset;
15634 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15635 && !ELF_ST_IS_MICROMIPS (other));
15636 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15637 != ELF_ST_IS_COMPRESSED (other));
15638}
15639
15640/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15641 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15642 symbols check the ISA bit instead.
15643
15644 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15645 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15646 MIPS symbols and associated with BAL instructions as these instructions
de194d85 15647 may be converted to JALX by the linker. */
9d862524
MR
15648
15649static bfd_boolean
15650fix_bad_cross_mode_branch_p (fixS *fixP)
15651{
15652 bfd_boolean absolute_p;
15653 unsigned long opcode;
15654 asection *symsec;
15655 valueT val;
15656 int other;
15657 char *buf;
15658
8b10b0b3
MR
15659 if (mips_ignore_branch_isa)
15660 return FALSE;
15661
9d862524
MR
15662 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15663 return FALSE;
15664
15665 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15666 absolute_p = bfd_is_abs_section (symsec);
15667
15668 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15669 other = S_GET_OTHER (fixP->fx_addsy);
15670
15671 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15672 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15673 switch (fixP->fx_r_type)
15674 {
15675 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15676 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15677 && opcode != 0x0411);
15678 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15679 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15680 && opcode != 0x4060);
9d862524
MR
15681 case BFD_RELOC_MIPS_21_PCREL_S2:
15682 case BFD_RELOC_MIPS_26_PCREL_S2:
15683 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15684 case BFD_RELOC_MIPS16_16_PCREL_S1:
15685 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15686 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15687 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15688 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15689 default:
15690 abort ();
15691 }
15692}
15693
15694/* Return TRUE if the symbol plus addend associated with a regular MIPS
15695 branch instruction pointed to by FIXP is not aligned according to the
15696 branch instruction's immediate field requirement. We need the addend
15697 to preserve the ISA bit and also the sum must not have bit 2 set. We
15698 must explicitly OR in the ISA bit from symbol annotation as the bit
15699 won't be set in the symbol's value then. */
15700
15701static bfd_boolean
15702fix_bad_misaligned_branch_p (fixS *fixP)
15703{
15704 bfd_boolean absolute_p;
15705 asection *symsec;
15706 valueT isa_bit;
15707 valueT val;
15708 valueT off;
15709 int other;
15710
15711 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15712 return FALSE;
15713
15714 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15715 absolute_p = bfd_is_abs_section (symsec);
15716
15717 val = S_GET_VALUE (fixP->fx_addsy);
15718 other = S_GET_OTHER (fixP->fx_addsy);
15719 off = fixP->fx_offset;
15720
15721 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15722 val |= ELF_ST_IS_COMPRESSED (other);
15723 val += off;
15724 return (val & 0x3) != isa_bit;
15725}
15726
15727/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15728 and its calculated value VAL. */
15729
15730static void
15731fix_validate_branch (fixS *fixP, valueT val)
15732{
15733 if (fixP->fx_done && (val & 0x3) != 0)
15734 as_bad_where (fixP->fx_file, fixP->fx_line,
15735 _("branch to misaligned address (0x%lx)"),
15736 (long) (val + md_pcrel_from (fixP)));
15737 else if (fix_bad_cross_mode_branch_p (fixP))
15738 as_bad_where (fixP->fx_file, fixP->fx_line,
15739 _("branch to a symbol in another ISA mode"));
15740 else if (fix_bad_misaligned_branch_p (fixP))
15741 as_bad_where (fixP->fx_file, fixP->fx_line,
15742 _("branch to misaligned address (0x%lx)"),
15743 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15744 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15745 as_bad_where (fixP->fx_file, fixP->fx_line,
15746 _("cannot encode misaligned addend "
15747 "in the relocatable field (0x%lx)"),
15748 (long) fixP->fx_offset);
15749}
15750
252b5132
RH
15751/* Apply a fixup to the object file. */
15752
94f592af 15753void
55cf6793 15754md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15755{
4d68580a 15756 char *buf;
b886a2ab 15757 unsigned long insn;
a7ebbfdf 15758 reloc_howto_type *howto;
252b5132 15759
d56a8dda
RS
15760 if (fixP->fx_pcrel)
15761 switch (fixP->fx_r_type)
15762 {
15763 case BFD_RELOC_16_PCREL_S2:
c9775dde 15764 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15765 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15766 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15767 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15768 case BFD_RELOC_32_PCREL:
7361da2c
AB
15769 case BFD_RELOC_MIPS_21_PCREL_S2:
15770 case BFD_RELOC_MIPS_26_PCREL_S2:
15771 case BFD_RELOC_MIPS_18_PCREL_S3:
15772 case BFD_RELOC_MIPS_19_PCREL_S2:
15773 case BFD_RELOC_HI16_S_PCREL:
15774 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15775 break;
15776
15777 case BFD_RELOC_32:
15778 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15779 break;
15780
15781 default:
15782 as_bad_where (fixP->fx_file, fixP->fx_line,
15783 _("PC-relative reference to a different section"));
15784 break;
15785 }
15786
15787 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15788 that have no MIPS ELF equivalent. */
15789 if (fixP->fx_r_type != BFD_RELOC_8)
15790 {
15791 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15792 if (!howto)
15793 return;
15794 }
65551fa4 15795
df58fc94
RS
15796 gas_assert (fixP->fx_size == 2
15797 || fixP->fx_size == 4
d56a8dda 15798 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15799 || fixP->fx_r_type == BFD_RELOC_16
15800 || fixP->fx_r_type == BFD_RELOC_64
15801 || fixP->fx_r_type == BFD_RELOC_CTOR
15802 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15803 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15804 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15805 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15806 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15807 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15808
4d68580a 15809 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15810
b1dca8ee
RS
15811 /* Don't treat parts of a composite relocation as done. There are two
15812 reasons for this:
15813
15814 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15815 should nevertheless be emitted if the first part is.
15816
15817 (2) In normal usage, composite relocations are never assembly-time
15818 constants. The easiest way of dealing with the pathological
15819 exceptions is to generate a relocation against STN_UNDEF and
15820 leave everything up to the linker. */
3994f87e 15821 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15822 fixP->fx_done = 1;
15823
15824 switch (fixP->fx_r_type)
15825 {
3f98094e
DJ
15826 case BFD_RELOC_MIPS_TLS_GD:
15827 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15828 case BFD_RELOC_MIPS_TLS_DTPREL32:
15829 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15830 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15831 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15832 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15833 case BFD_RELOC_MIPS_TLS_TPREL32:
15834 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15835 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15836 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15837 case BFD_RELOC_MICROMIPS_TLS_GD:
15838 case BFD_RELOC_MICROMIPS_TLS_LDM:
15839 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15840 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15841 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15842 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15843 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15844 case BFD_RELOC_MIPS16_TLS_GD:
15845 case BFD_RELOC_MIPS16_TLS_LDM:
15846 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15847 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15848 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15849 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15850 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15851 if (fixP->fx_addsy)
15852 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15853 else
15854 as_bad_where (fixP->fx_file, fixP->fx_line,
15855 _("TLS relocation against a constant"));
15856 break;
3f98094e 15857
252b5132 15858 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15859 case BFD_RELOC_MIPS16_JMP:
15860 case BFD_RELOC_MICROMIPS_JMP:
15861 {
15862 int shift;
15863
15864 gas_assert (!fixP->fx_done);
15865
15866 /* Shift is 2, unusually, for microMIPS JALX. */
15867 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15868 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15869 shift = 1;
15870 else
15871 shift = 2;
15872
15873 if (fix_bad_cross_mode_jump_p (fixP))
15874 as_bad_where (fixP->fx_file, fixP->fx_line,
15875 _("jump to a symbol in another ISA mode"));
15876 else if (fix_bad_same_mode_jalx_p (fixP))
15877 as_bad_where (fixP->fx_file, fixP->fx_line,
15878 _("JALX to a symbol in the same ISA mode"));
15879 else if (fix_bad_misaligned_jump_p (fixP, shift))
15880 as_bad_where (fixP->fx_file, fixP->fx_line,
15881 _("jump to misaligned address (0x%lx)"),
15882 (long) (S_GET_VALUE (fixP->fx_addsy)
15883 + fixP->fx_offset));
15884 else if (HAVE_IN_PLACE_ADDENDS
15885 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15886 as_bad_where (fixP->fx_file, fixP->fx_line,
15887 _("cannot encode misaligned addend "
15888 "in the relocatable field (0x%lx)"),
15889 (long) fixP->fx_offset);
15890 }
15891 /* Fall through. */
15892
e369bcce
TS
15893 case BFD_RELOC_MIPS_SHIFT5:
15894 case BFD_RELOC_MIPS_SHIFT6:
15895 case BFD_RELOC_MIPS_GOT_DISP:
15896 case BFD_RELOC_MIPS_GOT_PAGE:
15897 case BFD_RELOC_MIPS_GOT_OFST:
15898 case BFD_RELOC_MIPS_SUB:
15899 case BFD_RELOC_MIPS_INSERT_A:
15900 case BFD_RELOC_MIPS_INSERT_B:
15901 case BFD_RELOC_MIPS_DELETE:
15902 case BFD_RELOC_MIPS_HIGHEST:
15903 case BFD_RELOC_MIPS_HIGHER:
15904 case BFD_RELOC_MIPS_SCN_DISP:
15905 case BFD_RELOC_MIPS_REL16:
15906 case BFD_RELOC_MIPS_RELGOT:
15907 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15908 case BFD_RELOC_HI16:
15909 case BFD_RELOC_HI16_S:
b886a2ab 15910 case BFD_RELOC_LO16:
cdf6fd85 15911 case BFD_RELOC_GPREL16:
252b5132
RH
15912 case BFD_RELOC_MIPS_LITERAL:
15913 case BFD_RELOC_MIPS_CALL16:
15914 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15915 case BFD_RELOC_GPREL32:
252b5132
RH
15916 case BFD_RELOC_MIPS_GOT_HI16:
15917 case BFD_RELOC_MIPS_GOT_LO16:
15918 case BFD_RELOC_MIPS_CALL_HI16:
15919 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15920 case BFD_RELOC_HI16_S_PCREL:
15921 case BFD_RELOC_LO16_PCREL:
252b5132 15922 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15923 case BFD_RELOC_MIPS16_GOT16:
15924 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15925 case BFD_RELOC_MIPS16_HI16:
15926 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15927 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15928 case BFD_RELOC_MICROMIPS_GOT_DISP:
15929 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15930 case BFD_RELOC_MICROMIPS_GOT_OFST:
15931 case BFD_RELOC_MICROMIPS_SUB:
15932 case BFD_RELOC_MICROMIPS_HIGHEST:
15933 case BFD_RELOC_MICROMIPS_HIGHER:
15934 case BFD_RELOC_MICROMIPS_SCN_DISP:
15935 case BFD_RELOC_MICROMIPS_JALR:
15936 case BFD_RELOC_MICROMIPS_HI16:
15937 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15938 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15939 case BFD_RELOC_MICROMIPS_GPREL16:
15940 case BFD_RELOC_MICROMIPS_LITERAL:
15941 case BFD_RELOC_MICROMIPS_CALL16:
15942 case BFD_RELOC_MICROMIPS_GOT16:
15943 case BFD_RELOC_MICROMIPS_GOT_HI16:
15944 case BFD_RELOC_MICROMIPS_GOT_LO16:
15945 case BFD_RELOC_MICROMIPS_CALL_HI16:
15946 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15947 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15948 if (fixP->fx_done)
15949 {
15950 offsetT value;
15951
15952 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15953 {
15954 insn = read_reloc_insn (buf, fixP->fx_r_type);
15955 if (mips16_reloc_p (fixP->fx_r_type))
15956 insn |= mips16_immed_extend (value, 16);
15957 else
15958 insn |= (value & 0xffff);
15959 write_reloc_insn (buf, fixP->fx_r_type, insn);
15960 }
15961 else
15962 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15963 _("unsupported constant in relocation"));
b886a2ab 15964 }
252b5132
RH
15965 break;
15966
252b5132
RH
15967 case BFD_RELOC_64:
15968 /* This is handled like BFD_RELOC_32, but we output a sign
15969 extended value if we are only 32 bits. */
3e722fb5 15970 if (fixP->fx_done)
252b5132
RH
15971 {
15972 if (8 <= sizeof (valueT))
4d68580a 15973 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15974 else
15975 {
a7ebbfdf 15976 valueT hiv;
252b5132 15977
a7ebbfdf 15978 if ((*valP & 0x80000000) != 0)
252b5132
RH
15979 hiv = 0xffffffff;
15980 else
15981 hiv = 0;
4d68580a
RS
15982 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15983 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15984 }
15985 }
15986 break;
15987
056350c6 15988 case BFD_RELOC_RVA:
252b5132 15989 case BFD_RELOC_32:
b47468a6 15990 case BFD_RELOC_32_PCREL:
252b5132 15991 case BFD_RELOC_16:
d56a8dda 15992 case BFD_RELOC_8:
252b5132 15993 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15994 value now. This can happen if we have a .word which is not
15995 resolved when it appears but is later defined. */
252b5132 15996 if (fixP->fx_done)
4d68580a 15997 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15998 break;
15999
7361da2c 16000 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 16001 fix_validate_branch (fixP, *valP);
41947d9e
MR
16002 if (!fixP->fx_done)
16003 break;
16004
16005 if (*valP + 0x400000 <= 0x7fffff)
16006 {
16007 insn = read_insn (buf);
16008 insn |= (*valP >> 2) & 0x1fffff;
16009 write_insn (buf, insn);
16010 }
16011 else
16012 as_bad_where (fixP->fx_file, fixP->fx_line,
16013 _("branch out of range"));
16014 break;
16015
7361da2c 16016 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 16017 fix_validate_branch (fixP, *valP);
41947d9e
MR
16018 if (!fixP->fx_done)
16019 break;
7361da2c 16020
41947d9e
MR
16021 if (*valP + 0x8000000 <= 0xfffffff)
16022 {
16023 insn = read_insn (buf);
16024 insn |= (*valP >> 2) & 0x3ffffff;
16025 write_insn (buf, insn);
16026 }
16027 else
16028 as_bad_where (fixP->fx_file, fixP->fx_line,
16029 _("branch out of range"));
7361da2c
AB
16030 break;
16031
16032 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 16033 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 16034 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
16035 _("PC-relative access using misaligned symbol (%lx)"),
16036 (long) S_GET_VALUE (fixP->fx_addsy));
16037 if ((fixP->fx_offset & 0x7) != 0)
16038 as_bad_where (fixP->fx_file, fixP->fx_line,
16039 _("PC-relative access using misaligned offset (%lx)"),
16040 (long) fixP->fx_offset);
41947d9e
MR
16041 if (!fixP->fx_done)
16042 break;
7361da2c 16043
41947d9e
MR
16044 if (*valP + 0x100000 <= 0x1fffff)
16045 {
16046 insn = read_insn (buf);
16047 insn |= (*valP >> 3) & 0x3ffff;
16048 write_insn (buf, insn);
16049 }
16050 else
16051 as_bad_where (fixP->fx_file, fixP->fx_line,
16052 _("PC-relative access out of range"));
7361da2c
AB
16053 break;
16054
16055 case BFD_RELOC_MIPS_19_PCREL_S2:
16056 if ((*valP & 0x3) != 0)
16057 as_bad_where (fixP->fx_file, fixP->fx_line,
16058 _("PC-relative access to misaligned address (%lx)"),
717ba204 16059 (long) *valP);
41947d9e
MR
16060 if (!fixP->fx_done)
16061 break;
7361da2c 16062
41947d9e
MR
16063 if (*valP + 0x100000 <= 0x1fffff)
16064 {
16065 insn = read_insn (buf);
16066 insn |= (*valP >> 2) & 0x7ffff;
16067 write_insn (buf, insn);
16068 }
16069 else
16070 as_bad_where (fixP->fx_file, fixP->fx_line,
16071 _("PC-relative access out of range"));
7361da2c
AB
16072 break;
16073
252b5132 16074 case BFD_RELOC_16_PCREL_S2:
9d862524 16075 fix_validate_branch (fixP, *valP);
cb56d3d3 16076
54f4ddb3
TS
16077 /* We need to save the bits in the instruction since fixup_segment()
16078 might be deleting the relocation entry (i.e., a branch within
16079 the current segment). */
a7ebbfdf 16080 if (! fixP->fx_done)
bb2d6cd7 16081 break;
252b5132 16082
54f4ddb3 16083 /* Update old instruction data. */
4d68580a 16084 insn = read_insn (buf);
252b5132 16085
a7ebbfdf
TS
16086 if (*valP + 0x20000 <= 0x3ffff)
16087 {
16088 insn |= (*valP >> 2) & 0xffff;
4d68580a 16089 write_insn (buf, insn);
a7ebbfdf 16090 }
ce8ad872 16091 else if (fixP->fx_tcbit2
a7ebbfdf
TS
16092 && fixP->fx_done
16093 && fixP->fx_frag->fr_address >= text_section->vma
16094 && (fixP->fx_frag->fr_address
587aac4e 16095 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
16096 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
16097 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
16098 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
16099 {
16100 /* The branch offset is too large. If this is an
16101 unconditional branch, and we are not generating PIC code,
16102 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
16103 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
16104 insn = 0x0c000000; /* jal */
252b5132 16105 else
a7ebbfdf
TS
16106 insn = 0x08000000; /* j */
16107 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
16108 fixP->fx_done = 0;
16109 fixP->fx_addsy = section_symbol (text_section);
16110 *valP += md_pcrel_from (fixP);
4d68580a 16111 write_insn (buf, insn);
a7ebbfdf
TS
16112 }
16113 else
16114 {
16115 /* If we got here, we have branch-relaxation disabled,
16116 and there's nothing we can do to fix this instruction
16117 without turning it into a longer sequence. */
16118 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 16119 _("branch out of range"));
252b5132 16120 }
252b5132
RH
16121 break;
16122
c9775dde 16123 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
16124 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
16125 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
16126 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 16127 gas_assert (!fixP->fx_done);
9d862524
MR
16128 if (fix_bad_cross_mode_branch_p (fixP))
16129 as_bad_where (fixP->fx_file, fixP->fx_line,
16130 _("branch to a symbol in another ISA mode"));
16131 else if (fixP->fx_addsy
16132 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
16133 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
16134 && (fixP->fx_offset & 0x1) != 0)
16135 as_bad_where (fixP->fx_file, fixP->fx_line,
16136 _("branch to misaligned address (0x%lx)"),
16137 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
16138 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
16139 as_bad_where (fixP->fx_file, fixP->fx_line,
16140 _("cannot encode misaligned addend "
16141 "in the relocatable field (0x%lx)"),
16142 (long) fixP->fx_offset);
df58fc94
RS
16143 break;
16144
252b5132
RH
16145 case BFD_RELOC_VTABLE_INHERIT:
16146 fixP->fx_done = 0;
16147 if (fixP->fx_addsy
16148 && !S_IS_DEFINED (fixP->fx_addsy)
16149 && !S_IS_WEAK (fixP->fx_addsy))
16150 S_SET_WEAK (fixP->fx_addsy);
16151 break;
16152
2f0c68f2 16153 case BFD_RELOC_NONE:
252b5132
RH
16154 case BFD_RELOC_VTABLE_ENTRY:
16155 fixP->fx_done = 0;
16156 break;
16157
16158 default:
b37df7c4 16159 abort ();
252b5132 16160 }
a7ebbfdf
TS
16161
16162 /* Remember value for tc_gen_reloc. */
16163 fixP->fx_addnumber = *valP;
252b5132
RH
16164}
16165
252b5132 16166static symbolS *
17a2f251 16167get_symbol (void)
252b5132
RH
16168{
16169 int c;
16170 char *name;
16171 symbolS *p;
16172
d02603dc 16173 c = get_symbol_name (&name);
252b5132 16174 p = (symbolS *) symbol_find_or_make (name);
d02603dc 16175 (void) restore_line_pointer (c);
252b5132
RH
16176 return p;
16177}
16178
742a56fe
RS
16179/* Align the current frag to a given power of two. If a particular
16180 fill byte should be used, FILL points to an integer that contains
16181 that byte, otherwise FILL is null.
16182
462427c4
RS
16183 This function used to have the comment:
16184
16185 The MIPS assembler also automatically adjusts any preceding label.
16186
16187 The implementation therefore applied the adjustment to a maximum of
16188 one label. However, other label adjustments are applied to batches
16189 of labels, and adjusting just one caused problems when new labels
16190 were added for the sake of debugging or unwind information.
16191 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
16192
16193static void
462427c4 16194mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 16195{
7d10b47d 16196 mips_emit_delays ();
df58fc94 16197 mips_record_compressed_mode ();
742a56fe
RS
16198 if (fill == NULL && subseg_text_p (now_seg))
16199 frag_align_code (to, 0);
16200 else
16201 frag_align (to, fill ? *fill : 0, 0);
252b5132 16202 record_alignment (now_seg, to);
462427c4 16203 mips_move_labels (labels, FALSE);
252b5132
RH
16204}
16205
16206/* Align to a given power of two. .align 0 turns off the automatic
16207 alignment used by the data creating pseudo-ops. */
16208
16209static void
17a2f251 16210s_align (int x ATTRIBUTE_UNUSED)
252b5132 16211{
742a56fe 16212 int temp, fill_value, *fill_ptr;
49954fb4 16213 long max_alignment = 28;
252b5132 16214
54f4ddb3 16215 /* o Note that the assembler pulls down any immediately preceding label
252b5132 16216 to the aligned address.
54f4ddb3 16217 o It's not documented but auto alignment is reinstated by
252b5132 16218 a .align pseudo instruction.
54f4ddb3 16219 o Note also that after auto alignment is turned off the mips assembler
252b5132 16220 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 16221 We don't. */
252b5132
RH
16222
16223 temp = get_absolute_expression ();
16224 if (temp > max_alignment)
1661c76c 16225 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
16226 else if (temp < 0)
16227 {
1661c76c 16228 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
16229 temp = 0;
16230 }
16231 if (*input_line_pointer == ',')
16232 {
f9419b05 16233 ++input_line_pointer;
742a56fe
RS
16234 fill_value = get_absolute_expression ();
16235 fill_ptr = &fill_value;
252b5132
RH
16236 }
16237 else
742a56fe 16238 fill_ptr = 0;
252b5132
RH
16239 if (temp)
16240 {
a8dbcb85
TS
16241 segment_info_type *si = seg_info (now_seg);
16242 struct insn_label_list *l = si->label_list;
54f4ddb3 16243 /* Auto alignment should be switched on by next section change. */
252b5132 16244 auto_align = 1;
462427c4 16245 mips_align (temp, fill_ptr, l);
252b5132
RH
16246 }
16247 else
16248 {
16249 auto_align = 0;
16250 }
16251
16252 demand_empty_rest_of_line ();
16253}
16254
252b5132 16255static void
17a2f251 16256s_change_sec (int sec)
252b5132
RH
16257{
16258 segT seg;
16259
252b5132
RH
16260 /* The ELF backend needs to know that we are changing sections, so
16261 that .previous works correctly. We could do something like check
b6ff326e 16262 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
16263 as it would not be appropriate to use it in the section changing
16264 functions in read.c, since obj-elf.c intercepts those. FIXME:
16265 This should be cleaner, somehow. */
f3ded42a 16266 obj_elf_section_change_hook ();
252b5132 16267
7d10b47d 16268 mips_emit_delays ();
6a32d874 16269
252b5132
RH
16270 switch (sec)
16271 {
16272 case 't':
16273 s_text (0);
16274 break;
16275 case 'd':
16276 s_data (0);
16277 break;
16278 case 'b':
16279 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16280 demand_empty_rest_of_line ();
16281 break;
16282
16283 case 'r':
4d0d148d
TS
16284 seg = subseg_new (RDATA_SECTION_NAME,
16285 (subsegT) get_absolute_expression ());
f3ded42a
RS
16286 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16287 | SEC_READONLY | SEC_RELOC
16288 | SEC_DATA));
16289 if (strncmp (TARGET_OS, "elf", 3) != 0)
16290 record_alignment (seg, 4);
4d0d148d 16291 demand_empty_rest_of_line ();
252b5132
RH
16292 break;
16293
16294 case 's':
4d0d148d 16295 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
16296 bfd_set_section_flags (stdoutput, seg,
16297 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16298 if (strncmp (TARGET_OS, "elf", 3) != 0)
16299 record_alignment (seg, 4);
4d0d148d
TS
16300 demand_empty_rest_of_line ();
16301 break;
998b3c36
MR
16302
16303 case 'B':
16304 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
16305 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16306 if (strncmp (TARGET_OS, "elf", 3) != 0)
16307 record_alignment (seg, 4);
998b3c36
MR
16308 demand_empty_rest_of_line ();
16309 break;
252b5132
RH
16310 }
16311
16312 auto_align = 1;
16313}
b34976b6 16314
cca86cc8 16315void
17a2f251 16316s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 16317{
d02603dc 16318 char *saved_ilp;
cca86cc8 16319 char *section_name;
d02603dc 16320 char c, endc;
684022ea 16321 char next_c = 0;
cca86cc8
SC
16322 int section_type;
16323 int section_flag;
16324 int section_entry_size;
16325 int section_alignment;
b34976b6 16326
d02603dc
NC
16327 saved_ilp = input_line_pointer;
16328 endc = get_symbol_name (&section_name);
16329 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 16330 if (c)
d02603dc 16331 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 16332
4cf0dd0d
TS
16333 /* Do we have .section Name<,"flags">? */
16334 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 16335 {
d02603dc
NC
16336 /* Just after name is now '\0'. */
16337 (void) restore_line_pointer (endc);
16338 input_line_pointer = saved_ilp;
cca86cc8
SC
16339 obj_elf_section (ignore);
16340 return;
16341 }
d02603dc
NC
16342
16343 section_name = xstrdup (section_name);
16344 c = restore_line_pointer (endc);
16345
cca86cc8
SC
16346 input_line_pointer++;
16347
16348 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16349 if (c == ',')
16350 section_type = get_absolute_expression ();
16351 else
16352 section_type = 0;
d02603dc 16353
cca86cc8
SC
16354 if (*input_line_pointer++ == ',')
16355 section_flag = get_absolute_expression ();
16356 else
16357 section_flag = 0;
d02603dc 16358
cca86cc8
SC
16359 if (*input_line_pointer++ == ',')
16360 section_entry_size = get_absolute_expression ();
16361 else
16362 section_entry_size = 0;
d02603dc 16363
cca86cc8
SC
16364 if (*input_line_pointer++ == ',')
16365 section_alignment = get_absolute_expression ();
16366 else
16367 section_alignment = 0;
d02603dc 16368
87975d2a
AM
16369 /* FIXME: really ignore? */
16370 (void) section_alignment;
cca86cc8 16371
8ab8a5c8
RS
16372 /* When using the generic form of .section (as implemented by obj-elf.c),
16373 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16374 traditionally had to fall back on the more common @progbits instead.
16375
16376 There's nothing really harmful in this, since bfd will correct
16377 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 16378 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
16379 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16380
16381 Even so, we shouldn't force users of the MIPS .section syntax to
16382 incorrectly label the sections as SHT_PROGBITS. The best compromise
16383 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16384 generic type-checking code. */
16385 if (section_type == SHT_MIPS_DWARF)
16386 section_type = SHT_PROGBITS;
16387
a91e1603 16388 obj_elf_change_section (section_name, section_type, 0, section_flag,
cca86cc8 16389 section_entry_size, 0, 0, 0);
a816d1ed
AO
16390
16391 if (now_seg->name != section_name)
16392 free (section_name);
cca86cc8 16393}
252b5132
RH
16394
16395void
17a2f251 16396mips_enable_auto_align (void)
252b5132
RH
16397{
16398 auto_align = 1;
16399}
16400
16401static void
17a2f251 16402s_cons (int log_size)
252b5132 16403{
a8dbcb85
TS
16404 segment_info_type *si = seg_info (now_seg);
16405 struct insn_label_list *l = si->label_list;
252b5132 16406
7d10b47d 16407 mips_emit_delays ();
252b5132 16408 if (log_size > 0 && auto_align)
462427c4 16409 mips_align (log_size, 0, l);
252b5132 16410 cons (1 << log_size);
a1facbec 16411 mips_clear_insn_labels ();
252b5132
RH
16412}
16413
16414static void
17a2f251 16415s_float_cons (int type)
252b5132 16416{
a8dbcb85
TS
16417 segment_info_type *si = seg_info (now_seg);
16418 struct insn_label_list *l = si->label_list;
252b5132 16419
7d10b47d 16420 mips_emit_delays ();
252b5132
RH
16421
16422 if (auto_align)
49309057
ILT
16423 {
16424 if (type == 'd')
462427c4 16425 mips_align (3, 0, l);
49309057 16426 else
462427c4 16427 mips_align (2, 0, l);
49309057 16428 }
252b5132 16429
252b5132 16430 float_cons (type);
a1facbec 16431 mips_clear_insn_labels ();
252b5132
RH
16432}
16433
16434/* Handle .globl. We need to override it because on Irix 5 you are
16435 permitted to say
16436 .globl foo .text
16437 where foo is an undefined symbol, to mean that foo should be
16438 considered to be the address of a function. */
16439
16440static void
17a2f251 16441s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
16442{
16443 char *name;
16444 int c;
16445 symbolS *symbolP;
16446 flagword flag;
16447
8a06b769 16448 do
252b5132 16449 {
d02603dc 16450 c = get_symbol_name (&name);
8a06b769
TS
16451 symbolP = symbol_find_or_make (name);
16452 S_SET_EXTERNAL (symbolP);
16453
252b5132 16454 *input_line_pointer = c;
d02603dc 16455 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 16456
8a06b769
TS
16457 /* On Irix 5, every global symbol that is not explicitly labelled as
16458 being a function is apparently labelled as being an object. */
16459 flag = BSF_OBJECT;
252b5132 16460
8a06b769
TS
16461 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16462 && (*input_line_pointer != ','))
16463 {
16464 char *secname;
16465 asection *sec;
16466
d02603dc 16467 c = get_symbol_name (&secname);
8a06b769
TS
16468 sec = bfd_get_section_by_name (stdoutput, secname);
16469 if (sec == NULL)
16470 as_bad (_("%s: no such section"), secname);
d02603dc 16471 (void) restore_line_pointer (c);
8a06b769
TS
16472
16473 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16474 flag = BSF_FUNCTION;
16475 }
16476
16477 symbol_get_bfdsym (symbolP)->flags |= flag;
16478
16479 c = *input_line_pointer;
16480 if (c == ',')
16481 {
16482 input_line_pointer++;
16483 SKIP_WHITESPACE ();
16484 if (is_end_of_line[(unsigned char) *input_line_pointer])
16485 c = '\n';
16486 }
16487 }
16488 while (c == ',');
252b5132 16489
252b5132
RH
16490 demand_empty_rest_of_line ();
16491}
16492
16493static void
17a2f251 16494s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
16495{
16496 char *opt;
16497 char c;
16498
d02603dc 16499 c = get_symbol_name (&opt);
252b5132
RH
16500
16501 if (*opt == 'O')
16502 {
16503 /* FIXME: What does this mean? */
16504 }
41a1578e 16505 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
16506 {
16507 int i;
16508
16509 i = atoi (opt + 3);
668c5ebc
MR
16510 if (i != 0 && i != 2)
16511 as_bad (_(".option pic%d not supported"), i);
16512 else if (mips_pic == VXWORKS_PIC)
16513 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16514 else if (i == 0)
252b5132
RH
16515 mips_pic = NO_PIC;
16516 else if (i == 2)
143d77c5 16517 {
8b828383 16518 mips_pic = SVR4_PIC;
143d77c5
EC
16519 mips_abicalls = TRUE;
16520 }
252b5132 16521
4d0d148d 16522 if (mips_pic == SVR4_PIC)
252b5132
RH
16523 {
16524 if (g_switch_seen && g_switch_value != 0)
16525 as_warn (_("-G may not be used with SVR4 PIC code"));
16526 g_switch_value = 0;
16527 bfd_set_gp_size (stdoutput, 0);
16528 }
16529 }
16530 else
1661c76c 16531 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16532
d02603dc 16533 (void) restore_line_pointer (c);
252b5132
RH
16534 demand_empty_rest_of_line ();
16535}
16536
16537/* This structure is used to hold a stack of .set values. */
16538
e972090a
NC
16539struct mips_option_stack
16540{
252b5132
RH
16541 struct mips_option_stack *next;
16542 struct mips_set_options options;
16543};
16544
16545static struct mips_option_stack *mips_opts_stack;
16546
22522f88
MR
16547/* Return status for .set/.module option handling. */
16548
16549enum code_option_type
16550{
16551 /* Unrecognized option. */
16552 OPTION_TYPE_BAD = -1,
16553
16554 /* Ordinary option. */
16555 OPTION_TYPE_NORMAL,
16556
16557 /* ISA changing option. */
16558 OPTION_TYPE_ISA
16559};
16560
16561/* Handle common .set/.module options. Return status indicating option
16562 type. */
16563
16564static enum code_option_type
919731af 16565parse_code_option (char * name)
252b5132 16566{
22522f88 16567 bfd_boolean isa_set = FALSE;
c6278170 16568 const struct mips_ase *ase;
22522f88 16569
919731af 16570 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
16571 {
16572 char *s = name + 3;
16573
16574 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16575 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16576 }
252b5132 16577 else if (strcmp (name, "at") == 0)
919731af 16578 mips_opts.at = ATREG;
252b5132 16579 else if (strcmp (name, "noat") == 0)
919731af 16580 mips_opts.at = ZERO;
252b5132 16581 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16582 mips_opts.nomove = 0;
252b5132 16583 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16584 mips_opts.nomove = 1;
252b5132 16585 else if (strcmp (name, "bopt") == 0)
919731af 16586 mips_opts.nobopt = 0;
252b5132 16587 else if (strcmp (name, "nobopt") == 0)
919731af 16588 mips_opts.nobopt = 1;
ad3fea08 16589 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16590 mips_opts.gp = 32;
ad3fea08 16591 else if (strcmp (name, "gp=64") == 0)
919731af 16592 mips_opts.gp = 64;
ad3fea08 16593 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16594 mips_opts.fp = 32;
351cdf24
MF
16595 else if (strcmp (name, "fp=xx") == 0)
16596 mips_opts.fp = 0;
ad3fea08 16597 else if (strcmp (name, "fp=64") == 0)
919731af 16598 mips_opts.fp = 64;
037b32b9
AN
16599 else if (strcmp (name, "softfloat") == 0)
16600 mips_opts.soft_float = 1;
16601 else if (strcmp (name, "hardfloat") == 0)
16602 mips_opts.soft_float = 0;
16603 else if (strcmp (name, "singlefloat") == 0)
16604 mips_opts.single_float = 1;
16605 else if (strcmp (name, "doublefloat") == 0)
16606 mips_opts.single_float = 0;
351cdf24
MF
16607 else if (strcmp (name, "nooddspreg") == 0)
16608 mips_opts.oddspreg = 0;
16609 else if (strcmp (name, "oddspreg") == 0)
16610 mips_opts.oddspreg = 1;
252b5132
RH
16611 else if (strcmp (name, "mips16") == 0
16612 || strcmp (name, "MIPS-16") == 0)
919731af 16613 mips_opts.mips16 = 1;
252b5132
RH
16614 else if (strcmp (name, "nomips16") == 0
16615 || strcmp (name, "noMIPS-16") == 0)
16616 mips_opts.mips16 = 0;
df58fc94 16617 else if (strcmp (name, "micromips") == 0)
919731af 16618 mips_opts.micromips = 1;
df58fc94
RS
16619 else if (strcmp (name, "nomicromips") == 0)
16620 mips_opts.micromips = 0;
c6278170
RS
16621 else if (name[0] == 'n'
16622 && name[1] == 'o'
16623 && (ase = mips_lookup_ase (name + 2)))
919731af 16624 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 16625 else if ((ase = mips_lookup_ase (name)))
919731af 16626 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 16627 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 16628 {
1a2c1fad
CD
16629 /* Permit the user to change the ISA and architecture on the fly.
16630 Needless to say, misuse can cause serious problems. */
919731af 16631 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
16632 {
16633 const struct mips_cpu_info *p;
16634
919731af 16635 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16636 if (!p)
16637 as_bad (_("unknown architecture %s"), name + 5);
16638 else
16639 {
16640 mips_opts.arch = p->cpu;
16641 mips_opts.isa = p->isa;
22522f88 16642 isa_set = TRUE;
3315614d 16643 mips_opts.init_ase = p->ase;
1a2c1fad
CD
16644 }
16645 }
81a21e38
TS
16646 else if (strncmp (name, "mips", 4) == 0)
16647 {
16648 const struct mips_cpu_info *p;
16649
919731af 16650 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16651 if (!p)
16652 as_bad (_("unknown ISA level %s"), name + 4);
16653 else
16654 {
16655 mips_opts.arch = p->cpu;
16656 mips_opts.isa = p->isa;
22522f88 16657 isa_set = TRUE;
3315614d 16658 mips_opts.init_ase = p->ase;
81a21e38
TS
16659 }
16660 }
af7ee8bf 16661 else
81a21e38 16662 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16663 }
16664 else if (strcmp (name, "autoextend") == 0)
16665 mips_opts.noautoextend = 0;
16666 else if (strcmp (name, "noautoextend") == 0)
16667 mips_opts.noautoextend = 1;
833794fc
MR
16668 else if (strcmp (name, "insn32") == 0)
16669 mips_opts.insn32 = TRUE;
16670 else if (strcmp (name, "noinsn32") == 0)
16671 mips_opts.insn32 = FALSE;
919731af 16672 else if (strcmp (name, "sym32") == 0)
16673 mips_opts.sym32 = TRUE;
16674 else if (strcmp (name, "nosym32") == 0)
16675 mips_opts.sym32 = FALSE;
16676 else
22522f88
MR
16677 return OPTION_TYPE_BAD;
16678
16679 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16680}
16681
16682/* Handle the .set pseudo-op. */
16683
16684static void
16685s_mipsset (int x ATTRIBUTE_UNUSED)
16686{
22522f88 16687 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16688 char *name = input_line_pointer, ch;
919731af 16689
16690 file_mips_check_options ();
16691
16692 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16693 ++input_line_pointer;
16694 ch = *input_line_pointer;
16695 *input_line_pointer = '\0';
16696
16697 if (strchr (name, ','))
16698 {
16699 /* Generic ".set" directive; use the generic handler. */
16700 *input_line_pointer = ch;
16701 input_line_pointer = name;
16702 s_set (0);
16703 return;
16704 }
16705
16706 if (strcmp (name, "reorder") == 0)
16707 {
16708 if (mips_opts.noreorder)
16709 end_noreorder ();
16710 }
16711 else if (strcmp (name, "noreorder") == 0)
16712 {
16713 if (!mips_opts.noreorder)
16714 start_noreorder ();
16715 }
16716 else if (strcmp (name, "macro") == 0)
16717 mips_opts.warn_about_macros = 0;
16718 else if (strcmp (name, "nomacro") == 0)
16719 {
16720 if (mips_opts.noreorder == 0)
16721 as_bad (_("`noreorder' must be set before `nomacro'"));
16722 mips_opts.warn_about_macros = 1;
16723 }
16724 else if (strcmp (name, "gp=default") == 0)
16725 mips_opts.gp = file_mips_opts.gp;
16726 else if (strcmp (name, "fp=default") == 0)
16727 mips_opts.fp = file_mips_opts.fp;
16728 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16729 {
16730 mips_opts.isa = file_mips_opts.isa;
16731 mips_opts.arch = file_mips_opts.arch;
3315614d 16732 mips_opts.init_ase = file_mips_opts.init_ase;
919731af 16733 mips_opts.gp = file_mips_opts.gp;
16734 mips_opts.fp = file_mips_opts.fp;
16735 }
252b5132
RH
16736 else if (strcmp (name, "push") == 0)
16737 {
16738 struct mips_option_stack *s;
16739
325801bd 16740 s = XNEW (struct mips_option_stack);
252b5132
RH
16741 s->next = mips_opts_stack;
16742 s->options = mips_opts;
16743 mips_opts_stack = s;
16744 }
16745 else if (strcmp (name, "pop") == 0)
16746 {
16747 struct mips_option_stack *s;
16748
16749 s = mips_opts_stack;
16750 if (s == NULL)
16751 as_bad (_(".set pop with no .set push"));
16752 else
16753 {
16754 /* If we're changing the reorder mode we need to handle
16755 delay slots correctly. */
16756 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16757 start_noreorder ();
252b5132 16758 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16759 end_noreorder ();
252b5132
RH
16760
16761 mips_opts = s->options;
16762 mips_opts_stack = s->next;
16763 free (s);
16764 }
16765 }
22522f88
MR
16766 else
16767 {
16768 type = parse_code_option (name);
16769 if (type == OPTION_TYPE_BAD)
16770 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16771 }
919731af 16772
16773 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16774 registers based on what is supported by the arch/cpu. */
22522f88 16775 if (type == OPTION_TYPE_ISA)
e6559e01 16776 {
919731af 16777 switch (mips_opts.isa)
16778 {
16779 case 0:
16780 break;
16781 case ISA_MIPS1:
351cdf24
MF
16782 /* MIPS I cannot support FPXX. */
16783 mips_opts.fp = 32;
16784 /* fall-through. */
919731af 16785 case ISA_MIPS2:
16786 case ISA_MIPS32:
16787 case ISA_MIPS32R2:
16788 case ISA_MIPS32R3:
16789 case ISA_MIPS32R5:
16790 mips_opts.gp = 32;
351cdf24
MF
16791 if (mips_opts.fp != 0)
16792 mips_opts.fp = 32;
919731af 16793 break;
7361da2c
AB
16794 case ISA_MIPS32R6:
16795 mips_opts.gp = 32;
16796 mips_opts.fp = 64;
16797 break;
919731af 16798 case ISA_MIPS3:
16799 case ISA_MIPS4:
16800 case ISA_MIPS5:
16801 case ISA_MIPS64:
16802 case ISA_MIPS64R2:
16803 case ISA_MIPS64R3:
16804 case ISA_MIPS64R5:
7361da2c 16805 case ISA_MIPS64R6:
919731af 16806 mips_opts.gp = 64;
351cdf24
MF
16807 if (mips_opts.fp != 0)
16808 {
16809 if (mips_opts.arch == CPU_R5900)
16810 mips_opts.fp = 32;
16811 else
16812 mips_opts.fp = 64;
16813 }
919731af 16814 break;
16815 default:
16816 as_bad (_("unknown ISA level %s"), name + 4);
16817 break;
16818 }
e6559e01 16819 }
919731af 16820
16821 mips_check_options (&mips_opts, FALSE);
16822
16823 mips_check_isa_supports_ases ();
16824 *input_line_pointer = ch;
16825 demand_empty_rest_of_line ();
16826}
16827
16828/* Handle the .module pseudo-op. */
16829
16830static void
16831s_module (int ignore ATTRIBUTE_UNUSED)
16832{
16833 char *name = input_line_pointer, ch;
16834
16835 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16836 ++input_line_pointer;
16837 ch = *input_line_pointer;
16838 *input_line_pointer = '\0';
16839
16840 if (!file_mips_opts_checked)
252b5132 16841 {
22522f88 16842 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16843 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16844
16845 /* Update module level settings from mips_opts. */
16846 file_mips_opts = mips_opts;
252b5132 16847 }
919731af 16848 else
16849 as_bad (_(".module is not permitted after generating code"));
16850
252b5132
RH
16851 *input_line_pointer = ch;
16852 demand_empty_rest_of_line ();
16853}
16854
16855/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16856 .option pic2. It means to generate SVR4 PIC calls. */
16857
16858static void
17a2f251 16859s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16860{
16861 mips_pic = SVR4_PIC;
143d77c5 16862 mips_abicalls = TRUE;
4d0d148d
TS
16863
16864 if (g_switch_seen && g_switch_value != 0)
16865 as_warn (_("-G may not be used with SVR4 PIC code"));
16866 g_switch_value = 0;
16867
252b5132
RH
16868 bfd_set_gp_size (stdoutput, 0);
16869 demand_empty_rest_of_line ();
16870}
16871
16872/* Handle the .cpload pseudo-op. This is used when generating SVR4
16873 PIC code. It sets the $gp register for the function based on the
16874 function address, which is in the register named in the argument.
16875 This uses a relocation against _gp_disp, which is handled specially
16876 by the linker. The result is:
16877 lui $gp,%hi(_gp_disp)
16878 addiu $gp,$gp,%lo(_gp_disp)
16879 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16880 The .cpload argument is normally $25 == $t9.
16881
16882 The -mno-shared option changes this to:
bbe506e8
TS
16883 lui $gp,%hi(__gnu_local_gp)
16884 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16885 and the argument is ignored. This saves an instruction, but the
16886 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16887 address for __gnu_local_gp. Thus code assembled with -mno-shared
16888 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16889
16890static void
17a2f251 16891s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16892{
16893 expressionS ex;
aa6975fb
ILT
16894 int reg;
16895 int in_shared;
252b5132 16896
919731af 16897 file_mips_check_options ();
16898
6478892d
TS
16899 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16900 .cpload is ignored. */
16901 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16902 {
16903 s_ignore (0);
16904 return;
16905 }
16906
a276b80c
MR
16907 if (mips_opts.mips16)
16908 {
16909 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16910 ignore_rest_of_line ();
16911 return;
16912 }
16913
d3ecfc59 16914 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16915 if (mips_opts.noreorder == 0)
16916 as_warn (_(".cpload not in noreorder section"));
16917
aa6975fb
ILT
16918 reg = tc_get_register (0);
16919
16920 /* If we need to produce a 64-bit address, we are better off using
16921 the default instruction sequence. */
aed1a261 16922 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16923
252b5132 16924 ex.X_op = O_symbol;
bbe506e8
TS
16925 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16926 "__gnu_local_gp");
252b5132
RH
16927 ex.X_op_symbol = NULL;
16928 ex.X_add_number = 0;
16929
16930 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16931 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16932
8a75745d
MR
16933 mips_mark_labels ();
16934 mips_assembling_insn = TRUE;
16935
584892a6 16936 macro_start ();
67c0d1eb
RS
16937 macro_build_lui (&ex, mips_gp_register);
16938 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 16939 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
16940 if (in_shared)
16941 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16942 mips_gp_register, reg);
584892a6 16943 macro_end ();
252b5132 16944
8a75745d 16945 mips_assembling_insn = FALSE;
252b5132
RH
16946 demand_empty_rest_of_line ();
16947}
16948
6478892d
TS
16949/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16950 .cpsetup $reg1, offset|$reg2, label
16951
16952 If offset is given, this results in:
16953 sd $gp, offset($sp)
956cd1d6 16954 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16955 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16956 daddu $gp, $gp, $reg1
6478892d
TS
16957
16958 If $reg2 is given, this results in:
40fc1451 16959 or $reg2, $gp, $0
956cd1d6 16960 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16961 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16962 daddu $gp, $gp, $reg1
aa6975fb
ILT
16963 $reg1 is normally $25 == $t9.
16964
16965 The -mno-shared option replaces the last three instructions with
16966 lui $gp,%hi(_gp)
54f4ddb3 16967 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16968
6478892d 16969static void
17a2f251 16970s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16971{
16972 expressionS ex_off;
16973 expressionS ex_sym;
16974 int reg1;
6478892d 16975
919731af 16976 file_mips_check_options ();
16977
8586fc66 16978 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16979 We also need NewABI support. */
16980 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16981 {
16982 s_ignore (0);
16983 return;
16984 }
16985
a276b80c
MR
16986 if (mips_opts.mips16)
16987 {
16988 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16989 ignore_rest_of_line ();
16990 return;
16991 }
16992
6478892d
TS
16993 reg1 = tc_get_register (0);
16994 SKIP_WHITESPACE ();
16995 if (*input_line_pointer != ',')
16996 {
16997 as_bad (_("missing argument separator ',' for .cpsetup"));
16998 return;
16999 }
17000 else
80245285 17001 ++input_line_pointer;
6478892d
TS
17002 SKIP_WHITESPACE ();
17003 if (*input_line_pointer == '$')
80245285
TS
17004 {
17005 mips_cpreturn_register = tc_get_register (0);
17006 mips_cpreturn_offset = -1;
17007 }
6478892d 17008 else
80245285
TS
17009 {
17010 mips_cpreturn_offset = get_absolute_expression ();
17011 mips_cpreturn_register = -1;
17012 }
6478892d
TS
17013 SKIP_WHITESPACE ();
17014 if (*input_line_pointer != ',')
17015 {
17016 as_bad (_("missing argument separator ',' for .cpsetup"));
17017 return;
17018 }
17019 else
f9419b05 17020 ++input_line_pointer;
6478892d 17021 SKIP_WHITESPACE ();
f21f8242 17022 expression (&ex_sym);
6478892d 17023
8a75745d
MR
17024 mips_mark_labels ();
17025 mips_assembling_insn = TRUE;
17026
584892a6 17027 macro_start ();
6478892d
TS
17028 if (mips_cpreturn_register == -1)
17029 {
17030 ex_off.X_op = O_constant;
17031 ex_off.X_add_symbol = NULL;
17032 ex_off.X_op_symbol = NULL;
17033 ex_off.X_add_number = mips_cpreturn_offset;
17034
67c0d1eb 17035 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 17036 BFD_RELOC_LO16, SP);
6478892d
TS
17037 }
17038 else
40fc1451 17039 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 17040
aed1a261 17041 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 17042 {
df58fc94 17043 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
17044 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
17045 BFD_RELOC_HI16_S);
17046
17047 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
17048 mips_gp_register, -1, BFD_RELOC_GPREL16,
17049 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
17050
17051 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
17052 mips_gp_register, reg1);
17053 }
17054 else
17055 {
17056 expressionS ex;
17057
17058 ex.X_op = O_symbol;
4184909a 17059 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
17060 ex.X_op_symbol = NULL;
17061 ex.X_add_number = 0;
6e1304d8 17062
aa6975fb
ILT
17063 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
17064 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
17065
17066 macro_build_lui (&ex, mips_gp_register);
17067 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17068 mips_gp_register, BFD_RELOC_LO16);
17069 }
f21f8242 17070
584892a6 17071 macro_end ();
6478892d 17072
8a75745d 17073 mips_assembling_insn = FALSE;
6478892d
TS
17074 demand_empty_rest_of_line ();
17075}
17076
17077static void
17a2f251 17078s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 17079{
919731af 17080 file_mips_check_options ();
17081
6478892d 17082 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 17083 .cplocal is ignored. */
6478892d
TS
17084 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17085 {
17086 s_ignore (0);
17087 return;
17088 }
17089
a276b80c
MR
17090 if (mips_opts.mips16)
17091 {
17092 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
17093 ignore_rest_of_line ();
17094 return;
17095 }
17096
6478892d 17097 mips_gp_register = tc_get_register (0);
85b51719 17098 demand_empty_rest_of_line ();
6478892d
TS
17099}
17100
252b5132
RH
17101/* Handle the .cprestore pseudo-op. This stores $gp into a given
17102 offset from $sp. The offset is remembered, and after making a PIC
17103 call $gp is restored from that location. */
17104
17105static void
17a2f251 17106s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
17107{
17108 expressionS ex;
252b5132 17109
919731af 17110 file_mips_check_options ();
17111
6478892d 17112 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 17113 .cprestore is ignored. */
6478892d 17114 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
17115 {
17116 s_ignore (0);
17117 return;
17118 }
17119
a276b80c
MR
17120 if (mips_opts.mips16)
17121 {
17122 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
17123 ignore_rest_of_line ();
17124 return;
17125 }
17126
252b5132 17127 mips_cprestore_offset = get_absolute_expression ();
7a621144 17128 mips_cprestore_valid = 1;
252b5132
RH
17129
17130 ex.X_op = O_constant;
17131 ex.X_add_symbol = NULL;
17132 ex.X_op_symbol = NULL;
17133 ex.X_add_number = mips_cprestore_offset;
17134
8a75745d
MR
17135 mips_mark_labels ();
17136 mips_assembling_insn = TRUE;
17137
584892a6 17138 macro_start ();
67c0d1eb
RS
17139 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
17140 SP, HAVE_64BIT_ADDRESSES);
584892a6 17141 macro_end ();
252b5132 17142
8a75745d 17143 mips_assembling_insn = FALSE;
252b5132
RH
17144 demand_empty_rest_of_line ();
17145}
17146
6478892d 17147/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 17148 was given in the preceding .cpsetup, it results in:
6478892d 17149 ld $gp, offset($sp)
76b3015f 17150
6478892d 17151 If a register $reg2 was given there, it results in:
40fc1451 17152 or $gp, $reg2, $0 */
54f4ddb3 17153
6478892d 17154static void
17a2f251 17155s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
17156{
17157 expressionS ex;
6478892d 17158
919731af 17159 file_mips_check_options ();
17160
6478892d
TS
17161 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
17162 We also need NewABI support. */
17163 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17164 {
17165 s_ignore (0);
17166 return;
17167 }
17168
a276b80c
MR
17169 if (mips_opts.mips16)
17170 {
17171 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
17172 ignore_rest_of_line ();
17173 return;
17174 }
17175
8a75745d
MR
17176 mips_mark_labels ();
17177 mips_assembling_insn = TRUE;
17178
584892a6 17179 macro_start ();
6478892d
TS
17180 if (mips_cpreturn_register == -1)
17181 {
17182 ex.X_op = O_constant;
17183 ex.X_add_symbol = NULL;
17184 ex.X_op_symbol = NULL;
17185 ex.X_add_number = mips_cpreturn_offset;
17186
67c0d1eb 17187 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
17188 }
17189 else
40fc1451
SD
17190 move_register (mips_gp_register, mips_cpreturn_register);
17191
584892a6 17192 macro_end ();
6478892d 17193
8a75745d 17194 mips_assembling_insn = FALSE;
6478892d
TS
17195 demand_empty_rest_of_line ();
17196}
17197
d0f13682
CLT
17198/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
17199 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
17200 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
17201 debug information or MIPS16 TLS. */
741d6ea8
JM
17202
17203static void
d0f13682
CLT
17204s_tls_rel_directive (const size_t bytes, const char *dirstr,
17205 bfd_reloc_code_real_type rtype)
741d6ea8
JM
17206{
17207 expressionS ex;
17208 char *p;
17209
17210 expression (&ex);
17211
17212 if (ex.X_op != O_symbol)
17213 {
1661c76c 17214 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
17215 ignore_rest_of_line ();
17216 }
17217
17218 p = frag_more (bytes);
17219 md_number_to_chars (p, 0, bytes);
d0f13682 17220 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 17221 demand_empty_rest_of_line ();
de64cffd 17222 mips_clear_insn_labels ();
741d6ea8
JM
17223}
17224
17225/* Handle .dtprelword. */
17226
17227static void
17228s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17229{
d0f13682 17230 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
17231}
17232
17233/* Handle .dtpreldword. */
17234
17235static void
17236s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17237{
d0f13682
CLT
17238 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17239}
17240
17241/* Handle .tprelword. */
17242
17243static void
17244s_tprelword (int ignore ATTRIBUTE_UNUSED)
17245{
17246 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17247}
17248
17249/* Handle .tpreldword. */
17250
17251static void
17252s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17253{
17254 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
17255}
17256
6478892d
TS
17257/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17258 code. It sets the offset to use in gp_rel relocations. */
17259
17260static void
17a2f251 17261s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
17262{
17263 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17264 We also need NewABI support. */
17265 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17266 {
17267 s_ignore (0);
17268 return;
17269 }
17270
def2e0dd 17271 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
17272
17273 demand_empty_rest_of_line ();
17274}
17275
252b5132
RH
17276/* Handle the .gpword pseudo-op. This is used when generating PIC
17277 code. It generates a 32 bit GP relative reloc. */
17278
17279static void
17a2f251 17280s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 17281{
a8dbcb85
TS
17282 segment_info_type *si;
17283 struct insn_label_list *l;
252b5132
RH
17284 expressionS ex;
17285 char *p;
17286
17287 /* When not generating PIC code, this is treated as .word. */
17288 if (mips_pic != SVR4_PIC)
17289 {
17290 s_cons (2);
17291 return;
17292 }
17293
a8dbcb85
TS
17294 si = seg_info (now_seg);
17295 l = si->label_list;
7d10b47d 17296 mips_emit_delays ();
252b5132 17297 if (auto_align)
462427c4 17298 mips_align (2, 0, l);
252b5132
RH
17299
17300 expression (&ex);
a1facbec 17301 mips_clear_insn_labels ();
252b5132
RH
17302
17303 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17304 {
1661c76c 17305 as_bad (_("unsupported use of .gpword"));
252b5132
RH
17306 ignore_rest_of_line ();
17307 }
17308
17309 p = frag_more (4);
17a2f251 17310 md_number_to_chars (p, 0, 4);
b34976b6 17311 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 17312 BFD_RELOC_GPREL32);
252b5132
RH
17313
17314 demand_empty_rest_of_line ();
17315}
17316
10181a0d 17317static void
17a2f251 17318s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 17319{
a8dbcb85
TS
17320 segment_info_type *si;
17321 struct insn_label_list *l;
10181a0d
AO
17322 expressionS ex;
17323 char *p;
17324
17325 /* When not generating PIC code, this is treated as .dword. */
17326 if (mips_pic != SVR4_PIC)
17327 {
17328 s_cons (3);
17329 return;
17330 }
17331
a8dbcb85
TS
17332 si = seg_info (now_seg);
17333 l = si->label_list;
7d10b47d 17334 mips_emit_delays ();
10181a0d 17335 if (auto_align)
462427c4 17336 mips_align (3, 0, l);
10181a0d
AO
17337
17338 expression (&ex);
a1facbec 17339 mips_clear_insn_labels ();
10181a0d
AO
17340
17341 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17342 {
1661c76c 17343 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
17344 ignore_rest_of_line ();
17345 }
17346
17347 p = frag_more (8);
17a2f251 17348 md_number_to_chars (p, 0, 8);
a105a300 17349 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 17350 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
17351
17352 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
17353 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17354 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
17355
17356 demand_empty_rest_of_line ();
17357}
17358
a3f278e2
CM
17359/* Handle the .ehword pseudo-op. This is used when generating unwinding
17360 tables. It generates a R_MIPS_EH reloc. */
17361
17362static void
17363s_ehword (int ignore ATTRIBUTE_UNUSED)
17364{
17365 expressionS ex;
17366 char *p;
17367
17368 mips_emit_delays ();
17369
17370 expression (&ex);
17371 mips_clear_insn_labels ();
17372
17373 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17374 {
1661c76c 17375 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
17376 ignore_rest_of_line ();
17377 }
17378
17379 p = frag_more (4);
17380 md_number_to_chars (p, 0, 4);
17381 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 17382 BFD_RELOC_32_PCREL);
a3f278e2
CM
17383
17384 demand_empty_rest_of_line ();
17385}
17386
252b5132
RH
17387/* Handle the .cpadd pseudo-op. This is used when dealing with switch
17388 tables in SVR4 PIC code. */
17389
17390static void
17a2f251 17391s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 17392{
252b5132
RH
17393 int reg;
17394
919731af 17395 file_mips_check_options ();
17396
10181a0d
AO
17397 /* This is ignored when not generating SVR4 PIC code. */
17398 if (mips_pic != SVR4_PIC)
252b5132
RH
17399 {
17400 s_ignore (0);
17401 return;
17402 }
17403
8a75745d
MR
17404 mips_mark_labels ();
17405 mips_assembling_insn = TRUE;
17406
252b5132 17407 /* Add $gp to the register named as an argument. */
584892a6 17408 macro_start ();
252b5132 17409 reg = tc_get_register (0);
67c0d1eb 17410 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 17411 macro_end ();
252b5132 17412
8a75745d 17413 mips_assembling_insn = FALSE;
bdaaa2e1 17414 demand_empty_rest_of_line ();
252b5132
RH
17415}
17416
17417/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 17418 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
17419 such as generating jalx instructions when needed. We also make
17420 them odd for the duration of the assembly, in order to generate the
17421 right sort of code. We will make them even in the adjust_symtab
17422 routine, while leaving them marked. This is convenient for the
17423 debugger and the disassembler. The linker knows to make them odd
17424 again. */
17425
17426static void
17a2f251 17427s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 17428{
7bb01e2d
MR
17429 file_mips_check_options ();
17430 file_ase_mips16 |= mips_opts.mips16;
17431 file_ase_micromips |= mips_opts.micromips;
17432
df58fc94 17433 mips_mark_labels ();
252b5132
RH
17434
17435 demand_empty_rest_of_line ();
17436}
17437
ba92f887
MR
17438/* Handle the .nan pseudo-op. */
17439
17440static void
17441s_nan (int ignore ATTRIBUTE_UNUSED)
17442{
17443 static const char str_legacy[] = "legacy";
17444 static const char str_2008[] = "2008";
17445 size_t i;
17446
17447 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17448
17449 if (i == sizeof (str_2008) - 1
17450 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 17451 mips_nan2008 = 1;
ba92f887
MR
17452 else if (i == sizeof (str_legacy) - 1
17453 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
17454 {
17455 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17456 mips_nan2008 = 0;
17457 else
17458 as_bad (_("`%s' does not support legacy NaN"),
17459 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17460 }
ba92f887 17461 else
1661c76c 17462 as_bad (_("bad .nan directive"));
ba92f887
MR
17463
17464 input_line_pointer += i;
17465 demand_empty_rest_of_line ();
17466}
17467
754e2bb9
RS
17468/* Handle a .stab[snd] directive. Ideally these directives would be
17469 implemented in a transparent way, so that removing them would not
17470 have any effect on the generated instructions. However, s_stab
17471 internally changes the section, so in practice we need to decide
17472 now whether the preceding label marks compressed code. We do not
17473 support changing the compression mode of a label after a .stab*
17474 directive, such as in:
17475
17476 foo:
134c0c8b 17477 .stabs ...
754e2bb9
RS
17478 .set mips16
17479
17480 so the current mode wins. */
252b5132
RH
17481
17482static void
17a2f251 17483s_mips_stab (int type)
252b5132 17484{
42c0794e 17485 file_mips_check_options ();
754e2bb9 17486 mips_mark_labels ();
252b5132
RH
17487 s_stab (type);
17488}
17489
54f4ddb3 17490/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
17491
17492static void
17a2f251 17493s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
17494{
17495 char *name;
17496 int c;
17497 symbolS *symbolP;
17498 expressionS exp;
17499
d02603dc 17500 c = get_symbol_name (&name);
252b5132
RH
17501 symbolP = symbol_find_or_make (name);
17502 S_SET_WEAK (symbolP);
17503 *input_line_pointer = c;
17504
d02603dc 17505 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
17506
17507 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17508 {
17509 if (S_IS_DEFINED (symbolP))
17510 {
20203fb9 17511 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
17512 S_GET_NAME (symbolP));
17513 ignore_rest_of_line ();
17514 return;
17515 }
bdaaa2e1 17516
252b5132
RH
17517 if (*input_line_pointer == ',')
17518 {
17519 ++input_line_pointer;
17520 SKIP_WHITESPACE ();
17521 }
bdaaa2e1 17522
252b5132
RH
17523 expression (&exp);
17524 if (exp.X_op != O_symbol)
17525 {
20203fb9 17526 as_bad (_("bad .weakext directive"));
98d3f06f 17527 ignore_rest_of_line ();
252b5132
RH
17528 return;
17529 }
49309057 17530 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
17531 }
17532
17533 demand_empty_rest_of_line ();
17534}
17535
17536/* Parse a register string into a number. Called from the ECOFF code
17537 to parse .frame. The argument is non-zero if this is the frame
17538 register, so that we can record it in mips_frame_reg. */
17539
17540int
17a2f251 17541tc_get_register (int frame)
252b5132 17542{
707bfff6 17543 unsigned int reg;
252b5132
RH
17544
17545 SKIP_WHITESPACE ();
707bfff6
TS
17546 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17547 reg = 0;
252b5132 17548 if (frame)
7a621144
DJ
17549 {
17550 mips_frame_reg = reg != 0 ? reg : SP;
17551 mips_frame_reg_valid = 1;
17552 mips_cprestore_valid = 0;
17553 }
252b5132
RH
17554 return reg;
17555}
17556
17557valueT
17a2f251 17558md_section_align (asection *seg, valueT addr)
252b5132
RH
17559{
17560 int align = bfd_get_section_alignment (stdoutput, seg);
17561
f3ded42a
RS
17562 /* We don't need to align ELF sections to the full alignment.
17563 However, Irix 5 may prefer that we align them at least to a 16
17564 byte boundary. We don't bother to align the sections if we
17565 are targeted for an embedded system. */
17566 if (strncmp (TARGET_OS, "elf", 3) == 0)
17567 return addr;
17568 if (align > 4)
17569 align = 4;
252b5132 17570
8d3842cd 17571 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17572}
17573
17574/* Utility routine, called from above as well. If called while the
17575 input file is still being read, it's only an approximation. (For
17576 example, a symbol may later become defined which appeared to be
17577 undefined earlier.) */
17578
17579static int
17a2f251 17580nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17581{
17582 if (sym == 0)
17583 return 0;
17584
4d0d148d 17585 if (g_switch_value > 0)
252b5132
RH
17586 {
17587 const char *symname;
17588 int change;
17589
c9914766 17590 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17591 register. It can be if it is smaller than the -G size or if
17592 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17593 not be referenced off the $gp, although it appears as though
252b5132
RH
17594 they can. */
17595 symname = S_GET_NAME (sym);
17596 if (symname != (const char *) NULL
17597 && (strcmp (symname, "eprol") == 0
17598 || strcmp (symname, "etext") == 0
17599 || strcmp (symname, "_gp") == 0
17600 || strcmp (symname, "edata") == 0
17601 || strcmp (symname, "_fbss") == 0
17602 || strcmp (symname, "_fdata") == 0
17603 || strcmp (symname, "_ftext") == 0
17604 || strcmp (symname, "end") == 0
17605 || strcmp (symname, "_gp_disp") == 0))
17606 change = 1;
17607 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17608 && (0
17609#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17610 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17611 && (symbol_get_obj (sym)->ecoff_extern_size
17612 <= g_switch_value))
252b5132
RH
17613#endif
17614 /* We must defer this decision until after the whole
17615 file has been read, since there might be a .extern
17616 after the first use of this symbol. */
17617 || (before_relaxing
17618#ifndef NO_ECOFF_DEBUGGING
49309057 17619 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17620#endif
17621 && S_GET_VALUE (sym) == 0)
17622 || (S_GET_VALUE (sym) != 0
17623 && S_GET_VALUE (sym) <= g_switch_value)))
17624 change = 0;
17625 else
17626 {
17627 const char *segname;
17628
17629 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17630 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17631 && strcmp (segname, ".lit4") != 0);
17632 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
17633 && strcmp (segname, ".sbss") != 0
17634 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
17635 && strncmp (segname, ".sbss.", 6) != 0
17636 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 17637 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
17638 }
17639 return change;
17640 }
17641 else
c9914766 17642 /* We are not optimizing for the $gp register. */
252b5132
RH
17643 return 1;
17644}
17645
5919d012
RS
17646
17647/* Return true if the given symbol should be considered local for SVR4 PIC. */
17648
17649static bfd_boolean
9e009953 17650pic_need_relax (symbolS *sym)
5919d012
RS
17651{
17652 asection *symsec;
5919d012
RS
17653
17654 /* Handle the case of a symbol equated to another symbol. */
17655 while (symbol_equated_reloc_p (sym))
17656 {
17657 symbolS *n;
17658
5f0fe04b 17659 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17660 n = symbol_get_value_expression (sym)->X_add_symbol;
17661 if (n == sym)
17662 break;
17663 sym = n;
17664 }
17665
df1f3cda
DD
17666 if (symbol_section_p (sym))
17667 return TRUE;
17668
5919d012
RS
17669 symsec = S_GET_SEGMENT (sym);
17670
5919d012 17671 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17672 return (!bfd_is_und_section (symsec)
17673 && !bfd_is_abs_section (symsec)
5f0fe04b 17674 && !bfd_is_com_section (symsec)
5919d012 17675 /* A global or weak symbol is treated as external. */
f3ded42a 17676 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012 17677}
14f72d45
MR
17678\f
17679/* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17680 convert a section-relative value VAL to the equivalent PC-relative
17681 value. */
17682
17683static offsetT
17684mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17685 offsetT val, long stretch)
17686{
17687 fragS *sym_frag;
17688 addressT addr;
17689
17690 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17691
17692 sym_frag = symbol_get_frag (fragp->fr_symbol);
17693
17694 /* If the relax_marker of the symbol fragment differs from the
17695 relax_marker of this fragment, we have not yet adjusted the
17696 symbol fragment fr_address. We want to add in STRETCH in
17697 order to get a better estimate of the address. This
17698 particularly matters because of the shift bits. */
17699 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17700 {
17701 fragS *f;
17702
17703 /* Adjust stretch for any alignment frag. Note that if have
17704 been expanding the earlier code, the symbol may be
17705 defined in what appears to be an earlier frag. FIXME:
17706 This doesn't handle the fr_subtype field, which specifies
17707 a maximum number of bytes to skip when doing an
17708 alignment. */
17709 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17710 {
17711 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17712 {
17713 if (stretch < 0)
17714 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17715 else
17716 stretch &= ~((1 << (int) f->fr_offset) - 1);
17717 if (stretch == 0)
17718 break;
17719 }
17720 }
17721 if (f != NULL)
17722 val += stretch;
17723 }
17724
17725 addr = fragp->fr_address + fragp->fr_fix;
17726
17727 /* The base address rules are complicated. The base address of
17728 a branch is the following instruction. The base address of a
17729 PC relative load or add is the instruction itself, but if it
17730 is in a delay slot (in which case it can not be extended) use
17731 the address of the instruction whose delay slot it is in. */
17732 if (pcrel_op->include_isa_bit)
17733 {
17734 addr += 2;
17735
17736 /* If we are currently assuming that this frag should be
17737 extended, then the current address is two bytes higher. */
17738 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17739 addr += 2;
17740
17741 /* Ignore the low bit in the target, since it will be set
17742 for a text label. */
17743 val &= -2;
17744 }
17745 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17746 addr -= 4;
17747 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17748 addr -= 2;
5919d012 17749
14f72d45
MR
17750 val -= addr & -(1 << pcrel_op->align_log2);
17751
17752 return val;
17753}
5919d012 17754
252b5132
RH
17755/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17756 extended opcode. SEC is the section the frag is in. */
17757
17758static int
17a2f251 17759mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132 17760{
3ccad066 17761 const struct mips_int_operand *operand;
252b5132 17762 offsetT val;
252b5132 17763 segT symsec;
14f72d45 17764 int type;
252b5132
RH
17765
17766 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17767 return 0;
17768 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17769 return 1;
17770
88a7ef16 17771 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17772 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17773 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
17774 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17775 || (operand->root.type == OP_PCREL
17776 ? sec != symsec
17777 : !bfd_is_abs_section (symsec)))
17778 return 1;
252b5132 17779
88a7ef16 17780 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17781
3ccad066 17782 if (operand->root.type == OP_PCREL)
252b5132 17783 {
3ccad066 17784 const struct mips_pcrel_operand *pcrel_op;
3ccad066 17785 offsetT maxtiny;
252b5132 17786
1425c41d 17787 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
88a7ef16 17788 return 1;
252b5132 17789
88a7ef16 17790 pcrel_op = (const struct mips_pcrel_operand *) operand;
14f72d45 17791 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
252b5132
RH
17792
17793 /* If any of the shifted bits are set, we must use an extended
17794 opcode. If the address depends on the size of this
17795 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17796 use an extended opcode. */
17797 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17798 {
17799 fragp->fr_subtype =
1425c41d 17800 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17801 return 1;
17802 }
17803
17804 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17805 is precisely the next value above maxtiny, then there is a
17806 chance of an infinite loop as in the following code:
252b5132
RH
17807 la $4,foo
17808 .skip 1020
17809 .align 2
17810 foo:
17811 In this case when the la is extended, foo is 0x3fc bytes
17812 away, so the la can be shrunk, but then foo is 0x400 away, so
17813 the la must be extended. To avoid this loop, we mark the
17814 frag as extended if it was small, and is about to become
3ccad066
RS
17815 extended with the next value above maxtiny. */
17816 maxtiny = mips_int_operand_max (operand);
17817 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17818 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17819 {
17820 fragp->fr_subtype =
1425c41d 17821 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17822 return 1;
17823 }
17824 }
252b5132 17825
3ccad066 17826 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17827}
17828
8507b6e7
MR
17829/* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17830 macro expansion. SEC is the section the frag is in. We only
17831 support PC-relative instructions (LA, DLA, LW, LD) here, in
17832 non-PIC code using 32-bit addressing. */
17833
17834static int
17835mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17836{
17837 const struct mips_pcrel_operand *pcrel_op;
17838 const struct mips_int_operand *operand;
17839 offsetT val;
17840 segT symsec;
17841 int type;
17842
17843 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17844
17845 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17846 return 0;
17847 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17848 return 0;
17849
17850 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17851 switch (type)
17852 {
17853 case 'A':
17854 case 'B':
17855 case 'E':
17856 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17857 if (bfd_is_abs_section (symsec))
17858 return 1;
17859 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17860 return 0;
17861 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17862 return 1;
17863
17864 operand = mips16_immed_operand (type, TRUE);
17865 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17866 pcrel_op = (const struct mips_pcrel_operand *) operand;
17867 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17868
17869 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17870
17871 default:
17872 return 0;
17873 }
17874}
17875
4a6a3df4
AO
17876/* Compute the length of a branch sequence, and adjust the
17877 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17878 worst-case length is computed, with UPDATE being used to indicate
17879 whether an unconditional (-1), branch-likely (+1) or regular (0)
17880 branch is to be computed. */
17881static int
17a2f251 17882relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17883{
b34976b6 17884 bfd_boolean toofar;
4a6a3df4
AO
17885 int length;
17886
17887 if (fragp
17888 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17889 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17890 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17891 {
17892 addressT addr;
17893 offsetT val;
17894
17895 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17896
17897 addr = fragp->fr_address + fragp->fr_fix + 4;
17898
17899 val -= addr;
17900
17901 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17902 }
4a6a3df4 17903 else
c1f61bd2
MR
17904 /* If the symbol is not defined or it's in a different segment,
17905 we emit the long sequence. */
b34976b6 17906 toofar = TRUE;
4a6a3df4
AO
17907
17908 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17909 fragp->fr_subtype
66b3e8da 17910 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
ce8ad872 17911 RELAX_BRANCH_PIC (fragp->fr_subtype),
66b3e8da 17912 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17913 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17914 RELAX_BRANCH_LINK (fragp->fr_subtype),
17915 toofar);
17916
17917 length = 4;
17918 if (toofar)
17919 {
17920 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17921 length += 8;
17922
ce8ad872 17923 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
17924 {
17925 /* Additional space for PIC loading of target address. */
17926 length += 8;
17927 if (mips_opts.isa == ISA_MIPS1)
17928 /* Additional space for $at-stabilizing nop. */
17929 length += 4;
17930 }
17931
17932 /* If branch is conditional. */
17933 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17934 length += 8;
17935 }
b34976b6 17936
4a6a3df4
AO
17937 return length;
17938}
17939
7bd374a4
MR
17940/* Get a FRAG's branch instruction delay slot size, either from the
17941 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17942 or SHORT_INSN_SIZE otherwise. */
17943
17944static int
17945frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17946{
17947 char *buf = fragp->fr_literal + fragp->fr_fix;
17948
17949 if (al)
17950 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17951 else
17952 return short_insn_size;
17953}
17954
df58fc94
RS
17955/* Compute the length of a branch sequence, and adjust the
17956 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17957 worst-case length is computed, with UPDATE being used to indicate
17958 whether an unconditional (-1), or regular (0) branch is to be
17959 computed. */
17960
17961static int
17962relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17963{
7bd374a4
MR
17964 bfd_boolean insn32 = TRUE;
17965 bfd_boolean nods = TRUE;
ce8ad872 17966 bfd_boolean pic = TRUE;
7bd374a4
MR
17967 bfd_boolean al = TRUE;
17968 int short_insn_size;
df58fc94
RS
17969 bfd_boolean toofar;
17970 int length;
17971
7bd374a4
MR
17972 if (fragp)
17973 {
17974 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17975 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 17976 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
7bd374a4
MR
17977 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17978 }
17979 short_insn_size = insn32 ? 4 : 2;
17980
df58fc94
RS
17981 if (fragp
17982 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17983 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17984 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17985 {
17986 addressT addr;
17987 offsetT val;
17988
17989 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17990 /* Ignore the low bit in the target, since it will be set
17991 for a text label. */
17992 if ((val & 1) != 0)
17993 --val;
17994
17995 addr = fragp->fr_address + fragp->fr_fix + 4;
17996
17997 val -= addr;
17998
17999 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
18000 }
df58fc94 18001 else
c1f61bd2
MR
18002 /* If the symbol is not defined or it's in a different segment,
18003 we emit the long sequence. */
df58fc94
RS
18004 toofar = TRUE;
18005
18006 if (fragp && update
18007 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18008 fragp->fr_subtype = (toofar
18009 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
18010 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
18011
18012 length = 4;
18013 if (toofar)
18014 {
18015 bfd_boolean compact_known = fragp != NULL;
18016 bfd_boolean compact = FALSE;
18017 bfd_boolean uncond;
18018
df58fc94 18019 if (fragp)
8484fb75
MR
18020 {
18021 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18022 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 18023 }
df58fc94
RS
18024 else
18025 uncond = update < 0;
18026
18027 /* If label is out of range, we turn branch <br>:
18028
18029 <br> label # 4 bytes
18030 0:
18031
18032 into:
18033
18034 j label # 4 bytes
8484fb75
MR
18035 nop # 2/4 bytes if
18036 # compact && (!PIC || insn32)
df58fc94
RS
18037 0:
18038 */
ce8ad872 18039 if ((!pic || insn32) && (!compact_known || compact))
8484fb75 18040 length += short_insn_size;
df58fc94
RS
18041
18042 /* If assembling PIC code, we further turn:
18043
18044 j label # 4 bytes
18045
18046 into:
18047
18048 lw/ld at, %got(label)(gp) # 4 bytes
18049 d/addiu at, %lo(label) # 4 bytes
8484fb75 18050 jr/c at # 2/4 bytes
df58fc94 18051 */
ce8ad872 18052 if (pic)
8484fb75 18053 length += 4 + short_insn_size;
df58fc94 18054
7bd374a4
MR
18055 /* Add an extra nop if the jump has no compact form and we need
18056 to fill the delay slot. */
ce8ad872 18057 if ((!pic || al) && nods)
7bd374a4
MR
18058 length += (fragp
18059 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
18060 : short_insn_size);
18061
df58fc94
RS
18062 /* If branch <br> is conditional, we prepend negated branch <brneg>:
18063
18064 <brneg> 0f # 4 bytes
8484fb75 18065 nop # 2/4 bytes if !compact
df58fc94
RS
18066 */
18067 if (!uncond)
8484fb75 18068 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 18069 }
7bd374a4
MR
18070 else if (nods)
18071 {
18072 /* Add an extra nop to fill the delay slot. */
18073 gas_assert (fragp);
18074 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
18075 }
df58fc94
RS
18076
18077 return length;
18078}
18079
18080/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
18081 bit accordingly. */
18082
18083static int
18084relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
18085{
18086 bfd_boolean toofar;
18087
df58fc94
RS
18088 if (fragp
18089 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 18090 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
18091 && sec == S_GET_SEGMENT (fragp->fr_symbol))
18092 {
18093 addressT addr;
18094 offsetT val;
18095 int type;
18096
18097 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
18098 /* Ignore the low bit in the target, since it will be set
18099 for a text label. */
18100 if ((val & 1) != 0)
18101 --val;
18102
18103 /* Assume this is a 2-byte branch. */
18104 addr = fragp->fr_address + fragp->fr_fix + 2;
18105
18106 /* We try to avoid the infinite loop by not adding 2 more bytes for
18107 long branches. */
18108
18109 val -= addr;
18110
18111 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18112 if (type == 'D')
18113 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
18114 else if (type == 'E')
18115 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
18116 else
18117 abort ();
18118 }
18119 else
18120 /* If the symbol is not defined or it's in a different segment,
18121 we emit a normal 32-bit branch. */
18122 toofar = TRUE;
18123
18124 if (fragp && update
18125 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18126 fragp->fr_subtype
18127 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
18128 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
18129
18130 if (toofar)
18131 return 4;
18132
18133 return 2;
18134}
18135
252b5132
RH
18136/* Estimate the size of a frag before relaxing. Unless this is the
18137 mips16, we are not really relaxing here, and the final size is
18138 encoded in the subtype information. For the mips16, we have to
18139 decide whether we are using an extended opcode or not. */
18140
252b5132 18141int
17a2f251 18142md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 18143{
5919d012 18144 int change;
252b5132 18145
4a6a3df4
AO
18146 if (RELAX_BRANCH_P (fragp->fr_subtype))
18147 {
18148
b34976b6
AM
18149 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
18150
4a6a3df4
AO
18151 return fragp->fr_var;
18152 }
18153
252b5132 18154 if (RELAX_MIPS16_P (fragp->fr_subtype))
8507b6e7
MR
18155 {
18156 /* We don't want to modify the EXTENDED bit here; it might get us
18157 into infinite loops. We change it only in mips_relax_frag(). */
18158 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
25499ac7 18159 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
8507b6e7
MR
18160 else
18161 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
18162 }
252b5132 18163
df58fc94
RS
18164 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18165 {
18166 int length = 4;
18167
18168 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18169 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
18170 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18171 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
18172 fragp->fr_var = length;
18173
18174 return length;
18175 }
18176
ce8ad872 18177 if (mips_pic == VXWORKS_PIC)
0a44bf69
RS
18178 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
18179 change = 0;
ce8ad872
MR
18180 else if (RELAX_PIC (fragp->fr_subtype))
18181 change = pic_need_relax (fragp->fr_symbol);
252b5132 18182 else
ce8ad872 18183 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132
RH
18184
18185 if (change)
18186 {
4d7206a2 18187 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 18188 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 18189 }
4d7206a2
RS
18190 else
18191 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
18192}
18193
18194/* This is called to see whether a reloc against a defined symbol
de7e6852 18195 should be converted into a reloc against a section. */
252b5132
RH
18196
18197int
17a2f251 18198mips_fix_adjustable (fixS *fixp)
252b5132 18199{
252b5132
RH
18200 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18201 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18202 return 0;
a161fe53 18203
252b5132
RH
18204 if (fixp->fx_addsy == NULL)
18205 return 1;
a161fe53 18206
2f0c68f2
CM
18207 /* Allow relocs used for EH tables. */
18208 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
18209 return 1;
18210
de7e6852
RS
18211 /* If symbol SYM is in a mergeable section, relocations of the form
18212 SYM + 0 can usually be made section-relative. The mergeable data
18213 is then identified by the section offset rather than by the symbol.
18214
18215 However, if we're generating REL LO16 relocations, the offset is split
33eaf5de 18216 between the LO16 and partnering high part relocation. The linker will
de7e6852
RS
18217 need to recalculate the complete offset in order to correctly identify
18218 the merge data.
18219
33eaf5de 18220 The linker has traditionally not looked for the partnering high part
de7e6852
RS
18221 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
18222 placed anywhere. Rather than break backwards compatibility by changing
18223 this, it seems better not to force the issue, and instead keep the
18224 original symbol. This will work with either linker behavior. */
738e5348 18225 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 18226 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
18227 && HAVE_IN_PLACE_ADDENDS
18228 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
18229 return 0;
18230
97f50151
MR
18231 /* There is no place to store an in-place offset for JALR relocations. */
18232 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
18233 return 0;
18234
18235 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 18236 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
18237 start address of the symbol's containing section.
18238
18239 Also, PC relative relocations for MIPS R6 need to be symbol rather than
18240 section relative to allow linker relaxations to be performed later on. */
97f50151 18241 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 18242 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
18243 return 0;
18244
b314ec0e
RS
18245 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18246 to a floating-point stub. The same is true for non-R_MIPS16_26
18247 relocations against MIPS16 functions; in this case, the stub becomes
18248 the function's canonical address.
18249
18250 Floating-point stubs are stored in unique .mips16.call.* or
18251 .mips16.fn.* sections. If a stub T for function F is in section S,
18252 the first relocation in section S must be against F; this is how the
18253 linker determines the target function. All relocations that might
18254 resolve to T must also be against F. We therefore have the following
18255 restrictions, which are given in an intentionally-redundant way:
18256
18257 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18258 symbols.
18259
18260 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18261 if that stub might be used.
18262
18263 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18264 symbols.
18265
18266 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18267 that stub might be used.
18268
18269 There is a further restriction:
18270
df58fc94 18271 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 18272 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
18273 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18274 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18275 against MIPS16 or microMIPS symbols because we need to keep the
18276 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
18277 detection and JAL or BAL to JALX instruction conversion in the
18278 linker.
b314ec0e 18279
df58fc94 18280 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 18281 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 18282 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
18283
18284 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18285 relocation against some symbol R, no relocation against R may be
18286 reduced. (Note that this deals with (2) as well as (1) because
18287 relocations against global symbols will never be reduced on ELF
18288 targets.) This approach is a little simpler than trying to detect
18289 stub sections, and gives the "all or nothing" per-symbol consistency
18290 that we have for MIPS16 symbols. */
f3ded42a 18291 if (fixp->fx_subsy == NULL
30c09090 18292 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 18293 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
18294 && (jmp_reloc_p (fixp->fx_r_type)
18295 || b_reloc_p (fixp->fx_r_type)))
44d3da23 18296 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 18297 return 0;
a161fe53 18298
252b5132
RH
18299 return 1;
18300}
18301
18302/* Translate internal representation of relocation info to BFD target
18303 format. */
18304
18305arelent **
17a2f251 18306tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
18307{
18308 static arelent *retval[4];
18309 arelent *reloc;
18310 bfd_reloc_code_real_type code;
18311
4b0cff4e 18312 memset (retval, 0, sizeof(retval));
325801bd
TS
18313 reloc = retval[0] = XCNEW (arelent);
18314 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 18315 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
18316 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18317
bad36eac
DJ
18318 if (fixp->fx_pcrel)
18319 {
df58fc94 18320 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 18321 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
18322 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18323 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 18324 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
18325 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18326 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18327 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18328 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18329 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18330 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18331 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
18332
18333 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18334 Relocations want only the symbol offset. */
51f6035b
MR
18335 switch (fixp->fx_r_type)
18336 {
18337 case BFD_RELOC_MIPS_18_PCREL_S3:
18338 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18339 break;
18340 default:
18341 reloc->addend = fixp->fx_addnumber + reloc->address;
18342 break;
18343 }
bad36eac 18344 }
17c6c9d9
MR
18345 else if (HAVE_IN_PLACE_ADDENDS
18346 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18347 && (read_compressed_insn (fixp->fx_frag->fr_literal
18348 + fixp->fx_where, 4) >> 26) == 0x3c)
18349 {
18350 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18351 addend accordingly. */
18352 reloc->addend = fixp->fx_addnumber >> 1;
18353 }
bad36eac
DJ
18354 else
18355 reloc->addend = fixp->fx_addnumber;
252b5132 18356
438c16b8
TS
18357 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18358 entry to be used in the relocation's section offset. */
18359 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
18360 {
18361 reloc->address = reloc->addend;
18362 reloc->addend = 0;
18363 }
18364
252b5132 18365 code = fixp->fx_r_type;
252b5132 18366
bad36eac 18367 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
18368 if (reloc->howto == NULL)
18369 {
18370 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
18371 _("cannot represent %s relocation in this object file"
18372 " format"),
252b5132
RH
18373 bfd_get_reloc_code_name (code));
18374 retval[0] = NULL;
18375 }
18376
18377 return retval;
18378}
18379
18380/* Relax a machine dependent frag. This returns the amount by which
18381 the current size of the frag should change. */
18382
18383int
17a2f251 18384mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 18385{
4a6a3df4
AO
18386 if (RELAX_BRANCH_P (fragp->fr_subtype))
18387 {
18388 offsetT old_var = fragp->fr_var;
b34976b6
AM
18389
18390 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
18391
18392 return fragp->fr_var - old_var;
18393 }
18394
df58fc94
RS
18395 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18396 {
18397 offsetT old_var = fragp->fr_var;
18398 offsetT new_var = 4;
18399
18400 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18401 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18402 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18403 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18404 fragp->fr_var = new_var;
18405
18406 return new_var - old_var;
18407 }
18408
252b5132
RH
18409 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18410 return 0;
18411
8507b6e7 18412 if (!mips16_extended_frag (fragp, sec, stretch))
252b5132 18413 {
8507b6e7
MR
18414 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18415 {
18416 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
25499ac7 18417 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
8507b6e7
MR
18418 }
18419 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18420 {
18421 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18422 return -2;
18423 }
18424 else
18425 return 0;
18426 }
18427 else if (!mips16_macro_frag (fragp, sec, stretch))
18428 {
18429 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18430 {
18431 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18432 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
25499ac7 18433 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
8507b6e7
MR
18434 }
18435 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18436 {
18437 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18438 return 2;
18439 }
18440 else
252b5132 18441 return 0;
252b5132
RH
18442 }
18443 else
18444 {
8507b6e7 18445 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
252b5132 18446 return 0;
8507b6e7
MR
18447 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18448 {
18449 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18450 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
25499ac7 18451 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
8507b6e7
MR
18452 }
18453 else
18454 {
18455 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
25499ac7 18456 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
8507b6e7 18457 }
252b5132
RH
18458 }
18459
18460 return 0;
18461}
18462
18463/* Convert a machine dependent frag. */
18464
18465void
17a2f251 18466md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 18467{
4a6a3df4
AO
18468 if (RELAX_BRANCH_P (fragp->fr_subtype))
18469 {
4d68580a 18470 char *buf;
4a6a3df4 18471 unsigned long insn;
4a6a3df4 18472 fixS *fixp;
b34976b6 18473
4d68580a
RS
18474 buf = fragp->fr_literal + fragp->fr_fix;
18475 insn = read_insn (buf);
b34976b6 18476
4a6a3df4
AO
18477 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18478 {
18479 /* We generate a fixup instead of applying it right now
18480 because, if there are linker relaxations, we're going to
18481 need the relocations. */
bbd27b76
MR
18482 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18483 fragp->fr_symbol, fragp->fr_offset,
18484 TRUE, BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
18485 fixp->fx_file = fragp->fr_file;
18486 fixp->fx_line = fragp->fr_line;
b34976b6 18487
4d68580a 18488 buf = write_insn (buf, insn);
4a6a3df4
AO
18489 }
18490 else
18491 {
18492 int i;
18493
18494 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18495 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
18496
18497 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18498 goto uncond;
18499
18500 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18501 {
18502 /* Reverse the branch. */
18503 switch ((insn >> 28) & 0xf)
18504 {
18505 case 4:
56d438b1
CF
18506 if ((insn & 0xff000000) == 0x47000000
18507 || (insn & 0xff600000) == 0x45600000)
18508 {
18509 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18510 reversed by tweaking bit 23. */
18511 insn ^= 0x00800000;
18512 }
18513 else
18514 {
18515 /* bc[0-3][tf]l? instructions can have the condition
18516 reversed by tweaking a single TF bit, and their
18517 opcodes all have 0x4???????. */
18518 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18519 insn ^= 0x00010000;
18520 }
4a6a3df4
AO
18521 break;
18522
18523 case 0:
18524 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 18525 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 18526 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
18527 insn ^= 0x00010000;
18528 break;
b34976b6 18529
4a6a3df4
AO
18530 case 1:
18531 /* beq 0x10000000 bne 0x14000000
54f4ddb3 18532 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
18533 insn ^= 0x04000000;
18534 break;
18535
18536 default:
18537 abort ();
18538 }
18539 }
18540
18541 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18542 {
18543 /* Clear the and-link bit. */
9c2799c2 18544 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 18545
54f4ddb3
TS
18546 /* bltzal 0x04100000 bgezal 0x04110000
18547 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
18548 insn &= ~0x00100000;
18549 }
18550
18551 /* Branch over the branch (if the branch was likely) or the
18552 full jump (not likely case). Compute the offset from the
18553 current instruction to branch to. */
18554 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18555 i = 16;
18556 else
18557 {
18558 /* How many bytes in instructions we've already emitted? */
4d68580a 18559 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18560 /* How many bytes in instructions from here to the end? */
18561 i = fragp->fr_var - i;
18562 }
18563 /* Convert to instruction count. */
18564 i >>= 2;
18565 /* Branch counts from the next instruction. */
b34976b6 18566 i--;
4a6a3df4
AO
18567 insn |= i;
18568 /* Branch over the jump. */
4d68580a 18569 buf = write_insn (buf, insn);
4a6a3df4 18570
54f4ddb3 18571 /* nop */
4d68580a 18572 buf = write_insn (buf, 0);
4a6a3df4
AO
18573
18574 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18575 {
18576 /* beql $0, $0, 2f */
18577 insn = 0x50000000;
18578 /* Compute the PC offset from the current instruction to
18579 the end of the variable frag. */
18580 /* How many bytes in instructions we've already emitted? */
4d68580a 18581 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18582 /* How many bytes in instructions from here to the end? */
18583 i = fragp->fr_var - i;
18584 /* Convert to instruction count. */
18585 i >>= 2;
18586 /* Don't decrement i, because we want to branch over the
18587 delay slot. */
4a6a3df4 18588 insn |= i;
4a6a3df4 18589
4d68580a
RS
18590 buf = write_insn (buf, insn);
18591 buf = write_insn (buf, 0);
4a6a3df4
AO
18592 }
18593
18594 uncond:
ce8ad872 18595 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
18596 {
18597 /* j or jal. */
18598 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18599 ? 0x0c000000 : 0x08000000);
4a6a3df4 18600
bbd27b76
MR
18601 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18602 fragp->fr_symbol, fragp->fr_offset,
18603 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
18604 fixp->fx_file = fragp->fr_file;
18605 fixp->fx_line = fragp->fr_line;
18606
4d68580a 18607 buf = write_insn (buf, insn);
4a6a3df4
AO
18608 }
18609 else
18610 {
66b3e8da
MR
18611 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18612
4a6a3df4 18613 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
18614 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18615 insn |= at << OP_SH_RT;
4a6a3df4 18616
bbd27b76
MR
18617 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18618 fragp->fr_symbol, fragp->fr_offset,
18619 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18620 fixp->fx_file = fragp->fr_file;
18621 fixp->fx_line = fragp->fr_line;
18622
4d68580a 18623 buf = write_insn (buf, insn);
b34976b6 18624
4a6a3df4 18625 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18626 /* nop */
18627 buf = write_insn (buf, 0);
4a6a3df4
AO
18628
18629 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18630 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18631 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18632
bbd27b76
MR
18633 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18634 fragp->fr_symbol, fragp->fr_offset,
18635 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
18636 fixp->fx_file = fragp->fr_file;
18637 fixp->fx_line = fragp->fr_line;
b34976b6 18638
4d68580a 18639 buf = write_insn (buf, insn);
4a6a3df4
AO
18640
18641 /* j(al)r $at. */
18642 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18643 insn = 0x0000f809;
4a6a3df4 18644 else
66b3e8da
MR
18645 insn = 0x00000008;
18646 insn |= at << OP_SH_RS;
4a6a3df4 18647
4d68580a 18648 buf = write_insn (buf, insn);
4a6a3df4
AO
18649 }
18650 }
18651
4a6a3df4 18652 fragp->fr_fix += fragp->fr_var;
4d68580a 18653 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18654 return;
18655 }
18656
df58fc94
RS
18657 /* Relax microMIPS branches. */
18658 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18659 {
4d68580a 18660 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94 18661 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
8484fb75 18662 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
7bd374a4 18663 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 18664 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
df58fc94
RS
18665 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18666 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 18667 bfd_boolean short_ds;
df58fc94 18668 unsigned long insn;
df58fc94
RS
18669 fixS *fixp;
18670
df58fc94
RS
18671 fragp->fr_fix += fragp->fr_var;
18672
18673 /* Handle 16-bit branches that fit or are forced to fit. */
18674 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18675 {
18676 /* We generate a fixup instead of applying it right now,
18677 because if there is linker relaxation, we're going to
18678 need the relocations. */
834a65aa
MR
18679 switch (type)
18680 {
18681 case 'D':
18682 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18683 fragp->fr_symbol, fragp->fr_offset,
18684 TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18685 break;
18686 case 'E':
18687 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18688 fragp->fr_symbol, fragp->fr_offset,
18689 TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18690 break;
18691 default:
18692 abort ();
18693 }
df58fc94
RS
18694
18695 fixp->fx_file = fragp->fr_file;
18696 fixp->fx_line = fragp->fr_line;
18697
18698 /* These relocations can have an addend that won't fit in
18699 2 octets. */
18700 fixp->fx_no_overflow = 1;
18701
18702 return;
18703 }
18704
2309ddf2 18705 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18706 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18707 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18708 {
18709 /* We generate a fixup instead of applying it right now,
18710 because if there is linker relaxation, we're going to
18711 need the relocations. */
bbd27b76
MR
18712 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18713 fragp->fr_symbol, fragp->fr_offset,
18714 TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18715 fixp->fx_file = fragp->fr_file;
18716 fixp->fx_line = fragp->fr_line;
18717
18718 if (type == 0)
7bd374a4
MR
18719 {
18720 insn = read_compressed_insn (buf, 4);
18721 buf += 4;
18722
18723 if (nods)
18724 {
18725 /* Check the short-delay-slot bit. */
18726 if (!al || (insn & 0x02000000) != 0)
18727 buf = write_compressed_insn (buf, 0x0c00, 2);
18728 else
18729 buf = write_compressed_insn (buf, 0x00000000, 4);
18730 }
18731
18732 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18733 return;
18734 }
df58fc94
RS
18735 }
18736
18737 /* Relax 16-bit branches to 32-bit branches. */
18738 if (type != 0)
18739 {
4d68580a 18740 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18741
18742 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18743 insn = 0x94000000; /* beq */
18744 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18745 {
18746 unsigned long regno;
18747
18748 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18749 regno = micromips_to_32_reg_d_map [regno];
18750 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18751 insn |= regno << MICROMIPSOP_SH_RS;
18752 }
18753 else
18754 abort ();
18755
18756 /* Nothing else to do, just write it out. */
18757 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18758 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18759 {
4d68580a 18760 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18761 if (nods)
18762 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18763 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18764 return;
18765 }
18766 }
18767 else
4d68580a 18768 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18769
18770 /* Relax 32-bit branches to a sequence of instructions. */
18771 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18772 _("relaxed out-of-range branch into a jump"));
df58fc94 18773
2309ddf2 18774 /* Set the short-delay-slot bit. */
7bd374a4 18775 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18776
18777 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18778 {
18779 symbolS *l;
18780
18781 /* Reverse the branch. */
18782 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18783 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18784 insn ^= 0x20000000;
18785 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18786 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18787 || (insn & 0xffe00000) == 0x40800000 /* blez */
18788 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18789 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18790 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18791 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18792 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18793 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18794 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18795 insn ^= 0x00400000;
18796 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18797 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18798 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18799 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18800 insn ^= 0x00200000;
56d438b1
CF
18801 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18802 BNZ.df */
18803 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18804 BNZ.V */
18805 insn ^= 0x00800000;
df58fc94
RS
18806 else
18807 abort ();
18808
18809 if (al)
18810 {
18811 /* Clear the and-link and short-delay-slot bits. */
18812 gas_assert ((insn & 0xfda00000) == 0x40200000);
18813
18814 /* bltzal 0x40200000 bgezal 0x40600000 */
18815 /* bltzals 0x42200000 bgezals 0x42600000 */
18816 insn &= ~0x02200000;
18817 }
18818
18819 /* Make a label at the end for use with the branch. */
18820 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18821 micromips_label_inc ();
f3ded42a 18822 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18823
18824 /* Refer to it. */
4d68580a
RS
18825 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18826 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18827 fixp->fx_file = fragp->fr_file;
18828 fixp->fx_line = fragp->fr_line;
18829
18830 /* Branch over the jump. */
4d68580a 18831 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18832
df58fc94 18833 if (!compact)
8484fb75
MR
18834 {
18835 /* nop */
18836 if (insn32)
18837 buf = write_compressed_insn (buf, 0x00000000, 4);
18838 else
18839 buf = write_compressed_insn (buf, 0x0c00, 2);
18840 }
df58fc94
RS
18841 }
18842
ce8ad872 18843 if (!pic)
df58fc94 18844 {
7bd374a4
MR
18845 unsigned long jal = (short_ds || nods
18846 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18847
df58fc94
RS
18848 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18849 insn = al ? jal : 0xd4000000;
18850
bbd27b76
MR
18851 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18852 fragp->fr_symbol, fragp->fr_offset,
18853 FALSE, BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18854 fixp->fx_file = fragp->fr_file;
18855 fixp->fx_line = fragp->fr_line;
18856
4d68580a 18857 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18858
7bd374a4 18859 if (compact || nods)
8484fb75
MR
18860 {
18861 /* nop */
18862 if (insn32)
18863 buf = write_compressed_insn (buf, 0x00000000, 4);
18864 else
18865 buf = write_compressed_insn (buf, 0x0c00, 2);
18866 }
df58fc94
RS
18867 }
18868 else
18869 {
18870 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18871
18872 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18873 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18874 insn |= at << MICROMIPSOP_SH_RT;
18875
bbd27b76
MR
18876 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18877 fragp->fr_symbol, fragp->fr_offset,
18878 FALSE, BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18879 fixp->fx_file = fragp->fr_file;
18880 fixp->fx_line = fragp->fr_line;
18881
4d68580a 18882 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18883
18884 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18885 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18886 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18887
bbd27b76
MR
18888 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18889 fragp->fr_symbol, fragp->fr_offset,
18890 FALSE, BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18891 fixp->fx_file = fragp->fr_file;
18892 fixp->fx_line = fragp->fr_line;
18893
4d68580a 18894 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18895
8484fb75
MR
18896 if (insn32)
18897 {
18898 /* jr/jalr $at */
18899 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18900 insn |= at << MICROMIPSOP_SH_RS;
18901
18902 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18903
7bd374a4 18904 if (compact || nods)
8484fb75
MR
18905 /* nop */
18906 buf = write_compressed_insn (buf, 0x00000000, 4);
18907 }
18908 else
18909 {
18910 /* jr/jrc/jalr/jalrs $at */
18911 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18912 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18913
18914 insn = al ? jalr : jr;
18915 insn |= at << MICROMIPSOP_SH_MJ;
18916
18917 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18918 if (al && nods)
18919 {
18920 /* nop */
18921 if (short_ds)
18922 buf = write_compressed_insn (buf, 0x0c00, 2);
18923 else
18924 buf = write_compressed_insn (buf, 0x00000000, 4);
18925 }
8484fb75 18926 }
df58fc94
RS
18927 }
18928
4d68580a 18929 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18930 return;
18931 }
18932
252b5132
RH
18933 if (RELAX_MIPS16_P (fragp->fr_subtype))
18934 {
18935 int type;
3ccad066 18936 const struct mips_int_operand *operand;
252b5132 18937 offsetT val;
5c04167a 18938 char *buf;
8507b6e7 18939 unsigned int user_length;
9d862524 18940 bfd_boolean need_reloc;
252b5132 18941 unsigned long insn;
8507b6e7 18942 bfd_boolean mac;
5c04167a 18943 bfd_boolean ext;
88a7ef16 18944 segT symsec;
252b5132
RH
18945
18946 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 18947 operand = mips16_immed_operand (type, FALSE);
252b5132 18948
8507b6e7 18949 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
5c04167a 18950 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 18951 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
18952
18953 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18954 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
8507b6e7 18955 || (operand->root.type == OP_PCREL && !mac
9d862524
MR
18956 ? asec != symsec
18957 : !bfd_is_abs_section (symsec)));
18958
8507b6e7 18959 if (operand->root.type == OP_PCREL && !mac)
252b5132 18960 {
3ccad066 18961 const struct mips_pcrel_operand *pcrel_op;
252b5132 18962
3ccad066 18963 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 18964
14f72d45 18965 if (pcrel_op->include_isa_bit && !need_reloc)
252b5132 18966 {
37b2d327
MR
18967 if (!mips_ignore_branch_isa
18968 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
14f72d45
MR
18969 as_bad_where (fragp->fr_file, fragp->fr_line,
18970 _("branch to a symbol in another ISA mode"));
18971 else if ((fragp->fr_offset & 0x1) != 0)
18972 as_bad_where (fragp->fr_file, fragp->fr_line,
18973 _("branch to misaligned address (0x%lx)"),
18974 (long) val);
252b5132 18975 }
252b5132 18976
14f72d45 18977 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
252b5132
RH
18978
18979 /* Make sure the section winds up with the alignment we have
18980 assumed. */
3ccad066
RS
18981 if (operand->shift > 0)
18982 record_alignment (asec, operand->shift);
252b5132
RH
18983 }
18984
8507b6e7
MR
18985 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18986 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18987 {
18988 if (mac)
18989 as_warn_where (fragp->fr_file, fragp->fr_line,
18990 _("macro instruction expanded into multiple "
18991 "instructions in a branch delay slot"));
18992 else if (ext)
18993 as_warn_where (fragp->fr_file, fragp->fr_line,
18994 _("extended instruction in a branch delay slot"));
18995 }
18996 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
252b5132 18997 as_warn_where (fragp->fr_file, fragp->fr_line,
8507b6e7
MR
18998 _("macro instruction expanded into multiple "
18999 "instructions"));
252b5132 19000
5c04167a 19001 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 19002
4d68580a 19003 insn = read_compressed_insn (buf, 2);
5c04167a
RS
19004 if (ext)
19005 insn |= MIPS16_EXTEND;
252b5132 19006
5c04167a
RS
19007 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
19008 user_length = 4;
19009 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
19010 user_length = 2;
19011 else
19012 user_length = 0;
19013
8507b6e7 19014 if (mac)
c9775dde 19015 {
8507b6e7
MR
19016 unsigned long reg;
19017 unsigned long new;
19018 unsigned long op;
25499ac7 19019 bfd_boolean e2;
8507b6e7
MR
19020
19021 gas_assert (type == 'A' || type == 'B' || type == 'E');
19022 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
c9775dde 19023
25499ac7
MR
19024 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
19025
8507b6e7 19026 if (need_reloc)
c9775dde 19027 {
8507b6e7
MR
19028 fixS *fixp;
19029
19030 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
19031
19032 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19033 fragp->fr_symbol, fragp->fr_offset,
19034 FALSE, BFD_RELOC_MIPS16_HI16_S);
19035 fixp->fx_file = fragp->fr_file;
19036 fixp->fx_line = fragp->fr_line;
19037
25499ac7 19038 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
8507b6e7
MR
19039 fragp->fr_symbol, fragp->fr_offset,
19040 FALSE, BFD_RELOC_MIPS16_LO16);
19041 fixp->fx_file = fragp->fr_file;
19042 fixp->fx_line = fragp->fr_line;
19043
19044 val = 0;
19045 }
19046
19047 switch (insn & 0xf800)
19048 {
19049 case 0x0800: /* ADDIU */
19050 reg = (insn >> 8) & 0x7;
19051 op = 0xf0004800 | (reg << 8);
c9775dde 19052 break;
8507b6e7
MR
19053 case 0xb000: /* LW */
19054 reg = (insn >> 8) & 0x7;
19055 op = 0xf0009800 | (reg << 8) | (reg << 5);
c9775dde 19056 break;
8507b6e7
MR
19057 case 0xf800: /* I64 */
19058 reg = (insn >> 5) & 0x7;
19059 switch (insn & 0x0700)
19060 {
19061 case 0x0400: /* LD */
19062 op = 0xf0003800 | (reg << 8) | (reg << 5);
19063 break;
19064 case 0x0600: /* DADDIU */
19065 op = 0xf000fd00 | (reg << 5);
19066 break;
19067 default:
19068 abort ();
19069 }
19070 break;
19071 default:
19072 abort ();
c9775dde 19073 }
8507b6e7 19074
25499ac7 19075 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
8507b6e7
MR
19076 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
19077 buf = write_compressed_insn (buf, new, 4);
25499ac7
MR
19078 if (!e2)
19079 {
19080 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
19081 buf = write_compressed_insn (buf, new, 4);
19082 }
8507b6e7
MR
19083 op |= mips16_immed_extend (val, 16);
19084 buf = write_compressed_insn (buf, op, 4);
19085
25499ac7 19086 fragp->fr_fix += e2 ? 8 : 12;
8507b6e7
MR
19087 }
19088 else
19089 {
19090 unsigned int length = ext ? 4 : 2;
19091
19092 if (need_reloc)
c9775dde 19093 {
8507b6e7 19094 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
8507b6e7 19095 fixS *fixp;
c9775dde 19096
8507b6e7
MR
19097 switch (type)
19098 {
19099 case 'p':
19100 case 'q':
19101 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
19102 break;
19103 default:
19104 break;
19105 }
19106 if (mac || reloc == BFD_RELOC_NONE)
19107 as_bad_where (fragp->fr_file, fragp->fr_line,
19108 _("unsupported relocation"));
19109 else if (ext)
19110 {
bbd27b76
MR
19111 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19112 fragp->fr_symbol, fragp->fr_offset,
19113 TRUE, reloc);
8507b6e7
MR
19114 fixp->fx_file = fragp->fr_file;
19115 fixp->fx_line = fragp->fr_line;
19116 }
19117 else
19118 as_bad_where (fragp->fr_file, fragp->fr_line,
19119 _("invalid unextended operand value"));
c9775dde 19120 }
eefc3365 19121 else
8507b6e7
MR
19122 mips16_immed (fragp->fr_file, fragp->fr_line, type,
19123 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 19124
8507b6e7
MR
19125 gas_assert (mips16_opcode_length (insn) == length);
19126 write_compressed_insn (buf, insn, length);
19127 fragp->fr_fix += length;
19128 }
252b5132
RH
19129 }
19130 else
19131 {
df58fc94
RS
19132 relax_substateT subtype = fragp->fr_subtype;
19133 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
19134 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
871a6bd2 19135 unsigned int first, second;
4d7206a2 19136 fixS *fixp;
252b5132 19137
df58fc94
RS
19138 first = RELAX_FIRST (subtype);
19139 second = RELAX_SECOND (subtype);
4d7206a2 19140 fixp = (fixS *) fragp->fr_opcode;
252b5132 19141
df58fc94
RS
19142 /* If the delay slot chosen does not match the size of the instruction,
19143 then emit a warning. */
19144 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
19145 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
19146 {
19147 relax_substateT s;
19148 const char *msg;
19149
19150 s = subtype & (RELAX_DELAY_SLOT_16BIT
19151 | RELAX_DELAY_SLOT_SIZE_FIRST
19152 | RELAX_DELAY_SLOT_SIZE_SECOND);
19153 msg = macro_warning (s);
19154 if (msg != NULL)
db9b2be4 19155 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
19156 subtype &= ~s;
19157 }
19158
584892a6 19159 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 19160 if (use_second == second_longer)
584892a6 19161 {
df58fc94
RS
19162 relax_substateT s;
19163 const char *msg;
19164
19165 s = (subtype
19166 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
19167 msg = macro_warning (s);
19168 if (msg != NULL)
db9b2be4 19169 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 19170 subtype &= ~s;
584892a6
RS
19171 }
19172
4d7206a2
RS
19173 /* Go through all the fixups for the first sequence. Disable them
19174 (by marking them as done) if we're going to use the second
19175 sequence instead. */
19176 while (fixp
19177 && fixp->fx_frag == fragp
90bd3c90 19178 && fixp->fx_where + second < fragp->fr_fix)
4d7206a2 19179 {
df58fc94 19180 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
19181 fixp->fx_done = 1;
19182 fixp = fixp->fx_next;
19183 }
252b5132 19184
4d7206a2
RS
19185 /* Go through the fixups for the second sequence. Disable them if
19186 we're going to use the first sequence, otherwise adjust their
19187 addresses to account for the relaxation. */
19188 while (fixp && fixp->fx_frag == fragp)
19189 {
df58fc94 19190 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
19191 fixp->fx_where -= first;
19192 else
19193 fixp->fx_done = 1;
19194 fixp = fixp->fx_next;
19195 }
19196
19197 /* Now modify the frag contents. */
df58fc94 19198 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
19199 {
19200 char *start;
19201
19202 start = fragp->fr_literal + fragp->fr_fix - first - second;
19203 memmove (start, start + first, second);
19204 fragp->fr_fix -= first;
19205 }
19206 else
19207 fragp->fr_fix -= second;
252b5132
RH
19208 }
19209}
19210
252b5132
RH
19211/* This function is called after the relocs have been generated.
19212 We've been storing mips16 text labels as odd. Here we convert them
19213 back to even for the convenience of the debugger. */
19214
19215void
17a2f251 19216mips_frob_file_after_relocs (void)
252b5132
RH
19217{
19218 asymbol **syms;
19219 unsigned int count, i;
19220
252b5132
RH
19221 syms = bfd_get_outsymbols (stdoutput);
19222 count = bfd_get_symcount (stdoutput);
19223 for (i = 0; i < count; i++, syms++)
df58fc94
RS
19224 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
19225 && ((*syms)->value & 1) != 0)
19226 {
19227 (*syms)->value &= ~1;
19228 /* If the symbol has an odd size, it was probably computed
19229 incorrectly, so adjust that as well. */
19230 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
19231 ++elf_symbol (*syms)->internal_elf_sym.st_size;
19232 }
252b5132
RH
19233}
19234
a1facbec
MR
19235/* This function is called whenever a label is defined, including fake
19236 labels instantiated off the dot special symbol. It is used when
19237 handling branch delays; if a branch has a label, we assume we cannot
19238 move it. This also bumps the value of the symbol by 1 in compressed
19239 code. */
252b5132 19240
e1b47bd5 19241static void
a1facbec 19242mips_record_label (symbolS *sym)
252b5132 19243{
a8dbcb85 19244 segment_info_type *si = seg_info (now_seg);
252b5132
RH
19245 struct insn_label_list *l;
19246
19247 if (free_insn_labels == NULL)
325801bd 19248 l = XNEW (struct insn_label_list);
252b5132
RH
19249 else
19250 {
19251 l = free_insn_labels;
19252 free_insn_labels = l->next;
19253 }
19254
19255 l->label = sym;
a8dbcb85
TS
19256 l->next = si->label_list;
19257 si->label_list = l;
a1facbec 19258}
07a53e5c 19259
a1facbec
MR
19260/* This function is called as tc_frob_label() whenever a label is defined
19261 and adds a DWARF-2 record we only want for true labels. */
19262
19263void
19264mips_define_label (symbolS *sym)
19265{
19266 mips_record_label (sym);
07a53e5c 19267 dwarf2_emit_label (sym);
252b5132 19268}
e1b47bd5
RS
19269
19270/* This function is called by tc_new_dot_label whenever a new dot symbol
19271 is defined. */
19272
19273void
19274mips_add_dot_label (symbolS *sym)
19275{
19276 mips_record_label (sym);
19277 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19278 mips_compressed_mark_label (sym);
19279}
252b5132 19280\f
351cdf24
MF
19281/* Converting ASE flags from internal to .MIPS.abiflags values. */
19282static unsigned int
19283mips_convert_ase_flags (int ase)
19284{
19285 unsigned int ext_ases = 0;
19286
19287 if (ase & ASE_DSP)
19288 ext_ases |= AFL_ASE_DSP;
19289 if (ase & ASE_DSPR2)
19290 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
19291 if (ase & ASE_DSPR3)
19292 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
19293 if (ase & ASE_EVA)
19294 ext_ases |= AFL_ASE_EVA;
19295 if (ase & ASE_MCU)
19296 ext_ases |= AFL_ASE_MCU;
19297 if (ase & ASE_MDMX)
19298 ext_ases |= AFL_ASE_MDMX;
19299 if (ase & ASE_MIPS3D)
19300 ext_ases |= AFL_ASE_MIPS3D;
19301 if (ase & ASE_MT)
19302 ext_ases |= AFL_ASE_MT;
19303 if (ase & ASE_SMARTMIPS)
19304 ext_ases |= AFL_ASE_SMARTMIPS;
19305 if (ase & ASE_VIRT)
19306 ext_ases |= AFL_ASE_VIRT;
19307 if (ase & ASE_MSA)
19308 ext_ases |= AFL_ASE_MSA;
19309 if (ase & ASE_XPA)
19310 ext_ases |= AFL_ASE_XPA;
25499ac7
MR
19311 if (ase & ASE_MIPS16E2)
19312 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
730c3174
SE
19313 if (ase & ASE_CRC)
19314 ext_ases |= AFL_ASE_CRC;
6f20c942
FS
19315 if (ase & ASE_GINV)
19316 ext_ases |= AFL_ASE_GINV;
8095d2f7
CX
19317 if (ase & ASE_LOONGSON_MMI)
19318 ext_ases |= AFL_ASE_LOONGSON_MMI;
716c08de
CX
19319 if (ase & ASE_LOONGSON_CAM)
19320 ext_ases |= AFL_ASE_LOONGSON_CAM;
bdc6c06e
CX
19321 if (ase & ASE_LOONGSON_EXT)
19322 ext_ases |= AFL_ASE_LOONGSON_EXT;
a693765e
CX
19323 if (ase & ASE_LOONGSON_EXT2)
19324 ext_ases |= AFL_ASE_LOONGSON_EXT2;
351cdf24
MF
19325
19326 return ext_ases;
19327}
252b5132
RH
19328/* Some special processing for a MIPS ELF file. */
19329
19330void
17a2f251 19331mips_elf_final_processing (void)
252b5132 19332{
351cdf24
MF
19333 int fpabi;
19334 Elf_Internal_ABIFlags_v0 flags;
19335
19336 flags.version = 0;
19337 flags.isa_rev = 0;
19338 switch (file_mips_opts.isa)
19339 {
19340 case INSN_ISA1:
19341 flags.isa_level = 1;
19342 break;
19343 case INSN_ISA2:
19344 flags.isa_level = 2;
19345 break;
19346 case INSN_ISA3:
19347 flags.isa_level = 3;
19348 break;
19349 case INSN_ISA4:
19350 flags.isa_level = 4;
19351 break;
19352 case INSN_ISA5:
19353 flags.isa_level = 5;
19354 break;
19355 case INSN_ISA32:
19356 flags.isa_level = 32;
19357 flags.isa_rev = 1;
19358 break;
19359 case INSN_ISA32R2:
19360 flags.isa_level = 32;
19361 flags.isa_rev = 2;
19362 break;
19363 case INSN_ISA32R3:
19364 flags.isa_level = 32;
19365 flags.isa_rev = 3;
19366 break;
19367 case INSN_ISA32R5:
19368 flags.isa_level = 32;
19369 flags.isa_rev = 5;
19370 break;
09c14161
MF
19371 case INSN_ISA32R6:
19372 flags.isa_level = 32;
19373 flags.isa_rev = 6;
19374 break;
351cdf24
MF
19375 case INSN_ISA64:
19376 flags.isa_level = 64;
19377 flags.isa_rev = 1;
19378 break;
19379 case INSN_ISA64R2:
19380 flags.isa_level = 64;
19381 flags.isa_rev = 2;
19382 break;
19383 case INSN_ISA64R3:
19384 flags.isa_level = 64;
19385 flags.isa_rev = 3;
19386 break;
19387 case INSN_ISA64R5:
19388 flags.isa_level = 64;
19389 flags.isa_rev = 5;
19390 break;
09c14161
MF
19391 case INSN_ISA64R6:
19392 flags.isa_level = 64;
19393 flags.isa_rev = 6;
19394 break;
351cdf24
MF
19395 }
19396
19397 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19398 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19399 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19400 : (file_mips_opts.fp == 64) ? AFL_REG_64
19401 : AFL_REG_32;
19402 flags.cpr2_size = AFL_REG_NONE;
19403 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19404 Tag_GNU_MIPS_ABI_FP);
19405 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19406 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19407 if (file_ase_mips16)
19408 flags.ases |= AFL_ASE_MIPS16;
19409 if (file_ase_micromips)
19410 flags.ases |= AFL_ASE_MICROMIPS;
19411 flags.flags1 = 0;
19412 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19413 || file_mips_opts.fp == 64)
19414 && file_mips_opts.oddspreg)
19415 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19416 flags.flags2 = 0;
19417
19418 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19419 ((Elf_External_ABIFlags_v0 *)
19420 mips_flags_frag));
19421
252b5132 19422 /* Write out the register information. */
316f5878 19423 if (mips_abi != N64_ABI)
252b5132
RH
19424 {
19425 Elf32_RegInfo s;
19426
19427 s.ri_gprmask = mips_gprmask;
19428 s.ri_cprmask[0] = mips_cprmask[0];
19429 s.ri_cprmask[1] = mips_cprmask[1];
19430 s.ri_cprmask[2] = mips_cprmask[2];
19431 s.ri_cprmask[3] = mips_cprmask[3];
19432 /* The gp_value field is set by the MIPS ELF backend. */
19433
19434 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19435 ((Elf32_External_RegInfo *)
19436 mips_regmask_frag));
19437 }
19438 else
19439 {
19440 Elf64_Internal_RegInfo s;
19441
19442 s.ri_gprmask = mips_gprmask;
19443 s.ri_pad = 0;
19444 s.ri_cprmask[0] = mips_cprmask[0];
19445 s.ri_cprmask[1] = mips_cprmask[1];
19446 s.ri_cprmask[2] = mips_cprmask[2];
19447 s.ri_cprmask[3] = mips_cprmask[3];
19448 /* The gp_value field is set by the MIPS ELF backend. */
19449
19450 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19451 ((Elf64_External_RegInfo *)
19452 mips_regmask_frag));
19453 }
19454
19455 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19456 sort of BFD interface for this. */
19457 if (mips_any_noreorder)
19458 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19459 if (mips_pic != NO_PIC)
143d77c5 19460 {
8b828383 19461 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
19462 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19463 }
19464 if (mips_abicalls)
19465 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 19466
b015e599
AP
19467 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19468 defined at present; this might need to change in future. */
a4672219
TS
19469 if (file_ase_mips16)
19470 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
19471 if (file_ase_micromips)
19472 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 19473 if (file_mips_opts.ase & ASE_MDMX)
deec1734 19474 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 19475
bdaaa2e1 19476 /* Set the MIPS ELF ABI flags. */
316f5878 19477 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 19478 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 19479 else if (mips_abi == O64_ABI)
252b5132 19480 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 19481 else if (mips_abi == EABI_ABI)
252b5132 19482 {
bad1aba3 19483 if (file_mips_opts.gp == 64)
252b5132
RH
19484 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19485 else
19486 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19487 }
be00bddd 19488
defc8e2b 19489 /* Nothing to do for N32_ABI or N64_ABI. */
252b5132
RH
19490
19491 if (mips_32bitmode)
19492 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 19493
7361da2c 19494 if (mips_nan2008 == 1)
ba92f887
MR
19495 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19496
ad3fea08 19497 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
19498 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19499 Tag_GNU_MIPS_ABI_FP);
19500 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 19501 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 19502}
252b5132 19503\f
beae10d5 19504typedef struct proc {
9b2f1d35
EC
19505 symbolS *func_sym;
19506 symbolS *func_end_sym;
beae10d5
KH
19507 unsigned long reg_mask;
19508 unsigned long reg_offset;
19509 unsigned long fpreg_mask;
19510 unsigned long fpreg_offset;
19511 unsigned long frame_offset;
19512 unsigned long frame_reg;
19513 unsigned long pc_reg;
19514} procS;
252b5132
RH
19515
19516static procS cur_proc;
19517static procS *cur_proc_ptr;
19518static int numprocs;
19519
df58fc94
RS
19520/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19521 as "2", and a normal nop as "0". */
19522
19523#define NOP_OPCODE_MIPS 0
19524#define NOP_OPCODE_MIPS16 1
19525#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
19526
19527char
19528mips_nop_opcode (void)
19529{
df58fc94
RS
19530 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19531 return NOP_OPCODE_MICROMIPS;
19532 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19533 return NOP_OPCODE_MIPS16;
19534 else
19535 return NOP_OPCODE_MIPS;
742a56fe
RS
19536}
19537
df58fc94
RS
19538/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19539 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 19540
0a9ef439 19541void
17a2f251 19542mips_handle_align (fragS *fragp)
a19d8eb0 19543{
df58fc94 19544 char nop_opcode;
742a56fe 19545 char *p;
c67a084a
NC
19546 int bytes, size, excess;
19547 valueT opcode;
742a56fe 19548
0a9ef439
RH
19549 if (fragp->fr_type != rs_align_code)
19550 return;
19551
742a56fe 19552 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
19553 nop_opcode = *p;
19554 switch (nop_opcode)
a19d8eb0 19555 {
df58fc94
RS
19556 case NOP_OPCODE_MICROMIPS:
19557 opcode = micromips_nop32_insn.insn_opcode;
19558 size = 4;
19559 break;
19560 case NOP_OPCODE_MIPS16:
c67a084a
NC
19561 opcode = mips16_nop_insn.insn_opcode;
19562 size = 2;
df58fc94
RS
19563 break;
19564 case NOP_OPCODE_MIPS:
19565 default:
c67a084a
NC
19566 opcode = nop_insn.insn_opcode;
19567 size = 4;
df58fc94 19568 break;
c67a084a 19569 }
a19d8eb0 19570
c67a084a
NC
19571 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19572 excess = bytes % size;
df58fc94
RS
19573
19574 /* Handle the leading part if we're not inserting a whole number of
19575 instructions, and make it the end of the fixed part of the frag.
19576 Try to fit in a short microMIPS NOP if applicable and possible,
19577 and use zeroes otherwise. */
19578 gas_assert (excess < 4);
19579 fragp->fr_fix += excess;
19580 switch (excess)
c67a084a 19581 {
df58fc94
RS
19582 case 3:
19583 *p++ = '\0';
19584 /* Fall through. */
19585 case 2:
833794fc 19586 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 19587 {
4d68580a 19588 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
19589 break;
19590 }
19591 *p++ = '\0';
19592 /* Fall through. */
19593 case 1:
19594 *p++ = '\0';
19595 /* Fall through. */
19596 case 0:
19597 break;
a19d8eb0 19598 }
c67a084a
NC
19599
19600 md_number_to_chars (p, opcode, size);
19601 fragp->fr_var = size;
a19d8eb0
CP
19602}
19603
252b5132 19604static long
17a2f251 19605get_number (void)
252b5132
RH
19606{
19607 int negative = 0;
19608 long val = 0;
19609
19610 if (*input_line_pointer == '-')
19611 {
19612 ++input_line_pointer;
19613 negative = 1;
19614 }
3882b010 19615 if (!ISDIGIT (*input_line_pointer))
956cd1d6 19616 as_bad (_("expected simple number"));
252b5132
RH
19617 if (input_line_pointer[0] == '0')
19618 {
19619 if (input_line_pointer[1] == 'x')
19620 {
19621 input_line_pointer += 2;
3882b010 19622 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
19623 {
19624 val <<= 4;
19625 val |= hex_value (*input_line_pointer++);
19626 }
19627 return negative ? -val : val;
19628 }
19629 else
19630 {
19631 ++input_line_pointer;
3882b010 19632 while (ISDIGIT (*input_line_pointer))
252b5132
RH
19633 {
19634 val <<= 3;
19635 val |= *input_line_pointer++ - '0';
19636 }
19637 return negative ? -val : val;
19638 }
19639 }
3882b010 19640 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
19641 {
19642 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19643 *input_line_pointer, *input_line_pointer);
956cd1d6 19644 as_warn (_("invalid number"));
252b5132
RH
19645 return -1;
19646 }
3882b010 19647 while (ISDIGIT (*input_line_pointer))
252b5132
RH
19648 {
19649 val *= 10;
19650 val += *input_line_pointer++ - '0';
19651 }
19652 return negative ? -val : val;
19653}
19654
19655/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
19656 is an initial number which is the ECOFF file index. In the non-ECOFF
19657 case .file implies DWARF-2. */
19658
19659static void
17a2f251 19660s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 19661{
ecb4347a
DJ
19662 static int first_file_directive = 0;
19663
c5dd6aab
DJ
19664 if (ECOFF_DEBUGGING)
19665 {
19666 get_number ();
19667 s_app_file (0);
19668 }
19669 else
ecb4347a
DJ
19670 {
19671 char *filename;
19672
68d20676 19673 filename = dwarf2_directive_filename ();
ecb4347a
DJ
19674
19675 /* Versions of GCC up to 3.1 start files with a ".file"
19676 directive even for stabs output. Make sure that this
19677 ".file" is handled. Note that you need a version of GCC
19678 after 3.1 in order to support DWARF-2 on MIPS. */
19679 if (filename != NULL && ! first_file_directive)
19680 {
19681 (void) new_logical_line (filename, -1);
c04f5787 19682 s_app_file_string (filename, 0);
ecb4347a
DJ
19683 }
19684 first_file_directive = 1;
19685 }
c5dd6aab
DJ
19686}
19687
19688/* The .loc directive, implying DWARF-2. */
252b5132
RH
19689
19690static void
17a2f251 19691s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 19692{
c5dd6aab
DJ
19693 if (!ECOFF_DEBUGGING)
19694 dwarf2_directive_loc (0);
252b5132
RH
19695}
19696
252b5132
RH
19697/* The .end directive. */
19698
19699static void
17a2f251 19700s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19701{
19702 symbolS *p;
252b5132 19703
7a621144
DJ
19704 /* Following functions need their own .frame and .cprestore directives. */
19705 mips_frame_reg_valid = 0;
19706 mips_cprestore_valid = 0;
19707
252b5132
RH
19708 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19709 {
19710 p = get_symbol ();
19711 demand_empty_rest_of_line ();
19712 }
19713 else
19714 p = NULL;
19715
14949570 19716 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
19717 as_warn (_(".end not in text section"));
19718
19719 if (!cur_proc_ptr)
19720 {
1661c76c 19721 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19722 demand_empty_rest_of_line ();
19723 return;
19724 }
19725
19726 if (p != NULL)
19727 {
9c2799c2 19728 gas_assert (S_GET_NAME (p));
9b2f1d35 19729 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19730 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19731
19732 if (debug_type == DEBUG_STABS)
19733 stabs_generate_asm_endfunc (S_GET_NAME (p),
19734 S_GET_NAME (p));
252b5132
RH
19735 }
19736 else
19737 as_warn (_(".end directive missing or unknown symbol"));
19738
9b2f1d35
EC
19739 /* Create an expression to calculate the size of the function. */
19740 if (p && cur_proc_ptr)
19741 {
19742 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19743 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19744
19745 obj->size = exp;
19746 exp->X_op = O_subtract;
19747 exp->X_add_symbol = symbol_temp_new_now ();
19748 exp->X_op_symbol = p;
19749 exp->X_add_number = 0;
19750
19751 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19752 }
19753
5ff6a06c
MR
19754#ifdef md_flush_pending_output
19755 md_flush_pending_output ();
19756#endif
19757
ecb4347a 19758 /* Generate a .pdr section. */
f3ded42a 19759 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19760 {
19761 segT saved_seg = now_seg;
19762 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19763 expressionS exp;
19764 char *fragp;
252b5132 19765
9c2799c2 19766 gas_assert (pdr_seg);
ecb4347a 19767 subseg_set (pdr_seg, 0);
252b5132 19768
ecb4347a
DJ
19769 /* Write the symbol. */
19770 exp.X_op = O_symbol;
19771 exp.X_add_symbol = p;
19772 exp.X_add_number = 0;
19773 emit_expr (&exp, 4);
252b5132 19774
ecb4347a 19775 fragp = frag_more (7 * 4);
252b5132 19776
17a2f251
TS
19777 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19778 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19779 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19780 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19781 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19782 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19783 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19784
ecb4347a
DJ
19785 subseg_set (saved_seg, saved_subseg);
19786 }
252b5132
RH
19787
19788 cur_proc_ptr = NULL;
19789}
19790
19791/* The .aent and .ent directives. */
19792
19793static void
17a2f251 19794s_mips_ent (int aent)
252b5132 19795{
252b5132 19796 symbolS *symbolP;
252b5132
RH
19797
19798 symbolP = get_symbol ();
19799 if (*input_line_pointer == ',')
f9419b05 19800 ++input_line_pointer;
252b5132 19801 SKIP_WHITESPACE ();
3882b010 19802 if (ISDIGIT (*input_line_pointer)
d9a62219 19803 || *input_line_pointer == '-')
874e8986 19804 get_number ();
252b5132 19805
14949570 19806 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 19807 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19808
19809 if (!aent && cur_proc_ptr)
9a41af64 19810 as_warn (_("missing .end"));
252b5132
RH
19811
19812 if (!aent)
19813 {
7a621144
DJ
19814 /* This function needs its own .frame and .cprestore directives. */
19815 mips_frame_reg_valid = 0;
19816 mips_cprestore_valid = 0;
19817
252b5132
RH
19818 cur_proc_ptr = &cur_proc;
19819 memset (cur_proc_ptr, '\0', sizeof (procS));
19820
9b2f1d35 19821 cur_proc_ptr->func_sym = symbolP;
252b5132 19822
f9419b05 19823 ++numprocs;
ecb4347a
DJ
19824
19825 if (debug_type == DEBUG_STABS)
19826 stabs_generate_asm_func (S_GET_NAME (symbolP),
19827 S_GET_NAME (symbolP));
252b5132
RH
19828 }
19829
7c0fc524
MR
19830 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19831
252b5132
RH
19832 demand_empty_rest_of_line ();
19833}
19834
19835/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19836 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19837 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19838 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19839 symbol table (in the mdebug section). */
19840
19841static void
17a2f251 19842s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19843{
f3ded42a
RS
19844 if (ECOFF_DEBUGGING)
19845 s_ignore (ignore);
19846 else
ecb4347a
DJ
19847 {
19848 long val;
252b5132 19849
ecb4347a
DJ
19850 if (cur_proc_ptr == (procS *) NULL)
19851 {
19852 as_warn (_(".frame outside of .ent"));
19853 demand_empty_rest_of_line ();
19854 return;
19855 }
252b5132 19856
ecb4347a
DJ
19857 cur_proc_ptr->frame_reg = tc_get_register (1);
19858
19859 SKIP_WHITESPACE ();
19860 if (*input_line_pointer++ != ','
19861 || get_absolute_expression_and_terminator (&val) != ',')
19862 {
1661c76c 19863 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19864 --input_line_pointer;
19865 demand_empty_rest_of_line ();
19866 return;
19867 }
252b5132 19868
ecb4347a
DJ
19869 cur_proc_ptr->frame_offset = val;
19870 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19871
252b5132 19872 demand_empty_rest_of_line ();
252b5132 19873 }
252b5132
RH
19874}
19875
bdaaa2e1
KH
19876/* The .fmask and .mask directives. If the mdebug section is present
19877 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19878 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19879 information correctly. We can't use the ecoff routines because they
252b5132
RH
19880 make reference to the ecoff symbol table (in the mdebug section). */
19881
19882static void
17a2f251 19883s_mips_mask (int reg_type)
252b5132 19884{
f3ded42a
RS
19885 if (ECOFF_DEBUGGING)
19886 s_ignore (reg_type);
19887 else
252b5132 19888 {
ecb4347a 19889 long mask, off;
252b5132 19890
ecb4347a
DJ
19891 if (cur_proc_ptr == (procS *) NULL)
19892 {
19893 as_warn (_(".mask/.fmask outside of .ent"));
19894 demand_empty_rest_of_line ();
19895 return;
19896 }
252b5132 19897
ecb4347a
DJ
19898 if (get_absolute_expression_and_terminator (&mask) != ',')
19899 {
1661c76c 19900 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19901 --input_line_pointer;
19902 demand_empty_rest_of_line ();
19903 return;
19904 }
252b5132 19905
ecb4347a
DJ
19906 off = get_absolute_expression ();
19907
19908 if (reg_type == 'F')
19909 {
19910 cur_proc_ptr->fpreg_mask = mask;
19911 cur_proc_ptr->fpreg_offset = off;
19912 }
19913 else
19914 {
19915 cur_proc_ptr->reg_mask = mask;
19916 cur_proc_ptr->reg_offset = off;
19917 }
19918
19919 demand_empty_rest_of_line ();
252b5132 19920 }
252b5132
RH
19921}
19922
316f5878
RS
19923/* A table describing all the processors gas knows about. Names are
19924 matched in the order listed.
e7af610e 19925
316f5878
RS
19926 To ease comparison, please keep this table in the same order as
19927 gcc's mips_cpu_info_table[]. */
e972090a
NC
19928static const struct mips_cpu_info mips_cpu_info_table[] =
19929{
6f2117ba 19930 /* Entries for generic ISAs. */
d16afab6
RS
19931 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19932 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19933 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19934 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19935 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19936 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19937 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
19938 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19939 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 19940 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
19941 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19942 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
19943 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19944 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 19945 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
19946
19947 /* MIPS I */
d16afab6
RS
19948 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19949 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19950 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
19951
19952 /* MIPS II */
d16afab6 19953 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
19954
19955 /* MIPS III */
d16afab6
RS
19956 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19957 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19958 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19959 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19960 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19961 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19962 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19963 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19964 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19965 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19966 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19967 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19968 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
6f2117ba 19969 /* ST Microelectronics Loongson 2E and 2F cores. */
d16afab6 19970 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
8095d2f7 19971 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
19972
19973 /* MIPS IV */
d16afab6
RS
19974 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19975 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19976 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19977 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19978 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19979 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19980 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19981 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19982 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19983 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19984 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19985 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19986 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19987 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19988 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
19989
19990 /* MIPS 32 */
d16afab6
RS
19991 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19992 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19993 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19994 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
19995
19996 /* MIPS 32 Release 2 */
d16afab6
RS
19997 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19998 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19999 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20000 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
20001 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20002 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20003 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
20004 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
20005 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
20006 ISA_MIPS32R2, CPU_MIPS32R2 },
20007 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
20008 ISA_MIPS32R2, CPU_MIPS32R2 },
20009 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20010 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20011 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20012 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 20013 /* Deprecated forms of the above. */
d16afab6
RS
20014 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20015 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 20016 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
20017 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20018 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20019 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20020 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 20021 /* Deprecated forms of the above. */
d16afab6
RS
20022 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20023 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 20024 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
20025 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20026 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20027 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20028 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 20029 /* Deprecated forms of the above. */
d16afab6
RS
20030 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20031 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 20032 /* 34Kn is a 34kc without DSP. */
d16afab6 20033 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 20034 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
20035 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20036 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20037 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20038 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20039 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 20040 /* Deprecated forms of the above. */
d16afab6
RS
20041 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20042 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 20043 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
20044 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20045 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20046 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20047 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
6f2117ba 20048 /* interaptiv is the new name for 1004kf. */
77403ce9 20049 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
38bf472a
MR
20050 { "interaptiv-mr2", 0,
20051 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
20052 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
6f2117ba 20053 /* M5100 family. */
c6e5c03a
RS
20054 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
20055 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 20056 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 20057 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 20058
316f5878 20059 /* MIPS 64 */
d16afab6
RS
20060 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
20061 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
20062 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
20063 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 20064
6f2117ba 20065 /* Broadcom SB-1 CPU core. */
d16afab6 20066 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
6f2117ba 20067 /* Broadcom SB-1A CPU core. */
d16afab6 20068 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 20069
6f2117ba
PH
20070 /* MIPS 64 Release 2. */
20071 /* Loongson CPU core. */
20072 /* -march=loongson3a is an alias of -march=gs464 for compatibility. */
bdc6c06e 20073 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
ac8cb70f
CX
20074 ISA_MIPS64R2, CPU_GS464 },
20075 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
20076 ISA_MIPS64R2, CPU_GS464 },
bd782c07
CX
20077 { "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20078 | ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
9108bc33
CX
20079 { "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20080 | ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
ed163775 20081
6f2117ba 20082 /* Cavium Networks Octeon CPU core. */
d16afab6
RS
20083 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
20084 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
20085 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 20086 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 20087
52b6b6b9 20088 /* RMI Xlr */
d16afab6 20089 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 20090
55a36193
MK
20091 /* Broadcom XLP.
20092 XLP is mostly like XLR, with the prominent exception that it is
20093 MIPS64R2 rather than MIPS64. */
d16afab6 20094 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 20095
6f2117ba 20096 /* MIPS 64 Release 6. */
bdc8beb4
MF
20097 { "i6400", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
20098 { "i6500", 0, ASE_VIRT | ASE_MSA | ASE_CRC | ASE_GINV,
20099 ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 20100 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 20101
6f2117ba 20102 /* End marker. */
d16afab6 20103 { NULL, 0, 0, 0, 0 }
316f5878 20104};
e7af610e 20105
84ea6cf2 20106
316f5878
RS
20107/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
20108 with a final "000" replaced by "k". Ignore case.
e7af610e 20109
316f5878 20110 Note: this function is shared between GCC and GAS. */
c6c98b38 20111
b34976b6 20112static bfd_boolean
17a2f251 20113mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
20114{
20115 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
20116 given++, canonical++;
20117
20118 return ((*given == 0 && *canonical == 0)
20119 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
20120}
20121
20122
20123/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
20124 CPU name. We've traditionally allowed a lot of variation here.
20125
20126 Note: this function is shared between GCC and GAS. */
20127
b34976b6 20128static bfd_boolean
17a2f251 20129mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
20130{
20131 /* First see if the name matches exactly, or with a final "000"
20132 turned into "k". */
20133 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 20134 return TRUE;
316f5878
RS
20135
20136 /* If not, try comparing based on numerical designation alone.
20137 See if GIVEN is an unadorned number, or 'r' followed by a number. */
20138 if (TOLOWER (*given) == 'r')
20139 given++;
20140 if (!ISDIGIT (*given))
b34976b6 20141 return FALSE;
316f5878
RS
20142
20143 /* Skip over some well-known prefixes in the canonical name,
20144 hoping to find a number there too. */
20145 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
20146 canonical += 2;
20147 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
20148 canonical += 2;
20149 else if (TOLOWER (canonical[0]) == 'r')
20150 canonical += 1;
20151
20152 return mips_strict_matching_cpu_name_p (canonical, given);
20153}
20154
20155
20156/* Parse an option that takes the name of a processor as its argument.
20157 OPTION is the name of the option and CPU_STRING is the argument.
20158 Return the corresponding processor enumeration if the CPU_STRING is
20159 recognized, otherwise report an error and return null.
20160
20161 A similar function exists in GCC. */
e7af610e
NC
20162
20163static const struct mips_cpu_info *
17a2f251 20164mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 20165{
316f5878 20166 const struct mips_cpu_info *p;
e7af610e 20167
316f5878
RS
20168 /* 'from-abi' selects the most compatible architecture for the given
20169 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
20170 EABIs, we have to decide whether we're using the 32-bit or 64-bit
20171 version. Look first at the -mgp options, if given, otherwise base
20172 the choice on MIPS_DEFAULT_64BIT.
e7af610e 20173
316f5878
RS
20174 Treat NO_ABI like the EABIs. One reason to do this is that the
20175 plain 'mips' and 'mips64' configs have 'from-abi' as their default
20176 architecture. This code picks MIPS I for 'mips' and MIPS III for
20177 'mips64', just as we did in the days before 'from-abi'. */
20178 if (strcasecmp (cpu_string, "from-abi") == 0)
20179 {
20180 if (ABI_NEEDS_32BIT_REGS (mips_abi))
20181 return mips_cpu_info_from_isa (ISA_MIPS1);
20182
20183 if (ABI_NEEDS_64BIT_REGS (mips_abi))
20184 return mips_cpu_info_from_isa (ISA_MIPS3);
20185
bad1aba3 20186 if (file_mips_opts.gp >= 0)
20187 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 20188 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
20189
20190 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
20191 ? ISA_MIPS3
20192 : ISA_MIPS1);
20193 }
20194
20195 /* 'default' has traditionally been a no-op. Probably not very useful. */
20196 if (strcasecmp (cpu_string, "default") == 0)
20197 return 0;
20198
20199 for (p = mips_cpu_info_table; p->name != 0; p++)
20200 if (mips_matching_cpu_name_p (p->name, cpu_string))
20201 return p;
20202
1661c76c 20203 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 20204 return 0;
e7af610e
NC
20205}
20206
316f5878
RS
20207/* Return the canonical processor information for ISA (a member of the
20208 ISA_MIPS* enumeration). */
20209
e7af610e 20210static const struct mips_cpu_info *
17a2f251 20211mips_cpu_info_from_isa (int isa)
e7af610e
NC
20212{
20213 int i;
20214
20215 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 20216 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 20217 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
20218 return (&mips_cpu_info_table[i]);
20219
e972090a 20220 return NULL;
e7af610e 20221}
fef14a42
TS
20222
20223static const struct mips_cpu_info *
17a2f251 20224mips_cpu_info_from_arch (int arch)
fef14a42
TS
20225{
20226 int i;
20227
20228 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20229 if (arch == mips_cpu_info_table[i].cpu)
20230 return (&mips_cpu_info_table[i]);
20231
20232 return NULL;
20233}
316f5878
RS
20234\f
20235static void
17a2f251 20236show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
20237{
20238 if (*first_p)
20239 {
20240 fprintf (stream, "%24s", "");
20241 *col_p = 24;
20242 }
20243 else
20244 {
20245 fprintf (stream, ", ");
20246 *col_p += 2;
20247 }
e7af610e 20248
316f5878
RS
20249 if (*col_p + strlen (string) > 72)
20250 {
20251 fprintf (stream, "\n%24s", "");
20252 *col_p = 24;
20253 }
20254
20255 fprintf (stream, "%s", string);
20256 *col_p += strlen (string);
20257
20258 *first_p = 0;
20259}
20260
20261void
17a2f251 20262md_show_usage (FILE *stream)
e7af610e 20263{
316f5878
RS
20264 int column, first;
20265 size_t i;
20266
20267 fprintf (stream, _("\
20268MIPS options:\n\
316f5878
RS
20269-EB generate big endian output\n\
20270-EL generate little endian output\n\
20271-g, -g2 do not remove unneeded NOPs or swap branches\n\
20272-G NUM allow referencing objects up to NUM bytes\n\
20273 implicitly with the gp register [default 8]\n"));
20274 fprintf (stream, _("\
20275-mips1 generate MIPS ISA I instructions\n\
20276-mips2 generate MIPS ISA II instructions\n\
20277-mips3 generate MIPS ISA III instructions\n\
20278-mips4 generate MIPS ISA IV instructions\n\
20279-mips5 generate MIPS ISA V instructions\n\
20280-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 20281-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
20282-mips32r3 generate MIPS32 release 3 ISA instructions\n\
20283-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 20284-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 20285-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 20286-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
20287-mips64r3 generate MIPS64 release 3 ISA instructions\n\
20288-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 20289-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
20290-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20291
20292 first = 1;
e7af610e
NC
20293
20294 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
20295 show (stream, mips_cpu_info_table[i].name, &column, &first);
20296 show (stream, "from-abi", &column, &first);
20297 fputc ('\n', stream);
e7af610e 20298
316f5878
RS
20299 fprintf (stream, _("\
20300-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20301-no-mCPU don't generate code specific to CPU.\n\
20302 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20303
20304 first = 1;
20305
20306 show (stream, "3900", &column, &first);
20307 show (stream, "4010", &column, &first);
20308 show (stream, "4100", &column, &first);
20309 show (stream, "4650", &column, &first);
20310 fputc ('\n', stream);
20311
20312 fprintf (stream, _("\
20313-mips16 generate mips16 instructions\n\
20314-no-mips16 do not generate mips16 instructions\n"));
20315 fprintf (stream, _("\
f866b262
MR
20316-mmips16e2 generate MIPS16e2 instructions\n\
20317-mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20318 fprintf (stream, _("\
df58fc94
RS
20319-mmicromips generate microMIPS instructions\n\
20320-mno-micromips do not generate microMIPS instructions\n"));
20321 fprintf (stream, _("\
e16bfa71 20322-msmartmips generate smartmips instructions\n\
3739860c 20323-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 20324 fprintf (stream, _("\
74cd071d
CF
20325-mdsp generate DSP instructions\n\
20326-mno-dsp do not generate DSP instructions\n"));
20327 fprintf (stream, _("\
8b082fb1
TS
20328-mdspr2 generate DSP R2 instructions\n\
20329-mno-dspr2 do not generate DSP R2 instructions\n"));
20330 fprintf (stream, _("\
8f4f9071
MF
20331-mdspr3 generate DSP R3 instructions\n\
20332-mno-dspr3 do not generate DSP R3 instructions\n"));
20333 fprintf (stream, _("\
ef2e4d86
CF
20334-mmt generate MT instructions\n\
20335-mno-mt do not generate MT instructions\n"));
20336 fprintf (stream, _("\
dec0624d
MR
20337-mmcu generate MCU instructions\n\
20338-mno-mcu do not generate MCU instructions\n"));
20339 fprintf (stream, _("\
56d438b1
CF
20340-mmsa generate MSA instructions\n\
20341-mno-msa do not generate MSA instructions\n"));
20342 fprintf (stream, _("\
7d64c587
AB
20343-mxpa generate eXtended Physical Address (XPA) instructions\n\
20344-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20345 fprintf (stream, _("\
b015e599
AP
20346-mvirt generate Virtualization instructions\n\
20347-mno-virt do not generate Virtualization instructions\n"));
20348 fprintf (stream, _("\
730c3174
SE
20349-mcrc generate CRC instructions\n\
20350-mno-crc do not generate CRC instructions\n"));
20351 fprintf (stream, _("\
6f20c942
FS
20352-mginv generate Global INValidate (GINV) instructions\n\
20353-mno-ginv do not generate Global INValidate instructions\n"));
20354 fprintf (stream, _("\
8095d2f7
CX
20355-mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20356-mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20357 fprintf (stream, _("\
716c08de
CX
20358-mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20359-mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20360 fprintf (stream, _("\
bdc6c06e
CX
20361-mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20362-mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20363 fprintf (stream, _("\
a693765e
CX
20364-mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20365-mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20366 fprintf (stream, _("\
833794fc
MR
20367-minsn32 only generate 32-bit microMIPS instructions\n\
20368-mno-insn32 generate all microMIPS instructions\n"));
6f2117ba
PH
20369#if DEFAULT_MIPS_FIX_LOONGSON3_LLSC
20370 fprintf (stream, _("\
20371-mfix-loongson3-llsc work around Loongson3 LL/SC errata, default\n\
20372-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n"));
20373#else
20374 fprintf (stream, _("\
20375-mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20376-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata, default\n"));
20377#endif
833794fc 20378 fprintf (stream, _("\
c67a084a
NC
20379-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20380-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
6f2117ba
PH
20381-mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20382-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n\
d766e8ec 20383-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 20384-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 20385-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 20386-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
27c634e0 20387-mfix-r5900 work around R5900 short loop errata\n\
316f5878
RS
20388-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20389-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 20390-msym32 assume all symbols have 32-bit values\n\
092a534f
MR
20391-O0 do not remove unneeded NOPs, do not swap branches\n\
20392-O, -O1 remove unneeded NOPs, do not swap branches\n\
20393-O2 remove unneeded NOPs and swap branches\n\
316f5878
RS
20394--trap, --no-break trap exception on div by 0 and mult overflow\n\
20395--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
20396 fprintf (stream, _("\
20397-mhard-float allow floating-point instructions\n\
20398-msoft-float do not allow floating-point instructions\n\
20399-msingle-float only allow 32-bit floating-point operations\n\
20400-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 20401--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887 20402--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
8b10b0b3
MR
20403-mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20404-mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
ba92f887
MR
20405-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20406
20407 first = 1;
20408
20409 show (stream, "legacy", &column, &first);
20410 show (stream, "2008", &column, &first);
20411
20412 fputc ('\n', stream);
20413
316f5878
RS
20414 fprintf (stream, _("\
20415-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 20416-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 20417-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 20418-non_shared do not generate code that can operate with DSOs\n\
316f5878 20419-xgot assume a 32 bit GOT\n\
dcd410fe 20420-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 20421-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 20422 position dependent (non shared) code\n\
316f5878
RS
20423-mabi=ABI create ABI conformant object file for:\n"));
20424
20425 first = 1;
20426
20427 show (stream, "32", &column, &first);
20428 show (stream, "o64", &column, &first);
20429 show (stream, "n32", &column, &first);
20430 show (stream, "64", &column, &first);
20431 show (stream, "eabi", &column, &first);
20432
20433 fputc ('\n', stream);
20434
20435 fprintf (stream, _("\
b4f6242e
MR
20436-32 create o32 ABI object file%s\n"),
20437 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20438 fprintf (stream, _("\
20439-n32 create n32 ABI object file%s\n"),
20440 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20441 fprintf (stream, _("\
20442-64 create 64 ABI object file%s\n"),
20443 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
e7af610e 20444}
14e777e0 20445
1575952e 20446#ifdef TE_IRIX
14e777e0 20447enum dwarf2_format
413a266c 20448mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 20449{
369943fe 20450 if (HAVE_64BIT_SYMBOLS)
1575952e 20451 return dwarf2_format_64bit_irix;
14e777e0
KB
20452 else
20453 return dwarf2_format_32bit;
20454}
1575952e 20455#endif
73369e65
EC
20456
20457int
20458mips_dwarf2_addr_size (void)
20459{
6b6b3450 20460 if (HAVE_64BIT_OBJECTS)
73369e65 20461 return 8;
73369e65
EC
20462 else
20463 return 4;
20464}
5862107c
EC
20465
20466/* Standard calling conventions leave the CFA at SP on entry. */
20467void
20468mips_cfi_frame_initial_instructions (void)
20469{
20470 cfi_add_CFA_def_cfa_register (SP);
20471}
20472
707bfff6
TS
20473int
20474tc_mips_regname_to_dw2regnum (char *regname)
20475{
20476 unsigned int regnum = -1;
20477 unsigned int reg;
20478
20479 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20480 regnum = reg;
20481
20482 return regnum;
20483}
263b2574 20484
20485/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20486 Given a symbolic attribute NAME, return the proper integer value.
20487 Returns -1 if the attribute is not known. */
20488
20489int
20490mips_convert_symbolic_attribute (const char *name)
20491{
20492 static const struct
20493 {
20494 const char * name;
20495 const int tag;
20496 }
20497 attribute_table[] =
20498 {
20499#define T(tag) {#tag, tag}
20500 T (Tag_GNU_MIPS_ABI_FP),
20501 T (Tag_GNU_MIPS_ABI_MSA),
20502#undef T
20503 };
20504 unsigned int i;
20505
20506 if (name == NULL)
20507 return -1;
20508
20509 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20510 if (streq (name, attribute_table[i].name))
20511 return attribute_table[i].tag;
20512
20513 return -1;
20514}
fd5c94ab
RS
20515
20516void
20517md_mips_end (void)
20518{
351cdf24
MF
20519 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20520
fd5c94ab
RS
20521 mips_emit_delays ();
20522 if (cur_proc_ptr)
20523 as_warn (_("missing .end at end of assembly"));
919731af 20524
20525 /* Just in case no code was emitted, do the consistency check. */
20526 file_mips_check_options ();
351cdf24
MF
20527
20528 /* Set a floating-point ABI if the user did not. */
20529 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20530 {
20531 /* Perform consistency checks on the floating-point ABI. */
20532 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20533 Tag_GNU_MIPS_ABI_FP);
20534 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20535 check_fpabi (fpabi);
20536 }
20537 else
20538 {
20539 /* Soft-float gets precedence over single-float, the two options should
20540 not be used together so this should not matter. */
20541 if (file_mips_opts.soft_float == 1)
20542 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20543 /* Single-float gets precedence over all double_float cases. */
20544 else if (file_mips_opts.single_float == 1)
20545 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20546 else
20547 {
20548 switch (file_mips_opts.fp)
20549 {
20550 case 32:
20551 if (file_mips_opts.gp == 32)
20552 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20553 break;
20554 case 0:
20555 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20556 break;
20557 case 64:
20558 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20559 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20560 else if (file_mips_opts.gp == 32)
20561 fpabi = Val_GNU_MIPS_ABI_FP_64;
20562 else
20563 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20564 break;
20565 }
20566 }
20567
20568 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20569 Tag_GNU_MIPS_ABI_FP, fpabi);
20570 }
fd5c94ab 20571}
2f0c68f2
CM
20572
20573/* Returns the relocation type required for a particular CFI encoding. */
20574
20575bfd_reloc_code_real_type
20576mips_cfi_reloc_for_encoding (int encoding)
20577{
20578 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20579 return BFD_RELOC_32_PCREL;
20580 else return BFD_RELOC_NONE;
20581}