]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-mips.c
MIPS/opcodes: Do not use CP0 register names for control registers
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
250d07de 2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
5b7c81bd 84int mips_flag_pdr = false;
dcd410fe 85#else
5b7c81bd 86int mips_flag_pdr = true;
dcd410fe
RO
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
25663db4
MR
107#define FCSR 31
108
252b5132
RH
109#define ILLEGAL_REG (32)
110
741fe287
MR
111#define AT mips_opts.at
112
252b5132
RH
113extern int target_big_endian;
114
252b5132 115/* The name of the readonly data section. */
e8044f35 116#define RDATA_SECTION_NAME ".rodata"
252b5132 117
a4e06468
RS
118/* Ways in which an instruction can be "appended" to the output. */
119enum append_method {
120 /* Just add it normally. */
121 APPEND_ADD,
122
123 /* Add it normally and then add a nop. */
124 APPEND_ADD_WITH_NOP,
125
126 /* Turn an instruction with a delay slot into a "compact" version. */
127 APPEND_ADD_COMPACT,
128
129 /* Insert the instruction before the last one. */
130 APPEND_SWAP
131};
132
47e39b9d
RS
133/* Information about an instruction, including its format, operands
134 and fixups. */
135struct mips_cl_insn
136{
137 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
138 const struct mips_opcode *insn_mo;
139
47e39b9d 140 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
141 a copy of INSN_MO->match with the operands filled in. If we have
142 decided to use an extended MIPS16 instruction, this includes the
143 extension. */
47e39b9d
RS
144 unsigned long insn_opcode;
145
6f2117ba
PH
146 /* The name if this is an label. */
147 char label[16];
148
149 /* The target label name if this is an branch. */
150 char target[16];
151
47e39b9d
RS
152 /* The frag that contains the instruction. */
153 struct frag *frag;
154
155 /* The offset into FRAG of the first instruction byte. */
156 long where;
157
158 /* The relocs associated with the instruction, if any. */
159 fixS *fixp[3];
160
a38419a5
RS
161 /* True if this entry cannot be moved from its current position. */
162 unsigned int fixed_p : 1;
47e39b9d 163
708587a4 164 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
165 unsigned int noreorder_p : 1;
166
2fa15973
RS
167 /* True for mips16 instructions that jump to an absolute address. */
168 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
169
170 /* True if this instruction is complete. */
171 unsigned int complete_p : 1;
e407c74b
NC
172
173 /* True if this instruction is cleared from history by unconditional
174 branch. */
175 unsigned int cleared_p : 1;
47e39b9d
RS
176};
177
a325df1d
TS
178/* The ABI to use. */
179enum mips_abi_level
180{
181 NO_ABI = 0,
182 O32_ABI,
183 O64_ABI,
184 N32_ABI,
185 N64_ABI,
186 EABI_ABI
187};
188
189/* MIPS ABI we are using for this output file. */
316f5878 190static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 191
143d77c5 192/* Whether or not we have code that can call pic code. */
5b7c81bd 193int mips_abicalls = false;
143d77c5 194
aa6975fb
ILT
195/* Whether or not we have code which can be put into a shared
196 library. */
5b7c81bd 197static bool mips_in_shared = true;
aa6975fb 198
252b5132
RH
199/* This is the set of options which may be modified by the .set
200 pseudo-op. We use a struct so that .set push and .set pop are more
201 reliable. */
202
e972090a
NC
203struct mips_set_options
204{
252b5132
RH
205 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
206 if it has not been initialized. Changed by `.set mipsN', and the
207 -mipsN command line option, and the default CPU. */
208 int isa;
846ef2d0
RS
209 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
210 <asename>', by command line options, and based on the default
211 architecture. */
212 int ase;
252b5132
RH
213 /* Whether we are assembling for the mips16 processor. 0 if we are
214 not, 1 if we are, and -1 if the value has not been initialized.
215 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
216 -nomips16 command line options, and the default CPU. */
217 int mips16;
df58fc94
RS
218 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
219 1 if we are, and -1 if the value has not been initialized. Changed
220 by `.set micromips' and `.set nomicromips', and the -mmicromips
221 and -mno-micromips command line options, and the default CPU. */
222 int micromips;
252b5132
RH
223 /* Non-zero if we should not reorder instructions. Changed by `.set
224 reorder' and `.set noreorder'. */
225 int noreorder;
741fe287
MR
226 /* Non-zero if we should not permit the register designated "assembler
227 temporary" to be used in instructions. The value is the register
228 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
229 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
230 unsigned int at;
252b5132
RH
231 /* Non-zero if we should warn when a macro instruction expands into
232 more than one machine instruction. Changed by `.set nomacro' and
233 `.set macro'. */
234 int warn_about_macros;
235 /* Non-zero if we should not move instructions. Changed by `.set
236 move', `.set volatile', `.set nomove', and `.set novolatile'. */
237 int nomove;
238 /* Non-zero if we should not optimize branches by moving the target
239 of the branch into the delay slot. Actually, we don't perform
240 this optimization anyhow. Changed by `.set bopt' and `.set
241 nobopt'. */
242 int nobopt;
243 /* Non-zero if we should not autoextend mips16 instructions.
244 Changed by `.set autoextend' and `.set noautoextend'. */
245 int noautoextend;
833794fc
MR
246 /* True if we should only emit 32-bit microMIPS instructions.
247 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
248 and -mno-insn32 command line options. */
5b7c81bd 249 bool insn32;
a325df1d
TS
250 /* Restrict general purpose registers and floating point registers
251 to 32 bit. This is initially determined when -mgp32 or -mfp32
252 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 253 int gp;
0b35dfee 254 int fp;
fef14a42
TS
255 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
256 command line option, and the default CPU. */
257 int arch;
aed1a261 258 /* True if ".set sym32" is in effect. */
5b7c81bd 259 bool sym32;
037b32b9
AN
260 /* True if floating-point operations are not allowed. Changed by .set
261 softfloat or .set hardfloat, by command line options -msoft-float or
262 -mhard-float. The default is false. */
5b7c81bd 263 bool soft_float;
037b32b9
AN
264
265 /* True if only single-precision floating-point operations are allowed.
266 Changed by .set singlefloat or .set doublefloat, command-line options
267 -msingle-float or -mdouble-float. The default is false. */
5b7c81bd 268 bool single_float;
351cdf24
MF
269
270 /* 1 if single-precision operations on odd-numbered registers are
271 allowed. */
272 int oddspreg;
3315614d
MF
273
274 /* The set of ASEs that should be enabled for the user specified
275 architecture. This cannot be inferred from 'arch' for all cores
276 as processors only have a unique 'arch' if they add architecture
277 specific instructions (UDI). */
278 int init_ase;
252b5132
RH
279};
280
919731af 281/* Specifies whether module level options have been checked yet. */
5b7c81bd 282static bool file_mips_opts_checked = false;
919731af 283
7361da2c
AB
284/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
285 value has not been initialized. Changed by `.nan legacy' and
286 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
287 options, and the default CPU. */
288static int mips_nan2008 = -1;
a325df1d 289
0b35dfee 290/* This is the struct we use to hold the module level set of options.
bad1aba3 291 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 292 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 293
0b35dfee 294static struct mips_set_options file_mips_opts =
295{
296 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
297 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
5b7c81bd
AM
298 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ false,
299 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ false,
300 /* soft_float */ false, /* single_float */ false, /* oddspreg */ -1,
3315614d 301 /* init_ase */ 0
0b35dfee 302};
252b5132 303
0b35dfee 304/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 305
e972090a
NC
306static struct mips_set_options mips_opts =
307{
846ef2d0 308 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 309 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
5b7c81bd
AM
310 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ false,
311 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ false,
312 /* soft_float */ false, /* single_float */ false, /* oddspreg */ -1,
3315614d 313 /* init_ase */ 0
e7af610e 314};
252b5132 315
846ef2d0
RS
316/* Which bits of file_ase were explicitly set or cleared by ASE options. */
317static unsigned int file_ase_explicit;
318
252b5132
RH
319/* These variables are filled in with the masks of registers used.
320 The object format code reads them and puts them in the appropriate
321 place. */
322unsigned long mips_gprmask;
323unsigned long mips_cprmask[4];
324
738f4d98 325/* True if any MIPS16 code was produced. */
a4672219
TS
326static int file_ase_mips16;
327
3994f87e
TS
328#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
329 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
330 || mips_opts.isa == ISA_MIPS32R3 \
331 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 332 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
333 || mips_opts.isa == ISA_MIPS64R2 \
334 || mips_opts.isa == ISA_MIPS64R3 \
335 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 336
df58fc94
RS
337/* True if any microMIPS code was produced. */
338static int file_ase_micromips;
339
b12dd2e4
CF
340/* True if we want to create R_MIPS_JALR for jalr $25. */
341#ifdef TE_IRIX
1180b5a4 342#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 343#else
1180b5a4
RS
344/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
345 because there's no place for any addend, the only acceptable
346 expression is a bare symbol. */
347#define MIPS_JALR_HINT_P(EXPR) \
348 (!HAVE_IN_PLACE_ADDENDS \
349 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
350#endif
351
ec68c924 352/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 353static const char *mips_arch_string;
ec68c924
EC
354
355/* The argument of the -mtune= flag. The architecture for which we
356 are optimizing. */
357static int mips_tune = CPU_UNKNOWN;
316f5878 358static const char *mips_tune_string;
ec68c924 359
316f5878 360/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
361static int mips_32bitmode = 0;
362
316f5878
RS
363/* True if the given ABI requires 32-bit registers. */
364#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
365
366/* Likewise 64-bit registers. */
707bfff6 367#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 368 ((ABI) == N32_ABI \
707bfff6 369 || (ABI) == N64_ABI \
316f5878
RS
370 || (ABI) == O64_ABI)
371
7361da2c
AB
372#define ISA_IS_R6(ISA) \
373 ((ISA) == ISA_MIPS32R6 \
374 || (ISA) == ISA_MIPS64R6)
375
ad3fea08 376/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
377#define ISA_HAS_64BIT_REGS(ISA) \
378 ((ISA) == ISA_MIPS3 \
379 || (ISA) == ISA_MIPS4 \
380 || (ISA) == ISA_MIPS5 \
381 || (ISA) == ISA_MIPS64 \
ae52f483
AB
382 || (ISA) == ISA_MIPS64R2 \
383 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
384 || (ISA) == ISA_MIPS64R5 \
385 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 386
ad3fea08
TS
387/* Return true if ISA supports 64 bit wide float registers. */
388#define ISA_HAS_64BIT_FPRS(ISA) \
389 ((ISA) == ISA_MIPS3 \
390 || (ISA) == ISA_MIPS4 \
391 || (ISA) == ISA_MIPS5 \
392 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
393 || (ISA) == ISA_MIPS32R3 \
394 || (ISA) == ISA_MIPS32R5 \
7361da2c 395 || (ISA) == ISA_MIPS32R6 \
ad3fea08 396 || (ISA) == ISA_MIPS64 \
ae52f483
AB
397 || (ISA) == ISA_MIPS64R2 \
398 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
399 || (ISA) == ISA_MIPS64R5 \
400 || (ISA) == ISA_MIPS64R6)
ad3fea08 401
af7ee8bf
CD
402/* Return true if ISA supports 64-bit right rotate (dror et al.)
403 instructions. */
707bfff6 404#define ISA_HAS_DROR(ISA) \
df58fc94 405 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
406 || (ISA) == ISA_MIPS64R3 \
407 || (ISA) == ISA_MIPS64R5 \
7361da2c 408 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
409 || (mips_opts.micromips \
410 && ISA_HAS_64BIT_REGS (ISA)) \
411 )
af7ee8bf
CD
412
413/* Return true if ISA supports 32-bit right rotate (ror et al.)
414 instructions. */
707bfff6
TS
415#define ISA_HAS_ROR(ISA) \
416 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
417 || (ISA) == ISA_MIPS32R3 \
418 || (ISA) == ISA_MIPS32R5 \
7361da2c 419 || (ISA) == ISA_MIPS32R6 \
707bfff6 420 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
846ef2d0 424 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
425 || mips_opts.micromips \
426 )
707bfff6 427
7455baf8 428/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
429#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
430 (((ISA) == ISA_MIPS32 \
431 || (ISA) == ISA_MIPS32R2 \
432 || (ISA) == ISA_MIPS32R3 \
433 || (ISA) == ISA_MIPS32R5 \
7361da2c 434 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
435 || (ISA) == ISA_MIPS64 \
436 || (ISA) == ISA_MIPS64R2 \
437 || (ISA) == ISA_MIPS64R3 \
438 || (ISA) == ISA_MIPS64R5 \
7361da2c 439 || (ISA) == ISA_MIPS64R6 \
351cdf24 440 || (CPU) == CPU_R5900) \
bd782c07 441 && ((CPU) != CPU_GS464 \
9108bc33
CX
442 || (CPU) != CPU_GS464E \
443 || (CPU) != CPU_GS264E))
af7ee8bf 444
ad3fea08
TS
445/* Return true if ISA supports move to/from high part of a 64-bit
446 floating-point register. */
447#define ISA_HAS_MXHC1(ISA) \
448 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
449 || (ISA) == ISA_MIPS32R3 \
450 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
451 || (ISA) == ISA_MIPS32R6 \
452 || (ISA) == ISA_MIPS64R2 \
453 || (ISA) == ISA_MIPS64R3 \
454 || (ISA) == ISA_MIPS64R5 \
455 || (ISA) == ISA_MIPS64R6)
456
457/* Return true if ISA supports legacy NAN. */
458#define ISA_HAS_LEGACY_NAN(ISA) \
459 ((ISA) == ISA_MIPS1 \
460 || (ISA) == ISA_MIPS2 \
461 || (ISA) == ISA_MIPS3 \
462 || (ISA) == ISA_MIPS4 \
463 || (ISA) == ISA_MIPS5 \
464 || (ISA) == ISA_MIPS32 \
465 || (ISA) == ISA_MIPS32R2 \
466 || (ISA) == ISA_MIPS32R3 \
467 || (ISA) == ISA_MIPS32R5 \
468 || (ISA) == ISA_MIPS64 \
ae52f483
AB
469 || (ISA) == ISA_MIPS64R2 \
470 || (ISA) == ISA_MIPS64R3 \
471 || (ISA) == ISA_MIPS64R5)
ad3fea08 472
bad1aba3 473#define GPR_SIZE \
474 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
475 ? 32 \
476 : mips_opts.gp)
ca4e0257 477
bad1aba3 478#define FPR_SIZE \
479 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
480 ? 32 \
481 : mips_opts.fp)
ca4e0257 482
316f5878 483#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 484
316f5878 485#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 486
3b91255e
RS
487/* True if relocations are stored in-place. */
488#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
489
aed1a261
RS
490/* The ABI-derived address size. */
491#define HAVE_64BIT_ADDRESSES \
bad1aba3 492 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 493#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 494
aed1a261
RS
495/* The size of symbolic constants (i.e., expressions of the form
496 "SYMBOL" or "SYMBOL + OFFSET"). */
497#define HAVE_32BIT_SYMBOLS \
498 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
499#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 500
b7c7d6c1
TS
501/* Addresses are loaded in different ways, depending on the address size
502 in use. The n32 ABI Documentation also mandates the use of additions
503 with overflow checking, but existing implementations don't follow it. */
f899b4b8 504#define ADDRESS_ADD_INSN \
b7c7d6c1 505 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
506
507#define ADDRESS_ADDI_INSN \
b7c7d6c1 508 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
509
510#define ADDRESS_LOAD_INSN \
511 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
512
513#define ADDRESS_STORE_INSN \
514 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
515
a4672219 516/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36 517#define CPU_HAS_MIPS16(cpu) \
d34049e8
ML
518 (startswith (TARGET_CPU, "mips16") \
519 || startswith (TARGET_CANONICAL, "mips-lsi-elf"))
a4672219 520
2309ddf2 521/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
522#define CPU_HAS_MICROMIPS(cpu) 0
523
60b63b72
RS
524/* True if CPU has a dror instruction. */
525#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
526
527/* True if CPU has a ror instruction. */
528#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
529
6f2117ba 530/* True if CPU is in the Octeon family. */
2c629856
N
531#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
532 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 533
dd3cbb7e 534/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 535#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 536
0aa27725
RS
537/* True, if CPU has support for ldc1 and sdc1. */
538#define CPU_HAS_LDC1_SDC1(CPU) \
539 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
540
c8978940
CD
541/* True if mflo and mfhi can be immediately followed by instructions
542 which write to the HI and LO registers.
543
544 According to MIPS specifications, MIPS ISAs I, II, and III need
545 (at least) two instructions between the reads of HI/LO and
546 instructions which write them, and later ISAs do not. Contradicting
547 the MIPS specifications, some MIPS IV processor user manuals (e.g.
548 the UM for the NEC Vr5000) document needing the instructions between
549 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
550 MIPS64 and later ISAs to have the interlocks, plus any specific
551 earlier-ISA CPUs for which CPU documentation declares that the
552 instructions are really interlocked. */
553#define hilo_interlocks \
554 (mips_opts.isa == ISA_MIPS32 \
555 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
556 || mips_opts.isa == ISA_MIPS32R3 \
557 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 558 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
559 || mips_opts.isa == ISA_MIPS64 \
560 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
561 || mips_opts.isa == ISA_MIPS64R3 \
562 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 563 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 564 || mips_opts.arch == CPU_R4010 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
c8978940
CD
566 || mips_opts.arch == CPU_R10000 \
567 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
568 || mips_opts.arch == CPU_R14000 \
569 || mips_opts.arch == CPU_R16000 \
c8978940 570 || mips_opts.arch == CPU_RM7000 \
c8978940 571 || mips_opts.arch == CPU_VR5500 \
df58fc94 572 || mips_opts.micromips \
c8978940 573 )
252b5132
RH
574
575/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
576 from the GPRs after they are loaded from memory, and thus does not
577 require nops to be inserted. This applies to instructions marked
67dc82bc 578 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
579 level I and microMIPS mode instructions are always interlocked. */
580#define gpr_interlocks \
581 (mips_opts.isa != ISA_MIPS1 \
582 || mips_opts.arch == CPU_R3900 \
e407c74b 583 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
584 || mips_opts.micromips \
585 )
252b5132 586
81912461
ILT
587/* Whether the processor uses hardware interlocks to avoid delays
588 required by coprocessor instructions, and thus does not require
589 nops to be inserted. This applies to instructions marked
43885403
MF
590 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
591 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 592 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
593 levels I, II, and III and microMIPS mode instructions are always
594 interlocked. */
bdaaa2e1 595/* Itbl support may require additional care here. */
81912461
ILT
596#define cop_interlocks \
597 ((mips_opts.isa != ISA_MIPS1 \
598 && mips_opts.isa != ISA_MIPS2 \
599 && mips_opts.isa != ISA_MIPS3) \
600 || mips_opts.arch == CPU_R4300 \
df58fc94 601 || mips_opts.micromips \
81912461
ILT
602 )
603
604/* Whether the processor uses hardware interlocks to protect reads
605 from coprocessor registers after they are loaded from memory, and
606 thus does not require nops to be inserted. This applies to
607 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
608 requires at MIPS ISA level I and microMIPS mode instructions are
609 always interlocked. */
610#define cop_mem_interlocks \
611 (mips_opts.isa != ISA_MIPS1 \
612 || mips_opts.micromips \
613 )
252b5132 614
6b76fefe
CM
615/* Is this a mfhi or mflo instruction? */
616#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
617 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
618
df58fc94
RS
619/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
620 has been selected. This implies, in particular, that addresses of text
621 labels have their LSB set. */
622#define HAVE_CODE_COMPRESSION \
623 ((mips_opts.mips16 | mips_opts.micromips) != 0)
624
42429eac 625/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 626#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
627#define GPR_SMIN (-GPR_SMAX - 1)
628
252b5132
RH
629/* MIPS PIC level. */
630
a161fe53 631enum mips_pic_level mips_pic;
252b5132 632
c9914766 633/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 634 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 635static int mips_big_got = 0;
252b5132
RH
636
637/* 1 if trap instructions should used for overflow rather than break
638 instructions. */
c9914766 639static int mips_trap = 0;
252b5132 640
119d663a 641/* 1 if double width floating point constants should not be constructed
b6ff326e 642 by assembling two single width halves into two single width floating
119d663a
NC
643 point registers which just happen to alias the double width destination
644 register. On some architectures this aliasing can be disabled by a bit
d547a75e 645 in the status register, and the setting of this bit cannot be determined
119d663a
NC
646 automatically at assemble time. */
647static int mips_disable_float_construction;
648
252b5132
RH
649/* Non-zero if any .set noreorder directives were used. */
650
651static int mips_any_noreorder;
652
6b76fefe
CM
653/* Non-zero if nops should be inserted when the register referenced in
654 an mfhi/mflo instruction is read in the next two instructions. */
655static int mips_7000_hilo_fix;
656
02ffd3e4 657/* The size of objects in the small data section. */
156c2f8b 658static unsigned int g_switch_value = 8;
252b5132
RH
659/* Whether the -G option was used. */
660static int g_switch_seen = 0;
661
662#define N_RMASK 0xc4
663#define N_VFP 0xd4
664
665/* If we can determine in advance that GP optimization won't be
666 possible, we can skip the relaxation stuff that tries to produce
667 GP-relative references. This makes delay slot optimization work
668 better.
669
670 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
671 gcc output. It needs to guess right for gcc, otherwise gcc
672 will put what it thinks is a GP-relative instruction in a branch
673 delay slot.
252b5132
RH
674
675 I don't know if a fix is needed for the SVR4_PIC mode. I've only
676 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 677static int nopic_need_relax (symbolS *, int);
252b5132 678
6f2117ba 679/* Handle of the OPCODE hash table. */
629310ab 680static htab_t op_hash = NULL;
252b5132
RH
681
682/* The opcode hash table we use for the mips16. */
629310ab 683static htab_t mips16_op_hash = NULL;
252b5132 684
df58fc94 685/* The opcode hash table we use for the microMIPS ASE. */
629310ab 686static htab_t micromips_op_hash = NULL;
df58fc94 687
252b5132 688/* This array holds the chars that always start a comment. If the
6f2117ba 689 pre-processor is disabled, these aren't very useful. */
252b5132
RH
690const char comment_chars[] = "#";
691
692/* This array holds the chars that only start a comment at the beginning of
693 a line. If the line seems to have the form '# 123 filename'
6f2117ba 694 .line and .file directives will appear in the pre-processed output. */
252b5132
RH
695/* Note that input_file.c hand checks for '#' at the beginning of the
696 first line of the input file. This is because the compiler outputs
bdaaa2e1 697 #NO_APP at the beginning of its output. */
252b5132
RH
698/* Also note that C style comments are always supported. */
699const char line_comment_chars[] = "#";
700
bdaaa2e1 701/* This array holds machine specific line separator characters. */
63a0b638 702const char line_separator_chars[] = ";";
252b5132 703
6f2117ba 704/* Chars that can be used to separate mant from exp in floating point nums. */
252b5132
RH
705const char EXP_CHARS[] = "eE";
706
6f2117ba
PH
707/* Chars that mean this number is a floating point constant.
708 As in 0f12.456
709 or 0d1.2345e12. */
252b5132
RH
710const char FLT_CHARS[] = "rRsSfFdDxXpP";
711
712/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
713 changed in read.c . Ideally it shouldn't have to know about it at all,
6f2117ba 714 but nothing is ideal around here. */
252b5132 715
e3de51ce 716/* Types of printf format used for instruction-related error messages.
6f2117ba
PH
717 "I" means int ("%d") and "S" means string ("%s"). */
718enum mips_insn_error_format
719{
e3de51ce
RS
720 ERR_FMT_PLAIN,
721 ERR_FMT_I,
722 ERR_FMT_SS,
723};
724
725/* Information about an error that was found while assembling the current
726 instruction. */
6f2117ba
PH
727struct mips_insn_error
728{
e3de51ce
RS
729 /* We sometimes need to match an instruction against more than one
730 opcode table entry. Errors found during this matching are reported
731 against a particular syntactic argument rather than against the
732 instruction as a whole. We grade these messages so that errors
733 against argument N have a greater priority than an error against
734 any argument < N, since the former implies that arguments up to N
735 were acceptable and that the opcode entry was therefore a closer match.
736 If several matches report an error against the same argument,
737 we only use that error if it is the same in all cases.
738
739 min_argnum is the minimum argument number for which an error message
740 should be accepted. It is 0 if MSG is against the instruction as
741 a whole. */
742 int min_argnum;
743
744 /* The printf()-style message, including its format and arguments. */
745 enum mips_insn_error_format format;
746 const char *msg;
6f2117ba
PH
747 union
748 {
e3de51ce
RS
749 int i;
750 const char *ss[2];
751 } u;
752};
753
754/* The error that should be reported for the current instruction. */
755static struct mips_insn_error insn_error;
252b5132
RH
756
757static int auto_align = 1;
758
759/* When outputting SVR4 PIC code, the assembler needs to know the
760 offset in the stack frame from which to restore the $gp register.
761 This is set by the .cprestore pseudo-op, and saved in this
762 variable. */
763static offsetT mips_cprestore_offset = -1;
764
67c1ffbe 765/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 766 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 767 offset and even an other register than $gp as global pointer. */
6478892d
TS
768static offsetT mips_cpreturn_offset = -1;
769static int mips_cpreturn_register = -1;
770static int mips_gp_register = GP;
def2e0dd 771static int mips_gprel_offset = 0;
6478892d 772
7a621144
DJ
773/* Whether mips_cprestore_offset has been set in the current function
774 (or whether it has already been warned about, if not). */
775static int mips_cprestore_valid = 0;
776
252b5132
RH
777/* This is the register which holds the stack frame, as set by the
778 .frame pseudo-op. This is needed to implement .cprestore. */
779static int mips_frame_reg = SP;
780
7a621144
DJ
781/* Whether mips_frame_reg has been set in the current function
782 (or whether it has already been warned about, if not). */
783static int mips_frame_reg_valid = 0;
784
252b5132
RH
785/* To output NOP instructions correctly, we need to keep information
786 about the previous two instructions. */
787
788/* Whether we are optimizing. The default value of 2 means to remove
789 unneeded NOPs and swap branch instructions when possible. A value
790 of 1 means to not swap branches. A value of 0 means to always
791 insert NOPs. */
792static int mips_optimize = 2;
793
794/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
795 equivalent to seeing no -g option at all. */
796static int mips_debug = 0;
797
7d8e00cf
RS
798/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
799#define MAX_VR4130_NOPS 4
800
801/* The maximum number of NOPs needed to fill delay slots. */
802#define MAX_DELAY_NOPS 2
803
804/* The maximum number of NOPs needed for any purpose. */
805#define MAX_NOPS 4
71400594 806
6f2117ba
PH
807/* The maximum range of context length of ll/sc. */
808#define MAX_LLSC_RANGE 20
809
71400594
RS
810/* A list of previous instructions, with index 0 being the most recent.
811 We need to look back MAX_NOPS instructions when filling delay slots
812 or working around processor errata. We need to look back one
813 instruction further if we're thinking about using history[0] to
814 fill a branch delay slot. */
6f2117ba 815static struct mips_cl_insn history[1 + MAX_NOPS + MAX_LLSC_RANGE];
252b5132 816
dec7b24b
YS
817/* The maximum number of LABELS detect for the same address. */
818#define MAX_LABELS_SAME 10
819
fc76e730 820/* Arrays of operands for each instruction. */
14daeee3 821#define MAX_OPERANDS 6
6f2117ba
PH
822struct mips_operand_array
823{
fc76e730
RS
824 const struct mips_operand *operand[MAX_OPERANDS];
825};
826static struct mips_operand_array *mips_operands;
827static struct mips_operand_array *mips16_operands;
828static struct mips_operand_array *micromips_operands;
829
1e915849 830/* Nop instructions used by emit_nop. */
df58fc94
RS
831static struct mips_cl_insn nop_insn;
832static struct mips_cl_insn mips16_nop_insn;
833static struct mips_cl_insn micromips_nop16_insn;
834static struct mips_cl_insn micromips_nop32_insn;
1e915849 835
6f2117ba
PH
836/* Sync instructions used by insert sync. */
837static struct mips_cl_insn sync_insn;
838
1e915849 839/* The appropriate nop for the current mode. */
833794fc
MR
840#define NOP_INSN (mips_opts.mips16 \
841 ? &mips16_nop_insn \
842 : (mips_opts.micromips \
843 ? (mips_opts.insn32 \
844 ? &micromips_nop32_insn \
845 : &micromips_nop16_insn) \
846 : &nop_insn))
df58fc94
RS
847
848/* The size of NOP_INSN in bytes. */
833794fc
MR
849#define NOP_INSN_SIZE ((mips_opts.mips16 \
850 || (mips_opts.micromips && !mips_opts.insn32)) \
851 ? 2 : 4)
252b5132 852
252b5132
RH
853/* If this is set, it points to a frag holding nop instructions which
854 were inserted before the start of a noreorder section. If those
855 nops turn out to be unnecessary, the size of the frag can be
856 decreased. */
857static fragS *prev_nop_frag;
858
859/* The number of nop instructions we created in prev_nop_frag. */
860static int prev_nop_frag_holds;
861
862/* The number of nop instructions that we know we need in
bdaaa2e1 863 prev_nop_frag. */
252b5132
RH
864static int prev_nop_frag_required;
865
866/* The number of instructions we've seen since prev_nop_frag. */
867static int prev_nop_frag_since;
868
e8044f35
RS
869/* Relocations against symbols are sometimes done in two parts, with a HI
870 relocation and a LO relocation. Each relocation has only 16 bits of
871 space to store an addend. This means that in order for the linker to
872 handle carries correctly, it must be able to locate both the HI and
873 the LO relocation. This means that the relocations must appear in
874 order in the relocation table.
252b5132
RH
875
876 In order to implement this, we keep track of each unmatched HI
877 relocation. We then sort them so that they immediately precede the
bdaaa2e1 878 corresponding LO relocation. */
252b5132 879
e972090a
NC
880struct mips_hi_fixup
881{
252b5132
RH
882 /* Next HI fixup. */
883 struct mips_hi_fixup *next;
884 /* This fixup. */
885 fixS *fixp;
886 /* The section this fixup is in. */
887 segT seg;
888};
889
890/* The list of unmatched HI relocs. */
891
892static struct mips_hi_fixup *mips_hi_fixup_list;
893
252b5132
RH
894/* Map mips16 register numbers to normal MIPS register numbers. */
895
e972090a
NC
896static const unsigned int mips16_to_32_reg_map[] =
897{
252b5132
RH
898 16, 17, 2, 3, 4, 5, 6, 7
899};
60b63b72 900
df58fc94
RS
901/* Map microMIPS register numbers to normal MIPS register numbers. */
902
df58fc94 903#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
904
905/* The microMIPS registers with type h. */
e76ff5ab 906static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
907{
908 5, 5, 6, 4, 4, 4, 4, 4
909};
e76ff5ab 910static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
911{
912 6, 7, 7, 21, 22, 5, 6, 7
913};
914
df58fc94
RS
915/* The microMIPS registers with type m. */
916static const unsigned int micromips_to_32_reg_m_map[] =
917{
918 0, 17, 2, 3, 16, 18, 19, 20
919};
920
921#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
922
71400594
RS
923/* Classifies the kind of instructions we're interested in when
924 implementing -mfix-vr4120. */
c67a084a
NC
925enum fix_vr4120_class
926{
71400594
RS
927 FIX_VR4120_MACC,
928 FIX_VR4120_DMACC,
929 FIX_VR4120_MULT,
930 FIX_VR4120_DMULT,
931 FIX_VR4120_DIV,
932 FIX_VR4120_MTHILO,
933 NUM_FIX_VR4120_CLASSES
934};
935
c67a084a 936/* ...likewise -mfix-loongson2f-jump. */
5b7c81bd 937static bool mips_fix_loongson2f_jump;
c67a084a
NC
938
939/* ...likewise -mfix-loongson2f-nop. */
5b7c81bd 940static bool mips_fix_loongson2f_nop;
c67a084a
NC
941
942/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
5b7c81bd 943static bool mips_fix_loongson2f;
c67a084a 944
71400594
RS
945/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
946 there must be at least one other instruction between an instruction
947 of type X and an instruction of type Y. */
948static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
949
950/* True if -mfix-vr4120 is in force. */
d766e8ec 951static int mips_fix_vr4120;
4a6a3df4 952
7d8e00cf
RS
953/* ...likewise -mfix-vr4130. */
954static int mips_fix_vr4130;
955
6a32d874
CM
956/* ...likewise -mfix-24k. */
957static int mips_fix_24k;
958
a8d14a88
CM
959/* ...likewise -mfix-rm7000 */
960static int mips_fix_rm7000;
961
d954098f 962/* ...likewise -mfix-cn63xxp1 */
5b7c81bd 963static bool mips_fix_cn63xxp1;
d954098f 964
27c634e0 965/* ...likewise -mfix-r5900 */
5b7c81bd
AM
966static bool mips_fix_r5900;
967static bool mips_fix_r5900_explicit;
27c634e0 968
6f2117ba 969/* ...likewise -mfix-loongson3-llsc. */
5b7c81bd 970static bool mips_fix_loongson3_llsc = DEFAULT_MIPS_FIX_LOONGSON3_LLSC;
6f2117ba 971
4a6a3df4
AO
972/* We don't relax branches by default, since this causes us to expand
973 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
974 fail to compute the offset before expanding the macro to the most
975 efficient expansion. */
976
977static int mips_relax_branch;
8b10b0b3
MR
978
979/* TRUE if checks are suppressed for invalid branches between ISA modes.
980 Needed for broken assembly produced by some GCC versions and some
981 sloppy code out there, where branches to data labels are present. */
5b7c81bd 982static bool mips_ignore_branch_isa;
252b5132 983\f
4d7206a2
RS
984/* The expansion of many macros depends on the type of symbol that
985 they refer to. For example, when generating position-dependent code,
986 a macro that refers to a symbol may have two different expansions,
987 one which uses GP-relative addresses and one which uses absolute
988 addresses. When generating SVR4-style PIC, a macro may have
989 different expansions for local and global symbols.
990
991 We handle these situations by generating both sequences and putting
992 them in variant frags. In position-dependent code, the first sequence
993 will be the GP-relative one and the second sequence will be the
994 absolute one. In SVR4 PIC, the first sequence will be for global
995 symbols and the second will be for local symbols.
996
584892a6
RS
997 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
998 SECOND are the lengths of the two sequences in bytes. These fields
999 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
1000 the subtype has the following flags:
4d7206a2 1001
ce8ad872
MR
1002 RELAX_PIC
1003 Set if generating PIC code.
1004
584892a6
RS
1005 RELAX_USE_SECOND
1006 Set if it has been decided that we should use the second
1007 sequence instead of the first.
1008
1009 RELAX_SECOND_LONGER
1010 Set in the first variant frag if the macro's second implementation
1011 is longer than its first. This refers to the macro as a whole,
1012 not an individual relaxation.
1013
1014 RELAX_NOMACRO
1015 Set in the first variant frag if the macro appeared in a .set nomacro
1016 block and if one alternative requires a warning but the other does not.
1017
1018 RELAX_DELAY_SLOT
1019 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
1020 delay slot.
4d7206a2 1021
df58fc94
RS
1022 RELAX_DELAY_SLOT_16BIT
1023 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
1024 16-bit instruction.
1025
1026 RELAX_DELAY_SLOT_SIZE_FIRST
1027 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
1028 the macro is of the wrong size for the branch delay slot.
1029
1030 RELAX_DELAY_SLOT_SIZE_SECOND
1031 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1032 the macro is of the wrong size for the branch delay slot.
1033
4d7206a2
RS
1034 The frag's "opcode" points to the first fixup for relaxable code.
1035
1036 Relaxable macros are generated using a sequence such as:
1037
1038 relax_start (SYMBOL);
1039 ... generate first expansion ...
1040 relax_switch ();
1041 ... generate second expansion ...
1042 relax_end ();
1043
1044 The code and fixups for the unwanted alternative are discarded
1045 by md_convert_frag. */
ce8ad872
MR
1046#define RELAX_ENCODE(FIRST, SECOND, PIC) \
1047 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
4d7206a2 1048
584892a6
RS
1049#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1050#define RELAX_SECOND(X) ((X) & 0xff)
ce8ad872
MR
1051#define RELAX_PIC(X) (((X) & 0x10000) != 0)
1052#define RELAX_USE_SECOND 0x20000
1053#define RELAX_SECOND_LONGER 0x40000
1054#define RELAX_NOMACRO 0x80000
1055#define RELAX_DELAY_SLOT 0x100000
1056#define RELAX_DELAY_SLOT_16BIT 0x200000
1057#define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1058#define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
252b5132 1059
4a6a3df4
AO
1060/* Branch without likely bit. If label is out of range, we turn:
1061
134c0c8b 1062 beq reg1, reg2, label
4a6a3df4
AO
1063 delay slot
1064
1065 into
1066
1067 bne reg1, reg2, 0f
1068 nop
1069 j label
1070 0: delay slot
1071
1072 with the following opcode replacements:
1073
1074 beq <-> bne
1075 blez <-> bgtz
1076 bltz <-> bgez
1077 bc1f <-> bc1t
1078
1079 bltzal <-> bgezal (with jal label instead of j label)
1080
1081 Even though keeping the delay slot instruction in the delay slot of
1082 the branch would be more efficient, it would be very tricky to do
1083 correctly, because we'd have to introduce a variable frag *after*
1084 the delay slot instruction, and expand that instead. Let's do it
1085 the easy way for now, even if the branch-not-taken case now costs
1086 one additional instruction. Out-of-range branches are not supposed
1087 to be common, anyway.
1088
1089 Branch likely. If label is out of range, we turn:
1090
1091 beql reg1, reg2, label
1092 delay slot (annulled if branch not taken)
1093
1094 into
1095
1096 beql reg1, reg2, 1f
1097 nop
1098 beql $0, $0, 2f
1099 nop
1100 1: j[al] label
1101 delay slot (executed only if branch taken)
1102 2:
1103
1104 It would be possible to generate a shorter sequence by losing the
1105 likely bit, generating something like:
b34976b6 1106
4a6a3df4
AO
1107 bne reg1, reg2, 0f
1108 nop
1109 j[al] label
1110 delay slot (executed only if branch taken)
1111 0:
1112
1113 beql -> bne
1114 bnel -> beq
1115 blezl -> bgtz
1116 bgtzl -> blez
1117 bltzl -> bgez
1118 bgezl -> bltz
1119 bc1fl -> bc1t
1120 bc1tl -> bc1f
1121
1122 bltzall -> bgezal (with jal label instead of j label)
1123 bgezall -> bltzal (ditto)
1124
1125
1126 but it's not clear that it would actually improve performance. */
ce8ad872
MR
1127#define RELAX_BRANCH_ENCODE(at, pic, \
1128 uncond, likely, link, toofar) \
66b3e8da
MR
1129 ((relax_substateT) \
1130 (0xc0000000 \
1131 | ((at) & 0x1f) \
ce8ad872
MR
1132 | ((pic) ? 0x20 : 0) \
1133 | ((toofar) ? 0x40 : 0) \
1134 | ((link) ? 0x80 : 0) \
1135 | ((likely) ? 0x100 : 0) \
1136 | ((uncond) ? 0x200 : 0)))
4a6a3df4 1137#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
ce8ad872
MR
1138#define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1139#define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1140#define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1141#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1142#define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
66b3e8da 1143#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1144
252b5132
RH
1145/* For mips16 code, we use an entirely different form of relaxation.
1146 mips16 supports two versions of most instructions which take
1147 immediate values: a small one which takes some small value, and a
1148 larger one which takes a 16 bit value. Since branches also follow
1149 this pattern, relaxing these values is required.
1150
1151 We can assemble both mips16 and normal MIPS code in a single
1152 object. Therefore, we need to support this type of relaxation at
1153 the same time that we support the relaxation described above. We
1154 use the high bit of the subtype field to distinguish these cases.
1155
1156 The information we store for this type of relaxation is the
1157 argument code found in the opcode file for this relocation, whether
1158 the user explicitly requested a small or extended form, and whether
1159 the relocation is in a jump or jal delay slot. That tells us the
1160 size of the value, and how it should be stored. We also store
1161 whether the fragment is considered to be extended or not. We also
1162 store whether this is known to be a branch to a different section,
1163 whether we have tried to relax this frag yet, and whether we have
1164 ever extended a PC relative fragment because of a shift count. */
25499ac7 1165#define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
8507b6e7
MR
1166 small, ext, \
1167 dslot, jal_dslot) \
252b5132
RH
1168 (0x80000000 \
1169 | ((type) & 0xff) \
25499ac7
MR
1170 | ((e2) ? 0x100 : 0) \
1171 | ((pic) ? 0x200 : 0) \
1172 | ((sym32) ? 0x400 : 0) \
1173 | ((nomacro) ? 0x800 : 0) \
1174 | ((small) ? 0x1000 : 0) \
1175 | ((ext) ? 0x2000 : 0) \
1176 | ((dslot) ? 0x4000 : 0) \
1177 | ((jal_dslot) ? 0x8000 : 0))
8507b6e7 1178
4a6a3df4 1179#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132 1180#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
25499ac7
MR
1181#define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1182#define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1183#define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1184#define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1185#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1186#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1187#define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1188#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1189
1190#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1191#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1192#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1193#define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1194#define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1195#define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1196#define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1197#define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1198#define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
885add95 1199
df58fc94
RS
1200/* For microMIPS code, we use relaxation similar to one we use for
1201 MIPS16 code. Some instructions that take immediate values support
1202 two encodings: a small one which takes some small value, and a
1203 larger one which takes a 16 bit value. As some branches also follow
1204 this pattern, relaxing these values is required.
1205
1206 We can assemble both microMIPS and normal MIPS code in a single
1207 object. Therefore, we need to support this type of relaxation at
1208 the same time that we support the relaxation described above. We
1209 use one of the high bits of the subtype field to distinguish these
1210 cases.
1211
1212 The information we store for this type of relaxation is the argument
1213 code found in the opcode file for this relocation, the register
8484fb75
MR
1214 selected as the assembler temporary, whether in the 32-bit
1215 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1216 compact, whether there is no delay-slot instruction available to fill
1217 in, whether it stores the link address implicitly in $ra, whether
1218 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1219 instructions is enabled, and whether the displacement of a branch is
1220 too large to fit as an immediate argument of a 16-bit and a 32-bit
1221 branch, respectively. */
ce8ad872 1222#define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
7bd374a4 1223 uncond, compact, link, nods, \
40209cad
MR
1224 relax32, toofar16, toofar32) \
1225 (0x40000000 \
1226 | ((type) & 0xff) \
1227 | (((at) & 0x1f) << 8) \
8484fb75 1228 | ((insn32) ? 0x2000 : 0) \
ce8ad872
MR
1229 | ((pic) ? 0x4000 : 0) \
1230 | ((uncond) ? 0x8000 : 0) \
1231 | ((compact) ? 0x10000 : 0) \
1232 | ((link) ? 0x20000 : 0) \
1233 | ((nods) ? 0x40000 : 0) \
1234 | ((relax32) ? 0x80000 : 0) \
1235 | ((toofar16) ? 0x100000 : 0) \
1236 | ((toofar32) ? 0x200000 : 0))
df58fc94
RS
1237#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1238#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1239#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75 1240#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
ce8ad872
MR
1241#define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1242#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1243#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1244#define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1245#define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1246#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1247
1248#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1249#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1250#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1251#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1252#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1253#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
df58fc94 1254
43c0598f
RS
1255/* Sign-extend 16-bit value X. */
1256#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1257
885add95
CD
1258/* Is the given value a sign-extended 32-bit value? */
1259#define IS_SEXT_32BIT_NUM(x) \
1260 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1261 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1262
1263/* Is the given value a sign-extended 16-bit value? */
1264#define IS_SEXT_16BIT_NUM(x) \
1265 (((x) &~ (offsetT) 0x7fff) == 0 \
1266 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1267
df58fc94
RS
1268/* Is the given value a sign-extended 12-bit value? */
1269#define IS_SEXT_12BIT_NUM(x) \
1270 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1271
7f3c4072
CM
1272/* Is the given value a sign-extended 9-bit value? */
1273#define IS_SEXT_9BIT_NUM(x) \
1274 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1275
2051e8c4
MR
1276/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1277#define IS_ZEXT_32BIT_NUM(x) \
1278 (((x) &~ (offsetT) 0xffffffff) == 0 \
1279 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1280
bf12938e
RS
1281/* Extract bits MASK << SHIFT from STRUCT and shift them right
1282 SHIFT places. */
1283#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1284 (((STRUCT) >> (SHIFT)) & (MASK))
1285
bf12938e 1286/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1287#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1288 (!(MICROMIPS) \
1289 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1290 : EXTRACT_BITS ((INSN).insn_opcode, \
1291 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1292#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1293 EXTRACT_BITS ((INSN).insn_opcode, \
1294 MIPS16OP_MASK_##FIELD, \
1295 MIPS16OP_SH_##FIELD)
5c04167a
RS
1296
1297/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1298#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1299\f
df58fc94 1300/* Whether or not we are emitting a branch-likely macro. */
5b7c81bd 1301static bool emit_branch_likely_macro = false;
df58fc94 1302
4d7206a2
RS
1303/* Global variables used when generating relaxable macros. See the
1304 comment above RELAX_ENCODE for more details about how relaxation
1305 is used. */
1306static struct {
1307 /* 0 if we're not emitting a relaxable macro.
1308 1 if we're emitting the first of the two relaxation alternatives.
1309 2 if we're emitting the second alternative. */
1310 int sequence;
1311
1312 /* The first relaxable fixup in the current frag. (In other words,
1313 the first fixup that refers to relaxable code.) */
1314 fixS *first_fixup;
1315
1316 /* sizes[0] says how many bytes of the first alternative are stored in
1317 the current frag. Likewise sizes[1] for the second alternative. */
1318 unsigned int sizes[2];
1319
1320 /* The symbol on which the choice of sequence depends. */
1321 symbolS *symbol;
1322} mips_relax;
252b5132 1323\f
584892a6
RS
1324/* Global variables used to decide whether a macro needs a warning. */
1325static struct {
1326 /* True if the macro is in a branch delay slot. */
5b7c81bd 1327 bool delay_slot_p;
584892a6 1328
df58fc94
RS
1329 /* Set to the length in bytes required if the macro is in a delay slot
1330 that requires a specific length of instruction, otherwise zero. */
1331 unsigned int delay_slot_length;
1332
584892a6
RS
1333 /* For relaxable macros, sizes[0] is the length of the first alternative
1334 in bytes and sizes[1] is the length of the second alternative.
1335 For non-relaxable macros, both elements give the length of the
1336 macro in bytes. */
1337 unsigned int sizes[2];
1338
df58fc94
RS
1339 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1340 instruction of the first alternative in bytes and first_insn_sizes[1]
1341 is the length of the first instruction of the second alternative.
1342 For non-relaxable macros, both elements give the length of the first
1343 instruction in bytes.
1344
1345 Set to zero if we haven't yet seen the first instruction. */
1346 unsigned int first_insn_sizes[2];
1347
1348 /* For relaxable macros, insns[0] is the number of instructions for the
1349 first alternative and insns[1] is the number of instructions for the
1350 second alternative.
1351
1352 For non-relaxable macros, both elements give the number of
1353 instructions for the macro. */
1354 unsigned int insns[2];
1355
584892a6
RS
1356 /* The first variant frag for this macro. */
1357 fragS *first_frag;
1358} mips_macro_warning;
1359\f
252b5132
RH
1360/* Prototypes for static functions. */
1361
252b5132
RH
1362enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1363
b34976b6 1364static void append_insn
df58fc94 1365 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
5b7c81bd 1366 bool expansionp);
7d10b47d 1367static void mips_no_prev_insn (void);
c67a084a 1368static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1369static void mips16_macro_build
03ea81db 1370 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1371static void load_register (int, expressionS *, int);
584892a6
RS
1372static void macro_start (void);
1373static void macro_end (void);
833794fc 1374static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1375static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1376static void mips_ip (char *str, struct mips_cl_insn * ip);
1377static void mips16_ip (char *str, struct mips_cl_insn * ip);
25499ac7 1378static unsigned long mips16_immed_extend (offsetT, unsigned int);
b34976b6 1379static void mips16_immed
3b4dbbbf 1380 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1381 unsigned int, unsigned long *);
5e0116d5 1382static size_t my_getSmallExpression
17a2f251
TS
1383 (expressionS *, bfd_reloc_code_real_type *, char *);
1384static void my_getExpression (expressionS *, char *);
1385static void s_align (int);
1386static void s_change_sec (int);
1387static void s_change_section (int);
1388static void s_cons (int);
1389static void s_float_cons (int);
1390static void s_mips_globl (int);
1391static void s_option (int);
1392static void s_mipsset (int);
1393static void s_abicalls (int);
1394static void s_cpload (int);
1395static void s_cpsetup (int);
1396static void s_cplocal (int);
1397static void s_cprestore (int);
1398static void s_cpreturn (int);
741d6ea8
JM
1399static void s_dtprelword (int);
1400static void s_dtpreldword (int);
d0f13682
CLT
1401static void s_tprelword (int);
1402static void s_tpreldword (int);
17a2f251
TS
1403static void s_gpvalue (int);
1404static void s_gpword (int);
1405static void s_gpdword (int);
a3f278e2 1406static void s_ehword (int);
17a2f251
TS
1407static void s_cpadd (int);
1408static void s_insn (int);
ba92f887 1409static void s_nan (int);
919731af 1410static void s_module (int);
17a2f251
TS
1411static void s_mips_ent (int);
1412static void s_mips_end (int);
1413static void s_mips_frame (int);
1414static void s_mips_mask (int reg_type);
1415static void s_mips_stab (int);
1416static void s_mips_weakext (int);
1417static void s_mips_file (int);
1418static void s_mips_loc (int);
5b7c81bd 1419static bool pic_need_relax (symbolS *);
4a6a3df4 1420static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1421static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1422static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1423static void file_mips_check_options (void);
e7af610e
NC
1424
1425/* Table and functions used to map between CPU/ISA names, and
1426 ISA levels, and CPU numbers. */
1427
e972090a
NC
1428struct mips_cpu_info
1429{
e7af610e 1430 const char *name; /* CPU or ISA name. */
d16afab6
RS
1431 int flags; /* MIPS_CPU_* flags. */
1432 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1433 int isa; /* ISA level. */
1434 int cpu; /* CPU number (default CPU if ISA). */
1435};
1436
ad3fea08 1437#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1438
17a2f251
TS
1439static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1440static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1441static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1442\f
c31f3936
RS
1443/* Command-line options. */
1444const char *md_shortopts = "O::g::G:";
1445
1446enum options
1447 {
1448 OPTION_MARCH = OPTION_MD_BASE,
1449 OPTION_MTUNE,
1450 OPTION_MIPS1,
1451 OPTION_MIPS2,
1452 OPTION_MIPS3,
1453 OPTION_MIPS4,
1454 OPTION_MIPS5,
1455 OPTION_MIPS32,
1456 OPTION_MIPS64,
1457 OPTION_MIPS32R2,
ae52f483
AB
1458 OPTION_MIPS32R3,
1459 OPTION_MIPS32R5,
7361da2c 1460 OPTION_MIPS32R6,
c31f3936 1461 OPTION_MIPS64R2,
ae52f483
AB
1462 OPTION_MIPS64R3,
1463 OPTION_MIPS64R5,
7361da2c 1464 OPTION_MIPS64R6,
c31f3936
RS
1465 OPTION_MIPS16,
1466 OPTION_NO_MIPS16,
1467 OPTION_MIPS3D,
1468 OPTION_NO_MIPS3D,
1469 OPTION_MDMX,
1470 OPTION_NO_MDMX,
1471 OPTION_DSP,
1472 OPTION_NO_DSP,
1473 OPTION_MT,
1474 OPTION_NO_MT,
1475 OPTION_VIRT,
1476 OPTION_NO_VIRT,
56d438b1
CF
1477 OPTION_MSA,
1478 OPTION_NO_MSA,
c31f3936
RS
1479 OPTION_SMARTMIPS,
1480 OPTION_NO_SMARTMIPS,
1481 OPTION_DSPR2,
1482 OPTION_NO_DSPR2,
8f4f9071
MF
1483 OPTION_DSPR3,
1484 OPTION_NO_DSPR3,
c31f3936
RS
1485 OPTION_EVA,
1486 OPTION_NO_EVA,
7d64c587
AB
1487 OPTION_XPA,
1488 OPTION_NO_XPA,
c31f3936
RS
1489 OPTION_MICROMIPS,
1490 OPTION_NO_MICROMIPS,
1491 OPTION_MCU,
1492 OPTION_NO_MCU,
25499ac7
MR
1493 OPTION_MIPS16E2,
1494 OPTION_NO_MIPS16E2,
730c3174
SE
1495 OPTION_CRC,
1496 OPTION_NO_CRC,
c31f3936
RS
1497 OPTION_M4650,
1498 OPTION_NO_M4650,
1499 OPTION_M4010,
1500 OPTION_NO_M4010,
1501 OPTION_M4100,
1502 OPTION_NO_M4100,
1503 OPTION_M3900,
1504 OPTION_NO_M3900,
1505 OPTION_M7000_HILO_FIX,
1506 OPTION_MNO_7000_HILO_FIX,
1507 OPTION_FIX_24K,
1508 OPTION_NO_FIX_24K,
a8d14a88
CM
1509 OPTION_FIX_RM7000,
1510 OPTION_NO_FIX_RM7000,
6f2117ba
PH
1511 OPTION_FIX_LOONGSON3_LLSC,
1512 OPTION_NO_FIX_LOONGSON3_LLSC,
c31f3936
RS
1513 OPTION_FIX_LOONGSON2F_JUMP,
1514 OPTION_NO_FIX_LOONGSON2F_JUMP,
1515 OPTION_FIX_LOONGSON2F_NOP,
1516 OPTION_NO_FIX_LOONGSON2F_NOP,
1517 OPTION_FIX_VR4120,
1518 OPTION_NO_FIX_VR4120,
1519 OPTION_FIX_VR4130,
1520 OPTION_NO_FIX_VR4130,
1521 OPTION_FIX_CN63XXP1,
1522 OPTION_NO_FIX_CN63XXP1,
27c634e0
FN
1523 OPTION_FIX_R5900,
1524 OPTION_NO_FIX_R5900,
c31f3936
RS
1525 OPTION_TRAP,
1526 OPTION_BREAK,
1527 OPTION_EB,
1528 OPTION_EL,
1529 OPTION_FP32,
1530 OPTION_GP32,
1531 OPTION_CONSTRUCT_FLOATS,
1532 OPTION_NO_CONSTRUCT_FLOATS,
1533 OPTION_FP64,
351cdf24 1534 OPTION_FPXX,
c31f3936
RS
1535 OPTION_GP64,
1536 OPTION_RELAX_BRANCH,
1537 OPTION_NO_RELAX_BRANCH,
8b10b0b3
MR
1538 OPTION_IGNORE_BRANCH_ISA,
1539 OPTION_NO_IGNORE_BRANCH_ISA,
833794fc
MR
1540 OPTION_INSN32,
1541 OPTION_NO_INSN32,
c31f3936
RS
1542 OPTION_MSHARED,
1543 OPTION_MNO_SHARED,
1544 OPTION_MSYM32,
1545 OPTION_MNO_SYM32,
1546 OPTION_SOFT_FLOAT,
1547 OPTION_HARD_FLOAT,
1548 OPTION_SINGLE_FLOAT,
1549 OPTION_DOUBLE_FLOAT,
1550 OPTION_32,
c31f3936
RS
1551 OPTION_CALL_SHARED,
1552 OPTION_CALL_NONPIC,
1553 OPTION_NON_SHARED,
1554 OPTION_XGOT,
1555 OPTION_MABI,
1556 OPTION_N32,
1557 OPTION_64,
1558 OPTION_MDEBUG,
1559 OPTION_NO_MDEBUG,
1560 OPTION_PDR,
1561 OPTION_NO_PDR,
1562 OPTION_MVXWORKS_PIC,
ba92f887 1563 OPTION_NAN,
351cdf24
MF
1564 OPTION_ODD_SPREG,
1565 OPTION_NO_ODD_SPREG,
6f20c942
FS
1566 OPTION_GINV,
1567 OPTION_NO_GINV,
8095d2f7
CX
1568 OPTION_LOONGSON_MMI,
1569 OPTION_NO_LOONGSON_MMI,
716c08de
CX
1570 OPTION_LOONGSON_CAM,
1571 OPTION_NO_LOONGSON_CAM,
bdc6c06e
CX
1572 OPTION_LOONGSON_EXT,
1573 OPTION_NO_LOONGSON_EXT,
a693765e
CX
1574 OPTION_LOONGSON_EXT2,
1575 OPTION_NO_LOONGSON_EXT2,
c31f3936
RS
1576 OPTION_END_OF_ENUM
1577 };
1578
1579struct option md_longopts[] =
1580{
1581 /* Options which specify architecture. */
1582 {"march", required_argument, NULL, OPTION_MARCH},
1583 {"mtune", required_argument, NULL, OPTION_MTUNE},
1584 {"mips0", no_argument, NULL, OPTION_MIPS1},
1585 {"mips1", no_argument, NULL, OPTION_MIPS1},
1586 {"mips2", no_argument, NULL, OPTION_MIPS2},
1587 {"mips3", no_argument, NULL, OPTION_MIPS3},
1588 {"mips4", no_argument, NULL, OPTION_MIPS4},
1589 {"mips5", no_argument, NULL, OPTION_MIPS5},
1590 {"mips32", no_argument, NULL, OPTION_MIPS32},
1591 {"mips64", no_argument, NULL, OPTION_MIPS64},
1592 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1593 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1594 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1595 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1596 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1597 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1598 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1599 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1600
1601 /* Options which specify Application Specific Extensions (ASEs). */
1602 {"mips16", no_argument, NULL, OPTION_MIPS16},
1603 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1604 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1605 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1606 {"mdmx", no_argument, NULL, OPTION_MDMX},
1607 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1608 {"mdsp", no_argument, NULL, OPTION_DSP},
1609 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1610 {"mmt", no_argument, NULL, OPTION_MT},
1611 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1612 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1613 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1614 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1615 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1616 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1617 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1618 {"meva", no_argument, NULL, OPTION_EVA},
1619 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1620 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1621 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1622 {"mmcu", no_argument, NULL, OPTION_MCU},
1623 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1624 {"mvirt", no_argument, NULL, OPTION_VIRT},
1625 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1626 {"mmsa", no_argument, NULL, OPTION_MSA},
1627 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1628 {"mxpa", no_argument, NULL, OPTION_XPA},
1629 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
25499ac7
MR
1630 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1631 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
730c3174
SE
1632 {"mcrc", no_argument, NULL, OPTION_CRC},
1633 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
6f20c942
FS
1634 {"mginv", no_argument, NULL, OPTION_GINV},
1635 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
8095d2f7
CX
1636 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1637 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
716c08de
CX
1638 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1639 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
bdc6c06e
CX
1640 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1641 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
a693765e
CX
1642 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1643 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
c31f3936
RS
1644
1645 /* Old-style architecture options. Don't add more of these. */
1646 {"m4650", no_argument, NULL, OPTION_M4650},
1647 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1648 {"m4010", no_argument, NULL, OPTION_M4010},
1649 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1650 {"m4100", no_argument, NULL, OPTION_M4100},
1651 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1652 {"m3900", no_argument, NULL, OPTION_M3900},
1653 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1654
1655 /* Options which enable bug fixes. */
1656 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1657 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1658 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
6f2117ba
PH
1659 {"mfix-loongson3-llsc", no_argument, NULL, OPTION_FIX_LOONGSON3_LLSC},
1660 {"mno-fix-loongson3-llsc", no_argument, NULL, OPTION_NO_FIX_LOONGSON3_LLSC},
c31f3936
RS
1661 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1662 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1663 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1664 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1665 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1666 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1667 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1668 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1669 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1670 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1671 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1672 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1673 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1674 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
27c634e0
FN
1675 {"mfix-r5900", no_argument, NULL, OPTION_FIX_R5900},
1676 {"mno-fix-r5900", no_argument, NULL, OPTION_NO_FIX_R5900},
c31f3936
RS
1677
1678 /* Miscellaneous options. */
1679 {"trap", no_argument, NULL, OPTION_TRAP},
1680 {"no-break", no_argument, NULL, OPTION_TRAP},
1681 {"break", no_argument, NULL, OPTION_BREAK},
1682 {"no-trap", no_argument, NULL, OPTION_BREAK},
1683 {"EB", no_argument, NULL, OPTION_EB},
1684 {"EL", no_argument, NULL, OPTION_EL},
1685 {"mfp32", no_argument, NULL, OPTION_FP32},
1686 {"mgp32", no_argument, NULL, OPTION_GP32},
1687 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1688 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1689 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1690 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1691 {"mgp64", no_argument, NULL, OPTION_GP64},
1692 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1693 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
8b10b0b3
MR
1694 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1695 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
833794fc
MR
1696 {"minsn32", no_argument, NULL, OPTION_INSN32},
1697 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1698 {"mshared", no_argument, NULL, OPTION_MSHARED},
1699 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1700 {"msym32", no_argument, NULL, OPTION_MSYM32},
1701 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1702 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1703 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1704 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1705 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1706 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1707 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1708
1709 /* Strictly speaking this next option is ELF specific,
1710 but we allow it for other ports as well in order to
1711 make testing easier. */
1712 {"32", no_argument, NULL, OPTION_32},
1713
1714 /* ELF-specific options. */
c31f3936
RS
1715 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1716 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1717 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1718 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1719 {"xgot", no_argument, NULL, OPTION_XGOT},
1720 {"mabi", required_argument, NULL, OPTION_MABI},
1721 {"n32", no_argument, NULL, OPTION_N32},
1722 {"64", no_argument, NULL, OPTION_64},
1723 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1724 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1725 {"mpdr", no_argument, NULL, OPTION_PDR},
1726 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1727 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1728 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1729
1730 {NULL, no_argument, NULL, 0}
1731};
1732size_t md_longopts_size = sizeof (md_longopts);
1733\f
c6278170
RS
1734/* Information about either an Application Specific Extension or an
1735 optional architecture feature that, for simplicity, we treat in the
1736 same way as an ASE. */
1737struct mips_ase
1738{
1739 /* The name of the ASE, used in both the command-line and .set options. */
1740 const char *name;
1741
1742 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1743 and 64-bit architectures, the flags here refer to the subset that
1744 is available on both. */
1745 unsigned int flags;
1746
1747 /* The ASE_* flag used for instructions that are available on 64-bit
1748 architectures but that are not included in FLAGS. */
1749 unsigned int flags64;
1750
1751 /* The command-line options that turn the ASE on and off. */
1752 int option_on;
1753 int option_off;
1754
1755 /* The minimum required architecture revisions for MIPS32, MIPS64,
1756 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1757 int mips32_rev;
1758 int mips64_rev;
1759 int micromips32_rev;
1760 int micromips64_rev;
7361da2c
AB
1761
1762 /* The architecture where the ASE was removed or -1 if the extension has not
1763 been removed. */
1764 int rem_rev;
c6278170
RS
1765};
1766
1767/* A table of all supported ASEs. */
1768static const struct mips_ase mips_ases[] = {
1769 { "dsp", ASE_DSP, ASE_DSP64,
1770 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1771 2, 2, 2, 2,
1772 -1 },
c6278170
RS
1773
1774 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1775 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1776 2, 2, 2, 2,
1777 -1 },
c6278170 1778
8f4f9071
MF
1779 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1780 OPTION_DSPR3, OPTION_NO_DSPR3,
1781 6, 6, -1, -1,
1782 -1 },
1783
c6278170
RS
1784 { "eva", ASE_EVA, 0,
1785 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1786 2, 2, 2, 2,
1787 -1 },
c6278170
RS
1788
1789 { "mcu", ASE_MCU, 0,
1790 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1791 2, 2, 2, 2,
1792 -1 },
c6278170
RS
1793
1794 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1795 { "mdmx", ASE_MDMX, 0,
1796 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1797 -1, 1, -1, -1,
1798 6 },
c6278170
RS
1799
1800 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1801 { "mips3d", ASE_MIPS3D, 0,
1802 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1803 2, 1, -1, -1,
1804 6 },
c6278170
RS
1805
1806 { "mt", ASE_MT, 0,
1807 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1808 2, 2, -1, -1,
1809 -1 },
c6278170
RS
1810
1811 { "smartmips", ASE_SMARTMIPS, 0,
1812 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1813 1, -1, -1, -1,
1814 6 },
c6278170
RS
1815
1816 { "virt", ASE_VIRT, ASE_VIRT64,
1817 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1818 2, 2, 2, 2,
1819 -1 },
56d438b1
CF
1820
1821 { "msa", ASE_MSA, ASE_MSA64,
1822 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1823 2, 2, 2, 2,
1824 -1 },
7d64c587
AB
1825
1826 { "xpa", ASE_XPA, 0,
1827 OPTION_XPA, OPTION_NO_XPA,
909b4e3d 1828 2, 2, 2, 2,
7361da2c 1829 -1 },
25499ac7
MR
1830
1831 { "mips16e2", ASE_MIPS16E2, 0,
1832 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1833 2, 2, -1, -1,
1834 6 },
730c3174
SE
1835
1836 { "crc", ASE_CRC, ASE_CRC64,
1837 OPTION_CRC, OPTION_NO_CRC,
1838 6, 6, -1, -1,
1839 -1 },
6f20c942
FS
1840
1841 { "ginv", ASE_GINV, 0,
1842 OPTION_GINV, OPTION_NO_GINV,
1843 6, 6, 6, 6,
1844 -1 },
8095d2f7
CX
1845
1846 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1847 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1848 0, 0, -1, -1,
1849 -1 },
716c08de
CX
1850
1851 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1852 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1853 0, 0, -1, -1,
1854 -1 },
bdc6c06e
CX
1855
1856 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1857 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1858 0, 0, -1, -1,
1859 -1 },
a693765e
CX
1860
1861 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1862 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1863 0, 0, -1, -1,
1864 -1 },
c6278170
RS
1865};
1866
1867/* The set of ASEs that require -mfp64. */
82bda27b 1868#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1869
1870/* Groups of ASE_* flags that represent different revisions of an ASE. */
1871static const unsigned int mips_ase_groups[] = {
a693765e
CX
1872 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1873 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
c6278170
RS
1874};
1875\f
252b5132
RH
1876/* Pseudo-op table.
1877
1878 The following pseudo-ops from the Kane and Heinrich MIPS book
1879 should be defined here, but are currently unsupported: .alias,
1880 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1881
1882 The following pseudo-ops from the Kane and Heinrich MIPS book are
1883 specific to the type of debugging information being generated, and
1884 should be defined by the object format: .aent, .begin, .bend,
1885 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1886 .vreg.
1887
1888 The following pseudo-ops from the Kane and Heinrich MIPS book are
1889 not MIPS CPU specific, but are also not specific to the object file
1890 format. This file is probably the best place to define them, but
d84bcf09 1891 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1892
e972090a
NC
1893static const pseudo_typeS mips_pseudo_table[] =
1894{
beae10d5 1895 /* MIPS specific pseudo-ops. */
252b5132
RH
1896 {"option", s_option, 0},
1897 {"set", s_mipsset, 0},
1898 {"rdata", s_change_sec, 'r'},
1899 {"sdata", s_change_sec, 's'},
1900 {"livereg", s_ignore, 0},
1901 {"abicalls", s_abicalls, 0},
1902 {"cpload", s_cpload, 0},
6478892d
TS
1903 {"cpsetup", s_cpsetup, 0},
1904 {"cplocal", s_cplocal, 0},
252b5132 1905 {"cprestore", s_cprestore, 0},
6478892d 1906 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1907 {"dtprelword", s_dtprelword, 0},
1908 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1909 {"tprelword", s_tprelword, 0},
1910 {"tpreldword", s_tpreldword, 0},
6478892d 1911 {"gpvalue", s_gpvalue, 0},
252b5132 1912 {"gpword", s_gpword, 0},
10181a0d 1913 {"gpdword", s_gpdword, 0},
a3f278e2 1914 {"ehword", s_ehword, 0},
252b5132
RH
1915 {"cpadd", s_cpadd, 0},
1916 {"insn", s_insn, 0},
ba92f887 1917 {"nan", s_nan, 0},
919731af 1918 {"module", s_module, 0},
252b5132 1919
beae10d5 1920 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1921 chips. */
38a57ae7 1922 {"asciiz", stringer, 8 + 1},
252b5132
RH
1923 {"bss", s_change_sec, 'b'},
1924 {"err", s_err, 0},
1925 {"half", s_cons, 1},
1926 {"dword", s_cons, 3},
1927 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1928 {"origin", s_org, 0},
1929 {"repeat", s_rept, 0},
252b5132 1930
998b3c36
MR
1931 /* For MIPS this is non-standard, but we define it for consistency. */
1932 {"sbss", s_change_sec, 'B'},
1933
beae10d5 1934 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1935 here for one reason or another. */
1936 {"align", s_align, 0},
1937 {"byte", s_cons, 0},
1938 {"data", s_change_sec, 'd'},
1939 {"double", s_float_cons, 'd'},
1940 {"float", s_float_cons, 'f'},
1941 {"globl", s_mips_globl, 0},
1942 {"global", s_mips_globl, 0},
1943 {"hword", s_cons, 1},
1944 {"int", s_cons, 2},
1945 {"long", s_cons, 2},
1946 {"octa", s_cons, 4},
1947 {"quad", s_cons, 3},
cca86cc8 1948 {"section", s_change_section, 0},
252b5132
RH
1949 {"short", s_cons, 1},
1950 {"single", s_float_cons, 'f'},
754e2bb9 1951 {"stabd", s_mips_stab, 'd'},
252b5132 1952 {"stabn", s_mips_stab, 'n'},
754e2bb9 1953 {"stabs", s_mips_stab, 's'},
252b5132
RH
1954 {"text", s_change_sec, 't'},
1955 {"word", s_cons, 2},
add56521 1956
add56521 1957 { "extern", ecoff_directive_extern, 0},
add56521 1958
43841e91 1959 { NULL, NULL, 0 },
252b5132
RH
1960};
1961
e972090a
NC
1962static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1963{
beae10d5
KH
1964 /* These pseudo-ops should be defined by the object file format.
1965 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1966 {"aent", s_mips_ent, 1},
1967 {"bgnb", s_ignore, 0},
1968 {"end", s_mips_end, 0},
1969 {"endb", s_ignore, 0},
1970 {"ent", s_mips_ent, 0},
c5dd6aab 1971 {"file", s_mips_file, 0},
252b5132
RH
1972 {"fmask", s_mips_mask, 'F'},
1973 {"frame", s_mips_frame, 0},
c5dd6aab 1974 {"loc", s_mips_loc, 0},
252b5132
RH
1975 {"mask", s_mips_mask, 'R'},
1976 {"verstamp", s_ignore, 0},
43841e91 1977 { NULL, NULL, 0 },
252b5132
RH
1978};
1979
3ae8dd8d
MR
1980/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1981 purpose of the `.dc.a' internal pseudo-op. */
1982
1983int
1984mips_address_bytes (void)
1985{
919731af 1986 file_mips_check_options ();
3ae8dd8d
MR
1987 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1988}
1989
17a2f251 1990extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1991
1992void
17a2f251 1993mips_pop_insert (void)
252b5132
RH
1994{
1995 pop_insert (mips_pseudo_table);
1996 if (! ECOFF_DEBUGGING)
1997 pop_insert (mips_nonecoff_pseudo_table);
1998}
1999\f
2000/* Symbols labelling the current insn. */
2001
e972090a
NC
2002struct insn_label_list
2003{
252b5132
RH
2004 struct insn_label_list *next;
2005 symbolS *label;
2006};
2007
252b5132 2008static struct insn_label_list *free_insn_labels;
742a56fe 2009#define label_list tc_segment_info_data.labels
252b5132 2010
17a2f251 2011static void mips_clear_insn_labels (void);
df58fc94
RS
2012static void mips_mark_labels (void);
2013static void mips_compressed_mark_labels (void);
252b5132
RH
2014
2015static inline void
17a2f251 2016mips_clear_insn_labels (void)
252b5132 2017{
ed9e98c2 2018 struct insn_label_list **pl;
a8dbcb85 2019 segment_info_type *si;
252b5132 2020
a8dbcb85
TS
2021 if (now_seg)
2022 {
2023 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
2024 ;
3739860c 2025
a8dbcb85
TS
2026 si = seg_info (now_seg);
2027 *pl = si->label_list;
2028 si->label_list = NULL;
2029 }
252b5132 2030}
a8dbcb85 2031
df58fc94
RS
2032/* Mark instruction labels in MIPS16/microMIPS mode. */
2033
2034static inline void
2035mips_mark_labels (void)
2036{
2037 if (HAVE_CODE_COMPRESSION)
2038 mips_compressed_mark_labels ();
2039}
252b5132
RH
2040\f
2041static char *expr_end;
2042
e423441d 2043/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 2044 mips16_ip and when populated is always an O_constant. */
252b5132
RH
2045
2046static expressionS imm_expr;
252b5132 2047
77bd4346
RS
2048/* The relocatable field in an instruction and the relocs associated
2049 with it. These variables are used for instructions like LUI and
2050 JAL as well as true offsets. They are also used for address
2051 operands in macros. */
252b5132 2052
77bd4346 2053static expressionS offset_expr;
f6688943
TS
2054static bfd_reloc_code_real_type offset_reloc[3]
2055 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 2056
df58fc94
RS
2057/* This is set to the resulting size of the instruction to be produced
2058 by mips16_ip if an explicit extension is used or by mips_ip if an
2059 explicit size is supplied. */
252b5132 2060
df58fc94 2061static unsigned int forced_insn_length;
252b5132 2062
e1b47bd5
RS
2063/* True if we are assembling an instruction. All dot symbols defined during
2064 this time should be treated as code labels. */
2065
5b7c81bd 2066static bool mips_assembling_insn;
e1b47bd5 2067
ecb4347a
DJ
2068/* The pdr segment for per procedure frame/regmask info. Not used for
2069 ECOFF debugging. */
252b5132
RH
2070
2071static segT pdr_seg;
252b5132 2072
e013f690
TS
2073/* The default target format to use. */
2074
aeffff67
RS
2075#if defined (TE_FreeBSD)
2076#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2077#elif defined (TE_TMIPS)
2078#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2079#else
2080#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2081#endif
2082
e013f690 2083const char *
17a2f251 2084mips_target_format (void)
e013f690
TS
2085{
2086 switch (OUTPUT_FLAVOR)
2087 {
e013f690 2088 case bfd_target_elf_flavour:
0a44bf69
RS
2089#ifdef TE_VXWORKS
2090 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2091 return (target_big_endian
2092 ? "elf32-bigmips-vxworks"
2093 : "elf32-littlemips-vxworks");
2094#endif
e013f690 2095 return (target_big_endian
cfe86eaa 2096 ? (HAVE_64BIT_OBJECTS
aeffff67 2097 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 2098 : (HAVE_NEWABI
aeffff67
RS
2099 ? ELF_TARGET ("elf32-n", "big")
2100 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 2101 : (HAVE_64BIT_OBJECTS
aeffff67 2102 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 2103 : (HAVE_NEWABI
aeffff67
RS
2104 ? ELF_TARGET ("elf32-n", "little")
2105 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
2106 default:
2107 abort ();
2108 return NULL;
2109 }
2110}
2111
c6278170
RS
2112/* Return the ISA revision that is currently in use, or 0 if we are
2113 generating code for MIPS V or below. */
2114
2115static int
2116mips_isa_rev (void)
2117{
2118 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2119 return 2;
2120
ae52f483
AB
2121 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2122 return 3;
2123
2124 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2125 return 5;
2126
7361da2c
AB
2127 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2128 return 6;
2129
c6278170
RS
2130 /* microMIPS implies revision 2 or above. */
2131 if (mips_opts.micromips)
2132 return 2;
2133
2134 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2135 return 1;
2136
2137 return 0;
2138}
2139
2140/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2141
2142static unsigned int
2143mips_ase_mask (unsigned int flags)
2144{
2145 unsigned int i;
2146
2147 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2148 if (flags & mips_ase_groups[i])
2149 flags |= mips_ase_groups[i];
2150 return flags;
2151}
2152
2153/* Check whether the current ISA supports ASE. Issue a warning if
2154 appropriate. */
2155
2156static void
2157mips_check_isa_supports_ase (const struct mips_ase *ase)
2158{
2159 const char *base;
2160 int min_rev, size;
2161 static unsigned int warned_isa;
2162 static unsigned int warned_fp32;
2163
2164 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2165 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2166 else
2167 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2168 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2169 && (warned_isa & ase->flags) != ase->flags)
2170 {
2171 warned_isa |= ase->flags;
2172 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2173 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2174 if (min_rev < 0)
1661c76c 2175 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2176 " `%s' extension"), size, base, ase->name);
2177 else
1661c76c 2178 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2179 ase->name, base, size, min_rev);
2180 }
7361da2c
AB
2181 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2182 && (warned_isa & ase->flags) != ase->flags)
2183 {
2184 warned_isa |= ase->flags;
2185 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2186 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2187 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2188 ase->name, base, size, ase->rem_rev);
2189 }
2190
c6278170 2191 if ((ase->flags & FP64_ASES)
0b35dfee 2192 && mips_opts.fp != 64
c6278170
RS
2193 && (warned_fp32 & ase->flags) != ase->flags)
2194 {
2195 warned_fp32 |= ase->flags;
1661c76c 2196 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2197 }
2198}
2199
2200/* Check all enabled ASEs to see whether they are supported by the
2201 chosen architecture. */
2202
2203static void
2204mips_check_isa_supports_ases (void)
2205{
2206 unsigned int i, mask;
2207
2208 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2209 {
2210 mask = mips_ase_mask (mips_ases[i].flags);
2211 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2212 mips_check_isa_supports_ase (&mips_ases[i]);
2213 }
2214}
2215
2216/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2217 that were affected. */
2218
2219static unsigned int
919731af 2220mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
5b7c81bd 2221 bool enabled_p)
c6278170
RS
2222{
2223 unsigned int mask;
2224
2225 mask = mips_ase_mask (ase->flags);
919731af 2226 opts->ase &= ~mask;
92cebb3d
MR
2227
2228 /* Clear combination ASE flags, which need to be recalculated based on
2229 updated regular ASE settings. */
41cee089 2230 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT | ASE_EVA_R6);
92cebb3d 2231
c6278170 2232 if (enabled_p)
919731af 2233 opts->ase |= ase->flags;
25499ac7 2234
9785fc2a
MR
2235 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2236 instructions which are only valid when both ASEs are enabled.
2237 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2238 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2239 {
2240 opts->ase |= ASE_XPA_VIRT;
2241 mask |= ASE_XPA_VIRT;
2242 }
25499ac7
MR
2243 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2244 {
2245 opts->ase |= ASE_MIPS16E2_MT;
2246 mask |= ASE_MIPS16E2_MT;
2247 }
2248
41cee089
FS
2249 /* The EVA Extension has instructions which are only valid when the R6 ISA
2250 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
2251 present. */
2252 if (((opts->ase & ASE_EVA) != 0) && ISA_IS_R6 (opts->isa))
2253 {
2254 opts->ase |= ASE_EVA_R6;
2255 mask |= ASE_EVA_R6;
2256 }
2257
c6278170
RS
2258 return mask;
2259}
2260
2261/* Return the ASE called NAME, or null if none. */
2262
2263static const struct mips_ase *
2264mips_lookup_ase (const char *name)
2265{
2266 unsigned int i;
2267
2268 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2269 if (strcmp (name, mips_ases[i].name) == 0)
2270 return &mips_ases[i];
2271 return NULL;
2272}
2273
df58fc94 2274/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2275 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2276 otherwise it is a 32-bit instruction. */
df58fc94
RS
2277
2278static inline unsigned int
2279micromips_insn_length (const struct mips_opcode *mo)
2280{
7fd53920 2281 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2282}
2283
5c04167a
RS
2284/* Return the length of MIPS16 instruction OPCODE. */
2285
2286static inline unsigned int
2287mips16_opcode_length (unsigned long opcode)
2288{
2289 return (opcode >> 16) == 0 ? 2 : 4;
2290}
2291
1e915849
RS
2292/* Return the length of instruction INSN. */
2293
2294static inline unsigned int
2295insn_length (const struct mips_cl_insn *insn)
2296{
df58fc94
RS
2297 if (mips_opts.micromips)
2298 return micromips_insn_length (insn->insn_mo);
2299 else if (mips_opts.mips16)
5c04167a 2300 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2301 else
1e915849 2302 return 4;
1e915849
RS
2303}
2304
2305/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2306
2307static void
2308create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2309{
2310 size_t i;
2311
2312 insn->insn_mo = mo;
1e915849
RS
2313 insn->insn_opcode = mo->match;
2314 insn->frag = NULL;
2315 insn->where = 0;
2316 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2317 insn->fixp[i] = NULL;
2318 insn->fixed_p = (mips_opts.noreorder > 0);
2319 insn->noreorder_p = (mips_opts.noreorder > 0);
2320 insn->mips16_absolute_jump_p = 0;
15be625d 2321 insn->complete_p = 0;
e407c74b 2322 insn->cleared_p = 0;
1e915849
RS
2323}
2324
fc76e730
RS
2325/* Get a list of all the operands in INSN. */
2326
2327static const struct mips_operand_array *
2328insn_operands (const struct mips_cl_insn *insn)
2329{
2330 if (insn->insn_mo >= &mips_opcodes[0]
2331 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2332 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2333
2334 if (insn->insn_mo >= &mips16_opcodes[0]
2335 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2336 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2337
2338 if (insn->insn_mo >= &micromips_opcodes[0]
2339 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2340 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2341
2342 abort ();
2343}
2344
2345/* Get a description of operand OPNO of INSN. */
2346
2347static const struct mips_operand *
2348insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2349{
2350 const struct mips_operand_array *operands;
2351
2352 operands = insn_operands (insn);
2353 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2354 abort ();
2355 return operands->operand[opno];
2356}
2357
e077a1c8
RS
2358/* Install UVAL as the value of OPERAND in INSN. */
2359
2360static inline void
2361insn_insert_operand (struct mips_cl_insn *insn,
2362 const struct mips_operand *operand, unsigned int uval)
2363{
25499ac7
MR
2364 if (mips_opts.mips16
2365 && operand->type == OP_INT && operand->lsb == 0
2366 && mips_opcode_32bit_p (insn->insn_mo))
2367 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2368 else
2369 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
e077a1c8
RS
2370}
2371
fc76e730
RS
2372/* Extract the value of OPERAND from INSN. */
2373
2374static inline unsigned
2375insn_extract_operand (const struct mips_cl_insn *insn,
2376 const struct mips_operand *operand)
2377{
2378 return mips_extract_operand (operand, insn->insn_opcode);
2379}
2380
df58fc94 2381/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2382
2383static void
df58fc94 2384mips_record_compressed_mode (void)
742a56fe
RS
2385{
2386 segment_info_type *si;
2387
2388 si = seg_info (now_seg);
2389 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2390 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2391 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2392 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2393}
2394
4d68580a
RS
2395/* Read a standard MIPS instruction from BUF. */
2396
2397static unsigned long
2398read_insn (char *buf)
2399{
2400 if (target_big_endian)
2401 return bfd_getb32 ((bfd_byte *) buf);
2402 else
2403 return bfd_getl32 ((bfd_byte *) buf);
2404}
2405
2406/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2407 the next byte. */
2408
2409static char *
2410write_insn (char *buf, unsigned int insn)
2411{
2412 md_number_to_chars (buf, insn, 4);
2413 return buf + 4;
2414}
2415
2416/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2417 has length LENGTH. */
2418
2419static unsigned long
2420read_compressed_insn (char *buf, unsigned int length)
2421{
2422 unsigned long insn;
2423 unsigned int i;
2424
2425 insn = 0;
2426 for (i = 0; i < length; i += 2)
2427 {
2428 insn <<= 16;
2429 if (target_big_endian)
2430 insn |= bfd_getb16 ((char *) buf);
2431 else
2432 insn |= bfd_getl16 ((char *) buf);
2433 buf += 2;
2434 }
2435 return insn;
2436}
2437
5c04167a
RS
2438/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2439 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2440
2441static char *
2442write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2443{
2444 unsigned int i;
2445
2446 for (i = 0; i < length; i += 2)
2447 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2448 return buf + length;
2449}
2450
1e915849
RS
2451/* Install INSN at the location specified by its "frag" and "where" fields. */
2452
2453static void
2454install_insn (const struct mips_cl_insn *insn)
2455{
2456 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2457 if (HAVE_CODE_COMPRESSION)
2458 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2459 else
4d68580a 2460 write_insn (f, insn->insn_opcode);
df58fc94 2461 mips_record_compressed_mode ();
1e915849
RS
2462}
2463
2464/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2465 and install the opcode in the new location. */
2466
2467static void
2468move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2469{
2470 size_t i;
2471
2472 insn->frag = frag;
2473 insn->where = where;
2474 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2475 if (insn->fixp[i] != NULL)
2476 {
2477 insn->fixp[i]->fx_frag = frag;
2478 insn->fixp[i]->fx_where = where;
2479 }
2480 install_insn (insn);
2481}
2482
2483/* Add INSN to the end of the output. */
2484
2485static void
2486add_fixed_insn (struct mips_cl_insn *insn)
2487{
2488 char *f = frag_more (insn_length (insn));
2489 move_insn (insn, frag_now, f - frag_now->fr_literal);
2490}
2491
2492/* Start a variant frag and move INSN to the start of the variant part,
2493 marking it as fixed. The other arguments are as for frag_var. */
2494
2495static void
2496add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2497 relax_substateT subtype, symbolS *symbol, offsetT offset)
2498{
2499 frag_grow (max_chars);
2500 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2501 insn->fixed_p = 1;
2502 frag_var (rs_machine_dependent, max_chars, var,
2503 subtype, symbol, offset, NULL);
2504}
2505
2506/* Insert N copies of INSN into the history buffer, starting at
2507 position FIRST. Neither FIRST nor N need to be clipped. */
2508
2509static void
2510insert_into_history (unsigned int first, unsigned int n,
2511 const struct mips_cl_insn *insn)
2512{
2513 if (mips_relax.sequence != 2)
2514 {
2515 unsigned int i;
2516
2517 for (i = ARRAY_SIZE (history); i-- > first;)
2518 if (i >= first + n)
2519 history[i] = history[i - n];
2520 else
2521 history[i] = *insn;
2522 }
2523}
2524
e3de51ce
RS
2525/* Clear the error in insn_error. */
2526
2527static void
2528clear_insn_error (void)
2529{
2530 memset (&insn_error, 0, sizeof (insn_error));
2531}
2532
2533/* Possibly record error message MSG for the current instruction.
2534 If the error is about a particular argument, ARGNUM is the 1-based
2535 number of that argument, otherwise it is 0. FORMAT is the format
2536 of MSG. Return true if MSG was used, false if the current message
2537 was kept. */
2538
5b7c81bd 2539static bool
e3de51ce
RS
2540set_insn_error_format (int argnum, enum mips_insn_error_format format,
2541 const char *msg)
2542{
2543 if (argnum == 0)
2544 {
2545 /* Give priority to errors against specific arguments, and to
2546 the first whole-instruction message. */
2547 if (insn_error.msg)
5b7c81bd 2548 return false;
e3de51ce
RS
2549 }
2550 else
2551 {
2552 /* Keep insn_error if it is against a later argument. */
2553 if (argnum < insn_error.min_argnum)
5b7c81bd 2554 return false;
e3de51ce
RS
2555
2556 /* If both errors are against the same argument but are different,
2557 give up on reporting a specific error for this argument.
2558 See the comment about mips_insn_error for details. */
2559 if (argnum == insn_error.min_argnum
2560 && insn_error.msg
2561 && strcmp (insn_error.msg, msg) != 0)
2562 {
2563 insn_error.msg = 0;
2564 insn_error.min_argnum += 1;
5b7c81bd 2565 return false;
e3de51ce
RS
2566 }
2567 }
2568 insn_error.min_argnum = argnum;
2569 insn_error.format = format;
2570 insn_error.msg = msg;
5b7c81bd 2571 return true;
e3de51ce
RS
2572}
2573
2574/* Record an instruction error with no % format fields. ARGNUM and MSG are
2575 as for set_insn_error_format. */
2576
2577static void
2578set_insn_error (int argnum, const char *msg)
2579{
2580 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2581}
2582
2583/* Record an instruction error with one %d field I. ARGNUM and MSG are
2584 as for set_insn_error_format. */
2585
2586static void
2587set_insn_error_i (int argnum, const char *msg, int i)
2588{
2589 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2590 insn_error.u.i = i;
2591}
2592
2593/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2594 are as for set_insn_error_format. */
2595
2596static void
2597set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2598{
2599 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2600 {
2601 insn_error.u.ss[0] = s1;
2602 insn_error.u.ss[1] = s2;
2603 }
2604}
2605
2606/* Report the error in insn_error, which is against assembly code STR. */
2607
2608static void
2609report_insn_error (const char *str)
2610{
e1fa0163 2611 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2612
e3de51ce
RS
2613 switch (insn_error.format)
2614 {
2615 case ERR_FMT_PLAIN:
2616 as_bad (msg, str);
2617 break;
2618
2619 case ERR_FMT_I:
2620 as_bad (msg, insn_error.u.i, str);
2621 break;
2622
2623 case ERR_FMT_SS:
2624 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2625 break;
2626 }
e1fa0163
NC
2627
2628 free ((char *) msg);
e3de51ce
RS
2629}
2630
71400594
RS
2631/* Initialize vr4120_conflicts. There is a bit of duplication here:
2632 the idea is to make it obvious at a glance that each errata is
2633 included. */
2634
2635static void
2636init_vr4120_conflicts (void)
2637{
2638#define CONFLICT(FIRST, SECOND) \
2639 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2640
2641 /* Errata 21 - [D]DIV[U] after [D]MACC */
2642 CONFLICT (MACC, DIV);
2643 CONFLICT (DMACC, DIV);
2644
2645 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2646 CONFLICT (DMULT, DMULT);
2647 CONFLICT (DMULT, DMACC);
2648 CONFLICT (DMACC, DMULT);
2649 CONFLICT (DMACC, DMACC);
2650
2651 /* Errata 24 - MT{LO,HI} after [D]MACC */
2652 CONFLICT (MACC, MTHILO);
2653 CONFLICT (DMACC, MTHILO);
2654
2655 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2656 instruction is executed immediately after a MACC or DMACC
2657 instruction, the result of [either instruction] is incorrect." */
2658 CONFLICT (MACC, MULT);
2659 CONFLICT (MACC, DMULT);
2660 CONFLICT (DMACC, MULT);
2661 CONFLICT (DMACC, DMULT);
2662
2663 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2664 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2665 DDIV or DDIVU instruction, the result of the MACC or
2666 DMACC instruction is incorrect.". */
2667 CONFLICT (DMULT, MACC);
2668 CONFLICT (DMULT, DMACC);
2669 CONFLICT (DIV, MACC);
2670 CONFLICT (DIV, DMACC);
2671
2672#undef CONFLICT
2673}
2674
707bfff6
TS
2675struct regname {
2676 const char *name;
2677 unsigned int num;
2678};
2679
14daeee3 2680#define RNUM_MASK 0x00000ff
56d438b1 2681#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2682#define RTYPE_NUM 0x0000100
2683#define RTYPE_FPU 0x0000200
2684#define RTYPE_FCC 0x0000400
2685#define RTYPE_VEC 0x0000800
2686#define RTYPE_GP 0x0001000
2687#define RTYPE_CP0 0x0002000
2688#define RTYPE_PC 0x0004000
2689#define RTYPE_ACC 0x0008000
2690#define RTYPE_CCC 0x0010000
2691#define RTYPE_VI 0x0020000
2692#define RTYPE_VF 0x0040000
2693#define RTYPE_R5900_I 0x0080000
2694#define RTYPE_R5900_Q 0x0100000
2695#define RTYPE_R5900_R 0x0200000
2696#define RTYPE_R5900_ACC 0x0400000
56d438b1 2697#define RTYPE_MSA 0x0800000
14daeee3 2698#define RWARN 0x8000000
707bfff6
TS
2699
2700#define GENERIC_REGISTER_NUMBERS \
2701 {"$0", RTYPE_NUM | 0}, \
2702 {"$1", RTYPE_NUM | 1}, \
2703 {"$2", RTYPE_NUM | 2}, \
2704 {"$3", RTYPE_NUM | 3}, \
2705 {"$4", RTYPE_NUM | 4}, \
2706 {"$5", RTYPE_NUM | 5}, \
2707 {"$6", RTYPE_NUM | 6}, \
2708 {"$7", RTYPE_NUM | 7}, \
2709 {"$8", RTYPE_NUM | 8}, \
2710 {"$9", RTYPE_NUM | 9}, \
2711 {"$10", RTYPE_NUM | 10}, \
2712 {"$11", RTYPE_NUM | 11}, \
2713 {"$12", RTYPE_NUM | 12}, \
2714 {"$13", RTYPE_NUM | 13}, \
2715 {"$14", RTYPE_NUM | 14}, \
2716 {"$15", RTYPE_NUM | 15}, \
2717 {"$16", RTYPE_NUM | 16}, \
2718 {"$17", RTYPE_NUM | 17}, \
2719 {"$18", RTYPE_NUM | 18}, \
2720 {"$19", RTYPE_NUM | 19}, \
2721 {"$20", RTYPE_NUM | 20}, \
2722 {"$21", RTYPE_NUM | 21}, \
2723 {"$22", RTYPE_NUM | 22}, \
2724 {"$23", RTYPE_NUM | 23}, \
2725 {"$24", RTYPE_NUM | 24}, \
2726 {"$25", RTYPE_NUM | 25}, \
2727 {"$26", RTYPE_NUM | 26}, \
2728 {"$27", RTYPE_NUM | 27}, \
2729 {"$28", RTYPE_NUM | 28}, \
2730 {"$29", RTYPE_NUM | 29}, \
2731 {"$30", RTYPE_NUM | 30}, \
3739860c 2732 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2733
2734#define FPU_REGISTER_NAMES \
2735 {"$f0", RTYPE_FPU | 0}, \
2736 {"$f1", RTYPE_FPU | 1}, \
2737 {"$f2", RTYPE_FPU | 2}, \
2738 {"$f3", RTYPE_FPU | 3}, \
2739 {"$f4", RTYPE_FPU | 4}, \
2740 {"$f5", RTYPE_FPU | 5}, \
2741 {"$f6", RTYPE_FPU | 6}, \
2742 {"$f7", RTYPE_FPU | 7}, \
2743 {"$f8", RTYPE_FPU | 8}, \
2744 {"$f9", RTYPE_FPU | 9}, \
2745 {"$f10", RTYPE_FPU | 10}, \
2746 {"$f11", RTYPE_FPU | 11}, \
2747 {"$f12", RTYPE_FPU | 12}, \
2748 {"$f13", RTYPE_FPU | 13}, \
2749 {"$f14", RTYPE_FPU | 14}, \
2750 {"$f15", RTYPE_FPU | 15}, \
2751 {"$f16", RTYPE_FPU | 16}, \
2752 {"$f17", RTYPE_FPU | 17}, \
2753 {"$f18", RTYPE_FPU | 18}, \
2754 {"$f19", RTYPE_FPU | 19}, \
2755 {"$f20", RTYPE_FPU | 20}, \
2756 {"$f21", RTYPE_FPU | 21}, \
2757 {"$f22", RTYPE_FPU | 22}, \
2758 {"$f23", RTYPE_FPU | 23}, \
2759 {"$f24", RTYPE_FPU | 24}, \
2760 {"$f25", RTYPE_FPU | 25}, \
2761 {"$f26", RTYPE_FPU | 26}, \
2762 {"$f27", RTYPE_FPU | 27}, \
2763 {"$f28", RTYPE_FPU | 28}, \
2764 {"$f29", RTYPE_FPU | 29}, \
2765 {"$f30", RTYPE_FPU | 30}, \
2766 {"$f31", RTYPE_FPU | 31}
2767
2768#define FPU_CONDITION_CODE_NAMES \
2769 {"$fcc0", RTYPE_FCC | 0}, \
2770 {"$fcc1", RTYPE_FCC | 1}, \
2771 {"$fcc2", RTYPE_FCC | 2}, \
2772 {"$fcc3", RTYPE_FCC | 3}, \
2773 {"$fcc4", RTYPE_FCC | 4}, \
2774 {"$fcc5", RTYPE_FCC | 5}, \
2775 {"$fcc6", RTYPE_FCC | 6}, \
2776 {"$fcc7", RTYPE_FCC | 7}
2777
2778#define COPROC_CONDITION_CODE_NAMES \
2779 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2780 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2781 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2782 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2783 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2784 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2785 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2786 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2787
2788#define N32N64_SYMBOLIC_REGISTER_NAMES \
2789 {"$a4", RTYPE_GP | 8}, \
2790 {"$a5", RTYPE_GP | 9}, \
2791 {"$a6", RTYPE_GP | 10}, \
2792 {"$a7", RTYPE_GP | 11}, \
2793 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2794 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2795 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2796 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2797 {"$t0", RTYPE_GP | 12}, \
2798 {"$t1", RTYPE_GP | 13}, \
2799 {"$t2", RTYPE_GP | 14}, \
2800 {"$t3", RTYPE_GP | 15}
2801
2802#define O32_SYMBOLIC_REGISTER_NAMES \
2803 {"$t0", RTYPE_GP | 8}, \
2804 {"$t1", RTYPE_GP | 9}, \
2805 {"$t2", RTYPE_GP | 10}, \
2806 {"$t3", RTYPE_GP | 11}, \
2807 {"$t4", RTYPE_GP | 12}, \
2808 {"$t5", RTYPE_GP | 13}, \
2809 {"$t6", RTYPE_GP | 14}, \
2810 {"$t7", RTYPE_GP | 15}, \
2811 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2812 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2813 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2814 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6 2815
6f2117ba 2816/* Remaining symbolic register names. */
707bfff6
TS
2817#define SYMBOLIC_REGISTER_NAMES \
2818 {"$zero", RTYPE_GP | 0}, \
2819 {"$at", RTYPE_GP | 1}, \
2820 {"$AT", RTYPE_GP | 1}, \
2821 {"$v0", RTYPE_GP | 2}, \
2822 {"$v1", RTYPE_GP | 3}, \
2823 {"$a0", RTYPE_GP | 4}, \
2824 {"$a1", RTYPE_GP | 5}, \
2825 {"$a2", RTYPE_GP | 6}, \
2826 {"$a3", RTYPE_GP | 7}, \
2827 {"$s0", RTYPE_GP | 16}, \
2828 {"$s1", RTYPE_GP | 17}, \
2829 {"$s2", RTYPE_GP | 18}, \
2830 {"$s3", RTYPE_GP | 19}, \
2831 {"$s4", RTYPE_GP | 20}, \
2832 {"$s5", RTYPE_GP | 21}, \
2833 {"$s6", RTYPE_GP | 22}, \
2834 {"$s7", RTYPE_GP | 23}, \
2835 {"$t8", RTYPE_GP | 24}, \
2836 {"$t9", RTYPE_GP | 25}, \
2837 {"$k0", RTYPE_GP | 26}, \
2838 {"$kt0", RTYPE_GP | 26}, \
2839 {"$k1", RTYPE_GP | 27}, \
2840 {"$kt1", RTYPE_GP | 27}, \
2841 {"$gp", RTYPE_GP | 28}, \
2842 {"$sp", RTYPE_GP | 29}, \
2843 {"$s8", RTYPE_GP | 30}, \
2844 {"$fp", RTYPE_GP | 30}, \
2845 {"$ra", RTYPE_GP | 31}
2846
2847#define MIPS16_SPECIAL_REGISTER_NAMES \
2848 {"$pc", RTYPE_PC | 0}
2849
2850#define MDMX_VECTOR_REGISTER_NAMES \
6f2117ba
PH
2851 /* {"$v0", RTYPE_VEC | 0}, Clash with REG 2 above. */ \
2852 /* {"$v1", RTYPE_VEC | 1}, Clash with REG 3 above. */ \
707bfff6
TS
2853 {"$v2", RTYPE_VEC | 2}, \
2854 {"$v3", RTYPE_VEC | 3}, \
2855 {"$v4", RTYPE_VEC | 4}, \
2856 {"$v5", RTYPE_VEC | 5}, \
2857 {"$v6", RTYPE_VEC | 6}, \
2858 {"$v7", RTYPE_VEC | 7}, \
2859 {"$v8", RTYPE_VEC | 8}, \
2860 {"$v9", RTYPE_VEC | 9}, \
2861 {"$v10", RTYPE_VEC | 10}, \
2862 {"$v11", RTYPE_VEC | 11}, \
2863 {"$v12", RTYPE_VEC | 12}, \
2864 {"$v13", RTYPE_VEC | 13}, \
2865 {"$v14", RTYPE_VEC | 14}, \
2866 {"$v15", RTYPE_VEC | 15}, \
2867 {"$v16", RTYPE_VEC | 16}, \
2868 {"$v17", RTYPE_VEC | 17}, \
2869 {"$v18", RTYPE_VEC | 18}, \
2870 {"$v19", RTYPE_VEC | 19}, \
2871 {"$v20", RTYPE_VEC | 20}, \
2872 {"$v21", RTYPE_VEC | 21}, \
2873 {"$v22", RTYPE_VEC | 22}, \
2874 {"$v23", RTYPE_VEC | 23}, \
2875 {"$v24", RTYPE_VEC | 24}, \
2876 {"$v25", RTYPE_VEC | 25}, \
2877 {"$v26", RTYPE_VEC | 26}, \
2878 {"$v27", RTYPE_VEC | 27}, \
2879 {"$v28", RTYPE_VEC | 28}, \
2880 {"$v29", RTYPE_VEC | 29}, \
2881 {"$v30", RTYPE_VEC | 30}, \
2882 {"$v31", RTYPE_VEC | 31}
2883
14daeee3
RS
2884#define R5900_I_NAMES \
2885 {"$I", RTYPE_R5900_I | 0}
2886
2887#define R5900_Q_NAMES \
2888 {"$Q", RTYPE_R5900_Q | 0}
2889
2890#define R5900_R_NAMES \
2891 {"$R", RTYPE_R5900_R | 0}
2892
2893#define R5900_ACC_NAMES \
2894 {"$ACC", RTYPE_R5900_ACC | 0 }
2895
707bfff6
TS
2896#define MIPS_DSP_ACCUMULATOR_NAMES \
2897 {"$ac0", RTYPE_ACC | 0}, \
2898 {"$ac1", RTYPE_ACC | 1}, \
2899 {"$ac2", RTYPE_ACC | 2}, \
2900 {"$ac3", RTYPE_ACC | 3}
2901
2902static const struct regname reg_names[] = {
2903 GENERIC_REGISTER_NUMBERS,
2904 FPU_REGISTER_NAMES,
2905 FPU_CONDITION_CODE_NAMES,
2906 COPROC_CONDITION_CODE_NAMES,
2907
2908 /* The $txx registers depends on the abi,
2909 these will be added later into the symbol table from
3739860c 2910 one of the tables below once mips_abi is set after
707bfff6
TS
2911 parsing of arguments from the command line. */
2912 SYMBOLIC_REGISTER_NAMES,
2913
2914 MIPS16_SPECIAL_REGISTER_NAMES,
2915 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2916 R5900_I_NAMES,
2917 R5900_Q_NAMES,
2918 R5900_R_NAMES,
2919 R5900_ACC_NAMES,
707bfff6
TS
2920 MIPS_DSP_ACCUMULATOR_NAMES,
2921 {0, 0}
2922};
2923
2924static const struct regname reg_names_o32[] = {
2925 O32_SYMBOLIC_REGISTER_NAMES,
2926 {0, 0}
2927};
2928
2929static const struct regname reg_names_n32n64[] = {
2930 N32N64_SYMBOLIC_REGISTER_NAMES,
2931 {0, 0}
2932};
2933
a92713e6
RS
2934/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2935 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2936 of these register symbols, return the associated vector register,
2937 otherwise return SYMVAL itself. */
df58fc94 2938
a92713e6
RS
2939static unsigned int
2940mips_prefer_vec_regno (unsigned int symval)
707bfff6 2941{
a92713e6
RS
2942 if ((symval & -2) == (RTYPE_GP | 2))
2943 return RTYPE_VEC | (symval & 1);
2944 return symval;
2945}
2946
14daeee3
RS
2947/* Return true if string [S, E) is a valid register name, storing its
2948 symbol value in *SYMVAL_PTR if so. */
a92713e6 2949
5b7c81bd 2950static bool
14daeee3 2951mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2952{
707bfff6 2953 char save_c;
14daeee3 2954 symbolS *symbol;
707bfff6
TS
2955
2956 /* Terminate name. */
2957 save_c = *e;
2958 *e = '\0';
2959
a92713e6
RS
2960 /* Look up the name. */
2961 symbol = symbol_find (s);
2962 *e = save_c;
2963
2964 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
5b7c81bd 2965 return false;
a92713e6 2966
14daeee3 2967 *symval_ptr = S_GET_VALUE (symbol);
5b7c81bd 2968 return true;
14daeee3
RS
2969}
2970
2971/* Return true if the string at *SPTR is a valid register name. Allow it
2972 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2973 is nonnull.
2974
2975 When returning true, move *SPTR past the register, store the
2976 register's symbol value in *SYMVAL_PTR and the channel mask in
2977 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2978 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2979 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2980
5b7c81bd 2981static bool
14daeee3
RS
2982mips_parse_register (char **sptr, unsigned int *symval_ptr,
2983 unsigned int *channels_ptr)
2984{
2985 char *s, *e, *m;
2986 const char *q;
2987 unsigned int channels, symval, bit;
2988
2989 /* Find end of name. */
2990 s = e = *sptr;
2991 if (is_name_beginner (*e))
2992 ++e;
2993 while (is_part_of_name (*e))
2994 ++e;
2995
2996 channels = 0;
2997 if (!mips_parse_register_1 (s, e, &symval))
2998 {
2999 if (!channels_ptr)
5b7c81bd 3000 return false;
14daeee3
RS
3001
3002 /* Eat characters from the end of the string that are valid
3003 channel suffixes. The preceding register must be $ACC or
3004 end with a digit, so there is no ambiguity. */
3005 bit = 1;
3006 m = e;
3007 for (q = "wzyx"; *q; q++, bit <<= 1)
3008 if (m > s && m[-1] == *q)
3009 {
3010 --m;
3011 channels |= bit;
3012 }
3013
3014 if (channels == 0
3015 || !mips_parse_register_1 (s, m, &symval)
3016 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
5b7c81bd 3017 return false;
14daeee3
RS
3018 }
3019
a92713e6 3020 *sptr = e;
14daeee3
RS
3021 *symval_ptr = symval;
3022 if (channels_ptr)
3023 *channels_ptr = channels;
5b7c81bd 3024 return true;
a92713e6
RS
3025}
3026
3027/* Check if SPTR points at a valid register specifier according to TYPES.
3028 If so, then return 1, advance S to consume the specifier and store
3029 the register's number in REGNOP, otherwise return 0. */
3030
3031static int
3032reg_lookup (char **s, unsigned int types, unsigned int *regnop)
3033{
3034 unsigned int regno;
3035
14daeee3 3036 if (mips_parse_register (s, &regno, NULL))
707bfff6 3037 {
a92713e6
RS
3038 if (types & RTYPE_VEC)
3039 regno = mips_prefer_vec_regno (regno);
3040 if (regno & types)
3041 regno &= RNUM_MASK;
3042 else
3043 regno = ~0;
707bfff6 3044 }
a92713e6 3045 else
707bfff6 3046 {
a92713e6 3047 if (types & RWARN)
1661c76c 3048 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 3049 regno = ~0;
707bfff6 3050 }
707bfff6 3051 if (regnop)
a92713e6
RS
3052 *regnop = regno;
3053 return regno <= RNUM_MASK;
707bfff6
TS
3054}
3055
14daeee3
RS
3056/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3057 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3058
3059static char *
3060mips_parse_vu0_channels (char *s, unsigned int *channels)
3061{
3062 unsigned int i;
3063
3064 *channels = 0;
3065 for (i = 0; i < 4; i++)
3066 if (*s == "xyzw"[i])
3067 {
3068 *channels |= 1 << (3 - i);
3069 ++s;
3070 }
3071 return s;
3072}
3073
a92713e6
RS
3074/* Token types for parsed operand lists. */
3075enum mips_operand_token_type {
3076 /* A plain register, e.g. $f2. */
3077 OT_REG,
df58fc94 3078
14daeee3
RS
3079 /* A 4-bit XYZW channel mask. */
3080 OT_CHANNELS,
3081
56d438b1
CF
3082 /* A constant vector index, e.g. [1]. */
3083 OT_INTEGER_INDEX,
3084
3085 /* A register vector index, e.g. [$2]. */
3086 OT_REG_INDEX,
df58fc94 3087
a92713e6
RS
3088 /* A continuous range of registers, e.g. $s0-$s4. */
3089 OT_REG_RANGE,
3090
3091 /* A (possibly relocated) expression. */
3092 OT_INTEGER,
3093
3094 /* A floating-point value. */
3095 OT_FLOAT,
3096
3097 /* A single character. This can be '(', ')' or ',', but '(' only appears
3098 before OT_REGs. */
3099 OT_CHAR,
3100
14daeee3
RS
3101 /* A doubled character, either "--" or "++". */
3102 OT_DOUBLE_CHAR,
3103
a92713e6
RS
3104 /* The end of the operand list. */
3105 OT_END
3106};
3107
3108/* A parsed operand token. */
3109struct mips_operand_token
3110{
3111 /* The type of token. */
3112 enum mips_operand_token_type type;
3113 union
3114 {
56d438b1 3115 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
3116 unsigned int regno;
3117
14daeee3
RS
3118 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3119 unsigned int channels;
3120
56d438b1
CF
3121 /* The integer value of an OT_INTEGER_INDEX. */
3122 addressT index;
a92713e6
RS
3123
3124 /* The two register symbol values involved in an OT_REG_RANGE. */
3125 struct {
3126 unsigned int regno1;
3127 unsigned int regno2;
3128 } reg_range;
3129
3130 /* The value of an OT_INTEGER. The value is represented as an
3131 expression and the relocation operators that were applied to
3132 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3133 relocation operators were used. */
3134 struct {
3135 expressionS value;
3136 bfd_reloc_code_real_type relocs[3];
3137 } integer;
3138
3139 /* The binary data for an OT_FLOAT constant, and the number of bytes
3140 in the constant. */
3141 struct {
3142 unsigned char data[8];
3143 int length;
3144 } flt;
3145
14daeee3 3146 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
3147 char ch;
3148 } u;
3149};
3150
3151/* An obstack used to construct lists of mips_operand_tokens. */
3152static struct obstack mips_operand_tokens;
3153
3154/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3155
3156static void
3157mips_add_token (struct mips_operand_token *token,
3158 enum mips_operand_token_type type)
3159{
3160 token->type = type;
3161 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3162}
3163
3164/* Check whether S is '(' followed by a register name. Add OT_CHAR
3165 and OT_REG tokens for them if so, and return a pointer to the first
3166 unconsumed character. Return null otherwise. */
3167
3168static char *
3169mips_parse_base_start (char *s)
3170{
3171 struct mips_operand_token token;
14daeee3 3172 unsigned int regno, channels;
5b7c81bd 3173 bool decrement_p;
df58fc94 3174
a92713e6
RS
3175 if (*s != '(')
3176 return 0;
3177
3178 ++s;
3179 SKIP_SPACE_TABS (s);
14daeee3
RS
3180
3181 /* Only match "--" as part of a base expression. In other contexts "--X"
3182 is a double negative. */
3183 decrement_p = (s[0] == '-' && s[1] == '-');
3184 if (decrement_p)
3185 {
3186 s += 2;
3187 SKIP_SPACE_TABS (s);
3188 }
3189
3190 /* Allow a channel specifier because that leads to better error messages
3191 than treating something like "$vf0x++" as an expression. */
3192 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3193 return 0;
3194
3195 token.u.ch = '(';
3196 mips_add_token (&token, OT_CHAR);
3197
14daeee3
RS
3198 if (decrement_p)
3199 {
3200 token.u.ch = '-';
3201 mips_add_token (&token, OT_DOUBLE_CHAR);
3202 }
3203
a92713e6
RS
3204 token.u.regno = regno;
3205 mips_add_token (&token, OT_REG);
3206
14daeee3
RS
3207 if (channels)
3208 {
3209 token.u.channels = channels;
3210 mips_add_token (&token, OT_CHANNELS);
3211 }
3212
3213 /* For consistency, only match "++" as part of base expressions too. */
3214 SKIP_SPACE_TABS (s);
3215 if (s[0] == '+' && s[1] == '+')
3216 {
3217 s += 2;
3218 token.u.ch = '+';
3219 mips_add_token (&token, OT_DOUBLE_CHAR);
3220 }
3221
a92713e6
RS
3222 return s;
3223}
3224
3225/* Parse one or more tokens from S. Return a pointer to the first
3226 unconsumed character on success. Return null if an error was found
3227 and store the error text in insn_error. FLOAT_FORMAT is as for
3228 mips_parse_arguments. */
3229
3230static char *
3231mips_parse_argument_token (char *s, char float_format)
3232{
6d4af3c2
AM
3233 char *end, *save_in;
3234 const char *err;
14daeee3 3235 unsigned int regno1, regno2, channels;
a92713e6
RS
3236 struct mips_operand_token token;
3237
3238 /* First look for "($reg", since we want to treat that as an
3239 OT_CHAR and OT_REG rather than an expression. */
3240 end = mips_parse_base_start (s);
3241 if (end)
3242 return end;
3243
3244 /* Handle other characters that end up as OT_CHARs. */
3245 if (*s == ')' || *s == ',')
3246 {
3247 token.u.ch = *s;
3248 mips_add_token (&token, OT_CHAR);
3249 ++s;
3250 return s;
3251 }
3252
3253 /* Handle tokens that start with a register. */
14daeee3 3254 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3255 {
14daeee3
RS
3256 if (channels)
3257 {
3258 /* A register and a VU0 channel suffix. */
3259 token.u.regno = regno1;
3260 mips_add_token (&token, OT_REG);
3261
3262 token.u.channels = channels;
3263 mips_add_token (&token, OT_CHANNELS);
3264 return s;
3265 }
3266
a92713e6
RS
3267 SKIP_SPACE_TABS (s);
3268 if (*s == '-')
df58fc94 3269 {
a92713e6
RS
3270 /* A register range. */
3271 ++s;
3272 SKIP_SPACE_TABS (s);
14daeee3 3273 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3274 {
1661c76c 3275 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3276 return 0;
3277 }
df58fc94 3278
a92713e6
RS
3279 token.u.reg_range.regno1 = regno1;
3280 token.u.reg_range.regno2 = regno2;
3281 mips_add_token (&token, OT_REG_RANGE);
3282 return s;
3283 }
a92713e6 3284
56d438b1
CF
3285 /* Add the register itself. */
3286 token.u.regno = regno1;
3287 mips_add_token (&token, OT_REG);
3288
3289 /* Check for a vector index. */
3290 if (*s == '[')
3291 {
a92713e6
RS
3292 ++s;
3293 SKIP_SPACE_TABS (s);
56d438b1
CF
3294 if (mips_parse_register (&s, &token.u.regno, NULL))
3295 mips_add_token (&token, OT_REG_INDEX);
3296 else
a92713e6 3297 {
56d438b1
CF
3298 expressionS element;
3299
3300 my_getExpression (&element, s);
3301 if (element.X_op != O_constant)
3302 {
3303 set_insn_error (0, _("vector element must be constant"));
3304 return 0;
3305 }
3306 s = expr_end;
3307 token.u.index = element.X_add_number;
3308 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3309 }
a92713e6
RS
3310 SKIP_SPACE_TABS (s);
3311 if (*s != ']')
3312 {
1661c76c 3313 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3314 return 0;
3315 }
3316 ++s;
df58fc94 3317 }
a92713e6 3318 return s;
df58fc94
RS
3319 }
3320
a92713e6
RS
3321 if (float_format)
3322 {
3323 /* First try to treat expressions as floats. */
3324 save_in = input_line_pointer;
3325 input_line_pointer = s;
3326 err = md_atof (float_format, (char *) token.u.flt.data,
3327 &token.u.flt.length);
3328 end = input_line_pointer;
3329 input_line_pointer = save_in;
3330 if (err && *err)
3331 {
e3de51ce 3332 set_insn_error (0, err);
a92713e6
RS
3333 return 0;
3334 }
3335 if (s != end)
3336 {
3337 mips_add_token (&token, OT_FLOAT);
3338 return end;
3339 }
3340 }
3341
3342 /* Treat everything else as an integer expression. */
3343 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3344 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3345 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3346 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3347 s = expr_end;
3348 mips_add_token (&token, OT_INTEGER);
3349 return s;
3350}
3351
3352/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3353 if expressions should be treated as 32-bit floating-point constants,
3354 'd' if they should be treated as 64-bit floating-point constants,
3355 or 0 if they should be treated as integer expressions (the usual case).
3356
3357 Return a list of tokens on success, otherwise return 0. The caller
3358 must obstack_free the list after use. */
3359
3360static struct mips_operand_token *
3361mips_parse_arguments (char *s, char float_format)
3362{
3363 struct mips_operand_token token;
3364
3365 SKIP_SPACE_TABS (s);
3366 while (*s)
3367 {
3368 s = mips_parse_argument_token (s, float_format);
3369 if (!s)
3370 {
3371 obstack_free (&mips_operand_tokens,
3372 obstack_finish (&mips_operand_tokens));
3373 return 0;
3374 }
3375 SKIP_SPACE_TABS (s);
3376 }
3377 mips_add_token (&token, OT_END);
3378 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3379}
3380
d301a56b
RS
3381/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3382 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9 3383
5b7c81bd 3384static bool
f79e2745 3385is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3386{
3387 int isa = mips_opts.isa;
846ef2d0 3388 int ase = mips_opts.ase;
037b32b9 3389 int fp_s, fp_d;
c6278170 3390 unsigned int i;
037b32b9 3391
be0fcbee 3392 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3393 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3394 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3395 ase |= mips_ases[i].flags64;
037b32b9 3396
d301a56b 3397 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
5b7c81bd 3398 return false;
037b32b9
AN
3399
3400 /* Check whether the instruction or macro requires single-precision or
3401 double-precision floating-point support. Note that this information is
3402 stored differently in the opcode table for insns and macros. */
3403 if (mo->pinfo == INSN_MACRO)
3404 {
3405 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3406 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3407 }
3408 else
3409 {
3410 fp_s = mo->pinfo & FP_S;
3411 fp_d = mo->pinfo & FP_D;
3412 }
3413
3414 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
5b7c81bd 3415 return false;
037b32b9
AN
3416
3417 if (fp_s && mips_opts.soft_float)
5b7c81bd 3418 return false;
037b32b9 3419
5b7c81bd 3420 return true;
037b32b9
AN
3421}
3422
3423/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3424 selected ISA and architecture. */
3425
5b7c81bd 3426static bool
037b32b9
AN
3427is_opcode_valid_16 (const struct mips_opcode *mo)
3428{
25499ac7
MR
3429 int isa = mips_opts.isa;
3430 int ase = mips_opts.ase;
3431 unsigned int i;
3432
3433 if (ISA_HAS_64BIT_REGS (isa))
3434 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3435 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3436 ase |= mips_ases[i].flags64;
3437
3438 return opcode_is_member (mo, isa, ase, mips_opts.arch);
037b32b9
AN
3439}
3440
df58fc94 3441/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3442 explicitly requested. Always TRUE in the standard MIPS mode.
3443 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94 3444
5b7c81bd 3445static bool
df58fc94
RS
3446is_size_valid (const struct mips_opcode *mo)
3447{
3448 if (!mips_opts.micromips)
5b7c81bd 3449 return true;
df58fc94 3450
833794fc
MR
3451 if (mips_opts.insn32)
3452 {
3453 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
5b7c81bd 3454 return false;
833794fc 3455 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
5b7c81bd 3456 return false;
833794fc 3457 }
df58fc94 3458 if (!forced_insn_length)
5b7c81bd 3459 return true;
df58fc94 3460 if (mo->pinfo == INSN_MACRO)
5b7c81bd 3461 return false;
df58fc94
RS
3462 return forced_insn_length == micromips_insn_length (mo);
3463}
3464
7fd53920
MR
3465/* Return TRUE if the size of the MIPS16 opcode MO matches one
3466 explicitly requested. */
3467
5b7c81bd 3468static bool
7fd53920
MR
3469is_size_valid_16 (const struct mips_opcode *mo)
3470{
3471 if (!forced_insn_length)
5b7c81bd 3472 return true;
7fd53920 3473 if (mo->pinfo == INSN_MACRO)
5b7c81bd 3474 return false;
7fd53920 3475 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
5b7c81bd 3476 return false;
0674ee5d 3477 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
5b7c81bd
AM
3478 return false;
3479 return true;
7fd53920
MR
3480}
3481
df58fc94 3482/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3483 of the preceding instruction. Always TRUE in the standard MIPS mode.
3484
3485 We don't accept macros in 16-bit delay slots to avoid a case where
3486 a macro expansion fails because it relies on a preceding 32-bit real
3487 instruction to have matched and does not handle the operands correctly.
3488 The only macros that may expand to 16-bit instructions are JAL that
3489 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3490 and BGT (that likewise cannot be placed in a delay slot) that decay to
3491 a NOP. In all these cases the macros precede any corresponding real
3492 instruction definitions in the opcode table, so they will match in the
3493 second pass where the size of the delay slot is ignored and therefore
3494 produce correct code. */
df58fc94 3495
5b7c81bd 3496static bool
df58fc94
RS
3497is_delay_slot_valid (const struct mips_opcode *mo)
3498{
3499 if (!mips_opts.micromips)
5b7c81bd 3500 return true;
df58fc94
RS
3501
3502 if (mo->pinfo == INSN_MACRO)
c06dec14 3503 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3504 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3505 && micromips_insn_length (mo) != 4)
5b7c81bd 3506 return false;
df58fc94
RS
3507 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3508 && micromips_insn_length (mo) != 2)
5b7c81bd 3509 return false;
df58fc94 3510
5b7c81bd 3511 return true;
df58fc94
RS
3512}
3513
fc76e730
RS
3514/* For consistency checking, verify that all bits of OPCODE are specified
3515 either by the match/mask part of the instruction definition, or by the
3516 operand list. Also build up a list of operands in OPERANDS.
3517
3518 INSN_BITS says which bits of the instruction are significant.
3519 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3520 provides the mips_operand description of each operand. DECODE_OPERAND
3521 is null for MIPS16 instructions. */
ab902481
RS
3522
3523static int
3524validate_mips_insn (const struct mips_opcode *opcode,
3525 unsigned long insn_bits,
fc76e730
RS
3526 const struct mips_operand *(*decode_operand) (const char *),
3527 struct mips_operand_array *operands)
ab902481
RS
3528{
3529 const char *s;
fc76e730 3530 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3531 const struct mips_operand *operand;
3532
fc76e730
RS
3533 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3534 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3535 {
3536 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3537 opcode->name, opcode->args);
3538 return 0;
3539 }
3540 used_bits = 0;
fc76e730 3541 opno = 0;
14daeee3
RS
3542 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3543 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3544 for (s = opcode->args; *s; ++s)
3545 switch (*s)
3546 {
3547 case ',':
3548 case '(':
3549 case ')':
3550 break;
3551
14daeee3
RS
3552 case '#':
3553 s++;
3554 break;
3555
ab902481 3556 default:
fc76e730 3557 if (!decode_operand)
7fd53920 3558 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3559 else
3560 operand = decode_operand (s);
3561 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3562 {
3563 as_bad (_("internal: unknown operand type: %s %s"),
3564 opcode->name, opcode->args);
3565 return 0;
3566 }
fc76e730
RS
3567 gas_assert (opno < MAX_OPERANDS);
3568 operands->operand[opno] = operand;
25499ac7
MR
3569 if (!decode_operand && operand
3570 && operand->type == OP_INT && operand->lsb == 0
3571 && mips_opcode_32bit_p (opcode))
3572 used_bits |= mips16_immed_extend (-1, operand->size);
3573 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3574 {
14daeee3 3575 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3576 if (operand->type == OP_MDMX_IMM_REG)
3577 /* Bit 5 is the format selector (OB vs QH). The opcode table
3578 has separate entries for each format. */
3579 used_bits &= ~(1 << (operand->lsb + 5));
3580 if (operand->type == OP_ENTRY_EXIT_LIST)
3581 used_bits &= ~(mask & 0x700);
38bf472a
MR
3582 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3583 operand field that cannot be fully described with LSB/SIZE. */
3584 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3585 used_bits &= ~0x6000;
fc76e730 3586 }
ab902481 3587 /* Skip prefix characters. */
7361da2c 3588 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3589 ++s;
fc76e730 3590 opno += 1;
ab902481
RS
3591 break;
3592 }
fc76e730 3593 doubled = used_bits & mask & insn_bits;
ab902481
RS
3594 if (doubled)
3595 {
3596 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3597 " %s %s"), doubled, opcode->name, opcode->args);
3598 return 0;
3599 }
fc76e730 3600 used_bits |= mask;
ab902481 3601 undefined = ~used_bits & insn_bits;
fc76e730 3602 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3603 {
3604 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3605 undefined, opcode->name, opcode->args);
3606 return 0;
3607 }
3608 used_bits &= ~insn_bits;
3609 if (used_bits)
3610 {
3611 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3612 used_bits, opcode->name, opcode->args);
3613 return 0;
3614 }
3615 return 1;
3616}
3617
fc76e730
RS
3618/* The MIPS16 version of validate_mips_insn. */
3619
3620static int
3621validate_mips16_insn (const struct mips_opcode *opcode,
3622 struct mips_operand_array *operands)
3623{
7fd53920 3624 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3625
7fd53920 3626 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3627}
3628
ab902481
RS
3629/* The microMIPS version of validate_mips_insn. */
3630
3631static int
fc76e730
RS
3632validate_micromips_insn (const struct mips_opcode *opc,
3633 struct mips_operand_array *operands)
ab902481
RS
3634{
3635 unsigned long insn_bits;
3636 unsigned long major;
3637 unsigned int length;
3638
fc76e730
RS
3639 if (opc->pinfo == INSN_MACRO)
3640 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3641 operands);
3642
ab902481
RS
3643 length = micromips_insn_length (opc);
3644 if (length != 2 && length != 4)
3645 {
1661c76c 3646 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3647 "%s %s"), length, opc->name, opc->args);
3648 return 0;
3649 }
3650 major = opc->match >> (10 + 8 * (length - 2));
3651 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3652 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3653 {
1661c76c 3654 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3655 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3656 return 0;
3657 }
3658
3659 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3660 insn_bits = 1 << 4 * length;
3661 insn_bits <<= 4 * length;
3662 insn_bits -= 1;
fc76e730
RS
3663 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3664 operands);
ab902481
RS
3665}
3666
707bfff6
TS
3667/* This function is called once, at assembler startup time. It should set up
3668 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3669
252b5132 3670void
17a2f251 3671md_begin (void)
252b5132 3672{
156c2f8b 3673 int i = 0;
252b5132 3674 int broken = 0;
1f25f5d3 3675
0a44bf69
RS
3676 if (mips_pic != NO_PIC)
3677 {
3678 if (g_switch_seen && g_switch_value != 0)
3679 as_bad (_("-G may not be used in position-independent code"));
3680 g_switch_value = 0;
3681 }
00acd688
CM
3682 else if (mips_abicalls)
3683 {
3684 if (g_switch_seen && g_switch_value != 0)
3685 as_bad (_("-G may not be used with abicalls"));
3686 g_switch_value = 0;
3687 }
0a44bf69 3688
0b35dfee 3689 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3690 as_warn (_("could not set architecture and machine"));
252b5132 3691
629310ab 3692 op_hash = str_htab_create ();
252b5132 3693
fc76e730 3694 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3695 for (i = 0; i < NUMOPCODES;)
3696 {
3697 const char *name = mips_opcodes[i].name;
3698
fe0e921f
AM
3699 if (str_hash_insert (op_hash, name, &mips_opcodes[i], 0) != NULL)
3700 as_fatal (_("duplicate %s"), name);
252b5132
RH
3701 do
3702 {
fc76e730
RS
3703 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3704 decode_mips_operand, &mips_operands[i]))
3705 broken = 1;
6f2117ba 3706
fc76e730 3707 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3708 {
fc76e730
RS
3709 create_insn (&nop_insn, mips_opcodes + i);
3710 if (mips_fix_loongson2f_nop)
3711 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3712 nop_insn.fixed_p = 1;
252b5132 3713 }
6f2117ba
PH
3714
3715 if (sync_insn.insn_mo == NULL && strcmp (name, "sync") == 0)
3716 create_insn (&sync_insn, mips_opcodes + i);
3717
252b5132
RH
3718 ++i;
3719 }
3720 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3721 }
3722
629310ab 3723 mips16_op_hash = str_htab_create ();
fc76e730
RS
3724 mips16_operands = XCNEWVEC (struct mips_operand_array,
3725 bfd_mips16_num_opcodes);
252b5132
RH
3726
3727 i = 0;
3728 while (i < bfd_mips16_num_opcodes)
3729 {
3730 const char *name = mips16_opcodes[i].name;
3731
fe0e921f
AM
3732 if (str_hash_insert (mips16_op_hash, name, &mips16_opcodes[i], 0))
3733 as_fatal (_("duplicate %s"), name);
252b5132
RH
3734 do
3735 {
fc76e730
RS
3736 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3737 broken = 1;
1e915849
RS
3738 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3739 {
3740 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3741 mips16_nop_insn.fixed_p = 1;
3742 }
252b5132
RH
3743 ++i;
3744 }
3745 while (i < bfd_mips16_num_opcodes
3746 && strcmp (mips16_opcodes[i].name, name) == 0);
3747 }
3748
629310ab 3749 micromips_op_hash = str_htab_create ();
fc76e730
RS
3750 micromips_operands = XCNEWVEC (struct mips_operand_array,
3751 bfd_micromips_num_opcodes);
df58fc94
RS
3752
3753 i = 0;
3754 while (i < bfd_micromips_num_opcodes)
3755 {
3756 const char *name = micromips_opcodes[i].name;
3757
fe0e921f
AM
3758 if (str_hash_insert (micromips_op_hash, name, &micromips_opcodes[i], 0))
3759 as_fatal (_("duplicate %s"), name);
df58fc94 3760 do
fc76e730
RS
3761 {
3762 struct mips_cl_insn *micromips_nop_insn;
3763
3764 if (!validate_micromips_insn (&micromips_opcodes[i],
3765 &micromips_operands[i]))
3766 broken = 1;
3767
3768 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3769 {
3770 if (micromips_insn_length (micromips_opcodes + i) == 2)
3771 micromips_nop_insn = &micromips_nop16_insn;
3772 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3773 micromips_nop_insn = &micromips_nop32_insn;
3774 else
3775 continue;
3776
3777 if (micromips_nop_insn->insn_mo == NULL
3778 && strcmp (name, "nop") == 0)
3779 {
3780 create_insn (micromips_nop_insn, micromips_opcodes + i);
3781 micromips_nop_insn->fixed_p = 1;
3782 }
3783 }
3784 }
df58fc94
RS
3785 while (++i < bfd_micromips_num_opcodes
3786 && strcmp (micromips_opcodes[i].name, name) == 0);
3787 }
3788
252b5132 3789 if (broken)
1661c76c 3790 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3791
3792 /* We add all the general register names to the symbol table. This
3793 helps us detect invalid uses of them. */
3739860c 3794 for (i = 0; reg_names[i].name; i++)
707bfff6 3795 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
e01e1cee
AM
3796 &zero_address_frag,
3797 reg_names[i].num));
707bfff6 3798 if (HAVE_NEWABI)
3739860c 3799 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3800 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
e01e1cee
AM
3801 &zero_address_frag,
3802 reg_names_n32n64[i].num));
707bfff6 3803 else
3739860c 3804 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3805 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
e01e1cee
AM
3806 &zero_address_frag,
3807 reg_names_o32[i].num));
6047c971 3808
14daeee3
RS
3809 for (i = 0; i < 32; i++)
3810 {
ca159256 3811 char regname[16];
14daeee3
RS
3812
3813 /* R5900 VU0 floating-point register. */
92fce9bd 3814 sprintf (regname, "$vf%d", i);
14daeee3 3815 symbol_table_insert (symbol_new (regname, reg_section,
e01e1cee 3816 &zero_address_frag, RTYPE_VF | i));
14daeee3
RS
3817
3818 /* R5900 VU0 integer register. */
92fce9bd 3819 sprintf (regname, "$vi%d", i);
14daeee3 3820 symbol_table_insert (symbol_new (regname, reg_section,
e01e1cee 3821 &zero_address_frag, RTYPE_VI | i));
14daeee3 3822
56d438b1 3823 /* MSA register. */
92fce9bd 3824 sprintf (regname, "$w%d", i);
56d438b1 3825 symbol_table_insert (symbol_new (regname, reg_section,
e01e1cee 3826 &zero_address_frag, RTYPE_MSA | i));
14daeee3
RS
3827 }
3828
a92713e6
RS
3829 obstack_init (&mips_operand_tokens);
3830
7d10b47d 3831 mips_no_prev_insn ();
252b5132
RH
3832
3833 mips_gprmask = 0;
3834 mips_cprmask[0] = 0;
3835 mips_cprmask[1] = 0;
3836 mips_cprmask[2] = 0;
3837 mips_cprmask[3] = 0;
3838
3839 /* set the default alignment for the text section (2**2) */
3840 record_alignment (text_section, 2);
3841
4d0d148d 3842 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3843
f3ded42a
RS
3844 /* On a native system other than VxWorks, sections must be aligned
3845 to 16 byte boundaries. When configured for an embedded ELF
3846 target, we don't bother. */
d34049e8
ML
3847 if (!startswith (TARGET_OS, "elf")
3848 && !startswith (TARGET_OS, "vxworks"))
252b5132 3849 {
fd361982
AM
3850 bfd_set_section_alignment (text_section, 4);
3851 bfd_set_section_alignment (data_section, 4);
3852 bfd_set_section_alignment (bss_section, 4);
f3ded42a 3853 }
252b5132 3854
f3ded42a
RS
3855 /* Create a .reginfo section for register masks and a .mdebug
3856 section for debugging information. */
3857 {
3858 segT seg;
3859 subsegT subseg;
3860 flagword flags;
3861 segT sec;
3862
3863 seg = now_seg;
3864 subseg = now_subseg;
3865
3866 /* The ABI says this section should be loaded so that the
3867 running program can access it. However, we don't load it
6f2117ba 3868 if we are configured for an embedded target. */
f3ded42a 3869 flags = SEC_READONLY | SEC_DATA;
d34049e8 3870 if (!startswith (TARGET_OS, "elf"))
f3ded42a
RS
3871 flags |= SEC_ALLOC | SEC_LOAD;
3872
3873 if (mips_abi != N64_ABI)
252b5132 3874 {
f3ded42a 3875 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3876
fd361982
AM
3877 bfd_set_section_flags (sec, flags);
3878 bfd_set_section_alignment (sec, HAVE_NEWABI ? 3 : 2);
252b5132 3879
f3ded42a
RS
3880 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3881 }
3882 else
3883 {
3884 /* The 64-bit ABI uses a .MIPS.options section rather than
3885 .reginfo section. */
3886 sec = subseg_new (".MIPS.options", (subsegT) 0);
fd361982
AM
3887 bfd_set_section_flags (sec, flags);
3888 bfd_set_section_alignment (sec, 3);
252b5132 3889
f3ded42a
RS
3890 /* Set up the option header. */
3891 {
3892 Elf_Internal_Options opthdr;
3893 char *f;
3894
3895 opthdr.kind = ODK_REGINFO;
3896 opthdr.size = (sizeof (Elf_External_Options)
3897 + sizeof (Elf64_External_RegInfo));
3898 opthdr.section = 0;
3899 opthdr.info = 0;
3900 f = frag_more (sizeof (Elf_External_Options));
3901 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3902 (Elf_External_Options *) f);
3903
3904 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3905 }
3906 }
252b5132 3907
351cdf24 3908 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
fd361982 3909 bfd_set_section_flags (sec,
351cdf24 3910 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
fd361982 3911 bfd_set_section_alignment (sec, 3);
351cdf24
MF
3912 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3913
f3ded42a
RS
3914 if (ECOFF_DEBUGGING)
3915 {
3916 sec = subseg_new (".mdebug", (subsegT) 0);
fd361982
AM
3917 bfd_set_section_flags (sec, SEC_HAS_CONTENTS | SEC_READONLY);
3918 bfd_set_section_alignment (sec, 2);
252b5132 3919 }
f3ded42a
RS
3920 else if (mips_flag_pdr)
3921 {
3922 pdr_seg = subseg_new (".pdr", (subsegT) 0);
fd361982
AM
3923 bfd_set_section_flags (pdr_seg,
3924 SEC_READONLY | SEC_RELOC | SEC_DEBUGGING);
3925 bfd_set_section_alignment (pdr_seg, 2);
f3ded42a
RS
3926 }
3927
3928 subseg_set (seg, subseg);
3929 }
252b5132 3930
71400594
RS
3931 if (mips_fix_vr4120)
3932 init_vr4120_conflicts ();
252b5132
RH
3933}
3934
351cdf24
MF
3935static inline void
3936fpabi_incompatible_with (int fpabi, const char *what)
3937{
3938 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3939 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3940}
3941
3942static inline void
3943fpabi_requires (int fpabi, const char *what)
3944{
3945 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3946 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3947}
3948
3949/* Check -mabi and register sizes against the specified FP ABI. */
3950static void
3951check_fpabi (int fpabi)
3952{
351cdf24
MF
3953 switch (fpabi)
3954 {
3955 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3956 if (file_mips_opts.soft_float)
3957 fpabi_incompatible_with (fpabi, "softfloat");
3958 else if (file_mips_opts.single_float)
3959 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3960 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3961 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3962 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3963 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3964 break;
3965
3966 case Val_GNU_MIPS_ABI_FP_XX:
3967 if (mips_abi != O32_ABI)
3968 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3969 else if (file_mips_opts.soft_float)
3970 fpabi_incompatible_with (fpabi, "softfloat");
3971 else if (file_mips_opts.single_float)
3972 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3973 else if (file_mips_opts.fp != 0)
3974 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3975 break;
3976
3977 case Val_GNU_MIPS_ABI_FP_64A:
3978 case Val_GNU_MIPS_ABI_FP_64:
3979 if (mips_abi != O32_ABI)
3980 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3981 else if (file_mips_opts.soft_float)
3982 fpabi_incompatible_with (fpabi, "softfloat");
3983 else if (file_mips_opts.single_float)
3984 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3985 else if (file_mips_opts.fp != 64)
3986 fpabi_requires (fpabi, "fp=64");
3987 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3988 fpabi_incompatible_with (fpabi, "nooddspreg");
3989 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3990 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3991 break;
3992
3993 case Val_GNU_MIPS_ABI_FP_SINGLE:
3994 if (file_mips_opts.soft_float)
3995 fpabi_incompatible_with (fpabi, "softfloat");
3996 else if (!file_mips_opts.single_float)
3997 fpabi_requires (fpabi, "singlefloat");
3998 break;
3999
4000 case Val_GNU_MIPS_ABI_FP_SOFT:
4001 if (!file_mips_opts.soft_float)
4002 fpabi_requires (fpabi, "softfloat");
4003 break;
4004
4005 case Val_GNU_MIPS_ABI_FP_OLD_64:
4006 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
4007 Tag_GNU_MIPS_ABI_FP, fpabi);
4008 break;
4009
3350cc01
CM
4010 case Val_GNU_MIPS_ABI_FP_NAN2008:
4011 /* Silently ignore compatibility value. */
4012 break;
4013
351cdf24
MF
4014 default:
4015 as_warn (_(".gnu_attribute %d,%d is not a recognized"
4016 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
4017 break;
4018 }
351cdf24
MF
4019}
4020
919731af 4021/* Perform consistency checks on the current options. */
4022
4023static void
5b7c81bd 4024mips_check_options (struct mips_set_options *opts, bool abi_checks)
919731af 4025{
4026 /* Check the size of integer registers agrees with the ABI and ISA. */
4027 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
4028 as_bad (_("`gp=64' used with a 32-bit processor"));
4029 else if (abi_checks
4030 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
4031 as_bad (_("`gp=32' used with a 64-bit ABI"));
4032 else if (abi_checks
4033 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
4034 as_bad (_("`gp=64' used with a 32-bit ABI"));
4035
4036 /* Check the size of the float registers agrees with the ABI and ISA. */
4037 switch (opts->fp)
4038 {
351cdf24
MF
4039 case 0:
4040 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4041 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4042 else if (opts->single_float == 1)
4043 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4044 break;
919731af 4045 case 64:
4046 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4047 as_bad (_("`fp=64' used with a 32-bit fpu"));
4048 else if (abi_checks
4049 && ABI_NEEDS_32BIT_REGS (mips_abi)
4050 && !ISA_HAS_MXHC1 (opts->isa))
4051 as_warn (_("`fp=64' used with a 32-bit ABI"));
4052 break;
4053 case 32:
4054 if (abi_checks
4055 && ABI_NEEDS_64BIT_REGS (mips_abi))
4056 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 4057 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 4058 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 4059 break;
4060 default:
4061 as_bad (_("Unknown size of floating point registers"));
4062 break;
4063 }
4064
351cdf24
MF
4065 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4066 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4067
919731af 4068 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 4069 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 4070 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
4071 && (opts->micromips == 1
4072 || opts->mips16 == 1))
1357373c 4073 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 4074 opts->micromips ? "micromips" : "mips16",
5f4678bb 4075 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
4076
4077 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4078 as_fatal (_("branch relaxation is not supported in `%s'"),
4079 mips_cpu_info_from_isa (opts->isa)->name);
919731af 4080}
4081
4082/* Perform consistency checks on the module level options exactly once.
4083 This is a deferred check that happens:
4084 at the first .set directive
4085 or, at the first pseudo op that generates code (inc .dc.a)
4086 or, at the first instruction
4087 or, at the end. */
4088
4089static void
4090file_mips_check_options (void)
4091{
919731af 4092 if (file_mips_opts_checked)
4093 return;
4094
4095 /* The following code determines the register size.
4096 Similar code was added to GCC 3.3 (see override_options() in
4097 config/mips/mips.c). The GAS and GCC code should be kept in sync
4098 as much as possible. */
4099
4100 if (file_mips_opts.gp < 0)
4101 {
4102 /* Infer the integer register size from the ABI and processor.
4103 Restrict ourselves to 32-bit registers if that's all the
4104 processor has, or if the ABI cannot handle 64-bit registers. */
4105 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4106 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4107 ? 32 : 64;
4108 }
4109
4110 if (file_mips_opts.fp < 0)
4111 {
4112 /* No user specified float register size.
4113 ??? GAS treats single-float processors as though they had 64-bit
4114 float registers (although it complains when double-precision
4115 instructions are used). As things stand, saying they have 32-bit
4116 registers would lead to spurious "register must be even" messages.
4117 So here we assume float registers are never smaller than the
4118 integer ones. */
4119 if (file_mips_opts.gp == 64)
4120 /* 64-bit integer registers implies 64-bit float registers. */
4121 file_mips_opts.fp = 64;
4122 else if ((file_mips_opts.ase & FP64_ASES)
4123 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4124 /* Handle ASEs that require 64-bit float registers, if possible. */
4125 file_mips_opts.fp = 64;
7361da2c
AB
4126 else if (ISA_IS_R6 (mips_opts.isa))
4127 /* R6 implies 64-bit float registers. */
4128 file_mips_opts.fp = 64;
919731af 4129 else
4130 /* 32-bit float registers. */
4131 file_mips_opts.fp = 32;
4132 }
4133
351cdf24
MF
4134 /* Disable operations on odd-numbered floating-point registers by default
4135 when using the FPXX ABI. */
4136 if (file_mips_opts.oddspreg < 0)
4137 {
4138 if (file_mips_opts.fp == 0)
4139 file_mips_opts.oddspreg = 0;
4140 else
4141 file_mips_opts.oddspreg = 1;
4142 }
4143
919731af 4144 /* End of GCC-shared inference code. */
4145
4146 /* This flag is set when we have a 64-bit capable CPU but use only
4147 32-bit wide registers. Note that EABI does not use it. */
4148 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4149 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4150 || mips_abi == O32_ABI))
4151 mips_32bitmode = 1;
4152
4153 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4154 as_bad (_("trap exception not supported at ISA 1"));
4155
4156 /* If the selected architecture includes support for ASEs, enable
4157 generation of code for them. */
4158 if (file_mips_opts.mips16 == -1)
4159 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4160 if (file_mips_opts.micromips == -1)
4161 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4162 ? 1 : 0;
4163
7361da2c
AB
4164 if (mips_nan2008 == -1)
4165 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4166 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4167 as_fatal (_("`%s' does not support legacy NaN"),
4168 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4169
919731af 4170 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4171 being selected implicitly. */
4172 if (file_mips_opts.fp != 64)
4173 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4174
4175 /* If the user didn't explicitly select or deselect a particular ASE,
4176 use the default setting for the CPU. */
3315614d 4177 file_mips_opts.ase |= (file_mips_opts.init_ase & ~file_ase_explicit);
919731af 4178
4179 /* Set up the current options. These may change throughout assembly. */
4180 mips_opts = file_mips_opts;
4181
4182 mips_check_isa_supports_ases ();
5b7c81bd
AM
4183 mips_check_options (&file_mips_opts, true);
4184 file_mips_opts_checked = true;
919731af 4185
4186 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4187 as_warn (_("could not set architecture and machine"));
4188}
4189
252b5132 4190void
17a2f251 4191md_assemble (char *str)
252b5132
RH
4192{
4193 struct mips_cl_insn insn;
f6688943
TS
4194 bfd_reloc_code_real_type unused_reloc[3]
4195 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4196
919731af 4197 file_mips_check_options ();
4198
252b5132 4199 imm_expr.X_op = O_absent;
252b5132 4200 offset_expr.X_op = O_absent;
f6688943
TS
4201 offset_reloc[0] = BFD_RELOC_UNUSED;
4202 offset_reloc[1] = BFD_RELOC_UNUSED;
4203 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4204
e1b47bd5 4205 mips_mark_labels ();
5b7c81bd 4206 mips_assembling_insn = true;
e3de51ce 4207 clear_insn_error ();
e1b47bd5 4208
252b5132
RH
4209 if (mips_opts.mips16)
4210 mips16_ip (str, &insn);
4211 else
4212 {
4213 mips_ip (str, &insn);
beae10d5
KH
4214 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4215 str, insn.insn_opcode));
252b5132
RH
4216 }
4217
e3de51ce
RS
4218 if (insn_error.msg)
4219 report_insn_error (str);
e1b47bd5 4220 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4221 {
584892a6 4222 macro_start ();
252b5132
RH
4223 if (mips_opts.mips16)
4224 mips16_macro (&insn);
4225 else
833794fc 4226 macro (&insn, str);
584892a6 4227 macro_end ();
252b5132
RH
4228 }
4229 else
4230 {
77bd4346 4231 if (offset_expr.X_op != O_absent)
5b7c81bd 4232 append_insn (&insn, &offset_expr, offset_reloc, false);
252b5132 4233 else
5b7c81bd 4234 append_insn (&insn, NULL, unused_reloc, false);
252b5132 4235 }
e1b47bd5 4236
5b7c81bd 4237 mips_assembling_insn = false;
252b5132
RH
4238}
4239
738e5348
RS
4240/* Convenience functions for abstracting away the differences between
4241 MIPS16 and non-MIPS16 relocations. */
4242
5b7c81bd 4243static inline bool
738e5348
RS
4244mips16_reloc_p (bfd_reloc_code_real_type reloc)
4245{
4246 switch (reloc)
4247 {
4248 case BFD_RELOC_MIPS16_JMP:
4249 case BFD_RELOC_MIPS16_GPREL:
4250 case BFD_RELOC_MIPS16_GOT16:
4251 case BFD_RELOC_MIPS16_CALL16:
4252 case BFD_RELOC_MIPS16_HI16_S:
4253 case BFD_RELOC_MIPS16_HI16:
4254 case BFD_RELOC_MIPS16_LO16:
c9775dde 4255 case BFD_RELOC_MIPS16_16_PCREL_S1:
5b7c81bd 4256 return true;
738e5348
RS
4257
4258 default:
5b7c81bd 4259 return false;
738e5348
RS
4260 }
4261}
4262
5b7c81bd 4263static inline bool
df58fc94
RS
4264micromips_reloc_p (bfd_reloc_code_real_type reloc)
4265{
4266 switch (reloc)
4267 {
4268 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4269 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4270 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4271 case BFD_RELOC_MICROMIPS_GPREL16:
4272 case BFD_RELOC_MICROMIPS_JMP:
4273 case BFD_RELOC_MICROMIPS_HI16:
4274 case BFD_RELOC_MICROMIPS_HI16_S:
4275 case BFD_RELOC_MICROMIPS_LO16:
4276 case BFD_RELOC_MICROMIPS_LITERAL:
4277 case BFD_RELOC_MICROMIPS_GOT16:
4278 case BFD_RELOC_MICROMIPS_CALL16:
4279 case BFD_RELOC_MICROMIPS_GOT_HI16:
4280 case BFD_RELOC_MICROMIPS_GOT_LO16:
4281 case BFD_RELOC_MICROMIPS_CALL_HI16:
4282 case BFD_RELOC_MICROMIPS_CALL_LO16:
4283 case BFD_RELOC_MICROMIPS_SUB:
4284 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4285 case BFD_RELOC_MICROMIPS_GOT_OFST:
4286 case BFD_RELOC_MICROMIPS_GOT_DISP:
4287 case BFD_RELOC_MICROMIPS_HIGHEST:
4288 case BFD_RELOC_MICROMIPS_HIGHER:
4289 case BFD_RELOC_MICROMIPS_SCN_DISP:
4290 case BFD_RELOC_MICROMIPS_JALR:
5b7c81bd 4291 return true;
df58fc94
RS
4292
4293 default:
5b7c81bd 4294 return false;
df58fc94
RS
4295 }
4296}
4297
5b7c81bd 4298static inline bool
2309ddf2
MR
4299jmp_reloc_p (bfd_reloc_code_real_type reloc)
4300{
4301 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4302}
4303
5b7c81bd 4304static inline bool
0e9c5a5c
MR
4305b_reloc_p (bfd_reloc_code_real_type reloc)
4306{
4307 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4308 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4309 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4310 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4311 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4312 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4313 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4314}
4315
5b7c81bd 4316static inline bool
738e5348
RS
4317got16_reloc_p (bfd_reloc_code_real_type reloc)
4318{
2309ddf2 4319 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4320 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4321}
4322
5b7c81bd 4323static inline bool
738e5348
RS
4324hi16_reloc_p (bfd_reloc_code_real_type reloc)
4325{
2309ddf2 4326 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4327 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4328}
4329
5b7c81bd 4330static inline bool
738e5348
RS
4331lo16_reloc_p (bfd_reloc_code_real_type reloc)
4332{
2309ddf2 4333 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4334 || reloc == BFD_RELOC_MICROMIPS_LO16);
4335}
4336
5b7c81bd 4337static inline bool
df58fc94
RS
4338jalr_reloc_p (bfd_reloc_code_real_type reloc)
4339{
2309ddf2 4340 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4341}
4342
5b7c81bd 4343static inline bool
f2ae14a1
RS
4344gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4345{
4346 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4347 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4348}
4349
2de39019
CM
4350/* Return true if RELOC is a PC-relative relocation that does not have
4351 full address range. */
4352
5b7c81bd 4353static inline bool
2de39019
CM
4354limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4355{
4356 switch (reloc)
4357 {
4358 case BFD_RELOC_16_PCREL_S2:
c9775dde 4359 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4360 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4361 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4362 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4363 case BFD_RELOC_MIPS_21_PCREL_S2:
4364 case BFD_RELOC_MIPS_26_PCREL_S2:
4365 case BFD_RELOC_MIPS_18_PCREL_S3:
4366 case BFD_RELOC_MIPS_19_PCREL_S2:
5b7c81bd 4367 return true;
2de39019 4368
b47468a6 4369 case BFD_RELOC_32_PCREL:
7361da2c
AB
4370 case BFD_RELOC_HI16_S_PCREL:
4371 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4372 return HAVE_64BIT_ADDRESSES;
4373
2de39019 4374 default:
5b7c81bd 4375 return false;
2de39019
CM
4376 }
4377}
b47468a6 4378
5919d012 4379/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4380 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4381 need a matching %lo() when applied to local symbols. */
5919d012 4382
5b7c81bd 4383static inline bool
17a2f251 4384reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4385{
3b91255e 4386 return (HAVE_IN_PLACE_ADDENDS
738e5348 4387 && (hi16_reloc_p (reloc)
0a44bf69
RS
4388 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4389 all GOT16 relocations evaluate to "G". */
738e5348
RS
4390 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4391}
4392
4393/* Return the type of %lo() reloc needed by RELOC, given that
4394 reloc_needs_lo_p. */
4395
4396static inline bfd_reloc_code_real_type
4397matching_lo_reloc (bfd_reloc_code_real_type reloc)
4398{
df58fc94
RS
4399 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4400 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4401 : BFD_RELOC_LO16));
5919d012
RS
4402}
4403
4404/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4405 relocation. */
4406
5b7c81bd 4407static inline bool
17a2f251 4408fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4409{
4410 return (fixp->fx_next != NULL
738e5348 4411 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4412 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4413 && fixp->fx_offset == fixp->fx_next->fx_offset);
4414}
4415
462427c4
RS
4416/* Move all labels in LABELS to the current insertion point. TEXT_P
4417 says whether the labels refer to text or data. */
404a8071
RS
4418
4419static void
5b7c81bd 4420mips_move_labels (struct insn_label_list *labels, bool text_p)
404a8071
RS
4421{
4422 struct insn_label_list *l;
4423 valueT val;
4424
462427c4 4425 for (l = labels; l != NULL; l = l->next)
404a8071 4426 {
9c2799c2 4427 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4428 symbol_set_frag (l->label, frag_now);
4429 val = (valueT) frag_now_fix ();
770c0151
FS
4430 /* MIPS16/microMIPS text labels are stored as odd.
4431 We just carry the ISA mode bit forward. */
462427c4 4432 if (text_p && HAVE_CODE_COMPRESSION)
770c0151 4433 val |= (S_GET_VALUE (l->label) & 0x1);
404a8071
RS
4434 S_SET_VALUE (l->label, val);
4435 }
4436}
4437
462427c4
RS
4438/* Move all labels in insn_labels to the current insertion point
4439 and treat them as text labels. */
4440
4441static void
4442mips_move_text_labels (void)
4443{
5b7c81bd 4444 mips_move_labels (seg_info (now_seg)->label_list, true);
462427c4
RS
4445}
4446
9e009953
MR
4447/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4448
5b7c81bd 4449static bool
5f0fe04b
TS
4450s_is_linkonce (symbolS *sym, segT from_seg)
4451{
5b7c81bd 4452 bool linkonce = false;
5f0fe04b
TS
4453 segT symseg = S_GET_SEGMENT (sym);
4454
4455 if (symseg != from_seg && !S_IS_LOCAL (sym))
4456 {
fd361982 4457 if ((bfd_section_flags (symseg) & SEC_LINK_ONCE))
5b7c81bd 4458 linkonce = true;
5f0fe04b
TS
4459 /* The GNU toolchain uses an extension for ELF: a section
4460 beginning with the magic string .gnu.linkonce is a
4461 linkonce section. */
d34049e8 4462 if (startswith (segment_name (symseg), ".gnu.linkonce"))
5b7c81bd 4463 linkonce = true;
5f0fe04b
TS
4464 }
4465 return linkonce;
4466}
4467
e1b47bd5 4468/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4469 linker to handle them specially, such as generating jalx instructions
4470 when needed. We also make them odd for the duration of the assembly,
4471 in order to generate the right sort of code. We will make them even
252b5132
RH
4472 in the adjust_symtab routine, while leaving them marked. This is
4473 convenient for the debugger and the disassembler. The linker knows
4474 to make them odd again. */
4475
4476static void
e1b47bd5 4477mips_compressed_mark_label (symbolS *label)
252b5132 4478{
df58fc94 4479 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4480
f3ded42a
RS
4481 if (mips_opts.mips16)
4482 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4483 else
4484 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4485 if ((S_GET_VALUE (label) & 1) == 0
4486 /* Don't adjust the address if the label is global or weak, or
4487 in a link-once section, since we'll be emitting symbol reloc
4488 references to it which will be patched up by the linker, and
4489 the final value of the symbol may or may not be MIPS16/microMIPS. */
4490 && !S_IS_WEAK (label)
4491 && !S_IS_EXTERNAL (label)
4492 && !s_is_linkonce (label, now_seg))
4493 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4494}
4495
4496/* Mark preceding MIPS16 or microMIPS instruction labels. */
4497
4498static void
4499mips_compressed_mark_labels (void)
4500{
4501 struct insn_label_list *l;
4502
4503 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4504 mips_compressed_mark_label (l->label);
252b5132
RH
4505}
4506
4d7206a2
RS
4507/* End the current frag. Make it a variant frag and record the
4508 relaxation info. */
4509
4510static void
4511relax_close_frag (void)
4512{
584892a6 4513 mips_macro_warning.first_frag = frag_now;
4d7206a2 4514 frag_var (rs_machine_dependent, 0, 0,
ce8ad872
MR
4515 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4516 mips_pic != NO_PIC),
4d7206a2
RS
4517 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4518
4519 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4520 mips_relax.first_fixup = 0;
4521}
4522
4523/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4524 See the comment above RELAX_ENCODE for more details. */
4525
4526static void
4527relax_start (symbolS *symbol)
4528{
9c2799c2 4529 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4530 mips_relax.sequence = 1;
4531 mips_relax.symbol = symbol;
4532}
4533
4534/* Start generating the second version of a relaxable sequence.
4535 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4536
4537static void
4d7206a2
RS
4538relax_switch (void)
4539{
9c2799c2 4540 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4541 mips_relax.sequence = 2;
4542}
4543
4544/* End the current relaxable sequence. */
4545
4546static void
4547relax_end (void)
4548{
9c2799c2 4549 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4550 relax_close_frag ();
4551 mips_relax.sequence = 0;
4552}
4553
11625dd8
RS
4554/* Return true if IP is a delayed branch or jump. */
4555
5b7c81bd 4556static inline bool
11625dd8
RS
4557delayed_branch_p (const struct mips_cl_insn *ip)
4558{
4559 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4560 | INSN_COND_BRANCH_DELAY
4561 | INSN_COND_BRANCH_LIKELY)) != 0;
4562}
4563
4564/* Return true if IP is a compact branch or jump. */
4565
5b7c81bd 4566static inline bool
11625dd8
RS
4567compact_branch_p (const struct mips_cl_insn *ip)
4568{
26545944
RS
4569 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4570 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4571}
4572
4573/* Return true if IP is an unconditional branch or jump. */
4574
5b7c81bd 4575static inline bool
11625dd8
RS
4576uncond_branch_p (const struct mips_cl_insn *ip)
4577{
4578 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4579 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4580}
4581
4582/* Return true if IP is a branch-likely instruction. */
4583
5b7c81bd 4584static inline bool
11625dd8
RS
4585branch_likely_p (const struct mips_cl_insn *ip)
4586{
4587 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4588}
4589
14fe068b
RS
4590/* Return the type of nop that should be used to fill the delay slot
4591 of delayed branch IP. */
4592
4593static struct mips_cl_insn *
4594get_delay_slot_nop (const struct mips_cl_insn *ip)
4595{
4596 if (mips_opts.micromips
4597 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4598 return &micromips_nop32_insn;
4599 return NOP_INSN;
4600}
4601
fc76e730
RS
4602/* Return a mask that has bit N set if OPCODE reads the register(s)
4603 in operand N. */
df58fc94
RS
4604
4605static unsigned int
fc76e730 4606insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4607{
fc76e730
RS
4608 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4609}
df58fc94 4610
fc76e730
RS
4611/* Return a mask that has bit N set if OPCODE writes to the register(s)
4612 in operand N. */
4613
4614static unsigned int
4615insn_write_mask (const struct mips_opcode *opcode)
4616{
4617 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4618}
4619
4620/* Return a mask of the registers specified by operand OPERAND of INSN.
4621 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4622 is set. */
4623
4624static unsigned int
4625operand_reg_mask (const struct mips_cl_insn *insn,
4626 const struct mips_operand *operand,
4627 unsigned int type_mask)
4628{
4629 unsigned int uval, vsel;
4630
4631 switch (operand->type)
df58fc94 4632 {
fc76e730
RS
4633 case OP_INT:
4634 case OP_MAPPED_INT:
4635 case OP_MSB:
4636 case OP_PCREL:
4637 case OP_PERF_REG:
4638 case OP_ADDIUSP_INT:
4639 case OP_ENTRY_EXIT_LIST:
4640 case OP_REPEAT_DEST_REG:
4641 case OP_REPEAT_PREV_REG:
4642 case OP_PC:
14daeee3
RS
4643 case OP_VU0_SUFFIX:
4644 case OP_VU0_MATCH_SUFFIX:
56d438b1 4645 case OP_IMM_INDEX:
fc76e730
RS
4646 abort ();
4647
25499ac7
MR
4648 case OP_REG28:
4649 return 1 << 28;
4650
fc76e730 4651 case OP_REG:
0f35dbc4 4652 case OP_OPTIONAL_REG:
fc76e730
RS
4653 {
4654 const struct mips_reg_operand *reg_op;
4655
4656 reg_op = (const struct mips_reg_operand *) operand;
4657 if (!(type_mask & (1 << reg_op->reg_type)))
4658 return 0;
4659 uval = insn_extract_operand (insn, operand);
e0fd91ef 4660 return 1u << mips_decode_reg_operand (reg_op, uval);
fc76e730
RS
4661 }
4662
4663 case OP_REG_PAIR:
4664 {
4665 const struct mips_reg_pair_operand *pair_op;
4666
4667 pair_op = (const struct mips_reg_pair_operand *) operand;
4668 if (!(type_mask & (1 << pair_op->reg_type)))
4669 return 0;
4670 uval = insn_extract_operand (insn, operand);
e0fd91ef 4671 return (1u << pair_op->reg1_map[uval]) | (1u << pair_op->reg2_map[uval]);
fc76e730
RS
4672 }
4673
4674 case OP_CLO_CLZ_DEST:
4675 if (!(type_mask & (1 << OP_REG_GP)))
4676 return 0;
4677 uval = insn_extract_operand (insn, operand);
e0fd91ef 4678 return (1u << (uval & 31)) | (1u << (uval >> 5));
fc76e730 4679
7361da2c
AB
4680 case OP_SAME_RS_RT:
4681 if (!(type_mask & (1 << OP_REG_GP)))
4682 return 0;
4683 uval = insn_extract_operand (insn, operand);
4684 gas_assert ((uval & 31) == (uval >> 5));
e0fd91ef 4685 return 1u << (uval & 31);
7361da2c
AB
4686
4687 case OP_CHECK_PREV:
4688 case OP_NON_ZERO_REG:
4689 if (!(type_mask & (1 << OP_REG_GP)))
4690 return 0;
4691 uval = insn_extract_operand (insn, operand);
e0fd91ef 4692 return 1u << (uval & 31);
7361da2c 4693
fc76e730
RS
4694 case OP_LWM_SWM_LIST:
4695 abort ();
4696
4697 case OP_SAVE_RESTORE_LIST:
4698 abort ();
4699
4700 case OP_MDMX_IMM_REG:
4701 if (!(type_mask & (1 << OP_REG_VEC)))
4702 return 0;
4703 uval = insn_extract_operand (insn, operand);
4704 vsel = uval >> 5;
4705 if ((vsel & 0x18) == 0x18)
4706 return 0;
e0fd91ef 4707 return 1u << (uval & 31);
56d438b1
CF
4708
4709 case OP_REG_INDEX:
4710 if (!(type_mask & (1 << OP_REG_GP)))
4711 return 0;
e0fd91ef 4712 return 1u << insn_extract_operand (insn, operand);
df58fc94 4713 }
fc76e730
RS
4714 abort ();
4715}
4716
4717/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4718 where bit N of OPNO_MASK is set if operand N should be included.
4719 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4720 is set. */
4721
4722static unsigned int
4723insn_reg_mask (const struct mips_cl_insn *insn,
4724 unsigned int type_mask, unsigned int opno_mask)
4725{
4726 unsigned int opno, reg_mask;
4727
4728 opno = 0;
4729 reg_mask = 0;
4730 while (opno_mask != 0)
4731 {
4732 if (opno_mask & 1)
4733 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4734 opno_mask >>= 1;
4735 opno += 1;
4736 }
4737 return reg_mask;
df58fc94
RS
4738}
4739
4c260379
RS
4740/* Return the mask of core registers that IP reads. */
4741
4742static unsigned int
4743gpr_read_mask (const struct mips_cl_insn *ip)
4744{
4745 unsigned long pinfo, pinfo2;
4746 unsigned int mask;
4747
fc76e730 4748 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4749 pinfo = ip->insn_mo->pinfo;
4750 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4751 if (pinfo & INSN_UDI)
4c260379 4752 {
fc76e730
RS
4753 /* UDI instructions have traditionally been assumed to read RS
4754 and RT. */
4755 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4756 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4757 }
fc76e730
RS
4758 if (pinfo & INSN_READ_GPR_24)
4759 mask |= 1 << 24;
4760 if (pinfo2 & INSN2_READ_GPR_16)
4761 mask |= 1 << 16;
4762 if (pinfo2 & INSN2_READ_SP)
4763 mask |= 1 << SP;
26545944 4764 if (pinfo2 & INSN2_READ_GPR_31)
a6a1f5e0 4765 mask |= 1u << 31;
fe35f09f
RS
4766 /* Don't include register 0. */
4767 return mask & ~1;
4c260379
RS
4768}
4769
4770/* Return the mask of core registers that IP writes. */
4771
4772static unsigned int
4773gpr_write_mask (const struct mips_cl_insn *ip)
4774{
4775 unsigned long pinfo, pinfo2;
4776 unsigned int mask;
4777
fc76e730 4778 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4779 pinfo = ip->insn_mo->pinfo;
4780 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4781 if (pinfo & INSN_WRITE_GPR_24)
4782 mask |= 1 << 24;
4783 if (pinfo & INSN_WRITE_GPR_31)
a6a1f5e0 4784 mask |= 1u << 31;
fc76e730
RS
4785 if (pinfo & INSN_UDI)
4786 /* UDI instructions have traditionally been assumed to write to RD. */
4787 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4788 if (pinfo2 & INSN2_WRITE_SP)
4789 mask |= 1 << SP;
fe35f09f
RS
4790 /* Don't include register 0. */
4791 return mask & ~1;
4c260379
RS
4792}
4793
4794/* Return the mask of floating-point registers that IP reads. */
4795
4796static unsigned int
4797fpr_read_mask (const struct mips_cl_insn *ip)
4798{
fc76e730 4799 unsigned long pinfo;
4c260379
RS
4800 unsigned int mask;
4801
9d5de888
CF
4802 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4803 | (1 << OP_REG_MSA)),
fc76e730 4804 insn_read_mask (ip->insn_mo));
4c260379 4805 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4806 /* Conservatively treat all operands to an FP_D instruction are doubles.
4807 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4808 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4809 mask |= mask << 1;
4810 return mask;
4811}
4812
4813/* Return the mask of floating-point registers that IP writes. */
4814
4815static unsigned int
4816fpr_write_mask (const struct mips_cl_insn *ip)
4817{
fc76e730 4818 unsigned long pinfo;
4c260379
RS
4819 unsigned int mask;
4820
9d5de888
CF
4821 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4822 | (1 << OP_REG_MSA)),
fc76e730 4823 insn_write_mask (ip->insn_mo));
4c260379 4824 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4825 /* Conservatively treat all operands to an FP_D instruction are doubles.
4826 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4827 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4828 mask |= mask << 1;
4829 return mask;
4830}
4831
a1d78564
RS
4832/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4833 Check whether that is allowed. */
4834
5b7c81bd 4835static bool
a1d78564
RS
4836mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4837{
4838 const char *s = insn->name;
5b7c81bd
AM
4839 bool oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4840 || FPR_SIZE == 64) && mips_opts.oddspreg;
a1d78564
RS
4841
4842 if (insn->pinfo == INSN_MACRO)
4843 /* Let a macro pass, we'll catch it later when it is expanded. */
5b7c81bd 4844 return true;
a1d78564 4845
351cdf24
MF
4846 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4847 otherwise it depends on oddspreg. */
4848 if ((insn->pinfo & FP_S)
4849 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4850 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4851 return FPR_SIZE == 32 || oddspreg;
a1d78564 4852
351cdf24
MF
4853 /* Allow odd registers for single-precision ops and double-precision if the
4854 floating-point registers are 64-bit wide. */
4855 switch (insn->pinfo & (FP_S | FP_D))
4856 {
4857 case FP_S:
4858 case 0:
4859 return oddspreg;
4860 case FP_D:
4861 return FPR_SIZE == 64;
4862 default:
4863 break;
a1d78564
RS
4864 }
4865
351cdf24
MF
4866 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4867 s = strchr (insn->name, '.');
4868 if (s != NULL && opnum == 2)
4869 s = strchr (s + 1, '.');
4870 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4871 return oddspreg;
a1d78564 4872
351cdf24 4873 return FPR_SIZE == 64;
a1d78564
RS
4874}
4875
a1d78564
RS
4876/* Information about an instruction argument that we're trying to match. */
4877struct mips_arg_info
4878{
4879 /* The instruction so far. */
4880 struct mips_cl_insn *insn;
4881
a92713e6
RS
4882 /* The first unconsumed operand token. */
4883 struct mips_operand_token *token;
4884
a1d78564
RS
4885 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4886 int opnum;
4887
4888 /* The 1-based argument number, for error reporting. This does not
4889 count elided optional registers, etc.. */
4890 int argnum;
4891
4892 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4893 unsigned int last_regno;
4894
4895 /* If the first operand was an OP_REG, this is the register that it
4896 specified, otherwise it is ILLEGAL_REG. */
4897 unsigned int dest_regno;
4898
4899 /* The value of the last OP_INT operand. Only used for OP_MSB,
4900 where it gives the lsb position. */
4901 unsigned int last_op_int;
4902
60f20e8b 4903 /* If true, match routines should assume that no later instruction
2b0f3761 4904 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4905 possible. Match routines should not report errors if something
4906 is only invalid for !LAX_MATCH. */
5b7c81bd 4907 bool lax_match;
a1d78564 4908
a1d78564 4909 /* True if a reference to the current AT register was seen. */
5b7c81bd 4910 bool seen_at;
a1d78564
RS
4911};
4912
1a00e612
RS
4913/* Record that the argument is out of range. */
4914
4915static void
4916match_out_of_range (struct mips_arg_info *arg)
4917{
4918 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4919}
4920
4921/* Record that the argument isn't constant but needs to be. */
4922
4923static void
4924match_not_constant (struct mips_arg_info *arg)
4925{
4926 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4927 arg->argnum);
4928}
4929
a92713e6
RS
4930/* Try to match an OT_CHAR token for character CH. Consume the token
4931 and return true on success, otherwise return false. */
a1d78564 4932
5b7c81bd 4933static bool
a92713e6 4934match_char (struct mips_arg_info *arg, char ch)
a1d78564 4935{
a92713e6
RS
4936 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4937 {
4938 ++arg->token;
4939 if (ch == ',')
4940 arg->argnum += 1;
5b7c81bd 4941 return true;
a92713e6 4942 }
5b7c81bd 4943 return false;
a92713e6 4944}
a1d78564 4945
a92713e6
RS
4946/* Try to get an expression from the next tokens in ARG. Consume the
4947 tokens and return true on success, storing the expression value in
4948 VALUE and relocation types in R. */
4949
5b7c81bd 4950static bool
a92713e6
RS
4951match_expression (struct mips_arg_info *arg, expressionS *value,
4952 bfd_reloc_code_real_type *r)
4953{
d436c1c2
RS
4954 /* If the next token is a '(' that was parsed as being part of a base
4955 expression, assume we have an elided offset. The later match will fail
4956 if this turns out to be wrong. */
4957 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4958 {
d436c1c2
RS
4959 value->X_op = O_constant;
4960 value->X_add_number = 0;
4961 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
5b7c81bd 4962 return true;
a92713e6
RS
4963 }
4964
d436c1c2
RS
4965 /* Reject register-based expressions such as "0+$2" and "(($2))".
4966 For plain registers the default error seems more appropriate. */
4967 if (arg->token->type == OT_INTEGER
4968 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4969 {
d436c1c2 4970 set_insn_error (arg->argnum, _("register value used as expression"));
5b7c81bd 4971 return false;
a1d78564 4972 }
d436c1c2
RS
4973
4974 if (arg->token->type == OT_INTEGER)
a92713e6 4975 {
d436c1c2
RS
4976 *value = arg->token->u.integer.value;
4977 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4978 ++arg->token;
5b7c81bd 4979 return true;
a92713e6 4980 }
a92713e6 4981
d436c1c2
RS
4982 set_insn_error_i
4983 (arg->argnum, _("operand %d must be an immediate expression"),
4984 arg->argnum);
5b7c81bd 4985 return false;
a92713e6
RS
4986}
4987
4988/* Try to get a constant expression from the next tokens in ARG. Consume
de194d85 4989 the tokens and return true on success, storing the constant value
a54d5f8b 4990 in *VALUE. */
a92713e6 4991
5b7c81bd 4992static bool
1a00e612 4993match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4994{
4995 expressionS ex;
4996 bfd_reloc_code_real_type r[3];
a1d78564 4997
a92713e6 4998 if (!match_expression (arg, &ex, r))
5b7c81bd 4999 return false;
a92713e6
RS
5000
5001 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
5002 *value = ex.X_add_number;
5003 else
5004 {
c96425c5
MR
5005 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
5006 match_out_of_range (arg);
5007 else
5008 match_not_constant (arg);
5b7c81bd 5009 return false;
a1d78564 5010 }
5b7c81bd 5011 return true;
a1d78564
RS
5012}
5013
5014/* Return the RTYPE_* flags for a register operand of type TYPE that
5015 appears in instruction OPCODE. */
5016
5017static unsigned int
5018convert_reg_type (const struct mips_opcode *opcode,
5019 enum mips_reg_operand_type type)
5020{
5021 switch (type)
5022 {
5023 case OP_REG_GP:
5024 return RTYPE_NUM | RTYPE_GP;
5025
5026 case OP_REG_FP:
5027 /* Allow vector register names for MDMX if the instruction is a 64-bit
5028 FPR load, store or move (including moves to and from GPRs). */
5029 if ((mips_opts.ase & ASE_MDMX)
5030 && (opcode->pinfo & FP_D)
43885403 5031 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 5032 | INSN_COPROC_MEMORY_DELAY
43885403 5033 | INSN_LOAD_COPROC
67dc82bc 5034 | INSN_LOAD_MEMORY
a1d78564
RS
5035 | INSN_STORE_MEMORY)))
5036 return RTYPE_FPU | RTYPE_VEC;
5037 return RTYPE_FPU;
5038
5039 case OP_REG_CCC:
5040 if (opcode->pinfo & (FP_D | FP_S))
5041 return RTYPE_CCC | RTYPE_FCC;
5042 return RTYPE_CCC;
5043
5044 case OP_REG_VEC:
5045 if (opcode->membership & INSN_5400)
5046 return RTYPE_FPU;
5047 return RTYPE_FPU | RTYPE_VEC;
5048
5049 case OP_REG_ACC:
5050 return RTYPE_ACC;
5051
5052 case OP_REG_COPRO:
9204ccd4 5053 case OP_REG_CONTROL:
a1d78564
RS
5054 if (opcode->name[strlen (opcode->name) - 1] == '0')
5055 return RTYPE_NUM | RTYPE_CP0;
5056 return RTYPE_NUM;
5057
5058 case OP_REG_HW:
5059 return RTYPE_NUM;
14daeee3
RS
5060
5061 case OP_REG_VI:
5062 return RTYPE_NUM | RTYPE_VI;
5063
5064 case OP_REG_VF:
5065 return RTYPE_NUM | RTYPE_VF;
5066
5067 case OP_REG_R5900_I:
5068 return RTYPE_R5900_I;
5069
5070 case OP_REG_R5900_Q:
5071 return RTYPE_R5900_Q;
5072
5073 case OP_REG_R5900_R:
5074 return RTYPE_R5900_R;
5075
5076 case OP_REG_R5900_ACC:
5077 return RTYPE_R5900_ACC;
56d438b1
CF
5078
5079 case OP_REG_MSA:
5080 return RTYPE_MSA;
5081
5082 case OP_REG_MSA_CTRL:
5083 return RTYPE_NUM;
a1d78564
RS
5084 }
5085 abort ();
5086}
5087
5088/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5089
5090static void
5091check_regno (struct mips_arg_info *arg,
5092 enum mips_reg_operand_type type, unsigned int regno)
5093{
5094 if (AT && type == OP_REG_GP && regno == AT)
5b7c81bd 5095 arg->seen_at = true;
a1d78564
RS
5096
5097 if (type == OP_REG_FP
5098 && (regno & 1) != 0
a1d78564 5099 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
5100 {
5101 /* This was a warning prior to introducing O32 FPXX and FP64 support
5102 so maintain a warning for FP32 but raise an error for the new
5103 cases. */
5104 if (FPR_SIZE == 32)
5105 as_warn (_("float register should be even, was %d"), regno);
5106 else
5107 as_bad (_("float register should be even, was %d"), regno);
5108 }
a1d78564
RS
5109
5110 if (type == OP_REG_CCC)
5111 {
5112 const char *name;
5113 size_t length;
5114
5115 name = arg->insn->insn_mo->name;
5116 length = strlen (name);
5117 if ((regno & 1) != 0
5118 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
d34049e8 5119 || (length >= 5 && startswith (name + length - 5, "any2"))))
1661c76c 5120 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
5121 name, regno);
5122
5123 if ((regno & 3) != 0
d34049e8 5124 && (length >= 5 && startswith (name + length - 5, "any4")))
1661c76c 5125 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
5126 name, regno);
5127 }
5128}
5129
a92713e6
RS
5130/* ARG is a register with symbol value SYMVAL. Try to interpret it as
5131 a register of type TYPE. Return true on success, storing the register
5132 number in *REGNO and warning about any dubious uses. */
5133
5b7c81bd 5134static bool
a92713e6
RS
5135match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5136 unsigned int symval, unsigned int *regno)
5137{
5138 if (type == OP_REG_VEC)
5139 symval = mips_prefer_vec_regno (symval);
5140 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5b7c81bd 5141 return false;
a92713e6
RS
5142
5143 *regno = symval & RNUM_MASK;
5144 check_regno (arg, type, *regno);
5b7c81bd 5145 return true;
a92713e6
RS
5146}
5147
5148/* Try to interpret the next token in ARG as a register of type TYPE.
5149 Consume the token and return true on success, storing the register
5150 number in *REGNO. Return false on failure. */
5151
5b7c81bd 5152static bool
a92713e6
RS
5153match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5154 unsigned int *regno)
5155{
5156 if (arg->token->type == OT_REG
5157 && match_regno (arg, type, arg->token->u.regno, regno))
5158 {
5159 ++arg->token;
5b7c81bd 5160 return true;
a92713e6 5161 }
5b7c81bd 5162 return false;
a92713e6
RS
5163}
5164
5165/* Try to interpret the next token in ARG as a range of registers of type TYPE.
5166 Consume the token and return true on success, storing the register numbers
5167 in *REGNO1 and *REGNO2. Return false on failure. */
5168
5b7c81bd 5169static bool
a92713e6
RS
5170match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5171 unsigned int *regno1, unsigned int *regno2)
5172{
5173 if (match_reg (arg, type, regno1))
5174 {
5175 *regno2 = *regno1;
5b7c81bd 5176 return true;
a92713e6
RS
5177 }
5178 if (arg->token->type == OT_REG_RANGE
5179 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5180 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5181 && *regno1 <= *regno2)
5182 {
5183 ++arg->token;
5b7c81bd 5184 return true;
a92713e6 5185 }
5b7c81bd 5186 return false;
a92713e6
RS
5187}
5188
a1d78564
RS
5189/* OP_INT matcher. */
5190
5b7c81bd 5191static bool
a1d78564 5192match_int_operand (struct mips_arg_info *arg,
a92713e6 5193 const struct mips_operand *operand_base)
a1d78564
RS
5194{
5195 const struct mips_int_operand *operand;
3ccad066 5196 unsigned int uval;
a1d78564
RS
5197 int min_val, max_val, factor;
5198 offsetT sval;
a1d78564
RS
5199
5200 operand = (const struct mips_int_operand *) operand_base;
5201 factor = 1 << operand->shift;
3ccad066
RS
5202 min_val = mips_int_operand_min (operand);
5203 max_val = mips_int_operand_max (operand);
a1d78564 5204
d436c1c2
RS
5205 if (operand_base->lsb == 0
5206 && operand_base->size == 16
5207 && operand->shift == 0
5208 && operand->bias == 0
5209 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5210 {
5211 /* The operand can be relocated. */
a92713e6 5212 if (!match_expression (arg, &offset_expr, offset_reloc))
5b7c81bd 5213 return false;
a92713e6 5214
c96425c5
MR
5215 if (offset_expr.X_op == O_big)
5216 {
5217 match_out_of_range (arg);
5b7c81bd 5218 return false;
c96425c5
MR
5219 }
5220
a92713e6 5221 if (offset_reloc[0] != BFD_RELOC_UNUSED)
33eaf5de 5222 /* Relocation operators were used. Accept the argument and
a1d78564
RS
5223 leave the relocation value in offset_expr and offset_relocs
5224 for the caller to process. */
5b7c81bd 5225 return true;
a92713e6
RS
5226
5227 if (offset_expr.X_op != O_constant)
a1d78564 5228 {
60f20e8b
RS
5229 /* Accept non-constant operands if no later alternative matches,
5230 leaving it for the caller to process. */
5231 if (!arg->lax_match)
602b88e3
MR
5232 {
5233 match_not_constant (arg);
5b7c81bd 5234 return false;
602b88e3 5235 }
a92713e6 5236 offset_reloc[0] = BFD_RELOC_LO16;
5b7c81bd 5237 return true;
a1d78564 5238 }
a92713e6 5239
a1d78564
RS
5240 /* Clear the global state; we're going to install the operand
5241 ourselves. */
a92713e6 5242 sval = offset_expr.X_add_number;
a1d78564 5243 offset_expr.X_op = O_absent;
60f20e8b
RS
5244
5245 /* For compatibility with older assemblers, we accept
5246 0x8000-0xffff as signed 16-bit numbers when only
5247 signed numbers are allowed. */
5248 if (sval > max_val)
5249 {
5250 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5251 if (!arg->lax_match && sval <= max_val)
20c59b84
MR
5252 {
5253 match_out_of_range (arg);
5b7c81bd 5254 return false;
20c59b84 5255 }
60f20e8b 5256 }
a1d78564
RS
5257 }
5258 else
5259 {
1a00e612 5260 if (!match_const_int (arg, &sval))
5b7c81bd 5261 return false;
a1d78564
RS
5262 }
5263
5264 arg->last_op_int = sval;
5265
1a00e612 5266 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5267 {
1a00e612 5268 match_out_of_range (arg);
5b7c81bd 5269 return false;
a1d78564
RS
5270 }
5271
5272 uval = (unsigned int) sval >> operand->shift;
5273 uval -= operand->bias;
5274
5275 /* Handle -mfix-cn63xxp1. */
5276 if (arg->opnum == 1
5277 && mips_fix_cn63xxp1
5278 && !mips_opts.micromips
5279 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5280 switch (uval)
5281 {
5282 case 5:
5283 case 25:
5284 case 26:
5285 case 27:
5286 case 28:
5287 case 29:
5288 case 30:
5289 case 31:
5290 /* These are ok. */
5291 break;
5292
5293 default:
5294 /* The rest must be changed to 28. */
5295 uval = 28;
5296 break;
5297 }
5298
5299 insn_insert_operand (arg->insn, operand_base, uval);
5b7c81bd 5300 return true;
a1d78564
RS
5301}
5302
5303/* OP_MAPPED_INT matcher. */
5304
5b7c81bd 5305static bool
a1d78564 5306match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5307 const struct mips_operand *operand_base)
a1d78564
RS
5308{
5309 const struct mips_mapped_int_operand *operand;
5310 unsigned int uval, num_vals;
5311 offsetT sval;
5312
5313 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5314 if (!match_const_int (arg, &sval))
5b7c81bd 5315 return false;
a1d78564
RS
5316
5317 num_vals = 1 << operand_base->size;
5318 for (uval = 0; uval < num_vals; uval++)
5319 if (operand->int_map[uval] == sval)
5320 break;
5321 if (uval == num_vals)
1a00e612
RS
5322 {
5323 match_out_of_range (arg);
5b7c81bd 5324 return false;
1a00e612 5325 }
a1d78564
RS
5326
5327 insn_insert_operand (arg->insn, operand_base, uval);
5b7c81bd 5328 return true;
a1d78564
RS
5329}
5330
5331/* OP_MSB matcher. */
5332
5b7c81bd 5333static bool
a1d78564 5334match_msb_operand (struct mips_arg_info *arg,
a92713e6 5335 const struct mips_operand *operand_base)
a1d78564
RS
5336{
5337 const struct mips_msb_operand *operand;
5338 int min_val, max_val, max_high;
5339 offsetT size, sval, high;
5340
5341 operand = (const struct mips_msb_operand *) operand_base;
5342 min_val = operand->bias;
5343 max_val = min_val + (1 << operand_base->size) - 1;
5344 max_high = operand->opsize;
5345
1a00e612 5346 if (!match_const_int (arg, &size))
5b7c81bd 5347 return false;
a1d78564
RS
5348
5349 high = size + arg->last_op_int;
5350 sval = operand->add_lsb ? high : size;
5351
5352 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5353 {
1a00e612 5354 match_out_of_range (arg);
5b7c81bd 5355 return false;
a1d78564
RS
5356 }
5357 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5b7c81bd 5358 return true;
a1d78564
RS
5359}
5360
5361/* OP_REG matcher. */
5362
5b7c81bd 5363static bool
a1d78564 5364match_reg_operand (struct mips_arg_info *arg,
a92713e6 5365 const struct mips_operand *operand_base)
a1d78564
RS
5366{
5367 const struct mips_reg_operand *operand;
a92713e6 5368 unsigned int regno, uval, num_vals;
a1d78564
RS
5369
5370 operand = (const struct mips_reg_operand *) operand_base;
a92713e6 5371 if (!match_reg (arg, operand->reg_type, &regno))
5b7c81bd 5372 return false;
a1d78564
RS
5373
5374 if (operand->reg_map)
5375 {
5376 num_vals = 1 << operand->root.size;
5377 for (uval = 0; uval < num_vals; uval++)
5378 if (operand->reg_map[uval] == regno)
5379 break;
5380 if (num_vals == uval)
5b7c81bd 5381 return false;
a1d78564
RS
5382 }
5383 else
5384 uval = regno;
5385
a1d78564
RS
5386 arg->last_regno = regno;
5387 if (arg->opnum == 1)
5388 arg->dest_regno = regno;
5389 insn_insert_operand (arg->insn, operand_base, uval);
5b7c81bd 5390 return true;
a1d78564
RS
5391}
5392
5393/* OP_REG_PAIR matcher. */
5394
5b7c81bd 5395static bool
a1d78564 5396match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5397 const struct mips_operand *operand_base)
a1d78564
RS
5398{
5399 const struct mips_reg_pair_operand *operand;
a92713e6 5400 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5401
5402 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5403 if (!match_reg (arg, operand->reg_type, &regno1)
5404 || !match_char (arg, ',')
5405 || !match_reg (arg, operand->reg_type, &regno2))
5b7c81bd 5406 return false;
a1d78564
RS
5407
5408 num_vals = 1 << operand_base->size;
5409 for (uval = 0; uval < num_vals; uval++)
5410 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5411 break;
5412 if (uval == num_vals)
5b7c81bd 5413 return false;
a1d78564 5414
a1d78564 5415 insn_insert_operand (arg->insn, operand_base, uval);
5b7c81bd 5416 return true;
a1d78564
RS
5417}
5418
5419/* OP_PCREL matcher. The caller chooses the relocation type. */
5420
5b7c81bd 5421static bool
a92713e6 5422match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5423{
a92713e6
RS
5424 bfd_reloc_code_real_type r[3];
5425
5426 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5427}
5428
5429/* OP_PERF_REG matcher. */
5430
5b7c81bd 5431static bool
a1d78564 5432match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5433 const struct mips_operand *operand)
a1d78564
RS
5434{
5435 offsetT sval;
5436
1a00e612 5437 if (!match_const_int (arg, &sval))
5b7c81bd 5438 return false;
a1d78564
RS
5439
5440 if (sval != 0
5441 && (sval != 1
5442 || (mips_opts.arch == CPU_R5900
5443 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5444 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5445 {
1a00e612 5446 set_insn_error (arg->argnum, _("invalid performance register"));
5b7c81bd 5447 return false;
a1d78564
RS
5448 }
5449
5450 insn_insert_operand (arg->insn, operand, sval);
5b7c81bd 5451 return true;
a1d78564
RS
5452}
5453
5454/* OP_ADDIUSP matcher. */
5455
5b7c81bd 5456static bool
a1d78564 5457match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5458 const struct mips_operand *operand)
a1d78564
RS
5459{
5460 offsetT sval;
5461 unsigned int uval;
5462
1a00e612 5463 if (!match_const_int (arg, &sval))
5b7c81bd 5464 return false;
a1d78564
RS
5465
5466 if (sval % 4)
1a00e612
RS
5467 {
5468 match_out_of_range (arg);
5b7c81bd 5469 return false;
1a00e612 5470 }
a1d78564
RS
5471
5472 sval /= 4;
5473 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5474 {
5475 match_out_of_range (arg);
5b7c81bd 5476 return false;
1a00e612 5477 }
a1d78564
RS
5478
5479 uval = (unsigned int) sval;
5480 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5481 insn_insert_operand (arg->insn, operand, uval);
5b7c81bd 5482 return true;
a1d78564
RS
5483}
5484
5485/* OP_CLO_CLZ_DEST matcher. */
5486
5b7c81bd 5487static bool
a1d78564 5488match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5489 const struct mips_operand *operand)
a1d78564
RS
5490{
5491 unsigned int regno;
5492
a92713e6 5493 if (!match_reg (arg, OP_REG_GP, &regno))
5b7c81bd 5494 return false;
a1d78564 5495
a1d78564 5496 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5b7c81bd 5497 return true;
a1d78564
RS
5498}
5499
7361da2c
AB
5500/* OP_CHECK_PREV matcher. */
5501
5b7c81bd 5502static bool
7361da2c
AB
5503match_check_prev_operand (struct mips_arg_info *arg,
5504 const struct mips_operand *operand_base)
5505{
5506 const struct mips_check_prev_operand *operand;
5507 unsigned int regno;
5508
5509 operand = (const struct mips_check_prev_operand *) operand_base;
5510
5511 if (!match_reg (arg, OP_REG_GP, &regno))
5b7c81bd 5512 return false;
7361da2c
AB
5513
5514 if (!operand->zero_ok && regno == 0)
5b7c81bd 5515 return false;
7361da2c
AB
5516
5517 if ((operand->less_than_ok && regno < arg->last_regno)
5518 || (operand->greater_than_ok && regno > arg->last_regno)
5519 || (operand->equal_ok && regno == arg->last_regno))
5520 {
5521 arg->last_regno = regno;
5522 insn_insert_operand (arg->insn, operand_base, regno);
5b7c81bd 5523 return true;
7361da2c
AB
5524 }
5525
5b7c81bd 5526 return false;
7361da2c
AB
5527}
5528
5529/* OP_SAME_RS_RT matcher. */
5530
5b7c81bd 5531static bool
7361da2c
AB
5532match_same_rs_rt_operand (struct mips_arg_info *arg,
5533 const struct mips_operand *operand)
5534{
5535 unsigned int regno;
5536
5537 if (!match_reg (arg, OP_REG_GP, &regno))
5b7c81bd 5538 return false;
7361da2c
AB
5539
5540 if (regno == 0)
5541 {
5542 set_insn_error (arg->argnum, _("the source register must not be $0"));
5b7c81bd 5543 return false;
7361da2c
AB
5544 }
5545
5546 arg->last_regno = regno;
5547
5548 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5b7c81bd 5549 return true;
7361da2c
AB
5550}
5551
a1d78564
RS
5552/* OP_LWM_SWM_LIST matcher. */
5553
5b7c81bd 5554static bool
a1d78564 5555match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5556 const struct mips_operand *operand)
a1d78564 5557{
a92713e6
RS
5558 unsigned int reglist, sregs, ra, regno1, regno2;
5559 struct mips_arg_info reset;
a1d78564 5560
a92713e6
RS
5561 reglist = 0;
5562 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5b7c81bd 5563 return false;
a92713e6
RS
5564 do
5565 {
5566 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5567 {
5568 reglist |= 1 << FP;
5569 regno2 = S7;
5570 }
5571 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5572 reset = *arg;
5573 }
5574 while (match_char (arg, ',')
5575 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5576 *arg = reset;
a1d78564
RS
5577
5578 if (operand->size == 2)
5579 {
5580 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5581
5582 s0, ra
5583 s0, s1, ra, s2, s3
5584 s0-s2, ra
5585
5586 and any permutations of these. */
5587 if ((reglist & 0xfff1ffff) != 0x80010000)
5b7c81bd 5588 return false;
a1d78564
RS
5589
5590 sregs = (reglist >> 17) & 7;
5591 ra = 0;
5592 }
5593 else
5594 {
5595 /* The list must include at least one of ra and s0-sN,
5596 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5597 which are $23 and $30 respectively.) E.g.:
5598
5599 ra
5600 s0
5601 ra, s0, s1, s2
5602 s0-s8
5603 s0-s5, ra
5604
5605 and any permutations of these. */
5606 if ((reglist & 0x3f00ffff) != 0)
5b7c81bd 5607 return false;
a1d78564
RS
5608
5609 ra = (reglist >> 27) & 0x10;
5610 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5611 }
5612 sregs += 1;
5613 if ((sregs & -sregs) != sregs)
5b7c81bd 5614 return false;
a1d78564
RS
5615
5616 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5b7c81bd 5617 return true;
a1d78564
RS
5618}
5619
364215c8
RS
5620/* OP_ENTRY_EXIT_LIST matcher. */
5621
a92713e6 5622static unsigned int
364215c8 5623match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5624 const struct mips_operand *operand)
364215c8
RS
5625{
5626 unsigned int mask;
5b7c81bd 5627 bool is_exit;
364215c8
RS
5628
5629 /* The format is the same for both ENTRY and EXIT, but the constraints
5630 are different. */
5631 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5632 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5633 do
364215c8
RS
5634 {
5635 unsigned int regno1, regno2;
5b7c81bd 5636 bool is_freg;
364215c8 5637
a92713e6 5638 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5b7c81bd 5639 is_freg = false;
a92713e6 5640 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5b7c81bd 5641 is_freg = true;
364215c8 5642 else
5b7c81bd 5643 return false;
364215c8
RS
5644
5645 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5646 {
5647 mask &= ~(7 << 3);
5648 mask |= (5 + regno2) << 3;
5649 }
5650 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5651 mask |= (regno2 - 3) << 3;
5652 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5653 mask |= (regno2 - 15) << 1;
5654 else if (regno1 == RA && regno2 == RA)
5655 mask |= 1;
5656 else
5b7c81bd 5657 return false;
364215c8 5658 }
a92713e6
RS
5659 while (match_char (arg, ','));
5660
364215c8 5661 insn_insert_operand (arg->insn, operand, mask);
5b7c81bd 5662 return true;
364215c8
RS
5663}
5664
38bf472a
MR
5665/* Encode regular MIPS SAVE/RESTORE instruction operands according to
5666 the argument register mask AMASK, the number of static registers
5667 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5668 respectively, and the frame size FRAME_SIZE. */
5669
5670static unsigned int
5671mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5672 unsigned int ra, unsigned int s0, unsigned int s1,
5673 unsigned int frame_size)
5674{
5675 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5676 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5677}
5678
5679/* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5680 argument register mask AMASK, the number of static registers saved
5681 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5682 respectively, and the frame size FRAME_SIZE. */
5683
5684static unsigned int
5685mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5686 unsigned int ra, unsigned int s0, unsigned int s1,
5687 unsigned int frame_size)
5688{
5689 unsigned int args;
5690
5691 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5692 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5693 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5694 | ((frame_size & 0xf0) << 16));
5695 return args;
5696}
5697
364215c8
RS
5698/* OP_SAVE_RESTORE_LIST matcher. */
5699
5b7c81bd 5700static bool
a92713e6 5701match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5702{
5703 unsigned int opcode, args, statics, sregs;
5704 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
38bf472a 5705 unsigned int arg_mask, ra, s0, s1;
364215c8 5706 offsetT frame_size;
364215c8 5707
364215c8
RS
5708 opcode = arg->insn->insn_opcode;
5709 frame_size = 0;
5710 num_frame_sizes = 0;
5711 args = 0;
5712 statics = 0;
5713 sregs = 0;
38bf472a
MR
5714 ra = 0;
5715 s0 = 0;
5716 s1 = 0;
a92713e6 5717 do
364215c8
RS
5718 {
5719 unsigned int regno1, regno2;
5720
a92713e6 5721 if (arg->token->type == OT_INTEGER)
364215c8
RS
5722 {
5723 /* Handle the frame size. */
1a00e612 5724 if (!match_const_int (arg, &frame_size))
5b7c81bd 5725 return false;
364215c8 5726 num_frame_sizes += 1;
364215c8
RS
5727 }
5728 else
5729 {
a92713e6 5730 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5b7c81bd 5731 return false;
364215c8
RS
5732
5733 while (regno1 <= regno2)
5734 {
5735 if (regno1 >= 4 && regno1 <= 7)
5736 {
5737 if (num_frame_sizes == 0)
5738 /* args $a0-$a3 */
5739 args |= 1 << (regno1 - 4);
5740 else
5741 /* statics $a0-$a3 */
5742 statics |= 1 << (regno1 - 4);
5743 }
5744 else if (regno1 >= 16 && regno1 <= 23)
5745 /* $s0-$s7 */
5746 sregs |= 1 << (regno1 - 16);
5747 else if (regno1 == 30)
5748 /* $s8 */
5749 sregs |= 1 << 8;
5750 else if (regno1 == 31)
5751 /* Add $ra to insn. */
38bf472a 5752 ra = 1;
364215c8 5753 else
5b7c81bd 5754 return false;
364215c8
RS
5755 regno1 += 1;
5756 if (regno1 == 24)
5757 regno1 = 30;
5758 }
5759 }
364215c8 5760 }
a92713e6 5761 while (match_char (arg, ','));
364215c8
RS
5762
5763 /* Encode args/statics combination. */
5764 if (args & statics)
5b7c81bd 5765 return false;
364215c8
RS
5766 else if (args == 0xf)
5767 /* All $a0-$a3 are args. */
38bf472a 5768 arg_mask = MIPS_SVRS_ALL_ARGS;
364215c8
RS
5769 else if (statics == 0xf)
5770 /* All $a0-$a3 are statics. */
38bf472a 5771 arg_mask = MIPS_SVRS_ALL_STATICS;
364215c8
RS
5772 else
5773 {
5774 /* Count arg registers. */
5775 num_args = 0;
5776 while (args & 0x1)
5777 {
5778 args >>= 1;
5779 num_args += 1;
5780 }
5781 if (args != 0)
5b7c81bd 5782 return false;
364215c8
RS
5783
5784 /* Count static registers. */
5785 num_statics = 0;
5786 while (statics & 0x8)
5787 {
5788 statics = (statics << 1) & 0xf;
5789 num_statics += 1;
5790 }
5791 if (statics != 0)
5b7c81bd 5792 return false;
364215c8
RS
5793
5794 /* Encode args/statics. */
38bf472a 5795 arg_mask = (num_args << 2) | num_statics;
364215c8
RS
5796 }
5797
5798 /* Encode $s0/$s1. */
5799 if (sregs & (1 << 0)) /* $s0 */
38bf472a 5800 s0 = 1;
364215c8 5801 if (sregs & (1 << 1)) /* $s1 */
38bf472a 5802 s1 = 1;
364215c8
RS
5803 sregs >>= 2;
5804
5805 /* Encode $s2-$s8. */
5806 num_sregs = 0;
5807 while (sregs & 1)
5808 {
5809 sregs >>= 1;
5810 num_sregs += 1;
5811 }
5812 if (sregs != 0)
5b7c81bd 5813 return false;
364215c8
RS
5814
5815 /* Encode frame size. */
5816 if (num_frame_sizes == 0)
1a00e612
RS
5817 {
5818 set_insn_error (arg->argnum, _("missing frame size"));
5b7c81bd 5819 return false;
1a00e612
RS
5820 }
5821 if (num_frame_sizes > 1)
5822 {
5823 set_insn_error (arg->argnum, _("frame size specified twice"));
5b7c81bd 5824 return false;
1a00e612
RS
5825 }
5826 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5827 {
5828 set_insn_error (arg->argnum, _("invalid frame size"));
5b7c81bd 5829 return false;
1a00e612 5830 }
38bf472a 5831 frame_size /= 8;
364215c8 5832
364215c8 5833 /* Finally build the instruction. */
38bf472a
MR
5834 if (mips_opts.mips16)
5835 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5836 frame_size);
5837 else if (!mips_opts.micromips)
5838 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5839 frame_size);
5840 else
5841 abort ();
5842
364215c8 5843 arg->insn->insn_opcode = opcode;
5b7c81bd 5844 return true;
364215c8
RS
5845}
5846
a1d78564
RS
5847/* OP_MDMX_IMM_REG matcher. */
5848
5b7c81bd 5849static bool
a1d78564 5850match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5851 const struct mips_operand *operand)
a1d78564 5852{
a92713e6 5853 unsigned int regno, uval;
5b7c81bd 5854 bool is_qh;
a1d78564
RS
5855 const struct mips_opcode *opcode;
5856
5857 /* The mips_opcode records whether this is an octobyte or quadhalf
5858 instruction. Start out with that bit in place. */
5859 opcode = arg->insn->insn_mo;
5860 uval = mips_extract_operand (operand, opcode->match);
5861 is_qh = (uval != 0);
5862
56d438b1 5863 if (arg->token->type == OT_REG)
a1d78564
RS
5864 {
5865 if ((opcode->membership & INSN_5400)
5866 && strcmp (opcode->name, "rzu.ob") == 0)
5867 {
1a00e612
RS
5868 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5869 arg->argnum);
5b7c81bd 5870 return false;
a1d78564
RS
5871 }
5872
56d438b1 5873 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5b7c81bd 5874 return false;
56d438b1
CF
5875 ++arg->token;
5876
a1d78564
RS
5877 /* Check whether this is a vector register or a broadcast of
5878 a single element. */
56d438b1 5879 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5880 {
56d438b1 5881 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5882 {
1a00e612 5883 set_insn_error (arg->argnum, _("invalid element selector"));
5b7c81bd 5884 return false;
a1d78564 5885 }
56d438b1
CF
5886 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5887 ++arg->token;
a1d78564
RS
5888 }
5889 else
5890 {
5891 /* A full vector. */
5892 if ((opcode->membership & INSN_5400)
5893 && (strcmp (opcode->name, "sll.ob") == 0
5894 || strcmp (opcode->name, "srl.ob") == 0))
5895 {
1a00e612
RS
5896 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5897 arg->argnum);
5b7c81bd 5898 return false;
a1d78564
RS
5899 }
5900
5901 if (is_qh)
5902 uval |= MDMX_FMTSEL_VEC_QH << 5;
5903 else
5904 uval |= MDMX_FMTSEL_VEC_OB << 5;
5905 }
a1d78564
RS
5906 uval |= regno;
5907 }
5908 else
5909 {
5910 offsetT sval;
5911
1a00e612 5912 if (!match_const_int (arg, &sval))
5b7c81bd 5913 return false;
a1d78564
RS
5914 if (sval < 0 || sval > 31)
5915 {
1a00e612 5916 match_out_of_range (arg);
5b7c81bd 5917 return false;
a1d78564
RS
5918 }
5919 uval |= (sval & 31);
5920 if (is_qh)
5921 uval |= MDMX_FMTSEL_IMM_QH << 5;
5922 else
5923 uval |= MDMX_FMTSEL_IMM_OB << 5;
5924 }
5925 insn_insert_operand (arg->insn, operand, uval);
5b7c81bd 5926 return true;
a1d78564
RS
5927}
5928
56d438b1
CF
5929/* OP_IMM_INDEX matcher. */
5930
5b7c81bd 5931static bool
56d438b1
CF
5932match_imm_index_operand (struct mips_arg_info *arg,
5933 const struct mips_operand *operand)
5934{
5935 unsigned int max_val;
5936
5937 if (arg->token->type != OT_INTEGER_INDEX)
5b7c81bd 5938 return false;
56d438b1
CF
5939
5940 max_val = (1 << operand->size) - 1;
5941 if (arg->token->u.index > max_val)
5942 {
5943 match_out_of_range (arg);
5b7c81bd 5944 return false;
56d438b1
CF
5945 }
5946 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5947 ++arg->token;
5b7c81bd 5948 return true;
56d438b1
CF
5949}
5950
5951/* OP_REG_INDEX matcher. */
5952
5b7c81bd 5953static bool
56d438b1
CF
5954match_reg_index_operand (struct mips_arg_info *arg,
5955 const struct mips_operand *operand)
5956{
5957 unsigned int regno;
5958
5959 if (arg->token->type != OT_REG_INDEX)
5b7c81bd 5960 return false;
56d438b1
CF
5961
5962 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5b7c81bd 5963 return false;
56d438b1
CF
5964
5965 insn_insert_operand (arg->insn, operand, regno);
5966 ++arg->token;
5b7c81bd 5967 return true;
56d438b1
CF
5968}
5969
a1d78564
RS
5970/* OP_PC matcher. */
5971
5b7c81bd 5972static bool
a92713e6 5973match_pc_operand (struct mips_arg_info *arg)
a1d78564 5974{
a92713e6
RS
5975 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5976 {
5977 ++arg->token;
5b7c81bd 5978 return true;
a92713e6 5979 }
5b7c81bd 5980 return false;
a1d78564
RS
5981}
5982
25499ac7
MR
5983/* OP_REG28 matcher. */
5984
5b7c81bd 5985static bool
25499ac7
MR
5986match_reg28_operand (struct mips_arg_info *arg)
5987{
5988 unsigned int regno;
5989
5990 if (arg->token->type == OT_REG
5991 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5992 && regno == GP)
5993 {
5994 ++arg->token;
5b7c81bd 5995 return true;
25499ac7 5996 }
5b7c81bd 5997 return false;
25499ac7
MR
5998}
5999
7361da2c
AB
6000/* OP_NON_ZERO_REG matcher. */
6001
5b7c81bd 6002static bool
7361da2c
AB
6003match_non_zero_reg_operand (struct mips_arg_info *arg,
6004 const struct mips_operand *operand)
6005{
6006 unsigned int regno;
6007
6008 if (!match_reg (arg, OP_REG_GP, &regno))
5b7c81bd 6009 return false;
7361da2c
AB
6010
6011 if (regno == 0)
85bec12d
MF
6012 {
6013 set_insn_error (arg->argnum, _("the source register must not be $0"));
5b7c81bd 6014 return false;
85bec12d 6015 }
7361da2c
AB
6016
6017 arg->last_regno = regno;
6018 insn_insert_operand (arg->insn, operand, regno);
5b7c81bd 6019 return true;
7361da2c
AB
6020}
6021
a1d78564
RS
6022/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
6023 register that we need to match. */
6024
5b7c81bd 6025static bool
a92713e6 6026match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
6027{
6028 unsigned int regno;
6029
a92713e6 6030 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
6031}
6032
33f46696
MR
6033/* Try to match a floating-point constant from ARG for LI.S or LI.D.
6034 LENGTH is the length of the value in bytes (4 for float, 8 for double)
6035 and USING_GPRS says whether the destination is a GPR rather than an FPR.
89565f1b
RS
6036
6037 Return the constant in IMM and OFFSET as follows:
6038
6039 - If the constant should be loaded via memory, set IMM to O_absent and
6040 OFFSET to the memory address.
6041
6042 - Otherwise, if the constant should be loaded into two 32-bit registers,
6043 set IMM to the O_constant to load into the high register and OFFSET
6044 to the corresponding value for the low register.
6045
6046 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6047
6048 These constants only appear as the last operand in an instruction,
6049 and every instruction that accepts them in any variant accepts them
6050 in all variants. This means we don't have to worry about backing out
6051 any changes if the instruction does not match. We just match
6052 unconditionally and report an error if the constant is invalid. */
6053
5b7c81bd 6054static bool
a92713e6 6055match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5b7c81bd 6056 expressionS *offset, int length, bool using_gprs)
89565f1b 6057{
a92713e6 6058 char *p;
89565f1b
RS
6059 segT seg, new_seg;
6060 subsegT subseg;
6061 const char *newname;
a92713e6 6062 unsigned char *data;
89565f1b
RS
6063
6064 /* Where the constant is placed is based on how the MIPS assembler
6065 does things:
6066
6067 length == 4 && using_gprs -- immediate value only
6068 length == 8 && using_gprs -- .rdata or immediate value
6069 length == 4 && !using_gprs -- .lit4 or immediate value
6070 length == 8 && !using_gprs -- .lit8 or immediate value
6071
6072 The .lit4 and .lit8 sections are only used if permitted by the
6073 -G argument. */
a92713e6 6074 if (arg->token->type != OT_FLOAT)
1a00e612
RS
6075 {
6076 set_insn_error (arg->argnum, _("floating-point expression required"));
5b7c81bd 6077 return false;
1a00e612 6078 }
a92713e6
RS
6079
6080 gas_assert (arg->token->u.flt.length == length);
6081 data = arg->token->u.flt.data;
6082 ++arg->token;
89565f1b
RS
6083
6084 /* Handle 32-bit constants for which an immediate value is best. */
6085 if (length == 4
6086 && (using_gprs
6087 || g_switch_value < 4
6088 || (data[0] == 0 && data[1] == 0)
6089 || (data[2] == 0 && data[3] == 0)))
6090 {
6091 imm->X_op = O_constant;
6092 if (!target_big_endian)
6093 imm->X_add_number = bfd_getl32 (data);
6094 else
6095 imm->X_add_number = bfd_getb32 (data);
6096 offset->X_op = O_absent;
5b7c81bd 6097 return true;
89565f1b
RS
6098 }
6099
6100 /* Handle 64-bit constants for which an immediate value is best. */
6101 if (length == 8
6102 && !mips_disable_float_construction
351cdf24
MF
6103 /* Constants can only be constructed in GPRs and copied to FPRs if the
6104 GPRs are at least as wide as the FPRs or MTHC1 is available.
6105 Unlike most tests for 32-bit floating-point registers this check
6106 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6107 permit 64-bit moves without MXHC1.
6108 Force the constant into memory otherwise. */
6109 && (using_gprs
6110 || GPR_SIZE == 64
6111 || ISA_HAS_MXHC1 (mips_opts.isa)
6112 || FPR_SIZE == 32)
89565f1b
RS
6113 && ((data[0] == 0 && data[1] == 0)
6114 || (data[2] == 0 && data[3] == 0))
6115 && ((data[4] == 0 && data[5] == 0)
6116 || (data[6] == 0 && data[7] == 0)))
6117 {
6118 /* The value is simple enough to load with a couple of instructions.
6119 If using 32-bit registers, set IMM to the high order 32 bits and
6120 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6121 64 bit constant. */
351cdf24 6122 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
6123 {
6124 imm->X_op = O_constant;
6125 offset->X_op = O_constant;
6126 if (!target_big_endian)
6127 {
6128 imm->X_add_number = bfd_getl32 (data + 4);
6129 offset->X_add_number = bfd_getl32 (data);
6130 }
6131 else
6132 {
6133 imm->X_add_number = bfd_getb32 (data);
6134 offset->X_add_number = bfd_getb32 (data + 4);
6135 }
6136 if (offset->X_add_number == 0)
6137 offset->X_op = O_absent;
6138 }
6139 else
6140 {
6141 imm->X_op = O_constant;
6142 if (!target_big_endian)
6143 imm->X_add_number = bfd_getl64 (data);
6144 else
6145 imm->X_add_number = bfd_getb64 (data);
6146 offset->X_op = O_absent;
6147 }
5b7c81bd 6148 return true;
89565f1b
RS
6149 }
6150
6151 /* Switch to the right section. */
6152 seg = now_seg;
6153 subseg = now_subseg;
6154 if (length == 4)
6155 {
6156 gas_assert (!using_gprs && g_switch_value >= 4);
6157 newname = ".lit4";
6158 }
6159 else
6160 {
6161 if (using_gprs || g_switch_value < 8)
6162 newname = RDATA_SECTION_NAME;
6163 else
6164 newname = ".lit8";
6165 }
6166
6167 new_seg = subseg_new (newname, (subsegT) 0);
fd361982 6168 bfd_set_section_flags (new_seg,
89565f1b
RS
6169 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6170 frag_align (length == 4 ? 2 : 3, 0, 0);
d34049e8 6171 if (!startswith (TARGET_OS, "elf"))
89565f1b
RS
6172 record_alignment (new_seg, 4);
6173 else
6174 record_alignment (new_seg, length == 4 ? 2 : 3);
6175 if (seg == now_seg)
1661c76c 6176 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
6177
6178 /* Set the argument to the current address in the section. */
6179 imm->X_op = O_absent;
6180 offset->X_op = O_symbol;
6181 offset->X_add_symbol = symbol_temp_new_now ();
6182 offset->X_add_number = 0;
6183
6184 /* Put the floating point number into the section. */
6185 p = frag_more (length);
6186 memcpy (p, data, length);
6187
6188 /* Switch back to the original section. */
6189 subseg_set (seg, subseg);
5b7c81bd 6190 return true;
89565f1b
RS
6191}
6192
14daeee3
RS
6193/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6194 them. */
6195
5b7c81bd 6196static bool
14daeee3
RS
6197match_vu0_suffix_operand (struct mips_arg_info *arg,
6198 const struct mips_operand *operand,
5b7c81bd 6199 bool match_p)
14daeee3
RS
6200{
6201 unsigned int uval;
6202
6203 /* The operand can be an XYZW mask or a single 2-bit channel index
6204 (with X being 0). */
6205 gas_assert (operand->size == 2 || operand->size == 4);
6206
ee5734f0 6207 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 6208 if (arg->token->type != OT_CHANNELS)
ee5734f0 6209 return match_p;
14daeee3
RS
6210
6211 uval = arg->token->u.channels;
6212 if (operand->size == 2)
6213 {
6214 /* Check that a single bit is set and convert it into a 2-bit index. */
6215 if ((uval & -uval) != uval)
5b7c81bd 6216 return false;
14daeee3
RS
6217 uval = 4 - ffs (uval);
6218 }
6219
6220 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5b7c81bd 6221 return false;
14daeee3
RS
6222
6223 ++arg->token;
6224 if (!match_p)
6225 insn_insert_operand (arg->insn, operand, uval);
5b7c81bd 6226 return true;
14daeee3
RS
6227}
6228
33f46696
MR
6229/* Try to match a token from ARG against OPERAND. Consume the token
6230 and return true on success, otherwise return false. */
a1d78564 6231
5b7c81bd 6232static bool
a1d78564 6233match_operand (struct mips_arg_info *arg,
a92713e6 6234 const struct mips_operand *operand)
a1d78564
RS
6235{
6236 switch (operand->type)
6237 {
6238 case OP_INT:
a92713e6 6239 return match_int_operand (arg, operand);
a1d78564
RS
6240
6241 case OP_MAPPED_INT:
a92713e6 6242 return match_mapped_int_operand (arg, operand);
a1d78564
RS
6243
6244 case OP_MSB:
a92713e6 6245 return match_msb_operand (arg, operand);
a1d78564
RS
6246
6247 case OP_REG:
0f35dbc4 6248 case OP_OPTIONAL_REG:
a92713e6 6249 return match_reg_operand (arg, operand);
a1d78564
RS
6250
6251 case OP_REG_PAIR:
a92713e6 6252 return match_reg_pair_operand (arg, operand);
a1d78564
RS
6253
6254 case OP_PCREL:
a92713e6 6255 return match_pcrel_operand (arg);
a1d78564
RS
6256
6257 case OP_PERF_REG:
a92713e6 6258 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6259
6260 case OP_ADDIUSP_INT:
a92713e6 6261 return match_addiusp_operand (arg, operand);
a1d78564
RS
6262
6263 case OP_CLO_CLZ_DEST:
a92713e6 6264 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6265
6266 case OP_LWM_SWM_LIST:
a92713e6 6267 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6268
6269 case OP_ENTRY_EXIT_LIST:
a92713e6 6270 return match_entry_exit_operand (arg, operand);
364215c8 6271
a1d78564 6272 case OP_SAVE_RESTORE_LIST:
a92713e6 6273 return match_save_restore_list_operand (arg);
a1d78564
RS
6274
6275 case OP_MDMX_IMM_REG:
a92713e6 6276 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6277
6278 case OP_REPEAT_DEST_REG:
a92713e6 6279 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6280
6281 case OP_REPEAT_PREV_REG:
a92713e6 6282 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6283
6284 case OP_PC:
a92713e6 6285 return match_pc_operand (arg);
14daeee3 6286
25499ac7
MR
6287 case OP_REG28:
6288 return match_reg28_operand (arg);
6289
14daeee3 6290 case OP_VU0_SUFFIX:
5b7c81bd 6291 return match_vu0_suffix_operand (arg, operand, false);
14daeee3
RS
6292
6293 case OP_VU0_MATCH_SUFFIX:
5b7c81bd 6294 return match_vu0_suffix_operand (arg, operand, true);
56d438b1
CF
6295
6296 case OP_IMM_INDEX:
6297 return match_imm_index_operand (arg, operand);
6298
6299 case OP_REG_INDEX:
6300 return match_reg_index_operand (arg, operand);
7361da2c
AB
6301
6302 case OP_SAME_RS_RT:
6303 return match_same_rs_rt_operand (arg, operand);
6304
6305 case OP_CHECK_PREV:
6306 return match_check_prev_operand (arg, operand);
6307
6308 case OP_NON_ZERO_REG:
6309 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6310 }
6311 abort ();
6312}
6313
6314/* ARG is the state after successfully matching an instruction.
6315 Issue any queued-up warnings. */
6316
6317static void
6318check_completed_insn (struct mips_arg_info *arg)
6319{
6320 if (arg->seen_at)
6321 {
6322 if (AT == ATREG)
1661c76c 6323 as_warn (_("used $at without \".set noat\""));
a1d78564 6324 else
1661c76c 6325 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6326 }
6327}
a1d78564 6328
85fcb30f
RS
6329/* Return true if modifying general-purpose register REG needs a delay. */
6330
5b7c81bd 6331static bool
85fcb30f
RS
6332reg_needs_delay (unsigned int reg)
6333{
6334 unsigned long prev_pinfo;
6335
6336 prev_pinfo = history[0].insn_mo->pinfo;
6337 if (!mips_opts.noreorder
67dc82bc 6338 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6339 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f 6340 && (gpr_write_mask (&history[0]) & (1 << reg)))
5b7c81bd 6341 return true;
85fcb30f 6342
5b7c81bd 6343 return false;
85fcb30f
RS
6344}
6345
71400594
RS
6346/* Classify an instruction according to the FIX_VR4120_* enumeration.
6347 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6348 by VR4120 errata. */
4d7206a2 6349
71400594
RS
6350static unsigned int
6351classify_vr4120_insn (const char *name)
252b5132 6352{
d34049e8 6353 if (startswith (name, "macc"))
71400594 6354 return FIX_VR4120_MACC;
d34049e8 6355 if (startswith (name, "dmacc"))
71400594 6356 return FIX_VR4120_DMACC;
d34049e8 6357 if (startswith (name, "mult"))
71400594 6358 return FIX_VR4120_MULT;
d34049e8 6359 if (startswith (name, "dmult"))
71400594
RS
6360 return FIX_VR4120_DMULT;
6361 if (strstr (name, "div"))
6362 return FIX_VR4120_DIV;
6363 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6364 return FIX_VR4120_MTHILO;
6365 return NUM_FIX_VR4120_CLASSES;
6366}
252b5132 6367
a8d14a88
CM
6368#define INSN_ERET 0x42000018
6369#define INSN_DERET 0x4200001f
6370#define INSN_DMULT 0x1c
6371#define INSN_DMULTU 0x1d
ff239038 6372
71400594
RS
6373/* Return the number of instructions that must separate INSN1 and INSN2,
6374 where INSN1 is the earlier instruction. Return the worst-case value
6375 for any INSN2 if INSN2 is null. */
252b5132 6376
71400594
RS
6377static unsigned int
6378insns_between (const struct mips_cl_insn *insn1,
6379 const struct mips_cl_insn *insn2)
6380{
6381 unsigned long pinfo1, pinfo2;
4c260379 6382 unsigned int mask;
71400594 6383
85fcb30f
RS
6384 /* If INFO2 is null, pessimistically assume that all flags are set for
6385 the second instruction. */
71400594
RS
6386 pinfo1 = insn1->insn_mo->pinfo;
6387 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6388
71400594
RS
6389 /* For most targets, write-after-read dependencies on the HI and LO
6390 registers must be separated by at least two instructions. */
6391 if (!hilo_interlocks)
252b5132 6392 {
71400594
RS
6393 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6394 return 2;
6395 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6396 return 2;
6397 }
6398
6399 /* If we're working around r7000 errata, there must be two instructions
6400 between an mfhi or mflo and any instruction that uses the result. */
6401 if (mips_7000_hilo_fix
df58fc94 6402 && !mips_opts.micromips
71400594 6403 && MF_HILO_INSN (pinfo1)
85fcb30f 6404 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6405 return 2;
6406
ff239038
CM
6407 /* If we're working around 24K errata, one instruction is required
6408 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6409 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6410 {
6411 if (insn1->insn_opcode == INSN_ERET
6412 || insn1->insn_opcode == INSN_DERET)
6413 {
6414 if (insn2 == NULL
6415 || insn2->insn_opcode == INSN_ERET
6416 || insn2->insn_opcode == INSN_DERET
11625dd8 6417 || delayed_branch_p (insn2))
ff239038
CM
6418 return 1;
6419 }
6420 }
6421
a8d14a88
CM
6422 /* If we're working around PMC RM7000 errata, there must be three
6423 nops between a dmult and a load instruction. */
6424 if (mips_fix_rm7000 && !mips_opts.micromips)
6425 {
6426 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6427 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6428 {
6429 if (pinfo2 & INSN_LOAD_MEMORY)
6430 return 3;
6431 }
6432 }
6433
71400594
RS
6434 /* If working around VR4120 errata, check for combinations that need
6435 a single intervening instruction. */
df58fc94 6436 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6437 {
6438 unsigned int class1, class2;
252b5132 6439
71400594
RS
6440 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6441 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6442 {
71400594
RS
6443 if (insn2 == NULL)
6444 return 1;
6445 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6446 if (vr4120_conflicts[class1] & (1 << class2))
6447 return 1;
252b5132 6448 }
71400594
RS
6449 }
6450
df58fc94 6451 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6452 {
6453 /* Check for GPR or coprocessor load delays. All such delays
6454 are on the RT register. */
6455 /* Itbl support may require additional care here. */
67dc82bc 6456 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6457 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6458 {
85fcb30f 6459 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6460 return 1;
6461 }
6462
6463 /* Check for generic coprocessor hazards.
6464
6465 This case is not handled very well. There is no special
6466 knowledge of CP0 handling, and the coprocessors other than
6467 the floating point unit are not distinguished at all. */
6468 /* Itbl support may require additional care here. FIXME!
6469 Need to modify this to include knowledge about
6470 user specified delays! */
43885403 6471 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6472 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6473 {
6474 /* Handle cases where INSN1 writes to a known general coprocessor
6475 register. There must be a one instruction delay before INSN2
6476 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6477 mask = fpr_write_mask (insn1);
6478 if (mask != 0)
252b5132 6479 {
4c260379 6480 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6481 return 1;
252b5132
RH
6482 }
6483 else
6484 {
71400594
RS
6485 /* Read-after-write dependencies on the control registers
6486 require a two-instruction gap. */
6487 if ((pinfo1 & INSN_WRITE_COND_CODE)
6488 && (pinfo2 & INSN_READ_COND_CODE))
6489 return 2;
6490
6491 /* We don't know exactly what INSN1 does. If INSN2 is
6492 also a coprocessor instruction, assume there must be
6493 a one instruction gap. */
6494 if (pinfo2 & INSN_COP)
6495 return 1;
252b5132
RH
6496 }
6497 }
6b76fefe 6498
71400594
RS
6499 /* Check for read-after-write dependencies on the coprocessor
6500 control registers in cases where INSN1 does not need a general
6501 coprocessor delay. This means that INSN1 is a floating point
6502 comparison instruction. */
6503 /* Itbl support may require additional care here. */
6504 else if (!cop_interlocks
6505 && (pinfo1 & INSN_WRITE_COND_CODE)
6506 && (pinfo2 & INSN_READ_COND_CODE))
6507 return 1;
6508 }
6b76fefe 6509
7361da2c
AB
6510 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6511 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6512 and pause. */
6513 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6514 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6515 || (insn2 && delayed_branch_p (insn2))))
6516 return 1;
6517
71400594
RS
6518 return 0;
6519}
6b76fefe 6520
7d8e00cf
RS
6521/* Return the number of nops that would be needed to work around the
6522 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6523 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6524 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6525
6526static int
932d1a1b 6527nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6528 const struct mips_cl_insn *insn)
6529{
4c260379
RS
6530 int i, j;
6531 unsigned int mask;
7d8e00cf
RS
6532
6533 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6534 are not affected by the errata. */
6535 if (insn != 0
6536 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6537 || strcmp (insn->insn_mo->name, "mtlo") == 0
6538 || strcmp (insn->insn_mo->name, "mthi") == 0))
6539 return 0;
6540
6541 /* Search for the first MFLO or MFHI. */
6542 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6543 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6544 {
6545 /* Extract the destination register. */
4c260379 6546 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6547
6548 /* No nops are needed if INSN reads that register. */
4c260379 6549 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6550 return 0;
6551
6552 /* ...or if any of the intervening instructions do. */
6553 for (j = 0; j < i; j++)
4c260379 6554 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6555 return 0;
6556
932d1a1b
RS
6557 if (i >= ignore)
6558 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6559 }
6560 return 0;
6561}
6562
134c0c8b
MR
6563#define BASE_REG_EQ(INSN1, INSN2) \
6564 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6565 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6566
6567/* Return the minimum alignment for this store instruction. */
6568
6569static int
6570fix_24k_align_to (const struct mips_opcode *mo)
6571{
6572 if (strcmp (mo->name, "sh") == 0)
6573 return 2;
6574
6575 if (strcmp (mo->name, "swc1") == 0
6576 || strcmp (mo->name, "swc2") == 0
6577 || strcmp (mo->name, "sw") == 0
6578 || strcmp (mo->name, "sc") == 0
6579 || strcmp (mo->name, "s.s") == 0)
6580 return 4;
6581
6582 if (strcmp (mo->name, "sdc1") == 0
6583 || strcmp (mo->name, "sdc2") == 0
6584 || strcmp (mo->name, "s.d") == 0)
6585 return 8;
6586
6587 /* sb, swl, swr */
6588 return 1;
6589}
6590
6591struct fix_24k_store_info
6592 {
6593 /* Immediate offset, if any, for this store instruction. */
6594 short off;
6595 /* Alignment required by this store instruction. */
6596 int align_to;
6597 /* True for register offsets. */
6598 int register_offset;
6599 };
6600
6601/* Comparison function used by qsort. */
6602
6603static int
6604fix_24k_sort (const void *a, const void *b)
6605{
6606 const struct fix_24k_store_info *pos1 = a;
6607 const struct fix_24k_store_info *pos2 = b;
6608
6609 return (pos1->off - pos2->off);
6610}
6611
6612/* INSN is a store instruction. Try to record the store information
6613 in STINFO. Return false if the information isn't known. */
6614
5b7c81bd 6615static bool
15be625d 6616fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6617 const struct mips_cl_insn *insn)
15be625d
CM
6618{
6619 /* The instruction must have a known offset. */
6620 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
5b7c81bd 6621 return false;
15be625d
CM
6622
6623 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6624 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
5b7c81bd 6625 return true;
15be625d
CM
6626}
6627
932d1a1b
RS
6628/* Return the number of nops that would be needed to work around the 24k
6629 "lost data on stores during refill" errata if instruction INSN
6630 immediately followed the 2 instructions described by HIST.
6631 Ignore hazards that are contained within the first IGNORE
6632 instructions of HIST.
6633
6634 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6635 for the data cache refills and store data. The following describes
6636 the scenario where the store data could be lost.
6637
6638 * A data cache miss, due to either a load or a store, causing fill
6639 data to be supplied by the memory subsystem
6640 * The first three doublewords of fill data are returned and written
6641 into the cache
6642 * A sequence of four stores occurs in consecutive cycles around the
6643 final doubleword of the fill:
6644 * Store A
6645 * Store B
6646 * Store C
6647 * Zero, One or more instructions
6648 * Store D
6649
6650 The four stores A-D must be to different doublewords of the line that
6651 is being filled. The fourth instruction in the sequence above permits
6652 the fill of the final doubleword to be transferred from the FSB into
6653 the cache. In the sequence above, the stores may be either integer
6654 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6655 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6656 different doublewords on the line. If the floating point unit is
6657 running in 1:2 mode, it is not possible to create the sequence above
6658 using only floating point store instructions.
15be625d
CM
6659
6660 In this case, the cache line being filled is incorrectly marked
6661 invalid, thereby losing the data from any store to the line that
6662 occurs between the original miss and the completion of the five
6663 cycle sequence shown above.
6664
932d1a1b 6665 The workarounds are:
15be625d 6666
932d1a1b
RS
6667 * Run the data cache in write-through mode.
6668 * Insert a non-store instruction between
6669 Store A and Store B or Store B and Store C. */
3739860c 6670
15be625d 6671static int
932d1a1b 6672nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6673 const struct mips_cl_insn *insn)
6674{
6675 struct fix_24k_store_info pos[3];
6676 int align, i, base_offset;
6677
932d1a1b
RS
6678 if (ignore >= 2)
6679 return 0;
6680
ab9794cf
RS
6681 /* If the previous instruction wasn't a store, there's nothing to
6682 worry about. */
15be625d
CM
6683 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6684 return 0;
6685
ab9794cf
RS
6686 /* If the instructions after the previous one are unknown, we have
6687 to assume the worst. */
6688 if (!insn)
15be625d
CM
6689 return 1;
6690
ab9794cf
RS
6691 /* Check whether we are dealing with three consecutive stores. */
6692 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6693 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6694 return 0;
6695
6696 /* If we don't know the relationship between the store addresses,
6697 assume the worst. */
ab9794cf 6698 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6699 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6700 return 1;
6701
6702 if (!fix_24k_record_store_info (&pos[0], insn)
6703 || !fix_24k_record_store_info (&pos[1], &hist[0])
6704 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6705 return 1;
6706
6707 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6708
6709 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6710 X bytes and such that the base register + X is known to be aligned
6711 to align bytes. */
6712
6713 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6714 align = 8;
6715 else
6716 {
6717 align = pos[0].align_to;
6718 base_offset = pos[0].off;
6719 for (i = 1; i < 3; i++)
6720 if (align < pos[i].align_to)
6721 {
6722 align = pos[i].align_to;
6723 base_offset = pos[i].off;
6724 }
6725 for (i = 0; i < 3; i++)
6726 pos[i].off -= base_offset;
6727 }
6728
6729 pos[0].off &= ~align + 1;
6730 pos[1].off &= ~align + 1;
6731 pos[2].off &= ~align + 1;
6732
6733 /* If any two stores write to the same chunk, they also write to the
6734 same doubleword. The offsets are still sorted at this point. */
6735 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6736 return 0;
6737
6738 /* A range of at least 9 bytes is needed for the stores to be in
6739 non-overlapping doublewords. */
6740 if (pos[2].off - pos[0].off <= 8)
6741 return 0;
6742
6743 if (pos[2].off - pos[1].off >= 24
6744 || pos[1].off - pos[0].off >= 24
6745 || pos[2].off - pos[0].off >= 32)
6746 return 0;
6747
6748 return 1;
6749}
6750
71400594 6751/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6752 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6753 where HIST[0] is the most recent instruction. Ignore hazards
6754 between INSN and the first IGNORE instructions in HIST.
6755
6756 If INSN is null, return the worse-case number of nops for any
6757 instruction. */
bdaaa2e1 6758
71400594 6759static int
932d1a1b 6760nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6761 const struct mips_cl_insn *insn)
6762{
6763 int i, nops, tmp_nops;
bdaaa2e1 6764
71400594 6765 nops = 0;
932d1a1b 6766 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6767 {
91d6fa6a 6768 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6769 if (tmp_nops > nops)
6770 nops = tmp_nops;
6771 }
7d8e00cf 6772
df58fc94 6773 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6774 {
932d1a1b 6775 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6776 if (tmp_nops > nops)
6777 nops = tmp_nops;
6778 }
6779
df58fc94 6780 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6781 {
932d1a1b 6782 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6783 if (tmp_nops > nops)
6784 nops = tmp_nops;
6785 }
6786
71400594
RS
6787 return nops;
6788}
252b5132 6789
71400594 6790/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6791 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6792 would be needed after the extended sequence, ignoring hazards
6793 in the first IGNORE instructions. */
252b5132 6794
71400594 6795static int
932d1a1b
RS
6796nops_for_sequence (int num_insns, int ignore,
6797 const struct mips_cl_insn *hist, ...)
71400594
RS
6798{
6799 va_list args;
6800 struct mips_cl_insn buffer[MAX_NOPS];
6801 struct mips_cl_insn *cursor;
6802 int nops;
6803
91d6fa6a 6804 va_start (args, hist);
71400594 6805 cursor = buffer + num_insns;
91d6fa6a 6806 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6807 while (cursor > buffer)
6808 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6809
932d1a1b 6810 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6811 va_end (args);
6812 return nops;
6813}
252b5132 6814
71400594
RS
6815/* Like nops_for_insn, but if INSN is a branch, take into account the
6816 worst-case delay for the branch target. */
252b5132 6817
71400594 6818static int
932d1a1b 6819nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6820 const struct mips_cl_insn *insn)
6821{
6822 int nops, tmp_nops;
60b63b72 6823
932d1a1b 6824 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6825 if (delayed_branch_p (insn))
71400594 6826 {
932d1a1b 6827 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6828 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6829 if (tmp_nops > nops)
6830 nops = tmp_nops;
6831 }
11625dd8 6832 else if (compact_branch_p (insn))
71400594 6833 {
932d1a1b 6834 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6835 if (tmp_nops > nops)
6836 nops = tmp_nops;
6837 }
6838 return nops;
6839}
6840
c67a084a
NC
6841/* Fix NOP issue: Replace nops by "or at,at,zero". */
6842
6843static void
6844fix_loongson2f_nop (struct mips_cl_insn * ip)
6845{
df58fc94 6846 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6847 if (strcmp (ip->insn_mo->name, "nop") == 0)
6848 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6849}
6850
6851/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6852 jr target pc &= 'hffff_ffff_cfff_ffff. */
6853
6854static void
6855fix_loongson2f_jump (struct mips_cl_insn * ip)
6856{
df58fc94 6857 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6858 if (strcmp (ip->insn_mo->name, "j") == 0
6859 || strcmp (ip->insn_mo->name, "jr") == 0
6860 || strcmp (ip->insn_mo->name, "jalr") == 0)
6861 {
6862 int sreg;
6863 expressionS ep;
6864
6865 if (! mips_opts.at)
6866 return;
6867
df58fc94 6868 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6869 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6870 return;
6871
6872 ep.X_op = O_constant;
6873 ep.X_add_number = 0xcfff0000;
6874 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6875 ep.X_add_number = 0xffff;
6876 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6877 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6878 }
6879}
6880
6881static void
6882fix_loongson2f (struct mips_cl_insn * ip)
6883{
6884 if (mips_fix_loongson2f_nop)
6885 fix_loongson2f_nop (ip);
6886
6887 if (mips_fix_loongson2f_jump)
6888 fix_loongson2f_jump (ip);
6889}
6890
5b7c81bd 6891static bool
dec7b24b
YS
6892has_label_name (const char *arr[], size_t len ,const char *s)
6893{
6894 unsigned long i;
6895 for (i = 0; i < len; i++)
6896 {
6897 if (!arr[i])
5b7c81bd 6898 return false;
dec7b24b 6899 if (streq (arr[i], s))
5b7c81bd 6900 return true;
dec7b24b 6901 }
5b7c81bd 6902 return false;
dec7b24b
YS
6903}
6904
6905/* Fix loongson3 llsc errata: Insert sync before ll/lld. */
6f2117ba
PH
6906
6907static void
6908fix_loongson3_llsc (struct mips_cl_insn * ip)
6909{
6910 gas_assert (!HAVE_CODE_COMPRESSION);
6911
6912 /* If is an local label and the insn is not sync,
6913 look forward that whether an branch between ll/sc jump to here
6914 if so, insert a sync. */
6915 if (seg_info (now_seg)->label_list
6916 && S_IS_LOCAL (seg_info (now_seg)->label_list->label)
6917 && (strcmp (ip->insn_mo->name, "sync") != 0))
6918 {
6f2117ba 6919 unsigned long i;
dec7b24b
YS
6920 valueT label_value;
6921 const char *label_names[MAX_LABELS_SAME];
6922 const char *label_name;
6923
6924 label_name = S_GET_NAME (seg_info (now_seg)->label_list->label);
6925 label_names[0] = label_name;
6926 struct insn_label_list *llist = seg_info (now_seg)->label_list;
6927 label_value = S_GET_VALUE (llist->label);
6f2117ba 6928
dec7b24b
YS
6929 for (i = 1; i < MAX_LABELS_SAME; i++)
6930 {
6931 llist = llist->next;
6932 if (!llist)
6933 break;
6934 if (S_GET_VALUE (llist->label) == label_value)
6935 label_names[i] = S_GET_NAME (llist->label);
6936 else
6937 break;
6938 }
6939 for (; i < MAX_LABELS_SAME; i++)
6940 label_names[i] = NULL;
6941
6942 unsigned long lookback = ARRAY_SIZE (history);
6f2117ba
PH
6943 for (i = 0; i < lookback; i++)
6944 {
6945 if (streq (history[i].insn_mo->name, "ll")
6946 || streq (history[i].insn_mo->name, "lld"))
6947 break;
6948
6949 if (streq (history[i].insn_mo->name, "sc")
6950 || streq (history[i].insn_mo->name, "scd"))
6951 {
6952 unsigned long j;
6953
6954 for (j = i + 1; j < lookback; j++)
6955 {
6956 if (streq (history[i].insn_mo->name, "ll")
6957 || streq (history[i].insn_mo->name, "lld"))
6958 break;
6959
6960 if (delayed_branch_p (&history[j]))
6961 {
dec7b24b
YS
6962 if (has_label_name (label_names,
6963 MAX_LABELS_SAME,
6964 history[j].target))
6f2117ba
PH
6965 {
6966 add_fixed_insn (&sync_insn);
6967 insert_into_history (0, 1, &sync_insn);
6968 i = lookback;
6969 break;
6970 }
6971 }
6972 }
6973 }
6974 }
6975 }
6976 /* If we find a sc, we look forward to look for an branch insn,
6977 and see whether it jump back and out of ll/sc. */
dec7b24b 6978 else if (streq (ip->insn_mo->name, "sc") || streq (ip->insn_mo->name, "scd"))
6f2117ba
PH
6979 {
6980 unsigned long lookback = ARRAY_SIZE (history) - 1;
6981 unsigned long i;
6982
6983 for (i = 0; i < lookback; i++)
6984 {
6985 if (streq (history[i].insn_mo->name, "ll")
6986 || streq (history[i].insn_mo->name, "lld"))
6987 break;
6988
6989 if (delayed_branch_p (&history[i]))
6990 {
6991 unsigned long j;
6992
6993 for (j = i + 1; j < lookback; j++)
6994 {
6995 if (streq (history[j].insn_mo->name, "ll")
6996 || streq (history[i].insn_mo->name, "lld"))
6997 break;
6998 }
6999
7000 for (; j < lookback; j++)
7001 {
7002 if (history[j].label[0] != '\0'
7003 && streq (history[j].label, history[i].target)
7004 && strcmp (history[j+1].insn_mo->name, "sync") != 0)
7005 {
7006 add_fixed_insn (&sync_insn);
7007 insert_into_history (++j, 1, &sync_insn);
7008 }
7009 }
7010 }
7011 }
7012 }
7013
7014 /* Skip if there is a sync before ll/lld. */
7015 if ((strcmp (ip->insn_mo->name, "ll") == 0
7016 || strcmp (ip->insn_mo->name, "lld") == 0)
7017 && (strcmp (history[0].insn_mo->name, "sync") != 0))
7018 {
7019 add_fixed_insn (&sync_insn);
7020 insert_into_history (0, 1, &sync_insn);
7021 }
7022}
7023
a4e06468
RS
7024/* IP is a branch that has a delay slot, and we need to fill it
7025 automatically. Return true if we can do that by swapping IP
e407c74b
NC
7026 with the previous instruction.
7027 ADDRESS_EXPR is an operand of the instruction to be used with
7028 RELOC_TYPE. */
a4e06468 7029
5b7c81bd 7030static bool
e407c74b 7031can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 7032 bfd_reloc_code_real_type *reloc_type)
a4e06468 7033{
2b0c8b40 7034 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 7035 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 7036 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
7037
7038 /* -O2 and above is required for this optimization. */
7039 if (mips_optimize < 2)
5b7c81bd 7040 return false;
a4e06468
RS
7041
7042 /* If we have seen .set volatile or .set nomove, don't optimize. */
7043 if (mips_opts.nomove)
5b7c81bd 7044 return false;
a4e06468
RS
7045
7046 /* We can't swap if the previous instruction's position is fixed. */
7047 if (history[0].fixed_p)
5b7c81bd 7048 return false;
a4e06468
RS
7049
7050 /* If the previous previous insn was in a .set noreorder, we can't
7051 swap. Actually, the MIPS assembler will swap in this situation.
7052 However, gcc configured -with-gnu-as will generate code like
7053
7054 .set noreorder
7055 lw $4,XXX
7056 .set reorder
7057 INSN
7058 bne $4,$0,foo
7059
7060 in which we can not swap the bne and INSN. If gcc is not configured
7061 -with-gnu-as, it does not output the .set pseudo-ops. */
7062 if (history[1].noreorder_p)
5b7c81bd 7063 return false;
a4e06468 7064
87333bb7
MR
7065 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
7066 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468 7067 if (mips_opts.mips16 && history[0].fixp[0])
5b7c81bd 7068 return false;
a4e06468
RS
7069
7070 /* If the branch is itself the target of a branch, we can not swap.
7071 We cheat on this; all we check for is whether there is a label on
7072 this instruction. If there are any branches to anything other than
7073 a label, users must use .set noreorder. */
7074 if (seg_info (now_seg)->label_list)
5b7c81bd 7075 return false;
a4e06468
RS
7076
7077 /* If the previous instruction is in a variant frag other than this
2309ddf2 7078 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
7079 MIPS16 code, which uses variant frags for different purposes. */
7080 if (!mips_opts.mips16
a4e06468
RS
7081 && history[0].frag
7082 && history[0].frag->fr_type == rs_machine_dependent)
5b7c81bd 7083 return false;
a4e06468 7084
bcd530a7
RS
7085 /* We do not swap with instructions that cannot architecturally
7086 be placed in a branch delay slot, such as SYNC or ERET. We
7087 also refrain from swapping with a trap instruction, since it
7088 complicates trap handlers to have the trap instruction be in
7089 a delay slot. */
a4e06468 7090 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 7091 if (prev_pinfo & INSN_NO_DELAY_SLOT)
5b7c81bd 7092 return false;
a4e06468
RS
7093
7094 /* Check for conflicts between the branch and the instructions
7095 before the candidate delay slot. */
7096 if (nops_for_insn (0, history + 1, ip) > 0)
5b7c81bd 7097 return false;
a4e06468
RS
7098
7099 /* Check for conflicts between the swapped sequence and the
7100 target of the branch. */
7101 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
5b7c81bd 7102 return false;
a4e06468
RS
7103
7104 /* If the branch reads a register that the previous
7105 instruction sets, we can not swap. */
7106 gpr_read = gpr_read_mask (ip);
7107 prev_gpr_write = gpr_write_mask (&history[0]);
7108 if (gpr_read & prev_gpr_write)
5b7c81bd 7109 return false;
a4e06468 7110
9d5de888
CF
7111 fpr_read = fpr_read_mask (ip);
7112 prev_fpr_write = fpr_write_mask (&history[0]);
7113 if (fpr_read & prev_fpr_write)
5b7c81bd 7114 return false;
9d5de888 7115
a4e06468
RS
7116 /* If the branch writes a register that the previous
7117 instruction sets, we can not swap. */
7118 gpr_write = gpr_write_mask (ip);
7119 if (gpr_write & prev_gpr_write)
5b7c81bd 7120 return false;
a4e06468
RS
7121
7122 /* If the branch writes a register that the previous
7123 instruction reads, we can not swap. */
7124 prev_gpr_read = gpr_read_mask (&history[0]);
7125 if (gpr_write & prev_gpr_read)
5b7c81bd 7126 return false;
a4e06468
RS
7127
7128 /* If one instruction sets a condition code and the
7129 other one uses a condition code, we can not swap. */
7130 pinfo = ip->insn_mo->pinfo;
7131 if ((pinfo & INSN_READ_COND_CODE)
7132 && (prev_pinfo & INSN_WRITE_COND_CODE))
5b7c81bd 7133 return false;
a4e06468
RS
7134 if ((pinfo & INSN_WRITE_COND_CODE)
7135 && (prev_pinfo & INSN_READ_COND_CODE))
5b7c81bd 7136 return false;
a4e06468
RS
7137
7138 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 7139 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 7140 if (prev_pinfo2 & INSN2_READ_PC)
5b7c81bd 7141 return false;
a4e06468 7142
df58fc94
RS
7143 /* If the previous instruction has an incorrect size for a fixed
7144 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
7145 pinfo2 = ip->insn_mo->pinfo2;
7146 if (mips_opts.micromips
7147 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
7148 && insn_length (history) != 2)
5b7c81bd 7149 return false;
2309ddf2
MR
7150 if (mips_opts.micromips
7151 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
7152 && insn_length (history) != 4)
5b7c81bd 7153 return false;
2309ddf2 7154
33d64ca5
FN
7155 /* On the R5900 short loops need to be fixed by inserting a NOP in the
7156 branch delay slot.
7157
7158 The short loop bug under certain conditions causes loops to execute
7159 only once or twice. We must ensure that the assembler never
7160 generates loops that satisfy all of the following conditions:
7161
7162 - a loop consists of less than or equal to six instructions
7163 (including the branch delay slot);
7164 - a loop contains only one conditional branch instruction at the end
7165 of the loop;
7166 - a loop does not contain any other branch or jump instructions;
7167 - a branch delay slot of the loop is not NOP (EE 2.9 or later).
7168
7169 We need to do this because of a hardware bug in the R5900 chip. */
27c634e0 7170 if (mips_fix_r5900
e407c74b
NC
7171 /* Check if instruction has a parameter, ignore "j $31". */
7172 && (address_expr != NULL)
7173 /* Parameter must be 16 bit. */
7174 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
7175 /* Branch to same segment. */
41065f5e 7176 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 7177 /* Branch to same code fragment. */
41065f5e 7178 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 7179 /* Can only calculate branch offset if value is known. */
41065f5e 7180 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
7181 /* Check if branch is really conditional. */
7182 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
7183 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7184 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7185 {
7186 int distance;
33d64ca5
FN
7187 /* Check if loop is shorter than or equal to 6 instructions
7188 including branch and delay slot. */
41065f5e 7189 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
7190 if (distance <= 20)
7191 {
7192 int i;
7193 int rv;
7194
5b7c81bd 7195 rv = false;
e407c74b
NC
7196 /* When the loop includes branches or jumps,
7197 it is not a short loop. */
7198 for (i = 0; i < (distance / 4); i++)
7199 {
7200 if ((history[i].cleared_p)
41065f5e 7201 || delayed_branch_p (&history[i]))
e407c74b 7202 {
5b7c81bd 7203 rv = true;
e407c74b
NC
7204 break;
7205 }
7206 }
535b785f 7207 if (!rv)
e407c74b
NC
7208 {
7209 /* Insert nop after branch to fix short loop. */
5b7c81bd 7210 return false;
e407c74b
NC
7211 }
7212 }
7213 }
7214
5b7c81bd 7215 return true;
a4e06468
RS
7216}
7217
e407c74b
NC
7218/* Decide how we should add IP to the instruction stream.
7219 ADDRESS_EXPR is an operand of the instruction to be used with
7220 RELOC_TYPE. */
a4e06468
RS
7221
7222static enum append_method
e407c74b 7223get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 7224 bfd_reloc_code_real_type *reloc_type)
a4e06468 7225{
a4e06468
RS
7226 /* The relaxed version of a macro sequence must be inherently
7227 hazard-free. */
7228 if (mips_relax.sequence == 2)
7229 return APPEND_ADD;
7230
3b821a28 7231 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
7232 if (mips_opts.noreorder)
7233 return APPEND_ADD;
7234
7235 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 7236 if (delayed_branch_p (ip))
a4e06468 7237 {
e407c74b
NC
7238 if (!branch_likely_p (ip)
7239 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
7240 return APPEND_SWAP;
7241
7242 if (mips_opts.mips16
7243 && ISA_SUPPORTS_MIPS16E
fc76e730 7244 && gpr_read_mask (ip) != 0)
a4e06468
RS
7245 return APPEND_ADD_COMPACT;
7246
7bd374a4
MR
7247 if (mips_opts.micromips
7248 && ((ip->insn_opcode & 0xffe0) == 0x4580
7249 || (!forced_insn_length
7250 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7251 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7252 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7253 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7254 return APPEND_ADD_COMPACT;
7255
a4e06468
RS
7256 return APPEND_ADD_WITH_NOP;
7257 }
7258
a4e06468
RS
7259 return APPEND_ADD;
7260}
7261
7bd374a4
MR
7262/* IP is an instruction whose opcode we have just changed, END points
7263 to the end of the opcode table processed. Point IP->insn_mo to the
7264 new opcode's definition. */
ceb94aa5
RS
7265
7266static void
7bd374a4 7267find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 7268{
7bd374a4 7269 const struct mips_opcode *mo;
ceb94aa5 7270
ceb94aa5 7271 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
7272 if (mo->pinfo != INSN_MACRO
7273 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
7274 {
7275 ip->insn_mo = mo;
7276 return;
7277 }
7278 abort ();
7279}
7280
7bd374a4
MR
7281/* IP is a MIPS16 instruction whose opcode we have just changed.
7282 Point IP->insn_mo to the new opcode's definition. */
7283
7284static void
7285find_altered_mips16_opcode (struct mips_cl_insn *ip)
7286{
7287 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7288}
7289
7290/* IP is a microMIPS instruction whose opcode we have just changed.
7291 Point IP->insn_mo to the new opcode's definition. */
7292
7293static void
7294find_altered_micromips_opcode (struct mips_cl_insn *ip)
7295{
7296 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7297}
7298
df58fc94
RS
7299/* For microMIPS macros, we need to generate a local number label
7300 as the target of branches. */
7301#define MICROMIPS_LABEL_CHAR '\037'
7302static unsigned long micromips_target_label;
7303static char micromips_target_name[32];
7304
7305static char *
7306micromips_label_name (void)
7307{
7308 char *p = micromips_target_name;
7309 char symbol_name_temporary[24];
7310 unsigned long l;
7311 int i;
7312
7313 if (*p)
7314 return p;
7315
7316 i = 0;
7317 l = micromips_target_label;
7318#ifdef LOCAL_LABEL_PREFIX
7319 *p++ = LOCAL_LABEL_PREFIX;
7320#endif
7321 *p++ = 'L';
7322 *p++ = MICROMIPS_LABEL_CHAR;
7323 do
7324 {
7325 symbol_name_temporary[i++] = l % 10 + '0';
7326 l /= 10;
7327 }
7328 while (l != 0);
7329 while (i > 0)
7330 *p++ = symbol_name_temporary[--i];
7331 *p = '\0';
7332
7333 return micromips_target_name;
7334}
7335
7336static void
7337micromips_label_expr (expressionS *label_expr)
7338{
7339 label_expr->X_op = O_symbol;
7340 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7341 label_expr->X_add_number = 0;
7342}
7343
7344static void
7345micromips_label_inc (void)
7346{
7347 micromips_target_label++;
7348 *micromips_target_name = '\0';
7349}
7350
7351static void
7352micromips_add_label (void)
7353{
7354 symbolS *s;
7355
7356 s = colon (micromips_label_name ());
7357 micromips_label_inc ();
f3ded42a 7358 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
7359}
7360
7361/* If assembling microMIPS code, then return the microMIPS reloc
7362 corresponding to the requested one if any. Otherwise return
7363 the reloc unchanged. */
7364
7365static bfd_reloc_code_real_type
7366micromips_map_reloc (bfd_reloc_code_real_type reloc)
7367{
7368 static const bfd_reloc_code_real_type relocs[][2] =
7369 {
7370 /* Keep sorted incrementally by the left-hand key. */
7371 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7372 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7373 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7374 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7375 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7376 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7377 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7378 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7379 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7380 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7381 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7382 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7383 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7384 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7385 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7386 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7387 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7388 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7389 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7390 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7391 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7392 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7393 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7394 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7395 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7396 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7397 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7398 };
7399 bfd_reloc_code_real_type r;
7400 size_t i;
7401
7402 if (!mips_opts.micromips)
7403 return reloc;
7404 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7405 {
7406 r = relocs[i][0];
7407 if (r > reloc)
7408 return reloc;
7409 if (r == reloc)
7410 return relocs[i][1];
7411 }
7412 return reloc;
7413}
7414
b886a2ab
RS
7415/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7416 Return true on success, storing the resolved value in RESULT. */
7417
5b7c81bd 7418static bool
b886a2ab
RS
7419calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7420 offsetT *result)
7421{
7422 switch (reloc)
7423 {
7424 case BFD_RELOC_MIPS_HIGHEST:
7425 case BFD_RELOC_MICROMIPS_HIGHEST:
7426 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
5b7c81bd 7427 return true;
b886a2ab
RS
7428
7429 case BFD_RELOC_MIPS_HIGHER:
7430 case BFD_RELOC_MICROMIPS_HIGHER:
7431 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
5b7c81bd 7432 return true;
b886a2ab
RS
7433
7434 case BFD_RELOC_HI16_S:
41947d9e 7435 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7436 case BFD_RELOC_MICROMIPS_HI16_S:
7437 case BFD_RELOC_MIPS16_HI16_S:
7438 *result = ((operand + 0x8000) >> 16) & 0xffff;
5b7c81bd 7439 return true;
b886a2ab
RS
7440
7441 case BFD_RELOC_HI16:
7442 case BFD_RELOC_MICROMIPS_HI16:
7443 case BFD_RELOC_MIPS16_HI16:
7444 *result = (operand >> 16) & 0xffff;
5b7c81bd 7445 return true;
b886a2ab
RS
7446
7447 case BFD_RELOC_LO16:
41947d9e 7448 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7449 case BFD_RELOC_MICROMIPS_LO16:
7450 case BFD_RELOC_MIPS16_LO16:
7451 *result = operand & 0xffff;
5b7c81bd 7452 return true;
b886a2ab
RS
7453
7454 case BFD_RELOC_UNUSED:
7455 *result = operand;
5b7c81bd 7456 return true;
b886a2ab
RS
7457
7458 default:
5b7c81bd 7459 return false;
b886a2ab
RS
7460 }
7461}
7462
71400594
RS
7463/* Output an instruction. IP is the instruction information.
7464 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7465 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7466 a macro expansion. */
71400594
RS
7467
7468static void
7469append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
5b7c81bd 7470 bfd_reloc_code_real_type *reloc_type, bool expansionp)
71400594 7471{
14fe068b 7472 unsigned long prev_pinfo2, pinfo;
5b7c81bd 7473 bool relaxed_branch = false;
a4e06468 7474 enum append_method method;
5b7c81bd 7475 bool relax32;
2b0c8b40 7476 int branch_disp;
71400594 7477
2309ddf2 7478 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7479 fix_loongson2f (ip);
7480
6f2117ba
PH
7481 ip->target[0] = '\0';
7482 if (offset_expr.X_op == O_symbol)
7483 strncpy (ip->target, S_GET_NAME (offset_expr.X_add_symbol), 15);
7484 ip->label[0] = '\0';
7485 if (seg_info (now_seg)->label_list)
7486 strncpy (ip->label, S_GET_NAME (seg_info (now_seg)->label_list->label), 15);
7487 if (mips_fix_loongson3_llsc && !HAVE_CODE_COMPRESSION)
7488 fix_loongson3_llsc (ip);
7489
738f4d98 7490 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7491 file_ase_micromips |= mips_opts.micromips;
738f4d98 7492
df58fc94 7493 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7494 pinfo = ip->insn_mo->pinfo;
df58fc94 7495
7bd374a4
MR
7496 /* Don't raise alarm about `nods' frags as they'll fill in the right
7497 kind of nop in relaxation if required. */
df58fc94
RS
7498 if (mips_opts.micromips
7499 && !expansionp
7bd374a4
MR
7500 && !(history[0].frag
7501 && history[0].frag->fr_type == rs_machine_dependent
7502 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7503 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7504 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7505 && micromips_insn_length (ip->insn_mo) != 2)
7506 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7507 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7508 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7509 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7510
15be625d
CM
7511 if (address_expr == NULL)
7512 ip->complete_p = 1;
b886a2ab
RS
7513 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7514 && reloc_type[1] == BFD_RELOC_UNUSED
7515 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7516 && address_expr->X_op == O_constant)
7517 {
15be625d
CM
7518 switch (*reloc_type)
7519 {
15be625d 7520 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7521 {
7522 int shift;
7523
17c6c9d9
MR
7524 /* Shift is 2, unusually, for microMIPS JALX. */
7525 shift = (mips_opts.micromips
7526 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7527 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7528 as_bad (_("jump to misaligned address (0x%lx)"),
7529 (unsigned long) address_expr->X_add_number);
7530 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7531 & 0x3ffffff);
335574df 7532 ip->complete_p = 1;
df58fc94 7533 }
15be625d
CM
7534 break;
7535
7536 case BFD_RELOC_MIPS16_JMP:
7537 if ((address_expr->X_add_number & 3) != 0)
7538 as_bad (_("jump to misaligned address (0x%lx)"),
7539 (unsigned long) address_expr->X_add_number);
7540 ip->insn_opcode |=
7541 (((address_expr->X_add_number & 0x7c0000) << 3)
7542 | ((address_expr->X_add_number & 0xf800000) >> 7)
7543 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7544 ip->complete_p = 1;
15be625d
CM
7545 break;
7546
7547 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7548 {
7549 int shift;
7550
7551 shift = mips_opts.micromips ? 1 : 2;
7552 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7553 as_bad (_("branch to misaligned address (0x%lx)"),
7554 (unsigned long) address_expr->X_add_number);
7555 if (!mips_relax_branch)
7556 {
7557 if ((address_expr->X_add_number + (1 << (shift + 15)))
7558 & ~((1 << (shift + 16)) - 1))
7559 as_bad (_("branch address range overflow (0x%lx)"),
7560 (unsigned long) address_expr->X_add_number);
7561 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7562 & 0xffff);
7563 }
df58fc94 7564 }
15be625d
CM
7565 break;
7566
7361da2c
AB
7567 case BFD_RELOC_MIPS_21_PCREL_S2:
7568 {
7569 int shift;
7570
7571 shift = 2;
7572 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7573 as_bad (_("branch to misaligned address (0x%lx)"),
7574 (unsigned long) address_expr->X_add_number);
7575 if ((address_expr->X_add_number + (1 << (shift + 20)))
7576 & ~((1 << (shift + 21)) - 1))
7577 as_bad (_("branch address range overflow (0x%lx)"),
7578 (unsigned long) address_expr->X_add_number);
7579 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7580 & 0x1fffff);
7581 }
7582 break;
7583
7584 case BFD_RELOC_MIPS_26_PCREL_S2:
7585 {
7586 int shift;
7587
7588 shift = 2;
7589 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7590 as_bad (_("branch to misaligned address (0x%lx)"),
7591 (unsigned long) address_expr->X_add_number);
7592 if ((address_expr->X_add_number + (1 << (shift + 25)))
7593 & ~((1 << (shift + 26)) - 1))
7594 as_bad (_("branch address range overflow (0x%lx)"),
7595 (unsigned long) address_expr->X_add_number);
7596 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7597 & 0x3ffffff);
7598 }
7599 break;
7600
15be625d 7601 default:
b886a2ab
RS
7602 {
7603 offsetT value;
7604
7605 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7606 &value))
7607 {
7608 ip->insn_opcode |= value & 0xffff;
7609 ip->complete_p = 1;
7610 }
7611 }
7612 break;
7613 }
15be625d
CM
7614 }
7615
71400594
RS
7616 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7617 {
7618 /* There are a lot of optimizations we could do that we don't.
7619 In particular, we do not, in general, reorder instructions.
7620 If you use gcc with optimization, it will reorder
7621 instructions and generally do much more optimization then we
7622 do here; repeating all that work in the assembler would only
7623 benefit hand written assembly code, and does not seem worth
7624 it. */
7625 int nops = (mips_optimize == 0
932d1a1b
RS
7626 ? nops_for_insn (0, history, NULL)
7627 : nops_for_insn_or_target (0, history, ip));
71400594 7628 if (nops > 0)
252b5132
RH
7629 {
7630 fragS *old_frag;
7631 unsigned long old_frag_offset;
7632 int i;
252b5132
RH
7633
7634 old_frag = frag_now;
7635 old_frag_offset = frag_now_fix ();
7636
7637 for (i = 0; i < nops; i++)
14fe068b
RS
7638 add_fixed_insn (NOP_INSN);
7639 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7640
7641 if (listing)
7642 {
7643 listing_prev_line ();
7644 /* We may be at the start of a variant frag. In case we
7645 are, make sure there is enough space for the frag
7646 after the frags created by listing_prev_line. The
7647 argument to frag_grow here must be at least as large
7648 as the argument to all other calls to frag_grow in
7649 this file. We don't have to worry about being in the
7650 middle of a variant frag, because the variants insert
7651 all needed nop instructions themselves. */
7652 frag_grow (40);
7653 }
7654
462427c4 7655 mips_move_text_labels ();
252b5132
RH
7656
7657#ifndef NO_ECOFF_DEBUGGING
7658 if (ECOFF_DEBUGGING)
7659 ecoff_fix_loc (old_frag, old_frag_offset);
7660#endif
7661 }
71400594
RS
7662 }
7663 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7664 {
932d1a1b
RS
7665 int nops;
7666
7667 /* Work out how many nops in prev_nop_frag are needed by IP,
7668 ignoring hazards generated by the first prev_nop_frag_since
7669 instructions. */
7670 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7671 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7672
71400594
RS
7673 /* Enforce NOPS as a minimum. */
7674 if (nops > prev_nop_frag_required)
7675 prev_nop_frag_required = nops;
252b5132 7676
71400594
RS
7677 if (prev_nop_frag_holds == prev_nop_frag_required)
7678 {
7679 /* Settle for the current number of nops. Update the history
7680 accordingly (for the benefit of any future .set reorder code). */
7681 prev_nop_frag = NULL;
7682 insert_into_history (prev_nop_frag_since,
7683 prev_nop_frag_holds, NOP_INSN);
7684 }
7685 else
7686 {
7687 /* Allow this instruction to replace one of the nops that was
7688 tentatively added to prev_nop_frag. */
df58fc94 7689 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7690 prev_nop_frag_holds--;
7691 prev_nop_frag_since++;
252b5132
RH
7692 }
7693 }
7694
e407c74b 7695 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7696 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7697
e410add4
RS
7698 dwarf2_emit_insn (0);
7699 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7700 so "move" the instruction address accordingly.
7701
7702 Also, it doesn't seem appropriate for the assembler to reorder .loc
7703 entries. If this instruction is a branch that we are going to swap
7704 with the previous instruction, the two instructions should be
7705 treated as a unit, and the debug information for both instructions
7706 should refer to the start of the branch sequence. Using the
7707 current position is certainly wrong when swapping a 32-bit branch
7708 and a 16-bit delay slot, since the current position would then be
7709 in the middle of a branch. */
7710 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7711
df58fc94
RS
7712 relax32 = (mips_relax_branch
7713 /* Don't try branch relaxation within .set nomacro, or within
7714 .set noat if we use $at for PIC computations. If it turns
7715 out that the branch was out-of-range, we'll get an error. */
7716 && !mips_opts.warn_about_macros
7717 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7718 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7719 as they have no complementing branches. */
7720 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7721
7722 if (!HAVE_CODE_COMPRESSION
7723 && address_expr
7724 && relax32
0b25d3e6 7725 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7726 && delayed_branch_p (ip))
4a6a3df4 7727 {
5b7c81bd 7728 relaxed_branch = true;
1e915849
RS
7729 add_relaxed_insn (ip, (relaxed_branch_length
7730 (NULL, NULL,
11625dd8
RS
7731 uncond_branch_p (ip) ? -1
7732 : branch_likely_p (ip) ? 1
1e915849
RS
7733 : 0)), 4,
7734 RELAX_BRANCH_ENCODE
ce8ad872 7735 (AT, mips_pic != NO_PIC,
11625dd8
RS
7736 uncond_branch_p (ip),
7737 branch_likely_p (ip),
1e915849
RS
7738 pinfo & INSN_WRITE_GPR_31,
7739 0),
7740 address_expr->X_add_symbol,
7741 address_expr->X_add_number);
4a6a3df4
AO
7742 *reloc_type = BFD_RELOC_UNUSED;
7743 }
df58fc94
RS
7744 else if (mips_opts.micromips
7745 && address_expr
7746 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7747 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7748 && (delayed_branch_p (ip) || compact_branch_p (ip))
7749 /* Don't try branch relaxation when users specify
7750 16-bit/32-bit instructions. */
7751 && !forced_insn_length)
df58fc94 7752 {
5b7c81bd
AM
7753 bool relax16 = (method != APPEND_ADD_COMPACT
7754 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7755 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7756 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7757 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7758 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7759 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7760 int length32 = nods ? 8 : 4;
df58fc94
RS
7761
7762 gas_assert (address_expr != NULL);
7763 gas_assert (!mips_relax.sequence);
7764
5b7c81bd 7765 relaxed_branch = true;
7bd374a4
MR
7766 if (nods)
7767 method = APPEND_ADD;
7768 if (relax32)
7769 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7770 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7771 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
ce8ad872 7772 mips_pic != NO_PIC,
7bd374a4 7773 uncond, compact, al, nods,
40209cad 7774 relax32, 0, 0),
df58fc94
RS
7775 address_expr->X_add_symbol,
7776 address_expr->X_add_number);
7777 *reloc_type = BFD_RELOC_UNUSED;
7778 }
7779 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7780 {
5b7c81bd
AM
7781 bool require_unextended;
7782 bool require_extended;
88a7ef16
MR
7783 symbolS *symbol;
7784 offsetT offset;
7785
7fd53920
MR
7786 if (forced_insn_length != 0)
7787 {
7788 require_unextended = forced_insn_length == 2;
7789 require_extended = forced_insn_length == 4;
7790 }
7791 else
7792 {
7793 require_unextended = (mips_opts.noautoextend
7794 && !mips_opcode_32bit_p (ip->insn_mo));
7795 require_extended = 0;
7796 }
7797
252b5132 7798 /* We need to set up a variant frag. */
df58fc94 7799 gas_assert (address_expr != NULL);
88a7ef16
MR
7800 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7801 symbol created by `make_expr_symbol' may not get a necessary
7802 external relocation produced. */
7803 if (address_expr->X_op == O_symbol)
7804 {
7805 symbol = address_expr->X_add_symbol;
7806 offset = address_expr->X_add_number;
7807 }
7808 else
7809 {
7810 symbol = make_expr_symbol (address_expr);
82d808ed 7811 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
88a7ef16
MR
7812 offset = 0;
7813 }
8507b6e7 7814 add_relaxed_insn (ip, 12, 0,
1e915849
RS
7815 RELAX_MIPS16_ENCODE
7816 (*reloc_type - BFD_RELOC_UNUSED,
25499ac7 7817 mips_opts.ase & ASE_MIPS16E2,
8507b6e7
MR
7818 mips_pic != NO_PIC,
7819 HAVE_32BIT_SYMBOLS,
7820 mips_opts.warn_about_macros,
7fd53920 7821 require_unextended, require_extended,
11625dd8 7822 delayed_branch_p (&history[0]),
1e915849 7823 history[0].mips16_absolute_jump_p),
88a7ef16 7824 symbol, offset);
252b5132 7825 }
5c04167a 7826 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7827 {
11625dd8 7828 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7829 /* Make sure there is enough room to swap this instruction with
7830 a following jump instruction. */
7831 frag_grow (6);
1e915849 7832 add_fixed_insn (ip);
252b5132
RH
7833 }
7834 else
7835 {
7836 if (mips_opts.mips16
7837 && mips_opts.noreorder
11625dd8 7838 && delayed_branch_p (&history[0]))
252b5132
RH
7839 as_warn (_("extended instruction in delay slot"));
7840
4d7206a2
RS
7841 if (mips_relax.sequence)
7842 {
7843 /* If we've reached the end of this frag, turn it into a variant
7844 frag and record the information for the instructions we've
7845 written so far. */
7846 if (frag_room () < 4)
7847 relax_close_frag ();
df58fc94 7848 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7849 }
7850
584892a6 7851 if (mips_relax.sequence != 2)
df58fc94
RS
7852 {
7853 if (mips_macro_warning.first_insn_sizes[0] == 0)
7854 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7855 mips_macro_warning.sizes[0] += insn_length (ip);
7856 mips_macro_warning.insns[0]++;
7857 }
584892a6 7858 if (mips_relax.sequence != 1)
df58fc94
RS
7859 {
7860 if (mips_macro_warning.first_insn_sizes[1] == 0)
7861 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7862 mips_macro_warning.sizes[1] += insn_length (ip);
7863 mips_macro_warning.insns[1]++;
7864 }
584892a6 7865
1e915849
RS
7866 if (mips_opts.mips16)
7867 {
7868 ip->fixed_p = 1;
7869 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7870 }
7871 add_fixed_insn (ip);
252b5132
RH
7872 }
7873
9fe77896 7874 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7875 {
df58fc94 7876 bfd_reloc_code_real_type final_type[3];
2309ddf2 7877 reloc_howto_type *howto0;
9fe77896
RS
7878 reloc_howto_type *howto;
7879 int i;
34ce925e 7880
df58fc94
RS
7881 /* Perform any necessary conversion to microMIPS relocations
7882 and find out how many relocations there actually are. */
7883 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7884 final_type[i] = micromips_map_reloc (reloc_type[i]);
7885
9fe77896
RS
7886 /* In a compound relocation, it is the final (outermost)
7887 operator that determines the relocated field. */
2309ddf2 7888 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7889 if (!howto)
7890 abort ();
2309ddf2
MR
7891
7892 if (i > 1)
7893 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7894 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7895 bfd_get_reloc_size (howto),
7896 address_expr,
2309ddf2
MR
7897 howto0 && howto0->pc_relative,
7898 final_type[0]);
ce8ad872
MR
7899 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7900 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
9fe77896
RS
7901
7902 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7903 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7904 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7905
7906 /* These relocations can have an addend that won't fit in
7907 4 octets for 64bit assembly. */
bad1aba3 7908 if (GPR_SIZE == 64
9fe77896
RS
7909 && ! howto->partial_inplace
7910 && (reloc_type[0] == BFD_RELOC_16
7911 || reloc_type[0] == BFD_RELOC_32
7912 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7913 || reloc_type[0] == BFD_RELOC_GPREL16
7914 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7915 || reloc_type[0] == BFD_RELOC_GPREL32
7916 || reloc_type[0] == BFD_RELOC_64
7917 || reloc_type[0] == BFD_RELOC_CTOR
7918 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7919 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7920 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7921 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7922 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7923 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7924 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7925 || hi16_reloc_p (reloc_type[0])
7926 || lo16_reloc_p (reloc_type[0])))
7927 ip->fixp[0]->fx_no_overflow = 1;
7928
ddaf2c41
MR
7929 /* These relocations can have an addend that won't fit in 2 octets. */
7930 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7931 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7932 ip->fixp[0]->fx_no_overflow = 1;
7933
9fe77896
RS
7934 if (mips_relax.sequence)
7935 {
7936 if (mips_relax.first_fixup == 0)
7937 mips_relax.first_fixup = ip->fixp[0];
7938 }
7939 else if (reloc_needs_lo_p (*reloc_type))
7940 {
7941 struct mips_hi_fixup *hi_fixup;
7942
7943 /* Reuse the last entry if it already has a matching %lo. */
7944 hi_fixup = mips_hi_fixup_list;
7945 if (hi_fixup == 0
7946 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7947 {
325801bd 7948 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7949 hi_fixup->next = mips_hi_fixup_list;
7950 mips_hi_fixup_list = hi_fixup;
4d7206a2 7951 }
9fe77896
RS
7952 hi_fixup->fixp = ip->fixp[0];
7953 hi_fixup->seg = now_seg;
7954 }
252b5132 7955
9fe77896
RS
7956 /* Add fixups for the second and third relocations, if given.
7957 Note that the ABI allows the second relocation to be
7958 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7959 moment we only use RSS_UNDEF, but we could add support
7960 for the others if it ever becomes necessary. */
7961 for (i = 1; i < 3; i++)
7962 if (reloc_type[i] != BFD_RELOC_UNUSED)
7963 {
7964 ip->fixp[i] = fix_new (ip->frag, ip->where,
7965 ip->fixp[0]->fx_size, NULL, 0,
5b7c81bd 7966 false, final_type[i]);
f6688943 7967
9fe77896
RS
7968 /* Use fx_tcbit to mark compound relocs. */
7969 ip->fixp[0]->fx_tcbit = 1;
7970 ip->fixp[i]->fx_tcbit = 1;
7971 }
252b5132 7972 }
252b5132
RH
7973
7974 /* Update the register mask information. */
4c260379
RS
7975 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7976 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7977
a4e06468 7978 switch (method)
252b5132 7979 {
a4e06468
RS
7980 case APPEND_ADD:
7981 insert_into_history (0, 1, ip);
7982 break;
7983
7984 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7985 {
7986 struct mips_cl_insn *nop;
7987
7988 insert_into_history (0, 1, ip);
7989 nop = get_delay_slot_nop (ip);
7990 add_fixed_insn (nop);
7991 insert_into_history (0, 1, nop);
7992 if (mips_relax.sequence)
7993 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7994 }
a4e06468
RS
7995 break;
7996
7997 case APPEND_ADD_COMPACT:
7998 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7999 if (mips_opts.mips16)
8000 {
8001 ip->insn_opcode |= 0x0080;
8002 find_altered_mips16_opcode (ip);
8003 }
8004 /* Convert microMIPS instructions. */
8005 else if (mips_opts.micromips)
8006 {
8007 /* jr16->jrc */
8008 if ((ip->insn_opcode & 0xffe0) == 0x4580)
8009 ip->insn_opcode |= 0x0020;
8010 /* b16->bc */
8011 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
8012 ip->insn_opcode = 0x40e00000;
8013 /* beqz16->beqzc, bnez16->bnezc */
8014 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
8015 {
8016 unsigned long regno;
8017
8018 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
8019 regno &= MICROMIPSOP_MASK_MD;
8020 regno = micromips_to_32_reg_d_map[regno];
8021 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
8022 | (regno << MICROMIPSOP_SH_RS)
8023 | 0x40a00000) ^ 0x00400000;
8024 }
8025 /* beqz->beqzc, bnez->bnezc */
8026 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
8027 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
8028 | ((ip->insn_opcode >> 7) & 0x00400000)
8029 | 0x40a00000) ^ 0x00400000;
8030 /* beq $0->beqzc, bne $0->bnezc */
8031 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
8032 ip->insn_opcode = (((ip->insn_opcode >>
8033 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
8034 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
8035 | ((ip->insn_opcode >> 7) & 0x00400000)
8036 | 0x40a00000) ^ 0x00400000;
8037 else
8038 abort ();
8039 find_altered_micromips_opcode (ip);
8040 }
8041 else
8042 abort ();
a4e06468
RS
8043 install_insn (ip);
8044 insert_into_history (0, 1, ip);
8045 break;
8046
8047 case APPEND_SWAP:
8048 {
8049 struct mips_cl_insn delay = history[0];
99e7978b
MF
8050
8051 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
8052 {
8053 /* Add the delay slot instruction to the end of the
8054 current frag and shrink the fixed part of the
8055 original frag. If the branch occupies the tail of
8056 the latter, move it backwards to cover the gap. */
2b0c8b40 8057 delay.frag->fr_fix -= branch_disp;
a4e06468 8058 if (delay.frag == ip->frag)
2b0c8b40 8059 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
8060 add_fixed_insn (&delay);
8061 }
8062 else
8063 {
5e35670b
MR
8064 /* If this is not a relaxed branch and we are in the
8065 same frag, then just swap the instructions. */
8066 move_insn (ip, delay.frag, delay.where);
8067 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
8068 }
8069 history[0] = *ip;
8070 delay.fixed_p = 1;
8071 insert_into_history (0, 1, &delay);
8072 }
8073 break;
252b5132
RH
8074 }
8075
13408f1e 8076 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
8077 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
8078 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
8079 {
8080 unsigned int i;
8081
79850f26 8082 mips_no_prev_insn ();
13408f1e 8083
e407c74b 8084 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 8085 history[i].cleared_p = 1;
e407c74b
NC
8086 }
8087
df58fc94
RS
8088 /* We need to emit a label at the end of branch-likely macros. */
8089 if (emit_branch_likely_macro)
8090 {
5b7c81bd 8091 emit_branch_likely_macro = false;
df58fc94
RS
8092 micromips_add_label ();
8093 }
8094
252b5132
RH
8095 /* We just output an insn, so the next one doesn't have a label. */
8096 mips_clear_insn_labels ();
252b5132
RH
8097}
8098
e407c74b
NC
8099/* Forget that there was any previous instruction or label.
8100 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
8101
8102static void
7d10b47d 8103mips_no_prev_insn (void)
252b5132 8104{
7d10b47d
RS
8105 prev_nop_frag = NULL;
8106 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
8107 mips_clear_insn_labels ();
8108}
8109
7d10b47d
RS
8110/* This function must be called before we emit something other than
8111 instructions. It is like mips_no_prev_insn except that it inserts
8112 any NOPS that might be needed by previous instructions. */
252b5132 8113
7d10b47d
RS
8114void
8115mips_emit_delays (void)
252b5132
RH
8116{
8117 if (! mips_opts.noreorder)
8118 {
932d1a1b 8119 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
8120 if (nops > 0)
8121 {
7d10b47d
RS
8122 while (nops-- > 0)
8123 add_fixed_insn (NOP_INSN);
462427c4 8124 mips_move_text_labels ();
7d10b47d
RS
8125 }
8126 }
8127 mips_no_prev_insn ();
8128}
8129
8130/* Start a (possibly nested) noreorder block. */
8131
8132static void
8133start_noreorder (void)
8134{
8135 if (mips_opts.noreorder == 0)
8136 {
8137 unsigned int i;
8138 int nops;
8139
8140 /* None of the instructions before the .set noreorder can be moved. */
8141 for (i = 0; i < ARRAY_SIZE (history); i++)
8142 history[i].fixed_p = 1;
8143
8144 /* Insert any nops that might be needed between the .set noreorder
8145 block and the previous instructions. We will later remove any
8146 nops that turn out not to be needed. */
932d1a1b 8147 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
8148 if (nops > 0)
8149 {
8150 if (mips_optimize != 0)
252b5132
RH
8151 {
8152 /* Record the frag which holds the nop instructions, so
8153 that we can remove them if we don't need them. */
df58fc94 8154 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
8155 prev_nop_frag = frag_now;
8156 prev_nop_frag_holds = nops;
8157 prev_nop_frag_required = 0;
8158 prev_nop_frag_since = 0;
8159 }
8160
8161 for (; nops > 0; --nops)
1e915849 8162 add_fixed_insn (NOP_INSN);
252b5132 8163
7d10b47d
RS
8164 /* Move on to a new frag, so that it is safe to simply
8165 decrease the size of prev_nop_frag. */
8166 frag_wane (frag_now);
8167 frag_new (0);
462427c4 8168 mips_move_text_labels ();
252b5132 8169 }
df58fc94 8170 mips_mark_labels ();
7d10b47d 8171 mips_clear_insn_labels ();
252b5132 8172 }
7d10b47d
RS
8173 mips_opts.noreorder++;
8174 mips_any_noreorder = 1;
8175}
252b5132 8176
7d10b47d 8177/* End a nested noreorder block. */
252b5132 8178
7d10b47d
RS
8179static void
8180end_noreorder (void)
8181{
8182 mips_opts.noreorder--;
8183 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
8184 {
8185 /* Commit to inserting prev_nop_frag_required nops and go back to
8186 handling nop insertion the .set reorder way. */
8187 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 8188 * NOP_INSN_SIZE);
7d10b47d
RS
8189 insert_into_history (prev_nop_frag_since,
8190 prev_nop_frag_required, NOP_INSN);
8191 prev_nop_frag = NULL;
8192 }
252b5132
RH
8193}
8194
97d87491
RS
8195/* Sign-extend 32-bit mode constants that have bit 31 set and all
8196 higher bits unset. */
8197
8198static void
8199normalize_constant_expr (expressionS *ex)
8200{
8201 if (ex->X_op == O_constant
8202 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8203 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8204 - 0x80000000);
8205}
8206
8207/* Sign-extend 32-bit mode address offsets that have bit 31 set and
8208 all higher bits unset. */
8209
8210static void
8211normalize_address_expr (expressionS *ex)
8212{
8213 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8214 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8215 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8216 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8217 - 0x80000000);
8218}
8219
8220/* Try to match TOKENS against OPCODE, storing the result in INSN.
8221 Return true if the match was successful.
8222
8223 OPCODE_EXTRA is a value that should be ORed into the opcode
8224 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8225 there are more alternatives after OPCODE and SOFT_MATCH is
8226 as for mips_arg_info. */
8227
5b7c81bd 8228static bool
97d87491
RS
8229match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8230 struct mips_operand_token *tokens, unsigned int opcode_extra,
5b7c81bd 8231 bool lax_match, bool complete_p)
97d87491
RS
8232{
8233 const char *args;
8234 struct mips_arg_info arg;
8235 const struct mips_operand *operand;
8236 char c;
8237
8238 imm_expr.X_op = O_absent;
97d87491
RS
8239 offset_expr.X_op = O_absent;
8240 offset_reloc[0] = BFD_RELOC_UNUSED;
8241 offset_reloc[1] = BFD_RELOC_UNUSED;
8242 offset_reloc[2] = BFD_RELOC_UNUSED;
8243
8244 create_insn (insn, opcode);
60f20e8b
RS
8245 /* When no opcode suffix is specified, assume ".xyzw". */
8246 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8247 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8248 else
8249 insn->insn_opcode |= opcode_extra;
97d87491
RS
8250 memset (&arg, 0, sizeof (arg));
8251 arg.insn = insn;
8252 arg.token = tokens;
8253 arg.argnum = 1;
8254 arg.last_regno = ILLEGAL_REG;
8255 arg.dest_regno = ILLEGAL_REG;
60f20e8b 8256 arg.lax_match = lax_match;
97d87491
RS
8257 for (args = opcode->args;; ++args)
8258 {
8259 if (arg.token->type == OT_END)
8260 {
8261 /* Handle unary instructions in which only one operand is given.
8262 The source is then the same as the destination. */
8263 if (arg.opnum == 1 && *args == ',')
8264 {
8265 operand = (mips_opts.micromips
8266 ? decode_micromips_operand (args + 1)
8267 : decode_mips_operand (args + 1));
8268 if (operand && mips_optional_operand_p (operand))
8269 {
8270 arg.token = tokens;
8271 arg.argnum = 1;
8272 continue;
8273 }
8274 }
8275
8276 /* Treat elided base registers as $0. */
8277 if (strcmp (args, "(b)") == 0)
8278 args += 3;
8279
8280 if (args[0] == '+')
8281 switch (args[1])
8282 {
8283 case 'K':
8284 case 'N':
8285 /* The register suffix is optional. */
8286 args += 2;
8287 break;
8288 }
8289
8290 /* Fail the match if there were too few operands. */
8291 if (*args)
5b7c81bd 8292 return false;
97d87491
RS
8293
8294 /* Successful match. */
60f20e8b 8295 if (!complete_p)
5b7c81bd 8296 return true;
e3de51ce 8297 clear_insn_error ();
97d87491 8298 if (arg.dest_regno == arg.last_regno
d34049e8 8299 && startswith (insn->insn_mo->name, "jalr"))
97d87491
RS
8300 {
8301 if (arg.opnum == 2)
e3de51ce 8302 set_insn_error
1661c76c 8303 (0, _("source and destination must be different"));
97d87491 8304 else if (arg.last_regno == 31)
e3de51ce 8305 set_insn_error
1661c76c 8306 (0, _("a destination register must be supplied"));
97d87491 8307 }
173d3447 8308 else if (arg.last_regno == 31
d34049e8
ML
8309 && (startswith (insn->insn_mo->name, "bltzal")
8310 || startswith (insn->insn_mo->name, "bgezal")))
173d3447 8311 set_insn_error (0, _("the source register must not be $31"));
97d87491 8312 check_completed_insn (&arg);
5b7c81bd 8313 return true;
97d87491
RS
8314 }
8315
8316 /* Fail the match if the line has too many operands. */
8317 if (*args == 0)
5b7c81bd 8318 return false;
97d87491
RS
8319
8320 /* Handle characters that need to match exactly. */
8321 if (*args == '(' || *args == ')' || *args == ',')
8322 {
8323 if (match_char (&arg, *args))
8324 continue;
5b7c81bd 8325 return false;
97d87491
RS
8326 }
8327 if (*args == '#')
8328 {
8329 ++args;
8330 if (arg.token->type == OT_DOUBLE_CHAR
8331 && arg.token->u.ch == *args)
8332 {
8333 ++arg.token;
8334 continue;
8335 }
5b7c81bd 8336 return false;
97d87491
RS
8337 }
8338
8339 /* Handle special macro operands. Work out the properties of
8340 other operands. */
8341 arg.opnum += 1;
97d87491
RS
8342 switch (*args)
8343 {
7361da2c
AB
8344 case '-':
8345 switch (args[1])
8346 {
8347 case 'A':
8348 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8349 break;
8350
8351 case 'B':
8352 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8353 break;
8354 }
8355 break;
8356
97d87491
RS
8357 case '+':
8358 switch (args[1])
8359 {
97d87491
RS
8360 case 'i':
8361 *offset_reloc = BFD_RELOC_MIPS_JMP;
8362 break;
7361da2c
AB
8363
8364 case '\'':
8365 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8366 break;
8367
8368 case '\"':
8369 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8370 break;
97d87491
RS
8371 }
8372 break;
8373
97d87491 8374 case 'I':
1a00e612 8375 if (!match_const_int (&arg, &imm_expr.X_add_number))
5b7c81bd 8376 return false;
1a00e612 8377 imm_expr.X_op = O_constant;
bad1aba3 8378 if (GPR_SIZE == 32)
97d87491
RS
8379 normalize_constant_expr (&imm_expr);
8380 continue;
8381
8382 case 'A':
8383 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8384 {
8385 /* Assume that the offset has been elided and that what
8386 we saw was a base register. The match will fail later
8387 if that assumption turns out to be wrong. */
8388 offset_expr.X_op = O_constant;
8389 offset_expr.X_add_number = 0;
8390 }
97d87491 8391 else
1a00e612
RS
8392 {
8393 if (!match_expression (&arg, &offset_expr, offset_reloc))
5b7c81bd 8394 return false;
1a00e612
RS
8395 normalize_address_expr (&offset_expr);
8396 }
97d87491
RS
8397 continue;
8398
8399 case 'F':
8400 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
5b7c81bd
AM
8401 8, true))
8402 return false;
97d87491
RS
8403 continue;
8404
8405 case 'L':
8406 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
5b7c81bd
AM
8407 8, false))
8408 return false;
97d87491
RS
8409 continue;
8410
8411 case 'f':
8412 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
5b7c81bd
AM
8413 4, true))
8414 return false;
97d87491
RS
8415 continue;
8416
8417 case 'l':
8418 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
5b7c81bd
AM
8419 4, false))
8420 return false;
97d87491
RS
8421 continue;
8422
97d87491
RS
8423 case 'p':
8424 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8425 break;
8426
8427 case 'a':
8428 *offset_reloc = BFD_RELOC_MIPS_JMP;
8429 break;
8430
8431 case 'm':
8432 gas_assert (mips_opts.micromips);
8433 c = args[1];
8434 switch (c)
8435 {
8436 case 'D':
8437 case 'E':
8438 if (!forced_insn_length)
8439 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8440 else if (c == 'D')
8441 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8442 else
8443 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8444 break;
8445 }
8446 break;
8447 }
8448
8449 operand = (mips_opts.micromips
8450 ? decode_micromips_operand (args)
8451 : decode_mips_operand (args));
8452 if (!operand)
8453 abort ();
8454
8455 /* Skip prefixes. */
7361da2c 8456 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8457 args++;
8458
8459 if (mips_optional_operand_p (operand)
8460 && args[1] == ','
8461 && (arg.token[0].type != OT_REG
8462 || arg.token[1].type == OT_END))
8463 {
8464 /* Assume that the register has been elided and is the
8465 same as the first operand. */
8466 arg.token = tokens;
8467 arg.argnum = 1;
8468 }
8469
8470 if (!match_operand (&arg, operand))
5b7c81bd 8471 return false;
97d87491
RS
8472 }
8473}
8474
8475/* Like match_insn, but for MIPS16. */
8476
5b7c81bd 8477static bool
97d87491 8478match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8479 struct mips_operand_token *tokens)
97d87491
RS
8480{
8481 const char *args;
8482 const struct mips_operand *operand;
8483 const struct mips_operand *ext_operand;
5b7c81bd 8484 bool pcrel = false;
7fd53920 8485 int required_insn_length;
97d87491
RS
8486 struct mips_arg_info arg;
8487 int relax_char;
8488
7fd53920
MR
8489 if (forced_insn_length)
8490 required_insn_length = forced_insn_length;
8491 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8492 required_insn_length = 2;
8493 else
8494 required_insn_length = 0;
8495
97d87491
RS
8496 create_insn (insn, opcode);
8497 imm_expr.X_op = O_absent;
97d87491
RS
8498 offset_expr.X_op = O_absent;
8499 offset_reloc[0] = BFD_RELOC_UNUSED;
8500 offset_reloc[1] = BFD_RELOC_UNUSED;
8501 offset_reloc[2] = BFD_RELOC_UNUSED;
8502 relax_char = 0;
8503
8504 memset (&arg, 0, sizeof (arg));
8505 arg.insn = insn;
8506 arg.token = tokens;
8507 arg.argnum = 1;
8508 arg.last_regno = ILLEGAL_REG;
8509 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8510 relax_char = 0;
8511 for (args = opcode->args;; ++args)
8512 {
8513 int c;
8514
8515 if (arg.token->type == OT_END)
8516 {
8517 offsetT value;
8518
8519 /* Handle unary instructions in which only one operand is given.
8520 The source is then the same as the destination. */
8521 if (arg.opnum == 1 && *args == ',')
8522 {
5b7c81bd 8523 operand = decode_mips16_operand (args[1], false);
97d87491
RS
8524 if (operand && mips_optional_operand_p (operand))
8525 {
8526 arg.token = tokens;
8527 arg.argnum = 1;
8528 continue;
8529 }
8530 }
8531
8532 /* Fail the match if there were too few operands. */
8533 if (*args)
5b7c81bd 8534 return false;
97d87491
RS
8535
8536 /* Successful match. Stuff the immediate value in now, if
8537 we can. */
e3de51ce 8538 clear_insn_error ();
97d87491
RS
8539 if (opcode->pinfo == INSN_MACRO)
8540 {
8541 gas_assert (relax_char == 0 || relax_char == 'p');
8542 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8543 }
8544 else if (relax_char
8545 && offset_expr.X_op == O_constant
82d808ed 8546 && !pcrel
97d87491
RS
8547 && calculate_reloc (*offset_reloc,
8548 offset_expr.X_add_number,
8549 &value))
8550 {
8551 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8552 required_insn_length, &insn->insn_opcode);
97d87491
RS
8553 offset_expr.X_op = O_absent;
8554 *offset_reloc = BFD_RELOC_UNUSED;
8555 }
8556 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8557 {
7fd53920 8558 if (required_insn_length == 2)
e3de51ce 8559 set_insn_error (0, _("invalid unextended operand value"));
25499ac7 8560 else if (!mips_opcode_32bit_p (opcode))
1da43acc
MR
8561 {
8562 forced_insn_length = 4;
8563 insn->insn_opcode |= MIPS16_EXTEND;
8564 }
97d87491
RS
8565 }
8566 else if (relax_char)
8567 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8568
8569 check_completed_insn (&arg);
5b7c81bd 8570 return true;
97d87491
RS
8571 }
8572
8573 /* Fail the match if the line has too many operands. */
8574 if (*args == 0)
5b7c81bd 8575 return false;
97d87491
RS
8576
8577 /* Handle characters that need to match exactly. */
8578 if (*args == '(' || *args == ')' || *args == ',')
8579 {
8580 if (match_char (&arg, *args))
8581 continue;
5b7c81bd 8582 return false;
97d87491
RS
8583 }
8584
8585 arg.opnum += 1;
8586 c = *args;
8587 switch (c)
8588 {
8589 case 'p':
8590 case 'q':
8591 case 'A':
8592 case 'B':
8593 case 'E':
25499ac7
MR
8594 case 'V':
8595 case 'u':
97d87491
RS
8596 relax_char = c;
8597 break;
8598
8599 case 'I':
1a00e612 8600 if (!match_const_int (&arg, &imm_expr.X_add_number))
5b7c81bd 8601 return false;
1a00e612 8602 imm_expr.X_op = O_constant;
bad1aba3 8603 if (GPR_SIZE == 32)
97d87491
RS
8604 normalize_constant_expr (&imm_expr);
8605 continue;
8606
8607 case 'a':
8608 case 'i':
8609 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8610 break;
8611 }
8612
7fd53920 8613 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8614 if (!operand)
8615 abort ();
8616
82d808ed 8617 if (operand->type == OP_PCREL)
5b7c81bd 8618 pcrel = true;
82d808ed 8619 else
97d87491 8620 {
5b7c81bd 8621 ext_operand = decode_mips16_operand (c, true);
97d87491
RS
8622 if (operand != ext_operand)
8623 {
8624 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8625 {
8626 offset_expr.X_op = O_constant;
8627 offset_expr.X_add_number = 0;
8628 relax_char = c;
8629 continue;
8630 }
8631
1a7bf198 8632 if (!match_expression (&arg, &offset_expr, offset_reloc))
5b7c81bd 8633 return false;
97d87491
RS
8634
8635 /* '8' is used for SLTI(U) and has traditionally not
8636 been allowed to take relocation operators. */
8637 if (offset_reloc[0] != BFD_RELOC_UNUSED
8638 && (ext_operand->size != 16 || c == '8'))
e295202f
MR
8639 {
8640 match_not_constant (&arg);
5b7c81bd 8641 return false;
e295202f 8642 }
97d87491 8643
c96425c5
MR
8644 if (offset_expr.X_op == O_big)
8645 {
8646 match_out_of_range (&arg);
5b7c81bd 8647 return false;
c96425c5
MR
8648 }
8649
97d87491
RS
8650 relax_char = c;
8651 continue;
8652 }
8653 }
8654
8655 if (mips_optional_operand_p (operand)
8656 && args[1] == ','
8657 && (arg.token[0].type != OT_REG
8658 || arg.token[1].type == OT_END))
8659 {
8660 /* Assume that the register has been elided and is the
8661 same as the first operand. */
8662 arg.token = tokens;
8663 arg.argnum = 1;
8664 }
8665
8666 if (!match_operand (&arg, operand))
5b7c81bd 8667 return false;
97d87491
RS
8668 }
8669}
8670
60f20e8b
RS
8671/* Record that the current instruction is invalid for the current ISA. */
8672
8673static void
8674match_invalid_for_isa (void)
8675{
8676 set_insn_error_ss
1661c76c 8677 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8678 mips_cpu_info_from_arch (mips_opts.arch)->name,
8679 mips_cpu_info_from_isa (mips_opts.isa)->name);
8680}
8681
8682/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8683 Return true if a definite match or failure was found, storing any match
8684 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8685 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8686 tried and failed to match under normal conditions and now want to try a
8687 more relaxed match. */
8688
5b7c81bd 8689static bool
60f20e8b
RS
8690match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8691 const struct mips_opcode *past, struct mips_operand_token *tokens,
5b7c81bd 8692 int opcode_extra, bool lax_match)
60f20e8b
RS
8693{
8694 const struct mips_opcode *opcode;
8695 const struct mips_opcode *invalid_delay_slot;
5b7c81bd 8696 bool seen_valid_for_isa, seen_valid_for_size;
60f20e8b
RS
8697
8698 /* Search for a match, ignoring alternatives that don't satisfy the
8699 current ISA or forced_length. */
8700 invalid_delay_slot = 0;
5b7c81bd
AM
8701 seen_valid_for_isa = false;
8702 seen_valid_for_size = false;
60f20e8b
RS
8703 opcode = first;
8704 do
8705 {
8706 gas_assert (strcmp (opcode->name, first->name) == 0);
8707 if (is_opcode_valid (opcode))
8708 {
5b7c81bd 8709 seen_valid_for_isa = true;
60f20e8b
RS
8710 if (is_size_valid (opcode))
8711 {
5b7c81bd 8712 bool delay_slot_ok;
60f20e8b 8713
5b7c81bd 8714 seen_valid_for_size = true;
60f20e8b
RS
8715 delay_slot_ok = is_delay_slot_valid (opcode);
8716 if (match_insn (insn, opcode, tokens, opcode_extra,
8717 lax_match, delay_slot_ok))
8718 {
8719 if (!delay_slot_ok)
8720 {
8721 if (!invalid_delay_slot)
8722 invalid_delay_slot = opcode;
8723 }
8724 else
5b7c81bd 8725 return true;
60f20e8b
RS
8726 }
8727 }
8728 }
8729 ++opcode;
8730 }
8731 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8732
8733 /* If the only matches we found had the wrong length for the delay slot,
8734 pick the first such match. We'll issue an appropriate warning later. */
8735 if (invalid_delay_slot)
8736 {
8737 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
5b7c81bd
AM
8738 lax_match, true))
8739 return true;
60f20e8b
RS
8740 abort ();
8741 }
8742
8743 /* Handle the case where we didn't try to match an instruction because
8744 all the alternatives were incompatible with the current ISA. */
8745 if (!seen_valid_for_isa)
8746 {
8747 match_invalid_for_isa ();
5b7c81bd 8748 return true;
60f20e8b
RS
8749 }
8750
8751 /* Handle the case where we didn't try to match an instruction because
8752 all the alternatives were of the wrong size. */
8753 if (!seen_valid_for_size)
8754 {
8755 if (mips_opts.insn32)
1661c76c 8756 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8757 else
8758 set_insn_error_i
1661c76c 8759 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b 8760 8 * forced_insn_length);
5b7c81bd 8761 return true;
60f20e8b
RS
8762 }
8763
5b7c81bd 8764 return false;
60f20e8b
RS
8765}
8766
8767/* Like match_insns, but for MIPS16. */
8768
5b7c81bd 8769static bool
60f20e8b
RS
8770match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8771 struct mips_operand_token *tokens)
8772{
8773 const struct mips_opcode *opcode;
5b7c81bd
AM
8774 bool seen_valid_for_isa;
8775 bool seen_valid_for_size;
60f20e8b
RS
8776
8777 /* Search for a match, ignoring alternatives that don't satisfy the
8778 current ISA. There are no separate entries for extended forms so
8779 we deal with forced_length later. */
5b7c81bd
AM
8780 seen_valid_for_isa = false;
8781 seen_valid_for_size = false;
60f20e8b
RS
8782 opcode = first;
8783 do
8784 {
8785 gas_assert (strcmp (opcode->name, first->name) == 0);
8786 if (is_opcode_valid_16 (opcode))
8787 {
5b7c81bd 8788 seen_valid_for_isa = true;
7fd53920
MR
8789 if (is_size_valid_16 (opcode))
8790 {
5b7c81bd 8791 seen_valid_for_size = true;
7fd53920 8792 if (match_mips16_insn (insn, opcode, tokens))
5b7c81bd 8793 return true;
7fd53920 8794 }
60f20e8b
RS
8795 }
8796 ++opcode;
8797 }
8798 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8799 && strcmp (opcode->name, first->name) == 0);
8800
8801 /* Handle the case where we didn't try to match an instruction because
8802 all the alternatives were incompatible with the current ISA. */
8803 if (!seen_valid_for_isa)
8804 {
8805 match_invalid_for_isa ();
5b7c81bd 8806 return true;
60f20e8b
RS
8807 }
8808
7fd53920
MR
8809 /* Handle the case where we didn't try to match an instruction because
8810 all the alternatives were of the wrong size. */
8811 if (!seen_valid_for_size)
8812 {
8813 if (forced_insn_length == 2)
8814 set_insn_error
8815 (0, _("unrecognized unextended version of MIPS16 opcode"));
8816 else
8817 set_insn_error
8818 (0, _("unrecognized extended version of MIPS16 opcode"));
5b7c81bd 8819 return true;
7fd53920
MR
8820 }
8821
5b7c81bd 8822 return false;
60f20e8b
RS
8823}
8824
584892a6
RS
8825/* Set up global variables for the start of a new macro. */
8826
8827static void
8828macro_start (void)
8829{
8830 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8831 memset (&mips_macro_warning.first_insn_sizes, 0,
8832 sizeof (mips_macro_warning.first_insn_sizes));
8833 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8834 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8835 && delayed_branch_p (&history[0]));
7bd374a4
MR
8836 if (history[0].frag
8837 && history[0].frag->fr_type == rs_machine_dependent
8838 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8839 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8840 mips_macro_warning.delay_slot_length = 0;
8841 else
8842 switch (history[0].insn_mo->pinfo2
8843 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8844 {
8845 case INSN2_BRANCH_DELAY_32BIT:
8846 mips_macro_warning.delay_slot_length = 4;
8847 break;
8848 case INSN2_BRANCH_DELAY_16BIT:
8849 mips_macro_warning.delay_slot_length = 2;
8850 break;
8851 default:
8852 mips_macro_warning.delay_slot_length = 0;
8853 break;
8854 }
df58fc94 8855 mips_macro_warning.first_frag = NULL;
584892a6
RS
8856}
8857
df58fc94
RS
8858/* Given that a macro is longer than one instruction or of the wrong size,
8859 return the appropriate warning for it. Return null if no warning is
8860 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8861 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8862 and RELAX_NOMACRO. */
584892a6
RS
8863
8864static const char *
8865macro_warning (relax_substateT subtype)
8866{
8867 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8868 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8869 " in a branch delay slot");
8870 else if (subtype & RELAX_NOMACRO)
1661c76c 8871 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8872 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8873 | RELAX_DELAY_SLOT_SIZE_SECOND))
8874 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8875 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8876 " in a 16-bit branch delay slot")
1661c76c 8877 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8878 " in a 32-bit branch delay slot"));
584892a6
RS
8879 else
8880 return 0;
8881}
8882
8883/* Finish up a macro. Emit warnings as appropriate. */
8884
8885static void
8886macro_end (void)
8887{
df58fc94
RS
8888 /* Relaxation warning flags. */
8889 relax_substateT subtype = 0;
8890
8891 /* Check delay slot size requirements. */
8892 if (mips_macro_warning.delay_slot_length == 2)
8893 subtype |= RELAX_DELAY_SLOT_16BIT;
8894 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8895 {
df58fc94
RS
8896 if (mips_macro_warning.delay_slot_length
8897 != mips_macro_warning.first_insn_sizes[0])
8898 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8899 if (mips_macro_warning.delay_slot_length
8900 != mips_macro_warning.first_insn_sizes[1])
8901 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8902 }
584892a6 8903
df58fc94
RS
8904 /* Check instruction count requirements. */
8905 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8906 {
8907 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8908 subtype |= RELAX_SECOND_LONGER;
8909 if (mips_opts.warn_about_macros)
8910 subtype |= RELAX_NOMACRO;
8911 if (mips_macro_warning.delay_slot_p)
8912 subtype |= RELAX_DELAY_SLOT;
df58fc94 8913 }
584892a6 8914
df58fc94
RS
8915 /* If both alternatives fail to fill a delay slot correctly,
8916 emit the warning now. */
8917 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8918 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8919 {
8920 relax_substateT s;
8921 const char *msg;
8922
8923 s = subtype & (RELAX_DELAY_SLOT_16BIT
8924 | RELAX_DELAY_SLOT_SIZE_FIRST
8925 | RELAX_DELAY_SLOT_SIZE_SECOND);
8926 msg = macro_warning (s);
8927 if (msg != NULL)
8928 as_warn ("%s", msg);
8929 subtype &= ~s;
8930 }
8931
8932 /* If both implementations are longer than 1 instruction, then emit the
8933 warning now. */
8934 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8935 {
8936 relax_substateT s;
8937 const char *msg;
8938
8939 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8940 msg = macro_warning (s);
8941 if (msg != NULL)
8942 as_warn ("%s", msg);
8943 subtype &= ~s;
584892a6 8944 }
df58fc94
RS
8945
8946 /* If any flags still set, then one implementation might need a warning
8947 and the other either will need one of a different kind or none at all.
8948 Pass any remaining flags over to relaxation. */
8949 if (mips_macro_warning.first_frag != NULL)
8950 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8951}
8952
df58fc94
RS
8953/* Instruction operand formats used in macros that vary between
8954 standard MIPS and microMIPS code. */
8955
833794fc 8956static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8957static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8958static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8959static const char * const lui_fmt[2] = { "t,u", "s,u" };
8960static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8961static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8962static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8963static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8964
833794fc 8965#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8966#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8967 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8968#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8969#define LUI_FMT (lui_fmt[mips_opts.micromips])
8970#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8971#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8972 : mem12_fmt[mips_opts.micromips])
833794fc 8973#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8974#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8975#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8976
6e1304d8
RS
8977/* Read a macro's relocation codes from *ARGS and store them in *R.
8978 The first argument in *ARGS will be either the code for a single
8979 relocation or -1 followed by the three codes that make up a
8980 composite relocation. */
8981
8982static void
8983macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8984{
8985 int i, next;
8986
8987 next = va_arg (*args, int);
8988 if (next >= 0)
8989 r[0] = (bfd_reloc_code_real_type) next;
8990 else
f2ae14a1
RS
8991 {
8992 for (i = 0; i < 3; i++)
8993 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8994 /* This function is only used for 16-bit relocation fields.
8995 To make the macro code simpler, treat an unrelocated value
8996 in the same way as BFD_RELOC_LO16. */
8997 if (r[0] == BFD_RELOC_UNUSED)
8998 r[0] = BFD_RELOC_LO16;
8999 }
6e1304d8
RS
9000}
9001
252b5132
RH
9002/* Build an instruction created by a macro expansion. This is passed
9003 a pointer to the count of instructions created so far, an
9004 expression, the name of the instruction to build, an operand format
9005 string, and corresponding arguments. */
9006
252b5132 9007static void
67c0d1eb 9008macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 9009{
df58fc94 9010 const struct mips_opcode *mo = NULL;
f6688943 9011 bfd_reloc_code_real_type r[3];
df58fc94 9012 const struct mips_opcode *amo;
e077a1c8 9013 const struct mips_operand *operand;
629310ab 9014 htab_t hash;
df58fc94 9015 struct mips_cl_insn insn;
252b5132 9016 va_list args;
e077a1c8 9017 unsigned int uval;
252b5132 9018
252b5132 9019 va_start (args, fmt);
252b5132 9020
252b5132
RH
9021 if (mips_opts.mips16)
9022 {
03ea81db 9023 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
9024 va_end (args);
9025 return;
9026 }
9027
f6688943
TS
9028 r[0] = BFD_RELOC_UNUSED;
9029 r[1] = BFD_RELOC_UNUSED;
9030 r[2] = BFD_RELOC_UNUSED;
df58fc94 9031 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
629310ab 9032 amo = (struct mips_opcode *) str_hash_find (hash, name);
df58fc94
RS
9033 gas_assert (amo);
9034 gas_assert (strcmp (name, amo->name) == 0);
1e915849 9035
df58fc94 9036 do
8b082fb1
TS
9037 {
9038 /* Search until we get a match for NAME. It is assumed here that
df58fc94 9039 macros will never generate MDMX, MIPS-3D, or MT instructions.
33eaf5de 9040 We try to match an instruction that fulfills the branch delay
df58fc94
RS
9041 slot instruction length requirement (if any) of the previous
9042 instruction. While doing this we record the first instruction
9043 seen that matches all the other conditions and use it anyway
9044 if the requirement cannot be met; we will issue an appropriate
9045 warning later on. */
9046 if (strcmp (fmt, amo->args) == 0
9047 && amo->pinfo != INSN_MACRO
9048 && is_opcode_valid (amo)
9049 && is_size_valid (amo))
9050 {
9051 if (is_delay_slot_valid (amo))
9052 {
9053 mo = amo;
9054 break;
9055 }
9056 else if (!mo)
9057 mo = amo;
9058 }
8b082fb1 9059
df58fc94
RS
9060 ++amo;
9061 gas_assert (amo->name);
252b5132 9062 }
df58fc94 9063 while (strcmp (name, amo->name) == 0);
252b5132 9064
df58fc94 9065 gas_assert (mo);
1e915849 9066 create_insn (&insn, mo);
e077a1c8 9067 for (; *fmt; ++fmt)
252b5132 9068 {
e077a1c8 9069 switch (*fmt)
252b5132 9070 {
252b5132
RH
9071 case ',':
9072 case '(':
9073 case ')':
252b5132 9074 case 'z':
e077a1c8 9075 break;
252b5132
RH
9076
9077 case 'i':
9078 case 'j':
6e1304d8 9079 macro_read_relocs (&args, r);
9c2799c2 9080 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
9081 || *r == BFD_RELOC_MIPS_HIGHER
9082 || *r == BFD_RELOC_HI16_S
9083 || *r == BFD_RELOC_LO16
14c80123
MR
9084 || *r == BFD_RELOC_MIPS_GOT_OFST
9085 || (mips_opts.micromips
9086 && (*r == BFD_RELOC_16
9087 || *r == BFD_RELOC_MIPS_GOT16
9088 || *r == BFD_RELOC_MIPS_CALL16
9089 || *r == BFD_RELOC_MIPS_GOT_HI16
9090 || *r == BFD_RELOC_MIPS_GOT_LO16
9091 || *r == BFD_RELOC_MIPS_CALL_HI16
9092 || *r == BFD_RELOC_MIPS_CALL_LO16
9093 || *r == BFD_RELOC_MIPS_SUB
9094 || *r == BFD_RELOC_MIPS_GOT_PAGE
9095 || *r == BFD_RELOC_MIPS_HIGHEST
9096 || *r == BFD_RELOC_MIPS_GOT_DISP
9097 || *r == BFD_RELOC_MIPS_TLS_GD
9098 || *r == BFD_RELOC_MIPS_TLS_LDM
9099 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
9100 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
9101 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
9102 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
9103 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
e077a1c8 9104 break;
e391c024
RS
9105
9106 case 'o':
9107 macro_read_relocs (&args, r);
e077a1c8 9108 break;
252b5132
RH
9109
9110 case 'u':
6e1304d8 9111 macro_read_relocs (&args, r);
9c2799c2 9112 gas_assert (ep != NULL
90ecf173
MR
9113 && (ep->X_op == O_constant
9114 || (ep->X_op == O_symbol
9115 && (*r == BFD_RELOC_MIPS_HIGHEST
9116 || *r == BFD_RELOC_HI16_S
9117 || *r == BFD_RELOC_HI16
9118 || *r == BFD_RELOC_GPREL16
9119 || *r == BFD_RELOC_MIPS_GOT_HI16
9120 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 9121 break;
252b5132
RH
9122
9123 case 'p':
9c2799c2 9124 gas_assert (ep != NULL);
bad36eac 9125
252b5132
RH
9126 /*
9127 * This allows macro() to pass an immediate expression for
9128 * creating short branches without creating a symbol.
bad36eac
DJ
9129 *
9130 * We don't allow branch relaxation for these branches, as
9131 * they should only appear in ".set nomacro" anyway.
252b5132
RH
9132 */
9133 if (ep->X_op == O_constant)
9134 {
df58fc94
RS
9135 /* For microMIPS we always use relocations for branches.
9136 So we should not resolve immediate values. */
9137 gas_assert (!mips_opts.micromips);
9138
bad36eac
DJ
9139 if ((ep->X_add_number & 3) != 0)
9140 as_bad (_("branch to misaligned address (0x%lx)"),
9141 (unsigned long) ep->X_add_number);
9142 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
9143 as_bad (_("branch address range overflow (0x%lx)"),
9144 (unsigned long) ep->X_add_number);
252b5132
RH
9145 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
9146 ep = NULL;
9147 }
9148 else
0b25d3e6 9149 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 9150 break;
252b5132
RH
9151
9152 case 'a':
9c2799c2 9153 gas_assert (ep != NULL);
f6688943 9154 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 9155 break;
d43b4baf 9156
252b5132 9157 default:
e077a1c8
RS
9158 operand = (mips_opts.micromips
9159 ? decode_micromips_operand (fmt)
9160 : decode_mips_operand (fmt));
9161 if (!operand)
9162 abort ();
9163
9164 uval = va_arg (args, int);
9165 if (operand->type == OP_CLO_CLZ_DEST)
9166 uval |= (uval << 5);
9167 insn_insert_operand (&insn, operand, uval);
9168
7361da2c 9169 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
9170 ++fmt;
9171 break;
252b5132 9172 }
252b5132
RH
9173 }
9174 va_end (args);
9c2799c2 9175 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 9176
5b7c81bd 9177 append_insn (&insn, ep, r, true);
252b5132
RH
9178}
9179
9180static void
67c0d1eb 9181mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 9182 va_list *args)
252b5132 9183{
1e915849 9184 struct mips_opcode *mo;
252b5132 9185 struct mips_cl_insn insn;
e077a1c8 9186 const struct mips_operand *operand;
f6688943
TS
9187 bfd_reloc_code_real_type r[3]
9188 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 9189
629310ab 9190 mo = (struct mips_opcode *) str_hash_find (mips16_op_hash, name);
9c2799c2
NC
9191 gas_assert (mo);
9192 gas_assert (strcmp (name, mo->name) == 0);
252b5132 9193
1e915849 9194 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 9195 {
1e915849 9196 ++mo;
9c2799c2
NC
9197 gas_assert (mo->name);
9198 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
9199 }
9200
1e915849 9201 create_insn (&insn, mo);
e077a1c8 9202 for (; *fmt; ++fmt)
252b5132
RH
9203 {
9204 int c;
9205
e077a1c8 9206 c = *fmt;
252b5132
RH
9207 switch (c)
9208 {
252b5132
RH
9209 case ',':
9210 case '(':
9211 case ')':
e077a1c8 9212 break;
252b5132 9213
d8722d76 9214 case '.':
252b5132
RH
9215 case 'S':
9216 case 'P':
9217 case 'R':
e077a1c8 9218 break;
252b5132
RH
9219
9220 case '<':
252b5132 9221 case '5':
d8722d76 9222 case 'F':
252b5132
RH
9223 case 'H':
9224 case 'W':
9225 case 'D':
9226 case 'j':
9227 case '8':
9228 case 'V':
9229 case 'C':
9230 case 'U':
9231 case 'k':
9232 case 'K':
9233 case 'p':
9234 case 'q':
9235 {
b886a2ab
RS
9236 offsetT value;
9237
9c2799c2 9238 gas_assert (ep != NULL);
252b5132
RH
9239
9240 if (ep->X_op != O_constant)
874e8986 9241 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 9242 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 9243 {
b886a2ab 9244 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 9245 ep = NULL;
f6688943 9246 *r = BFD_RELOC_UNUSED;
252b5132
RH
9247 }
9248 }
e077a1c8 9249 break;
252b5132 9250
e077a1c8 9251 default:
5b7c81bd 9252 operand = decode_mips16_operand (c, false);
e077a1c8
RS
9253 if (!operand)
9254 abort ();
252b5132 9255
4a06e5a2 9256 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
9257 break;
9258 }
252b5132
RH
9259 }
9260
9c2799c2 9261 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 9262
5b7c81bd 9263 append_insn (&insn, ep, r, true);
252b5132
RH
9264}
9265
438c16b8
TS
9266/*
9267 * Generate a "jalr" instruction with a relocation hint to the called
9268 * function. This occurs in NewABI PIC code.
9269 */
9270static void
df58fc94 9271macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 9272{
df58fc94
RS
9273 static const bfd_reloc_code_real_type jalr_relocs[2]
9274 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9275 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9276 const char *jalr;
685736be 9277 char *f = NULL;
b34976b6 9278
1180b5a4 9279 if (MIPS_JALR_HINT_P (ep))
f21f8242 9280 {
cc3d92a5 9281 frag_grow (8);
f21f8242
AO
9282 f = frag_more (0);
9283 }
2906b037 9284 if (mips_opts.micromips)
df58fc94 9285 {
833794fc
MR
9286 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9287 ? "jalr" : "jalrs");
e64af278 9288 if (MIPS_JALR_HINT_P (ep)
833794fc 9289 || mips_opts.insn32
e64af278 9290 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
9291 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9292 else
9293 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9294 }
2906b037
MR
9295 else
9296 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 9297 if (MIPS_JALR_HINT_P (ep))
5b7c81bd 9298 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, false, jalr_reloc);
438c16b8
TS
9299}
9300
252b5132
RH
9301/*
9302 * Generate a "lui" instruction.
9303 */
9304static void
67c0d1eb 9305macro_build_lui (expressionS *ep, int regnum)
252b5132 9306{
9c2799c2 9307 gas_assert (! mips_opts.mips16);
252b5132 9308
df58fc94 9309 if (ep->X_op != O_constant)
252b5132 9310 {
9c2799c2 9311 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
9312 /* _gp_disp is a special case, used from s_cpload.
9313 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 9314 gas_assert (mips_pic == NO_PIC
78e1bb40 9315 || (! HAVE_NEWABI
aa6975fb
ILT
9316 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9317 || (! mips_in_shared
bbe506e8
TS
9318 && strcmp (S_GET_NAME (ep->X_add_symbol),
9319 "__gnu_local_gp") == 0));
252b5132
RH
9320 }
9321
df58fc94 9322 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
9323}
9324
885add95
CD
9325/* Generate a sequence of instructions to do a load or store from a constant
9326 offset off of a base register (breg) into/from a target register (treg),
9327 using AT if necessary. */
9328static void
67c0d1eb
RS
9329macro_build_ldst_constoffset (expressionS *ep, const char *op,
9330 int treg, int breg, int dbl)
885add95 9331{
9c2799c2 9332 gas_assert (ep->X_op == O_constant);
885add95 9333
256ab948 9334 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9335 if (!dbl)
9336 normalize_constant_expr (ep);
256ab948 9337
67c1ffbe 9338 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 9339 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
9340 as_warn (_("operand overflow"));
9341
9342 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9343 {
9344 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 9345 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
9346 }
9347 else
9348 {
9349 /* 32-bit offset, need multiple instructions and AT, like:
9350 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9351 addu $tempreg,$tempreg,$breg
9352 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9353 to handle the complete offset. */
67c0d1eb
RS
9354 macro_build_lui (ep, AT);
9355 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9356 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 9357
741fe287 9358 if (!mips_opts.at)
1661c76c 9359 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
9360 }
9361}
9362
252b5132
RH
9363/* set_at()
9364 * Generates code to set the $at register to true (one)
9365 * if reg is less than the immediate expression.
9366 */
9367static void
67c0d1eb 9368set_at (int reg, int unsignedp)
252b5132 9369{
b0e6f033 9370 if (imm_expr.X_add_number >= -0x8000
252b5132 9371 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
9372 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9373 AT, reg, BFD_RELOC_LO16);
252b5132
RH
9374 else
9375 {
bad1aba3 9376 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 9377 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
9378 }
9379}
9380
252b5132
RH
9381/* Count the leading zeroes by performing a binary chop. This is a
9382 bulky bit of source, but performance is a LOT better for the
9383 majority of values than a simple loop to count the bits:
9384 for (lcnt = 0; (lcnt < 32); lcnt++)
9385 if ((v) & (1 << (31 - lcnt)))
9386 break;
9387 However it is not code size friendly, and the gain will drop a bit
9388 on certain cached systems.
9389*/
9390#define COUNT_TOP_ZEROES(v) \
9391 (((v) & ~0xffff) == 0 \
9392 ? ((v) & ~0xff) == 0 \
9393 ? ((v) & ~0xf) == 0 \
9394 ? ((v) & ~0x3) == 0 \
9395 ? ((v) & ~0x1) == 0 \
9396 ? !(v) \
9397 ? 32 \
9398 : 31 \
9399 : 30 \
9400 : ((v) & ~0x7) == 0 \
9401 ? 29 \
9402 : 28 \
9403 : ((v) & ~0x3f) == 0 \
9404 ? ((v) & ~0x1f) == 0 \
9405 ? 27 \
9406 : 26 \
9407 : ((v) & ~0x7f) == 0 \
9408 ? 25 \
9409 : 24 \
9410 : ((v) & ~0xfff) == 0 \
9411 ? ((v) & ~0x3ff) == 0 \
9412 ? ((v) & ~0x1ff) == 0 \
9413 ? 23 \
9414 : 22 \
9415 : ((v) & ~0x7ff) == 0 \
9416 ? 21 \
9417 : 20 \
9418 : ((v) & ~0x3fff) == 0 \
9419 ? ((v) & ~0x1fff) == 0 \
9420 ? 19 \
9421 : 18 \
9422 : ((v) & ~0x7fff) == 0 \
9423 ? 17 \
9424 : 16 \
9425 : ((v) & ~0xffffff) == 0 \
9426 ? ((v) & ~0xfffff) == 0 \
9427 ? ((v) & ~0x3ffff) == 0 \
9428 ? ((v) & ~0x1ffff) == 0 \
9429 ? 15 \
9430 : 14 \
9431 : ((v) & ~0x7ffff) == 0 \
9432 ? 13 \
9433 : 12 \
9434 : ((v) & ~0x3fffff) == 0 \
9435 ? ((v) & ~0x1fffff) == 0 \
9436 ? 11 \
9437 : 10 \
9438 : ((v) & ~0x7fffff) == 0 \
9439 ? 9 \
9440 : 8 \
9441 : ((v) & ~0xfffffff) == 0 \
9442 ? ((v) & ~0x3ffffff) == 0 \
9443 ? ((v) & ~0x1ffffff) == 0 \
9444 ? 7 \
9445 : 6 \
9446 : ((v) & ~0x7ffffff) == 0 \
9447 ? 5 \
9448 : 4 \
9449 : ((v) & ~0x3fffffff) == 0 \
9450 ? ((v) & ~0x1fffffff) == 0 \
9451 ? 3 \
9452 : 2 \
9453 : ((v) & ~0x7fffffff) == 0 \
9454 ? 1 \
9455 : 0)
9456
9457/* load_register()
67c1ffbe 9458 * This routine generates the least number of instructions necessary to load
252b5132
RH
9459 * an absolute expression value into a register.
9460 */
9461static void
67c0d1eb 9462load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9463{
9464 int freg;
9465 expressionS hi32, lo32;
9466
9467 if (ep->X_op != O_big)
9468 {
9c2799c2 9469 gas_assert (ep->X_op == O_constant);
256ab948
TS
9470
9471 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9472 if (!dbl)
9473 normalize_constant_expr (ep);
256ab948
TS
9474
9475 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9476 {
9477 /* We can handle 16 bit signed values with an addiu to
9478 $zero. No need to ever use daddiu here, since $zero and
9479 the result are always correct in 32 bit mode. */
67c0d1eb 9480 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9481 return;
9482 }
9483 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9484 {
9485 /* We can handle 16 bit unsigned values with an ori to
9486 $zero. */
67c0d1eb 9487 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9488 return;
9489 }
256ab948 9490 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9491 {
9492 /* 32 bit values require an lui. */
df58fc94 9493 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9494 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9495 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9496 return;
9497 }
9498 }
9499
9500 /* The value is larger than 32 bits. */
9501
bad1aba3 9502 if (!dbl || GPR_SIZE == 32)
252b5132 9503 {
55e08f71
NC
9504 char value[32];
9505
9506 sprintf_vma (value, ep->X_add_number);
1661c76c 9507 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9508 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9509 return;
9510 }
9511
9512 if (ep->X_op != O_big)
9513 {
9514 hi32 = *ep;
9515 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9516 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9517 hi32.X_add_number &= 0xffffffff;
9518 lo32 = *ep;
9519 lo32.X_add_number &= 0xffffffff;
9520 }
9521 else
9522 {
9c2799c2 9523 gas_assert (ep->X_add_number > 2);
252b5132
RH
9524 if (ep->X_add_number == 3)
9525 generic_bignum[3] = 0;
9526 else if (ep->X_add_number > 4)
1661c76c 9527 as_bad (_("number larger than 64 bits"));
252b5132
RH
9528 lo32.X_op = O_constant;
9529 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9530 hi32.X_op = O_constant;
9531 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9532 }
9533
9534 if (hi32.X_add_number == 0)
9535 freg = 0;
9536 else
9537 {
9538 int shift, bit;
9539 unsigned long hi, lo;
9540
956cd1d6 9541 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9542 {
9543 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9544 {
67c0d1eb 9545 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9546 return;
9547 }
9548 if (lo32.X_add_number & 0x80000000)
9549 {
df58fc94 9550 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9551 if (lo32.X_add_number & 0xffff)
67c0d1eb 9552 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9553 return;
9554 }
9555 }
252b5132
RH
9556
9557 /* Check for 16bit shifted constant. We know that hi32 is
9558 non-zero, so start the mask on the first bit of the hi32
9559 value. */
9560 shift = 17;
9561 do
beae10d5
KH
9562 {
9563 unsigned long himask, lomask;
9564
9565 if (shift < 32)
9566 {
9567 himask = 0xffff >> (32 - shift);
e0fd91ef 9568 lomask = (0xffffU << shift) & 0xffffffff;
beae10d5
KH
9569 }
9570 else
9571 {
e0fd91ef 9572 himask = 0xffffU << (shift - 32);
beae10d5
KH
9573 lomask = 0;
9574 }
9575 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9576 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9577 {
9578 expressionS tmp;
9579
9580 tmp.X_op = O_constant;
9581 if (shift < 32)
9582 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9583 | (lo32.X_add_number >> shift));
9584 else
9585 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9586 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9587 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9588 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9589 return;
9590 }
f9419b05 9591 ++shift;
beae10d5
KH
9592 }
9593 while (shift <= (64 - 16));
252b5132
RH
9594
9595 /* Find the bit number of the lowest one bit, and store the
9596 shifted value in hi/lo. */
9597 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9598 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9599 if (lo != 0)
9600 {
9601 bit = 0;
9602 while ((lo & 1) == 0)
9603 {
9604 lo >>= 1;
9605 ++bit;
9606 }
7697028a
AM
9607 if (bit != 0)
9608 {
9609 lo |= (hi & ((2UL << (bit - 1)) - 1)) << (32 - bit);
9610 hi >>= bit;
9611 }
252b5132
RH
9612 }
9613 else
9614 {
9615 bit = 32;
9616 while ((hi & 1) == 0)
9617 {
9618 hi >>= 1;
9619 ++bit;
9620 }
9621 lo = hi;
9622 hi = 0;
9623 }
9624
9625 /* Optimize if the shifted value is a (power of 2) - 1. */
9626 if ((hi == 0 && ((lo + 1) & lo) == 0)
9627 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9628 {
9629 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9630 if (shift != 0)
beae10d5 9631 {
252b5132
RH
9632 expressionS tmp;
9633
9634 /* This instruction will set the register to be all
9635 ones. */
beae10d5
KH
9636 tmp.X_op = O_constant;
9637 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9638 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9639 if (bit != 0)
9640 {
9641 bit += shift;
df58fc94 9642 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9643 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9644 }
df58fc94 9645 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9646 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9647 return;
9648 }
9649 }
252b5132
RH
9650
9651 /* Sign extend hi32 before calling load_register, because we can
9652 generally get better code when we load a sign extended value. */
9653 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9654 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9655 load_register (reg, &hi32, 0);
252b5132
RH
9656 freg = reg;
9657 }
9658 if ((lo32.X_add_number & 0xffff0000) == 0)
9659 {
9660 if (freg != 0)
9661 {
df58fc94 9662 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9663 freg = reg;
9664 }
9665 }
9666 else
9667 {
9668 expressionS mid16;
9669
956cd1d6 9670 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9671 {
df58fc94
RS
9672 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9673 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9674 return;
9675 }
252b5132
RH
9676
9677 if (freg != 0)
9678 {
df58fc94 9679 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9680 freg = reg;
9681 }
9682 mid16 = lo32;
9683 mid16.X_add_number >>= 16;
67c0d1eb 9684 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9685 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9686 freg = reg;
9687 }
9688 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9689 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9690}
9691
269137b2
TS
9692static inline void
9693load_delay_nop (void)
9694{
9695 if (!gpr_interlocks)
9696 macro_build (NULL, "nop", "");
9697}
9698
252b5132
RH
9699/* Load an address into a register. */
9700
9701static void
67c0d1eb 9702load_address (int reg, expressionS *ep, int *used_at)
252b5132 9703{
252b5132
RH
9704 if (ep->X_op != O_constant
9705 && ep->X_op != O_symbol)
9706 {
9707 as_bad (_("expression too complex"));
9708 ep->X_op = O_constant;
9709 }
9710
9711 if (ep->X_op == O_constant)
9712 {
67c0d1eb 9713 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9714 return;
9715 }
9716
9717 if (mips_pic == NO_PIC)
9718 {
9719 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9720 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9721 Otherwise we want
9722 lui $reg,<sym> (BFD_RELOC_HI16_S)
9723 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9724 If we have an addend, we always use the latter form.
76b3015f 9725
d6bc6245
TS
9726 With 64bit address space and a usable $at we want
9727 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9728 lui $at,<sym> (BFD_RELOC_HI16_S)
9729 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9730 daddiu $at,<sym> (BFD_RELOC_LO16)
9731 dsll32 $reg,0
3a482fd5 9732 daddu $reg,$reg,$at
76b3015f 9733
c03099e6 9734 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9735 on superscalar processors.
9736 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9737 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9738 dsll $reg,16
9739 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9740 dsll $reg,16
9741 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9742
9743 For GP relative symbols in 64bit address space we can use
9744 the same sequence as in 32bit address space. */
aed1a261 9745 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9746 {
6caf9ef4
TS
9747 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9748 && !nopic_need_relax (ep->X_add_symbol, 1))
9749 {
9750 relax_start (ep->X_add_symbol);
9751 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9752 mips_gp_register, BFD_RELOC_GPREL16);
9753 relax_switch ();
9754 }
d6bc6245 9755
741fe287 9756 if (*used_at == 0 && mips_opts.at)
d6bc6245 9757 {
df58fc94
RS
9758 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9759 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9760 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9761 BFD_RELOC_MIPS_HIGHER);
9762 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9763 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9764 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9765 *used_at = 1;
9766 }
9767 else
9768 {
df58fc94 9769 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9770 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9771 BFD_RELOC_MIPS_HIGHER);
df58fc94 9772 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9773 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9774 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9775 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9776 }
6caf9ef4
TS
9777
9778 if (mips_relax.sequence)
9779 relax_end ();
d6bc6245 9780 }
252b5132
RH
9781 else
9782 {
d6bc6245 9783 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9784 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9785 {
4d7206a2 9786 relax_start (ep->X_add_symbol);
67c0d1eb 9787 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9788 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9789 relax_switch ();
d6bc6245 9790 }
67c0d1eb
RS
9791 macro_build_lui (ep, reg);
9792 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9793 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9794 if (mips_relax.sequence)
9795 relax_end ();
d6bc6245 9796 }
252b5132 9797 }
0a44bf69 9798 else if (!mips_big_got)
252b5132
RH
9799 {
9800 expressionS ex;
9801
9802 /* If this is a reference to an external symbol, we want
9803 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9804 Otherwise we want
9805 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9806 nop
9807 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9808 If there is a constant, it must be added in after.
9809
ed6fb7bd 9810 If we have NewABI, we want
f5040a92
AO
9811 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9812 unless we're referencing a global symbol with a non-zero
9813 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9814 if (HAVE_NEWABI)
9815 {
f5040a92
AO
9816 if (ep->X_add_number)
9817 {
4d7206a2 9818 ex.X_add_number = ep->X_add_number;
f5040a92 9819 ep->X_add_number = 0;
4d7206a2 9820 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9821 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9822 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9823 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9824 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9825 ex.X_op = O_constant;
67c0d1eb 9826 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9827 reg, reg, BFD_RELOC_LO16);
f5040a92 9828 ep->X_add_number = ex.X_add_number;
4d7206a2 9829 relax_switch ();
f5040a92 9830 }
67c0d1eb 9831 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9832 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9833 if (mips_relax.sequence)
9834 relax_end ();
ed6fb7bd
SC
9835 }
9836 else
9837 {
f5040a92
AO
9838 ex.X_add_number = ep->X_add_number;
9839 ep->X_add_number = 0;
67c0d1eb
RS
9840 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9841 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9842 load_delay_nop ();
4d7206a2
RS
9843 relax_start (ep->X_add_symbol);
9844 relax_switch ();
67c0d1eb 9845 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9846 BFD_RELOC_LO16);
4d7206a2 9847 relax_end ();
ed6fb7bd 9848
f5040a92
AO
9849 if (ex.X_add_number != 0)
9850 {
9851 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9852 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9853 ex.X_op = O_constant;
67c0d1eb 9854 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9855 reg, reg, BFD_RELOC_LO16);
f5040a92 9856 }
252b5132
RH
9857 }
9858 }
0a44bf69 9859 else if (mips_big_got)
252b5132
RH
9860 {
9861 expressionS ex;
252b5132
RH
9862
9863 /* This is the large GOT case. If this is a reference to an
9864 external symbol, we want
9865 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9866 addu $reg,$reg,$gp
9867 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9868
9869 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9870 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9871 nop
9872 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9873 If there is a constant, it must be added in after.
f5040a92
AO
9874
9875 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9876 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9877 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9878 */
438c16b8
TS
9879 if (HAVE_NEWABI)
9880 {
4d7206a2 9881 ex.X_add_number = ep->X_add_number;
f5040a92 9882 ep->X_add_number = 0;
4d7206a2 9883 relax_start (ep->X_add_symbol);
df58fc94 9884 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9885 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9886 reg, reg, mips_gp_register);
9887 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9888 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9889 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9890 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9891 else if (ex.X_add_number)
9892 {
9893 ex.X_op = O_constant;
67c0d1eb
RS
9894 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9895 BFD_RELOC_LO16);
f5040a92
AO
9896 }
9897
9898 ep->X_add_number = ex.X_add_number;
4d7206a2 9899 relax_switch ();
67c0d1eb 9900 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9901 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9902 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9903 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9904 relax_end ();
438c16b8 9905 }
252b5132 9906 else
438c16b8 9907 {
f5040a92
AO
9908 ex.X_add_number = ep->X_add_number;
9909 ep->X_add_number = 0;
4d7206a2 9910 relax_start (ep->X_add_symbol);
df58fc94 9911 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9913 reg, reg, mips_gp_register);
9914 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9915 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9916 relax_switch ();
9917 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9918 {
9919 /* We need a nop before loading from $gp. This special
9920 check is required because the lui which starts the main
9921 instruction stream does not refer to $gp, and so will not
9922 insert the nop which may be required. */
67c0d1eb 9923 macro_build (NULL, "nop", "");
438c16b8 9924 }
67c0d1eb 9925 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9926 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9927 load_delay_nop ();
67c0d1eb 9928 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9929 BFD_RELOC_LO16);
4d7206a2 9930 relax_end ();
438c16b8 9931
f5040a92
AO
9932 if (ex.X_add_number != 0)
9933 {
9934 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9935 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9936 ex.X_op = O_constant;
67c0d1eb
RS
9937 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9938 BFD_RELOC_LO16);
f5040a92 9939 }
252b5132
RH
9940 }
9941 }
252b5132
RH
9942 else
9943 abort ();
8fc2e39e 9944
741fe287 9945 if (!mips_opts.at && *used_at == 1)
1661c76c 9946 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9947}
9948
ea1fb5dc
RS
9949/* Move the contents of register SOURCE into register DEST. */
9950
9951static void
67c0d1eb 9952move_register (int dest, int source)
ea1fb5dc 9953{
df58fc94
RS
9954 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9955 instruction specifically requires a 32-bit one. */
9956 if (mips_opts.micromips
833794fc 9957 && !mips_opts.insn32
df58fc94 9958 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9959 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9960 else
40fc1451 9961 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9962}
9963
4d7206a2 9964/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9965 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9966 The two alternatives are:
4d7206a2 9967
33eaf5de 9968 Global symbol Local symbol
4d7206a2
RS
9969 ------------- ------------
9970 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9971 ... ...
9972 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9973
9974 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9975 emits the second for a 16-bit offset or add_got_offset_hilo emits
9976 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9977
9978static void
67c0d1eb 9979load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9980{
9981 expressionS global;
9982
9983 global = *local;
9984 global.X_add_number = 0;
9985
9986 relax_start (local->X_add_symbol);
67c0d1eb
RS
9987 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9988 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9989 relax_switch ();
67c0d1eb
RS
9990 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9991 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9992 relax_end ();
9993}
9994
9995static void
67c0d1eb 9996add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9997{
9998 expressionS global;
9999
10000 global.X_op = O_constant;
10001 global.X_op_symbol = NULL;
10002 global.X_add_symbol = NULL;
10003 global.X_add_number = local->X_add_number;
10004
10005 relax_start (local->X_add_symbol);
67c0d1eb 10006 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
10007 dest, dest, BFD_RELOC_LO16);
10008 relax_switch ();
67c0d1eb 10009 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
10010 relax_end ();
10011}
10012
f6a22291
MR
10013static void
10014add_got_offset_hilo (int dest, expressionS *local, int tmp)
10015{
10016 expressionS global;
10017 int hold_mips_optimize;
10018
10019 global.X_op = O_constant;
10020 global.X_op_symbol = NULL;
10021 global.X_add_symbol = NULL;
10022 global.X_add_number = local->X_add_number;
10023
10024 relax_start (local->X_add_symbol);
10025 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
10026 relax_switch ();
10027 /* Set mips_optimize around the lui instruction to avoid
10028 inserting an unnecessary nop after the lw. */
10029 hold_mips_optimize = mips_optimize;
10030 mips_optimize = 2;
10031 macro_build_lui (&global, tmp);
10032 mips_optimize = hold_mips_optimize;
10033 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
10034 relax_end ();
10035
10036 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
10037}
10038
df58fc94
RS
10039/* Emit a sequence of instructions to emulate a branch likely operation.
10040 BR is an ordinary branch corresponding to one to be emulated. BRNEG
10041 is its complementing branch with the original condition negated.
10042 CALL is set if the original branch specified the link operation.
10043 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
10044
10045 Code like this is produced in the noreorder mode:
10046
10047 BRNEG <args>, 1f
10048 nop
10049 b <sym>
10050 delay slot (executed only if branch taken)
10051 1:
10052
10053 or, if CALL is set:
10054
10055 BRNEG <args>, 1f
10056 nop
10057 bal <sym>
10058 delay slot (executed only if branch taken)
10059 1:
10060
10061 In the reorder mode the delay slot would be filled with a nop anyway,
10062 so code produced is simply:
10063
10064 BR <args>, <sym>
10065 nop
10066
10067 This function is used when producing code for the microMIPS ASE that
10068 does not implement branch likely instructions in hardware. */
10069
10070static void
10071macro_build_branch_likely (const char *br, const char *brneg,
10072 int call, expressionS *ep, const char *fmt,
10073 unsigned int sreg, unsigned int treg)
10074{
10075 int noreorder = mips_opts.noreorder;
10076 expressionS expr1;
10077
10078 gas_assert (mips_opts.micromips);
10079 start_noreorder ();
10080 if (noreorder)
10081 {
10082 micromips_label_expr (&expr1);
10083 macro_build (&expr1, brneg, fmt, sreg, treg);
10084 macro_build (NULL, "nop", "");
10085 macro_build (ep, call ? "bal" : "b", "p");
10086
10087 /* Set to true so that append_insn adds a label. */
5b7c81bd 10088 emit_branch_likely_macro = true;
df58fc94
RS
10089 }
10090 else
10091 {
10092 macro_build (ep, br, fmt, sreg, treg);
10093 macro_build (NULL, "nop", "");
10094 }
10095 end_noreorder ();
10096}
10097
10098/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
10099 the condition code tested. EP specifies the branch target. */
10100
10101static void
10102macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
10103{
10104 const int call = 0;
10105 const char *brneg;
10106 const char *br;
10107
10108 switch (type)
10109 {
10110 case M_BC1FL:
10111 br = "bc1f";
10112 brneg = "bc1t";
10113 break;
10114 case M_BC1TL:
10115 br = "bc1t";
10116 brneg = "bc1f";
10117 break;
10118 case M_BC2FL:
10119 br = "bc2f";
10120 brneg = "bc2t";
10121 break;
10122 case M_BC2TL:
10123 br = "bc2t";
10124 brneg = "bc2f";
10125 break;
10126 default:
10127 abort ();
10128 }
10129 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
10130}
10131
10132/* Emit a two-argument branch macro specified by TYPE, using SREG as
10133 the register tested. EP specifies the branch target. */
10134
10135static void
10136macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
10137{
10138 const char *brneg = NULL;
10139 const char *br;
10140 int call = 0;
10141
10142 switch (type)
10143 {
10144 case M_BGEZ:
10145 br = "bgez";
10146 break;
10147 case M_BGEZL:
10148 br = mips_opts.micromips ? "bgez" : "bgezl";
10149 brneg = "bltz";
10150 break;
10151 case M_BGEZALL:
10152 gas_assert (mips_opts.micromips);
833794fc 10153 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
10154 brneg = "bltz";
10155 call = 1;
10156 break;
10157 case M_BGTZ:
10158 br = "bgtz";
10159 break;
10160 case M_BGTZL:
10161 br = mips_opts.micromips ? "bgtz" : "bgtzl";
10162 brneg = "blez";
10163 break;
10164 case M_BLEZ:
10165 br = "blez";
10166 break;
10167 case M_BLEZL:
10168 br = mips_opts.micromips ? "blez" : "blezl";
10169 brneg = "bgtz";
10170 break;
10171 case M_BLTZ:
10172 br = "bltz";
10173 break;
10174 case M_BLTZL:
10175 br = mips_opts.micromips ? "bltz" : "bltzl";
10176 brneg = "bgez";
10177 break;
10178 case M_BLTZALL:
10179 gas_assert (mips_opts.micromips);
833794fc 10180 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
10181 brneg = "bgez";
10182 call = 1;
10183 break;
10184 default:
10185 abort ();
10186 }
10187 if (mips_opts.micromips && brneg)
10188 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
10189 else
10190 macro_build (ep, br, "s,p", sreg);
10191}
10192
10193/* Emit a three-argument branch macro specified by TYPE, using SREG and
10194 TREG as the registers tested. EP specifies the branch target. */
10195
10196static void
10197macro_build_branch_rsrt (int type, expressionS *ep,
10198 unsigned int sreg, unsigned int treg)
10199{
10200 const char *brneg = NULL;
10201 const int call = 0;
10202 const char *br;
10203
10204 switch (type)
10205 {
10206 case M_BEQ:
10207 case M_BEQ_I:
10208 br = "beq";
10209 break;
10210 case M_BEQL:
10211 case M_BEQL_I:
10212 br = mips_opts.micromips ? "beq" : "beql";
10213 brneg = "bne";
10214 break;
10215 case M_BNE:
10216 case M_BNE_I:
10217 br = "bne";
10218 break;
10219 case M_BNEL:
10220 case M_BNEL_I:
10221 br = mips_opts.micromips ? "bne" : "bnel";
10222 brneg = "beq";
10223 break;
10224 default:
10225 abort ();
10226 }
10227 if (mips_opts.micromips && brneg)
10228 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10229 else
10230 macro_build (ep, br, "s,t,p", sreg, treg);
10231}
10232
f2ae14a1
RS
10233/* Return the high part that should be loaded in order to make the low
10234 part of VALUE accessible using an offset of OFFBITS bits. */
10235
10236static offsetT
10237offset_high_part (offsetT value, unsigned int offbits)
10238{
10239 offsetT bias;
10240 addressT low_mask;
10241
10242 if (offbits == 0)
10243 return value;
10244 bias = 1 << (offbits - 1);
10245 low_mask = bias * 2 - 1;
10246 return (value + bias) & ~low_mask;
10247}
10248
10249/* Return true if the value stored in offset_expr and offset_reloc
10250 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10251 amount that the caller wants to add without inducing overflow
10252 and ALIGN is the known alignment of the value in bytes. */
10253
5b7c81bd 10254static bool
f2ae14a1
RS
10255small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10256{
10257 if (offbits == 16)
10258 {
10259 /* Accept any relocation operator if overflow isn't a concern. */
10260 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
5b7c81bd 10261 return true;
f2ae14a1
RS
10262
10263 /* These relocations are guaranteed not to overflow in correct links. */
10264 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10265 || gprel16_reloc_p (*offset_reloc))
5b7c81bd 10266 return true;
f2ae14a1
RS
10267 }
10268 if (offset_expr.X_op == O_constant
10269 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10270 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
5b7c81bd
AM
10271 return true;
10272 return false;
f2ae14a1
RS
10273}
10274
252b5132
RH
10275/*
10276 * Build macros
10277 * This routine implements the seemingly endless macro or synthesized
10278 * instructions and addressing modes in the mips assembly language. Many
10279 * of these macros are simple and are similar to each other. These could
67c1ffbe 10280 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
10281 * this verbose method. Others are not simple macros but are more like
10282 * optimizing code generation.
10283 * One interesting optimization is when several store macros appear
67c1ffbe 10284 * consecutively that would load AT with the upper half of the same address.
2b0f3761 10285 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
10286 * of global optimization. We currently only optimize within a single macro.
10287 * For many of the load and store macros if the address is specified as a
10288 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10289 * first load register 'at' with zero and use it as the base register. The
10290 * mips assembler simply uses register $zero. Just one tiny optimization
10291 * we're missing.
10292 */
10293static void
833794fc 10294macro (struct mips_cl_insn *ip, char *str)
252b5132 10295{
c0ebe874
RS
10296 const struct mips_operand_array *operands;
10297 unsigned int breg, i;
741fe287 10298 unsigned int tempreg;
252b5132 10299 int mask;
43841e91 10300 int used_at = 0;
df58fc94 10301 expressionS label_expr;
252b5132 10302 expressionS expr1;
df58fc94 10303 expressionS *ep;
252b5132
RH
10304 const char *s;
10305 const char *s2;
10306 const char *fmt;
10307 int likely = 0;
252b5132 10308 int coproc = 0;
7f3c4072 10309 int offbits = 16;
1abe91b1 10310 int call = 0;
df58fc94
RS
10311 int jals = 0;
10312 int dbl = 0;
10313 int imm = 0;
10314 int ust = 0;
10315 int lp = 0;
a45328b9 10316 int ll_sc_paired = 0;
5b7c81bd 10317 bool large_offset;
252b5132 10318 int off;
252b5132 10319 int hold_mips_optimize;
f2ae14a1 10320 unsigned int align;
c0ebe874 10321 unsigned int op[MAX_OPERANDS];
252b5132 10322
9c2799c2 10323 gas_assert (! mips_opts.mips16);
252b5132 10324
c0ebe874
RS
10325 operands = insn_operands (ip);
10326 for (i = 0; i < MAX_OPERANDS; i++)
10327 if (operands->operand[i])
10328 op[i] = insn_extract_operand (ip, operands->operand[i]);
10329 else
10330 op[i] = -1;
10331
252b5132
RH
10332 mask = ip->insn_mo->mask;
10333
df58fc94
RS
10334 label_expr.X_op = O_constant;
10335 label_expr.X_op_symbol = NULL;
10336 label_expr.X_add_symbol = NULL;
10337 label_expr.X_add_number = 0;
10338
252b5132
RH
10339 expr1.X_op = O_constant;
10340 expr1.X_op_symbol = NULL;
10341 expr1.X_add_symbol = NULL;
10342 expr1.X_add_number = 1;
f2ae14a1 10343 align = 1;
252b5132
RH
10344
10345 switch (mask)
10346 {
10347 case M_DABS:
10348 dbl = 1;
1a0670f3 10349 /* Fall through. */
252b5132 10350 case M_ABS:
df58fc94
RS
10351 /* bgez $a0,1f
10352 move v0,$a0
10353 sub v0,$zero,$a0
10354 1:
10355 */
252b5132 10356
7d10b47d 10357 start_noreorder ();
252b5132 10358
df58fc94
RS
10359 if (mips_opts.micromips)
10360 micromips_label_expr (&label_expr);
10361 else
10362 label_expr.X_add_number = 8;
c0ebe874
RS
10363 macro_build (&label_expr, "bgez", "s,p", op[1]);
10364 if (op[0] == op[1])
a605d2b3 10365 macro_build (NULL, "nop", "");
252b5132 10366 else
c0ebe874
RS
10367 move_register (op[0], op[1]);
10368 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
10369 if (mips_opts.micromips)
10370 micromips_add_label ();
252b5132 10371
7d10b47d 10372 end_noreorder ();
8fc2e39e 10373 break;
252b5132
RH
10374
10375 case M_ADD_I:
10376 s = "addi";
10377 s2 = "add";
387e7624
FS
10378 if (ISA_IS_R6 (mips_opts.isa))
10379 goto do_addi_i;
10380 else
10381 goto do_addi;
252b5132
RH
10382 case M_ADDU_I:
10383 s = "addiu";
10384 s2 = "addu";
10385 goto do_addi;
10386 case M_DADD_I:
10387 dbl = 1;
10388 s = "daddi";
10389 s2 = "dadd";
387e7624 10390 if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
df58fc94 10391 goto do_addi;
b0e6f033 10392 if (imm_expr.X_add_number >= -0x200
387e7624
FS
10393 && imm_expr.X_add_number < 0x200
10394 && !ISA_IS_R6 (mips_opts.isa))
df58fc94 10395 {
b0e6f033
RS
10396 macro_build (NULL, s, "t,r,.", op[0], op[1],
10397 (int) imm_expr.X_add_number);
df58fc94
RS
10398 break;
10399 }
10400 goto do_addi_i;
252b5132
RH
10401 case M_DADDU_I:
10402 dbl = 1;
10403 s = "daddiu";
10404 s2 = "daddu";
10405 do_addi:
b0e6f033 10406 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
10407 && imm_expr.X_add_number < 0x8000)
10408 {
c0ebe874 10409 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 10410 break;
252b5132 10411 }
df58fc94 10412 do_addi_i:
8fc2e39e 10413 used_at = 1;
67c0d1eb 10414 load_register (AT, &imm_expr, dbl);
c0ebe874 10415 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10416 break;
10417
10418 case M_AND_I:
10419 s = "andi";
10420 s2 = "and";
10421 goto do_bit;
10422 case M_OR_I:
10423 s = "ori";
10424 s2 = "or";
10425 goto do_bit;
10426 case M_NOR_I:
10427 s = "";
10428 s2 = "nor";
10429 goto do_bit;
10430 case M_XOR_I:
10431 s = "xori";
10432 s2 = "xor";
10433 do_bit:
b0e6f033 10434 if (imm_expr.X_add_number >= 0
252b5132
RH
10435 && imm_expr.X_add_number < 0x10000)
10436 {
10437 if (mask != M_NOR_I)
c0ebe874 10438 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
10439 else
10440 {
67c0d1eb 10441 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
10442 op[0], op[1], BFD_RELOC_LO16);
10443 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 10444 }
8fc2e39e 10445 break;
252b5132
RH
10446 }
10447
8fc2e39e 10448 used_at = 1;
bad1aba3 10449 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 10450 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10451 break;
10452
8b082fb1
TS
10453 case M_BALIGN:
10454 switch (imm_expr.X_add_number)
10455 {
10456 case 0:
10457 macro_build (NULL, "nop", "");
10458 break;
10459 case 2:
c0ebe874 10460 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10461 break;
03f66e8a
MR
10462 case 1:
10463 case 3:
c0ebe874 10464 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10465 (int) imm_expr.X_add_number);
8b082fb1 10466 break;
03f66e8a
MR
10467 default:
10468 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10469 (unsigned long) imm_expr.X_add_number);
10470 break;
8b082fb1
TS
10471 }
10472 break;
10473
df58fc94
RS
10474 case M_BC1FL:
10475 case M_BC1TL:
10476 case M_BC2FL:
10477 case M_BC2TL:
10478 gas_assert (mips_opts.micromips);
10479 macro_build_branch_ccl (mask, &offset_expr,
10480 EXTRACT_OPERAND (1, BCC, *ip));
10481 break;
10482
252b5132 10483 case M_BEQ_I:
252b5132 10484 case M_BEQL_I:
252b5132 10485 case M_BNE_I:
252b5132 10486 case M_BNEL_I:
b0e6f033 10487 if (imm_expr.X_add_number == 0)
c0ebe874 10488 op[1] = 0;
df58fc94 10489 else
252b5132 10490 {
c0ebe874 10491 op[1] = AT;
df58fc94 10492 used_at = 1;
bad1aba3 10493 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10494 }
df58fc94
RS
10495 /* Fall through. */
10496 case M_BEQL:
10497 case M_BNEL:
c0ebe874 10498 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10499 break;
10500
10501 case M_BGEL:
10502 likely = 1;
1a0670f3 10503 /* Fall through. */
252b5132 10504 case M_BGE:
c0ebe874
RS
10505 if (op[1] == 0)
10506 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10507 else if (op[0] == 0)
10508 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10509 else
252b5132 10510 {
df58fc94 10511 used_at = 1;
c0ebe874 10512 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10513 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10514 &offset_expr, AT, ZERO);
252b5132 10515 }
df58fc94
RS
10516 break;
10517
10518 case M_BGEZL:
10519 case M_BGEZALL:
10520 case M_BGTZL:
10521 case M_BLEZL:
10522 case M_BLTZL:
10523 case M_BLTZALL:
c0ebe874 10524 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10525 break;
10526
10527 case M_BGTL_I:
10528 likely = 1;
1a0670f3 10529 /* Fall through. */
252b5132 10530 case M_BGT_I:
90ecf173 10531 /* Check for > max integer. */
b0e6f033 10532 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10533 {
10534 do_false:
90ecf173 10535 /* Result is always false. */
252b5132 10536 if (! likely)
a605d2b3 10537 macro_build (NULL, "nop", "");
252b5132 10538 else
df58fc94 10539 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10540 break;
252b5132 10541 }
f9419b05 10542 ++imm_expr.X_add_number;
6f2117ba 10543 /* Fall through. */
252b5132
RH
10544 case M_BGE_I:
10545 case M_BGEL_I:
10546 if (mask == M_BGEL_I)
10547 likely = 1;
b0e6f033 10548 if (imm_expr.X_add_number == 0)
252b5132 10549 {
df58fc94 10550 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10551 &offset_expr, op[0]);
8fc2e39e 10552 break;
252b5132 10553 }
b0e6f033 10554 if (imm_expr.X_add_number == 1)
252b5132 10555 {
df58fc94 10556 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10557 &offset_expr, op[0]);
8fc2e39e 10558 break;
252b5132 10559 }
b0e6f033 10560 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10561 {
10562 do_true:
6f2117ba 10563 /* Result is always true. */
1661c76c 10564 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10565 macro_build (&offset_expr, "b", "p");
8fc2e39e 10566 break;
252b5132 10567 }
8fc2e39e 10568 used_at = 1;
c0ebe874 10569 set_at (op[0], 0);
df58fc94
RS
10570 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10571 &offset_expr, AT, ZERO);
252b5132
RH
10572 break;
10573
10574 case M_BGEUL:
10575 likely = 1;
1a0670f3 10576 /* Fall through. */
252b5132 10577 case M_BGEU:
c0ebe874 10578 if (op[1] == 0)
252b5132 10579 goto do_true;
c0ebe874 10580 else if (op[0] == 0)
df58fc94 10581 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10582 &offset_expr, ZERO, op[1]);
df58fc94 10583 else
252b5132 10584 {
df58fc94 10585 used_at = 1;
c0ebe874 10586 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10587 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10588 &offset_expr, AT, ZERO);
252b5132 10589 }
252b5132
RH
10590 break;
10591
10592 case M_BGTUL_I:
10593 likely = 1;
1a0670f3 10594 /* Fall through. */
252b5132 10595 case M_BGTU_I:
c0ebe874 10596 if (op[0] == 0
bad1aba3 10597 || (GPR_SIZE == 32
f01dc953 10598 && imm_expr.X_add_number == -1))
252b5132 10599 goto do_false;
f9419b05 10600 ++imm_expr.X_add_number;
6f2117ba 10601 /* Fall through. */
252b5132
RH
10602 case M_BGEU_I:
10603 case M_BGEUL_I:
10604 if (mask == M_BGEUL_I)
10605 likely = 1;
b0e6f033 10606 if (imm_expr.X_add_number == 0)
252b5132 10607 goto do_true;
b0e6f033 10608 else if (imm_expr.X_add_number == 1)
df58fc94 10609 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10610 &offset_expr, op[0], ZERO);
df58fc94 10611 else
252b5132 10612 {
df58fc94 10613 used_at = 1;
c0ebe874 10614 set_at (op[0], 1);
df58fc94
RS
10615 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10616 &offset_expr, AT, ZERO);
252b5132 10617 }
252b5132
RH
10618 break;
10619
10620 case M_BGTL:
10621 likely = 1;
1a0670f3 10622 /* Fall through. */
252b5132 10623 case M_BGT:
c0ebe874
RS
10624 if (op[1] == 0)
10625 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10626 else if (op[0] == 0)
10627 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10628 else
252b5132 10629 {
df58fc94 10630 used_at = 1;
c0ebe874 10631 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10632 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10633 &offset_expr, AT, ZERO);
252b5132 10634 }
252b5132
RH
10635 break;
10636
10637 case M_BGTUL:
10638 likely = 1;
1a0670f3 10639 /* Fall through. */
252b5132 10640 case M_BGTU:
c0ebe874 10641 if (op[1] == 0)
df58fc94 10642 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10643 &offset_expr, op[0], ZERO);
10644 else if (op[0] == 0)
df58fc94
RS
10645 goto do_false;
10646 else
252b5132 10647 {
df58fc94 10648 used_at = 1;
c0ebe874 10649 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10650 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10651 &offset_expr, AT, ZERO);
252b5132 10652 }
252b5132
RH
10653 break;
10654
10655 case M_BLEL:
10656 likely = 1;
1a0670f3 10657 /* Fall through. */
252b5132 10658 case M_BLE:
c0ebe874
RS
10659 if (op[1] == 0)
10660 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10661 else if (op[0] == 0)
10662 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10663 else
252b5132 10664 {
df58fc94 10665 used_at = 1;
c0ebe874 10666 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10667 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10668 &offset_expr, AT, ZERO);
252b5132 10669 }
252b5132
RH
10670 break;
10671
10672 case M_BLEL_I:
10673 likely = 1;
1a0670f3 10674 /* Fall through. */
252b5132 10675 case M_BLE_I:
b0e6f033 10676 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10677 goto do_true;
f9419b05 10678 ++imm_expr.X_add_number;
6f2117ba 10679 /* Fall through. */
252b5132
RH
10680 case M_BLT_I:
10681 case M_BLTL_I:
10682 if (mask == M_BLTL_I)
10683 likely = 1;
b0e6f033 10684 if (imm_expr.X_add_number == 0)
c0ebe874 10685 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10686 else if (imm_expr.X_add_number == 1)
c0ebe874 10687 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10688 else
252b5132 10689 {
df58fc94 10690 used_at = 1;
c0ebe874 10691 set_at (op[0], 0);
df58fc94
RS
10692 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10693 &offset_expr, AT, ZERO);
252b5132 10694 }
252b5132
RH
10695 break;
10696
10697 case M_BLEUL:
10698 likely = 1;
1a0670f3 10699 /* Fall through. */
252b5132 10700 case M_BLEU:
c0ebe874 10701 if (op[1] == 0)
df58fc94 10702 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10703 &offset_expr, op[0], ZERO);
10704 else if (op[0] == 0)
df58fc94
RS
10705 goto do_true;
10706 else
252b5132 10707 {
df58fc94 10708 used_at = 1;
c0ebe874 10709 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10710 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10711 &offset_expr, AT, ZERO);
252b5132 10712 }
252b5132
RH
10713 break;
10714
10715 case M_BLEUL_I:
10716 likely = 1;
1a0670f3 10717 /* Fall through. */
252b5132 10718 case M_BLEU_I:
c0ebe874 10719 if (op[0] == 0
bad1aba3 10720 || (GPR_SIZE == 32
f01dc953 10721 && imm_expr.X_add_number == -1))
252b5132 10722 goto do_true;
f9419b05 10723 ++imm_expr.X_add_number;
6f2117ba 10724 /* Fall through. */
252b5132
RH
10725 case M_BLTU_I:
10726 case M_BLTUL_I:
10727 if (mask == M_BLTUL_I)
10728 likely = 1;
b0e6f033 10729 if (imm_expr.X_add_number == 0)
252b5132 10730 goto do_false;
b0e6f033 10731 else if (imm_expr.X_add_number == 1)
df58fc94 10732 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10733 &offset_expr, op[0], ZERO);
df58fc94 10734 else
252b5132 10735 {
df58fc94 10736 used_at = 1;
c0ebe874 10737 set_at (op[0], 1);
df58fc94
RS
10738 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10739 &offset_expr, AT, ZERO);
252b5132 10740 }
252b5132
RH
10741 break;
10742
10743 case M_BLTL:
10744 likely = 1;
1a0670f3 10745 /* Fall through. */
252b5132 10746 case M_BLT:
c0ebe874
RS
10747 if (op[1] == 0)
10748 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10749 else if (op[0] == 0)
10750 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10751 else
252b5132 10752 {
df58fc94 10753 used_at = 1;
c0ebe874 10754 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10755 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10756 &offset_expr, AT, ZERO);
252b5132 10757 }
252b5132
RH
10758 break;
10759
10760 case M_BLTUL:
10761 likely = 1;
1a0670f3 10762 /* Fall through. */
252b5132 10763 case M_BLTU:
c0ebe874 10764 if (op[1] == 0)
252b5132 10765 goto do_false;
c0ebe874 10766 else if (op[0] == 0)
df58fc94 10767 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10768 &offset_expr, ZERO, op[1]);
df58fc94 10769 else
252b5132 10770 {
df58fc94 10771 used_at = 1;
c0ebe874 10772 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10773 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10774 &offset_expr, AT, ZERO);
252b5132 10775 }
252b5132
RH
10776 break;
10777
10778 case M_DDIV_3:
10779 dbl = 1;
1a0670f3 10780 /* Fall through. */
252b5132
RH
10781 case M_DIV_3:
10782 s = "mflo";
10783 goto do_div3;
10784 case M_DREM_3:
10785 dbl = 1;
1a0670f3 10786 /* Fall through. */
252b5132
RH
10787 case M_REM_3:
10788 s = "mfhi";
10789 do_div3:
c0ebe874 10790 if (op[2] == 0)
252b5132 10791 {
1661c76c 10792 as_warn (_("divide by zero"));
252b5132 10793 if (mips_trap)
df58fc94 10794 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10795 else
df58fc94 10796 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10797 break;
252b5132
RH
10798 }
10799
7d10b47d 10800 start_noreorder ();
252b5132
RH
10801 if (mips_trap)
10802 {
c0ebe874
RS
10803 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10804 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10805 }
10806 else
10807 {
df58fc94
RS
10808 if (mips_opts.micromips)
10809 micromips_label_expr (&label_expr);
10810 else
10811 label_expr.X_add_number = 8;
c0ebe874
RS
10812 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10813 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10814 macro_build (NULL, "break", BRK_FMT, 7);
10815 if (mips_opts.micromips)
10816 micromips_add_label ();
252b5132
RH
10817 }
10818 expr1.X_add_number = -1;
8fc2e39e 10819 used_at = 1;
f6a22291 10820 load_register (AT, &expr1, dbl);
df58fc94
RS
10821 if (mips_opts.micromips)
10822 micromips_label_expr (&label_expr);
10823 else
10824 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10825 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10826 if (dbl)
10827 {
10828 expr1.X_add_number = 1;
f6a22291 10829 load_register (AT, &expr1, dbl);
df58fc94 10830 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10831 }
10832 else
10833 {
10834 expr1.X_add_number = 0x80000000;
df58fc94 10835 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10836 }
10837 if (mips_trap)
10838 {
c0ebe874 10839 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10840 /* We want to close the noreorder block as soon as possible, so
10841 that later insns are available for delay slot filling. */
7d10b47d 10842 end_noreorder ();
252b5132
RH
10843 }
10844 else
10845 {
df58fc94
RS
10846 if (mips_opts.micromips)
10847 micromips_label_expr (&label_expr);
10848 else
10849 label_expr.X_add_number = 8;
c0ebe874 10850 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10851 macro_build (NULL, "nop", "");
252b5132
RH
10852
10853 /* We want to close the noreorder block as soon as possible, so
10854 that later insns are available for delay slot filling. */
7d10b47d 10855 end_noreorder ();
252b5132 10856
df58fc94 10857 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10858 }
df58fc94
RS
10859 if (mips_opts.micromips)
10860 micromips_add_label ();
c0ebe874 10861 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10862 break;
10863
10864 case M_DIV_3I:
10865 s = "div";
10866 s2 = "mflo";
10867 goto do_divi;
10868 case M_DIVU_3I:
10869 s = "divu";
10870 s2 = "mflo";
10871 goto do_divi;
10872 case M_REM_3I:
10873 s = "div";
10874 s2 = "mfhi";
10875 goto do_divi;
10876 case M_REMU_3I:
10877 s = "divu";
10878 s2 = "mfhi";
10879 goto do_divi;
10880 case M_DDIV_3I:
10881 dbl = 1;
10882 s = "ddiv";
10883 s2 = "mflo";
10884 goto do_divi;
10885 case M_DDIVU_3I:
10886 dbl = 1;
10887 s = "ddivu";
10888 s2 = "mflo";
10889 goto do_divi;
10890 case M_DREM_3I:
10891 dbl = 1;
10892 s = "ddiv";
10893 s2 = "mfhi";
10894 goto do_divi;
10895 case M_DREMU_3I:
10896 dbl = 1;
10897 s = "ddivu";
10898 s2 = "mfhi";
10899 do_divi:
b0e6f033 10900 if (imm_expr.X_add_number == 0)
252b5132 10901 {
1661c76c 10902 as_warn (_("divide by zero"));
252b5132 10903 if (mips_trap)
df58fc94 10904 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10905 else
df58fc94 10906 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10907 break;
252b5132 10908 }
b0e6f033 10909 if (imm_expr.X_add_number == 1)
252b5132
RH
10910 {
10911 if (strcmp (s2, "mflo") == 0)
c0ebe874 10912 move_register (op[0], op[1]);
252b5132 10913 else
c0ebe874 10914 move_register (op[0], ZERO);
8fc2e39e 10915 break;
252b5132 10916 }
b0e6f033 10917 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10918 {
10919 if (strcmp (s2, "mflo") == 0)
c0ebe874 10920 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10921 else
c0ebe874 10922 move_register (op[0], ZERO);
8fc2e39e 10923 break;
252b5132
RH
10924 }
10925
8fc2e39e 10926 used_at = 1;
67c0d1eb 10927 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10928 macro_build (NULL, s, "z,s,t", op[1], AT);
10929 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10930 break;
10931
10932 case M_DIVU_3:
10933 s = "divu";
10934 s2 = "mflo";
10935 goto do_divu3;
10936 case M_REMU_3:
10937 s = "divu";
10938 s2 = "mfhi";
10939 goto do_divu3;
10940 case M_DDIVU_3:
10941 s = "ddivu";
10942 s2 = "mflo";
10943 goto do_divu3;
10944 case M_DREMU_3:
10945 s = "ddivu";
10946 s2 = "mfhi";
10947 do_divu3:
7d10b47d 10948 start_noreorder ();
252b5132
RH
10949 if (mips_trap)
10950 {
c0ebe874
RS
10951 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10952 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10953 /* We want to close the noreorder block as soon as possible, so
10954 that later insns are available for delay slot filling. */
7d10b47d 10955 end_noreorder ();
252b5132
RH
10956 }
10957 else
10958 {
df58fc94
RS
10959 if (mips_opts.micromips)
10960 micromips_label_expr (&label_expr);
10961 else
10962 label_expr.X_add_number = 8;
c0ebe874
RS
10963 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10964 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10965
10966 /* We want to close the noreorder block as soon as possible, so
10967 that later insns are available for delay slot filling. */
7d10b47d 10968 end_noreorder ();
df58fc94
RS
10969 macro_build (NULL, "break", BRK_FMT, 7);
10970 if (mips_opts.micromips)
10971 micromips_add_label ();
252b5132 10972 }
c0ebe874 10973 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10974 break;
252b5132 10975
1abe91b1
MR
10976 case M_DLCA_AB:
10977 dbl = 1;
1a0670f3 10978 /* Fall through. */
1abe91b1
MR
10979 case M_LCA_AB:
10980 call = 1;
10981 goto do_la;
252b5132
RH
10982 case M_DLA_AB:
10983 dbl = 1;
1a0670f3 10984 /* Fall through. */
252b5132 10985 case M_LA_AB:
1abe91b1 10986 do_la:
252b5132
RH
10987 /* Load the address of a symbol into a register. If breg is not
10988 zero, we then add a base register to it. */
10989
c0ebe874 10990 breg = op[2];
bad1aba3 10991 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10992 as_warn (_("dla used to load 32-bit register; recommend using la "
10993 "instead"));
3bec30a8 10994
90ecf173 10995 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10996 as_warn (_("la used to load 64-bit address; recommend using dla "
10997 "instead"));
3bec30a8 10998
f2ae14a1 10999 if (small_offset_p (0, align, 16))
0c11417f 11000 {
c0ebe874 11001 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 11002 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 11003 break;
0c11417f
MR
11004 }
11005
c0ebe874 11006 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
11007 {
11008 tempreg = AT;
11009 used_at = 1;
11010 }
11011 else
c0ebe874 11012 tempreg = op[0];
afdbd6d0 11013
252b5132
RH
11014 if (offset_expr.X_op != O_symbol
11015 && offset_expr.X_op != O_constant)
11016 {
1661c76c 11017 as_bad (_("expression too complex"));
252b5132
RH
11018 offset_expr.X_op = O_constant;
11019 }
11020
252b5132 11021 if (offset_expr.X_op == O_constant)
aed1a261 11022 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
11023 else if (mips_pic == NO_PIC)
11024 {
d6bc6245 11025 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 11026 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
11027 Otherwise we want
11028 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11029 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11030 If we have a constant, we need two instructions anyhow,
d6bc6245 11031 so we may as well always use the latter form.
76b3015f 11032
6caf9ef4
TS
11033 With 64bit address space and a usable $at we want
11034 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11035 lui $at,<sym> (BFD_RELOC_HI16_S)
11036 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11037 daddiu $at,<sym> (BFD_RELOC_LO16)
11038 dsll32 $tempreg,0
11039 daddu $tempreg,$tempreg,$at
11040
11041 If $at is already in use, we use a path which is suboptimal
11042 on superscalar processors.
11043 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11044 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11045 dsll $tempreg,16
11046 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11047 dsll $tempreg,16
11048 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
11049
11050 For GP relative symbols in 64bit address space we can use
11051 the same sequence as in 32bit address space. */
aed1a261 11052 if (HAVE_64BIT_SYMBOLS)
252b5132 11053 {
6caf9ef4
TS
11054 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11055 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11056 {
11057 relax_start (offset_expr.X_add_symbol);
11058 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11059 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
11060 relax_switch ();
11061 }
d6bc6245 11062
741fe287 11063 if (used_at == 0 && mips_opts.at)
98d3f06f 11064 {
df58fc94 11065 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 11066 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 11067 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 11068 AT, BFD_RELOC_HI16_S);
67c0d1eb 11069 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11070 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 11071 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11072 AT, AT, BFD_RELOC_LO16);
df58fc94 11073 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11074 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
11075 used_at = 1;
11076 }
11077 else
11078 {
df58fc94 11079 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 11080 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 11081 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11082 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11083 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 11084 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11085 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 11086 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 11087 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 11088 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 11089 }
6caf9ef4
TS
11090
11091 if (mips_relax.sequence)
11092 relax_end ();
98d3f06f
KH
11093 }
11094 else
11095 {
11096 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11097 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 11098 {
4d7206a2 11099 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11100 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11101 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 11102 relax_switch ();
98d3f06f 11103 }
6943caf0 11104 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 11105 as_bad (_("offset too large"));
67c0d1eb
RS
11106 macro_build_lui (&offset_expr, tempreg);
11107 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11108 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11109 if (mips_relax.sequence)
11110 relax_end ();
98d3f06f 11111 }
252b5132 11112 }
0a44bf69 11113 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 11114 {
9117d219
NC
11115 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11116
252b5132
RH
11117 /* If this is a reference to an external symbol, and there
11118 is no constant, we want
11119 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 11120 or for lca or if tempreg is PIC_CALL_REG
9117d219 11121 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
11122 For a local symbol, we want
11123 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11124 nop
11125 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11126
11127 If we have a small constant, and this is a reference to
11128 an external symbol, we want
11129 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11130 nop
11131 addiu $tempreg,$tempreg,<constant>
11132 For a local symbol, we want the same instruction
11133 sequence, but we output a BFD_RELOC_LO16 reloc on the
11134 addiu instruction.
11135
11136 If we have a large constant, and this is a reference to
11137 an external symbol, we want
11138 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11139 lui $at,<hiconstant>
11140 addiu $at,$at,<loconstant>
11141 addu $tempreg,$tempreg,$at
11142 For a local symbol, we want the same instruction
11143 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 11144 addiu instruction.
ed6fb7bd
SC
11145 */
11146
4d7206a2 11147 if (offset_expr.X_add_number == 0)
252b5132 11148 {
0a44bf69
RS
11149 if (mips_pic == SVR4_PIC
11150 && breg == 0
11151 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
11152 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
11153
11154 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11156 lw_reloc_type, mips_gp_register);
4d7206a2 11157 if (breg != 0)
252b5132
RH
11158 {
11159 /* We're going to put in an addu instruction using
11160 tempreg, so we may as well insert the nop right
11161 now. */
269137b2 11162 load_delay_nop ();
252b5132 11163 }
4d7206a2 11164 relax_switch ();
67c0d1eb
RS
11165 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11166 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11167 load_delay_nop ();
67c0d1eb
RS
11168 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11169 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 11170 relax_end ();
252b5132
RH
11171 /* FIXME: If breg == 0, and the next instruction uses
11172 $tempreg, then if this variant case is used an extra
11173 nop will be generated. */
11174 }
4d7206a2
RS
11175 else if (offset_expr.X_add_number >= -0x8000
11176 && offset_expr.X_add_number < 0x8000)
252b5132 11177 {
67c0d1eb 11178 load_got_offset (tempreg, &offset_expr);
269137b2 11179 load_delay_nop ();
67c0d1eb 11180 add_got_offset (tempreg, &offset_expr);
252b5132
RH
11181 }
11182 else
11183 {
4d7206a2
RS
11184 expr1.X_add_number = offset_expr.X_add_number;
11185 offset_expr.X_add_number =
43c0598f 11186 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 11187 load_got_offset (tempreg, &offset_expr);
f6a22291 11188 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
11189 /* If we are going to add in a base register, and the
11190 target register and the base register are the same,
11191 then we are using AT as a temporary register. Since
11192 we want to load the constant into AT, we add our
11193 current AT (from the global offset table) and the
11194 register into the register now, and pretend we were
11195 not using a base register. */
c0ebe874 11196 if (breg == op[0])
252b5132 11197 {
269137b2 11198 load_delay_nop ();
67c0d1eb 11199 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11200 op[0], AT, breg);
252b5132 11201 breg = 0;
c0ebe874 11202 tempreg = op[0];
252b5132 11203 }
f6a22291 11204 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
11205 used_at = 1;
11206 }
11207 }
0a44bf69 11208 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 11209 {
67c0d1eb 11210 int add_breg_early = 0;
f5040a92
AO
11211
11212 /* If this is a reference to an external, and there is no
11213 constant, or local symbol (*), with or without a
11214 constant, we want
11215 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 11216 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11217 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11218
11219 If we have a small constant, and this is a reference to
11220 an external symbol, we want
11221 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11222 addiu $tempreg,$tempreg,<constant>
11223
11224 If we have a large constant, and this is a reference to
11225 an external symbol, we want
11226 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11227 lui $at,<hiconstant>
11228 addiu $at,$at,<loconstant>
11229 addu $tempreg,$tempreg,$at
11230
11231 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11232 local symbols, even though it introduces an additional
11233 instruction. */
11234
f5040a92
AO
11235 if (offset_expr.X_add_number)
11236 {
4d7206a2 11237 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11238 offset_expr.X_add_number = 0;
11239
4d7206a2 11240 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11241 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11242 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
11243
11244 if (expr1.X_add_number >= -0x8000
11245 && expr1.X_add_number < 0x8000)
11246 {
67c0d1eb
RS
11247 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11248 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11249 }
ecd13cd3 11250 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11251 {
c0ebe874
RS
11252 unsigned int dreg;
11253
f5040a92
AO
11254 /* If we are going to add in a base register, and the
11255 target register and the base register are the same,
11256 then we are using AT as a temporary register. Since
11257 we want to load the constant into AT, we add our
11258 current AT (from the global offset table) and the
11259 register into the register now, and pretend we were
11260 not using a base register. */
c0ebe874 11261 if (breg != op[0])
f5040a92
AO
11262 dreg = tempreg;
11263 else
11264 {
9c2799c2 11265 gas_assert (tempreg == AT);
67c0d1eb 11266 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11267 op[0], AT, breg);
11268 dreg = op[0];
67c0d1eb 11269 add_breg_early = 1;
f5040a92
AO
11270 }
11271
f6a22291 11272 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11273 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11274 dreg, dreg, AT);
f5040a92 11275
f5040a92
AO
11276 used_at = 1;
11277 }
11278 else
11279 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11280
4d7206a2 11281 relax_switch ();
f5040a92
AO
11282 offset_expr.X_add_number = expr1.X_add_number;
11283
67c0d1eb
RS
11284 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11285 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11286 if (add_breg_early)
f5040a92 11287 {
67c0d1eb 11288 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11289 op[0], tempreg, breg);
f5040a92 11290 breg = 0;
c0ebe874 11291 tempreg = op[0];
f5040a92 11292 }
4d7206a2 11293 relax_end ();
f5040a92 11294 }
4d7206a2 11295 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 11296 {
4d7206a2 11297 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11298 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11299 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 11300 relax_switch ();
67c0d1eb
RS
11301 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11302 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 11303 relax_end ();
f5040a92 11304 }
4d7206a2 11305 else
f5040a92 11306 {
67c0d1eb
RS
11307 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11308 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
11309 }
11310 }
0a44bf69 11311 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11312 {
67c0d1eb 11313 int gpdelay;
9117d219
NC
11314 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11315 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 11316 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
11317
11318 /* This is the large GOT case. If this is a reference to an
11319 external symbol, and there is no constant, we want
11320 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11321 addu $tempreg,$tempreg,$gp
11322 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11323 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
11324 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11325 addu $tempreg,$tempreg,$gp
11326 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
11327 For a local symbol, we want
11328 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11329 nop
11330 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11331
11332 If we have a small constant, and this is a reference to
11333 an external symbol, we want
11334 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11335 addu $tempreg,$tempreg,$gp
11336 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11337 nop
11338 addiu $tempreg,$tempreg,<constant>
11339 For a local symbol, we want
11340 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11341 nop
11342 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11343
11344 If we have a large constant, and this is a reference to
11345 an external symbol, we want
11346 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11347 addu $tempreg,$tempreg,$gp
11348 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11349 lui $at,<hiconstant>
11350 addiu $at,$at,<loconstant>
11351 addu $tempreg,$tempreg,$at
11352 For a local symbol, we want
11353 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11354 lui $at,<hiconstant>
11355 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11356 addu $tempreg,$tempreg,$at
f5040a92 11357 */
438c16b8 11358
252b5132
RH
11359 expr1.X_add_number = offset_expr.X_add_number;
11360 offset_expr.X_add_number = 0;
4d7206a2 11361 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11362 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
11363 if (expr1.X_add_number == 0 && breg == 0
11364 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
11365 {
11366 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11367 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11368 }
df58fc94 11369 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11370 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11371 tempreg, tempreg, mips_gp_register);
67c0d1eb 11372 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 11373 tempreg, lw_reloc_type, tempreg);
252b5132
RH
11374 if (expr1.X_add_number == 0)
11375 {
67c0d1eb 11376 if (breg != 0)
252b5132
RH
11377 {
11378 /* We're going to put in an addu instruction using
11379 tempreg, so we may as well insert the nop right
11380 now. */
269137b2 11381 load_delay_nop ();
252b5132 11382 }
252b5132
RH
11383 }
11384 else if (expr1.X_add_number >= -0x8000
11385 && expr1.X_add_number < 0x8000)
11386 {
269137b2 11387 load_delay_nop ();
67c0d1eb 11388 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11389 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
11390 }
11391 else
11392 {
c0ebe874
RS
11393 unsigned int dreg;
11394
252b5132
RH
11395 /* If we are going to add in a base register, and the
11396 target register and the base register are the same,
11397 then we are using AT as a temporary register. Since
11398 we want to load the constant into AT, we add our
11399 current AT (from the global offset table) and the
11400 register into the register now, and pretend we were
11401 not using a base register. */
c0ebe874 11402 if (breg != op[0])
67c0d1eb 11403 dreg = tempreg;
252b5132
RH
11404 else
11405 {
9c2799c2 11406 gas_assert (tempreg == AT);
269137b2 11407 load_delay_nop ();
67c0d1eb 11408 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11409 op[0], AT, breg);
11410 dreg = op[0];
252b5132
RH
11411 }
11412
f6a22291 11413 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11414 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 11415
252b5132
RH
11416 used_at = 1;
11417 }
43c0598f 11418 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 11419 relax_switch ();
252b5132 11420
67c0d1eb 11421 if (gpdelay)
252b5132
RH
11422 {
11423 /* This is needed because this instruction uses $gp, but
f5040a92 11424 the first instruction on the main stream does not. */
67c0d1eb 11425 macro_build (NULL, "nop", "");
252b5132 11426 }
ed6fb7bd 11427
67c0d1eb
RS
11428 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11429 local_reloc_type, mips_gp_register);
f5040a92 11430 if (expr1.X_add_number >= -0x8000
252b5132
RH
11431 && expr1.X_add_number < 0x8000)
11432 {
269137b2 11433 load_delay_nop ();
67c0d1eb
RS
11434 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11435 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 11436 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
11437 register, the external symbol case ended with a load,
11438 so if the symbol turns out to not be external, and
11439 the next instruction uses tempreg, an unnecessary nop
11440 will be inserted. */
252b5132
RH
11441 }
11442 else
11443 {
c0ebe874 11444 if (breg == op[0])
252b5132
RH
11445 {
11446 /* We must add in the base register now, as in the
f5040a92 11447 external symbol case. */
9c2799c2 11448 gas_assert (tempreg == AT);
269137b2 11449 load_delay_nop ();
67c0d1eb 11450 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11451 op[0], AT, breg);
11452 tempreg = op[0];
252b5132 11453 /* We set breg to 0 because we have arranged to add
f5040a92 11454 it in in both cases. */
252b5132
RH
11455 breg = 0;
11456 }
11457
67c0d1eb
RS
11458 macro_build_lui (&expr1, AT);
11459 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11460 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11462 tempreg, tempreg, AT);
8fc2e39e 11463 used_at = 1;
252b5132 11464 }
4d7206a2 11465 relax_end ();
252b5132 11466 }
0a44bf69 11467 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11468 {
f5040a92
AO
11469 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11470 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11471 int add_breg_early = 0;
f5040a92
AO
11472
11473 /* This is the large GOT case. If this is a reference to an
11474 external symbol, and there is no constant, we want
11475 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11476 add $tempreg,$tempreg,$gp
11477 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11478 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11479 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11480 add $tempreg,$tempreg,$gp
11481 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11482
11483 If we have a small constant, and this is a reference to
11484 an external symbol, we want
11485 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11486 add $tempreg,$tempreg,$gp
11487 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11488 addi $tempreg,$tempreg,<constant>
11489
11490 If we have a large constant, and this is a reference to
11491 an external symbol, we want
11492 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11493 addu $tempreg,$tempreg,$gp
11494 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11495 lui $at,<hiconstant>
11496 addi $at,$at,<loconstant>
11497 add $tempreg,$tempreg,$at
11498
11499 If we have NewABI, and we know it's a local symbol, we want
11500 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11501 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11502 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11503
4d7206a2 11504 relax_start (offset_expr.X_add_symbol);
f5040a92 11505
4d7206a2 11506 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11507 offset_expr.X_add_number = 0;
11508
1abe91b1
MR
11509 if (expr1.X_add_number == 0 && breg == 0
11510 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11511 {
11512 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11513 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11514 }
df58fc94 11515 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11516 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11517 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11518 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11519 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11520
11521 if (expr1.X_add_number == 0)
4d7206a2 11522 ;
f5040a92
AO
11523 else if (expr1.X_add_number >= -0x8000
11524 && expr1.X_add_number < 0x8000)
11525 {
67c0d1eb 11526 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11527 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11528 }
ecd13cd3 11529 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11530 {
c0ebe874
RS
11531 unsigned int dreg;
11532
f5040a92
AO
11533 /* If we are going to add in a base register, and the
11534 target register and the base register are the same,
11535 then we are using AT as a temporary register. Since
11536 we want to load the constant into AT, we add our
11537 current AT (from the global offset table) and the
11538 register into the register now, and pretend we were
11539 not using a base register. */
c0ebe874 11540 if (breg != op[0])
f5040a92
AO
11541 dreg = tempreg;
11542 else
11543 {
9c2799c2 11544 gas_assert (tempreg == AT);
67c0d1eb 11545 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11546 op[0], AT, breg);
11547 dreg = op[0];
67c0d1eb 11548 add_breg_early = 1;
f5040a92
AO
11549 }
11550
f6a22291 11551 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11552 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11553
f5040a92
AO
11554 used_at = 1;
11555 }
11556 else
11557 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11558
4d7206a2 11559 relax_switch ();
f5040a92 11560 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11561 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11562 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11563 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11564 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11565 if (add_breg_early)
f5040a92 11566 {
67c0d1eb 11567 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11568 op[0], tempreg, breg);
f5040a92 11569 breg = 0;
c0ebe874 11570 tempreg = op[0];
f5040a92 11571 }
4d7206a2 11572 relax_end ();
f5040a92 11573 }
252b5132
RH
11574 else
11575 abort ();
11576
11577 if (breg != 0)
c0ebe874 11578 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11579 break;
11580
52b6b6b9 11581 case M_MSGSND:
df58fc94 11582 gas_assert (!mips_opts.micromips);
c0ebe874 11583 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11584 break;
52b6b6b9
JM
11585
11586 case M_MSGLD:
df58fc94 11587 gas_assert (!mips_opts.micromips);
c8276761 11588 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11589 break;
52b6b6b9
JM
11590
11591 case M_MSGLD_T:
df58fc94 11592 gas_assert (!mips_opts.micromips);
c0ebe874 11593 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11594 break;
52b6b6b9
JM
11595
11596 case M_MSGWAIT:
df58fc94 11597 gas_assert (!mips_opts.micromips);
52b6b6b9 11598 macro_build (NULL, "c2", "C", 3);
c7af4273 11599 break;
52b6b6b9
JM
11600
11601 case M_MSGWAIT_T:
df58fc94 11602 gas_assert (!mips_opts.micromips);
c0ebe874 11603 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11604 break;
52b6b6b9 11605
252b5132
RH
11606 case M_J_A:
11607 /* The j instruction may not be used in PIC code, since it
11608 requires an absolute address. We convert it to a b
11609 instruction. */
11610 if (mips_pic == NO_PIC)
67c0d1eb 11611 macro_build (&offset_expr, "j", "a");
252b5132 11612 else
67c0d1eb 11613 macro_build (&offset_expr, "b", "p");
8fc2e39e 11614 break;
252b5132
RH
11615
11616 /* The jal instructions must be handled as macros because when
11617 generating PIC code they expand to multi-instruction
11618 sequences. Normally they are simple instructions. */
df58fc94 11619 case M_JALS_1:
c0ebe874
RS
11620 op[1] = op[0];
11621 op[0] = RA;
df58fc94
RS
11622 /* Fall through. */
11623 case M_JALS_2:
11624 gas_assert (mips_opts.micromips);
833794fc
MR
11625 if (mips_opts.insn32)
11626 {
1661c76c 11627 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11628 break;
11629 }
df58fc94
RS
11630 jals = 1;
11631 goto jal;
252b5132 11632 case M_JAL_1:
c0ebe874
RS
11633 op[1] = op[0];
11634 op[0] = RA;
252b5132
RH
11635 /* Fall through. */
11636 case M_JAL_2:
df58fc94 11637 jal:
3e722fb5 11638 if (mips_pic == NO_PIC)
df58fc94
RS
11639 {
11640 s = jals ? "jalrs" : "jalr";
e64af278 11641 if (mips_opts.micromips
833794fc 11642 && !mips_opts.insn32
c0ebe874 11643 && op[0] == RA
e64af278 11644 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11645 macro_build (NULL, s, "mj", op[1]);
df58fc94 11646 else
c0ebe874 11647 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11648 }
0a44bf69 11649 else
252b5132 11650 {
df58fc94
RS
11651 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11652 && mips_cprestore_offset >= 0);
11653
c0ebe874 11654 if (op[1] != PIC_CALL_REG)
252b5132 11655 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11656
833794fc
MR
11657 s = ((mips_opts.micromips
11658 && !mips_opts.insn32
11659 && (!mips_opts.noreorder || cprestore))
df58fc94 11660 ? "jalrs" : "jalr");
e64af278 11661 if (mips_opts.micromips
833794fc 11662 && !mips_opts.insn32
c0ebe874 11663 && op[0] == RA
e64af278 11664 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11665 macro_build (NULL, s, "mj", op[1]);
df58fc94 11666 else
c0ebe874 11667 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11668 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11669 {
6478892d 11670 if (mips_cprestore_offset < 0)
1661c76c 11671 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11672 else
11673 {
90ecf173 11674 if (!mips_frame_reg_valid)
7a621144 11675 {
1661c76c 11676 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11677 /* Quiet this warning. */
11678 mips_frame_reg_valid = 1;
11679 }
90ecf173 11680 if (!mips_cprestore_valid)
7a621144 11681 {
1661c76c 11682 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11683 /* Quiet this warning. */
11684 mips_cprestore_valid = 1;
11685 }
d3fca0b5
MR
11686 if (mips_opts.noreorder)
11687 macro_build (NULL, "nop", "");
6478892d 11688 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11689 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11690 mips_gp_register,
256ab948
TS
11691 mips_frame_reg,
11692 HAVE_64BIT_ADDRESSES);
6478892d 11693 }
252b5132
RH
11694 }
11695 }
252b5132 11696
8fc2e39e 11697 break;
252b5132 11698
df58fc94
RS
11699 case M_JALS_A:
11700 gas_assert (mips_opts.micromips);
833794fc
MR
11701 if (mips_opts.insn32)
11702 {
1661c76c 11703 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11704 break;
11705 }
df58fc94
RS
11706 jals = 1;
11707 /* Fall through. */
252b5132
RH
11708 case M_JAL_A:
11709 if (mips_pic == NO_PIC)
df58fc94 11710 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11711 else if (mips_pic == SVR4_PIC)
11712 {
11713 /* If this is a reference to an external symbol, and we are
11714 using a small GOT, we want
11715 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11716 nop
f9419b05 11717 jalr $ra,$25
252b5132
RH
11718 nop
11719 lw $gp,cprestore($sp)
11720 The cprestore value is set using the .cprestore
11721 pseudo-op. If we are using a big GOT, we want
11722 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11723 addu $25,$25,$gp
11724 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11725 nop
f9419b05 11726 jalr $ra,$25
252b5132
RH
11727 nop
11728 lw $gp,cprestore($sp)
11729 If the symbol is not external, we want
11730 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11731 nop
11732 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11733 jalr $ra,$25
252b5132 11734 nop
438c16b8 11735 lw $gp,cprestore($sp)
f5040a92
AO
11736
11737 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11738 sequences above, minus nops, unless the symbol is local,
11739 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11740 GOT_DISP. */
438c16b8 11741 if (HAVE_NEWABI)
252b5132 11742 {
90ecf173 11743 if (!mips_big_got)
f5040a92 11744 {
4d7206a2 11745 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11746 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11747 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11748 mips_gp_register);
4d7206a2 11749 relax_switch ();
67c0d1eb
RS
11750 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11751 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11752 mips_gp_register);
11753 relax_end ();
f5040a92
AO
11754 }
11755 else
11756 {
4d7206a2 11757 relax_start (offset_expr.X_add_symbol);
df58fc94 11758 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11759 BFD_RELOC_MIPS_CALL_HI16);
11760 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11761 PIC_CALL_REG, mips_gp_register);
11762 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11763 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11764 PIC_CALL_REG);
4d7206a2 11765 relax_switch ();
67c0d1eb
RS
11766 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11767 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11768 mips_gp_register);
11769 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11770 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11771 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11772 relax_end ();
f5040a92 11773 }
684022ea 11774
df58fc94 11775 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11776 }
11777 else
11778 {
4d7206a2 11779 relax_start (offset_expr.X_add_symbol);
90ecf173 11780 if (!mips_big_got)
438c16b8 11781 {
67c0d1eb
RS
11782 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11783 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11784 mips_gp_register);
269137b2 11785 load_delay_nop ();
4d7206a2 11786 relax_switch ();
438c16b8 11787 }
252b5132 11788 else
252b5132 11789 {
67c0d1eb
RS
11790 int gpdelay;
11791
11792 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11793 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11794 BFD_RELOC_MIPS_CALL_HI16);
11795 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11796 PIC_CALL_REG, mips_gp_register);
11797 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11798 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11799 PIC_CALL_REG);
269137b2 11800 load_delay_nop ();
4d7206a2 11801 relax_switch ();
67c0d1eb
RS
11802 if (gpdelay)
11803 macro_build (NULL, "nop", "");
252b5132 11804 }
67c0d1eb
RS
11805 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11806 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11807 mips_gp_register);
269137b2 11808 load_delay_nop ();
67c0d1eb
RS
11809 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11810 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11811 relax_end ();
df58fc94 11812 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11813
6478892d 11814 if (mips_cprestore_offset < 0)
1661c76c 11815 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11816 else
11817 {
90ecf173 11818 if (!mips_frame_reg_valid)
7a621144 11819 {
1661c76c 11820 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11821 /* Quiet this warning. */
11822 mips_frame_reg_valid = 1;
11823 }
90ecf173 11824 if (!mips_cprestore_valid)
7a621144 11825 {
1661c76c 11826 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11827 /* Quiet this warning. */
11828 mips_cprestore_valid = 1;
11829 }
6478892d 11830 if (mips_opts.noreorder)
67c0d1eb 11831 macro_build (NULL, "nop", "");
6478892d 11832 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11833 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11834 mips_gp_register,
256ab948
TS
11835 mips_frame_reg,
11836 HAVE_64BIT_ADDRESSES);
6478892d 11837 }
252b5132
RH
11838 }
11839 }
0a44bf69 11840 else if (mips_pic == VXWORKS_PIC)
1661c76c 11841 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11842 else
11843 abort ();
11844
8fc2e39e 11845 break;
252b5132 11846
7f3c4072 11847 case M_LBUE_AB:
7f3c4072
CM
11848 s = "lbue";
11849 fmt = "t,+j(b)";
11850 offbits = 9;
11851 goto ld_st;
11852 case M_LHUE_AB:
7f3c4072
CM
11853 s = "lhue";
11854 fmt = "t,+j(b)";
11855 offbits = 9;
11856 goto ld_st;
11857 case M_LBE_AB:
7f3c4072
CM
11858 s = "lbe";
11859 fmt = "t,+j(b)";
11860 offbits = 9;
11861 goto ld_st;
11862 case M_LHE_AB:
7f3c4072
CM
11863 s = "lhe";
11864 fmt = "t,+j(b)";
11865 offbits = 9;
11866 goto ld_st;
11867 case M_LLE_AB:
7f3c4072
CM
11868 s = "lle";
11869 fmt = "t,+j(b)";
11870 offbits = 9;
11871 goto ld_st;
11872 case M_LWE_AB:
7f3c4072
CM
11873 s = "lwe";
11874 fmt = "t,+j(b)";
11875 offbits = 9;
11876 goto ld_st;
11877 case M_LWLE_AB:
7f3c4072
CM
11878 s = "lwle";
11879 fmt = "t,+j(b)";
11880 offbits = 9;
11881 goto ld_st;
11882 case M_LWRE_AB:
7f3c4072
CM
11883 s = "lwre";
11884 fmt = "t,+j(b)";
11885 offbits = 9;
11886 goto ld_st;
11887 case M_SBE_AB:
7f3c4072
CM
11888 s = "sbe";
11889 fmt = "t,+j(b)";
11890 offbits = 9;
11891 goto ld_st;
11892 case M_SCE_AB:
7f3c4072
CM
11893 s = "sce";
11894 fmt = "t,+j(b)";
11895 offbits = 9;
11896 goto ld_st;
11897 case M_SHE_AB:
7f3c4072
CM
11898 s = "she";
11899 fmt = "t,+j(b)";
11900 offbits = 9;
11901 goto ld_st;
11902 case M_SWE_AB:
7f3c4072
CM
11903 s = "swe";
11904 fmt = "t,+j(b)";
11905 offbits = 9;
11906 goto ld_st;
11907 case M_SWLE_AB:
7f3c4072
CM
11908 s = "swle";
11909 fmt = "t,+j(b)";
11910 offbits = 9;
11911 goto ld_st;
11912 case M_SWRE_AB:
7f3c4072
CM
11913 s = "swre";
11914 fmt = "t,+j(b)";
11915 offbits = 9;
11916 goto ld_st;
dec0624d 11917 case M_ACLR_AB:
dec0624d 11918 s = "aclr";
dec0624d 11919 fmt = "\\,~(b)";
7f3c4072 11920 offbits = 12;
dec0624d
MR
11921 goto ld_st;
11922 case M_ASET_AB:
dec0624d 11923 s = "aset";
dec0624d 11924 fmt = "\\,~(b)";
7f3c4072 11925 offbits = 12;
dec0624d 11926 goto ld_st;
252b5132
RH
11927 case M_LB_AB:
11928 s = "lb";
df58fc94 11929 fmt = "t,o(b)";
252b5132
RH
11930 goto ld;
11931 case M_LBU_AB:
11932 s = "lbu";
df58fc94 11933 fmt = "t,o(b)";
252b5132
RH
11934 goto ld;
11935 case M_LH_AB:
11936 s = "lh";
df58fc94 11937 fmt = "t,o(b)";
252b5132
RH
11938 goto ld;
11939 case M_LHU_AB:
11940 s = "lhu";
df58fc94 11941 fmt = "t,o(b)";
252b5132
RH
11942 goto ld;
11943 case M_LW_AB:
11944 s = "lw";
df58fc94 11945 fmt = "t,o(b)";
252b5132
RH
11946 goto ld;
11947 case M_LWC0_AB:
df58fc94 11948 gas_assert (!mips_opts.micromips);
252b5132 11949 s = "lwc0";
df58fc94 11950 fmt = "E,o(b)";
bdaaa2e1 11951 /* Itbl support may require additional care here. */
252b5132 11952 coproc = 1;
df58fc94 11953 goto ld_st;
252b5132
RH
11954 case M_LWC1_AB:
11955 s = "lwc1";
df58fc94 11956 fmt = "T,o(b)";
bdaaa2e1 11957 /* Itbl support may require additional care here. */
252b5132 11958 coproc = 1;
df58fc94 11959 goto ld_st;
252b5132
RH
11960 case M_LWC2_AB:
11961 s = "lwc2";
df58fc94 11962 fmt = COP12_FMT;
7361da2c
AB
11963 offbits = (mips_opts.micromips ? 12
11964 : ISA_IS_R6 (mips_opts.isa) ? 11
11965 : 16);
bdaaa2e1 11966 /* Itbl support may require additional care here. */
252b5132 11967 coproc = 1;
df58fc94 11968 goto ld_st;
252b5132 11969 case M_LWC3_AB:
df58fc94 11970 gas_assert (!mips_opts.micromips);
252b5132 11971 s = "lwc3";
df58fc94 11972 fmt = "E,o(b)";
bdaaa2e1 11973 /* Itbl support may require additional care here. */
252b5132 11974 coproc = 1;
df58fc94 11975 goto ld_st;
252b5132
RH
11976 case M_LWL_AB:
11977 s = "lwl";
df58fc94 11978 fmt = MEM12_FMT;
7f3c4072 11979 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11980 goto ld_st;
252b5132
RH
11981 case M_LWR_AB:
11982 s = "lwr";
df58fc94 11983 fmt = MEM12_FMT;
7f3c4072 11984 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11985 goto ld_st;
252b5132 11986 case M_LDC1_AB:
252b5132 11987 s = "ldc1";
df58fc94 11988 fmt = "T,o(b)";
bdaaa2e1 11989 /* Itbl support may require additional care here. */
252b5132 11990 coproc = 1;
df58fc94 11991 goto ld_st;
252b5132
RH
11992 case M_LDC2_AB:
11993 s = "ldc2";
df58fc94 11994 fmt = COP12_FMT;
7361da2c
AB
11995 offbits = (mips_opts.micromips ? 12
11996 : ISA_IS_R6 (mips_opts.isa) ? 11
11997 : 16);
bdaaa2e1 11998 /* Itbl support may require additional care here. */
252b5132 11999 coproc = 1;
df58fc94 12000 goto ld_st;
c77c0862 12001 case M_LQC2_AB:
c77c0862 12002 s = "lqc2";
14daeee3 12003 fmt = "+7,o(b)";
c77c0862
RS
12004 /* Itbl support may require additional care here. */
12005 coproc = 1;
12006 goto ld_st;
252b5132
RH
12007 case M_LDC3_AB:
12008 s = "ldc3";
df58fc94 12009 fmt = "E,o(b)";
bdaaa2e1 12010 /* Itbl support may require additional care here. */
252b5132 12011 coproc = 1;
df58fc94 12012 goto ld_st;
252b5132
RH
12013 case M_LDL_AB:
12014 s = "ldl";
df58fc94 12015 fmt = MEM12_FMT;
7f3c4072 12016 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12017 goto ld_st;
252b5132
RH
12018 case M_LDR_AB:
12019 s = "ldr";
df58fc94 12020 fmt = MEM12_FMT;
7f3c4072 12021 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12022 goto ld_st;
252b5132
RH
12023 case M_LL_AB:
12024 s = "ll";
7361da2c
AB
12025 fmt = LL_SC_FMT;
12026 offbits = (mips_opts.micromips ? 12
12027 : ISA_IS_R6 (mips_opts.isa) ? 9
12028 : 16);
252b5132
RH
12029 goto ld;
12030 case M_LLD_AB:
12031 s = "lld";
7361da2c
AB
12032 fmt = LL_SC_FMT;
12033 offbits = (mips_opts.micromips ? 12
12034 : ISA_IS_R6 (mips_opts.isa) ? 9
12035 : 16);
252b5132
RH
12036 goto ld;
12037 case M_LWU_AB:
12038 s = "lwu";
df58fc94 12039 fmt = MEM12_FMT;
7f3c4072 12040 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
12041 goto ld;
12042 case M_LWP_AB:
df58fc94
RS
12043 gas_assert (mips_opts.micromips);
12044 s = "lwp";
12045 fmt = "t,~(b)";
7f3c4072 12046 offbits = 12;
df58fc94
RS
12047 lp = 1;
12048 goto ld;
12049 case M_LDP_AB:
df58fc94
RS
12050 gas_assert (mips_opts.micromips);
12051 s = "ldp";
12052 fmt = "t,~(b)";
7f3c4072 12053 offbits = 12;
df58fc94
RS
12054 lp = 1;
12055 goto ld;
a45328b9
AB
12056 case M_LLDP_AB:
12057 case M_LLWP_AB:
41cee089 12058 case M_LLWPE_AB:
a45328b9
AB
12059 s = ip->insn_mo->name;
12060 fmt = "t,d,s";
12061 ll_sc_paired = 1;
12062 offbits = 0;
12063 goto ld;
df58fc94 12064 case M_LWM_AB:
df58fc94
RS
12065 gas_assert (mips_opts.micromips);
12066 s = "lwm";
12067 fmt = "n,~(b)";
7f3c4072 12068 offbits = 12;
df58fc94
RS
12069 goto ld_st;
12070 case M_LDM_AB:
df58fc94
RS
12071 gas_assert (mips_opts.micromips);
12072 s = "ldm";
12073 fmt = "n,~(b)";
7f3c4072 12074 offbits = 12;
df58fc94
RS
12075 goto ld_st;
12076
252b5132 12077 ld:
a45328b9
AB
12078 /* Try to use one the the load registers to compute the base address.
12079 We don't want to use $0 as tempreg. */
12080 if (ll_sc_paired)
12081 {
12082 if ((op[0] == ZERO && op[3] == op[1])
12083 || (op[1] == ZERO && op[3] == op[0])
12084 || (op[0] == ZERO && op[1] == ZERO))
12085 goto ld_st;
12086 else if (op[0] != op[3] && op[0] != ZERO)
12087 tempreg = op[0];
12088 else
12089 tempreg = op[1];
12090 }
252b5132 12091 else
a45328b9
AB
12092 {
12093 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
12094 goto ld_st;
12095 else
12096 tempreg = op[0] + lp;
12097 }
df58fc94
RS
12098 goto ld_noat;
12099
252b5132
RH
12100 case M_SB_AB:
12101 s = "sb";
df58fc94
RS
12102 fmt = "t,o(b)";
12103 goto ld_st;
252b5132
RH
12104 case M_SH_AB:
12105 s = "sh";
df58fc94
RS
12106 fmt = "t,o(b)";
12107 goto ld_st;
252b5132
RH
12108 case M_SW_AB:
12109 s = "sw";
df58fc94
RS
12110 fmt = "t,o(b)";
12111 goto ld_st;
252b5132 12112 case M_SWC0_AB:
df58fc94 12113 gas_assert (!mips_opts.micromips);
252b5132 12114 s = "swc0";
df58fc94 12115 fmt = "E,o(b)";
bdaaa2e1 12116 /* Itbl support may require additional care here. */
252b5132 12117 coproc = 1;
df58fc94 12118 goto ld_st;
252b5132
RH
12119 case M_SWC1_AB:
12120 s = "swc1";
df58fc94 12121 fmt = "T,o(b)";
bdaaa2e1 12122 /* Itbl support may require additional care here. */
252b5132 12123 coproc = 1;
df58fc94 12124 goto ld_st;
252b5132
RH
12125 case M_SWC2_AB:
12126 s = "swc2";
df58fc94 12127 fmt = COP12_FMT;
7361da2c
AB
12128 offbits = (mips_opts.micromips ? 12
12129 : ISA_IS_R6 (mips_opts.isa) ? 11
12130 : 16);
bdaaa2e1 12131 /* Itbl support may require additional care here. */
252b5132 12132 coproc = 1;
df58fc94 12133 goto ld_st;
252b5132 12134 case M_SWC3_AB:
df58fc94 12135 gas_assert (!mips_opts.micromips);
252b5132 12136 s = "swc3";
df58fc94 12137 fmt = "E,o(b)";
bdaaa2e1 12138 /* Itbl support may require additional care here. */
252b5132 12139 coproc = 1;
df58fc94 12140 goto ld_st;
252b5132
RH
12141 case M_SWL_AB:
12142 s = "swl";
df58fc94 12143 fmt = MEM12_FMT;
7f3c4072 12144 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12145 goto ld_st;
252b5132
RH
12146 case M_SWR_AB:
12147 s = "swr";
df58fc94 12148 fmt = MEM12_FMT;
7f3c4072 12149 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12150 goto ld_st;
252b5132
RH
12151 case M_SC_AB:
12152 s = "sc";
7361da2c
AB
12153 fmt = LL_SC_FMT;
12154 offbits = (mips_opts.micromips ? 12
12155 : ISA_IS_R6 (mips_opts.isa) ? 9
12156 : 16);
df58fc94 12157 goto ld_st;
252b5132
RH
12158 case M_SCD_AB:
12159 s = "scd";
7361da2c
AB
12160 fmt = LL_SC_FMT;
12161 offbits = (mips_opts.micromips ? 12
12162 : ISA_IS_R6 (mips_opts.isa) ? 9
12163 : 16);
df58fc94 12164 goto ld_st;
a45328b9
AB
12165 case M_SCDP_AB:
12166 case M_SCWP_AB:
41cee089 12167 case M_SCWPE_AB:
a45328b9
AB
12168 s = ip->insn_mo->name;
12169 fmt = "t,d,s";
12170 ll_sc_paired = 1;
12171 offbits = 0;
12172 goto ld_st;
d43b4baf
TS
12173 case M_CACHE_AB:
12174 s = "cache";
7361da2c
AB
12175 fmt = (mips_opts.micromips ? "k,~(b)"
12176 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12177 : "k,o(b)");
12178 offbits = (mips_opts.micromips ? 12
12179 : ISA_IS_R6 (mips_opts.isa) ? 9
12180 : 16);
7f3c4072
CM
12181 goto ld_st;
12182 case M_CACHEE_AB:
7f3c4072
CM
12183 s = "cachee";
12184 fmt = "k,+j(b)";
12185 offbits = 9;
df58fc94 12186 goto ld_st;
3eebd5eb
MR
12187 case M_PREF_AB:
12188 s = "pref";
7361da2c
AB
12189 fmt = (mips_opts.micromips ? "k,~(b)"
12190 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12191 : "k,o(b)");
12192 offbits = (mips_opts.micromips ? 12
12193 : ISA_IS_R6 (mips_opts.isa) ? 9
12194 : 16);
7f3c4072
CM
12195 goto ld_st;
12196 case M_PREFE_AB:
7f3c4072
CM
12197 s = "prefe";
12198 fmt = "k,+j(b)";
12199 offbits = 9;
df58fc94 12200 goto ld_st;
252b5132 12201 case M_SDC1_AB:
252b5132 12202 s = "sdc1";
df58fc94 12203 fmt = "T,o(b)";
252b5132 12204 coproc = 1;
bdaaa2e1 12205 /* Itbl support may require additional care here. */
df58fc94 12206 goto ld_st;
252b5132
RH
12207 case M_SDC2_AB:
12208 s = "sdc2";
df58fc94 12209 fmt = COP12_FMT;
7361da2c
AB
12210 offbits = (mips_opts.micromips ? 12
12211 : ISA_IS_R6 (mips_opts.isa) ? 11
12212 : 16);
c77c0862
RS
12213 /* Itbl support may require additional care here. */
12214 coproc = 1;
12215 goto ld_st;
12216 case M_SQC2_AB:
c77c0862 12217 s = "sqc2";
14daeee3 12218 fmt = "+7,o(b)";
bdaaa2e1 12219 /* Itbl support may require additional care here. */
252b5132 12220 coproc = 1;
df58fc94 12221 goto ld_st;
252b5132 12222 case M_SDC3_AB:
df58fc94 12223 gas_assert (!mips_opts.micromips);
252b5132 12224 s = "sdc3";
df58fc94 12225 fmt = "E,o(b)";
bdaaa2e1 12226 /* Itbl support may require additional care here. */
252b5132 12227 coproc = 1;
df58fc94 12228 goto ld_st;
252b5132
RH
12229 case M_SDL_AB:
12230 s = "sdl";
df58fc94 12231 fmt = MEM12_FMT;
7f3c4072 12232 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12233 goto ld_st;
252b5132
RH
12234 case M_SDR_AB:
12235 s = "sdr";
df58fc94 12236 fmt = MEM12_FMT;
7f3c4072 12237 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
12238 goto ld_st;
12239 case M_SWP_AB:
df58fc94
RS
12240 gas_assert (mips_opts.micromips);
12241 s = "swp";
12242 fmt = "t,~(b)";
7f3c4072 12243 offbits = 12;
df58fc94
RS
12244 goto ld_st;
12245 case M_SDP_AB:
df58fc94
RS
12246 gas_assert (mips_opts.micromips);
12247 s = "sdp";
12248 fmt = "t,~(b)";
7f3c4072 12249 offbits = 12;
df58fc94
RS
12250 goto ld_st;
12251 case M_SWM_AB:
df58fc94
RS
12252 gas_assert (mips_opts.micromips);
12253 s = "swm";
12254 fmt = "n,~(b)";
7f3c4072 12255 offbits = 12;
df58fc94
RS
12256 goto ld_st;
12257 case M_SDM_AB:
df58fc94
RS
12258 gas_assert (mips_opts.micromips);
12259 s = "sdm";
12260 fmt = "n,~(b)";
7f3c4072 12261 offbits = 12;
df58fc94
RS
12262
12263 ld_st:
8fc2e39e 12264 tempreg = AT;
df58fc94 12265 ld_noat:
a45328b9 12266 breg = ll_sc_paired ? op[3] : op[2];
f2ae14a1
RS
12267 if (small_offset_p (0, align, 16))
12268 {
12269 /* The first case exists for M_LD_AB and M_SD_AB, which are
12270 macros for o32 but which should act like normal instructions
12271 otherwise. */
12272 if (offbits == 16)
c0ebe874 12273 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12274 offset_reloc[1], offset_reloc[2], breg);
12275 else if (small_offset_p (0, align, offbits))
12276 {
12277 if (offbits == 0)
a45328b9
AB
12278 {
12279 if (ll_sc_paired)
12280 macro_build (NULL, s, fmt, op[0], op[1], breg);
12281 else
12282 macro_build (NULL, s, fmt, op[0], breg);
12283 }
f2ae14a1 12284 else
c0ebe874 12285 macro_build (NULL, s, fmt, op[0],
c8276761 12286 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
12287 }
12288 else
12289 {
12290 if (tempreg == AT)
12291 used_at = 1;
12292 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12293 tempreg, breg, -1, offset_reloc[0],
12294 offset_reloc[1], offset_reloc[2]);
12295 if (offbits == 0)
a45328b9
AB
12296 {
12297 if (ll_sc_paired)
12298 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12299 else
12300 macro_build (NULL, s, fmt, op[0], tempreg);
12301 }
f2ae14a1 12302 else
c0ebe874 12303 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
12304 }
12305 break;
12306 }
12307
12308 if (tempreg == AT)
12309 used_at = 1;
12310
252b5132
RH
12311 if (offset_expr.X_op != O_constant
12312 && offset_expr.X_op != O_symbol)
12313 {
1661c76c 12314 as_bad (_("expression too complex"));
252b5132
RH
12315 offset_expr.X_op = O_constant;
12316 }
12317
2051e8c4
MR
12318 if (HAVE_32BIT_ADDRESSES
12319 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12320 {
12321 char value [32];
12322
12323 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12324 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12325 }
2051e8c4 12326
252b5132
RH
12327 /* A constant expression in PIC code can be handled just as it
12328 is in non PIC code. */
aed1a261
RS
12329 if (offset_expr.X_op == O_constant)
12330 {
f2ae14a1
RS
12331 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12332 offbits == 0 ? 16 : offbits);
12333 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 12334
f2ae14a1
RS
12335 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12336 if (breg != 0)
12337 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12338 tempreg, tempreg, breg);
7f3c4072 12339 if (offbits == 0)
dd6a37e7 12340 {
f2ae14a1 12341 if (offset_expr.X_add_number != 0)
dd6a37e7 12342 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 12343 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
a45328b9
AB
12344 if (ll_sc_paired)
12345 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12346 else
12347 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 12348 }
7f3c4072 12349 else if (offbits == 16)
c0ebe874 12350 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 12351 else
c0ebe874 12352 macro_build (NULL, s, fmt, op[0],
c8276761 12353 (int) offset_expr.X_add_number, tempreg);
df58fc94 12354 }
7f3c4072 12355 else if (offbits != 16)
df58fc94 12356 {
7f3c4072 12357 /* The offset field is too narrow to be used for a low-part
2b0f3761 12358 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
12359 register. */
12360 load_address (tempreg, &offset_expr, &used_at);
12361 if (breg != 0)
12362 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12363 tempreg, tempreg, breg);
7f3c4072 12364 if (offbits == 0)
a45328b9
AB
12365 {
12366 if (ll_sc_paired)
12367 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12368 else
12369 macro_build (NULL, s, fmt, op[0], tempreg);
12370 }
dd6a37e7 12371 else
c0ebe874 12372 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
12373 }
12374 else if (mips_pic == NO_PIC)
252b5132
RH
12375 {
12376 /* If this is a reference to a GP relative symbol, and there
12377 is no base register, we want
c0ebe874 12378 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12379 Otherwise, if there is no base register, we want
12380 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 12381 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
12382 If we have a constant, we need two instructions anyhow,
12383 so we always use the latter form.
12384
12385 If we have a base register, and this is a reference to a
12386 GP relative symbol, we want
12387 addu $tempreg,$breg,$gp
c0ebe874 12388 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
12389 Otherwise we want
12390 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12391 addu $tempreg,$tempreg,$breg
c0ebe874 12392 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 12393 With a constant we always use the latter case.
76b3015f 12394
d6bc6245
TS
12395 With 64bit address space and no base register and $at usable,
12396 we want
12397 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12398 lui $at,<sym> (BFD_RELOC_HI16_S)
12399 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12400 dsll32 $tempreg,0
12401 daddu $tempreg,$at
c0ebe874 12402 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12403 If we have a base register, we want
12404 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12405 lui $at,<sym> (BFD_RELOC_HI16_S)
12406 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12407 daddu $at,$breg
12408 dsll32 $tempreg,0
12409 daddu $tempreg,$at
c0ebe874 12410 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12411
12412 Without $at we can't generate the optimal path for superscalar
12413 processors here since this would require two temporary registers.
12414 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12415 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12416 dsll $tempreg,16
12417 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12418 dsll $tempreg,16
c0ebe874 12419 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12420 If we have a base register, we want
12421 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12422 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12423 dsll $tempreg,16
12424 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12425 dsll $tempreg,16
12426 daddu $tempreg,$tempreg,$breg
c0ebe874 12427 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 12428
6caf9ef4 12429 For GP relative symbols in 64bit address space we can use
aed1a261
RS
12430 the same sequence as in 32bit address space. */
12431 if (HAVE_64BIT_SYMBOLS)
d6bc6245 12432 {
aed1a261 12433 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
12434 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12435 {
12436 relax_start (offset_expr.X_add_symbol);
12437 if (breg == 0)
12438 {
c0ebe874 12439 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
12440 BFD_RELOC_GPREL16, mips_gp_register);
12441 }
12442 else
12443 {
12444 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12445 tempreg, breg, mips_gp_register);
c0ebe874 12446 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
12447 BFD_RELOC_GPREL16, tempreg);
12448 }
12449 relax_switch ();
12450 }
d6bc6245 12451
741fe287 12452 if (used_at == 0 && mips_opts.at)
d6bc6245 12453 {
df58fc94 12454 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 12455 BFD_RELOC_MIPS_HIGHEST);
df58fc94 12456 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
12457 BFD_RELOC_HI16_S);
12458 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12459 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 12460 if (breg != 0)
67c0d1eb 12461 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 12462 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 12463 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 12464 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 12465 tempreg);
d6bc6245
TS
12466 used_at = 1;
12467 }
12468 else
12469 {
df58fc94 12470 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
12471 BFD_RELOC_MIPS_HIGHEST);
12472 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12473 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 12474 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
12475 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12476 tempreg, BFD_RELOC_HI16_S);
df58fc94 12477 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 12478 if (breg != 0)
67c0d1eb 12479 macro_build (NULL, "daddu", "d,v,t",
17a2f251 12480 tempreg, tempreg, breg);
c0ebe874 12481 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12482 BFD_RELOC_LO16, tempreg);
d6bc6245 12483 }
6caf9ef4
TS
12484
12485 if (mips_relax.sequence)
12486 relax_end ();
8fc2e39e 12487 break;
d6bc6245 12488 }
256ab948 12489
252b5132
RH
12490 if (breg == 0)
12491 {
67c0d1eb 12492 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12493 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12494 {
4d7206a2 12495 relax_start (offset_expr.X_add_symbol);
c0ebe874 12496 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 12497 mips_gp_register);
4d7206a2 12498 relax_switch ();
252b5132 12499 }
67c0d1eb 12500 macro_build_lui (&offset_expr, tempreg);
c0ebe874 12501 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12502 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12503 if (mips_relax.sequence)
12504 relax_end ();
252b5132
RH
12505 }
12506 else
12507 {
67c0d1eb 12508 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12509 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12510 {
4d7206a2 12511 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12512 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12513 tempreg, breg, mips_gp_register);
c0ebe874 12514 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12515 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12516 relax_switch ();
252b5132 12517 }
67c0d1eb
RS
12518 macro_build_lui (&offset_expr, tempreg);
12519 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12520 tempreg, tempreg, breg);
c0ebe874 12521 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12522 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12523 if (mips_relax.sequence)
12524 relax_end ();
252b5132
RH
12525 }
12526 }
0a44bf69 12527 else if (!mips_big_got)
252b5132 12528 {
ed6fb7bd 12529 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12530
252b5132
RH
12531 /* If this is a reference to an external symbol, we want
12532 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12533 nop
c0ebe874 12534 <op> op[0],0($tempreg)
252b5132
RH
12535 Otherwise we want
12536 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12537 nop
12538 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12539 <op> op[0],0($tempreg)
f5040a92
AO
12540
12541 For NewABI, we want
12542 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12543 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12544
252b5132
RH
12545 If there is a base register, we add it to $tempreg before
12546 the <op>. If there is a constant, we stick it in the
12547 <op> instruction. We don't handle constants larger than
12548 16 bits, because we have no way to load the upper 16 bits
12549 (actually, we could handle them for the subset of cases
12550 in which we are not using $at). */
9c2799c2 12551 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12552 if (HAVE_NEWABI)
12553 {
67c0d1eb
RS
12554 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12555 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12556 if (breg != 0)
67c0d1eb 12557 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12558 tempreg, tempreg, breg);
c0ebe874 12559 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12560 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12561 break;
12562 }
252b5132
RH
12563 expr1.X_add_number = offset_expr.X_add_number;
12564 offset_expr.X_add_number = 0;
12565 if (expr1.X_add_number < -0x8000
12566 || expr1.X_add_number >= 0x8000)
12567 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12568 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12569 lw_reloc_type, mips_gp_register);
269137b2 12570 load_delay_nop ();
4d7206a2
RS
12571 relax_start (offset_expr.X_add_symbol);
12572 relax_switch ();
67c0d1eb
RS
12573 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12574 tempreg, BFD_RELOC_LO16);
4d7206a2 12575 relax_end ();
252b5132 12576 if (breg != 0)
67c0d1eb 12577 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12578 tempreg, tempreg, breg);
c0ebe874 12579 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12580 }
0a44bf69 12581 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12582 {
67c0d1eb 12583 int gpdelay;
252b5132
RH
12584
12585 /* If this is a reference to an external symbol, we want
12586 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12587 addu $tempreg,$tempreg,$gp
12588 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12589 <op> op[0],0($tempreg)
252b5132
RH
12590 Otherwise we want
12591 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12592 nop
12593 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12594 <op> op[0],0($tempreg)
252b5132
RH
12595 If there is a base register, we add it to $tempreg before
12596 the <op>. If there is a constant, we stick it in the
12597 <op> instruction. We don't handle constants larger than
12598 16 bits, because we have no way to load the upper 16 bits
12599 (actually, we could handle them for the subset of cases
f5040a92 12600 in which we are not using $at). */
9c2799c2 12601 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12602 expr1.X_add_number = offset_expr.X_add_number;
12603 offset_expr.X_add_number = 0;
12604 if (expr1.X_add_number < -0x8000
12605 || expr1.X_add_number >= 0x8000)
12606 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12607 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12608 relax_start (offset_expr.X_add_symbol);
df58fc94 12609 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12610 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12611 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12612 mips_gp_register);
12613 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12614 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12615 relax_switch ();
67c0d1eb
RS
12616 if (gpdelay)
12617 macro_build (NULL, "nop", "");
12618 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12619 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12620 load_delay_nop ();
67c0d1eb
RS
12621 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12622 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12623 relax_end ();
12624
252b5132 12625 if (breg != 0)
67c0d1eb 12626 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12627 tempreg, tempreg, breg);
c0ebe874 12628 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12629 }
0a44bf69 12630 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12631 {
f5040a92
AO
12632 /* If this is a reference to an external symbol, we want
12633 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12634 add $tempreg,$tempreg,$gp
12635 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12636 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12637 Otherwise, for local symbols, we want:
12638 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12639 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12640 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12641 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12642 offset_expr.X_add_number = 0;
12643 if (expr1.X_add_number < -0x8000
12644 || expr1.X_add_number >= 0x8000)
12645 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12646 relax_start (offset_expr.X_add_symbol);
df58fc94 12647 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12648 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12649 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12650 mips_gp_register);
12651 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12652 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12653 if (breg != 0)
67c0d1eb 12654 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12655 tempreg, tempreg, breg);
c0ebe874 12656 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12657
4d7206a2 12658 relax_switch ();
f5040a92 12659 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12660 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12661 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12662 if (breg != 0)
67c0d1eb 12663 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12664 tempreg, tempreg, breg);
c0ebe874 12665 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12666 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12667 relax_end ();
f5040a92 12668 }
252b5132
RH
12669 else
12670 abort ();
12671
252b5132
RH
12672 break;
12673
833794fc
MR
12674 case M_JRADDIUSP:
12675 gas_assert (mips_opts.micromips);
12676 gas_assert (mips_opts.insn32);
12677 start_noreorder ();
12678 macro_build (NULL, "jr", "s", RA);
c0ebe874 12679 expr1.X_add_number = op[0] << 2;
833794fc
MR
12680 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12681 end_noreorder ();
12682 break;
12683
12684 case M_JRC:
12685 gas_assert (mips_opts.micromips);
12686 gas_assert (mips_opts.insn32);
c0ebe874 12687 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12688 if (mips_opts.noreorder)
12689 macro_build (NULL, "nop", "");
12690 break;
12691
252b5132
RH
12692 case M_LI:
12693 case M_LI_S:
c0ebe874 12694 load_register (op[0], &imm_expr, 0);
8fc2e39e 12695 break;
252b5132
RH
12696
12697 case M_DLI:
c0ebe874 12698 load_register (op[0], &imm_expr, 1);
8fc2e39e 12699 break;
252b5132
RH
12700
12701 case M_LI_SS:
12702 if (imm_expr.X_op == O_constant)
12703 {
8fc2e39e 12704 used_at = 1;
67c0d1eb 12705 load_register (AT, &imm_expr, 0);
c0ebe874 12706 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12707 break;
12708 }
12709 else
12710 {
b0e6f033
RS
12711 gas_assert (imm_expr.X_op == O_absent
12712 && offset_expr.X_op == O_symbol
90ecf173
MR
12713 && strcmp (segment_name (S_GET_SEGMENT
12714 (offset_expr.X_add_symbol)),
12715 ".lit4") == 0
12716 && offset_expr.X_add_number == 0);
c0ebe874 12717 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12718 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12719 break;
252b5132
RH
12720 }
12721
12722 case M_LI_D:
ca4e0257
RS
12723 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12724 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12725 order 32 bits of the value and the low order 32 bits are either
12726 zero or in OFFSET_EXPR. */
b0e6f033 12727 if (imm_expr.X_op == O_constant)
252b5132 12728 {
bad1aba3 12729 if (GPR_SIZE == 64)
c0ebe874 12730 load_register (op[0], &imm_expr, 1);
252b5132
RH
12731 else
12732 {
12733 int hreg, lreg;
12734
12735 if (target_big_endian)
12736 {
c0ebe874
RS
12737 hreg = op[0];
12738 lreg = op[0] + 1;
252b5132
RH
12739 }
12740 else
12741 {
c0ebe874
RS
12742 hreg = op[0] + 1;
12743 lreg = op[0];
252b5132
RH
12744 }
12745
12746 if (hreg <= 31)
67c0d1eb 12747 load_register (hreg, &imm_expr, 0);
252b5132
RH
12748 if (lreg <= 31)
12749 {
12750 if (offset_expr.X_op == O_absent)
67c0d1eb 12751 move_register (lreg, 0);
252b5132
RH
12752 else
12753 {
9c2799c2 12754 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12755 load_register (lreg, &offset_expr, 0);
252b5132
RH
12756 }
12757 }
12758 }
8fc2e39e 12759 break;
252b5132 12760 }
b0e6f033 12761 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12762
12763 /* We know that sym is in the .rdata section. First we get the
12764 upper 16 bits of the address. */
12765 if (mips_pic == NO_PIC)
12766 {
67c0d1eb 12767 macro_build_lui (&offset_expr, AT);
8fc2e39e 12768 used_at = 1;
252b5132 12769 }
0a44bf69 12770 else
252b5132 12771 {
67c0d1eb
RS
12772 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12773 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12774 used_at = 1;
252b5132 12775 }
bdaaa2e1 12776
252b5132 12777 /* Now we load the register(s). */
bad1aba3 12778 if (GPR_SIZE == 64)
8fc2e39e
TS
12779 {
12780 used_at = 1;
c0ebe874
RS
12781 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12782 BFD_RELOC_LO16, AT);
8fc2e39e 12783 }
252b5132
RH
12784 else
12785 {
8fc2e39e 12786 used_at = 1;
c0ebe874
RS
12787 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12788 BFD_RELOC_LO16, AT);
12789 if (op[0] != RA)
252b5132
RH
12790 {
12791 /* FIXME: How in the world do we deal with the possible
12792 overflow here? */
12793 offset_expr.X_add_number += 4;
67c0d1eb 12794 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12795 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12796 }
12797 }
252b5132
RH
12798 break;
12799
12800 case M_LI_DD:
ca4e0257
RS
12801 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12802 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12803 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12804 the value and the low order 32 bits are either zero or in
12805 OFFSET_EXPR. */
b0e6f033 12806 if (imm_expr.X_op == O_constant)
252b5132 12807 {
9b444f95
FS
12808 tempreg = ZERO;
12809 if (((FPR_SIZE == 64 && GPR_SIZE == 64)
12810 || !ISA_HAS_MXHC1 (mips_opts.isa))
12811 && imm_expr.X_add_number != 0)
12812 {
12813 used_at = 1;
12814 tempreg = AT;
12815 load_register (AT, &imm_expr, FPR_SIZE == 64);
12816 }
351cdf24 12817 if (FPR_SIZE == 64 && GPR_SIZE == 64)
9b444f95 12818 macro_build (NULL, "dmtc1", "t,S", tempreg, op[0]);
252b5132
RH
12819 else
12820 {
9b444f95
FS
12821 if (!ISA_HAS_MXHC1 (mips_opts.isa))
12822 {
12823 if (FPR_SIZE != 32)
12824 as_bad (_("Unable to generate `%s' compliant code "
12825 "without mthc1"),
12826 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12827 else
12828 macro_build (NULL, "mtc1", "t,G", tempreg, op[0] + 1);
12829 }
252b5132 12830 if (offset_expr.X_op == O_absent)
c0ebe874 12831 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12832 else
12833 {
9c2799c2 12834 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12835 load_register (AT, &offset_expr, 0);
c0ebe874 12836 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132 12837 }
9b444f95
FS
12838 if (ISA_HAS_MXHC1 (mips_opts.isa))
12839 {
12840 if (imm_expr.X_add_number != 0)
12841 {
12842 used_at = 1;
12843 tempreg = AT;
12844 load_register (AT, &imm_expr, 0);
12845 }
12846 macro_build (NULL, "mthc1", "t,G", tempreg, op[0]);
12847 }
252b5132
RH
12848 }
12849 break;
12850 }
12851
b0e6f033
RS
12852 gas_assert (imm_expr.X_op == O_absent
12853 && offset_expr.X_op == O_symbol
90ecf173 12854 && offset_expr.X_add_number == 0);
252b5132
RH
12855 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12856 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12857 {
12858 op[2] = mips_gp_register;
f2ae14a1
RS
12859 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12860 offset_reloc[1] = BFD_RELOC_UNUSED;
12861 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12862 }
12863 else
12864 {
9c2799c2 12865 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12866 used_at = 1;
0a44bf69 12867 if (mips_pic != NO_PIC)
67c0d1eb
RS
12868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12869 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12870 else
12871 {
12872 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12873 macro_build_lui (&offset_expr, AT);
252b5132 12874 }
bdaaa2e1 12875
c0ebe874 12876 op[2] = AT;
f2ae14a1
RS
12877 offset_reloc[0] = BFD_RELOC_LO16;
12878 offset_reloc[1] = BFD_RELOC_UNUSED;
12879 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12880 }
f2ae14a1 12881 align = 8;
6f2117ba 12882 /* Fall through. */
c4a68bea 12883
252b5132 12884 case M_L_DAB:
6f2117ba
PH
12885 /* The MIPS assembler seems to check for X_add_number not
12886 being double aligned and generating:
12887 lui at,%hi(foo+1)
12888 addu at,at,v1
12889 addiu at,at,%lo(foo+1)
12890 lwc1 f2,0(at)
12891 lwc1 f3,4(at)
12892 But, the resulting address is the same after relocation so why
12893 generate the extra instruction? */
bdaaa2e1 12894 /* Itbl support may require additional care here. */
252b5132 12895 coproc = 1;
df58fc94 12896 fmt = "T,o(b)";
0aa27725 12897 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12898 {
12899 s = "ldc1";
df58fc94 12900 goto ld_st;
252b5132 12901 }
252b5132 12902 s = "lwc1";
252b5132
RH
12903 goto ldd_std;
12904
12905 case M_S_DAB:
df58fc94
RS
12906 gas_assert (!mips_opts.micromips);
12907 /* Itbl support may require additional care here. */
12908 coproc = 1;
12909 fmt = "T,o(b)";
0aa27725 12910 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12911 {
12912 s = "sdc1";
df58fc94 12913 goto ld_st;
252b5132 12914 }
252b5132 12915 s = "swc1";
252b5132
RH
12916 goto ldd_std;
12917
e407c74b
NC
12918 case M_LQ_AB:
12919 fmt = "t,o(b)";
12920 s = "lq";
12921 goto ld;
12922
12923 case M_SQ_AB:
12924 fmt = "t,o(b)";
12925 s = "sq";
12926 goto ld_st;
12927
252b5132 12928 case M_LD_AB:
df58fc94 12929 fmt = "t,o(b)";
bad1aba3 12930 if (GPR_SIZE == 64)
252b5132
RH
12931 {
12932 s = "ld";
12933 goto ld;
12934 }
252b5132 12935 s = "lw";
252b5132
RH
12936 goto ldd_std;
12937
12938 case M_SD_AB:
df58fc94 12939 fmt = "t,o(b)";
bad1aba3 12940 if (GPR_SIZE == 64)
252b5132
RH
12941 {
12942 s = "sd";
df58fc94 12943 goto ld_st;
252b5132 12944 }
252b5132 12945 s = "sw";
252b5132
RH
12946
12947 ldd_std:
f2ae14a1
RS
12948 /* Even on a big endian machine $fn comes before $fn+1. We have
12949 to adjust when loading from memory. We set coproc if we must
12950 load $fn+1 first. */
12951 /* Itbl support may require additional care here. */
12952 if (!target_big_endian)
12953 coproc = 0;
12954
c0ebe874 12955 breg = op[2];
f2ae14a1
RS
12956 if (small_offset_p (0, align, 16))
12957 {
12958 ep = &offset_expr;
12959 if (!small_offset_p (4, align, 16))
12960 {
12961 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12962 -1, offset_reloc[0], offset_reloc[1],
12963 offset_reloc[2]);
12964 expr1.X_add_number = 0;
12965 ep = &expr1;
12966 breg = AT;
12967 used_at = 1;
12968 offset_reloc[0] = BFD_RELOC_LO16;
12969 offset_reloc[1] = BFD_RELOC_UNUSED;
12970 offset_reloc[2] = BFD_RELOC_UNUSED;
12971 }
c0ebe874 12972 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12973 {
12974 ep->X_add_number += 4;
c0ebe874 12975 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12976 offset_reloc[1], offset_reloc[2], breg);
12977 ep->X_add_number -= 4;
c0ebe874 12978 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12979 offset_reloc[1], offset_reloc[2], breg);
12980 }
12981 else
12982 {
c0ebe874 12983 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12984 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12985 breg);
12986 ep->X_add_number += 4;
c0ebe874 12987 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12988 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12989 breg);
12990 }
12991 break;
12992 }
12993
252b5132
RH
12994 if (offset_expr.X_op != O_symbol
12995 && offset_expr.X_op != O_constant)
12996 {
1661c76c 12997 as_bad (_("expression too complex"));
252b5132
RH
12998 offset_expr.X_op = O_constant;
12999 }
13000
2051e8c4
MR
13001 if (HAVE_32BIT_ADDRESSES
13002 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
13003 {
13004 char value [32];
13005
13006 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 13007 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 13008 }
2051e8c4 13009
90ecf173 13010 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
13011 {
13012 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
13013 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
13014 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
13015 If we have a base register, we use this
13016 addu $at,$breg,$gp
c0ebe874
RS
13017 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
13018 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
13019 If this is not a GP relative symbol, we want
13020 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
13021 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13022 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
13023 If there is a base register, we add it to $at after the
13024 lui instruction. If there is a constant, we always use
13025 the last case. */
39a59cf8
MR
13026 if (offset_expr.X_op == O_symbol
13027 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 13028 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 13029 {
4d7206a2 13030 relax_start (offset_expr.X_add_symbol);
252b5132
RH
13031 if (breg == 0)
13032 {
c9914766 13033 tempreg = mips_gp_register;
252b5132
RH
13034 }
13035 else
13036 {
67c0d1eb 13037 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 13038 AT, breg, mips_gp_register);
252b5132 13039 tempreg = AT;
252b5132
RH
13040 used_at = 1;
13041 }
13042
beae10d5 13043 /* Itbl support may require additional care here. */
c0ebe874 13044 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 13045 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
13046 offset_expr.X_add_number += 4;
13047
13048 /* Set mips_optimize to 2 to avoid inserting an
13049 undesired nop. */
13050 hold_mips_optimize = mips_optimize;
13051 mips_optimize = 2;
beae10d5 13052 /* Itbl support may require additional care here. */
c0ebe874 13053 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 13054 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
13055 mips_optimize = hold_mips_optimize;
13056
4d7206a2 13057 relax_switch ();
252b5132 13058
0970e49e 13059 offset_expr.X_add_number -= 4;
252b5132 13060 }
8fc2e39e 13061 used_at = 1;
f2ae14a1
RS
13062 if (offset_high_part (offset_expr.X_add_number, 16)
13063 != offset_high_part (offset_expr.X_add_number + 4, 16))
13064 {
13065 load_address (AT, &offset_expr, &used_at);
13066 offset_expr.X_op = O_constant;
13067 offset_expr.X_add_number = 0;
13068 }
13069 else
13070 macro_build_lui (&offset_expr, AT);
252b5132 13071 if (breg != 0)
67c0d1eb 13072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 13073 /* Itbl support may require additional care here. */
c0ebe874 13074 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 13075 BFD_RELOC_LO16, AT);
252b5132
RH
13076 /* FIXME: How do we handle overflow here? */
13077 offset_expr.X_add_number += 4;
beae10d5 13078 /* Itbl support may require additional care here. */
c0ebe874 13079 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 13080 BFD_RELOC_LO16, AT);
4d7206a2
RS
13081 if (mips_relax.sequence)
13082 relax_end ();
bdaaa2e1 13083 }
0a44bf69 13084 else if (!mips_big_got)
252b5132 13085 {
252b5132
RH
13086 /* If this is a reference to an external symbol, we want
13087 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13088 nop
c0ebe874
RS
13089 <op> op[0],0($at)
13090 <op> op[0]+1,4($at)
252b5132
RH
13091 Otherwise we want
13092 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13093 nop
c0ebe874
RS
13094 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13095 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
13096 If there is a base register we add it to $at before the
13097 lwc1 instructions. If there is a constant we include it
13098 in the lwc1 instructions. */
13099 used_at = 1;
13100 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
13101 if (expr1.X_add_number < -0x8000
13102 || expr1.X_add_number >= 0x8000 - 4)
13103 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 13104 load_got_offset (AT, &offset_expr);
269137b2 13105 load_delay_nop ();
252b5132 13106 if (breg != 0)
67c0d1eb 13107 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
13108
13109 /* Set mips_optimize to 2 to avoid inserting an undesired
13110 nop. */
13111 hold_mips_optimize = mips_optimize;
13112 mips_optimize = 2;
4d7206a2 13113
beae10d5 13114 /* Itbl support may require additional care here. */
4d7206a2 13115 relax_start (offset_expr.X_add_symbol);
c0ebe874 13116 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 13117 BFD_RELOC_LO16, AT);
4d7206a2 13118 expr1.X_add_number += 4;
c0ebe874 13119 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 13120 BFD_RELOC_LO16, AT);
4d7206a2 13121 relax_switch ();
c0ebe874 13122 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 13123 BFD_RELOC_LO16, AT);
4d7206a2 13124 offset_expr.X_add_number += 4;
c0ebe874 13125 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 13126 BFD_RELOC_LO16, AT);
4d7206a2 13127 relax_end ();
252b5132 13128
4d7206a2 13129 mips_optimize = hold_mips_optimize;
252b5132 13130 }
0a44bf69 13131 else if (mips_big_got)
252b5132 13132 {
67c0d1eb 13133 int gpdelay;
252b5132
RH
13134
13135 /* If this is a reference to an external symbol, we want
13136 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
13137 addu $at,$at,$gp
13138 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
13139 nop
c0ebe874
RS
13140 <op> op[0],0($at)
13141 <op> op[0]+1,4($at)
252b5132
RH
13142 Otherwise we want
13143 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13144 nop
c0ebe874
RS
13145 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13146 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
13147 If there is a base register we add it to $at before the
13148 lwc1 instructions. If there is a constant we include it
13149 in the lwc1 instructions. */
13150 used_at = 1;
13151 expr1.X_add_number = offset_expr.X_add_number;
13152 offset_expr.X_add_number = 0;
13153 if (expr1.X_add_number < -0x8000
13154 || expr1.X_add_number >= 0x8000 - 4)
13155 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 13156 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 13157 relax_start (offset_expr.X_add_symbol);
df58fc94 13158 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
13159 AT, BFD_RELOC_MIPS_GOT_HI16);
13160 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 13161 AT, AT, mips_gp_register);
67c0d1eb 13162 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 13163 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 13164 load_delay_nop ();
252b5132 13165 if (breg != 0)
67c0d1eb 13166 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 13167 /* Itbl support may require additional care here. */
c0ebe874 13168 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 13169 BFD_RELOC_LO16, AT);
252b5132
RH
13170 expr1.X_add_number += 4;
13171
13172 /* Set mips_optimize to 2 to avoid inserting an undesired
13173 nop. */
13174 hold_mips_optimize = mips_optimize;
13175 mips_optimize = 2;
beae10d5 13176 /* Itbl support may require additional care here. */
c0ebe874 13177 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 13178 BFD_RELOC_LO16, AT);
252b5132
RH
13179 mips_optimize = hold_mips_optimize;
13180 expr1.X_add_number -= 4;
13181
4d7206a2
RS
13182 relax_switch ();
13183 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
13184 if (gpdelay)
13185 macro_build (NULL, "nop", "");
13186 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
13187 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 13188 load_delay_nop ();
252b5132 13189 if (breg != 0)
67c0d1eb 13190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 13191 /* Itbl support may require additional care here. */
c0ebe874 13192 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 13193 BFD_RELOC_LO16, AT);
4d7206a2 13194 offset_expr.X_add_number += 4;
252b5132
RH
13195
13196 /* Set mips_optimize to 2 to avoid inserting an undesired
13197 nop. */
13198 hold_mips_optimize = mips_optimize;
13199 mips_optimize = 2;
beae10d5 13200 /* Itbl support may require additional care here. */
c0ebe874 13201 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 13202 BFD_RELOC_LO16, AT);
252b5132 13203 mips_optimize = hold_mips_optimize;
4d7206a2 13204 relax_end ();
252b5132 13205 }
252b5132
RH
13206 else
13207 abort ();
13208
252b5132 13209 break;
3739860c 13210
dd6a37e7 13211 case M_SAA_AB:
dd6a37e7 13212 s = "saa";
0db377d0 13213 goto saa_saad;
dd6a37e7 13214 case M_SAAD_AB:
dd6a37e7 13215 s = "saad";
0db377d0
MR
13216 saa_saad:
13217 gas_assert (!mips_opts.micromips);
7f3c4072 13218 offbits = 0;
dd6a37e7
AP
13219 fmt = "t,(b)";
13220 goto ld_st;
13221
252b5132
RH
13222 /* New code added to support COPZ instructions.
13223 This code builds table entries out of the macros in mip_opcodes.
13224 R4000 uses interlocks to handle coproc delays.
13225 Other chips (like the R3000) require nops to be inserted for delays.
13226
f72c8c98 13227 FIXME: Currently, we require that the user handle delays.
252b5132
RH
13228 In order to fill delay slots for non-interlocked chips,
13229 we must have a way to specify delays based on the coprocessor.
13230 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
13231 What are the side-effects of the cop instruction?
13232 What cache support might we have and what are its effects?
13233 Both coprocessor & memory require delays. how long???
bdaaa2e1 13234 What registers are read/set/modified?
252b5132
RH
13235
13236 If an itbl is provided to interpret cop instructions,
bdaaa2e1 13237 this knowledge can be encoded in the itbl spec. */
252b5132
RH
13238
13239 case M_COP0:
13240 s = "c0";
13241 goto copz;
13242 case M_COP1:
13243 s = "c1";
13244 goto copz;
13245 case M_COP2:
13246 s = "c2";
13247 goto copz;
13248 case M_COP3:
13249 s = "c3";
13250 copz:
df58fc94 13251 gas_assert (!mips_opts.micromips);
252b5132
RH
13252 /* For now we just do C (same as Cz). The parameter will be
13253 stored in insn_opcode by mips_ip. */
c8276761 13254 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 13255 break;
252b5132 13256
ea1fb5dc 13257 case M_MOVE:
c0ebe874 13258 move_register (op[0], op[1]);
8fc2e39e 13259 break;
ea1fb5dc 13260
833794fc
MR
13261 case M_MOVEP:
13262 gas_assert (mips_opts.micromips);
13263 gas_assert (mips_opts.insn32);
c0ebe874
RS
13264 move_register (micromips_to_32_reg_h_map1[op[0]],
13265 micromips_to_32_reg_m_map[op[1]]);
13266 move_register (micromips_to_32_reg_h_map2[op[0]],
13267 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
13268 break;
13269
252b5132
RH
13270 case M_DMUL:
13271 dbl = 1;
1a0670f3 13272 /* Fall through. */
252b5132 13273 case M_MUL:
e407c74b 13274 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
13275 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13276 op[2]);
e407c74b
NC
13277 else
13278 {
c0ebe874
RS
13279 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13280 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 13281 }
8fc2e39e 13282 break;
252b5132
RH
13283
13284 case M_DMUL_I:
13285 dbl = 1;
1a0670f3 13286 /* Fall through. */
252b5132
RH
13287 case M_MUL_I:
13288 /* The MIPS assembler some times generates shifts and adds. I'm
13289 not trying to be that fancy. GCC should do this for us
13290 anyway. */
8fc2e39e 13291 used_at = 1;
67c0d1eb 13292 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
13293 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13294 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
13295 break;
13296
13297 case M_DMULO_I:
13298 dbl = 1;
1a0670f3 13299 /* Fall through. */
252b5132
RH
13300 case M_MULO_I:
13301 imm = 1;
13302 goto do_mulo;
13303
13304 case M_DMULO:
13305 dbl = 1;
1a0670f3 13306 /* Fall through. */
252b5132
RH
13307 case M_MULO:
13308 do_mulo:
7d10b47d 13309 start_noreorder ();
8fc2e39e 13310 used_at = 1;
252b5132 13311 if (imm)
67c0d1eb 13312 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
13313 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13314 op[1], imm ? AT : op[2]);
13315 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13316 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 13317 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 13318 if (mips_trap)
c0ebe874 13319 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
13320 else
13321 {
df58fc94
RS
13322 if (mips_opts.micromips)
13323 micromips_label_expr (&label_expr);
13324 else
13325 label_expr.X_add_number = 8;
c0ebe874 13326 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 13327 macro_build (NULL, "nop", "");
df58fc94
RS
13328 macro_build (NULL, "break", BRK_FMT, 6);
13329 if (mips_opts.micromips)
13330 micromips_add_label ();
252b5132 13331 }
7d10b47d 13332 end_noreorder ();
c0ebe874 13333 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
13334 break;
13335
13336 case M_DMULOU_I:
13337 dbl = 1;
1a0670f3 13338 /* Fall through. */
252b5132
RH
13339 case M_MULOU_I:
13340 imm = 1;
13341 goto do_mulou;
13342
13343 case M_DMULOU:
13344 dbl = 1;
1a0670f3 13345 /* Fall through. */
252b5132
RH
13346 case M_MULOU:
13347 do_mulou:
7d10b47d 13348 start_noreorder ();
8fc2e39e 13349 used_at = 1;
252b5132 13350 if (imm)
67c0d1eb
RS
13351 load_register (AT, &imm_expr, dbl);
13352 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 13353 op[1], imm ? AT : op[2]);
df58fc94 13354 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 13355 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 13356 if (mips_trap)
df58fc94 13357 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
13358 else
13359 {
df58fc94
RS
13360 if (mips_opts.micromips)
13361 micromips_label_expr (&label_expr);
13362 else
13363 label_expr.X_add_number = 8;
13364 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 13365 macro_build (NULL, "nop", "");
df58fc94
RS
13366 macro_build (NULL, "break", BRK_FMT, 6);
13367 if (mips_opts.micromips)
13368 micromips_add_label ();
252b5132 13369 }
7d10b47d 13370 end_noreorder ();
252b5132
RH
13371 break;
13372
771c7ce4 13373 case M_DROL:
fef14a42 13374 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 13375 {
c0ebe874 13376 if (op[0] == op[1])
82dd0097
CD
13377 {
13378 tempreg = AT;
13379 used_at = 1;
13380 }
13381 else
c0ebe874
RS
13382 tempreg = op[0];
13383 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13384 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 13385 break;
82dd0097 13386 }
8fc2e39e 13387 used_at = 1;
c0ebe874
RS
13388 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13389 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13390 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13391 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13392 break;
13393
252b5132 13394 case M_ROL:
fef14a42 13395 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13396 {
c0ebe874 13397 if (op[0] == op[1])
82dd0097
CD
13398 {
13399 tempreg = AT;
13400 used_at = 1;
13401 }
13402 else
c0ebe874
RS
13403 tempreg = op[0];
13404 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13405 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 13406 break;
82dd0097 13407 }
8fc2e39e 13408 used_at = 1;
c0ebe874
RS
13409 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13410 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13411 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13412 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13413 break;
13414
771c7ce4
TS
13415 case M_DROL_I:
13416 {
13417 unsigned int rot;
e0471c16
TS
13418 const char *l;
13419 const char *rr;
771c7ce4 13420
771c7ce4 13421 rot = imm_expr.X_add_number & 0x3f;
fef14a42 13422 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
13423 {
13424 rot = (64 - rot) & 0x3f;
13425 if (rot >= 32)
c0ebe874 13426 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 13427 else
c0ebe874 13428 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13429 break;
60b63b72 13430 }
483fc7cd 13431 if (rot == 0)
483fc7cd 13432 {
c0ebe874 13433 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13434 break;
483fc7cd 13435 }
82dd0097 13436 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 13437 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 13438 rot &= 0x1f;
8fc2e39e 13439 used_at = 1;
c0ebe874
RS
13440 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13441 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13442 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13443 }
13444 break;
13445
252b5132 13446 case M_ROL_I:
771c7ce4
TS
13447 {
13448 unsigned int rot;
13449
771c7ce4 13450 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13451 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 13452 {
c0ebe874
RS
13453 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13454 (32 - rot) & 0x1f);
8fc2e39e 13455 break;
60b63b72 13456 }
483fc7cd 13457 if (rot == 0)
483fc7cd 13458 {
c0ebe874 13459 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13460 break;
483fc7cd 13461 }
8fc2e39e 13462 used_at = 1;
c0ebe874
RS
13463 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13464 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13465 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13466 }
13467 break;
13468
13469 case M_DROR:
fef14a42 13470 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 13471 {
c0ebe874 13472 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 13473 break;
82dd0097 13474 }
8fc2e39e 13475 used_at = 1;
c0ebe874
RS
13476 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13477 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13478 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13479 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13480 break;
13481
13482 case M_ROR:
fef14a42 13483 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13484 {
c0ebe874 13485 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 13486 break;
82dd0097 13487 }
8fc2e39e 13488 used_at = 1;
c0ebe874
RS
13489 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13490 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13491 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13492 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13493 break;
13494
771c7ce4
TS
13495 case M_DROR_I:
13496 {
13497 unsigned int rot;
e0471c16
TS
13498 const char *l;
13499 const char *rr;
771c7ce4 13500
771c7ce4 13501 rot = imm_expr.X_add_number & 0x3f;
fef14a42 13502 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
13503 {
13504 if (rot >= 32)
c0ebe874 13505 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 13506 else
c0ebe874 13507 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13508 break;
82dd0097 13509 }
483fc7cd 13510 if (rot == 0)
483fc7cd 13511 {
c0ebe874 13512 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13513 break;
483fc7cd 13514 }
91d6fa6a 13515 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
13516 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13517 rot &= 0x1f;
8fc2e39e 13518 used_at = 1;
c0ebe874
RS
13519 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13520 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13521 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13522 }
13523 break;
13524
252b5132 13525 case M_ROR_I:
771c7ce4
TS
13526 {
13527 unsigned int rot;
13528
771c7ce4 13529 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13530 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13531 {
c0ebe874 13532 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13533 break;
82dd0097 13534 }
483fc7cd 13535 if (rot == 0)
483fc7cd 13536 {
c0ebe874 13537 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13538 break;
483fc7cd 13539 }
8fc2e39e 13540 used_at = 1;
c0ebe874
RS
13541 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13542 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13543 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13544 }
252b5132
RH
13545 break;
13546
252b5132 13547 case M_SEQ:
c0ebe874
RS
13548 if (op[1] == 0)
13549 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13550 else if (op[2] == 0)
13551 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13552 else
13553 {
c0ebe874
RS
13554 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13555 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13556 }
8fc2e39e 13557 break;
252b5132
RH
13558
13559 case M_SEQ_I:
b0e6f033 13560 if (imm_expr.X_add_number == 0)
252b5132 13561 {
c0ebe874 13562 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13563 break;
252b5132 13564 }
c0ebe874 13565 if (op[1] == 0)
252b5132 13566 {
1661c76c 13567 as_warn (_("instruction %s: result is always false"),
252b5132 13568 ip->insn_mo->name);
c0ebe874 13569 move_register (op[0], 0);
8fc2e39e 13570 break;
252b5132 13571 }
dd3cbb7e
NC
13572 if (CPU_HAS_SEQ (mips_opts.arch)
13573 && -512 <= imm_expr.X_add_number
13574 && imm_expr.X_add_number < 512)
13575 {
c0ebe874 13576 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13577 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13578 break;
13579 }
b0e6f033 13580 if (imm_expr.X_add_number >= 0
252b5132 13581 && imm_expr.X_add_number < 0x10000)
c0ebe874 13582 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13583 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13584 && imm_expr.X_add_number < 0)
13585 {
13586 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13587 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13588 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13589 }
dd3cbb7e
NC
13590 else if (CPU_HAS_SEQ (mips_opts.arch))
13591 {
13592 used_at = 1;
bad1aba3 13593 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13594 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13595 break;
13596 }
252b5132
RH
13597 else
13598 {
bad1aba3 13599 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13600 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13601 used_at = 1;
13602 }
c0ebe874 13603 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13604 break;
252b5132 13605
c0ebe874 13606 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13607 s = "slt";
13608 goto sge;
13609 case M_SGEU:
13610 s = "sltu";
13611 sge:
c0ebe874
RS
13612 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13613 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13614 break;
252b5132 13615
6f2117ba 13616 case M_SGE_I: /* X >= I <==> not (X < I). */
252b5132 13617 case M_SGEU_I:
b0e6f033 13618 if (imm_expr.X_add_number >= -0x8000
252b5132 13619 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13620 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13621 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13622 else
13623 {
bad1aba3 13624 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13625 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13626 op[0], op[1], AT);
252b5132
RH
13627 used_at = 1;
13628 }
c0ebe874 13629 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13630 break;
252b5132 13631
6f2117ba 13632 case M_SGT: /* X > Y <==> Y < X. */
252b5132
RH
13633 s = "slt";
13634 goto sgt;
13635 case M_SGTU:
13636 s = "sltu";
13637 sgt:
c0ebe874 13638 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13639 break;
252b5132 13640
6f2117ba 13641 case M_SGT_I: /* X > I <==> I < X. */
252b5132
RH
13642 s = "slt";
13643 goto sgti;
13644 case M_SGTU_I:
13645 s = "sltu";
13646 sgti:
8fc2e39e 13647 used_at = 1;
bad1aba3 13648 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13649 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13650 break;
13651
6f2117ba 13652 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X). */
252b5132
RH
13653 s = "slt";
13654 goto sle;
13655 case M_SLEU:
13656 s = "sltu";
13657 sle:
c0ebe874
RS
13658 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13659 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13660 break;
252b5132 13661
c0ebe874 13662 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13663 s = "slt";
13664 goto slei;
13665 case M_SLEU_I:
13666 s = "sltu";
13667 slei:
8fc2e39e 13668 used_at = 1;
bad1aba3 13669 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13670 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13671 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13672 break;
13673
13674 case M_SLT_I:
b0e6f033 13675 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13676 && imm_expr.X_add_number < 0x8000)
13677 {
c0ebe874
RS
13678 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13679 BFD_RELOC_LO16);
8fc2e39e 13680 break;
252b5132 13681 }
8fc2e39e 13682 used_at = 1;
bad1aba3 13683 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13684 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13685 break;
13686
13687 case M_SLTU_I:
b0e6f033 13688 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13689 && imm_expr.X_add_number < 0x8000)
13690 {
c0ebe874 13691 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13692 BFD_RELOC_LO16);
8fc2e39e 13693 break;
252b5132 13694 }
8fc2e39e 13695 used_at = 1;
bad1aba3 13696 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13697 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13698 break;
13699
13700 case M_SNE:
c0ebe874
RS
13701 if (op[1] == 0)
13702 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13703 else if (op[2] == 0)
13704 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13705 else
13706 {
c0ebe874
RS
13707 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13708 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13709 }
8fc2e39e 13710 break;
252b5132
RH
13711
13712 case M_SNE_I:
b0e6f033 13713 if (imm_expr.X_add_number == 0)
252b5132 13714 {
c0ebe874 13715 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13716 break;
252b5132 13717 }
c0ebe874 13718 if (op[1] == 0)
252b5132 13719 {
1661c76c 13720 as_warn (_("instruction %s: result is always true"),
252b5132 13721 ip->insn_mo->name);
bad1aba3 13722 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13723 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13724 break;
252b5132 13725 }
dd3cbb7e
NC
13726 if (CPU_HAS_SEQ (mips_opts.arch)
13727 && -512 <= imm_expr.X_add_number
13728 && imm_expr.X_add_number < 512)
13729 {
c0ebe874 13730 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13731 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13732 break;
13733 }
b0e6f033 13734 if (imm_expr.X_add_number >= 0
252b5132
RH
13735 && imm_expr.X_add_number < 0x10000)
13736 {
c0ebe874
RS
13737 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13738 BFD_RELOC_LO16);
252b5132 13739 }
b0e6f033 13740 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13741 && imm_expr.X_add_number < 0)
13742 {
13743 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13744 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13745 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13746 }
dd3cbb7e
NC
13747 else if (CPU_HAS_SEQ (mips_opts.arch))
13748 {
13749 used_at = 1;
bad1aba3 13750 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13751 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13752 break;
13753 }
252b5132
RH
13754 else
13755 {
bad1aba3 13756 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13757 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13758 used_at = 1;
13759 }
c0ebe874 13760 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13761 break;
252b5132 13762
df58fc94
RS
13763 case M_SUB_I:
13764 s = "addi";
13765 s2 = "sub";
387e7624
FS
13766 if (ISA_IS_R6 (mips_opts.isa))
13767 goto do_subi_i;
13768 else
13769 goto do_subi;
df58fc94
RS
13770 case M_SUBU_I:
13771 s = "addiu";
13772 s2 = "subu";
13773 goto do_subi;
252b5132
RH
13774 case M_DSUB_I:
13775 dbl = 1;
df58fc94
RS
13776 s = "daddi";
13777 s2 = "dsub";
387e7624 13778 if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
df58fc94 13779 goto do_subi;
b0e6f033 13780 if (imm_expr.X_add_number > -0x200
387e7624
FS
13781 && imm_expr.X_add_number <= 0x200
13782 && !ISA_IS_R6 (mips_opts.isa))
252b5132 13783 {
b0e6f033
RS
13784 macro_build (NULL, s, "t,r,.", op[0], op[1],
13785 (int) -imm_expr.X_add_number);
8fc2e39e 13786 break;
252b5132 13787 }
df58fc94 13788 goto do_subi_i;
252b5132
RH
13789 case M_DSUBU_I:
13790 dbl = 1;
df58fc94
RS
13791 s = "daddiu";
13792 s2 = "dsubu";
13793 do_subi:
b0e6f033 13794 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13795 && imm_expr.X_add_number <= 0x8000)
13796 {
13797 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13798 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13799 break;
252b5132 13800 }
df58fc94 13801 do_subi_i:
8fc2e39e 13802 used_at = 1;
67c0d1eb 13803 load_register (AT, &imm_expr, dbl);
c0ebe874 13804 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13805 break;
13806
13807 case M_TEQ_I:
13808 s = "teq";
13809 goto trap;
13810 case M_TGE_I:
13811 s = "tge";
13812 goto trap;
13813 case M_TGEU_I:
13814 s = "tgeu";
13815 goto trap;
13816 case M_TLT_I:
13817 s = "tlt";
13818 goto trap;
13819 case M_TLTU_I:
13820 s = "tltu";
13821 goto trap;
13822 case M_TNE_I:
13823 s = "tne";
13824 trap:
8fc2e39e 13825 used_at = 1;
bad1aba3 13826 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13827 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13828 break;
13829
252b5132 13830 case M_TRUNCWS:
43841e91 13831 case M_TRUNCWD:
df58fc94 13832 gas_assert (!mips_opts.micromips);
0aa27725 13833 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13834 used_at = 1;
252b5132
RH
13835
13836 /*
13837 * Is the double cfc1 instruction a bug in the mips assembler;
13838 * or is there a reason for it?
13839 */
7d10b47d 13840 start_noreorder ();
9204ccd4
MR
13841 macro_build (NULL, "cfc1", "t,g", op[2], FCSR);
13842 macro_build (NULL, "cfc1", "t,g", op[2], FCSR);
67c0d1eb 13843 macro_build (NULL, "nop", "");
252b5132 13844 expr1.X_add_number = 3;
c0ebe874 13845 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13846 expr1.X_add_number = 2;
67c0d1eb 13847 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
9204ccd4 13848 macro_build (NULL, "ctc1", "t,g", AT, FCSR);
67c0d1eb
RS
13849 macro_build (NULL, "nop", "");
13850 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874 13851 op[0], op[1]);
9204ccd4 13852 macro_build (NULL, "ctc1", "t,g", op[2], FCSR);
67c0d1eb 13853 macro_build (NULL, "nop", "");
7d10b47d 13854 end_noreorder ();
252b5132
RH
13855 break;
13856
f2ae14a1 13857 case M_ULH_AB:
252b5132 13858 s = "lb";
df58fc94
RS
13859 s2 = "lbu";
13860 off = 1;
13861 goto uld_st;
f2ae14a1 13862 case M_ULHU_AB:
252b5132 13863 s = "lbu";
df58fc94
RS
13864 s2 = "lbu";
13865 off = 1;
13866 goto uld_st;
f2ae14a1 13867 case M_ULW_AB:
df58fc94
RS
13868 s = "lwl";
13869 s2 = "lwr";
7f3c4072 13870 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13871 off = 3;
13872 goto uld_st;
f2ae14a1 13873 case M_ULD_AB:
252b5132
RH
13874 s = "ldl";
13875 s2 = "ldr";
7f3c4072 13876 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13877 off = 7;
df58fc94 13878 goto uld_st;
f2ae14a1 13879 case M_USH_AB:
df58fc94
RS
13880 s = "sb";
13881 s2 = "sb";
13882 off = 1;
13883 ust = 1;
13884 goto uld_st;
f2ae14a1 13885 case M_USW_AB:
df58fc94
RS
13886 s = "swl";
13887 s2 = "swr";
7f3c4072 13888 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13889 off = 3;
df58fc94
RS
13890 ust = 1;
13891 goto uld_st;
f2ae14a1 13892 case M_USD_AB:
df58fc94
RS
13893 s = "sdl";
13894 s2 = "sdr";
7f3c4072 13895 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13896 off = 7;
13897 ust = 1;
13898
13899 uld_st:
c0ebe874 13900 breg = op[2];
f2ae14a1 13901 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13902 ep = &offset_expr;
13903 expr1.X_add_number = 0;
f2ae14a1 13904 if (large_offset)
df58fc94
RS
13905 {
13906 used_at = 1;
13907 tempreg = AT;
f2ae14a1
RS
13908 if (small_offset_p (0, align, 16))
13909 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13910 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13911 else
13912 {
13913 load_address (tempreg, ep, &used_at);
13914 if (breg != 0)
13915 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13916 tempreg, tempreg, breg);
13917 }
13918 offset_reloc[0] = BFD_RELOC_LO16;
13919 offset_reloc[1] = BFD_RELOC_UNUSED;
13920 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13921 breg = tempreg;
c0ebe874 13922 tempreg = op[0];
df58fc94
RS
13923 ep = &expr1;
13924 }
c0ebe874 13925 else if (!ust && op[0] == breg)
8fc2e39e
TS
13926 {
13927 used_at = 1;
13928 tempreg = AT;
13929 }
252b5132 13930 else
c0ebe874 13931 tempreg = op[0];
af22f5b2 13932
df58fc94
RS
13933 if (off == 1)
13934 goto ulh_sh;
252b5132 13935
90ecf173 13936 if (!target_big_endian)
df58fc94 13937 ep->X_add_number += off;
f2ae14a1 13938 if (offbits == 12)
c8276761 13939 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13940 else
13941 macro_build (ep, s, "t,o(b)", tempreg, -1,
13942 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13943
90ecf173 13944 if (!target_big_endian)
df58fc94 13945 ep->X_add_number -= off;
252b5132 13946 else
df58fc94 13947 ep->X_add_number += off;
f2ae14a1 13948 if (offbits == 12)
df58fc94 13949 macro_build (NULL, s2, "t,~(b)",
c8276761 13950 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13951 else
13952 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13953 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13954
df58fc94 13955 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13956 if (!ust && op[0] != tempreg)
df58fc94
RS
13957 {
13958 /* Protect second load's delay slot. */
13959 load_delay_nop ();
c0ebe874 13960 move_register (op[0], tempreg);
df58fc94 13961 }
8fc2e39e 13962 break;
252b5132 13963
df58fc94 13964 ulh_sh:
d6bc6245 13965 used_at = 1;
df58fc94
RS
13966 if (target_big_endian == ust)
13967 ep->X_add_number += off;
c0ebe874 13968 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13969 macro_build (ep, s, "t,o(b)", tempreg, -1,
13970 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13971
13972 /* For halfword transfers we need a temporary register to shuffle
13973 bytes. Unfortunately for M_USH_A we have none available before
13974 the next store as AT holds the base address. We deal with this
13975 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13976 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13977 if (ust)
c0ebe874 13978 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13979
13980 if (target_big_endian == ust)
13981 ep->X_add_number -= off;
252b5132 13982 else
df58fc94 13983 ep->X_add_number += off;
f2ae14a1
RS
13984 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13985 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13986
df58fc94 13987 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13988 if (ust && large_offset)
df58fc94
RS
13989 {
13990 if (target_big_endian)
13991 ep->X_add_number += off;
13992 else
13993 ep->X_add_number -= off;
f2ae14a1
RS
13994 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13995 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13996 }
13997 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13998 if (!ust || large_offset)
df58fc94 13999 {
c0ebe874 14000 tempreg = !large_offset ? AT : op[0];
df58fc94 14001 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 14002 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 14003 }
252b5132
RH
14004 break;
14005
14006 default:
14007 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 14008 are added dynamically. */
1661c76c 14009 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
14010 break;
14011 }
741fe287 14012 if (!mips_opts.at && used_at)
1661c76c 14013 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
14014}
14015
14016/* Implement macros in mips16 mode. */
14017
14018static void
17a2f251 14019mips16_macro (struct mips_cl_insn *ip)
252b5132 14020{
c0ebe874 14021 const struct mips_operand_array *operands;
252b5132 14022 int mask;
c0ebe874 14023 int tmp;
252b5132
RH
14024 expressionS expr1;
14025 int dbl;
14026 const char *s, *s2, *s3;
c0ebe874
RS
14027 unsigned int op[MAX_OPERANDS];
14028 unsigned int i;
252b5132
RH
14029
14030 mask = ip->insn_mo->mask;
14031
c0ebe874
RS
14032 operands = insn_operands (ip);
14033 for (i = 0; i < MAX_OPERANDS; i++)
14034 if (operands->operand[i])
14035 op[i] = insn_extract_operand (ip, operands->operand[i]);
14036 else
14037 op[i] = -1;
252b5132 14038
252b5132
RH
14039 expr1.X_op = O_constant;
14040 expr1.X_op_symbol = NULL;
14041 expr1.X_add_symbol = NULL;
14042 expr1.X_add_number = 1;
14043
14044 dbl = 0;
14045
14046 switch (mask)
14047 {
14048 default:
b37df7c4 14049 abort ();
252b5132
RH
14050
14051 case M_DDIV_3:
14052 dbl = 1;
1a0670f3 14053 /* Fall through. */
252b5132
RH
14054 case M_DIV_3:
14055 s = "mflo";
14056 goto do_div3;
14057 case M_DREM_3:
14058 dbl = 1;
1a0670f3 14059 /* Fall through. */
252b5132
RH
14060 case M_REM_3:
14061 s = "mfhi";
14062 do_div3:
7d10b47d 14063 start_noreorder ();
d8722d76 14064 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
252b5132 14065 expr1.X_add_number = 2;
c0ebe874 14066 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 14067 macro_build (NULL, "break", "6", 7);
bdaaa2e1 14068
252b5132
RH
14069 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
14070 since that causes an overflow. We should do that as well,
14071 but I don't see how to do the comparisons without a temporary
14072 register. */
7d10b47d 14073 end_noreorder ();
c0ebe874 14074 macro_build (NULL, s, "x", op[0]);
252b5132
RH
14075 break;
14076
14077 case M_DIVU_3:
14078 s = "divu";
14079 s2 = "mflo";
14080 goto do_divu3;
14081 case M_REMU_3:
14082 s = "divu";
14083 s2 = "mfhi";
14084 goto do_divu3;
14085 case M_DDIVU_3:
14086 s = "ddivu";
14087 s2 = "mflo";
14088 goto do_divu3;
14089 case M_DREMU_3:
14090 s = "ddivu";
14091 s2 = "mfhi";
14092 do_divu3:
7d10b47d 14093 start_noreorder ();
d8722d76 14094 macro_build (NULL, s, ".,x,y", op[1], op[2]);
252b5132 14095 expr1.X_add_number = 2;
c0ebe874 14096 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 14097 macro_build (NULL, "break", "6", 7);
7d10b47d 14098 end_noreorder ();
c0ebe874 14099 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
14100 break;
14101
14102 case M_DMUL:
14103 dbl = 1;
1a0670f3 14104 /* Fall through. */
252b5132 14105 case M_MUL:
c0ebe874
RS
14106 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
14107 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 14108 break;
252b5132
RH
14109
14110 case M_DSUBU_I:
14111 dbl = 1;
14112 goto do_subu;
14113 case M_SUBU_I:
14114 do_subu:
252b5132 14115 imm_expr.X_add_number = -imm_expr.X_add_number;
d8722d76 14116 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
252b5132
RH
14117 break;
14118
14119 case M_SUBU_I_2:
252b5132 14120 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 14121 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
14122 break;
14123
14124 case M_DSUBU_I_2:
252b5132 14125 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 14126 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
14127 break;
14128
14129 case M_BEQ:
14130 s = "cmp";
14131 s2 = "bteqz";
14132 goto do_branch;
14133 case M_BNE:
14134 s = "cmp";
14135 s2 = "btnez";
14136 goto do_branch;
14137 case M_BLT:
14138 s = "slt";
14139 s2 = "btnez";
14140 goto do_branch;
14141 case M_BLTU:
14142 s = "sltu";
14143 s2 = "btnez";
14144 goto do_branch;
14145 case M_BLE:
14146 s = "slt";
14147 s2 = "bteqz";
14148 goto do_reverse_branch;
14149 case M_BLEU:
14150 s = "sltu";
14151 s2 = "bteqz";
14152 goto do_reverse_branch;
14153 case M_BGE:
14154 s = "slt";
14155 s2 = "bteqz";
14156 goto do_branch;
14157 case M_BGEU:
14158 s = "sltu";
14159 s2 = "bteqz";
14160 goto do_branch;
14161 case M_BGT:
14162 s = "slt";
14163 s2 = "btnez";
14164 goto do_reverse_branch;
14165 case M_BGTU:
14166 s = "sltu";
14167 s2 = "btnez";
14168
14169 do_reverse_branch:
c0ebe874
RS
14170 tmp = op[1];
14171 op[1] = op[0];
14172 op[0] = tmp;
252b5132
RH
14173
14174 do_branch:
c0ebe874 14175 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 14176 macro_build (&offset_expr, s2, "p");
252b5132
RH
14177 break;
14178
14179 case M_BEQ_I:
14180 s = "cmpi";
14181 s2 = "bteqz";
14182 s3 = "x,U";
14183 goto do_branch_i;
14184 case M_BNE_I:
14185 s = "cmpi";
14186 s2 = "btnez";
14187 s3 = "x,U";
14188 goto do_branch_i;
14189 case M_BLT_I:
14190 s = "slti";
14191 s2 = "btnez";
14192 s3 = "x,8";
14193 goto do_branch_i;
14194 case M_BLTU_I:
14195 s = "sltiu";
14196 s2 = "btnez";
14197 s3 = "x,8";
14198 goto do_branch_i;
14199 case M_BLE_I:
14200 s = "slti";
14201 s2 = "btnez";
14202 s3 = "x,8";
14203 goto do_addone_branch_i;
14204 case M_BLEU_I:
14205 s = "sltiu";
14206 s2 = "btnez";
14207 s3 = "x,8";
14208 goto do_addone_branch_i;
14209 case M_BGE_I:
14210 s = "slti";
14211 s2 = "bteqz";
14212 s3 = "x,8";
14213 goto do_branch_i;
14214 case M_BGEU_I:
14215 s = "sltiu";
14216 s2 = "bteqz";
14217 s3 = "x,8";
14218 goto do_branch_i;
14219 case M_BGT_I:
14220 s = "slti";
14221 s2 = "bteqz";
14222 s3 = "x,8";
14223 goto do_addone_branch_i;
14224 case M_BGTU_I:
14225 s = "sltiu";
14226 s2 = "bteqz";
14227 s3 = "x,8";
14228
14229 do_addone_branch_i:
252b5132
RH
14230 ++imm_expr.X_add_number;
14231
14232 do_branch_i:
c0ebe874 14233 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 14234 macro_build (&offset_expr, s2, "p");
252b5132
RH
14235 break;
14236
14237 case M_ABS:
14238 expr1.X_add_number = 0;
c0ebe874
RS
14239 macro_build (&expr1, "slti", "x,8", op[1]);
14240 if (op[0] != op[1])
14241 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 14242 expr1.X_add_number = 2;
67c0d1eb 14243 macro_build (&expr1, "bteqz", "p");
c0ebe874 14244 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 14245 break;
252b5132
RH
14246 }
14247}
14248
14daeee3
RS
14249/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
14250 opcode bits in *OPCODE_EXTRA. */
14251
14252static struct mips_opcode *
629310ab 14253mips_lookup_insn (htab_t hash, const char *start,
da8bca91 14254 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
14255{
14256 char *name, *dot, *p;
14257 unsigned int mask, suffix;
da8bca91 14258 ssize_t opend;
14daeee3
RS
14259 struct mips_opcode *insn;
14260
14261 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 14262 name = xstrndup (start, length);
14daeee3
RS
14263
14264 /* Look up the instruction as-is. */
629310ab 14265 insn = (struct mips_opcode *) str_hash_find (hash, name);
ee5734f0 14266 if (insn)
e1fa0163 14267 goto end;
14daeee3
RS
14268
14269 dot = strchr (name, '.');
14270 if (dot && dot[1])
14271 {
14272 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14273 p = mips_parse_vu0_channels (dot + 1, &mask);
14274 if (*p == 0 && mask != 0)
14275 {
14276 *dot = 0;
629310ab 14277 insn = (struct mips_opcode *) str_hash_find (hash, name);
14daeee3
RS
14278 *dot = '.';
14279 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14280 {
14281 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 14282 goto end;
14daeee3
RS
14283 }
14284 }
14285 }
14286
14287 if (mips_opts.micromips)
14288 {
14289 /* See if there's an instruction size override suffix,
14290 either `16' or `32', at the end of the mnemonic proper,
14291 that defines the operation, i.e. before the first `.'
14292 character if any. Strip it and retry. */
14293 opend = dot != NULL ? dot - name : length;
14294 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14295 suffix = 2;
3076e594 14296 else if (opend >= 2 && name[opend - 2] == '3' && name[opend - 1] == '2')
14daeee3
RS
14297 suffix = 4;
14298 else
14299 suffix = 0;
14300 if (suffix)
14301 {
39334a61 14302 memmove (name + opend - 2, name + opend, length - opend + 1);
629310ab 14303 insn = (struct mips_opcode *) str_hash_find (hash, name);
ee5734f0 14304 if (insn)
14daeee3
RS
14305 {
14306 forced_insn_length = suffix;
e1fa0163 14307 goto end;
14daeee3
RS
14308 }
14309 }
14310 }
14311
e1fa0163
NC
14312 insn = NULL;
14313 end:
14314 free (name);
14315 return insn;
14daeee3
RS
14316}
14317
77bd4346 14318/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
14319 is a macro, set imm_expr and offset_expr to the values associated
14320 with "I" and "A" operands respectively. Otherwise store the value
14321 of the relocatable field (if any) in offset_expr. In both cases
14322 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
14323
14324static void
60f20e8b 14325mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 14326{
60f20e8b 14327 const struct mips_opcode *first, *past;
629310ab 14328 htab_t hash;
a92713e6 14329 char format;
14daeee3 14330 size_t end;
a92713e6 14331 struct mips_operand_token *tokens;
14daeee3 14332 unsigned int opcode_extra;
252b5132 14333
df58fc94
RS
14334 if (mips_opts.micromips)
14335 {
14336 hash = micromips_op_hash;
14337 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14338 }
14339 else
14340 {
14341 hash = op_hash;
14342 past = &mips_opcodes[NUMOPCODES];
14343 }
14344 forced_insn_length = 0;
14daeee3 14345 opcode_extra = 0;
252b5132 14346
df58fc94 14347 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
14348 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14349 continue;
bdaaa2e1 14350
60f20e8b
RS
14351 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14352 if (first == NULL)
252b5132 14353 {
1661c76c 14354 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 14355 return;
252b5132
RH
14356 }
14357
60f20e8b 14358 if (strcmp (first->name, "li.s") == 0)
a92713e6 14359 format = 'f';
60f20e8b 14360 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
14361 format = 'd';
14362 else
14363 format = 0;
14364 tokens = mips_parse_arguments (str + end, format);
14365 if (!tokens)
14366 return;
14367
5b7c81bd
AM
14368 if (!match_insns (insn, first, past, tokens, opcode_extra, false)
14369 && !match_insns (insn, first, past, tokens, opcode_extra, true))
1661c76c 14370 set_insn_error (0, _("invalid operands"));
df58fc94 14371
e3de51ce 14372 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
14373}
14374
77bd4346
RS
14375/* As for mips_ip, but used when assembling MIPS16 code.
14376 Also set forced_insn_length to the resulting instruction size in
14377 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
14378
14379static void
60f20e8b 14380mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 14381{
1a00e612 14382 char *end, *s, c;
60f20e8b 14383 struct mips_opcode *first;
a92713e6 14384 struct mips_operand_token *tokens;
3fb49709 14385 unsigned int l;
252b5132 14386
25499ac7 14387 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
252b5132 14388 ;
1a00e612
RS
14389 end = s;
14390 c = *end;
3fb49709
MR
14391
14392 l = 0;
1a00e612 14393 switch (c)
252b5132
RH
14394 {
14395 case '\0':
14396 break;
14397
14398 case ' ':
1a00e612 14399 s++;
252b5132
RH
14400 break;
14401
14402 case '.':
3fb49709
MR
14403 s++;
14404 if (*s == 't')
252b5132 14405 {
3fb49709
MR
14406 l = 2;
14407 s++;
252b5132 14408 }
3fb49709 14409 else if (*s == 'e')
252b5132 14410 {
3fb49709
MR
14411 l = 4;
14412 s++;
252b5132 14413 }
3fb49709
MR
14414 if (*s == '\0')
14415 break;
14416 else if (*s++ == ' ')
14417 break;
1661c76c 14418 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
14419 return;
14420 }
3fb49709 14421 forced_insn_length = l;
252b5132 14422
1a00e612 14423 *end = 0;
629310ab 14424 first = (struct mips_opcode *) str_hash_find (mips16_op_hash, str);
1a00e612
RS
14425 *end = c;
14426
60f20e8b 14427 if (!first)
252b5132 14428 {
1661c76c 14429 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
14430 return;
14431 }
14432
a92713e6
RS
14433 tokens = mips_parse_arguments (s, 0);
14434 if (!tokens)
14435 return;
14436
60f20e8b 14437 if (!match_mips16_insns (insn, first, tokens))
1661c76c 14438 set_insn_error (0, _("invalid operands"));
252b5132 14439
e3de51ce 14440 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
14441}
14442
b886a2ab
RS
14443/* Marshal immediate value VAL for an extended MIPS16 instruction.
14444 NBITS is the number of significant bits in VAL. */
14445
14446static unsigned long
14447mips16_immed_extend (offsetT val, unsigned int nbits)
14448{
14449 int extval;
25499ac7
MR
14450
14451 extval = 0;
14452 val &= (1U << nbits) - 1;
14453 if (nbits == 16 || nbits == 9)
b886a2ab
RS
14454 {
14455 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14456 val &= 0x1f;
14457 }
14458 else if (nbits == 15)
14459 {
14460 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14461 val &= 0xf;
14462 }
25499ac7 14463 else if (nbits == 6)
b886a2ab
RS
14464 {
14465 extval = ((val & 0x1f) << 6) | (val & 0x20);
14466 val = 0;
14467 }
14468 return (extval << 16) | val;
14469}
14470
3ccad066
RS
14471/* Like decode_mips16_operand, but require the operand to be defined and
14472 require it to be an integer. */
14473
14474static const struct mips_int_operand *
5b7c81bd 14475mips16_immed_operand (int type, bool extended_p)
3ccad066
RS
14476{
14477 const struct mips_operand *operand;
14478
14479 operand = decode_mips16_operand (type, extended_p);
14480 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14481 abort ();
14482 return (const struct mips_int_operand *) operand;
14483}
14484
14485/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14486
5b7c81bd 14487static bool
3ccad066
RS
14488mips16_immed_in_range_p (const struct mips_int_operand *operand,
14489 bfd_reloc_code_real_type reloc, offsetT sval)
14490{
14491 int min_val, max_val;
14492
14493 min_val = mips_int_operand_min (operand);
14494 max_val = mips_int_operand_max (operand);
14495 if (reloc != BFD_RELOC_UNUSED)
14496 {
14497 if (min_val < 0)
14498 sval = SEXT_16BIT (sval);
14499 else
14500 sval &= 0xffff;
14501 }
14502
14503 return (sval >= min_val
14504 && sval <= max_val
14505 && (sval & ((1 << operand->shift) - 1)) == 0);
14506}
14507
5c04167a
RS
14508/* Install immediate value VAL into MIPS16 instruction *INSN,
14509 extending it if necessary. The instruction in *INSN may
14510 already be extended.
14511
43c0598f
RS
14512 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14513 if none. In the former case, VAL is a 16-bit number with no
14514 defined signedness.
14515
14516 TYPE is the type of the immediate field. USER_INSN_LENGTH
14517 is the length that the user requested, or 0 if none. */
252b5132
RH
14518
14519static void
3b4dbbbf 14520mips16_immed (const char *file, unsigned int line, int type,
43c0598f 14521 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 14522 unsigned int user_insn_length, unsigned long *insn)
252b5132 14523{
3ccad066
RS
14524 const struct mips_int_operand *operand;
14525 unsigned int uval, length;
252b5132 14526
5b7c81bd 14527 operand = mips16_immed_operand (type, false);
3ccad066 14528 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
14529 {
14530 /* We need an extended instruction. */
14531 if (user_insn_length == 2)
14532 as_bad_where (file, line, _("invalid unextended operand value"));
14533 else
14534 *insn |= MIPS16_EXTEND;
14535 }
14536 else if (user_insn_length == 4)
14537 {
14538 /* The operand doesn't force an unextended instruction to be extended.
14539 Warn if the user wanted an extended instruction anyway. */
14540 *insn |= MIPS16_EXTEND;
14541 as_warn_where (file, line,
14542 _("extended operand requested but not required"));
14543 }
252b5132 14544
3ccad066
RS
14545 length = mips16_opcode_length (*insn);
14546 if (length == 4)
252b5132 14547 {
5b7c81bd 14548 operand = mips16_immed_operand (type, true);
3ccad066
RS
14549 if (!mips16_immed_in_range_p (operand, reloc, val))
14550 as_bad_where (file, line,
14551 _("operand value out of range for instruction"));
252b5132 14552 }
3ccad066 14553 uval = ((unsigned int) val >> operand->shift) - operand->bias;
bdd15286 14554 if (length == 2 || operand->root.lsb != 0)
3ccad066 14555 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14556 else
3ccad066 14557 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14558}
14559\f
d6f16593 14560struct percent_op_match
ad8d3bb3 14561{
5e0116d5
RS
14562 const char *str;
14563 bfd_reloc_code_real_type reloc;
d6f16593
MR
14564};
14565
14566static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14567{
5e0116d5 14568 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14569 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14570 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14571 {"%call16", BFD_RELOC_MIPS_CALL16},
14572 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14573 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14574 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14575 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14576 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14577 {"%got", BFD_RELOC_MIPS_GOT16},
14578 {"%gp_rel", BFD_RELOC_GPREL16},
be3f1006 14579 {"%gprel", BFD_RELOC_GPREL16},
5e0116d5
RS
14580 {"%half", BFD_RELOC_16},
14581 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14582 {"%higher", BFD_RELOC_MIPS_HIGHER},
14583 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14584 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14585 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14586 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14587 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14588 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14589 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14590 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14591 {"%hi", BFD_RELOC_HI16_S},
14592 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14593 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14594};
14595
d6f16593
MR
14596static const struct percent_op_match mips16_percent_op[] =
14597{
14598 {"%lo", BFD_RELOC_MIPS16_LO16},
be3f1006 14599 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
d6f16593 14600 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14601 {"%got", BFD_RELOC_MIPS16_GOT16},
14602 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14603 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14604 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14605 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14606 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14607 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14608 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14609 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14610 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14611};
14612
252b5132 14613
5e0116d5
RS
14614/* Return true if *STR points to a relocation operator. When returning true,
14615 move *STR over the operator and store its relocation code in *RELOC.
14616 Leave both *STR and *RELOC alone when returning false. */
14617
5b7c81bd 14618static bool
17a2f251 14619parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14620{
d6f16593
MR
14621 const struct percent_op_match *percent_op;
14622 size_t limit, i;
14623
14624 if (mips_opts.mips16)
14625 {
14626 percent_op = mips16_percent_op;
14627 limit = ARRAY_SIZE (mips16_percent_op);
14628 }
14629 else
14630 {
14631 percent_op = mips_percent_op;
14632 limit = ARRAY_SIZE (mips_percent_op);
14633 }
76b3015f 14634
d6f16593 14635 for (i = 0; i < limit; i++)
5e0116d5 14636 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14637 {
3f98094e
DJ
14638 int len = strlen (percent_op[i].str);
14639
14640 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14641 continue;
14642
5e0116d5
RS
14643 *str += strlen (percent_op[i].str);
14644 *reloc = percent_op[i].reloc;
394f9b3a 14645
5e0116d5
RS
14646 /* Check whether the output BFD supports this relocation.
14647 If not, issue an error and fall back on something safe. */
14648 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14649 {
20203fb9 14650 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14651 percent_op[i].str);
01a3f561 14652 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14653 }
5b7c81bd 14654 return true;
394f9b3a 14655 }
5b7c81bd 14656 return false;
394f9b3a 14657}
ad8d3bb3 14658
ad8d3bb3 14659
5e0116d5
RS
14660/* Parse string STR as a 16-bit relocatable operand. Store the
14661 expression in *EP and the relocations in the array starting
14662 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14663
01a3f561 14664 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14665
5e0116d5 14666static size_t
17a2f251
TS
14667my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14668 char *str)
ad8d3bb3 14669{
5e0116d5
RS
14670 bfd_reloc_code_real_type reversed_reloc[3];
14671 size_t reloc_index, i;
09b8f35a
RS
14672 int crux_depth, str_depth;
14673 char *crux;
5e0116d5
RS
14674
14675 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14676 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14677 of the main expression and with CRUX_DEPTH containing the number
14678 of open brackets at that point. */
14679 reloc_index = -1;
14680 str_depth = 0;
14681 do
fb1b3232 14682 {
09b8f35a
RS
14683 reloc_index++;
14684 crux = str;
14685 crux_depth = str_depth;
14686
14687 /* Skip over whitespace and brackets, keeping count of the number
14688 of brackets. */
14689 while (*str == ' ' || *str == '\t' || *str == '(')
14690 if (*str++ == '(')
14691 str_depth++;
5e0116d5 14692 }
09b8f35a
RS
14693 while (*str == '%'
14694 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14695 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14696
09b8f35a 14697 my_getExpression (ep, crux);
5e0116d5 14698 str = expr_end;
394f9b3a 14699
5e0116d5 14700 /* Match every open bracket. */
09b8f35a 14701 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14702 if (*str++ == ')')
09b8f35a 14703 crux_depth--;
394f9b3a 14704
09b8f35a 14705 if (crux_depth > 0)
20203fb9 14706 as_bad (_("unclosed '('"));
394f9b3a 14707
5e0116d5 14708 expr_end = str;
252b5132 14709
ec4fcab0
MR
14710 for (i = 0; i < reloc_index; i++)
14711 reloc[i] = reversed_reloc[reloc_index - 1 - i];
fb1b3232 14712
5e0116d5 14713 return reloc_index;
252b5132
RH
14714}
14715
14716static void
17a2f251 14717my_getExpression (expressionS *ep, char *str)
252b5132
RH
14718{
14719 char *save_in;
14720
14721 save_in = input_line_pointer;
14722 input_line_pointer = str;
14723 expression (ep);
14724 expr_end = input_line_pointer;
14725 input_line_pointer = save_in;
252b5132
RH
14726}
14727
6d4af3c2 14728const char *
17a2f251 14729md_atof (int type, char *litP, int *sizeP)
252b5132 14730{
499ac353 14731 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14732}
14733
14734void
17a2f251 14735md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14736{
14737 if (target_big_endian)
14738 number_to_chars_bigendian (buf, val, n);
14739 else
14740 number_to_chars_littleendian (buf, val, n);
14741}
14742\f
e013f690
TS
14743static int support_64bit_objects(void)
14744{
14745 const char **list, **l;
aa3d8fdf 14746 int yes;
e013f690
TS
14747
14748 list = bfd_target_list ();
14749 for (l = list; *l != NULL; l++)
aeffff67
RS
14750 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14751 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14752 break;
aa3d8fdf 14753 yes = (*l != NULL);
e013f690 14754 free (list);
aa3d8fdf 14755 return yes;
e013f690
TS
14756}
14757
316f5878
RS
14758/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14759 NEW_VALUE. Warn if another value was already specified. Note:
14760 we have to defer parsing the -march and -mtune arguments in order
14761 to handle 'from-abi' correctly, since the ABI might be specified
14762 in a later argument. */
14763
14764static void
17a2f251 14765mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14766{
14767 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14768 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14769 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14770 new_value);
14771
14772 *string_ptr = new_value;
14773}
14774
252b5132 14775int
17b9d67d 14776md_parse_option (int c, const char *arg)
252b5132 14777{
c6278170
RS
14778 unsigned int i;
14779
14780 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14781 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14782 {
919731af 14783 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14784 c == mips_ases[i].option_on);
14785 return 1;
14786 }
14787
252b5132
RH
14788 switch (c)
14789 {
119d663a
NC
14790 case OPTION_CONSTRUCT_FLOATS:
14791 mips_disable_float_construction = 0;
14792 break;
bdaaa2e1 14793
119d663a
NC
14794 case OPTION_NO_CONSTRUCT_FLOATS:
14795 mips_disable_float_construction = 1;
14796 break;
bdaaa2e1 14797
252b5132
RH
14798 case OPTION_TRAP:
14799 mips_trap = 1;
14800 break;
14801
14802 case OPTION_BREAK:
14803 mips_trap = 0;
14804 break;
14805
14806 case OPTION_EB:
14807 target_big_endian = 1;
14808 break;
14809
14810 case OPTION_EL:
14811 target_big_endian = 0;
14812 break;
14813
14814 case 'O':
4ffff32f
TS
14815 if (arg == NULL)
14816 mips_optimize = 1;
14817 else if (arg[0] == '0')
14818 mips_optimize = 0;
14819 else if (arg[0] == '1')
252b5132
RH
14820 mips_optimize = 1;
14821 else
14822 mips_optimize = 2;
14823 break;
14824
14825 case 'g':
14826 if (arg == NULL)
14827 mips_debug = 2;
14828 else
14829 mips_debug = atoi (arg);
252b5132
RH
14830 break;
14831
14832 case OPTION_MIPS1:
0b35dfee 14833 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14834 break;
14835
14836 case OPTION_MIPS2:
0b35dfee 14837 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14838 break;
14839
14840 case OPTION_MIPS3:
0b35dfee 14841 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14842 break;
14843
14844 case OPTION_MIPS4:
0b35dfee 14845 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14846 break;
14847
84ea6cf2 14848 case OPTION_MIPS5:
0b35dfee 14849 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14850 break;
14851
e7af610e 14852 case OPTION_MIPS32:
0b35dfee 14853 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14854 break;
14855
af7ee8bf 14856 case OPTION_MIPS32R2:
0b35dfee 14857 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14858 break;
14859
ae52f483 14860 case OPTION_MIPS32R3:
0ae19f05 14861 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14862 break;
14863
14864 case OPTION_MIPS32R5:
0ae19f05 14865 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14866 break;
14867
7361da2c
AB
14868 case OPTION_MIPS32R6:
14869 file_mips_opts.isa = ISA_MIPS32R6;
14870 break;
14871
5f74bc13 14872 case OPTION_MIPS64R2:
0b35dfee 14873 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14874 break;
14875
ae52f483 14876 case OPTION_MIPS64R3:
0ae19f05 14877 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14878 break;
14879
14880 case OPTION_MIPS64R5:
0ae19f05 14881 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14882 break;
14883
7361da2c
AB
14884 case OPTION_MIPS64R6:
14885 file_mips_opts.isa = ISA_MIPS64R6;
14886 break;
14887
84ea6cf2 14888 case OPTION_MIPS64:
0b35dfee 14889 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14890 break;
14891
ec68c924 14892 case OPTION_MTUNE:
316f5878
RS
14893 mips_set_option_string (&mips_tune_string, arg);
14894 break;
ec68c924 14895
316f5878
RS
14896 case OPTION_MARCH:
14897 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14898 break;
14899
14900 case OPTION_M4650:
316f5878
RS
14901 mips_set_option_string (&mips_arch_string, "4650");
14902 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14903 break;
14904
14905 case OPTION_NO_M4650:
14906 break;
14907
14908 case OPTION_M4010:
316f5878
RS
14909 mips_set_option_string (&mips_arch_string, "4010");
14910 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14911 break;
14912
14913 case OPTION_NO_M4010:
14914 break;
14915
14916 case OPTION_M4100:
316f5878
RS
14917 mips_set_option_string (&mips_arch_string, "4100");
14918 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14919 break;
14920
14921 case OPTION_NO_M4100:
14922 break;
14923
252b5132 14924 case OPTION_M3900:
316f5878
RS
14925 mips_set_option_string (&mips_arch_string, "3900");
14926 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14927 break;
bdaaa2e1 14928
252b5132
RH
14929 case OPTION_NO_M3900:
14930 break;
14931
df58fc94 14932 case OPTION_MICROMIPS:
919731af 14933 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14934 {
14935 as_bad (_("-mmicromips cannot be used with -mips16"));
14936 return 0;
14937 }
919731af 14938 file_mips_opts.micromips = 1;
df58fc94
RS
14939 mips_no_prev_insn ();
14940 break;
14941
14942 case OPTION_NO_MICROMIPS:
919731af 14943 file_mips_opts.micromips = 0;
df58fc94
RS
14944 mips_no_prev_insn ();
14945 break;
14946
252b5132 14947 case OPTION_MIPS16:
919731af 14948 if (file_mips_opts.micromips == 1)
df58fc94
RS
14949 {
14950 as_bad (_("-mips16 cannot be used with -micromips"));
14951 return 0;
14952 }
919731af 14953 file_mips_opts.mips16 = 1;
7d10b47d 14954 mips_no_prev_insn ();
252b5132
RH
14955 break;
14956
14957 case OPTION_NO_MIPS16:
919731af 14958 file_mips_opts.mips16 = 0;
7d10b47d 14959 mips_no_prev_insn ();
252b5132
RH
14960 break;
14961
6a32d874
CM
14962 case OPTION_FIX_24K:
14963 mips_fix_24k = 1;
14964 break;
14965
14966 case OPTION_NO_FIX_24K:
14967 mips_fix_24k = 0;
14968 break;
14969
a8d14a88
CM
14970 case OPTION_FIX_RM7000:
14971 mips_fix_rm7000 = 1;
14972 break;
14973
14974 case OPTION_NO_FIX_RM7000:
14975 mips_fix_rm7000 = 0;
14976 break;
14977
6f2117ba 14978 case OPTION_FIX_LOONGSON3_LLSC:
5b7c81bd 14979 mips_fix_loongson3_llsc = true;
6f2117ba
PH
14980 break;
14981
14982 case OPTION_NO_FIX_LOONGSON3_LLSC:
5b7c81bd 14983 mips_fix_loongson3_llsc = false;
6f2117ba
PH
14984 break;
14985
c67a084a 14986 case OPTION_FIX_LOONGSON2F_JUMP:
5b7c81bd 14987 mips_fix_loongson2f_jump = true;
c67a084a
NC
14988 break;
14989
14990 case OPTION_NO_FIX_LOONGSON2F_JUMP:
5b7c81bd 14991 mips_fix_loongson2f_jump = false;
c67a084a
NC
14992 break;
14993
14994 case OPTION_FIX_LOONGSON2F_NOP:
5b7c81bd 14995 mips_fix_loongson2f_nop = true;
c67a084a
NC
14996 break;
14997
14998 case OPTION_NO_FIX_LOONGSON2F_NOP:
5b7c81bd 14999 mips_fix_loongson2f_nop = false;
c67a084a
NC
15000 break;
15001
d766e8ec
RS
15002 case OPTION_FIX_VR4120:
15003 mips_fix_vr4120 = 1;
60b63b72
RS
15004 break;
15005
d766e8ec
RS
15006 case OPTION_NO_FIX_VR4120:
15007 mips_fix_vr4120 = 0;
60b63b72
RS
15008 break;
15009
7d8e00cf
RS
15010 case OPTION_FIX_VR4130:
15011 mips_fix_vr4130 = 1;
15012 break;
15013
15014 case OPTION_NO_FIX_VR4130:
15015 mips_fix_vr4130 = 0;
15016 break;
15017
d954098f 15018 case OPTION_FIX_CN63XXP1:
5b7c81bd 15019 mips_fix_cn63xxp1 = true;
d954098f
DD
15020 break;
15021
15022 case OPTION_NO_FIX_CN63XXP1:
5b7c81bd 15023 mips_fix_cn63xxp1 = false;
d954098f
DD
15024 break;
15025
27c634e0 15026 case OPTION_FIX_R5900:
5b7c81bd
AM
15027 mips_fix_r5900 = true;
15028 mips_fix_r5900_explicit = true;
27c634e0
FN
15029 break;
15030
15031 case OPTION_NO_FIX_R5900:
5b7c81bd
AM
15032 mips_fix_r5900 = false;
15033 mips_fix_r5900_explicit = true;
27c634e0
FN
15034 break;
15035
4a6a3df4
AO
15036 case OPTION_RELAX_BRANCH:
15037 mips_relax_branch = 1;
15038 break;
15039
15040 case OPTION_NO_RELAX_BRANCH:
15041 mips_relax_branch = 0;
15042 break;
15043
8b10b0b3 15044 case OPTION_IGNORE_BRANCH_ISA:
5b7c81bd 15045 mips_ignore_branch_isa = true;
8b10b0b3
MR
15046 break;
15047
15048 case OPTION_NO_IGNORE_BRANCH_ISA:
5b7c81bd 15049 mips_ignore_branch_isa = false;
8b10b0b3
MR
15050 break;
15051
833794fc 15052 case OPTION_INSN32:
5b7c81bd 15053 file_mips_opts.insn32 = true;
833794fc
MR
15054 break;
15055
15056 case OPTION_NO_INSN32:
5b7c81bd 15057 file_mips_opts.insn32 = false;
833794fc
MR
15058 break;
15059
aa6975fb 15060 case OPTION_MSHARED:
5b7c81bd 15061 mips_in_shared = true;
aa6975fb
ILT
15062 break;
15063
15064 case OPTION_MNO_SHARED:
5b7c81bd 15065 mips_in_shared = false;
aa6975fb
ILT
15066 break;
15067
aed1a261 15068 case OPTION_MSYM32:
5b7c81bd 15069 file_mips_opts.sym32 = true;
aed1a261
RS
15070 break;
15071
15072 case OPTION_MNO_SYM32:
5b7c81bd 15073 file_mips_opts.sym32 = false;
aed1a261
RS
15074 break;
15075
252b5132
RH
15076 /* When generating ELF code, we permit -KPIC and -call_shared to
15077 select SVR4_PIC, and -non_shared to select no PIC. This is
15078 intended to be compatible with Irix 5. */
15079 case OPTION_CALL_SHARED:
252b5132 15080 mips_pic = SVR4_PIC;
5b7c81bd 15081 mips_abicalls = true;
252b5132
RH
15082 break;
15083
861fb55a 15084 case OPTION_CALL_NONPIC:
861fb55a 15085 mips_pic = NO_PIC;
5b7c81bd 15086 mips_abicalls = true;
861fb55a
DJ
15087 break;
15088
252b5132 15089 case OPTION_NON_SHARED:
252b5132 15090 mips_pic = NO_PIC;
5b7c81bd 15091 mips_abicalls = false;
252b5132
RH
15092 break;
15093
44075ae2
TS
15094 /* The -xgot option tells the assembler to use 32 bit offsets
15095 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
15096 compatibility. */
15097 case OPTION_XGOT:
15098 mips_big_got = 1;
15099 break;
15100
15101 case 'G':
6caf9ef4
TS
15102 g_switch_value = atoi (arg);
15103 g_switch_seen = 1;
252b5132
RH
15104 break;
15105
34ba82a8
TS
15106 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15107 and -mabi=64. */
252b5132 15108 case OPTION_32:
f3ded42a 15109 mips_abi = O32_ABI;
252b5132
RH
15110 break;
15111
e013f690 15112 case OPTION_N32:
316f5878 15113 mips_abi = N32_ABI;
e013f690 15114 break;
252b5132 15115
e013f690 15116 case OPTION_64:
316f5878 15117 mips_abi = N64_ABI;
f43abd2b 15118 if (!support_64bit_objects())
1661c76c 15119 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
15120 break;
15121
c97ef257 15122 case OPTION_GP32:
bad1aba3 15123 file_mips_opts.gp = 32;
c97ef257
AH
15124 break;
15125
15126 case OPTION_GP64:
bad1aba3 15127 file_mips_opts.gp = 64;
c97ef257 15128 break;
252b5132 15129
ca4e0257 15130 case OPTION_FP32:
0b35dfee 15131 file_mips_opts.fp = 32;
316f5878
RS
15132 break;
15133
351cdf24
MF
15134 case OPTION_FPXX:
15135 file_mips_opts.fp = 0;
15136 break;
15137
316f5878 15138 case OPTION_FP64:
0b35dfee 15139 file_mips_opts.fp = 64;
ca4e0257
RS
15140 break;
15141
351cdf24
MF
15142 case OPTION_ODD_SPREG:
15143 file_mips_opts.oddspreg = 1;
15144 break;
15145
15146 case OPTION_NO_ODD_SPREG:
15147 file_mips_opts.oddspreg = 0;
15148 break;
15149
037b32b9 15150 case OPTION_SINGLE_FLOAT:
0b35dfee 15151 file_mips_opts.single_float = 1;
037b32b9
AN
15152 break;
15153
15154 case OPTION_DOUBLE_FLOAT:
0b35dfee 15155 file_mips_opts.single_float = 0;
037b32b9
AN
15156 break;
15157
15158 case OPTION_SOFT_FLOAT:
0b35dfee 15159 file_mips_opts.soft_float = 1;
037b32b9
AN
15160 break;
15161
15162 case OPTION_HARD_FLOAT:
0b35dfee 15163 file_mips_opts.soft_float = 0;
037b32b9
AN
15164 break;
15165
252b5132 15166 case OPTION_MABI:
e013f690 15167 if (strcmp (arg, "32") == 0)
316f5878 15168 mips_abi = O32_ABI;
e013f690 15169 else if (strcmp (arg, "o64") == 0)
316f5878 15170 mips_abi = O64_ABI;
e013f690 15171 else if (strcmp (arg, "n32") == 0)
316f5878 15172 mips_abi = N32_ABI;
e013f690
TS
15173 else if (strcmp (arg, "64") == 0)
15174 {
316f5878 15175 mips_abi = N64_ABI;
e013f690 15176 if (! support_64bit_objects())
1661c76c 15177 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
15178 "format"));
15179 }
15180 else if (strcmp (arg, "eabi") == 0)
316f5878 15181 mips_abi = EABI_ABI;
e013f690 15182 else
da0e507f
TS
15183 {
15184 as_fatal (_("invalid abi -mabi=%s"), arg);
15185 return 0;
15186 }
252b5132
RH
15187 break;
15188
6b76fefe 15189 case OPTION_M7000_HILO_FIX:
5b7c81bd 15190 mips_7000_hilo_fix = true;
6b76fefe
CM
15191 break;
15192
9ee72ff1 15193 case OPTION_MNO_7000_HILO_FIX:
5b7c81bd 15194 mips_7000_hilo_fix = false;
6b76fefe
CM
15195 break;
15196
ecb4347a 15197 case OPTION_MDEBUG:
5b7c81bd 15198 mips_flag_mdebug = true;
ecb4347a
DJ
15199 break;
15200
15201 case OPTION_NO_MDEBUG:
5b7c81bd 15202 mips_flag_mdebug = false;
ecb4347a 15203 break;
dcd410fe
RO
15204
15205 case OPTION_PDR:
5b7c81bd 15206 mips_flag_pdr = true;
dcd410fe
RO
15207 break;
15208
15209 case OPTION_NO_PDR:
5b7c81bd 15210 mips_flag_pdr = false;
dcd410fe 15211 break;
0a44bf69
RS
15212
15213 case OPTION_MVXWORKS_PIC:
15214 mips_pic = VXWORKS_PIC;
15215 break;
ecb4347a 15216
ba92f887
MR
15217 case OPTION_NAN:
15218 if (strcmp (arg, "2008") == 0)
7361da2c 15219 mips_nan2008 = 1;
ba92f887 15220 else if (strcmp (arg, "legacy") == 0)
7361da2c 15221 mips_nan2008 = 0;
ba92f887
MR
15222 else
15223 {
1661c76c 15224 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
15225 return 0;
15226 }
15227 break;
15228
252b5132
RH
15229 default:
15230 return 0;
15231 }
15232
c67a084a
NC
15233 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15234
252b5132
RH
15235 return 1;
15236}
316f5878 15237\f
919731af 15238/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 15239
316f5878 15240static void
17a2f251 15241mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
15242{
15243 if (info != 0)
fef14a42 15244 mips_tune = info->cpu;
316f5878 15245}
80cc45a5 15246
34ba82a8 15247
252b5132 15248void
17a2f251 15249mips_after_parse_args (void)
e9670677 15250{
fef14a42
TS
15251 const struct mips_cpu_info *arch_info = 0;
15252 const struct mips_cpu_info *tune_info = 0;
15253
6f2117ba 15254 /* GP relative stuff not working for PE. */
d34049e8 15255 if (startswith (TARGET_OS, "pe"))
e9670677 15256 {
6caf9ef4 15257 if (g_switch_seen && g_switch_value != 0)
1661c76c 15258 as_bad (_("-G not supported in this configuration"));
e9670677
MR
15259 g_switch_value = 0;
15260 }
15261
cac012d6
AO
15262 if (mips_abi == NO_ABI)
15263 mips_abi = MIPS_DEFAULT_ABI;
15264
919731af 15265 /* The following code determines the architecture.
22923709
RS
15266 Similar code was added to GCC 3.3 (see override_options() in
15267 config/mips/mips.c). The GAS and GCC code should be kept in sync
15268 as much as possible. */
e9670677 15269
316f5878 15270 if (mips_arch_string != 0)
fef14a42 15271 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 15272
0b35dfee 15273 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 15274 {
0b35dfee 15275 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 15276 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 15277 the -march selection (if any). */
fef14a42 15278 if (arch_info != 0)
e9670677 15279 {
316f5878
RS
15280 /* -march takes precedence over -mipsN, since it is more descriptive.
15281 There's no harm in specifying both as long as the ISA levels
15282 are the same. */
0b35dfee 15283 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
15284 as_bad (_("-%s conflicts with the other architecture options,"
15285 " which imply -%s"),
0b35dfee 15286 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 15287 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 15288 }
316f5878 15289 else
0b35dfee 15290 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
15291 }
15292
fef14a42 15293 if (arch_info == 0)
95bfe26e
MF
15294 {
15295 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15296 gas_assert (arch_info);
15297 }
e9670677 15298
fef14a42 15299 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 15300 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
15301 arch_info->name);
15302
919731af 15303 file_mips_opts.arch = arch_info->cpu;
15304 file_mips_opts.isa = arch_info->isa;
3315614d 15305 file_mips_opts.init_ase = arch_info->ase;
919731af 15306
41cee089
FS
15307 /* The EVA Extension has instructions which are only valid when the R6 ISA
15308 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
15309 present. */
15310 if (((file_mips_opts.ase & ASE_EVA) != 0) && ISA_IS_R6 (file_mips_opts.isa))
15311 file_mips_opts.ase |= ASE_EVA_R6;
15312
919731af 15313 /* Set up initial mips_opts state. */
15314 mips_opts = file_mips_opts;
15315
27c634e0
FN
15316 /* For the R5900 default to `-mfix-r5900' unless the user told otherwise. */
15317 if (!mips_fix_r5900_explicit)
15318 mips_fix_r5900 = file_mips_opts.arch == CPU_R5900;
15319
919731af 15320 /* The register size inference code is now placed in
15321 file_mips_check_options. */
fef14a42 15322
0b35dfee 15323 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15324 processor. */
fef14a42
TS
15325 if (mips_tune_string != 0)
15326 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 15327
fef14a42
TS
15328 if (tune_info == 0)
15329 mips_set_tune (arch_info);
15330 else
15331 mips_set_tune (tune_info);
e9670677 15332
ecb4347a 15333 if (mips_flag_mdebug < 0)
e8044f35 15334 mips_flag_mdebug = 0;
e9670677
MR
15335}
15336\f
15337void
17a2f251 15338mips_init_after_args (void)
252b5132 15339{
6f2117ba 15340 /* Initialize opcodes. */
252b5132 15341 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 15342 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
15343}
15344
15345long
17a2f251 15346md_pcrel_from (fixS *fixP)
252b5132 15347{
a7ebbfdf 15348 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
6f2117ba 15349
a7ebbfdf
TS
15350 switch (fixP->fx_r_type)
15351 {
df58fc94
RS
15352 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15353 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15354 /* Return the address of the delay slot. */
15355 return addr + 2;
15356
15357 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15358 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 15359 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 15360 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
15361 case BFD_RELOC_MIPS_21_PCREL_S2:
15362 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
15363 case BFD_RELOC_MIPS_JMP:
15364 /* Return the address of the delay slot. */
15365 return addr + 4;
df58fc94 15366
51f6035b
MR
15367 case BFD_RELOC_MIPS_18_PCREL_S3:
15368 /* Return the aligned address of the doubleword containing
15369 the instruction. */
15370 return addr & ~7;
15371
a7ebbfdf
TS
15372 default:
15373 return addr;
15374 }
252b5132
RH
15375}
15376
252b5132
RH
15377/* This is called before the symbol table is processed. In order to
15378 work with gcc when using mips-tfile, we must keep all local labels.
15379 However, in other cases, we want to discard them. If we were
15380 called with -g, but we didn't see any debugging information, it may
15381 mean that gcc is smuggling debugging information through to
15382 mips-tfile, in which case we must generate all local labels. */
15383
15384void
17a2f251 15385mips_frob_file_before_adjust (void)
252b5132
RH
15386{
15387#ifndef NO_ECOFF_DEBUGGING
15388 if (ECOFF_DEBUGGING
15389 && mips_debug != 0
15390 && ! ecoff_debugging_seen)
15391 flag_keep_locals = 1;
15392#endif
15393}
15394
3b91255e 15395/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 15396 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
15397 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15398 relocation operators.
15399
15400 For our purposes, a %lo() expression matches a %got() or %hi()
15401 expression if:
15402
15403 (a) it refers to the same symbol; and
15404 (b) the offset applied in the %lo() expression is no lower than
15405 the offset applied in the %got() or %hi().
15406
15407 (b) allows us to cope with code like:
15408
15409 lui $4,%hi(foo)
15410 lh $4,%lo(foo+2)($4)
15411
15412 ...which is legal on RELA targets, and has a well-defined behaviour
15413 if the user knows that adding 2 to "foo" will not induce a carry to
15414 the high 16 bits.
15415
15416 When several %lo()s match a particular %got() or %hi(), we use the
15417 following rules to distinguish them:
15418
15419 (1) %lo()s with smaller offsets are a better match than %lo()s with
15420 higher offsets.
15421
15422 (2) %lo()s with no matching %got() or %hi() are better than those
15423 that already have a matching %got() or %hi().
15424
15425 (3) later %lo()s are better than earlier %lo()s.
15426
15427 These rules are applied in order.
15428
15429 (1) means, among other things, that %lo()s with identical offsets are
15430 chosen if they exist.
15431
15432 (2) means that we won't associate several high-part relocations with
15433 the same low-part relocation unless there's no alternative. Having
15434 several high parts for the same low part is a GNU extension; this rule
15435 allows careful users to avoid it.
15436
15437 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15438 with the last high-part relocation being at the front of the list.
15439 It therefore makes sense to choose the last matching low-part
15440 relocation, all other things being equal. It's also easier
15441 to code that way. */
252b5132
RH
15442
15443void
17a2f251 15444mips_frob_file (void)
252b5132
RH
15445{
15446 struct mips_hi_fixup *l;
35903be0 15447 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
15448
15449 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15450 {
15451 segment_info_type *seginfo;
5b7c81bd 15452 bool matched_lo_p;
3b91255e 15453 fixS **hi_pos, **lo_pos, **pos;
252b5132 15454
9c2799c2 15455 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 15456
5919d012 15457 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
15458 there isn't supposed to be a matching LO. Ignore %gots against
15459 constants; we'll report an error for those later. */
738e5348 15460 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab 15461 && !(l->fixp->fx_addsy
9e009953 15462 && pic_need_relax (l->fixp->fx_addsy)))
5919d012
RS
15463 continue;
15464
15465 /* Check quickly whether the next fixup happens to be a matching %lo. */
15466 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
15467 continue;
15468
252b5132 15469 seginfo = seg_info (l->seg);
252b5132 15470
3b91255e
RS
15471 /* Set HI_POS to the position of this relocation in the chain.
15472 Set LO_POS to the position of the chosen low-part relocation.
15473 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15474 relocation that matches an immediately-preceding high-part
15475 relocation. */
15476 hi_pos = NULL;
15477 lo_pos = NULL;
5b7c81bd 15478 matched_lo_p = false;
738e5348 15479 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 15480
3b91255e
RS
15481 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15482 {
15483 if (*pos == l->fixp)
15484 hi_pos = pos;
15485
35903be0 15486 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 15487 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
15488 && (*pos)->fx_offset >= l->fixp->fx_offset
15489 && (lo_pos == NULL
15490 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15491 || (!matched_lo_p
15492 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15493 lo_pos = pos;
15494
15495 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15496 && fixup_has_matching_lo_p (*pos));
15497 }
15498
15499 /* If we found a match, remove the high-part relocation from its
15500 current position and insert it before the low-part relocation.
15501 Make the offsets match so that fixup_has_matching_lo_p()
15502 will return true.
15503
15504 We don't warn about unmatched high-part relocations since some
15505 versions of gcc have been known to emit dead "lui ...%hi(...)"
15506 instructions. */
15507 if (lo_pos != NULL)
15508 {
15509 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15510 if (l->fixp->fx_next != *lo_pos)
252b5132 15511 {
3b91255e
RS
15512 *hi_pos = l->fixp->fx_next;
15513 l->fixp->fx_next = *lo_pos;
15514 *lo_pos = l->fixp;
252b5132 15515 }
252b5132
RH
15516 }
15517 }
15518}
15519
252b5132 15520int
17a2f251 15521mips_force_relocation (fixS *fixp)
252b5132 15522{
ae6063d4 15523 if (generic_force_reloc (fixp))
252b5132
RH
15524 return 1;
15525
df58fc94
RS
15526 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15527 so that the linker relaxation can update targets. */
15528 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15529 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15530 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15531 return 1;
15532
5caa2b07
MR
15533 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15534 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15535 microMIPS symbols so that we can do cross-mode branch diagnostics
15536 and BAL to JALX conversion by the linker. */
15537 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
15538 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15539 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15540 && fixp->fx_addsy
15541 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15542 return 1;
15543
7361da2c 15544 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 15545 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
15546 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15547 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15548 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15549 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15550 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15551 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15552 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15553 return 1;
15554
3e722fb5 15555 return 0;
252b5132
RH
15556}
15557
b416ba9b
MR
15558/* Implement TC_FORCE_RELOCATION_ABS. */
15559
5b7c81bd 15560bool
b416ba9b
MR
15561mips_force_relocation_abs (fixS *fixp)
15562{
15563 if (generic_force_reloc (fixp))
5b7c81bd 15564 return true;
b416ba9b
MR
15565
15566 /* These relocations do not have enough bits in the in-place addend
15567 to hold an arbitrary absolute section's offset. */
15568 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
5b7c81bd 15569 return true;
b416ba9b 15570
5b7c81bd 15571 return false;
b416ba9b
MR
15572}
15573
b886a2ab
RS
15574/* Read the instruction associated with RELOC from BUF. */
15575
15576static unsigned int
15577read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15578{
15579 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15580 return read_compressed_insn (buf, 4);
15581 else
15582 return read_insn (buf);
15583}
15584
15585/* Write instruction INSN to BUF, given that it has been relocated
15586 by RELOC. */
15587
15588static void
15589write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15590 unsigned long insn)
15591{
15592 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15593 write_compressed_insn (buf, insn, 4);
15594 else
15595 write_insn (buf, insn);
15596}
15597
9d862524
MR
15598/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15599 to a symbol in another ISA mode, which cannot be converted to JALX. */
15600
5b7c81bd 15601static bool
9d862524
MR
15602fix_bad_cross_mode_jump_p (fixS *fixP)
15603{
15604 unsigned long opcode;
15605 int other;
15606 char *buf;
15607
5b7c81bd
AM
15608 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15609 return false;
9d862524
MR
15610
15611 other = S_GET_OTHER (fixP->fx_addsy);
15612 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15613 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15614 switch (fixP->fx_r_type)
15615 {
15616 case BFD_RELOC_MIPS_JMP:
15617 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15618 case BFD_RELOC_MICROMIPS_JMP:
15619 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15620 default:
5b7c81bd 15621 return false;
9d862524
MR
15622 }
15623}
15624
15625/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15626 jump to a symbol in the same ISA mode. */
15627
5b7c81bd 15628static bool
9d862524
MR
15629fix_bad_same_mode_jalx_p (fixS *fixP)
15630{
15631 unsigned long opcode;
15632 int other;
15633 char *buf;
15634
5b7c81bd
AM
15635 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15636 return false;
9d862524
MR
15637
15638 other = S_GET_OTHER (fixP->fx_addsy);
15639 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15640 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15641 switch (fixP->fx_r_type)
15642 {
15643 case BFD_RELOC_MIPS_JMP:
15644 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15645 case BFD_RELOC_MIPS16_JMP:
15646 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15647 case BFD_RELOC_MICROMIPS_JMP:
15648 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15649 default:
5b7c81bd 15650 return false;
9d862524
MR
15651 }
15652}
15653
15654/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15655 to a symbol whose value plus addend is not aligned according to the
15656 ultimate (after linker relaxation) jump instruction's immediate field
15657 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15658 regular MIPS code, to (1 << 2). */
15659
5b7c81bd 15660static bool
9d862524
MR
15661fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15662{
5b7c81bd 15663 bool micro_to_mips_p;
9d862524
MR
15664 valueT val;
15665 int other;
15666
5b7c81bd
AM
15667 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15668 return false;
9d862524
MR
15669
15670 other = S_GET_OTHER (fixP->fx_addsy);
15671 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15672 val += fixP->fx_offset;
15673 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15674 && !ELF_ST_IS_MICROMIPS (other));
15675 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15676 != ELF_ST_IS_COMPRESSED (other));
15677}
15678
15679/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15680 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15681 symbols check the ISA bit instead.
15682
15683 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15684 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15685 MIPS symbols and associated with BAL instructions as these instructions
de194d85 15686 may be converted to JALX by the linker. */
9d862524 15687
5b7c81bd 15688static bool
9d862524
MR
15689fix_bad_cross_mode_branch_p (fixS *fixP)
15690{
5b7c81bd 15691 bool absolute_p;
9d862524
MR
15692 unsigned long opcode;
15693 asection *symsec;
15694 valueT val;
15695 int other;
15696 char *buf;
15697
8b10b0b3 15698 if (mips_ignore_branch_isa)
5b7c81bd 15699 return false;
8b10b0b3 15700
5b7c81bd
AM
15701 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15702 return false;
9d862524
MR
15703
15704 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15705 absolute_p = bfd_is_abs_section (symsec);
15706
15707 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15708 other = S_GET_OTHER (fixP->fx_addsy);
15709
15710 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15711 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15712 switch (fixP->fx_r_type)
15713 {
15714 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15715 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15716 && opcode != 0x0411);
15717 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15718 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15719 && opcode != 0x4060);
9d862524
MR
15720 case BFD_RELOC_MIPS_21_PCREL_S2:
15721 case BFD_RELOC_MIPS_26_PCREL_S2:
15722 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15723 case BFD_RELOC_MIPS16_16_PCREL_S1:
15724 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15725 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15726 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15727 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15728 default:
15729 abort ();
15730 }
15731}
15732
15733/* Return TRUE if the symbol plus addend associated with a regular MIPS
15734 branch instruction pointed to by FIXP is not aligned according to the
15735 branch instruction's immediate field requirement. We need the addend
15736 to preserve the ISA bit and also the sum must not have bit 2 set. We
15737 must explicitly OR in the ISA bit from symbol annotation as the bit
15738 won't be set in the symbol's value then. */
15739
5b7c81bd 15740static bool
9d862524
MR
15741fix_bad_misaligned_branch_p (fixS *fixP)
15742{
5b7c81bd 15743 bool absolute_p;
9d862524
MR
15744 asection *symsec;
15745 valueT isa_bit;
15746 valueT val;
15747 valueT off;
15748 int other;
15749
5b7c81bd
AM
15750 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15751 return false;
9d862524
MR
15752
15753 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15754 absolute_p = bfd_is_abs_section (symsec);
15755
15756 val = S_GET_VALUE (fixP->fx_addsy);
15757 other = S_GET_OTHER (fixP->fx_addsy);
15758 off = fixP->fx_offset;
15759
15760 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15761 val |= ELF_ST_IS_COMPRESSED (other);
15762 val += off;
15763 return (val & 0x3) != isa_bit;
15764}
15765
52031738
FS
15766/* Calculate the relocation target by masking off ISA mode bit before
15767 combining symbol and addend. */
15768
15769static valueT
15770fix_bad_misaligned_address (fixS *fixP)
15771{
15772 valueT val;
15773 valueT off;
15774 unsigned isa_mode;
15775 gas_assert (fixP != NULL && fixP->fx_addsy != NULL);
15776 val = S_GET_VALUE (fixP->fx_addsy);
15777 off = fixP->fx_offset;
15778 isa_mode = (ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixP->fx_addsy))
15779 ? 1 : 0);
15780
15781 return ((val & ~isa_mode) + off);
15782}
15783
9d862524
MR
15784/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15785 and its calculated value VAL. */
15786
15787static void
15788fix_validate_branch (fixS *fixP, valueT val)
15789{
15790 if (fixP->fx_done && (val & 0x3) != 0)
15791 as_bad_where (fixP->fx_file, fixP->fx_line,
15792 _("branch to misaligned address (0x%lx)"),
15793 (long) (val + md_pcrel_from (fixP)));
15794 else if (fix_bad_cross_mode_branch_p (fixP))
15795 as_bad_where (fixP->fx_file, fixP->fx_line,
15796 _("branch to a symbol in another ISA mode"));
15797 else if (fix_bad_misaligned_branch_p (fixP))
15798 as_bad_where (fixP->fx_file, fixP->fx_line,
15799 _("branch to misaligned address (0x%lx)"),
52031738 15800 (long) fix_bad_misaligned_address (fixP));
9d862524
MR
15801 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15802 as_bad_where (fixP->fx_file, fixP->fx_line,
15803 _("cannot encode misaligned addend "
15804 "in the relocatable field (0x%lx)"),
15805 (long) fixP->fx_offset);
15806}
15807
252b5132
RH
15808/* Apply a fixup to the object file. */
15809
94f592af 15810void
55cf6793 15811md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15812{
4d68580a 15813 char *buf;
b886a2ab 15814 unsigned long insn;
a7ebbfdf 15815 reloc_howto_type *howto;
252b5132 15816
d56a8dda
RS
15817 if (fixP->fx_pcrel)
15818 switch (fixP->fx_r_type)
15819 {
15820 case BFD_RELOC_16_PCREL_S2:
c9775dde 15821 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15822 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15823 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15824 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15825 case BFD_RELOC_32_PCREL:
7361da2c
AB
15826 case BFD_RELOC_MIPS_21_PCREL_S2:
15827 case BFD_RELOC_MIPS_26_PCREL_S2:
15828 case BFD_RELOC_MIPS_18_PCREL_S3:
15829 case BFD_RELOC_MIPS_19_PCREL_S2:
15830 case BFD_RELOC_HI16_S_PCREL:
15831 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15832 break;
15833
15834 case BFD_RELOC_32:
15835 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15836 break;
15837
15838 default:
15839 as_bad_where (fixP->fx_file, fixP->fx_line,
15840 _("PC-relative reference to a different section"));
15841 break;
15842 }
15843
15844 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15845 that have no MIPS ELF equivalent. */
15846 if (fixP->fx_r_type != BFD_RELOC_8)
15847 {
15848 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15849 if (!howto)
15850 return;
15851 }
65551fa4 15852
df58fc94
RS
15853 gas_assert (fixP->fx_size == 2
15854 || fixP->fx_size == 4
d56a8dda 15855 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15856 || fixP->fx_r_type == BFD_RELOC_16
15857 || fixP->fx_r_type == BFD_RELOC_64
15858 || fixP->fx_r_type == BFD_RELOC_CTOR
15859 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15860 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15861 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15862 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15863 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15864 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15865
4d68580a 15866 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15867
b1dca8ee
RS
15868 /* Don't treat parts of a composite relocation as done. There are two
15869 reasons for this:
15870
15871 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15872 should nevertheless be emitted if the first part is.
15873
15874 (2) In normal usage, composite relocations are never assembly-time
15875 constants. The easiest way of dealing with the pathological
15876 exceptions is to generate a relocation against STN_UNDEF and
15877 leave everything up to the linker. */
3994f87e 15878 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15879 fixP->fx_done = 1;
15880
15881 switch (fixP->fx_r_type)
15882 {
3f98094e
DJ
15883 case BFD_RELOC_MIPS_TLS_GD:
15884 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15885 case BFD_RELOC_MIPS_TLS_DTPREL32:
15886 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15887 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15888 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15889 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15890 case BFD_RELOC_MIPS_TLS_TPREL32:
15891 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15892 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15893 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15894 case BFD_RELOC_MICROMIPS_TLS_GD:
15895 case BFD_RELOC_MICROMIPS_TLS_LDM:
15896 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15897 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15898 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15899 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15900 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15901 case BFD_RELOC_MIPS16_TLS_GD:
15902 case BFD_RELOC_MIPS16_TLS_LDM:
15903 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15904 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15905 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15906 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15907 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15908 if (fixP->fx_addsy)
15909 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15910 else
15911 as_bad_where (fixP->fx_file, fixP->fx_line,
15912 _("TLS relocation against a constant"));
15913 break;
3f98094e 15914
252b5132 15915 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15916 case BFD_RELOC_MIPS16_JMP:
15917 case BFD_RELOC_MICROMIPS_JMP:
15918 {
15919 int shift;
15920
15921 gas_assert (!fixP->fx_done);
15922
15923 /* Shift is 2, unusually, for microMIPS JALX. */
15924 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15925 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15926 shift = 1;
15927 else
15928 shift = 2;
15929
15930 if (fix_bad_cross_mode_jump_p (fixP))
15931 as_bad_where (fixP->fx_file, fixP->fx_line,
15932 _("jump to a symbol in another ISA mode"));
15933 else if (fix_bad_same_mode_jalx_p (fixP))
15934 as_bad_where (fixP->fx_file, fixP->fx_line,
15935 _("JALX to a symbol in the same ISA mode"));
15936 else if (fix_bad_misaligned_jump_p (fixP, shift))
15937 as_bad_where (fixP->fx_file, fixP->fx_line,
15938 _("jump to misaligned address (0x%lx)"),
52031738 15939 (long) fix_bad_misaligned_address (fixP));
9d862524
MR
15940 else if (HAVE_IN_PLACE_ADDENDS
15941 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15942 as_bad_where (fixP->fx_file, fixP->fx_line,
15943 _("cannot encode misaligned addend "
15944 "in the relocatable field (0x%lx)"),
15945 (long) fixP->fx_offset);
15946 }
15947 /* Fall through. */
15948
e369bcce
TS
15949 case BFD_RELOC_MIPS_SHIFT5:
15950 case BFD_RELOC_MIPS_SHIFT6:
15951 case BFD_RELOC_MIPS_GOT_DISP:
15952 case BFD_RELOC_MIPS_GOT_PAGE:
15953 case BFD_RELOC_MIPS_GOT_OFST:
15954 case BFD_RELOC_MIPS_SUB:
15955 case BFD_RELOC_MIPS_INSERT_A:
15956 case BFD_RELOC_MIPS_INSERT_B:
15957 case BFD_RELOC_MIPS_DELETE:
15958 case BFD_RELOC_MIPS_HIGHEST:
15959 case BFD_RELOC_MIPS_HIGHER:
15960 case BFD_RELOC_MIPS_SCN_DISP:
15961 case BFD_RELOC_MIPS_REL16:
15962 case BFD_RELOC_MIPS_RELGOT:
15963 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15964 case BFD_RELOC_HI16:
15965 case BFD_RELOC_HI16_S:
b886a2ab 15966 case BFD_RELOC_LO16:
cdf6fd85 15967 case BFD_RELOC_GPREL16:
252b5132
RH
15968 case BFD_RELOC_MIPS_LITERAL:
15969 case BFD_RELOC_MIPS_CALL16:
15970 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15971 case BFD_RELOC_GPREL32:
252b5132
RH
15972 case BFD_RELOC_MIPS_GOT_HI16:
15973 case BFD_RELOC_MIPS_GOT_LO16:
15974 case BFD_RELOC_MIPS_CALL_HI16:
15975 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15976 case BFD_RELOC_HI16_S_PCREL:
15977 case BFD_RELOC_LO16_PCREL:
252b5132 15978 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15979 case BFD_RELOC_MIPS16_GOT16:
15980 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15981 case BFD_RELOC_MIPS16_HI16:
15982 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15983 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15984 case BFD_RELOC_MICROMIPS_GOT_DISP:
15985 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15986 case BFD_RELOC_MICROMIPS_GOT_OFST:
15987 case BFD_RELOC_MICROMIPS_SUB:
15988 case BFD_RELOC_MICROMIPS_HIGHEST:
15989 case BFD_RELOC_MICROMIPS_HIGHER:
15990 case BFD_RELOC_MICROMIPS_SCN_DISP:
15991 case BFD_RELOC_MICROMIPS_JALR:
15992 case BFD_RELOC_MICROMIPS_HI16:
15993 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15994 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15995 case BFD_RELOC_MICROMIPS_GPREL16:
15996 case BFD_RELOC_MICROMIPS_LITERAL:
15997 case BFD_RELOC_MICROMIPS_CALL16:
15998 case BFD_RELOC_MICROMIPS_GOT16:
15999 case BFD_RELOC_MICROMIPS_GOT_HI16:
16000 case BFD_RELOC_MICROMIPS_GOT_LO16:
16001 case BFD_RELOC_MICROMIPS_CALL_HI16:
16002 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 16003 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
16004 if (fixP->fx_done)
16005 {
16006 offsetT value;
16007
16008 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
16009 {
16010 insn = read_reloc_insn (buf, fixP->fx_r_type);
16011 if (mips16_reloc_p (fixP->fx_r_type))
16012 insn |= mips16_immed_extend (value, 16);
16013 else
16014 insn |= (value & 0xffff);
16015 write_reloc_insn (buf, fixP->fx_r_type, insn);
16016 }
16017 else
16018 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 16019 _("unsupported constant in relocation"));
b886a2ab 16020 }
252b5132
RH
16021 break;
16022
252b5132
RH
16023 case BFD_RELOC_64:
16024 /* This is handled like BFD_RELOC_32, but we output a sign
16025 extended value if we are only 32 bits. */
3e722fb5 16026 if (fixP->fx_done)
252b5132
RH
16027 {
16028 if (8 <= sizeof (valueT))
4d68580a 16029 md_number_to_chars (buf, *valP, 8);
252b5132
RH
16030 else
16031 {
a7ebbfdf 16032 valueT hiv;
252b5132 16033
a7ebbfdf 16034 if ((*valP & 0x80000000) != 0)
252b5132
RH
16035 hiv = 0xffffffff;
16036 else
16037 hiv = 0;
4d68580a
RS
16038 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
16039 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
16040 }
16041 }
16042 break;
16043
056350c6 16044 case BFD_RELOC_RVA:
252b5132 16045 case BFD_RELOC_32:
b47468a6 16046 case BFD_RELOC_32_PCREL:
252b5132 16047 case BFD_RELOC_16:
d56a8dda 16048 case BFD_RELOC_8:
252b5132 16049 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
16050 value now. This can happen if we have a .word which is not
16051 resolved when it appears but is later defined. */
252b5132 16052 if (fixP->fx_done)
4d68580a 16053 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
16054 break;
16055
7361da2c 16056 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 16057 fix_validate_branch (fixP, *valP);
41947d9e
MR
16058 if (!fixP->fx_done)
16059 break;
16060
16061 if (*valP + 0x400000 <= 0x7fffff)
16062 {
16063 insn = read_insn (buf);
16064 insn |= (*valP >> 2) & 0x1fffff;
16065 write_insn (buf, insn);
16066 }
16067 else
16068 as_bad_where (fixP->fx_file, fixP->fx_line,
16069 _("branch out of range"));
16070 break;
16071
7361da2c 16072 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 16073 fix_validate_branch (fixP, *valP);
41947d9e
MR
16074 if (!fixP->fx_done)
16075 break;
7361da2c 16076
41947d9e
MR
16077 if (*valP + 0x8000000 <= 0xfffffff)
16078 {
16079 insn = read_insn (buf);
16080 insn |= (*valP >> 2) & 0x3ffffff;
16081 write_insn (buf, insn);
16082 }
16083 else
16084 as_bad_where (fixP->fx_file, fixP->fx_line,
16085 _("branch out of range"));
7361da2c
AB
16086 break;
16087
16088 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 16089 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 16090 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
16091 _("PC-relative access using misaligned symbol (%lx)"),
16092 (long) S_GET_VALUE (fixP->fx_addsy));
16093 if ((fixP->fx_offset & 0x7) != 0)
16094 as_bad_where (fixP->fx_file, fixP->fx_line,
16095 _("PC-relative access using misaligned offset (%lx)"),
16096 (long) fixP->fx_offset);
41947d9e
MR
16097 if (!fixP->fx_done)
16098 break;
7361da2c 16099
41947d9e
MR
16100 if (*valP + 0x100000 <= 0x1fffff)
16101 {
16102 insn = read_insn (buf);
16103 insn |= (*valP >> 3) & 0x3ffff;
16104 write_insn (buf, insn);
16105 }
16106 else
16107 as_bad_where (fixP->fx_file, fixP->fx_line,
16108 _("PC-relative access out of range"));
7361da2c
AB
16109 break;
16110
16111 case BFD_RELOC_MIPS_19_PCREL_S2:
16112 if ((*valP & 0x3) != 0)
16113 as_bad_where (fixP->fx_file, fixP->fx_line,
16114 _("PC-relative access to misaligned address (%lx)"),
717ba204 16115 (long) *valP);
41947d9e
MR
16116 if (!fixP->fx_done)
16117 break;
7361da2c 16118
41947d9e
MR
16119 if (*valP + 0x100000 <= 0x1fffff)
16120 {
16121 insn = read_insn (buf);
16122 insn |= (*valP >> 2) & 0x7ffff;
16123 write_insn (buf, insn);
16124 }
16125 else
16126 as_bad_where (fixP->fx_file, fixP->fx_line,
16127 _("PC-relative access out of range"));
7361da2c
AB
16128 break;
16129
252b5132 16130 case BFD_RELOC_16_PCREL_S2:
9d862524 16131 fix_validate_branch (fixP, *valP);
cb56d3d3 16132
54f4ddb3
TS
16133 /* We need to save the bits in the instruction since fixup_segment()
16134 might be deleting the relocation entry (i.e., a branch within
16135 the current segment). */
a7ebbfdf 16136 if (! fixP->fx_done)
bb2d6cd7 16137 break;
252b5132 16138
54f4ddb3 16139 /* Update old instruction data. */
4d68580a 16140 insn = read_insn (buf);
252b5132 16141
a7ebbfdf
TS
16142 if (*valP + 0x20000 <= 0x3ffff)
16143 {
16144 insn |= (*valP >> 2) & 0xffff;
4d68580a 16145 write_insn (buf, insn);
a7ebbfdf 16146 }
ce8ad872 16147 else if (fixP->fx_tcbit2
a7ebbfdf
TS
16148 && fixP->fx_done
16149 && fixP->fx_frag->fr_address >= text_section->vma
16150 && (fixP->fx_frag->fr_address
fd361982 16151 < text_section->vma + bfd_section_size (text_section))
a7ebbfdf
TS
16152 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
16153 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
16154 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
16155 {
16156 /* The branch offset is too large. If this is an
16157 unconditional branch, and we are not generating PIC code,
16158 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
16159 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
16160 insn = 0x0c000000; /* jal */
252b5132 16161 else
a7ebbfdf
TS
16162 insn = 0x08000000; /* j */
16163 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
16164 fixP->fx_done = 0;
16165 fixP->fx_addsy = section_symbol (text_section);
16166 *valP += md_pcrel_from (fixP);
4d68580a 16167 write_insn (buf, insn);
a7ebbfdf
TS
16168 }
16169 else
16170 {
16171 /* If we got here, we have branch-relaxation disabled,
16172 and there's nothing we can do to fix this instruction
16173 without turning it into a longer sequence. */
16174 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 16175 _("branch out of range"));
252b5132 16176 }
252b5132
RH
16177 break;
16178
c9775dde 16179 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
16180 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
16181 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
16182 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 16183 gas_assert (!fixP->fx_done);
9d862524
MR
16184 if (fix_bad_cross_mode_branch_p (fixP))
16185 as_bad_where (fixP->fx_file, fixP->fx_line,
16186 _("branch to a symbol in another ISA mode"));
16187 else if (fixP->fx_addsy
5b7c81bd 16188 && !S_FORCE_RELOC (fixP->fx_addsy, true)
9d862524
MR
16189 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
16190 && (fixP->fx_offset & 0x1) != 0)
16191 as_bad_where (fixP->fx_file, fixP->fx_line,
16192 _("branch to misaligned address (0x%lx)"),
52031738 16193 (long) fix_bad_misaligned_address (fixP));
9d862524
MR
16194 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
16195 as_bad_where (fixP->fx_file, fixP->fx_line,
16196 _("cannot encode misaligned addend "
16197 "in the relocatable field (0x%lx)"),
16198 (long) fixP->fx_offset);
df58fc94
RS
16199 break;
16200
252b5132
RH
16201 case BFD_RELOC_VTABLE_INHERIT:
16202 fixP->fx_done = 0;
16203 if (fixP->fx_addsy
16204 && !S_IS_DEFINED (fixP->fx_addsy)
16205 && !S_IS_WEAK (fixP->fx_addsy))
16206 S_SET_WEAK (fixP->fx_addsy);
16207 break;
16208
2f0c68f2 16209 case BFD_RELOC_NONE:
252b5132
RH
16210 case BFD_RELOC_VTABLE_ENTRY:
16211 fixP->fx_done = 0;
16212 break;
16213
16214 default:
b37df7c4 16215 abort ();
252b5132 16216 }
a7ebbfdf
TS
16217
16218 /* Remember value for tc_gen_reloc. */
16219 fixP->fx_addnumber = *valP;
252b5132
RH
16220}
16221
252b5132 16222static symbolS *
17a2f251 16223get_symbol (void)
252b5132
RH
16224{
16225 int c;
16226 char *name;
16227 symbolS *p;
16228
d02603dc 16229 c = get_symbol_name (&name);
252b5132 16230 p = (symbolS *) symbol_find_or_make (name);
d02603dc 16231 (void) restore_line_pointer (c);
252b5132
RH
16232 return p;
16233}
16234
742a56fe
RS
16235/* Align the current frag to a given power of two. If a particular
16236 fill byte should be used, FILL points to an integer that contains
16237 that byte, otherwise FILL is null.
16238
462427c4
RS
16239 This function used to have the comment:
16240
16241 The MIPS assembler also automatically adjusts any preceding label.
16242
16243 The implementation therefore applied the adjustment to a maximum of
16244 one label. However, other label adjustments are applied to batches
16245 of labels, and adjusting just one caused problems when new labels
16246 were added for the sake of debugging or unwind information.
16247 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
16248
16249static void
462427c4 16250mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 16251{
7d10b47d 16252 mips_emit_delays ();
df58fc94 16253 mips_record_compressed_mode ();
742a56fe
RS
16254 if (fill == NULL && subseg_text_p (now_seg))
16255 frag_align_code (to, 0);
16256 else
16257 frag_align (to, fill ? *fill : 0, 0);
252b5132 16258 record_alignment (now_seg, to);
770c0151 16259 mips_move_labels (labels, subseg_text_p (now_seg));
252b5132
RH
16260}
16261
16262/* Align to a given power of two. .align 0 turns off the automatic
16263 alignment used by the data creating pseudo-ops. */
16264
16265static void
17a2f251 16266s_align (int x ATTRIBUTE_UNUSED)
252b5132 16267{
742a56fe 16268 int temp, fill_value, *fill_ptr;
49954fb4 16269 long max_alignment = 28;
252b5132 16270
54f4ddb3 16271 /* o Note that the assembler pulls down any immediately preceding label
252b5132 16272 to the aligned address.
54f4ddb3 16273 o It's not documented but auto alignment is reinstated by
252b5132 16274 a .align pseudo instruction.
54f4ddb3 16275 o Note also that after auto alignment is turned off the mips assembler
252b5132 16276 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 16277 We don't. */
252b5132
RH
16278
16279 temp = get_absolute_expression ();
16280 if (temp > max_alignment)
1661c76c 16281 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
16282 else if (temp < 0)
16283 {
1661c76c 16284 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
16285 temp = 0;
16286 }
16287 if (*input_line_pointer == ',')
16288 {
f9419b05 16289 ++input_line_pointer;
742a56fe
RS
16290 fill_value = get_absolute_expression ();
16291 fill_ptr = &fill_value;
252b5132
RH
16292 }
16293 else
742a56fe 16294 fill_ptr = 0;
252b5132
RH
16295 if (temp)
16296 {
a8dbcb85
TS
16297 segment_info_type *si = seg_info (now_seg);
16298 struct insn_label_list *l = si->label_list;
54f4ddb3 16299 /* Auto alignment should be switched on by next section change. */
252b5132 16300 auto_align = 1;
462427c4 16301 mips_align (temp, fill_ptr, l);
252b5132
RH
16302 }
16303 else
16304 {
16305 auto_align = 0;
16306 }
16307
16308 demand_empty_rest_of_line ();
16309}
16310
252b5132 16311static void
17a2f251 16312s_change_sec (int sec)
252b5132
RH
16313{
16314 segT seg;
16315
252b5132
RH
16316 /* The ELF backend needs to know that we are changing sections, so
16317 that .previous works correctly. We could do something like check
b6ff326e 16318 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
16319 as it would not be appropriate to use it in the section changing
16320 functions in read.c, since obj-elf.c intercepts those. FIXME:
16321 This should be cleaner, somehow. */
f3ded42a 16322 obj_elf_section_change_hook ();
252b5132 16323
7d10b47d 16324 mips_emit_delays ();
6a32d874 16325
252b5132
RH
16326 switch (sec)
16327 {
16328 case 't':
16329 s_text (0);
16330 break;
16331 case 'd':
16332 s_data (0);
16333 break;
16334 case 'b':
16335 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16336 demand_empty_rest_of_line ();
16337 break;
16338
16339 case 'r':
4d0d148d
TS
16340 seg = subseg_new (RDATA_SECTION_NAME,
16341 (subsegT) get_absolute_expression ());
fd361982
AM
16342 bfd_set_section_flags (seg, (SEC_ALLOC | SEC_LOAD | SEC_READONLY
16343 | SEC_RELOC | SEC_DATA));
d34049e8 16344 if (!startswith (TARGET_OS, "elf"))
f3ded42a 16345 record_alignment (seg, 4);
4d0d148d 16346 demand_empty_rest_of_line ();
252b5132
RH
16347 break;
16348
16349 case 's':
4d0d148d 16350 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
a4dd6c97
AM
16351 bfd_set_section_flags (seg, (SEC_ALLOC | SEC_LOAD | SEC_RELOC
16352 | SEC_DATA | SEC_SMALL_DATA));
d34049e8 16353 if (!startswith (TARGET_OS, "elf"))
f3ded42a 16354 record_alignment (seg, 4);
4d0d148d
TS
16355 demand_empty_rest_of_line ();
16356 break;
998b3c36
MR
16357
16358 case 'B':
16359 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
a4dd6c97 16360 bfd_set_section_flags (seg, SEC_ALLOC | SEC_SMALL_DATA);
d34049e8 16361 if (!startswith (TARGET_OS, "elf"))
f3ded42a 16362 record_alignment (seg, 4);
998b3c36
MR
16363 demand_empty_rest_of_line ();
16364 break;
252b5132
RH
16365 }
16366
16367 auto_align = 1;
16368}
b34976b6 16369
cca86cc8 16370void
17a2f251 16371s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 16372{
d02603dc 16373 char *saved_ilp;
cca86cc8 16374 char *section_name;
d02603dc 16375 char c, endc;
684022ea 16376 char next_c = 0;
cca86cc8
SC
16377 int section_type;
16378 int section_flag;
16379 int section_entry_size;
16380 int section_alignment;
b34976b6 16381
d02603dc
NC
16382 saved_ilp = input_line_pointer;
16383 endc = get_symbol_name (&section_name);
16384 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 16385 if (c)
d02603dc 16386 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 16387
4cf0dd0d
TS
16388 /* Do we have .section Name<,"flags">? */
16389 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 16390 {
d02603dc
NC
16391 /* Just after name is now '\0'. */
16392 (void) restore_line_pointer (endc);
16393 input_line_pointer = saved_ilp;
cca86cc8
SC
16394 obj_elf_section (ignore);
16395 return;
16396 }
d02603dc
NC
16397
16398 section_name = xstrdup (section_name);
16399 c = restore_line_pointer (endc);
16400
cca86cc8
SC
16401 input_line_pointer++;
16402
16403 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16404 if (c == ',')
16405 section_type = get_absolute_expression ();
16406 else
16407 section_type = 0;
d02603dc 16408
cca86cc8
SC
16409 if (*input_line_pointer++ == ',')
16410 section_flag = get_absolute_expression ();
16411 else
16412 section_flag = 0;
d02603dc 16413
cca86cc8
SC
16414 if (*input_line_pointer++ == ',')
16415 section_entry_size = get_absolute_expression ();
16416 else
16417 section_entry_size = 0;
d02603dc 16418
cca86cc8
SC
16419 if (*input_line_pointer++ == ',')
16420 section_alignment = get_absolute_expression ();
16421 else
16422 section_alignment = 0;
d02603dc 16423
87975d2a
AM
16424 /* FIXME: really ignore? */
16425 (void) section_alignment;
cca86cc8 16426
8ab8a5c8
RS
16427 /* When using the generic form of .section (as implemented by obj-elf.c),
16428 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16429 traditionally had to fall back on the more common @progbits instead.
16430
16431 There's nothing really harmful in this, since bfd will correct
16432 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 16433 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
16434 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16435
16436 Even so, we shouldn't force users of the MIPS .section syntax to
16437 incorrectly label the sections as SHT_PROGBITS. The best compromise
16438 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16439 generic type-checking code. */
16440 if (section_type == SHT_MIPS_DWARF)
16441 section_type = SHT_PROGBITS;
16442
a8c4d40b 16443 obj_elf_change_section (section_name, section_type, section_flag,
cca86cc8 16444 section_entry_size, 0, 0, 0);
a816d1ed
AO
16445
16446 if (now_seg->name != section_name)
16447 free (section_name);
cca86cc8 16448}
252b5132
RH
16449
16450void
17a2f251 16451mips_enable_auto_align (void)
252b5132
RH
16452{
16453 auto_align = 1;
16454}
16455
16456static void
17a2f251 16457s_cons (int log_size)
252b5132 16458{
a8dbcb85
TS
16459 segment_info_type *si = seg_info (now_seg);
16460 struct insn_label_list *l = si->label_list;
252b5132 16461
7d10b47d 16462 mips_emit_delays ();
252b5132 16463 if (log_size > 0 && auto_align)
462427c4 16464 mips_align (log_size, 0, l);
252b5132 16465 cons (1 << log_size);
a1facbec 16466 mips_clear_insn_labels ();
252b5132
RH
16467}
16468
16469static void
17a2f251 16470s_float_cons (int type)
252b5132 16471{
a8dbcb85
TS
16472 segment_info_type *si = seg_info (now_seg);
16473 struct insn_label_list *l = si->label_list;
252b5132 16474
7d10b47d 16475 mips_emit_delays ();
252b5132
RH
16476
16477 if (auto_align)
49309057
ILT
16478 {
16479 if (type == 'd')
462427c4 16480 mips_align (3, 0, l);
49309057 16481 else
462427c4 16482 mips_align (2, 0, l);
49309057 16483 }
252b5132 16484
252b5132 16485 float_cons (type);
a1facbec 16486 mips_clear_insn_labels ();
252b5132
RH
16487}
16488
16489/* Handle .globl. We need to override it because on Irix 5 you are
16490 permitted to say
16491 .globl foo .text
16492 where foo is an undefined symbol, to mean that foo should be
16493 considered to be the address of a function. */
16494
16495static void
17a2f251 16496s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
16497{
16498 char *name;
16499 int c;
16500 symbolS *symbolP;
252b5132 16501
8a06b769 16502 do
252b5132 16503 {
d02603dc 16504 c = get_symbol_name (&name);
8a06b769
TS
16505 symbolP = symbol_find_or_make (name);
16506 S_SET_EXTERNAL (symbolP);
16507
252b5132 16508 *input_line_pointer = c;
d02603dc 16509 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 16510
8a06b769
TS
16511 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16512 && (*input_line_pointer != ','))
16513 {
16514 char *secname;
16515 asection *sec;
16516
d02603dc 16517 c = get_symbol_name (&secname);
8a06b769
TS
16518 sec = bfd_get_section_by_name (stdoutput, secname);
16519 if (sec == NULL)
16520 as_bad (_("%s: no such section"), secname);
d02603dc 16521 (void) restore_line_pointer (c);
8a06b769
TS
16522
16523 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
d69cd47e 16524 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
8a06b769
TS
16525 }
16526
8a06b769
TS
16527 c = *input_line_pointer;
16528 if (c == ',')
16529 {
16530 input_line_pointer++;
16531 SKIP_WHITESPACE ();
16532 if (is_end_of_line[(unsigned char) *input_line_pointer])
16533 c = '\n';
16534 }
16535 }
16536 while (c == ',');
252b5132 16537
252b5132
RH
16538 demand_empty_rest_of_line ();
16539}
16540
d69cd47e
AM
16541#ifdef TE_IRIX
16542/* The Irix 5 and 6 assemblers set the type of any common symbol and
16543 any undefined non-function symbol to STT_OBJECT. We try to be
16544 compatible, since newer Irix 5 and 6 linkers care. */
16545
16546void
16547mips_frob_symbol (symbolS *symp ATTRIBUTE_UNUSED)
16548{
16549 /* This late in assembly we can set BSF_OBJECT indiscriminately
16550 and let elf.c:swap_out_syms sort out the symbol type. */
16551 flagword *flags = &symbol_get_bfdsym (symp)->flags;
16552 if ((*flags & (BSF_GLOBAL | BSF_WEAK)) != 0
16553 || !S_IS_DEFINED (symp))
16554 *flags |= BSF_OBJECT;
16555}
16556#endif
16557
252b5132 16558static void
17a2f251 16559s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
16560{
16561 char *opt;
16562 char c;
16563
d02603dc 16564 c = get_symbol_name (&opt);
252b5132
RH
16565
16566 if (*opt == 'O')
16567 {
16568 /* FIXME: What does this mean? */
16569 }
d34049e8 16570 else if (startswith (opt, "pic") && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
16571 {
16572 int i;
16573
16574 i = atoi (opt + 3);
668c5ebc
MR
16575 if (i != 0 && i != 2)
16576 as_bad (_(".option pic%d not supported"), i);
16577 else if (mips_pic == VXWORKS_PIC)
16578 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16579 else if (i == 0)
252b5132
RH
16580 mips_pic = NO_PIC;
16581 else if (i == 2)
143d77c5 16582 {
8b828383 16583 mips_pic = SVR4_PIC;
5b7c81bd 16584 mips_abicalls = true;
143d77c5 16585 }
252b5132 16586
4d0d148d 16587 if (mips_pic == SVR4_PIC)
252b5132
RH
16588 {
16589 if (g_switch_seen && g_switch_value != 0)
16590 as_warn (_("-G may not be used with SVR4 PIC code"));
16591 g_switch_value = 0;
16592 bfd_set_gp_size (stdoutput, 0);
16593 }
16594 }
16595 else
1661c76c 16596 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16597
d02603dc 16598 (void) restore_line_pointer (c);
252b5132
RH
16599 demand_empty_rest_of_line ();
16600}
16601
16602/* This structure is used to hold a stack of .set values. */
16603
e972090a
NC
16604struct mips_option_stack
16605{
252b5132
RH
16606 struct mips_option_stack *next;
16607 struct mips_set_options options;
16608};
16609
16610static struct mips_option_stack *mips_opts_stack;
16611
22522f88
MR
16612/* Return status for .set/.module option handling. */
16613
16614enum code_option_type
16615{
16616 /* Unrecognized option. */
16617 OPTION_TYPE_BAD = -1,
16618
16619 /* Ordinary option. */
16620 OPTION_TYPE_NORMAL,
16621
16622 /* ISA changing option. */
16623 OPTION_TYPE_ISA
16624};
16625
16626/* Handle common .set/.module options. Return status indicating option
16627 type. */
16628
16629static enum code_option_type
919731af 16630parse_code_option (char * name)
252b5132 16631{
5b7c81bd 16632 bool isa_set = false;
c6278170 16633 const struct mips_ase *ase;
22522f88 16634
d34049e8 16635 if (startswith (name, "at="))
741fe287
MR
16636 {
16637 char *s = name + 3;
16638
16639 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16640 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16641 }
252b5132 16642 else if (strcmp (name, "at") == 0)
919731af 16643 mips_opts.at = ATREG;
252b5132 16644 else if (strcmp (name, "noat") == 0)
919731af 16645 mips_opts.at = ZERO;
252b5132 16646 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16647 mips_opts.nomove = 0;
252b5132 16648 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16649 mips_opts.nomove = 1;
252b5132 16650 else if (strcmp (name, "bopt") == 0)
919731af 16651 mips_opts.nobopt = 0;
252b5132 16652 else if (strcmp (name, "nobopt") == 0)
919731af 16653 mips_opts.nobopt = 1;
ad3fea08 16654 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16655 mips_opts.gp = 32;
ad3fea08 16656 else if (strcmp (name, "gp=64") == 0)
919731af 16657 mips_opts.gp = 64;
ad3fea08 16658 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16659 mips_opts.fp = 32;
351cdf24
MF
16660 else if (strcmp (name, "fp=xx") == 0)
16661 mips_opts.fp = 0;
ad3fea08 16662 else if (strcmp (name, "fp=64") == 0)
919731af 16663 mips_opts.fp = 64;
037b32b9
AN
16664 else if (strcmp (name, "softfloat") == 0)
16665 mips_opts.soft_float = 1;
16666 else if (strcmp (name, "hardfloat") == 0)
16667 mips_opts.soft_float = 0;
16668 else if (strcmp (name, "singlefloat") == 0)
16669 mips_opts.single_float = 1;
16670 else if (strcmp (name, "doublefloat") == 0)
16671 mips_opts.single_float = 0;
351cdf24
MF
16672 else if (strcmp (name, "nooddspreg") == 0)
16673 mips_opts.oddspreg = 0;
16674 else if (strcmp (name, "oddspreg") == 0)
16675 mips_opts.oddspreg = 1;
252b5132
RH
16676 else if (strcmp (name, "mips16") == 0
16677 || strcmp (name, "MIPS-16") == 0)
919731af 16678 mips_opts.mips16 = 1;
252b5132
RH
16679 else if (strcmp (name, "nomips16") == 0
16680 || strcmp (name, "noMIPS-16") == 0)
16681 mips_opts.mips16 = 0;
df58fc94 16682 else if (strcmp (name, "micromips") == 0)
919731af 16683 mips_opts.micromips = 1;
df58fc94
RS
16684 else if (strcmp (name, "nomicromips") == 0)
16685 mips_opts.micromips = 0;
c6278170
RS
16686 else if (name[0] == 'n'
16687 && name[1] == 'o'
16688 && (ase = mips_lookup_ase (name + 2)))
5b7c81bd 16689 mips_set_ase (ase, &mips_opts, false);
c6278170 16690 else if ((ase = mips_lookup_ase (name)))
5b7c81bd 16691 mips_set_ase (ase, &mips_opts, true);
d34049e8 16692 else if (startswith (name, "mips") || startswith (name, "arch="))
252b5132 16693 {
1a2c1fad
CD
16694 /* Permit the user to change the ISA and architecture on the fly.
16695 Needless to say, misuse can cause serious problems. */
d34049e8 16696 if (startswith (name, "arch="))
1a2c1fad
CD
16697 {
16698 const struct mips_cpu_info *p;
16699
919731af 16700 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16701 if (!p)
16702 as_bad (_("unknown architecture %s"), name + 5);
16703 else
16704 {
16705 mips_opts.arch = p->cpu;
16706 mips_opts.isa = p->isa;
5b7c81bd 16707 isa_set = true;
3315614d 16708 mips_opts.init_ase = p->ase;
1a2c1fad
CD
16709 }
16710 }
d34049e8 16711 else if (startswith (name, "mips"))
81a21e38
TS
16712 {
16713 const struct mips_cpu_info *p;
16714
919731af 16715 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16716 if (!p)
16717 as_bad (_("unknown ISA level %s"), name + 4);
16718 else
16719 {
16720 mips_opts.arch = p->cpu;
16721 mips_opts.isa = p->isa;
5b7c81bd 16722 isa_set = true;
3315614d 16723 mips_opts.init_ase = p->ase;
81a21e38
TS
16724 }
16725 }
af7ee8bf 16726 else
81a21e38 16727 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16728 }
16729 else if (strcmp (name, "autoextend") == 0)
16730 mips_opts.noautoextend = 0;
16731 else if (strcmp (name, "noautoextend") == 0)
16732 mips_opts.noautoextend = 1;
833794fc 16733 else if (strcmp (name, "insn32") == 0)
5b7c81bd 16734 mips_opts.insn32 = true;
833794fc 16735 else if (strcmp (name, "noinsn32") == 0)
5b7c81bd 16736 mips_opts.insn32 = false;
919731af 16737 else if (strcmp (name, "sym32") == 0)
5b7c81bd 16738 mips_opts.sym32 = true;
919731af 16739 else if (strcmp (name, "nosym32") == 0)
5b7c81bd 16740 mips_opts.sym32 = false;
919731af 16741 else
22522f88
MR
16742 return OPTION_TYPE_BAD;
16743
16744 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16745}
16746
16747/* Handle the .set pseudo-op. */
16748
16749static void
16750s_mipsset (int x ATTRIBUTE_UNUSED)
16751{
22522f88 16752 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16753 char *name = input_line_pointer, ch;
919731af 16754
16755 file_mips_check_options ();
16756
16757 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16758 ++input_line_pointer;
16759 ch = *input_line_pointer;
16760 *input_line_pointer = '\0';
16761
16762 if (strchr (name, ','))
16763 {
16764 /* Generic ".set" directive; use the generic handler. */
16765 *input_line_pointer = ch;
16766 input_line_pointer = name;
16767 s_set (0);
16768 return;
16769 }
16770
16771 if (strcmp (name, "reorder") == 0)
16772 {
16773 if (mips_opts.noreorder)
16774 end_noreorder ();
16775 }
16776 else if (strcmp (name, "noreorder") == 0)
16777 {
16778 if (!mips_opts.noreorder)
16779 start_noreorder ();
16780 }
16781 else if (strcmp (name, "macro") == 0)
16782 mips_opts.warn_about_macros = 0;
16783 else if (strcmp (name, "nomacro") == 0)
16784 {
16785 if (mips_opts.noreorder == 0)
16786 as_bad (_("`noreorder' must be set before `nomacro'"));
16787 mips_opts.warn_about_macros = 1;
16788 }
16789 else if (strcmp (name, "gp=default") == 0)
16790 mips_opts.gp = file_mips_opts.gp;
16791 else if (strcmp (name, "fp=default") == 0)
16792 mips_opts.fp = file_mips_opts.fp;
16793 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16794 {
16795 mips_opts.isa = file_mips_opts.isa;
16796 mips_opts.arch = file_mips_opts.arch;
3315614d 16797 mips_opts.init_ase = file_mips_opts.init_ase;
919731af 16798 mips_opts.gp = file_mips_opts.gp;
16799 mips_opts.fp = file_mips_opts.fp;
16800 }
252b5132
RH
16801 else if (strcmp (name, "push") == 0)
16802 {
16803 struct mips_option_stack *s;
16804
325801bd 16805 s = XNEW (struct mips_option_stack);
252b5132
RH
16806 s->next = mips_opts_stack;
16807 s->options = mips_opts;
16808 mips_opts_stack = s;
16809 }
16810 else if (strcmp (name, "pop") == 0)
16811 {
16812 struct mips_option_stack *s;
16813
16814 s = mips_opts_stack;
16815 if (s == NULL)
16816 as_bad (_(".set pop with no .set push"));
16817 else
16818 {
16819 /* If we're changing the reorder mode we need to handle
16820 delay slots correctly. */
16821 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16822 start_noreorder ();
252b5132 16823 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16824 end_noreorder ();
252b5132
RH
16825
16826 mips_opts = s->options;
16827 mips_opts_stack = s->next;
16828 free (s);
16829 }
16830 }
22522f88
MR
16831 else
16832 {
16833 type = parse_code_option (name);
16834 if (type == OPTION_TYPE_BAD)
16835 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16836 }
919731af 16837
16838 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16839 registers based on what is supported by the arch/cpu. */
22522f88 16840 if (type == OPTION_TYPE_ISA)
e6559e01 16841 {
919731af 16842 switch (mips_opts.isa)
16843 {
16844 case 0:
16845 break;
16846 case ISA_MIPS1:
351cdf24
MF
16847 /* MIPS I cannot support FPXX. */
16848 mips_opts.fp = 32;
16849 /* fall-through. */
919731af 16850 case ISA_MIPS2:
16851 case ISA_MIPS32:
16852 case ISA_MIPS32R2:
16853 case ISA_MIPS32R3:
16854 case ISA_MIPS32R5:
16855 mips_opts.gp = 32;
351cdf24
MF
16856 if (mips_opts.fp != 0)
16857 mips_opts.fp = 32;
919731af 16858 break;
7361da2c
AB
16859 case ISA_MIPS32R6:
16860 mips_opts.gp = 32;
16861 mips_opts.fp = 64;
16862 break;
919731af 16863 case ISA_MIPS3:
16864 case ISA_MIPS4:
16865 case ISA_MIPS5:
16866 case ISA_MIPS64:
16867 case ISA_MIPS64R2:
16868 case ISA_MIPS64R3:
16869 case ISA_MIPS64R5:
7361da2c 16870 case ISA_MIPS64R6:
919731af 16871 mips_opts.gp = 64;
351cdf24
MF
16872 if (mips_opts.fp != 0)
16873 {
16874 if (mips_opts.arch == CPU_R5900)
16875 mips_opts.fp = 32;
16876 else
16877 mips_opts.fp = 64;
16878 }
919731af 16879 break;
16880 default:
16881 as_bad (_("unknown ISA level %s"), name + 4);
16882 break;
16883 }
e6559e01 16884 }
919731af 16885
5b7c81bd 16886 mips_check_options (&mips_opts, false);
919731af 16887
16888 mips_check_isa_supports_ases ();
16889 *input_line_pointer = ch;
16890 demand_empty_rest_of_line ();
16891}
16892
16893/* Handle the .module pseudo-op. */
16894
16895static void
16896s_module (int ignore ATTRIBUTE_UNUSED)
16897{
16898 char *name = input_line_pointer, ch;
16899
16900 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16901 ++input_line_pointer;
16902 ch = *input_line_pointer;
16903 *input_line_pointer = '\0';
16904
16905 if (!file_mips_opts_checked)
252b5132 16906 {
22522f88 16907 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16908 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16909
16910 /* Update module level settings from mips_opts. */
16911 file_mips_opts = mips_opts;
252b5132 16912 }
919731af 16913 else
16914 as_bad (_(".module is not permitted after generating code"));
16915
252b5132
RH
16916 *input_line_pointer = ch;
16917 demand_empty_rest_of_line ();
16918}
16919
16920/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16921 .option pic2. It means to generate SVR4 PIC calls. */
16922
16923static void
17a2f251 16924s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16925{
16926 mips_pic = SVR4_PIC;
5b7c81bd 16927 mips_abicalls = true;
4d0d148d
TS
16928
16929 if (g_switch_seen && g_switch_value != 0)
16930 as_warn (_("-G may not be used with SVR4 PIC code"));
16931 g_switch_value = 0;
16932
252b5132
RH
16933 bfd_set_gp_size (stdoutput, 0);
16934 demand_empty_rest_of_line ();
16935}
16936
16937/* Handle the .cpload pseudo-op. This is used when generating SVR4
16938 PIC code. It sets the $gp register for the function based on the
16939 function address, which is in the register named in the argument.
16940 This uses a relocation against _gp_disp, which is handled specially
16941 by the linker. The result is:
16942 lui $gp,%hi(_gp_disp)
16943 addiu $gp,$gp,%lo(_gp_disp)
16944 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16945 The .cpload argument is normally $25 == $t9.
16946
16947 The -mno-shared option changes this to:
bbe506e8
TS
16948 lui $gp,%hi(__gnu_local_gp)
16949 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16950 and the argument is ignored. This saves an instruction, but the
16951 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16952 address for __gnu_local_gp. Thus code assembled with -mno-shared
16953 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16954
16955static void
17a2f251 16956s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16957{
16958 expressionS ex;
aa6975fb
ILT
16959 int reg;
16960 int in_shared;
252b5132 16961
919731af 16962 file_mips_check_options ();
16963
6478892d
TS
16964 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16965 .cpload is ignored. */
16966 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16967 {
16968 s_ignore (0);
16969 return;
16970 }
16971
a276b80c
MR
16972 if (mips_opts.mips16)
16973 {
16974 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16975 ignore_rest_of_line ();
16976 return;
16977 }
16978
d3ecfc59 16979 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16980 if (mips_opts.noreorder == 0)
16981 as_warn (_(".cpload not in noreorder section"));
16982
aa6975fb
ILT
16983 reg = tc_get_register (0);
16984
16985 /* If we need to produce a 64-bit address, we are better off using
16986 the default instruction sequence. */
aed1a261 16987 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16988
252b5132 16989 ex.X_op = O_symbol;
bbe506e8
TS
16990 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16991 "__gnu_local_gp");
252b5132
RH
16992 ex.X_op_symbol = NULL;
16993 ex.X_add_number = 0;
16994
16995 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16996 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16997
8a75745d 16998 mips_mark_labels ();
5b7c81bd 16999 mips_assembling_insn = true;
8a75745d 17000
584892a6 17001 macro_start ();
67c0d1eb
RS
17002 macro_build_lui (&ex, mips_gp_register);
17003 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 17004 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
17005 if (in_shared)
17006 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
17007 mips_gp_register, reg);
584892a6 17008 macro_end ();
252b5132 17009
5b7c81bd 17010 mips_assembling_insn = false;
252b5132
RH
17011 demand_empty_rest_of_line ();
17012}
17013
6478892d
TS
17014/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
17015 .cpsetup $reg1, offset|$reg2, label
17016
17017 If offset is given, this results in:
17018 sd $gp, offset($sp)
956cd1d6 17019 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
17020 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
17021 daddu $gp, $gp, $reg1
6478892d
TS
17022
17023 If $reg2 is given, this results in:
40fc1451 17024 or $reg2, $gp, $0
956cd1d6 17025 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
17026 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
17027 daddu $gp, $gp, $reg1
aa6975fb
ILT
17028 $reg1 is normally $25 == $t9.
17029
17030 The -mno-shared option replaces the last three instructions with
17031 lui $gp,%hi(_gp)
54f4ddb3 17032 addiu $gp,$gp,%lo(_gp) */
aa6975fb 17033
6478892d 17034static void
17a2f251 17035s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
17036{
17037 expressionS ex_off;
17038 expressionS ex_sym;
17039 int reg1;
6478892d 17040
919731af 17041 file_mips_check_options ();
17042
8586fc66 17043 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
17044 We also need NewABI support. */
17045 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17046 {
17047 s_ignore (0);
17048 return;
17049 }
17050
a276b80c
MR
17051 if (mips_opts.mips16)
17052 {
17053 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
17054 ignore_rest_of_line ();
17055 return;
17056 }
17057
6478892d
TS
17058 reg1 = tc_get_register (0);
17059 SKIP_WHITESPACE ();
17060 if (*input_line_pointer != ',')
17061 {
17062 as_bad (_("missing argument separator ',' for .cpsetup"));
17063 return;
17064 }
17065 else
80245285 17066 ++input_line_pointer;
6478892d
TS
17067 SKIP_WHITESPACE ();
17068 if (*input_line_pointer == '$')
80245285
TS
17069 {
17070 mips_cpreturn_register = tc_get_register (0);
17071 mips_cpreturn_offset = -1;
17072 }
6478892d 17073 else
80245285
TS
17074 {
17075 mips_cpreturn_offset = get_absolute_expression ();
17076 mips_cpreturn_register = -1;
17077 }
6478892d
TS
17078 SKIP_WHITESPACE ();
17079 if (*input_line_pointer != ',')
17080 {
17081 as_bad (_("missing argument separator ',' for .cpsetup"));
17082 return;
17083 }
17084 else
f9419b05 17085 ++input_line_pointer;
6478892d 17086 SKIP_WHITESPACE ();
f21f8242 17087 expression (&ex_sym);
6478892d 17088
8a75745d 17089 mips_mark_labels ();
5b7c81bd 17090 mips_assembling_insn = true;
8a75745d 17091
584892a6 17092 macro_start ();
6478892d
TS
17093 if (mips_cpreturn_register == -1)
17094 {
17095 ex_off.X_op = O_constant;
17096 ex_off.X_add_symbol = NULL;
17097 ex_off.X_op_symbol = NULL;
17098 ex_off.X_add_number = mips_cpreturn_offset;
17099
67c0d1eb 17100 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 17101 BFD_RELOC_LO16, SP);
6478892d
TS
17102 }
17103 else
40fc1451 17104 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 17105
aed1a261 17106 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 17107 {
df58fc94 17108 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
17109 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
17110 BFD_RELOC_HI16_S);
17111
17112 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
17113 mips_gp_register, -1, BFD_RELOC_GPREL16,
17114 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
17115
17116 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
17117 mips_gp_register, reg1);
17118 }
17119 else
17120 {
17121 expressionS ex;
17122
17123 ex.X_op = O_symbol;
4184909a 17124 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
17125 ex.X_op_symbol = NULL;
17126 ex.X_add_number = 0;
6e1304d8 17127
aa6975fb
ILT
17128 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
17129 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
17130
17131 macro_build_lui (&ex, mips_gp_register);
17132 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17133 mips_gp_register, BFD_RELOC_LO16);
17134 }
f21f8242 17135
584892a6 17136 macro_end ();
6478892d 17137
5b7c81bd 17138 mips_assembling_insn = false;
6478892d
TS
17139 demand_empty_rest_of_line ();
17140}
17141
17142static void
17a2f251 17143s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 17144{
919731af 17145 file_mips_check_options ();
17146
6478892d 17147 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 17148 .cplocal is ignored. */
6478892d
TS
17149 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17150 {
17151 s_ignore (0);
17152 return;
17153 }
17154
a276b80c
MR
17155 if (mips_opts.mips16)
17156 {
17157 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
17158 ignore_rest_of_line ();
17159 return;
17160 }
17161
6478892d 17162 mips_gp_register = tc_get_register (0);
85b51719 17163 demand_empty_rest_of_line ();
6478892d
TS
17164}
17165
252b5132
RH
17166/* Handle the .cprestore pseudo-op. This stores $gp into a given
17167 offset from $sp. The offset is remembered, and after making a PIC
17168 call $gp is restored from that location. */
17169
17170static void
17a2f251 17171s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
17172{
17173 expressionS ex;
252b5132 17174
919731af 17175 file_mips_check_options ();
17176
6478892d 17177 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 17178 .cprestore is ignored. */
6478892d 17179 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
17180 {
17181 s_ignore (0);
17182 return;
17183 }
17184
a276b80c
MR
17185 if (mips_opts.mips16)
17186 {
17187 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
17188 ignore_rest_of_line ();
17189 return;
17190 }
17191
252b5132 17192 mips_cprestore_offset = get_absolute_expression ();
7a621144 17193 mips_cprestore_valid = 1;
252b5132
RH
17194
17195 ex.X_op = O_constant;
17196 ex.X_add_symbol = NULL;
17197 ex.X_op_symbol = NULL;
17198 ex.X_add_number = mips_cprestore_offset;
17199
8a75745d 17200 mips_mark_labels ();
5b7c81bd 17201 mips_assembling_insn = true;
8a75745d 17202
584892a6 17203 macro_start ();
67c0d1eb
RS
17204 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
17205 SP, HAVE_64BIT_ADDRESSES);
584892a6 17206 macro_end ();
252b5132 17207
5b7c81bd 17208 mips_assembling_insn = false;
252b5132
RH
17209 demand_empty_rest_of_line ();
17210}
17211
6478892d 17212/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 17213 was given in the preceding .cpsetup, it results in:
6478892d 17214 ld $gp, offset($sp)
76b3015f 17215
6478892d 17216 If a register $reg2 was given there, it results in:
40fc1451 17217 or $gp, $reg2, $0 */
54f4ddb3 17218
6478892d 17219static void
17a2f251 17220s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
17221{
17222 expressionS ex;
6478892d 17223
919731af 17224 file_mips_check_options ();
17225
6478892d
TS
17226 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
17227 We also need NewABI support. */
17228 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17229 {
17230 s_ignore (0);
17231 return;
17232 }
17233
a276b80c
MR
17234 if (mips_opts.mips16)
17235 {
17236 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
17237 ignore_rest_of_line ();
17238 return;
17239 }
17240
8a75745d 17241 mips_mark_labels ();
5b7c81bd 17242 mips_assembling_insn = true;
8a75745d 17243
584892a6 17244 macro_start ();
6478892d
TS
17245 if (mips_cpreturn_register == -1)
17246 {
17247 ex.X_op = O_constant;
17248 ex.X_add_symbol = NULL;
17249 ex.X_op_symbol = NULL;
17250 ex.X_add_number = mips_cpreturn_offset;
17251
67c0d1eb 17252 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
17253 }
17254 else
40fc1451
SD
17255 move_register (mips_gp_register, mips_cpreturn_register);
17256
584892a6 17257 macro_end ();
6478892d 17258
5b7c81bd 17259 mips_assembling_insn = false;
6478892d
TS
17260 demand_empty_rest_of_line ();
17261}
17262
d0f13682
CLT
17263/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
17264 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
17265 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
17266 debug information or MIPS16 TLS. */
741d6ea8
JM
17267
17268static void
d0f13682
CLT
17269s_tls_rel_directive (const size_t bytes, const char *dirstr,
17270 bfd_reloc_code_real_type rtype)
741d6ea8
JM
17271{
17272 expressionS ex;
17273 char *p;
17274
17275 expression (&ex);
17276
17277 if (ex.X_op != O_symbol)
17278 {
1661c76c 17279 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
17280 ignore_rest_of_line ();
17281 }
17282
17283 p = frag_more (bytes);
17284 md_number_to_chars (p, 0, bytes);
5b7c81bd 17285 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, false, rtype);
741d6ea8 17286 demand_empty_rest_of_line ();
de64cffd 17287 mips_clear_insn_labels ();
741d6ea8
JM
17288}
17289
17290/* Handle .dtprelword. */
17291
17292static void
17293s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17294{
d0f13682 17295 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
17296}
17297
17298/* Handle .dtpreldword. */
17299
17300static void
17301s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17302{
d0f13682
CLT
17303 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17304}
17305
17306/* Handle .tprelword. */
17307
17308static void
17309s_tprelword (int ignore ATTRIBUTE_UNUSED)
17310{
17311 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17312}
17313
17314/* Handle .tpreldword. */
17315
17316static void
17317s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17318{
17319 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
17320}
17321
6478892d
TS
17322/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17323 code. It sets the offset to use in gp_rel relocations. */
17324
17325static void
17a2f251 17326s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
17327{
17328 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17329 We also need NewABI support. */
17330 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17331 {
17332 s_ignore (0);
17333 return;
17334 }
17335
def2e0dd 17336 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
17337
17338 demand_empty_rest_of_line ();
17339}
17340
252b5132
RH
17341/* Handle the .gpword pseudo-op. This is used when generating PIC
17342 code. It generates a 32 bit GP relative reloc. */
17343
17344static void
17a2f251 17345s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 17346{
a8dbcb85
TS
17347 segment_info_type *si;
17348 struct insn_label_list *l;
252b5132
RH
17349 expressionS ex;
17350 char *p;
17351
17352 /* When not generating PIC code, this is treated as .word. */
17353 if (mips_pic != SVR4_PIC)
17354 {
17355 s_cons (2);
17356 return;
17357 }
17358
a8dbcb85
TS
17359 si = seg_info (now_seg);
17360 l = si->label_list;
7d10b47d 17361 mips_emit_delays ();
252b5132 17362 if (auto_align)
462427c4 17363 mips_align (2, 0, l);
252b5132
RH
17364
17365 expression (&ex);
a1facbec 17366 mips_clear_insn_labels ();
252b5132
RH
17367
17368 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17369 {
1661c76c 17370 as_bad (_("unsupported use of .gpword"));
252b5132
RH
17371 ignore_rest_of_line ();
17372 }
17373
17374 p = frag_more (4);
17a2f251 17375 md_number_to_chars (p, 0, 4);
5b7c81bd 17376 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, false,
cdf6fd85 17377 BFD_RELOC_GPREL32);
252b5132
RH
17378
17379 demand_empty_rest_of_line ();
17380}
17381
10181a0d 17382static void
17a2f251 17383s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 17384{
a8dbcb85
TS
17385 segment_info_type *si;
17386 struct insn_label_list *l;
10181a0d
AO
17387 expressionS ex;
17388 char *p;
17389
17390 /* When not generating PIC code, this is treated as .dword. */
17391 if (mips_pic != SVR4_PIC)
17392 {
17393 s_cons (3);
17394 return;
17395 }
17396
a8dbcb85
TS
17397 si = seg_info (now_seg);
17398 l = si->label_list;
7d10b47d 17399 mips_emit_delays ();
10181a0d 17400 if (auto_align)
462427c4 17401 mips_align (3, 0, l);
10181a0d
AO
17402
17403 expression (&ex);
a1facbec 17404 mips_clear_insn_labels ();
10181a0d
AO
17405
17406 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17407 {
1661c76c 17408 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
17409 ignore_rest_of_line ();
17410 }
17411
17412 p = frag_more (8);
17a2f251 17413 md_number_to_chars (p, 0, 8);
5b7c81bd 17414 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, false,
6e1304d8 17415 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
17416
17417 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8 17418 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
5b7c81bd 17419 false, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
17420
17421 demand_empty_rest_of_line ();
17422}
17423
a3f278e2
CM
17424/* Handle the .ehword pseudo-op. This is used when generating unwinding
17425 tables. It generates a R_MIPS_EH reloc. */
17426
17427static void
17428s_ehword (int ignore ATTRIBUTE_UNUSED)
17429{
17430 expressionS ex;
17431 char *p;
17432
17433 mips_emit_delays ();
17434
17435 expression (&ex);
17436 mips_clear_insn_labels ();
17437
17438 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17439 {
1661c76c 17440 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
17441 ignore_rest_of_line ();
17442 }
17443
17444 p = frag_more (4);
17445 md_number_to_chars (p, 0, 4);
5b7c81bd 17446 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, false,
2f0c68f2 17447 BFD_RELOC_32_PCREL);
a3f278e2
CM
17448
17449 demand_empty_rest_of_line ();
17450}
17451
252b5132
RH
17452/* Handle the .cpadd pseudo-op. This is used when dealing with switch
17453 tables in SVR4 PIC code. */
17454
17455static void
17a2f251 17456s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 17457{
252b5132
RH
17458 int reg;
17459
919731af 17460 file_mips_check_options ();
17461
10181a0d
AO
17462 /* This is ignored when not generating SVR4 PIC code. */
17463 if (mips_pic != SVR4_PIC)
252b5132
RH
17464 {
17465 s_ignore (0);
17466 return;
17467 }
17468
8a75745d 17469 mips_mark_labels ();
5b7c81bd 17470 mips_assembling_insn = true;
8a75745d 17471
252b5132 17472 /* Add $gp to the register named as an argument. */
584892a6 17473 macro_start ();
252b5132 17474 reg = tc_get_register (0);
67c0d1eb 17475 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 17476 macro_end ();
252b5132 17477
5b7c81bd 17478 mips_assembling_insn = false;
bdaaa2e1 17479 demand_empty_rest_of_line ();
252b5132
RH
17480}
17481
17482/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 17483 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
17484 such as generating jalx instructions when needed. We also make
17485 them odd for the duration of the assembly, in order to generate the
17486 right sort of code. We will make them even in the adjust_symtab
17487 routine, while leaving them marked. This is convenient for the
17488 debugger and the disassembler. The linker knows to make them odd
17489 again. */
17490
17491static void
17a2f251 17492s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 17493{
7bb01e2d
MR
17494 file_mips_check_options ();
17495 file_ase_mips16 |= mips_opts.mips16;
17496 file_ase_micromips |= mips_opts.micromips;
17497
df58fc94 17498 mips_mark_labels ();
252b5132
RH
17499
17500 demand_empty_rest_of_line ();
17501}
17502
ba92f887
MR
17503/* Handle the .nan pseudo-op. */
17504
17505static void
17506s_nan (int ignore ATTRIBUTE_UNUSED)
17507{
17508 static const char str_legacy[] = "legacy";
17509 static const char str_2008[] = "2008";
17510 size_t i;
17511
17512 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17513
17514 if (i == sizeof (str_2008) - 1
17515 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 17516 mips_nan2008 = 1;
ba92f887
MR
17517 else if (i == sizeof (str_legacy) - 1
17518 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
17519 {
17520 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17521 mips_nan2008 = 0;
17522 else
17523 as_bad (_("`%s' does not support legacy NaN"),
17524 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17525 }
ba92f887 17526 else
1661c76c 17527 as_bad (_("bad .nan directive"));
ba92f887
MR
17528
17529 input_line_pointer += i;
17530 demand_empty_rest_of_line ();
17531}
17532
754e2bb9
RS
17533/* Handle a .stab[snd] directive. Ideally these directives would be
17534 implemented in a transparent way, so that removing them would not
17535 have any effect on the generated instructions. However, s_stab
17536 internally changes the section, so in practice we need to decide
17537 now whether the preceding label marks compressed code. We do not
17538 support changing the compression mode of a label after a .stab*
17539 directive, such as in:
17540
17541 foo:
134c0c8b 17542 .stabs ...
754e2bb9
RS
17543 .set mips16
17544
17545 so the current mode wins. */
252b5132
RH
17546
17547static void
17a2f251 17548s_mips_stab (int type)
252b5132 17549{
42c0794e 17550 file_mips_check_options ();
754e2bb9 17551 mips_mark_labels ();
252b5132
RH
17552 s_stab (type);
17553}
17554
54f4ddb3 17555/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
17556
17557static void
17a2f251 17558s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
17559{
17560 char *name;
17561 int c;
17562 symbolS *symbolP;
17563 expressionS exp;
17564
d02603dc 17565 c = get_symbol_name (&name);
252b5132
RH
17566 symbolP = symbol_find_or_make (name);
17567 S_SET_WEAK (symbolP);
17568 *input_line_pointer = c;
17569
d02603dc 17570 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
17571
17572 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17573 {
17574 if (S_IS_DEFINED (symbolP))
17575 {
20203fb9 17576 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
17577 S_GET_NAME (symbolP));
17578 ignore_rest_of_line ();
17579 return;
17580 }
bdaaa2e1 17581
252b5132
RH
17582 if (*input_line_pointer == ',')
17583 {
17584 ++input_line_pointer;
17585 SKIP_WHITESPACE ();
17586 }
bdaaa2e1 17587
252b5132
RH
17588 expression (&exp);
17589 if (exp.X_op != O_symbol)
17590 {
20203fb9 17591 as_bad (_("bad .weakext directive"));
98d3f06f 17592 ignore_rest_of_line ();
252b5132
RH
17593 return;
17594 }
49309057 17595 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
17596 }
17597
17598 demand_empty_rest_of_line ();
17599}
17600
17601/* Parse a register string into a number. Called from the ECOFF code
17602 to parse .frame. The argument is non-zero if this is the frame
17603 register, so that we can record it in mips_frame_reg. */
17604
17605int
17a2f251 17606tc_get_register (int frame)
252b5132 17607{
707bfff6 17608 unsigned int reg;
252b5132
RH
17609
17610 SKIP_WHITESPACE ();
707bfff6
TS
17611 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17612 reg = 0;
252b5132 17613 if (frame)
7a621144
DJ
17614 {
17615 mips_frame_reg = reg != 0 ? reg : SP;
17616 mips_frame_reg_valid = 1;
17617 mips_cprestore_valid = 0;
17618 }
252b5132
RH
17619 return reg;
17620}
17621
17622valueT
17a2f251 17623md_section_align (asection *seg, valueT addr)
252b5132 17624{
fd361982 17625 int align = bfd_section_alignment (seg);
252b5132 17626
f3ded42a
RS
17627 /* We don't need to align ELF sections to the full alignment.
17628 However, Irix 5 may prefer that we align them at least to a 16
17629 byte boundary. We don't bother to align the sections if we
17630 are targeted for an embedded system. */
d34049e8 17631 if (startswith (TARGET_OS, "elf"))
f3ded42a
RS
17632 return addr;
17633 if (align > 4)
17634 align = 4;
252b5132 17635
8d3842cd 17636 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17637}
17638
17639/* Utility routine, called from above as well. If called while the
17640 input file is still being read, it's only an approximation. (For
17641 example, a symbol may later become defined which appeared to be
17642 undefined earlier.) */
17643
17644static int
17a2f251 17645nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17646{
17647 if (sym == 0)
17648 return 0;
17649
4d0d148d 17650 if (g_switch_value > 0)
252b5132
RH
17651 {
17652 const char *symname;
17653 int change;
17654
c9914766 17655 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17656 register. It can be if it is smaller than the -G size or if
17657 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17658 not be referenced off the $gp, although it appears as though
252b5132
RH
17659 they can. */
17660 symname = S_GET_NAME (sym);
17661 if (symname != (const char *) NULL
17662 && (strcmp (symname, "eprol") == 0
17663 || strcmp (symname, "etext") == 0
17664 || strcmp (symname, "_gp") == 0
17665 || strcmp (symname, "edata") == 0
17666 || strcmp (symname, "_fbss") == 0
17667 || strcmp (symname, "_fdata") == 0
17668 || strcmp (symname, "_ftext") == 0
17669 || strcmp (symname, "end") == 0
17670 || strcmp (symname, "_gp_disp") == 0))
17671 change = 1;
17672 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17673 && (0
17674#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17675 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17676 && (symbol_get_obj (sym)->ecoff_extern_size
17677 <= g_switch_value))
252b5132
RH
17678#endif
17679 /* We must defer this decision until after the whole
17680 file has been read, since there might be a .extern
17681 after the first use of this symbol. */
17682 || (before_relaxing
17683#ifndef NO_ECOFF_DEBUGGING
49309057 17684 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17685#endif
17686 && S_GET_VALUE (sym) == 0)
17687 || (S_GET_VALUE (sym) != 0
17688 && S_GET_VALUE (sym) <= g_switch_value)))
17689 change = 0;
17690 else
17691 {
17692 const char *segname;
17693
17694 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17695 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17696 && strcmp (segname, ".lit4") != 0);
17697 change = (strcmp (segname, ".sdata") != 0
fba2b7f9 17698 && strcmp (segname, ".sbss") != 0
d34049e8
ML
17699 && !startswith (segname, ".sdata.")
17700 && !startswith (segname, ".sbss.")
17701 && !startswith (segname, ".gnu.linkonce.sb.")
17702 && !startswith (segname, ".gnu.linkonce.s."));
252b5132
RH
17703 }
17704 return change;
17705 }
17706 else
c9914766 17707 /* We are not optimizing for the $gp register. */
252b5132
RH
17708 return 1;
17709}
17710
5919d012
RS
17711
17712/* Return true if the given symbol should be considered local for SVR4 PIC. */
17713
5b7c81bd 17714static bool
9e009953 17715pic_need_relax (symbolS *sym)
5919d012
RS
17716{
17717 asection *symsec;
5919d012
RS
17718
17719 /* Handle the case of a symbol equated to another symbol. */
17720 while (symbol_equated_reloc_p (sym))
17721 {
17722 symbolS *n;
17723
5f0fe04b 17724 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17725 n = symbol_get_value_expression (sym)->X_add_symbol;
17726 if (n == sym)
17727 break;
17728 sym = n;
17729 }
17730
df1f3cda 17731 if (symbol_section_p (sym))
5b7c81bd 17732 return true;
df1f3cda 17733
5919d012
RS
17734 symsec = S_GET_SEGMENT (sym);
17735
5919d012 17736 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17737 return (!bfd_is_und_section (symsec)
17738 && !bfd_is_abs_section (symsec)
5f0fe04b 17739 && !bfd_is_com_section (symsec)
5919d012 17740 /* A global or weak symbol is treated as external. */
f3ded42a 17741 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012 17742}
14f72d45
MR
17743\f
17744/* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17745 convert a section-relative value VAL to the equivalent PC-relative
17746 value. */
17747
17748static offsetT
17749mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17750 offsetT val, long stretch)
17751{
17752 fragS *sym_frag;
17753 addressT addr;
17754
17755 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17756
17757 sym_frag = symbol_get_frag (fragp->fr_symbol);
17758
17759 /* If the relax_marker of the symbol fragment differs from the
17760 relax_marker of this fragment, we have not yet adjusted the
17761 symbol fragment fr_address. We want to add in STRETCH in
17762 order to get a better estimate of the address. This
17763 particularly matters because of the shift bits. */
17764 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17765 {
17766 fragS *f;
17767
17768 /* Adjust stretch for any alignment frag. Note that if have
17769 been expanding the earlier code, the symbol may be
17770 defined in what appears to be an earlier frag. FIXME:
17771 This doesn't handle the fr_subtype field, which specifies
17772 a maximum number of bytes to skip when doing an
17773 alignment. */
17774 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17775 {
17776 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17777 {
17778 if (stretch < 0)
17779 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17780 else
17781 stretch &= ~((1 << (int) f->fr_offset) - 1);
17782 if (stretch == 0)
17783 break;
17784 }
17785 }
17786 if (f != NULL)
17787 val += stretch;
17788 }
17789
17790 addr = fragp->fr_address + fragp->fr_fix;
17791
17792 /* The base address rules are complicated. The base address of
17793 a branch is the following instruction. The base address of a
17794 PC relative load or add is the instruction itself, but if it
17795 is in a delay slot (in which case it can not be extended) use
17796 the address of the instruction whose delay slot it is in. */
17797 if (pcrel_op->include_isa_bit)
17798 {
17799 addr += 2;
17800
17801 /* If we are currently assuming that this frag should be
17802 extended, then the current address is two bytes higher. */
17803 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17804 addr += 2;
17805
17806 /* Ignore the low bit in the target, since it will be set
17807 for a text label. */
17808 val &= -2;
17809 }
17810 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17811 addr -= 4;
17812 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17813 addr -= 2;
5919d012 17814
14f72d45
MR
17815 val -= addr & -(1 << pcrel_op->align_log2);
17816
17817 return val;
17818}
5919d012 17819
252b5132
RH
17820/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17821 extended opcode. SEC is the section the frag is in. */
17822
17823static int
17a2f251 17824mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132 17825{
3ccad066 17826 const struct mips_int_operand *operand;
252b5132 17827 offsetT val;
252b5132 17828 segT symsec;
14f72d45 17829 int type;
252b5132
RH
17830
17831 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17832 return 0;
17833 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17834 return 1;
17835
88a7ef16 17836 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17837 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
5b7c81bd
AM
17838 operand = mips16_immed_operand (type, false);
17839 if (S_FORCE_RELOC (fragp->fr_symbol, true)
88a7ef16
MR
17840 || (operand->root.type == OP_PCREL
17841 ? sec != symsec
17842 : !bfd_is_abs_section (symsec)))
17843 return 1;
252b5132 17844
88a7ef16 17845 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17846
3ccad066 17847 if (operand->root.type == OP_PCREL)
252b5132 17848 {
3ccad066 17849 const struct mips_pcrel_operand *pcrel_op;
3ccad066 17850 offsetT maxtiny;
252b5132 17851
1425c41d 17852 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
88a7ef16 17853 return 1;
252b5132 17854
88a7ef16 17855 pcrel_op = (const struct mips_pcrel_operand *) operand;
14f72d45 17856 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
252b5132
RH
17857
17858 /* If any of the shifted bits are set, we must use an extended
17859 opcode. If the address depends on the size of this
17860 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17861 use an extended opcode. */
17862 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17863 {
17864 fragp->fr_subtype =
1425c41d 17865 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17866 return 1;
17867 }
17868
17869 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17870 is precisely the next value above maxtiny, then there is a
17871 chance of an infinite loop as in the following code:
252b5132
RH
17872 la $4,foo
17873 .skip 1020
17874 .align 2
17875 foo:
17876 In this case when the la is extended, foo is 0x3fc bytes
17877 away, so the la can be shrunk, but then foo is 0x400 away, so
17878 the la must be extended. To avoid this loop, we mark the
17879 frag as extended if it was small, and is about to become
3ccad066
RS
17880 extended with the next value above maxtiny. */
17881 maxtiny = mips_int_operand_max (operand);
17882 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17883 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17884 {
17885 fragp->fr_subtype =
1425c41d 17886 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17887 return 1;
17888 }
17889 }
252b5132 17890
3ccad066 17891 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17892}
17893
8507b6e7
MR
17894/* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17895 macro expansion. SEC is the section the frag is in. We only
17896 support PC-relative instructions (LA, DLA, LW, LD) here, in
17897 non-PIC code using 32-bit addressing. */
17898
17899static int
17900mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17901{
17902 const struct mips_pcrel_operand *pcrel_op;
17903 const struct mips_int_operand *operand;
17904 offsetT val;
17905 segT symsec;
17906 int type;
17907
17908 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17909
17910 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17911 return 0;
17912 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17913 return 0;
17914
17915 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17916 switch (type)
17917 {
17918 case 'A':
17919 case 'B':
17920 case 'E':
17921 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17922 if (bfd_is_abs_section (symsec))
17923 return 1;
17924 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17925 return 0;
5b7c81bd 17926 if (S_FORCE_RELOC (fragp->fr_symbol, true) || sec != symsec)
8507b6e7
MR
17927 return 1;
17928
5b7c81bd 17929 operand = mips16_immed_operand (type, true);
8507b6e7
MR
17930 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17931 pcrel_op = (const struct mips_pcrel_operand *) operand;
17932 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17933
17934 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17935
17936 default:
17937 return 0;
17938 }
17939}
17940
4a6a3df4
AO
17941/* Compute the length of a branch sequence, and adjust the
17942 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17943 worst-case length is computed, with UPDATE being used to indicate
17944 whether an unconditional (-1), branch-likely (+1) or regular (0)
17945 branch is to be computed. */
17946static int
17a2f251 17947relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17948{
5b7c81bd 17949 bool toofar;
4a6a3df4
AO
17950 int length;
17951
17952 if (fragp
17953 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17954 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17955 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17956 {
17957 addressT addr;
17958 offsetT val;
17959
17960 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17961
17962 addr = fragp->fr_address + fragp->fr_fix + 4;
17963
17964 val -= addr;
17965
17966 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17967 }
4a6a3df4 17968 else
c1f61bd2
MR
17969 /* If the symbol is not defined or it's in a different segment,
17970 we emit the long sequence. */
5b7c81bd 17971 toofar = true;
4a6a3df4
AO
17972
17973 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17974 fragp->fr_subtype
66b3e8da 17975 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
ce8ad872 17976 RELAX_BRANCH_PIC (fragp->fr_subtype),
66b3e8da 17977 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17978 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17979 RELAX_BRANCH_LINK (fragp->fr_subtype),
17980 toofar);
17981
17982 length = 4;
17983 if (toofar)
17984 {
17985 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17986 length += 8;
17987
ce8ad872 17988 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
17989 {
17990 /* Additional space for PIC loading of target address. */
17991 length += 8;
17992 if (mips_opts.isa == ISA_MIPS1)
17993 /* Additional space for $at-stabilizing nop. */
17994 length += 4;
17995 }
17996
17997 /* If branch is conditional. */
17998 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17999 length += 8;
18000 }
b34976b6 18001
4a6a3df4
AO
18002 return length;
18003}
18004
7bd374a4
MR
18005/* Get a FRAG's branch instruction delay slot size, either from the
18006 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
18007 or SHORT_INSN_SIZE otherwise. */
18008
18009static int
5b7c81bd 18010frag_branch_delay_slot_size (fragS *fragp, bool al, int short_insn_size)
7bd374a4
MR
18011{
18012 char *buf = fragp->fr_literal + fragp->fr_fix;
18013
18014 if (al)
18015 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
18016 else
18017 return short_insn_size;
18018}
18019
df58fc94
RS
18020/* Compute the length of a branch sequence, and adjust the
18021 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
18022 worst-case length is computed, with UPDATE being used to indicate
18023 whether an unconditional (-1), or regular (0) branch is to be
18024 computed. */
18025
18026static int
18027relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
18028{
5b7c81bd
AM
18029 bool insn32 = true;
18030 bool nods = true;
18031 bool pic = true;
18032 bool al = true;
7bd374a4 18033 int short_insn_size;
5b7c81bd 18034 bool toofar;
df58fc94
RS
18035 int length;
18036
7bd374a4
MR
18037 if (fragp)
18038 {
18039 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18040 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 18041 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
7bd374a4
MR
18042 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18043 }
18044 short_insn_size = insn32 ? 4 : 2;
18045
df58fc94
RS
18046 if (fragp
18047 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 18048 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
18049 && sec == S_GET_SEGMENT (fragp->fr_symbol))
18050 {
18051 addressT addr;
18052 offsetT val;
18053
18054 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
18055 /* Ignore the low bit in the target, since it will be set
18056 for a text label. */
18057 if ((val & 1) != 0)
18058 --val;
18059
18060 addr = fragp->fr_address + fragp->fr_fix + 4;
18061
18062 val -= addr;
18063
18064 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
18065 }
df58fc94 18066 else
c1f61bd2
MR
18067 /* If the symbol is not defined or it's in a different segment,
18068 we emit the long sequence. */
5b7c81bd 18069 toofar = true;
df58fc94
RS
18070
18071 if (fragp && update
18072 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18073 fragp->fr_subtype = (toofar
18074 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
18075 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
18076
18077 length = 4;
18078 if (toofar)
18079 {
5b7c81bd
AM
18080 bool compact_known = fragp != NULL;
18081 bool compact = false;
18082 bool uncond;
df58fc94 18083
df58fc94 18084 if (fragp)
8484fb75
MR
18085 {
18086 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18087 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 18088 }
df58fc94
RS
18089 else
18090 uncond = update < 0;
18091
18092 /* If label is out of range, we turn branch <br>:
18093
18094 <br> label # 4 bytes
18095 0:
18096
18097 into:
18098
18099 j label # 4 bytes
8484fb75
MR
18100 nop # 2/4 bytes if
18101 # compact && (!PIC || insn32)
df58fc94
RS
18102 0:
18103 */
ce8ad872 18104 if ((!pic || insn32) && (!compact_known || compact))
8484fb75 18105 length += short_insn_size;
df58fc94
RS
18106
18107 /* If assembling PIC code, we further turn:
18108
18109 j label # 4 bytes
18110
18111 into:
18112
18113 lw/ld at, %got(label)(gp) # 4 bytes
18114 d/addiu at, %lo(label) # 4 bytes
8484fb75 18115 jr/c at # 2/4 bytes
df58fc94 18116 */
ce8ad872 18117 if (pic)
8484fb75 18118 length += 4 + short_insn_size;
df58fc94 18119
7bd374a4
MR
18120 /* Add an extra nop if the jump has no compact form and we need
18121 to fill the delay slot. */
ce8ad872 18122 if ((!pic || al) && nods)
7bd374a4
MR
18123 length += (fragp
18124 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
18125 : short_insn_size);
18126
df58fc94
RS
18127 /* If branch <br> is conditional, we prepend negated branch <brneg>:
18128
18129 <brneg> 0f # 4 bytes
8484fb75 18130 nop # 2/4 bytes if !compact
df58fc94
RS
18131 */
18132 if (!uncond)
8484fb75 18133 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 18134 }
7bd374a4
MR
18135 else if (nods)
18136 {
18137 /* Add an extra nop to fill the delay slot. */
18138 gas_assert (fragp);
18139 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
18140 }
df58fc94
RS
18141
18142 return length;
18143}
18144
18145/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
18146 bit accordingly. */
18147
18148static int
18149relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
18150{
5b7c81bd 18151 bool toofar;
df58fc94 18152
df58fc94
RS
18153 if (fragp
18154 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 18155 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
18156 && sec == S_GET_SEGMENT (fragp->fr_symbol))
18157 {
18158 addressT addr;
18159 offsetT val;
18160 int type;
18161
18162 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
18163 /* Ignore the low bit in the target, since it will be set
18164 for a text label. */
18165 if ((val & 1) != 0)
18166 --val;
18167
18168 /* Assume this is a 2-byte branch. */
18169 addr = fragp->fr_address + fragp->fr_fix + 2;
18170
18171 /* We try to avoid the infinite loop by not adding 2 more bytes for
18172 long branches. */
18173
18174 val -= addr;
18175
18176 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18177 if (type == 'D')
18178 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
18179 else if (type == 'E')
18180 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
18181 else
18182 abort ();
18183 }
18184 else
18185 /* If the symbol is not defined or it's in a different segment,
18186 we emit a normal 32-bit branch. */
5b7c81bd 18187 toofar = true;
df58fc94
RS
18188
18189 if (fragp && update
18190 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18191 fragp->fr_subtype
18192 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
18193 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
18194
18195 if (toofar)
18196 return 4;
18197
18198 return 2;
18199}
18200
252b5132
RH
18201/* Estimate the size of a frag before relaxing. Unless this is the
18202 mips16, we are not really relaxing here, and the final size is
18203 encoded in the subtype information. For the mips16, we have to
18204 decide whether we are using an extended opcode or not. */
18205
252b5132 18206int
17a2f251 18207md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 18208{
5919d012 18209 int change;
252b5132 18210
4a6a3df4
AO
18211 if (RELAX_BRANCH_P (fragp->fr_subtype))
18212 {
18213
5b7c81bd 18214 fragp->fr_var = relaxed_branch_length (fragp, segtype, false);
b34976b6 18215
4a6a3df4
AO
18216 return fragp->fr_var;
18217 }
18218
252b5132 18219 if (RELAX_MIPS16_P (fragp->fr_subtype))
8507b6e7
MR
18220 {
18221 /* We don't want to modify the EXTENDED bit here; it might get us
18222 into infinite loops. We change it only in mips_relax_frag(). */
18223 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
25499ac7 18224 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
8507b6e7
MR
18225 else
18226 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
18227 }
252b5132 18228
df58fc94
RS
18229 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18230 {
18231 int length = 4;
18232
18233 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
5b7c81bd 18234 length = relaxed_micromips_16bit_branch_length (fragp, segtype, false);
df58fc94 18235 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
5b7c81bd 18236 length = relaxed_micromips_32bit_branch_length (fragp, segtype, false);
df58fc94
RS
18237 fragp->fr_var = length;
18238
18239 return length;
18240 }
18241
ce8ad872 18242 if (mips_pic == VXWORKS_PIC)
0a44bf69
RS
18243 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
18244 change = 0;
ce8ad872
MR
18245 else if (RELAX_PIC (fragp->fr_subtype))
18246 change = pic_need_relax (fragp->fr_symbol);
252b5132 18247 else
ce8ad872 18248 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132
RH
18249
18250 if (change)
18251 {
4d7206a2 18252 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 18253 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 18254 }
4d7206a2
RS
18255 else
18256 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
18257}
18258
18259/* This is called to see whether a reloc against a defined symbol
de7e6852 18260 should be converted into a reloc against a section. */
252b5132
RH
18261
18262int
17a2f251 18263mips_fix_adjustable (fixS *fixp)
252b5132 18264{
252b5132
RH
18265 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18266 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18267 return 0;
a161fe53 18268
252b5132
RH
18269 if (fixp->fx_addsy == NULL)
18270 return 1;
a161fe53 18271
2f0c68f2
CM
18272 /* Allow relocs used for EH tables. */
18273 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
18274 return 1;
18275
de7e6852
RS
18276 /* If symbol SYM is in a mergeable section, relocations of the form
18277 SYM + 0 can usually be made section-relative. The mergeable data
18278 is then identified by the section offset rather than by the symbol.
18279
18280 However, if we're generating REL LO16 relocations, the offset is split
33eaf5de 18281 between the LO16 and partnering high part relocation. The linker will
de7e6852
RS
18282 need to recalculate the complete offset in order to correctly identify
18283 the merge data.
18284
33eaf5de 18285 The linker has traditionally not looked for the partnering high part
de7e6852
RS
18286 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
18287 placed anywhere. Rather than break backwards compatibility by changing
18288 this, it seems better not to force the issue, and instead keep the
18289 original symbol. This will work with either linker behavior. */
738e5348 18290 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 18291 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
18292 && HAVE_IN_PLACE_ADDENDS
18293 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
18294 return 0;
18295
97f50151
MR
18296 /* There is no place to store an in-place offset for JALR relocations. */
18297 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
18298 return 0;
18299
18300 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 18301 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
18302 start address of the symbol's containing section.
18303
18304 Also, PC relative relocations for MIPS R6 need to be symbol rather than
18305 section relative to allow linker relaxations to be performed later on. */
97f50151 18306 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 18307 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
18308 return 0;
18309
b314ec0e
RS
18310 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18311 to a floating-point stub. The same is true for non-R_MIPS16_26
18312 relocations against MIPS16 functions; in this case, the stub becomes
18313 the function's canonical address.
18314
18315 Floating-point stubs are stored in unique .mips16.call.* or
18316 .mips16.fn.* sections. If a stub T for function F is in section S,
18317 the first relocation in section S must be against F; this is how the
18318 linker determines the target function. All relocations that might
18319 resolve to T must also be against F. We therefore have the following
18320 restrictions, which are given in an intentionally-redundant way:
18321
18322 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18323 symbols.
18324
18325 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18326 if that stub might be used.
18327
18328 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18329 symbols.
18330
18331 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18332 that stub might be used.
18333
18334 There is a further restriction:
18335
df58fc94 18336 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 18337 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
18338 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18339 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18340 against MIPS16 or microMIPS symbols because we need to keep the
18341 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
18342 detection and JAL or BAL to JALX instruction conversion in the
18343 linker.
b314ec0e 18344
df58fc94 18345 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 18346 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 18347 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
18348
18349 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18350 relocation against some symbol R, no relocation against R may be
18351 reduced. (Note that this deals with (2) as well as (1) because
18352 relocations against global symbols will never be reduced on ELF
18353 targets.) This approach is a little simpler than trying to detect
18354 stub sections, and gives the "all or nothing" per-symbol consistency
18355 that we have for MIPS16 symbols. */
f3ded42a 18356 if (fixp->fx_subsy == NULL
30c09090 18357 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 18358 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
18359 && (jmp_reloc_p (fixp->fx_r_type)
18360 || b_reloc_p (fixp->fx_r_type)))
44d3da23 18361 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 18362 return 0;
a161fe53 18363
252b5132
RH
18364 return 1;
18365}
18366
18367/* Translate internal representation of relocation info to BFD target
18368 format. */
18369
18370arelent **
17a2f251 18371tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
18372{
18373 static arelent *retval[4];
18374 arelent *reloc;
18375 bfd_reloc_code_real_type code;
18376
4b0cff4e 18377 memset (retval, 0, sizeof(retval));
325801bd
TS
18378 reloc = retval[0] = XCNEW (arelent);
18379 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 18380 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
18381 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18382
bad36eac
DJ
18383 if (fixp->fx_pcrel)
18384 {
df58fc94 18385 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 18386 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
18387 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18388 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 18389 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
18390 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18391 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18392 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18393 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18394 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18395 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18396 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
18397
18398 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18399 Relocations want only the symbol offset. */
51f6035b
MR
18400 switch (fixp->fx_r_type)
18401 {
18402 case BFD_RELOC_MIPS_18_PCREL_S3:
18403 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18404 break;
18405 default:
18406 reloc->addend = fixp->fx_addnumber + reloc->address;
18407 break;
18408 }
bad36eac 18409 }
17c6c9d9
MR
18410 else if (HAVE_IN_PLACE_ADDENDS
18411 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18412 && (read_compressed_insn (fixp->fx_frag->fr_literal
18413 + fixp->fx_where, 4) >> 26) == 0x3c)
18414 {
18415 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18416 addend accordingly. */
18417 reloc->addend = fixp->fx_addnumber >> 1;
18418 }
bad36eac
DJ
18419 else
18420 reloc->addend = fixp->fx_addnumber;
252b5132 18421
438c16b8
TS
18422 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18423 entry to be used in the relocation's section offset. */
18424 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
18425 {
18426 reloc->address = reloc->addend;
18427 reloc->addend = 0;
18428 }
18429
252b5132 18430 code = fixp->fx_r_type;
252b5132 18431
bad36eac 18432 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
18433 if (reloc->howto == NULL)
18434 {
18435 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
18436 _("cannot represent %s relocation in this object file"
18437 " format"),
252b5132
RH
18438 bfd_get_reloc_code_name (code));
18439 retval[0] = NULL;
18440 }
18441
18442 return retval;
18443}
18444
18445/* Relax a machine dependent frag. This returns the amount by which
18446 the current size of the frag should change. */
18447
18448int
17a2f251 18449mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 18450{
4a6a3df4
AO
18451 if (RELAX_BRANCH_P (fragp->fr_subtype))
18452 {
18453 offsetT old_var = fragp->fr_var;
b34976b6 18454
5b7c81bd 18455 fragp->fr_var = relaxed_branch_length (fragp, sec, true);
4a6a3df4
AO
18456
18457 return fragp->fr_var - old_var;
18458 }
18459
df58fc94
RS
18460 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18461 {
18462 offsetT old_var = fragp->fr_var;
18463 offsetT new_var = 4;
18464
18465 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
5b7c81bd 18466 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, true);
df58fc94 18467 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
5b7c81bd 18468 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, true);
df58fc94
RS
18469 fragp->fr_var = new_var;
18470
18471 return new_var - old_var;
18472 }
18473
252b5132
RH
18474 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18475 return 0;
18476
8507b6e7 18477 if (!mips16_extended_frag (fragp, sec, stretch))
252b5132 18478 {
8507b6e7
MR
18479 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18480 {
18481 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
25499ac7 18482 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
8507b6e7
MR
18483 }
18484 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18485 {
18486 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18487 return -2;
18488 }
18489 else
18490 return 0;
18491 }
18492 else if (!mips16_macro_frag (fragp, sec, stretch))
18493 {
18494 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18495 {
18496 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18497 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
25499ac7 18498 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
8507b6e7
MR
18499 }
18500 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18501 {
18502 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18503 return 2;
18504 }
18505 else
252b5132 18506 return 0;
252b5132
RH
18507 }
18508 else
18509 {
8507b6e7 18510 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
252b5132 18511 return 0;
8507b6e7
MR
18512 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18513 {
18514 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18515 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
25499ac7 18516 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
8507b6e7
MR
18517 }
18518 else
18519 {
18520 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
25499ac7 18521 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
8507b6e7 18522 }
252b5132
RH
18523 }
18524
18525 return 0;
18526}
18527
18528/* Convert a machine dependent frag. */
18529
18530void
17a2f251 18531md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 18532{
4a6a3df4
AO
18533 if (RELAX_BRANCH_P (fragp->fr_subtype))
18534 {
4d68580a 18535 char *buf;
4a6a3df4 18536 unsigned long insn;
4a6a3df4 18537 fixS *fixp;
b34976b6 18538
4d68580a
RS
18539 buf = fragp->fr_literal + fragp->fr_fix;
18540 insn = read_insn (buf);
b34976b6 18541
4a6a3df4
AO
18542 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18543 {
18544 /* We generate a fixup instead of applying it right now
18545 because, if there are linker relaxations, we're going to
18546 need the relocations. */
bbd27b76
MR
18547 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18548 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18549 true, BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
18550 fixp->fx_file = fragp->fr_file;
18551 fixp->fx_line = fragp->fr_line;
b34976b6 18552
4d68580a 18553 buf = write_insn (buf, insn);
4a6a3df4
AO
18554 }
18555 else
18556 {
18557 int i;
18558
18559 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18560 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
18561
18562 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18563 goto uncond;
18564
18565 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18566 {
18567 /* Reverse the branch. */
18568 switch ((insn >> 28) & 0xf)
18569 {
18570 case 4:
56d438b1
CF
18571 if ((insn & 0xff000000) == 0x47000000
18572 || (insn & 0xff600000) == 0x45600000)
18573 {
18574 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18575 reversed by tweaking bit 23. */
18576 insn ^= 0x00800000;
18577 }
18578 else
18579 {
18580 /* bc[0-3][tf]l? instructions can have the condition
18581 reversed by tweaking a single TF bit, and their
18582 opcodes all have 0x4???????. */
18583 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18584 insn ^= 0x00010000;
18585 }
4a6a3df4
AO
18586 break;
18587
18588 case 0:
18589 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 18590 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 18591 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
18592 insn ^= 0x00010000;
18593 break;
b34976b6 18594
4a6a3df4
AO
18595 case 1:
18596 /* beq 0x10000000 bne 0x14000000
54f4ddb3 18597 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
18598 insn ^= 0x04000000;
18599 break;
18600
18601 default:
18602 abort ();
18603 }
18604 }
18605
18606 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18607 {
18608 /* Clear the and-link bit. */
9c2799c2 18609 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 18610
54f4ddb3
TS
18611 /* bltzal 0x04100000 bgezal 0x04110000
18612 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
18613 insn &= ~0x00100000;
18614 }
18615
18616 /* Branch over the branch (if the branch was likely) or the
18617 full jump (not likely case). Compute the offset from the
18618 current instruction to branch to. */
18619 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18620 i = 16;
18621 else
18622 {
18623 /* How many bytes in instructions we've already emitted? */
4d68580a 18624 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18625 /* How many bytes in instructions from here to the end? */
18626 i = fragp->fr_var - i;
18627 }
18628 /* Convert to instruction count. */
18629 i >>= 2;
18630 /* Branch counts from the next instruction. */
b34976b6 18631 i--;
4a6a3df4
AO
18632 insn |= i;
18633 /* Branch over the jump. */
4d68580a 18634 buf = write_insn (buf, insn);
4a6a3df4 18635
54f4ddb3 18636 /* nop */
4d68580a 18637 buf = write_insn (buf, 0);
4a6a3df4
AO
18638
18639 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18640 {
18641 /* beql $0, $0, 2f */
18642 insn = 0x50000000;
18643 /* Compute the PC offset from the current instruction to
18644 the end of the variable frag. */
18645 /* How many bytes in instructions we've already emitted? */
4d68580a 18646 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18647 /* How many bytes in instructions from here to the end? */
18648 i = fragp->fr_var - i;
18649 /* Convert to instruction count. */
18650 i >>= 2;
18651 /* Don't decrement i, because we want to branch over the
18652 delay slot. */
4a6a3df4 18653 insn |= i;
4a6a3df4 18654
4d68580a
RS
18655 buf = write_insn (buf, insn);
18656 buf = write_insn (buf, 0);
4a6a3df4
AO
18657 }
18658
18659 uncond:
ce8ad872 18660 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
18661 {
18662 /* j or jal. */
18663 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18664 ? 0x0c000000 : 0x08000000);
4a6a3df4 18665
bbd27b76
MR
18666 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18667 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18668 false, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
18669 fixp->fx_file = fragp->fr_file;
18670 fixp->fx_line = fragp->fr_line;
18671
4d68580a 18672 buf = write_insn (buf, insn);
4a6a3df4
AO
18673 }
18674 else
18675 {
66b3e8da
MR
18676 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18677
4a6a3df4 18678 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
18679 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18680 insn |= at << OP_SH_RT;
4a6a3df4 18681
bbd27b76
MR
18682 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18683 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18684 false, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18685 fixp->fx_file = fragp->fr_file;
18686 fixp->fx_line = fragp->fr_line;
18687
4d68580a 18688 buf = write_insn (buf, insn);
b34976b6 18689
4a6a3df4 18690 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18691 /* nop */
18692 buf = write_insn (buf, 0);
4a6a3df4
AO
18693
18694 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18695 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18696 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18697
bbd27b76
MR
18698 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18699 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18700 false, BFD_RELOC_LO16);
4a6a3df4
AO
18701 fixp->fx_file = fragp->fr_file;
18702 fixp->fx_line = fragp->fr_line;
b34976b6 18703
4d68580a 18704 buf = write_insn (buf, insn);
4a6a3df4
AO
18705
18706 /* j(al)r $at. */
18707 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18708 insn = 0x0000f809;
4a6a3df4 18709 else
66b3e8da
MR
18710 insn = 0x00000008;
18711 insn |= at << OP_SH_RS;
4a6a3df4 18712
4d68580a 18713 buf = write_insn (buf, insn);
4a6a3df4
AO
18714 }
18715 }
18716
4a6a3df4 18717 fragp->fr_fix += fragp->fr_var;
4d68580a 18718 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18719 return;
18720 }
18721
df58fc94
RS
18722 /* Relax microMIPS branches. */
18723 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18724 {
4d68580a 18725 char *buf = fragp->fr_literal + fragp->fr_fix;
5b7c81bd
AM
18726 bool compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18727 bool insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18728 bool nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18729 bool pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18730 bool al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
df58fc94 18731 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
5b7c81bd 18732 bool short_ds;
df58fc94 18733 unsigned long insn;
df58fc94
RS
18734 fixS *fixp;
18735
df58fc94
RS
18736 fragp->fr_fix += fragp->fr_var;
18737
18738 /* Handle 16-bit branches that fit or are forced to fit. */
18739 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18740 {
18741 /* We generate a fixup instead of applying it right now,
18742 because if there is linker relaxation, we're going to
18743 need the relocations. */
834a65aa
MR
18744 switch (type)
18745 {
18746 case 'D':
18747 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18748 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18749 true, BFD_RELOC_MICROMIPS_10_PCREL_S1);
834a65aa
MR
18750 break;
18751 case 'E':
18752 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18753 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18754 true, BFD_RELOC_MICROMIPS_7_PCREL_S1);
834a65aa
MR
18755 break;
18756 default:
18757 abort ();
18758 }
df58fc94
RS
18759
18760 fixp->fx_file = fragp->fr_file;
18761 fixp->fx_line = fragp->fr_line;
18762
18763 /* These relocations can have an addend that won't fit in
18764 2 octets. */
18765 fixp->fx_no_overflow = 1;
18766
18767 return;
18768 }
18769
2309ddf2 18770 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18771 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18772 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18773 {
18774 /* We generate a fixup instead of applying it right now,
18775 because if there is linker relaxation, we're going to
18776 need the relocations. */
bbd27b76
MR
18777 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18778 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18779 true, BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18780 fixp->fx_file = fragp->fr_file;
18781 fixp->fx_line = fragp->fr_line;
18782
18783 if (type == 0)
7bd374a4
MR
18784 {
18785 insn = read_compressed_insn (buf, 4);
18786 buf += 4;
18787
18788 if (nods)
18789 {
18790 /* Check the short-delay-slot bit. */
18791 if (!al || (insn & 0x02000000) != 0)
18792 buf = write_compressed_insn (buf, 0x0c00, 2);
18793 else
18794 buf = write_compressed_insn (buf, 0x00000000, 4);
18795 }
18796
18797 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18798 return;
18799 }
df58fc94
RS
18800 }
18801
18802 /* Relax 16-bit branches to 32-bit branches. */
18803 if (type != 0)
18804 {
4d68580a 18805 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18806
18807 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18808 insn = 0x94000000; /* beq */
18809 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18810 {
18811 unsigned long regno;
18812
18813 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18814 regno = micromips_to_32_reg_d_map [regno];
18815 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18816 insn |= regno << MICROMIPSOP_SH_RS;
18817 }
18818 else
18819 abort ();
18820
18821 /* Nothing else to do, just write it out. */
18822 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18823 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18824 {
4d68580a 18825 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18826 if (nods)
18827 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18828 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18829 return;
18830 }
18831 }
18832 else
4d68580a 18833 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18834
18835 /* Relax 32-bit branches to a sequence of instructions. */
18836 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18837 _("relaxed out-of-range branch into a jump"));
df58fc94 18838
2309ddf2 18839 /* Set the short-delay-slot bit. */
7bd374a4 18840 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18841
18842 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18843 {
18844 symbolS *l;
18845
18846 /* Reverse the branch. */
18847 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18848 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18849 insn ^= 0x20000000;
18850 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18851 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18852 || (insn & 0xffe00000) == 0x40800000 /* blez */
18853 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18854 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18855 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18856 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18857 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18858 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18859 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18860 insn ^= 0x00400000;
18861 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18862 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18863 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18864 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18865 insn ^= 0x00200000;
56d438b1
CF
18866 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18867 BNZ.df */
18868 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18869 BNZ.V */
18870 insn ^= 0x00800000;
df58fc94
RS
18871 else
18872 abort ();
18873
18874 if (al)
18875 {
18876 /* Clear the and-link and short-delay-slot bits. */
18877 gas_assert ((insn & 0xfda00000) == 0x40200000);
18878
18879 /* bltzal 0x40200000 bgezal 0x40600000 */
18880 /* bltzals 0x42200000 bgezals 0x42600000 */
18881 insn &= ~0x02200000;
18882 }
18883
18884 /* Make a label at the end for use with the branch. */
e01e1cee 18885 l = symbol_new (micromips_label_name (), asec, fragp, fragp->fr_fix);
df58fc94 18886 micromips_label_inc ();
f3ded42a 18887 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18888
18889 /* Refer to it. */
5b7c81bd 18890 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, true,
4d68580a 18891 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18892 fixp->fx_file = fragp->fr_file;
18893 fixp->fx_line = fragp->fr_line;
18894
18895 /* Branch over the jump. */
4d68580a 18896 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18897
df58fc94 18898 if (!compact)
8484fb75
MR
18899 {
18900 /* nop */
18901 if (insn32)
18902 buf = write_compressed_insn (buf, 0x00000000, 4);
18903 else
18904 buf = write_compressed_insn (buf, 0x0c00, 2);
18905 }
df58fc94
RS
18906 }
18907
ce8ad872 18908 if (!pic)
df58fc94 18909 {
7bd374a4
MR
18910 unsigned long jal = (short_ds || nods
18911 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18912
df58fc94
RS
18913 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18914 insn = al ? jal : 0xd4000000;
18915
bbd27b76
MR
18916 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18917 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18918 false, BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18919 fixp->fx_file = fragp->fr_file;
18920 fixp->fx_line = fragp->fr_line;
18921
4d68580a 18922 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18923
7bd374a4 18924 if (compact || nods)
8484fb75
MR
18925 {
18926 /* nop */
18927 if (insn32)
18928 buf = write_compressed_insn (buf, 0x00000000, 4);
18929 else
18930 buf = write_compressed_insn (buf, 0x0c00, 2);
18931 }
df58fc94
RS
18932 }
18933 else
18934 {
18935 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18936
18937 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18938 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18939 insn |= at << MICROMIPSOP_SH_RT;
18940
bbd27b76
MR
18941 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18942 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18943 false, BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18944 fixp->fx_file = fragp->fr_file;
18945 fixp->fx_line = fragp->fr_line;
18946
4d68580a 18947 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18948
18949 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18950 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18951 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18952
bbd27b76
MR
18953 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18954 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 18955 false, BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18956 fixp->fx_file = fragp->fr_file;
18957 fixp->fx_line = fragp->fr_line;
18958
4d68580a 18959 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18960
8484fb75
MR
18961 if (insn32)
18962 {
18963 /* jr/jalr $at */
18964 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18965 insn |= at << MICROMIPSOP_SH_RS;
18966
18967 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18968
7bd374a4 18969 if (compact || nods)
8484fb75
MR
18970 /* nop */
18971 buf = write_compressed_insn (buf, 0x00000000, 4);
18972 }
18973 else
18974 {
18975 /* jr/jrc/jalr/jalrs $at */
18976 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18977 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18978
18979 insn = al ? jalr : jr;
18980 insn |= at << MICROMIPSOP_SH_MJ;
18981
18982 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18983 if (al && nods)
18984 {
18985 /* nop */
18986 if (short_ds)
18987 buf = write_compressed_insn (buf, 0x0c00, 2);
18988 else
18989 buf = write_compressed_insn (buf, 0x00000000, 4);
18990 }
8484fb75 18991 }
df58fc94
RS
18992 }
18993
4d68580a 18994 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18995 return;
18996 }
18997
252b5132
RH
18998 if (RELAX_MIPS16_P (fragp->fr_subtype))
18999 {
19000 int type;
3ccad066 19001 const struct mips_int_operand *operand;
252b5132 19002 offsetT val;
5c04167a 19003 char *buf;
8507b6e7 19004 unsigned int user_length;
5b7c81bd 19005 bool need_reloc;
252b5132 19006 unsigned long insn;
5b7c81bd
AM
19007 bool mac;
19008 bool ext;
88a7ef16 19009 segT symsec;
252b5132
RH
19010
19011 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
5b7c81bd 19012 operand = mips16_immed_operand (type, false);
252b5132 19013
8507b6e7 19014 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
5c04167a 19015 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 19016 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
19017
19018 symsec = S_GET_SEGMENT (fragp->fr_symbol);
5b7c81bd 19019 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, true)
8507b6e7 19020 || (operand->root.type == OP_PCREL && !mac
9d862524
MR
19021 ? asec != symsec
19022 : !bfd_is_abs_section (symsec)));
19023
8507b6e7 19024 if (operand->root.type == OP_PCREL && !mac)
252b5132 19025 {
3ccad066 19026 const struct mips_pcrel_operand *pcrel_op;
252b5132 19027
3ccad066 19028 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 19029
14f72d45 19030 if (pcrel_op->include_isa_bit && !need_reloc)
252b5132 19031 {
37b2d327
MR
19032 if (!mips_ignore_branch_isa
19033 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
14f72d45
MR
19034 as_bad_where (fragp->fr_file, fragp->fr_line,
19035 _("branch to a symbol in another ISA mode"));
19036 else if ((fragp->fr_offset & 0x1) != 0)
19037 as_bad_where (fragp->fr_file, fragp->fr_line,
19038 _("branch to misaligned address (0x%lx)"),
52031738
FS
19039 (long) (resolve_symbol_value (fragp->fr_symbol)
19040 + (fragp->fr_offset & ~1)));
252b5132 19041 }
252b5132 19042
14f72d45 19043 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
252b5132
RH
19044
19045 /* Make sure the section winds up with the alignment we have
19046 assumed. */
3ccad066
RS
19047 if (operand->shift > 0)
19048 record_alignment (asec, operand->shift);
252b5132
RH
19049 }
19050
8507b6e7
MR
19051 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
19052 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
19053 {
19054 if (mac)
19055 as_warn_where (fragp->fr_file, fragp->fr_line,
19056 _("macro instruction expanded into multiple "
19057 "instructions in a branch delay slot"));
19058 else if (ext)
19059 as_warn_where (fragp->fr_file, fragp->fr_line,
19060 _("extended instruction in a branch delay slot"));
19061 }
19062 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
252b5132 19063 as_warn_where (fragp->fr_file, fragp->fr_line,
8507b6e7
MR
19064 _("macro instruction expanded into multiple "
19065 "instructions"));
252b5132 19066
5c04167a 19067 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 19068
4d68580a 19069 insn = read_compressed_insn (buf, 2);
5c04167a
RS
19070 if (ext)
19071 insn |= MIPS16_EXTEND;
252b5132 19072
5c04167a
RS
19073 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
19074 user_length = 4;
19075 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
19076 user_length = 2;
19077 else
19078 user_length = 0;
19079
8507b6e7 19080 if (mac)
c9775dde 19081 {
8507b6e7
MR
19082 unsigned long reg;
19083 unsigned long new;
19084 unsigned long op;
5b7c81bd 19085 bool e2;
8507b6e7
MR
19086
19087 gas_assert (type == 'A' || type == 'B' || type == 'E');
19088 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
c9775dde 19089
25499ac7
MR
19090 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
19091
8507b6e7 19092 if (need_reloc)
c9775dde 19093 {
8507b6e7
MR
19094 fixS *fixp;
19095
19096 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
19097
19098 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19099 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 19100 false, BFD_RELOC_MIPS16_HI16_S);
8507b6e7
MR
19101 fixp->fx_file = fragp->fr_file;
19102 fixp->fx_line = fragp->fr_line;
19103
25499ac7 19104 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
8507b6e7 19105 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 19106 false, BFD_RELOC_MIPS16_LO16);
8507b6e7
MR
19107 fixp->fx_file = fragp->fr_file;
19108 fixp->fx_line = fragp->fr_line;
19109
19110 val = 0;
19111 }
19112
19113 switch (insn & 0xf800)
19114 {
19115 case 0x0800: /* ADDIU */
19116 reg = (insn >> 8) & 0x7;
19117 op = 0xf0004800 | (reg << 8);
c9775dde 19118 break;
8507b6e7
MR
19119 case 0xb000: /* LW */
19120 reg = (insn >> 8) & 0x7;
19121 op = 0xf0009800 | (reg << 8) | (reg << 5);
c9775dde 19122 break;
8507b6e7
MR
19123 case 0xf800: /* I64 */
19124 reg = (insn >> 5) & 0x7;
19125 switch (insn & 0x0700)
19126 {
19127 case 0x0400: /* LD */
19128 op = 0xf0003800 | (reg << 8) | (reg << 5);
19129 break;
19130 case 0x0600: /* DADDIU */
19131 op = 0xf000fd00 | (reg << 5);
19132 break;
19133 default:
19134 abort ();
19135 }
19136 break;
19137 default:
19138 abort ();
c9775dde 19139 }
8507b6e7 19140
25499ac7 19141 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
8507b6e7
MR
19142 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
19143 buf = write_compressed_insn (buf, new, 4);
25499ac7
MR
19144 if (!e2)
19145 {
19146 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
19147 buf = write_compressed_insn (buf, new, 4);
19148 }
8507b6e7
MR
19149 op |= mips16_immed_extend (val, 16);
19150 buf = write_compressed_insn (buf, op, 4);
19151
25499ac7 19152 fragp->fr_fix += e2 ? 8 : 12;
8507b6e7
MR
19153 }
19154 else
19155 {
19156 unsigned int length = ext ? 4 : 2;
19157
19158 if (need_reloc)
c9775dde 19159 {
8507b6e7 19160 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
8507b6e7 19161 fixS *fixp;
c9775dde 19162
8507b6e7
MR
19163 switch (type)
19164 {
19165 case 'p':
19166 case 'q':
19167 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
19168 break;
19169 default:
19170 break;
19171 }
19172 if (mac || reloc == BFD_RELOC_NONE)
19173 as_bad_where (fragp->fr_file, fragp->fr_line,
19174 _("unsupported relocation"));
19175 else if (ext)
19176 {
bbd27b76
MR
19177 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19178 fragp->fr_symbol, fragp->fr_offset,
5b7c81bd 19179 true, reloc);
8507b6e7
MR
19180 fixp->fx_file = fragp->fr_file;
19181 fixp->fx_line = fragp->fr_line;
19182 }
19183 else
19184 as_bad_where (fragp->fr_file, fragp->fr_line,
19185 _("invalid unextended operand value"));
c9775dde 19186 }
eefc3365 19187 else
8507b6e7
MR
19188 mips16_immed (fragp->fr_file, fragp->fr_line, type,
19189 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 19190
8507b6e7
MR
19191 gas_assert (mips16_opcode_length (insn) == length);
19192 write_compressed_insn (buf, insn, length);
19193 fragp->fr_fix += length;
19194 }
252b5132
RH
19195 }
19196 else
19197 {
df58fc94 19198 relax_substateT subtype = fragp->fr_subtype;
5b7c81bd
AM
19199 bool second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
19200 bool use_second = (subtype & RELAX_USE_SECOND) != 0;
871a6bd2 19201 unsigned int first, second;
4d7206a2 19202 fixS *fixp;
252b5132 19203
df58fc94
RS
19204 first = RELAX_FIRST (subtype);
19205 second = RELAX_SECOND (subtype);
4d7206a2 19206 fixp = (fixS *) fragp->fr_opcode;
252b5132 19207
df58fc94
RS
19208 /* If the delay slot chosen does not match the size of the instruction,
19209 then emit a warning. */
19210 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
19211 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
19212 {
19213 relax_substateT s;
19214 const char *msg;
19215
19216 s = subtype & (RELAX_DELAY_SLOT_16BIT
19217 | RELAX_DELAY_SLOT_SIZE_FIRST
19218 | RELAX_DELAY_SLOT_SIZE_SECOND);
19219 msg = macro_warning (s);
19220 if (msg != NULL)
db9b2be4 19221 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
19222 subtype &= ~s;
19223 }
19224
584892a6 19225 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 19226 if (use_second == second_longer)
584892a6 19227 {
df58fc94
RS
19228 relax_substateT s;
19229 const char *msg;
19230
19231 s = (subtype
19232 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
19233 msg = macro_warning (s);
19234 if (msg != NULL)
db9b2be4 19235 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 19236 subtype &= ~s;
584892a6
RS
19237 }
19238
4d7206a2
RS
19239 /* Go through all the fixups for the first sequence. Disable them
19240 (by marking them as done) if we're going to use the second
19241 sequence instead. */
19242 while (fixp
19243 && fixp->fx_frag == fragp
90bd3c90 19244 && fixp->fx_where + second < fragp->fr_fix)
4d7206a2 19245 {
df58fc94 19246 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
19247 fixp->fx_done = 1;
19248 fixp = fixp->fx_next;
19249 }
252b5132 19250
4d7206a2
RS
19251 /* Go through the fixups for the second sequence. Disable them if
19252 we're going to use the first sequence, otherwise adjust their
19253 addresses to account for the relaxation. */
19254 while (fixp && fixp->fx_frag == fragp)
19255 {
df58fc94 19256 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
19257 fixp->fx_where -= first;
19258 else
19259 fixp->fx_done = 1;
19260 fixp = fixp->fx_next;
19261 }
19262
19263 /* Now modify the frag contents. */
df58fc94 19264 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
19265 {
19266 char *start;
19267
19268 start = fragp->fr_literal + fragp->fr_fix - first - second;
19269 memmove (start, start + first, second);
19270 fragp->fr_fix -= first;
19271 }
19272 else
19273 fragp->fr_fix -= second;
252b5132
RH
19274 }
19275}
19276
252b5132
RH
19277/* This function is called after the relocs have been generated.
19278 We've been storing mips16 text labels as odd. Here we convert them
19279 back to even for the convenience of the debugger. */
19280
19281void
17a2f251 19282mips_frob_file_after_relocs (void)
252b5132
RH
19283{
19284 asymbol **syms;
19285 unsigned int count, i;
19286
252b5132
RH
19287 syms = bfd_get_outsymbols (stdoutput);
19288 count = bfd_get_symcount (stdoutput);
19289 for (i = 0; i < count; i++, syms++)
df58fc94
RS
19290 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
19291 && ((*syms)->value & 1) != 0)
19292 {
19293 (*syms)->value &= ~1;
19294 /* If the symbol has an odd size, it was probably computed
19295 incorrectly, so adjust that as well. */
19296 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
19297 ++elf_symbol (*syms)->internal_elf_sym.st_size;
19298 }
252b5132
RH
19299}
19300
a1facbec
MR
19301/* This function is called whenever a label is defined, including fake
19302 labels instantiated off the dot special symbol. It is used when
19303 handling branch delays; if a branch has a label, we assume we cannot
19304 move it. This also bumps the value of the symbol by 1 in compressed
19305 code. */
252b5132 19306
e1b47bd5 19307static void
a1facbec 19308mips_record_label (symbolS *sym)
252b5132 19309{
a8dbcb85 19310 segment_info_type *si = seg_info (now_seg);
252b5132
RH
19311 struct insn_label_list *l;
19312
19313 if (free_insn_labels == NULL)
325801bd 19314 l = XNEW (struct insn_label_list);
252b5132
RH
19315 else
19316 {
19317 l = free_insn_labels;
19318 free_insn_labels = l->next;
19319 }
19320
19321 l->label = sym;
a8dbcb85
TS
19322 l->next = si->label_list;
19323 si->label_list = l;
a1facbec 19324}
07a53e5c 19325
a1facbec
MR
19326/* This function is called as tc_frob_label() whenever a label is defined
19327 and adds a DWARF-2 record we only want for true labels. */
19328
19329void
19330mips_define_label (symbolS *sym)
19331{
19332 mips_record_label (sym);
07a53e5c 19333 dwarf2_emit_label (sym);
252b5132 19334}
e1b47bd5
RS
19335
19336/* This function is called by tc_new_dot_label whenever a new dot symbol
19337 is defined. */
19338
19339void
19340mips_add_dot_label (symbolS *sym)
19341{
19342 mips_record_label (sym);
19343 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19344 mips_compressed_mark_label (sym);
19345}
252b5132 19346\f
351cdf24
MF
19347/* Converting ASE flags from internal to .MIPS.abiflags values. */
19348static unsigned int
19349mips_convert_ase_flags (int ase)
19350{
19351 unsigned int ext_ases = 0;
19352
19353 if (ase & ASE_DSP)
19354 ext_ases |= AFL_ASE_DSP;
19355 if (ase & ASE_DSPR2)
19356 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
19357 if (ase & ASE_DSPR3)
19358 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
19359 if (ase & ASE_EVA)
19360 ext_ases |= AFL_ASE_EVA;
19361 if (ase & ASE_MCU)
19362 ext_ases |= AFL_ASE_MCU;
19363 if (ase & ASE_MDMX)
19364 ext_ases |= AFL_ASE_MDMX;
19365 if (ase & ASE_MIPS3D)
19366 ext_ases |= AFL_ASE_MIPS3D;
19367 if (ase & ASE_MT)
19368 ext_ases |= AFL_ASE_MT;
19369 if (ase & ASE_SMARTMIPS)
19370 ext_ases |= AFL_ASE_SMARTMIPS;
19371 if (ase & ASE_VIRT)
19372 ext_ases |= AFL_ASE_VIRT;
19373 if (ase & ASE_MSA)
19374 ext_ases |= AFL_ASE_MSA;
19375 if (ase & ASE_XPA)
19376 ext_ases |= AFL_ASE_XPA;
25499ac7
MR
19377 if (ase & ASE_MIPS16E2)
19378 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
730c3174
SE
19379 if (ase & ASE_CRC)
19380 ext_ases |= AFL_ASE_CRC;
6f20c942
FS
19381 if (ase & ASE_GINV)
19382 ext_ases |= AFL_ASE_GINV;
8095d2f7
CX
19383 if (ase & ASE_LOONGSON_MMI)
19384 ext_ases |= AFL_ASE_LOONGSON_MMI;
716c08de
CX
19385 if (ase & ASE_LOONGSON_CAM)
19386 ext_ases |= AFL_ASE_LOONGSON_CAM;
bdc6c06e
CX
19387 if (ase & ASE_LOONGSON_EXT)
19388 ext_ases |= AFL_ASE_LOONGSON_EXT;
a693765e
CX
19389 if (ase & ASE_LOONGSON_EXT2)
19390 ext_ases |= AFL_ASE_LOONGSON_EXT2;
351cdf24
MF
19391
19392 return ext_ases;
19393}
252b5132
RH
19394/* Some special processing for a MIPS ELF file. */
19395
19396void
17a2f251 19397mips_elf_final_processing (void)
252b5132 19398{
351cdf24
MF
19399 int fpabi;
19400 Elf_Internal_ABIFlags_v0 flags;
19401
19402 flags.version = 0;
19403 flags.isa_rev = 0;
19404 switch (file_mips_opts.isa)
19405 {
19406 case INSN_ISA1:
19407 flags.isa_level = 1;
19408 break;
19409 case INSN_ISA2:
19410 flags.isa_level = 2;
19411 break;
19412 case INSN_ISA3:
19413 flags.isa_level = 3;
19414 break;
19415 case INSN_ISA4:
19416 flags.isa_level = 4;
19417 break;
19418 case INSN_ISA5:
19419 flags.isa_level = 5;
19420 break;
19421 case INSN_ISA32:
19422 flags.isa_level = 32;
19423 flags.isa_rev = 1;
19424 break;
19425 case INSN_ISA32R2:
19426 flags.isa_level = 32;
19427 flags.isa_rev = 2;
19428 break;
19429 case INSN_ISA32R3:
19430 flags.isa_level = 32;
19431 flags.isa_rev = 3;
19432 break;
19433 case INSN_ISA32R5:
19434 flags.isa_level = 32;
19435 flags.isa_rev = 5;
19436 break;
09c14161
MF
19437 case INSN_ISA32R6:
19438 flags.isa_level = 32;
19439 flags.isa_rev = 6;
19440 break;
351cdf24
MF
19441 case INSN_ISA64:
19442 flags.isa_level = 64;
19443 flags.isa_rev = 1;
19444 break;
19445 case INSN_ISA64R2:
19446 flags.isa_level = 64;
19447 flags.isa_rev = 2;
19448 break;
19449 case INSN_ISA64R3:
19450 flags.isa_level = 64;
19451 flags.isa_rev = 3;
19452 break;
19453 case INSN_ISA64R5:
19454 flags.isa_level = 64;
19455 flags.isa_rev = 5;
19456 break;
09c14161
MF
19457 case INSN_ISA64R6:
19458 flags.isa_level = 64;
19459 flags.isa_rev = 6;
19460 break;
351cdf24
MF
19461 }
19462
19463 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19464 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19465 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19466 : (file_mips_opts.fp == 64) ? AFL_REG_64
19467 : AFL_REG_32;
19468 flags.cpr2_size = AFL_REG_NONE;
19469 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19470 Tag_GNU_MIPS_ABI_FP);
19471 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19472 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19473 if (file_ase_mips16)
19474 flags.ases |= AFL_ASE_MIPS16;
19475 if (file_ase_micromips)
19476 flags.ases |= AFL_ASE_MICROMIPS;
19477 flags.flags1 = 0;
19478 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19479 || file_mips_opts.fp == 64)
19480 && file_mips_opts.oddspreg)
19481 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19482 flags.flags2 = 0;
19483
19484 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19485 ((Elf_External_ABIFlags_v0 *)
19486 mips_flags_frag));
19487
252b5132 19488 /* Write out the register information. */
316f5878 19489 if (mips_abi != N64_ABI)
252b5132
RH
19490 {
19491 Elf32_RegInfo s;
19492
19493 s.ri_gprmask = mips_gprmask;
19494 s.ri_cprmask[0] = mips_cprmask[0];
19495 s.ri_cprmask[1] = mips_cprmask[1];
19496 s.ri_cprmask[2] = mips_cprmask[2];
19497 s.ri_cprmask[3] = mips_cprmask[3];
19498 /* The gp_value field is set by the MIPS ELF backend. */
19499
19500 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19501 ((Elf32_External_RegInfo *)
19502 mips_regmask_frag));
19503 }
19504 else
19505 {
19506 Elf64_Internal_RegInfo s;
19507
19508 s.ri_gprmask = mips_gprmask;
19509 s.ri_pad = 0;
19510 s.ri_cprmask[0] = mips_cprmask[0];
19511 s.ri_cprmask[1] = mips_cprmask[1];
19512 s.ri_cprmask[2] = mips_cprmask[2];
19513 s.ri_cprmask[3] = mips_cprmask[3];
19514 /* The gp_value field is set by the MIPS ELF backend. */
19515
19516 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19517 ((Elf64_External_RegInfo *)
19518 mips_regmask_frag));
19519 }
19520
19521 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19522 sort of BFD interface for this. */
19523 if (mips_any_noreorder)
19524 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19525 if (mips_pic != NO_PIC)
143d77c5 19526 {
8b828383 19527 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
19528 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19529 }
19530 if (mips_abicalls)
19531 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 19532
b015e599
AP
19533 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19534 defined at present; this might need to change in future. */
a4672219
TS
19535 if (file_ase_mips16)
19536 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
19537 if (file_ase_micromips)
19538 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 19539 if (file_mips_opts.ase & ASE_MDMX)
deec1734 19540 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 19541
bdaaa2e1 19542 /* Set the MIPS ELF ABI flags. */
316f5878 19543 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 19544 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 19545 else if (mips_abi == O64_ABI)
252b5132 19546 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 19547 else if (mips_abi == EABI_ABI)
252b5132 19548 {
bad1aba3 19549 if (file_mips_opts.gp == 64)
252b5132
RH
19550 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19551 else
19552 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19553 }
be00bddd 19554
defc8e2b 19555 /* Nothing to do for N32_ABI or N64_ABI. */
252b5132
RH
19556
19557 if (mips_32bitmode)
19558 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 19559
7361da2c 19560 if (mips_nan2008 == 1)
ba92f887
MR
19561 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19562
ad3fea08 19563 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
19564 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19565 Tag_GNU_MIPS_ABI_FP);
19566 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 19567 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 19568}
252b5132 19569\f
beae10d5 19570typedef struct proc {
9b2f1d35
EC
19571 symbolS *func_sym;
19572 symbolS *func_end_sym;
beae10d5
KH
19573 unsigned long reg_mask;
19574 unsigned long reg_offset;
19575 unsigned long fpreg_mask;
19576 unsigned long fpreg_offset;
19577 unsigned long frame_offset;
19578 unsigned long frame_reg;
19579 unsigned long pc_reg;
19580} procS;
252b5132
RH
19581
19582static procS cur_proc;
19583static procS *cur_proc_ptr;
19584static int numprocs;
19585
df58fc94
RS
19586/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19587 as "2", and a normal nop as "0". */
19588
19589#define NOP_OPCODE_MIPS 0
19590#define NOP_OPCODE_MIPS16 1
19591#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
19592
19593char
19594mips_nop_opcode (void)
19595{
df58fc94
RS
19596 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19597 return NOP_OPCODE_MICROMIPS;
19598 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19599 return NOP_OPCODE_MIPS16;
19600 else
19601 return NOP_OPCODE_MIPS;
742a56fe
RS
19602}
19603
df58fc94
RS
19604/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19605 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 19606
0a9ef439 19607void
17a2f251 19608mips_handle_align (fragS *fragp)
a19d8eb0 19609{
df58fc94 19610 char nop_opcode;
742a56fe 19611 char *p;
c67a084a
NC
19612 int bytes, size, excess;
19613 valueT opcode;
742a56fe 19614
0a9ef439
RH
19615 if (fragp->fr_type != rs_align_code)
19616 return;
19617
742a56fe 19618 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
19619 nop_opcode = *p;
19620 switch (nop_opcode)
a19d8eb0 19621 {
df58fc94
RS
19622 case NOP_OPCODE_MICROMIPS:
19623 opcode = micromips_nop32_insn.insn_opcode;
19624 size = 4;
19625 break;
19626 case NOP_OPCODE_MIPS16:
c67a084a
NC
19627 opcode = mips16_nop_insn.insn_opcode;
19628 size = 2;
df58fc94
RS
19629 break;
19630 case NOP_OPCODE_MIPS:
19631 default:
c67a084a
NC
19632 opcode = nop_insn.insn_opcode;
19633 size = 4;
df58fc94 19634 break;
c67a084a 19635 }
a19d8eb0 19636
c67a084a
NC
19637 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19638 excess = bytes % size;
df58fc94
RS
19639
19640 /* Handle the leading part if we're not inserting a whole number of
19641 instructions, and make it the end of the fixed part of the frag.
19642 Try to fit in a short microMIPS NOP if applicable and possible,
19643 and use zeroes otherwise. */
19644 gas_assert (excess < 4);
19645 fragp->fr_fix += excess;
19646 switch (excess)
c67a084a 19647 {
df58fc94
RS
19648 case 3:
19649 *p++ = '\0';
19650 /* Fall through. */
19651 case 2:
833794fc 19652 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 19653 {
4d68580a 19654 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
19655 break;
19656 }
19657 *p++ = '\0';
19658 /* Fall through. */
19659 case 1:
19660 *p++ = '\0';
19661 /* Fall through. */
19662 case 0:
19663 break;
a19d8eb0 19664 }
c67a084a
NC
19665
19666 md_number_to_chars (p, opcode, size);
19667 fragp->fr_var = size;
a19d8eb0
CP
19668}
19669
252b5132 19670static long
17a2f251 19671get_number (void)
252b5132
RH
19672{
19673 int negative = 0;
19674 long val = 0;
19675
19676 if (*input_line_pointer == '-')
19677 {
19678 ++input_line_pointer;
19679 negative = 1;
19680 }
3882b010 19681 if (!ISDIGIT (*input_line_pointer))
956cd1d6 19682 as_bad (_("expected simple number"));
252b5132
RH
19683 if (input_line_pointer[0] == '0')
19684 {
19685 if (input_line_pointer[1] == 'x')
19686 {
19687 input_line_pointer += 2;
3882b010 19688 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
19689 {
19690 val <<= 4;
19691 val |= hex_value (*input_line_pointer++);
19692 }
19693 return negative ? -val : val;
19694 }
19695 else
19696 {
19697 ++input_line_pointer;
3882b010 19698 while (ISDIGIT (*input_line_pointer))
252b5132
RH
19699 {
19700 val <<= 3;
19701 val |= *input_line_pointer++ - '0';
19702 }
19703 return negative ? -val : val;
19704 }
19705 }
3882b010 19706 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
19707 {
19708 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19709 *input_line_pointer, *input_line_pointer);
956cd1d6 19710 as_warn (_("invalid number"));
252b5132
RH
19711 return -1;
19712 }
3882b010 19713 while (ISDIGIT (*input_line_pointer))
252b5132
RH
19714 {
19715 val *= 10;
19716 val += *input_line_pointer++ - '0';
19717 }
19718 return negative ? -val : val;
19719}
19720
19721/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
19722 is an initial number which is the ECOFF file index. In the non-ECOFF
19723 case .file implies DWARF-2. */
19724
19725static void
17a2f251 19726s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 19727{
ecb4347a
DJ
19728 static int first_file_directive = 0;
19729
c5dd6aab
DJ
19730 if (ECOFF_DEBUGGING)
19731 {
19732 get_number ();
19733 s_app_file (0);
19734 }
19735 else
ecb4347a
DJ
19736 {
19737 char *filename;
19738
68d20676 19739 filename = dwarf2_directive_filename ();
ecb4347a
DJ
19740
19741 /* Versions of GCC up to 3.1 start files with a ".file"
19742 directive even for stabs output. Make sure that this
19743 ".file" is handled. Note that you need a version of GCC
19744 after 3.1 in order to support DWARF-2 on MIPS. */
19745 if (filename != NULL && ! first_file_directive)
19746 {
19747 (void) new_logical_line (filename, -1);
c04f5787 19748 s_app_file_string (filename, 0);
ecb4347a
DJ
19749 }
19750 first_file_directive = 1;
19751 }
c5dd6aab
DJ
19752}
19753
19754/* The .loc directive, implying DWARF-2. */
252b5132
RH
19755
19756static void
17a2f251 19757s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 19758{
c5dd6aab
DJ
19759 if (!ECOFF_DEBUGGING)
19760 dwarf2_directive_loc (0);
252b5132
RH
19761}
19762
252b5132
RH
19763/* The .end directive. */
19764
19765static void
17a2f251 19766s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19767{
19768 symbolS *p;
252b5132 19769
7a621144
DJ
19770 /* Following functions need their own .frame and .cprestore directives. */
19771 mips_frame_reg_valid = 0;
19772 mips_cprestore_valid = 0;
19773
252b5132
RH
19774 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19775 {
19776 p = get_symbol ();
19777 demand_empty_rest_of_line ();
19778 }
19779 else
19780 p = NULL;
19781
fd361982 19782 if ((bfd_section_flags (now_seg) & SEC_CODE) == 0)
252b5132
RH
19783 as_warn (_(".end not in text section"));
19784
19785 if (!cur_proc_ptr)
19786 {
1661c76c 19787 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19788 demand_empty_rest_of_line ();
19789 return;
19790 }
19791
19792 if (p != NULL)
19793 {
9c2799c2 19794 gas_assert (S_GET_NAME (p));
9b2f1d35 19795 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19796 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19797
19798 if (debug_type == DEBUG_STABS)
19799 stabs_generate_asm_endfunc (S_GET_NAME (p),
19800 S_GET_NAME (p));
252b5132
RH
19801 }
19802 else
19803 as_warn (_(".end directive missing or unknown symbol"));
19804
9b2f1d35
EC
19805 /* Create an expression to calculate the size of the function. */
19806 if (p && cur_proc_ptr)
19807 {
19808 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19809 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19810
19811 obj->size = exp;
19812 exp->X_op = O_subtract;
19813 exp->X_add_symbol = symbol_temp_new_now ();
19814 exp->X_op_symbol = p;
19815 exp->X_add_number = 0;
19816
19817 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19818 }
19819
5ff6a06c
MR
19820#ifdef md_flush_pending_output
19821 md_flush_pending_output ();
19822#endif
19823
ecb4347a 19824 /* Generate a .pdr section. */
f3ded42a 19825 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19826 {
19827 segT saved_seg = now_seg;
19828 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19829 expressionS exp;
19830 char *fragp;
252b5132 19831
9c2799c2 19832 gas_assert (pdr_seg);
ecb4347a 19833 subseg_set (pdr_seg, 0);
252b5132 19834
ecb4347a
DJ
19835 /* Write the symbol. */
19836 exp.X_op = O_symbol;
19837 exp.X_add_symbol = p;
19838 exp.X_add_number = 0;
19839 emit_expr (&exp, 4);
252b5132 19840
ecb4347a 19841 fragp = frag_more (7 * 4);
252b5132 19842
17a2f251
TS
19843 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19844 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19845 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19846 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19847 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19848 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19849 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19850
ecb4347a
DJ
19851 subseg_set (saved_seg, saved_subseg);
19852 }
252b5132
RH
19853
19854 cur_proc_ptr = NULL;
19855}
19856
19857/* The .aent and .ent directives. */
19858
19859static void
17a2f251 19860s_mips_ent (int aent)
252b5132 19861{
252b5132 19862 symbolS *symbolP;
252b5132
RH
19863
19864 symbolP = get_symbol ();
19865 if (*input_line_pointer == ',')
f9419b05 19866 ++input_line_pointer;
252b5132 19867 SKIP_WHITESPACE ();
3882b010 19868 if (ISDIGIT (*input_line_pointer)
d9a62219 19869 || *input_line_pointer == '-')
874e8986 19870 get_number ();
252b5132 19871
fd361982 19872 if ((bfd_section_flags (now_seg) & SEC_CODE) == 0)
1661c76c 19873 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19874
19875 if (!aent && cur_proc_ptr)
9a41af64 19876 as_warn (_("missing .end"));
252b5132
RH
19877
19878 if (!aent)
19879 {
7a621144
DJ
19880 /* This function needs its own .frame and .cprestore directives. */
19881 mips_frame_reg_valid = 0;
19882 mips_cprestore_valid = 0;
19883
252b5132
RH
19884 cur_proc_ptr = &cur_proc;
19885 memset (cur_proc_ptr, '\0', sizeof (procS));
19886
9b2f1d35 19887 cur_proc_ptr->func_sym = symbolP;
252b5132 19888
f9419b05 19889 ++numprocs;
ecb4347a
DJ
19890
19891 if (debug_type == DEBUG_STABS)
19892 stabs_generate_asm_func (S_GET_NAME (symbolP),
19893 S_GET_NAME (symbolP));
252b5132
RH
19894 }
19895
7c0fc524
MR
19896 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19897
252b5132
RH
19898 demand_empty_rest_of_line ();
19899}
19900
19901/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19902 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19903 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19904 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19905 symbol table (in the mdebug section). */
19906
19907static void
17a2f251 19908s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19909{
f3ded42a
RS
19910 if (ECOFF_DEBUGGING)
19911 s_ignore (ignore);
19912 else
ecb4347a
DJ
19913 {
19914 long val;
252b5132 19915
ecb4347a
DJ
19916 if (cur_proc_ptr == (procS *) NULL)
19917 {
19918 as_warn (_(".frame outside of .ent"));
19919 demand_empty_rest_of_line ();
19920 return;
19921 }
252b5132 19922
ecb4347a
DJ
19923 cur_proc_ptr->frame_reg = tc_get_register (1);
19924
19925 SKIP_WHITESPACE ();
19926 if (*input_line_pointer++ != ','
19927 || get_absolute_expression_and_terminator (&val) != ',')
19928 {
1661c76c 19929 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19930 --input_line_pointer;
19931 demand_empty_rest_of_line ();
19932 return;
19933 }
252b5132 19934
ecb4347a
DJ
19935 cur_proc_ptr->frame_offset = val;
19936 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19937
252b5132 19938 demand_empty_rest_of_line ();
252b5132 19939 }
252b5132
RH
19940}
19941
bdaaa2e1
KH
19942/* The .fmask and .mask directives. If the mdebug section is present
19943 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19944 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19945 information correctly. We can't use the ecoff routines because they
252b5132
RH
19946 make reference to the ecoff symbol table (in the mdebug section). */
19947
19948static void
17a2f251 19949s_mips_mask (int reg_type)
252b5132 19950{
f3ded42a
RS
19951 if (ECOFF_DEBUGGING)
19952 s_ignore (reg_type);
19953 else
252b5132 19954 {
ecb4347a 19955 long mask, off;
252b5132 19956
ecb4347a
DJ
19957 if (cur_proc_ptr == (procS *) NULL)
19958 {
19959 as_warn (_(".mask/.fmask outside of .ent"));
19960 demand_empty_rest_of_line ();
19961 return;
19962 }
252b5132 19963
ecb4347a
DJ
19964 if (get_absolute_expression_and_terminator (&mask) != ',')
19965 {
1661c76c 19966 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19967 --input_line_pointer;
19968 demand_empty_rest_of_line ();
19969 return;
19970 }
252b5132 19971
ecb4347a
DJ
19972 off = get_absolute_expression ();
19973
19974 if (reg_type == 'F')
19975 {
19976 cur_proc_ptr->fpreg_mask = mask;
19977 cur_proc_ptr->fpreg_offset = off;
19978 }
19979 else
19980 {
19981 cur_proc_ptr->reg_mask = mask;
19982 cur_proc_ptr->reg_offset = off;
19983 }
19984
19985 demand_empty_rest_of_line ();
252b5132 19986 }
252b5132
RH
19987}
19988
316f5878
RS
19989/* A table describing all the processors gas knows about. Names are
19990 matched in the order listed.
e7af610e 19991
316f5878
RS
19992 To ease comparison, please keep this table in the same order as
19993 gcc's mips_cpu_info_table[]. */
e972090a
NC
19994static const struct mips_cpu_info mips_cpu_info_table[] =
19995{
6f2117ba 19996 /* Entries for generic ISAs. */
d16afab6
RS
19997 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19998 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19999 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
20000 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
20001 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
20002 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
20003 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
20004 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
20005 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 20006 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
20007 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
20008 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
20009 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
20010 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 20011 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
20012
20013 /* MIPS I */
d16afab6
RS
20014 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
20015 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
20016 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
20017
20018 /* MIPS II */
d16afab6 20019 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
20020
20021 /* MIPS III */
d16afab6
RS
20022 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
20023 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
20024 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
20025 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
20026 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
20027 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
20028 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
20029 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
20030 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
20031 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
20032 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
20033 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
20034 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
6f2117ba 20035 /* ST Microelectronics Loongson 2E and 2F cores. */
d16afab6 20036 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
8095d2f7 20037 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
20038
20039 /* MIPS IV */
d16afab6
RS
20040 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
20041 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
20042 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
20043 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
20044 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
20045 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
20046 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
20047 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
20048 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
20049 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
20050 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
20051 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
20052 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
20053 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
20054 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
20055
20056 /* MIPS 32 */
d16afab6
RS
20057 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20058 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20059 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20060 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
20061
20062 /* MIPS 32 Release 2 */
d16afab6
RS
20063 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20064 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20065 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20066 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
20067 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20068 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20069 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
20070 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
20071 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
20072 ISA_MIPS32R2, CPU_MIPS32R2 },
20073 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
20074 ISA_MIPS32R2, CPU_MIPS32R2 },
20075 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20076 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20077 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20078 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 20079 /* Deprecated forms of the above. */
d16afab6
RS
20080 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20081 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 20082 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
20083 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20084 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20085 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20086 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 20087 /* Deprecated forms of the above. */
d16afab6
RS
20088 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20089 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 20090 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
20091 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20092 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20093 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20094 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 20095 /* Deprecated forms of the above. */
d16afab6
RS
20096 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20097 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 20098 /* 34Kn is a 34kc without DSP. */
d16afab6 20099 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 20100 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
20101 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20102 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20103 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20104 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20105 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 20106 /* Deprecated forms of the above. */
d16afab6
RS
20107 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20108 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 20109 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
20110 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20111 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20112 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20113 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
6f2117ba 20114 /* interaptiv is the new name for 1004kf. */
77403ce9 20115 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
38bf472a
MR
20116 { "interaptiv-mr2", 0,
20117 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
20118 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
6f2117ba 20119 /* M5100 family. */
c6e5c03a
RS
20120 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
20121 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 20122 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 20123 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 20124
316f5878 20125 /* MIPS 64 */
d16afab6
RS
20126 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
20127 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
20128 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
20129 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 20130
6f2117ba 20131 /* Broadcom SB-1 CPU core. */
d16afab6 20132 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
6f2117ba 20133 /* Broadcom SB-1A CPU core. */
d16afab6 20134 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 20135
6f2117ba
PH
20136 /* MIPS 64 Release 2. */
20137 /* Loongson CPU core. */
20138 /* -march=loongson3a is an alias of -march=gs464 for compatibility. */
bdc6c06e 20139 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
ac8cb70f
CX
20140 ISA_MIPS64R2, CPU_GS464 },
20141 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
20142 ISA_MIPS64R2, CPU_GS464 },
bd782c07
CX
20143 { "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20144 | ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
9108bc33
CX
20145 { "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20146 | ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
ed163775 20147
6f2117ba 20148 /* Cavium Networks Octeon CPU core. */
d16afab6
RS
20149 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
20150 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
20151 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 20152 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 20153
52b6b6b9 20154 /* RMI Xlr */
d16afab6 20155 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 20156
55a36193
MK
20157 /* Broadcom XLP.
20158 XLP is mostly like XLR, with the prominent exception that it is
20159 MIPS64R2 rather than MIPS64. */
d16afab6 20160 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 20161
6f2117ba 20162 /* MIPS 64 Release 6. */
bdc8beb4
MF
20163 { "i6400", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
20164 { "i6500", 0, ASE_VIRT | ASE_MSA | ASE_CRC | ASE_GINV,
20165 ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 20166 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 20167
6f2117ba 20168 /* End marker. */
d16afab6 20169 { NULL, 0, 0, 0, 0 }
316f5878 20170};
e7af610e 20171
84ea6cf2 20172
316f5878
RS
20173/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
20174 with a final "000" replaced by "k". Ignore case.
e7af610e 20175
316f5878 20176 Note: this function is shared between GCC and GAS. */
c6c98b38 20177
5b7c81bd 20178static bool
17a2f251 20179mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
20180{
20181 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
20182 given++, canonical++;
20183
20184 return ((*given == 0 && *canonical == 0)
20185 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
20186}
20187
20188
20189/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
20190 CPU name. We've traditionally allowed a lot of variation here.
20191
20192 Note: this function is shared between GCC and GAS. */
20193
5b7c81bd 20194static bool
17a2f251 20195mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
20196{
20197 /* First see if the name matches exactly, or with a final "000"
20198 turned into "k". */
20199 if (mips_strict_matching_cpu_name_p (canonical, given))
5b7c81bd 20200 return true;
316f5878
RS
20201
20202 /* If not, try comparing based on numerical designation alone.
20203 See if GIVEN is an unadorned number, or 'r' followed by a number. */
20204 if (TOLOWER (*given) == 'r')
20205 given++;
20206 if (!ISDIGIT (*given))
5b7c81bd 20207 return false;
316f5878
RS
20208
20209 /* Skip over some well-known prefixes in the canonical name,
20210 hoping to find a number there too. */
20211 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
20212 canonical += 2;
20213 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
20214 canonical += 2;
20215 else if (TOLOWER (canonical[0]) == 'r')
20216 canonical += 1;
20217
20218 return mips_strict_matching_cpu_name_p (canonical, given);
20219}
20220
20221
20222/* Parse an option that takes the name of a processor as its argument.
20223 OPTION is the name of the option and CPU_STRING is the argument.
20224 Return the corresponding processor enumeration if the CPU_STRING is
20225 recognized, otherwise report an error and return null.
20226
20227 A similar function exists in GCC. */
e7af610e
NC
20228
20229static const struct mips_cpu_info *
17a2f251 20230mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 20231{
316f5878 20232 const struct mips_cpu_info *p;
e7af610e 20233
316f5878
RS
20234 /* 'from-abi' selects the most compatible architecture for the given
20235 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
20236 EABIs, we have to decide whether we're using the 32-bit or 64-bit
20237 version. Look first at the -mgp options, if given, otherwise base
20238 the choice on MIPS_DEFAULT_64BIT.
e7af610e 20239
316f5878
RS
20240 Treat NO_ABI like the EABIs. One reason to do this is that the
20241 plain 'mips' and 'mips64' configs have 'from-abi' as their default
20242 architecture. This code picks MIPS I for 'mips' and MIPS III for
20243 'mips64', just as we did in the days before 'from-abi'. */
20244 if (strcasecmp (cpu_string, "from-abi") == 0)
20245 {
20246 if (ABI_NEEDS_32BIT_REGS (mips_abi))
20247 return mips_cpu_info_from_isa (ISA_MIPS1);
20248
20249 if (ABI_NEEDS_64BIT_REGS (mips_abi))
20250 return mips_cpu_info_from_isa (ISA_MIPS3);
20251
bad1aba3 20252 if (file_mips_opts.gp >= 0)
20253 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 20254 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
20255
20256 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
20257 ? ISA_MIPS3
20258 : ISA_MIPS1);
20259 }
20260
20261 /* 'default' has traditionally been a no-op. Probably not very useful. */
20262 if (strcasecmp (cpu_string, "default") == 0)
20263 return 0;
20264
20265 for (p = mips_cpu_info_table; p->name != 0; p++)
20266 if (mips_matching_cpu_name_p (p->name, cpu_string))
20267 return p;
20268
1661c76c 20269 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 20270 return 0;
e7af610e
NC
20271}
20272
316f5878
RS
20273/* Return the canonical processor information for ISA (a member of the
20274 ISA_MIPS* enumeration). */
20275
e7af610e 20276static const struct mips_cpu_info *
17a2f251 20277mips_cpu_info_from_isa (int isa)
e7af610e
NC
20278{
20279 int i;
20280
20281 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 20282 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 20283 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
20284 return (&mips_cpu_info_table[i]);
20285
e972090a 20286 return NULL;
e7af610e 20287}
fef14a42
TS
20288
20289static const struct mips_cpu_info *
17a2f251 20290mips_cpu_info_from_arch (int arch)
fef14a42
TS
20291{
20292 int i;
20293
20294 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20295 if (arch == mips_cpu_info_table[i].cpu)
20296 return (&mips_cpu_info_table[i]);
20297
20298 return NULL;
20299}
316f5878
RS
20300\f
20301static void
17a2f251 20302show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
20303{
20304 if (*first_p)
20305 {
20306 fprintf (stream, "%24s", "");
20307 *col_p = 24;
20308 }
20309 else
20310 {
20311 fprintf (stream, ", ");
20312 *col_p += 2;
20313 }
e7af610e 20314
316f5878
RS
20315 if (*col_p + strlen (string) > 72)
20316 {
20317 fprintf (stream, "\n%24s", "");
20318 *col_p = 24;
20319 }
20320
20321 fprintf (stream, "%s", string);
20322 *col_p += strlen (string);
20323
20324 *first_p = 0;
20325}
20326
20327void
17a2f251 20328md_show_usage (FILE *stream)
e7af610e 20329{
316f5878
RS
20330 int column, first;
20331 size_t i;
20332
20333 fprintf (stream, _("\
20334MIPS options:\n\
316f5878
RS
20335-EB generate big endian output\n\
20336-EL generate little endian output\n\
20337-g, -g2 do not remove unneeded NOPs or swap branches\n\
20338-G NUM allow referencing objects up to NUM bytes\n\
20339 implicitly with the gp register [default 8]\n"));
20340 fprintf (stream, _("\
20341-mips1 generate MIPS ISA I instructions\n\
20342-mips2 generate MIPS ISA II instructions\n\
20343-mips3 generate MIPS ISA III instructions\n\
20344-mips4 generate MIPS ISA IV instructions\n\
20345-mips5 generate MIPS ISA V instructions\n\
20346-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 20347-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
20348-mips32r3 generate MIPS32 release 3 ISA instructions\n\
20349-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 20350-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 20351-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 20352-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
20353-mips64r3 generate MIPS64 release 3 ISA instructions\n\
20354-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 20355-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
20356-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20357
20358 first = 1;
e7af610e
NC
20359
20360 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
20361 show (stream, mips_cpu_info_table[i].name, &column, &first);
20362 show (stream, "from-abi", &column, &first);
20363 fputc ('\n', stream);
e7af610e 20364
316f5878
RS
20365 fprintf (stream, _("\
20366-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20367-no-mCPU don't generate code specific to CPU.\n\
20368 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20369
20370 first = 1;
20371
20372 show (stream, "3900", &column, &first);
20373 show (stream, "4010", &column, &first);
20374 show (stream, "4100", &column, &first);
20375 show (stream, "4650", &column, &first);
20376 fputc ('\n', stream);
20377
20378 fprintf (stream, _("\
20379-mips16 generate mips16 instructions\n\
20380-no-mips16 do not generate mips16 instructions\n"));
20381 fprintf (stream, _("\
f866b262
MR
20382-mmips16e2 generate MIPS16e2 instructions\n\
20383-mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20384 fprintf (stream, _("\
df58fc94
RS
20385-mmicromips generate microMIPS instructions\n\
20386-mno-micromips do not generate microMIPS instructions\n"));
20387 fprintf (stream, _("\
e16bfa71 20388-msmartmips generate smartmips instructions\n\
3739860c 20389-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 20390 fprintf (stream, _("\
74cd071d
CF
20391-mdsp generate DSP instructions\n\
20392-mno-dsp do not generate DSP instructions\n"));
20393 fprintf (stream, _("\
8b082fb1
TS
20394-mdspr2 generate DSP R2 instructions\n\
20395-mno-dspr2 do not generate DSP R2 instructions\n"));
20396 fprintf (stream, _("\
8f4f9071
MF
20397-mdspr3 generate DSP R3 instructions\n\
20398-mno-dspr3 do not generate DSP R3 instructions\n"));
20399 fprintf (stream, _("\
ef2e4d86
CF
20400-mmt generate MT instructions\n\
20401-mno-mt do not generate MT instructions\n"));
20402 fprintf (stream, _("\
dec0624d
MR
20403-mmcu generate MCU instructions\n\
20404-mno-mcu do not generate MCU instructions\n"));
20405 fprintf (stream, _("\
56d438b1
CF
20406-mmsa generate MSA instructions\n\
20407-mno-msa do not generate MSA instructions\n"));
20408 fprintf (stream, _("\
7d64c587
AB
20409-mxpa generate eXtended Physical Address (XPA) instructions\n\
20410-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20411 fprintf (stream, _("\
b015e599
AP
20412-mvirt generate Virtualization instructions\n\
20413-mno-virt do not generate Virtualization instructions\n"));
20414 fprintf (stream, _("\
730c3174
SE
20415-mcrc generate CRC instructions\n\
20416-mno-crc do not generate CRC instructions\n"));
20417 fprintf (stream, _("\
6f20c942
FS
20418-mginv generate Global INValidate (GINV) instructions\n\
20419-mno-ginv do not generate Global INValidate instructions\n"));
20420 fprintf (stream, _("\
8095d2f7
CX
20421-mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20422-mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20423 fprintf (stream, _("\
716c08de
CX
20424-mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20425-mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20426 fprintf (stream, _("\
bdc6c06e
CX
20427-mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20428-mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20429 fprintf (stream, _("\
a693765e
CX
20430-mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20431-mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20432 fprintf (stream, _("\
833794fc
MR
20433-minsn32 only generate 32-bit microMIPS instructions\n\
20434-mno-insn32 generate all microMIPS instructions\n"));
6f2117ba
PH
20435#if DEFAULT_MIPS_FIX_LOONGSON3_LLSC
20436 fprintf (stream, _("\
20437-mfix-loongson3-llsc work around Loongson3 LL/SC errata, default\n\
20438-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n"));
20439#else
20440 fprintf (stream, _("\
20441-mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20442-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata, default\n"));
20443#endif
833794fc 20444 fprintf (stream, _("\
c67a084a
NC
20445-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20446-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
6f2117ba
PH
20447-mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20448-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n\
d766e8ec 20449-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 20450-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 20451-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 20452-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
27c634e0 20453-mfix-r5900 work around R5900 short loop errata\n\
316f5878
RS
20454-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20455-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 20456-msym32 assume all symbols have 32-bit values\n\
092a534f
MR
20457-O0 do not remove unneeded NOPs, do not swap branches\n\
20458-O, -O1 remove unneeded NOPs, do not swap branches\n\
20459-O2 remove unneeded NOPs and swap branches\n\
316f5878
RS
20460--trap, --no-break trap exception on div by 0 and mult overflow\n\
20461--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
20462 fprintf (stream, _("\
20463-mhard-float allow floating-point instructions\n\
20464-msoft-float do not allow floating-point instructions\n\
20465-msingle-float only allow 32-bit floating-point operations\n\
20466-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 20467--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887 20468--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
8b10b0b3
MR
20469-mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20470-mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
ba92f887
MR
20471-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20472
20473 first = 1;
20474
20475 show (stream, "legacy", &column, &first);
20476 show (stream, "2008", &column, &first);
20477
20478 fputc ('\n', stream);
20479
316f5878
RS
20480 fprintf (stream, _("\
20481-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 20482-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 20483-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 20484-non_shared do not generate code that can operate with DSOs\n\
316f5878 20485-xgot assume a 32 bit GOT\n\
dcd410fe 20486-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 20487-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 20488 position dependent (non shared) code\n\
316f5878
RS
20489-mabi=ABI create ABI conformant object file for:\n"));
20490
20491 first = 1;
20492
20493 show (stream, "32", &column, &first);
20494 show (stream, "o64", &column, &first);
20495 show (stream, "n32", &column, &first);
20496 show (stream, "64", &column, &first);
20497 show (stream, "eabi", &column, &first);
20498
20499 fputc ('\n', stream);
20500
20501 fprintf (stream, _("\
b4f6242e
MR
20502-32 create o32 ABI object file%s\n"),
20503 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20504 fprintf (stream, _("\
20505-n32 create n32 ABI object file%s\n"),
20506 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20507 fprintf (stream, _("\
20508-64 create 64 ABI object file%s\n"),
20509 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
e7af610e 20510}
14e777e0 20511
1575952e 20512#ifdef TE_IRIX
14e777e0 20513enum dwarf2_format
413a266c 20514mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 20515{
369943fe 20516 if (HAVE_64BIT_SYMBOLS)
1575952e 20517 return dwarf2_format_64bit_irix;
14e777e0
KB
20518 else
20519 return dwarf2_format_32bit;
20520}
1575952e 20521#endif
73369e65
EC
20522
20523int
20524mips_dwarf2_addr_size (void)
20525{
6b6b3450 20526 if (HAVE_64BIT_OBJECTS)
73369e65 20527 return 8;
73369e65
EC
20528 else
20529 return 4;
20530}
5862107c
EC
20531
20532/* Standard calling conventions leave the CFA at SP on entry. */
20533void
20534mips_cfi_frame_initial_instructions (void)
20535{
20536 cfi_add_CFA_def_cfa_register (SP);
20537}
20538
707bfff6
TS
20539int
20540tc_mips_regname_to_dw2regnum (char *regname)
20541{
20542 unsigned int regnum = -1;
20543 unsigned int reg;
20544
20545 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20546 regnum = reg;
20547
20548 return regnum;
20549}
263b2574 20550
20551/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20552 Given a symbolic attribute NAME, return the proper integer value.
20553 Returns -1 if the attribute is not known. */
20554
20555int
20556mips_convert_symbolic_attribute (const char *name)
20557{
20558 static const struct
20559 {
20560 const char * name;
20561 const int tag;
20562 }
20563 attribute_table[] =
20564 {
20565#define T(tag) {#tag, tag}
20566 T (Tag_GNU_MIPS_ABI_FP),
20567 T (Tag_GNU_MIPS_ABI_MSA),
20568#undef T
20569 };
20570 unsigned int i;
20571
20572 if (name == NULL)
20573 return -1;
20574
20575 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20576 if (streq (name, attribute_table[i].name))
20577 return attribute_table[i].tag;
20578
20579 return -1;
20580}
fd5c94ab
RS
20581
20582void
20583md_mips_end (void)
20584{
351cdf24
MF
20585 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20586
fd5c94ab
RS
20587 mips_emit_delays ();
20588 if (cur_proc_ptr)
20589 as_warn (_("missing .end at end of assembly"));
919731af 20590
20591 /* Just in case no code was emitted, do the consistency check. */
20592 file_mips_check_options ();
351cdf24
MF
20593
20594 /* Set a floating-point ABI if the user did not. */
20595 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20596 {
20597 /* Perform consistency checks on the floating-point ABI. */
20598 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20599 Tag_GNU_MIPS_ABI_FP);
20600 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20601 check_fpabi (fpabi);
20602 }
20603 else
20604 {
20605 /* Soft-float gets precedence over single-float, the two options should
20606 not be used together so this should not matter. */
20607 if (file_mips_opts.soft_float == 1)
20608 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20609 /* Single-float gets precedence over all double_float cases. */
20610 else if (file_mips_opts.single_float == 1)
20611 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20612 else
20613 {
20614 switch (file_mips_opts.fp)
20615 {
20616 case 32:
20617 if (file_mips_opts.gp == 32)
20618 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20619 break;
20620 case 0:
20621 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20622 break;
20623 case 64:
20624 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20625 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20626 else if (file_mips_opts.gp == 32)
20627 fpabi = Val_GNU_MIPS_ABI_FP_64;
20628 else
20629 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20630 break;
20631 }
20632 }
20633
20634 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20635 Tag_GNU_MIPS_ABI_FP, fpabi);
20636 }
fd5c94ab 20637}
2f0c68f2
CM
20638
20639/* Returns the relocation type required for a particular CFI encoding. */
20640
20641bfd_reloc_code_real_type
20642mips_cfi_reloc_for_encoding (int encoding)
20643{
20644 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20645 return BFD_RELOC_32_PCREL;
20646 else return BFD_RELOC_NONE;
20647}