]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
toplevel:
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
9103f4f4
L
122@code{generic32} and
123@code{generic64}.
124
6305a203
L
125In addition to the basic instruction set, the assembler can be told to
126accept various extension mnemonics. For example,
127@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
128@var{vmx}. The following extensions are currently supported:
309d3373
JB
129@code{8087},
130@code{287},
131@code{387},
132@code{no87},
6305a203 133@code{mmx},
309d3373 134@code{nommx},
6305a203
L
135@code{sse},
136@code{sse2},
137@code{sse3},
138@code{ssse3},
139@code{sse4.1},
140@code{sse4.2},
141@code{sse4},
309d3373 142@code{nosse},
c0f3af97 143@code{avx},
6c30d220 144@code{avx2},
309d3373 145@code{noavx},
6305a203
L
146@code{vmx},
147@code{smx},
f03fe4c1 148@code{xsave},
c7b8aa3a 149@code{xsaveopt},
c0f3af97 150@code{aes},
594ab6a3 151@code{pclmul},
c7b8aa3a
L
152@code{fsgsbase},
153@code{rdrnd},
154@code{f16c},
6c30d220 155@code{bmi2},
c0f3af97 156@code{fma},
f1f8f695
L
157@code{movbe},
158@code{ept},
6c30d220
L
159@code{lzcnt},
160@code{invpcid},
bd5295b2 161@code{clflush},
f88c9eb0 162@code{lwp},
5dd85c99
SP
163@code{fma4},
164@code{xop},
bd5295b2 165@code{syscall},
1b7f3fb0 166@code{rdtscp},
6305a203
L
167@code{3dnow},
168@code{3dnowa},
169@code{sse4a},
170@code{sse5},
171@code{svme},
172@code{abm} and
173@code{padlock}.
309d3373
JB
174Note that rather than extending a basic instruction set, the extension
175mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
176
177When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
178@code{.arch} directive will take precedent.
179
180@cindex @samp{-mtune=} option, i386
181@cindex @samp{-mtune=} option, x86-64
182@item -mtune=@var{CPU}
183This option specifies a processor to optimize for. When used in
184conjunction with the @option{-march} option, only instructions
185of the processor specified by the @option{-march} option will be
186generated.
187
6305a203
L
188Valid @var{CPU} values are identical to the processor list of
189@option{-march=@var{CPU}}.
9103f4f4 190
c0f3af97
L
191@cindex @samp{-msse2avx} option, i386
192@cindex @samp{-msse2avx} option, x86-64
193@item -msse2avx
194This option specifies that the assembler should encode SSE instructions
195with VEX prefix.
196
daf50ae7
L
197@cindex @samp{-msse-check=} option, i386
198@cindex @samp{-msse-check=} option, x86-64
199@item -msse-check=@var{none}
1f9bb1ca
AS
200@itemx -msse-check=@var{warning}
201@itemx -msse-check=@var{error}
daf50ae7
L
202These options control if the assembler should check SSE intructions.
203@option{-msse-check=@var{none}} will make the assembler not to check SSE
204instructions, which is the default. @option{-msse-check=@var{warning}}
205will make the assembler issue a warning for any SSE intruction.
206@option{-msse-check=@var{error}} will make the assembler issue an error
207for any SSE intruction.
208
539f890d
L
209@cindex @samp{-mavxscalar=} option, i386
210@cindex @samp{-mavxscalar=} option, x86-64
211@item -mavxscalar=@var{128}
1f9bb1ca 212@itemx -mavxscalar=@var{256}
539f890d
L
213This options control how the assembler should encode scalar AVX
214instructions. @option{-mavxscalar=@var{128}} will encode scalar
215AVX instructions with 128bit vector length, which is the default.
216@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
217with 256bit vector length.
218
1efbbeb4
L
219@cindex @samp{-mmnemonic=} option, i386
220@cindex @samp{-mmnemonic=} option, x86-64
221@item -mmnemonic=@var{att}
1f9bb1ca 222@itemx -mmnemonic=@var{intel}
1efbbeb4
L
223This option specifies instruction mnemonic for matching instructions.
224The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
225take precedent.
226
227@cindex @samp{-msyntax=} option, i386
228@cindex @samp{-msyntax=} option, x86-64
229@item -msyntax=@var{att}
1f9bb1ca 230@itemx -msyntax=@var{intel}
1efbbeb4
L
231This option specifies instruction syntax when processing instructions.
232The @code{.att_syntax} and @code{.intel_syntax} directives will
233take precedent.
234
235@cindex @samp{-mnaked-reg} option, i386
236@cindex @samp{-mnaked-reg} option, x86-64
237@item -mnaked-reg
238This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 239The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 240
55b62671 241@end table
731caf76 242@c man end
e413e4e9 243
a6c24e68
NC
244@node i386-Directives
245@section x86 specific Directives
246
247@cindex machine directives, x86
248@cindex x86 machine directives
249@table @code
250
251@cindex @code{lcomm} directive, COFF
252@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
253Reserve @var{length} (an absolute expression) bytes for a local common
254denoted by @var{symbol}. The section and value of @var{symbol} are
255those of the new local common. The addresses are allocated in the bss
704209c0
NC
256section, so that at run-time the bytes start off zeroed. Since
257@var{symbol} is not declared global, it is normally not visible to
258@code{@value{LD}}. The optional third parameter, @var{alignment},
259specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
260
261This directive is only available for COFF based x86 targets.
262
263@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
264@c .largecomm
265
266@end table
267
252b5132 268@node i386-Syntax
7c31ae13
NC
269@section i386 Syntactical Considerations
270@menu
271* i386-Variations:: AT&T Syntax versus Intel Syntax
272* i386-Chars:: Special Characters
273@end menu
274
275@node i386-Variations
276@subsection AT&T Syntax versus Intel Syntax
252b5132 277
e413e4e9
AM
278@cindex i386 intel_syntax pseudo op
279@cindex intel_syntax pseudo op, i386
280@cindex i386 att_syntax pseudo op
281@cindex att_syntax pseudo op, i386
252b5132
RH
282@cindex i386 syntax compatibility
283@cindex syntax compatibility, i386
55b62671
AJ
284@cindex x86-64 intel_syntax pseudo op
285@cindex intel_syntax pseudo op, x86-64
286@cindex x86-64 att_syntax pseudo op
287@cindex att_syntax pseudo op, x86-64
288@cindex x86-64 syntax compatibility
289@cindex syntax compatibility, x86-64
e413e4e9
AM
290
291@code{@value{AS}} now supports assembly using Intel assembler syntax.
292@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
293back to the usual AT&T mode for compatibility with the output of
294@code{@value{GCC}}. Either of these directives may have an optional
295argument, @code{prefix}, or @code{noprefix} specifying whether registers
296require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
297different from Intel syntax. We mention these differences because
298almost all 80386 documents use Intel syntax. Notable differences
299between the two syntaxes are:
300
301@cindex immediate operands, i386
302@cindex i386 immediate operands
303@cindex register operands, i386
304@cindex i386 register operands
305@cindex jump/call operands, i386
306@cindex i386 jump/call operands
307@cindex operand delimiters, i386
55b62671
AJ
308
309@cindex immediate operands, x86-64
310@cindex x86-64 immediate operands
311@cindex register operands, x86-64
312@cindex x86-64 register operands
313@cindex jump/call operands, x86-64
314@cindex x86-64 jump/call operands
315@cindex operand delimiters, x86-64
252b5132
RH
316@itemize @bullet
317@item
318AT&T immediate operands are preceded by @samp{$}; Intel immediate
319operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
320AT&T register operands are preceded by @samp{%}; Intel register operands
321are undelimited. AT&T absolute (as opposed to PC relative) jump/call
322operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
323
324@cindex i386 source, destination operands
325@cindex source, destination operands; i386
55b62671
AJ
326@cindex x86-64 source, destination operands
327@cindex source, destination operands; x86-64
252b5132
RH
328@item
329AT&T and Intel syntax use the opposite order for source and destination
330operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
331@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
332previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
333instructions with 2 immediate operands, such as the @samp{enter}
334instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
335
336@cindex mnemonic suffixes, i386
337@cindex sizes operands, i386
338@cindex i386 size suffixes
55b62671
AJ
339@cindex mnemonic suffixes, x86-64
340@cindex sizes operands, x86-64
341@cindex x86-64 size suffixes
252b5132
RH
342@item
343In AT&T syntax the size of memory operands is determined from the last
344character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
345@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
346(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
347this by prefixing memory operands (@emph{not} the instruction mnemonics) with
348@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
349Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
350syntax.
252b5132 351
4b06377f
L
352In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
353instruction with the 64-bit displacement or immediate operand.
354
252b5132
RH
355@cindex return instructions, i386
356@cindex i386 jump, call, return
55b62671
AJ
357@cindex return instructions, x86-64
358@cindex x86-64 jump, call, return
252b5132
RH
359@item
360Immediate form long jumps and calls are
361@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
362Intel syntax is
363@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
364instruction
365is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
366@samp{ret far @var{stack-adjust}}.
367
368@cindex sections, i386
369@cindex i386 sections
55b62671
AJ
370@cindex sections, x86-64
371@cindex x86-64 sections
252b5132
RH
372@item
373The AT&T assembler does not provide support for multiple section
374programs. Unix style systems expect all programs to be single sections.
375@end itemize
376
7c31ae13
NC
377@node i386-Chars
378@subsection Special Characters
379
380@cindex line comment character, i386
381@cindex i386 line comment character
382The presence of a @samp{#} appearing anywhere on a line indicates the
383start of a comment that extends to the end of that line.
384
385If a @samp{#} appears as the first character of a line then the whole
386line is treated as a comment, but in this case the line can also be a
387logical line number directive (@pxref{Comments}) or a preprocessor
388control command (@pxref{Preprocessing}).
389
390If the @option{--divide} command line option has not been specified
391then the @samp{/} character appearing anywhere on a line also
392introduces a line comment.
393
394@cindex line separator, i386
395@cindex statement separator, i386
396@cindex i386 line separator
397The @samp{;} character can be used to separate statements on the same
398line.
399
252b5132
RH
400@node i386-Mnemonics
401@section Instruction Naming
402
403@cindex i386 instruction naming
404@cindex instruction naming, i386
55b62671
AJ
405@cindex x86-64 instruction naming
406@cindex instruction naming, x86-64
407
252b5132 408Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
409specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
410and @samp{q} specify byte, word, long and quadruple word operands. If
411no suffix is specified by an instruction then @code{@value{AS}} tries to
412fill in the missing suffix based on the destination register operand
413(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
414to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
415@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
416assembler which assumes that a missing mnemonic suffix implies long
417operand size. (This incompatibility does not affect compiler output
418since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
419
420Almost all instructions have the same names in AT&T and Intel format.
421There are a few exceptions. The sign extend and zero extend
422instructions need two sizes to specify them. They need a size to
423sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
424is accomplished by using two instruction mnemonic suffixes in AT&T
425syntax. Base names for sign extend and zero extend are
426@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
427and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
428are tacked on to this base name, the @emph{from} suffix before the
429@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
430``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
431thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
432@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
433@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
434quadruple word).
252b5132 435
b6169b20
L
436@cindex encoding options, i386
437@cindex encoding options, x86-64
438
439Different encoding options can be specified via optional mnemonic
440suffix. @samp{.s} suffix swaps 2 register operands in encoding when
f8a5c266
L
441moving from one register to another. @samp{.d32} suffix forces 32bit
442displacement in encoding.
b6169b20 443
252b5132
RH
444@cindex conversion instructions, i386
445@cindex i386 conversion instructions
55b62671
AJ
446@cindex conversion instructions, x86-64
447@cindex x86-64 conversion instructions
252b5132
RH
448The Intel-syntax conversion instructions
449
450@itemize @bullet
451@item
452@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
453
454@item
455@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
456
457@item
458@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
459
460@item
461@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
462
463@item
464@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
465(x86-64 only),
466
467@item
d5f0cf92 468@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 469@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
470@end itemize
471
472@noindent
55b62671
AJ
473are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
474@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
475instructions.
252b5132
RH
476
477@cindex jump instructions, i386
478@cindex call instructions, i386
55b62671
AJ
479@cindex jump instructions, x86-64
480@cindex call instructions, x86-64
252b5132
RH
481Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
482AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
483convention.
484
1efbbeb4
L
485@section AT&T Mnemonic versus Intel Mnemonic
486
487@cindex i386 mnemonic compatibility
488@cindex mnemonic compatibility, i386
489
490@code{@value{AS}} supports assembly using Intel mnemonic.
491@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
492@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
493syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
494Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
495@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
496@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
497assembler with different mnemonics from those in Intel IA32 specification.
498@code{@value{GCC}} generates those instructions with AT&T mnemonic.
499
252b5132
RH
500@node i386-Regs
501@section Register Naming
502
503@cindex i386 registers
504@cindex registers, i386
55b62671
AJ
505@cindex x86-64 registers
506@cindex registers, x86-64
252b5132
RH
507Register operands are always prefixed with @samp{%}. The 80386 registers
508consist of
509
510@itemize @bullet
511@item
512the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
513@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
514frame pointer), and @samp{%esp} (the stack pointer).
515
516@item
517the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
518@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
519
520@item
521the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
522@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
523are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
524@samp{%cx}, and @samp{%dx})
525
526@item
527the 6 section registers @samp{%cs} (code section), @samp{%ds}
528(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
529and @samp{%gs}.
530
531@item
532the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
533@samp{%cr3}.
534
535@item
536the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
537@samp{%db3}, @samp{%db6}, and @samp{%db7}.
538
539@item
540the 2 test registers @samp{%tr6} and @samp{%tr7}.
541
542@item
543the 8 floating point register stack @samp{%st} or equivalently
544@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
545@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
546These registers are overloaded by 8 MMX registers @samp{%mm0},
547@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
548@samp{%mm6} and @samp{%mm7}.
549
550@item
551the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
552@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
553@end itemize
554
555The AMD x86-64 architecture extends the register set by:
556
557@itemize @bullet
558@item
559enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
560accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
561@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
562pointer)
563
564@item
565the 8 extended registers @samp{%r8}--@samp{%r15}.
566
567@item
568the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
569
570@item
571the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
572
573@item
574the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
575
576@item
577the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
578
579@item
580the 8 debug registers: @samp{%db8}--@samp{%db15}.
581
582@item
583the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
584@end itemize
585
586@node i386-Prefixes
587@section Instruction Prefixes
588
589@cindex i386 instruction prefixes
590@cindex instruction prefixes, i386
591@cindex prefixes, i386
592Instruction prefixes are used to modify the following instruction. They
593are used to repeat string instructions, to provide section overrides, to
594perform bus lock operations, and to change operand and address sizes.
595(Most instructions that normally operate on 32-bit operands will use
59616-bit operands if the instruction has an ``operand size'' prefix.)
597Instruction prefixes are best written on the same line as the instruction
598they act upon. For example, the @samp{scas} (scan string) instruction is
599repeated with:
600
601@smallexample
602 repne scas %es:(%edi),%al
603@end smallexample
604
605You may also place prefixes on the lines immediately preceding the
606instruction, but this circumvents checks that @code{@value{AS}} does
607with prefixes, and will not work with all prefixes.
608
609Here is a list of instruction prefixes:
610
611@cindex section override prefixes, i386
612@itemize @bullet
613@item
614Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
615@samp{fs}, @samp{gs}. These are automatically added by specifying
616using the @var{section}:@var{memory-operand} form for memory references.
617
618@cindex size prefixes, i386
619@item
620Operand/Address size prefixes @samp{data16} and @samp{addr16}
621change 32-bit operands/addresses into 16-bit operands/addresses,
622while @samp{data32} and @samp{addr32} change 16-bit ones (in a
623@code{.code16} section) into 32-bit operands/addresses. These prefixes
624@emph{must} appear on the same line of code as the instruction they
625modify. For example, in a 16-bit @code{.code16} section, you might
626write:
627
628@smallexample
629 addr32 jmpl *(%ebx)
630@end smallexample
631
632@cindex bus lock prefixes, i386
633@cindex inhibiting interrupts, i386
634@item
635The bus lock prefix @samp{lock} inhibits interrupts during execution of
636the instruction it precedes. (This is only valid with certain
637instructions; see a 80386 manual for details).
638
639@cindex coprocessor wait, i386
640@item
641The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
642complete the current instruction. This should never be needed for the
64380386/80387 combination.
644
645@cindex repeat prefixes, i386
646@item
647The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
648to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
649times if the current address size is 16-bits).
55b62671
AJ
650@cindex REX prefixes, i386
651@item
652The @samp{rex} family of prefixes is used by x86-64 to encode
653extensions to i386 instruction set. The @samp{rex} prefix has four
654bits --- an operand size overwrite (@code{64}) used to change operand size
655from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
656register set.
657
658You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
659instruction emits @samp{rex} prefix with all the bits set. By omitting
660the @code{64}, @code{x}, @code{y} or @code{z} you may write other
661prefixes as well. Normally, there is no need to write the prefixes
662explicitly, since gas will automatically generate them based on the
663instruction operands.
252b5132
RH
664@end itemize
665
666@node i386-Memory
667@section Memory References
668
669@cindex i386 memory references
670@cindex memory references, i386
55b62671
AJ
671@cindex x86-64 memory references
672@cindex memory references, x86-64
252b5132
RH
673An Intel syntax indirect memory reference of the form
674
675@smallexample
676@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
677@end smallexample
678
679@noindent
680is translated into the AT&T syntax
681
682@smallexample
683@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
684@end smallexample
685
686@noindent
687where @var{base} and @var{index} are the optional 32-bit base and
688index registers, @var{disp} is the optional displacement, and
689@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
690to calculate the address of the operand. If no @var{scale} is
691specified, @var{scale} is taken to be 1. @var{section} specifies the
692optional section register for the memory operand, and may override the
693default section register (see a 80386 manual for section register
694defaults). Note that section overrides in AT&T syntax @emph{must}
695be preceded by a @samp{%}. If you specify a section override which
696coincides with the default section register, @code{@value{AS}} does @emph{not}
697output any section register override prefixes to assemble the given
698instruction. Thus, section overrides can be specified to emphasize which
699section register is used for a given memory operand.
700
701Here are some examples of Intel and AT&T style memory references:
702
703@table @asis
704@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
705@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
706missing, and the default section is used (@samp{%ss} for addressing with
707@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
708
709@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
710@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
711@samp{foo}. All other fields are missing. The section register here
712defaults to @samp{%ds}.
713
714@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
715This uses the value pointed to by @samp{foo} as a memory operand.
716Note that @var{base} and @var{index} are both missing, but there is only
717@emph{one} @samp{,}. This is a syntactic exception.
718
719@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
720This selects the contents of the variable @samp{foo} with section
721register @var{section} being @samp{%gs}.
722@end table
723
724Absolute (as opposed to PC relative) call and jump operands must be
725prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
726always chooses PC relative addressing for jump/call labels.
727
728Any instruction that has a memory operand, but no register operand,
55b62671
AJ
729@emph{must} specify its size (byte, word, long, or quadruple) with an
730instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
731respectively).
732
733The x86-64 architecture adds an RIP (instruction pointer relative)
734addressing. This addressing mode is specified by using @samp{rip} as a
735base register. Only constant offsets are valid. For example:
736
737@table @asis
738@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
739Points to the address 1234 bytes past the end of the current
740instruction.
741
742@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
743Points to the @code{symbol} in RIP relative way, this is shorter than
744the default absolute addressing.
745@end table
746
747Other addressing modes remain unchanged in x86-64 architecture, except
748registers used are 64-bit instead of 32-bit.
252b5132 749
fddf5b5b 750@node i386-Jumps
252b5132
RH
751@section Handling of Jump Instructions
752
753@cindex jump optimization, i386
754@cindex i386 jump optimization
55b62671
AJ
755@cindex jump optimization, x86-64
756@cindex x86-64 jump optimization
252b5132
RH
757Jump instructions are always optimized to use the smallest possible
758displacements. This is accomplished by using byte (8-bit) displacement
759jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 760is insufficient a long displacement is used. We do not support
252b5132
RH
761word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
762instruction with the @samp{data16} instruction prefix), since the 80386
763insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 764is added. (See also @pxref{i386-Arch})
252b5132
RH
765
766Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
767@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
768displacements, so that if you use these instructions (@code{@value{GCC}} does
769not use them) you may get an error message (and incorrect code). The AT&T
77080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
771to
772
773@smallexample
774 jcxz cx_zero
775 jmp cx_nonzero
776cx_zero: jmp foo
777cx_nonzero:
778@end smallexample
779
780@node i386-Float
781@section Floating Point
782
783@cindex i386 floating point
784@cindex floating point, i386
55b62671
AJ
785@cindex x86-64 floating point
786@cindex floating point, x86-64
252b5132
RH
787All 80387 floating point types except packed BCD are supported.
788(BCD support may be added without much difficulty). These data
789types are 16-, 32-, and 64- bit integers, and single (32-bit),
790double (64-bit), and extended (80-bit) precision floating point.
791Each supported type has an instruction mnemonic suffix and a constructor
792associated with it. Instruction mnemonic suffixes specify the operand's
793data type. Constructors build these data types into memory.
794
795@cindex @code{float} directive, i386
796@cindex @code{single} directive, i386
797@cindex @code{double} directive, i386
798@cindex @code{tfloat} directive, i386
55b62671
AJ
799@cindex @code{float} directive, x86-64
800@cindex @code{single} directive, x86-64
801@cindex @code{double} directive, x86-64
802@cindex @code{tfloat} directive, x86-64
252b5132
RH
803@itemize @bullet
804@item
805Floating point constructors are @samp{.float} or @samp{.single},
806@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
807These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
808and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
809only supports this format via the @samp{fldt} (load 80-bit real to stack
810top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
811
812@cindex @code{word} directive, i386
813@cindex @code{long} directive, i386
814@cindex @code{int} directive, i386
815@cindex @code{quad} directive, i386
55b62671
AJ
816@cindex @code{word} directive, x86-64
817@cindex @code{long} directive, x86-64
818@cindex @code{int} directive, x86-64
819@cindex @code{quad} directive, x86-64
252b5132
RH
820@item
821Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
822@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
823corresponding instruction mnemonic suffixes are @samp{s} (single),
824@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
825the 64-bit @samp{q} format is only present in the @samp{fildq} (load
826quad integer to stack top) and @samp{fistpq} (store quad integer and pop
827stack) instructions.
828@end itemize
829
830Register to register operations should not use instruction mnemonic suffixes.
831@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
832wrote @samp{fst %st, %st(1)}, since all register to register operations
833use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
834which converts @samp{%st} from 80-bit to 64-bit floating point format,
835then stores the result in the 4 byte location @samp{mem})
836
837@node i386-SIMD
838@section Intel's MMX and AMD's 3DNow! SIMD Operations
839
840@cindex MMX, i386
841@cindex 3DNow!, i386
842@cindex SIMD, i386
55b62671
AJ
843@cindex MMX, x86-64
844@cindex 3DNow!, x86-64
845@cindex SIMD, x86-64
252b5132
RH
846
847@code{@value{AS}} supports Intel's MMX instruction set (SIMD
848instructions for integer data), available on Intel's Pentium MMX
849processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 850Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
851instruction set (SIMD instructions for 32-bit floating point data)
852available on AMD's K6-2 processor and possibly others in the future.
853
854Currently, @code{@value{AS}} does not support Intel's floating point
855SIMD, Katmai (KNI).
856
857The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
858@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
85916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
860floating point values. The MMX registers cannot be used at the same time
861as the floating point stack.
862
863See Intel and AMD documentation, keeping in mind that the operand order in
864instructions is reversed from the Intel syntax.
865
f88c9eb0
SP
866@node i386-LWP
867@section AMD's Lightweight Profiling Instructions
868
869@cindex LWP, i386
870@cindex LWP, x86-64
871
872@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
873instruction set, available on AMD's Family 15h (Orochi) processors.
874
875LWP enables applications to collect and manage performance data, and
876react to performance events. The collection of performance data
877requires no context switches. LWP runs in the context of a thread and
878so several counters can be used independently across multiple threads.
879LWP can be used in both 64-bit and legacy 32-bit modes.
880
881For detailed information on the LWP instruction set, see the
882@cite{AMD Lightweight Profiling Specification} available at
883@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
884
87973e9f
QN
885@node i386-BMI
886@section Bit Manipulation Instructions
887
888@cindex BMI, i386
889@cindex BMI, x86-64
890
891@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
892
893BMI instructions provide several instructions implementing individual
894bit manipulation operations such as isolation, masking, setting, or
895resetting.
896
897@c Need to add a specification citation here when available.
898
2a2a0f38
QN
899@node i386-TBM
900@section AMD's Trailing Bit Manipulation Instructions
901
902@cindex TBM, i386
903@cindex TBM, x86-64
904
905@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
906instruction set, available on AMD's BDVER2 processors (Trinity and
907Viperfish).
908
909TBM instructions provide instructions implementing individual bit
910manipulation operations such as isolating, masking, setting, resetting,
911complementing, and operations on trailing zeros and ones.
912
913@c Need to add a specification citation here when available.
87973e9f 914
252b5132
RH
915@node i386-16bit
916@section Writing 16-bit Code
917
918@cindex i386 16-bit code
919@cindex 16-bit code, i386
920@cindex real-mode code, i386
eecb386c 921@cindex @code{code16gcc} directive, i386
252b5132
RH
922@cindex @code{code16} directive, i386
923@cindex @code{code32} directive, i386
55b62671
AJ
924@cindex @code{code64} directive, i386
925@cindex @code{code64} directive, x86-64
926While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
927or 64-bit x86-64 code depending on the default configuration,
252b5132 928it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
929mode code segments. To do this, put a @samp{.code16} or
930@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
931be run in 16-bit mode. You can switch @code{@value{AS}} to writing
93232-bit code with the @samp{.code32} directive or 64-bit code with the
933@samp{.code64} directive.
eecb386c
AM
934
935@samp{.code16gcc} provides experimental support for generating 16-bit
936code from gcc, and differs from @samp{.code16} in that @samp{call},
937@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
938@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
939default to 32-bit size. This is so that the stack pointer is
940manipulated in the same way over function calls, allowing access to
941function parameters at the same stack offsets as in 32-bit mode.
942@samp{.code16gcc} also automatically adds address size prefixes where
943necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
944
945The code which @code{@value{AS}} generates in 16-bit mode will not
946necessarily run on a 16-bit pre-80386 processor. To write code that
947runs on such a processor, you must refrain from using @emph{any} 32-bit
948constructs which require @code{@value{AS}} to output address or operand
949size prefixes.
950
951Note that writing 16-bit code instructions by explicitly specifying a
952prefix or an instruction mnemonic suffix within a 32-bit code section
953generates different machine instructions than those generated for a
95416-bit code segment. In a 32-bit code section, the following code
955generates the machine opcode bytes @samp{66 6a 04}, which pushes the
956value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
957
958@smallexample
959 pushw $4
960@end smallexample
961
962The same code in a 16-bit code section would generate the machine
b45619c0 963opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
964is correct since the processor default operand size is assumed to be 16
965bits in a 16-bit code section.
966
967@node i386-Bugs
968@section AT&T Syntax bugs
969
970The UnixWare assembler, and probably other AT&T derived ix86 Unix
971assemblers, generate floating point instructions with reversed source
972and destination registers in certain cases. Unfortunately, gcc and
973possibly many other programs use this reversed syntax, so we're stuck
974with it.
975
976For example
977
978@smallexample
979 fsub %st,%st(3)
980@end smallexample
981@noindent
982results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
983than the expected @samp{%st(3) - %st}. This happens with all the
984non-commutative arithmetic floating point operations with two register
985operands where the source register is @samp{%st} and the destination
986register is @samp{%st(i)}.
987
e413e4e9
AM
988@node i386-Arch
989@section Specifying CPU Architecture
990
991@cindex arch directive, i386
992@cindex i386 arch directive
55b62671
AJ
993@cindex arch directive, x86-64
994@cindex x86-64 arch directive
e413e4e9
AM
995
996@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 997(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
998directive enables a warning when gas detects an instruction that is not
999supported on the CPU specified. The choices for @var{cpu_type} are:
1000
1001@multitable @columnfractions .20 .20 .20 .20
1002@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1003@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1004@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1005@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 1006@item @samp{corei7} @tab @samp{l1om}
1543849b 1007@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
af2f724e 1008@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1ceab344 1009@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1010@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1011@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1012@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1013@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1014@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220
L
1015@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1016@item @samp{.lzcnt} @tab @samp{.invpcid}
1ceab344 1017@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1018@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 1019@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 1020@item @samp{.padlock}
e413e4e9
AM
1021@end multitable
1022
fddf5b5b
AM
1023Apart from the warning, there are only two other effects on
1024@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1025@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1026will automatically use a two byte opcode sequence. The larger three
1027byte opcode sequence is used on the 486 (and when no architecture is
1028specified) because it executes faster on the 486. Note that you can
1029explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1030Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1031@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1032conditional jumps will be promoted when necessary to a two instruction
1033sequence consisting of a conditional jump of the opposite sense around
1034an unconditional jump to the target.
1035
5c6af06e
JB
1036Following the CPU architecture (but not a sub-architecture, which are those
1037starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1038control automatic promotion of conditional jumps. @samp{jumps} is the
1039default, and enables jump promotion; All external jumps will be of the long
1040variety, and file-local jumps will be promoted as necessary.
1041(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1042byte offset jumps, and warns about file-local conditional jumps that
1043@code{@value{AS}} promotes.
fddf5b5b
AM
1044Unconditional jumps are treated as for @samp{jumps}.
1045
1046For example
1047
1048@smallexample
1049 .arch i8086,nojumps
1050@end smallexample
e413e4e9 1051
252b5132
RH
1052@node i386-Notes
1053@section Notes
1054
1055@cindex i386 @code{mul}, @code{imul} instructions
1056@cindex @code{mul} instruction, i386
1057@cindex @code{imul} instruction, i386
55b62671
AJ
1058@cindex @code{mul} instruction, x86-64
1059@cindex @code{imul} instruction, x86-64
252b5132 1060There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1061instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1062multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1063for @samp{imul}) can be output only in the one operand form. Thus,
1064@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1065the expanding multiply would clobber the @samp{%edx} register, and this
1066would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
106764-bit product in @samp{%edx:%eax}.
1068
1069We have added a two operand form of @samp{imul} when the first operand
1070is an immediate mode expression and the second operand is a register.
1071This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1072example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1073$69, %eax, %eax}.
1074