]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
43234a1e
L
186@code{avx512f},
187@code{avx512cd},
188@code{avx512er},
189@code{avx512pf},
1dfc6506
L
190@code{avx512vl},
191@code{avx512bw},
192@code{avx512dq},
2cc1b5aa 193@code{avx512ifma},
14f195c9 194@code{avx512vbmi},
920d2ddc 195@code{avx512_4fmaps},
47acf0bd 196@code{avx512_4vnniw},
620214f7 197@code{avx512_vpopcntdq},
53467f57 198@code{avx512_vbmi2},
8cfcb765 199@code{avx512_vnni},
ee6872be 200@code{avx512_bitalg},
144b71e2
L
201@code{noavx512f},
202@code{noavx512cd},
203@code{noavx512er},
204@code{noavx512pf},
205@code{noavx512vl},
206@code{noavx512bw},
207@code{noavx512dq},
208@code{noavx512ifma},
209@code{noavx512vbmi},
920d2ddc 210@code{noavx512_4fmaps},
47acf0bd 211@code{noavx512_4vnniw},
620214f7 212@code{noavx512_vpopcntdq},
53467f57 213@code{noavx512_vbmi2},
8cfcb765 214@code{noavx512_vnni},
ee6872be 215@code{noavx512_bitalg},
6305a203 216@code{vmx},
8729a6f6 217@code{vmfunc},
6305a203 218@code{smx},
f03fe4c1 219@code{xsave},
c7b8aa3a 220@code{xsaveopt},
1dfc6506
L
221@code{xsavec},
222@code{xsaves},
c0f3af97 223@code{aes},
594ab6a3 224@code{pclmul},
c7b8aa3a
L
225@code{fsgsbase},
226@code{rdrnd},
227@code{f16c},
6c30d220 228@code{bmi2},
c0f3af97 229@code{fma},
f1f8f695
L
230@code{movbe},
231@code{ept},
6c30d220 232@code{lzcnt},
42164a71
L
233@code{hle},
234@code{rtm},
6c30d220 235@code{invpcid},
bd5295b2 236@code{clflush},
9916071f 237@code{mwaitx},
029f3522 238@code{clzero},
3233d7d0 239@code{wbnoinvd},
be3a8dca 240@code{pconfig},
de89d0a3 241@code{waitpkg},
c48935d7 242@code{cldemote},
f88c9eb0 243@code{lwp},
5dd85c99
SP
244@code{fma4},
245@code{xop},
60aa667e 246@code{cx16},
bd5295b2 247@code{syscall},
1b7f3fb0 248@code{rdtscp},
6305a203
L
249@code{3dnow},
250@code{3dnowa},
251@code{sse4a},
252@code{sse5},
253@code{svme},
254@code{abm} and
255@code{padlock}.
309d3373
JB
256Note that rather than extending a basic instruction set, the extension
257mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
258
259When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
260@code{.arch} directive will take precedent.
261
262@cindex @samp{-mtune=} option, i386
263@cindex @samp{-mtune=} option, x86-64
264@item -mtune=@var{CPU}
265This option specifies a processor to optimize for. When used in
266conjunction with the @option{-march} option, only instructions
267of the processor specified by the @option{-march} option will be
268generated.
269
6305a203
L
270Valid @var{CPU} values are identical to the processor list of
271@option{-march=@var{CPU}}.
9103f4f4 272
c0f3af97
L
273@cindex @samp{-msse2avx} option, i386
274@cindex @samp{-msse2avx} option, x86-64
275@item -msse2avx
276This option specifies that the assembler should encode SSE instructions
277with VEX prefix.
278
daf50ae7
L
279@cindex @samp{-msse-check=} option, i386
280@cindex @samp{-msse-check=} option, x86-64
281@item -msse-check=@var{none}
1f9bb1ca
AS
282@itemx -msse-check=@var{warning}
283@itemx -msse-check=@var{error}
9aff4b7a 284These options control if the assembler should check SSE instructions.
daf50ae7
L
285@option{-msse-check=@var{none}} will make the assembler not to check SSE
286instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 287will make the assembler issue a warning for any SSE instruction.
daf50ae7 288@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 289for any SSE instruction.
daf50ae7 290
539f890d
L
291@cindex @samp{-mavxscalar=} option, i386
292@cindex @samp{-mavxscalar=} option, x86-64
293@item -mavxscalar=@var{128}
1f9bb1ca 294@itemx -mavxscalar=@var{256}
2aab8acd 295These options control how the assembler should encode scalar AVX
539f890d
L
296instructions. @option{-mavxscalar=@var{128}} will encode scalar
297AVX instructions with 128bit vector length, which is the default.
298@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
299with 256bit vector length.
300
43234a1e
L
301@cindex @samp{-mevexlig=} option, i386
302@cindex @samp{-mevexlig=} option, x86-64
303@item -mevexlig=@var{128}
304@itemx -mevexlig=@var{256}
305@itemx -mevexlig=@var{512}
306These options control how the assembler should encode length-ignored
307(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
308EVEX instructions with 128bit vector length, which is the default.
309@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
310encode LIG EVEX instructions with 256bit and 512bit vector length,
311respectively.
312
313@cindex @samp{-mevexwig=} option, i386
314@cindex @samp{-mevexwig=} option, x86-64
315@item -mevexwig=@var{0}
316@itemx -mevexwig=@var{1}
317These options control how the assembler should encode w-ignored (WIG)
318EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
319EVEX instructions with evex.w = 0, which is the default.
320@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
321evex.w = 1.
322
1efbbeb4
L
323@cindex @samp{-mmnemonic=} option, i386
324@cindex @samp{-mmnemonic=} option, x86-64
325@item -mmnemonic=@var{att}
1f9bb1ca 326@itemx -mmnemonic=@var{intel}
34bca508 327This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
328The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
329take precedent.
330
331@cindex @samp{-msyntax=} option, i386
332@cindex @samp{-msyntax=} option, x86-64
333@item -msyntax=@var{att}
1f9bb1ca 334@itemx -msyntax=@var{intel}
34bca508 335This option specifies instruction syntax when processing instructions.
1efbbeb4
L
336The @code{.att_syntax} and @code{.intel_syntax} directives will
337take precedent.
338
339@cindex @samp{-mnaked-reg} option, i386
340@cindex @samp{-mnaked-reg} option, x86-64
341@item -mnaked-reg
33eaf5de 342This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 343The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 344
7e8b059b
L
345@cindex @samp{-madd-bnd-prefix} option, i386
346@cindex @samp{-madd-bnd-prefix} option, x86-64
347@item -madd-bnd-prefix
348This option forces the assembler to add BND prefix to all branches, even
349if such prefix was not explicitly specified in the source code.
350
8dcea932
L
351@cindex @samp{-mshared} option, i386
352@cindex @samp{-mshared} option, x86-64
353@item -mno-shared
354On ELF target, the assembler normally optimizes out non-PLT relocations
355against defined non-weak global branch targets with default visibility.
356The @samp{-mshared} option tells the assembler to generate code which
357may go into a shared library where all non-weak global branch targets
358with default visibility can be preempted. The resulting code is
359slightly bigger. This option only affects the handling of branch
360instructions.
361
167ad85b
TG
362@cindex @samp{-mbig-obj} option, x86-64
363@item -mbig-obj
364On x86-64 PE/COFF target this option forces the use of big object file
365format, which allows more than 32768 sections.
366
d022bddd
IT
367@cindex @samp{-momit-lock-prefix=} option, i386
368@cindex @samp{-momit-lock-prefix=} option, x86-64
369@item -momit-lock-prefix=@var{no}
370@itemx -momit-lock-prefix=@var{yes}
371These options control how the assembler should encode lock prefix.
372This option is intended as a workaround for processors, that fail on
373lock prefix. This option can only be safely used with single-core,
374single-thread computers
375@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
376@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
377which is the default.
378
e4e00185
AS
379@cindex @samp{-mfence-as-lock-add=} option, i386
380@cindex @samp{-mfence-as-lock-add=} option, x86-64
381@item -mfence-as-lock-add=@var{no}
382@itemx -mfence-as-lock-add=@var{yes}
383These options control how the assembler should encode lfence, mfence and
384sfence.
385@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
386sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
387@samp{lock addl $0x0, (%esp)} in 32-bit mode.
388@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
389sfence as usual, which is the default.
390
0cb4071e
L
391@cindex @samp{-mrelax-relocations=} option, i386
392@cindex @samp{-mrelax-relocations=} option, x86-64
393@item -mrelax-relocations=@var{no}
394@itemx -mrelax-relocations=@var{yes}
395These options control whether the assembler should generate relax
396relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
397R_X86_64_REX_GOTPCRELX, in 64-bit mode.
398@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
399@option{-mrelax-relocations=@var{no}} will not generate relax
400relocations. The default can be controlled by a configure option
401@option{--enable-x86-relax-relocations}.
402
d3d3c6db
IT
403@cindex @samp{-mevexrcig=} option, i386
404@cindex @samp{-mevexrcig=} option, x86-64
405@item -mevexrcig=@var{rne}
406@itemx -mevexrcig=@var{rd}
407@itemx -mevexrcig=@var{ru}
408@itemx -mevexrcig=@var{rz}
409These options control how the assembler should encode SAE-only
410EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
411of EVEX instruction with 00, which is the default.
412@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
413and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
414with 01, 10 and 11 RC bits, respectively.
415
5db04b09
L
416@cindex @samp{-mamd64} option, x86-64
417@cindex @samp{-mintel64} option, x86-64
418@item -mamd64
419@itemx -mintel64
420This option specifies that the assembler should accept only AMD64 or
421Intel64 ISA in 64-bit mode. The default is to accept both.
422
b6f8c7c4
L
423@cindex @samp{-O0} option, i386
424@cindex @samp{-O0} option, x86-64
425@cindex @samp{-O} option, i386
426@cindex @samp{-O} option, x86-64
427@cindex @samp{-O1} option, i386
428@cindex @samp{-O1} option, x86-64
429@cindex @samp{-O2} option, i386
430@cindex @samp{-O2} option, x86-64
431@cindex @samp{-Os} option, i386
432@cindex @samp{-Os} option, x86-64
433@item -O0 | -O | -O1 | -O2 | -Os
434Optimize instruction encoding with smaller instruction size. @samp{-O}
435and @samp{-O1} encode 64-bit register load instructions with 64-bit
436immediate as 32-bit register load instructions with 31-bit or 32-bits
437immediates and encode 64-bit register clearing instructions with 32-bit
438register clearing instructions. @samp{-O2} includes @samp{-O1}
439optimization plus encodes 256-bit and 512-bit vector register clearing
440instructions with 128-bit vector register clearing instructions.
441@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
442and 64-bit register tests with immediate as 8-bit register test with
443immediate. @samp{-O0} turns off this optimization.
444
55b62671 445@end table
731caf76 446@c man end
e413e4e9 447
a6c24e68
NC
448@node i386-Directives
449@section x86 specific Directives
450
451@cindex machine directives, x86
452@cindex x86 machine directives
453@table @code
454
455@cindex @code{lcomm} directive, COFF
456@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
457Reserve @var{length} (an absolute expression) bytes for a local common
458denoted by @var{symbol}. The section and value of @var{symbol} are
459those of the new local common. The addresses are allocated in the bss
704209c0
NC
460section, so that at run-time the bytes start off zeroed. Since
461@var{symbol} is not declared global, it is normally not visible to
462@code{@value{LD}}. The optional third parameter, @var{alignment},
463specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
464
465This directive is only available for COFF based x86 targets.
466
102e9361
NC
467@cindex @code{largecomm} directive, ELF
468@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
469This directive behaves in the same way as the @code{comm} directive
470except that the data is placed into the @var{.lbss} section instead of
471the @var{.bss} section @ref{Comm}.
472
473The directive is intended to be used for data which requires a large
474amount of space, and it is only available for ELF based x86_64
475targets.
476
a6c24e68 477@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
478
479@end table
480
252b5132 481@node i386-Syntax
7c31ae13
NC
482@section i386 Syntactical Considerations
483@menu
484* i386-Variations:: AT&T Syntax versus Intel Syntax
485* i386-Chars:: Special Characters
486@end menu
487
488@node i386-Variations
489@subsection AT&T Syntax versus Intel Syntax
252b5132 490
e413e4e9
AM
491@cindex i386 intel_syntax pseudo op
492@cindex intel_syntax pseudo op, i386
493@cindex i386 att_syntax pseudo op
494@cindex att_syntax pseudo op, i386
252b5132
RH
495@cindex i386 syntax compatibility
496@cindex syntax compatibility, i386
55b62671
AJ
497@cindex x86-64 intel_syntax pseudo op
498@cindex intel_syntax pseudo op, x86-64
499@cindex x86-64 att_syntax pseudo op
500@cindex att_syntax pseudo op, x86-64
501@cindex x86-64 syntax compatibility
502@cindex syntax compatibility, x86-64
e413e4e9
AM
503
504@code{@value{AS}} now supports assembly using Intel assembler syntax.
505@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
506back to the usual AT&T mode for compatibility with the output of
507@code{@value{GCC}}. Either of these directives may have an optional
508argument, @code{prefix}, or @code{noprefix} specifying whether registers
509require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
510different from Intel syntax. We mention these differences because
511almost all 80386 documents use Intel syntax. Notable differences
512between the two syntaxes are:
513
514@cindex immediate operands, i386
515@cindex i386 immediate operands
516@cindex register operands, i386
517@cindex i386 register operands
518@cindex jump/call operands, i386
519@cindex i386 jump/call operands
520@cindex operand delimiters, i386
55b62671
AJ
521
522@cindex immediate operands, x86-64
523@cindex x86-64 immediate operands
524@cindex register operands, x86-64
525@cindex x86-64 register operands
526@cindex jump/call operands, x86-64
527@cindex x86-64 jump/call operands
528@cindex operand delimiters, x86-64
252b5132
RH
529@itemize @bullet
530@item
531AT&T immediate operands are preceded by @samp{$}; Intel immediate
532operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
533AT&T register operands are preceded by @samp{%}; Intel register operands
534are undelimited. AT&T absolute (as opposed to PC relative) jump/call
535operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
536
537@cindex i386 source, destination operands
538@cindex source, destination operands; i386
55b62671
AJ
539@cindex x86-64 source, destination operands
540@cindex source, destination operands; x86-64
252b5132
RH
541@item
542AT&T and Intel syntax use the opposite order for source and destination
543operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
544@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
545previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
546instructions with 2 immediate operands, such as the @samp{enter}
547instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
548
549@cindex mnemonic suffixes, i386
550@cindex sizes operands, i386
551@cindex i386 size suffixes
55b62671
AJ
552@cindex mnemonic suffixes, x86-64
553@cindex sizes operands, x86-64
554@cindex x86-64 size suffixes
252b5132
RH
555@item
556In AT&T syntax the size of memory operands is determined from the last
557character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
558@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
559(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
560this by prefixing memory operands (@emph{not} the instruction mnemonics) with
561@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
562Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
563syntax.
252b5132 564
4b06377f
L
565In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
566instruction with the 64-bit displacement or immediate operand.
567
252b5132
RH
568@cindex return instructions, i386
569@cindex i386 jump, call, return
55b62671
AJ
570@cindex return instructions, x86-64
571@cindex x86-64 jump, call, return
252b5132
RH
572@item
573Immediate form long jumps and calls are
574@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
575Intel syntax is
576@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
577instruction
578is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
579@samp{ret far @var{stack-adjust}}.
580
581@cindex sections, i386
582@cindex i386 sections
55b62671
AJ
583@cindex sections, x86-64
584@cindex x86-64 sections
252b5132
RH
585@item
586The AT&T assembler does not provide support for multiple section
587programs. Unix style systems expect all programs to be single sections.
588@end itemize
589
7c31ae13
NC
590@node i386-Chars
591@subsection Special Characters
592
593@cindex line comment character, i386
594@cindex i386 line comment character
595The presence of a @samp{#} appearing anywhere on a line indicates the
596start of a comment that extends to the end of that line.
597
598If a @samp{#} appears as the first character of a line then the whole
599line is treated as a comment, but in this case the line can also be a
600logical line number directive (@pxref{Comments}) or a preprocessor
601control command (@pxref{Preprocessing}).
602
a05a5b64 603If the @option{--divide} command-line option has not been specified
7c31ae13
NC
604then the @samp{/} character appearing anywhere on a line also
605introduces a line comment.
606
607@cindex line separator, i386
608@cindex statement separator, i386
609@cindex i386 line separator
610The @samp{;} character can be used to separate statements on the same
611line.
612
252b5132 613@node i386-Mnemonics
d3b47e2b
L
614@section i386-Mnemonics
615@subsection Instruction Naming
252b5132
RH
616
617@cindex i386 instruction naming
618@cindex instruction naming, i386
55b62671
AJ
619@cindex x86-64 instruction naming
620@cindex instruction naming, x86-64
621
252b5132 622Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
623specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
624and @samp{q} specify byte, word, long and quadruple word operands. If
625no suffix is specified by an instruction then @code{@value{AS}} tries to
626fill in the missing suffix based on the destination register operand
627(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
628to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
629@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
630assembler which assumes that a missing mnemonic suffix implies long
631operand size. (This incompatibility does not affect compiler output
632since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
633
634Almost all instructions have the same names in AT&T and Intel format.
635There are a few exceptions. The sign extend and zero extend
636instructions need two sizes to specify them. They need a size to
637sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
638is accomplished by using two instruction mnemonic suffixes in AT&T
639syntax. Base names for sign extend and zero extend are
640@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
641and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
642are tacked on to this base name, the @emph{from} suffix before the
643@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
644``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
645thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
646@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
647@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
648quadruple word).
252b5132 649
b6169b20
L
650@cindex encoding options, i386
651@cindex encoding options, x86-64
652
86fa6981
L
653Different encoding options can be specified via pseudo prefixes:
654
655@itemize @bullet
656@item
657@samp{@{disp8@}} -- prefer 8-bit displacement.
658
659@item
660@samp{@{disp32@}} -- prefer 32-bit displacement.
661
662@item
663@samp{@{load@}} -- prefer load-form instruction.
664
665@item
666@samp{@{store@}} -- prefer store-form instruction.
667
668@item
669@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
670
671@item
672@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
673
674@item
675@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
676
677@item
678@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
679instructions (x86-64 only). Note that this differs from the @samp{rex}
680prefix which generates REX prefix unconditionally.
b6f8c7c4
L
681
682@item
683@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 684@end itemize
b6169b20 685
252b5132
RH
686@cindex conversion instructions, i386
687@cindex i386 conversion instructions
55b62671
AJ
688@cindex conversion instructions, x86-64
689@cindex x86-64 conversion instructions
252b5132
RH
690The Intel-syntax conversion instructions
691
692@itemize @bullet
693@item
694@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
695
696@item
697@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
698
699@item
700@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
701
702@item
703@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
704
705@item
706@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
707(x86-64 only),
708
709@item
d5f0cf92 710@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 711@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
712@end itemize
713
714@noindent
55b62671
AJ
715are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
716@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
717instructions.
252b5132
RH
718
719@cindex jump instructions, i386
720@cindex call instructions, i386
55b62671
AJ
721@cindex jump instructions, x86-64
722@cindex call instructions, x86-64
252b5132
RH
723Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
724AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
725convention.
726
d3b47e2b 727@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
728
729@cindex i386 mnemonic compatibility
730@cindex mnemonic compatibility, i386
731
732@code{@value{AS}} supports assembly using Intel mnemonic.
733@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
734@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
735syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
736Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
737@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
738@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
739assembler with different mnemonics from those in Intel IA32 specification.
740@code{@value{GCC}} generates those instructions with AT&T mnemonic.
741
252b5132
RH
742@node i386-Regs
743@section Register Naming
744
745@cindex i386 registers
746@cindex registers, i386
55b62671
AJ
747@cindex x86-64 registers
748@cindex registers, x86-64
252b5132
RH
749Register operands are always prefixed with @samp{%}. The 80386 registers
750consist of
751
752@itemize @bullet
753@item
754the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
755@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
756frame pointer), and @samp{%esp} (the stack pointer).
757
758@item
759the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
760@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
761
762@item
763the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
764@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
765are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
766@samp{%cx}, and @samp{%dx})
767
768@item
769the 6 section registers @samp{%cs} (code section), @samp{%ds}
770(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
771and @samp{%gs}.
772
773@item
4bde3cdd
UD
774the 5 processor control registers @samp{%cr0}, @samp{%cr2},
775@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
776
777@item
778the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
779@samp{%db3}, @samp{%db6}, and @samp{%db7}.
780
781@item
782the 2 test registers @samp{%tr6} and @samp{%tr7}.
783
784@item
785the 8 floating point register stack @samp{%st} or equivalently
786@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
787@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
788These registers are overloaded by 8 MMX registers @samp{%mm0},
789@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
790@samp{%mm6} and @samp{%mm7}.
791
792@item
4bde3cdd 793the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
794@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
795@end itemize
796
797The AMD x86-64 architecture extends the register set by:
798
799@itemize @bullet
800@item
801enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
802accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
803@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
804pointer)
805
806@item
807the 8 extended registers @samp{%r8}--@samp{%r15}.
808
809@item
4bde3cdd 810the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
811
812@item
4bde3cdd 813the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
814
815@item
4bde3cdd 816the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
817
818@item
819the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
820
821@item
822the 8 debug registers: @samp{%db8}--@samp{%db15}.
823
824@item
4bde3cdd
UD
825the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
826@end itemize
827
828With the AVX extensions more registers were made available:
829
830@itemize @bullet
831
832@item
833the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
834available in 32-bit mode). The bottom 128 bits are overlaid with the
835@samp{xmm0}--@samp{xmm15} registers.
836
837@end itemize
838
839The AVX2 extensions made in 64-bit mode more registers available:
840
841@itemize @bullet
842
843@item
844the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
845registers @samp{%ymm16}--@samp{%ymm31}.
846
847@end itemize
848
849The AVX512 extensions added the following registers:
850
851@itemize @bullet
852
853@item
854the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
855available in 32-bit mode). The bottom 128 bits are overlaid with the
856@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
857overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
858
859@item
860the 8 mask registers @samp{%k0}--@samp{%k7}.
861
252b5132
RH
862@end itemize
863
864@node i386-Prefixes
865@section Instruction Prefixes
866
867@cindex i386 instruction prefixes
868@cindex instruction prefixes, i386
869@cindex prefixes, i386
870Instruction prefixes are used to modify the following instruction. They
871are used to repeat string instructions, to provide section overrides, to
872perform bus lock operations, and to change operand and address sizes.
873(Most instructions that normally operate on 32-bit operands will use
87416-bit operands if the instruction has an ``operand size'' prefix.)
875Instruction prefixes are best written on the same line as the instruction
876they act upon. For example, the @samp{scas} (scan string) instruction is
877repeated with:
878
879@smallexample
880 repne scas %es:(%edi),%al
881@end smallexample
882
883You may also place prefixes on the lines immediately preceding the
884instruction, but this circumvents checks that @code{@value{AS}} does
885with prefixes, and will not work with all prefixes.
886
887Here is a list of instruction prefixes:
888
889@cindex section override prefixes, i386
890@itemize @bullet
891@item
892Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
893@samp{fs}, @samp{gs}. These are automatically added by specifying
894using the @var{section}:@var{memory-operand} form for memory references.
895
896@cindex size prefixes, i386
897@item
898Operand/Address size prefixes @samp{data16} and @samp{addr16}
899change 32-bit operands/addresses into 16-bit operands/addresses,
900while @samp{data32} and @samp{addr32} change 16-bit ones (in a
901@code{.code16} section) into 32-bit operands/addresses. These prefixes
902@emph{must} appear on the same line of code as the instruction they
903modify. For example, in a 16-bit @code{.code16} section, you might
904write:
905
906@smallexample
907 addr32 jmpl *(%ebx)
908@end smallexample
909
910@cindex bus lock prefixes, i386
911@cindex inhibiting interrupts, i386
912@item
913The bus lock prefix @samp{lock} inhibits interrupts during execution of
914the instruction it precedes. (This is only valid with certain
915instructions; see a 80386 manual for details).
916
917@cindex coprocessor wait, i386
918@item
919The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
920complete the current instruction. This should never be needed for the
92180386/80387 combination.
922
923@cindex repeat prefixes, i386
924@item
925The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
926to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
927times if the current address size is 16-bits).
55b62671
AJ
928@cindex REX prefixes, i386
929@item
930The @samp{rex} family of prefixes is used by x86-64 to encode
931extensions to i386 instruction set. The @samp{rex} prefix has four
932bits --- an operand size overwrite (@code{64}) used to change operand size
933from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
934register set.
935
936You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
937instruction emits @samp{rex} prefix with all the bits set. By omitting
938the @code{64}, @code{x}, @code{y} or @code{z} you may write other
939prefixes as well. Normally, there is no need to write the prefixes
940explicitly, since gas will automatically generate them based on the
941instruction operands.
252b5132
RH
942@end itemize
943
944@node i386-Memory
945@section Memory References
946
947@cindex i386 memory references
948@cindex memory references, i386
55b62671
AJ
949@cindex x86-64 memory references
950@cindex memory references, x86-64
252b5132
RH
951An Intel syntax indirect memory reference of the form
952
953@smallexample
954@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
955@end smallexample
956
957@noindent
958is translated into the AT&T syntax
959
960@smallexample
961@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
962@end smallexample
963
964@noindent
965where @var{base} and @var{index} are the optional 32-bit base and
966index registers, @var{disp} is the optional displacement, and
967@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
968to calculate the address of the operand. If no @var{scale} is
969specified, @var{scale} is taken to be 1. @var{section} specifies the
970optional section register for the memory operand, and may override the
971default section register (see a 80386 manual for section register
972defaults). Note that section overrides in AT&T syntax @emph{must}
973be preceded by a @samp{%}. If you specify a section override which
974coincides with the default section register, @code{@value{AS}} does @emph{not}
975output any section register override prefixes to assemble the given
976instruction. Thus, section overrides can be specified to emphasize which
977section register is used for a given memory operand.
978
979Here are some examples of Intel and AT&T style memory references:
980
981@table @asis
982@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
983@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
984missing, and the default section is used (@samp{%ss} for addressing with
985@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
986
987@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
988@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
989@samp{foo}. All other fields are missing. The section register here
990defaults to @samp{%ds}.
991
992@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
993This uses the value pointed to by @samp{foo} as a memory operand.
994Note that @var{base} and @var{index} are both missing, but there is only
995@emph{one} @samp{,}. This is a syntactic exception.
996
997@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
998This selects the contents of the variable @samp{foo} with section
999register @var{section} being @samp{%gs}.
1000@end table
1001
1002Absolute (as opposed to PC relative) call and jump operands must be
1003prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1004always chooses PC relative addressing for jump/call labels.
1005
1006Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1007@emph{must} specify its size (byte, word, long, or quadruple) with an
1008instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1009respectively).
1010
1011The x86-64 architecture adds an RIP (instruction pointer relative)
1012addressing. This addressing mode is specified by using @samp{rip} as a
1013base register. Only constant offsets are valid. For example:
1014
1015@table @asis
1016@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1017Points to the address 1234 bytes past the end of the current
1018instruction.
1019
1020@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1021Points to the @code{symbol} in RIP relative way, this is shorter than
1022the default absolute addressing.
1023@end table
1024
1025Other addressing modes remain unchanged in x86-64 architecture, except
1026registers used are 64-bit instead of 32-bit.
252b5132 1027
fddf5b5b 1028@node i386-Jumps
252b5132
RH
1029@section Handling of Jump Instructions
1030
1031@cindex jump optimization, i386
1032@cindex i386 jump optimization
55b62671
AJ
1033@cindex jump optimization, x86-64
1034@cindex x86-64 jump optimization
252b5132
RH
1035Jump instructions are always optimized to use the smallest possible
1036displacements. This is accomplished by using byte (8-bit) displacement
1037jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1038is insufficient a long displacement is used. We do not support
252b5132
RH
1039word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1040instruction with the @samp{data16} instruction prefix), since the 80386
1041insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1042is added. (See also @pxref{i386-Arch})
252b5132
RH
1043
1044Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1045@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1046displacements, so that if you use these instructions (@code{@value{GCC}} does
1047not use them) you may get an error message (and incorrect code). The AT&T
104880386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1049to
1050
1051@smallexample
1052 jcxz cx_zero
1053 jmp cx_nonzero
1054cx_zero: jmp foo
1055cx_nonzero:
1056@end smallexample
1057
1058@node i386-Float
1059@section Floating Point
1060
1061@cindex i386 floating point
1062@cindex floating point, i386
55b62671
AJ
1063@cindex x86-64 floating point
1064@cindex floating point, x86-64
252b5132
RH
1065All 80387 floating point types except packed BCD are supported.
1066(BCD support may be added without much difficulty). These data
1067types are 16-, 32-, and 64- bit integers, and single (32-bit),
1068double (64-bit), and extended (80-bit) precision floating point.
1069Each supported type has an instruction mnemonic suffix and a constructor
1070associated with it. Instruction mnemonic suffixes specify the operand's
1071data type. Constructors build these data types into memory.
1072
1073@cindex @code{float} directive, i386
1074@cindex @code{single} directive, i386
1075@cindex @code{double} directive, i386
1076@cindex @code{tfloat} directive, i386
55b62671
AJ
1077@cindex @code{float} directive, x86-64
1078@cindex @code{single} directive, x86-64
1079@cindex @code{double} directive, x86-64
1080@cindex @code{tfloat} directive, x86-64
252b5132
RH
1081@itemize @bullet
1082@item
1083Floating point constructors are @samp{.float} or @samp{.single},
1084@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1085These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1086and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1087only supports this format via the @samp{fldt} (load 80-bit real to stack
1088top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1089
1090@cindex @code{word} directive, i386
1091@cindex @code{long} directive, i386
1092@cindex @code{int} directive, i386
1093@cindex @code{quad} directive, i386
55b62671
AJ
1094@cindex @code{word} directive, x86-64
1095@cindex @code{long} directive, x86-64
1096@cindex @code{int} directive, x86-64
1097@cindex @code{quad} directive, x86-64
252b5132
RH
1098@item
1099Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1100@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1101corresponding instruction mnemonic suffixes are @samp{s} (single),
1102@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1103the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1104quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1105stack) instructions.
1106@end itemize
1107
1108Register to register operations should not use instruction mnemonic suffixes.
1109@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1110wrote @samp{fst %st, %st(1)}, since all register to register operations
1111use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1112which converts @samp{%st} from 80-bit to 64-bit floating point format,
1113then stores the result in the 4 byte location @samp{mem})
1114
1115@node i386-SIMD
1116@section Intel's MMX and AMD's 3DNow! SIMD Operations
1117
1118@cindex MMX, i386
1119@cindex 3DNow!, i386
1120@cindex SIMD, i386
55b62671
AJ
1121@cindex MMX, x86-64
1122@cindex 3DNow!, x86-64
1123@cindex SIMD, x86-64
252b5132
RH
1124
1125@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1126instructions for integer data), available on Intel's Pentium MMX
1127processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1128Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1129instruction set (SIMD instructions for 32-bit floating point data)
1130available on AMD's K6-2 processor and possibly others in the future.
1131
1132Currently, @code{@value{AS}} does not support Intel's floating point
1133SIMD, Katmai (KNI).
1134
1135The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1136@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
113716-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1138floating point values. The MMX registers cannot be used at the same time
1139as the floating point stack.
1140
1141See Intel and AMD documentation, keeping in mind that the operand order in
1142instructions is reversed from the Intel syntax.
1143
f88c9eb0
SP
1144@node i386-LWP
1145@section AMD's Lightweight Profiling Instructions
1146
1147@cindex LWP, i386
1148@cindex LWP, x86-64
1149
1150@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1151instruction set, available on AMD's Family 15h (Orochi) processors.
1152
1153LWP enables applications to collect and manage performance data, and
1154react to performance events. The collection of performance data
1155requires no context switches. LWP runs in the context of a thread and
1156so several counters can be used independently across multiple threads.
1157LWP can be used in both 64-bit and legacy 32-bit modes.
1158
1159For detailed information on the LWP instruction set, see the
1160@cite{AMD Lightweight Profiling Specification} available at
1161@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1162
87973e9f
QN
1163@node i386-BMI
1164@section Bit Manipulation Instructions
1165
1166@cindex BMI, i386
1167@cindex BMI, x86-64
1168
1169@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1170
1171BMI instructions provide several instructions implementing individual
1172bit manipulation operations such as isolation, masking, setting, or
34bca508 1173resetting.
87973e9f
QN
1174
1175@c Need to add a specification citation here when available.
1176
2a2a0f38
QN
1177@node i386-TBM
1178@section AMD's Trailing Bit Manipulation Instructions
1179
1180@cindex TBM, i386
1181@cindex TBM, x86-64
1182
1183@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1184instruction set, available on AMD's BDVER2 processors (Trinity and
1185Viperfish).
1186
1187TBM instructions provide instructions implementing individual bit
1188manipulation operations such as isolating, masking, setting, resetting,
1189complementing, and operations on trailing zeros and ones.
1190
1191@c Need to add a specification citation here when available.
87973e9f 1192
252b5132
RH
1193@node i386-16bit
1194@section Writing 16-bit Code
1195
1196@cindex i386 16-bit code
1197@cindex 16-bit code, i386
1198@cindex real-mode code, i386
eecb386c 1199@cindex @code{code16gcc} directive, i386
252b5132
RH
1200@cindex @code{code16} directive, i386
1201@cindex @code{code32} directive, i386
55b62671
AJ
1202@cindex @code{code64} directive, i386
1203@cindex @code{code64} directive, x86-64
1204While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1205or 64-bit x86-64 code depending on the default configuration,
252b5132 1206it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1207mode code segments. To do this, put a @samp{.code16} or
1208@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1209be run in 16-bit mode. You can switch @code{@value{AS}} to writing
121032-bit code with the @samp{.code32} directive or 64-bit code with the
1211@samp{.code64} directive.
eecb386c
AM
1212
1213@samp{.code16gcc} provides experimental support for generating 16-bit
1214code from gcc, and differs from @samp{.code16} in that @samp{call},
1215@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1216@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1217default to 32-bit size. This is so that the stack pointer is
1218manipulated in the same way over function calls, allowing access to
1219function parameters at the same stack offsets as in 32-bit mode.
1220@samp{.code16gcc} also automatically adds address size prefixes where
1221necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1222
1223The code which @code{@value{AS}} generates in 16-bit mode will not
1224necessarily run on a 16-bit pre-80386 processor. To write code that
1225runs on such a processor, you must refrain from using @emph{any} 32-bit
1226constructs which require @code{@value{AS}} to output address or operand
1227size prefixes.
1228
1229Note that writing 16-bit code instructions by explicitly specifying a
1230prefix or an instruction mnemonic suffix within a 32-bit code section
1231generates different machine instructions than those generated for a
123216-bit code segment. In a 32-bit code section, the following code
1233generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1234value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1235
1236@smallexample
1237 pushw $4
1238@end smallexample
1239
1240The same code in a 16-bit code section would generate the machine
b45619c0 1241opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1242is correct since the processor default operand size is assumed to be 16
1243bits in a 16-bit code section.
1244
e413e4e9
AM
1245@node i386-Arch
1246@section Specifying CPU Architecture
1247
1248@cindex arch directive, i386
1249@cindex i386 arch directive
55b62671
AJ
1250@cindex arch directive, x86-64
1251@cindex x86-64 arch directive
e413e4e9
AM
1252
1253@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1254(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1255directive enables a warning when gas detects an instruction that is not
1256supported on the CPU specified. The choices for @var{cpu_type} are:
1257
1258@multitable @columnfractions .20 .20 .20 .20
1259@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1260@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1261@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1262@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1263@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1264@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1265@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1266@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1267@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1268@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1269@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1270@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1271@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1272@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1273@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1274@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1275@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1276@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1277@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1278@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1279@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1280@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1281@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1282@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1283@item @samp{.avx512_bitalg}
d777820b 1284@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1285@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1286@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
c0a30a9f 1287@item @samp{.movdiri} @tab @samp{.movdir64b}
1ceab344 1288@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1289@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1290@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1291@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1292@end multitable
1293
fddf5b5b
AM
1294Apart from the warning, there are only two other effects on
1295@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1296@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1297will automatically use a two byte opcode sequence. The larger three
1298byte opcode sequence is used on the 486 (and when no architecture is
1299specified) because it executes faster on the 486. Note that you can
1300explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1301Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1302@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1303conditional jumps will be promoted when necessary to a two instruction
1304sequence consisting of a conditional jump of the opposite sense around
1305an unconditional jump to the target.
1306
5c6af06e
JB
1307Following the CPU architecture (but not a sub-architecture, which are those
1308starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1309control automatic promotion of conditional jumps. @samp{jumps} is the
1310default, and enables jump promotion; All external jumps will be of the long
1311variety, and file-local jumps will be promoted as necessary.
1312(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1313byte offset jumps, and warns about file-local conditional jumps that
1314@code{@value{AS}} promotes.
fddf5b5b
AM
1315Unconditional jumps are treated as for @samp{jumps}.
1316
1317For example
1318
1319@smallexample
1320 .arch i8086,nojumps
1321@end smallexample
e413e4e9 1322
5c9352f3
AM
1323@node i386-Bugs
1324@section AT&T Syntax bugs
1325
1326The UnixWare assembler, and probably other AT&T derived ix86 Unix
1327assemblers, generate floating point instructions with reversed source
1328and destination registers in certain cases. Unfortunately, gcc and
1329possibly many other programs use this reversed syntax, so we're stuck
1330with it.
1331
1332For example
1333
1334@smallexample
1335 fsub %st,%st(3)
1336@end smallexample
1337@noindent
1338results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1339than the expected @samp{%st(3) - %st}. This happens with all the
1340non-commutative arithmetic floating point operations with two register
1341operands where the source register is @samp{%st} and the destination
1342register is @samp{%st(i)}.
1343
252b5132
RH
1344@node i386-Notes
1345@section Notes
1346
1347@cindex i386 @code{mul}, @code{imul} instructions
1348@cindex @code{mul} instruction, i386
1349@cindex @code{imul} instruction, i386
55b62671
AJ
1350@cindex @code{mul} instruction, x86-64
1351@cindex @code{imul} instruction, x86-64
252b5132 1352There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1353instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1354multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1355for @samp{imul}) can be output only in the one operand form. Thus,
1356@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1357the expanding multiply would clobber the @samp{%edx} register, and this
1358would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
135964-bit product in @samp{%edx:%eax}.
1360
1361We have added a two operand form of @samp{imul} when the first operand
1362is an immediate mode expression and the second operand is a register.
1363This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1364example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1365$69, %eax, %eax}.
1366