]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
Update x86-64-mpx-inval-2 test for COFF
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2571583a 1@c Copyright (C) 1991-2017 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
1848e567 137@code{687},
309d3373 138@code{no87},
1848e567
L
139@code{no287},
140@code{no387},
141@code{no687},
6305a203 142@code{mmx},
309d3373 143@code{nommx},
6305a203
L
144@code{sse},
145@code{sse2},
146@code{sse3},
147@code{ssse3},
148@code{sse4.1},
149@code{sse4.2},
150@code{sse4},
309d3373 151@code{nosse},
1848e567
L
152@code{nosse2},
153@code{nosse3},
154@code{nossse3},
155@code{nosse4.1},
156@code{nosse4.2},
157@code{nosse4},
c0f3af97 158@code{avx},
6c30d220 159@code{avx2},
1848e567
L
160@code{noavx},
161@code{noavx2},
e2e1fcde
L
162@code{adx},
163@code{rdseed},
164@code{prfchw},
5c111e37 165@code{smap},
7e8b059b 166@code{mpx},
a0046408 167@code{sha},
8bc52696 168@code{rdpid},
6b40c462 169@code{ptwrite},
1dfc6506
L
170@code{prefetchwt1},
171@code{clflushopt},
172@code{se1},
c5e7287a 173@code{clwb},
43234a1e
L
174@code{avx512f},
175@code{avx512cd},
176@code{avx512er},
177@code{avx512pf},
1dfc6506
L
178@code{avx512vl},
179@code{avx512bw},
180@code{avx512dq},
2cc1b5aa 181@code{avx512ifma},
14f195c9 182@code{avx512vbmi},
920d2ddc 183@code{avx512_4fmaps},
47acf0bd 184@code{avx512_4vnniw},
620214f7 185@code{avx512_vpopcntdq},
144b71e2
L
186@code{noavx512f},
187@code{noavx512cd},
188@code{noavx512er},
189@code{noavx512pf},
190@code{noavx512vl},
191@code{noavx512bw},
192@code{noavx512dq},
193@code{noavx512ifma},
194@code{noavx512vbmi},
920d2ddc 195@code{noavx512_4fmaps},
47acf0bd 196@code{noavx512_4vnniw},
620214f7 197@code{noavx512_vpopcntdq},
6305a203 198@code{vmx},
8729a6f6 199@code{vmfunc},
6305a203 200@code{smx},
f03fe4c1 201@code{xsave},
c7b8aa3a 202@code{xsaveopt},
1dfc6506
L
203@code{xsavec},
204@code{xsaves},
c0f3af97 205@code{aes},
594ab6a3 206@code{pclmul},
c7b8aa3a
L
207@code{fsgsbase},
208@code{rdrnd},
209@code{f16c},
6c30d220 210@code{bmi2},
c0f3af97 211@code{fma},
f1f8f695
L
212@code{movbe},
213@code{ept},
6c30d220 214@code{lzcnt},
42164a71
L
215@code{hle},
216@code{rtm},
6c30d220 217@code{invpcid},
bd5295b2 218@code{clflush},
9916071f 219@code{mwaitx},
029f3522 220@code{clzero},
f88c9eb0 221@code{lwp},
5dd85c99
SP
222@code{fma4},
223@code{xop},
60aa667e 224@code{cx16},
bd5295b2 225@code{syscall},
1b7f3fb0 226@code{rdtscp},
6305a203
L
227@code{3dnow},
228@code{3dnowa},
229@code{sse4a},
230@code{sse5},
231@code{svme},
232@code{abm} and
233@code{padlock}.
309d3373
JB
234Note that rather than extending a basic instruction set, the extension
235mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
236
237When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
238@code{.arch} directive will take precedent.
239
240@cindex @samp{-mtune=} option, i386
241@cindex @samp{-mtune=} option, x86-64
242@item -mtune=@var{CPU}
243This option specifies a processor to optimize for. When used in
244conjunction with the @option{-march} option, only instructions
245of the processor specified by the @option{-march} option will be
246generated.
247
6305a203
L
248Valid @var{CPU} values are identical to the processor list of
249@option{-march=@var{CPU}}.
9103f4f4 250
c0f3af97
L
251@cindex @samp{-msse2avx} option, i386
252@cindex @samp{-msse2avx} option, x86-64
253@item -msse2avx
254This option specifies that the assembler should encode SSE instructions
255with VEX prefix.
256
daf50ae7
L
257@cindex @samp{-msse-check=} option, i386
258@cindex @samp{-msse-check=} option, x86-64
259@item -msse-check=@var{none}
1f9bb1ca
AS
260@itemx -msse-check=@var{warning}
261@itemx -msse-check=@var{error}
9aff4b7a 262These options control if the assembler should check SSE instructions.
daf50ae7
L
263@option{-msse-check=@var{none}} will make the assembler not to check SSE
264instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 265will make the assembler issue a warning for any SSE instruction.
daf50ae7 266@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 267for any SSE instruction.
daf50ae7 268
539f890d
L
269@cindex @samp{-mavxscalar=} option, i386
270@cindex @samp{-mavxscalar=} option, x86-64
271@item -mavxscalar=@var{128}
1f9bb1ca 272@itemx -mavxscalar=@var{256}
2aab8acd 273These options control how the assembler should encode scalar AVX
539f890d
L
274instructions. @option{-mavxscalar=@var{128}} will encode scalar
275AVX instructions with 128bit vector length, which is the default.
276@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
277with 256bit vector length.
278
43234a1e
L
279@cindex @samp{-mevexlig=} option, i386
280@cindex @samp{-mevexlig=} option, x86-64
281@item -mevexlig=@var{128}
282@itemx -mevexlig=@var{256}
283@itemx -mevexlig=@var{512}
284These options control how the assembler should encode length-ignored
285(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
286EVEX instructions with 128bit vector length, which is the default.
287@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
288encode LIG EVEX instructions with 256bit and 512bit vector length,
289respectively.
290
291@cindex @samp{-mevexwig=} option, i386
292@cindex @samp{-mevexwig=} option, x86-64
293@item -mevexwig=@var{0}
294@itemx -mevexwig=@var{1}
295These options control how the assembler should encode w-ignored (WIG)
296EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
297EVEX instructions with evex.w = 0, which is the default.
298@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
299evex.w = 1.
300
1efbbeb4
L
301@cindex @samp{-mmnemonic=} option, i386
302@cindex @samp{-mmnemonic=} option, x86-64
303@item -mmnemonic=@var{att}
1f9bb1ca 304@itemx -mmnemonic=@var{intel}
34bca508 305This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
306The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
307take precedent.
308
309@cindex @samp{-msyntax=} option, i386
310@cindex @samp{-msyntax=} option, x86-64
311@item -msyntax=@var{att}
1f9bb1ca 312@itemx -msyntax=@var{intel}
34bca508 313This option specifies instruction syntax when processing instructions.
1efbbeb4
L
314The @code{.att_syntax} and @code{.intel_syntax} directives will
315take precedent.
316
317@cindex @samp{-mnaked-reg} option, i386
318@cindex @samp{-mnaked-reg} option, x86-64
319@item -mnaked-reg
33eaf5de 320This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 321The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 322
7e8b059b
L
323@cindex @samp{-madd-bnd-prefix} option, i386
324@cindex @samp{-madd-bnd-prefix} option, x86-64
325@item -madd-bnd-prefix
326This option forces the assembler to add BND prefix to all branches, even
327if such prefix was not explicitly specified in the source code.
328
8dcea932
L
329@cindex @samp{-mshared} option, i386
330@cindex @samp{-mshared} option, x86-64
331@item -mno-shared
332On ELF target, the assembler normally optimizes out non-PLT relocations
333against defined non-weak global branch targets with default visibility.
334The @samp{-mshared} option tells the assembler to generate code which
335may go into a shared library where all non-weak global branch targets
336with default visibility can be preempted. The resulting code is
337slightly bigger. This option only affects the handling of branch
338instructions.
339
167ad85b
TG
340@cindex @samp{-mbig-obj} option, x86-64
341@item -mbig-obj
342On x86-64 PE/COFF target this option forces the use of big object file
343format, which allows more than 32768 sections.
344
d022bddd
IT
345@cindex @samp{-momit-lock-prefix=} option, i386
346@cindex @samp{-momit-lock-prefix=} option, x86-64
347@item -momit-lock-prefix=@var{no}
348@itemx -momit-lock-prefix=@var{yes}
349These options control how the assembler should encode lock prefix.
350This option is intended as a workaround for processors, that fail on
351lock prefix. This option can only be safely used with single-core,
352single-thread computers
353@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
354@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
355which is the default.
356
e4e00185
AS
357@cindex @samp{-mfence-as-lock-add=} option, i386
358@cindex @samp{-mfence-as-lock-add=} option, x86-64
359@item -mfence-as-lock-add=@var{no}
360@itemx -mfence-as-lock-add=@var{yes}
361These options control how the assembler should encode lfence, mfence and
362sfence.
363@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
364sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
365@samp{lock addl $0x0, (%esp)} in 32-bit mode.
366@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
367sfence as usual, which is the default.
368
0cb4071e
L
369@cindex @samp{-mrelax-relocations=} option, i386
370@cindex @samp{-mrelax-relocations=} option, x86-64
371@item -mrelax-relocations=@var{no}
372@itemx -mrelax-relocations=@var{yes}
373These options control whether the assembler should generate relax
374relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
375R_X86_64_REX_GOTPCRELX, in 64-bit mode.
376@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
377@option{-mrelax-relocations=@var{no}} will not generate relax
378relocations. The default can be controlled by a configure option
379@option{--enable-x86-relax-relocations}.
380
d3d3c6db
IT
381@cindex @samp{-mevexrcig=} option, i386
382@cindex @samp{-mevexrcig=} option, x86-64
383@item -mevexrcig=@var{rne}
384@itemx -mevexrcig=@var{rd}
385@itemx -mevexrcig=@var{ru}
386@itemx -mevexrcig=@var{rz}
387These options control how the assembler should encode SAE-only
388EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
389of EVEX instruction with 00, which is the default.
390@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
391and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
392with 01, 10 and 11 RC bits, respectively.
393
5db04b09
L
394@cindex @samp{-mamd64} option, x86-64
395@cindex @samp{-mintel64} option, x86-64
396@item -mamd64
397@itemx -mintel64
398This option specifies that the assembler should accept only AMD64 or
399Intel64 ISA in 64-bit mode. The default is to accept both.
400
55b62671 401@end table
731caf76 402@c man end
e413e4e9 403
a6c24e68
NC
404@node i386-Directives
405@section x86 specific Directives
406
407@cindex machine directives, x86
408@cindex x86 machine directives
409@table @code
410
411@cindex @code{lcomm} directive, COFF
412@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
413Reserve @var{length} (an absolute expression) bytes for a local common
414denoted by @var{symbol}. The section and value of @var{symbol} are
415those of the new local common. The addresses are allocated in the bss
704209c0
NC
416section, so that at run-time the bytes start off zeroed. Since
417@var{symbol} is not declared global, it is normally not visible to
418@code{@value{LD}}. The optional third parameter, @var{alignment},
419specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
420
421This directive is only available for COFF based x86 targets.
422
423@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
424@c .largecomm
425
426@end table
427
252b5132 428@node i386-Syntax
7c31ae13
NC
429@section i386 Syntactical Considerations
430@menu
431* i386-Variations:: AT&T Syntax versus Intel Syntax
432* i386-Chars:: Special Characters
433@end menu
434
435@node i386-Variations
436@subsection AT&T Syntax versus Intel Syntax
252b5132 437
e413e4e9
AM
438@cindex i386 intel_syntax pseudo op
439@cindex intel_syntax pseudo op, i386
440@cindex i386 att_syntax pseudo op
441@cindex att_syntax pseudo op, i386
252b5132
RH
442@cindex i386 syntax compatibility
443@cindex syntax compatibility, i386
55b62671
AJ
444@cindex x86-64 intel_syntax pseudo op
445@cindex intel_syntax pseudo op, x86-64
446@cindex x86-64 att_syntax pseudo op
447@cindex att_syntax pseudo op, x86-64
448@cindex x86-64 syntax compatibility
449@cindex syntax compatibility, x86-64
e413e4e9
AM
450
451@code{@value{AS}} now supports assembly using Intel assembler syntax.
452@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
453back to the usual AT&T mode for compatibility with the output of
454@code{@value{GCC}}. Either of these directives may have an optional
455argument, @code{prefix}, or @code{noprefix} specifying whether registers
456require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
457different from Intel syntax. We mention these differences because
458almost all 80386 documents use Intel syntax. Notable differences
459between the two syntaxes are:
460
461@cindex immediate operands, i386
462@cindex i386 immediate operands
463@cindex register operands, i386
464@cindex i386 register operands
465@cindex jump/call operands, i386
466@cindex i386 jump/call operands
467@cindex operand delimiters, i386
55b62671
AJ
468
469@cindex immediate operands, x86-64
470@cindex x86-64 immediate operands
471@cindex register operands, x86-64
472@cindex x86-64 register operands
473@cindex jump/call operands, x86-64
474@cindex x86-64 jump/call operands
475@cindex operand delimiters, x86-64
252b5132
RH
476@itemize @bullet
477@item
478AT&T immediate operands are preceded by @samp{$}; Intel immediate
479operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
480AT&T register operands are preceded by @samp{%}; Intel register operands
481are undelimited. AT&T absolute (as opposed to PC relative) jump/call
482operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
483
484@cindex i386 source, destination operands
485@cindex source, destination operands; i386
55b62671
AJ
486@cindex x86-64 source, destination operands
487@cindex source, destination operands; x86-64
252b5132
RH
488@item
489AT&T and Intel syntax use the opposite order for source and destination
490operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
491@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
492previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
493instructions with 2 immediate operands, such as the @samp{enter}
494instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
495
496@cindex mnemonic suffixes, i386
497@cindex sizes operands, i386
498@cindex i386 size suffixes
55b62671
AJ
499@cindex mnemonic suffixes, x86-64
500@cindex sizes operands, x86-64
501@cindex x86-64 size suffixes
252b5132
RH
502@item
503In AT&T syntax the size of memory operands is determined from the last
504character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
505@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
506(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
507this by prefixing memory operands (@emph{not} the instruction mnemonics) with
508@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
509Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
510syntax.
252b5132 511
4b06377f
L
512In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
513instruction with the 64-bit displacement or immediate operand.
514
252b5132
RH
515@cindex return instructions, i386
516@cindex i386 jump, call, return
55b62671
AJ
517@cindex return instructions, x86-64
518@cindex x86-64 jump, call, return
252b5132
RH
519@item
520Immediate form long jumps and calls are
521@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
522Intel syntax is
523@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
524instruction
525is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
526@samp{ret far @var{stack-adjust}}.
527
528@cindex sections, i386
529@cindex i386 sections
55b62671
AJ
530@cindex sections, x86-64
531@cindex x86-64 sections
252b5132
RH
532@item
533The AT&T assembler does not provide support for multiple section
534programs. Unix style systems expect all programs to be single sections.
535@end itemize
536
7c31ae13
NC
537@node i386-Chars
538@subsection Special Characters
539
540@cindex line comment character, i386
541@cindex i386 line comment character
542The presence of a @samp{#} appearing anywhere on a line indicates the
543start of a comment that extends to the end of that line.
544
545If a @samp{#} appears as the first character of a line then the whole
546line is treated as a comment, but in this case the line can also be a
547logical line number directive (@pxref{Comments}) or a preprocessor
548control command (@pxref{Preprocessing}).
549
550If the @option{--divide} command line option has not been specified
551then the @samp{/} character appearing anywhere on a line also
552introduces a line comment.
553
554@cindex line separator, i386
555@cindex statement separator, i386
556@cindex i386 line separator
557The @samp{;} character can be used to separate statements on the same
558line.
559
252b5132 560@node i386-Mnemonics
d3b47e2b
L
561@section i386-Mnemonics
562@subsection Instruction Naming
252b5132
RH
563
564@cindex i386 instruction naming
565@cindex instruction naming, i386
55b62671
AJ
566@cindex x86-64 instruction naming
567@cindex instruction naming, x86-64
568
252b5132 569Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
570specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
571and @samp{q} specify byte, word, long and quadruple word operands. If
572no suffix is specified by an instruction then @code{@value{AS}} tries to
573fill in the missing suffix based on the destination register operand
574(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
575to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
576@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
577assembler which assumes that a missing mnemonic suffix implies long
578operand size. (This incompatibility does not affect compiler output
579since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
580
581Almost all instructions have the same names in AT&T and Intel format.
582There are a few exceptions. The sign extend and zero extend
583instructions need two sizes to specify them. They need a size to
584sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
585is accomplished by using two instruction mnemonic suffixes in AT&T
586syntax. Base names for sign extend and zero extend are
587@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
588and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
589are tacked on to this base name, the @emph{from} suffix before the
590@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
591``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
592thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
593@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
594@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
595quadruple word).
252b5132 596
b6169b20
L
597@cindex encoding options, i386
598@cindex encoding options, x86-64
599
600Different encoding options can be specified via optional mnemonic
601suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
602moving from one register to another. @samp{.d8} or @samp{.d32} suffix
603prefers 8bit or 32bit displacement in encoding.
b6169b20 604
252b5132
RH
605@cindex conversion instructions, i386
606@cindex i386 conversion instructions
55b62671
AJ
607@cindex conversion instructions, x86-64
608@cindex x86-64 conversion instructions
252b5132
RH
609The Intel-syntax conversion instructions
610
611@itemize @bullet
612@item
613@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
614
615@item
616@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
617
618@item
619@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
620
621@item
622@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
623
624@item
625@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
626(x86-64 only),
627
628@item
d5f0cf92 629@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 630@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
631@end itemize
632
633@noindent
55b62671
AJ
634are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
635@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
636instructions.
252b5132
RH
637
638@cindex jump instructions, i386
639@cindex call instructions, i386
55b62671
AJ
640@cindex jump instructions, x86-64
641@cindex call instructions, x86-64
252b5132
RH
642Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
643AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
644convention.
645
d3b47e2b 646@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
647
648@cindex i386 mnemonic compatibility
649@cindex mnemonic compatibility, i386
650
651@code{@value{AS}} supports assembly using Intel mnemonic.
652@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
653@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
654syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
655Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
656@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
657@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
658assembler with different mnemonics from those in Intel IA32 specification.
659@code{@value{GCC}} generates those instructions with AT&T mnemonic.
660
252b5132
RH
661@node i386-Regs
662@section Register Naming
663
664@cindex i386 registers
665@cindex registers, i386
55b62671
AJ
666@cindex x86-64 registers
667@cindex registers, x86-64
252b5132
RH
668Register operands are always prefixed with @samp{%}. The 80386 registers
669consist of
670
671@itemize @bullet
672@item
673the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
674@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
675frame pointer), and @samp{%esp} (the stack pointer).
676
677@item
678the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
679@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
680
681@item
682the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
683@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
684are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
685@samp{%cx}, and @samp{%dx})
686
687@item
688the 6 section registers @samp{%cs} (code section), @samp{%ds}
689(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
690and @samp{%gs}.
691
692@item
4bde3cdd
UD
693the 5 processor control registers @samp{%cr0}, @samp{%cr2},
694@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
695
696@item
697the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
698@samp{%db3}, @samp{%db6}, and @samp{%db7}.
699
700@item
701the 2 test registers @samp{%tr6} and @samp{%tr7}.
702
703@item
704the 8 floating point register stack @samp{%st} or equivalently
705@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
706@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
707These registers are overloaded by 8 MMX registers @samp{%mm0},
708@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
709@samp{%mm6} and @samp{%mm7}.
710
711@item
4bde3cdd 712the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
713@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
714@end itemize
715
716The AMD x86-64 architecture extends the register set by:
717
718@itemize @bullet
719@item
720enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
721accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
722@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
723pointer)
724
725@item
726the 8 extended registers @samp{%r8}--@samp{%r15}.
727
728@item
4bde3cdd 729the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
730
731@item
4bde3cdd 732the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
733
734@item
4bde3cdd 735the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
736
737@item
738the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
739
740@item
741the 8 debug registers: @samp{%db8}--@samp{%db15}.
742
743@item
4bde3cdd
UD
744the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
745@end itemize
746
747With the AVX extensions more registers were made available:
748
749@itemize @bullet
750
751@item
752the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
753available in 32-bit mode). The bottom 128 bits are overlaid with the
754@samp{xmm0}--@samp{xmm15} registers.
755
756@end itemize
757
758The AVX2 extensions made in 64-bit mode more registers available:
759
760@itemize @bullet
761
762@item
763the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
764registers @samp{%ymm16}--@samp{%ymm31}.
765
766@end itemize
767
768The AVX512 extensions added the following registers:
769
770@itemize @bullet
771
772@item
773the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
774available in 32-bit mode). The bottom 128 bits are overlaid with the
775@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
776overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
777
778@item
779the 8 mask registers @samp{%k0}--@samp{%k7}.
780
252b5132
RH
781@end itemize
782
783@node i386-Prefixes
784@section Instruction Prefixes
785
786@cindex i386 instruction prefixes
787@cindex instruction prefixes, i386
788@cindex prefixes, i386
789Instruction prefixes are used to modify the following instruction. They
790are used to repeat string instructions, to provide section overrides, to
791perform bus lock operations, and to change operand and address sizes.
792(Most instructions that normally operate on 32-bit operands will use
79316-bit operands if the instruction has an ``operand size'' prefix.)
794Instruction prefixes are best written on the same line as the instruction
795they act upon. For example, the @samp{scas} (scan string) instruction is
796repeated with:
797
798@smallexample
799 repne scas %es:(%edi),%al
800@end smallexample
801
802You may also place prefixes on the lines immediately preceding the
803instruction, but this circumvents checks that @code{@value{AS}} does
804with prefixes, and will not work with all prefixes.
805
806Here is a list of instruction prefixes:
807
808@cindex section override prefixes, i386
809@itemize @bullet
810@item
811Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
812@samp{fs}, @samp{gs}. These are automatically added by specifying
813using the @var{section}:@var{memory-operand} form for memory references.
814
815@cindex size prefixes, i386
816@item
817Operand/Address size prefixes @samp{data16} and @samp{addr16}
818change 32-bit operands/addresses into 16-bit operands/addresses,
819while @samp{data32} and @samp{addr32} change 16-bit ones (in a
820@code{.code16} section) into 32-bit operands/addresses. These prefixes
821@emph{must} appear on the same line of code as the instruction they
822modify. For example, in a 16-bit @code{.code16} section, you might
823write:
824
825@smallexample
826 addr32 jmpl *(%ebx)
827@end smallexample
828
829@cindex bus lock prefixes, i386
830@cindex inhibiting interrupts, i386
831@item
832The bus lock prefix @samp{lock} inhibits interrupts during execution of
833the instruction it precedes. (This is only valid with certain
834instructions; see a 80386 manual for details).
835
836@cindex coprocessor wait, i386
837@item
838The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
839complete the current instruction. This should never be needed for the
84080386/80387 combination.
841
842@cindex repeat prefixes, i386
843@item
844The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
845to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
846times if the current address size is 16-bits).
55b62671
AJ
847@cindex REX prefixes, i386
848@item
849The @samp{rex} family of prefixes is used by x86-64 to encode
850extensions to i386 instruction set. The @samp{rex} prefix has four
851bits --- an operand size overwrite (@code{64}) used to change operand size
852from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
853register set.
854
855You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
856instruction emits @samp{rex} prefix with all the bits set. By omitting
857the @code{64}, @code{x}, @code{y} or @code{z} you may write other
858prefixes as well. Normally, there is no need to write the prefixes
859explicitly, since gas will automatically generate them based on the
860instruction operands.
252b5132
RH
861@end itemize
862
863@node i386-Memory
864@section Memory References
865
866@cindex i386 memory references
867@cindex memory references, i386
55b62671
AJ
868@cindex x86-64 memory references
869@cindex memory references, x86-64
252b5132
RH
870An Intel syntax indirect memory reference of the form
871
872@smallexample
873@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
874@end smallexample
875
876@noindent
877is translated into the AT&T syntax
878
879@smallexample
880@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
881@end smallexample
882
883@noindent
884where @var{base} and @var{index} are the optional 32-bit base and
885index registers, @var{disp} is the optional displacement, and
886@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
887to calculate the address of the operand. If no @var{scale} is
888specified, @var{scale} is taken to be 1. @var{section} specifies the
889optional section register for the memory operand, and may override the
890default section register (see a 80386 manual for section register
891defaults). Note that section overrides in AT&T syntax @emph{must}
892be preceded by a @samp{%}. If you specify a section override which
893coincides with the default section register, @code{@value{AS}} does @emph{not}
894output any section register override prefixes to assemble the given
895instruction. Thus, section overrides can be specified to emphasize which
896section register is used for a given memory operand.
897
898Here are some examples of Intel and AT&T style memory references:
899
900@table @asis
901@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
902@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
903missing, and the default section is used (@samp{%ss} for addressing with
904@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
905
906@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
907@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
908@samp{foo}. All other fields are missing. The section register here
909defaults to @samp{%ds}.
910
911@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
912This uses the value pointed to by @samp{foo} as a memory operand.
913Note that @var{base} and @var{index} are both missing, but there is only
914@emph{one} @samp{,}. This is a syntactic exception.
915
916@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
917This selects the contents of the variable @samp{foo} with section
918register @var{section} being @samp{%gs}.
919@end table
920
921Absolute (as opposed to PC relative) call and jump operands must be
922prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
923always chooses PC relative addressing for jump/call labels.
924
925Any instruction that has a memory operand, but no register operand,
55b62671
AJ
926@emph{must} specify its size (byte, word, long, or quadruple) with an
927instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
928respectively).
929
930The x86-64 architecture adds an RIP (instruction pointer relative)
931addressing. This addressing mode is specified by using @samp{rip} as a
932base register. Only constant offsets are valid. For example:
933
934@table @asis
935@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
936Points to the address 1234 bytes past the end of the current
937instruction.
938
939@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
940Points to the @code{symbol} in RIP relative way, this is shorter than
941the default absolute addressing.
942@end table
943
944Other addressing modes remain unchanged in x86-64 architecture, except
945registers used are 64-bit instead of 32-bit.
252b5132 946
fddf5b5b 947@node i386-Jumps
252b5132
RH
948@section Handling of Jump Instructions
949
950@cindex jump optimization, i386
951@cindex i386 jump optimization
55b62671
AJ
952@cindex jump optimization, x86-64
953@cindex x86-64 jump optimization
252b5132
RH
954Jump instructions are always optimized to use the smallest possible
955displacements. This is accomplished by using byte (8-bit) displacement
956jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 957is insufficient a long displacement is used. We do not support
252b5132
RH
958word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
959instruction with the @samp{data16} instruction prefix), since the 80386
960insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 961is added. (See also @pxref{i386-Arch})
252b5132
RH
962
963Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
964@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
965displacements, so that if you use these instructions (@code{@value{GCC}} does
966not use them) you may get an error message (and incorrect code). The AT&T
96780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
968to
969
970@smallexample
971 jcxz cx_zero
972 jmp cx_nonzero
973cx_zero: jmp foo
974cx_nonzero:
975@end smallexample
976
977@node i386-Float
978@section Floating Point
979
980@cindex i386 floating point
981@cindex floating point, i386
55b62671
AJ
982@cindex x86-64 floating point
983@cindex floating point, x86-64
252b5132
RH
984All 80387 floating point types except packed BCD are supported.
985(BCD support may be added without much difficulty). These data
986types are 16-, 32-, and 64- bit integers, and single (32-bit),
987double (64-bit), and extended (80-bit) precision floating point.
988Each supported type has an instruction mnemonic suffix and a constructor
989associated with it. Instruction mnemonic suffixes specify the operand's
990data type. Constructors build these data types into memory.
991
992@cindex @code{float} directive, i386
993@cindex @code{single} directive, i386
994@cindex @code{double} directive, i386
995@cindex @code{tfloat} directive, i386
55b62671
AJ
996@cindex @code{float} directive, x86-64
997@cindex @code{single} directive, x86-64
998@cindex @code{double} directive, x86-64
999@cindex @code{tfloat} directive, x86-64
252b5132
RH
1000@itemize @bullet
1001@item
1002Floating point constructors are @samp{.float} or @samp{.single},
1003@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1004These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1005and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1006only supports this format via the @samp{fldt} (load 80-bit real to stack
1007top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1008
1009@cindex @code{word} directive, i386
1010@cindex @code{long} directive, i386
1011@cindex @code{int} directive, i386
1012@cindex @code{quad} directive, i386
55b62671
AJ
1013@cindex @code{word} directive, x86-64
1014@cindex @code{long} directive, x86-64
1015@cindex @code{int} directive, x86-64
1016@cindex @code{quad} directive, x86-64
252b5132
RH
1017@item
1018Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1019@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1020corresponding instruction mnemonic suffixes are @samp{s} (single),
1021@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1022the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1023quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1024stack) instructions.
1025@end itemize
1026
1027Register to register operations should not use instruction mnemonic suffixes.
1028@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1029wrote @samp{fst %st, %st(1)}, since all register to register operations
1030use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1031which converts @samp{%st} from 80-bit to 64-bit floating point format,
1032then stores the result in the 4 byte location @samp{mem})
1033
1034@node i386-SIMD
1035@section Intel's MMX and AMD's 3DNow! SIMD Operations
1036
1037@cindex MMX, i386
1038@cindex 3DNow!, i386
1039@cindex SIMD, i386
55b62671
AJ
1040@cindex MMX, x86-64
1041@cindex 3DNow!, x86-64
1042@cindex SIMD, x86-64
252b5132
RH
1043
1044@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1045instructions for integer data), available on Intel's Pentium MMX
1046processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1047Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1048instruction set (SIMD instructions for 32-bit floating point data)
1049available on AMD's K6-2 processor and possibly others in the future.
1050
1051Currently, @code{@value{AS}} does not support Intel's floating point
1052SIMD, Katmai (KNI).
1053
1054The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1055@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
105616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1057floating point values. The MMX registers cannot be used at the same time
1058as the floating point stack.
1059
1060See Intel and AMD documentation, keeping in mind that the operand order in
1061instructions is reversed from the Intel syntax.
1062
f88c9eb0
SP
1063@node i386-LWP
1064@section AMD's Lightweight Profiling Instructions
1065
1066@cindex LWP, i386
1067@cindex LWP, x86-64
1068
1069@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1070instruction set, available on AMD's Family 15h (Orochi) processors.
1071
1072LWP enables applications to collect and manage performance data, and
1073react to performance events. The collection of performance data
1074requires no context switches. LWP runs in the context of a thread and
1075so several counters can be used independently across multiple threads.
1076LWP can be used in both 64-bit and legacy 32-bit modes.
1077
1078For detailed information on the LWP instruction set, see the
1079@cite{AMD Lightweight Profiling Specification} available at
1080@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1081
87973e9f
QN
1082@node i386-BMI
1083@section Bit Manipulation Instructions
1084
1085@cindex BMI, i386
1086@cindex BMI, x86-64
1087
1088@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1089
1090BMI instructions provide several instructions implementing individual
1091bit manipulation operations such as isolation, masking, setting, or
34bca508 1092resetting.
87973e9f
QN
1093
1094@c Need to add a specification citation here when available.
1095
2a2a0f38
QN
1096@node i386-TBM
1097@section AMD's Trailing Bit Manipulation Instructions
1098
1099@cindex TBM, i386
1100@cindex TBM, x86-64
1101
1102@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1103instruction set, available on AMD's BDVER2 processors (Trinity and
1104Viperfish).
1105
1106TBM instructions provide instructions implementing individual bit
1107manipulation operations such as isolating, masking, setting, resetting,
1108complementing, and operations on trailing zeros and ones.
1109
1110@c Need to add a specification citation here when available.
87973e9f 1111
252b5132
RH
1112@node i386-16bit
1113@section Writing 16-bit Code
1114
1115@cindex i386 16-bit code
1116@cindex 16-bit code, i386
1117@cindex real-mode code, i386
eecb386c 1118@cindex @code{code16gcc} directive, i386
252b5132
RH
1119@cindex @code{code16} directive, i386
1120@cindex @code{code32} directive, i386
55b62671
AJ
1121@cindex @code{code64} directive, i386
1122@cindex @code{code64} directive, x86-64
1123While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1124or 64-bit x86-64 code depending on the default configuration,
252b5132 1125it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1126mode code segments. To do this, put a @samp{.code16} or
1127@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1128be run in 16-bit mode. You can switch @code{@value{AS}} to writing
112932-bit code with the @samp{.code32} directive or 64-bit code with the
1130@samp{.code64} directive.
eecb386c
AM
1131
1132@samp{.code16gcc} provides experimental support for generating 16-bit
1133code from gcc, and differs from @samp{.code16} in that @samp{call},
1134@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1135@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1136default to 32-bit size. This is so that the stack pointer is
1137manipulated in the same way over function calls, allowing access to
1138function parameters at the same stack offsets as in 32-bit mode.
1139@samp{.code16gcc} also automatically adds address size prefixes where
1140necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1141
1142The code which @code{@value{AS}} generates in 16-bit mode will not
1143necessarily run on a 16-bit pre-80386 processor. To write code that
1144runs on such a processor, you must refrain from using @emph{any} 32-bit
1145constructs which require @code{@value{AS}} to output address or operand
1146size prefixes.
1147
1148Note that writing 16-bit code instructions by explicitly specifying a
1149prefix or an instruction mnemonic suffix within a 32-bit code section
1150generates different machine instructions than those generated for a
115116-bit code segment. In a 32-bit code section, the following code
1152generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1153value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1154
1155@smallexample
1156 pushw $4
1157@end smallexample
1158
1159The same code in a 16-bit code section would generate the machine
b45619c0 1160opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1161is correct since the processor default operand size is assumed to be 16
1162bits in a 16-bit code section.
1163
e413e4e9
AM
1164@node i386-Arch
1165@section Specifying CPU Architecture
1166
1167@cindex arch directive, i386
1168@cindex i386 arch directive
55b62671
AJ
1169@cindex arch directive, x86-64
1170@cindex x86-64 arch directive
e413e4e9
AM
1171
1172@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1173(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1174directive enables a warning when gas detects an instruction that is not
1175supported on the CPU specified. The choices for @var{cpu_type} are:
1176
1177@multitable @columnfractions .20 .20 .20 .20
1178@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1179@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1180@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1181@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1182@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1183@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1184@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1185@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1186@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1187@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1188@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1189@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1190@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1191@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1192@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1193@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1194@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1195@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1196@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1197@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1198@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1199@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
620214f7 1200@item @samp{.avx512_vpopcntdq} @tab @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite}
1ceab344 1201@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1202@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1203@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
920d2ddc 1204@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1205@end multitable
1206
fddf5b5b
AM
1207Apart from the warning, there are only two other effects on
1208@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1209@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1210will automatically use a two byte opcode sequence. The larger three
1211byte opcode sequence is used on the 486 (and when no architecture is
1212specified) because it executes faster on the 486. Note that you can
1213explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1214Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1215@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1216conditional jumps will be promoted when necessary to a two instruction
1217sequence consisting of a conditional jump of the opposite sense around
1218an unconditional jump to the target.
1219
5c6af06e
JB
1220Following the CPU architecture (but not a sub-architecture, which are those
1221starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1222control automatic promotion of conditional jumps. @samp{jumps} is the
1223default, and enables jump promotion; All external jumps will be of the long
1224variety, and file-local jumps will be promoted as necessary.
1225(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1226byte offset jumps, and warns about file-local conditional jumps that
1227@code{@value{AS}} promotes.
fddf5b5b
AM
1228Unconditional jumps are treated as for @samp{jumps}.
1229
1230For example
1231
1232@smallexample
1233 .arch i8086,nojumps
1234@end smallexample
e413e4e9 1235
5c9352f3
AM
1236@node i386-Bugs
1237@section AT&T Syntax bugs
1238
1239The UnixWare assembler, and probably other AT&T derived ix86 Unix
1240assemblers, generate floating point instructions with reversed source
1241and destination registers in certain cases. Unfortunately, gcc and
1242possibly many other programs use this reversed syntax, so we're stuck
1243with it.
1244
1245For example
1246
1247@smallexample
1248 fsub %st,%st(3)
1249@end smallexample
1250@noindent
1251results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1252than the expected @samp{%st(3) - %st}. This happens with all the
1253non-commutative arithmetic floating point operations with two register
1254operands where the source register is @samp{%st} and the destination
1255register is @samp{%st(i)}.
1256
252b5132
RH
1257@node i386-Notes
1258@section Notes
1259
1260@cindex i386 @code{mul}, @code{imul} instructions
1261@cindex @code{mul} instruction, i386
1262@cindex @code{imul} instruction, i386
55b62671
AJ
1263@cindex @code{mul} instruction, x86-64
1264@cindex @code{imul} instruction, x86-64
252b5132 1265There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1266instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1267multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1268for @samp{imul}) can be output only in the one operand form. Thus,
1269@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1270the expanding multiply would clobber the @samp{%edx} register, and this
1271would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
127264-bit product in @samp{%edx:%eax}.
1273
1274We have added a two operand form of @samp{imul} when the first operand
1275is an immediate mode expression and the second operand is a register.
1276This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1277example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1278$69, %eax, %eax}.
1279