]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
* ld-cris/tls-err-77.d, ld-cris/tls-gc-79.d, ld-cris/tls-ie-8e.s,
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-16bit:: Writing 16-bit Code
e413e4e9 36* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
37* i386-Bugs:: AT&T Syntax bugs
38* i386-Notes:: Notes
39@end menu
40
41@node i386-Options
42@section Options
43
55b62671
AJ
44@cindex options for i386
45@cindex options for x86-64
46@cindex i386 options
47@cindex x86-64 options
48
49The i386 version of @code{@value{AS}} has a few machine
50dependent options:
51
52@table @code
53@cindex @samp{--32} option, i386
54@cindex @samp{--32} option, x86-64
55@cindex @samp{--64} option, i386
56@cindex @samp{--64} option, x86-64
57@item --32 | --64
58Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59implies Intel i386 architecture, while 64-bit implies AMD x86-64
60architecture.
61
62These options are only available with the ELF object file format, and
63require that the necessary BFD support has been included (on a 32-bit
64platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65usage and use x86-64 as target platform).
12b55ccc
L
66
67@item -n
68By default, x86 GAS replaces multiple nop instructions used for
69alignment within code sections with multi-byte nop instructions such
70as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
71
72@cindex @samp{--divide} option, i386
73@item --divide
74On SVR4-derived platforms, the character @samp{/} is treated as a comment
75character, which means that it cannot be used in expressions. The
76@samp{--divide} option turns @samp{/} into a normal character. This does
77not disable @samp{/} at the beginning of a line starting a comment, or
78affect using @samp{#} for starting a comment.
79
9103f4f4
L
80@cindex @samp{-march=} option, i386
81@cindex @samp{-march=} option, x86-64
6305a203
L
82@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83This option specifies the target processor. The assembler will
84issue an error message if an attempt is made to assemble an instruction
85which will not execute on the target processor. The following
86processor names are recognized:
9103f4f4
L
87@code{i8086},
88@code{i186},
89@code{i286},
90@code{i386},
91@code{i486},
92@code{i586},
93@code{i686},
94@code{pentium},
95@code{pentiumpro},
96@code{pentiumii},
97@code{pentiumiii},
98@code{pentium4},
99@code{prescott},
100@code{nocona},
ef05d495
L
101@code{core},
102@code{core2},
9103f4f4
L
103@code{k6},
104@code{k6_2},
105@code{athlon},
9103f4f4
L
106@code{opteron},
107@code{k8},
1ceab344 108@code{amdfam10},
9103f4f4
L
109@code{generic32} and
110@code{generic64}.
111
6305a203
L
112In addition to the basic instruction set, the assembler can be told to
113accept various extension mnemonics. For example,
114@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
115@var{vmx}. The following extensions are currently supported:
116@code{mmx},
117@code{sse},
118@code{sse2},
119@code{sse3},
120@code{ssse3},
121@code{sse4.1},
122@code{sse4.2},
123@code{sse4},
c0f3af97 124@code{avx},
6305a203
L
125@code{vmx},
126@code{smx},
f03fe4c1 127@code{xsave},
c0f3af97 128@code{aes},
594ab6a3 129@code{pclmul},
c0f3af97 130@code{fma},
f1f8f695
L
131@code{movbe},
132@code{ept},
6305a203
L
133@code{3dnow},
134@code{3dnowa},
135@code{sse4a},
136@code{sse5},
137@code{svme},
138@code{abm} and
139@code{padlock}.
140
141When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
142@code{.arch} directive will take precedent.
143
144@cindex @samp{-mtune=} option, i386
145@cindex @samp{-mtune=} option, x86-64
146@item -mtune=@var{CPU}
147This option specifies a processor to optimize for. When used in
148conjunction with the @option{-march} option, only instructions
149of the processor specified by the @option{-march} option will be
150generated.
151
6305a203
L
152Valid @var{CPU} values are identical to the processor list of
153@option{-march=@var{CPU}}.
9103f4f4 154
c0f3af97
L
155@cindex @samp{-msse2avx} option, i386
156@cindex @samp{-msse2avx} option, x86-64
157@item -msse2avx
158This option specifies that the assembler should encode SSE instructions
159with VEX prefix.
160
daf50ae7
L
161@cindex @samp{-msse-check=} option, i386
162@cindex @samp{-msse-check=} option, x86-64
163@item -msse-check=@var{none}
164@item -msse-check=@var{warning}
165@item -msse-check=@var{error}
166These options control if the assembler should check SSE intructions.
167@option{-msse-check=@var{none}} will make the assembler not to check SSE
168instructions, which is the default. @option{-msse-check=@var{warning}}
169will make the assembler issue a warning for any SSE intruction.
170@option{-msse-check=@var{error}} will make the assembler issue an error
171for any SSE intruction.
172
1efbbeb4
L
173@cindex @samp{-mmnemonic=} option, i386
174@cindex @samp{-mmnemonic=} option, x86-64
175@item -mmnemonic=@var{att}
176@item -mmnemonic=@var{intel}
177This option specifies instruction mnemonic for matching instructions.
178The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
179take precedent.
180
181@cindex @samp{-msyntax=} option, i386
182@cindex @samp{-msyntax=} option, x86-64
183@item -msyntax=@var{att}
184@item -msyntax=@var{intel}
185This option specifies instruction syntax when processing instructions.
186The @code{.att_syntax} and @code{.intel_syntax} directives will
187take precedent.
188
189@cindex @samp{-mnaked-reg} option, i386
190@cindex @samp{-mnaked-reg} option, x86-64
191@item -mnaked-reg
192This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 193The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 194
55b62671 195@end table
e413e4e9 196
a6c24e68
NC
197@node i386-Directives
198@section x86 specific Directives
199
200@cindex machine directives, x86
201@cindex x86 machine directives
202@table @code
203
204@cindex @code{lcomm} directive, COFF
205@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
206Reserve @var{length} (an absolute expression) bytes for a local common
207denoted by @var{symbol}. The section and value of @var{symbol} are
208those of the new local common. The addresses are allocated in the bss
704209c0
NC
209section, so that at run-time the bytes start off zeroed. Since
210@var{symbol} is not declared global, it is normally not visible to
211@code{@value{LD}}. The optional third parameter, @var{alignment},
212specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
213
214This directive is only available for COFF based x86 targets.
215
216@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
217@c .largecomm
218
219@end table
220
252b5132
RH
221@node i386-Syntax
222@section AT&T Syntax versus Intel Syntax
223
e413e4e9
AM
224@cindex i386 intel_syntax pseudo op
225@cindex intel_syntax pseudo op, i386
226@cindex i386 att_syntax pseudo op
227@cindex att_syntax pseudo op, i386
252b5132
RH
228@cindex i386 syntax compatibility
229@cindex syntax compatibility, i386
55b62671
AJ
230@cindex x86-64 intel_syntax pseudo op
231@cindex intel_syntax pseudo op, x86-64
232@cindex x86-64 att_syntax pseudo op
233@cindex att_syntax pseudo op, x86-64
234@cindex x86-64 syntax compatibility
235@cindex syntax compatibility, x86-64
e413e4e9
AM
236
237@code{@value{AS}} now supports assembly using Intel assembler syntax.
238@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
239back to the usual AT&T mode for compatibility with the output of
240@code{@value{GCC}}. Either of these directives may have an optional
241argument, @code{prefix}, or @code{noprefix} specifying whether registers
242require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
243different from Intel syntax. We mention these differences because
244almost all 80386 documents use Intel syntax. Notable differences
245between the two syntaxes are:
246
247@cindex immediate operands, i386
248@cindex i386 immediate operands
249@cindex register operands, i386
250@cindex i386 register operands
251@cindex jump/call operands, i386
252@cindex i386 jump/call operands
253@cindex operand delimiters, i386
55b62671
AJ
254
255@cindex immediate operands, x86-64
256@cindex x86-64 immediate operands
257@cindex register operands, x86-64
258@cindex x86-64 register operands
259@cindex jump/call operands, x86-64
260@cindex x86-64 jump/call operands
261@cindex operand delimiters, x86-64
252b5132
RH
262@itemize @bullet
263@item
264AT&T immediate operands are preceded by @samp{$}; Intel immediate
265operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
266AT&T register operands are preceded by @samp{%}; Intel register operands
267are undelimited. AT&T absolute (as opposed to PC relative) jump/call
268operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
269
270@cindex i386 source, destination operands
271@cindex source, destination operands; i386
55b62671
AJ
272@cindex x86-64 source, destination operands
273@cindex source, destination operands; x86-64
252b5132
RH
274@item
275AT&T and Intel syntax use the opposite order for source and destination
276operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
277@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
278previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
279instructions with 2 immediate operands, such as the @samp{enter}
280instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
281
282@cindex mnemonic suffixes, i386
283@cindex sizes operands, i386
284@cindex i386 size suffixes
55b62671
AJ
285@cindex mnemonic suffixes, x86-64
286@cindex sizes operands, x86-64
287@cindex x86-64 size suffixes
252b5132
RH
288@item
289In AT&T syntax the size of memory operands is determined from the last
290character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
291@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
292(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
293this by prefixing memory operands (@emph{not} the instruction mnemonics) with
294@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
295Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
296syntax.
252b5132
RH
297
298@cindex return instructions, i386
299@cindex i386 jump, call, return
55b62671
AJ
300@cindex return instructions, x86-64
301@cindex x86-64 jump, call, return
252b5132
RH
302@item
303Immediate form long jumps and calls are
304@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
305Intel syntax is
306@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
307instruction
308is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
309@samp{ret far @var{stack-adjust}}.
310
311@cindex sections, i386
312@cindex i386 sections
55b62671
AJ
313@cindex sections, x86-64
314@cindex x86-64 sections
252b5132
RH
315@item
316The AT&T assembler does not provide support for multiple section
317programs. Unix style systems expect all programs to be single sections.
318@end itemize
319
320@node i386-Mnemonics
321@section Instruction Naming
322
323@cindex i386 instruction naming
324@cindex instruction naming, i386
55b62671
AJ
325@cindex x86-64 instruction naming
326@cindex instruction naming, x86-64
327
252b5132 328Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
329specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
330and @samp{q} specify byte, word, long and quadruple word operands. If
331no suffix is specified by an instruction then @code{@value{AS}} tries to
332fill in the missing suffix based on the destination register operand
333(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
334to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
335@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
336assembler which assumes that a missing mnemonic suffix implies long
337operand size. (This incompatibility does not affect compiler output
338since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
339
340Almost all instructions have the same names in AT&T and Intel format.
341There are a few exceptions. The sign extend and zero extend
342instructions need two sizes to specify them. They need a size to
343sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
344is accomplished by using two instruction mnemonic suffixes in AT&T
345syntax. Base names for sign extend and zero extend are
346@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
347and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
348are tacked on to this base name, the @emph{from} suffix before the
349@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
350``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
351thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
352@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
353@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
354quadruple word).
252b5132
RH
355
356@cindex conversion instructions, i386
357@cindex i386 conversion instructions
55b62671
AJ
358@cindex conversion instructions, x86-64
359@cindex x86-64 conversion instructions
252b5132
RH
360The Intel-syntax conversion instructions
361
362@itemize @bullet
363@item
364@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
365
366@item
367@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
368
369@item
370@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
371
372@item
373@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
374
375@item
376@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
377(x86-64 only),
378
379@item
d5f0cf92 380@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 381@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
382@end itemize
383
384@noindent
55b62671
AJ
385are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
386@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
387instructions.
252b5132
RH
388
389@cindex jump instructions, i386
390@cindex call instructions, i386
55b62671
AJ
391@cindex jump instructions, x86-64
392@cindex call instructions, x86-64
252b5132
RH
393Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
394AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
395convention.
396
1efbbeb4
L
397@section AT&T Mnemonic versus Intel Mnemonic
398
399@cindex i386 mnemonic compatibility
400@cindex mnemonic compatibility, i386
401
402@code{@value{AS}} supports assembly using Intel mnemonic.
403@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
404@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
405syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
406Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
407@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
408@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
409assembler with different mnemonics from those in Intel IA32 specification.
410@code{@value{GCC}} generates those instructions with AT&T mnemonic.
411
252b5132
RH
412@node i386-Regs
413@section Register Naming
414
415@cindex i386 registers
416@cindex registers, i386
55b62671
AJ
417@cindex x86-64 registers
418@cindex registers, x86-64
252b5132
RH
419Register operands are always prefixed with @samp{%}. The 80386 registers
420consist of
421
422@itemize @bullet
423@item
424the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
425@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
426frame pointer), and @samp{%esp} (the stack pointer).
427
428@item
429the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
430@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
431
432@item
433the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
434@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
435are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
436@samp{%cx}, and @samp{%dx})
437
438@item
439the 6 section registers @samp{%cs} (code section), @samp{%ds}
440(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
441and @samp{%gs}.
442
443@item
444the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
445@samp{%cr3}.
446
447@item
448the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
449@samp{%db3}, @samp{%db6}, and @samp{%db7}.
450
451@item
452the 2 test registers @samp{%tr6} and @samp{%tr7}.
453
454@item
455the 8 floating point register stack @samp{%st} or equivalently
456@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
457@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
458These registers are overloaded by 8 MMX registers @samp{%mm0},
459@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
460@samp{%mm6} and @samp{%mm7}.
461
462@item
463the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
464@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
465@end itemize
466
467The AMD x86-64 architecture extends the register set by:
468
469@itemize @bullet
470@item
471enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
472accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
473@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
474pointer)
475
476@item
477the 8 extended registers @samp{%r8}--@samp{%r15}.
478
479@item
480the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
481
482@item
483the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
484
485@item
486the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
487
488@item
489the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
490
491@item
492the 8 debug registers: @samp{%db8}--@samp{%db15}.
493
494@item
495the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
496@end itemize
497
498@node i386-Prefixes
499@section Instruction Prefixes
500
501@cindex i386 instruction prefixes
502@cindex instruction prefixes, i386
503@cindex prefixes, i386
504Instruction prefixes are used to modify the following instruction. They
505are used to repeat string instructions, to provide section overrides, to
506perform bus lock operations, and to change operand and address sizes.
507(Most instructions that normally operate on 32-bit operands will use
50816-bit operands if the instruction has an ``operand size'' prefix.)
509Instruction prefixes are best written on the same line as the instruction
510they act upon. For example, the @samp{scas} (scan string) instruction is
511repeated with:
512
513@smallexample
514 repne scas %es:(%edi),%al
515@end smallexample
516
517You may also place prefixes on the lines immediately preceding the
518instruction, but this circumvents checks that @code{@value{AS}} does
519with prefixes, and will not work with all prefixes.
520
521Here is a list of instruction prefixes:
522
523@cindex section override prefixes, i386
524@itemize @bullet
525@item
526Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
527@samp{fs}, @samp{gs}. These are automatically added by specifying
528using the @var{section}:@var{memory-operand} form for memory references.
529
530@cindex size prefixes, i386
531@item
532Operand/Address size prefixes @samp{data16} and @samp{addr16}
533change 32-bit operands/addresses into 16-bit operands/addresses,
534while @samp{data32} and @samp{addr32} change 16-bit ones (in a
535@code{.code16} section) into 32-bit operands/addresses. These prefixes
536@emph{must} appear on the same line of code as the instruction they
537modify. For example, in a 16-bit @code{.code16} section, you might
538write:
539
540@smallexample
541 addr32 jmpl *(%ebx)
542@end smallexample
543
544@cindex bus lock prefixes, i386
545@cindex inhibiting interrupts, i386
546@item
547The bus lock prefix @samp{lock} inhibits interrupts during execution of
548the instruction it precedes. (This is only valid with certain
549instructions; see a 80386 manual for details).
550
551@cindex coprocessor wait, i386
552@item
553The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
554complete the current instruction. This should never be needed for the
55580386/80387 combination.
556
557@cindex repeat prefixes, i386
558@item
559The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
560to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
561times if the current address size is 16-bits).
55b62671
AJ
562@cindex REX prefixes, i386
563@item
564The @samp{rex} family of prefixes is used by x86-64 to encode
565extensions to i386 instruction set. The @samp{rex} prefix has four
566bits --- an operand size overwrite (@code{64}) used to change operand size
567from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
568register set.
569
570You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
571instruction emits @samp{rex} prefix with all the bits set. By omitting
572the @code{64}, @code{x}, @code{y} or @code{z} you may write other
573prefixes as well. Normally, there is no need to write the prefixes
574explicitly, since gas will automatically generate them based on the
575instruction operands.
252b5132
RH
576@end itemize
577
578@node i386-Memory
579@section Memory References
580
581@cindex i386 memory references
582@cindex memory references, i386
55b62671
AJ
583@cindex x86-64 memory references
584@cindex memory references, x86-64
252b5132
RH
585An Intel syntax indirect memory reference of the form
586
587@smallexample
588@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
589@end smallexample
590
591@noindent
592is translated into the AT&T syntax
593
594@smallexample
595@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
596@end smallexample
597
598@noindent
599where @var{base} and @var{index} are the optional 32-bit base and
600index registers, @var{disp} is the optional displacement, and
601@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
602to calculate the address of the operand. If no @var{scale} is
603specified, @var{scale} is taken to be 1. @var{section} specifies the
604optional section register for the memory operand, and may override the
605default section register (see a 80386 manual for section register
606defaults). Note that section overrides in AT&T syntax @emph{must}
607be preceded by a @samp{%}. If you specify a section override which
608coincides with the default section register, @code{@value{AS}} does @emph{not}
609output any section register override prefixes to assemble the given
610instruction. Thus, section overrides can be specified to emphasize which
611section register is used for a given memory operand.
612
613Here are some examples of Intel and AT&T style memory references:
614
615@table @asis
616@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
617@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
618missing, and the default section is used (@samp{%ss} for addressing with
619@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
620
621@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
622@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
623@samp{foo}. All other fields are missing. The section register here
624defaults to @samp{%ds}.
625
626@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
627This uses the value pointed to by @samp{foo} as a memory operand.
628Note that @var{base} and @var{index} are both missing, but there is only
629@emph{one} @samp{,}. This is a syntactic exception.
630
631@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
632This selects the contents of the variable @samp{foo} with section
633register @var{section} being @samp{%gs}.
634@end table
635
636Absolute (as opposed to PC relative) call and jump operands must be
637prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
638always chooses PC relative addressing for jump/call labels.
639
640Any instruction that has a memory operand, but no register operand,
55b62671
AJ
641@emph{must} specify its size (byte, word, long, or quadruple) with an
642instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
643respectively).
644
645The x86-64 architecture adds an RIP (instruction pointer relative)
646addressing. This addressing mode is specified by using @samp{rip} as a
647base register. Only constant offsets are valid. For example:
648
649@table @asis
650@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
651Points to the address 1234 bytes past the end of the current
652instruction.
653
654@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
655Points to the @code{symbol} in RIP relative way, this is shorter than
656the default absolute addressing.
657@end table
658
659Other addressing modes remain unchanged in x86-64 architecture, except
660registers used are 64-bit instead of 32-bit.
252b5132 661
fddf5b5b 662@node i386-Jumps
252b5132
RH
663@section Handling of Jump Instructions
664
665@cindex jump optimization, i386
666@cindex i386 jump optimization
55b62671
AJ
667@cindex jump optimization, x86-64
668@cindex x86-64 jump optimization
252b5132
RH
669Jump instructions are always optimized to use the smallest possible
670displacements. This is accomplished by using byte (8-bit) displacement
671jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 672is insufficient a long displacement is used. We do not support
252b5132
RH
673word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
674instruction with the @samp{data16} instruction prefix), since the 80386
675insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 676is added. (See also @pxref{i386-Arch})
252b5132
RH
677
678Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
679@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
680displacements, so that if you use these instructions (@code{@value{GCC}} does
681not use them) you may get an error message (and incorrect code). The AT&T
68280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
683to
684
685@smallexample
686 jcxz cx_zero
687 jmp cx_nonzero
688cx_zero: jmp foo
689cx_nonzero:
690@end smallexample
691
692@node i386-Float
693@section Floating Point
694
695@cindex i386 floating point
696@cindex floating point, i386
55b62671
AJ
697@cindex x86-64 floating point
698@cindex floating point, x86-64
252b5132
RH
699All 80387 floating point types except packed BCD are supported.
700(BCD support may be added without much difficulty). These data
701types are 16-, 32-, and 64- bit integers, and single (32-bit),
702double (64-bit), and extended (80-bit) precision floating point.
703Each supported type has an instruction mnemonic suffix and a constructor
704associated with it. Instruction mnemonic suffixes specify the operand's
705data type. Constructors build these data types into memory.
706
707@cindex @code{float} directive, i386
708@cindex @code{single} directive, i386
709@cindex @code{double} directive, i386
710@cindex @code{tfloat} directive, i386
55b62671
AJ
711@cindex @code{float} directive, x86-64
712@cindex @code{single} directive, x86-64
713@cindex @code{double} directive, x86-64
714@cindex @code{tfloat} directive, x86-64
252b5132
RH
715@itemize @bullet
716@item
717Floating point constructors are @samp{.float} or @samp{.single},
718@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
719These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
720and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
721only supports this format via the @samp{fldt} (load 80-bit real to stack
722top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
723
724@cindex @code{word} directive, i386
725@cindex @code{long} directive, i386
726@cindex @code{int} directive, i386
727@cindex @code{quad} directive, i386
55b62671
AJ
728@cindex @code{word} directive, x86-64
729@cindex @code{long} directive, x86-64
730@cindex @code{int} directive, x86-64
731@cindex @code{quad} directive, x86-64
252b5132
RH
732@item
733Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
734@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
735corresponding instruction mnemonic suffixes are @samp{s} (single),
736@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
737the 64-bit @samp{q} format is only present in the @samp{fildq} (load
738quad integer to stack top) and @samp{fistpq} (store quad integer and pop
739stack) instructions.
740@end itemize
741
742Register to register operations should not use instruction mnemonic suffixes.
743@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
744wrote @samp{fst %st, %st(1)}, since all register to register operations
745use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
746which converts @samp{%st} from 80-bit to 64-bit floating point format,
747then stores the result in the 4 byte location @samp{mem})
748
749@node i386-SIMD
750@section Intel's MMX and AMD's 3DNow! SIMD Operations
751
752@cindex MMX, i386
753@cindex 3DNow!, i386
754@cindex SIMD, i386
55b62671
AJ
755@cindex MMX, x86-64
756@cindex 3DNow!, x86-64
757@cindex SIMD, x86-64
252b5132
RH
758
759@code{@value{AS}} supports Intel's MMX instruction set (SIMD
760instructions for integer data), available on Intel's Pentium MMX
761processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 762Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
763instruction set (SIMD instructions for 32-bit floating point data)
764available on AMD's K6-2 processor and possibly others in the future.
765
766Currently, @code{@value{AS}} does not support Intel's floating point
767SIMD, Katmai (KNI).
768
769The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
770@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
77116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
772floating point values. The MMX registers cannot be used at the same time
773as the floating point stack.
774
775See Intel and AMD documentation, keeping in mind that the operand order in
776instructions is reversed from the Intel syntax.
777
778@node i386-16bit
779@section Writing 16-bit Code
780
781@cindex i386 16-bit code
782@cindex 16-bit code, i386
783@cindex real-mode code, i386
eecb386c 784@cindex @code{code16gcc} directive, i386
252b5132
RH
785@cindex @code{code16} directive, i386
786@cindex @code{code32} directive, i386
55b62671
AJ
787@cindex @code{code64} directive, i386
788@cindex @code{code64} directive, x86-64
789While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
790or 64-bit x86-64 code depending on the default configuration,
252b5132 791it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
792mode code segments. To do this, put a @samp{.code16} or
793@samp{.code16gcc} directive before the assembly language instructions to
794be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
795normal 32-bit code with the @samp{.code32} directive.
796
797@samp{.code16gcc} provides experimental support for generating 16-bit
798code from gcc, and differs from @samp{.code16} in that @samp{call},
799@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
800@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
801default to 32-bit size. This is so that the stack pointer is
802manipulated in the same way over function calls, allowing access to
803function parameters at the same stack offsets as in 32-bit mode.
804@samp{.code16gcc} also automatically adds address size prefixes where
805necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
806
807The code which @code{@value{AS}} generates in 16-bit mode will not
808necessarily run on a 16-bit pre-80386 processor. To write code that
809runs on such a processor, you must refrain from using @emph{any} 32-bit
810constructs which require @code{@value{AS}} to output address or operand
811size prefixes.
812
813Note that writing 16-bit code instructions by explicitly specifying a
814prefix or an instruction mnemonic suffix within a 32-bit code section
815generates different machine instructions than those generated for a
81616-bit code segment. In a 32-bit code section, the following code
817generates the machine opcode bytes @samp{66 6a 04}, which pushes the
818value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
819
820@smallexample
821 pushw $4
822@end smallexample
823
824The same code in a 16-bit code section would generate the machine
b45619c0 825opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
826is correct since the processor default operand size is assumed to be 16
827bits in a 16-bit code section.
828
829@node i386-Bugs
830@section AT&T Syntax bugs
831
832The UnixWare assembler, and probably other AT&T derived ix86 Unix
833assemblers, generate floating point instructions with reversed source
834and destination registers in certain cases. Unfortunately, gcc and
835possibly many other programs use this reversed syntax, so we're stuck
836with it.
837
838For example
839
840@smallexample
841 fsub %st,%st(3)
842@end smallexample
843@noindent
844results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
845than the expected @samp{%st(3) - %st}. This happens with all the
846non-commutative arithmetic floating point operations with two register
847operands where the source register is @samp{%st} and the destination
848register is @samp{%st(i)}.
849
e413e4e9
AM
850@node i386-Arch
851@section Specifying CPU Architecture
852
853@cindex arch directive, i386
854@cindex i386 arch directive
55b62671
AJ
855@cindex arch directive, x86-64
856@cindex x86-64 arch directive
e413e4e9
AM
857
858@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 859(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
860directive enables a warning when gas detects an instruction that is not
861supported on the CPU specified. The choices for @var{cpu_type} are:
862
863@multitable @columnfractions .20 .20 .20 .20
864@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
865@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 866@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 867@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1ceab344 868@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
7918206c 869@item @samp{amdfam10}
1ceab344 870@item @samp{generic32} @tab @samp{generic64}
9103f4f4 871@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 872@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 873@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695
L
874@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
875@item @samp{.ept}
1ceab344
L
876@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
877@item @samp{.svme} @tab @samp{.abm}
878@item @samp{.padlock}
e413e4e9
AM
879@end multitable
880
fddf5b5b
AM
881Apart from the warning, there are only two other effects on
882@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
883@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
884will automatically use a two byte opcode sequence. The larger three
885byte opcode sequence is used on the 486 (and when no architecture is
886specified) because it executes faster on the 486. Note that you can
887explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
888Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
889@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
890conditional jumps will be promoted when necessary to a two instruction
891sequence consisting of a conditional jump of the opposite sense around
892an unconditional jump to the target.
893
5c6af06e
JB
894Following the CPU architecture (but not a sub-architecture, which are those
895starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
896control automatic promotion of conditional jumps. @samp{jumps} is the
897default, and enables jump promotion; All external jumps will be of the long
898variety, and file-local jumps will be promoted as necessary.
899(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
900byte offset jumps, and warns about file-local conditional jumps that
901@code{@value{AS}} promotes.
fddf5b5b
AM
902Unconditional jumps are treated as for @samp{jumps}.
903
904For example
905
906@smallexample
907 .arch i8086,nojumps
908@end smallexample
e413e4e9 909
252b5132
RH
910@node i386-Notes
911@section Notes
912
913@cindex i386 @code{mul}, @code{imul} instructions
914@cindex @code{mul} instruction, i386
915@cindex @code{imul} instruction, i386
55b62671
AJ
916@cindex @code{mul} instruction, x86-64
917@cindex @code{imul} instruction, x86-64
252b5132 918There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 919instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
920multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
921for @samp{imul}) can be output only in the one operand form. Thus,
922@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
923the expanding multiply would clobber the @samp{%edx} register, and this
924would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
92564-bit product in @samp{%edx:%eax}.
926
927We have added a two operand form of @samp{imul} when the first operand
928is an immediate mode expression and the second operand is a register.
929This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
930example, can be done with @samp{imul $69, %eax} rather than @samp{imul
931$69, %eax, %eax}.
932