]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
2013-09-30 Tristan Gingold <gingold@adacore.com>
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
9aff4b7a 1@c Copyright 1991-2013 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
af2f724e 120@code{bdver2},
5e5c50d3 121@code{bdver3},
7b458c12
L
122@code{btver1},
123@code{btver2},
9103f4f4
L
124@code{generic32} and
125@code{generic64}.
126
34bca508 127In addition to the basic instruction set, the assembler can be told to
6305a203
L
128accept various extension mnemonics. For example,
129@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
130@var{vmx}. The following extensions are currently supported:
309d3373
JB
131@code{8087},
132@code{287},
133@code{387},
134@code{no87},
6305a203 135@code{mmx},
309d3373 136@code{nommx},
6305a203
L
137@code{sse},
138@code{sse2},
139@code{sse3},
140@code{ssse3},
141@code{sse4.1},
142@code{sse4.2},
143@code{sse4},
309d3373 144@code{nosse},
c0f3af97 145@code{avx},
6c30d220 146@code{avx2},
e2e1fcde
L
147@code{adx},
148@code{rdseed},
149@code{prfchw},
5c111e37 150@code{smap},
7e8b059b 151@code{mpx},
a0046408 152@code{sha},
43234a1e
L
153@code{avx512f},
154@code{avx512cd},
155@code{avx512er},
156@code{avx512pf},
309d3373 157@code{noavx},
6305a203 158@code{vmx},
8729a6f6 159@code{vmfunc},
6305a203 160@code{smx},
f03fe4c1 161@code{xsave},
c7b8aa3a 162@code{xsaveopt},
c0f3af97 163@code{aes},
594ab6a3 164@code{pclmul},
c7b8aa3a
L
165@code{fsgsbase},
166@code{rdrnd},
167@code{f16c},
6c30d220 168@code{bmi2},
c0f3af97 169@code{fma},
f1f8f695
L
170@code{movbe},
171@code{ept},
6c30d220 172@code{lzcnt},
42164a71
L
173@code{hle},
174@code{rtm},
6c30d220 175@code{invpcid},
bd5295b2 176@code{clflush},
f88c9eb0 177@code{lwp},
5dd85c99
SP
178@code{fma4},
179@code{xop},
60aa667e 180@code{cx16},
bd5295b2 181@code{syscall},
1b7f3fb0 182@code{rdtscp},
6305a203
L
183@code{3dnow},
184@code{3dnowa},
185@code{sse4a},
186@code{sse5},
187@code{svme},
188@code{abm} and
189@code{padlock}.
309d3373
JB
190Note that rather than extending a basic instruction set, the extension
191mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
192
193When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
194@code{.arch} directive will take precedent.
195
196@cindex @samp{-mtune=} option, i386
197@cindex @samp{-mtune=} option, x86-64
198@item -mtune=@var{CPU}
199This option specifies a processor to optimize for. When used in
200conjunction with the @option{-march} option, only instructions
201of the processor specified by the @option{-march} option will be
202generated.
203
6305a203
L
204Valid @var{CPU} values are identical to the processor list of
205@option{-march=@var{CPU}}.
9103f4f4 206
c0f3af97
L
207@cindex @samp{-msse2avx} option, i386
208@cindex @samp{-msse2avx} option, x86-64
209@item -msse2avx
210This option specifies that the assembler should encode SSE instructions
211with VEX prefix.
212
daf50ae7
L
213@cindex @samp{-msse-check=} option, i386
214@cindex @samp{-msse-check=} option, x86-64
215@item -msse-check=@var{none}
1f9bb1ca
AS
216@itemx -msse-check=@var{warning}
217@itemx -msse-check=@var{error}
9aff4b7a 218These options control if the assembler should check SSE instructions.
daf50ae7
L
219@option{-msse-check=@var{none}} will make the assembler not to check SSE
220instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 221will make the assembler issue a warning for any SSE instruction.
daf50ae7 222@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 223for any SSE instruction.
daf50ae7 224
539f890d
L
225@cindex @samp{-mavxscalar=} option, i386
226@cindex @samp{-mavxscalar=} option, x86-64
227@item -mavxscalar=@var{128}
1f9bb1ca 228@itemx -mavxscalar=@var{256}
2aab8acd 229These options control how the assembler should encode scalar AVX
539f890d
L
230instructions. @option{-mavxscalar=@var{128}} will encode scalar
231AVX instructions with 128bit vector length, which is the default.
232@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
233with 256bit vector length.
234
43234a1e
L
235@cindex @samp{-mevexlig=} option, i386
236@cindex @samp{-mevexlig=} option, x86-64
237@item -mevexlig=@var{128}
238@itemx -mevexlig=@var{256}
239@itemx -mevexlig=@var{512}
240These options control how the assembler should encode length-ignored
241(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
242EVEX instructions with 128bit vector length, which is the default.
243@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
244encode LIG EVEX instructions with 256bit and 512bit vector length,
245respectively.
246
247@cindex @samp{-mevexwig=} option, i386
248@cindex @samp{-mevexwig=} option, x86-64
249@item -mevexwig=@var{0}
250@itemx -mevexwig=@var{1}
251These options control how the assembler should encode w-ignored (WIG)
252EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
253EVEX instructions with evex.w = 0, which is the default.
254@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
255evex.w = 1.
256
1efbbeb4
L
257@cindex @samp{-mmnemonic=} option, i386
258@cindex @samp{-mmnemonic=} option, x86-64
259@item -mmnemonic=@var{att}
1f9bb1ca 260@itemx -mmnemonic=@var{intel}
34bca508 261This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
262The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
263take precedent.
264
265@cindex @samp{-msyntax=} option, i386
266@cindex @samp{-msyntax=} option, x86-64
267@item -msyntax=@var{att}
1f9bb1ca 268@itemx -msyntax=@var{intel}
34bca508 269This option specifies instruction syntax when processing instructions.
1efbbeb4
L
270The @code{.att_syntax} and @code{.intel_syntax} directives will
271take precedent.
272
273@cindex @samp{-mnaked-reg} option, i386
274@cindex @samp{-mnaked-reg} option, x86-64
275@item -mnaked-reg
276This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 277The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 278
7e8b059b
L
279@cindex @samp{-madd-bnd-prefix} option, i386
280@cindex @samp{-madd-bnd-prefix} option, x86-64
281@item -madd-bnd-prefix
282This option forces the assembler to add BND prefix to all branches, even
283if such prefix was not explicitly specified in the source code.
284
55b62671 285@end table
731caf76 286@c man end
e413e4e9 287
a6c24e68
NC
288@node i386-Directives
289@section x86 specific Directives
290
291@cindex machine directives, x86
292@cindex x86 machine directives
293@table @code
294
295@cindex @code{lcomm} directive, COFF
296@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
297Reserve @var{length} (an absolute expression) bytes for a local common
298denoted by @var{symbol}. The section and value of @var{symbol} are
299those of the new local common. The addresses are allocated in the bss
704209c0
NC
300section, so that at run-time the bytes start off zeroed. Since
301@var{symbol} is not declared global, it is normally not visible to
302@code{@value{LD}}. The optional third parameter, @var{alignment},
303specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
304
305This directive is only available for COFF based x86 targets.
306
307@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
308@c .largecomm
309
310@end table
311
252b5132 312@node i386-Syntax
7c31ae13
NC
313@section i386 Syntactical Considerations
314@menu
315* i386-Variations:: AT&T Syntax versus Intel Syntax
316* i386-Chars:: Special Characters
317@end menu
318
319@node i386-Variations
320@subsection AT&T Syntax versus Intel Syntax
252b5132 321
e413e4e9
AM
322@cindex i386 intel_syntax pseudo op
323@cindex intel_syntax pseudo op, i386
324@cindex i386 att_syntax pseudo op
325@cindex att_syntax pseudo op, i386
252b5132
RH
326@cindex i386 syntax compatibility
327@cindex syntax compatibility, i386
55b62671
AJ
328@cindex x86-64 intel_syntax pseudo op
329@cindex intel_syntax pseudo op, x86-64
330@cindex x86-64 att_syntax pseudo op
331@cindex att_syntax pseudo op, x86-64
332@cindex x86-64 syntax compatibility
333@cindex syntax compatibility, x86-64
e413e4e9
AM
334
335@code{@value{AS}} now supports assembly using Intel assembler syntax.
336@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
337back to the usual AT&T mode for compatibility with the output of
338@code{@value{GCC}}. Either of these directives may have an optional
339argument, @code{prefix}, or @code{noprefix} specifying whether registers
340require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
341different from Intel syntax. We mention these differences because
342almost all 80386 documents use Intel syntax. Notable differences
343between the two syntaxes are:
344
345@cindex immediate operands, i386
346@cindex i386 immediate operands
347@cindex register operands, i386
348@cindex i386 register operands
349@cindex jump/call operands, i386
350@cindex i386 jump/call operands
351@cindex operand delimiters, i386
55b62671
AJ
352
353@cindex immediate operands, x86-64
354@cindex x86-64 immediate operands
355@cindex register operands, x86-64
356@cindex x86-64 register operands
357@cindex jump/call operands, x86-64
358@cindex x86-64 jump/call operands
359@cindex operand delimiters, x86-64
252b5132
RH
360@itemize @bullet
361@item
362AT&T immediate operands are preceded by @samp{$}; Intel immediate
363operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
364AT&T register operands are preceded by @samp{%}; Intel register operands
365are undelimited. AT&T absolute (as opposed to PC relative) jump/call
366operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
367
368@cindex i386 source, destination operands
369@cindex source, destination operands; i386
55b62671
AJ
370@cindex x86-64 source, destination operands
371@cindex source, destination operands; x86-64
252b5132
RH
372@item
373AT&T and Intel syntax use the opposite order for source and destination
374operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
375@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
376previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
377instructions with 2 immediate operands, such as the @samp{enter}
378instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
379
380@cindex mnemonic suffixes, i386
381@cindex sizes operands, i386
382@cindex i386 size suffixes
55b62671
AJ
383@cindex mnemonic suffixes, x86-64
384@cindex sizes operands, x86-64
385@cindex x86-64 size suffixes
252b5132
RH
386@item
387In AT&T syntax the size of memory operands is determined from the last
388character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
389@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
390(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
391this by prefixing memory operands (@emph{not} the instruction mnemonics) with
392@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
393Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
394syntax.
252b5132 395
4b06377f
L
396In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
397instruction with the 64-bit displacement or immediate operand.
398
252b5132
RH
399@cindex return instructions, i386
400@cindex i386 jump, call, return
55b62671
AJ
401@cindex return instructions, x86-64
402@cindex x86-64 jump, call, return
252b5132
RH
403@item
404Immediate form long jumps and calls are
405@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
406Intel syntax is
407@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
408instruction
409is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
410@samp{ret far @var{stack-adjust}}.
411
412@cindex sections, i386
413@cindex i386 sections
55b62671
AJ
414@cindex sections, x86-64
415@cindex x86-64 sections
252b5132
RH
416@item
417The AT&T assembler does not provide support for multiple section
418programs. Unix style systems expect all programs to be single sections.
419@end itemize
420
7c31ae13
NC
421@node i386-Chars
422@subsection Special Characters
423
424@cindex line comment character, i386
425@cindex i386 line comment character
426The presence of a @samp{#} appearing anywhere on a line indicates the
427start of a comment that extends to the end of that line.
428
429If a @samp{#} appears as the first character of a line then the whole
430line is treated as a comment, but in this case the line can also be a
431logical line number directive (@pxref{Comments}) or a preprocessor
432control command (@pxref{Preprocessing}).
433
434If the @option{--divide} command line option has not been specified
435then the @samp{/} character appearing anywhere on a line also
436introduces a line comment.
437
438@cindex line separator, i386
439@cindex statement separator, i386
440@cindex i386 line separator
441The @samp{;} character can be used to separate statements on the same
442line.
443
252b5132
RH
444@node i386-Mnemonics
445@section Instruction Naming
446
447@cindex i386 instruction naming
448@cindex instruction naming, i386
55b62671
AJ
449@cindex x86-64 instruction naming
450@cindex instruction naming, x86-64
451
252b5132 452Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
453specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
454and @samp{q} specify byte, word, long and quadruple word operands. If
455no suffix is specified by an instruction then @code{@value{AS}} tries to
456fill in the missing suffix based on the destination register operand
457(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
458to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
459@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
460assembler which assumes that a missing mnemonic suffix implies long
461operand size. (This incompatibility does not affect compiler output
462since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
463
464Almost all instructions have the same names in AT&T and Intel format.
465There are a few exceptions. The sign extend and zero extend
466instructions need two sizes to specify them. They need a size to
467sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
468is accomplished by using two instruction mnemonic suffixes in AT&T
469syntax. Base names for sign extend and zero extend are
470@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
471and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
472are tacked on to this base name, the @emph{from} suffix before the
473@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
474``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
475thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
476@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
477@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
478quadruple word).
252b5132 479
b6169b20
L
480@cindex encoding options, i386
481@cindex encoding options, x86-64
482
483Different encoding options can be specified via optional mnemonic
484suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
485moving from one register to another. @samp{.d8} or @samp{.d32} suffix
486prefers 8bit or 32bit displacement in encoding.
b6169b20 487
252b5132
RH
488@cindex conversion instructions, i386
489@cindex i386 conversion instructions
55b62671
AJ
490@cindex conversion instructions, x86-64
491@cindex x86-64 conversion instructions
252b5132
RH
492The Intel-syntax conversion instructions
493
494@itemize @bullet
495@item
496@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
497
498@item
499@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
500
501@item
502@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
503
504@item
505@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
506
507@item
508@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
509(x86-64 only),
510
511@item
d5f0cf92 512@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 513@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
514@end itemize
515
516@noindent
55b62671
AJ
517are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
518@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
519instructions.
252b5132
RH
520
521@cindex jump instructions, i386
522@cindex call instructions, i386
55b62671
AJ
523@cindex jump instructions, x86-64
524@cindex call instructions, x86-64
252b5132
RH
525Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
526AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
527convention.
528
1efbbeb4
L
529@section AT&T Mnemonic versus Intel Mnemonic
530
531@cindex i386 mnemonic compatibility
532@cindex mnemonic compatibility, i386
533
534@code{@value{AS}} supports assembly using Intel mnemonic.
535@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
536@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
537syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
538Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
539@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
540@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
541assembler with different mnemonics from those in Intel IA32 specification.
542@code{@value{GCC}} generates those instructions with AT&T mnemonic.
543
252b5132
RH
544@node i386-Regs
545@section Register Naming
546
547@cindex i386 registers
548@cindex registers, i386
55b62671
AJ
549@cindex x86-64 registers
550@cindex registers, x86-64
252b5132
RH
551Register operands are always prefixed with @samp{%}. The 80386 registers
552consist of
553
554@itemize @bullet
555@item
556the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
557@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
558frame pointer), and @samp{%esp} (the stack pointer).
559
560@item
561the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
562@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
563
564@item
565the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
566@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
567are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
568@samp{%cx}, and @samp{%dx})
569
570@item
571the 6 section registers @samp{%cs} (code section), @samp{%ds}
572(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
573and @samp{%gs}.
574
575@item
576the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
577@samp{%cr3}.
578
579@item
580the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
581@samp{%db3}, @samp{%db6}, and @samp{%db7}.
582
583@item
584the 2 test registers @samp{%tr6} and @samp{%tr7}.
585
586@item
587the 8 floating point register stack @samp{%st} or equivalently
588@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
589@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
590These registers are overloaded by 8 MMX registers @samp{%mm0},
591@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
592@samp{%mm6} and @samp{%mm7}.
593
594@item
595the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
596@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
597@end itemize
598
599The AMD x86-64 architecture extends the register set by:
600
601@itemize @bullet
602@item
603enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
604accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
605@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
606pointer)
607
608@item
609the 8 extended registers @samp{%r8}--@samp{%r15}.
610
611@item
612the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
613
614@item
615the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
616
617@item
618the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
619
620@item
621the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
622
623@item
624the 8 debug registers: @samp{%db8}--@samp{%db15}.
625
626@item
627the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
628@end itemize
629
630@node i386-Prefixes
631@section Instruction Prefixes
632
633@cindex i386 instruction prefixes
634@cindex instruction prefixes, i386
635@cindex prefixes, i386
636Instruction prefixes are used to modify the following instruction. They
637are used to repeat string instructions, to provide section overrides, to
638perform bus lock operations, and to change operand and address sizes.
639(Most instructions that normally operate on 32-bit operands will use
64016-bit operands if the instruction has an ``operand size'' prefix.)
641Instruction prefixes are best written on the same line as the instruction
642they act upon. For example, the @samp{scas} (scan string) instruction is
643repeated with:
644
645@smallexample
646 repne scas %es:(%edi),%al
647@end smallexample
648
649You may also place prefixes on the lines immediately preceding the
650instruction, but this circumvents checks that @code{@value{AS}} does
651with prefixes, and will not work with all prefixes.
652
653Here is a list of instruction prefixes:
654
655@cindex section override prefixes, i386
656@itemize @bullet
657@item
658Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
659@samp{fs}, @samp{gs}. These are automatically added by specifying
660using the @var{section}:@var{memory-operand} form for memory references.
661
662@cindex size prefixes, i386
663@item
664Operand/Address size prefixes @samp{data16} and @samp{addr16}
665change 32-bit operands/addresses into 16-bit operands/addresses,
666while @samp{data32} and @samp{addr32} change 16-bit ones (in a
667@code{.code16} section) into 32-bit operands/addresses. These prefixes
668@emph{must} appear on the same line of code as the instruction they
669modify. For example, in a 16-bit @code{.code16} section, you might
670write:
671
672@smallexample
673 addr32 jmpl *(%ebx)
674@end smallexample
675
676@cindex bus lock prefixes, i386
677@cindex inhibiting interrupts, i386
678@item
679The bus lock prefix @samp{lock} inhibits interrupts during execution of
680the instruction it precedes. (This is only valid with certain
681instructions; see a 80386 manual for details).
682
683@cindex coprocessor wait, i386
684@item
685The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
686complete the current instruction. This should never be needed for the
68780386/80387 combination.
688
689@cindex repeat prefixes, i386
690@item
691The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
692to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
693times if the current address size is 16-bits).
55b62671
AJ
694@cindex REX prefixes, i386
695@item
696The @samp{rex} family of prefixes is used by x86-64 to encode
697extensions to i386 instruction set. The @samp{rex} prefix has four
698bits --- an operand size overwrite (@code{64}) used to change operand size
699from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
700register set.
701
702You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
703instruction emits @samp{rex} prefix with all the bits set. By omitting
704the @code{64}, @code{x}, @code{y} or @code{z} you may write other
705prefixes as well. Normally, there is no need to write the prefixes
706explicitly, since gas will automatically generate them based on the
707instruction operands.
252b5132
RH
708@end itemize
709
710@node i386-Memory
711@section Memory References
712
713@cindex i386 memory references
714@cindex memory references, i386
55b62671
AJ
715@cindex x86-64 memory references
716@cindex memory references, x86-64
252b5132
RH
717An Intel syntax indirect memory reference of the form
718
719@smallexample
720@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
721@end smallexample
722
723@noindent
724is translated into the AT&T syntax
725
726@smallexample
727@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
728@end smallexample
729
730@noindent
731where @var{base} and @var{index} are the optional 32-bit base and
732index registers, @var{disp} is the optional displacement, and
733@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
734to calculate the address of the operand. If no @var{scale} is
735specified, @var{scale} is taken to be 1. @var{section} specifies the
736optional section register for the memory operand, and may override the
737default section register (see a 80386 manual for section register
738defaults). Note that section overrides in AT&T syntax @emph{must}
739be preceded by a @samp{%}. If you specify a section override which
740coincides with the default section register, @code{@value{AS}} does @emph{not}
741output any section register override prefixes to assemble the given
742instruction. Thus, section overrides can be specified to emphasize which
743section register is used for a given memory operand.
744
745Here are some examples of Intel and AT&T style memory references:
746
747@table @asis
748@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
749@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
750missing, and the default section is used (@samp{%ss} for addressing with
751@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
752
753@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
754@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
755@samp{foo}. All other fields are missing. The section register here
756defaults to @samp{%ds}.
757
758@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
759This uses the value pointed to by @samp{foo} as a memory operand.
760Note that @var{base} and @var{index} are both missing, but there is only
761@emph{one} @samp{,}. This is a syntactic exception.
762
763@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
764This selects the contents of the variable @samp{foo} with section
765register @var{section} being @samp{%gs}.
766@end table
767
768Absolute (as opposed to PC relative) call and jump operands must be
769prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
770always chooses PC relative addressing for jump/call labels.
771
772Any instruction that has a memory operand, but no register operand,
55b62671
AJ
773@emph{must} specify its size (byte, word, long, or quadruple) with an
774instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
775respectively).
776
777The x86-64 architecture adds an RIP (instruction pointer relative)
778addressing. This addressing mode is specified by using @samp{rip} as a
779base register. Only constant offsets are valid. For example:
780
781@table @asis
782@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
783Points to the address 1234 bytes past the end of the current
784instruction.
785
786@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
787Points to the @code{symbol} in RIP relative way, this is shorter than
788the default absolute addressing.
789@end table
790
791Other addressing modes remain unchanged in x86-64 architecture, except
792registers used are 64-bit instead of 32-bit.
252b5132 793
fddf5b5b 794@node i386-Jumps
252b5132
RH
795@section Handling of Jump Instructions
796
797@cindex jump optimization, i386
798@cindex i386 jump optimization
55b62671
AJ
799@cindex jump optimization, x86-64
800@cindex x86-64 jump optimization
252b5132
RH
801Jump instructions are always optimized to use the smallest possible
802displacements. This is accomplished by using byte (8-bit) displacement
803jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 804is insufficient a long displacement is used. We do not support
252b5132
RH
805word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
806instruction with the @samp{data16} instruction prefix), since the 80386
807insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 808is added. (See also @pxref{i386-Arch})
252b5132
RH
809
810Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
811@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
812displacements, so that if you use these instructions (@code{@value{GCC}} does
813not use them) you may get an error message (and incorrect code). The AT&T
81480386 assembler tries to get around this problem by expanding @samp{jcxz foo}
815to
816
817@smallexample
818 jcxz cx_zero
819 jmp cx_nonzero
820cx_zero: jmp foo
821cx_nonzero:
822@end smallexample
823
824@node i386-Float
825@section Floating Point
826
827@cindex i386 floating point
828@cindex floating point, i386
55b62671
AJ
829@cindex x86-64 floating point
830@cindex floating point, x86-64
252b5132
RH
831All 80387 floating point types except packed BCD are supported.
832(BCD support may be added without much difficulty). These data
833types are 16-, 32-, and 64- bit integers, and single (32-bit),
834double (64-bit), and extended (80-bit) precision floating point.
835Each supported type has an instruction mnemonic suffix and a constructor
836associated with it. Instruction mnemonic suffixes specify the operand's
837data type. Constructors build these data types into memory.
838
839@cindex @code{float} directive, i386
840@cindex @code{single} directive, i386
841@cindex @code{double} directive, i386
842@cindex @code{tfloat} directive, i386
55b62671
AJ
843@cindex @code{float} directive, x86-64
844@cindex @code{single} directive, x86-64
845@cindex @code{double} directive, x86-64
846@cindex @code{tfloat} directive, x86-64
252b5132
RH
847@itemize @bullet
848@item
849Floating point constructors are @samp{.float} or @samp{.single},
850@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
851These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
852and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
853only supports this format via the @samp{fldt} (load 80-bit real to stack
854top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
855
856@cindex @code{word} directive, i386
857@cindex @code{long} directive, i386
858@cindex @code{int} directive, i386
859@cindex @code{quad} directive, i386
55b62671
AJ
860@cindex @code{word} directive, x86-64
861@cindex @code{long} directive, x86-64
862@cindex @code{int} directive, x86-64
863@cindex @code{quad} directive, x86-64
252b5132
RH
864@item
865Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
866@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
867corresponding instruction mnemonic suffixes are @samp{s} (single),
868@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
869the 64-bit @samp{q} format is only present in the @samp{fildq} (load
870quad integer to stack top) and @samp{fistpq} (store quad integer and pop
871stack) instructions.
872@end itemize
873
874Register to register operations should not use instruction mnemonic suffixes.
875@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
876wrote @samp{fst %st, %st(1)}, since all register to register operations
877use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
878which converts @samp{%st} from 80-bit to 64-bit floating point format,
879then stores the result in the 4 byte location @samp{mem})
880
881@node i386-SIMD
882@section Intel's MMX and AMD's 3DNow! SIMD Operations
883
884@cindex MMX, i386
885@cindex 3DNow!, i386
886@cindex SIMD, i386
55b62671
AJ
887@cindex MMX, x86-64
888@cindex 3DNow!, x86-64
889@cindex SIMD, x86-64
252b5132
RH
890
891@code{@value{AS}} supports Intel's MMX instruction set (SIMD
892instructions for integer data), available on Intel's Pentium MMX
893processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 894Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
895instruction set (SIMD instructions for 32-bit floating point data)
896available on AMD's K6-2 processor and possibly others in the future.
897
898Currently, @code{@value{AS}} does not support Intel's floating point
899SIMD, Katmai (KNI).
900
901The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
902@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
90316-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
904floating point values. The MMX registers cannot be used at the same time
905as the floating point stack.
906
907See Intel and AMD documentation, keeping in mind that the operand order in
908instructions is reversed from the Intel syntax.
909
f88c9eb0
SP
910@node i386-LWP
911@section AMD's Lightweight Profiling Instructions
912
913@cindex LWP, i386
914@cindex LWP, x86-64
915
916@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
917instruction set, available on AMD's Family 15h (Orochi) processors.
918
919LWP enables applications to collect and manage performance data, and
920react to performance events. The collection of performance data
921requires no context switches. LWP runs in the context of a thread and
922so several counters can be used independently across multiple threads.
923LWP can be used in both 64-bit and legacy 32-bit modes.
924
925For detailed information on the LWP instruction set, see the
926@cite{AMD Lightweight Profiling Specification} available at
927@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
928
87973e9f
QN
929@node i386-BMI
930@section Bit Manipulation Instructions
931
932@cindex BMI, i386
933@cindex BMI, x86-64
934
935@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
936
937BMI instructions provide several instructions implementing individual
938bit manipulation operations such as isolation, masking, setting, or
34bca508 939resetting.
87973e9f
QN
940
941@c Need to add a specification citation here when available.
942
2a2a0f38
QN
943@node i386-TBM
944@section AMD's Trailing Bit Manipulation Instructions
945
946@cindex TBM, i386
947@cindex TBM, x86-64
948
949@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
950instruction set, available on AMD's BDVER2 processors (Trinity and
951Viperfish).
952
953TBM instructions provide instructions implementing individual bit
954manipulation operations such as isolating, masking, setting, resetting,
955complementing, and operations on trailing zeros and ones.
956
957@c Need to add a specification citation here when available.
87973e9f 958
252b5132
RH
959@node i386-16bit
960@section Writing 16-bit Code
961
962@cindex i386 16-bit code
963@cindex 16-bit code, i386
964@cindex real-mode code, i386
eecb386c 965@cindex @code{code16gcc} directive, i386
252b5132
RH
966@cindex @code{code16} directive, i386
967@cindex @code{code32} directive, i386
55b62671
AJ
968@cindex @code{code64} directive, i386
969@cindex @code{code64} directive, x86-64
970While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
971or 64-bit x86-64 code depending on the default configuration,
252b5132 972it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
973mode code segments. To do this, put a @samp{.code16} or
974@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
975be run in 16-bit mode. You can switch @code{@value{AS}} to writing
97632-bit code with the @samp{.code32} directive or 64-bit code with the
977@samp{.code64} directive.
eecb386c
AM
978
979@samp{.code16gcc} provides experimental support for generating 16-bit
980code from gcc, and differs from @samp{.code16} in that @samp{call},
981@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
982@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
983default to 32-bit size. This is so that the stack pointer is
984manipulated in the same way over function calls, allowing access to
985function parameters at the same stack offsets as in 32-bit mode.
986@samp{.code16gcc} also automatically adds address size prefixes where
987necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
988
989The code which @code{@value{AS}} generates in 16-bit mode will not
990necessarily run on a 16-bit pre-80386 processor. To write code that
991runs on such a processor, you must refrain from using @emph{any} 32-bit
992constructs which require @code{@value{AS}} to output address or operand
993size prefixes.
994
995Note that writing 16-bit code instructions by explicitly specifying a
996prefix or an instruction mnemonic suffix within a 32-bit code section
997generates different machine instructions than those generated for a
99816-bit code segment. In a 32-bit code section, the following code
999generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1000value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1001
1002@smallexample
1003 pushw $4
1004@end smallexample
1005
1006The same code in a 16-bit code section would generate the machine
b45619c0 1007opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1008is correct since the processor default operand size is assumed to be 16
1009bits in a 16-bit code section.
1010
1011@node i386-Bugs
1012@section AT&T Syntax bugs
1013
1014The UnixWare assembler, and probably other AT&T derived ix86 Unix
1015assemblers, generate floating point instructions with reversed source
1016and destination registers in certain cases. Unfortunately, gcc and
1017possibly many other programs use this reversed syntax, so we're stuck
1018with it.
1019
1020For example
1021
1022@smallexample
1023 fsub %st,%st(3)
1024@end smallexample
1025@noindent
1026results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1027than the expected @samp{%st(3) - %st}. This happens with all the
1028non-commutative arithmetic floating point operations with two register
1029operands where the source register is @samp{%st} and the destination
1030register is @samp{%st(i)}.
1031
e413e4e9
AM
1032@node i386-Arch
1033@section Specifying CPU Architecture
1034
1035@cindex arch directive, i386
1036@cindex i386 arch directive
55b62671
AJ
1037@cindex arch directive, x86-64
1038@cindex x86-64 arch directive
e413e4e9
AM
1039
1040@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1041(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1042directive enables a warning when gas detects an instruction that is not
1043supported on the CPU specified. The choices for @var{cpu_type} are:
1044
1045@multitable @columnfractions .20 .20 .20 .20
1046@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1047@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1048@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1049@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1050@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1051@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1052@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
7b458c12 1053@item @samp{btver1} @tab @samp{btver2}
1ceab344 1054@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1055@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1056@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1057@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1058@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1059@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1060@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1061@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1062@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
7e8b059b 1063@item @samp{.smap} @tab @samp{.mpx}
a0046408 1064@item @samp{.smap} @tab @samp{.sha}
1ceab344 1065@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1066@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1067@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1068@item @samp{.padlock}
43234a1e
L
1069@item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1070@item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1071@item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1072@item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1073@item @samp{.cx16} @tab @samp{.padlock}
e413e4e9
AM
1074@end multitable
1075
fddf5b5b
AM
1076Apart from the warning, there are only two other effects on
1077@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1078@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1079will automatically use a two byte opcode sequence. The larger three
1080byte opcode sequence is used on the 486 (and when no architecture is
1081specified) because it executes faster on the 486. Note that you can
1082explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1083Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1084@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1085conditional jumps will be promoted when necessary to a two instruction
1086sequence consisting of a conditional jump of the opposite sense around
1087an unconditional jump to the target.
1088
5c6af06e
JB
1089Following the CPU architecture (but not a sub-architecture, which are those
1090starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1091control automatic promotion of conditional jumps. @samp{jumps} is the
1092default, and enables jump promotion; All external jumps will be of the long
1093variety, and file-local jumps will be promoted as necessary.
1094(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1095byte offset jumps, and warns about file-local conditional jumps that
1096@code{@value{AS}} promotes.
fddf5b5b
AM
1097Unconditional jumps are treated as for @samp{jumps}.
1098
1099For example
1100
1101@smallexample
1102 .arch i8086,nojumps
1103@end smallexample
e413e4e9 1104
252b5132
RH
1105@node i386-Notes
1106@section Notes
1107
1108@cindex i386 @code{mul}, @code{imul} instructions
1109@cindex @code{mul} instruction, i386
1110@cindex @code{imul} instruction, i386
55b62671
AJ
1111@cindex @code{mul} instruction, x86-64
1112@cindex @code{imul} instruction, x86-64
252b5132 1113There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1114instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1115multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1116for @samp{imul}) can be output only in the one operand form. Thus,
1117@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1118the expanding multiply would clobber the @samp{%edx} register, and this
1119would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
112064-bit product in @samp{%edx:%eax}.
1121
1122We have added a two operand form of @samp{imul} when the first operand
1123is an immediate mode expression and the second operand is a register.
1124This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1125example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1126$69, %eax, %eax}.
1127