]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
4b27d27c 190@code{serialize},
bb651e8b 191@code{tsxldtrk},
43234a1e
L
192@code{avx512f},
193@code{avx512cd},
194@code{avx512er},
195@code{avx512pf},
1dfc6506
L
196@code{avx512vl},
197@code{avx512bw},
198@code{avx512dq},
2cc1b5aa 199@code{avx512ifma},
14f195c9 200@code{avx512vbmi},
920d2ddc 201@code{avx512_4fmaps},
47acf0bd 202@code{avx512_4vnniw},
620214f7 203@code{avx512_vpopcntdq},
53467f57 204@code{avx512_vbmi2},
8cfcb765 205@code{avx512_vnni},
ee6872be 206@code{avx512_bitalg},
708a2fff 207@code{avx512_vp2intersect},
d6aab7a1 208@code{avx512_bf16},
144b71e2
L
209@code{noavx512f},
210@code{noavx512cd},
211@code{noavx512er},
212@code{noavx512pf},
213@code{noavx512vl},
214@code{noavx512bw},
215@code{noavx512dq},
216@code{noavx512ifma},
217@code{noavx512vbmi},
920d2ddc 218@code{noavx512_4fmaps},
47acf0bd 219@code{noavx512_4vnniw},
620214f7 220@code{noavx512_vpopcntdq},
53467f57 221@code{noavx512_vbmi2},
8cfcb765 222@code{noavx512_vnni},
ee6872be 223@code{noavx512_bitalg},
9186c494 224@code{noavx512_vp2intersect},
d6aab7a1 225@code{noavx512_bf16},
dd455cf5 226@code{noenqcmd},
4b27d27c 227@code{noserialize},
bb651e8b 228@code{notsxldtrk},
260cd341
LC
229@code{amx_int8},
230@code{noamx_int8},
231@code{amx_bf16},
232@code{noamx_bf16},
233@code{amx_tile},
234@code{noamx_tile},
6305a203 235@code{vmx},
8729a6f6 236@code{vmfunc},
6305a203 237@code{smx},
f03fe4c1 238@code{xsave},
c7b8aa3a 239@code{xsaveopt},
1dfc6506
L
240@code{xsavec},
241@code{xsaves},
c0f3af97 242@code{aes},
594ab6a3 243@code{pclmul},
c7b8aa3a
L
244@code{fsgsbase},
245@code{rdrnd},
246@code{f16c},
6c30d220 247@code{bmi2},
c0f3af97 248@code{fma},
f1f8f695
L
249@code{movbe},
250@code{ept},
6c30d220 251@code{lzcnt},
272a84b1 252@code{popcnt},
42164a71
L
253@code{hle},
254@code{rtm},
6c30d220 255@code{invpcid},
bd5295b2 256@code{clflush},
9916071f 257@code{mwaitx},
029f3522 258@code{clzero},
3233d7d0 259@code{wbnoinvd},
be3a8dca 260@code{pconfig},
de89d0a3 261@code{waitpkg},
c48935d7 262@code{cldemote},
142861df
JB
263@code{rdpru},
264@code{mcommit},
a847e322 265@code{sev_es},
f88c9eb0 266@code{lwp},
5dd85c99
SP
267@code{fma4},
268@code{xop},
60aa667e 269@code{cx16},
bd5295b2 270@code{syscall},
1b7f3fb0 271@code{rdtscp},
6305a203
L
272@code{3dnow},
273@code{3dnowa},
274@code{sse4a},
275@code{sse5},
272a84b1 276@code{svme} and
6305a203 277@code{padlock}.
309d3373
JB
278Note that rather than extending a basic instruction set, the extension
279mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
280
281When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
282@code{.arch} directive will take precedent.
283
284@cindex @samp{-mtune=} option, i386
285@cindex @samp{-mtune=} option, x86-64
286@item -mtune=@var{CPU}
287This option specifies a processor to optimize for. When used in
288conjunction with the @option{-march} option, only instructions
289of the processor specified by the @option{-march} option will be
290generated.
291
6305a203
L
292Valid @var{CPU} values are identical to the processor list of
293@option{-march=@var{CPU}}.
9103f4f4 294
c0f3af97
L
295@cindex @samp{-msse2avx} option, i386
296@cindex @samp{-msse2avx} option, x86-64
297@item -msse2avx
298This option specifies that the assembler should encode SSE instructions
299with VEX prefix.
300
daf50ae7
L
301@cindex @samp{-msse-check=} option, i386
302@cindex @samp{-msse-check=} option, x86-64
303@item -msse-check=@var{none}
1f9bb1ca
AS
304@itemx -msse-check=@var{warning}
305@itemx -msse-check=@var{error}
9aff4b7a 306These options control if the assembler should check SSE instructions.
daf50ae7
L
307@option{-msse-check=@var{none}} will make the assembler not to check SSE
308instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 309will make the assembler issue a warning for any SSE instruction.
daf50ae7 310@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 311for any SSE instruction.
daf50ae7 312
539f890d
L
313@cindex @samp{-mavxscalar=} option, i386
314@cindex @samp{-mavxscalar=} option, x86-64
315@item -mavxscalar=@var{128}
1f9bb1ca 316@itemx -mavxscalar=@var{256}
2aab8acd 317These options control how the assembler should encode scalar AVX
539f890d
L
318instructions. @option{-mavxscalar=@var{128}} will encode scalar
319AVX instructions with 128bit vector length, which is the default.
320@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
321with 256bit vector length.
322
4970191f
JB
323WARNING: Don't use this for production code - due to CPU errata the
324resulting code may not work on certain models.
325
03751133
L
326@cindex @samp{-mvexwig=} option, i386
327@cindex @samp{-mvexwig=} option, x86-64
328@item -mvexwig=@var{0}
329@itemx -mvexwig=@var{1}
330These options control how the assembler should encode VEX.W-ignored (WIG)
331VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
332instructions with vex.w = 0, which is the default.
333@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
334vex.w = 1.
335
4970191f
JB
336WARNING: Don't use this for production code - due to CPU errata the
337resulting code may not work on certain models.
338
43234a1e
L
339@cindex @samp{-mevexlig=} option, i386
340@cindex @samp{-mevexlig=} option, x86-64
341@item -mevexlig=@var{128}
342@itemx -mevexlig=@var{256}
343@itemx -mevexlig=@var{512}
344These options control how the assembler should encode length-ignored
345(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
346EVEX instructions with 128bit vector length, which is the default.
347@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
348encode LIG EVEX instructions with 256bit and 512bit vector length,
349respectively.
350
351@cindex @samp{-mevexwig=} option, i386
352@cindex @samp{-mevexwig=} option, x86-64
353@item -mevexwig=@var{0}
354@itemx -mevexwig=@var{1}
355These options control how the assembler should encode w-ignored (WIG)
356EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
357EVEX instructions with evex.w = 0, which is the default.
358@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
359evex.w = 1.
360
1efbbeb4
L
361@cindex @samp{-mmnemonic=} option, i386
362@cindex @samp{-mmnemonic=} option, x86-64
363@item -mmnemonic=@var{att}
1f9bb1ca 364@itemx -mmnemonic=@var{intel}
34bca508 365This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
366The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
367take precedent.
368
369@cindex @samp{-msyntax=} option, i386
370@cindex @samp{-msyntax=} option, x86-64
371@item -msyntax=@var{att}
1f9bb1ca 372@itemx -msyntax=@var{intel}
34bca508 373This option specifies instruction syntax when processing instructions.
1efbbeb4
L
374The @code{.att_syntax} and @code{.intel_syntax} directives will
375take precedent.
376
377@cindex @samp{-mnaked-reg} option, i386
378@cindex @samp{-mnaked-reg} option, x86-64
379@item -mnaked-reg
33eaf5de 380This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 381The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 382
7e8b059b
L
383@cindex @samp{-madd-bnd-prefix} option, i386
384@cindex @samp{-madd-bnd-prefix} option, x86-64
385@item -madd-bnd-prefix
386This option forces the assembler to add BND prefix to all branches, even
387if such prefix was not explicitly specified in the source code.
388
8dcea932
L
389@cindex @samp{-mshared} option, i386
390@cindex @samp{-mshared} option, x86-64
391@item -mno-shared
392On ELF target, the assembler normally optimizes out non-PLT relocations
393against defined non-weak global branch targets with default visibility.
394The @samp{-mshared} option tells the assembler to generate code which
395may go into a shared library where all non-weak global branch targets
396with default visibility can be preempted. The resulting code is
397slightly bigger. This option only affects the handling of branch
398instructions.
399
251dae91 400@cindex @samp{-mbig-obj} option, i386
167ad85b
TG
401@cindex @samp{-mbig-obj} option, x86-64
402@item -mbig-obj
251dae91 403On PE/COFF target this option forces the use of big object file
167ad85b
TG
404format, which allows more than 32768 sections.
405
d022bddd
IT
406@cindex @samp{-momit-lock-prefix=} option, i386
407@cindex @samp{-momit-lock-prefix=} option, x86-64
408@item -momit-lock-prefix=@var{no}
409@itemx -momit-lock-prefix=@var{yes}
410These options control how the assembler should encode lock prefix.
411This option is intended as a workaround for processors, that fail on
412lock prefix. This option can only be safely used with single-core,
413single-thread computers
414@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
415@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
416which is the default.
417
e4e00185
AS
418@cindex @samp{-mfence-as-lock-add=} option, i386
419@cindex @samp{-mfence-as-lock-add=} option, x86-64
420@item -mfence-as-lock-add=@var{no}
421@itemx -mfence-as-lock-add=@var{yes}
422These options control how the assembler should encode lfence, mfence and
423sfence.
424@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
425sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
426@samp{lock addl $0x0, (%esp)} in 32-bit mode.
427@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
428sfence as usual, which is the default.
429
0cb4071e
L
430@cindex @samp{-mrelax-relocations=} option, i386
431@cindex @samp{-mrelax-relocations=} option, x86-64
432@item -mrelax-relocations=@var{no}
433@itemx -mrelax-relocations=@var{yes}
434These options control whether the assembler should generate relax
435relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
436R_X86_64_REX_GOTPCRELX, in 64-bit mode.
437@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
438@option{-mrelax-relocations=@var{no}} will not generate relax
439relocations. The default can be controlled by a configure option
440@option{--enable-x86-relax-relocations}.
441
e379e5f3
L
442@cindex @samp{-malign-branch-boundary=} option, i386
443@cindex @samp{-malign-branch-boundary=} option, x86-64
444@item -malign-branch-boundary=@var{NUM}
445This option controls how the assembler should align branches with segment
446prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
447no less than 16. Branches will be aligned within @var{NUM} byte
448boundary. @option{-malign-branch-boundary=0}, which is the default,
449doesn't align branches.
450
451@cindex @samp{-malign-branch=} option, i386
452@cindex @samp{-malign-branch=} option, x86-64
453@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
454This option specifies types of branches to align. @var{TYPE} is
455combination of @samp{jcc}, which aligns conditional jumps,
456@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
457which aligns unconditional jumps, @samp{call} which aligns calls,
458@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
459jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
460
461@cindex @samp{-malign-branch-prefix-size=} option, i386
462@cindex @samp{-malign-branch-prefix-size=} option, x86-64
463@item -malign-branch-prefix-size=@var{NUM}
464This option specifies the maximum number of prefixes on an instruction
465to align branches. @var{NUM} should be between 0 and 5. The default
466@var{NUM} is 5.
467
76cf450b
L
468@cindex @samp{-mbranches-within-32B-boundaries} option, i386
469@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
470@item -mbranches-within-32B-boundaries
471This option aligns conditional jumps, fused conditional jumps and
472unconditional jumps within 32 byte boundary with up to 5 segment prefixes
473on an instruction. It is equivalent to
474@option{-malign-branch-boundary=32}
475@option{-malign-branch=jcc+fused+jmp}
476@option{-malign-branch-prefix-size=5}.
477The default doesn't align branches.
478
ae531041
L
479@cindex @samp{-mlfence-after-load=} option, i386
480@cindex @samp{-mlfence-after-load=} option, x86-64
481@item -mlfence-after-load=@var{no}
482@itemx -mlfence-after-load=@var{yes}
483These options control whether the assembler should generate lfence
484after load instructions. @option{-mlfence-after-load=@var{yes}} will
485generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
486lfence, which is the default.
487
488@cindex @samp{-mlfence-before-indirect-branch=} option, i386
489@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
490@item -mlfence-before-indirect-branch=@var{none}
491@item -mlfence-before-indirect-branch=@var{all}
492@item -mlfence-before-indirect-branch=@var{register}
493@itemx -mlfence-before-indirect-branch=@var{memory}
494These options control whether the assembler should generate lfence
3071b197 495before indirect near branch instructions.
ae531041 496@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 497before indirect near branch via register and issue a warning before
ae531041 498indirect near branch via memory.
a09f656b 499It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
500there's no explict @option{-mlfence-before-ret=}.
ae531041 501@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 502lfence before indirect near branch via register.
ae531041
L
503@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
504warning before indirect near branch via memory.
505@option{-mlfence-before-indirect-branch=@var{none}} will not generate
506lfence nor issue warning, which is the default. Note that lfence won't
507be generated before indirect near branch via register with
508@option{-mlfence-after-load=@var{yes}} since lfence will be generated
509after loading branch target register.
510
511@cindex @samp{-mlfence-before-ret=} option, i386
512@cindex @samp{-mlfence-before-ret=} option, x86-64
513@item -mlfence-before-ret=@var{none}
a09f656b 514@item -mlfence-before-ret=@var{shl}
ae531041 515@item -mlfence-before-ret=@var{or}
a09f656b 516@item -mlfence-before-ret=@var{yes}
ae531041
L
517@itemx -mlfence-before-ret=@var{not}
518These options control whether the assembler should generate lfence
519before ret. @option{-mlfence-before-ret=@var{or}} will generate
520generate or instruction with lfence.
a09f656b 521@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
522with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
523instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
524generate lfence, which is the default.
ae531041 525
b4a3a7b4
L
526@cindex @samp{-mx86-used-note=} option, i386
527@cindex @samp{-mx86-used-note=} option, x86-64
528@item -mx86-used-note=@var{no}
529@itemx -mx86-used-note=@var{yes}
530These options control whether the assembler should generate
531GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
532GNU property notes. The default can be controlled by the
533@option{--enable-x86-used-note} configure option.
534
d3d3c6db
IT
535@cindex @samp{-mevexrcig=} option, i386
536@cindex @samp{-mevexrcig=} option, x86-64
537@item -mevexrcig=@var{rne}
538@itemx -mevexrcig=@var{rd}
539@itemx -mevexrcig=@var{ru}
540@itemx -mevexrcig=@var{rz}
541These options control how the assembler should encode SAE-only
542EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
543of EVEX instruction with 00, which is the default.
544@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
545and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
546with 01, 10 and 11 RC bits, respectively.
547
5db04b09
L
548@cindex @samp{-mamd64} option, x86-64
549@cindex @samp{-mintel64} option, x86-64
550@item -mamd64
551@itemx -mintel64
552This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
553Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
554only and AMD64 ISAs.
5db04b09 555
b6f8c7c4
L
556@cindex @samp{-O0} option, i386
557@cindex @samp{-O0} option, x86-64
558@cindex @samp{-O} option, i386
559@cindex @samp{-O} option, x86-64
560@cindex @samp{-O1} option, i386
561@cindex @samp{-O1} option, x86-64
562@cindex @samp{-O2} option, i386
563@cindex @samp{-O2} option, x86-64
564@cindex @samp{-Os} option, i386
565@cindex @samp{-Os} option, x86-64
566@item -O0 | -O | -O1 | -O2 | -Os
567Optimize instruction encoding with smaller instruction size. @samp{-O}
568and @samp{-O1} encode 64-bit register load instructions with 64-bit
569immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 570immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
571register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
572register clearing instructions with 128-bit VEX vector register
573clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 574register load/store instructions with VEX vector register load/store
a0a1771e
JB
575instructions, and encode 128-bit/256-bit EVEX packed integer logical
576instructions with 128-bit/256-bit VEX packed integer logical.
577
578@samp{-O2} includes @samp{-O1} optimization plus encodes
579256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
580EVEX vector register clearing instructions. In 64-bit mode VEX encoded
581instructions with commutative source operands will also have their
582source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
583instead of the 3-byte one. Certain forms of AND as well as OR with the
584same (register) operand specified twice will also be changed to TEST.
a0a1771e 585
b6f8c7c4
L
586@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
587and 64-bit register tests with immediate as 8-bit register test with
588immediate. @samp{-O0} turns off this optimization.
589
55b62671 590@end table
731caf76 591@c man end
e413e4e9 592
a6c24e68
NC
593@node i386-Directives
594@section x86 specific Directives
595
596@cindex machine directives, x86
597@cindex x86 machine directives
598@table @code
599
600@cindex @code{lcomm} directive, COFF
601@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
602Reserve @var{length} (an absolute expression) bytes for a local common
603denoted by @var{symbol}. The section and value of @var{symbol} are
604those of the new local common. The addresses are allocated in the bss
704209c0
NC
605section, so that at run-time the bytes start off zeroed. Since
606@var{symbol} is not declared global, it is normally not visible to
607@code{@value{LD}}. The optional third parameter, @var{alignment},
608specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
609
610This directive is only available for COFF based x86 targets.
611
102e9361
NC
612@cindex @code{largecomm} directive, ELF
613@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
614This directive behaves in the same way as the @code{comm} directive
615except that the data is placed into the @var{.lbss} section instead of
616the @var{.bss} section @ref{Comm}.
617
618The directive is intended to be used for data which requires a large
619amount of space, and it is only available for ELF based x86_64
620targets.
621
f2f51cd5
NC
622@cindex @code{value} directive
623@item .value @var{expression} [, @var{expression}]
624This directive behaves in the same way as the @code{.short} directive,
625taking a series of comma separated expressions and storing them as
626two-byte wide values into the current section.
627
a6c24e68 628@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
629
630@end table
631
252b5132 632@node i386-Syntax
7c31ae13
NC
633@section i386 Syntactical Considerations
634@menu
635* i386-Variations:: AT&T Syntax versus Intel Syntax
636* i386-Chars:: Special Characters
637@end menu
638
639@node i386-Variations
640@subsection AT&T Syntax versus Intel Syntax
252b5132 641
e413e4e9
AM
642@cindex i386 intel_syntax pseudo op
643@cindex intel_syntax pseudo op, i386
644@cindex i386 att_syntax pseudo op
645@cindex att_syntax pseudo op, i386
252b5132
RH
646@cindex i386 syntax compatibility
647@cindex syntax compatibility, i386
55b62671
AJ
648@cindex x86-64 intel_syntax pseudo op
649@cindex intel_syntax pseudo op, x86-64
650@cindex x86-64 att_syntax pseudo op
651@cindex att_syntax pseudo op, x86-64
652@cindex x86-64 syntax compatibility
653@cindex syntax compatibility, x86-64
e413e4e9
AM
654
655@code{@value{AS}} now supports assembly using Intel assembler syntax.
656@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
657back to the usual AT&T mode for compatibility with the output of
658@code{@value{GCC}}. Either of these directives may have an optional
659argument, @code{prefix}, or @code{noprefix} specifying whether registers
660require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
661different from Intel syntax. We mention these differences because
662almost all 80386 documents use Intel syntax. Notable differences
663between the two syntaxes are:
664
665@cindex immediate operands, i386
666@cindex i386 immediate operands
667@cindex register operands, i386
668@cindex i386 register operands
669@cindex jump/call operands, i386
670@cindex i386 jump/call operands
671@cindex operand delimiters, i386
55b62671
AJ
672
673@cindex immediate operands, x86-64
674@cindex x86-64 immediate operands
675@cindex register operands, x86-64
676@cindex x86-64 register operands
677@cindex jump/call operands, x86-64
678@cindex x86-64 jump/call operands
679@cindex operand delimiters, x86-64
252b5132
RH
680@itemize @bullet
681@item
682AT&T immediate operands are preceded by @samp{$}; Intel immediate
683operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
684AT&T register operands are preceded by @samp{%}; Intel register operands
685are undelimited. AT&T absolute (as opposed to PC relative) jump/call
686operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
687
688@cindex i386 source, destination operands
689@cindex source, destination operands; i386
55b62671
AJ
690@cindex x86-64 source, destination operands
691@cindex source, destination operands; x86-64
252b5132
RH
692@item
693AT&T and Intel syntax use the opposite order for source and destination
694operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
695@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
696previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
697instructions with 2 immediate operands, such as the @samp{enter}
698instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
699
700@cindex mnemonic suffixes, i386
701@cindex sizes operands, i386
702@cindex i386 size suffixes
55b62671
AJ
703@cindex mnemonic suffixes, x86-64
704@cindex sizes operands, x86-64
705@cindex x86-64 size suffixes
252b5132
RH
706@item
707In AT&T syntax the size of memory operands is determined from the last
708character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 709@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
710(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
711of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
712(256-bit vector) and zmm (512-bit vector) memory references, only when there's
713no other way to disambiguate an instruction. Intel syntax accomplishes this by
714prefixing memory operands (@emph{not} the instruction mnemonics) with
715@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
716@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
717syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
718syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
719@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 720
4b06377f
L
721In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
722instruction with the 64-bit displacement or immediate operand.
723
252b5132
RH
724@cindex return instructions, i386
725@cindex i386 jump, call, return
55b62671
AJ
726@cindex return instructions, x86-64
727@cindex x86-64 jump, call, return
252b5132
RH
728@item
729Immediate form long jumps and calls are
730@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
731Intel syntax is
732@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
733instruction
734is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
735@samp{ret far @var{stack-adjust}}.
736
737@cindex sections, i386
738@cindex i386 sections
55b62671
AJ
739@cindex sections, x86-64
740@cindex x86-64 sections
252b5132
RH
741@item
742The AT&T assembler does not provide support for multiple section
743programs. Unix style systems expect all programs to be single sections.
744@end itemize
745
7c31ae13
NC
746@node i386-Chars
747@subsection Special Characters
748
749@cindex line comment character, i386
750@cindex i386 line comment character
751The presence of a @samp{#} appearing anywhere on a line indicates the
752start of a comment that extends to the end of that line.
753
754If a @samp{#} appears as the first character of a line then the whole
755line is treated as a comment, but in this case the line can also be a
756logical line number directive (@pxref{Comments}) or a preprocessor
757control command (@pxref{Preprocessing}).
758
a05a5b64 759If the @option{--divide} command-line option has not been specified
7c31ae13
NC
760then the @samp{/} character appearing anywhere on a line also
761introduces a line comment.
762
763@cindex line separator, i386
764@cindex statement separator, i386
765@cindex i386 line separator
766The @samp{;} character can be used to separate statements on the same
767line.
768
252b5132 769@node i386-Mnemonics
d3b47e2b
L
770@section i386-Mnemonics
771@subsection Instruction Naming
252b5132
RH
772
773@cindex i386 instruction naming
774@cindex instruction naming, i386
55b62671
AJ
775@cindex x86-64 instruction naming
776@cindex instruction naming, x86-64
777
252b5132 778Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
779specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
780and @samp{q} specify byte, word, long and quadruple word operands. If
781no suffix is specified by an instruction then @code{@value{AS}} tries to
782fill in the missing suffix based on the destination register operand
783(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
784to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
785@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
786assembler which assumes that a missing mnemonic suffix implies long
787operand size. (This incompatibility does not affect compiler output
788since compilers always explicitly specify the mnemonic suffix.)
252b5132 789
c006a730
JB
790When there is no sizing suffix and no (suitable) register operands to
791deduce the size of memory operands, with a few exceptions and where long
792operand size is possible in the first place, operand size will default
793to long in 32- and 64-bit modes. Similarly it will default to short in
79416-bit mode. Noteworthy exceptions are
795
796@itemize @bullet
797@item
798Instructions with an implicit on-stack operand as well as branches,
799which default to quad in 64-bit mode.
800
801@item
802Sign- and zero-extending moves, which default to byte size source
803operands.
804
805@item
806Floating point insns with integer operands, which default to short (for
807perhaps historical reasons).
808
809@item
810CRC32 with a 64-bit destination, which defaults to a quad source
811operand.
812
813@end itemize
814
b6169b20
L
815@cindex encoding options, i386
816@cindex encoding options, x86-64
817
86fa6981
L
818Different encoding options can be specified via pseudo prefixes:
819
820@itemize @bullet
821@item
822@samp{@{disp8@}} -- prefer 8-bit displacement.
823
824@item
41eb8e88
L
825@samp{@{disp32@}} -- prefer 32-bit displacement.
826
827@item
828@samp{@{disp16@}} -- prefer 16-bit displacement.
86fa6981
L
829
830@item
831@samp{@{load@}} -- prefer load-form instruction.
832
833@item
834@samp{@{store@}} -- prefer store-form instruction.
835
836@item
42e04b36 837@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
838
839@item
42e04b36 840@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
841
842@item
843@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
844
845@item
846@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
847instructions (x86-64 only). Note that this differs from the @samp{rex}
848prefix which generates REX prefix unconditionally.
b6f8c7c4
L
849
850@item
851@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 852@end itemize
b6169b20 853
252b5132
RH
854@cindex conversion instructions, i386
855@cindex i386 conversion instructions
55b62671
AJ
856@cindex conversion instructions, x86-64
857@cindex x86-64 conversion instructions
252b5132
RH
858The Intel-syntax conversion instructions
859
860@itemize @bullet
861@item
862@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
863
864@item
865@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
866
867@item
868@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
869
870@item
871@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
872
873@item
874@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
875(x86-64 only),
876
877@item
d5f0cf92 878@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 879@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
880@end itemize
881
882@noindent
55b62671
AJ
883are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
884@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
885instructions.
252b5132 886
0e6724de
L
887@cindex extension instructions, i386
888@cindex i386 extension instructions
889@cindex extension instructions, x86-64
890@cindex x86-64 extension instructions
891The Intel-syntax extension instructions
892
893@itemize @bullet
894@item
895@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
896
897@item
898@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
899
900@item
901@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
902(x86-64 only).
903
904@item
905@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
906
907@item
908@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
909(x86-64 only).
910
911@item
912@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
913(x86-64 only).
914
915@item
916@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
917
918@item
919@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
920
921@item
922@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
923(x86-64 only).
924
925@item
926@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
927
928@item
929@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
930(x86-64 only).
931@end itemize
932
933@noindent
934are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
935@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
936@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
937@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
938@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
939
252b5132
RH
940@cindex jump instructions, i386
941@cindex call instructions, i386
55b62671
AJ
942@cindex jump instructions, x86-64
943@cindex call instructions, x86-64
252b5132
RH
944Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
945AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
946convention.
947
d3b47e2b 948@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
949
950@cindex i386 mnemonic compatibility
951@cindex mnemonic compatibility, i386
952
953@code{@value{AS}} supports assembly using Intel mnemonic.
954@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
955@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
956syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
957Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
958@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
959@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
960assembler with different mnemonics from those in Intel IA32 specification.
961@code{@value{GCC}} generates those instructions with AT&T mnemonic.
962
bc31405e
L
963@itemize @bullet
964@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
965register. @samp{movsxd} should be used to encode 16-bit or 32-bit
966destination register with both AT&T and Intel mnemonics.
967@end itemize
968
252b5132
RH
969@node i386-Regs
970@section Register Naming
971
972@cindex i386 registers
973@cindex registers, i386
55b62671
AJ
974@cindex x86-64 registers
975@cindex registers, x86-64
252b5132
RH
976Register operands are always prefixed with @samp{%}. The 80386 registers
977consist of
978
979@itemize @bullet
980@item
981the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
982@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
983frame pointer), and @samp{%esp} (the stack pointer).
984
985@item
986the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
987@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
988
989@item
990the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
991@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
992are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
993@samp{%cx}, and @samp{%dx})
994
995@item
996the 6 section registers @samp{%cs} (code section), @samp{%ds}
997(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
998and @samp{%gs}.
999
1000@item
4bde3cdd
UD
1001the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1002@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
1003
1004@item
1005the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1006@samp{%db3}, @samp{%db6}, and @samp{%db7}.
1007
1008@item
1009the 2 test registers @samp{%tr6} and @samp{%tr7}.
1010
1011@item
1012the 8 floating point register stack @samp{%st} or equivalently
1013@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1014@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1015These registers are overloaded by 8 MMX registers @samp{%mm0},
1016@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1017@samp{%mm6} and @samp{%mm7}.
1018
1019@item
4bde3cdd 1020the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1021@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1022@end itemize
1023
1024The AMD x86-64 architecture extends the register set by:
1025
1026@itemize @bullet
1027@item
1028enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1029accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1030@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1031pointer)
1032
1033@item
1034the 8 extended registers @samp{%r8}--@samp{%r15}.
1035
1036@item
4bde3cdd 1037the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1038
1039@item
4bde3cdd 1040the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1041
1042@item
4bde3cdd 1043the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1044
1045@item
1046the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1047
1048@item
1049the 8 debug registers: @samp{%db8}--@samp{%db15}.
1050
1051@item
4bde3cdd
UD
1052the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1053@end itemize
1054
1055With the AVX extensions more registers were made available:
1056
1057@itemize @bullet
1058
1059@item
1060the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1061available in 32-bit mode). The bottom 128 bits are overlaid with the
1062@samp{xmm0}--@samp{xmm15} registers.
1063
1064@end itemize
1065
4bde3cdd
UD
1066The AVX512 extensions added the following registers:
1067
1068@itemize @bullet
1069
1070@item
1071the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1072available in 32-bit mode). The bottom 128 bits are overlaid with the
1073@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1074overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1075
1076@item
1077the 8 mask registers @samp{%k0}--@samp{%k7}.
1078
252b5132
RH
1079@end itemize
1080
1081@node i386-Prefixes
1082@section Instruction Prefixes
1083
1084@cindex i386 instruction prefixes
1085@cindex instruction prefixes, i386
1086@cindex prefixes, i386
1087Instruction prefixes are used to modify the following instruction. They
1088are used to repeat string instructions, to provide section overrides, to
1089perform bus lock operations, and to change operand and address sizes.
1090(Most instructions that normally operate on 32-bit operands will use
109116-bit operands if the instruction has an ``operand size'' prefix.)
1092Instruction prefixes are best written on the same line as the instruction
1093they act upon. For example, the @samp{scas} (scan string) instruction is
1094repeated with:
1095
1096@smallexample
1097 repne scas %es:(%edi),%al
1098@end smallexample
1099
1100You may also place prefixes on the lines immediately preceding the
1101instruction, but this circumvents checks that @code{@value{AS}} does
1102with prefixes, and will not work with all prefixes.
1103
1104Here is a list of instruction prefixes:
1105
1106@cindex section override prefixes, i386
1107@itemize @bullet
1108@item
1109Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1110@samp{fs}, @samp{gs}. These are automatically added by specifying
1111using the @var{section}:@var{memory-operand} form for memory references.
1112
1113@cindex size prefixes, i386
1114@item
1115Operand/Address size prefixes @samp{data16} and @samp{addr16}
1116change 32-bit operands/addresses into 16-bit operands/addresses,
1117while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1118@code{.code16} section) into 32-bit operands/addresses. These prefixes
1119@emph{must} appear on the same line of code as the instruction they
1120modify. For example, in a 16-bit @code{.code16} section, you might
1121write:
1122
1123@smallexample
1124 addr32 jmpl *(%ebx)
1125@end smallexample
1126
1127@cindex bus lock prefixes, i386
1128@cindex inhibiting interrupts, i386
1129@item
1130The bus lock prefix @samp{lock} inhibits interrupts during execution of
1131the instruction it precedes. (This is only valid with certain
1132instructions; see a 80386 manual for details).
1133
1134@cindex coprocessor wait, i386
1135@item
1136The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1137complete the current instruction. This should never be needed for the
113880386/80387 combination.
1139
1140@cindex repeat prefixes, i386
1141@item
1142The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1143to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1144times if the current address size is 16-bits).
55b62671
AJ
1145@cindex REX prefixes, i386
1146@item
1147The @samp{rex} family of prefixes is used by x86-64 to encode
1148extensions to i386 instruction set. The @samp{rex} prefix has four
1149bits --- an operand size overwrite (@code{64}) used to change operand size
1150from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1151register set.
1152
1153You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1154instruction emits @samp{rex} prefix with all the bits set. By omitting
1155the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1156prefixes as well. Normally, there is no need to write the prefixes
1157explicitly, since gas will automatically generate them based on the
1158instruction operands.
252b5132
RH
1159@end itemize
1160
1161@node i386-Memory
1162@section Memory References
1163
1164@cindex i386 memory references
1165@cindex memory references, i386
55b62671
AJ
1166@cindex x86-64 memory references
1167@cindex memory references, x86-64
252b5132
RH
1168An Intel syntax indirect memory reference of the form
1169
1170@smallexample
1171@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1172@end smallexample
1173
1174@noindent
1175is translated into the AT&T syntax
1176
1177@smallexample
1178@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1179@end smallexample
1180
1181@noindent
1182where @var{base} and @var{index} are the optional 32-bit base and
1183index registers, @var{disp} is the optional displacement, and
1184@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1185to calculate the address of the operand. If no @var{scale} is
1186specified, @var{scale} is taken to be 1. @var{section} specifies the
1187optional section register for the memory operand, and may override the
1188default section register (see a 80386 manual for section register
1189defaults). Note that section overrides in AT&T syntax @emph{must}
1190be preceded by a @samp{%}. If you specify a section override which
1191coincides with the default section register, @code{@value{AS}} does @emph{not}
1192output any section register override prefixes to assemble the given
1193instruction. Thus, section overrides can be specified to emphasize which
1194section register is used for a given memory operand.
1195
1196Here are some examples of Intel and AT&T style memory references:
1197
1198@table @asis
1199@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1200@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1201missing, and the default section is used (@samp{%ss} for addressing with
1202@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1203
1204@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1205@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1206@samp{foo}. All other fields are missing. The section register here
1207defaults to @samp{%ds}.
1208
1209@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1210This uses the value pointed to by @samp{foo} as a memory operand.
1211Note that @var{base} and @var{index} are both missing, but there is only
1212@emph{one} @samp{,}. This is a syntactic exception.
1213
1214@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1215This selects the contents of the variable @samp{foo} with section
1216register @var{section} being @samp{%gs}.
1217@end table
1218
1219Absolute (as opposed to PC relative) call and jump operands must be
1220prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1221always chooses PC relative addressing for jump/call labels.
1222
1223Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1224@emph{must} specify its size (byte, word, long, or quadruple) with an
1225instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1226respectively).
1227
1228The x86-64 architecture adds an RIP (instruction pointer relative)
1229addressing. This addressing mode is specified by using @samp{rip} as a
1230base register. Only constant offsets are valid. For example:
1231
1232@table @asis
1233@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1234Points to the address 1234 bytes past the end of the current
1235instruction.
1236
1237@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1238Points to the @code{symbol} in RIP relative way, this is shorter than
1239the default absolute addressing.
1240@end table
1241
1242Other addressing modes remain unchanged in x86-64 architecture, except
1243registers used are 64-bit instead of 32-bit.
252b5132 1244
fddf5b5b 1245@node i386-Jumps
252b5132
RH
1246@section Handling of Jump Instructions
1247
1248@cindex jump optimization, i386
1249@cindex i386 jump optimization
55b62671
AJ
1250@cindex jump optimization, x86-64
1251@cindex x86-64 jump optimization
252b5132
RH
1252Jump instructions are always optimized to use the smallest possible
1253displacements. This is accomplished by using byte (8-bit) displacement
1254jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1255is insufficient a long displacement is used. We do not support
252b5132
RH
1256word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1257instruction with the @samp{data16} instruction prefix), since the 80386
1258insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1259is added. (See also @pxref{i386-Arch})
252b5132
RH
1260
1261Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1262@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1263displacements, so that if you use these instructions (@code{@value{GCC}} does
1264not use them) you may get an error message (and incorrect code). The AT&T
126580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1266to
1267
1268@smallexample
1269 jcxz cx_zero
1270 jmp cx_nonzero
1271cx_zero: jmp foo
1272cx_nonzero:
1273@end smallexample
1274
1275@node i386-Float
1276@section Floating Point
1277
1278@cindex i386 floating point
1279@cindex floating point, i386
55b62671
AJ
1280@cindex x86-64 floating point
1281@cindex floating point, x86-64
252b5132
RH
1282All 80387 floating point types except packed BCD are supported.
1283(BCD support may be added without much difficulty). These data
1284types are 16-, 32-, and 64- bit integers, and single (32-bit),
1285double (64-bit), and extended (80-bit) precision floating point.
1286Each supported type has an instruction mnemonic suffix and a constructor
1287associated with it. Instruction mnemonic suffixes specify the operand's
1288data type. Constructors build these data types into memory.
1289
1290@cindex @code{float} directive, i386
1291@cindex @code{single} directive, i386
1292@cindex @code{double} directive, i386
1293@cindex @code{tfloat} directive, i386
55b62671
AJ
1294@cindex @code{float} directive, x86-64
1295@cindex @code{single} directive, x86-64
1296@cindex @code{double} directive, x86-64
1297@cindex @code{tfloat} directive, x86-64
252b5132
RH
1298@itemize @bullet
1299@item
1300Floating point constructors are @samp{.float} or @samp{.single},
1301@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1302These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1303and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1304only supports this format via the @samp{fldt} (load 80-bit real to stack
1305top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1306
1307@cindex @code{word} directive, i386
1308@cindex @code{long} directive, i386
1309@cindex @code{int} directive, i386
1310@cindex @code{quad} directive, i386
55b62671
AJ
1311@cindex @code{word} directive, x86-64
1312@cindex @code{long} directive, x86-64
1313@cindex @code{int} directive, x86-64
1314@cindex @code{quad} directive, x86-64
252b5132
RH
1315@item
1316Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1317@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1318corresponding instruction mnemonic suffixes are @samp{s} (single),
1319@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1320the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1321quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1322stack) instructions.
1323@end itemize
1324
1325Register to register operations should not use instruction mnemonic suffixes.
1326@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1327wrote @samp{fst %st, %st(1)}, since all register to register operations
1328use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1329which converts @samp{%st} from 80-bit to 64-bit floating point format,
1330then stores the result in the 4 byte location @samp{mem})
1331
1332@node i386-SIMD
1333@section Intel's MMX and AMD's 3DNow! SIMD Operations
1334
1335@cindex MMX, i386
1336@cindex 3DNow!, i386
1337@cindex SIMD, i386
55b62671
AJ
1338@cindex MMX, x86-64
1339@cindex 3DNow!, x86-64
1340@cindex SIMD, x86-64
252b5132
RH
1341
1342@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1343instructions for integer data), available on Intel's Pentium MMX
1344processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1345Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1346instruction set (SIMD instructions for 32-bit floating point data)
1347available on AMD's K6-2 processor and possibly others in the future.
1348
1349Currently, @code{@value{AS}} does not support Intel's floating point
1350SIMD, Katmai (KNI).
1351
1352The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1353@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
135416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1355floating point values. The MMX registers cannot be used at the same time
1356as the floating point stack.
1357
1358See Intel and AMD documentation, keeping in mind that the operand order in
1359instructions is reversed from the Intel syntax.
1360
f88c9eb0
SP
1361@node i386-LWP
1362@section AMD's Lightweight Profiling Instructions
1363
1364@cindex LWP, i386
1365@cindex LWP, x86-64
1366
1367@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1368instruction set, available on AMD's Family 15h (Orochi) processors.
1369
1370LWP enables applications to collect and manage performance data, and
1371react to performance events. The collection of performance data
1372requires no context switches. LWP runs in the context of a thread and
1373so several counters can be used independently across multiple threads.
1374LWP can be used in both 64-bit and legacy 32-bit modes.
1375
1376For detailed information on the LWP instruction set, see the
1377@cite{AMD Lightweight Profiling Specification} available at
1378@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1379
87973e9f
QN
1380@node i386-BMI
1381@section Bit Manipulation Instructions
1382
1383@cindex BMI, i386
1384@cindex BMI, x86-64
1385
1386@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1387
1388BMI instructions provide several instructions implementing individual
1389bit manipulation operations such as isolation, masking, setting, or
34bca508 1390resetting.
87973e9f
QN
1391
1392@c Need to add a specification citation here when available.
1393
2a2a0f38
QN
1394@node i386-TBM
1395@section AMD's Trailing Bit Manipulation Instructions
1396
1397@cindex TBM, i386
1398@cindex TBM, x86-64
1399
1400@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1401instruction set, available on AMD's BDVER2 processors (Trinity and
1402Viperfish).
1403
1404TBM instructions provide instructions implementing individual bit
1405manipulation operations such as isolating, masking, setting, resetting,
1406complementing, and operations on trailing zeros and ones.
1407
1408@c Need to add a specification citation here when available.
87973e9f 1409
252b5132
RH
1410@node i386-16bit
1411@section Writing 16-bit Code
1412
1413@cindex i386 16-bit code
1414@cindex 16-bit code, i386
1415@cindex real-mode code, i386
eecb386c 1416@cindex @code{code16gcc} directive, i386
252b5132
RH
1417@cindex @code{code16} directive, i386
1418@cindex @code{code32} directive, i386
55b62671
AJ
1419@cindex @code{code64} directive, i386
1420@cindex @code{code64} directive, x86-64
1421While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1422or 64-bit x86-64 code depending on the default configuration,
252b5132 1423it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1424mode code segments. To do this, put a @samp{.code16} or
1425@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1426be run in 16-bit mode. You can switch @code{@value{AS}} to writing
142732-bit code with the @samp{.code32} directive or 64-bit code with the
1428@samp{.code64} directive.
eecb386c
AM
1429
1430@samp{.code16gcc} provides experimental support for generating 16-bit
1431code from gcc, and differs from @samp{.code16} in that @samp{call},
1432@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1433@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1434default to 32-bit size. This is so that the stack pointer is
1435manipulated in the same way over function calls, allowing access to
1436function parameters at the same stack offsets as in 32-bit mode.
1437@samp{.code16gcc} also automatically adds address size prefixes where
1438necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1439
1440The code which @code{@value{AS}} generates in 16-bit mode will not
1441necessarily run on a 16-bit pre-80386 processor. To write code that
1442runs on such a processor, you must refrain from using @emph{any} 32-bit
1443constructs which require @code{@value{AS}} to output address or operand
1444size prefixes.
1445
1446Note that writing 16-bit code instructions by explicitly specifying a
1447prefix or an instruction mnemonic suffix within a 32-bit code section
1448generates different machine instructions than those generated for a
144916-bit code segment. In a 32-bit code section, the following code
1450generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1451value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1452
1453@smallexample
1454 pushw $4
1455@end smallexample
1456
1457The same code in a 16-bit code section would generate the machine
b45619c0 1458opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1459is correct since the processor default operand size is assumed to be 16
1460bits in a 16-bit code section.
1461
e413e4e9
AM
1462@node i386-Arch
1463@section Specifying CPU Architecture
1464
1465@cindex arch directive, i386
1466@cindex i386 arch directive
55b62671
AJ
1467@cindex arch directive, x86-64
1468@cindex x86-64 arch directive
e413e4e9
AM
1469
1470@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1471(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1472directive enables a warning when gas detects an instruction that is not
1473supported on the CPU specified. The choices for @var{cpu_type} are:
1474
1475@multitable @columnfractions .20 .20 .20 .20
1476@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1477@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1478@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1479@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1480@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1481@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1482@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1483@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1484@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1485@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1486@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1487@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1488@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1489@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1490@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1491@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1492@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1493@item @samp{.hle}
e2e1fcde 1494@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1495@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1496@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1497@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1498@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1499@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1500@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1501@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1502@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1503@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1504@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1505@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
260cd341 1506@item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_tile}
1ceab344 1507@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1508@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1509@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1510@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
a847e322 1511@item @samp{.mcommit} @tab @samp{.sev_es}
e413e4e9
AM
1512@end multitable
1513
fddf5b5b
AM
1514Apart from the warning, there are only two other effects on
1515@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1516@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1517will automatically use a two byte opcode sequence. The larger three
1518byte opcode sequence is used on the 486 (and when no architecture is
1519specified) because it executes faster on the 486. Note that you can
1520explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1521Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1522@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1523conditional jumps will be promoted when necessary to a two instruction
1524sequence consisting of a conditional jump of the opposite sense around
1525an unconditional jump to the target.
1526
5c6af06e
JB
1527Following the CPU architecture (but not a sub-architecture, which are those
1528starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1529control automatic promotion of conditional jumps. @samp{jumps} is the
1530default, and enables jump promotion; All external jumps will be of the long
1531variety, and file-local jumps will be promoted as necessary.
1532(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1533byte offset jumps, and warns about file-local conditional jumps that
1534@code{@value{AS}} promotes.
fddf5b5b
AM
1535Unconditional jumps are treated as for @samp{jumps}.
1536
1537For example
1538
1539@smallexample
1540 .arch i8086,nojumps
1541@end smallexample
e413e4e9 1542
bc31405e
L
1543@node i386-ISA
1544@section AMD64 ISA vs. Intel64 ISA
1545
1546There are some discrepancies between AMD64 and Intel64 ISAs.
1547
1548@itemize @bullet
1549@item For @samp{movsxd} with 16-bit destination register, AMD64
1550supports 32-bit source operand and Intel64 supports 16-bit source
1551operand.
5990e377
JB
1552
1553@item For far branches (with explicit memory operand), both ISAs support
155432- and 16-bit operand size. Intel64 additionally supports 64-bit
1555operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1556and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1557syntax.
1558
1559@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1560and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1561while Intel64 additionally supports 64-bit operand sise (80-bit memory
1562operands).
1563
bc31405e
L
1564@end itemize
1565
5c9352f3
AM
1566@node i386-Bugs
1567@section AT&T Syntax bugs
1568
1569The UnixWare assembler, and probably other AT&T derived ix86 Unix
1570assemblers, generate floating point instructions with reversed source
1571and destination registers in certain cases. Unfortunately, gcc and
1572possibly many other programs use this reversed syntax, so we're stuck
1573with it.
1574
1575For example
1576
1577@smallexample
1578 fsub %st,%st(3)
1579@end smallexample
1580@noindent
1581results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1582than the expected @samp{%st(3) - %st}. This happens with all the
1583non-commutative arithmetic floating point operations with two register
1584operands where the source register is @samp{%st} and the destination
1585register is @samp{%st(i)}.
1586
252b5132
RH
1587@node i386-Notes
1588@section Notes
1589
1590@cindex i386 @code{mul}, @code{imul} instructions
1591@cindex @code{mul} instruction, i386
1592@cindex @code{imul} instruction, i386
55b62671
AJ
1593@cindex @code{mul} instruction, x86-64
1594@cindex @code{imul} instruction, x86-64
252b5132 1595There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1596instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1597multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1598for @samp{imul}) can be output only in the one operand form. Thus,
1599@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1600the expanding multiply would clobber the @samp{%edx} register, and this
1601would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
160264-bit product in @samp{%edx:%eax}.
1603
1604We have added a two operand form of @samp{imul} when the first operand
1605is an immediate mode expression and the second operand is a register.
1606This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1607example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1608$69, %eax, %eax}.
1609