]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
Fix 'uninstall' target
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
250d07de 1@c Copyright (C) 1991-2021 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
646cc3e0 128@code{znver3},
7b458c12
L
129@code{btver1},
130@code{btver2},
9103f4f4
L
131@code{generic32} and
132@code{generic64}.
133
34bca508 134In addition to the basic instruction set, the assembler can be told to
6305a203
L
135accept various extension mnemonics. For example,
136@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
137@var{vmx}. The following extensions are currently supported:
309d3373
JB
138@code{8087},
139@code{287},
140@code{387},
1848e567 141@code{687},
309d3373 142@code{no87},
1848e567
L
143@code{no287},
144@code{no387},
145@code{no687},
d871f3f4
L
146@code{cmov},
147@code{nocmov},
148@code{fxsr},
149@code{nofxsr},
6305a203 150@code{mmx},
309d3373 151@code{nommx},
6305a203
L
152@code{sse},
153@code{sse2},
154@code{sse3},
af5c13b0 155@code{sse4a},
6305a203
L
156@code{ssse3},
157@code{sse4.1},
158@code{sse4.2},
159@code{sse4},
309d3373 160@code{nosse},
1848e567
L
161@code{nosse2},
162@code{nosse3},
af5c13b0 163@code{nosse4a},
1848e567
L
164@code{nossse3},
165@code{nosse4.1},
166@code{nosse4.2},
167@code{nosse4},
c0f3af97 168@code{avx},
6c30d220 169@code{avx2},
1848e567
L
170@code{noavx},
171@code{noavx2},
e2e1fcde
L
172@code{adx},
173@code{rdseed},
174@code{prfchw},
5c111e37 175@code{smap},
7e8b059b 176@code{mpx},
a0046408 177@code{sha},
8bc52696 178@code{rdpid},
6b40c462 179@code{ptwrite},
603555e5 180@code{cet},
48521003 181@code{gfni},
8dcf1fad 182@code{vaes},
ff1982d5 183@code{vpclmulqdq},
1dfc6506
L
184@code{prefetchwt1},
185@code{clflushopt},
186@code{se1},
c5e7287a 187@code{clwb},
c0a30a9f
L
188@code{movdiri},
189@code{movdir64b},
5d79adc4 190@code{enqcmd},
4b27d27c 191@code{serialize},
bb651e8b 192@code{tsxldtrk},
c4694f17
TG
193@code{kl},
194@code{nokl},
195@code{widekl},
196@code{nowidekl},
c1fa250a 197@code{hreset},
43234a1e
L
198@code{avx512f},
199@code{avx512cd},
200@code{avx512er},
201@code{avx512pf},
1dfc6506
L
202@code{avx512vl},
203@code{avx512bw},
204@code{avx512dq},
2cc1b5aa 205@code{avx512ifma},
14f195c9 206@code{avx512vbmi},
920d2ddc 207@code{avx512_4fmaps},
47acf0bd 208@code{avx512_4vnniw},
620214f7 209@code{avx512_vpopcntdq},
53467f57 210@code{avx512_vbmi2},
8cfcb765 211@code{avx512_vnni},
ee6872be 212@code{avx512_bitalg},
708a2fff 213@code{avx512_vp2intersect},
81d54bb7 214@code{tdx},
d6aab7a1 215@code{avx512_bf16},
58bf9b6a 216@code{avx_vnni},
0cc78721 217@code{avx512_fp16},
144b71e2
L
218@code{noavx512f},
219@code{noavx512cd},
220@code{noavx512er},
221@code{noavx512pf},
222@code{noavx512vl},
223@code{noavx512bw},
224@code{noavx512dq},
225@code{noavx512ifma},
226@code{noavx512vbmi},
920d2ddc 227@code{noavx512_4fmaps},
47acf0bd 228@code{noavx512_4vnniw},
620214f7 229@code{noavx512_vpopcntdq},
53467f57 230@code{noavx512_vbmi2},
8cfcb765 231@code{noavx512_vnni},
ee6872be 232@code{noavx512_bitalg},
9186c494 233@code{noavx512_vp2intersect},
81d54bb7 234@code{notdx},
d6aab7a1 235@code{noavx512_bf16},
58bf9b6a 236@code{noavx_vnni},
0cc78721 237@code{noavx512_fp16},
dd455cf5 238@code{noenqcmd},
4b27d27c 239@code{noserialize},
bb651e8b 240@code{notsxldtrk},
260cd341
LC
241@code{amx_int8},
242@code{noamx_int8},
243@code{amx_bf16},
244@code{noamx_bf16},
245@code{amx_tile},
246@code{noamx_tile},
f64c42a9 247@code{nouintr},
c1fa250a 248@code{nohreset},
6305a203 249@code{vmx},
8729a6f6 250@code{vmfunc},
6305a203 251@code{smx},
f03fe4c1 252@code{xsave},
c7b8aa3a 253@code{xsaveopt},
1dfc6506
L
254@code{xsavec},
255@code{xsaves},
c0f3af97 256@code{aes},
594ab6a3 257@code{pclmul},
c7b8aa3a
L
258@code{fsgsbase},
259@code{rdrnd},
260@code{f16c},
6c30d220 261@code{bmi2},
c0f3af97 262@code{fma},
f1f8f695
L
263@code{movbe},
264@code{ept},
6c30d220 265@code{lzcnt},
272a84b1 266@code{popcnt},
42164a71
L
267@code{hle},
268@code{rtm},
6c30d220 269@code{invpcid},
bd5295b2 270@code{clflush},
9916071f 271@code{mwaitx},
029f3522 272@code{clzero},
3233d7d0 273@code{wbnoinvd},
be3a8dca 274@code{pconfig},
de89d0a3 275@code{waitpkg},
f64c42a9 276@code{uintr},
c48935d7 277@code{cldemote},
142861df
JB
278@code{rdpru},
279@code{mcommit},
a847e322 280@code{sev_es},
f88c9eb0 281@code{lwp},
5dd85c99
SP
282@code{fma4},
283@code{xop},
60aa667e 284@code{cx16},
bd5295b2 285@code{syscall},
1b7f3fb0 286@code{rdtscp},
6305a203
L
287@code{3dnow},
288@code{3dnowa},
289@code{sse4a},
290@code{sse5},
646cc3e0
GG
291@code{snp},
292@code{invlpgb},
293@code{tlbsync},
272a84b1 294@code{svme} and
6305a203 295@code{padlock}.
309d3373
JB
296Note that rather than extending a basic instruction set, the extension
297mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
298
299When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
300@code{.arch} directive will take precedent.
301
302@cindex @samp{-mtune=} option, i386
303@cindex @samp{-mtune=} option, x86-64
304@item -mtune=@var{CPU}
305This option specifies a processor to optimize for. When used in
306conjunction with the @option{-march} option, only instructions
307of the processor specified by the @option{-march} option will be
308generated.
309
6305a203
L
310Valid @var{CPU} values are identical to the processor list of
311@option{-march=@var{CPU}}.
9103f4f4 312
c0f3af97
L
313@cindex @samp{-msse2avx} option, i386
314@cindex @samp{-msse2avx} option, x86-64
315@item -msse2avx
316This option specifies that the assembler should encode SSE instructions
317with VEX prefix.
318
daf50ae7
L
319@cindex @samp{-msse-check=} option, i386
320@cindex @samp{-msse-check=} option, x86-64
321@item -msse-check=@var{none}
1f9bb1ca
AS
322@itemx -msse-check=@var{warning}
323@itemx -msse-check=@var{error}
9aff4b7a 324These options control if the assembler should check SSE instructions.
daf50ae7
L
325@option{-msse-check=@var{none}} will make the assembler not to check SSE
326instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 327will make the assembler issue a warning for any SSE instruction.
daf50ae7 328@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 329for any SSE instruction.
daf50ae7 330
539f890d
L
331@cindex @samp{-mavxscalar=} option, i386
332@cindex @samp{-mavxscalar=} option, x86-64
333@item -mavxscalar=@var{128}
1f9bb1ca 334@itemx -mavxscalar=@var{256}
2aab8acd 335These options control how the assembler should encode scalar AVX
539f890d
L
336instructions. @option{-mavxscalar=@var{128}} will encode scalar
337AVX instructions with 128bit vector length, which is the default.
338@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
339with 256bit vector length.
340
4970191f
JB
341WARNING: Don't use this for production code - due to CPU errata the
342resulting code may not work on certain models.
343
03751133
L
344@cindex @samp{-mvexwig=} option, i386
345@cindex @samp{-mvexwig=} option, x86-64
346@item -mvexwig=@var{0}
347@itemx -mvexwig=@var{1}
348These options control how the assembler should encode VEX.W-ignored (WIG)
349VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
350instructions with vex.w = 0, which is the default.
351@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
352vex.w = 1.
353
4970191f
JB
354WARNING: Don't use this for production code - due to CPU errata the
355resulting code may not work on certain models.
356
43234a1e
L
357@cindex @samp{-mevexlig=} option, i386
358@cindex @samp{-mevexlig=} option, x86-64
359@item -mevexlig=@var{128}
360@itemx -mevexlig=@var{256}
361@itemx -mevexlig=@var{512}
362These options control how the assembler should encode length-ignored
363(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
364EVEX instructions with 128bit vector length, which is the default.
365@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
366encode LIG EVEX instructions with 256bit and 512bit vector length,
367respectively.
368
369@cindex @samp{-mevexwig=} option, i386
370@cindex @samp{-mevexwig=} option, x86-64
371@item -mevexwig=@var{0}
372@itemx -mevexwig=@var{1}
373These options control how the assembler should encode w-ignored (WIG)
374EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
375EVEX instructions with evex.w = 0, which is the default.
376@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
377evex.w = 1.
378
1efbbeb4
L
379@cindex @samp{-mmnemonic=} option, i386
380@cindex @samp{-mmnemonic=} option, x86-64
381@item -mmnemonic=@var{att}
1f9bb1ca 382@itemx -mmnemonic=@var{intel}
34bca508 383This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
384The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
385take precedent.
386
387@cindex @samp{-msyntax=} option, i386
388@cindex @samp{-msyntax=} option, x86-64
389@item -msyntax=@var{att}
1f9bb1ca 390@itemx -msyntax=@var{intel}
34bca508 391This option specifies instruction syntax when processing instructions.
1efbbeb4
L
392The @code{.att_syntax} and @code{.intel_syntax} directives will
393take precedent.
394
395@cindex @samp{-mnaked-reg} option, i386
396@cindex @samp{-mnaked-reg} option, x86-64
397@item -mnaked-reg
33eaf5de 398This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 399The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 400
7e8b059b
L
401@cindex @samp{-madd-bnd-prefix} option, i386
402@cindex @samp{-madd-bnd-prefix} option, x86-64
403@item -madd-bnd-prefix
404This option forces the assembler to add BND prefix to all branches, even
405if such prefix was not explicitly specified in the source code.
406
8dcea932
L
407@cindex @samp{-mshared} option, i386
408@cindex @samp{-mshared} option, x86-64
409@item -mno-shared
410On ELF target, the assembler normally optimizes out non-PLT relocations
411against defined non-weak global branch targets with default visibility.
412The @samp{-mshared} option tells the assembler to generate code which
413may go into a shared library where all non-weak global branch targets
414with default visibility can be preempted. The resulting code is
415slightly bigger. This option only affects the handling of branch
416instructions.
417
251dae91 418@cindex @samp{-mbig-obj} option, i386
167ad85b
TG
419@cindex @samp{-mbig-obj} option, x86-64
420@item -mbig-obj
251dae91 421On PE/COFF target this option forces the use of big object file
167ad85b
TG
422format, which allows more than 32768 sections.
423
d022bddd
IT
424@cindex @samp{-momit-lock-prefix=} option, i386
425@cindex @samp{-momit-lock-prefix=} option, x86-64
426@item -momit-lock-prefix=@var{no}
427@itemx -momit-lock-prefix=@var{yes}
428These options control how the assembler should encode lock prefix.
429This option is intended as a workaround for processors, that fail on
430lock prefix. This option can only be safely used with single-core,
431single-thread computers
432@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
433@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
434which is the default.
435
e4e00185
AS
436@cindex @samp{-mfence-as-lock-add=} option, i386
437@cindex @samp{-mfence-as-lock-add=} option, x86-64
438@item -mfence-as-lock-add=@var{no}
439@itemx -mfence-as-lock-add=@var{yes}
440These options control how the assembler should encode lfence, mfence and
441sfence.
442@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
443sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
444@samp{lock addl $0x0, (%esp)} in 32-bit mode.
445@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
446sfence as usual, which is the default.
447
0cb4071e
L
448@cindex @samp{-mrelax-relocations=} option, i386
449@cindex @samp{-mrelax-relocations=} option, x86-64
450@item -mrelax-relocations=@var{no}
451@itemx -mrelax-relocations=@var{yes}
452These options control whether the assembler should generate relax
453relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
454R_X86_64_REX_GOTPCRELX, in 64-bit mode.
455@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
456@option{-mrelax-relocations=@var{no}} will not generate relax
457relocations. The default can be controlled by a configure option
458@option{--enable-x86-relax-relocations}.
459
e379e5f3
L
460@cindex @samp{-malign-branch-boundary=} option, i386
461@cindex @samp{-malign-branch-boundary=} option, x86-64
462@item -malign-branch-boundary=@var{NUM}
463This option controls how the assembler should align branches with segment
464prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
465no less than 16. Branches will be aligned within @var{NUM} byte
466boundary. @option{-malign-branch-boundary=0}, which is the default,
467doesn't align branches.
468
469@cindex @samp{-malign-branch=} option, i386
470@cindex @samp{-malign-branch=} option, x86-64
471@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
472This option specifies types of branches to align. @var{TYPE} is
473combination of @samp{jcc}, which aligns conditional jumps,
474@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
475which aligns unconditional jumps, @samp{call} which aligns calls,
476@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
477jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
478
479@cindex @samp{-malign-branch-prefix-size=} option, i386
480@cindex @samp{-malign-branch-prefix-size=} option, x86-64
481@item -malign-branch-prefix-size=@var{NUM}
482This option specifies the maximum number of prefixes on an instruction
483to align branches. @var{NUM} should be between 0 and 5. The default
484@var{NUM} is 5.
485
76cf450b
L
486@cindex @samp{-mbranches-within-32B-boundaries} option, i386
487@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
488@item -mbranches-within-32B-boundaries
489This option aligns conditional jumps, fused conditional jumps and
490unconditional jumps within 32 byte boundary with up to 5 segment prefixes
491on an instruction. It is equivalent to
492@option{-malign-branch-boundary=32}
493@option{-malign-branch=jcc+fused+jmp}
494@option{-malign-branch-prefix-size=5}.
495The default doesn't align branches.
496
ae531041
L
497@cindex @samp{-mlfence-after-load=} option, i386
498@cindex @samp{-mlfence-after-load=} option, x86-64
499@item -mlfence-after-load=@var{no}
500@itemx -mlfence-after-load=@var{yes}
501These options control whether the assembler should generate lfence
502after load instructions. @option{-mlfence-after-load=@var{yes}} will
503generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
504lfence, which is the default.
505
506@cindex @samp{-mlfence-before-indirect-branch=} option, i386
507@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
508@item -mlfence-before-indirect-branch=@var{none}
509@item -mlfence-before-indirect-branch=@var{all}
510@item -mlfence-before-indirect-branch=@var{register}
511@itemx -mlfence-before-indirect-branch=@var{memory}
512These options control whether the assembler should generate lfence
3071b197 513before indirect near branch instructions.
ae531041 514@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 515before indirect near branch via register and issue a warning before
ae531041 516indirect near branch via memory.
a09f656b 517It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
f9a6a8f0 518there's no explicit @option{-mlfence-before-ret=}.
ae531041 519@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 520lfence before indirect near branch via register.
ae531041
L
521@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
522warning before indirect near branch via memory.
523@option{-mlfence-before-indirect-branch=@var{none}} will not generate
524lfence nor issue warning, which is the default. Note that lfence won't
525be generated before indirect near branch via register with
526@option{-mlfence-after-load=@var{yes}} since lfence will be generated
527after loading branch target register.
528
529@cindex @samp{-mlfence-before-ret=} option, i386
530@cindex @samp{-mlfence-before-ret=} option, x86-64
531@item -mlfence-before-ret=@var{none}
a09f656b 532@item -mlfence-before-ret=@var{shl}
ae531041 533@item -mlfence-before-ret=@var{or}
a09f656b 534@item -mlfence-before-ret=@var{yes}
ae531041
L
535@itemx -mlfence-before-ret=@var{not}
536These options control whether the assembler should generate lfence
537before ret. @option{-mlfence-before-ret=@var{or}} will generate
538generate or instruction with lfence.
a09f656b 539@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
540with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
541instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
542generate lfence, which is the default.
ae531041 543
b4a3a7b4
L
544@cindex @samp{-mx86-used-note=} option, i386
545@cindex @samp{-mx86-used-note=} option, x86-64
546@item -mx86-used-note=@var{no}
547@itemx -mx86-used-note=@var{yes}
548These options control whether the assembler should generate
549GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
550GNU property notes. The default can be controlled by the
551@option{--enable-x86-used-note} configure option.
552
d3d3c6db
IT
553@cindex @samp{-mevexrcig=} option, i386
554@cindex @samp{-mevexrcig=} option, x86-64
555@item -mevexrcig=@var{rne}
556@itemx -mevexrcig=@var{rd}
557@itemx -mevexrcig=@var{ru}
558@itemx -mevexrcig=@var{rz}
559These options control how the assembler should encode SAE-only
560EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
561of EVEX instruction with 00, which is the default.
562@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
563and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
564with 01, 10 and 11 RC bits, respectively.
565
5db04b09
L
566@cindex @samp{-mamd64} option, x86-64
567@cindex @samp{-mintel64} option, x86-64
568@item -mamd64
569@itemx -mintel64
570This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
571Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
572only and AMD64 ISAs.
5db04b09 573
b6f8c7c4
L
574@cindex @samp{-O0} option, i386
575@cindex @samp{-O0} option, x86-64
576@cindex @samp{-O} option, i386
577@cindex @samp{-O} option, x86-64
578@cindex @samp{-O1} option, i386
579@cindex @samp{-O1} option, x86-64
580@cindex @samp{-O2} option, i386
581@cindex @samp{-O2} option, x86-64
582@cindex @samp{-Os} option, i386
583@cindex @samp{-Os} option, x86-64
584@item -O0 | -O | -O1 | -O2 | -Os
585Optimize instruction encoding with smaller instruction size. @samp{-O}
586and @samp{-O1} encode 64-bit register load instructions with 64-bit
587immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 588immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
589register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
590register clearing instructions with 128-bit VEX vector register
591clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 592register load/store instructions with VEX vector register load/store
a0a1771e
JB
593instructions, and encode 128-bit/256-bit EVEX packed integer logical
594instructions with 128-bit/256-bit VEX packed integer logical.
595
596@samp{-O2} includes @samp{-O1} optimization plus encodes
597256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
598EVEX vector register clearing instructions. In 64-bit mode VEX encoded
599instructions with commutative source operands will also have their
600source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
601instead of the 3-byte one. Certain forms of AND as well as OR with the
602same (register) operand specified twice will also be changed to TEST.
a0a1771e 603
b6f8c7c4
L
604@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
605and 64-bit register tests with immediate as 8-bit register test with
606immediate. @samp{-O0} turns off this optimization.
607
55b62671 608@end table
731caf76 609@c man end
e413e4e9 610
a6c24e68
NC
611@node i386-Directives
612@section x86 specific Directives
613
614@cindex machine directives, x86
615@cindex x86 machine directives
616@table @code
617
618@cindex @code{lcomm} directive, COFF
619@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
620Reserve @var{length} (an absolute expression) bytes for a local common
621denoted by @var{symbol}. The section and value of @var{symbol} are
622those of the new local common. The addresses are allocated in the bss
704209c0
NC
623section, so that at run-time the bytes start off zeroed. Since
624@var{symbol} is not declared global, it is normally not visible to
625@code{@value{LD}}. The optional third parameter, @var{alignment},
626specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
627
628This directive is only available for COFF based x86 targets.
629
102e9361
NC
630@cindex @code{largecomm} directive, ELF
631@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
632This directive behaves in the same way as the @code{comm} directive
633except that the data is placed into the @var{.lbss} section instead of
634the @var{.bss} section @ref{Comm}.
635
636The directive is intended to be used for data which requires a large
637amount of space, and it is only available for ELF based x86_64
638targets.
639
f2f51cd5
NC
640@cindex @code{value} directive
641@item .value @var{expression} [, @var{expression}]
642This directive behaves in the same way as the @code{.short} directive,
643taking a series of comma separated expressions and storing them as
644two-byte wide values into the current section.
645
a6c24e68 646@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
647
648@end table
649
252b5132 650@node i386-Syntax
7c31ae13
NC
651@section i386 Syntactical Considerations
652@menu
653* i386-Variations:: AT&T Syntax versus Intel Syntax
654* i386-Chars:: Special Characters
655@end menu
656
657@node i386-Variations
658@subsection AT&T Syntax versus Intel Syntax
252b5132 659
e413e4e9
AM
660@cindex i386 intel_syntax pseudo op
661@cindex intel_syntax pseudo op, i386
662@cindex i386 att_syntax pseudo op
663@cindex att_syntax pseudo op, i386
252b5132
RH
664@cindex i386 syntax compatibility
665@cindex syntax compatibility, i386
55b62671
AJ
666@cindex x86-64 intel_syntax pseudo op
667@cindex intel_syntax pseudo op, x86-64
668@cindex x86-64 att_syntax pseudo op
669@cindex att_syntax pseudo op, x86-64
670@cindex x86-64 syntax compatibility
671@cindex syntax compatibility, x86-64
e413e4e9
AM
672
673@code{@value{AS}} now supports assembly using Intel assembler syntax.
674@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
675back to the usual AT&T mode for compatibility with the output of
676@code{@value{GCC}}. Either of these directives may have an optional
677argument, @code{prefix}, or @code{noprefix} specifying whether registers
678require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
679different from Intel syntax. We mention these differences because
680almost all 80386 documents use Intel syntax. Notable differences
681between the two syntaxes are:
682
683@cindex immediate operands, i386
684@cindex i386 immediate operands
685@cindex register operands, i386
686@cindex i386 register operands
687@cindex jump/call operands, i386
688@cindex i386 jump/call operands
689@cindex operand delimiters, i386
55b62671
AJ
690
691@cindex immediate operands, x86-64
692@cindex x86-64 immediate operands
693@cindex register operands, x86-64
694@cindex x86-64 register operands
695@cindex jump/call operands, x86-64
696@cindex x86-64 jump/call operands
697@cindex operand delimiters, x86-64
252b5132
RH
698@itemize @bullet
699@item
700AT&T immediate operands are preceded by @samp{$}; Intel immediate
701operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
702AT&T register operands are preceded by @samp{%}; Intel register operands
703are undelimited. AT&T absolute (as opposed to PC relative) jump/call
704operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
705
706@cindex i386 source, destination operands
707@cindex source, destination operands; i386
55b62671
AJ
708@cindex x86-64 source, destination operands
709@cindex source, destination operands; x86-64
252b5132
RH
710@item
711AT&T and Intel syntax use the opposite order for source and destination
712operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
713@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
714previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
715instructions with 2 immediate operands, such as the @samp{enter}
716instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
717
718@cindex mnemonic suffixes, i386
719@cindex sizes operands, i386
720@cindex i386 size suffixes
55b62671
AJ
721@cindex mnemonic suffixes, x86-64
722@cindex sizes operands, x86-64
723@cindex x86-64 size suffixes
252b5132
RH
724@item
725In AT&T syntax the size of memory operands is determined from the last
726character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 727@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
728(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
729of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
730(256-bit vector) and zmm (512-bit vector) memory references, only when there's
731no other way to disambiguate an instruction. Intel syntax accomplishes this by
732prefixing memory operands (@emph{not} the instruction mnemonics) with
733@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
734@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
735syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
736syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
737@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 738
4b06377f
L
739In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
740instruction with the 64-bit displacement or immediate operand.
741
252b5132
RH
742@cindex return instructions, i386
743@cindex i386 jump, call, return
55b62671
AJ
744@cindex return instructions, x86-64
745@cindex x86-64 jump, call, return
252b5132
RH
746@item
747Immediate form long jumps and calls are
748@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
749Intel syntax is
750@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
751instruction
752is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
753@samp{ret far @var{stack-adjust}}.
754
755@cindex sections, i386
756@cindex i386 sections
55b62671
AJ
757@cindex sections, x86-64
758@cindex x86-64 sections
252b5132
RH
759@item
760The AT&T assembler does not provide support for multiple section
761programs. Unix style systems expect all programs to be single sections.
762@end itemize
763
7c31ae13
NC
764@node i386-Chars
765@subsection Special Characters
766
767@cindex line comment character, i386
768@cindex i386 line comment character
769The presence of a @samp{#} appearing anywhere on a line indicates the
770start of a comment that extends to the end of that line.
771
772If a @samp{#} appears as the first character of a line then the whole
773line is treated as a comment, but in this case the line can also be a
774logical line number directive (@pxref{Comments}) or a preprocessor
775control command (@pxref{Preprocessing}).
776
a05a5b64 777If the @option{--divide} command-line option has not been specified
7c31ae13
NC
778then the @samp{/} character appearing anywhere on a line also
779introduces a line comment.
780
781@cindex line separator, i386
782@cindex statement separator, i386
783@cindex i386 line separator
784The @samp{;} character can be used to separate statements on the same
785line.
786
252b5132 787@node i386-Mnemonics
d3b47e2b
L
788@section i386-Mnemonics
789@subsection Instruction Naming
252b5132
RH
790
791@cindex i386 instruction naming
792@cindex instruction naming, i386
55b62671
AJ
793@cindex x86-64 instruction naming
794@cindex instruction naming, x86-64
795
252b5132 796Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
797specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
798and @samp{q} specify byte, word, long and quadruple word operands. If
799no suffix is specified by an instruction then @code{@value{AS}} tries to
800fill in the missing suffix based on the destination register operand
801(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
802to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
803@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
804assembler which assumes that a missing mnemonic suffix implies long
805operand size. (This incompatibility does not affect compiler output
806since compilers always explicitly specify the mnemonic suffix.)
252b5132 807
c006a730
JB
808When there is no sizing suffix and no (suitable) register operands to
809deduce the size of memory operands, with a few exceptions and where long
810operand size is possible in the first place, operand size will default
811to long in 32- and 64-bit modes. Similarly it will default to short in
81216-bit mode. Noteworthy exceptions are
813
814@itemize @bullet
815@item
816Instructions with an implicit on-stack operand as well as branches,
817which default to quad in 64-bit mode.
818
819@item
820Sign- and zero-extending moves, which default to byte size source
821operands.
822
823@item
824Floating point insns with integer operands, which default to short (for
825perhaps historical reasons).
826
827@item
828CRC32 with a 64-bit destination, which defaults to a quad source
829operand.
830
831@end itemize
832
b6169b20
L
833@cindex encoding options, i386
834@cindex encoding options, x86-64
835
86fa6981
L
836Different encoding options can be specified via pseudo prefixes:
837
838@itemize @bullet
839@item
840@samp{@{disp8@}} -- prefer 8-bit displacement.
841
842@item
41eb8e88
L
843@samp{@{disp32@}} -- prefer 32-bit displacement.
844
845@item
846@samp{@{disp16@}} -- prefer 16-bit displacement.
86fa6981
L
847
848@item
849@samp{@{load@}} -- prefer load-form instruction.
850
851@item
852@samp{@{store@}} -- prefer store-form instruction.
853
854@item
42e04b36 855@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
856
857@item
42e04b36 858@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
859
860@item
861@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
862
863@item
864@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
865instructions (x86-64 only). Note that this differs from the @samp{rex}
866prefix which generates REX prefix unconditionally.
b6f8c7c4
L
867
868@item
869@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 870@end itemize
b6169b20 871
58bf9b6a
L
872Mnemonics of Intel VNNI instructions are encoded with the EVEX prefix
873by default. The pseudo @samp{@{vex@}} prefix can be used to encode
874mnemonics of Intel VNNI instructions with the VEX prefix.
875
252b5132
RH
876@cindex conversion instructions, i386
877@cindex i386 conversion instructions
55b62671
AJ
878@cindex conversion instructions, x86-64
879@cindex x86-64 conversion instructions
252b5132
RH
880The Intel-syntax conversion instructions
881
882@itemize @bullet
883@item
884@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
885
886@item
887@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
888
889@item
890@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
891
892@item
893@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
894
895@item
896@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
897(x86-64 only),
898
899@item
d5f0cf92 900@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 901@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
902@end itemize
903
904@noindent
55b62671
AJ
905are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
906@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
907instructions.
252b5132 908
0e6724de
L
909@cindex extension instructions, i386
910@cindex i386 extension instructions
911@cindex extension instructions, x86-64
912@cindex x86-64 extension instructions
913The Intel-syntax extension instructions
914
915@itemize @bullet
916@item
917@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
918
919@item
920@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
921
922@item
923@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
924(x86-64 only).
925
926@item
927@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
928
929@item
930@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
931(x86-64 only).
932
933@item
934@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
935(x86-64 only).
936
937@item
938@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
939
940@item
941@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
942
943@item
944@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
945(x86-64 only).
946
947@item
948@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
949
950@item
951@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
952(x86-64 only).
953@end itemize
954
955@noindent
956are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
3f335b75 957@samp{movsbq/movsxb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
0e6724de
L
958@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
959@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
960@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
961
252b5132
RH
962@cindex jump instructions, i386
963@cindex call instructions, i386
55b62671
AJ
964@cindex jump instructions, x86-64
965@cindex call instructions, x86-64
252b5132
RH
966Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
967AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
968convention.
969
d3b47e2b 970@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
971
972@cindex i386 mnemonic compatibility
973@cindex mnemonic compatibility, i386
974
975@code{@value{AS}} supports assembly using Intel mnemonic.
976@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
977@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
978syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
979Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
980@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
981@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
982assembler with different mnemonics from those in Intel IA32 specification.
983@code{@value{GCC}} generates those instructions with AT&T mnemonic.
984
bc31405e
L
985@itemize @bullet
986@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
987register. @samp{movsxd} should be used to encode 16-bit or 32-bit
988destination register with both AT&T and Intel mnemonics.
989@end itemize
990
252b5132
RH
991@node i386-Regs
992@section Register Naming
993
994@cindex i386 registers
995@cindex registers, i386
55b62671
AJ
996@cindex x86-64 registers
997@cindex registers, x86-64
252b5132
RH
998Register operands are always prefixed with @samp{%}. The 80386 registers
999consist of
1000
1001@itemize @bullet
1002@item
1003the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
1004@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
1005frame pointer), and @samp{%esp} (the stack pointer).
1006
1007@item
1008the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
1009@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
1010
1011@item
1012the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
1013@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
1014are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
1015@samp{%cx}, and @samp{%dx})
1016
1017@item
1018the 6 section registers @samp{%cs} (code section), @samp{%ds}
1019(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
1020and @samp{%gs}.
1021
1022@item
4bde3cdd
UD
1023the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1024@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
1025
1026@item
1027the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1028@samp{%db3}, @samp{%db6}, and @samp{%db7}.
1029
1030@item
1031the 2 test registers @samp{%tr6} and @samp{%tr7}.
1032
1033@item
1034the 8 floating point register stack @samp{%st} or equivalently
1035@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1036@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1037These registers are overloaded by 8 MMX registers @samp{%mm0},
1038@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1039@samp{%mm6} and @samp{%mm7}.
1040
1041@item
4bde3cdd 1042the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1043@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1044@end itemize
1045
1046The AMD x86-64 architecture extends the register set by:
1047
1048@itemize @bullet
1049@item
1050enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1051accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1052@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1053pointer)
1054
1055@item
1056the 8 extended registers @samp{%r8}--@samp{%r15}.
1057
1058@item
4bde3cdd 1059the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1060
1061@item
4bde3cdd 1062the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1063
1064@item
4bde3cdd 1065the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1066
1067@item
1068the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1069
1070@item
1071the 8 debug registers: @samp{%db8}--@samp{%db15}.
1072
1073@item
4bde3cdd
UD
1074the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1075@end itemize
1076
1077With the AVX extensions more registers were made available:
1078
1079@itemize @bullet
1080
1081@item
1082the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1083available in 32-bit mode). The bottom 128 bits are overlaid with the
1084@samp{xmm0}--@samp{xmm15} registers.
1085
1086@end itemize
1087
4bde3cdd
UD
1088The AVX512 extensions added the following registers:
1089
1090@itemize @bullet
1091
1092@item
1093the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1094available in 32-bit mode). The bottom 128 bits are overlaid with the
1095@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1096overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1097
1098@item
1099the 8 mask registers @samp{%k0}--@samp{%k7}.
1100
252b5132
RH
1101@end itemize
1102
1103@node i386-Prefixes
1104@section Instruction Prefixes
1105
1106@cindex i386 instruction prefixes
1107@cindex instruction prefixes, i386
1108@cindex prefixes, i386
1109Instruction prefixes are used to modify the following instruction. They
1110are used to repeat string instructions, to provide section overrides, to
1111perform bus lock operations, and to change operand and address sizes.
1112(Most instructions that normally operate on 32-bit operands will use
111316-bit operands if the instruction has an ``operand size'' prefix.)
1114Instruction prefixes are best written on the same line as the instruction
1115they act upon. For example, the @samp{scas} (scan string) instruction is
1116repeated with:
1117
1118@smallexample
1119 repne scas %es:(%edi),%al
1120@end smallexample
1121
1122You may also place prefixes on the lines immediately preceding the
1123instruction, but this circumvents checks that @code{@value{AS}} does
1124with prefixes, and will not work with all prefixes.
1125
1126Here is a list of instruction prefixes:
1127
1128@cindex section override prefixes, i386
1129@itemize @bullet
1130@item
1131Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1132@samp{fs}, @samp{gs}. These are automatically added by specifying
1133using the @var{section}:@var{memory-operand} form for memory references.
1134
1135@cindex size prefixes, i386
1136@item
1137Operand/Address size prefixes @samp{data16} and @samp{addr16}
1138change 32-bit operands/addresses into 16-bit operands/addresses,
1139while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1140@code{.code16} section) into 32-bit operands/addresses. These prefixes
1141@emph{must} appear on the same line of code as the instruction they
1142modify. For example, in a 16-bit @code{.code16} section, you might
1143write:
1144
1145@smallexample
1146 addr32 jmpl *(%ebx)
1147@end smallexample
1148
1149@cindex bus lock prefixes, i386
1150@cindex inhibiting interrupts, i386
1151@item
1152The bus lock prefix @samp{lock} inhibits interrupts during execution of
1153the instruction it precedes. (This is only valid with certain
1154instructions; see a 80386 manual for details).
1155
1156@cindex coprocessor wait, i386
1157@item
1158The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1159complete the current instruction. This should never be needed for the
116080386/80387 combination.
1161
1162@cindex repeat prefixes, i386
1163@item
1164The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1165to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1166times if the current address size is 16-bits).
55b62671
AJ
1167@cindex REX prefixes, i386
1168@item
1169The @samp{rex} family of prefixes is used by x86-64 to encode
1170extensions to i386 instruction set. The @samp{rex} prefix has four
1171bits --- an operand size overwrite (@code{64}) used to change operand size
1172from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1173register set.
1174
1175You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1176instruction emits @samp{rex} prefix with all the bits set. By omitting
1177the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1178prefixes as well. Normally, there is no need to write the prefixes
1179explicitly, since gas will automatically generate them based on the
1180instruction operands.
252b5132
RH
1181@end itemize
1182
1183@node i386-Memory
1184@section Memory References
1185
1186@cindex i386 memory references
1187@cindex memory references, i386
55b62671
AJ
1188@cindex x86-64 memory references
1189@cindex memory references, x86-64
252b5132
RH
1190An Intel syntax indirect memory reference of the form
1191
1192@smallexample
1193@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1194@end smallexample
1195
1196@noindent
1197is translated into the AT&T syntax
1198
1199@smallexample
1200@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1201@end smallexample
1202
1203@noindent
1204where @var{base} and @var{index} are the optional 32-bit base and
1205index registers, @var{disp} is the optional displacement, and
1206@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1207to calculate the address of the operand. If no @var{scale} is
1208specified, @var{scale} is taken to be 1. @var{section} specifies the
1209optional section register for the memory operand, and may override the
1210default section register (see a 80386 manual for section register
1211defaults). Note that section overrides in AT&T syntax @emph{must}
1212be preceded by a @samp{%}. If you specify a section override which
1213coincides with the default section register, @code{@value{AS}} does @emph{not}
1214output any section register override prefixes to assemble the given
1215instruction. Thus, section overrides can be specified to emphasize which
1216section register is used for a given memory operand.
1217
1218Here are some examples of Intel and AT&T style memory references:
1219
1220@table @asis
1221@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1222@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1223missing, and the default section is used (@samp{%ss} for addressing with
1224@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1225
1226@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1227@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1228@samp{foo}. All other fields are missing. The section register here
1229defaults to @samp{%ds}.
1230
1231@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1232This uses the value pointed to by @samp{foo} as a memory operand.
1233Note that @var{base} and @var{index} are both missing, but there is only
1234@emph{one} @samp{,}. This is a syntactic exception.
1235
1236@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1237This selects the contents of the variable @samp{foo} with section
1238register @var{section} being @samp{%gs}.
1239@end table
1240
1241Absolute (as opposed to PC relative) call and jump operands must be
1242prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1243always chooses PC relative addressing for jump/call labels.
1244
1245Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1246@emph{must} specify its size (byte, word, long, or quadruple) with an
1247instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1248respectively).
1249
1250The x86-64 architecture adds an RIP (instruction pointer relative)
1251addressing. This addressing mode is specified by using @samp{rip} as a
1252base register. Only constant offsets are valid. For example:
1253
1254@table @asis
1255@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1256Points to the address 1234 bytes past the end of the current
1257instruction.
1258
1259@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1260Points to the @code{symbol} in RIP relative way, this is shorter than
1261the default absolute addressing.
1262@end table
1263
1264Other addressing modes remain unchanged in x86-64 architecture, except
1265registers used are 64-bit instead of 32-bit.
252b5132 1266
fddf5b5b 1267@node i386-Jumps
252b5132
RH
1268@section Handling of Jump Instructions
1269
1270@cindex jump optimization, i386
1271@cindex i386 jump optimization
55b62671
AJ
1272@cindex jump optimization, x86-64
1273@cindex x86-64 jump optimization
252b5132
RH
1274Jump instructions are always optimized to use the smallest possible
1275displacements. This is accomplished by using byte (8-bit) displacement
1276jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1277is insufficient a long displacement is used. We do not support
252b5132
RH
1278word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1279instruction with the @samp{data16} instruction prefix), since the 80386
1280insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1281is added. (See also @pxref{i386-Arch})
252b5132
RH
1282
1283Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1284@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1285displacements, so that if you use these instructions (@code{@value{GCC}} does
1286not use them) you may get an error message (and incorrect code). The AT&T
128780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1288to
1289
1290@smallexample
1291 jcxz cx_zero
1292 jmp cx_nonzero
1293cx_zero: jmp foo
1294cx_nonzero:
1295@end smallexample
1296
1297@node i386-Float
1298@section Floating Point
1299
1300@cindex i386 floating point
1301@cindex floating point, i386
55b62671
AJ
1302@cindex x86-64 floating point
1303@cindex floating point, x86-64
252b5132
RH
1304All 80387 floating point types except packed BCD are supported.
1305(BCD support may be added without much difficulty). These data
1306types are 16-, 32-, and 64- bit integers, and single (32-bit),
1307double (64-bit), and extended (80-bit) precision floating point.
1308Each supported type has an instruction mnemonic suffix and a constructor
1309associated with it. Instruction mnemonic suffixes specify the operand's
1310data type. Constructors build these data types into memory.
1311
1312@cindex @code{float} directive, i386
1313@cindex @code{single} directive, i386
1314@cindex @code{double} directive, i386
1315@cindex @code{tfloat} directive, i386
7d19d096 1316@cindex @code{hfloat} directive, i386
de133cf9 1317@cindex @code{bfloat16} directive, i386
55b62671
AJ
1318@cindex @code{float} directive, x86-64
1319@cindex @code{single} directive, x86-64
1320@cindex @code{double} directive, x86-64
1321@cindex @code{tfloat} directive, x86-64
7d19d096 1322@cindex @code{hfloat} directive, x86-64
de133cf9 1323@cindex @code{bfloat16} directive, x86-64
252b5132
RH
1324@itemize @bullet
1325@item
1326Floating point constructors are @samp{.float} or @samp{.single},
de133cf9
JB
1327@samp{.double}, @samp{.tfloat}, @samp{.hfloat}, and @samp{.bfloat16} for 32-,
132864-, 80-, and 16-bit (two flavors) formats respectively. The former three
1329correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, and @samp{t}.
1330@samp{t} stands for 80-bit (ten byte) real. The 80387 only supports this
1331format via the @samp{fldt} (load 80-bit real to stack top) and @samp{fstpt}
1332(store 80-bit real and pop stack) instructions.
252b5132
RH
1333
1334@cindex @code{word} directive, i386
1335@cindex @code{long} directive, i386
1336@cindex @code{int} directive, i386
1337@cindex @code{quad} directive, i386
55b62671
AJ
1338@cindex @code{word} directive, x86-64
1339@cindex @code{long} directive, x86-64
1340@cindex @code{int} directive, x86-64
1341@cindex @code{quad} directive, x86-64
252b5132
RH
1342@item
1343Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1344@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
a12f86b9 1345corresponding instruction mnemonic suffixes are @samp{s} (short),
252b5132
RH
1346@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1347the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1348quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1349stack) instructions.
1350@end itemize
1351
1352Register to register operations should not use instruction mnemonic suffixes.
1353@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1354wrote @samp{fst %st, %st(1)}, since all register to register operations
1355use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1356which converts @samp{%st} from 80-bit to 64-bit floating point format,
1357then stores the result in the 4 byte location @samp{mem})
1358
1359@node i386-SIMD
1360@section Intel's MMX and AMD's 3DNow! SIMD Operations
1361
1362@cindex MMX, i386
1363@cindex 3DNow!, i386
1364@cindex SIMD, i386
55b62671
AJ
1365@cindex MMX, x86-64
1366@cindex 3DNow!, x86-64
1367@cindex SIMD, x86-64
252b5132
RH
1368
1369@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1370instructions for integer data), available on Intel's Pentium MMX
1371processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1372Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1373instruction set (SIMD instructions for 32-bit floating point data)
1374available on AMD's K6-2 processor and possibly others in the future.
1375
1376Currently, @code{@value{AS}} does not support Intel's floating point
1377SIMD, Katmai (KNI).
1378
1379The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1380@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
138116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1382floating point values. The MMX registers cannot be used at the same time
1383as the floating point stack.
1384
1385See Intel and AMD documentation, keeping in mind that the operand order in
1386instructions is reversed from the Intel syntax.
1387
f88c9eb0
SP
1388@node i386-LWP
1389@section AMD's Lightweight Profiling Instructions
1390
1391@cindex LWP, i386
1392@cindex LWP, x86-64
1393
1394@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1395instruction set, available on AMD's Family 15h (Orochi) processors.
1396
1397LWP enables applications to collect and manage performance data, and
1398react to performance events. The collection of performance data
1399requires no context switches. LWP runs in the context of a thread and
1400so several counters can be used independently across multiple threads.
1401LWP can be used in both 64-bit and legacy 32-bit modes.
1402
1403For detailed information on the LWP instruction set, see the
1404@cite{AMD Lightweight Profiling Specification} available at
1405@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1406
87973e9f
QN
1407@node i386-BMI
1408@section Bit Manipulation Instructions
1409
1410@cindex BMI, i386
1411@cindex BMI, x86-64
1412
1413@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1414
1415BMI instructions provide several instructions implementing individual
1416bit manipulation operations such as isolation, masking, setting, or
34bca508 1417resetting.
87973e9f
QN
1418
1419@c Need to add a specification citation here when available.
1420
2a2a0f38
QN
1421@node i386-TBM
1422@section AMD's Trailing Bit Manipulation Instructions
1423
1424@cindex TBM, i386
1425@cindex TBM, x86-64
1426
1427@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1428instruction set, available on AMD's BDVER2 processors (Trinity and
1429Viperfish).
1430
1431TBM instructions provide instructions implementing individual bit
1432manipulation operations such as isolating, masking, setting, resetting,
1433complementing, and operations on trailing zeros and ones.
1434
1435@c Need to add a specification citation here when available.
87973e9f 1436
252b5132
RH
1437@node i386-16bit
1438@section Writing 16-bit Code
1439
1440@cindex i386 16-bit code
1441@cindex 16-bit code, i386
1442@cindex real-mode code, i386
eecb386c 1443@cindex @code{code16gcc} directive, i386
252b5132
RH
1444@cindex @code{code16} directive, i386
1445@cindex @code{code32} directive, i386
55b62671
AJ
1446@cindex @code{code64} directive, i386
1447@cindex @code{code64} directive, x86-64
1448While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1449or 64-bit x86-64 code depending on the default configuration,
252b5132 1450it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1451mode code segments. To do this, put a @samp{.code16} or
1452@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1453be run in 16-bit mode. You can switch @code{@value{AS}} to writing
145432-bit code with the @samp{.code32} directive or 64-bit code with the
1455@samp{.code64} directive.
eecb386c
AM
1456
1457@samp{.code16gcc} provides experimental support for generating 16-bit
1458code from gcc, and differs from @samp{.code16} in that @samp{call},
1459@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1460@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1461default to 32-bit size. This is so that the stack pointer is
1462manipulated in the same way over function calls, allowing access to
1463function parameters at the same stack offsets as in 32-bit mode.
1464@samp{.code16gcc} also automatically adds address size prefixes where
1465necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1466
1467The code which @code{@value{AS}} generates in 16-bit mode will not
1468necessarily run on a 16-bit pre-80386 processor. To write code that
1469runs on such a processor, you must refrain from using @emph{any} 32-bit
1470constructs which require @code{@value{AS}} to output address or operand
1471size prefixes.
1472
1473Note that writing 16-bit code instructions by explicitly specifying a
1474prefix or an instruction mnemonic suffix within a 32-bit code section
1475generates different machine instructions than those generated for a
147616-bit code segment. In a 32-bit code section, the following code
1477generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1478value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1479
1480@smallexample
1481 pushw $4
1482@end smallexample
1483
1484The same code in a 16-bit code section would generate the machine
b45619c0 1485opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1486is correct since the processor default operand size is assumed to be 16
1487bits in a 16-bit code section.
1488
e413e4e9
AM
1489@node i386-Arch
1490@section Specifying CPU Architecture
1491
1492@cindex arch directive, i386
1493@cindex i386 arch directive
55b62671
AJ
1494@cindex arch directive, x86-64
1495@cindex x86-64 arch directive
e413e4e9
AM
1496
1497@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1498(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1499directive enables a warning when gas detects an instruction that is not
1500supported on the CPU specified. The choices for @var{cpu_type} are:
1501
1502@multitable @columnfractions .20 .20 .20 .20
1503@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1504@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1505@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1506@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1507@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1508@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1509@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
646cc3e0
GG
1510@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
1511@item @samp{btver1} @tab @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
d871f3f4 1512@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1513@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1514@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1515@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1516@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1517@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1518@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1519@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1520@item @samp{.hle}
e2e1fcde 1521@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1522@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1523@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1524@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1525@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1526@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1527@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1528@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
0cc78721 1529@item @samp{.tdx} @tab @samp{.avx_vnni} @tab @samp{.avx512_fp16}
d777820b 1530@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1531@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1532@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1533@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
260cd341 1534@item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_tile}
c1fa250a 1535@item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1ceab344 1536@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1537@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1538@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1539@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
646cc3e0
GG
1540@item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1541@item @samp{.tlbsync}
e413e4e9
AM
1542@end multitable
1543
fddf5b5b
AM
1544Apart from the warning, there are only two other effects on
1545@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1546@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1547will automatically use a two byte opcode sequence. The larger three
1548byte opcode sequence is used on the 486 (and when no architecture is
1549specified) because it executes faster on the 486. Note that you can
1550explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1551Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1552@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1553conditional jumps will be promoted when necessary to a two instruction
1554sequence consisting of a conditional jump of the opposite sense around
1555an unconditional jump to the target.
1556
5c6af06e
JB
1557Following the CPU architecture (but not a sub-architecture, which are those
1558starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1559control automatic promotion of conditional jumps. @samp{jumps} is the
1560default, and enables jump promotion; All external jumps will be of the long
1561variety, and file-local jumps will be promoted as necessary.
1562(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1563byte offset jumps, and warns about file-local conditional jumps that
1564@code{@value{AS}} promotes.
fddf5b5b
AM
1565Unconditional jumps are treated as for @samp{jumps}.
1566
1567For example
1568
1569@smallexample
1570 .arch i8086,nojumps
1571@end smallexample
e413e4e9 1572
bc31405e
L
1573@node i386-ISA
1574@section AMD64 ISA vs. Intel64 ISA
1575
1576There are some discrepancies between AMD64 and Intel64 ISAs.
1577
1578@itemize @bullet
1579@item For @samp{movsxd} with 16-bit destination register, AMD64
1580supports 32-bit source operand and Intel64 supports 16-bit source
1581operand.
5990e377
JB
1582
1583@item For far branches (with explicit memory operand), both ISAs support
158432- and 16-bit operand size. Intel64 additionally supports 64-bit
1585operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1586and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1587syntax.
1588
1589@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1590and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1591while Intel64 additionally supports 64-bit operand sise (80-bit memory
1592operands).
1593
bc31405e
L
1594@end itemize
1595
5c9352f3
AM
1596@node i386-Bugs
1597@section AT&T Syntax bugs
1598
1599The UnixWare assembler, and probably other AT&T derived ix86 Unix
1600assemblers, generate floating point instructions with reversed source
1601and destination registers in certain cases. Unfortunately, gcc and
1602possibly many other programs use this reversed syntax, so we're stuck
1603with it.
1604
1605For example
1606
1607@smallexample
1608 fsub %st,%st(3)
1609@end smallexample
1610@noindent
1611results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1612than the expected @samp{%st(3) - %st}. This happens with all the
1613non-commutative arithmetic floating point operations with two register
1614operands where the source register is @samp{%st} and the destination
1615register is @samp{%st(i)}.
1616
252b5132
RH
1617@node i386-Notes
1618@section Notes
1619
1620@cindex i386 @code{mul}, @code{imul} instructions
1621@cindex @code{mul} instruction, i386
1622@cindex @code{imul} instruction, i386
55b62671
AJ
1623@cindex @code{mul} instruction, x86-64
1624@cindex @code{imul} instruction, x86-64
252b5132 1625There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1626instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1627multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1628for @samp{imul}) can be output only in the one operand form. Thus,
1629@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1630the expanding multiply would clobber the @samp{%edx} register, and this
1631would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
163264-bit product in @samp{%edx:%eax}.
1633
1634We have added a two operand form of @samp{imul} when the first operand
1635is an immediate mode expression and the second operand is a register.
1636This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1637example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1638$69, %eax, %eax}.
1639