]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
x86-64: don't permit LAHF/SAHF with "generic64"
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
d87bef3a 1@c Copyright (C) 1991-2023 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
a9660a6f 125@code{znver2},
646cc3e0 126@code{znver3},
b0e8fa7f 127@code{znver4},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
d871f3f4 141@code{cmov},
d871f3f4 142@code{fxsr},
6305a203
L
143@code{mmx},
144@code{sse},
145@code{sse2},
146@code{sse3},
af5c13b0 147@code{sse4a},
6305a203
L
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
c0f3af97 152@code{avx},
6c30d220 153@code{avx2},
c3bb24f5 154@code{lahf_sahf},
e2e1fcde
L
155@code{adx},
156@code{rdseed},
157@code{prfchw},
5c111e37 158@code{smap},
7e8b059b 159@code{mpx},
a0046408 160@code{sha},
8bc52696 161@code{rdpid},
6b40c462 162@code{ptwrite},
603555e5 163@code{cet},
48521003 164@code{gfni},
8dcf1fad 165@code{vaes},
ff1982d5 166@code{vpclmulqdq},
1dfc6506
L
167@code{prefetchwt1},
168@code{clflushopt},
169@code{se1},
c5e7287a 170@code{clwb},
c0a30a9f
L
171@code{movdiri},
172@code{movdir64b},
5d79adc4 173@code{enqcmd},
4b27d27c 174@code{serialize},
bb651e8b 175@code{tsxldtrk},
c4694f17 176@code{kl},
c4694f17 177@code{widekl},
c1fa250a 178@code{hreset},
43234a1e
L
179@code{avx512f},
180@code{avx512cd},
181@code{avx512er},
182@code{avx512pf},
1dfc6506
L
183@code{avx512vl},
184@code{avx512bw},
185@code{avx512dq},
2cc1b5aa 186@code{avx512ifma},
14f195c9 187@code{avx512vbmi},
920d2ddc 188@code{avx512_4fmaps},
47acf0bd 189@code{avx512_4vnniw},
620214f7 190@code{avx512_vpopcntdq},
53467f57 191@code{avx512_vbmi2},
8cfcb765 192@code{avx512_vnni},
ee6872be 193@code{avx512_bitalg},
708a2fff 194@code{avx512_vp2intersect},
81d54bb7 195@code{tdx},
d6aab7a1 196@code{avx512_bf16},
58bf9b6a 197@code{avx_vnni},
0cc78721 198@code{avx512_fp16},
ef07be45 199@code{prefetchi},
4321af3e 200@code{avx_ifma},
23ae61ad 201@code{avx_vnni_int8},
a93e3234 202@code{cmpccxadd},
941f0833 203@code{wrmsrns},
2188d6ea 204@code{msrlist},
01d8ce74 205@code{avx_ne_convert},
b06311ad 206@code{rao_int},
260cd341 207@code{amx_int8},
260cd341 208@code{amx_bf16},
68830fba 209@code{amx_fp16},
260cd341 210@code{amx_tile},
6305a203 211@code{vmx},
8729a6f6 212@code{vmfunc},
6305a203 213@code{smx},
f03fe4c1 214@code{xsave},
c7b8aa3a 215@code{xsaveopt},
1dfc6506
L
216@code{xsavec},
217@code{xsaves},
c0f3af97 218@code{aes},
594ab6a3 219@code{pclmul},
c7b8aa3a
L
220@code{fsgsbase},
221@code{rdrnd},
222@code{f16c},
6c30d220 223@code{bmi2},
c0f3af97 224@code{fma},
f1f8f695
L
225@code{movbe},
226@code{ept},
6c30d220 227@code{lzcnt},
272a84b1 228@code{popcnt},
42164a71
L
229@code{hle},
230@code{rtm},
760ab3d0 231@code{tsx},
6c30d220 232@code{invpcid},
bd5295b2 233@code{clflush},
9916071f 234@code{mwaitx},
029f3522 235@code{clzero},
3233d7d0 236@code{wbnoinvd},
be3a8dca 237@code{pconfig},
de89d0a3 238@code{waitpkg},
f64c42a9 239@code{uintr},
c48935d7 240@code{cldemote},
142861df
JB
241@code{rdpru},
242@code{mcommit},
a847e322 243@code{sev_es},
f88c9eb0 244@code{lwp},
5dd85c99
SP
245@code{fma4},
246@code{xop},
60aa667e 247@code{cx16},
bd5295b2 248@code{syscall},
1b7f3fb0 249@code{rdtscp},
6305a203
L
250@code{3dnow},
251@code{3dnowa},
252@code{sse4a},
253@code{sse5},
646cc3e0
GG
254@code{snp},
255@code{invlpgb},
256@code{tlbsync},
272a84b1 257@code{svme} and
6305a203 258@code{padlock}.
32e876a8
JB
259Note that these extension mnemonics can be prefixed with @code{no} to revoke
260the respective (and any dependent) functionality.
6305a203
L
261
262When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
263@code{.arch} directive will take precedent.
264
265@cindex @samp{-mtune=} option, i386
266@cindex @samp{-mtune=} option, x86-64
267@item -mtune=@var{CPU}
268This option specifies a processor to optimize for. When used in
269conjunction with the @option{-march} option, only instructions
270of the processor specified by the @option{-march} option will be
271generated.
272
6305a203
L
273Valid @var{CPU} values are identical to the processor list of
274@option{-march=@var{CPU}}.
9103f4f4 275
c0f3af97
L
276@cindex @samp{-msse2avx} option, i386
277@cindex @samp{-msse2avx} option, x86-64
278@item -msse2avx
279This option specifies that the assembler should encode SSE instructions
280with VEX prefix.
281
c8480b58
L
282@cindex @samp{-muse-unaligned-vector-move} option, i386
283@cindex @samp{-muse-unaligned-vector-move} option, x86-64
284@item -muse-unaligned-vector-move
285This option specifies that the assembler should encode aligned vector
286move as unaligned vector move.
287
daf50ae7
L
288@cindex @samp{-msse-check=} option, i386
289@cindex @samp{-msse-check=} option, x86-64
290@item -msse-check=@var{none}
1f9bb1ca
AS
291@itemx -msse-check=@var{warning}
292@itemx -msse-check=@var{error}
9aff4b7a 293These options control if the assembler should check SSE instructions.
daf50ae7
L
294@option{-msse-check=@var{none}} will make the assembler not to check SSE
295instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 296will make the assembler issue a warning for any SSE instruction.
daf50ae7 297@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 298for any SSE instruction.
daf50ae7 299
539f890d
L
300@cindex @samp{-mavxscalar=} option, i386
301@cindex @samp{-mavxscalar=} option, x86-64
302@item -mavxscalar=@var{128}
1f9bb1ca 303@itemx -mavxscalar=@var{256}
2aab8acd 304These options control how the assembler should encode scalar AVX
539f890d
L
305instructions. @option{-mavxscalar=@var{128}} will encode scalar
306AVX instructions with 128bit vector length, which is the default.
307@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
308with 256bit vector length.
309
4970191f
JB
310WARNING: Don't use this for production code - due to CPU errata the
311resulting code may not work on certain models.
312
03751133
L
313@cindex @samp{-mvexwig=} option, i386
314@cindex @samp{-mvexwig=} option, x86-64
315@item -mvexwig=@var{0}
316@itemx -mvexwig=@var{1}
317These options control how the assembler should encode VEX.W-ignored (WIG)
318VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
319instructions with vex.w = 0, which is the default.
320@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
321vex.w = 1.
322
4970191f
JB
323WARNING: Don't use this for production code - due to CPU errata the
324resulting code may not work on certain models.
325
43234a1e
L
326@cindex @samp{-mevexlig=} option, i386
327@cindex @samp{-mevexlig=} option, x86-64
328@item -mevexlig=@var{128}
329@itemx -mevexlig=@var{256}
330@itemx -mevexlig=@var{512}
331These options control how the assembler should encode length-ignored
332(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
333EVEX instructions with 128bit vector length, which is the default.
334@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
335encode LIG EVEX instructions with 256bit and 512bit vector length,
336respectively.
337
338@cindex @samp{-mevexwig=} option, i386
339@cindex @samp{-mevexwig=} option, x86-64
340@item -mevexwig=@var{0}
341@itemx -mevexwig=@var{1}
342These options control how the assembler should encode w-ignored (WIG)
343EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
344EVEX instructions with evex.w = 0, which is the default.
345@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
346evex.w = 1.
347
1efbbeb4
L
348@cindex @samp{-mmnemonic=} option, i386
349@cindex @samp{-mmnemonic=} option, x86-64
350@item -mmnemonic=@var{att}
1f9bb1ca 351@itemx -mmnemonic=@var{intel}
34bca508 352This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
353The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
354take precedent.
355
356@cindex @samp{-msyntax=} option, i386
357@cindex @samp{-msyntax=} option, x86-64
358@item -msyntax=@var{att}
1f9bb1ca 359@itemx -msyntax=@var{intel}
34bca508 360This option specifies instruction syntax when processing instructions.
1efbbeb4
L
361The @code{.att_syntax} and @code{.intel_syntax} directives will
362take precedent.
363
364@cindex @samp{-mnaked-reg} option, i386
365@cindex @samp{-mnaked-reg} option, x86-64
366@item -mnaked-reg
33eaf5de 367This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 368The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 369
7e8b059b
L
370@cindex @samp{-madd-bnd-prefix} option, i386
371@cindex @samp{-madd-bnd-prefix} option, x86-64
372@item -madd-bnd-prefix
373This option forces the assembler to add BND prefix to all branches, even
374if such prefix was not explicitly specified in the source code.
375
8dcea932
L
376@cindex @samp{-mshared} option, i386
377@cindex @samp{-mshared} option, x86-64
378@item -mno-shared
379On ELF target, the assembler normally optimizes out non-PLT relocations
380against defined non-weak global branch targets with default visibility.
381The @samp{-mshared} option tells the assembler to generate code which
382may go into a shared library where all non-weak global branch targets
383with default visibility can be preempted. The resulting code is
384slightly bigger. This option only affects the handling of branch
385instructions.
386
251dae91 387@cindex @samp{-mbig-obj} option, i386
167ad85b
TG
388@cindex @samp{-mbig-obj} option, x86-64
389@item -mbig-obj
251dae91 390On PE/COFF target this option forces the use of big object file
167ad85b
TG
391format, which allows more than 32768 sections.
392
d022bddd
IT
393@cindex @samp{-momit-lock-prefix=} option, i386
394@cindex @samp{-momit-lock-prefix=} option, x86-64
395@item -momit-lock-prefix=@var{no}
396@itemx -momit-lock-prefix=@var{yes}
397These options control how the assembler should encode lock prefix.
398This option is intended as a workaround for processors, that fail on
399lock prefix. This option can only be safely used with single-core,
400single-thread computers
401@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
402@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
403which is the default.
404
e4e00185
AS
405@cindex @samp{-mfence-as-lock-add=} option, i386
406@cindex @samp{-mfence-as-lock-add=} option, x86-64
407@item -mfence-as-lock-add=@var{no}
408@itemx -mfence-as-lock-add=@var{yes}
409These options control how the assembler should encode lfence, mfence and
410sfence.
411@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
412sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
413@samp{lock addl $0x0, (%esp)} in 32-bit mode.
414@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
415sfence as usual, which is the default.
416
0cb4071e
L
417@cindex @samp{-mrelax-relocations=} option, i386
418@cindex @samp{-mrelax-relocations=} option, x86-64
419@item -mrelax-relocations=@var{no}
420@itemx -mrelax-relocations=@var{yes}
421These options control whether the assembler should generate relax
422relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
423R_X86_64_REX_GOTPCRELX, in 64-bit mode.
424@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
425@option{-mrelax-relocations=@var{no}} will not generate relax
426relocations. The default can be controlled by a configure option
427@option{--enable-x86-relax-relocations}.
428
e379e5f3
L
429@cindex @samp{-malign-branch-boundary=} option, i386
430@cindex @samp{-malign-branch-boundary=} option, x86-64
431@item -malign-branch-boundary=@var{NUM}
432This option controls how the assembler should align branches with segment
433prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
434no less than 16. Branches will be aligned within @var{NUM} byte
435boundary. @option{-malign-branch-boundary=0}, which is the default,
436doesn't align branches.
437
438@cindex @samp{-malign-branch=} option, i386
439@cindex @samp{-malign-branch=} option, x86-64
440@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
441This option specifies types of branches to align. @var{TYPE} is
442combination of @samp{jcc}, which aligns conditional jumps,
443@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
444which aligns unconditional jumps, @samp{call} which aligns calls,
445@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
446jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
447
448@cindex @samp{-malign-branch-prefix-size=} option, i386
449@cindex @samp{-malign-branch-prefix-size=} option, x86-64
450@item -malign-branch-prefix-size=@var{NUM}
451This option specifies the maximum number of prefixes on an instruction
452to align branches. @var{NUM} should be between 0 and 5. The default
453@var{NUM} is 5.
454
76cf450b
L
455@cindex @samp{-mbranches-within-32B-boundaries} option, i386
456@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
457@item -mbranches-within-32B-boundaries
458This option aligns conditional jumps, fused conditional jumps and
459unconditional jumps within 32 byte boundary with up to 5 segment prefixes
460on an instruction. It is equivalent to
461@option{-malign-branch-boundary=32}
462@option{-malign-branch=jcc+fused+jmp}
463@option{-malign-branch-prefix-size=5}.
464The default doesn't align branches.
465
ae531041
L
466@cindex @samp{-mlfence-after-load=} option, i386
467@cindex @samp{-mlfence-after-load=} option, x86-64
468@item -mlfence-after-load=@var{no}
469@itemx -mlfence-after-load=@var{yes}
470These options control whether the assembler should generate lfence
471after load instructions. @option{-mlfence-after-load=@var{yes}} will
472generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
473lfence, which is the default.
474
475@cindex @samp{-mlfence-before-indirect-branch=} option, i386
476@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
477@item -mlfence-before-indirect-branch=@var{none}
478@item -mlfence-before-indirect-branch=@var{all}
479@item -mlfence-before-indirect-branch=@var{register}
480@itemx -mlfence-before-indirect-branch=@var{memory}
481These options control whether the assembler should generate lfence
3071b197 482before indirect near branch instructions.
ae531041 483@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 484before indirect near branch via register and issue a warning before
ae531041 485indirect near branch via memory.
a09f656b 486It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
f9a6a8f0 487there's no explicit @option{-mlfence-before-ret=}.
ae531041 488@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 489lfence before indirect near branch via register.
ae531041
L
490@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
491warning before indirect near branch via memory.
492@option{-mlfence-before-indirect-branch=@var{none}} will not generate
493lfence nor issue warning, which is the default. Note that lfence won't
494be generated before indirect near branch via register with
495@option{-mlfence-after-load=@var{yes}} since lfence will be generated
496after loading branch target register.
497
498@cindex @samp{-mlfence-before-ret=} option, i386
499@cindex @samp{-mlfence-before-ret=} option, x86-64
500@item -mlfence-before-ret=@var{none}
a09f656b 501@item -mlfence-before-ret=@var{shl}
ae531041 502@item -mlfence-before-ret=@var{or}
a09f656b 503@item -mlfence-before-ret=@var{yes}
ae531041
L
504@itemx -mlfence-before-ret=@var{not}
505These options control whether the assembler should generate lfence
506before ret. @option{-mlfence-before-ret=@var{or}} will generate
507generate or instruction with lfence.
a09f656b 508@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
509with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
510instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
511generate lfence, which is the default.
ae531041 512
b4a3a7b4
L
513@cindex @samp{-mx86-used-note=} option, i386
514@cindex @samp{-mx86-used-note=} option, x86-64
515@item -mx86-used-note=@var{no}
516@itemx -mx86-used-note=@var{yes}
517These options control whether the assembler should generate
518GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
519GNU property notes. The default can be controlled by the
520@option{--enable-x86-used-note} configure option.
521
d3d3c6db
IT
522@cindex @samp{-mevexrcig=} option, i386
523@cindex @samp{-mevexrcig=} option, x86-64
524@item -mevexrcig=@var{rne}
525@itemx -mevexrcig=@var{rd}
526@itemx -mevexrcig=@var{ru}
527@itemx -mevexrcig=@var{rz}
528These options control how the assembler should encode SAE-only
529EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
530of EVEX instruction with 00, which is the default.
531@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
532and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
533with 01, 10 and 11 RC bits, respectively.
534
5db04b09
L
535@cindex @samp{-mamd64} option, x86-64
536@cindex @samp{-mintel64} option, x86-64
537@item -mamd64
538@itemx -mintel64
539This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
540Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
541only and AMD64 ISAs.
5db04b09 542
b6f8c7c4
L
543@cindex @samp{-O0} option, i386
544@cindex @samp{-O0} option, x86-64
545@cindex @samp{-O} option, i386
546@cindex @samp{-O} option, x86-64
547@cindex @samp{-O1} option, i386
548@cindex @samp{-O1} option, x86-64
549@cindex @samp{-O2} option, i386
550@cindex @samp{-O2} option, x86-64
551@cindex @samp{-Os} option, i386
552@cindex @samp{-Os} option, x86-64
553@item -O0 | -O | -O1 | -O2 | -Os
554Optimize instruction encoding with smaller instruction size. @samp{-O}
555and @samp{-O1} encode 64-bit register load instructions with 64-bit
556immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 557immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
558register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
559register clearing instructions with 128-bit VEX vector register
560clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 561register load/store instructions with VEX vector register load/store
a0a1771e
JB
562instructions, and encode 128-bit/256-bit EVEX packed integer logical
563instructions with 128-bit/256-bit VEX packed integer logical.
564
565@samp{-O2} includes @samp{-O1} optimization plus encodes
566256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
567EVEX vector register clearing instructions. In 64-bit mode VEX encoded
568instructions with commutative source operands will also have their
569source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
570instead of the 3-byte one. Certain forms of AND as well as OR with the
571same (register) operand specified twice will also be changed to TEST.
a0a1771e 572
b6f8c7c4
L
573@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
574and 64-bit register tests with immediate as 8-bit register test with
575immediate. @samp{-O0} turns off this optimization.
576
55b62671 577@end table
731caf76 578@c man end
e413e4e9 579
a6c24e68
NC
580@node i386-Directives
581@section x86 specific Directives
582
583@cindex machine directives, x86
584@cindex x86 machine directives
585@table @code
586
587@cindex @code{lcomm} directive, COFF
588@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
589Reserve @var{length} (an absolute expression) bytes for a local common
590denoted by @var{symbol}. The section and value of @var{symbol} are
591those of the new local common. The addresses are allocated in the bss
704209c0
NC
592section, so that at run-time the bytes start off zeroed. Since
593@var{symbol} is not declared global, it is normally not visible to
594@code{@value{LD}}. The optional third parameter, @var{alignment},
595specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
596
597This directive is only available for COFF based x86 targets.
598
102e9361
NC
599@cindex @code{largecomm} directive, ELF
600@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
601This directive behaves in the same way as the @code{comm} directive
602except that the data is placed into the @var{.lbss} section instead of
603the @var{.bss} section @ref{Comm}.
604
605The directive is intended to be used for data which requires a large
606amount of space, and it is only available for ELF based x86_64
607targets.
608
f2f51cd5
NC
609@cindex @code{value} directive
610@item .value @var{expression} [, @var{expression}]
611This directive behaves in the same way as the @code{.short} directive,
612taking a series of comma separated expressions and storing them as
613two-byte wide values into the current section.
614
a6c24e68 615@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
616
617@end table
618
252b5132 619@node i386-Syntax
7c31ae13
NC
620@section i386 Syntactical Considerations
621@menu
622* i386-Variations:: AT&T Syntax versus Intel Syntax
623* i386-Chars:: Special Characters
624@end menu
625
626@node i386-Variations
627@subsection AT&T Syntax versus Intel Syntax
252b5132 628
e413e4e9
AM
629@cindex i386 intel_syntax pseudo op
630@cindex intel_syntax pseudo op, i386
631@cindex i386 att_syntax pseudo op
632@cindex att_syntax pseudo op, i386
252b5132
RH
633@cindex i386 syntax compatibility
634@cindex syntax compatibility, i386
55b62671
AJ
635@cindex x86-64 intel_syntax pseudo op
636@cindex intel_syntax pseudo op, x86-64
637@cindex x86-64 att_syntax pseudo op
638@cindex att_syntax pseudo op, x86-64
639@cindex x86-64 syntax compatibility
640@cindex syntax compatibility, x86-64
e413e4e9
AM
641
642@code{@value{AS}} now supports assembly using Intel assembler syntax.
643@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
644back to the usual AT&T mode for compatibility with the output of
645@code{@value{GCC}}. Either of these directives may have an optional
646argument, @code{prefix}, or @code{noprefix} specifying whether registers
647require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
648different from Intel syntax. We mention these differences because
649almost all 80386 documents use Intel syntax. Notable differences
650between the two syntaxes are:
651
652@cindex immediate operands, i386
653@cindex i386 immediate operands
654@cindex register operands, i386
655@cindex i386 register operands
656@cindex jump/call operands, i386
657@cindex i386 jump/call operands
658@cindex operand delimiters, i386
55b62671
AJ
659
660@cindex immediate operands, x86-64
661@cindex x86-64 immediate operands
662@cindex register operands, x86-64
663@cindex x86-64 register operands
664@cindex jump/call operands, x86-64
665@cindex x86-64 jump/call operands
666@cindex operand delimiters, x86-64
252b5132
RH
667@itemize @bullet
668@item
669AT&T immediate operands are preceded by @samp{$}; Intel immediate
670operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
671AT&T register operands are preceded by @samp{%}; Intel register operands
672are undelimited. AT&T absolute (as opposed to PC relative) jump/call
673operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
674
675@cindex i386 source, destination operands
676@cindex source, destination operands; i386
55b62671
AJ
677@cindex x86-64 source, destination operands
678@cindex source, destination operands; x86-64
252b5132
RH
679@item
680AT&T and Intel syntax use the opposite order for source and destination
681operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
682@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
683previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
684instructions with 2 immediate operands, such as the @samp{enter}
685instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
686
687@cindex mnemonic suffixes, i386
688@cindex sizes operands, i386
689@cindex i386 size suffixes
55b62671
AJ
690@cindex mnemonic suffixes, x86-64
691@cindex sizes operands, x86-64
692@cindex x86-64 size suffixes
252b5132
RH
693@item
694In AT&T syntax the size of memory operands is determined from the last
695character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 696@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
697(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
698of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
699(256-bit vector) and zmm (512-bit vector) memory references, only when there's
700no other way to disambiguate an instruction. Intel syntax accomplishes this by
701prefixing memory operands (@emph{not} the instruction mnemonics) with
702@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
703@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
704syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
705syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
706@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 707
4b06377f
L
708In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
709instruction with the 64-bit displacement or immediate operand.
710
252b5132
RH
711@cindex return instructions, i386
712@cindex i386 jump, call, return
55b62671
AJ
713@cindex return instructions, x86-64
714@cindex x86-64 jump, call, return
252b5132
RH
715@item
716Immediate form long jumps and calls are
717@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
718Intel syntax is
719@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
720instruction
721is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
722@samp{ret far @var{stack-adjust}}.
723
724@cindex sections, i386
725@cindex i386 sections
55b62671
AJ
726@cindex sections, x86-64
727@cindex x86-64 sections
252b5132
RH
728@item
729The AT&T assembler does not provide support for multiple section
730programs. Unix style systems expect all programs to be single sections.
731@end itemize
732
7c31ae13
NC
733@node i386-Chars
734@subsection Special Characters
735
736@cindex line comment character, i386
737@cindex i386 line comment character
738The presence of a @samp{#} appearing anywhere on a line indicates the
739start of a comment that extends to the end of that line.
740
741If a @samp{#} appears as the first character of a line then the whole
742line is treated as a comment, but in this case the line can also be a
743logical line number directive (@pxref{Comments}) or a preprocessor
744control command (@pxref{Preprocessing}).
745
a05a5b64 746If the @option{--divide} command-line option has not been specified
7c31ae13
NC
747then the @samp{/} character appearing anywhere on a line also
748introduces a line comment.
749
750@cindex line separator, i386
751@cindex statement separator, i386
752@cindex i386 line separator
753The @samp{;} character can be used to separate statements on the same
754line.
755
252b5132 756@node i386-Mnemonics
d3b47e2b
L
757@section i386-Mnemonics
758@subsection Instruction Naming
252b5132
RH
759
760@cindex i386 instruction naming
761@cindex instruction naming, i386
55b62671
AJ
762@cindex x86-64 instruction naming
763@cindex instruction naming, x86-64
764
252b5132 765Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
766specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
767and @samp{q} specify byte, word, long and quadruple word operands. If
768no suffix is specified by an instruction then @code{@value{AS}} tries to
769fill in the missing suffix based on the destination register operand
770(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
771to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
772@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
773assembler which assumes that a missing mnemonic suffix implies long
774operand size. (This incompatibility does not affect compiler output
775since compilers always explicitly specify the mnemonic suffix.)
252b5132 776
c006a730
JB
777When there is no sizing suffix and no (suitable) register operands to
778deduce the size of memory operands, with a few exceptions and where long
779operand size is possible in the first place, operand size will default
780to long in 32- and 64-bit modes. Similarly it will default to short in
78116-bit mode. Noteworthy exceptions are
782
783@itemize @bullet
784@item
785Instructions with an implicit on-stack operand as well as branches,
786which default to quad in 64-bit mode.
787
788@item
789Sign- and zero-extending moves, which default to byte size source
790operands.
791
792@item
793Floating point insns with integer operands, which default to short (for
794perhaps historical reasons).
795
796@item
797CRC32 with a 64-bit destination, which defaults to a quad source
798operand.
799
800@end itemize
801
b6169b20
L
802@cindex encoding options, i386
803@cindex encoding options, x86-64
804
86fa6981
L
805Different encoding options can be specified via pseudo prefixes:
806
807@itemize @bullet
808@item
809@samp{@{disp8@}} -- prefer 8-bit displacement.
810
811@item
41eb8e88
L
812@samp{@{disp32@}} -- prefer 32-bit displacement.
813
814@item
815@samp{@{disp16@}} -- prefer 16-bit displacement.
86fa6981
L
816
817@item
818@samp{@{load@}} -- prefer load-form instruction.
819
820@item
821@samp{@{store@}} -- prefer store-form instruction.
822
823@item
42e04b36 824@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
825
826@item
42e04b36 827@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
828
829@item
830@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
831
832@item
833@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
834instructions (x86-64 only). Note that this differs from the @samp{rex}
835prefix which generates REX prefix unconditionally.
b6f8c7c4
L
836
837@item
838@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 839@end itemize
b6169b20 840
4321af3e 841Mnemonics of Intel VNNI/IFMA instructions are encoded with the EVEX prefix
58bf9b6a 842by default. The pseudo @samp{@{vex@}} prefix can be used to encode
4321af3e 843mnemonics of Intel VNNI/IFMA instructions with the VEX prefix.
58bf9b6a 844
252b5132
RH
845@cindex conversion instructions, i386
846@cindex i386 conversion instructions
55b62671
AJ
847@cindex conversion instructions, x86-64
848@cindex x86-64 conversion instructions
252b5132
RH
849The Intel-syntax conversion instructions
850
851@itemize @bullet
852@item
853@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
854
855@item
856@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
857
858@item
859@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
860
861@item
862@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
863
864@item
865@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
866(x86-64 only),
867
868@item
d5f0cf92 869@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 870@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
871@end itemize
872
873@noindent
55b62671
AJ
874are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
875@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
876instructions.
252b5132 877
0e6724de
L
878@cindex extension instructions, i386
879@cindex i386 extension instructions
880@cindex extension instructions, x86-64
881@cindex x86-64 extension instructions
882The Intel-syntax extension instructions
883
884@itemize @bullet
885@item
886@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
887
888@item
889@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
890
891@item
892@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
893(x86-64 only).
894
895@item
896@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
897
898@item
899@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
900(x86-64 only).
901
902@item
903@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
904(x86-64 only).
905
906@item
907@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
908
909@item
910@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
911
912@item
913@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
914(x86-64 only).
915
916@item
917@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
918
919@item
920@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
921(x86-64 only).
922@end itemize
923
924@noindent
925are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
3f335b75 926@samp{movsbq/movsxb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
0e6724de
L
927@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
928@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
929@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
930
252b5132
RH
931@cindex jump instructions, i386
932@cindex call instructions, i386
55b62671
AJ
933@cindex jump instructions, x86-64
934@cindex call instructions, x86-64
252b5132
RH
935Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
936AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
937convention.
938
d3b47e2b 939@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
940
941@cindex i386 mnemonic compatibility
942@cindex mnemonic compatibility, i386
943
944@code{@value{AS}} supports assembly using Intel mnemonic.
945@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
946@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
947syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
948Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
949@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
950@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
951assembler with different mnemonics from those in Intel IA32 specification.
952@code{@value{GCC}} generates those instructions with AT&T mnemonic.
953
bc31405e
L
954@itemize @bullet
955@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
956register. @samp{movsxd} should be used to encode 16-bit or 32-bit
957destination register with both AT&T and Intel mnemonics.
958@end itemize
959
252b5132
RH
960@node i386-Regs
961@section Register Naming
962
963@cindex i386 registers
964@cindex registers, i386
55b62671
AJ
965@cindex x86-64 registers
966@cindex registers, x86-64
252b5132
RH
967Register operands are always prefixed with @samp{%}. The 80386 registers
968consist of
969
970@itemize @bullet
971@item
972the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
973@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
974frame pointer), and @samp{%esp} (the stack pointer).
975
976@item
977the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
978@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
979
980@item
981the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
982@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
983are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
984@samp{%cx}, and @samp{%dx})
985
986@item
987the 6 section registers @samp{%cs} (code section), @samp{%ds}
988(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
989and @samp{%gs}.
990
991@item
4bde3cdd
UD
992the 5 processor control registers @samp{%cr0}, @samp{%cr2},
993@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
994
995@item
996the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
997@samp{%db3}, @samp{%db6}, and @samp{%db7}.
998
999@item
1000the 2 test registers @samp{%tr6} and @samp{%tr7}.
1001
1002@item
1003the 8 floating point register stack @samp{%st} or equivalently
1004@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1005@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1006These registers are overloaded by 8 MMX registers @samp{%mm0},
1007@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1008@samp{%mm6} and @samp{%mm7}.
1009
1010@item
4bde3cdd 1011the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1012@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1013@end itemize
1014
1015The AMD x86-64 architecture extends the register set by:
1016
1017@itemize @bullet
1018@item
1019enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1020accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1021@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1022pointer)
1023
1024@item
1025the 8 extended registers @samp{%r8}--@samp{%r15}.
1026
1027@item
4bde3cdd 1028the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1029
1030@item
4bde3cdd 1031the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1032
1033@item
4bde3cdd 1034the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1035
1036@item
1037the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1038
1039@item
1040the 8 debug registers: @samp{%db8}--@samp{%db15}.
1041
1042@item
4bde3cdd
UD
1043the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1044@end itemize
1045
1046With the AVX extensions more registers were made available:
1047
1048@itemize @bullet
1049
1050@item
1051the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1052available in 32-bit mode). The bottom 128 bits are overlaid with the
1053@samp{xmm0}--@samp{xmm15} registers.
1054
1055@end itemize
1056
4bde3cdd
UD
1057The AVX512 extensions added the following registers:
1058
1059@itemize @bullet
1060
1061@item
1062the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1063available in 32-bit mode). The bottom 128 bits are overlaid with the
1064@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1065overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1066
1067@item
1068the 8 mask registers @samp{%k0}--@samp{%k7}.
1069
252b5132
RH
1070@end itemize
1071
1072@node i386-Prefixes
1073@section Instruction Prefixes
1074
1075@cindex i386 instruction prefixes
1076@cindex instruction prefixes, i386
1077@cindex prefixes, i386
1078Instruction prefixes are used to modify the following instruction. They
1079are used to repeat string instructions, to provide section overrides, to
1080perform bus lock operations, and to change operand and address sizes.
1081(Most instructions that normally operate on 32-bit operands will use
108216-bit operands if the instruction has an ``operand size'' prefix.)
1083Instruction prefixes are best written on the same line as the instruction
1084they act upon. For example, the @samp{scas} (scan string) instruction is
1085repeated with:
1086
1087@smallexample
1088 repne scas %es:(%edi),%al
1089@end smallexample
1090
1091You may also place prefixes on the lines immediately preceding the
1092instruction, but this circumvents checks that @code{@value{AS}} does
1093with prefixes, and will not work with all prefixes.
1094
1095Here is a list of instruction prefixes:
1096
1097@cindex section override prefixes, i386
1098@itemize @bullet
1099@item
1100Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1101@samp{fs}, @samp{gs}. These are automatically added by specifying
1102using the @var{section}:@var{memory-operand} form for memory references.
1103
1104@cindex size prefixes, i386
1105@item
1106Operand/Address size prefixes @samp{data16} and @samp{addr16}
1107change 32-bit operands/addresses into 16-bit operands/addresses,
1108while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1109@code{.code16} section) into 32-bit operands/addresses. These prefixes
1110@emph{must} appear on the same line of code as the instruction they
1111modify. For example, in a 16-bit @code{.code16} section, you might
1112write:
1113
1114@smallexample
1115 addr32 jmpl *(%ebx)
1116@end smallexample
1117
1118@cindex bus lock prefixes, i386
1119@cindex inhibiting interrupts, i386
1120@item
1121The bus lock prefix @samp{lock} inhibits interrupts during execution of
1122the instruction it precedes. (This is only valid with certain
1123instructions; see a 80386 manual for details).
1124
1125@cindex coprocessor wait, i386
1126@item
1127The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1128complete the current instruction. This should never be needed for the
112980386/80387 combination.
1130
1131@cindex repeat prefixes, i386
1132@item
1133The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1134to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1135times if the current address size is 16-bits).
55b62671
AJ
1136@cindex REX prefixes, i386
1137@item
1138The @samp{rex} family of prefixes is used by x86-64 to encode
1139extensions to i386 instruction set. The @samp{rex} prefix has four
1140bits --- an operand size overwrite (@code{64}) used to change operand size
1141from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1142register set.
1143
1144You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1145instruction emits @samp{rex} prefix with all the bits set. By omitting
1146the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1147prefixes as well. Normally, there is no need to write the prefixes
1148explicitly, since gas will automatically generate them based on the
1149instruction operands.
252b5132
RH
1150@end itemize
1151
1152@node i386-Memory
1153@section Memory References
1154
1155@cindex i386 memory references
1156@cindex memory references, i386
55b62671
AJ
1157@cindex x86-64 memory references
1158@cindex memory references, x86-64
252b5132
RH
1159An Intel syntax indirect memory reference of the form
1160
1161@smallexample
1162@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1163@end smallexample
1164
1165@noindent
1166is translated into the AT&T syntax
1167
1168@smallexample
1169@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1170@end smallexample
1171
1172@noindent
1173where @var{base} and @var{index} are the optional 32-bit base and
1174index registers, @var{disp} is the optional displacement, and
1175@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1176to calculate the address of the operand. If no @var{scale} is
1177specified, @var{scale} is taken to be 1. @var{section} specifies the
1178optional section register for the memory operand, and may override the
1179default section register (see a 80386 manual for section register
1180defaults). Note that section overrides in AT&T syntax @emph{must}
1181be preceded by a @samp{%}. If you specify a section override which
1182coincides with the default section register, @code{@value{AS}} does @emph{not}
1183output any section register override prefixes to assemble the given
1184instruction. Thus, section overrides can be specified to emphasize which
1185section register is used for a given memory operand.
1186
1187Here are some examples of Intel and AT&T style memory references:
1188
1189@table @asis
1190@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1191@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1192missing, and the default section is used (@samp{%ss} for addressing with
1193@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1194
1195@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1196@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1197@samp{foo}. All other fields are missing. The section register here
1198defaults to @samp{%ds}.
1199
1200@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1201This uses the value pointed to by @samp{foo} as a memory operand.
1202Note that @var{base} and @var{index} are both missing, but there is only
1203@emph{one} @samp{,}. This is a syntactic exception.
1204
1205@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1206This selects the contents of the variable @samp{foo} with section
1207register @var{section} being @samp{%gs}.
1208@end table
1209
1210Absolute (as opposed to PC relative) call and jump operands must be
1211prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1212always chooses PC relative addressing for jump/call labels.
1213
1214Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1215@emph{must} specify its size (byte, word, long, or quadruple) with an
1216instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1217respectively).
1218
1219The x86-64 architecture adds an RIP (instruction pointer relative)
1220addressing. This addressing mode is specified by using @samp{rip} as a
1221base register. Only constant offsets are valid. For example:
1222
1223@table @asis
1224@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1225Points to the address 1234 bytes past the end of the current
1226instruction.
1227
1228@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1229Points to the @code{symbol} in RIP relative way, this is shorter than
1230the default absolute addressing.
1231@end table
1232
1233Other addressing modes remain unchanged in x86-64 architecture, except
1234registers used are 64-bit instead of 32-bit.
252b5132 1235
fddf5b5b 1236@node i386-Jumps
252b5132
RH
1237@section Handling of Jump Instructions
1238
1239@cindex jump optimization, i386
1240@cindex i386 jump optimization
55b62671
AJ
1241@cindex jump optimization, x86-64
1242@cindex x86-64 jump optimization
252b5132
RH
1243Jump instructions are always optimized to use the smallest possible
1244displacements. This is accomplished by using byte (8-bit) displacement
1245jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1246is insufficient a long displacement is used. We do not support
252b5132
RH
1247word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1248instruction with the @samp{data16} instruction prefix), since the 80386
1249insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1250is added. (See also @pxref{i386-Arch})
252b5132
RH
1251
1252Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1253@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1254displacements, so that if you use these instructions (@code{@value{GCC}} does
1255not use them) you may get an error message (and incorrect code). The AT&T
125680386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1257to
1258
1259@smallexample
1260 jcxz cx_zero
1261 jmp cx_nonzero
1262cx_zero: jmp foo
1263cx_nonzero:
1264@end smallexample
1265
1266@node i386-Float
1267@section Floating Point
1268
1269@cindex i386 floating point
1270@cindex floating point, i386
55b62671
AJ
1271@cindex x86-64 floating point
1272@cindex floating point, x86-64
252b5132
RH
1273All 80387 floating point types except packed BCD are supported.
1274(BCD support may be added without much difficulty). These data
1275types are 16-, 32-, and 64- bit integers, and single (32-bit),
1276double (64-bit), and extended (80-bit) precision floating point.
1277Each supported type has an instruction mnemonic suffix and a constructor
1278associated with it. Instruction mnemonic suffixes specify the operand's
1279data type. Constructors build these data types into memory.
1280
1281@cindex @code{float} directive, i386
1282@cindex @code{single} directive, i386
1283@cindex @code{double} directive, i386
1284@cindex @code{tfloat} directive, i386
7d19d096 1285@cindex @code{hfloat} directive, i386
de133cf9 1286@cindex @code{bfloat16} directive, i386
55b62671
AJ
1287@cindex @code{float} directive, x86-64
1288@cindex @code{single} directive, x86-64
1289@cindex @code{double} directive, x86-64
1290@cindex @code{tfloat} directive, x86-64
7d19d096 1291@cindex @code{hfloat} directive, x86-64
de133cf9 1292@cindex @code{bfloat16} directive, x86-64
252b5132
RH
1293@itemize @bullet
1294@item
1295Floating point constructors are @samp{.float} or @samp{.single},
de133cf9
JB
1296@samp{.double}, @samp{.tfloat}, @samp{.hfloat}, and @samp{.bfloat16} for 32-,
129764-, 80-, and 16-bit (two flavors) formats respectively. The former three
1298correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, and @samp{t}.
1299@samp{t} stands for 80-bit (ten byte) real. The 80387 only supports this
1300format via the @samp{fldt} (load 80-bit real to stack top) and @samp{fstpt}
1301(store 80-bit real and pop stack) instructions.
252b5132
RH
1302
1303@cindex @code{word} directive, i386
1304@cindex @code{long} directive, i386
1305@cindex @code{int} directive, i386
1306@cindex @code{quad} directive, i386
55b62671
AJ
1307@cindex @code{word} directive, x86-64
1308@cindex @code{long} directive, x86-64
1309@cindex @code{int} directive, x86-64
1310@cindex @code{quad} directive, x86-64
252b5132
RH
1311@item
1312Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1313@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
a12f86b9 1314corresponding instruction mnemonic suffixes are @samp{s} (short),
252b5132
RH
1315@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1316the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1317quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1318stack) instructions.
1319@end itemize
1320
1321Register to register operations should not use instruction mnemonic suffixes.
1322@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1323wrote @samp{fst %st, %st(1)}, since all register to register operations
1324use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1325which converts @samp{%st} from 80-bit to 64-bit floating point format,
1326then stores the result in the 4 byte location @samp{mem})
1327
1328@node i386-SIMD
1329@section Intel's MMX and AMD's 3DNow! SIMD Operations
1330
1331@cindex MMX, i386
1332@cindex 3DNow!, i386
1333@cindex SIMD, i386
55b62671
AJ
1334@cindex MMX, x86-64
1335@cindex 3DNow!, x86-64
1336@cindex SIMD, x86-64
252b5132
RH
1337
1338@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1339instructions for integer data), available on Intel's Pentium MMX
1340processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1341Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1342instruction set (SIMD instructions for 32-bit floating point data)
1343available on AMD's K6-2 processor and possibly others in the future.
1344
1345Currently, @code{@value{AS}} does not support Intel's floating point
1346SIMD, Katmai (KNI).
1347
1348The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1349@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
135016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1351floating point values. The MMX registers cannot be used at the same time
1352as the floating point stack.
1353
1354See Intel and AMD documentation, keeping in mind that the operand order in
1355instructions is reversed from the Intel syntax.
1356
f88c9eb0
SP
1357@node i386-LWP
1358@section AMD's Lightweight Profiling Instructions
1359
1360@cindex LWP, i386
1361@cindex LWP, x86-64
1362
1363@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1364instruction set, available on AMD's Family 15h (Orochi) processors.
1365
1366LWP enables applications to collect and manage performance data, and
1367react to performance events. The collection of performance data
1368requires no context switches. LWP runs in the context of a thread and
1369so several counters can be used independently across multiple threads.
1370LWP can be used in both 64-bit and legacy 32-bit modes.
1371
1372For detailed information on the LWP instruction set, see the
1373@cite{AMD Lightweight Profiling Specification} available at
1374@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1375
87973e9f
QN
1376@node i386-BMI
1377@section Bit Manipulation Instructions
1378
1379@cindex BMI, i386
1380@cindex BMI, x86-64
1381
1382@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1383
1384BMI instructions provide several instructions implementing individual
1385bit manipulation operations such as isolation, masking, setting, or
34bca508 1386resetting.
87973e9f
QN
1387
1388@c Need to add a specification citation here when available.
1389
2a2a0f38
QN
1390@node i386-TBM
1391@section AMD's Trailing Bit Manipulation Instructions
1392
1393@cindex TBM, i386
1394@cindex TBM, x86-64
1395
1396@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1397instruction set, available on AMD's BDVER2 processors (Trinity and
1398Viperfish).
1399
1400TBM instructions provide instructions implementing individual bit
1401manipulation operations such as isolating, masking, setting, resetting,
1402complementing, and operations on trailing zeros and ones.
1403
1404@c Need to add a specification citation here when available.
87973e9f 1405
252b5132
RH
1406@node i386-16bit
1407@section Writing 16-bit Code
1408
1409@cindex i386 16-bit code
1410@cindex 16-bit code, i386
1411@cindex real-mode code, i386
eecb386c 1412@cindex @code{code16gcc} directive, i386
252b5132
RH
1413@cindex @code{code16} directive, i386
1414@cindex @code{code32} directive, i386
55b62671
AJ
1415@cindex @code{code64} directive, i386
1416@cindex @code{code64} directive, x86-64
1417While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1418or 64-bit x86-64 code depending on the default configuration,
252b5132 1419it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1420mode code segments. To do this, put a @samp{.code16} or
1421@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1422be run in 16-bit mode. You can switch @code{@value{AS}} to writing
142332-bit code with the @samp{.code32} directive or 64-bit code with the
1424@samp{.code64} directive.
eecb386c
AM
1425
1426@samp{.code16gcc} provides experimental support for generating 16-bit
1427code from gcc, and differs from @samp{.code16} in that @samp{call},
1428@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1429@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1430default to 32-bit size. This is so that the stack pointer is
1431manipulated in the same way over function calls, allowing access to
1432function parameters at the same stack offsets as in 32-bit mode.
1433@samp{.code16gcc} also automatically adds address size prefixes where
1434necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1435
1436The code which @code{@value{AS}} generates in 16-bit mode will not
1437necessarily run on a 16-bit pre-80386 processor. To write code that
1438runs on such a processor, you must refrain from using @emph{any} 32-bit
1439constructs which require @code{@value{AS}} to output address or operand
1440size prefixes.
1441
1442Note that writing 16-bit code instructions by explicitly specifying a
1443prefix or an instruction mnemonic suffix within a 32-bit code section
1444generates different machine instructions than those generated for a
144516-bit code segment. In a 32-bit code section, the following code
1446generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1447value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1448
1449@smallexample
1450 pushw $4
1451@end smallexample
1452
1453The same code in a 16-bit code section would generate the machine
b45619c0 1454opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1455is correct since the processor default operand size is assumed to be 16
1456bits in a 16-bit code section.
1457
e413e4e9
AM
1458@node i386-Arch
1459@section Specifying CPU Architecture
1460
1461@cindex arch directive, i386
1462@cindex i386 arch directive
55b62671
AJ
1463@cindex arch directive, x86-64
1464@cindex x86-64 arch directive
e413e4e9
AM
1465
1466@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1467(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1468directive enables a warning when gas detects an instruction that is not
1469supported on the CPU specified. The choices for @var{cpu_type} are:
1470
1471@multitable @columnfractions .20 .20 .20 .20
f68697e8 1472@item @samp{default} @tab @samp{push} @tab @samp{pop}
e413e4e9
AM
1473@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1474@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1475@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1476@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
c085ab00 1477@item @samp{corei7} @tab @samp{iamcu}
1543849b 1478@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1479@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
646cc3e0 1480@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
b0e8fa7f
TJ
1481@item @samp{znver4} @tab @samp{btver1} @tab @samp{btver2} @tab @samp{generic32}
1482@item @samp{generic64} @tab @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1483@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1484@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1485@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1486@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1487@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1488@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1 1489@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
760ab3d0 1490@item @samp{.hle} @tab @samp{.rtm} @tab @samp{.tsx}
c3bb24f5 1491@item @samp{.lahf_sahf} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1492@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1493@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1494@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1495@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1496@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1497@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1498@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
0cc78721 1499@item @samp{.tdx} @tab @samp{.avx_vnni} @tab @samp{.avx512_fp16}
3ce2ebcf 1500@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @samp{.ibt}
23ae61ad 1501@item @samp{.prefetchi} @tab @samp{.avx_ifma} @tab @samp{.avx_vnni_int8}
2188d6ea 1502@item @samp{.cmpccxadd} @tab @samp{.wrmsrns} @tab @samp{.msrlist}
b06311ad 1503@item @samp{.avx_ne_convert} @tab @samp{.rao_int}
c48935d7 1504@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1505@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1506@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
68830fba 1507@item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_fp16} @tab @samp{.amx_tile}
c1fa250a 1508@item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1ceab344 1509@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1510@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1511@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1512@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
646cc3e0
GG
1513@item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1514@item @samp{.tlbsync}
e413e4e9
AM
1515@end multitable
1516
fddf5b5b
AM
1517Apart from the warning, there are only two other effects on
1518@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1519@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1520will automatically use a two byte opcode sequence. The larger three
1521byte opcode sequence is used on the 486 (and when no architecture is
1522specified) because it executes faster on the 486. Note that you can
1523explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1524Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1525@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1526conditional jumps will be promoted when necessary to a two instruction
1527sequence consisting of a conditional jump of the opposite sense around
1528an unconditional jump to the target.
1529
32e876a8
JB
1530Note that the sub-architecture specifiers (starting with a dot) can be prefixed
1531with @code{no} to revoke the respective (and any dependent) functionality.
1532
5c6af06e
JB
1533Following the CPU architecture (but not a sub-architecture, which are those
1534starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1535control automatic promotion of conditional jumps. @samp{jumps} is the
1536default, and enables jump promotion; All external jumps will be of the long
1537variety, and file-local jumps will be promoted as necessary.
1538(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1539byte offset jumps, and warns about file-local conditional jumps that
1540@code{@value{AS}} promotes.
fddf5b5b
AM
1541Unconditional jumps are treated as for @samp{jumps}.
1542
1543For example
1544
1545@smallexample
1546 .arch i8086,nojumps
1547@end smallexample
e413e4e9 1548
bc31405e
L
1549@node i386-ISA
1550@section AMD64 ISA vs. Intel64 ISA
1551
1552There are some discrepancies between AMD64 and Intel64 ISAs.
1553
1554@itemize @bullet
1555@item For @samp{movsxd} with 16-bit destination register, AMD64
1556supports 32-bit source operand and Intel64 supports 16-bit source
1557operand.
5990e377
JB
1558
1559@item For far branches (with explicit memory operand), both ISAs support
156032- and 16-bit operand size. Intel64 additionally supports 64-bit
1561operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1562and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1563syntax.
1564
1565@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1566and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1567while Intel64 additionally supports 64-bit operand sise (80-bit memory
1568operands).
1569
bc31405e
L
1570@end itemize
1571
5c9352f3
AM
1572@node i386-Bugs
1573@section AT&T Syntax bugs
1574
1575The UnixWare assembler, and probably other AT&T derived ix86 Unix
1576assemblers, generate floating point instructions with reversed source
1577and destination registers in certain cases. Unfortunately, gcc and
1578possibly many other programs use this reversed syntax, so we're stuck
1579with it.
1580
1581For example
1582
1583@smallexample
1584 fsub %st,%st(3)
1585@end smallexample
1586@noindent
1587results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1588than the expected @samp{%st(3) - %st}. This happens with all the
1589non-commutative arithmetic floating point operations with two register
1590operands where the source register is @samp{%st} and the destination
1591register is @samp{%st(i)}.
1592
252b5132
RH
1593@node i386-Notes
1594@section Notes
1595
1596@cindex i386 @code{mul}, @code{imul} instructions
1597@cindex @code{mul} instruction, i386
1598@cindex @code{imul} instruction, i386
55b62671
AJ
1599@cindex @code{mul} instruction, x86-64
1600@cindex @code{imul} instruction, x86-64
252b5132 1601There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1602instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1603multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1604for @samp{imul}) can be output only in the one operand form. Thus,
1605@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1606the expanding multiply would clobber the @samp{%edx} register, and this
1607would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
160864-bit product in @samp{%edx:%eax}.
1609
1610We have added a two operand form of @samp{imul} when the first operand
1611is an immediate mode expression and the second operand is a register.
1612This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1613example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1614$69, %eax, %eax}.
1615