]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_ch4.adb
einfo.ads (Has_Private_Ancestor): Remove obsolete usage.
[thirdparty/gcc.git] / gcc / ada / exp_ch4.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 4 --
59262ebb 6-- --
70482933
RK
7-- B o d y --
8-- --
da574a86 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
bded454f 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Aggr; use Exp_Aggr;
0669bebe 33with Exp_Atag; use Exp_Atag;
6cce2156 34with Exp_Ch2; use Exp_Ch2;
70482933 35with Exp_Ch3; use Exp_Ch3;
20b5d666 36with Exp_Ch6; use Exp_Ch6;
70482933
RK
37with Exp_Ch7; use Exp_Ch7;
38with Exp_Ch9; use Exp_Ch9;
20b5d666 39with Exp_Disp; use Exp_Disp;
70482933 40with Exp_Fixd; use Exp_Fixd;
437f8c1e 41with Exp_Intr; use Exp_Intr;
70482933
RK
42with Exp_Pakd; use Exp_Pakd;
43with Exp_Tss; use Exp_Tss;
44with Exp_Util; use Exp_Util;
f02b8bb8 45with Freeze; use Freeze;
70482933 46with Inline; use Inline;
df3e68b1 47with Lib; use Lib;
26bff3d9 48with Namet; use Namet;
70482933
RK
49with Nlists; use Nlists;
50with Nmake; use Nmake;
51with Opt; use Opt;
25adc5fb 52with Par_SCO; use Par_SCO;
0669bebe
GB
53with Restrict; use Restrict;
54with Rident; use Rident;
70482933
RK
55with Rtsfind; use Rtsfind;
56with Sem; use Sem;
a4100e55 57with Sem_Aux; use Sem_Aux;
70482933 58with Sem_Cat; use Sem_Cat;
5d09245e 59with Sem_Ch3; use Sem_Ch3;
11fa950b 60with Sem_Ch8; use Sem_Ch8;
70482933
RK
61with Sem_Ch13; use Sem_Ch13;
62with Sem_Eval; use Sem_Eval;
63with Sem_Res; use Sem_Res;
64with Sem_Type; use Sem_Type;
65with Sem_Util; use Sem_Util;
07fc65c4 66with Sem_Warn; use Sem_Warn;
70482933 67with Sinfo; use Sinfo;
70482933
RK
68with Snames; use Snames;
69with Stand; use Stand;
7665e4bd 70with SCIL_LL; use SCIL_LL;
07fc65c4 71with Targparm; use Targparm;
70482933
RK
72with Tbuild; use Tbuild;
73with Ttypes; use Ttypes;
74with Uintp; use Uintp;
75with Urealp; use Urealp;
76with Validsw; use Validsw;
77
78package body Exp_Ch4 is
79
15ce9ca2
AC
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
70482933
RK
83
84 procedure Binary_Op_Validity_Checks (N : Node_Id);
85 pragma Inline (Binary_Op_Validity_Checks);
86 -- Performs validity checks for a binary operator
87
fbf5a39b
AC
88 procedure Build_Boolean_Array_Proc_Call
89 (N : Node_Id;
90 Op1 : Node_Id;
91 Op2 : Node_Id);
303b4d58 92 -- If a boolean array assignment can be done in place, build call to
fbf5a39b
AC
93 -- corresponding library procedure.
94
11fa950b
AC
95 function Current_Anonymous_Master return Entity_Id;
96 -- Return the entity of the heterogeneous finalization master belonging to
97 -- the current unit (either function, package or procedure). This master
98 -- services all anonymous access-to-controlled types. If the current unit
99 -- does not have such master, create one.
df3e68b1 100
26bff3d9
JM
101 procedure Displace_Allocator_Pointer (N : Node_Id);
102 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
103 -- Expand_Allocator_Expression. Allocating class-wide interface objects
104 -- this routine displaces the pointer to the allocated object to reference
105 -- the component referencing the corresponding secondary dispatch table.
106
fbf5a39b
AC
107 procedure Expand_Allocator_Expression (N : Node_Id);
108 -- Subsidiary to Expand_N_Allocator, for the case when the expression
109 -- is a qualified expression or an aggregate.
110
70482933
RK
111 procedure Expand_Array_Comparison (N : Node_Id);
112 -- This routine handles expansion of the comparison operators (N_Op_Lt,
113 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
114 -- code for these operators is similar, differing only in the details of
fbf5a39b
AC
115 -- the actual comparison call that is made. Special processing (call a
116 -- run-time routine)
70482933
RK
117
118 function Expand_Array_Equality
119 (Nod : Node_Id;
70482933
RK
120 Lhs : Node_Id;
121 Rhs : Node_Id;
0da2c8ac
AC
122 Bodies : List_Id;
123 Typ : Entity_Id) return Node_Id;
70482933 124 -- Expand an array equality into a call to a function implementing this
685094bf
RD
125 -- equality, and a call to it. Loc is the location for the generated nodes.
126 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
127 -- on which to attach bodies of local functions that are created in the
128 -- process. It is the responsibility of the caller to insert those bodies
129 -- at the right place. Nod provides the Sloc value for the generated code.
130 -- Normally the types used for the generated equality routine are taken
131 -- from Lhs and Rhs. However, in some situations of generated code, the
132 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
133 -- the type to be used for the formal parameters.
70482933
RK
134
135 procedure Expand_Boolean_Operator (N : Node_Id);
685094bf
RD
136 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
137 -- case of array type arguments.
70482933 138
5875f8d6
AC
139 procedure Expand_Short_Circuit_Operator (N : Node_Id);
140 -- Common expansion processing for short-circuit boolean operators
141
456cbfa5 142 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
5707e389
AC
143 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
144 -- where we allow comparison of "out of range" values.
456cbfa5 145
70482933
RK
146 function Expand_Composite_Equality
147 (Nod : Node_Id;
148 Typ : Entity_Id;
149 Lhs : Node_Id;
150 Rhs : Node_Id;
2e071734 151 Bodies : List_Id) return Node_Id;
685094bf
RD
152 -- Local recursive function used to expand equality for nested composite
153 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
154 -- to attach bodies of local functions that are created in the process.
3058f181 155 -- It is the responsibility of the caller to insert those bodies at the
685094bf
RD
156 -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
157 -- are the left and right sides for the comparison, and Typ is the type of
3058f181 158 -- the objects to compare.
70482933 159
fdac1f80
AC
160 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
161 -- Routine to expand concatenation of a sequence of two or more operands
162 -- (in the list Operands) and replace node Cnode with the result of the
163 -- concatenation. The operands can be of any appropriate type, and can
164 -- include both arrays and singleton elements.
70482933 165
f6194278 166 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
5707e389
AC
167 -- N is an N_In membership test mode, with the overflow check mode set to
168 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
169 -- integer type. This is a case where top level processing is required to
170 -- handle overflow checks in subtrees.
f6194278 171
70482933 172 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
685094bf
RD
173 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
174 -- fixed. We do not have such a type at runtime, so the purpose of this
175 -- routine is to find the real type by looking up the tree. We also
176 -- determine if the operation must be rounded.
70482933 177
5d09245e
AC
178 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
179 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
180 -- discriminants if it has a constrained nominal type, unless the object
181 -- is a component of an enclosing Unchecked_Union object that is subject
182 -- to a per-object constraint and the enclosing object lacks inferable
183 -- discriminants.
184 --
185 -- An expression of an Unchecked_Union type has inferable discriminants
186 -- if it is either a name of an object with inferable discriminants or a
187 -- qualified expression whose subtype mark denotes a constrained subtype.
188
70482933 189 procedure Insert_Dereference_Action (N : Node_Id);
e6f69614
AC
190 -- N is an expression whose type is an access. When the type of the
191 -- associated storage pool is derived from Checked_Pool, generate a
192 -- call to the 'Dereference' primitive operation.
70482933
RK
193
194 function Make_Array_Comparison_Op
2e071734
AC
195 (Typ : Entity_Id;
196 Nod : Node_Id) return Node_Id;
685094bf
RD
197 -- Comparisons between arrays are expanded in line. This function produces
198 -- the body of the implementation of (a > b), where a and b are one-
199 -- dimensional arrays of some discrete type. The original node is then
200 -- expanded into the appropriate call to this function. Nod provides the
201 -- Sloc value for the generated code.
70482933
RK
202
203 function Make_Boolean_Array_Op
2e071734
AC
204 (Typ : Entity_Id;
205 N : Node_Id) return Node_Id;
685094bf
RD
206 -- Boolean operations on boolean arrays are expanded in line. This function
207 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
208 -- b). It is used only the normal case and not the packed case. The type
209 -- involved, Typ, is the Boolean array type, and the logical operations in
210 -- the body are simple boolean operations. Note that Typ is always a
211 -- constrained type (the caller has ensured this by using
212 -- Convert_To_Actual_Subtype if necessary).
70482933 213
b6b5cca8 214 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
a7f1b24f
RD
215 -- For signed arithmetic operations when the current overflow mode is
216 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
217 -- as the first thing we do. We then return. We count on the recursive
218 -- apparatus for overflow checks to call us back with an equivalent
219 -- operation that is in CHECKED mode, avoiding a recursive entry into this
220 -- routine, and that is when we will proceed with the expansion of the
221 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
222 -- these optimizations without first making this check, since there may be
223 -- operands further down the tree that are relying on the recursive calls
224 -- triggered by the top level nodes to properly process overflow checking
225 -- and remaining expansion on these nodes. Note that this call back may be
226 -- skipped if the operation is done in Bignum mode but that's fine, since
227 -- the Bignum call takes care of everything.
b6b5cca8 228
0580d807
AC
229 procedure Optimize_Length_Comparison (N : Node_Id);
230 -- Given an expression, if it is of the form X'Length op N (or the other
231 -- way round), where N is known at compile time to be 0 or 1, and X is a
232 -- simple entity, and op is a comparison operator, optimizes it into a
233 -- comparison of First and Last.
234
b2c28399
AC
235 procedure Process_Transient_Object
236 (Decl : Node_Id;
237 Rel_Node : Node_Id);
238 -- Subsidiary routine to the expansion of expression_with_actions and if
239 -- expressions. Generate all the necessary code to finalize a transient
240 -- controlled object when the enclosing context is elaborated or evaluated.
241 -- Decl denotes the declaration of the transient controlled object which is
242 -- usually the result of a controlled function call. Rel_Node denotes the
243 -- context, either an expression_with_actions or an if expression.
244
70482933 245 procedure Rewrite_Comparison (N : Node_Id);
20b5d666 246 -- If N is the node for a comparison whose outcome can be determined at
d26dc4b5
AC
247 -- compile time, then the node N can be rewritten with True or False. If
248 -- the outcome cannot be determined at compile time, the call has no
249 -- effect. If N is a type conversion, then this processing is applied to
250 -- its expression. If N is neither comparison nor a type conversion, the
251 -- call has no effect.
70482933 252
82878151
AC
253 procedure Tagged_Membership
254 (N : Node_Id;
255 SCIL_Node : out Node_Id;
256 Result : out Node_Id);
70482933
RK
257 -- Construct the expression corresponding to the tagged membership test.
258 -- Deals with a second operand being (or not) a class-wide type.
259
fbf5a39b 260 function Safe_In_Place_Array_Op
2e071734
AC
261 (Lhs : Node_Id;
262 Op1 : Node_Id;
263 Op2 : Node_Id) return Boolean;
685094bf
RD
264 -- In the context of an assignment, where the right-hand side is a boolean
265 -- operation on arrays, check whether operation can be performed in place.
fbf5a39b 266
70482933
RK
267 procedure Unary_Op_Validity_Checks (N : Node_Id);
268 pragma Inline (Unary_Op_Validity_Checks);
269 -- Performs validity checks for a unary operator
270
271 -------------------------------
272 -- Binary_Op_Validity_Checks --
273 -------------------------------
274
275 procedure Binary_Op_Validity_Checks (N : Node_Id) is
276 begin
277 if Validity_Checks_On and Validity_Check_Operands then
278 Ensure_Valid (Left_Opnd (N));
279 Ensure_Valid (Right_Opnd (N));
280 end if;
281 end Binary_Op_Validity_Checks;
282
fbf5a39b
AC
283 ------------------------------------
284 -- Build_Boolean_Array_Proc_Call --
285 ------------------------------------
286
287 procedure Build_Boolean_Array_Proc_Call
288 (N : Node_Id;
289 Op1 : Node_Id;
290 Op2 : Node_Id)
291 is
292 Loc : constant Source_Ptr := Sloc (N);
293 Kind : constant Node_Kind := Nkind (Expression (N));
294 Target : constant Node_Id :=
295 Make_Attribute_Reference (Loc,
296 Prefix => Name (N),
297 Attribute_Name => Name_Address);
298
bed8af19 299 Arg1 : Node_Id := Op1;
fbf5a39b
AC
300 Arg2 : Node_Id := Op2;
301 Call_Node : Node_Id;
302 Proc_Name : Entity_Id;
303
304 begin
305 if Kind = N_Op_Not then
306 if Nkind (Op1) in N_Binary_Op then
307
5e1c00fa 308 -- Use negated version of the binary operators
fbf5a39b
AC
309
310 if Nkind (Op1) = N_Op_And then
311 Proc_Name := RTE (RE_Vector_Nand);
312
313 elsif Nkind (Op1) = N_Op_Or then
314 Proc_Name := RTE (RE_Vector_Nor);
315
316 else pragma Assert (Nkind (Op1) = N_Op_Xor);
317 Proc_Name := RTE (RE_Vector_Xor);
318 end if;
319
320 Call_Node :=
321 Make_Procedure_Call_Statement (Loc,
322 Name => New_Occurrence_Of (Proc_Name, Loc),
323
324 Parameter_Associations => New_List (
325 Target,
326 Make_Attribute_Reference (Loc,
327 Prefix => Left_Opnd (Op1),
328 Attribute_Name => Name_Address),
329
330 Make_Attribute_Reference (Loc,
331 Prefix => Right_Opnd (Op1),
332 Attribute_Name => Name_Address),
333
334 Make_Attribute_Reference (Loc,
335 Prefix => Left_Opnd (Op1),
336 Attribute_Name => Name_Length)));
337
338 else
339 Proc_Name := RTE (RE_Vector_Not);
340
341 Call_Node :=
342 Make_Procedure_Call_Statement (Loc,
343 Name => New_Occurrence_Of (Proc_Name, Loc),
344 Parameter_Associations => New_List (
345 Target,
346
347 Make_Attribute_Reference (Loc,
348 Prefix => Op1,
349 Attribute_Name => Name_Address),
350
351 Make_Attribute_Reference (Loc,
352 Prefix => Op1,
353 Attribute_Name => Name_Length)));
354 end if;
355
356 else
357 -- We use the following equivalences:
358
359 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
360 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
361 -- (not X) xor (not Y) = X xor Y
362 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
363
364 if Nkind (Op1) = N_Op_Not then
bed8af19
AC
365 Arg1 := Right_Opnd (Op1);
366 Arg2 := Right_Opnd (Op2);
533369aa 367
fbf5a39b
AC
368 if Kind = N_Op_And then
369 Proc_Name := RTE (RE_Vector_Nor);
fbf5a39b
AC
370 elsif Kind = N_Op_Or then
371 Proc_Name := RTE (RE_Vector_Nand);
fbf5a39b
AC
372 else
373 Proc_Name := RTE (RE_Vector_Xor);
374 end if;
375
376 else
377 if Kind = N_Op_And then
378 Proc_Name := RTE (RE_Vector_And);
fbf5a39b
AC
379 elsif Kind = N_Op_Or then
380 Proc_Name := RTE (RE_Vector_Or);
fbf5a39b
AC
381 elsif Nkind (Op2) = N_Op_Not then
382 Proc_Name := RTE (RE_Vector_Nxor);
383 Arg2 := Right_Opnd (Op2);
fbf5a39b
AC
384 else
385 Proc_Name := RTE (RE_Vector_Xor);
386 end if;
387 end if;
388
389 Call_Node :=
390 Make_Procedure_Call_Statement (Loc,
391 Name => New_Occurrence_Of (Proc_Name, Loc),
392 Parameter_Associations => New_List (
393 Target,
955871d3
AC
394 Make_Attribute_Reference (Loc,
395 Prefix => Arg1,
396 Attribute_Name => Name_Address),
397 Make_Attribute_Reference (Loc,
398 Prefix => Arg2,
399 Attribute_Name => Name_Address),
400 Make_Attribute_Reference (Loc,
a8ef12e5 401 Prefix => Arg1,
955871d3 402 Attribute_Name => Name_Length)));
fbf5a39b
AC
403 end if;
404
405 Rewrite (N, Call_Node);
406 Analyze (N);
407
408 exception
409 when RE_Not_Available =>
410 return;
411 end Build_Boolean_Array_Proc_Call;
412
11fa950b
AC
413 ------------------------------
414 -- Current_Anonymous_Master --
415 ------------------------------
df3e68b1 416
11fa950b 417 function Current_Anonymous_Master return Entity_Id is
2c17ca0a
AC
418 Decls : List_Id;
419 Loc : Source_Ptr;
420 Subp_Body : Node_Id;
421 Unit_Decl : Node_Id;
422 Unit_Id : Entity_Id;
df3e68b1 423
ca5af305 424 begin
11fa950b
AC
425 Unit_Id := Cunit_Entity (Current_Sem_Unit);
426
427 -- Find the entity of the current unit
428
429 if Ekind (Unit_Id) = E_Subprogram_Body then
430
431 -- When processing subprogram bodies, the proper scope is always that
432 -- of the spec.
433
434 Subp_Body := Unit_Id;
435 while Present (Subp_Body)
436 and then Nkind (Subp_Body) /= N_Subprogram_Body
437 loop
438 Subp_Body := Parent (Subp_Body);
439 end loop;
440
441 Unit_Id := Corresponding_Spec (Subp_Body);
442 end if;
443
444 Loc := Sloc (Unit_Id);
445 Unit_Decl := Unit (Cunit (Current_Sem_Unit));
446
447 -- Find the declarations list of the current unit
448
449 if Nkind (Unit_Decl) = N_Package_Declaration then
450 Unit_Decl := Specification (Unit_Decl);
451 Decls := Visible_Declarations (Unit_Decl);
df3e68b1 452
ca5af305 453 if No (Decls) then
11fa950b
AC
454 Decls := New_List (Make_Null_Statement (Loc));
455 Set_Visible_Declarations (Unit_Decl, Decls);
df3e68b1 456
ca5af305 457 elsif Is_Empty_List (Decls) then
11fa950b 458 Append_To (Decls, Make_Null_Statement (Loc));
df3e68b1
HK
459 end if;
460
ca5af305 461 else
11fa950b 462 Decls := Declarations (Unit_Decl);
f553e7bc 463
ca5af305 464 if No (Decls) then
11fa950b
AC
465 Decls := New_List (Make_Null_Statement (Loc));
466 Set_Declarations (Unit_Decl, Decls);
df3e68b1 467
ca5af305 468 elsif Is_Empty_List (Decls) then
11fa950b 469 Append_To (Decls, Make_Null_Statement (Loc));
ca5af305 470 end if;
df3e68b1
HK
471 end if;
472
11fa950b
AC
473 -- The current unit has an existing anonymous master, traverse its
474 -- declarations and locate the entity.
df3e68b1 475
11fa950b 476 if Has_Anonymous_Master (Unit_Id) then
2c17ca0a
AC
477 declare
478 Decl : Node_Id;
479 Fin_Mas_Id : Entity_Id;
df3e68b1 480
2c17ca0a
AC
481 begin
482 Decl := First (Decls);
483 while Present (Decl) loop
df3e68b1 484
2c17ca0a
AC
485 -- Look for the first variable in the declarations whole type
486 -- is Finalization_Master.
df3e68b1 487
2c17ca0a
AC
488 if Nkind (Decl) = N_Object_Declaration then
489 Fin_Mas_Id := Defining_Identifier (Decl);
490
491 if Ekind (Fin_Mas_Id) = E_Variable
492 and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
493 then
494 return Fin_Mas_Id;
495 end if;
496 end if;
497
498 Next (Decl);
499 end loop;
500
501 -- The master was not found even though the unit was labeled as
502 -- having one.
df3e68b1 503
2c17ca0a
AC
504 raise Program_Error;
505 end;
11fa950b
AC
506
507 -- Create a new anonymous master
508
509 else
510 declare
511 First_Decl : constant Node_Id := First (Decls);
512 Action : Node_Id;
2c17ca0a 513 Fin_Mas_Id : Entity_Id;
df3e68b1 514
11fa950b
AC
515 begin
516 -- Since the master and its associated initialization is inserted
517 -- at top level, use the scope of the unit when analyzing.
518
519 Push_Scope (Unit_Id);
520
521 -- Create the finalization master
522
523 Fin_Mas_Id :=
524 Make_Defining_Identifier (Loc,
525 Chars => New_External_Name (Chars (Unit_Id), "AM"));
526
527 -- Generate:
528 -- <Fin_Mas_Id> : Finalization_Master;
529
530 Action :=
531 Make_Object_Declaration (Loc,
532 Defining_Identifier => Fin_Mas_Id,
533 Object_Definition =>
e4494292 534 New_Occurrence_Of (RTE (RE_Finalization_Master), Loc));
11fa950b
AC
535
536 Insert_Before_And_Analyze (First_Decl, Action);
537
538 -- Mark the unit to prevent the generation of multiple masters
539
540 Set_Has_Anonymous_Master (Unit_Id);
541
542 -- Do not set the base pool and mode of operation on .NET/JVM
543 -- since those targets do not support pools and all VM masters
544 -- are heterogeneous by default.
545
546 if VM_Target = No_VM then
547
548 -- Generate:
549 -- Set_Base_Pool
550 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
551
552 Action :=
553 Make_Procedure_Call_Statement (Loc,
554 Name =>
e4494292 555 New_Occurrence_Of (RTE (RE_Set_Base_Pool), Loc),
11fa950b
AC
556
557 Parameter_Associations => New_List (
e4494292 558 New_Occurrence_Of (Fin_Mas_Id, Loc),
11fa950b
AC
559 Make_Attribute_Reference (Loc,
560 Prefix =>
e4494292 561 New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
11fa950b
AC
562 Attribute_Name => Name_Unrestricted_Access)));
563
564 Insert_Before_And_Analyze (First_Decl, Action);
565
566 -- Generate:
567 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
568
569 Action :=
570 Make_Procedure_Call_Statement (Loc,
571 Name =>
e4494292 572 New_Occurrence_Of (RTE (RE_Set_Is_Heterogeneous), Loc),
11fa950b 573 Parameter_Associations => New_List (
e4494292 574 New_Occurrence_Of (Fin_Mas_Id, Loc)));
11fa950b
AC
575
576 Insert_Before_And_Analyze (First_Decl, Action);
577 end if;
578
579 -- Restore the original state of the scope stack
580
581 Pop_Scope;
582
583 return Fin_Mas_Id;
584 end;
585 end if;
586 end Current_Anonymous_Master;
df3e68b1 587
26bff3d9
JM
588 --------------------------------
589 -- Displace_Allocator_Pointer --
590 --------------------------------
591
592 procedure Displace_Allocator_Pointer (N : Node_Id) is
593 Loc : constant Source_Ptr := Sloc (N);
594 Orig_Node : constant Node_Id := Original_Node (N);
595 Dtyp : Entity_Id;
596 Etyp : Entity_Id;
597 PtrT : Entity_Id;
598
599 begin
303b4d58
AC
600 -- Do nothing in case of VM targets: the virtual machine will handle
601 -- interfaces directly.
602
1f110335 603 if not Tagged_Type_Expansion then
303b4d58
AC
604 return;
605 end if;
606
26bff3d9
JM
607 pragma Assert (Nkind (N) = N_Identifier
608 and then Nkind (Orig_Node) = N_Allocator);
609
610 PtrT := Etype (Orig_Node);
d6a24cdb 611 Dtyp := Available_View (Designated_Type (PtrT));
26bff3d9
JM
612 Etyp := Etype (Expression (Orig_Node));
613
533369aa
AC
614 if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
615
26bff3d9
JM
616 -- If the type of the allocator expression is not an interface type
617 -- we can generate code to reference the record component containing
618 -- the pointer to the secondary dispatch table.
619
620 if not Is_Interface (Etyp) then
621 declare
622 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
623
624 begin
625 -- 1) Get access to the allocated object
626
627 Rewrite (N,
5972791c 628 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
26bff3d9
JM
629 Set_Etype (N, Etyp);
630 Set_Analyzed (N);
631
632 -- 2) Add the conversion to displace the pointer to reference
633 -- the secondary dispatch table.
634
635 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
636 Analyze_And_Resolve (N, Dtyp);
637
638 -- 3) The 'access to the secondary dispatch table will be used
639 -- as the value returned by the allocator.
640
641 Rewrite (N,
642 Make_Attribute_Reference (Loc,
643 Prefix => Relocate_Node (N),
644 Attribute_Name => Name_Access));
645 Set_Etype (N, Saved_Typ);
646 Set_Analyzed (N);
647 end;
648
649 -- If the type of the allocator expression is an interface type we
650 -- generate a run-time call to displace "this" to reference the
651 -- component containing the pointer to the secondary dispatch table
652 -- or else raise Constraint_Error if the actual object does not
533369aa 653 -- implement the target interface. This case corresponds to the
26bff3d9
JM
654 -- following example:
655
8fc789c8 656 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
26bff3d9
JM
657 -- begin
658 -- return new Iface_2'Class'(Obj);
659 -- end Op;
660
661 else
662 Rewrite (N,
663 Unchecked_Convert_To (PtrT,
664 Make_Function_Call (Loc,
e4494292 665 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
26bff3d9
JM
666 Parameter_Associations => New_List (
667 Unchecked_Convert_To (RTE (RE_Address),
668 Relocate_Node (N)),
669
670 New_Occurrence_Of
671 (Elists.Node
672 (First_Elmt
673 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
674 Loc)))));
675 Analyze_And_Resolve (N, PtrT);
676 end if;
677 end if;
678 end Displace_Allocator_Pointer;
679
fbf5a39b
AC
680 ---------------------------------
681 -- Expand_Allocator_Expression --
682 ---------------------------------
683
684 procedure Expand_Allocator_Expression (N : Node_Id) is
f02b8bb8
RD
685 Loc : constant Source_Ptr := Sloc (N);
686 Exp : constant Node_Id := Expression (Expression (N));
f02b8bb8
RD
687 PtrT : constant Entity_Id := Etype (N);
688 DesigT : constant Entity_Id := Designated_Type (PtrT);
26bff3d9
JM
689
690 procedure Apply_Accessibility_Check
691 (Ref : Node_Id;
692 Built_In_Place : Boolean := False);
693 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
685094bf
RD
694 -- type, generate an accessibility check to verify that the level of the
695 -- type of the created object is not deeper than the level of the access
50878404 696 -- type. If the type of the qualified expression is class-wide, then
685094bf
RD
697 -- always generate the check (except in the case where it is known to be
698 -- unnecessary, see comment below). Otherwise, only generate the check
699 -- if the level of the qualified expression type is statically deeper
700 -- than the access type.
701 --
702 -- Although the static accessibility will generally have been performed
703 -- as a legality check, it won't have been done in cases where the
704 -- allocator appears in generic body, so a run-time check is needed in
705 -- general. One special case is when the access type is declared in the
706 -- same scope as the class-wide allocator, in which case the check can
707 -- never fail, so it need not be generated.
708 --
709 -- As an open issue, there seem to be cases where the static level
710 -- associated with the class-wide object's underlying type is not
711 -- sufficient to perform the proper accessibility check, such as for
712 -- allocators in nested subprograms or accept statements initialized by
713 -- class-wide formals when the actual originates outside at a deeper
714 -- static level. The nested subprogram case might require passing
715 -- accessibility levels along with class-wide parameters, and the task
716 -- case seems to be an actual gap in the language rules that needs to
717 -- be fixed by the ARG. ???
26bff3d9
JM
718
719 -------------------------------
720 -- Apply_Accessibility_Check --
721 -------------------------------
722
723 procedure Apply_Accessibility_Check
724 (Ref : Node_Id;
725 Built_In_Place : Boolean := False)
726 is
a98838ff
HK
727 Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
728 Cond : Node_Id;
729 Fin_Call : Node_Id;
730 Free_Stmt : Node_Id;
731 Obj_Ref : Node_Id;
732 Stmts : List_Id;
26bff3d9
JM
733
734 begin
0791fbe9 735 if Ada_Version >= Ada_2005
26bff3d9 736 and then Is_Class_Wide_Type (DesigT)
a98838ff 737 and then (Tagged_Type_Expansion or else VM_Target /= No_VM)
3217f71e 738 and then not Scope_Suppress.Suppress (Accessibility_Check)
26bff3d9
JM
739 and then
740 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
741 or else
742 (Is_Class_Wide_Type (Etype (Exp))
743 and then Scope (PtrT) /= Current_Scope))
744 then
e761d11c 745 -- If the allocator was built in place, Ref is already a reference
26bff3d9 746 -- to the access object initialized to the result of the allocator
e761d11c
AC
747 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
748 -- Remove_Side_Effects for cases where the build-in-place call may
749 -- still be the prefix of the reference (to avoid generating
750 -- duplicate calls). Otherwise, it is the entity associated with
751 -- the object containing the address of the allocated object.
26bff3d9
JM
752
753 if Built_In_Place then
e761d11c 754 Remove_Side_Effects (Ref);
a98838ff 755 Obj_Ref := New_Copy_Tree (Ref);
26bff3d9 756 else
e4494292 757 Obj_Ref := New_Occurrence_Of (Ref, Loc);
50878404
AC
758 end if;
759
b6c8e5be
AC
760 -- For access to interface types we must generate code to displace
761 -- the pointer to the base of the object since the subsequent code
762 -- references components located in the TSD of the object (which
763 -- is associated with the primary dispatch table --see a-tags.ads)
764 -- and also generates code invoking Free, which requires also a
765 -- reference to the base of the unallocated object.
766
cc6f5d75 767 if Is_Interface (DesigT) and then Tagged_Type_Expansion then
b6c8e5be
AC
768 Obj_Ref :=
769 Unchecked_Convert_To (Etype (Obj_Ref),
770 Make_Function_Call (Loc,
662c2ad4
RD
771 Name =>
772 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
b6c8e5be
AC
773 Parameter_Associations => New_List (
774 Unchecked_Convert_To (RTE (RE_Address),
775 New_Copy_Tree (Obj_Ref)))));
776 end if;
777
50878404
AC
778 -- Step 1: Create the object clean up code
779
780 Stmts := New_List;
781
a98838ff
HK
782 -- Deallocate the object if the accessibility check fails. This
783 -- is done only on targets or profiles that support deallocation.
784
785 -- Free (Obj_Ref);
786
787 if RTE_Available (RE_Free) then
788 Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
789 Set_Storage_Pool (Free_Stmt, Pool_Id);
790
791 Append_To (Stmts, Free_Stmt);
792
793 -- The target or profile cannot deallocate objects
794
795 else
796 Free_Stmt := Empty;
797 end if;
798
799 -- Finalize the object if applicable. Generate:
a530b8bb
AC
800
801 -- [Deep_]Finalize (Obj_Ref.all);
802
2cbac6c6 803 if Needs_Finalization (DesigT) then
a98838ff 804 Fin_Call :=
cc6f5d75
AC
805 Make_Final_Call
806 (Obj_Ref =>
807 Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
808 Typ => DesigT);
a98838ff
HK
809
810 -- When the target or profile supports deallocation, wrap the
811 -- finalization call in a block to ensure proper deallocation
812 -- even if finalization fails. Generate:
813
814 -- begin
815 -- <Fin_Call>
816 -- exception
817 -- when others =>
818 -- <Free_Stmt>
819 -- raise;
820 -- end;
821
822 if Present (Free_Stmt) then
823 Fin_Call :=
824 Make_Block_Statement (Loc,
825 Handled_Statement_Sequence =>
826 Make_Handled_Sequence_Of_Statements (Loc,
827 Statements => New_List (Fin_Call),
828
829 Exception_Handlers => New_List (
830 Make_Exception_Handler (Loc,
831 Exception_Choices => New_List (
832 Make_Others_Choice (Loc)),
833
834 Statements => New_List (
835 New_Copy_Tree (Free_Stmt),
836 Make_Raise_Statement (Loc))))));
837 end if;
838
839 Prepend_To (Stmts, Fin_Call);
f46faa08
AC
840 end if;
841
50878404
AC
842 -- Signal the accessibility failure through a Program_Error
843
844 Append_To (Stmts,
845 Make_Raise_Program_Error (Loc,
e4494292 846 Condition => New_Occurrence_Of (Standard_True, Loc),
50878404
AC
847 Reason => PE_Accessibility_Check_Failed));
848
849 -- Step 2: Create the accessibility comparison
850
851 -- Generate:
852 -- Ref'Tag
853
b6c8e5be
AC
854 Obj_Ref :=
855 Make_Attribute_Reference (Loc,
856 Prefix => Obj_Ref,
857 Attribute_Name => Name_Tag);
f46faa08 858
50878404
AC
859 -- For tagged types, determine the accessibility level by looking
860 -- at the type specific data of the dispatch table. Generate:
861
862 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
863
f46faa08 864 if Tagged_Type_Expansion then
50878404 865 Cond := Build_Get_Access_Level (Loc, Obj_Ref);
f46faa08 866
50878404
AC
867 -- Use a runtime call to determine the accessibility level when
868 -- compiling on virtual machine targets. Generate:
f46faa08 869
50878404 870 -- Get_Access_Level (Ref'Tag)
f46faa08
AC
871
872 else
50878404
AC
873 Cond :=
874 Make_Function_Call (Loc,
875 Name =>
e4494292 876 New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
50878404 877 Parameter_Associations => New_List (Obj_Ref));
26bff3d9
JM
878 end if;
879
50878404
AC
880 Cond :=
881 Make_Op_Gt (Loc,
882 Left_Opnd => Cond,
883 Right_Opnd =>
884 Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
885
886 -- Due to the complexity and side effects of the check, utilize an
887 -- if statement instead of the regular Program_Error circuitry.
888
26bff3d9 889 Insert_Action (N,
8b1011c0 890 Make_Implicit_If_Statement (N,
50878404
AC
891 Condition => Cond,
892 Then_Statements => Stmts));
26bff3d9
JM
893 end if;
894 end Apply_Accessibility_Check;
895
896 -- Local variables
897
df3e68b1
HK
898 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
899 Indic : constant Node_Id := Subtype_Mark (Expression (N));
900 T : constant Entity_Id := Entity (Indic);
901 Node : Node_Id;
902 Tag_Assign : Node_Id;
903 Temp : Entity_Id;
904 Temp_Decl : Node_Id;
fbf5a39b 905
d26dc4b5
AC
906 TagT : Entity_Id := Empty;
907 -- Type used as source for tag assignment
908
909 TagR : Node_Id := Empty;
910 -- Target reference for tag assignment
911
26bff3d9
JM
912 -- Start of processing for Expand_Allocator_Expression
913
fbf5a39b 914 begin
3bfb3c03
JM
915 -- Handle call to C++ constructor
916
917 if Is_CPP_Constructor_Call (Exp) then
918 Make_CPP_Constructor_Call_In_Allocator
919 (Allocator => N,
920 Function_Call => Exp);
921 return;
922 end if;
923
885c4871 924 -- In the case of an Ada 2012 allocator whose initial value comes from a
63585f75
SB
925 -- function call, pass "the accessibility level determined by the point
926 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
927 -- Expand_Call but it couldn't be done there (because the Etype of the
928 -- allocator wasn't set then) so we generate the parameter here. See
929 -- the Boolean variable Defer in (a block within) Expand_Call.
930
931 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
932 declare
933 Subp : Entity_Id;
934
935 begin
936 if Nkind (Name (Exp)) = N_Explicit_Dereference then
937 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
938 else
939 Subp := Entity (Name (Exp));
940 end if;
941
57a3fca9
AC
942 Subp := Ultimate_Alias (Subp);
943
63585f75
SB
944 if Present (Extra_Accessibility_Of_Result (Subp)) then
945 Add_Extra_Actual_To_Call
946 (Subprogram_Call => Exp,
947 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
948 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
949 end if;
950 end;
951 end if;
952
f6194278 953 -- Case of tagged type or type requiring finalization
63585f75
SB
954
955 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
fadcf313 956
685094bf
RD
957 -- Ada 2005 (AI-318-02): If the initialization expression is a call
958 -- to a build-in-place function, then access to the allocated object
959 -- must be passed to the function. Currently we limit such functions
960 -- to those with constrained limited result subtypes, but eventually
961 -- we plan to expand the allowed forms of functions that are treated
962 -- as build-in-place.
20b5d666 963
0791fbe9 964 if Ada_Version >= Ada_2005
20b5d666
JM
965 and then Is_Build_In_Place_Function_Call (Exp)
966 then
967 Make_Build_In_Place_Call_In_Allocator (N, Exp);
26bff3d9
JM
968 Apply_Accessibility_Check (N, Built_In_Place => True);
969 return;
20b5d666
JM
970 end if;
971
ca5af305
AC
972 -- Actions inserted before:
973 -- Temp : constant ptr_T := new T'(Expression);
974 -- Temp._tag = T'tag; -- when not class-wide
975 -- [Deep_]Adjust (Temp.all);
fbf5a39b 976
ca5af305 977 -- We analyze by hand the new internal allocator to avoid any
6b6041ec 978 -- recursion and inappropriate call to Initialize.
7324bf49 979
20b5d666
JM
980 -- We don't want to remove side effects when the expression must be
981 -- built in place. In the case of a build-in-place function call,
982 -- that could lead to a duplication of the call, which was already
983 -- substituted for the allocator.
984
26bff3d9 985 if not Aggr_In_Place then
fbf5a39b
AC
986 Remove_Side_Effects (Exp);
987 end if;
988
e86a3a7e 989 Temp := Make_Temporary (Loc, 'P', N);
fbf5a39b
AC
990
991 -- For a class wide allocation generate the following code:
992
993 -- type Equiv_Record is record ... end record;
994 -- implicit subtype CW is <Class_Wide_Subytpe>;
995 -- temp : PtrT := new CW'(CW!(expr));
996
997 if Is_Class_Wide_Type (T) then
998 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
999
26bff3d9
JM
1000 -- Ada 2005 (AI-251): If the expression is a class-wide interface
1001 -- object we generate code to move up "this" to reference the
1002 -- base of the object before allocating the new object.
1003
1004 -- Note that Exp'Address is recursively expanded into a call
1005 -- to Base_Address (Exp.Tag)
1006
1007 if Is_Class_Wide_Type (Etype (Exp))
1008 and then Is_Interface (Etype (Exp))
1f110335 1009 and then Tagged_Type_Expansion
26bff3d9
JM
1010 then
1011 Set_Expression
1012 (Expression (N),
1013 Unchecked_Convert_To (Entity (Indic),
1014 Make_Explicit_Dereference (Loc,
1015 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
1016 Make_Attribute_Reference (Loc,
1017 Prefix => Exp,
1018 Attribute_Name => Name_Address)))));
26bff3d9
JM
1019 else
1020 Set_Expression
1021 (Expression (N),
1022 Unchecked_Convert_To (Entity (Indic), Exp));
1023 end if;
fbf5a39b
AC
1024
1025 Analyze_And_Resolve (Expression (N), Entity (Indic));
1026 end if;
1027
df3e68b1 1028 -- Processing for allocators returning non-interface types
fbf5a39b 1029
26bff3d9
JM
1030 if not Is_Interface (Directly_Designated_Type (PtrT)) then
1031 if Aggr_In_Place then
df3e68b1 1032 Temp_Decl :=
26bff3d9
JM
1033 Make_Object_Declaration (Loc,
1034 Defining_Identifier => Temp,
e4494292 1035 Object_Definition => New_Occurrence_Of (PtrT, Loc),
26bff3d9
JM
1036 Expression =>
1037 Make_Allocator (Loc,
df3e68b1 1038 Expression =>
e4494292 1039 New_Occurrence_Of (Etype (Exp), Loc)));
fbf5a39b 1040
fad0600d
AC
1041 -- Copy the Comes_From_Source flag for the allocator we just
1042 -- built, since logically this allocator is a replacement of
1043 -- the original allocator node. This is for proper handling of
1044 -- restriction No_Implicit_Heap_Allocations.
1045
26bff3d9 1046 Set_Comes_From_Source
df3e68b1 1047 (Expression (Temp_Decl), Comes_From_Source (N));
fbf5a39b 1048
df3e68b1
HK
1049 Set_No_Initialization (Expression (Temp_Decl));
1050 Insert_Action (N, Temp_Decl);
fbf5a39b 1051
ca5af305 1052 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1053 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fad0600d 1054
d3f70b35 1055 -- Attach the object to the associated finalization master.
deb8dacc
HK
1056 -- This is done manually on .NET/JVM since those compilers do
1057 -- no support pools and can't benefit from internally generated
1058 -- Allocate / Deallocate procedures.
1059
1060 if VM_Target /= No_VM
1061 and then Is_Controlled (DesigT)
d3f70b35 1062 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1063 then
1064 Insert_Action (N,
cc6f5d75
AC
1065 Make_Attach_Call
1066 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1067 Ptr_Typ => PtrT));
deb8dacc
HK
1068 end if;
1069
26bff3d9
JM
1070 else
1071 Node := Relocate_Node (N);
1072 Set_Analyzed (Node);
df3e68b1
HK
1073
1074 Temp_Decl :=
26bff3d9
JM
1075 Make_Object_Declaration (Loc,
1076 Defining_Identifier => Temp,
1077 Constant_Present => True,
e4494292 1078 Object_Definition => New_Occurrence_Of (PtrT, Loc),
df3e68b1
HK
1079 Expression => Node);
1080
1081 Insert_Action (N, Temp_Decl);
ca5af305 1082 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
deb8dacc 1083
d3f70b35 1084 -- Attach the object to the associated finalization master.
deb8dacc
HK
1085 -- This is done manually on .NET/JVM since those compilers do
1086 -- no support pools and can't benefit from internally generated
1087 -- Allocate / Deallocate procedures.
1088
1089 if VM_Target /= No_VM
1090 and then Is_Controlled (DesigT)
d3f70b35 1091 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1092 then
1093 Insert_Action (N,
cc6f5d75
AC
1094 Make_Attach_Call
1095 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1096 Ptr_Typ => PtrT));
deb8dacc 1097 end if;
fbf5a39b
AC
1098 end if;
1099
26bff3d9
JM
1100 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1101 -- interface type. In this case we use the type of the qualified
1102 -- expression to allocate the object.
1103
fbf5a39b 1104 else
26bff3d9 1105 declare
191fcb3a 1106 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
26bff3d9 1107 New_Decl : Node_Id;
fbf5a39b 1108
26bff3d9
JM
1109 begin
1110 New_Decl :=
1111 Make_Full_Type_Declaration (Loc,
1112 Defining_Identifier => Def_Id,
cc6f5d75 1113 Type_Definition =>
26bff3d9
JM
1114 Make_Access_To_Object_Definition (Loc,
1115 All_Present => True,
1116 Null_Exclusion_Present => False,
0929eaeb
AC
1117 Constant_Present =>
1118 Is_Access_Constant (Etype (N)),
26bff3d9 1119 Subtype_Indication =>
e4494292 1120 New_Occurrence_Of (Etype (Exp), Loc)));
26bff3d9
JM
1121
1122 Insert_Action (N, New_Decl);
1123
df3e68b1
HK
1124 -- Inherit the allocation-related attributes from the original
1125 -- access type.
26bff3d9 1126
d3f70b35 1127 Set_Finalization_Master (Def_Id, Finalization_Master (PtrT));
df3e68b1
HK
1128
1129 Set_Associated_Storage_Pool (Def_Id,
1130 Associated_Storage_Pool (PtrT));
758c442c 1131
26bff3d9
JM
1132 -- Declare the object using the previous type declaration
1133
1134 if Aggr_In_Place then
df3e68b1 1135 Temp_Decl :=
26bff3d9
JM
1136 Make_Object_Declaration (Loc,
1137 Defining_Identifier => Temp,
e4494292 1138 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
26bff3d9
JM
1139 Expression =>
1140 Make_Allocator (Loc,
e4494292 1141 New_Occurrence_Of (Etype (Exp), Loc)));
26bff3d9 1142
fad0600d
AC
1143 -- Copy the Comes_From_Source flag for the allocator we just
1144 -- built, since logically this allocator is a replacement of
1145 -- the original allocator node. This is for proper handling
1146 -- of restriction No_Implicit_Heap_Allocations.
1147
26bff3d9 1148 Set_Comes_From_Source
df3e68b1 1149 (Expression (Temp_Decl), Comes_From_Source (N));
26bff3d9 1150
df3e68b1
HK
1151 Set_No_Initialization (Expression (Temp_Decl));
1152 Insert_Action (N, Temp_Decl);
26bff3d9 1153
ca5af305 1154 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1155 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
26bff3d9 1156
26bff3d9
JM
1157 else
1158 Node := Relocate_Node (N);
1159 Set_Analyzed (Node);
df3e68b1
HK
1160
1161 Temp_Decl :=
26bff3d9
JM
1162 Make_Object_Declaration (Loc,
1163 Defining_Identifier => Temp,
1164 Constant_Present => True,
e4494292 1165 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
df3e68b1
HK
1166 Expression => Node);
1167
1168 Insert_Action (N, Temp_Decl);
ca5af305 1169 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
26bff3d9
JM
1170 end if;
1171
1172 -- Generate an additional object containing the address of the
1173 -- returned object. The type of this second object declaration
685094bf
RD
1174 -- is the correct type required for the common processing that
1175 -- is still performed by this subprogram. The displacement of
1176 -- this pointer to reference the component associated with the
1177 -- interface type will be done at the end of common processing.
26bff3d9
JM
1178
1179 New_Decl :=
1180 Make_Object_Declaration (Loc,
243cae0a 1181 Defining_Identifier => Make_Temporary (Loc, 'P'),
e4494292 1182 Object_Definition => New_Occurrence_Of (PtrT, Loc),
243cae0a 1183 Expression =>
df3e68b1 1184 Unchecked_Convert_To (PtrT,
e4494292 1185 New_Occurrence_Of (Temp, Loc)));
26bff3d9
JM
1186
1187 Insert_Action (N, New_Decl);
1188
df3e68b1
HK
1189 Temp_Decl := New_Decl;
1190 Temp := Defining_Identifier (New_Decl);
26bff3d9 1191 end;
758c442c
GD
1192 end if;
1193
26bff3d9
JM
1194 Apply_Accessibility_Check (Temp);
1195
1196 -- Generate the tag assignment
1197
1198 -- Suppress the tag assignment when VM_Target because VM tags are
1199 -- represented implicitly in objects.
1200
1f110335 1201 if not Tagged_Type_Expansion then
26bff3d9 1202 null;
fbf5a39b 1203
26bff3d9
JM
1204 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1205 -- interface objects because in this case the tag does not change.
d26dc4b5 1206
26bff3d9
JM
1207 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1208 pragma Assert (Is_Class_Wide_Type
1209 (Directly_Designated_Type (Etype (N))));
d26dc4b5
AC
1210 null;
1211
1212 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1213 TagT := T;
e4494292 1214 TagR := New_Occurrence_Of (Temp, Loc);
d26dc4b5
AC
1215
1216 elsif Is_Private_Type (T)
1217 and then Is_Tagged_Type (Underlying_Type (T))
fbf5a39b 1218 then
d26dc4b5 1219 TagT := Underlying_Type (T);
dfd99a80
TQ
1220 TagR :=
1221 Unchecked_Convert_To (Underlying_Type (T),
1222 Make_Explicit_Dereference (Loc,
e4494292 1223 Prefix => New_Occurrence_Of (Temp, Loc)));
d26dc4b5
AC
1224 end if;
1225
1226 if Present (TagT) then
38171f43
AC
1227 declare
1228 Full_T : constant Entity_Id := Underlying_Type (TagT);
e4494292 1229
38171f43
AC
1230 begin
1231 Tag_Assign :=
1232 Make_Assignment_Statement (Loc,
cc6f5d75 1233 Name =>
38171f43 1234 Make_Selected_Component (Loc,
cc6f5d75 1235 Prefix => TagR,
38171f43 1236 Selector_Name =>
e4494292
RD
1237 New_Occurrence_Of
1238 (First_Tag_Component (Full_T), Loc)),
1239
38171f43
AC
1240 Expression =>
1241 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 1242 New_Occurrence_Of
38171f43
AC
1243 (Elists.Node
1244 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1245 end;
fbf5a39b
AC
1246
1247 -- The previous assignment has to be done in any case
1248
1249 Set_Assignment_OK (Name (Tag_Assign));
1250 Insert_Action (N, Tag_Assign);
fbf5a39b
AC
1251 end if;
1252
533369aa
AC
1253 if Needs_Finalization (DesigT) and then Needs_Finalization (T) then
1254
df3e68b1
HK
1255 -- Generate an Adjust call if the object will be moved. In Ada
1256 -- 2005, the object may be inherently limited, in which case
1257 -- there is no Adjust procedure, and the object is built in
1258 -- place. In Ada 95, the object can be limited but not
1259 -- inherently limited if this allocator came from a return
1260 -- statement (we're allocating the result on the secondary
1261 -- stack). In that case, the object will be moved, so we _do_
1262 -- want to Adjust.
1263
1264 if not Aggr_In_Place
51245e2d 1265 and then not Is_Limited_View (T)
df3e68b1
HK
1266 then
1267 Insert_Action (N,
fbf5a39b 1268
533369aa
AC
1269 -- An unchecked conversion is needed in the classwide case
1270 -- because the designated type can be an ancestor of the
1271 -- subtype mark of the allocator.
fbf5a39b 1272
533369aa
AC
1273 Make_Adjust_Call
1274 (Obj_Ref =>
1275 Unchecked_Convert_To (T,
1276 Make_Explicit_Dereference (Loc,
e4494292 1277 Prefix => New_Occurrence_Of (Temp, Loc))),
533369aa 1278 Typ => T));
df3e68b1 1279 end if;
b254da66
AC
1280
1281 -- Generate:
1282 -- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1283
2bfa5484 1284 -- Do not generate this call in the following cases:
c5f5123f 1285
2bfa5484
HK
1286 -- * .NET/JVM - these targets do not support address arithmetic
1287 -- and unchecked conversion, key elements of Finalize_Address.
c5f5123f 1288
2bfa5484
HK
1289 -- * CodePeer mode - TSS primitive Finalize_Address is not
1290 -- created in this mode.
b254da66
AC
1291
1292 if VM_Target = No_VM
1293 and then not CodePeer_Mode
1294 and then Present (Finalization_Master (PtrT))
f7bb41af
AC
1295 and then Present (Temp_Decl)
1296 and then Nkind (Expression (Temp_Decl)) = N_Allocator
b254da66
AC
1297 then
1298 Insert_Action (N,
1299 Make_Set_Finalize_Address_Call
1300 (Loc => Loc,
1301 Typ => T,
1302 Ptr_Typ => PtrT));
1303 end if;
fbf5a39b
AC
1304 end if;
1305
e4494292 1306 Rewrite (N, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1307 Analyze_And_Resolve (N, PtrT);
1308
685094bf
RD
1309 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1310 -- component containing the secondary dispatch table of the interface
1311 -- type.
26bff3d9
JM
1312
1313 if Is_Interface (Directly_Designated_Type (PtrT)) then
1314 Displace_Allocator_Pointer (N);
1315 end if;
1316
fbf5a39b 1317 elsif Aggr_In_Place then
e86a3a7e 1318 Temp := Make_Temporary (Loc, 'P', N);
df3e68b1 1319 Temp_Decl :=
fbf5a39b
AC
1320 Make_Object_Declaration (Loc,
1321 Defining_Identifier => Temp,
e4494292 1322 Object_Definition => New_Occurrence_Of (PtrT, Loc),
df3e68b1
HK
1323 Expression =>
1324 Make_Allocator (Loc,
e4494292 1325 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
fbf5a39b 1326
fad0600d
AC
1327 -- Copy the Comes_From_Source flag for the allocator we just built,
1328 -- since logically this allocator is a replacement of the original
1329 -- allocator node. This is for proper handling of restriction
1330 -- No_Implicit_Heap_Allocations.
1331
fbf5a39b 1332 Set_Comes_From_Source
df3e68b1
HK
1333 (Expression (Temp_Decl), Comes_From_Source (N));
1334
1335 Set_No_Initialization (Expression (Temp_Decl));
1336 Insert_Action (N, Temp_Decl);
1337
ca5af305 1338 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1339 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fbf5a39b 1340
d3f70b35
AC
1341 -- Attach the object to the associated finalization master. Thisis
1342 -- done manually on .NET/JVM since those compilers do no support
deb8dacc
HK
1343 -- pools and cannot benefit from internally generated Allocate and
1344 -- Deallocate procedures.
1345
1346 if VM_Target /= No_VM
1347 and then Is_Controlled (DesigT)
d3f70b35 1348 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1349 then
1350 Insert_Action (N,
243cae0a 1351 Make_Attach_Call
e4494292 1352 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
243cae0a 1353 Ptr_Typ => PtrT));
deb8dacc
HK
1354 end if;
1355
e4494292 1356 Rewrite (N, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1357 Analyze_And_Resolve (N, PtrT);
1358
533369aa 1359 elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
51e4c4b9
AC
1360 Install_Null_Excluding_Check (Exp);
1361
f02b8bb8 1362 elsif Is_Access_Type (DesigT)
fbf5a39b
AC
1363 and then Nkind (Exp) = N_Allocator
1364 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1365 then
0da2c8ac 1366 -- Apply constraint to designated subtype indication
fbf5a39b 1367
cc6f5d75
AC
1368 Apply_Constraint_Check
1369 (Expression (Exp), Designated_Type (DesigT), No_Sliding => True);
fbf5a39b
AC
1370
1371 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1372
1373 -- Propagate constraint_error to enclosing allocator
1374
1375 Rewrite (Exp, New_Copy (Expression (Exp)));
1376 end if;
1df4f514 1377
fbf5a39b 1378 else
14f0f659
AC
1379 Build_Allocate_Deallocate_Proc (N, True);
1380
36c73552
AC
1381 -- If we have:
1382 -- type A is access T1;
1383 -- X : A := new T2'(...);
1384 -- T1 and T2 can be different subtypes, and we might need to check
1385 -- both constraints. First check against the type of the qualified
1386 -- expression.
1387
1388 Apply_Constraint_Check (Exp, T, No_Sliding => True);
fbf5a39b 1389
d79e621a 1390 if Do_Range_Check (Exp) then
d79e621a
GD
1391 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1392 end if;
1393
685094bf
RD
1394 -- A check is also needed in cases where the designated subtype is
1395 -- constrained and differs from the subtype given in the qualified
1396 -- expression. Note that the check on the qualified expression does
1397 -- not allow sliding, but this check does (a relaxation from Ada 83).
fbf5a39b 1398
f02b8bb8 1399 if Is_Constrained (DesigT)
9450205a 1400 and then not Subtypes_Statically_Match (T, DesigT)
fbf5a39b
AC
1401 then
1402 Apply_Constraint_Check
f02b8bb8 1403 (Exp, DesigT, No_Sliding => False);
d79e621a
GD
1404
1405 if Do_Range_Check (Exp) then
d79e621a
GD
1406 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1407 end if;
f02b8bb8
RD
1408 end if;
1409
685094bf
RD
1410 -- For an access to unconstrained packed array, GIGI needs to see an
1411 -- expression with a constrained subtype in order to compute the
1412 -- proper size for the allocator.
f02b8bb8
RD
1413
1414 if Is_Array_Type (T)
1415 and then not Is_Constrained (T)
1416 and then Is_Packed (T)
1417 then
1418 declare
191fcb3a 1419 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
f02b8bb8
RD
1420 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1421 begin
1422 Insert_Action (Exp,
1423 Make_Subtype_Declaration (Loc,
1424 Defining_Identifier => ConstrT,
25ebc085
AC
1425 Subtype_Indication =>
1426 Make_Subtype_From_Expr (Internal_Exp, T)));
f02b8bb8
RD
1427 Freeze_Itype (ConstrT, Exp);
1428 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1429 end;
fbf5a39b 1430 end if;
f02b8bb8 1431
685094bf
RD
1432 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1433 -- to a build-in-place function, then access to the allocated object
1434 -- must be passed to the function. Currently we limit such functions
1435 -- to those with constrained limited result subtypes, but eventually
1436 -- we plan to expand the allowed forms of functions that are treated
1437 -- as build-in-place.
20b5d666 1438
0791fbe9 1439 if Ada_Version >= Ada_2005
20b5d666
JM
1440 and then Is_Build_In_Place_Function_Call (Exp)
1441 then
1442 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1443 end if;
fbf5a39b
AC
1444 end if;
1445
1446 exception
1447 when RE_Not_Available =>
1448 return;
1449 end Expand_Allocator_Expression;
1450
70482933
RK
1451 -----------------------------
1452 -- Expand_Array_Comparison --
1453 -----------------------------
1454
685094bf
RD
1455 -- Expansion is only required in the case of array types. For the unpacked
1456 -- case, an appropriate runtime routine is called. For packed cases, and
1457 -- also in some other cases where a runtime routine cannot be called, the
1458 -- form of the expansion is:
70482933
RK
1459
1460 -- [body for greater_nn; boolean_expression]
1461
1462 -- The body is built by Make_Array_Comparison_Op, and the form of the
1463 -- Boolean expression depends on the operator involved.
1464
1465 procedure Expand_Array_Comparison (N : Node_Id) is
1466 Loc : constant Source_Ptr := Sloc (N);
1467 Op1 : Node_Id := Left_Opnd (N);
1468 Op2 : Node_Id := Right_Opnd (N);
1469 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
fbf5a39b 1470 Ctyp : constant Entity_Id := Component_Type (Typ1);
70482933
RK
1471
1472 Expr : Node_Id;
1473 Func_Body : Node_Id;
1474 Func_Name : Entity_Id;
1475
fbf5a39b
AC
1476 Comp : RE_Id;
1477
9bc43c53
AC
1478 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1479 -- True for byte addressable target
91b1417d 1480
fbf5a39b 1481 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
685094bf
RD
1482 -- Returns True if the length of the given operand is known to be less
1483 -- than 4. Returns False if this length is known to be four or greater
1484 -- or is not known at compile time.
fbf5a39b
AC
1485
1486 ------------------------
1487 -- Length_Less_Than_4 --
1488 ------------------------
1489
1490 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1491 Otyp : constant Entity_Id := Etype (Opnd);
1492
1493 begin
1494 if Ekind (Otyp) = E_String_Literal_Subtype then
1495 return String_Literal_Length (Otyp) < 4;
1496
1497 else
1498 declare
1499 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1500 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1501 Hi : constant Node_Id := Type_High_Bound (Ityp);
1502 Lov : Uint;
1503 Hiv : Uint;
1504
1505 begin
1506 if Compile_Time_Known_Value (Lo) then
1507 Lov := Expr_Value (Lo);
1508 else
1509 return False;
1510 end if;
1511
1512 if Compile_Time_Known_Value (Hi) then
1513 Hiv := Expr_Value (Hi);
1514 else
1515 return False;
1516 end if;
1517
1518 return Hiv < Lov + 3;
1519 end;
1520 end if;
1521 end Length_Less_Than_4;
1522
1523 -- Start of processing for Expand_Array_Comparison
1524
70482933 1525 begin
fbf5a39b
AC
1526 -- Deal first with unpacked case, where we can call a runtime routine
1527 -- except that we avoid this for targets for which are not addressable
26bff3d9 1528 -- by bytes, and for the JVM/CIL, since they do not support direct
fbf5a39b
AC
1529 -- addressing of array components.
1530
1531 if not Is_Bit_Packed_Array (Typ1)
9bc43c53 1532 and then Byte_Addressable
26bff3d9 1533 and then VM_Target = No_VM
fbf5a39b
AC
1534 then
1535 -- The call we generate is:
1536
1537 -- Compare_Array_xn[_Unaligned]
1538 -- (left'address, right'address, left'length, right'length) <op> 0
1539
1540 -- x = U for unsigned, S for signed
1541 -- n = 8,16,32,64 for component size
1542 -- Add _Unaligned if length < 4 and component size is 8.
1543 -- <op> is the standard comparison operator
1544
1545 if Component_Size (Typ1) = 8 then
1546 if Length_Less_Than_4 (Op1)
1547 or else
1548 Length_Less_Than_4 (Op2)
1549 then
1550 if Is_Unsigned_Type (Ctyp) then
1551 Comp := RE_Compare_Array_U8_Unaligned;
1552 else
1553 Comp := RE_Compare_Array_S8_Unaligned;
1554 end if;
1555
1556 else
1557 if Is_Unsigned_Type (Ctyp) then
1558 Comp := RE_Compare_Array_U8;
1559 else
1560 Comp := RE_Compare_Array_S8;
1561 end if;
1562 end if;
1563
1564 elsif Component_Size (Typ1) = 16 then
1565 if Is_Unsigned_Type (Ctyp) then
1566 Comp := RE_Compare_Array_U16;
1567 else
1568 Comp := RE_Compare_Array_S16;
1569 end if;
1570
1571 elsif Component_Size (Typ1) = 32 then
1572 if Is_Unsigned_Type (Ctyp) then
1573 Comp := RE_Compare_Array_U32;
1574 else
1575 Comp := RE_Compare_Array_S32;
1576 end if;
1577
1578 else pragma Assert (Component_Size (Typ1) = 64);
1579 if Is_Unsigned_Type (Ctyp) then
1580 Comp := RE_Compare_Array_U64;
1581 else
1582 Comp := RE_Compare_Array_S64;
1583 end if;
1584 end if;
1585
1586 Remove_Side_Effects (Op1, Name_Req => True);
1587 Remove_Side_Effects (Op2, Name_Req => True);
1588
1589 Rewrite (Op1,
1590 Make_Function_Call (Sloc (Op1),
1591 Name => New_Occurrence_Of (RTE (Comp), Loc),
1592
1593 Parameter_Associations => New_List (
1594 Make_Attribute_Reference (Loc,
1595 Prefix => Relocate_Node (Op1),
1596 Attribute_Name => Name_Address),
1597
1598 Make_Attribute_Reference (Loc,
1599 Prefix => Relocate_Node (Op2),
1600 Attribute_Name => Name_Address),
1601
1602 Make_Attribute_Reference (Loc,
1603 Prefix => Relocate_Node (Op1),
1604 Attribute_Name => Name_Length),
1605
1606 Make_Attribute_Reference (Loc,
1607 Prefix => Relocate_Node (Op2),
1608 Attribute_Name => Name_Length))));
1609
1610 Rewrite (Op2,
1611 Make_Integer_Literal (Sloc (Op2),
1612 Intval => Uint_0));
1613
1614 Analyze_And_Resolve (Op1, Standard_Integer);
1615 Analyze_And_Resolve (Op2, Standard_Integer);
1616 return;
1617 end if;
1618
1619 -- Cases where we cannot make runtime call
1620
70482933
RK
1621 -- For (a <= b) we convert to not (a > b)
1622
1623 if Chars (N) = Name_Op_Le then
1624 Rewrite (N,
1625 Make_Op_Not (Loc,
1626 Right_Opnd =>
1627 Make_Op_Gt (Loc,
1628 Left_Opnd => Op1,
1629 Right_Opnd => Op2)));
1630 Analyze_And_Resolve (N, Standard_Boolean);
1631 return;
1632
1633 -- For < the Boolean expression is
1634 -- greater__nn (op2, op1)
1635
1636 elsif Chars (N) = Name_Op_Lt then
1637 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1638
1639 -- Switch operands
1640
1641 Op1 := Right_Opnd (N);
1642 Op2 := Left_Opnd (N);
1643
1644 -- For (a >= b) we convert to not (a < b)
1645
1646 elsif Chars (N) = Name_Op_Ge then
1647 Rewrite (N,
1648 Make_Op_Not (Loc,
1649 Right_Opnd =>
1650 Make_Op_Lt (Loc,
1651 Left_Opnd => Op1,
1652 Right_Opnd => Op2)));
1653 Analyze_And_Resolve (N, Standard_Boolean);
1654 return;
1655
1656 -- For > the Boolean expression is
1657 -- greater__nn (op1, op2)
1658
1659 else
1660 pragma Assert (Chars (N) = Name_Op_Gt);
1661 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1662 end if;
1663
1664 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1665 Expr :=
1666 Make_Function_Call (Loc,
e4494292 1667 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
1668 Parameter_Associations => New_List (Op1, Op2));
1669
1670 Insert_Action (N, Func_Body);
1671 Rewrite (N, Expr);
1672 Analyze_And_Resolve (N, Standard_Boolean);
1673
fbf5a39b
AC
1674 exception
1675 when RE_Not_Available =>
1676 return;
70482933
RK
1677 end Expand_Array_Comparison;
1678
1679 ---------------------------
1680 -- Expand_Array_Equality --
1681 ---------------------------
1682
685094bf
RD
1683 -- Expand an equality function for multi-dimensional arrays. Here is an
1684 -- example of such a function for Nb_Dimension = 2
70482933 1685
0da2c8ac 1686 -- function Enn (A : atyp; B : btyp) return boolean is
70482933 1687 -- begin
fbf5a39b
AC
1688 -- if (A'length (1) = 0 or else A'length (2) = 0)
1689 -- and then
1690 -- (B'length (1) = 0 or else B'length (2) = 0)
1691 -- then
1692 -- return True; -- RM 4.5.2(22)
1693 -- end if;
0da2c8ac 1694
fbf5a39b
AC
1695 -- if A'length (1) /= B'length (1)
1696 -- or else
1697 -- A'length (2) /= B'length (2)
1698 -- then
1699 -- return False; -- RM 4.5.2(23)
1700 -- end if;
0da2c8ac 1701
fbf5a39b 1702 -- declare
523456db
AC
1703 -- A1 : Index_T1 := A'first (1);
1704 -- B1 : Index_T1 := B'first (1);
fbf5a39b 1705 -- begin
523456db 1706 -- loop
fbf5a39b 1707 -- declare
523456db
AC
1708 -- A2 : Index_T2 := A'first (2);
1709 -- B2 : Index_T2 := B'first (2);
fbf5a39b 1710 -- begin
523456db 1711 -- loop
fbf5a39b
AC
1712 -- if A (A1, A2) /= B (B1, B2) then
1713 -- return False;
70482933 1714 -- end if;
0da2c8ac 1715
523456db
AC
1716 -- exit when A2 = A'last (2);
1717 -- A2 := Index_T2'succ (A2);
0da2c8ac 1718 -- B2 := Index_T2'succ (B2);
70482933 1719 -- end loop;
fbf5a39b 1720 -- end;
0da2c8ac 1721
523456db
AC
1722 -- exit when A1 = A'last (1);
1723 -- A1 := Index_T1'succ (A1);
0da2c8ac 1724 -- B1 := Index_T1'succ (B1);
70482933 1725 -- end loop;
fbf5a39b 1726 -- end;
0da2c8ac 1727
70482933
RK
1728 -- return true;
1729 -- end Enn;
1730
685094bf
RD
1731 -- Note on the formal types used (atyp and btyp). If either of the arrays
1732 -- is of a private type, we use the underlying type, and do an unchecked
1733 -- conversion of the actual. If either of the arrays has a bound depending
1734 -- on a discriminant, then we use the base type since otherwise we have an
1735 -- escaped discriminant in the function.
0da2c8ac 1736
685094bf
RD
1737 -- If both arrays are constrained and have the same bounds, we can generate
1738 -- a loop with an explicit iteration scheme using a 'Range attribute over
1739 -- the first array.
523456db 1740
70482933
RK
1741 function Expand_Array_Equality
1742 (Nod : Node_Id;
70482933
RK
1743 Lhs : Node_Id;
1744 Rhs : Node_Id;
0da2c8ac
AC
1745 Bodies : List_Id;
1746 Typ : Entity_Id) return Node_Id
70482933
RK
1747 is
1748 Loc : constant Source_Ptr := Sloc (Nod);
fbf5a39b
AC
1749 Decls : constant List_Id := New_List;
1750 Index_List1 : constant List_Id := New_List;
1751 Index_List2 : constant List_Id := New_List;
1752
1753 Actuals : List_Id;
1754 Formals : List_Id;
1755 Func_Name : Entity_Id;
1756 Func_Body : Node_Id;
70482933
RK
1757
1758 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1759 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1760
0da2c8ac
AC
1761 Ltyp : Entity_Id;
1762 Rtyp : Entity_Id;
1763 -- The parameter types to be used for the formals
1764
fbf5a39b
AC
1765 function Arr_Attr
1766 (Arr : Entity_Id;
1767 Nam : Name_Id;
2e071734 1768 Num : Int) return Node_Id;
5e1c00fa 1769 -- This builds the attribute reference Arr'Nam (Expr)
fbf5a39b 1770
70482933 1771 function Component_Equality (Typ : Entity_Id) return Node_Id;
685094bf 1772 -- Create one statement to compare corresponding components, designated
3b42c566 1773 -- by a full set of indexes.
70482933 1774
0da2c8ac 1775 function Get_Arg_Type (N : Node_Id) return Entity_Id;
685094bf
RD
1776 -- Given one of the arguments, computes the appropriate type to be used
1777 -- for that argument in the corresponding function formal
0da2c8ac 1778
fbf5a39b 1779 function Handle_One_Dimension
70482933 1780 (N : Int;
2e071734 1781 Index : Node_Id) return Node_Id;
0da2c8ac 1782 -- This procedure returns the following code
fbf5a39b
AC
1783 --
1784 -- declare
523456db 1785 -- Bn : Index_T := B'First (N);
fbf5a39b 1786 -- begin
523456db 1787 -- loop
fbf5a39b 1788 -- xxx
523456db
AC
1789 -- exit when An = A'Last (N);
1790 -- An := Index_T'Succ (An)
0da2c8ac 1791 -- Bn := Index_T'Succ (Bn)
fbf5a39b
AC
1792 -- end loop;
1793 -- end;
1794 --
3b42c566 1795 -- If both indexes are constrained and identical, the procedure
523456db
AC
1796 -- returns a simpler loop:
1797 --
1798 -- for An in A'Range (N) loop
1799 -- xxx
1800 -- end loop
0da2c8ac 1801 --
523456db 1802 -- N is the dimension for which we are generating a loop. Index is the
685094bf
RD
1803 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1804 -- xxx statement is either the loop or declare for the next dimension
1805 -- or if this is the last dimension the comparison of corresponding
1806 -- components of the arrays.
fbf5a39b 1807 --
685094bf 1808 -- The actual way the code works is to return the comparison of
a90bd866 1809 -- corresponding components for the N+1 call. That's neater.
fbf5a39b
AC
1810
1811 function Test_Empty_Arrays return Node_Id;
1812 -- This function constructs the test for both arrays being empty
1813 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1814 -- and then
1815 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1816
1817 function Test_Lengths_Correspond return Node_Id;
685094bf
RD
1818 -- This function constructs the test for arrays having different lengths
1819 -- in at least one index position, in which case the resulting code is:
fbf5a39b
AC
1820
1821 -- A'length (1) /= B'length (1)
1822 -- or else
1823 -- A'length (2) /= B'length (2)
1824 -- or else
1825 -- ...
1826
1827 --------------
1828 -- Arr_Attr --
1829 --------------
1830
1831 function Arr_Attr
1832 (Arr : Entity_Id;
1833 Nam : Name_Id;
2e071734 1834 Num : Int) return Node_Id
fbf5a39b
AC
1835 is
1836 begin
1837 return
1838 Make_Attribute_Reference (Loc,
cc6f5d75
AC
1839 Attribute_Name => Nam,
1840 Prefix => New_Occurrence_Of (Arr, Loc),
1841 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
fbf5a39b 1842 end Arr_Attr;
70482933
RK
1843
1844 ------------------------
1845 -- Component_Equality --
1846 ------------------------
1847
1848 function Component_Equality (Typ : Entity_Id) return Node_Id is
1849 Test : Node_Id;
1850 L, R : Node_Id;
1851
1852 begin
1853 -- if a(i1...) /= b(j1...) then return false; end if;
1854
1855 L :=
1856 Make_Indexed_Component (Loc,
7675ad4f 1857 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
1858 Expressions => Index_List1);
1859
1860 R :=
1861 Make_Indexed_Component (Loc,
7675ad4f 1862 Prefix => Make_Identifier (Loc, Chars (B)),
70482933
RK
1863 Expressions => Index_List2);
1864
1865 Test := Expand_Composite_Equality
1866 (Nod, Component_Type (Typ), L, R, Decls);
1867
a9d8907c
JM
1868 -- If some (sub)component is an unchecked_union, the whole operation
1869 -- will raise program error.
8aceda64
AC
1870
1871 if Nkind (Test) = N_Raise_Program_Error then
a9d8907c
JM
1872
1873 -- This node is going to be inserted at a location where a
685094bf
RD
1874 -- statement is expected: clear its Etype so analysis will set
1875 -- it to the expected Standard_Void_Type.
a9d8907c
JM
1876
1877 Set_Etype (Test, Empty);
8aceda64
AC
1878 return Test;
1879
1880 else
1881 return
1882 Make_Implicit_If_Statement (Nod,
cc6f5d75 1883 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
8aceda64 1884 Then_Statements => New_List (
d766cee3 1885 Make_Simple_Return_Statement (Loc,
8aceda64
AC
1886 Expression => New_Occurrence_Of (Standard_False, Loc))));
1887 end if;
70482933
RK
1888 end Component_Equality;
1889
0da2c8ac
AC
1890 ------------------
1891 -- Get_Arg_Type --
1892 ------------------
1893
1894 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1895 T : Entity_Id;
1896 X : Node_Id;
1897
1898 begin
1899 T := Etype (N);
1900
1901 if No (T) then
1902 return Typ;
1903
1904 else
1905 T := Underlying_Type (T);
1906
1907 X := First_Index (T);
1908 while Present (X) loop
761f7dcb
AC
1909 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1910 or else
1911 Denotes_Discriminant (Type_High_Bound (Etype (X)))
0da2c8ac
AC
1912 then
1913 T := Base_Type (T);
1914 exit;
1915 end if;
1916
1917 Next_Index (X);
1918 end loop;
1919
1920 return T;
1921 end if;
1922 end Get_Arg_Type;
1923
fbf5a39b
AC
1924 --------------------------
1925 -- Handle_One_Dimension --
1926 ---------------------------
70482933 1927
fbf5a39b 1928 function Handle_One_Dimension
70482933 1929 (N : Int;
2e071734 1930 Index : Node_Id) return Node_Id
70482933 1931 is
0da2c8ac 1932 Need_Separate_Indexes : constant Boolean :=
761f7dcb 1933 Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
0da2c8ac 1934 -- If the index types are identical, and we are working with
685094bf
RD
1935 -- constrained types, then we can use the same index for both
1936 -- of the arrays.
0da2c8ac 1937
191fcb3a 1938 An : constant Entity_Id := Make_Temporary (Loc, 'A');
0da2c8ac
AC
1939
1940 Bn : Entity_Id;
1941 Index_T : Entity_Id;
1942 Stm_List : List_Id;
1943 Loop_Stm : Node_Id;
70482933
RK
1944
1945 begin
0da2c8ac
AC
1946 if N > Number_Dimensions (Ltyp) then
1947 return Component_Equality (Ltyp);
fbf5a39b 1948 end if;
70482933 1949
0da2c8ac
AC
1950 -- Case where we generate a loop
1951
1952 Index_T := Base_Type (Etype (Index));
1953
1954 if Need_Separate_Indexes then
191fcb3a 1955 Bn := Make_Temporary (Loc, 'B');
0da2c8ac
AC
1956 else
1957 Bn := An;
1958 end if;
70482933 1959
e4494292
RD
1960 Append (New_Occurrence_Of (An, Loc), Index_List1);
1961 Append (New_Occurrence_Of (Bn, Loc), Index_List2);
70482933 1962
0da2c8ac
AC
1963 Stm_List := New_List (
1964 Handle_One_Dimension (N + 1, Next_Index (Index)));
70482933 1965
0da2c8ac 1966 if Need_Separate_Indexes then
a9d8907c 1967
3b42c566 1968 -- Generate guard for loop, followed by increments of indexes
523456db
AC
1969
1970 Append_To (Stm_List,
1971 Make_Exit_Statement (Loc,
1972 Condition =>
1973 Make_Op_Eq (Loc,
cc6f5d75 1974 Left_Opnd => New_Occurrence_Of (An, Loc),
523456db
AC
1975 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1976
1977 Append_To (Stm_List,
1978 Make_Assignment_Statement (Loc,
e4494292 1979 Name => New_Occurrence_Of (An, Loc),
523456db
AC
1980 Expression =>
1981 Make_Attribute_Reference (Loc,
e4494292 1982 Prefix => New_Occurrence_Of (Index_T, Loc),
523456db 1983 Attribute_Name => Name_Succ,
e4494292
RD
1984 Expressions => New_List (
1985 New_Occurrence_Of (An, Loc)))));
523456db 1986
0da2c8ac
AC
1987 Append_To (Stm_List,
1988 Make_Assignment_Statement (Loc,
e4494292 1989 Name => New_Occurrence_Of (Bn, Loc),
0da2c8ac
AC
1990 Expression =>
1991 Make_Attribute_Reference (Loc,
e4494292 1992 Prefix => New_Occurrence_Of (Index_T, Loc),
0da2c8ac 1993 Attribute_Name => Name_Succ,
e4494292
RD
1994 Expressions => New_List (
1995 New_Occurrence_Of (Bn, Loc)))));
0da2c8ac
AC
1996 end if;
1997
a9d8907c
JM
1998 -- If separate indexes, we need a declare block for An and Bn, and a
1999 -- loop without an iteration scheme.
0da2c8ac
AC
2000
2001 if Need_Separate_Indexes then
523456db
AC
2002 Loop_Stm :=
2003 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
2004
0da2c8ac
AC
2005 return
2006 Make_Block_Statement (Loc,
2007 Declarations => New_List (
523456db
AC
2008 Make_Object_Declaration (Loc,
2009 Defining_Identifier => An,
e4494292 2010 Object_Definition => New_Occurrence_Of (Index_T, Loc),
523456db
AC
2011 Expression => Arr_Attr (A, Name_First, N)),
2012
0da2c8ac
AC
2013 Make_Object_Declaration (Loc,
2014 Defining_Identifier => Bn,
e4494292 2015 Object_Definition => New_Occurrence_Of (Index_T, Loc),
0da2c8ac 2016 Expression => Arr_Attr (B, Name_First, N))),
523456db 2017
0da2c8ac
AC
2018 Handled_Statement_Sequence =>
2019 Make_Handled_Sequence_Of_Statements (Loc,
2020 Statements => New_List (Loop_Stm)));
2021
523456db
AC
2022 -- If no separate indexes, return loop statement with explicit
2023 -- iteration scheme on its own
0da2c8ac
AC
2024
2025 else
523456db
AC
2026 Loop_Stm :=
2027 Make_Implicit_Loop_Statement (Nod,
2028 Statements => Stm_List,
2029 Iteration_Scheme =>
2030 Make_Iteration_Scheme (Loc,
2031 Loop_Parameter_Specification =>
2032 Make_Loop_Parameter_Specification (Loc,
2033 Defining_Identifier => An,
2034 Discrete_Subtype_Definition =>
2035 Arr_Attr (A, Name_Range, N))));
0da2c8ac
AC
2036 return Loop_Stm;
2037 end if;
fbf5a39b
AC
2038 end Handle_One_Dimension;
2039
2040 -----------------------
2041 -- Test_Empty_Arrays --
2042 -----------------------
2043
2044 function Test_Empty_Arrays return Node_Id is
2045 Alist : Node_Id;
2046 Blist : Node_Id;
2047
2048 Atest : Node_Id;
2049 Btest : Node_Id;
70482933 2050
fbf5a39b
AC
2051 begin
2052 Alist := Empty;
2053 Blist := Empty;
0da2c8ac 2054 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
2055 Atest :=
2056 Make_Op_Eq (Loc,
2057 Left_Opnd => Arr_Attr (A, Name_Length, J),
2058 Right_Opnd => Make_Integer_Literal (Loc, 0));
2059
2060 Btest :=
2061 Make_Op_Eq (Loc,
2062 Left_Opnd => Arr_Attr (B, Name_Length, J),
2063 Right_Opnd => Make_Integer_Literal (Loc, 0));
2064
2065 if No (Alist) then
2066 Alist := Atest;
2067 Blist := Btest;
70482933 2068
fbf5a39b
AC
2069 else
2070 Alist :=
2071 Make_Or_Else (Loc,
2072 Left_Opnd => Relocate_Node (Alist),
2073 Right_Opnd => Atest);
2074
2075 Blist :=
2076 Make_Or_Else (Loc,
2077 Left_Opnd => Relocate_Node (Blist),
2078 Right_Opnd => Btest);
2079 end if;
2080 end loop;
70482933 2081
fbf5a39b
AC
2082 return
2083 Make_And_Then (Loc,
2084 Left_Opnd => Alist,
2085 Right_Opnd => Blist);
2086 end Test_Empty_Arrays;
70482933 2087
fbf5a39b
AC
2088 -----------------------------
2089 -- Test_Lengths_Correspond --
2090 -----------------------------
70482933 2091
fbf5a39b
AC
2092 function Test_Lengths_Correspond return Node_Id is
2093 Result : Node_Id;
2094 Rtest : Node_Id;
2095
2096 begin
2097 Result := Empty;
0da2c8ac 2098 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
2099 Rtest :=
2100 Make_Op_Ne (Loc,
2101 Left_Opnd => Arr_Attr (A, Name_Length, J),
2102 Right_Opnd => Arr_Attr (B, Name_Length, J));
2103
2104 if No (Result) then
2105 Result := Rtest;
2106 else
2107 Result :=
2108 Make_Or_Else (Loc,
2109 Left_Opnd => Relocate_Node (Result),
2110 Right_Opnd => Rtest);
2111 end if;
2112 end loop;
2113
2114 return Result;
2115 end Test_Lengths_Correspond;
70482933
RK
2116
2117 -- Start of processing for Expand_Array_Equality
2118
2119 begin
0da2c8ac
AC
2120 Ltyp := Get_Arg_Type (Lhs);
2121 Rtyp := Get_Arg_Type (Rhs);
2122
685094bf
RD
2123 -- For now, if the argument types are not the same, go to the base type,
2124 -- since the code assumes that the formals have the same type. This is
2125 -- fixable in future ???
0da2c8ac
AC
2126
2127 if Ltyp /= Rtyp then
2128 Ltyp := Base_Type (Ltyp);
2129 Rtyp := Base_Type (Rtyp);
2130 pragma Assert (Ltyp = Rtyp);
2131 end if;
2132
2133 -- Build list of formals for function
2134
70482933
RK
2135 Formals := New_List (
2136 Make_Parameter_Specification (Loc,
2137 Defining_Identifier => A,
e4494292 2138 Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
70482933
RK
2139
2140 Make_Parameter_Specification (Loc,
2141 Defining_Identifier => B,
e4494292 2142 Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
70482933 2143
191fcb3a 2144 Func_Name := Make_Temporary (Loc, 'E');
70482933 2145
fbf5a39b 2146 -- Build statement sequence for function
70482933
RK
2147
2148 Func_Body :=
2149 Make_Subprogram_Body (Loc,
2150 Specification =>
2151 Make_Function_Specification (Loc,
2152 Defining_Unit_Name => Func_Name,
2153 Parameter_Specifications => Formals,
e4494292 2154 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
fbf5a39b
AC
2155
2156 Declarations => Decls,
2157
70482933
RK
2158 Handled_Statement_Sequence =>
2159 Make_Handled_Sequence_Of_Statements (Loc,
2160 Statements => New_List (
fbf5a39b
AC
2161
2162 Make_Implicit_If_Statement (Nod,
cc6f5d75 2163 Condition => Test_Empty_Arrays,
fbf5a39b 2164 Then_Statements => New_List (
d766cee3 2165 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
2166 Expression =>
2167 New_Occurrence_Of (Standard_True, Loc)))),
2168
2169 Make_Implicit_If_Statement (Nod,
cc6f5d75 2170 Condition => Test_Lengths_Correspond,
fbf5a39b 2171 Then_Statements => New_List (
d766cee3 2172 Make_Simple_Return_Statement (Loc,
cc6f5d75 2173 Expression => New_Occurrence_Of (Standard_False, Loc)))),
fbf5a39b 2174
0da2c8ac 2175 Handle_One_Dimension (1, First_Index (Ltyp)),
fbf5a39b 2176
d766cee3 2177 Make_Simple_Return_Statement (Loc,
70482933
RK
2178 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2179
2180 Set_Has_Completion (Func_Name, True);
0da2c8ac 2181 Set_Is_Inlined (Func_Name);
70482933 2182
685094bf
RD
2183 -- If the array type is distinct from the type of the arguments, it
2184 -- is the full view of a private type. Apply an unchecked conversion
2185 -- to insure that analysis of the call succeeds.
70482933 2186
0da2c8ac
AC
2187 declare
2188 L, R : Node_Id;
2189
2190 begin
2191 L := Lhs;
2192 R := Rhs;
2193
2194 if No (Etype (Lhs))
2195 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
2196 then
2197 L := OK_Convert_To (Ltyp, Lhs);
2198 end if;
2199
2200 if No (Etype (Rhs))
2201 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
2202 then
2203 R := OK_Convert_To (Rtyp, Rhs);
2204 end if;
2205
2206 Actuals := New_List (L, R);
2207 end;
70482933
RK
2208
2209 Append_To (Bodies, Func_Body);
2210
2211 return
2212 Make_Function_Call (Loc,
e4494292 2213 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
2214 Parameter_Associations => Actuals);
2215 end Expand_Array_Equality;
2216
2217 -----------------------------
2218 -- Expand_Boolean_Operator --
2219 -----------------------------
2220
685094bf
RD
2221 -- Note that we first get the actual subtypes of the operands, since we
2222 -- always want to deal with types that have bounds.
70482933
RK
2223
2224 procedure Expand_Boolean_Operator (N : Node_Id) is
fbf5a39b 2225 Typ : constant Entity_Id := Etype (N);
70482933
RK
2226
2227 begin
685094bf
RD
2228 -- Special case of bit packed array where both operands are known to be
2229 -- properly aligned. In this case we use an efficient run time routine
2230 -- to carry out the operation (see System.Bit_Ops).
a9d8907c
JM
2231
2232 if Is_Bit_Packed_Array (Typ)
2233 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2234 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2235 then
70482933 2236 Expand_Packed_Boolean_Operator (N);
a9d8907c
JM
2237 return;
2238 end if;
70482933 2239
a9d8907c
JM
2240 -- For the normal non-packed case, the general expansion is to build
2241 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2242 -- and then inserting it into the tree. The original operator node is
2243 -- then rewritten as a call to this function. We also use this in the
2244 -- packed case if either operand is a possibly unaligned object.
70482933 2245
a9d8907c
JM
2246 declare
2247 Loc : constant Source_Ptr := Sloc (N);
2248 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2249 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2250 Func_Body : Node_Id;
2251 Func_Name : Entity_Id;
fbf5a39b 2252
a9d8907c
JM
2253 begin
2254 Convert_To_Actual_Subtype (L);
2255 Convert_To_Actual_Subtype (R);
2256 Ensure_Defined (Etype (L), N);
2257 Ensure_Defined (Etype (R), N);
2258 Apply_Length_Check (R, Etype (L));
2259
b4592168
GD
2260 if Nkind (N) = N_Op_Xor then
2261 Silly_Boolean_Array_Xor_Test (N, Etype (L));
2262 end if;
2263
a9d8907c
JM
2264 if Nkind (Parent (N)) = N_Assignment_Statement
2265 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2266 then
2267 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
fbf5a39b 2268
a9d8907c
JM
2269 elsif Nkind (Parent (N)) = N_Op_Not
2270 and then Nkind (N) = N_Op_And
cc6f5d75 2271 and then Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
a9d8907c
JM
2272 then
2273 return;
2274 else
fbf5a39b 2275
a9d8907c
JM
2276 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2277 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2278 Insert_Action (N, Func_Body);
70482933 2279
a9d8907c 2280 -- Now rewrite the expression with a call
70482933 2281
a9d8907c
JM
2282 Rewrite (N,
2283 Make_Function_Call (Loc,
e4494292 2284 Name => New_Occurrence_Of (Func_Name, Loc),
a9d8907c
JM
2285 Parameter_Associations =>
2286 New_List (
2287 L,
2288 Make_Type_Conversion
e4494292 2289 (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
70482933 2290
a9d8907c
JM
2291 Analyze_And_Resolve (N, Typ);
2292 end if;
2293 end;
70482933
RK
2294 end Expand_Boolean_Operator;
2295
456cbfa5
AC
2296 ------------------------------------------------
2297 -- Expand_Compare_Minimize_Eliminate_Overflow --
2298 ------------------------------------------------
2299
2300 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2301 Loc : constant Source_Ptr := Sloc (N);
2302
71fb4dc8
AC
2303 Result_Type : constant Entity_Id := Etype (N);
2304 -- Capture result type (could be a derived boolean type)
2305
456cbfa5
AC
2306 Llo, Lhi : Uint;
2307 Rlo, Rhi : Uint;
2308
2309 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2310 -- Entity for Long_Long_Integer'Base
2311
15c94a55 2312 Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
a7f1b24f 2313 -- Current overflow checking mode
456cbfa5
AC
2314
2315 procedure Set_True;
2316 procedure Set_False;
2317 -- These procedures rewrite N with an occurrence of Standard_True or
2318 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2319
2320 ---------------
2321 -- Set_False --
2322 ---------------
2323
2324 procedure Set_False is
2325 begin
2326 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2327 Warn_On_Known_Condition (N);
2328 end Set_False;
2329
2330 --------------
2331 -- Set_True --
2332 --------------
2333
2334 procedure Set_True is
2335 begin
2336 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2337 Warn_On_Known_Condition (N);
2338 end Set_True;
2339
2340 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2341
2342 begin
2343 -- Nothing to do unless we have a comparison operator with operands
2344 -- that are signed integer types, and we are operating in either
2345 -- MINIMIZED or ELIMINATED overflow checking mode.
2346
2347 if Nkind (N) not in N_Op_Compare
2348 or else Check not in Minimized_Or_Eliminated
2349 or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2350 then
2351 return;
2352 end if;
2353
2354 -- OK, this is the case we are interested in. First step is to process
2355 -- our operands using the Minimize_Eliminate circuitry which applies
2356 -- this processing to the two operand subtrees.
2357
a7f1b24f 2358 Minimize_Eliminate_Overflows
c7e152b5 2359 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
a7f1b24f 2360 Minimize_Eliminate_Overflows
c7e152b5 2361 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
456cbfa5 2362
65f7ed64
AC
2363 -- See if the range information decides the result of the comparison.
2364 -- We can only do this if we in fact have full range information (which
2365 -- won't be the case if either operand is bignum at this stage).
456cbfa5 2366
65f7ed64
AC
2367 if Llo /= No_Uint and then Rlo /= No_Uint then
2368 case N_Op_Compare (Nkind (N)) is
456cbfa5
AC
2369 when N_Op_Eq =>
2370 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2371 Set_True;
a40ada7e 2372 elsif Llo > Rhi or else Lhi < Rlo then
456cbfa5
AC
2373 Set_False;
2374 end if;
2375
2376 when N_Op_Ge =>
2377 if Llo >= Rhi then
2378 Set_True;
2379 elsif Lhi < Rlo then
2380 Set_False;
2381 end if;
2382
2383 when N_Op_Gt =>
2384 if Llo > Rhi then
2385 Set_True;
2386 elsif Lhi <= Rlo then
2387 Set_False;
2388 end if;
2389
2390 when N_Op_Le =>
2391 if Llo > Rhi then
2392 Set_False;
2393 elsif Lhi <= Rlo then
2394 Set_True;
2395 end if;
2396
2397 when N_Op_Lt =>
2398 if Llo >= Rhi then
456cbfa5 2399 Set_False;
b6b5cca8
AC
2400 elsif Lhi < Rlo then
2401 Set_True;
456cbfa5
AC
2402 end if;
2403
2404 when N_Op_Ne =>
2405 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
456cbfa5 2406 Set_False;
a40ada7e
RD
2407 elsif Llo > Rhi or else Lhi < Rlo then
2408 Set_True;
456cbfa5 2409 end if;
65f7ed64 2410 end case;
456cbfa5 2411
65f7ed64 2412 -- All done if we did the rewrite
456cbfa5 2413
65f7ed64
AC
2414 if Nkind (N) not in N_Op_Compare then
2415 return;
2416 end if;
456cbfa5
AC
2417 end if;
2418
2419 -- Otherwise, time to do the comparison
2420
2421 declare
2422 Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2423 Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2424
2425 begin
2426 -- If the two operands have the same signed integer type we are
2427 -- all set, nothing more to do. This is the case where either
2428 -- both operands were unchanged, or we rewrote both of them to
2429 -- be Long_Long_Integer.
2430
2431 -- Note: Entity for the comparison may be wrong, but it's not worth
2432 -- the effort to change it, since the back end does not use it.
2433
2434 if Is_Signed_Integer_Type (Ltype)
2435 and then Base_Type (Ltype) = Base_Type (Rtype)
2436 then
2437 return;
2438
2439 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2440
2441 elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2442 declare
2443 Left : Node_Id := Left_Opnd (N);
2444 Right : Node_Id := Right_Opnd (N);
2445 -- Bignum references for left and right operands
2446
2447 begin
2448 if not Is_RTE (Ltype, RE_Bignum) then
2449 Left := Convert_To_Bignum (Left);
2450 elsif not Is_RTE (Rtype, RE_Bignum) then
2451 Right := Convert_To_Bignum (Right);
2452 end if;
2453
71fb4dc8 2454 -- We rewrite our node with:
456cbfa5 2455
71fb4dc8
AC
2456 -- do
2457 -- Bnn : Result_Type;
2458 -- declare
2459 -- M : Mark_Id := SS_Mark;
2460 -- begin
2461 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2462 -- SS_Release (M);
2463 -- end;
2464 -- in
2465 -- Bnn
2466 -- end
456cbfa5
AC
2467
2468 declare
71fb4dc8 2469 Blk : constant Node_Id := Make_Bignum_Block (Loc);
456cbfa5
AC
2470 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2471 Ent : RE_Id;
2472
2473 begin
2474 case N_Op_Compare (Nkind (N)) is
2475 when N_Op_Eq => Ent := RE_Big_EQ;
2476 when N_Op_Ge => Ent := RE_Big_GE;
2477 when N_Op_Gt => Ent := RE_Big_GT;
2478 when N_Op_Le => Ent := RE_Big_LE;
2479 when N_Op_Lt => Ent := RE_Big_LT;
2480 when N_Op_Ne => Ent := RE_Big_NE;
2481 end case;
2482
71fb4dc8 2483 -- Insert assignment to Bnn into the bignum block
456cbfa5
AC
2484
2485 Insert_Before
2486 (First (Statements (Handled_Statement_Sequence (Blk))),
2487 Make_Assignment_Statement (Loc,
2488 Name => New_Occurrence_Of (Bnn, Loc),
2489 Expression =>
2490 Make_Function_Call (Loc,
2491 Name =>
2492 New_Occurrence_Of (RTE (Ent), Loc),
2493 Parameter_Associations => New_List (Left, Right))));
2494
71fb4dc8
AC
2495 -- Now do the rewrite with expression actions
2496
2497 Rewrite (N,
2498 Make_Expression_With_Actions (Loc,
2499 Actions => New_List (
2500 Make_Object_Declaration (Loc,
2501 Defining_Identifier => Bnn,
2502 Object_Definition =>
2503 New_Occurrence_Of (Result_Type, Loc)),
2504 Blk),
2505 Expression => New_Occurrence_Of (Bnn, Loc)));
2506 Analyze_And_Resolve (N, Result_Type);
456cbfa5
AC
2507 end;
2508 end;
2509
2510 -- No bignums involved, but types are different, so we must have
2511 -- rewritten one of the operands as a Long_Long_Integer but not
2512 -- the other one.
2513
2514 -- If left operand is Long_Long_Integer, convert right operand
2515 -- and we are done (with a comparison of two Long_Long_Integers).
2516
2517 elsif Ltype = LLIB then
2518 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2519 Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2520 return;
2521
2522 -- If right operand is Long_Long_Integer, convert left operand
2523 -- and we are done (with a comparison of two Long_Long_Integers).
2524
2525 -- This is the only remaining possibility
2526
2527 else pragma Assert (Rtype = LLIB);
2528 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2529 Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2530 return;
2531 end if;
2532 end;
2533 end Expand_Compare_Minimize_Eliminate_Overflow;
2534
70482933
RK
2535 -------------------------------
2536 -- Expand_Composite_Equality --
2537 -------------------------------
2538
2539 -- This function is only called for comparing internal fields of composite
2540 -- types when these fields are themselves composites. This is a special
2541 -- case because it is not possible to respect normal Ada visibility rules.
2542
2543 function Expand_Composite_Equality
2544 (Nod : Node_Id;
2545 Typ : Entity_Id;
2546 Lhs : Node_Id;
2547 Rhs : Node_Id;
2e071734 2548 Bodies : List_Id) return Node_Id
70482933
RK
2549 is
2550 Loc : constant Source_Ptr := Sloc (Nod);
2551 Full_Type : Entity_Id;
2552 Prim : Elmt_Id;
2553 Eq_Op : Entity_Id;
2554
7efc3f2d
AC
2555 function Find_Primitive_Eq return Node_Id;
2556 -- AI05-0123: Locate primitive equality for type if it exists, and
2557 -- build the corresponding call. If operation is abstract, replace
2558 -- call with an explicit raise. Return Empty if there is no primitive.
2559
2560 -----------------------
2561 -- Find_Primitive_Eq --
2562 -----------------------
2563
2564 function Find_Primitive_Eq return Node_Id is
2565 Prim_E : Elmt_Id;
2566 Prim : Node_Id;
2567
2568 begin
2569 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2570 while Present (Prim_E) loop
2571 Prim := Node (Prim_E);
2572
2573 -- Locate primitive equality with the right signature
2574
2575 if Chars (Prim) = Name_Op_Eq
2576 and then Etype (First_Formal (Prim)) =
39ade2f9 2577 Etype (Next_Formal (First_Formal (Prim)))
7efc3f2d
AC
2578 and then Etype (Prim) = Standard_Boolean
2579 then
2580 if Is_Abstract_Subprogram (Prim) then
2581 return
2582 Make_Raise_Program_Error (Loc,
2583 Reason => PE_Explicit_Raise);
2584
2585 else
2586 return
2587 Make_Function_Call (Loc,
e4494292 2588 Name => New_Occurrence_Of (Prim, Loc),
7efc3f2d
AC
2589 Parameter_Associations => New_List (Lhs, Rhs));
2590 end if;
2591 end if;
2592
2593 Next_Elmt (Prim_E);
2594 end loop;
2595
2596 -- If not found, predefined operation will be used
2597
2598 return Empty;
2599 end Find_Primitive_Eq;
2600
2601 -- Start of processing for Expand_Composite_Equality
2602
70482933
RK
2603 begin
2604 if Is_Private_Type (Typ) then
2605 Full_Type := Underlying_Type (Typ);
2606 else
2607 Full_Type := Typ;
2608 end if;
2609
ced8450b
ES
2610 -- If the private type has no completion the context may be the
2611 -- expansion of a composite equality for a composite type with some
2612 -- still incomplete components. The expression will not be analyzed
2613 -- until the enclosing type is completed, at which point this will be
2614 -- properly expanded, unless there is a bona fide completion error.
70482933
RK
2615
2616 if No (Full_Type) then
ced8450b 2617 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933
RK
2618 end if;
2619
2620 Full_Type := Base_Type (Full_Type);
2621
da1b76c1
HK
2622 -- When the base type itself is private, use the full view to expand
2623 -- the composite equality.
2624
2625 if Is_Private_Type (Full_Type) then
2626 Full_Type := Underlying_Type (Full_Type);
2627 end if;
2628
16788d44
RD
2629 -- Case of array types
2630
70482933
RK
2631 if Is_Array_Type (Full_Type) then
2632
2633 -- If the operand is an elementary type other than a floating-point
2634 -- type, then we can simply use the built-in block bitwise equality,
2635 -- since the predefined equality operators always apply and bitwise
2636 -- equality is fine for all these cases.
2637
2638 if Is_Elementary_Type (Component_Type (Full_Type))
2639 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2640 then
39ade2f9 2641 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933 2642
685094bf
RD
2643 -- For composite component types, and floating-point types, use the
2644 -- expansion. This deals with tagged component types (where we use
2645 -- the applicable equality routine) and floating-point, (where we
2646 -- need to worry about negative zeroes), and also the case of any
2647 -- composite type recursively containing such fields.
70482933
RK
2648
2649 else
0da2c8ac 2650 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
70482933
RK
2651 end if;
2652
16788d44
RD
2653 -- Case of tagged record types
2654
70482933
RK
2655 elsif Is_Tagged_Type (Full_Type) then
2656
2657 -- Call the primitive operation "=" of this type
2658
2659 if Is_Class_Wide_Type (Full_Type) then
2660 Full_Type := Root_Type (Full_Type);
2661 end if;
2662
685094bf
RD
2663 -- If this is derived from an untagged private type completed with a
2664 -- tagged type, it does not have a full view, so we use the primitive
2665 -- operations of the private type. This check should no longer be
2666 -- necessary when these types receive their full views ???
70482933
RK
2667
2668 if Is_Private_Type (Typ)
2669 and then not Is_Tagged_Type (Typ)
2670 and then not Is_Controlled (Typ)
2671 and then Is_Derived_Type (Typ)
2672 and then No (Full_View (Typ))
2673 then
2674 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2675 else
2676 Prim := First_Elmt (Primitive_Operations (Full_Type));
2677 end if;
2678
2679 loop
2680 Eq_Op := Node (Prim);
2681 exit when Chars (Eq_Op) = Name_Op_Eq
2682 and then Etype (First_Formal (Eq_Op)) =
e6f69614
AC
2683 Etype (Next_Formal (First_Formal (Eq_Op)))
2684 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
70482933
RK
2685 Next_Elmt (Prim);
2686 pragma Assert (Present (Prim));
2687 end loop;
2688
2689 Eq_Op := Node (Prim);
2690
2691 return
2692 Make_Function_Call (Loc,
e4494292 2693 Name => New_Occurrence_Of (Eq_Op, Loc),
70482933
RK
2694 Parameter_Associations =>
2695 New_List
2696 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2697 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2698
16788d44
RD
2699 -- Case of untagged record types
2700
70482933 2701 elsif Is_Record_Type (Full_Type) then
fbf5a39b 2702 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
70482933
RK
2703
2704 if Present (Eq_Op) then
2705 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2706
685094bf
RD
2707 -- Inherited equality from parent type. Convert the actuals to
2708 -- match signature of operation.
70482933
RK
2709
2710 declare
fbf5a39b 2711 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
70482933
RK
2712
2713 begin
2714 return
2715 Make_Function_Call (Loc,
e4494292 2716 Name => New_Occurrence_Of (Eq_Op, Loc),
39ade2f9
AC
2717 Parameter_Associations => New_List (
2718 OK_Convert_To (T, Lhs),
2719 OK_Convert_To (T, Rhs)));
70482933
RK
2720 end;
2721
2722 else
5d09245e
AC
2723 -- Comparison between Unchecked_Union components
2724
2725 if Is_Unchecked_Union (Full_Type) then
2726 declare
2727 Lhs_Type : Node_Id := Full_Type;
2728 Rhs_Type : Node_Id := Full_Type;
2729 Lhs_Discr_Val : Node_Id;
2730 Rhs_Discr_Val : Node_Id;
2731
2732 begin
2733 -- Lhs subtype
2734
2735 if Nkind (Lhs) = N_Selected_Component then
2736 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2737 end if;
2738
2739 -- Rhs subtype
2740
2741 if Nkind (Rhs) = N_Selected_Component then
2742 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2743 end if;
2744
2745 -- Lhs of the composite equality
2746
2747 if Is_Constrained (Lhs_Type) then
2748
685094bf 2749 -- Since the enclosing record type can never be an
5d09245e
AC
2750 -- Unchecked_Union (this code is executed for records
2751 -- that do not have variants), we may reference its
2752 -- discriminant(s).
2753
2754 if Nkind (Lhs) = N_Selected_Component
533369aa
AC
2755 and then Has_Per_Object_Constraint
2756 (Entity (Selector_Name (Lhs)))
5d09245e
AC
2757 then
2758 Lhs_Discr_Val :=
2759 Make_Selected_Component (Loc,
39ade2f9 2760 Prefix => Prefix (Lhs),
5d09245e 2761 Selector_Name =>
39ade2f9
AC
2762 New_Copy
2763 (Get_Discriminant_Value
2764 (First_Discriminant (Lhs_Type),
2765 Lhs_Type,
2766 Stored_Constraint (Lhs_Type))));
5d09245e
AC
2767
2768 else
39ade2f9
AC
2769 Lhs_Discr_Val :=
2770 New_Copy
2771 (Get_Discriminant_Value
2772 (First_Discriminant (Lhs_Type),
2773 Lhs_Type,
2774 Stored_Constraint (Lhs_Type)));
5d09245e
AC
2775
2776 end if;
2777 else
2778 -- It is not possible to infer the discriminant since
2779 -- the subtype is not constrained.
2780
8aceda64 2781 return
5d09245e 2782 Make_Raise_Program_Error (Loc,
8aceda64 2783 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2784 end if;
2785
2786 -- Rhs of the composite equality
2787
2788 if Is_Constrained (Rhs_Type) then
2789 if Nkind (Rhs) = N_Selected_Component
39ade2f9
AC
2790 and then Has_Per_Object_Constraint
2791 (Entity (Selector_Name (Rhs)))
5d09245e
AC
2792 then
2793 Rhs_Discr_Val :=
2794 Make_Selected_Component (Loc,
39ade2f9 2795 Prefix => Prefix (Rhs),
5d09245e 2796 Selector_Name =>
39ade2f9
AC
2797 New_Copy
2798 (Get_Discriminant_Value
2799 (First_Discriminant (Rhs_Type),
2800 Rhs_Type,
2801 Stored_Constraint (Rhs_Type))));
5d09245e
AC
2802
2803 else
39ade2f9
AC
2804 Rhs_Discr_Val :=
2805 New_Copy
2806 (Get_Discriminant_Value
2807 (First_Discriminant (Rhs_Type),
2808 Rhs_Type,
2809 Stored_Constraint (Rhs_Type)));
5d09245e
AC
2810
2811 end if;
2812 else
8aceda64 2813 return
5d09245e 2814 Make_Raise_Program_Error (Loc,
8aceda64 2815 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2816 end if;
2817
2818 -- Call the TSS equality function with the inferred
2819 -- discriminant values.
2820
2821 return
2822 Make_Function_Call (Loc,
e4494292 2823 Name => New_Occurrence_Of (Eq_Op, Loc),
5d09245e
AC
2824 Parameter_Associations => New_List (
2825 Lhs,
2826 Rhs,
2827 Lhs_Discr_Val,
2828 Rhs_Discr_Val));
2829 end;
d151d6a3
AC
2830
2831 else
7f1a5156
EB
2832 declare
2833 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2834
2835 begin
2836 return
2837 Make_Function_Call (Loc,
2838 Name => New_Occurrence_Of (Eq_Op, Loc),
2839 Parameter_Associations => New_List (
2840 OK_Convert_To (T, Lhs),
2841 OK_Convert_To (T, Rhs)));
2842 end;
5d09245e 2843 end if;
d151d6a3 2844 end if;
5d09245e 2845
3058f181
BD
2846 -- Equality composes in Ada 2012 for untagged record types. It also
2847 -- composes for bounded strings, because they are part of the
2848 -- predefined environment. We could make it compose for bounded
2849 -- strings by making them tagged, or by making sure all subcomponents
2850 -- are set to the same value, even when not used. Instead, we have
2851 -- this special case in the compiler, because it's more efficient.
2852
2853 elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
5d09245e 2854
08daa782 2855 -- If no TSS has been created for the type, check whether there is
7efc3f2d 2856 -- a primitive equality declared for it.
d151d6a3
AC
2857
2858 declare
3058f181 2859 Op : constant Node_Id := Find_Primitive_Eq;
d151d6a3
AC
2860
2861 begin
a1fc903a
AC
2862 -- Use user-defined primitive if it exists, otherwise use
2863 -- predefined equality.
2864
3058f181
BD
2865 if Present (Op) then
2866 return Op;
7efc3f2d 2867 else
7efc3f2d
AC
2868 return Make_Op_Eq (Loc, Lhs, Rhs);
2869 end if;
d151d6a3
AC
2870 end;
2871
70482933
RK
2872 else
2873 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2874 end if;
2875
16788d44 2876 -- Non-composite types (always use predefined equality)
70482933 2877
16788d44 2878 else
70482933
RK
2879 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2880 end if;
2881 end Expand_Composite_Equality;
2882
fdac1f80
AC
2883 ------------------------
2884 -- Expand_Concatenate --
2885 ------------------------
70482933 2886
fdac1f80
AC
2887 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2888 Loc : constant Source_Ptr := Sloc (Cnode);
70482933 2889
fdac1f80
AC
2890 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2891 -- Result type of concatenation
70482933 2892
fdac1f80
AC
2893 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2894 -- Component type. Elements of this component type can appear as one
2895 -- of the operands of concatenation as well as arrays.
70482933 2896
ecc4ddde
AC
2897 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2898 -- Index subtype
2899
2900 Ityp : constant Entity_Id := Base_Type (Istyp);
2901 -- Index type. This is the base type of the index subtype, and is used
2902 -- for all computed bounds (which may be out of range of Istyp in the
2903 -- case of null ranges).
70482933 2904
46ff89f3 2905 Artyp : Entity_Id;
fdac1f80
AC
2906 -- This is the type we use to do arithmetic to compute the bounds and
2907 -- lengths of operands. The choice of this type is a little subtle and
2908 -- is discussed in a separate section at the start of the body code.
70482933 2909
fdac1f80
AC
2910 Concatenation_Error : exception;
2911 -- Raised if concatenation is sure to raise a CE
70482933 2912
0ac73189
AC
2913 Result_May_Be_Null : Boolean := True;
2914 -- Reset to False if at least one operand is encountered which is known
2915 -- at compile time to be non-null. Used for handling the special case
2916 -- of setting the high bound to the last operand high bound for a null
2917 -- result, thus ensuring a proper high bound in the super-flat case.
2918
df46b832 2919 N : constant Nat := List_Length (Opnds);
fdac1f80 2920 -- Number of concatenation operands including possibly null operands
df46b832
AC
2921
2922 NN : Nat := 0;
a29262fd
AC
2923 -- Number of operands excluding any known to be null, except that the
2924 -- last operand is always retained, in case it provides the bounds for
2925 -- a null result.
2926
2927 Opnd : Node_Id;
2928 -- Current operand being processed in the loop through operands. After
2929 -- this loop is complete, always contains the last operand (which is not
2930 -- the same as Operands (NN), since null operands are skipped).
df46b832
AC
2931
2932 -- Arrays describing the operands, only the first NN entries of each
2933 -- array are set (NN < N when we exclude known null operands).
2934
2935 Is_Fixed_Length : array (1 .. N) of Boolean;
2936 -- True if length of corresponding operand known at compile time
2937
2938 Operands : array (1 .. N) of Node_Id;
a29262fd
AC
2939 -- Set to the corresponding entry in the Opnds list (but note that null
2940 -- operands are excluded, so not all entries in the list are stored).
df46b832
AC
2941
2942 Fixed_Length : array (1 .. N) of Uint;
fdac1f80
AC
2943 -- Set to length of operand. Entries in this array are set only if the
2944 -- corresponding entry in Is_Fixed_Length is True.
df46b832 2945
0ac73189
AC
2946 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2947 -- Set to lower bound of operand. Either an integer literal in the case
2948 -- where the bound is known at compile time, else actual lower bound.
2949 -- The operand low bound is of type Ityp.
2950
df46b832
AC
2951 Var_Length : array (1 .. N) of Entity_Id;
2952 -- Set to an entity of type Natural that contains the length of an
2953 -- operand whose length is not known at compile time. Entries in this
2954 -- array are set only if the corresponding entry in Is_Fixed_Length
46ff89f3 2955 -- is False. The entity is of type Artyp.
df46b832
AC
2956
2957 Aggr_Length : array (0 .. N) of Node_Id;
fdac1f80
AC
2958 -- The J'th entry in an expression node that represents the total length
2959 -- of operands 1 through J. It is either an integer literal node, or a
2960 -- reference to a constant entity with the right value, so it is fine
2961 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
46ff89f3 2962 -- entry always is set to zero. The length is of type Artyp.
df46b832
AC
2963
2964 Low_Bound : Node_Id;
0ac73189
AC
2965 -- A tree node representing the low bound of the result (of type Ityp).
2966 -- This is either an integer literal node, or an identifier reference to
2967 -- a constant entity initialized to the appropriate value.
2968
88a27b18
AC
2969 Last_Opnd_Low_Bound : Node_Id;
2970 -- A tree node representing the low bound of the last operand. This
2971 -- need only be set if the result could be null. It is used for the
2972 -- special case of setting the right low bound for a null result.
2973 -- This is of type Ityp.
2974
a29262fd
AC
2975 Last_Opnd_High_Bound : Node_Id;
2976 -- A tree node representing the high bound of the last operand. This
2977 -- need only be set if the result could be null. It is used for the
2978 -- special case of setting the right high bound for a null result.
2979 -- This is of type Ityp.
2980
0ac73189
AC
2981 High_Bound : Node_Id;
2982 -- A tree node representing the high bound of the result (of type Ityp)
df46b832
AC
2983
2984 Result : Node_Id;
0ac73189 2985 -- Result of the concatenation (of type Ityp)
df46b832 2986
d0f8d157 2987 Actions : constant List_Id := New_List;
4c9fe6c7 2988 -- Collect actions to be inserted
d0f8d157 2989
fa969310 2990 Known_Non_Null_Operand_Seen : Boolean;
308e6f3a 2991 -- Set True during generation of the assignments of operands into
fa969310
AC
2992 -- result once an operand known to be non-null has been seen.
2993
2994 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2995 -- This function makes an N_Integer_Literal node that is returned in
2996 -- analyzed form with the type set to Artyp. Importantly this literal
2997 -- is not flagged as static, so that if we do computations with it that
2998 -- result in statically detected out of range conditions, we will not
2999 -- generate error messages but instead warning messages.
3000
46ff89f3 3001 function To_Artyp (X : Node_Id) return Node_Id;
fdac1f80 3002 -- Given a node of type Ityp, returns the corresponding value of type
76c597a1
AC
3003 -- Artyp. For non-enumeration types, this is a plain integer conversion.
3004 -- For enum types, the Pos of the value is returned.
fdac1f80
AC
3005
3006 function To_Ityp (X : Node_Id) return Node_Id;
0ac73189 3007 -- The inverse function (uses Val in the case of enumeration types)
fdac1f80 3008
fa969310
AC
3009 ------------------------
3010 -- Make_Artyp_Literal --
3011 ------------------------
3012
3013 function Make_Artyp_Literal (Val : Nat) return Node_Id is
3014 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
3015 begin
3016 Set_Etype (Result, Artyp);
3017 Set_Analyzed (Result, True);
3018 Set_Is_Static_Expression (Result, False);
3019 return Result;
3020 end Make_Artyp_Literal;
76c597a1 3021
fdac1f80 3022 --------------
46ff89f3 3023 -- To_Artyp --
fdac1f80
AC
3024 --------------
3025
46ff89f3 3026 function To_Artyp (X : Node_Id) return Node_Id is
fdac1f80 3027 begin
46ff89f3 3028 if Ityp = Base_Type (Artyp) then
fdac1f80
AC
3029 return X;
3030
3031 elsif Is_Enumeration_Type (Ityp) then
3032 return
3033 Make_Attribute_Reference (Loc,
3034 Prefix => New_Occurrence_Of (Ityp, Loc),
3035 Attribute_Name => Name_Pos,
3036 Expressions => New_List (X));
3037
3038 else
46ff89f3 3039 return Convert_To (Artyp, X);
fdac1f80 3040 end if;
46ff89f3 3041 end To_Artyp;
fdac1f80
AC
3042
3043 -------------
3044 -- To_Ityp --
3045 -------------
3046
3047 function To_Ityp (X : Node_Id) return Node_Id is
3048 begin
2fc05e3d 3049 if Is_Enumeration_Type (Ityp) then
fdac1f80
AC
3050 return
3051 Make_Attribute_Reference (Loc,
3052 Prefix => New_Occurrence_Of (Ityp, Loc),
3053 Attribute_Name => Name_Val,
3054 Expressions => New_List (X));
3055
3056 -- Case where we will do a type conversion
3057
3058 else
76c597a1
AC
3059 if Ityp = Base_Type (Artyp) then
3060 return X;
fdac1f80 3061 else
76c597a1 3062 return Convert_To (Ityp, X);
fdac1f80
AC
3063 end if;
3064 end if;
3065 end To_Ityp;
3066
3067 -- Local Declarations
3068
00ba7be8
AC
3069 Lib_Level_Target : constant Boolean :=
3070 Nkind (Parent (Cnode)) = N_Object_Declaration
3071 and then
3072 Is_Library_Level_Entity (Defining_Identifier (Parent (Cnode)));
3073
3074 -- If the concatenation declares a library level entity, we call the
3075 -- built-in concatenation routines to prevent code bloat, regardless
3076 -- of optimization level. This is space-efficient, and prevent linking
3077 -- problems when units are compiled with different optimizations.
3078
0ac73189
AC
3079 Opnd_Typ : Entity_Id;
3080 Ent : Entity_Id;
3081 Len : Uint;
3082 J : Nat;
3083 Clen : Node_Id;
3084 Set : Boolean;
70482933 3085
f46faa08
AC
3086 -- Start of processing for Expand_Concatenate
3087
70482933 3088 begin
fdac1f80
AC
3089 -- Choose an appropriate computational type
3090
3091 -- We will be doing calculations of lengths and bounds in this routine
3092 -- and computing one from the other in some cases, e.g. getting the high
3093 -- bound by adding the length-1 to the low bound.
3094
3095 -- We can't just use the index type, or even its base type for this
3096 -- purpose for two reasons. First it might be an enumeration type which
308e6f3a
RW
3097 -- is not suitable for computations of any kind, and second it may
3098 -- simply not have enough range. For example if the index type is
3099 -- -128..+127 then lengths can be up to 256, which is out of range of
3100 -- the type.
fdac1f80
AC
3101
3102 -- For enumeration types, we can simply use Standard_Integer, this is
3103 -- sufficient since the actual number of enumeration literals cannot
3104 -- possibly exceed the range of integer (remember we will be doing the
0ac73189 3105 -- arithmetic with POS values, not representation values).
fdac1f80
AC
3106
3107 if Is_Enumeration_Type (Ityp) then
46ff89f3 3108 Artyp := Standard_Integer;
fdac1f80 3109
59262ebb
AC
3110 -- If index type is Positive, we use the standard unsigned type, to give
3111 -- more room on the top of the range, obviating the need for an overflow
3112 -- check when creating the upper bound. This is needed to avoid junk
3113 -- overflow checks in the common case of String types.
3114
3115 -- ??? Disabled for now
3116
3117 -- elsif Istyp = Standard_Positive then
3118 -- Artyp := Standard_Unsigned;
3119
2fc05e3d
AC
3120 -- For modular types, we use a 32-bit modular type for types whose size
3121 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3122 -- identity type, and for larger unsigned types we use 64-bits.
fdac1f80 3123
2fc05e3d 3124 elsif Is_Modular_Integer_Type (Ityp) then
ecc4ddde 3125 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
46ff89f3 3126 Artyp := Standard_Unsigned;
ecc4ddde 3127 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
46ff89f3 3128 Artyp := Ityp;
fdac1f80 3129 else
46ff89f3 3130 Artyp := RTE (RE_Long_Long_Unsigned);
fdac1f80
AC
3131 end if;
3132
2fc05e3d 3133 -- Similar treatment for signed types
fdac1f80
AC
3134
3135 else
ecc4ddde 3136 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
46ff89f3 3137 Artyp := Standard_Integer;
ecc4ddde 3138 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
46ff89f3 3139 Artyp := Ityp;
fdac1f80 3140 else
46ff89f3 3141 Artyp := Standard_Long_Long_Integer;
fdac1f80
AC
3142 end if;
3143 end if;
3144
fa969310
AC
3145 -- Supply dummy entry at start of length array
3146
3147 Aggr_Length (0) := Make_Artyp_Literal (0);
3148
fdac1f80 3149 -- Go through operands setting up the above arrays
70482933 3150
df46b832
AC
3151 J := 1;
3152 while J <= N loop
3153 Opnd := Remove_Head (Opnds);
0ac73189 3154 Opnd_Typ := Etype (Opnd);
fdac1f80
AC
3155
3156 -- The parent got messed up when we put the operands in a list,
d347f572
AC
3157 -- so now put back the proper parent for the saved operand, that
3158 -- is to say the concatenation node, to make sure that each operand
3159 -- is seen as a subexpression, e.g. if actions must be inserted.
fdac1f80 3160
d347f572 3161 Set_Parent (Opnd, Cnode);
fdac1f80
AC
3162
3163 -- Set will be True when we have setup one entry in the array
3164
df46b832
AC
3165 Set := False;
3166
fdac1f80 3167 -- Singleton element (or character literal) case
df46b832 3168
0ac73189 3169 if Base_Type (Opnd_Typ) = Ctyp then
df46b832
AC
3170 NN := NN + 1;
3171 Operands (NN) := Opnd;
3172 Is_Fixed_Length (NN) := True;
3173 Fixed_Length (NN) := Uint_1;
0ac73189 3174 Result_May_Be_Null := False;
fdac1f80 3175
a29262fd
AC
3176 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3177 -- since we know that the result cannot be null).
fdac1f80 3178
0ac73189
AC
3179 Opnd_Low_Bound (NN) :=
3180 Make_Attribute_Reference (Loc,
e4494292 3181 Prefix => New_Occurrence_Of (Istyp, Loc),
0ac73189
AC
3182 Attribute_Name => Name_First);
3183
df46b832
AC
3184 Set := True;
3185
fdac1f80 3186 -- String literal case (can only occur for strings of course)
df46b832
AC
3187
3188 elsif Nkind (Opnd) = N_String_Literal then
0ac73189 3189 Len := String_Literal_Length (Opnd_Typ);
df46b832 3190
a29262fd
AC
3191 if Len /= 0 then
3192 Result_May_Be_Null := False;
3193 end if;
3194
88a27b18 3195 -- Capture last operand low and high bound if result could be null
a29262fd
AC
3196
3197 if J = N and then Result_May_Be_Null then
88a27b18
AC
3198 Last_Opnd_Low_Bound :=
3199 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3200
a29262fd 3201 Last_Opnd_High_Bound :=
88a27b18 3202 Make_Op_Subtract (Loc,
a29262fd
AC
3203 Left_Opnd =>
3204 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
59262ebb 3205 Right_Opnd => Make_Integer_Literal (Loc, 1));
a29262fd
AC
3206 end if;
3207
3208 -- Skip null string literal
fdac1f80 3209
0ac73189 3210 if J < N and then Len = 0 then
df46b832
AC
3211 goto Continue;
3212 end if;
3213
3214 NN := NN + 1;
3215 Operands (NN) := Opnd;
3216 Is_Fixed_Length (NN) := True;
0ac73189
AC
3217
3218 -- Set length and bounds
3219
df46b832 3220 Fixed_Length (NN) := Len;
0ac73189
AC
3221
3222 Opnd_Low_Bound (NN) :=
3223 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3224
df46b832
AC
3225 Set := True;
3226
3227 -- All other cases
3228
3229 else
3230 -- Check constrained case with known bounds
3231
0ac73189 3232 if Is_Constrained (Opnd_Typ) then
df46b832 3233 declare
df46b832
AC
3234 Index : constant Node_Id := First_Index (Opnd_Typ);
3235 Indx_Typ : constant Entity_Id := Etype (Index);
3236 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
3237 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
3238
3239 begin
fdac1f80
AC
3240 -- Fixed length constrained array type with known at compile
3241 -- time bounds is last case of fixed length operand.
df46b832
AC
3242
3243 if Compile_Time_Known_Value (Lo)
3244 and then
3245 Compile_Time_Known_Value (Hi)
3246 then
3247 declare
3248 Loval : constant Uint := Expr_Value (Lo);
3249 Hival : constant Uint := Expr_Value (Hi);
3250 Len : constant Uint :=
3251 UI_Max (Hival - Loval + 1, Uint_0);
3252
3253 begin
0ac73189
AC
3254 if Len > 0 then
3255 Result_May_Be_Null := False;
df46b832 3256 end if;
0ac73189 3257
88a27b18 3258 -- Capture last operand bounds if result could be null
a29262fd
AC
3259
3260 if J = N and then Result_May_Be_Null then
88a27b18
AC
3261 Last_Opnd_Low_Bound :=
3262 Convert_To (Ityp,
3263 Make_Integer_Literal (Loc, Expr_Value (Lo)));
3264
a29262fd
AC
3265 Last_Opnd_High_Bound :=
3266 Convert_To (Ityp,
39ade2f9 3267 Make_Integer_Literal (Loc, Expr_Value (Hi)));
a29262fd
AC
3268 end if;
3269
3270 -- Exclude null length case unless last operand
0ac73189 3271
a29262fd 3272 if J < N and then Len = 0 then
0ac73189
AC
3273 goto Continue;
3274 end if;
3275
3276 NN := NN + 1;
3277 Operands (NN) := Opnd;
3278 Is_Fixed_Length (NN) := True;
3279 Fixed_Length (NN) := Len;
3280
39ade2f9
AC
3281 Opnd_Low_Bound (NN) :=
3282 To_Ityp
3283 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
0ac73189 3284 Set := True;
df46b832
AC
3285 end;
3286 end if;
3287 end;
3288 end if;
3289
0ac73189
AC
3290 -- All cases where the length is not known at compile time, or the
3291 -- special case of an operand which is known to be null but has a
3292 -- lower bound other than 1 or is other than a string type.
df46b832
AC
3293
3294 if not Set then
3295 NN := NN + 1;
0ac73189
AC
3296
3297 -- Capture operand bounds
3298
3299 Opnd_Low_Bound (NN) :=
3300 Make_Attribute_Reference (Loc,
3301 Prefix =>
3302 Duplicate_Subexpr (Opnd, Name_Req => True),
3303 Attribute_Name => Name_First);
3304
88a27b18
AC
3305 -- Capture last operand bounds if result could be null
3306
a29262fd 3307 if J = N and Result_May_Be_Null then
88a27b18
AC
3308 Last_Opnd_Low_Bound :=
3309 Convert_To (Ityp,
3310 Make_Attribute_Reference (Loc,
3311 Prefix =>
3312 Duplicate_Subexpr (Opnd, Name_Req => True),
3313 Attribute_Name => Name_First));
3314
a29262fd
AC
3315 Last_Opnd_High_Bound :=
3316 Convert_To (Ityp,
3317 Make_Attribute_Reference (Loc,
3318 Prefix =>
3319 Duplicate_Subexpr (Opnd, Name_Req => True),
3320 Attribute_Name => Name_Last));
3321 end if;
0ac73189
AC
3322
3323 -- Capture length of operand in entity
3324
df46b832
AC
3325 Operands (NN) := Opnd;
3326 Is_Fixed_Length (NN) := False;
3327
191fcb3a 3328 Var_Length (NN) := Make_Temporary (Loc, 'L');
df46b832 3329
d0f8d157 3330 Append_To (Actions,
df46b832
AC
3331 Make_Object_Declaration (Loc,
3332 Defining_Identifier => Var_Length (NN),
3333 Constant_Present => True,
39ade2f9 3334 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
3335 Expression =>
3336 Make_Attribute_Reference (Loc,
3337 Prefix =>
3338 Duplicate_Subexpr (Opnd, Name_Req => True),
d0f8d157 3339 Attribute_Name => Name_Length)));
df46b832
AC
3340 end if;
3341 end if;
3342
3343 -- Set next entry in aggregate length array
3344
3345 -- For first entry, make either integer literal for fixed length
0ac73189 3346 -- or a reference to the saved length for variable length.
df46b832
AC
3347
3348 if NN = 1 then
3349 if Is_Fixed_Length (1) then
39ade2f9 3350 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
df46b832 3351 else
e4494292 3352 Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
df46b832
AC
3353 end if;
3354
3355 -- If entry is fixed length and only fixed lengths so far, make
3356 -- appropriate new integer literal adding new length.
3357
3358 elsif Is_Fixed_Length (NN)
3359 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3360 then
3361 Aggr_Length (NN) :=
3362 Make_Integer_Literal (Loc,
3363 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3364
d0f8d157
AC
3365 -- All other cases, construct an addition node for the length and
3366 -- create an entity initialized to this length.
df46b832
AC
3367
3368 else
191fcb3a 3369 Ent := Make_Temporary (Loc, 'L');
df46b832
AC
3370
3371 if Is_Fixed_Length (NN) then
3372 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3373 else
e4494292 3374 Clen := New_Occurrence_Of (Var_Length (NN), Loc);
df46b832
AC
3375 end if;
3376
d0f8d157 3377 Append_To (Actions,
df46b832
AC
3378 Make_Object_Declaration (Loc,
3379 Defining_Identifier => Ent,
3380 Constant_Present => True,
39ade2f9 3381 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
3382 Expression =>
3383 Make_Op_Add (Loc,
3384 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
d0f8d157 3385 Right_Opnd => Clen)));
df46b832 3386
76c597a1 3387 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
df46b832
AC
3388 end if;
3389
3390 <<Continue>>
3391 J := J + 1;
3392 end loop;
3393
a29262fd 3394 -- If we have only skipped null operands, return the last operand
df46b832
AC
3395
3396 if NN = 0 then
a29262fd 3397 Result := Opnd;
df46b832
AC
3398 goto Done;
3399 end if;
3400
3401 -- If we have only one non-null operand, return it and we are done.
3402 -- There is one case in which this cannot be done, and that is when
fdac1f80
AC
3403 -- the sole operand is of the element type, in which case it must be
3404 -- converted to an array, and the easiest way of doing that is to go
df46b832
AC
3405 -- through the normal general circuit.
3406
533369aa 3407 if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
df46b832
AC
3408 Result := Operands (1);
3409 goto Done;
3410 end if;
3411
3412 -- Cases where we have a real concatenation
3413
fdac1f80
AC
3414 -- Next step is to find the low bound for the result array that we
3415 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3416
3417 -- If the ultimate ancestor of the index subtype is a constrained array
3418 -- definition, then the lower bound is that of the index subtype as
3419 -- specified by (RM 4.5.3(6)).
3420
3421 -- The right test here is to go to the root type, and then the ultimate
3422 -- ancestor is the first subtype of this root type.
3423
3424 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
0ac73189 3425 Low_Bound :=
fdac1f80
AC
3426 Make_Attribute_Reference (Loc,
3427 Prefix =>
3428 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
0ac73189 3429 Attribute_Name => Name_First);
df46b832
AC
3430
3431 -- If the first operand in the list has known length we know that
3432 -- the lower bound of the result is the lower bound of this operand.
3433
fdac1f80 3434 elsif Is_Fixed_Length (1) then
0ac73189 3435 Low_Bound := Opnd_Low_Bound (1);
df46b832
AC
3436
3437 -- OK, we don't know the lower bound, we have to build a horrible
9b16cb57 3438 -- if expression node of the form
df46b832
AC
3439
3440 -- if Cond1'Length /= 0 then
0ac73189 3441 -- Opnd1 low bound
df46b832
AC
3442 -- else
3443 -- if Opnd2'Length /= 0 then
0ac73189 3444 -- Opnd2 low bound
df46b832
AC
3445 -- else
3446 -- ...
3447
3448 -- The nesting ends either when we hit an operand whose length is known
3449 -- at compile time, or on reaching the last operand, whose low bound we
3450 -- take unconditionally whether or not it is null. It's easiest to do
3451 -- this with a recursive procedure:
3452
3453 else
3454 declare
3455 function Get_Known_Bound (J : Nat) return Node_Id;
3456 -- Returns the lower bound determined by operands J .. NN
3457
3458 ---------------------
3459 -- Get_Known_Bound --
3460 ---------------------
3461
3462 function Get_Known_Bound (J : Nat) return Node_Id is
df46b832 3463 begin
0ac73189
AC
3464 if Is_Fixed_Length (J) or else J = NN then
3465 return New_Copy (Opnd_Low_Bound (J));
70482933
RK
3466
3467 else
df46b832 3468 return
9b16cb57 3469 Make_If_Expression (Loc,
df46b832
AC
3470 Expressions => New_List (
3471
3472 Make_Op_Ne (Loc,
e4494292
RD
3473 Left_Opnd =>
3474 New_Occurrence_Of (Var_Length (J), Loc),
3475 Right_Opnd =>
3476 Make_Integer_Literal (Loc, 0)),
df46b832 3477
0ac73189 3478 New_Copy (Opnd_Low_Bound (J)),
df46b832 3479 Get_Known_Bound (J + 1)));
70482933 3480 end if;
df46b832 3481 end Get_Known_Bound;
70482933 3482
df46b832 3483 begin
191fcb3a 3484 Ent := Make_Temporary (Loc, 'L');
df46b832 3485
d0f8d157 3486 Append_To (Actions,
df46b832
AC
3487 Make_Object_Declaration (Loc,
3488 Defining_Identifier => Ent,
3489 Constant_Present => True,
0ac73189 3490 Object_Definition => New_Occurrence_Of (Ityp, Loc),
d0f8d157 3491 Expression => Get_Known_Bound (1)));
df46b832 3492
e4494292 3493 Low_Bound := New_Occurrence_Of (Ent, Loc);
df46b832
AC
3494 end;
3495 end if;
70482933 3496
76c597a1
AC
3497 -- Now we can safely compute the upper bound, normally
3498 -- Low_Bound + Length - 1.
0ac73189
AC
3499
3500 High_Bound :=
cc6f5d75
AC
3501 To_Ityp
3502 (Make_Op_Add (Loc,
3503 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3504 Right_Opnd =>
3505 Make_Op_Subtract (Loc,
3506 Left_Opnd => New_Copy (Aggr_Length (NN)),
3507 Right_Opnd => Make_Artyp_Literal (1))));
0ac73189 3508
59262ebb 3509 -- Note that calculation of the high bound may cause overflow in some
bded454f
RD
3510 -- very weird cases, so in the general case we need an overflow check on
3511 -- the high bound. We can avoid this for the common case of string types
3512 -- and other types whose index is Positive, since we chose a wider range
3513 -- for the arithmetic type.
76c597a1 3514
59262ebb
AC
3515 if Istyp /= Standard_Positive then
3516 Activate_Overflow_Check (High_Bound);
3517 end if;
76c597a1
AC
3518
3519 -- Handle the exceptional case where the result is null, in which case
a29262fd
AC
3520 -- case the bounds come from the last operand (so that we get the proper
3521 -- bounds if the last operand is super-flat).
3522
0ac73189 3523 if Result_May_Be_Null then
88a27b18 3524 Low_Bound :=
9b16cb57 3525 Make_If_Expression (Loc,
88a27b18
AC
3526 Expressions => New_List (
3527 Make_Op_Eq (Loc,
3528 Left_Opnd => New_Copy (Aggr_Length (NN)),
3529 Right_Opnd => Make_Artyp_Literal (0)),
3530 Last_Opnd_Low_Bound,
3531 Low_Bound));
3532
0ac73189 3533 High_Bound :=
9b16cb57 3534 Make_If_Expression (Loc,
0ac73189
AC
3535 Expressions => New_List (
3536 Make_Op_Eq (Loc,
3537 Left_Opnd => New_Copy (Aggr_Length (NN)),
fa969310 3538 Right_Opnd => Make_Artyp_Literal (0)),
a29262fd 3539 Last_Opnd_High_Bound,
0ac73189
AC
3540 High_Bound));
3541 end if;
3542
d0f8d157
AC
3543 -- Here is where we insert the saved up actions
3544
3545 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3546
602a7ec0
AC
3547 -- Now we construct an array object with appropriate bounds. We mark
3548 -- the target as internal to prevent useless initialization when
e526d0c7
AC
3549 -- Initialize_Scalars is enabled. Also since this is the actual result
3550 -- entity, we make sure we have debug information for the result.
70482933 3551
191fcb3a 3552 Ent := Make_Temporary (Loc, 'S');
008f6fd3 3553 Set_Is_Internal (Ent);
e526d0c7 3554 Set_Needs_Debug_Info (Ent);
70482933 3555
76c597a1 3556 -- If the bound is statically known to be out of range, we do not want
fa969310
AC
3557 -- to abort, we want a warning and a runtime constraint error. Note that
3558 -- we have arranged that the result will not be treated as a static
3559 -- constant, so we won't get an illegality during this insertion.
76c597a1 3560
df46b832
AC
3561 Insert_Action (Cnode,
3562 Make_Object_Declaration (Loc,
3563 Defining_Identifier => Ent,
df46b832
AC
3564 Object_Definition =>
3565 Make_Subtype_Indication (Loc,
fdac1f80 3566 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
df46b832
AC
3567 Constraint =>
3568 Make_Index_Or_Discriminant_Constraint (Loc,
3569 Constraints => New_List (
3570 Make_Range (Loc,
0ac73189
AC
3571 Low_Bound => Low_Bound,
3572 High_Bound => High_Bound))))),
df46b832
AC
3573 Suppress => All_Checks);
3574
d1f453b7
RD
3575 -- If the result of the concatenation appears as the initializing
3576 -- expression of an object declaration, we can just rename the
3577 -- result, rather than copying it.
3578
3579 Set_OK_To_Rename (Ent);
3580
76c597a1
AC
3581 -- Catch the static out of range case now
3582
3583 if Raises_Constraint_Error (High_Bound) then
3584 raise Concatenation_Error;
3585 end if;
3586
df46b832
AC
3587 -- Now we will generate the assignments to do the actual concatenation
3588
bded454f
RD
3589 -- There is one case in which we will not do this, namely when all the
3590 -- following conditions are met:
3591
3592 -- The result type is Standard.String
3593
3594 -- There are nine or fewer retained (non-null) operands
3595
ffec8e81 3596 -- The optimization level is -O0
bded454f
RD
3597
3598 -- The corresponding System.Concat_n.Str_Concat_n routine is
3599 -- available in the run time.
3600
3601 -- The debug flag gnatd.c is not set
3602
3603 -- If all these conditions are met then we generate a call to the
3604 -- relevant concatenation routine. The purpose of this is to avoid
3605 -- undesirable code bloat at -O0.
3606
3607 if Atyp = Standard_String
3608 and then NN in 2 .. 9
00ba7be8 3609 and then (Lib_Level_Target
cc6f5d75
AC
3610 or else ((Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3611 and then not Debug_Flag_Dot_C))
bded454f
RD
3612 then
3613 declare
3614 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3615 (RE_Str_Concat_2,
3616 RE_Str_Concat_3,
3617 RE_Str_Concat_4,
3618 RE_Str_Concat_5,
3619 RE_Str_Concat_6,
3620 RE_Str_Concat_7,
3621 RE_Str_Concat_8,
3622 RE_Str_Concat_9);
3623
3624 begin
3625 if RTE_Available (RR (NN)) then
3626 declare
3627 Opnds : constant List_Id :=
3628 New_List (New_Occurrence_Of (Ent, Loc));
3629
3630 begin
3631 for J in 1 .. NN loop
3632 if Is_List_Member (Operands (J)) then
3633 Remove (Operands (J));
3634 end if;
3635
3636 if Base_Type (Etype (Operands (J))) = Ctyp then
3637 Append_To (Opnds,
3638 Make_Aggregate (Loc,
3639 Component_Associations => New_List (
3640 Make_Component_Association (Loc,
3641 Choices => New_List (
3642 Make_Integer_Literal (Loc, 1)),
3643 Expression => Operands (J)))));
3644
3645 else
3646 Append_To (Opnds, Operands (J));
3647 end if;
3648 end loop;
3649
3650 Insert_Action (Cnode,
3651 Make_Procedure_Call_Statement (Loc,
e4494292 3652 Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
bded454f
RD
3653 Parameter_Associations => Opnds));
3654
e4494292 3655 Result := New_Occurrence_Of (Ent, Loc);
bded454f
RD
3656 goto Done;
3657 end;
3658 end if;
3659 end;
3660 end if;
3661
3662 -- Not special case so generate the assignments
3663
76c597a1
AC
3664 Known_Non_Null_Operand_Seen := False;
3665
df46b832
AC
3666 for J in 1 .. NN loop
3667 declare
3668 Lo : constant Node_Id :=
3669 Make_Op_Add (Loc,
46ff89f3 3670 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
3671 Right_Opnd => Aggr_Length (J - 1));
3672
3673 Hi : constant Node_Id :=
3674 Make_Op_Add (Loc,
46ff89f3 3675 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
3676 Right_Opnd =>
3677 Make_Op_Subtract (Loc,
3678 Left_Opnd => Aggr_Length (J),
fa969310 3679 Right_Opnd => Make_Artyp_Literal (1)));
70482933 3680
df46b832 3681 begin
fdac1f80
AC
3682 -- Singleton case, simple assignment
3683
3684 if Base_Type (Etype (Operands (J))) = Ctyp then
76c597a1 3685 Known_Non_Null_Operand_Seen := True;
df46b832
AC
3686 Insert_Action (Cnode,
3687 Make_Assignment_Statement (Loc,
3688 Name =>
3689 Make_Indexed_Component (Loc,
3690 Prefix => New_Occurrence_Of (Ent, Loc),
fdac1f80 3691 Expressions => New_List (To_Ityp (Lo))),
df46b832
AC
3692 Expression => Operands (J)),
3693 Suppress => All_Checks);
70482933 3694
76c597a1
AC
3695 -- Array case, slice assignment, skipped when argument is fixed
3696 -- length and known to be null.
fdac1f80 3697
76c597a1
AC
3698 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3699 declare
3700 Assign : Node_Id :=
3701 Make_Assignment_Statement (Loc,
3702 Name =>
3703 Make_Slice (Loc,
3704 Prefix =>
3705 New_Occurrence_Of (Ent, Loc),
3706 Discrete_Range =>
3707 Make_Range (Loc,
3708 Low_Bound => To_Ityp (Lo),
3709 High_Bound => To_Ityp (Hi))),
3710 Expression => Operands (J));
3711 begin
3712 if Is_Fixed_Length (J) then
3713 Known_Non_Null_Operand_Seen := True;
3714
3715 elsif not Known_Non_Null_Operand_Seen then
3716
3717 -- Here if operand length is not statically known and no
3718 -- operand known to be non-null has been processed yet.
3719 -- If operand length is 0, we do not need to perform the
3720 -- assignment, and we must avoid the evaluation of the
3721 -- high bound of the slice, since it may underflow if the
3722 -- low bound is Ityp'First.
3723
3724 Assign :=
3725 Make_Implicit_If_Statement (Cnode,
39ade2f9 3726 Condition =>
76c597a1 3727 Make_Op_Ne (Loc,
39ade2f9 3728 Left_Opnd =>
76c597a1
AC
3729 New_Occurrence_Of (Var_Length (J), Loc),
3730 Right_Opnd => Make_Integer_Literal (Loc, 0)),
39ade2f9 3731 Then_Statements => New_List (Assign));
76c597a1 3732 end if;
fa969310 3733
76c597a1
AC
3734 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3735 end;
df46b832
AC
3736 end if;
3737 end;
3738 end loop;
70482933 3739
0ac73189
AC
3740 -- Finally we build the result, which is a reference to the array object
3741
e4494292 3742 Result := New_Occurrence_Of (Ent, Loc);
70482933 3743
df46b832
AC
3744 <<Done>>
3745 Rewrite (Cnode, Result);
fdac1f80
AC
3746 Analyze_And_Resolve (Cnode, Atyp);
3747
3748 exception
3749 when Concatenation_Error =>
76c597a1
AC
3750
3751 -- Kill warning generated for the declaration of the static out of
3752 -- range high bound, and instead generate a Constraint_Error with
3753 -- an appropriate specific message.
3754
3755 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3756 Apply_Compile_Time_Constraint_Error
3757 (N => Cnode,
324ac540 3758 Msg => "concatenation result upper bound out of range??",
76c597a1 3759 Reason => CE_Range_Check_Failed);
fdac1f80 3760 end Expand_Concatenate;
70482933 3761
f6194278
RD
3762 ---------------------------------------------------
3763 -- Expand_Membership_Minimize_Eliminate_Overflow --
3764 ---------------------------------------------------
3765
3766 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3767 pragma Assert (Nkind (N) = N_In);
3768 -- Despite the name, this routine applies only to N_In, not to
3769 -- N_Not_In. The latter is always rewritten as not (X in Y).
3770
71fb4dc8
AC
3771 Result_Type : constant Entity_Id := Etype (N);
3772 -- Capture result type, may be a derived boolean type
3773
b6b5cca8
AC
3774 Loc : constant Source_Ptr := Sloc (N);
3775 Lop : constant Node_Id := Left_Opnd (N);
3776 Rop : constant Node_Id := Right_Opnd (N);
3777
3778 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3779 -- is thus tempting to capture these values, but due to the rewrites
3780 -- that occur as a result of overflow checking, these values change
3781 -- as we go along, and it is safe just to always use Etype explicitly.
f6194278
RD
3782
3783 Restype : constant Entity_Id := Etype (N);
3784 -- Save result type
3785
3786 Lo, Hi : Uint;
d8192289 3787 -- Bounds in Minimize calls, not used currently
f6194278
RD
3788
3789 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3790 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3791
3792 begin
a7f1b24f 3793 Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
f6194278
RD
3794
3795 -- If right operand is a subtype name, and the subtype name has no
3796 -- predicate, then we can just replace the right operand with an
3797 -- explicit range T'First .. T'Last, and use the explicit range code.
3798
b6b5cca8
AC
3799 if Nkind (Rop) /= N_Range
3800 and then No (Predicate_Function (Etype (Rop)))
3801 then
3802 declare
3803 Rtyp : constant Entity_Id := Etype (Rop);
3804 begin
3805 Rewrite (Rop,
3806 Make_Range (Loc,
cc6f5d75 3807 Low_Bound =>
b6b5cca8
AC
3808 Make_Attribute_Reference (Loc,
3809 Attribute_Name => Name_First,
e4494292 3810 Prefix => New_Occurrence_Of (Rtyp, Loc)),
b6b5cca8
AC
3811 High_Bound =>
3812 Make_Attribute_Reference (Loc,
3813 Attribute_Name => Name_Last,
e4494292 3814 Prefix => New_Occurrence_Of (Rtyp, Loc))));
b6b5cca8
AC
3815 Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3816 end;
f6194278
RD
3817 end if;
3818
3819 -- Here for the explicit range case. Note that the bounds of the range
3820 -- have not been processed for minimized or eliminated checks.
3821
3822 if Nkind (Rop) = N_Range then
a7f1b24f 3823 Minimize_Eliminate_Overflows
b6b5cca8 3824 (Low_Bound (Rop), Lo, Hi, Top_Level => False);
a7f1b24f 3825 Minimize_Eliminate_Overflows
c7e152b5 3826 (High_Bound (Rop), Lo, Hi, Top_Level => False);
f6194278
RD
3827
3828 -- We have A in B .. C, treated as A >= B and then A <= C
3829
3830 -- Bignum case
3831
b6b5cca8 3832 if Is_RTE (Etype (Lop), RE_Bignum)
f6194278
RD
3833 or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3834 or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3835 then
3836 declare
3837 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3838 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
71fb4dc8
AC
3839 L : constant Entity_Id :=
3840 Make_Defining_Identifier (Loc, Name_uL);
f6194278
RD
3841 Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
3842 Lbound : constant Node_Id :=
3843 Convert_To_Bignum (Low_Bound (Rop));
3844 Hbound : constant Node_Id :=
3845 Convert_To_Bignum (High_Bound (Rop));
3846
71fb4dc8
AC
3847 -- Now we rewrite the membership test node to look like
3848
3849 -- do
3850 -- Bnn : Result_Type;
3851 -- declare
3852 -- M : Mark_Id := SS_Mark;
3853 -- L : Bignum := Lopnd;
3854 -- begin
3855 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3856 -- SS_Release (M);
3857 -- end;
3858 -- in
3859 -- Bnn
3860 -- end
f6194278
RD
3861
3862 begin
71fb4dc8
AC
3863 -- Insert declaration of L into declarations of bignum block
3864
f6194278
RD
3865 Insert_After
3866 (Last (Declarations (Blk)),
3867 Make_Object_Declaration (Loc,
71fb4dc8 3868 Defining_Identifier => L,
f6194278
RD
3869 Object_Definition =>
3870 New_Occurrence_Of (RTE (RE_Bignum), Loc),
3871 Expression => Lopnd));
3872
71fb4dc8
AC
3873 -- Insert assignment to Bnn into expressions of bignum block
3874
f6194278
RD
3875 Insert_Before
3876 (First (Statements (Handled_Statement_Sequence (Blk))),
3877 Make_Assignment_Statement (Loc,
3878 Name => New_Occurrence_Of (Bnn, Loc),
3879 Expression =>
3880 Make_And_Then (Loc,
cc6f5d75 3881 Left_Opnd =>
f6194278
RD
3882 Make_Function_Call (Loc,
3883 Name =>
3884 New_Occurrence_Of (RTE (RE_Big_GE), Loc),
71fb4dc8
AC
3885 Parameter_Associations => New_List (
3886 New_Occurrence_Of (L, Loc),
3887 Lbound)),
cc6f5d75 3888
f6194278
RD
3889 Right_Opnd =>
3890 Make_Function_Call (Loc,
3891 Name =>
71fb4dc8
AC
3892 New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3893 Parameter_Associations => New_List (
3894 New_Occurrence_Of (L, Loc),
3895 Hbound)))));
f6194278 3896
71fb4dc8 3897 -- Now rewrite the node
f6194278 3898
71fb4dc8
AC
3899 Rewrite (N,
3900 Make_Expression_With_Actions (Loc,
3901 Actions => New_List (
3902 Make_Object_Declaration (Loc,
3903 Defining_Identifier => Bnn,
3904 Object_Definition =>
3905 New_Occurrence_Of (Result_Type, Loc)),
3906 Blk),
3907 Expression => New_Occurrence_Of (Bnn, Loc)));
3908 Analyze_And_Resolve (N, Result_Type);
f6194278
RD
3909 return;
3910 end;
3911
3912 -- Here if no bignums around
3913
3914 else
3915 -- Case where types are all the same
3916
b6b5cca8 3917 if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
f6194278 3918 and then
b6b5cca8 3919 Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
f6194278
RD
3920 then
3921 null;
3922
3923 -- If types are not all the same, it means that we have rewritten
3924 -- at least one of them to be of type Long_Long_Integer, and we
3925 -- will convert the other operands to Long_Long_Integer.
3926
3927 else
3928 Convert_To_And_Rewrite (LLIB, Lop);
71fb4dc8
AC
3929 Set_Analyzed (Lop, False);
3930 Analyze_And_Resolve (Lop, LLIB);
3931
3932 -- For the right operand, avoid unnecessary recursion into
3933 -- this routine, we know that overflow is not possible.
f6194278
RD
3934
3935 Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3936 Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3937 Set_Analyzed (Rop, False);
71fb4dc8 3938 Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
f6194278
RD
3939 end if;
3940
3941 -- Now the three operands are of the same signed integer type,
b6b5cca8
AC
3942 -- so we can use the normal expansion routine for membership,
3943 -- setting the flag to prevent recursion into this procedure.
f6194278
RD
3944
3945 Set_No_Minimize_Eliminate (N);
3946 Expand_N_In (N);
3947 end if;
3948
3949 -- Right operand is a subtype name and the subtype has a predicate. We
f6636994
AC
3950 -- have to make sure the predicate is checked, and for that we need to
3951 -- use the standard N_In circuitry with appropriate types.
f6194278
RD
3952
3953 else
b6b5cca8 3954 pragma Assert (Present (Predicate_Function (Etype (Rop))));
f6194278
RD
3955
3956 -- If types are "right", just call Expand_N_In preventing recursion
3957
b6b5cca8 3958 if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
f6194278
RD
3959 Set_No_Minimize_Eliminate (N);
3960 Expand_N_In (N);
3961
3962 -- Bignum case
3963
b6b5cca8 3964 elsif Is_RTE (Etype (Lop), RE_Bignum) then
f6194278 3965
71fb4dc8 3966 -- For X in T, we want to rewrite our node as
f6194278 3967
71fb4dc8
AC
3968 -- do
3969 -- Bnn : Result_Type;
f6194278 3970
71fb4dc8
AC
3971 -- declare
3972 -- M : Mark_Id := SS_Mark;
3973 -- Lnn : Long_Long_Integer'Base
3974 -- Nnn : Bignum;
f6194278 3975
71fb4dc8
AC
3976 -- begin
3977 -- Nnn := X;
3978
3979 -- if not Bignum_In_LLI_Range (Nnn) then
3980 -- Bnn := False;
3981 -- else
3982 -- Lnn := From_Bignum (Nnn);
3983 -- Bnn :=
3984 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3985 -- and then T'Base (Lnn) in T;
3986 -- end if;
cc6f5d75
AC
3987
3988 -- SS_Release (M);
71fb4dc8
AC
3989 -- end
3990 -- in
3991 -- Bnn
3992 -- end
f6194278 3993
f6636994 3994 -- A bit gruesome, but there doesn't seem to be a simpler way
f6194278
RD
3995
3996 declare
b6b5cca8
AC
3997 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3998 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3999 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
4000 Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
71fb4dc8
AC
4001 T : constant Entity_Id := Etype (Rop);
4002 TB : constant Entity_Id := Base_Type (T);
b6b5cca8 4003 Nin : Node_Id;
f6194278
RD
4004
4005 begin
71fb4dc8 4006 -- Mark the last membership operation to prevent recursion
f6194278
RD
4007
4008 Nin :=
4009 Make_In (Loc,
f6636994
AC
4010 Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
4011 Right_Opnd => New_Occurrence_Of (T, Loc));
f6194278
RD
4012 Set_No_Minimize_Eliminate (Nin);
4013
4014 -- Now decorate the block
4015
4016 Insert_After
4017 (Last (Declarations (Blk)),
4018 Make_Object_Declaration (Loc,
4019 Defining_Identifier => Lnn,
4020 Object_Definition => New_Occurrence_Of (LLIB, Loc)));
4021
4022 Insert_After
4023 (Last (Declarations (Blk)),
4024 Make_Object_Declaration (Loc,
4025 Defining_Identifier => Nnn,
4026 Object_Definition =>
4027 New_Occurrence_Of (RTE (RE_Bignum), Loc)));
4028
4029 Insert_List_Before
4030 (First (Statements (Handled_Statement_Sequence (Blk))),
4031 New_List (
4032 Make_Assignment_Statement (Loc,
4033 Name => New_Occurrence_Of (Nnn, Loc),
4034 Expression => Relocate_Node (Lop)),
4035
8b1011c0 4036 Make_Implicit_If_Statement (N,
f6194278 4037 Condition =>
71fb4dc8
AC
4038 Make_Op_Not (Loc,
4039 Right_Opnd =>
4040 Make_Function_Call (Loc,
4041 Name =>
4042 New_Occurrence_Of
4043 (RTE (RE_Bignum_In_LLI_Range), Loc),
4044 Parameter_Associations => New_List (
4045 New_Occurrence_Of (Nnn, Loc)))),
f6194278
RD
4046
4047 Then_Statements => New_List (
4048 Make_Assignment_Statement (Loc,
4049 Name => New_Occurrence_Of (Bnn, Loc),
4050 Expression =>
4051 New_Occurrence_Of (Standard_False, Loc))),
4052
4053 Else_Statements => New_List (
4054 Make_Assignment_Statement (Loc,
4055 Name => New_Occurrence_Of (Lnn, Loc),
4056 Expression =>
4057 Make_Function_Call (Loc,
4058 Name =>
4059 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4060 Parameter_Associations => New_List (
4061 New_Occurrence_Of (Nnn, Loc)))),
4062
4063 Make_Assignment_Statement (Loc,
71fb4dc8 4064 Name => New_Occurrence_Of (Bnn, Loc),
f6194278
RD
4065 Expression =>
4066 Make_And_Then (Loc,
71fb4dc8 4067 Left_Opnd =>
f6194278 4068 Make_In (Loc,
71fb4dc8 4069 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
f6194278 4070 Right_Opnd =>
71fb4dc8
AC
4071 Make_Range (Loc,
4072 Low_Bound =>
4073 Convert_To (LLIB,
4074 Make_Attribute_Reference (Loc,
4075 Attribute_Name => Name_First,
4076 Prefix =>
4077 New_Occurrence_Of (TB, Loc))),
4078
4079 High_Bound =>
4080 Convert_To (LLIB,
4081 Make_Attribute_Reference (Loc,
4082 Attribute_Name => Name_Last,
4083 Prefix =>
4084 New_Occurrence_Of (TB, Loc))))),
4085
f6194278
RD
4086 Right_Opnd => Nin))))));
4087
71fb4dc8 4088 -- Now we can do the rewrite
f6194278 4089
71fb4dc8
AC
4090 Rewrite (N,
4091 Make_Expression_With_Actions (Loc,
4092 Actions => New_List (
4093 Make_Object_Declaration (Loc,
4094 Defining_Identifier => Bnn,
4095 Object_Definition =>
4096 New_Occurrence_Of (Result_Type, Loc)),
4097 Blk),
4098 Expression => New_Occurrence_Of (Bnn, Loc)));
4099 Analyze_And_Resolve (N, Result_Type);
f6194278
RD
4100 return;
4101 end;
4102
4103 -- Not bignum case, but types don't match (this means we rewrote the
b6b5cca8 4104 -- left operand to be Long_Long_Integer).
f6194278
RD
4105
4106 else
b6b5cca8 4107 pragma Assert (Base_Type (Etype (Lop)) = LLIB);
f6194278 4108
71fb4dc8
AC
4109 -- We rewrite the membership test as (where T is the type with
4110 -- the predicate, i.e. the type of the right operand)
f6194278 4111
71fb4dc8
AC
4112 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4113 -- and then T'Base (Lop) in T
f6194278
RD
4114
4115 declare
71fb4dc8
AC
4116 T : constant Entity_Id := Etype (Rop);
4117 TB : constant Entity_Id := Base_Type (T);
f6194278
RD
4118 Nin : Node_Id;
4119
4120 begin
4121 -- The last membership test is marked to prevent recursion
4122
4123 Nin :=
4124 Make_In (Loc,
71fb4dc8
AC
4125 Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
4126 Right_Opnd => New_Occurrence_Of (T, Loc));
f6194278
RD
4127 Set_No_Minimize_Eliminate (Nin);
4128
4129 -- Now do the rewrite
4130
4131 Rewrite (N,
4132 Make_And_Then (Loc,
71fb4dc8 4133 Left_Opnd =>
f6194278
RD
4134 Make_In (Loc,
4135 Left_Opnd => Lop,
4136 Right_Opnd =>
71fb4dc8
AC
4137 Make_Range (Loc,
4138 Low_Bound =>
4139 Convert_To (LLIB,
4140 Make_Attribute_Reference (Loc,
4141 Attribute_Name => Name_First,
cc6f5d75
AC
4142 Prefix =>
4143 New_Occurrence_Of (TB, Loc))),
71fb4dc8
AC
4144 High_Bound =>
4145 Convert_To (LLIB,
4146 Make_Attribute_Reference (Loc,
4147 Attribute_Name => Name_Last,
cc6f5d75
AC
4148 Prefix =>
4149 New_Occurrence_Of (TB, Loc))))),
f6194278 4150 Right_Opnd => Nin));
71fb4dc8
AC
4151 Set_Analyzed (N, False);
4152 Analyze_And_Resolve (N, Restype);
f6194278
RD
4153 end;
4154 end if;
4155 end if;
4156 end Expand_Membership_Minimize_Eliminate_Overflow;
4157
70482933
RK
4158 ------------------------
4159 -- Expand_N_Allocator --
4160 ------------------------
4161
4162 procedure Expand_N_Allocator (N : Node_Id) is
8b1011c0
AC
4163 Etyp : constant Entity_Id := Etype (Expression (N));
4164 Loc : constant Source_Ptr := Sloc (N);
4165 PtrT : constant Entity_Id := Etype (N);
70482933 4166
26bff3d9
JM
4167 procedure Rewrite_Coextension (N : Node_Id);
4168 -- Static coextensions have the same lifetime as the entity they
8fc789c8 4169 -- constrain. Such occurrences can be rewritten as aliased objects
26bff3d9 4170 -- and their unrestricted access used instead of the coextension.
0669bebe 4171
8aec446b 4172 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
507ed3fd
AC
4173 -- Given a constrained array type E, returns a node representing the
4174 -- code to compute the size in storage elements for the given type.
205c14b0 4175 -- This is done without using the attribute (which malfunctions for
507ed3fd 4176 -- large sizes ???)
8aec446b 4177
26bff3d9
JM
4178 -------------------------
4179 -- Rewrite_Coextension --
4180 -------------------------
4181
4182 procedure Rewrite_Coextension (N : Node_Id) is
e5a22243
AC
4183 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
4184 Temp_Decl : Node_Id;
26bff3d9 4185
df3e68b1 4186 begin
26bff3d9
JM
4187 -- Generate:
4188 -- Cnn : aliased Etyp;
4189
df3e68b1
HK
4190 Temp_Decl :=
4191 Make_Object_Declaration (Loc,
4192 Defining_Identifier => Temp_Id,
243cae0a
AC
4193 Aliased_Present => True,
4194 Object_Definition => New_Occurrence_Of (Etyp, Loc));
26bff3d9 4195
26bff3d9 4196 if Nkind (Expression (N)) = N_Qualified_Expression then
df3e68b1 4197 Set_Expression (Temp_Decl, Expression (Expression (N)));
0669bebe 4198 end if;
26bff3d9 4199
e5a22243 4200 Insert_Action (N, Temp_Decl);
26bff3d9
JM
4201 Rewrite (N,
4202 Make_Attribute_Reference (Loc,
243cae0a 4203 Prefix => New_Occurrence_Of (Temp_Id, Loc),
26bff3d9
JM
4204 Attribute_Name => Name_Unrestricted_Access));
4205
4206 Analyze_And_Resolve (N, PtrT);
4207 end Rewrite_Coextension;
0669bebe 4208
8aec446b
AC
4209 ------------------------------
4210 -- Size_In_Storage_Elements --
4211 ------------------------------
4212
4213 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4214 begin
4215 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4216 -- However, the reason for the existence of this function is
4217 -- to construct a test for sizes too large, which means near the
4218 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4219 -- is that we get overflows when sizes are greater than 2**31.
4220
507ed3fd 4221 -- So what we end up doing for array types is to use the expression:
8aec446b
AC
4222
4223 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4224
46202729 4225 -- which avoids this problem. All this is a bit bogus, but it does
8aec446b
AC
4226 -- mean we catch common cases of trying to allocate arrays that
4227 -- are too large, and which in the absence of a check results in
4228 -- undetected chaos ???
4229
ce532f42
AC
4230 -- Note in particular that this is a pessimistic estimate in the
4231 -- case of packed array types, where an array element might occupy
4232 -- just a fraction of a storage element???
4233
507ed3fd
AC
4234 declare
4235 Len : Node_Id;
4236 Res : Node_Id;
8aec446b 4237
507ed3fd
AC
4238 begin
4239 for J in 1 .. Number_Dimensions (E) loop
4240 Len :=
4241 Make_Attribute_Reference (Loc,
4242 Prefix => New_Occurrence_Of (E, Loc),
4243 Attribute_Name => Name_Length,
243cae0a 4244 Expressions => New_List (Make_Integer_Literal (Loc, J)));
8aec446b 4245
507ed3fd
AC
4246 if J = 1 then
4247 Res := Len;
8aec446b 4248
507ed3fd
AC
4249 else
4250 Res :=
4251 Make_Op_Multiply (Loc,
4252 Left_Opnd => Res,
4253 Right_Opnd => Len);
4254 end if;
4255 end loop;
8aec446b 4256
8aec446b 4257 return
507ed3fd
AC
4258 Make_Op_Multiply (Loc,
4259 Left_Opnd => Len,
4260 Right_Opnd =>
4261 Make_Attribute_Reference (Loc,
4262 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4263 Attribute_Name => Name_Max_Size_In_Storage_Elements));
4264 end;
8aec446b
AC
4265 end Size_In_Storage_Elements;
4266
8b1011c0
AC
4267 -- Local variables
4268
70861157 4269 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
8b1011c0
AC
4270 Desig : Entity_Id;
4271 Nod : Node_Id;
4272 Pool : Entity_Id;
4273 Rel_Typ : Entity_Id;
4274 Temp : Entity_Id;
4275
0669bebe
GB
4276 -- Start of processing for Expand_N_Allocator
4277
70482933
RK
4278 begin
4279 -- RM E.2.3(22). We enforce that the expected type of an allocator
4280 -- shall not be a remote access-to-class-wide-limited-private type
4281
4282 -- Why is this being done at expansion time, seems clearly wrong ???
4283
4284 Validate_Remote_Access_To_Class_Wide_Type (N);
4285
ca5af305
AC
4286 -- Processing for anonymous access-to-controlled types. These access
4287 -- types receive a special finalization master which appears in the
4288 -- declarations of the enclosing semantic unit. This expansion is done
84f4072a
JM
4289 -- now to ensure that any additional types generated by this routine or
4290 -- Expand_Allocator_Expression inherit the proper type attributes.
ca5af305 4291
84f4072a 4292 if (Ekind (PtrT) = E_Anonymous_Access_Type
533369aa 4293 or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
ca5af305
AC
4294 and then Needs_Finalization (Dtyp)
4295 then
8b1011c0
AC
4296 -- Detect the allocation of an anonymous controlled object where the
4297 -- type of the context is named. For example:
4298
4299 -- procedure Proc (Ptr : Named_Access_Typ);
4300 -- Proc (new Designated_Typ);
4301
4302 -- Regardless of the anonymous-to-named access type conversion, the
4303 -- lifetime of the object must be associated with the named access
0088ba92 4304 -- type. Use the finalization-related attributes of this type.
8b1011c0
AC
4305
4306 if Nkind_In (Parent (N), N_Type_Conversion,
4307 N_Unchecked_Type_Conversion)
4308 and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4309 E_Access_Type,
4310 E_General_Access_Type)
4311 then
4312 Rel_Typ := Etype (Parent (N));
4313 else
4314 Rel_Typ := Empty;
4315 end if;
4316
b254da66
AC
4317 -- Anonymous access-to-controlled types allocate on the global pool.
4318 -- Do not set this attribute on .NET/JVM since those targets do not
4319 -- support pools.
ca5af305 4320
bde73c6b 4321 if No (Associated_Storage_Pool (PtrT)) and then VM_Target = No_VM then
8b1011c0 4322 if Present (Rel_Typ) then
7a5b62b0
AC
4323 Set_Associated_Storage_Pool
4324 (PtrT, Associated_Storage_Pool (Rel_Typ));
8b1011c0 4325 else
7a5b62b0
AC
4326 Set_Associated_Storage_Pool
4327 (PtrT, RTE (RE_Global_Pool_Object));
8b1011c0 4328 end if;
ca5af305
AC
4329 end if;
4330
4331 -- The finalization master must be inserted and analyzed as part of
5114f3ff
AC
4332 -- the current semantic unit. Note that the master is updated when
4333 -- analysis changes current units.
ca5af305 4334
5114f3ff
AC
4335 if Present (Rel_Typ) then
4336 Set_Finalization_Master (PtrT, Finalization_Master (Rel_Typ));
4337 else
4338 Set_Finalization_Master (PtrT, Current_Anonymous_Master);
ca5af305
AC
4339 end if;
4340 end if;
4341
4342 -- Set the storage pool and find the appropriate version of Allocate to
8417f4b2
AC
4343 -- call. Do not overwrite the storage pool if it is already set, which
4344 -- can happen for build-in-place function returns (see
200b7162 4345 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
70482933 4346
200b7162
BD
4347 if No (Storage_Pool (N)) then
4348 Pool := Associated_Storage_Pool (Root_Type (PtrT));
70482933 4349
200b7162
BD
4350 if Present (Pool) then
4351 Set_Storage_Pool (N, Pool);
fbf5a39b 4352
200b7162
BD
4353 if Is_RTE (Pool, RE_SS_Pool) then
4354 if VM_Target = No_VM then
4355 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4356 end if;
fbf5a39b 4357
a8551b5f
AC
4358 -- In the case of an allocator for a simple storage pool, locate
4359 -- and save a reference to the pool type's Allocate routine.
4360
4361 elsif Present (Get_Rep_Pragma
f6205414 4362 (Etype (Pool), Name_Simple_Storage_Pool_Type))
a8551b5f
AC
4363 then
4364 declare
a8551b5f 4365 Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
260359e3 4366 Alloc_Op : Entity_Id;
a8551b5f 4367 begin
260359e3 4368 Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
a8551b5f
AC
4369 while Present (Alloc_Op) loop
4370 if Scope (Alloc_Op) = Scope (Pool_Type)
4371 and then Present (First_Formal (Alloc_Op))
4372 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4373 then
4374 Set_Procedure_To_Call (N, Alloc_Op);
a8551b5f 4375 exit;
260359e3
AC
4376 else
4377 Alloc_Op := Homonym (Alloc_Op);
a8551b5f 4378 end if;
a8551b5f
AC
4379 end loop;
4380 end;
4381
200b7162
BD
4382 elsif Is_Class_Wide_Type (Etype (Pool)) then
4383 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4384
4385 else
4386 Set_Procedure_To_Call (N,
4387 Find_Prim_Op (Etype (Pool), Name_Allocate));
4388 end if;
70482933
RK
4389 end if;
4390 end if;
4391
685094bf
RD
4392 -- Under certain circumstances we can replace an allocator by an access
4393 -- to statically allocated storage. The conditions, as noted in AARM
4394 -- 3.10 (10c) are as follows:
70482933
RK
4395
4396 -- Size and initial value is known at compile time
4397 -- Access type is access-to-constant
4398
fbf5a39b
AC
4399 -- The allocator is not part of a constraint on a record component,
4400 -- because in that case the inserted actions are delayed until the
4401 -- record declaration is fully analyzed, which is too late for the
4402 -- analysis of the rewritten allocator.
4403
70482933
RK
4404 if Is_Access_Constant (PtrT)
4405 and then Nkind (Expression (N)) = N_Qualified_Expression
4406 and then Compile_Time_Known_Value (Expression (Expression (N)))
243cae0a
AC
4407 and then Size_Known_At_Compile_Time
4408 (Etype (Expression (Expression (N))))
fbf5a39b 4409 and then not Is_Record_Type (Current_Scope)
70482933
RK
4410 then
4411 -- Here we can do the optimization. For the allocator
4412
4413 -- new x'(y)
4414
4415 -- We insert an object declaration
4416
4417 -- Tnn : aliased x := y;
4418
685094bf
RD
4419 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4420 -- marked as requiring static allocation.
70482933 4421
df3e68b1 4422 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
70482933
RK
4423 Desig := Subtype_Mark (Expression (N));
4424
4425 -- If context is constrained, use constrained subtype directly,
8fc789c8 4426 -- so that the constant is not labelled as having a nominally
70482933
RK
4427 -- unconstrained subtype.
4428
0da2c8ac
AC
4429 if Entity (Desig) = Base_Type (Dtyp) then
4430 Desig := New_Occurrence_Of (Dtyp, Loc);
70482933
RK
4431 end if;
4432
4433 Insert_Action (N,
4434 Make_Object_Declaration (Loc,
4435 Defining_Identifier => Temp,
4436 Aliased_Present => True,
4437 Constant_Present => Is_Access_Constant (PtrT),
4438 Object_Definition => Desig,
4439 Expression => Expression (Expression (N))));
4440
4441 Rewrite (N,
4442 Make_Attribute_Reference (Loc,
243cae0a 4443 Prefix => New_Occurrence_Of (Temp, Loc),
70482933
RK
4444 Attribute_Name => Name_Unrestricted_Access));
4445
4446 Analyze_And_Resolve (N, PtrT);
4447
685094bf 4448 -- We set the variable as statically allocated, since we don't want
a90bd866 4449 -- it going on the stack of the current procedure.
70482933
RK
4450
4451 Set_Is_Statically_Allocated (Temp);
4452 return;
4453 end if;
4454
0669bebe
GB
4455 -- Same if the allocator is an access discriminant for a local object:
4456 -- instead of an allocator we create a local value and constrain the
308e6f3a 4457 -- enclosing object with the corresponding access attribute.
0669bebe 4458
26bff3d9
JM
4459 if Is_Static_Coextension (N) then
4460 Rewrite_Coextension (N);
0669bebe
GB
4461 return;
4462 end if;
4463
8aec446b
AC
4464 -- Check for size too large, we do this because the back end misses
4465 -- proper checks here and can generate rubbish allocation calls when
4466 -- we are near the limit. We only do this for the 32-bit address case
4467 -- since that is from a practical point of view where we see a problem.
4468
4469 if System_Address_Size = 32
4470 and then not Storage_Checks_Suppressed (PtrT)
4471 and then not Storage_Checks_Suppressed (Dtyp)
4472 and then not Storage_Checks_Suppressed (Etyp)
4473 then
4474 -- The check we want to generate should look like
4475
4476 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4477 -- raise Storage_Error;
4478 -- end if;
4479
308e6f3a 4480 -- where 3.5 gigabytes is a constant large enough to accommodate any
507ed3fd
AC
4481 -- reasonable request for. But we can't do it this way because at
4482 -- least at the moment we don't compute this attribute right, and
4483 -- can silently give wrong results when the result gets large. Since
4484 -- this is all about large results, that's bad, so instead we only
205c14b0 4485 -- apply the check for constrained arrays, and manually compute the
507ed3fd 4486 -- value of the attribute ???
8aec446b 4487
507ed3fd
AC
4488 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
4489 Insert_Action (N,
4490 Make_Raise_Storage_Error (Loc,
4491 Condition =>
4492 Make_Op_Gt (Loc,
4493 Left_Opnd => Size_In_Storage_Elements (Etyp),
4494 Right_Opnd =>
243cae0a 4495 Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
507ed3fd
AC
4496 Reason => SE_Object_Too_Large));
4497 end if;
8aec446b
AC
4498 end if;
4499
b3b26ace
AC
4500 -- If no storage pool has been specified and we have the restriction
4501 -- No_Standard_Allocators_After_Elaboration is present, then generate
4502 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4503
4504 if Nkind (N) = N_Allocator
4505 and then No (Storage_Pool (N))
4506 and then Restriction_Active (No_Standard_Allocators_After_Elaboration)
4507 then
4508 Insert_Action (N,
4509 Make_Procedure_Call_Statement (Loc,
4510 Name =>
4511 New_Occurrence_Of (RTE (RE_Check_Standard_Allocator), Loc)));
4512 end if;
4513
0da2c8ac 4514 -- Handle case of qualified expression (other than optimization above)
cac5a801
AC
4515 -- First apply constraint checks, because the bounds or discriminants
4516 -- in the aggregate might not match the subtype mark in the allocator.
0da2c8ac 4517
70482933 4518 if Nkind (Expression (N)) = N_Qualified_Expression then
cac5a801
AC
4519 Apply_Constraint_Check
4520 (Expression (Expression (N)), Etype (Expression (N)));
4521
fbf5a39b 4522 Expand_Allocator_Expression (N);
26bff3d9
JM
4523 return;
4524 end if;
fbf5a39b 4525
26bff3d9
JM
4526 -- If the allocator is for a type which requires initialization, and
4527 -- there is no initial value (i.e. operand is a subtype indication
685094bf
RD
4528 -- rather than a qualified expression), then we must generate a call to
4529 -- the initialization routine using an expressions action node:
70482933 4530
26bff3d9 4531 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
70482933 4532
26bff3d9
JM
4533 -- Here ptr_T is the pointer type for the allocator, and T is the
4534 -- subtype of the allocator. A special case arises if the designated
4535 -- type of the access type is a task or contains tasks. In this case
4536 -- the call to Init (Temp.all ...) is replaced by code that ensures
4537 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
6be44a9a 4538 -- for details). In addition, if the type T is a task type, then the
26bff3d9 4539 -- first argument to Init must be converted to the task record type.
70482933 4540
26bff3d9 4541 declare
df3e68b1
HK
4542 T : constant Entity_Id := Entity (Expression (N));
4543 Args : List_Id;
4544 Decls : List_Id;
4545 Decl : Node_Id;
4546 Discr : Elmt_Id;
4547 Init : Entity_Id;
4548 Init_Arg1 : Node_Id;
4549 Temp_Decl : Node_Id;
4550 Temp_Type : Entity_Id;
70482933 4551
26bff3d9
JM
4552 begin
4553 if No_Initialization (N) then
df3e68b1
HK
4554
4555 -- Even though this might be a simple allocation, create a custom
deb8dacc
HK
4556 -- Allocate if the context requires it. Since .NET/JVM compilers
4557 -- do not support pools, this step is skipped.
df3e68b1 4558
deb8dacc 4559 if VM_Target = No_VM
d3f70b35 4560 and then Present (Finalization_Master (PtrT))
deb8dacc 4561 then
df3e68b1 4562 Build_Allocate_Deallocate_Proc
ca5af305 4563 (N => N,
df3e68b1
HK
4564 Is_Allocate => True);
4565 end if;
70482933 4566
26bff3d9 4567 -- Case of no initialization procedure present
70482933 4568
26bff3d9 4569 elsif not Has_Non_Null_Base_Init_Proc (T) then
70482933 4570
26bff3d9 4571 -- Case of simple initialization required
70482933 4572
26bff3d9 4573 if Needs_Simple_Initialization (T) then
b4592168 4574 Check_Restriction (No_Default_Initialization, N);
26bff3d9
JM
4575 Rewrite (Expression (N),
4576 Make_Qualified_Expression (Loc,
4577 Subtype_Mark => New_Occurrence_Of (T, Loc),
b4592168 4578 Expression => Get_Simple_Init_Val (T, N)));
70482933 4579
26bff3d9
JM
4580 Analyze_And_Resolve (Expression (Expression (N)), T);
4581 Analyze_And_Resolve (Expression (N), T);
4582 Set_Paren_Count (Expression (Expression (N)), 1);
4583 Expand_N_Allocator (N);
70482933 4584
26bff3d9 4585 -- No initialization required
70482933
RK
4586
4587 else
26bff3d9
JM
4588 null;
4589 end if;
70482933 4590
26bff3d9 4591 -- Case of initialization procedure present, must be called
70482933 4592
26bff3d9 4593 else
b4592168 4594 Check_Restriction (No_Default_Initialization, N);
70482933 4595
b4592168
GD
4596 if not Restriction_Active (No_Default_Initialization) then
4597 Init := Base_Init_Proc (T);
4598 Nod := N;
191fcb3a 4599 Temp := Make_Temporary (Loc, 'P');
70482933 4600
b4592168 4601 -- Construct argument list for the initialization routine call
70482933 4602
df3e68b1 4603 Init_Arg1 :=
b4592168 4604 Make_Explicit_Dereference (Loc,
df3e68b1 4605 Prefix =>
e4494292 4606 New_Occurrence_Of (Temp, Loc));
df3e68b1
HK
4607
4608 Set_Assignment_OK (Init_Arg1);
b4592168 4609 Temp_Type := PtrT;
26bff3d9 4610
b4592168
GD
4611 -- The initialization procedure expects a specific type. if the
4612 -- context is access to class wide, indicate that the object
4613 -- being allocated has the right specific type.
70482933 4614
b4592168 4615 if Is_Class_Wide_Type (Dtyp) then
df3e68b1 4616 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
b4592168 4617 end if;
70482933 4618
b4592168
GD
4619 -- If designated type is a concurrent type or if it is private
4620 -- type whose definition is a concurrent type, the first
4621 -- argument in the Init routine has to be unchecked conversion
4622 -- to the corresponding record type. If the designated type is
243cae0a 4623 -- a derived type, also convert the argument to its root type.
20b5d666 4624
b4592168 4625 if Is_Concurrent_Type (T) then
df3e68b1
HK
4626 Init_Arg1 :=
4627 Unchecked_Convert_To (
4628 Corresponding_Record_Type (T), Init_Arg1);
70482933 4629
b4592168
GD
4630 elsif Is_Private_Type (T)
4631 and then Present (Full_View (T))
4632 and then Is_Concurrent_Type (Full_View (T))
4633 then
df3e68b1 4634 Init_Arg1 :=
b4592168 4635 Unchecked_Convert_To
df3e68b1 4636 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
70482933 4637
b4592168
GD
4638 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
4639 declare
4640 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
df3e68b1 4641
b4592168 4642 begin
df3e68b1
HK
4643 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
4644 Set_Etype (Init_Arg1, Ftyp);
b4592168
GD
4645 end;
4646 end if;
70482933 4647
df3e68b1 4648 Args := New_List (Init_Arg1);
70482933 4649
b4592168
GD
4650 -- For the task case, pass the Master_Id of the access type as
4651 -- the value of the _Master parameter, and _Chain as the value
4652 -- of the _Chain parameter (_Chain will be defined as part of
4653 -- the generated code for the allocator).
70482933 4654
b4592168
GD
4655 -- In Ada 2005, the context may be a function that returns an
4656 -- anonymous access type. In that case the Master_Id has been
4657 -- created when expanding the function declaration.
70482933 4658
b4592168
GD
4659 if Has_Task (T) then
4660 if No (Master_Id (Base_Type (PtrT))) then
70482933 4661
b4592168
GD
4662 -- The designated type was an incomplete type, and the
4663 -- access type did not get expanded. Salvage it now.
70482933 4664
b941ae65 4665 if not Restriction_Active (No_Task_Hierarchy) then
3d67b239
AC
4666 if Present (Parent (Base_Type (PtrT))) then
4667 Expand_N_Full_Type_Declaration
4668 (Parent (Base_Type (PtrT)));
4669
0d5fbf52
AC
4670 -- The only other possibility is an itype. For this
4671 -- case, the master must exist in the context. This is
4672 -- the case when the allocator initializes an access
4673 -- component in an init-proc.
3d67b239 4674
0d5fbf52 4675 else
3d67b239
AC
4676 pragma Assert (Is_Itype (PtrT));
4677 Build_Master_Renaming (PtrT, N);
4678 end if;
b941ae65 4679 end if;
b4592168 4680 end if;
70482933 4681
b4592168
GD
4682 -- If the context of the allocator is a declaration or an
4683 -- assignment, we can generate a meaningful image for it,
4684 -- even though subsequent assignments might remove the
4685 -- connection between task and entity. We build this image
4686 -- when the left-hand side is a simple variable, a simple
4687 -- indexed assignment or a simple selected component.
4688
4689 if Nkind (Parent (N)) = N_Assignment_Statement then
4690 declare
4691 Nam : constant Node_Id := Name (Parent (N));
4692
4693 begin
4694 if Is_Entity_Name (Nam) then
4695 Decls :=
4696 Build_Task_Image_Decls
4697 (Loc,
4698 New_Occurrence_Of
4699 (Entity (Nam), Sloc (Nam)), T);
4700
243cae0a
AC
4701 elsif Nkind_In (Nam, N_Indexed_Component,
4702 N_Selected_Component)
b4592168
GD
4703 and then Is_Entity_Name (Prefix (Nam))
4704 then
4705 Decls :=
4706 Build_Task_Image_Decls
4707 (Loc, Nam, Etype (Prefix (Nam)));
4708 else
4709 Decls := Build_Task_Image_Decls (Loc, T, T);
4710 end if;
4711 end;
70482933 4712
b4592168
GD
4713 elsif Nkind (Parent (N)) = N_Object_Declaration then
4714 Decls :=
4715 Build_Task_Image_Decls
4716 (Loc, Defining_Identifier (Parent (N)), T);
70482933 4717
b4592168
GD
4718 else
4719 Decls := Build_Task_Image_Decls (Loc, T, T);
4720 end if;
26bff3d9 4721
87dc09cb 4722 if Restriction_Active (No_Task_Hierarchy) then
3c1ecd7e
AC
4723 Append_To (Args,
4724 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
87dc09cb
AC
4725 else
4726 Append_To (Args,
e4494292 4727 New_Occurrence_Of
87dc09cb
AC
4728 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
4729 end if;
4730
b4592168 4731 Append_To (Args, Make_Identifier (Loc, Name_uChain));
26bff3d9 4732
b4592168
GD
4733 Decl := Last (Decls);
4734 Append_To (Args,
4735 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
26bff3d9 4736
87dc09cb 4737 -- Has_Task is false, Decls not used
26bff3d9 4738
b4592168
GD
4739 else
4740 Decls := No_List;
26bff3d9
JM
4741 end if;
4742
b4592168
GD
4743 -- Add discriminants if discriminated type
4744
4745 declare
4746 Dis : Boolean := False;
4747 Typ : Entity_Id;
4748
4749 begin
4750 if Has_Discriminants (T) then
4751 Dis := True;
4752 Typ := T;
4753
4754 elsif Is_Private_Type (T)
4755 and then Present (Full_View (T))
4756 and then Has_Discriminants (Full_View (T))
20b5d666 4757 then
b4592168
GD
4758 Dis := True;
4759 Typ := Full_View (T);
20b5d666 4760 end if;
70482933 4761
b4592168 4762 if Dis then
26bff3d9 4763
b4592168 4764 -- If the allocated object will be constrained by the
685094bf
RD
4765 -- default values for discriminants, then build a subtype
4766 -- with those defaults, and change the allocated subtype
4767 -- to that. Note that this happens in fewer cases in Ada
4768 -- 2005 (AI-363).
26bff3d9 4769
b4592168
GD
4770 if not Is_Constrained (Typ)
4771 and then Present (Discriminant_Default_Value
df3e68b1 4772 (First_Discriminant (Typ)))
0791fbe9 4773 and then (Ada_Version < Ada_2005
cc96a1b8 4774 or else not
0fbcb11c
ES
4775 Object_Type_Has_Constrained_Partial_View
4776 (Typ, Current_Scope))
20b5d666 4777 then
b4592168 4778 Typ := Build_Default_Subtype (Typ, N);
e4494292 4779 Set_Expression (N, New_Occurrence_Of (Typ, Loc));
20b5d666
JM
4780 end if;
4781
b4592168
GD
4782 Discr := First_Elmt (Discriminant_Constraint (Typ));
4783 while Present (Discr) loop
4784 Nod := Node (Discr);
4785 Append (New_Copy_Tree (Node (Discr)), Args);
20b5d666 4786
b4592168
GD
4787 -- AI-416: when the discriminant constraint is an
4788 -- anonymous access type make sure an accessibility
4789 -- check is inserted if necessary (3.10.2(22.q/2))
20b5d666 4790
0791fbe9 4791 if Ada_Version >= Ada_2005
b4592168
GD
4792 and then
4793 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
4794 then
e84e11ba
GD
4795 Apply_Accessibility_Check
4796 (Nod, Typ, Insert_Node => Nod);
b4592168 4797 end if;
20b5d666 4798
b4592168
GD
4799 Next_Elmt (Discr);
4800 end loop;
4801 end if;
4802 end;
70482933 4803
4b985e20 4804 -- We set the allocator as analyzed so that when we analyze
9b16cb57
RD
4805 -- the if expression node, we do not get an unwanted recursive
4806 -- expansion of the allocator expression.
70482933 4807
b4592168
GD
4808 Set_Analyzed (N, True);
4809 Nod := Relocate_Node (N);
70482933 4810
b4592168 4811 -- Here is the transformation:
ca5af305
AC
4812 -- input: new Ctrl_Typ
4813 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4814 -- Ctrl_TypIP (Temp.all, ...);
4815 -- [Deep_]Initialize (Temp.all);
70482933 4816
ca5af305
AC
4817 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4818 -- is the subtype of the allocator.
70482933 4819
b4592168
GD
4820 Temp_Decl :=
4821 Make_Object_Declaration (Loc,
4822 Defining_Identifier => Temp,
4823 Constant_Present => True,
e4494292 4824 Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
b4592168 4825 Expression => Nod);
70482933 4826
b4592168
GD
4827 Set_Assignment_OK (Temp_Decl);
4828 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
70482933 4829
ca5af305 4830 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 4831
b4592168
GD
4832 -- If the designated type is a task type or contains tasks,
4833 -- create block to activate created tasks, and insert
4834 -- declaration for Task_Image variable ahead of call.
70482933 4835
b4592168
GD
4836 if Has_Task (T) then
4837 declare
4838 L : constant List_Id := New_List;
4839 Blk : Node_Id;
4840 begin
4841 Build_Task_Allocate_Block (L, Nod, Args);
4842 Blk := Last (L);
4843 Insert_List_Before (First (Declarations (Blk)), Decls);
4844 Insert_Actions (N, L);
4845 end;
70482933 4846
b4592168
GD
4847 else
4848 Insert_Action (N,
4849 Make_Procedure_Call_Statement (Loc,
e4494292 4850 Name => New_Occurrence_Of (Init, Loc),
b4592168
GD
4851 Parameter_Associations => Args));
4852 end if;
70482933 4853
048e5cef 4854 if Needs_Finalization (T) then
70482933 4855
df3e68b1
HK
4856 -- Generate:
4857 -- [Deep_]Initialize (Init_Arg1);
70482933 4858
df3e68b1 4859 Insert_Action (N,
243cae0a
AC
4860 Make_Init_Call
4861 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4862 Typ => T));
b4592168 4863
b254da66 4864 if Present (Finalization_Master (PtrT)) then
deb8dacc 4865
b254da66
AC
4866 -- Special processing for .NET/JVM, the allocated object
4867 -- is attached to the finalization master. Generate:
deb8dacc 4868
b254da66 4869 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
deb8dacc 4870
b254da66
AC
4871 -- Types derived from [Limited_]Controlled are the only
4872 -- ones considered since they have fields Prev and Next.
4873
e0c32166
AC
4874 if VM_Target /= No_VM then
4875 if Is_Controlled (T) then
4876 Insert_Action (N,
4877 Make_Attach_Call
4878 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4879 Ptr_Typ => PtrT));
4880 end if;
b254da66
AC
4881
4882 -- Default case, generate:
4883
4884 -- Set_Finalize_Address
4885 -- (<PtrT>FM, <T>FD'Unrestricted_Access);
4886
5114f3ff
AC
4887 -- Do not generate this call in CodePeer mode, as TSS
4888 -- primitive Finalize_Address is not created in this
4889 -- mode.
b254da66 4890
5114f3ff 4891 elsif not CodePeer_Mode then
b254da66
AC
4892 Insert_Action (N,
4893 Make_Set_Finalize_Address_Call
4894 (Loc => Loc,
4895 Typ => T,
4896 Ptr_Typ => PtrT));
4897 end if;
b4592168 4898 end if;
70482933
RK
4899 end if;
4900
e4494292 4901 Rewrite (N, New_Occurrence_Of (Temp, Loc));
b4592168
GD
4902 Analyze_And_Resolve (N, PtrT);
4903 end if;
26bff3d9
JM
4904 end if;
4905 end;
f82944b7 4906
26bff3d9
JM
4907 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4908 -- object that has been rewritten as a reference, we displace "this"
4909 -- to reference properly its secondary dispatch table.
4910
533369aa 4911 if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
26bff3d9 4912 Displace_Allocator_Pointer (N);
f82944b7
JM
4913 end if;
4914
fbf5a39b
AC
4915 exception
4916 when RE_Not_Available =>
4917 return;
70482933
RK
4918 end Expand_N_Allocator;
4919
4920 -----------------------
4921 -- Expand_N_And_Then --
4922 -----------------------
4923
5875f8d6
AC
4924 procedure Expand_N_And_Then (N : Node_Id)
4925 renames Expand_Short_Circuit_Operator;
70482933 4926
19d846a0
RD
4927 ------------------------------
4928 -- Expand_N_Case_Expression --
4929 ------------------------------
4930
4931 procedure Expand_N_Case_Expression (N : Node_Id) is
4932 Loc : constant Source_Ptr := Sloc (N);
4933 Typ : constant Entity_Id := Etype (N);
4934 Cstmt : Node_Id;
27a8f150 4935 Decl : Node_Id;
19d846a0
RD
4936 Tnn : Entity_Id;
4937 Pnn : Entity_Id;
4938 Actions : List_Id;
4939 Ttyp : Entity_Id;
4940 Alt : Node_Id;
4941 Fexp : Node_Id;
4942
4943 begin
b6b5cca8
AC
4944 -- Check for MINIMIZED/ELIMINATED overflow mode
4945
4946 if Minimized_Eliminated_Overflow_Check (N) then
4b1c4f20
RD
4947 Apply_Arithmetic_Overflow_Check (N);
4948 return;
4949 end if;
4950
ff1f1705
AC
4951 -- If the case expression is a predicate specification, do not
4952 -- expand, because it will be converted to the proper predicate
4953 -- form when building the predicate function.
4954
4955 if Ekind_In (Current_Scope, E_Function, E_Procedure)
4956 and then Is_Predicate_Function (Current_Scope)
4957 then
4958 return;
4959 end if;
4960
19d846a0
RD
4961 -- We expand
4962
4963 -- case X is when A => AX, when B => BX ...
4964
4965 -- to
4966
4967 -- do
4968 -- Tnn : typ;
4969 -- case X is
4970 -- when A =>
4971 -- Tnn := AX;
4972 -- when B =>
4973 -- Tnn := BX;
4974 -- ...
4975 -- end case;
4976 -- in Tnn end;
4977
4978 -- However, this expansion is wrong for limited types, and also
4979 -- wrong for unconstrained types (since the bounds may not be the
4980 -- same in all branches). Furthermore it involves an extra copy
4981 -- for large objects. So we take care of this by using the following
2492305b 4982 -- modified expansion for non-elementary types:
19d846a0
RD
4983
4984 -- do
4985 -- type Pnn is access all typ;
4986 -- Tnn : Pnn;
4987 -- case X is
4988 -- when A =>
4989 -- T := AX'Unrestricted_Access;
4990 -- when B =>
4991 -- T := BX'Unrestricted_Access;
4992 -- ...
4993 -- end case;
4994 -- in Tnn.all end;
4995
4996 Cstmt :=
4997 Make_Case_Statement (Loc,
4998 Expression => Expression (N),
4999 Alternatives => New_List);
5000
414c6563
AC
5001 -- Preserve the original context for which the case statement is being
5002 -- generated. This is needed by the finalization machinery to prevent
5003 -- the premature finalization of controlled objects found within the
5004 -- case statement.
5005
5006 Set_From_Conditional_Expression (Cstmt);
5007
19d846a0
RD
5008 Actions := New_List;
5009
5010 -- Scalar case
5011
2492305b 5012 if Is_Elementary_Type (Typ) then
19d846a0
RD
5013 Ttyp := Typ;
5014
5015 else
5016 Pnn := Make_Temporary (Loc, 'P');
5017 Append_To (Actions,
5018 Make_Full_Type_Declaration (Loc,
5019 Defining_Identifier => Pnn,
11d59a86 5020 Type_Definition =>
19d846a0 5021 Make_Access_To_Object_Definition (Loc,
11d59a86 5022 All_Present => True,
e4494292 5023 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
19d846a0
RD
5024 Ttyp := Pnn;
5025 end if;
5026
5027 Tnn := Make_Temporary (Loc, 'T');
27a8f150
AC
5028
5029 -- Create declaration for target of expression, and indicate that it
5030 -- does not require initialization.
5031
11d59a86
AC
5032 Decl :=
5033 Make_Object_Declaration (Loc,
19d846a0 5034 Defining_Identifier => Tnn,
27a8f150
AC
5035 Object_Definition => New_Occurrence_Of (Ttyp, Loc));
5036 Set_No_Initialization (Decl);
5037 Append_To (Actions, Decl);
19d846a0
RD
5038
5039 -- Now process the alternatives
5040
5041 Alt := First (Alternatives (N));
5042 while Present (Alt) loop
5043 declare
eaed0c37
AC
5044 Aexp : Node_Id := Expression (Alt);
5045 Aloc : constant Source_Ptr := Sloc (Aexp);
5046 Stats : List_Id;
19d846a0
RD
5047
5048 begin
eaed0c37
AC
5049 -- As described above, take Unrestricted_Access for case of non-
5050 -- scalar types, to avoid big copies, and special cases.
05dbd302 5051
2492305b 5052 if not Is_Elementary_Type (Typ) then
19d846a0
RD
5053 Aexp :=
5054 Make_Attribute_Reference (Aloc,
5055 Prefix => Relocate_Node (Aexp),
5056 Attribute_Name => Name_Unrestricted_Access);
5057 end if;
5058
eaed0c37
AC
5059 Stats := New_List (
5060 Make_Assignment_Statement (Aloc,
5061 Name => New_Occurrence_Of (Tnn, Loc),
5062 Expression => Aexp));
5063
5064 -- Propagate declarations inserted in the node by Insert_Actions
5065 -- (for example, temporaries generated to remove side effects).
5066 -- These actions must remain attached to the alternative, given
5067 -- that they are generated by the corresponding expression.
5068
5069 if Present (Sinfo.Actions (Alt)) then
5070 Prepend_List (Sinfo.Actions (Alt), Stats);
5071 end if;
5072
19d846a0
RD
5073 Append_To
5074 (Alternatives (Cstmt),
5075 Make_Case_Statement_Alternative (Sloc (Alt),
5076 Discrete_Choices => Discrete_Choices (Alt),
eaed0c37 5077 Statements => Stats));
19d846a0
RD
5078 end;
5079
5080 Next (Alt);
5081 end loop;
5082
5083 Append_To (Actions, Cstmt);
5084
5085 -- Construct and return final expression with actions
5086
2492305b 5087 if Is_Elementary_Type (Typ) then
19d846a0
RD
5088 Fexp := New_Occurrence_Of (Tnn, Loc);
5089 else
5090 Fexp :=
5091 Make_Explicit_Dereference (Loc,
5092 Prefix => New_Occurrence_Of (Tnn, Loc));
5093 end if;
5094
5095 Rewrite (N,
5096 Make_Expression_With_Actions (Loc,
5097 Expression => Fexp,
5098 Actions => Actions));
5099
5100 Analyze_And_Resolve (N, Typ);
5101 end Expand_N_Case_Expression;
5102
9b16cb57
RD
5103 -----------------------------------
5104 -- Expand_N_Explicit_Dereference --
5105 -----------------------------------
5106
5107 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5108 begin
5109 -- Insert explicit dereference call for the checked storage pool case
5110
5111 Insert_Dereference_Action (Prefix (N));
5112
5113 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5114 -- we set the atomic sync flag.
5115
5116 if Is_Atomic (Etype (N))
5117 and then not Atomic_Synchronization_Disabled (Etype (N))
5118 then
5119 Activate_Atomic_Synchronization (N);
5120 end if;
5121 end Expand_N_Explicit_Dereference;
5122
5123 --------------------------------------
5124 -- Expand_N_Expression_With_Actions --
5125 --------------------------------------
5126
5127 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
3a845e07 5128
4c7e0990 5129 function Process_Action (Act : Node_Id) return Traverse_Result;
b2c28399
AC
5130 -- Inspect and process a single action of an expression_with_actions for
5131 -- transient controlled objects. If such objects are found, the routine
5132 -- generates code to clean them up when the context of the expression is
5133 -- evaluated or elaborated.
9b16cb57 5134
4c7e0990
AC
5135 --------------------
5136 -- Process_Action --
5137 --------------------
5138
5139 function Process_Action (Act : Node_Id) return Traverse_Result is
4c7e0990
AC
5140 begin
5141 if Nkind (Act) = N_Object_Declaration
5142 and then Is_Finalizable_Transient (Act, N)
5143 then
b2c28399
AC
5144 Process_Transient_Object (Act, N);
5145 return Abandon;
9b16cb57 5146
4c7e0990
AC
5147 -- Avoid processing temporary function results multiple times when
5148 -- dealing with nested expression_with_actions.
9b16cb57 5149
4c7e0990
AC
5150 elsif Nkind (Act) = N_Expression_With_Actions then
5151 return Abandon;
5152
b2c28399
AC
5153 -- Do not process temporary function results in loops. This is done
5154 -- by Expand_N_Loop_Statement and Build_Finalizer.
4c7e0990
AC
5155
5156 elsif Nkind (Act) = N_Loop_Statement then
5157 return Abandon;
9b16cb57
RD
5158 end if;
5159
4c7e0990
AC
5160 return OK;
5161 end Process_Action;
9b16cb57 5162
4c7e0990 5163 procedure Process_Single_Action is new Traverse_Proc (Process_Action);
9b16cb57
RD
5164
5165 -- Local variables
5166
4c7e0990 5167 Act : Node_Id;
9b16cb57
RD
5168
5169 -- Start of processing for Expand_N_Expression_With_Actions
5170
5171 begin
e0f63680
AC
5172 -- Process the actions as described above
5173
4c7e0990 5174 Act := First (Actions (N));
e0f63680
AC
5175 while Present (Act) loop
5176 Process_Single_Action (Act);
5177 Next (Act);
5178 end loop;
5179
ebdaa81b 5180 -- Deal with case where there are no actions. In this case we simply
5a521b8a 5181 -- rewrite the node with its expression since we don't need the actions
ebdaa81b
AC
5182 -- and the specification of this node does not allow a null action list.
5183
5a521b8a
AC
5184 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5185 -- the expanded tree and relying on being able to retrieve the original
5186 -- tree in cases like this. This raises a whole lot of issues of whether
5187 -- we have problems elsewhere, which will be addressed in the future???
5188
e0f63680 5189 if Is_Empty_List (Actions (N)) then
5a521b8a 5190 Rewrite (N, Relocate_Node (Expression (N)));
ebdaa81b 5191 end if;
9b16cb57
RD
5192 end Expand_N_Expression_With_Actions;
5193
5194 ----------------------------
5195 -- Expand_N_If_Expression --
5196 ----------------------------
70482933 5197
4b985e20 5198 -- Deal with limited types and condition actions
70482933 5199
9b16cb57 5200 procedure Expand_N_If_Expression (N : Node_Id) is
b2c28399
AC
5201 procedure Process_Actions (Actions : List_Id);
5202 -- Inspect and process a single action list of an if expression for
5203 -- transient controlled objects. If such objects are found, the routine
5204 -- generates code to clean them up when the context of the expression is
5205 -- evaluated or elaborated.
3cebd1c0 5206
b2c28399
AC
5207 ---------------------
5208 -- Process_Actions --
5209 ---------------------
3cebd1c0 5210
b2c28399
AC
5211 procedure Process_Actions (Actions : List_Id) is
5212 Act : Node_Id;
3cebd1c0
AC
5213
5214 begin
b2c28399
AC
5215 Act := First (Actions);
5216 while Present (Act) loop
5217 if Nkind (Act) = N_Object_Declaration
5218 and then Is_Finalizable_Transient (Act, N)
5219 then
5220 Process_Transient_Object (Act, N);
5221 end if;
3cebd1c0 5222
b2c28399
AC
5223 Next (Act);
5224 end loop;
5225 end Process_Actions;
3cebd1c0
AC
5226
5227 -- Local variables
5228
70482933
RK
5229 Loc : constant Source_Ptr := Sloc (N);
5230 Cond : constant Node_Id := First (Expressions (N));
5231 Thenx : constant Node_Id := Next (Cond);
5232 Elsex : constant Node_Id := Next (Thenx);
5233 Typ : constant Entity_Id := Etype (N);
c471e2da 5234
3cebd1c0 5235 Actions : List_Id;
602a7ec0
AC
5236 Cnn : Entity_Id;
5237 Decl : Node_Id;
3cebd1c0 5238 Expr : Node_Id;
602a7ec0
AC
5239 New_If : Node_Id;
5240 New_N : Node_Id;
b2c28399 5241 Ptr_Typ : Entity_Id;
70482933 5242
a53c5613
AC
5243 -- Start of processing for Expand_N_If_Expression
5244
70482933 5245 begin
b6b5cca8
AC
5246 -- Check for MINIMIZED/ELIMINATED overflow mode
5247
5248 if Minimized_Eliminated_Overflow_Check (N) then
5249 Apply_Arithmetic_Overflow_Check (N);
5250 return;
5251 end if;
5252
602a7ec0 5253 -- Fold at compile time if condition known. We have already folded
9b16cb57
RD
5254 -- static if expressions, but it is possible to fold any case in which
5255 -- the condition is known at compile time, even though the result is
5256 -- non-static.
602a7ec0
AC
5257
5258 -- Note that we don't do the fold of such cases in Sem_Elab because
5259 -- it can cause infinite loops with the expander adding a conditional
5260 -- expression, and Sem_Elab circuitry removing it repeatedly.
5261
5262 if Compile_Time_Known_Value (Cond) then
5263 if Is_True (Expr_Value (Cond)) then
cc6f5d75 5264 Expr := Thenx;
602a7ec0
AC
5265 Actions := Then_Actions (N);
5266 else
cc6f5d75 5267 Expr := Elsex;
602a7ec0
AC
5268 Actions := Else_Actions (N);
5269 end if;
5270
5271 Remove (Expr);
ae77c68b
AC
5272
5273 if Present (Actions) then
ae77c68b
AC
5274 Rewrite (N,
5275 Make_Expression_With_Actions (Loc,
5276 Expression => Relocate_Node (Expr),
5277 Actions => Actions));
5278 Analyze_And_Resolve (N, Typ);
ae77c68b
AC
5279 else
5280 Rewrite (N, Relocate_Node (Expr));
5281 end if;
602a7ec0
AC
5282
5283 -- Note that the result is never static (legitimate cases of static
9b16cb57 5284 -- if expressions were folded in Sem_Eval).
602a7ec0
AC
5285
5286 Set_Is_Static_Expression (N, False);
5287 return;
5288 end if;
5289
113a9fb6
AC
5290 -- If the type is limited, and the back end does not handle limited
5291 -- types, then we expand as follows to avoid the possibility of
5292 -- improper copying.
ac7120ce 5293
c471e2da
AC
5294 -- type Ptr is access all Typ;
5295 -- Cnn : Ptr;
ac7120ce
RD
5296 -- if cond then
5297 -- <<then actions>>
5298 -- Cnn := then-expr'Unrestricted_Access;
5299 -- else
5300 -- <<else actions>>
5301 -- Cnn := else-expr'Unrestricted_Access;
5302 -- end if;
5303
9b16cb57 5304 -- and replace the if expression by a reference to Cnn.all.
ac7120ce 5305
305caf42
AC
5306 -- This special case can be skipped if the back end handles limited
5307 -- types properly and ensures that no incorrect copies are made.
5308
5309 if Is_By_Reference_Type (Typ)
5310 and then not Back_End_Handles_Limited_Types
5311 then
b2c28399
AC
5312 -- When the "then" or "else" expressions involve controlled function
5313 -- calls, generated temporaries are chained on the corresponding list
5314 -- of actions. These temporaries need to be finalized after the if
5315 -- expression is evaluated.
3cebd1c0 5316
b2c28399
AC
5317 Process_Actions (Then_Actions (N));
5318 Process_Actions (Else_Actions (N));
3cebd1c0 5319
b2c28399
AC
5320 -- Generate:
5321 -- type Ann is access all Typ;
3cebd1c0 5322
b2c28399 5323 Ptr_Typ := Make_Temporary (Loc, 'A');
3cebd1c0 5324
b2c28399
AC
5325 Insert_Action (N,
5326 Make_Full_Type_Declaration (Loc,
5327 Defining_Identifier => Ptr_Typ,
5328 Type_Definition =>
5329 Make_Access_To_Object_Definition (Loc,
5330 All_Present => True,
e4494292 5331 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
3cebd1c0 5332
b2c28399
AC
5333 -- Generate:
5334 -- Cnn : Ann;
3cebd1c0 5335
b2c28399 5336 Cnn := Make_Temporary (Loc, 'C', N);
3cebd1c0 5337
b2c28399
AC
5338 Decl :=
5339 Make_Object_Declaration (Loc,
5340 Defining_Identifier => Cnn,
5341 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
3cebd1c0 5342
b2c28399
AC
5343 -- Generate:
5344 -- if Cond then
5345 -- Cnn := <Thenx>'Unrestricted_Access;
5346 -- else
5347 -- Cnn := <Elsex>'Unrestricted_Access;
5348 -- end if;
3cebd1c0 5349
b2c28399
AC
5350 New_If :=
5351 Make_Implicit_If_Statement (N,
5352 Condition => Relocate_Node (Cond),
5353 Then_Statements => New_List (
5354 Make_Assignment_Statement (Sloc (Thenx),
e4494292 5355 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
b2c28399
AC
5356 Expression =>
5357 Make_Attribute_Reference (Loc,
5358 Prefix => Relocate_Node (Thenx),
5359 Attribute_Name => Name_Unrestricted_Access))),
3cebd1c0 5360
b2c28399
AC
5361 Else_Statements => New_List (
5362 Make_Assignment_Statement (Sloc (Elsex),
e4494292 5363 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
b2c28399
AC
5364 Expression =>
5365 Make_Attribute_Reference (Loc,
5366 Prefix => Relocate_Node (Elsex),
5367 Attribute_Name => Name_Unrestricted_Access))));
3cebd1c0 5368
414c6563
AC
5369 -- Preserve the original context for which the if statement is being
5370 -- generated. This is needed by the finalization machinery to prevent
5371 -- the premature finalization of controlled objects found within the
5372 -- if statement.
5373
5374 Set_From_Conditional_Expression (New_If);
5375
5376 New_N :=
5377 Make_Explicit_Dereference (Loc,
5378 Prefix => New_Occurrence_Of (Cnn, Loc));
fb1949a0 5379
113a9fb6
AC
5380 -- If the result is an unconstrained array and the if expression is in a
5381 -- context other than the initializing expression of the declaration of
5382 -- an object, then we pull out the if expression as follows:
5383
5384 -- Cnn : constant typ := if-expression
5385
5386 -- and then replace the if expression with an occurrence of Cnn. This
5387 -- avoids the need in the back end to create on-the-fly variable length
5388 -- temporaries (which it cannot do!)
5389
5390 -- Note that the test for being in an object declaration avoids doing an
5391 -- unnecessary expansion, and also avoids infinite recursion.
5392
5393 elsif Is_Array_Type (Typ) and then not Is_Constrained (Typ)
5394 and then (Nkind (Parent (N)) /= N_Object_Declaration
5395 or else Expression (Parent (N)) /= N)
5396 then
5397 declare
5398 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
5399 begin
5400 Insert_Action (N,
5401 Make_Object_Declaration (Loc,
5402 Defining_Identifier => Cnn,
5403 Constant_Present => True,
5404 Object_Definition => New_Occurrence_Of (Typ, Loc),
5405 Expression => Relocate_Node (N),
5406 Has_Init_Expression => True));
5407
5408 Rewrite (N, New_Occurrence_Of (Cnn, Loc));
5409 return;
5410 end;
5411
c471e2da
AC
5412 -- For other types, we only need to expand if there are other actions
5413 -- associated with either branch.
5414
5415 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
c471e2da 5416
0812b84e 5417 -- We now wrap the actions into the appropriate expression
fb1949a0 5418
0812b84e
AC
5419 if Present (Then_Actions (N)) then
5420 Rewrite (Thenx,
b2c28399
AC
5421 Make_Expression_With_Actions (Sloc (Thenx),
5422 Actions => Then_Actions (N),
5423 Expression => Relocate_Node (Thenx)));
5424
0812b84e
AC
5425 Set_Then_Actions (N, No_List);
5426 Analyze_And_Resolve (Thenx, Typ);
5427 end if;
305caf42 5428
0812b84e
AC
5429 if Present (Else_Actions (N)) then
5430 Rewrite (Elsex,
b2c28399
AC
5431 Make_Expression_With_Actions (Sloc (Elsex),
5432 Actions => Else_Actions (N),
5433 Expression => Relocate_Node (Elsex)));
5434
0812b84e
AC
5435 Set_Else_Actions (N, No_List);
5436 Analyze_And_Resolve (Elsex, Typ);
305caf42
AC
5437 end if;
5438
0812b84e
AC
5439 return;
5440
b2c28399
AC
5441 -- If no actions then no expansion needed, gigi will handle it using the
5442 -- same approach as a C conditional expression.
305caf42
AC
5443
5444 else
c471e2da
AC
5445 return;
5446 end if;
5447
305caf42
AC
5448 -- Fall through here for either the limited expansion, or the case of
5449 -- inserting actions for non-limited types. In both these cases, we must
5450 -- move the SLOC of the parent If statement to the newly created one and
3fc5d116
RD
5451 -- change it to the SLOC of the expression which, after expansion, will
5452 -- correspond to what is being evaluated.
c471e2da 5453
533369aa 5454 if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
c471e2da
AC
5455 Set_Sloc (New_If, Sloc (Parent (N)));
5456 Set_Sloc (Parent (N), Loc);
5457 end if;
70482933 5458
3fc5d116
RD
5459 -- Make sure Then_Actions and Else_Actions are appropriately moved
5460 -- to the new if statement.
5461
c471e2da
AC
5462 if Present (Then_Actions (N)) then
5463 Insert_List_Before
5464 (First (Then_Statements (New_If)), Then_Actions (N));
70482933 5465 end if;
c471e2da
AC
5466
5467 if Present (Else_Actions (N)) then
5468 Insert_List_Before
5469 (First (Else_Statements (New_If)), Else_Actions (N));
5470 end if;
5471
5472 Insert_Action (N, Decl);
5473 Insert_Action (N, New_If);
5474 Rewrite (N, New_N);
5475 Analyze_And_Resolve (N, Typ);
9b16cb57 5476 end Expand_N_If_Expression;
35a1c212 5477
70482933
RK
5478 -----------------
5479 -- Expand_N_In --
5480 -----------------
5481
5482 procedure Expand_N_In (N : Node_Id) is
7324bf49 5483 Loc : constant Source_Ptr := Sloc (N);
4818e7b9 5484 Restyp : constant Entity_Id := Etype (N);
7324bf49
AC
5485 Lop : constant Node_Id := Left_Opnd (N);
5486 Rop : constant Node_Id := Right_Opnd (N);
5487 Static : constant Boolean := Is_OK_Static_Expression (N);
70482933 5488
4818e7b9
RD
5489 Ltyp : Entity_Id;
5490 Rtyp : Entity_Id;
5491
630d30e9
RD
5492 procedure Substitute_Valid_Check;
5493 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5494 -- test for the left operand being in range of its subtype.
5495
5496 ----------------------------
5497 -- Substitute_Valid_Check --
5498 ----------------------------
5499
5500 procedure Substitute_Valid_Check is
5501 begin
c7532b2d
AC
5502 Rewrite (N,
5503 Make_Attribute_Reference (Loc,
5504 Prefix => Relocate_Node (Lop),
5505 Attribute_Name => Name_Valid));
630d30e9 5506
c7532b2d 5507 Analyze_And_Resolve (N, Restyp);
630d30e9 5508
acad3c0a
AC
5509 -- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5510 -- in which case, this usage makes sense, and in any case, we have
5511 -- actually eliminated the danger of optimization above.
5512
a7f1b24f 5513 if Overflow_Check_Mode not in Minimized_Or_Eliminated then
324ac540
AC
5514 Error_Msg_N
5515 ("??explicit membership test may be optimized away", N);
acad3c0a 5516 Error_Msg_N -- CODEFIX
324ac540 5517 ("\??use ''Valid attribute instead", N);
acad3c0a
AC
5518 end if;
5519
c7532b2d 5520 return;
630d30e9
RD
5521 end Substitute_Valid_Check;
5522
5523 -- Start of processing for Expand_N_In
5524
70482933 5525 begin
308e6f3a 5526 -- If set membership case, expand with separate procedure
4818e7b9 5527
197e4514 5528 if Present (Alternatives (N)) then
a3068ca6 5529 Expand_Set_Membership (N);
197e4514
AC
5530 return;
5531 end if;
5532
4818e7b9
RD
5533 -- Not set membership, proceed with expansion
5534
5535 Ltyp := Etype (Left_Opnd (N));
5536 Rtyp := Etype (Right_Opnd (N));
5537
5707e389 5538 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
f6194278
RD
5539 -- type, then expand with a separate procedure. Note the use of the
5540 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5541
a7f1b24f 5542 if Overflow_Check_Mode in Minimized_Or_Eliminated
f6194278
RD
5543 and then Is_Signed_Integer_Type (Ltyp)
5544 and then not No_Minimize_Eliminate (N)
5545 then
5546 Expand_Membership_Minimize_Eliminate_Overflow (N);
5547 return;
5548 end if;
5549
630d30e9
RD
5550 -- Check case of explicit test for an expression in range of its
5551 -- subtype. This is suspicious usage and we replace it with a 'Valid
b6b5cca8 5552 -- test and give a warning for scalar types.
630d30e9 5553
4818e7b9 5554 if Is_Scalar_Type (Ltyp)
b6b5cca8
AC
5555
5556 -- Only relevant for source comparisons
5557
5558 and then Comes_From_Source (N)
5559
5560 -- In floating-point this is a standard way to check for finite values
5561 -- and using 'Valid would typically be a pessimization.
5562
4818e7b9 5563 and then not Is_Floating_Point_Type (Ltyp)
b6b5cca8
AC
5564
5565 -- Don't give the message unless right operand is a type entity and
5566 -- the type of the left operand matches this type. Note that this
5567 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5568 -- checks have changed the type of the left operand.
5569
630d30e9 5570 and then Nkind (Rop) in N_Has_Entity
4818e7b9 5571 and then Ltyp = Entity (Rop)
b6b5cca8
AC
5572
5573 -- Skip in VM mode, where we have no sense of invalid values. The
5574 -- warning still seems relevant, but not important enough to worry.
5575
26bff3d9 5576 and then VM_Target = No_VM
b6b5cca8
AC
5577
5578 -- Skip this for predicated types, where such expressions are a
5579 -- reasonable way of testing if something meets the predicate.
5580
3d6db7f8 5581 and then not Present (Predicate_Function (Ltyp))
630d30e9
RD
5582 then
5583 Substitute_Valid_Check;
5584 return;
5585 end if;
5586
20b5d666
JM
5587 -- Do validity check on operands
5588
5589 if Validity_Checks_On and Validity_Check_Operands then
5590 Ensure_Valid (Left_Opnd (N));
5591 Validity_Check_Range (Right_Opnd (N));
5592 end if;
5593
630d30e9 5594 -- Case of explicit range
fbf5a39b
AC
5595
5596 if Nkind (Rop) = N_Range then
5597 declare
630d30e9
RD
5598 Lo : constant Node_Id := Low_Bound (Rop);
5599 Hi : constant Node_Id := High_Bound (Rop);
5600
5601 Lo_Orig : constant Node_Id := Original_Node (Lo);
5602 Hi_Orig : constant Node_Id := Original_Node (Hi);
5603
c800f862
RD
5604 Lcheck : Compare_Result;
5605 Ucheck : Compare_Result;
fbf5a39b 5606
d766cee3
RD
5607 Warn1 : constant Boolean :=
5608 Constant_Condition_Warnings
c800f862
RD
5609 and then Comes_From_Source (N)
5610 and then not In_Instance;
d766cee3 5611 -- This must be true for any of the optimization warnings, we
9a0ddeee
AC
5612 -- clearly want to give them only for source with the flag on. We
5613 -- also skip these warnings in an instance since it may be the
5614 -- case that different instantiations have different ranges.
d766cee3
RD
5615
5616 Warn2 : constant Boolean :=
5617 Warn1
5618 and then Nkind (Original_Node (Rop)) = N_Range
5619 and then Is_Integer_Type (Etype (Lo));
5620 -- For the case where only one bound warning is elided, we also
5621 -- insist on an explicit range and an integer type. The reason is
5622 -- that the use of enumeration ranges including an end point is
9a0ddeee
AC
5623 -- common, as is the use of a subtype name, one of whose bounds is
5624 -- the same as the type of the expression.
d766cee3 5625
fbf5a39b 5626 begin
c95e0edc 5627 -- If test is explicit x'First .. x'Last, replace by valid check
630d30e9 5628
e606088a
AC
5629 -- Could use some individual comments for this complex test ???
5630
d766cee3 5631 if Is_Scalar_Type (Ltyp)
b6b5cca8
AC
5632
5633 -- And left operand is X'First where X matches left operand
5634 -- type (this eliminates cases of type mismatch, including
5635 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5636 -- type of the left operand.
5637
630d30e9
RD
5638 and then Nkind (Lo_Orig) = N_Attribute_Reference
5639 and then Attribute_Name (Lo_Orig) = Name_First
5640 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
d766cee3 5641 and then Entity (Prefix (Lo_Orig)) = Ltyp
b6b5cca8 5642
cc6f5d75 5643 -- Same tests for right operand
b6b5cca8 5644
630d30e9
RD
5645 and then Nkind (Hi_Orig) = N_Attribute_Reference
5646 and then Attribute_Name (Hi_Orig) = Name_Last
5647 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
d766cee3 5648 and then Entity (Prefix (Hi_Orig)) = Ltyp
b6b5cca8
AC
5649
5650 -- Relevant only for source cases
5651
630d30e9 5652 and then Comes_From_Source (N)
b6b5cca8
AC
5653
5654 -- Omit for VM cases, where we don't have invalid values
5655
26bff3d9 5656 and then VM_Target = No_VM
630d30e9
RD
5657 then
5658 Substitute_Valid_Check;
4818e7b9 5659 goto Leave;
630d30e9
RD
5660 end if;
5661
d766cee3
RD
5662 -- If bounds of type are known at compile time, and the end points
5663 -- are known at compile time and identical, this is another case
5664 -- for substituting a valid test. We only do this for discrete
5665 -- types, since it won't arise in practice for float types.
5666
5667 if Comes_From_Source (N)
5668 and then Is_Discrete_Type (Ltyp)
5669 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
5670 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
5671 and then Compile_Time_Known_Value (Lo)
5672 and then Compile_Time_Known_Value (Hi)
5673 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
5674 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
94eefd2e 5675
f6194278
RD
5676 -- Kill warnings in instances, since they may be cases where we
5677 -- have a test in the generic that makes sense with some types
5678 -- and not with other types.
94eefd2e
RD
5679
5680 and then not In_Instance
d766cee3
RD
5681 then
5682 Substitute_Valid_Check;
4818e7b9 5683 goto Leave;
d766cee3
RD
5684 end if;
5685
9a0ddeee
AC
5686 -- If we have an explicit range, do a bit of optimization based on
5687 -- range analysis (we may be able to kill one or both checks).
630d30e9 5688
c800f862
RD
5689 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
5690 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
5691
630d30e9
RD
5692 -- If either check is known to fail, replace result by False since
5693 -- the other check does not matter. Preserve the static flag for
5694 -- legality checks, because we are constant-folding beyond RM 4.9.
fbf5a39b
AC
5695
5696 if Lcheck = LT or else Ucheck = GT then
c800f862 5697 if Warn1 then
685bc70f
AC
5698 Error_Msg_N ("?c?range test optimized away", N);
5699 Error_Msg_N ("\?c?value is known to be out of range", N);
d766cee3
RD
5700 end if;
5701
e4494292 5702 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 5703 Analyze_And_Resolve (N, Restyp);
7324bf49 5704 Set_Is_Static_Expression (N, Static);
4818e7b9 5705 goto Leave;
fbf5a39b 5706
685094bf
RD
5707 -- If both checks are known to succeed, replace result by True,
5708 -- since we know we are in range.
fbf5a39b
AC
5709
5710 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
c800f862 5711 if Warn1 then
685bc70f
AC
5712 Error_Msg_N ("?c?range test optimized away", N);
5713 Error_Msg_N ("\?c?value is known to be in range", N);
d766cee3
RD
5714 end if;
5715
e4494292 5716 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4818e7b9 5717 Analyze_And_Resolve (N, Restyp);
7324bf49 5718 Set_Is_Static_Expression (N, Static);
4818e7b9 5719 goto Leave;
fbf5a39b 5720
d766cee3
RD
5721 -- If lower bound check succeeds and upper bound check is not
5722 -- known to succeed or fail, then replace the range check with
5723 -- a comparison against the upper bound.
fbf5a39b
AC
5724
5725 elsif Lcheck in Compare_GE then
94eefd2e 5726 if Warn2 and then not In_Instance then
324ac540
AC
5727 Error_Msg_N ("??lower bound test optimized away", Lo);
5728 Error_Msg_N ("\??value is known to be in range", Lo);
d766cee3
RD
5729 end if;
5730
fbf5a39b
AC
5731 Rewrite (N,
5732 Make_Op_Le (Loc,
5733 Left_Opnd => Lop,
5734 Right_Opnd => High_Bound (Rop)));
4818e7b9
RD
5735 Analyze_And_Resolve (N, Restyp);
5736 goto Leave;
fbf5a39b 5737
d766cee3
RD
5738 -- If upper bound check succeeds and lower bound check is not
5739 -- known to succeed or fail, then replace the range check with
5740 -- a comparison against the lower bound.
fbf5a39b
AC
5741
5742 elsif Ucheck in Compare_LE then
94eefd2e 5743 if Warn2 and then not In_Instance then
324ac540
AC
5744 Error_Msg_N ("??upper bound test optimized away", Hi);
5745 Error_Msg_N ("\??value is known to be in range", Hi);
d766cee3
RD
5746 end if;
5747
fbf5a39b
AC
5748 Rewrite (N,
5749 Make_Op_Ge (Loc,
5750 Left_Opnd => Lop,
5751 Right_Opnd => Low_Bound (Rop)));
4818e7b9
RD
5752 Analyze_And_Resolve (N, Restyp);
5753 goto Leave;
fbf5a39b 5754 end if;
c800f862
RD
5755
5756 -- We couldn't optimize away the range check, but there is one
5757 -- more issue. If we are checking constant conditionals, then we
5758 -- see if we can determine the outcome assuming everything is
5759 -- valid, and if so give an appropriate warning.
5760
5761 if Warn1 and then not Assume_No_Invalid_Values then
5762 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
5763 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
5764
5765 -- Result is out of range for valid value
5766
5767 if Lcheck = LT or else Ucheck = GT then
ed2233dc 5768 Error_Msg_N
685bc70f 5769 ("?c?value can only be in range if it is invalid", N);
c800f862
RD
5770
5771 -- Result is in range for valid value
5772
5773 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
ed2233dc 5774 Error_Msg_N
685bc70f 5775 ("?c?value can only be out of range if it is invalid", N);
c800f862
RD
5776
5777 -- Lower bound check succeeds if value is valid
5778
5779 elsif Warn2 and then Lcheck in Compare_GE then
ed2233dc 5780 Error_Msg_N
685bc70f 5781 ("?c?lower bound check only fails if it is invalid", Lo);
c800f862
RD
5782
5783 -- Upper bound check succeeds if value is valid
5784
5785 elsif Warn2 and then Ucheck in Compare_LE then
ed2233dc 5786 Error_Msg_N
685bc70f 5787 ("?c?upper bound check only fails for invalid values", Hi);
c800f862
RD
5788 end if;
5789 end if;
fbf5a39b
AC
5790 end;
5791
5792 -- For all other cases of an explicit range, nothing to be done
70482933 5793
4818e7b9 5794 goto Leave;
70482933
RK
5795
5796 -- Here right operand is a subtype mark
5797
5798 else
5799 declare
82878151
AC
5800 Typ : Entity_Id := Etype (Rop);
5801 Is_Acc : constant Boolean := Is_Access_Type (Typ);
5802 Cond : Node_Id := Empty;
5803 New_N : Node_Id;
5804 Obj : Node_Id := Lop;
5805 SCIL_Node : Node_Id;
70482933
RK
5806
5807 begin
5808 Remove_Side_Effects (Obj);
5809
5810 -- For tagged type, do tagged membership operation
5811
5812 if Is_Tagged_Type (Typ) then
fbf5a39b 5813
26bff3d9
JM
5814 -- No expansion will be performed when VM_Target, as the VM
5815 -- back-ends will handle the membership tests directly (tags
5816 -- are not explicitly represented in Java objects, so the
5817 -- normal tagged membership expansion is not what we want).
70482933 5818
1f110335 5819 if Tagged_Type_Expansion then
82878151
AC
5820 Tagged_Membership (N, SCIL_Node, New_N);
5821 Rewrite (N, New_N);
4818e7b9 5822 Analyze_And_Resolve (N, Restyp);
82878151
AC
5823
5824 -- Update decoration of relocated node referenced by the
5825 -- SCIL node.
5826
9a0ddeee 5827 if Generate_SCIL and then Present (SCIL_Node) then
7665e4bd 5828 Set_SCIL_Node (N, SCIL_Node);
82878151 5829 end if;
70482933
RK
5830 end if;
5831
4818e7b9 5832 goto Leave;
70482933 5833
c95e0edc 5834 -- If type is scalar type, rewrite as x in t'First .. t'Last.
70482933 5835 -- This reason we do this is that the bounds may have the wrong
c800f862
RD
5836 -- type if they come from the original type definition. Also this
5837 -- way we get all the processing above for an explicit range.
70482933 5838
f6194278 5839 -- Don't do this for predicated types, since in this case we
a90bd866 5840 -- want to check the predicate.
c0f136cd 5841
c7532b2d
AC
5842 elsif Is_Scalar_Type (Typ) then
5843 if No (Predicate_Function (Typ)) then
5844 Rewrite (Rop,
5845 Make_Range (Loc,
5846 Low_Bound =>
5847 Make_Attribute_Reference (Loc,
5848 Attribute_Name => Name_First,
e4494292 5849 Prefix => New_Occurrence_Of (Typ, Loc)),
c7532b2d
AC
5850
5851 High_Bound =>
5852 Make_Attribute_Reference (Loc,
5853 Attribute_Name => Name_Last,
e4494292 5854 Prefix => New_Occurrence_Of (Typ, Loc))));
c7532b2d
AC
5855 Analyze_And_Resolve (N, Restyp);
5856 end if;
70482933 5857
4818e7b9 5858 goto Leave;
5d09245e
AC
5859
5860 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5861 -- a membership test if the subtype mark denotes a constrained
5862 -- Unchecked_Union subtype and the expression lacks inferable
5863 -- discriminants.
5864
5865 elsif Is_Unchecked_Union (Base_Type (Typ))
5866 and then Is_Constrained (Typ)
5867 and then not Has_Inferable_Discriminants (Lop)
5868 then
5869 Insert_Action (N,
5870 Make_Raise_Program_Error (Loc,
5871 Reason => PE_Unchecked_Union_Restriction));
5872
9a0ddeee 5873 -- Prevent Gigi from generating incorrect code by rewriting the
f6194278 5874 -- test as False. What is this undocumented thing about ???
5d09245e 5875
9a0ddeee 5876 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 5877 goto Leave;
70482933
RK
5878 end if;
5879
fbf5a39b
AC
5880 -- Here we have a non-scalar type
5881
70482933
RK
5882 if Is_Acc then
5883 Typ := Designated_Type (Typ);
5884 end if;
5885
5886 if not Is_Constrained (Typ) then
e4494292 5887 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4818e7b9 5888 Analyze_And_Resolve (N, Restyp);
70482933 5889
685094bf
RD
5890 -- For the constrained array case, we have to check the subscripts
5891 -- for an exact match if the lengths are non-zero (the lengths
5892 -- must match in any case).
70482933
RK
5893
5894 elsif Is_Array_Type (Typ) then
fbf5a39b 5895 Check_Subscripts : declare
9a0ddeee 5896 function Build_Attribute_Reference
2e071734
AC
5897 (E : Node_Id;
5898 Nam : Name_Id;
5899 Dim : Nat) return Node_Id;
9a0ddeee 5900 -- Build attribute reference E'Nam (Dim)
70482933 5901
9a0ddeee
AC
5902 -------------------------------
5903 -- Build_Attribute_Reference --
5904 -------------------------------
fbf5a39b 5905
9a0ddeee 5906 function Build_Attribute_Reference
2e071734
AC
5907 (E : Node_Id;
5908 Nam : Name_Id;
5909 Dim : Nat) return Node_Id
70482933
RK
5910 is
5911 begin
5912 return
5913 Make_Attribute_Reference (Loc,
9a0ddeee 5914 Prefix => E,
70482933 5915 Attribute_Name => Nam,
9a0ddeee 5916 Expressions => New_List (
70482933 5917 Make_Integer_Literal (Loc, Dim)));
9a0ddeee 5918 end Build_Attribute_Reference;
70482933 5919
fad0600d 5920 -- Start of processing for Check_Subscripts
fbf5a39b 5921
70482933
RK
5922 begin
5923 for J in 1 .. Number_Dimensions (Typ) loop
5924 Evolve_And_Then (Cond,
5925 Make_Op_Eq (Loc,
5926 Left_Opnd =>
9a0ddeee 5927 Build_Attribute_Reference
fbf5a39b
AC
5928 (Duplicate_Subexpr_No_Checks (Obj),
5929 Name_First, J),
70482933 5930 Right_Opnd =>
9a0ddeee 5931 Build_Attribute_Reference
70482933
RK
5932 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
5933
5934 Evolve_And_Then (Cond,
5935 Make_Op_Eq (Loc,
5936 Left_Opnd =>
9a0ddeee 5937 Build_Attribute_Reference
fbf5a39b
AC
5938 (Duplicate_Subexpr_No_Checks (Obj),
5939 Name_Last, J),
70482933 5940 Right_Opnd =>
9a0ddeee 5941 Build_Attribute_Reference
70482933
RK
5942 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
5943 end loop;
5944
5945 if Is_Acc then
fbf5a39b
AC
5946 Cond :=
5947 Make_Or_Else (Loc,
cc6f5d75 5948 Left_Opnd =>
fbf5a39b
AC
5949 Make_Op_Eq (Loc,
5950 Left_Opnd => Obj,
5951 Right_Opnd => Make_Null (Loc)),
5952 Right_Opnd => Cond);
70482933
RK
5953 end if;
5954
5955 Rewrite (N, Cond);
4818e7b9 5956 Analyze_And_Resolve (N, Restyp);
fbf5a39b 5957 end Check_Subscripts;
70482933 5958
685094bf
RD
5959 -- These are the cases where constraint checks may be required,
5960 -- e.g. records with possible discriminants
70482933
RK
5961
5962 else
5963 -- Expand the test into a series of discriminant comparisons.
685094bf
RD
5964 -- The expression that is built is the negation of the one that
5965 -- is used for checking discriminant constraints.
70482933
RK
5966
5967 Obj := Relocate_Node (Left_Opnd (N));
5968
5969 if Has_Discriminants (Typ) then
5970 Cond := Make_Op_Not (Loc,
5971 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
5972
5973 if Is_Acc then
5974 Cond := Make_Or_Else (Loc,
cc6f5d75 5975 Left_Opnd =>
70482933
RK
5976 Make_Op_Eq (Loc,
5977 Left_Opnd => Obj,
5978 Right_Opnd => Make_Null (Loc)),
5979 Right_Opnd => Cond);
5980 end if;
5981
5982 else
5983 Cond := New_Occurrence_Of (Standard_True, Loc);
5984 end if;
5985
5986 Rewrite (N, Cond);
4818e7b9 5987 Analyze_And_Resolve (N, Restyp);
70482933 5988 end if;
6cce2156
GD
5989
5990 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5991 -- expression of an anonymous access type. This can involve an
5992 -- accessibility test and a tagged type membership test in the
5993 -- case of tagged designated types.
5994
5995 if Ada_Version >= Ada_2012
5996 and then Is_Acc
5997 and then Ekind (Ltyp) = E_Anonymous_Access_Type
5998 then
5999 declare
6000 Expr_Entity : Entity_Id := Empty;
6001 New_N : Node_Id;
6002 Param_Level : Node_Id;
6003 Type_Level : Node_Id;
996c8821 6004
6cce2156
GD
6005 begin
6006 if Is_Entity_Name (Lop) then
6007 Expr_Entity := Param_Entity (Lop);
996c8821 6008
6cce2156
GD
6009 if not Present (Expr_Entity) then
6010 Expr_Entity := Entity (Lop);
6011 end if;
6012 end if;
6013
6014 -- If a conversion of the anonymous access value to the
6015 -- tested type would be illegal, then the result is False.
6016
6017 if not Valid_Conversion
6018 (Lop, Rtyp, Lop, Report_Errs => False)
6019 then
6020 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6021 Analyze_And_Resolve (N, Restyp);
6022
6023 -- Apply an accessibility check if the access object has an
6024 -- associated access level and when the level of the type is
6025 -- less deep than the level of the access parameter. This
6026 -- only occur for access parameters and stand-alone objects
6027 -- of an anonymous access type.
6028
6029 else
6030 if Present (Expr_Entity)
996c8821
RD
6031 and then
6032 Present
6033 (Effective_Extra_Accessibility (Expr_Entity))
6034 and then UI_Gt (Object_Access_Level (Lop),
6035 Type_Access_Level (Rtyp))
6cce2156
GD
6036 then
6037 Param_Level :=
6038 New_Occurrence_Of
d15f9422 6039 (Effective_Extra_Accessibility (Expr_Entity), Loc);
6cce2156
GD
6040
6041 Type_Level :=
6042 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
6043
6044 -- Return True only if the accessibility level of the
6045 -- expression entity is not deeper than the level of
6046 -- the tested access type.
6047
6048 Rewrite (N,
6049 Make_And_Then (Loc,
6050 Left_Opnd => Relocate_Node (N),
6051 Right_Opnd => Make_Op_Le (Loc,
6052 Left_Opnd => Param_Level,
6053 Right_Opnd => Type_Level)));
6054
6055 Analyze_And_Resolve (N);
6056 end if;
6057
6058 -- If the designated type is tagged, do tagged membership
6059 -- operation.
6060
6061 -- *** NOTE: we have to check not null before doing the
6062 -- tagged membership test (but maybe that can be done
6063 -- inside Tagged_Membership?).
6064
6065 if Is_Tagged_Type (Typ) then
6066 Rewrite (N,
6067 Make_And_Then (Loc,
6068 Left_Opnd => Relocate_Node (N),
6069 Right_Opnd =>
6070 Make_Op_Ne (Loc,
6071 Left_Opnd => Obj,
6072 Right_Opnd => Make_Null (Loc))));
6073
6074 -- No expansion will be performed when VM_Target, as
6075 -- the VM back-ends will handle the membership tests
6076 -- directly (tags are not explicitly represented in
6077 -- Java objects, so the normal tagged membership
6078 -- expansion is not what we want).
6079
6080 if Tagged_Type_Expansion then
6081
6082 -- Note that we have to pass Original_Node, because
6083 -- the membership test might already have been
6084 -- rewritten by earlier parts of membership test.
6085
6086 Tagged_Membership
6087 (Original_Node (N), SCIL_Node, New_N);
6088
6089 -- Update decoration of relocated node referenced
6090 -- by the SCIL node.
6091
6092 if Generate_SCIL and then Present (SCIL_Node) then
6093 Set_SCIL_Node (New_N, SCIL_Node);
6094 end if;
6095
6096 Rewrite (N,
6097 Make_And_Then (Loc,
6098 Left_Opnd => Relocate_Node (N),
6099 Right_Opnd => New_N));
6100
6101 Analyze_And_Resolve (N, Restyp);
6102 end if;
6103 end if;
6104 end if;
6105 end;
6106 end if;
70482933
RK
6107 end;
6108 end if;
4818e7b9
RD
6109
6110 -- At this point, we have done the processing required for the basic
6111 -- membership test, but not yet dealt with the predicate.
6112
6113 <<Leave>>
6114
c7532b2d
AC
6115 -- If a predicate is present, then we do the predicate test, but we
6116 -- most certainly want to omit this if we are within the predicate
a90bd866 6117 -- function itself, since otherwise we have an infinite recursion.
3d6db7f8
GD
6118 -- The check should also not be emitted when testing against a range
6119 -- (the check is only done when the right operand is a subtype; see
6120 -- RM12-4.5.2 (28.1/3-30/3)).
4818e7b9 6121
c7532b2d
AC
6122 declare
6123 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
4818e7b9 6124
c7532b2d
AC
6125 begin
6126 if Present (PFunc)
6127 and then Current_Scope /= PFunc
3d6db7f8 6128 and then Nkind (Rop) /= N_Range
c7532b2d
AC
6129 then
6130 Rewrite (N,
6131 Make_And_Then (Loc,
6132 Left_Opnd => Relocate_Node (N),
fc142f63 6133 Right_Opnd => Make_Predicate_Call (Rtyp, Lop, Mem => True)));
4818e7b9 6134
c7532b2d 6135 -- Analyze new expression, mark left operand as analyzed to
b2009d46
AC
6136 -- avoid infinite recursion adding predicate calls. Similarly,
6137 -- suppress further range checks on the call.
4818e7b9 6138
c7532b2d 6139 Set_Analyzed (Left_Opnd (N));
b2009d46 6140 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
4818e7b9 6141
c7532b2d
AC
6142 -- All done, skip attempt at compile time determination of result
6143
6144 return;
6145 end if;
6146 end;
70482933
RK
6147 end Expand_N_In;
6148
6149 --------------------------------
6150 -- Expand_N_Indexed_Component --
6151 --------------------------------
6152
6153 procedure Expand_N_Indexed_Component (N : Node_Id) is
6154 Loc : constant Source_Ptr := Sloc (N);
6155 Typ : constant Entity_Id := Etype (N);
6156 P : constant Node_Id := Prefix (N);
6157 T : constant Entity_Id := Etype (P);
5972791c 6158 Atp : Entity_Id;
70482933
RK
6159
6160 begin
685094bf
RD
6161 -- A special optimization, if we have an indexed component that is
6162 -- selecting from a slice, then we can eliminate the slice, since, for
6163 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6164 -- the range check required by the slice. The range check for the slice
6165 -- itself has already been generated. The range check for the
6166 -- subscripting operation is ensured by converting the subject to
6167 -- the subtype of the slice.
6168
6169 -- This optimization not only generates better code, avoiding slice
6170 -- messing especially in the packed case, but more importantly bypasses
6171 -- some problems in handling this peculiar case, for example, the issue
6172 -- of dealing specially with object renamings.
70482933 6173
45ec05e1
RD
6174 if Nkind (P) = N_Slice
6175
6176 -- This optimization is disabled for CodePeer because it can transform
6177 -- an index-check constraint_error into a range-check constraint_error
6178 -- and CodePeer cares about that distinction.
6179
6180 and then not CodePeer_Mode
6181 then
70482933
RK
6182 Rewrite (N,
6183 Make_Indexed_Component (Loc,
cc6f5d75 6184 Prefix => Prefix (P),
70482933
RK
6185 Expressions => New_List (
6186 Convert_To
6187 (Etype (First_Index (Etype (P))),
6188 First (Expressions (N))))));
6189 Analyze_And_Resolve (N, Typ);
6190 return;
6191 end if;
6192
b4592168
GD
6193 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6194 -- function, then additional actuals must be passed.
6195
0791fbe9 6196 if Ada_Version >= Ada_2005
b4592168
GD
6197 and then Is_Build_In_Place_Function_Call (P)
6198 then
6199 Make_Build_In_Place_Call_In_Anonymous_Context (P);
6200 end if;
6201
685094bf 6202 -- If the prefix is an access type, then we unconditionally rewrite if
09494c32 6203 -- as an explicit dereference. This simplifies processing for several
685094bf
RD
6204 -- cases, including packed array cases and certain cases in which checks
6205 -- must be generated. We used to try to do this only when it was
6206 -- necessary, but it cleans up the code to do it all the time.
70482933
RK
6207
6208 if Is_Access_Type (T) then
2717634d 6209 Insert_Explicit_Dereference (P);
70482933 6210 Analyze_And_Resolve (P, Designated_Type (T));
5972791c
AC
6211 Atp := Designated_Type (T);
6212 else
6213 Atp := T;
70482933
RK
6214 end if;
6215
fbf5a39b
AC
6216 -- Generate index and validity checks
6217
6218 Generate_Index_Checks (N);
6219
70482933
RK
6220 if Validity_Checks_On and then Validity_Check_Subscripts then
6221 Apply_Subscript_Validity_Checks (N);
6222 end if;
6223
5972791c
AC
6224 -- If selecting from an array with atomic components, and atomic sync
6225 -- is not suppressed for this array type, set atomic sync flag.
6226
6227 if (Has_Atomic_Components (Atp)
6228 and then not Atomic_Synchronization_Disabled (Atp))
6229 or else (Is_Atomic (Typ)
6230 and then not Atomic_Synchronization_Disabled (Typ))
6231 then
4c318253 6232 Activate_Atomic_Synchronization (N);
5972791c
AC
6233 end if;
6234
70482933
RK
6235 -- All done for the non-packed case
6236
6237 if not Is_Packed (Etype (Prefix (N))) then
6238 return;
6239 end if;
6240
6241 -- For packed arrays that are not bit-packed (i.e. the case of an array
8fc789c8 6242 -- with one or more index types with a non-contiguous enumeration type),
70482933
RK
6243 -- we can always use the normal packed element get circuit.
6244
6245 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6246 Expand_Packed_Element_Reference (N);
6247 return;
6248 end if;
6249
8ca597af
RD
6250 -- For a reference to a component of a bit packed array, we convert it
6251 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6252 -- want to do this for simple references, and not for:
70482933 6253
685094bf
RD
6254 -- Left side of assignment, or prefix of left side of assignment, or
6255 -- prefix of the prefix, to handle packed arrays of packed arrays,
70482933
RK
6256 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6257
6258 -- Renaming objects in renaming associations
6259 -- This case is handled when a use of the renamed variable occurs
6260
6261 -- Actual parameters for a procedure call
6262 -- This case is handled in Exp_Ch6.Expand_Actuals
6263
6264 -- The second expression in a 'Read attribute reference
6265
47d3b920 6266 -- The prefix of an address or bit or size attribute reference
70482933
RK
6267
6268 -- The following circuit detects these exceptions
6269
6270 declare
6271 Child : Node_Id := N;
6272 Parnt : Node_Id := Parent (N);
6273
6274 begin
6275 loop
6276 if Nkind (Parnt) = N_Unchecked_Expression then
6277 null;
6278
303b4d58
AC
6279 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
6280 N_Procedure_Call_Statement)
70482933
RK
6281 or else (Nkind (Parnt) = N_Parameter_Association
6282 and then
6283 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
6284 then
6285 return;
6286
6287 elsif Nkind (Parnt) = N_Attribute_Reference
b69cd36a
AC
6288 and then Nam_In (Attribute_Name (Parnt), Name_Address,
6289 Name_Bit,
6290 Name_Size)
70482933
RK
6291 and then Prefix (Parnt) = Child
6292 then
6293 return;
6294
6295 elsif Nkind (Parnt) = N_Assignment_Statement
6296 and then Name (Parnt) = Child
6297 then
6298 return;
6299
685094bf
RD
6300 -- If the expression is an index of an indexed component, it must
6301 -- be expanded regardless of context.
fbf5a39b
AC
6302
6303 elsif Nkind (Parnt) = N_Indexed_Component
6304 and then Child /= Prefix (Parnt)
6305 then
6306 Expand_Packed_Element_Reference (N);
6307 return;
6308
6309 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
6310 and then Name (Parent (Parnt)) = Parnt
6311 then
6312 return;
6313
70482933
RK
6314 elsif Nkind (Parnt) = N_Attribute_Reference
6315 and then Attribute_Name (Parnt) = Name_Read
6316 and then Next (First (Expressions (Parnt))) = Child
6317 then
6318 return;
6319
303b4d58 6320 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
533369aa 6321 and then Prefix (Parnt) = Child
70482933
RK
6322 then
6323 null;
6324
6325 else
6326 Expand_Packed_Element_Reference (N);
6327 return;
6328 end if;
6329
685094bf
RD
6330 -- Keep looking up tree for unchecked expression, or if we are the
6331 -- prefix of a possible assignment left side.
70482933
RK
6332
6333 Child := Parnt;
6334 Parnt := Parent (Child);
6335 end loop;
6336 end;
70482933
RK
6337 end Expand_N_Indexed_Component;
6338
6339 ---------------------
6340 -- Expand_N_Not_In --
6341 ---------------------
6342
6343 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6344 -- can be done. This avoids needing to duplicate this expansion code.
6345
6346 procedure Expand_N_Not_In (N : Node_Id) is
630d30e9
RD
6347 Loc : constant Source_Ptr := Sloc (N);
6348 Typ : constant Entity_Id := Etype (N);
6349 Cfs : constant Boolean := Comes_From_Source (N);
70482933
RK
6350
6351 begin
6352 Rewrite (N,
6353 Make_Op_Not (Loc,
6354 Right_Opnd =>
6355 Make_In (Loc,
6356 Left_Opnd => Left_Opnd (N),
d766cee3 6357 Right_Opnd => Right_Opnd (N))));
630d30e9 6358
197e4514
AC
6359 -- If this is a set membership, preserve list of alternatives
6360
6361 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
6362
d766cee3 6363 -- We want this to appear as coming from source if original does (see
8fc789c8 6364 -- transformations in Expand_N_In).
630d30e9
RD
6365
6366 Set_Comes_From_Source (N, Cfs);
6367 Set_Comes_From_Source (Right_Opnd (N), Cfs);
6368
8fc789c8 6369 -- Now analyze transformed node
630d30e9 6370
70482933
RK
6371 Analyze_And_Resolve (N, Typ);
6372 end Expand_N_Not_In;
6373
6374 -------------------
6375 -- Expand_N_Null --
6376 -------------------
6377
a3f2babd
AC
6378 -- The only replacement required is for the case of a null of a type that
6379 -- is an access to protected subprogram, or a subtype thereof. We represent
6380 -- such access values as a record, and so we must replace the occurrence of
6381 -- null by the equivalent record (with a null address and a null pointer in
6382 -- it), so that the backend creates the proper value.
70482933
RK
6383
6384 procedure Expand_N_Null (N : Node_Id) is
6385 Loc : constant Source_Ptr := Sloc (N);
a3f2babd 6386 Typ : constant Entity_Id := Base_Type (Etype (N));
70482933
RK
6387 Agg : Node_Id;
6388
6389 begin
26bff3d9 6390 if Is_Access_Protected_Subprogram_Type (Typ) then
70482933
RK
6391 Agg :=
6392 Make_Aggregate (Loc,
6393 Expressions => New_List (
6394 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
6395 Make_Null (Loc)));
6396
6397 Rewrite (N, Agg);
6398 Analyze_And_Resolve (N, Equivalent_Type (Typ));
6399
685094bf
RD
6400 -- For subsequent semantic analysis, the node must retain its type.
6401 -- Gigi in any case replaces this type by the corresponding record
6402 -- type before processing the node.
70482933
RK
6403
6404 Set_Etype (N, Typ);
6405 end if;
fbf5a39b
AC
6406
6407 exception
6408 when RE_Not_Available =>
6409 return;
70482933
RK
6410 end Expand_N_Null;
6411
6412 ---------------------
6413 -- Expand_N_Op_Abs --
6414 ---------------------
6415
6416 procedure Expand_N_Op_Abs (N : Node_Id) is
6417 Loc : constant Source_Ptr := Sloc (N);
cc6f5d75 6418 Expr : constant Node_Id := Right_Opnd (N);
70482933
RK
6419
6420 begin
6421 Unary_Op_Validity_Checks (N);
6422
b6b5cca8
AC
6423 -- Check for MINIMIZED/ELIMINATED overflow mode
6424
6425 if Minimized_Eliminated_Overflow_Check (N) then
6426 Apply_Arithmetic_Overflow_Check (N);
6427 return;
6428 end if;
6429
70482933
RK
6430 -- Deal with software overflow checking
6431
07fc65c4 6432 if not Backend_Overflow_Checks_On_Target
533369aa
AC
6433 and then Is_Signed_Integer_Type (Etype (N))
6434 and then Do_Overflow_Check (N)
70482933 6435 then
685094bf
RD
6436 -- The only case to worry about is when the argument is equal to the
6437 -- largest negative number, so what we do is to insert the check:
70482933 6438
fbf5a39b 6439 -- [constraint_error when Expr = typ'Base'First]
70482933
RK
6440
6441 -- with the usual Duplicate_Subexpr use coding for expr
6442
fbf5a39b
AC
6443 Insert_Action (N,
6444 Make_Raise_Constraint_Error (Loc,
6445 Condition =>
6446 Make_Op_Eq (Loc,
70482933 6447 Left_Opnd => Duplicate_Subexpr (Expr),
fbf5a39b
AC
6448 Right_Opnd =>
6449 Make_Attribute_Reference (Loc,
cc6f5d75 6450 Prefix =>
fbf5a39b
AC
6451 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
6452 Attribute_Name => Name_First)),
6453 Reason => CE_Overflow_Check_Failed));
6454 end if;
70482933
RK
6455 end Expand_N_Op_Abs;
6456
6457 ---------------------
6458 -- Expand_N_Op_Add --
6459 ---------------------
6460
6461 procedure Expand_N_Op_Add (N : Node_Id) is
6462 Typ : constant Entity_Id := Etype (N);
6463
6464 begin
6465 Binary_Op_Validity_Checks (N);
6466
b6b5cca8
AC
6467 -- Check for MINIMIZED/ELIMINATED overflow mode
6468
6469 if Minimized_Eliminated_Overflow_Check (N) then
6470 Apply_Arithmetic_Overflow_Check (N);
6471 return;
6472 end if;
6473
70482933
RK
6474 -- N + 0 = 0 + N = N for integer types
6475
6476 if Is_Integer_Type (Typ) then
6477 if Compile_Time_Known_Value (Right_Opnd (N))
6478 and then Expr_Value (Right_Opnd (N)) = Uint_0
6479 then
6480 Rewrite (N, Left_Opnd (N));
6481 return;
6482
6483 elsif Compile_Time_Known_Value (Left_Opnd (N))
6484 and then Expr_Value (Left_Opnd (N)) = Uint_0
6485 then
6486 Rewrite (N, Right_Opnd (N));
6487 return;
6488 end if;
6489 end if;
6490
fbf5a39b 6491 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 6492
761f7dcb 6493 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
70482933
RK
6494 Apply_Arithmetic_Overflow_Check (N);
6495 return;
70482933
RK
6496 end if;
6497 end Expand_N_Op_Add;
6498
6499 ---------------------
6500 -- Expand_N_Op_And --
6501 ---------------------
6502
6503 procedure Expand_N_Op_And (N : Node_Id) is
6504 Typ : constant Entity_Id := Etype (N);
6505
6506 begin
6507 Binary_Op_Validity_Checks (N);
6508
6509 if Is_Array_Type (Etype (N)) then
6510 Expand_Boolean_Operator (N);
6511
6512 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
6513 Adjust_Condition (Left_Opnd (N));
6514 Adjust_Condition (Right_Opnd (N));
6515 Set_Etype (N, Standard_Boolean);
6516 Adjust_Result_Type (N, Typ);
437f8c1e
AC
6517
6518 elsif Is_Intrinsic_Subprogram (Entity (N)) then
6519 Expand_Intrinsic_Call (N, Entity (N));
6520
70482933
RK
6521 end if;
6522 end Expand_N_Op_And;
6523
6524 ------------------------
6525 -- Expand_N_Op_Concat --
6526 ------------------------
6527
6528 procedure Expand_N_Op_Concat (N : Node_Id) is
70482933
RK
6529 Opnds : List_Id;
6530 -- List of operands to be concatenated
6531
70482933 6532 Cnode : Node_Id;
685094bf
RD
6533 -- Node which is to be replaced by the result of concatenating the nodes
6534 -- in the list Opnds.
70482933 6535
70482933 6536 begin
fbf5a39b
AC
6537 -- Ensure validity of both operands
6538
70482933
RK
6539 Binary_Op_Validity_Checks (N);
6540
685094bf
RD
6541 -- If we are the left operand of a concatenation higher up the tree,
6542 -- then do nothing for now, since we want to deal with a series of
6543 -- concatenations as a unit.
70482933
RK
6544
6545 if Nkind (Parent (N)) = N_Op_Concat
6546 and then N = Left_Opnd (Parent (N))
6547 then
6548 return;
6549 end if;
6550
6551 -- We get here with a concatenation whose left operand may be a
6552 -- concatenation itself with a consistent type. We need to process
6553 -- these concatenation operands from left to right, which means
6554 -- from the deepest node in the tree to the highest node.
6555
6556 Cnode := N;
6557 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
6558 Cnode := Left_Opnd (Cnode);
6559 end loop;
6560
64425dff
BD
6561 -- Now Cnode is the deepest concatenation, and its parents are the
6562 -- concatenation nodes above, so now we process bottom up, doing the
64425dff 6563 -- operands.
70482933 6564
df46b832
AC
6565 -- The outer loop runs more than once if more than one concatenation
6566 -- type is involved.
70482933
RK
6567
6568 Outer : loop
6569 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
6570 Set_Parent (Opnds, N);
6571
df46b832 6572 -- The inner loop gathers concatenation operands
70482933
RK
6573
6574 Inner : while Cnode /= N
70482933
RK
6575 and then Base_Type (Etype (Cnode)) =
6576 Base_Type (Etype (Parent (Cnode)))
6577 loop
6578 Cnode := Parent (Cnode);
6579 Append (Right_Opnd (Cnode), Opnds);
6580 end loop Inner;
6581
68bab0fd 6582 Expand_Concatenate (Cnode, Opnds);
70482933
RK
6583
6584 exit Outer when Cnode = N;
6585 Cnode := Parent (Cnode);
6586 end loop Outer;
6587 end Expand_N_Op_Concat;
6588
6589 ------------------------
6590 -- Expand_N_Op_Divide --
6591 ------------------------
6592
6593 procedure Expand_N_Op_Divide (N : Node_Id) is
f82944b7
JM
6594 Loc : constant Source_Ptr := Sloc (N);
6595 Lopnd : constant Node_Id := Left_Opnd (N);
6596 Ropnd : constant Node_Id := Right_Opnd (N);
6597 Ltyp : constant Entity_Id := Etype (Lopnd);
6598 Rtyp : constant Entity_Id := Etype (Ropnd);
6599 Typ : Entity_Id := Etype (N);
6600 Rknow : constant Boolean := Is_Integer_Type (Typ)
6601 and then
6602 Compile_Time_Known_Value (Ropnd);
6603 Rval : Uint;
70482933
RK
6604
6605 begin
6606 Binary_Op_Validity_Checks (N);
6607
b6b5cca8
AC
6608 -- Check for MINIMIZED/ELIMINATED overflow mode
6609
6610 if Minimized_Eliminated_Overflow_Check (N) then
6611 Apply_Arithmetic_Overflow_Check (N);
6612 return;
6613 end if;
6614
6615 -- Otherwise proceed with expansion of division
6616
f82944b7
JM
6617 if Rknow then
6618 Rval := Expr_Value (Ropnd);
6619 end if;
6620
70482933
RK
6621 -- N / 1 = N for integer types
6622
f82944b7
JM
6623 if Rknow and then Rval = Uint_1 then
6624 Rewrite (N, Lopnd);
70482933
RK
6625 return;
6626 end if;
6627
6628 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6629 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6630 -- operand is an unsigned integer, as required for this to work.
6631
f82944b7
JM
6632 if Nkind (Ropnd) = N_Op_Expon
6633 and then Is_Power_Of_2_For_Shift (Ropnd)
fbf5a39b
AC
6634
6635 -- We cannot do this transformation in configurable run time mode if we
51bf9bdf 6636 -- have 64-bit integers and long shifts are not available.
fbf5a39b 6637
761f7dcb 6638 and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
70482933
RK
6639 then
6640 Rewrite (N,
6641 Make_Op_Shift_Right (Loc,
f82944b7 6642 Left_Opnd => Lopnd,
70482933 6643 Right_Opnd =>
f82944b7 6644 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
70482933
RK
6645 Analyze_And_Resolve (N, Typ);
6646 return;
6647 end if;
6648
6649 -- Do required fixup of universal fixed operation
6650
6651 if Typ = Universal_Fixed then
6652 Fixup_Universal_Fixed_Operation (N);
6653 Typ := Etype (N);
6654 end if;
6655
6656 -- Divisions with fixed-point results
6657
6658 if Is_Fixed_Point_Type (Typ) then
6659
685094bf
RD
6660 -- No special processing if Treat_Fixed_As_Integer is set, since
6661 -- from a semantic point of view such operations are simply integer
6662 -- operations and will be treated that way.
70482933
RK
6663
6664 if not Treat_Fixed_As_Integer (N) then
6665 if Is_Integer_Type (Rtyp) then
6666 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
6667 else
6668 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
6669 end if;
6670 end if;
6671
685094bf
RD
6672 -- Other cases of division of fixed-point operands. Again we exclude the
6673 -- case where Treat_Fixed_As_Integer is set.
70482933 6674
761f7dcb 6675 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
70482933
RK
6676 and then not Treat_Fixed_As_Integer (N)
6677 then
6678 if Is_Integer_Type (Typ) then
6679 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
6680 else
6681 pragma Assert (Is_Floating_Point_Type (Typ));
6682 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
6683 end if;
6684
685094bf
RD
6685 -- Mixed-mode operations can appear in a non-static universal context,
6686 -- in which case the integer argument must be converted explicitly.
70482933 6687
533369aa 6688 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
f82944b7
JM
6689 Rewrite (Ropnd,
6690 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
70482933 6691
f82944b7 6692 Analyze_And_Resolve (Ropnd, Universal_Real);
70482933 6693
533369aa 6694 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
f82944b7
JM
6695 Rewrite (Lopnd,
6696 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
70482933 6697
f82944b7 6698 Analyze_And_Resolve (Lopnd, Universal_Real);
70482933 6699
f02b8bb8 6700 -- Non-fixed point cases, do integer zero divide and overflow checks
70482933
RK
6701
6702 elsif Is_Integer_Type (Typ) then
a91e9ac7 6703 Apply_Divide_Checks (N);
70482933
RK
6704 end if;
6705 end Expand_N_Op_Divide;
6706
6707 --------------------
6708 -- Expand_N_Op_Eq --
6709 --------------------
6710
6711 procedure Expand_N_Op_Eq (N : Node_Id) is
fbf5a39b
AC
6712 Loc : constant Source_Ptr := Sloc (N);
6713 Typ : constant Entity_Id := Etype (N);
6714 Lhs : constant Node_Id := Left_Opnd (N);
6715 Rhs : constant Node_Id := Right_Opnd (N);
6716 Bodies : constant List_Id := New_List;
6717 A_Typ : constant Entity_Id := Etype (Lhs);
6718
70482933
RK
6719 Typl : Entity_Id := A_Typ;
6720 Op_Name : Entity_Id;
6721 Prim : Elmt_Id;
70482933
RK
6722
6723 procedure Build_Equality_Call (Eq : Entity_Id);
6724 -- If a constructed equality exists for the type or for its parent,
6725 -- build and analyze call, adding conversions if the operation is
6726 -- inherited.
6727
5d09245e 6728 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
8fc789c8 6729 -- Determines whether a type has a subcomponent of an unconstrained
5d09245e
AC
6730 -- Unchecked_Union subtype. Typ is a record type.
6731
70482933
RK
6732 -------------------------
6733 -- Build_Equality_Call --
6734 -------------------------
6735
6736 procedure Build_Equality_Call (Eq : Entity_Id) is
6737 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
cc6f5d75
AC
6738 L_Exp : Node_Id := Relocate_Node (Lhs);
6739 R_Exp : Node_Id := Relocate_Node (Rhs);
70482933
RK
6740
6741 begin
dda38714
AC
6742 -- Adjust operands if necessary to comparison type
6743
70482933
RK
6744 if Base_Type (Op_Type) /= Base_Type (A_Typ)
6745 and then not Is_Class_Wide_Type (A_Typ)
6746 then
6747 L_Exp := OK_Convert_To (Op_Type, L_Exp);
6748 R_Exp := OK_Convert_To (Op_Type, R_Exp);
6749 end if;
6750
5d09245e
AC
6751 -- If we have an Unchecked_Union, we need to add the inferred
6752 -- discriminant values as actuals in the function call. At this
6753 -- point, the expansion has determined that both operands have
6754 -- inferable discriminants.
6755
6756 if Is_Unchecked_Union (Op_Type) then
6757 declare
fa1608c2
ES
6758 Lhs_Type : constant Node_Id := Etype (L_Exp);
6759 Rhs_Type : constant Node_Id := Etype (R_Exp);
6760
6761 Lhs_Discr_Vals : Elist_Id;
6762 -- List of inferred discriminant values for left operand.
6763
6764 Rhs_Discr_Vals : Elist_Id;
6765 -- List of inferred discriminant values for right operand.
6766
6767 Discr : Entity_Id;
5d09245e
AC
6768
6769 begin
fa1608c2
ES
6770 Lhs_Discr_Vals := New_Elmt_List;
6771 Rhs_Discr_Vals := New_Elmt_List;
6772
5d09245e
AC
6773 -- Per-object constrained selected components require special
6774 -- attention. If the enclosing scope of the component is an
f02b8bb8 6775 -- Unchecked_Union, we cannot reference its discriminants
fa1608c2
ES
6776 -- directly. This is why we use the extra parameters of the
6777 -- equality function of the enclosing Unchecked_Union.
5d09245e
AC
6778
6779 -- type UU_Type (Discr : Integer := 0) is
6780 -- . . .
6781 -- end record;
6782 -- pragma Unchecked_Union (UU_Type);
6783
6784 -- 1. Unchecked_Union enclosing record:
6785
6786 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6787 -- . . .
6788 -- Comp : UU_Type (Discr);
6789 -- . . .
6790 -- end Enclosing_UU_Type;
6791 -- pragma Unchecked_Union (Enclosing_UU_Type);
6792
6793 -- Obj1 : Enclosing_UU_Type;
6794 -- Obj2 : Enclosing_UU_Type (1);
6795
2717634d 6796 -- [. . .] Obj1 = Obj2 [. . .]
5d09245e
AC
6797
6798 -- Generated code:
6799
6800 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6801
6802 -- A and B are the formal parameters of the equality function
6803 -- of Enclosing_UU_Type. The function always has two extra
fa1608c2
ES
6804 -- formals to capture the inferred discriminant values for
6805 -- each discriminant of the type.
5d09245e
AC
6806
6807 -- 2. Non-Unchecked_Union enclosing record:
6808
6809 -- type
6810 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6811 -- is record
6812 -- . . .
6813 -- Comp : UU_Type (Discr);
6814 -- . . .
6815 -- end Enclosing_Non_UU_Type;
6816
6817 -- Obj1 : Enclosing_Non_UU_Type;
6818 -- Obj2 : Enclosing_Non_UU_Type (1);
6819
630d30e9 6820 -- ... Obj1 = Obj2 ...
5d09245e
AC
6821
6822 -- Generated code:
6823
6824 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6825 -- obj1.discr, obj2.discr)) then
6826
6827 -- In this case we can directly reference the discriminants of
6828 -- the enclosing record.
6829
fa1608c2 6830 -- Process left operand of equality
5d09245e
AC
6831
6832 if Nkind (Lhs) = N_Selected_Component
533369aa
AC
6833 and then
6834 Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
5d09245e 6835 then
fa1608c2
ES
6836 -- If enclosing record is an Unchecked_Union, use formals
6837 -- corresponding to each discriminant. The name of the
6838 -- formal is that of the discriminant, with added suffix,
6839 -- see Exp_Ch3.Build_Record_Equality for details.
5d09245e 6840
dda38714 6841 if Is_Unchecked_Union (Scope (Entity (Selector_Name (Lhs))))
5d09245e 6842 then
fa1608c2
ES
6843 Discr :=
6844 First_Discriminant
6845 (Scope (Entity (Selector_Name (Lhs))));
6846 while Present (Discr) loop
cc6f5d75
AC
6847 Append_Elmt
6848 (Make_Identifier (Loc,
6849 Chars => New_External_Name (Chars (Discr), 'A')),
6850 To => Lhs_Discr_Vals);
fa1608c2
ES
6851 Next_Discriminant (Discr);
6852 end loop;
5d09245e 6853
fa1608c2
ES
6854 -- If enclosing record is of a non-Unchecked_Union type, it
6855 -- is possible to reference its discriminants directly.
5d09245e
AC
6856
6857 else
fa1608c2
ES
6858 Discr := First_Discriminant (Lhs_Type);
6859 while Present (Discr) loop
cc6f5d75
AC
6860 Append_Elmt
6861 (Make_Selected_Component (Loc,
6862 Prefix => Prefix (Lhs),
6863 Selector_Name =>
6864 New_Copy
6865 (Get_Discriminant_Value (Discr,
6866 Lhs_Type,
6867 Stored_Constraint (Lhs_Type)))),
6868 To => Lhs_Discr_Vals);
fa1608c2
ES
6869 Next_Discriminant (Discr);
6870 end loop;
5d09245e
AC
6871 end if;
6872
fa1608c2
ES
6873 -- Otherwise operand is on object with a constrained type.
6874 -- Infer the discriminant values from the constraint.
5d09245e
AC
6875
6876 else
fa1608c2
ES
6877
6878 Discr := First_Discriminant (Lhs_Type);
6879 while Present (Discr) loop
cc6f5d75
AC
6880 Append_Elmt
6881 (New_Copy
6882 (Get_Discriminant_Value (Discr,
fa1608c2
ES
6883 Lhs_Type,
6884 Stored_Constraint (Lhs_Type))),
cc6f5d75 6885 To => Lhs_Discr_Vals);
fa1608c2
ES
6886 Next_Discriminant (Discr);
6887 end loop;
5d09245e
AC
6888 end if;
6889
fa1608c2 6890 -- Similar processing for right operand of equality
5d09245e
AC
6891
6892 if Nkind (Rhs) = N_Selected_Component
533369aa
AC
6893 and then
6894 Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
5d09245e 6895 then
5e1c00fa 6896 if Is_Unchecked_Union
cc6f5d75 6897 (Scope (Entity (Selector_Name (Rhs))))
5d09245e 6898 then
fa1608c2
ES
6899 Discr :=
6900 First_Discriminant
6901 (Scope (Entity (Selector_Name (Rhs))));
6902 while Present (Discr) loop
cc6f5d75
AC
6903 Append_Elmt
6904 (Make_Identifier (Loc,
6905 Chars => New_External_Name (Chars (Discr), 'B')),
6906 To => Rhs_Discr_Vals);
fa1608c2
ES
6907 Next_Discriminant (Discr);
6908 end loop;
5d09245e
AC
6909
6910 else
fa1608c2
ES
6911 Discr := First_Discriminant (Rhs_Type);
6912 while Present (Discr) loop
cc6f5d75
AC
6913 Append_Elmt
6914 (Make_Selected_Component (Loc,
6915 Prefix => Prefix (Rhs),
6916 Selector_Name =>
6917 New_Copy (Get_Discriminant_Value
6918 (Discr,
6919 Rhs_Type,
6920 Stored_Constraint (Rhs_Type)))),
6921 To => Rhs_Discr_Vals);
fa1608c2
ES
6922 Next_Discriminant (Discr);
6923 end loop;
5d09245e 6924 end if;
5d09245e 6925
fa1608c2
ES
6926 else
6927 Discr := First_Discriminant (Rhs_Type);
6928 while Present (Discr) loop
cc6f5d75
AC
6929 Append_Elmt
6930 (New_Copy (Get_Discriminant_Value
6931 (Discr,
6932 Rhs_Type,
6933 Stored_Constraint (Rhs_Type))),
6934 To => Rhs_Discr_Vals);
fa1608c2
ES
6935 Next_Discriminant (Discr);
6936 end loop;
5d09245e
AC
6937 end if;
6938
fa1608c2
ES
6939 -- Now merge the list of discriminant values so that values
6940 -- of corresponding discriminants are adjacent.
6941
6942 declare
6943 Params : List_Id;
6944 L_Elmt : Elmt_Id;
6945 R_Elmt : Elmt_Id;
6946
6947 begin
6948 Params := New_List (L_Exp, R_Exp);
6949 L_Elmt := First_Elmt (Lhs_Discr_Vals);
6950 R_Elmt := First_Elmt (Rhs_Discr_Vals);
6951 while Present (L_Elmt) loop
6952 Append_To (Params, Node (L_Elmt));
6953 Append_To (Params, Node (R_Elmt));
6954 Next_Elmt (L_Elmt);
6955 Next_Elmt (R_Elmt);
6956 end loop;
6957
6958 Rewrite (N,
6959 Make_Function_Call (Loc,
e4494292 6960 Name => New_Occurrence_Of (Eq, Loc),
fa1608c2
ES
6961 Parameter_Associations => Params));
6962 end;
5d09245e
AC
6963 end;
6964
6965 -- Normal case, not an unchecked union
6966
6967 else
6968 Rewrite (N,
6969 Make_Function_Call (Loc,
e4494292 6970 Name => New_Occurrence_Of (Eq, Loc),
5d09245e
AC
6971 Parameter_Associations => New_List (L_Exp, R_Exp)));
6972 end if;
70482933
RK
6973
6974 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6975 end Build_Equality_Call;
6976
5d09245e
AC
6977 ------------------------------------
6978 -- Has_Unconstrained_UU_Component --
6979 ------------------------------------
6980
6981 function Has_Unconstrained_UU_Component
6982 (Typ : Node_Id) return Boolean
6983 is
6984 Tdef : constant Node_Id :=
57848bf7 6985 Type_Definition (Declaration_Node (Base_Type (Typ)));
5d09245e
AC
6986 Clist : Node_Id;
6987 Vpart : Node_Id;
6988
6989 function Component_Is_Unconstrained_UU
6990 (Comp : Node_Id) return Boolean;
6991 -- Determines whether the subtype of the component is an
6992 -- unconstrained Unchecked_Union.
6993
6994 function Variant_Is_Unconstrained_UU
6995 (Variant : Node_Id) return Boolean;
6996 -- Determines whether a component of the variant has an unconstrained
6997 -- Unchecked_Union subtype.
6998
6999 -----------------------------------
7000 -- Component_Is_Unconstrained_UU --
7001 -----------------------------------
7002
7003 function Component_Is_Unconstrained_UU
7004 (Comp : Node_Id) return Boolean
7005 is
7006 begin
7007 if Nkind (Comp) /= N_Component_Declaration then
7008 return False;
7009 end if;
7010
7011 declare
7012 Sindic : constant Node_Id :=
7013 Subtype_Indication (Component_Definition (Comp));
7014
7015 begin
7016 -- Unconstrained nominal type. In the case of a constraint
7017 -- present, the node kind would have been N_Subtype_Indication.
7018
7019 if Nkind (Sindic) = N_Identifier then
7020 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
7021 end if;
7022
7023 return False;
7024 end;
7025 end Component_Is_Unconstrained_UU;
7026
7027 ---------------------------------
7028 -- Variant_Is_Unconstrained_UU --
7029 ---------------------------------
7030
7031 function Variant_Is_Unconstrained_UU
7032 (Variant : Node_Id) return Boolean
7033 is
7034 Clist : constant Node_Id := Component_List (Variant);
7035
7036 begin
7037 if Is_Empty_List (Component_Items (Clist)) then
7038 return False;
7039 end if;
7040
f02b8bb8
RD
7041 -- We only need to test one component
7042
5d09245e
AC
7043 declare
7044 Comp : Node_Id := First (Component_Items (Clist));
7045
7046 begin
7047 while Present (Comp) loop
5d09245e
AC
7048 if Component_Is_Unconstrained_UU (Comp) then
7049 return True;
7050 end if;
7051
7052 Next (Comp);
7053 end loop;
7054 end;
7055
7056 -- None of the components withing the variant were of
7057 -- unconstrained Unchecked_Union type.
7058
7059 return False;
7060 end Variant_Is_Unconstrained_UU;
7061
7062 -- Start of processing for Has_Unconstrained_UU_Component
7063
7064 begin
7065 if Null_Present (Tdef) then
7066 return False;
7067 end if;
7068
7069 Clist := Component_List (Tdef);
7070 Vpart := Variant_Part (Clist);
7071
7072 -- Inspect available components
7073
7074 if Present (Component_Items (Clist)) then
7075 declare
7076 Comp : Node_Id := First (Component_Items (Clist));
7077
7078 begin
7079 while Present (Comp) loop
7080
8fc789c8 7081 -- One component is sufficient
5d09245e
AC
7082
7083 if Component_Is_Unconstrained_UU (Comp) then
7084 return True;
7085 end if;
7086
7087 Next (Comp);
7088 end loop;
7089 end;
7090 end if;
7091
7092 -- Inspect available components withing variants
7093
7094 if Present (Vpart) then
7095 declare
7096 Variant : Node_Id := First (Variants (Vpart));
7097
7098 begin
7099 while Present (Variant) loop
7100
8fc789c8 7101 -- One component within a variant is sufficient
5d09245e
AC
7102
7103 if Variant_Is_Unconstrained_UU (Variant) then
7104 return True;
7105 end if;
7106
7107 Next (Variant);
7108 end loop;
7109 end;
7110 end if;
7111
7112 -- Neither the available components, nor the components inside the
7113 -- variant parts were of an unconstrained Unchecked_Union subtype.
7114
7115 return False;
7116 end Has_Unconstrained_UU_Component;
7117
70482933
RK
7118 -- Start of processing for Expand_N_Op_Eq
7119
7120 begin
7121 Binary_Op_Validity_Checks (N);
7122
456cbfa5
AC
7123 -- Deal with private types
7124
70482933
RK
7125 if Ekind (Typl) = E_Private_Type then
7126 Typl := Underlying_Type (Typl);
70482933
RK
7127 elsif Ekind (Typl) = E_Private_Subtype then
7128 Typl := Underlying_Type (Base_Type (Typl));
f02b8bb8
RD
7129 else
7130 null;
70482933
RK
7131 end if;
7132
7133 -- It may happen in error situations that the underlying type is not
7134 -- set. The error will be detected later, here we just defend the
7135 -- expander code.
7136
7137 if No (Typl) then
7138 return;
7139 end if;
7140
7141 Typl := Base_Type (Typl);
7142
dda38714
AC
7143 -- Equality between variant records results in a call to a routine
7144 -- that has conditional tests of the discriminant value(s), and hence
7145 -- violates the No_Implicit_Conditionals restriction.
7146
7147 if Has_Variant_Part (Typl) then
7148 declare
7149 Msg : Boolean;
7150
7151 begin
7152 Check_Restriction (Msg, No_Implicit_Conditionals, N);
7153
7154 if Msg then
7155 Error_Msg_N
7156 ("\comparison of variant records tests discriminants", N);
7157 return;
7158 end if;
7159 end;
7160 end if;
7161
456cbfa5 7162 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7163 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7164
7165 Expand_Compare_Minimize_Eliminate_Overflow (N);
7166
7167 if Nkind (N) /= N_Op_Eq then
7168 return;
7169 end if;
7170
70482933
RK
7171 -- Boolean types (requiring handling of non-standard case)
7172
f02b8bb8 7173 if Is_Boolean_Type (Typl) then
70482933
RK
7174 Adjust_Condition (Left_Opnd (N));
7175 Adjust_Condition (Right_Opnd (N));
7176 Set_Etype (N, Standard_Boolean);
7177 Adjust_Result_Type (N, Typ);
7178
7179 -- Array types
7180
7181 elsif Is_Array_Type (Typl) then
7182
1033834f
RD
7183 -- If we are doing full validity checking, and it is possible for the
7184 -- array elements to be invalid then expand out array comparisons to
7185 -- make sure that we check the array elements.
fbf5a39b 7186
1033834f
RD
7187 if Validity_Check_Operands
7188 and then not Is_Known_Valid (Component_Type (Typl))
7189 then
fbf5a39b
AC
7190 declare
7191 Save_Force_Validity_Checks : constant Boolean :=
7192 Force_Validity_Checks;
7193 begin
7194 Force_Validity_Checks := True;
7195 Rewrite (N,
0da2c8ac
AC
7196 Expand_Array_Equality
7197 (N,
7198 Relocate_Node (Lhs),
7199 Relocate_Node (Rhs),
7200 Bodies,
7201 Typl));
7202 Insert_Actions (N, Bodies);
fbf5a39b
AC
7203 Analyze_And_Resolve (N, Standard_Boolean);
7204 Force_Validity_Checks := Save_Force_Validity_Checks;
7205 end;
7206
a9d8907c 7207 -- Packed case where both operands are known aligned
70482933 7208
a9d8907c
JM
7209 elsif Is_Bit_Packed_Array (Typl)
7210 and then not Is_Possibly_Unaligned_Object (Lhs)
7211 and then not Is_Possibly_Unaligned_Object (Rhs)
7212 then
70482933
RK
7213 Expand_Packed_Eq (N);
7214
5e1c00fa
RD
7215 -- Where the component type is elementary we can use a block bit
7216 -- comparison (if supported on the target) exception in the case
7217 -- of floating-point (negative zero issues require element by
7218 -- element comparison), and atomic types (where we must be sure
a9d8907c 7219 -- to load elements independently) and possibly unaligned arrays.
70482933 7220
70482933
RK
7221 elsif Is_Elementary_Type (Component_Type (Typl))
7222 and then not Is_Floating_Point_Type (Component_Type (Typl))
5e1c00fa 7223 and then not Is_Atomic (Component_Type (Typl))
a9d8907c
JM
7224 and then not Is_Possibly_Unaligned_Object (Lhs)
7225 and then not Is_Possibly_Unaligned_Object (Rhs)
fbf5a39b 7226 and then Support_Composite_Compare_On_Target
70482933
RK
7227 then
7228 null;
7229
685094bf
RD
7230 -- For composite and floating-point cases, expand equality loop to
7231 -- make sure of using proper comparisons for tagged types, and
7232 -- correctly handling the floating-point case.
70482933
RK
7233
7234 else
7235 Rewrite (N,
0da2c8ac
AC
7236 Expand_Array_Equality
7237 (N,
7238 Relocate_Node (Lhs),
7239 Relocate_Node (Rhs),
7240 Bodies,
7241 Typl));
70482933
RK
7242 Insert_Actions (N, Bodies, Suppress => All_Checks);
7243 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7244 end if;
7245
7246 -- Record Types
7247
7248 elsif Is_Record_Type (Typl) then
7249
7250 -- For tagged types, use the primitive "="
7251
7252 if Is_Tagged_Type (Typl) then
7253
0669bebe
GB
7254 -- No need to do anything else compiling under restriction
7255 -- No_Dispatching_Calls. During the semantic analysis we
7256 -- already notified such violation.
7257
7258 if Restriction_Active (No_Dispatching_Calls) then
7259 return;
7260 end if;
7261
685094bf
RD
7262 -- If this is derived from an untagged private type completed with
7263 -- a tagged type, it does not have a full view, so we use the
7264 -- primitive operations of the private type. This check should no
7265 -- longer be necessary when these types get their full views???
70482933
RK
7266
7267 if Is_Private_Type (A_Typ)
7268 and then not Is_Tagged_Type (A_Typ)
7269 and then Is_Derived_Type (A_Typ)
7270 and then No (Full_View (A_Typ))
7271 then
685094bf
RD
7272 -- Search for equality operation, checking that the operands
7273 -- have the same type. Note that we must find a matching entry,
a90bd866 7274 -- or something is very wrong.
2e071734 7275
70482933
RK
7276 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
7277
2e071734
AC
7278 while Present (Prim) loop
7279 exit when Chars (Node (Prim)) = Name_Op_Eq
7280 and then Etype (First_Formal (Node (Prim))) =
7281 Etype (Next_Formal (First_Formal (Node (Prim))))
7282 and then
7283 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7284
70482933 7285 Next_Elmt (Prim);
70482933
RK
7286 end loop;
7287
2e071734 7288 pragma Assert (Present (Prim));
70482933 7289 Op_Name := Node (Prim);
fbf5a39b
AC
7290
7291 -- Find the type's predefined equality or an overriding
3dddb11e 7292 -- user-defined equality. The reason for not simply calling
fbf5a39b 7293 -- Find_Prim_Op here is that there may be a user-defined
3dddb11e
ES
7294 -- overloaded equality op that precedes the equality that we
7295 -- want, so we have to explicitly search (e.g., there could be
7296 -- an equality with two different parameter types).
fbf5a39b 7297
70482933 7298 else
fbf5a39b 7299 if Is_Class_Wide_Type (Typl) then
3dddb11e 7300 Typl := Find_Specific_Type (Typl);
fbf5a39b
AC
7301 end if;
7302
7303 Prim := First_Elmt (Primitive_Operations (Typl));
fbf5a39b
AC
7304 while Present (Prim) loop
7305 exit when Chars (Node (Prim)) = Name_Op_Eq
7306 and then Etype (First_Formal (Node (Prim))) =
7307 Etype (Next_Formal (First_Formal (Node (Prim))))
12e0c41c
AC
7308 and then
7309 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
fbf5a39b
AC
7310
7311 Next_Elmt (Prim);
fbf5a39b
AC
7312 end loop;
7313
2e071734 7314 pragma Assert (Present (Prim));
fbf5a39b 7315 Op_Name := Node (Prim);
70482933
RK
7316 end if;
7317
7318 Build_Equality_Call (Op_Name);
7319
5d09245e
AC
7320 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7321 -- predefined equality operator for a type which has a subcomponent
7322 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7323
7324 elsif Has_Unconstrained_UU_Component (Typl) then
7325 Insert_Action (N,
7326 Make_Raise_Program_Error (Loc,
7327 Reason => PE_Unchecked_Union_Restriction));
7328
7329 -- Prevent Gigi from generating incorrect code by rewriting the
6cb3037c 7330 -- equality as a standard False. (is this documented somewhere???)
5d09245e
AC
7331
7332 Rewrite (N,
7333 New_Occurrence_Of (Standard_False, Loc));
7334
7335 elsif Is_Unchecked_Union (Typl) then
7336
7337 -- If we can infer the discriminants of the operands, we make a
7338 -- call to the TSS equality function.
7339
7340 if Has_Inferable_Discriminants (Lhs)
7341 and then
7342 Has_Inferable_Discriminants (Rhs)
7343 then
7344 Build_Equality_Call
7345 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7346
7347 else
7348 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7349 -- the predefined equality operator for an Unchecked_Union type
7350 -- if either of the operands lack inferable discriminants.
7351
7352 Insert_Action (N,
7353 Make_Raise_Program_Error (Loc,
7354 Reason => PE_Unchecked_Union_Restriction));
7355
29ad9ea5
AC
7356 -- Emit a warning on source equalities only, otherwise the
7357 -- message may appear out of place due to internal use. The
7358 -- warning is unconditional because it is required by the
7359 -- language.
7360
7361 if Comes_From_Source (N) then
7362 Error_Msg_N
facfa165 7363 ("Unchecked_Union discriminants cannot be determined??",
29ad9ea5
AC
7364 N);
7365 Error_Msg_N
facfa165 7366 ("\Program_Error will be raised for equality operation??",
29ad9ea5
AC
7367 N);
7368 end if;
7369
5d09245e 7370 -- Prevent Gigi from generating incorrect code by rewriting
6cb3037c 7371 -- the equality as a standard False (documented where???).
5d09245e
AC
7372
7373 Rewrite (N,
7374 New_Occurrence_Of (Standard_False, Loc));
5d09245e
AC
7375 end if;
7376
70482933
RK
7377 -- If a type support function is present (for complex cases), use it
7378
fbf5a39b
AC
7379 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
7380 Build_Equality_Call
7381 (TSS (Root_Type (Typl), TSS_Composite_Equality));
70482933 7382
8d80ff64
AC
7383 -- When comparing two Bounded_Strings, use the primitive equality of
7384 -- the root Super_String type.
7385
7386 elsif Is_Bounded_String (Typl) then
7387 Prim :=
7388 First_Elmt (Collect_Primitive_Operations (Root_Type (Typl)));
7389
7390 while Present (Prim) loop
7391 exit when Chars (Node (Prim)) = Name_Op_Eq
7392 and then Etype (First_Formal (Node (Prim))) =
7393 Etype (Next_Formal (First_Formal (Node (Prim))))
7394 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7395
7396 Next_Elmt (Prim);
7397 end loop;
7398
7399 -- A Super_String type should always have a primitive equality
7400
7401 pragma Assert (Present (Prim));
7402 Build_Equality_Call (Node (Prim));
7403
70482933 7404 -- Otherwise expand the component by component equality. Note that
8fc789c8 7405 -- we never use block-bit comparisons for records, because of the
70482933
RK
7406 -- problems with gaps. The backend will often be able to recombine
7407 -- the separate comparisons that we generate here.
7408
7409 else
7410 Remove_Side_Effects (Lhs);
7411 Remove_Side_Effects (Rhs);
7412 Rewrite (N,
7413 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
7414
7415 Insert_Actions (N, Bodies, Suppress => All_Checks);
7416 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7417 end if;
7418 end if;
7419
d26dc4b5 7420 -- Test if result is known at compile time
70482933 7421
d26dc4b5 7422 Rewrite_Comparison (N);
f02b8bb8 7423
0580d807 7424 Optimize_Length_Comparison (N);
70482933
RK
7425 end Expand_N_Op_Eq;
7426
7427 -----------------------
7428 -- Expand_N_Op_Expon --
7429 -----------------------
7430
7431 procedure Expand_N_Op_Expon (N : Node_Id) is
7432 Loc : constant Source_Ptr := Sloc (N);
7433 Typ : constant Entity_Id := Etype (N);
7434 Rtyp : constant Entity_Id := Root_Type (Typ);
7435 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
07fc65c4 7436 Bastyp : constant Node_Id := Etype (Base);
70482933
RK
7437 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
7438 Exptyp : constant Entity_Id := Etype (Exp);
7439 Ovflo : constant Boolean := Do_Overflow_Check (N);
7440 Expv : Uint;
70482933
RK
7441 Temp : Node_Id;
7442 Rent : RE_Id;
7443 Ent : Entity_Id;
fbf5a39b 7444 Etyp : Entity_Id;
cb42ba5d 7445 Xnode : Node_Id;
70482933
RK
7446
7447 begin
7448 Binary_Op_Validity_Checks (N);
7449
5114f3ff 7450 -- CodePeer wants to see the unexpanded N_Op_Expon node
8f66cda7 7451
5114f3ff 7452 if CodePeer_Mode then
8f66cda7
AC
7453 return;
7454 end if;
7455
685094bf
RD
7456 -- If either operand is of a private type, then we have the use of an
7457 -- intrinsic operator, and we get rid of the privateness, by using root
7458 -- types of underlying types for the actual operation. Otherwise the
7459 -- private types will cause trouble if we expand multiplications or
7460 -- shifts etc. We also do this transformation if the result type is
7461 -- different from the base type.
07fc65c4
GB
7462
7463 if Is_Private_Type (Etype (Base))
8f66cda7
AC
7464 or else Is_Private_Type (Typ)
7465 or else Is_Private_Type (Exptyp)
7466 or else Rtyp /= Root_Type (Bastyp)
07fc65c4
GB
7467 then
7468 declare
7469 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
7470 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
07fc65c4
GB
7471 begin
7472 Rewrite (N,
7473 Unchecked_Convert_To (Typ,
7474 Make_Op_Expon (Loc,
7475 Left_Opnd => Unchecked_Convert_To (Bt, Base),
7476 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
7477 Analyze_And_Resolve (N, Typ);
7478 return;
7479 end;
7480 end if;
7481
b6b5cca8 7482 -- Check for MINIMIZED/ELIMINATED overflow mode
6cb3037c 7483
b6b5cca8 7484 if Minimized_Eliminated_Overflow_Check (N) then
6cb3037c
AC
7485 Apply_Arithmetic_Overflow_Check (N);
7486 return;
7487 end if;
7488
cb42ba5d
AC
7489 -- Test for case of known right argument where we can replace the
7490 -- exponentiation by an equivalent expression using multiplication.
70482933 7491
6c3c671e
AC
7492 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7493 -- configurable run-time mode, we may not have the exponentiation
7494 -- routine available, and we don't want the legality of the program
7495 -- to depend on how clever the compiler is in knowing values.
7496
7497 if CRT_Safe_Compile_Time_Known_Value (Exp) then
70482933
RK
7498 Expv := Expr_Value (Exp);
7499
7500 -- We only fold small non-negative exponents. You might think we
7501 -- could fold small negative exponents for the real case, but we
7502 -- can't because we are required to raise Constraint_Error for
7503 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7504 -- See ACVC test C4A012B.
7505
7506 if Expv >= 0 and then Expv <= 4 then
7507
7508 -- X ** 0 = 1 (or 1.0)
7509
7510 if Expv = 0 then
abcbd24c
ST
7511
7512 -- Call Remove_Side_Effects to ensure that any side effects
7513 -- in the ignored left operand (in particular function calls
7514 -- to user defined functions) are properly executed.
7515
7516 Remove_Side_Effects (Base);
7517
70482933
RK
7518 if Ekind (Typ) in Integer_Kind then
7519 Xnode := Make_Integer_Literal (Loc, Intval => 1);
7520 else
7521 Xnode := Make_Real_Literal (Loc, Ureal_1);
7522 end if;
7523
7524 -- X ** 1 = X
7525
7526 elsif Expv = 1 then
7527 Xnode := Base;
7528
7529 -- X ** 2 = X * X
7530
7531 elsif Expv = 2 then
7532 Xnode :=
7533 Make_Op_Multiply (Loc,
7534 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b 7535 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
7536
7537 -- X ** 3 = X * X * X
7538
7539 elsif Expv = 3 then
7540 Xnode :=
7541 Make_Op_Multiply (Loc,
7542 Left_Opnd =>
7543 Make_Op_Multiply (Loc,
7544 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b
AC
7545 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
7546 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
7547
7548 -- X ** 4 ->
cb42ba5d
AC
7549
7550 -- do
70482933 7551 -- En : constant base'type := base * base;
cb42ba5d 7552 -- in
70482933
RK
7553 -- En * En
7554
cb42ba5d
AC
7555 else
7556 pragma Assert (Expv = 4);
191fcb3a 7557 Temp := Make_Temporary (Loc, 'E', Base);
70482933 7558
cb42ba5d
AC
7559 Xnode :=
7560 Make_Expression_With_Actions (Loc,
7561 Actions => New_List (
7562 Make_Object_Declaration (Loc,
7563 Defining_Identifier => Temp,
7564 Constant_Present => True,
e4494292 7565 Object_Definition => New_Occurrence_Of (Typ, Loc),
cb42ba5d
AC
7566 Expression =>
7567 Make_Op_Multiply (Loc,
7568 Left_Opnd =>
7569 Duplicate_Subexpr (Base),
7570 Right_Opnd =>
7571 Duplicate_Subexpr_No_Checks (Base)))),
7572
70482933
RK
7573 Expression =>
7574 Make_Op_Multiply (Loc,
e4494292
RD
7575 Left_Opnd => New_Occurrence_Of (Temp, Loc),
7576 Right_Opnd => New_Occurrence_Of (Temp, Loc)));
70482933
RK
7577 end if;
7578
7579 Rewrite (N, Xnode);
7580 Analyze_And_Resolve (N, Typ);
7581 return;
7582 end if;
7583 end if;
7584
7585 -- Case of (2 ** expression) appearing as an argument of an integer
7586 -- multiplication, or as the right argument of a division of a non-
fbf5a39b 7587 -- negative integer. In such cases we leave the node untouched, setting
70482933
RK
7588 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7589 -- of the higher level node converts it into a shift.
7590
51bf9bdf
AC
7591 -- Another case is 2 ** N in any other context. We simply convert
7592 -- this to 1 * 2 ** N, and then the above transformation applies.
7593
685094bf
RD
7594 -- Note: this transformation is not applicable for a modular type with
7595 -- a non-binary modulus in the multiplication case, since we get a wrong
7596 -- result if the shift causes an overflow before the modular reduction.
7597
8b4230c8
AC
7598 -- Note: we used to check that Exptyp was an unsigned type. But that is
7599 -- an unnecessary check, since if Exp is negative, we have a run-time
7600 -- error that is either caught (so we get the right result) or we have
7601 -- suppressed the check, in which case the code is erroneous anyway.
7602
70482933 7603 if Nkind (Base) = N_Integer_Literal
6c3c671e
AC
7604 and then CRT_Safe_Compile_Time_Known_Value (Base)
7605 and then Expr_Value (Base) = Uint_2
70482933
RK
7606 and then Is_Integer_Type (Root_Type (Exptyp))
7607 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
70482933 7608 and then not Ovflo
70482933 7609 then
51bf9bdf 7610 -- First the multiply and divide cases
70482933 7611
51bf9bdf
AC
7612 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
7613 declare
7614 P : constant Node_Id := Parent (N);
7615 L : constant Node_Id := Left_Opnd (P);
7616 R : constant Node_Id := Right_Opnd (P);
7617
7618 begin
7619 if (Nkind (P) = N_Op_Multiply
7620 and then not Non_Binary_Modulus (Typ)
7621 and then
7622 ((Is_Integer_Type (Etype (L)) and then R = N)
7623 or else
7624 (Is_Integer_Type (Etype (R)) and then L = N))
7625 and then not Do_Overflow_Check (P))
7626 or else
7627 (Nkind (P) = N_Op_Divide
533369aa
AC
7628 and then Is_Integer_Type (Etype (L))
7629 and then Is_Unsigned_Type (Etype (L))
7630 and then R = N
7631 and then not Do_Overflow_Check (P))
51bf9bdf
AC
7632 then
7633 Set_Is_Power_Of_2_For_Shift (N);
7634 return;
7635 end if;
7636 end;
7637
7638 -- Now the other cases
7639
7640 elsif not Non_Binary_Modulus (Typ) then
7641 Rewrite (N,
7642 Make_Op_Multiply (Loc,
7643 Left_Opnd => Make_Integer_Literal (Loc, 1),
7644 Right_Opnd => Relocate_Node (N)));
7645 Analyze_And_Resolve (N, Typ);
7646 return;
7647 end if;
70482933
RK
7648 end if;
7649
07fc65c4
GB
7650 -- Fall through if exponentiation must be done using a runtime routine
7651
07fc65c4 7652 -- First deal with modular case
70482933
RK
7653
7654 if Is_Modular_Integer_Type (Rtyp) then
7655
7656 -- Non-binary case, we call the special exponentiation routine for
7657 -- the non-binary case, converting the argument to Long_Long_Integer
7658 -- and passing the modulus value. Then the result is converted back
7659 -- to the base type.
7660
7661 if Non_Binary_Modulus (Rtyp) then
70482933
RK
7662 Rewrite (N,
7663 Convert_To (Typ,
7664 Make_Function_Call (Loc,
cc6f5d75
AC
7665 Name =>
7666 New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
70482933 7667 Parameter_Associations => New_List (
e9daba51 7668 Convert_To (RTE (RE_Unsigned), Base),
70482933
RK
7669 Make_Integer_Literal (Loc, Modulus (Rtyp)),
7670 Exp))));
7671
685094bf
RD
7672 -- Binary case, in this case, we call one of two routines, either the
7673 -- unsigned integer case, or the unsigned long long integer case,
7674 -- with a final "and" operation to do the required mod.
70482933
RK
7675
7676 else
7677 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
7678 Ent := RTE (RE_Exp_Unsigned);
7679 else
7680 Ent := RTE (RE_Exp_Long_Long_Unsigned);
7681 end if;
7682
7683 Rewrite (N,
7684 Convert_To (Typ,
7685 Make_Op_And (Loc,
cc6f5d75 7686 Left_Opnd =>
70482933 7687 Make_Function_Call (Loc,
cc6f5d75 7688 Name => New_Occurrence_Of (Ent, Loc),
70482933
RK
7689 Parameter_Associations => New_List (
7690 Convert_To (Etype (First_Formal (Ent)), Base),
7691 Exp)),
7692 Right_Opnd =>
7693 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
7694
7695 end if;
7696
7697 -- Common exit point for modular type case
7698
7699 Analyze_And_Resolve (N, Typ);
7700 return;
7701
fbf5a39b
AC
7702 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7703 -- It is not worth having routines for Short_[Short_]Integer, since for
7704 -- most machines it would not help, and it would generate more code that
dfd99a80 7705 -- might need certification when a certified run time is required.
70482933 7706
fbf5a39b 7707 -- In the integer cases, we have two routines, one for when overflow
dfd99a80
TQ
7708 -- checks are required, and one when they are not required, since there
7709 -- is a real gain in omitting checks on many machines.
70482933 7710
fbf5a39b
AC
7711 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
7712 or else (Rtyp = Base_Type (Standard_Long_Integer)
761f7dcb
AC
7713 and then
7714 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
7715 or else Rtyp = Universal_Integer
70482933 7716 then
fbf5a39b
AC
7717 Etyp := Standard_Long_Long_Integer;
7718
ebb6b0bd
AC
7719 -- Overflow checking is the only choice on the AAMP target, where
7720 -- arithmetic instructions check overflow automatically, so only
7721 -- one version of the exponentiation unit is needed.
7722
1037b0f4 7723 if Ovflo or AAMP_On_Target then
70482933
RK
7724 Rent := RE_Exp_Long_Long_Integer;
7725 else
7726 Rent := RE_Exn_Long_Long_Integer;
7727 end if;
7728
fbf5a39b
AC
7729 elsif Is_Signed_Integer_Type (Rtyp) then
7730 Etyp := Standard_Integer;
70482933 7731
ebb6b0bd
AC
7732 -- Overflow checking is the only choice on the AAMP target, where
7733 -- arithmetic instructions check overflow automatically, so only
7734 -- one version of the exponentiation unit is needed.
7735
1037b0f4 7736 if Ovflo or AAMP_On_Target then
fbf5a39b 7737 Rent := RE_Exp_Integer;
70482933 7738 else
fbf5a39b 7739 Rent := RE_Exn_Integer;
70482933 7740 end if;
fbf5a39b
AC
7741
7742 -- Floating-point cases, always done using Long_Long_Float. We do not
7743 -- need separate routines for the overflow case here, since in the case
7744 -- of floating-point, we generate infinities anyway as a rule (either
7745 -- that or we automatically trap overflow), and if there is an infinity
7746 -- generated and a range check is required, the check will fail anyway.
7747
7748 else
7749 pragma Assert (Is_Floating_Point_Type (Rtyp));
7750 Etyp := Standard_Long_Long_Float;
7751 Rent := RE_Exn_Long_Long_Float;
70482933
RK
7752 end if;
7753
7754 -- Common processing for integer cases and floating-point cases.
fbf5a39b 7755 -- If we are in the right type, we can call runtime routine directly
70482933 7756
fbf5a39b 7757 if Typ = Etyp
70482933
RK
7758 and then Rtyp /= Universal_Integer
7759 and then Rtyp /= Universal_Real
7760 then
7761 Rewrite (N,
7762 Make_Function_Call (Loc,
e4494292 7763 Name => New_Occurrence_Of (RTE (Rent), Loc),
70482933
RK
7764 Parameter_Associations => New_List (Base, Exp)));
7765
7766 -- Otherwise we have to introduce conversions (conversions are also
fbf5a39b 7767 -- required in the universal cases, since the runtime routine is
1147c704 7768 -- typed using one of the standard types).
70482933
RK
7769
7770 else
7771 Rewrite (N,
7772 Convert_To (Typ,
7773 Make_Function_Call (Loc,
e4494292 7774 Name => New_Occurrence_Of (RTE (Rent), Loc),
70482933 7775 Parameter_Associations => New_List (
fbf5a39b 7776 Convert_To (Etyp, Base),
70482933
RK
7777 Exp))));
7778 end if;
7779
7780 Analyze_And_Resolve (N, Typ);
7781 return;
7782
fbf5a39b
AC
7783 exception
7784 when RE_Not_Available =>
7785 return;
70482933
RK
7786 end Expand_N_Op_Expon;
7787
7788 --------------------
7789 -- Expand_N_Op_Ge --
7790 --------------------
7791
7792 procedure Expand_N_Op_Ge (N : Node_Id) is
7793 Typ : constant Entity_Id := Etype (N);
7794 Op1 : constant Node_Id := Left_Opnd (N);
7795 Op2 : constant Node_Id := Right_Opnd (N);
7796 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7797
7798 begin
7799 Binary_Op_Validity_Checks (N);
7800
456cbfa5 7801 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7802 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7803
7804 Expand_Compare_Minimize_Eliminate_Overflow (N);
7805
7806 if Nkind (N) /= N_Op_Ge then
7807 return;
7808 end if;
7809
7810 -- Array type case
7811
f02b8bb8 7812 if Is_Array_Type (Typ1) then
70482933
RK
7813 Expand_Array_Comparison (N);
7814 return;
7815 end if;
7816
456cbfa5
AC
7817 -- Deal with boolean operands
7818
70482933
RK
7819 if Is_Boolean_Type (Typ1) then
7820 Adjust_Condition (Op1);
7821 Adjust_Condition (Op2);
7822 Set_Etype (N, Standard_Boolean);
7823 Adjust_Result_Type (N, Typ);
7824 end if;
7825
7826 Rewrite_Comparison (N);
f02b8bb8 7827
0580d807 7828 Optimize_Length_Comparison (N);
70482933
RK
7829 end Expand_N_Op_Ge;
7830
7831 --------------------
7832 -- Expand_N_Op_Gt --
7833 --------------------
7834
7835 procedure Expand_N_Op_Gt (N : Node_Id) is
7836 Typ : constant Entity_Id := Etype (N);
7837 Op1 : constant Node_Id := Left_Opnd (N);
7838 Op2 : constant Node_Id := Right_Opnd (N);
7839 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7840
7841 begin
7842 Binary_Op_Validity_Checks (N);
7843
456cbfa5 7844 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7845 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7846
7847 Expand_Compare_Minimize_Eliminate_Overflow (N);
7848
7849 if Nkind (N) /= N_Op_Gt then
7850 return;
7851 end if;
7852
7853 -- Deal with array type operands
7854
f02b8bb8 7855 if Is_Array_Type (Typ1) then
70482933
RK
7856 Expand_Array_Comparison (N);
7857 return;
7858 end if;
7859
456cbfa5
AC
7860 -- Deal with boolean type operands
7861
70482933
RK
7862 if Is_Boolean_Type (Typ1) then
7863 Adjust_Condition (Op1);
7864 Adjust_Condition (Op2);
7865 Set_Etype (N, Standard_Boolean);
7866 Adjust_Result_Type (N, Typ);
7867 end if;
7868
7869 Rewrite_Comparison (N);
f02b8bb8 7870
0580d807 7871 Optimize_Length_Comparison (N);
70482933
RK
7872 end Expand_N_Op_Gt;
7873
7874 --------------------
7875 -- Expand_N_Op_Le --
7876 --------------------
7877
7878 procedure Expand_N_Op_Le (N : Node_Id) is
7879 Typ : constant Entity_Id := Etype (N);
7880 Op1 : constant Node_Id := Left_Opnd (N);
7881 Op2 : constant Node_Id := Right_Opnd (N);
7882 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7883
7884 begin
7885 Binary_Op_Validity_Checks (N);
7886
456cbfa5 7887 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7888 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7889
7890 Expand_Compare_Minimize_Eliminate_Overflow (N);
7891
7892 if Nkind (N) /= N_Op_Le then
7893 return;
7894 end if;
7895
7896 -- Deal with array type operands
7897
f02b8bb8 7898 if Is_Array_Type (Typ1) then
70482933
RK
7899 Expand_Array_Comparison (N);
7900 return;
7901 end if;
7902
456cbfa5
AC
7903 -- Deal with Boolean type operands
7904
70482933
RK
7905 if Is_Boolean_Type (Typ1) then
7906 Adjust_Condition (Op1);
7907 Adjust_Condition (Op2);
7908 Set_Etype (N, Standard_Boolean);
7909 Adjust_Result_Type (N, Typ);
7910 end if;
7911
7912 Rewrite_Comparison (N);
f02b8bb8 7913
0580d807 7914 Optimize_Length_Comparison (N);
70482933
RK
7915 end Expand_N_Op_Le;
7916
7917 --------------------
7918 -- Expand_N_Op_Lt --
7919 --------------------
7920
7921 procedure Expand_N_Op_Lt (N : Node_Id) is
7922 Typ : constant Entity_Id := Etype (N);
7923 Op1 : constant Node_Id := Left_Opnd (N);
7924 Op2 : constant Node_Id := Right_Opnd (N);
7925 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7926
7927 begin
7928 Binary_Op_Validity_Checks (N);
7929
456cbfa5 7930 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7931 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7932
7933 Expand_Compare_Minimize_Eliminate_Overflow (N);
7934
7935 if Nkind (N) /= N_Op_Lt then
7936 return;
7937 end if;
7938
7939 -- Deal with array type operands
7940
f02b8bb8 7941 if Is_Array_Type (Typ1) then
70482933
RK
7942 Expand_Array_Comparison (N);
7943 return;
7944 end if;
7945
456cbfa5
AC
7946 -- Deal with Boolean type operands
7947
70482933
RK
7948 if Is_Boolean_Type (Typ1) then
7949 Adjust_Condition (Op1);
7950 Adjust_Condition (Op2);
7951 Set_Etype (N, Standard_Boolean);
7952 Adjust_Result_Type (N, Typ);
7953 end if;
7954
7955 Rewrite_Comparison (N);
f02b8bb8 7956
0580d807 7957 Optimize_Length_Comparison (N);
70482933
RK
7958 end Expand_N_Op_Lt;
7959
7960 -----------------------
7961 -- Expand_N_Op_Minus --
7962 -----------------------
7963
7964 procedure Expand_N_Op_Minus (N : Node_Id) is
7965 Loc : constant Source_Ptr := Sloc (N);
7966 Typ : constant Entity_Id := Etype (N);
7967
7968 begin
7969 Unary_Op_Validity_Checks (N);
7970
b6b5cca8
AC
7971 -- Check for MINIMIZED/ELIMINATED overflow mode
7972
7973 if Minimized_Eliminated_Overflow_Check (N) then
7974 Apply_Arithmetic_Overflow_Check (N);
7975 return;
7976 end if;
7977
07fc65c4 7978 if not Backend_Overflow_Checks_On_Target
70482933
RK
7979 and then Is_Signed_Integer_Type (Etype (N))
7980 and then Do_Overflow_Check (N)
7981 then
7982 -- Software overflow checking expands -expr into (0 - expr)
7983
7984 Rewrite (N,
7985 Make_Op_Subtract (Loc,
7986 Left_Opnd => Make_Integer_Literal (Loc, 0),
7987 Right_Opnd => Right_Opnd (N)));
7988
7989 Analyze_And_Resolve (N, Typ);
70482933
RK
7990 end if;
7991 end Expand_N_Op_Minus;
7992
7993 ---------------------
7994 -- Expand_N_Op_Mod --
7995 ---------------------
7996
7997 procedure Expand_N_Op_Mod (N : Node_Id) is
7998 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 7999 Typ : constant Entity_Id := Etype (N);
70482933
RK
8000 DDC : constant Boolean := Do_Division_Check (N);
8001
b6b5cca8
AC
8002 Left : Node_Id;
8003 Right : Node_Id;
8004
70482933
RK
8005 LLB : Uint;
8006 Llo : Uint;
8007 Lhi : Uint;
8008 LOK : Boolean;
8009 Rlo : Uint;
8010 Rhi : Uint;
8011 ROK : Boolean;
8012
1033834f
RD
8013 pragma Warnings (Off, Lhi);
8014
70482933
RK
8015 begin
8016 Binary_Op_Validity_Checks (N);
8017
b6b5cca8
AC
8018 -- Check for MINIMIZED/ELIMINATED overflow mode
8019
8020 if Minimized_Eliminated_Overflow_Check (N) then
8021 Apply_Arithmetic_Overflow_Check (N);
8022 return;
8023 end if;
8024
9a6dc470
RD
8025 if Is_Integer_Type (Etype (N)) then
8026 Apply_Divide_Checks (N);
b6b5cca8
AC
8027
8028 -- All done if we don't have a MOD any more, which can happen as a
8029 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8030
8031 if Nkind (N) /= N_Op_Mod then
8032 return;
8033 end if;
9a6dc470
RD
8034 end if;
8035
b6b5cca8
AC
8036 -- Proceed with expansion of mod operator
8037
8038 Left := Left_Opnd (N);
8039 Right := Right_Opnd (N);
8040
5d5e9775
AC
8041 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
8042 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
70482933 8043
2c9f8c0a
AC
8044 -- Convert mod to rem if operands are both known to be non-negative, or
8045 -- both known to be non-positive (these are the cases in which rem and
8046 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8047 -- likely that this will improve the quality of code, (the operation now
8048 -- corresponds to the hardware remainder), and it does not seem likely
8049 -- that it could be harmful. It also avoids some cases of the elaborate
8050 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8051
8052 if (LOK and ROK)
8053 and then ((Llo >= 0 and then Rlo >= 0)
cc6f5d75 8054 or else
2c9f8c0a
AC
8055 (Lhi <= 0 and then Rhi <= 0))
8056 then
70482933
RK
8057 Rewrite (N,
8058 Make_Op_Rem (Sloc (N),
8059 Left_Opnd => Left_Opnd (N),
8060 Right_Opnd => Right_Opnd (N)));
8061
685094bf
RD
8062 -- Instead of reanalyzing the node we do the analysis manually. This
8063 -- avoids anomalies when the replacement is done in an instance and
8064 -- is epsilon more efficient.
70482933
RK
8065
8066 Set_Entity (N, Standard_Entity (S_Op_Rem));
fbf5a39b 8067 Set_Etype (N, Typ);
70482933
RK
8068 Set_Do_Division_Check (N, DDC);
8069 Expand_N_Op_Rem (N);
8070 Set_Analyzed (N);
2c9f8c0a 8071 return;
70482933
RK
8072
8073 -- Otherwise, normal mod processing
8074
8075 else
fbf5a39b
AC
8076 -- Apply optimization x mod 1 = 0. We don't really need that with
8077 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
8078 -- certainly harmless.
8079
8080 if Is_Integer_Type (Etype (N))
8081 and then Compile_Time_Known_Value (Right)
8082 and then Expr_Value (Right) = Uint_1
8083 then
abcbd24c
ST
8084 -- Call Remove_Side_Effects to ensure that any side effects in
8085 -- the ignored left operand (in particular function calls to
8086 -- user defined functions) are properly executed.
8087
8088 Remove_Side_Effects (Left);
8089
fbf5a39b
AC
8090 Rewrite (N, Make_Integer_Literal (Loc, 0));
8091 Analyze_And_Resolve (N, Typ);
8092 return;
8093 end if;
8094
2c9f8c0a
AC
8095 -- If we still have a mod operator and we are in Modify_Tree_For_C
8096 -- mode, and we have a signed integer type, then here is where we do
8097 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8098 -- for the special handling of the annoying case of largest negative
8099 -- number mod minus one.
8100
8101 if Nkind (N) = N_Op_Mod
8102 and then Is_Signed_Integer_Type (Typ)
8103 and then Modify_Tree_For_C
8104 then
8105 -- In the general case, we expand A mod B as
8106
8107 -- Tnn : constant typ := A rem B;
8108 -- ..
8109 -- (if (A >= 0) = (B >= 0) then Tnn
8110 -- elsif Tnn = 0 then 0
8111 -- else Tnn + B)
8112
8113 -- The comparison can be written simply as A >= 0 if we know that
8114 -- B >= 0 which is a very common case.
8115
8116 -- An important optimization is when B is known at compile time
8117 -- to be 2**K for some constant. In this case we can simply AND
8118 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8119 -- and that works for both the positive and negative cases.
8120
8121 declare
8122 P2 : constant Nat := Power_Of_Two (Right);
8123
8124 begin
8125 if P2 /= 0 then
8126 Rewrite (N,
8127 Unchecked_Convert_To (Typ,
8128 Make_Op_And (Loc,
8129 Left_Opnd =>
8130 Unchecked_Convert_To
8131 (Corresponding_Unsigned_Type (Typ), Left),
8132 Right_Opnd =>
8133 Make_Integer_Literal (Loc, 2 ** P2 - 1))));
8134 Analyze_And_Resolve (N, Typ);
8135 return;
8136 end if;
8137 end;
8138
8139 -- Here for the full rewrite
8140
8141 declare
8142 Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
8143 Cmp : Node_Id;
8144
8145 begin
8146 Cmp :=
8147 Make_Op_Ge (Loc,
8148 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
8149 Right_Opnd => Make_Integer_Literal (Loc, 0));
8150
8151 if not LOK or else Rlo < 0 then
8152 Cmp :=
8153 Make_Op_Eq (Loc,
8154 Left_Opnd => Cmp,
8155 Right_Opnd =>
8156 Make_Op_Ge (Loc,
8157 Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
8158 Right_Opnd => Make_Integer_Literal (Loc, 0)));
8159 end if;
8160
8161 Insert_Action (N,
8162 Make_Object_Declaration (Loc,
8163 Defining_Identifier => Tnn,
8164 Constant_Present => True,
8165 Object_Definition => New_Occurrence_Of (Typ, Loc),
8166 Expression =>
8167 Make_Op_Rem (Loc,
8168 Left_Opnd => Left,
8169 Right_Opnd => Right)));
8170
8171 Rewrite (N,
8172 Make_If_Expression (Loc,
8173 Expressions => New_List (
8174 Cmp,
8175 New_Occurrence_Of (Tnn, Loc),
8176 Make_If_Expression (Loc,
8177 Is_Elsif => True,
8178 Expressions => New_List (
8179 Make_Op_Eq (Loc,
8180 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8181 Right_Opnd => Make_Integer_Literal (Loc, 0)),
8182 Make_Integer_Literal (Loc, 0),
8183 Make_Op_Add (Loc,
8184 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8185 Right_Opnd =>
8186 Duplicate_Subexpr_No_Checks (Right)))))));
8187
8188 Analyze_And_Resolve (N, Typ);
8189 return;
8190 end;
8191 end if;
8192
8193 -- Deal with annoying case of largest negative number mod minus one.
8194 -- Gigi may not handle this case correctly, because on some targets,
8195 -- the mod value is computed using a divide instruction which gives
8196 -- an overflow trap for this case.
b9daa96e
AC
8197
8198 -- It would be a bit more efficient to figure out which targets
8199 -- this is really needed for, but in practice it is reasonable
8200 -- to do the following special check in all cases, since it means
8201 -- we get a clearer message, and also the overhead is minimal given
8202 -- that division is expensive in any case.
70482933 8203
685094bf
RD
8204 -- In fact the check is quite easy, if the right operand is -1, then
8205 -- the mod value is always 0, and we can just ignore the left operand
8206 -- completely in this case.
70482933 8207
9a6dc470
RD
8208 -- This only applies if we still have a mod operator. Skip if we
8209 -- have already rewritten this (e.g. in the case of eliminated
8210 -- overflow checks which have driven us into bignum mode).
fbf5a39b 8211
9a6dc470 8212 if Nkind (N) = N_Op_Mod then
70482933 8213
9a6dc470
RD
8214 -- The operand type may be private (e.g. in the expansion of an
8215 -- intrinsic operation) so we must use the underlying type to get
8216 -- the bounds, and convert the literals explicitly.
70482933 8217
9a6dc470
RD
8218 LLB :=
8219 Expr_Value
8220 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
8221
8222 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
761f7dcb 8223 and then ((not LOK) or else (Llo = LLB))
9a6dc470
RD
8224 then
8225 Rewrite (N,
9b16cb57 8226 Make_If_Expression (Loc,
9a6dc470
RD
8227 Expressions => New_List (
8228 Make_Op_Eq (Loc,
8229 Left_Opnd => Duplicate_Subexpr (Right),
8230 Right_Opnd =>
8231 Unchecked_Convert_To (Typ,
8232 Make_Integer_Literal (Loc, -1))),
8233 Unchecked_Convert_To (Typ,
8234 Make_Integer_Literal (Loc, Uint_0)),
8235 Relocate_Node (N))));
8236
8237 Set_Analyzed (Next (Next (First (Expressions (N)))));
8238 Analyze_And_Resolve (N, Typ);
8239 end if;
70482933
RK
8240 end if;
8241 end if;
8242 end Expand_N_Op_Mod;
8243
8244 --------------------------
8245 -- Expand_N_Op_Multiply --
8246 --------------------------
8247
8248 procedure Expand_N_Op_Multiply (N : Node_Id) is
abcbd24c
ST
8249 Loc : constant Source_Ptr := Sloc (N);
8250 Lop : constant Node_Id := Left_Opnd (N);
8251 Rop : constant Node_Id := Right_Opnd (N);
fbf5a39b 8252
abcbd24c 8253 Lp2 : constant Boolean :=
533369aa 8254 Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
abcbd24c 8255 Rp2 : constant Boolean :=
533369aa 8256 Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
fbf5a39b 8257
70482933
RK
8258 Ltyp : constant Entity_Id := Etype (Lop);
8259 Rtyp : constant Entity_Id := Etype (Rop);
8260 Typ : Entity_Id := Etype (N);
8261
8262 begin
8263 Binary_Op_Validity_Checks (N);
8264
b6b5cca8
AC
8265 -- Check for MINIMIZED/ELIMINATED overflow mode
8266
8267 if Minimized_Eliminated_Overflow_Check (N) then
8268 Apply_Arithmetic_Overflow_Check (N);
8269 return;
8270 end if;
8271
70482933
RK
8272 -- Special optimizations for integer types
8273
8274 if Is_Integer_Type (Typ) then
8275
abcbd24c 8276 -- N * 0 = 0 for integer types
70482933 8277
abcbd24c
ST
8278 if Compile_Time_Known_Value (Rop)
8279 and then Expr_Value (Rop) = Uint_0
70482933 8280 then
abcbd24c
ST
8281 -- Call Remove_Side_Effects to ensure that any side effects in
8282 -- the ignored left operand (in particular function calls to
8283 -- user defined functions) are properly executed.
8284
8285 Remove_Side_Effects (Lop);
8286
8287 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8288 Analyze_And_Resolve (N, Typ);
8289 return;
8290 end if;
8291
8292 -- Similar handling for 0 * N = 0
8293
8294 if Compile_Time_Known_Value (Lop)
8295 and then Expr_Value (Lop) = Uint_0
8296 then
8297 Remove_Side_Effects (Rop);
70482933
RK
8298 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8299 Analyze_And_Resolve (N, Typ);
8300 return;
8301 end if;
8302
8303 -- N * 1 = 1 * N = N for integer types
8304
fbf5a39b
AC
8305 -- This optimisation is not done if we are going to
8306 -- rewrite the product 1 * 2 ** N to a shift.
8307
8308 if Compile_Time_Known_Value (Rop)
8309 and then Expr_Value (Rop) = Uint_1
8310 and then not Lp2
70482933 8311 then
fbf5a39b 8312 Rewrite (N, Lop);
70482933
RK
8313 return;
8314
fbf5a39b
AC
8315 elsif Compile_Time_Known_Value (Lop)
8316 and then Expr_Value (Lop) = Uint_1
8317 and then not Rp2
70482933 8318 then
fbf5a39b 8319 Rewrite (N, Rop);
70482933
RK
8320 return;
8321 end if;
8322 end if;
8323
70482933
RK
8324 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8325 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8326 -- operand is an integer, as required for this to work.
8327
fbf5a39b
AC
8328 if Rp2 then
8329 if Lp2 then
70482933 8330
fbf5a39b 8331 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
70482933
RK
8332
8333 Rewrite (N,
8334 Make_Op_Expon (Loc,
8335 Left_Opnd => Make_Integer_Literal (Loc, 2),
8336 Right_Opnd =>
8337 Make_Op_Add (Loc,
8338 Left_Opnd => Right_Opnd (Lop),
8339 Right_Opnd => Right_Opnd (Rop))));
8340 Analyze_And_Resolve (N, Typ);
8341 return;
8342
8343 else
eefe3761
AC
8344 -- If the result is modular, perform the reduction of the result
8345 -- appropriately.
8346
8347 if Is_Modular_Integer_Type (Typ)
8348 and then not Non_Binary_Modulus (Typ)
8349 then
8350 Rewrite (N,
573e5dd6
RD
8351 Make_Op_And (Loc,
8352 Left_Opnd =>
8353 Make_Op_Shift_Left (Loc,
8354 Left_Opnd => Lop,
8355 Right_Opnd =>
8356 Convert_To (Standard_Natural, Right_Opnd (Rop))),
8357 Right_Opnd =>
eefe3761 8358 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
573e5dd6 8359
eefe3761
AC
8360 else
8361 Rewrite (N,
8362 Make_Op_Shift_Left (Loc,
8363 Left_Opnd => Lop,
8364 Right_Opnd =>
8365 Convert_To (Standard_Natural, Right_Opnd (Rop))));
8366 end if;
8367
70482933
RK
8368 Analyze_And_Resolve (N, Typ);
8369 return;
8370 end if;
8371
8372 -- Same processing for the operands the other way round
8373
fbf5a39b 8374 elsif Lp2 then
eefe3761
AC
8375 if Is_Modular_Integer_Type (Typ)
8376 and then not Non_Binary_Modulus (Typ)
8377 then
8378 Rewrite (N,
573e5dd6
RD
8379 Make_Op_And (Loc,
8380 Left_Opnd =>
8381 Make_Op_Shift_Left (Loc,
8382 Left_Opnd => Rop,
8383 Right_Opnd =>
8384 Convert_To (Standard_Natural, Right_Opnd (Lop))),
8385 Right_Opnd =>
8386 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8387
eefe3761
AC
8388 else
8389 Rewrite (N,
8390 Make_Op_Shift_Left (Loc,
8391 Left_Opnd => Rop,
8392 Right_Opnd =>
8393 Convert_To (Standard_Natural, Right_Opnd (Lop))));
8394 end if;
8395
70482933
RK
8396 Analyze_And_Resolve (N, Typ);
8397 return;
8398 end if;
8399
8400 -- Do required fixup of universal fixed operation
8401
8402 if Typ = Universal_Fixed then
8403 Fixup_Universal_Fixed_Operation (N);
8404 Typ := Etype (N);
8405 end if;
8406
8407 -- Multiplications with fixed-point results
8408
8409 if Is_Fixed_Point_Type (Typ) then
8410
685094bf
RD
8411 -- No special processing if Treat_Fixed_As_Integer is set, since from
8412 -- a semantic point of view such operations are simply integer
8413 -- operations and will be treated that way.
70482933
RK
8414
8415 if not Treat_Fixed_As_Integer (N) then
8416
8417 -- Case of fixed * integer => fixed
8418
8419 if Is_Integer_Type (Rtyp) then
8420 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
8421
8422 -- Case of integer * fixed => fixed
8423
8424 elsif Is_Integer_Type (Ltyp) then
8425 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
8426
8427 -- Case of fixed * fixed => fixed
8428
8429 else
8430 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
8431 end if;
8432 end if;
8433
685094bf
RD
8434 -- Other cases of multiplication of fixed-point operands. Again we
8435 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
70482933
RK
8436
8437 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
8438 and then not Treat_Fixed_As_Integer (N)
8439 then
8440 if Is_Integer_Type (Typ) then
8441 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
8442 else
8443 pragma Assert (Is_Floating_Point_Type (Typ));
8444 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
8445 end if;
8446
685094bf
RD
8447 -- Mixed-mode operations can appear in a non-static universal context,
8448 -- in which case the integer argument must be converted explicitly.
70482933 8449
533369aa 8450 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
70482933 8451 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
70482933
RK
8452 Analyze_And_Resolve (Rop, Universal_Real);
8453
533369aa 8454 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
70482933 8455 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
70482933
RK
8456 Analyze_And_Resolve (Lop, Universal_Real);
8457
8458 -- Non-fixed point cases, check software overflow checking required
8459
8460 elsif Is_Signed_Integer_Type (Etype (N)) then
8461 Apply_Arithmetic_Overflow_Check (N);
8462 end if;
8463 end Expand_N_Op_Multiply;
8464
8465 --------------------
8466 -- Expand_N_Op_Ne --
8467 --------------------
8468
70482933 8469 procedure Expand_N_Op_Ne (N : Node_Id) is
f02b8bb8 8470 Typ : constant Entity_Id := Etype (Left_Opnd (N));
70482933
RK
8471
8472 begin
f02b8bb8 8473 -- Case of elementary type with standard operator
70482933 8474
f02b8bb8
RD
8475 if Is_Elementary_Type (Typ)
8476 and then Sloc (Entity (N)) = Standard_Location
8477 then
8478 Binary_Op_Validity_Checks (N);
70482933 8479
456cbfa5 8480 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
60b68e56 8481 -- means we no longer have a /= operation, we are all done.
456cbfa5
AC
8482
8483 Expand_Compare_Minimize_Eliminate_Overflow (N);
8484
8485 if Nkind (N) /= N_Op_Ne then
8486 return;
8487 end if;
8488
f02b8bb8 8489 -- Boolean types (requiring handling of non-standard case)
70482933 8490
f02b8bb8
RD
8491 if Is_Boolean_Type (Typ) then
8492 Adjust_Condition (Left_Opnd (N));
8493 Adjust_Condition (Right_Opnd (N));
8494 Set_Etype (N, Standard_Boolean);
8495 Adjust_Result_Type (N, Typ);
8496 end if;
fbf5a39b 8497
f02b8bb8
RD
8498 Rewrite_Comparison (N);
8499
f02b8bb8
RD
8500 -- For all cases other than elementary types, we rewrite node as the
8501 -- negation of an equality operation, and reanalyze. The equality to be
8502 -- used is defined in the same scope and has the same signature. This
8503 -- signature must be set explicitly since in an instance it may not have
8504 -- the same visibility as in the generic unit. This avoids duplicating
8505 -- or factoring the complex code for record/array equality tests etc.
8506
8507 else
8508 declare
8509 Loc : constant Source_Ptr := Sloc (N);
8510 Neg : Node_Id;
8511 Ne : constant Entity_Id := Entity (N);
8512
8513 begin
8514 Binary_Op_Validity_Checks (N);
8515
8516 Neg :=
8517 Make_Op_Not (Loc,
8518 Right_Opnd =>
8519 Make_Op_Eq (Loc,
8520 Left_Opnd => Left_Opnd (N),
8521 Right_Opnd => Right_Opnd (N)));
8522 Set_Paren_Count (Right_Opnd (Neg), 1);
8523
8524 if Scope (Ne) /= Standard_Standard then
8525 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
8526 end if;
8527
4637729f 8528 -- For navigation purposes, we want to treat the inequality as an
f02b8bb8 8529 -- implicit reference to the corresponding equality. Preserve the
4637729f 8530 -- Comes_From_ source flag to generate proper Xref entries.
f02b8bb8
RD
8531
8532 Preserve_Comes_From_Source (Neg, N);
8533 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
8534 Rewrite (N, Neg);
8535 Analyze_And_Resolve (N, Standard_Boolean);
8536 end;
8537 end if;
0580d807
AC
8538
8539 Optimize_Length_Comparison (N);
70482933
RK
8540 end Expand_N_Op_Ne;
8541
8542 ---------------------
8543 -- Expand_N_Op_Not --
8544 ---------------------
8545
685094bf 8546 -- If the argument is other than a Boolean array type, there is no special
7a5b62b0
AC
8547 -- expansion required, except for dealing with validity checks, and non-
8548 -- standard boolean representations.
70482933 8549
7a5b62b0
AC
8550 -- For the packed array case, we call the special routine in Exp_Pakd,
8551 -- except that if the component size is greater than one, we use the
8552 -- standard routine generating a gruesome loop (it is so peculiar to have
8553 -- packed arrays with non-standard Boolean representations anyway, so it
8554 -- does not matter that we do not handle this case efficiently).
70482933 8555
7a5b62b0
AC
8556 -- For the unpacked array case (and for the special packed case where we
8557 -- have non standard Booleans, as discussed above), we generate and insert
8558 -- into the tree the following function definition:
70482933
RK
8559
8560 -- function Nnnn (A : arr) is
8561 -- B : arr;
8562 -- begin
8563 -- for J in a'range loop
8564 -- B (J) := not A (J);
8565 -- end loop;
8566 -- return B;
8567 -- end Nnnn;
8568
8569 -- Here arr is the actual subtype of the parameter (and hence always
8570 -- constrained). Then we replace the not with a call to this function.
8571
8572 procedure Expand_N_Op_Not (N : Node_Id) is
8573 Loc : constant Source_Ptr := Sloc (N);
8574 Typ : constant Entity_Id := Etype (N);
8575 Opnd : Node_Id;
8576 Arr : Entity_Id;
8577 A : Entity_Id;
8578 B : Entity_Id;
8579 J : Entity_Id;
8580 A_J : Node_Id;
8581 B_J : Node_Id;
8582
8583 Func_Name : Entity_Id;
8584 Loop_Statement : Node_Id;
8585
8586 begin
8587 Unary_Op_Validity_Checks (N);
8588
8589 -- For boolean operand, deal with non-standard booleans
8590
8591 if Is_Boolean_Type (Typ) then
8592 Adjust_Condition (Right_Opnd (N));
8593 Set_Etype (N, Standard_Boolean);
8594 Adjust_Result_Type (N, Typ);
8595 return;
8596 end if;
8597
da94696d 8598 -- Only array types need any other processing
70482933 8599
da94696d 8600 if not Is_Array_Type (Typ) then
70482933
RK
8601 return;
8602 end if;
8603
a9d8907c
JM
8604 -- Case of array operand. If bit packed with a component size of 1,
8605 -- handle it in Exp_Pakd if the operand is known to be aligned.
70482933 8606
a9d8907c
JM
8607 if Is_Bit_Packed_Array (Typ)
8608 and then Component_Size (Typ) = 1
8609 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
8610 then
70482933
RK
8611 Expand_Packed_Not (N);
8612 return;
8613 end if;
8614
fbf5a39b
AC
8615 -- Case of array operand which is not bit-packed. If the context is
8616 -- a safe assignment, call in-place operation, If context is a larger
8617 -- boolean expression in the context of a safe assignment, expansion is
8618 -- done by enclosing operation.
70482933
RK
8619
8620 Opnd := Relocate_Node (Right_Opnd (N));
8621 Convert_To_Actual_Subtype (Opnd);
8622 Arr := Etype (Opnd);
8623 Ensure_Defined (Arr, N);
b4592168 8624 Silly_Boolean_Array_Not_Test (N, Arr);
70482933 8625
fbf5a39b
AC
8626 if Nkind (Parent (N)) = N_Assignment_Statement then
8627 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
8628 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8629 return;
8630
5e1c00fa 8631 -- Special case the negation of a binary operation
fbf5a39b 8632
303b4d58 8633 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
fbf5a39b 8634 and then Safe_In_Place_Array_Op
303b4d58 8635 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
fbf5a39b
AC
8636 then
8637 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8638 return;
8639 end if;
8640
8641 elsif Nkind (Parent (N)) in N_Binary_Op
8642 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
8643 then
8644 declare
8645 Op1 : constant Node_Id := Left_Opnd (Parent (N));
8646 Op2 : constant Node_Id := Right_Opnd (Parent (N));
8647 Lhs : constant Node_Id := Name (Parent (Parent (N)));
8648
8649 begin
8650 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
fbf5a39b 8651
aa9a7dd7
AC
8652 -- (not A) op (not B) can be reduced to a single call
8653
8654 if N = Op1 and then Nkind (Op2) = N_Op_Not then
fbf5a39b
AC
8655 return;
8656
bed8af19
AC
8657 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
8658 return;
8659
aa9a7dd7 8660 -- A xor (not B) can also be special-cased
fbf5a39b 8661
aa9a7dd7 8662 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
fbf5a39b
AC
8663 return;
8664 end if;
8665 end if;
8666 end;
8667 end if;
8668
70482933
RK
8669 A := Make_Defining_Identifier (Loc, Name_uA);
8670 B := Make_Defining_Identifier (Loc, Name_uB);
8671 J := Make_Defining_Identifier (Loc, Name_uJ);
8672
8673 A_J :=
8674 Make_Indexed_Component (Loc,
e4494292
RD
8675 Prefix => New_Occurrence_Of (A, Loc),
8676 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
8677
8678 B_J :=
8679 Make_Indexed_Component (Loc,
e4494292
RD
8680 Prefix => New_Occurrence_Of (B, Loc),
8681 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
8682
8683 Loop_Statement :=
8684 Make_Implicit_Loop_Statement (N,
8685 Identifier => Empty,
8686
8687 Iteration_Scheme =>
8688 Make_Iteration_Scheme (Loc,
8689 Loop_Parameter_Specification =>
8690 Make_Loop_Parameter_Specification (Loc,
0d901290 8691 Defining_Identifier => J,
70482933
RK
8692 Discrete_Subtype_Definition =>
8693 Make_Attribute_Reference (Loc,
0d901290 8694 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
8695 Attribute_Name => Name_Range))),
8696
8697 Statements => New_List (
8698 Make_Assignment_Statement (Loc,
8699 Name => B_J,
8700 Expression => Make_Op_Not (Loc, A_J))));
8701
191fcb3a 8702 Func_Name := Make_Temporary (Loc, 'N');
70482933
RK
8703 Set_Is_Inlined (Func_Name);
8704
8705 Insert_Action (N,
8706 Make_Subprogram_Body (Loc,
8707 Specification =>
8708 Make_Function_Specification (Loc,
8709 Defining_Unit_Name => Func_Name,
8710 Parameter_Specifications => New_List (
8711 Make_Parameter_Specification (Loc,
8712 Defining_Identifier => A,
e4494292
RD
8713 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8714 Result_Definition => New_Occurrence_Of (Typ, Loc)),
70482933
RK
8715
8716 Declarations => New_List (
8717 Make_Object_Declaration (Loc,
8718 Defining_Identifier => B,
e4494292 8719 Object_Definition => New_Occurrence_Of (Arr, Loc))),
70482933
RK
8720
8721 Handled_Statement_Sequence =>
8722 Make_Handled_Sequence_Of_Statements (Loc,
8723 Statements => New_List (
8724 Loop_Statement,
d766cee3 8725 Make_Simple_Return_Statement (Loc,
0d901290 8726 Expression => Make_Identifier (Loc, Chars (B)))))));
70482933
RK
8727
8728 Rewrite (N,
8729 Make_Function_Call (Loc,
e4494292 8730 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
8731 Parameter_Associations => New_List (Opnd)));
8732
8733 Analyze_And_Resolve (N, Typ);
8734 end Expand_N_Op_Not;
8735
8736 --------------------
8737 -- Expand_N_Op_Or --
8738 --------------------
8739
8740 procedure Expand_N_Op_Or (N : Node_Id) is
8741 Typ : constant Entity_Id := Etype (N);
8742
8743 begin
8744 Binary_Op_Validity_Checks (N);
8745
8746 if Is_Array_Type (Etype (N)) then
8747 Expand_Boolean_Operator (N);
8748
8749 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
8750 Adjust_Condition (Left_Opnd (N));
8751 Adjust_Condition (Right_Opnd (N));
8752 Set_Etype (N, Standard_Boolean);
8753 Adjust_Result_Type (N, Typ);
437f8c1e
AC
8754
8755 elsif Is_Intrinsic_Subprogram (Entity (N)) then
8756 Expand_Intrinsic_Call (N, Entity (N));
8757
70482933
RK
8758 end if;
8759 end Expand_N_Op_Or;
8760
8761 ----------------------
8762 -- Expand_N_Op_Plus --
8763 ----------------------
8764
8765 procedure Expand_N_Op_Plus (N : Node_Id) is
8766 begin
8767 Unary_Op_Validity_Checks (N);
b6b5cca8
AC
8768
8769 -- Check for MINIMIZED/ELIMINATED overflow mode
8770
8771 if Minimized_Eliminated_Overflow_Check (N) then
8772 Apply_Arithmetic_Overflow_Check (N);
8773 return;
8774 end if;
70482933
RK
8775 end Expand_N_Op_Plus;
8776
8777 ---------------------
8778 -- Expand_N_Op_Rem --
8779 ---------------------
8780
8781 procedure Expand_N_Op_Rem (N : Node_Id) is
8782 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 8783 Typ : constant Entity_Id := Etype (N);
70482933 8784
b6b5cca8
AC
8785 Left : Node_Id;
8786 Right : Node_Id;
70482933 8787
5d5e9775
AC
8788 Lo : Uint;
8789 Hi : Uint;
8790 OK : Boolean;
70482933 8791
5d5e9775
AC
8792 Lneg : Boolean;
8793 Rneg : Boolean;
8794 -- Set if corresponding operand can be negative
8795
8796 pragma Unreferenced (Hi);
1033834f 8797
70482933
RK
8798 begin
8799 Binary_Op_Validity_Checks (N);
8800
b6b5cca8
AC
8801 -- Check for MINIMIZED/ELIMINATED overflow mode
8802
8803 if Minimized_Eliminated_Overflow_Check (N) then
8804 Apply_Arithmetic_Overflow_Check (N);
8805 return;
8806 end if;
8807
70482933 8808 if Is_Integer_Type (Etype (N)) then
a91e9ac7 8809 Apply_Divide_Checks (N);
b6b5cca8
AC
8810
8811 -- All done if we don't have a REM any more, which can happen as a
8812 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8813
8814 if Nkind (N) /= N_Op_Rem then
8815 return;
8816 end if;
70482933
RK
8817 end if;
8818
b6b5cca8
AC
8819 -- Proceed with expansion of REM
8820
8821 Left := Left_Opnd (N);
8822 Right := Right_Opnd (N);
8823
685094bf
RD
8824 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
8825 -- but it is useful with other back ends (e.g. AAMP), and is certainly
8826 -- harmless.
fbf5a39b
AC
8827
8828 if Is_Integer_Type (Etype (N))
8829 and then Compile_Time_Known_Value (Right)
8830 and then Expr_Value (Right) = Uint_1
8831 then
abcbd24c
ST
8832 -- Call Remove_Side_Effects to ensure that any side effects in the
8833 -- ignored left operand (in particular function calls to user defined
8834 -- functions) are properly executed.
8835
8836 Remove_Side_Effects (Left);
8837
fbf5a39b
AC
8838 Rewrite (N, Make_Integer_Literal (Loc, 0));
8839 Analyze_And_Resolve (N, Typ);
8840 return;
8841 end if;
8842
685094bf 8843 -- Deal with annoying case of largest negative number remainder minus
b9daa96e
AC
8844 -- one. Gigi may not handle this case correctly, because on some
8845 -- targets, the mod value is computed using a divide instruction
8846 -- which gives an overflow trap for this case.
8847
8848 -- It would be a bit more efficient to figure out which targets this
8849 -- is really needed for, but in practice it is reasonable to do the
8850 -- following special check in all cases, since it means we get a clearer
8851 -- message, and also the overhead is minimal given that division is
8852 -- expensive in any case.
70482933 8853
685094bf
RD
8854 -- In fact the check is quite easy, if the right operand is -1, then
8855 -- the remainder is always 0, and we can just ignore the left operand
8856 -- completely in this case.
70482933 8857
5d5e9775
AC
8858 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
8859 Lneg := (not OK) or else Lo < 0;
fbf5a39b 8860
5d5e9775
AC
8861 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
8862 Rneg := (not OK) or else Lo < 0;
fbf5a39b 8863
5d5e9775
AC
8864 -- We won't mess with trying to find out if the left operand can really
8865 -- be the largest negative number (that's a pain in the case of private
8866 -- types and this is really marginal). We will just assume that we need
8867 -- the test if the left operand can be negative at all.
fbf5a39b 8868
5d5e9775 8869 if Lneg and Rneg then
70482933 8870 Rewrite (N,
9b16cb57 8871 Make_If_Expression (Loc,
70482933
RK
8872 Expressions => New_List (
8873 Make_Op_Eq (Loc,
0d901290 8874 Left_Opnd => Duplicate_Subexpr (Right),
70482933 8875 Right_Opnd =>
0d901290 8876 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
70482933 8877
fbf5a39b
AC
8878 Unchecked_Convert_To (Typ,
8879 Make_Integer_Literal (Loc, Uint_0)),
70482933
RK
8880
8881 Relocate_Node (N))));
8882
8883 Set_Analyzed (Next (Next (First (Expressions (N)))));
8884 Analyze_And_Resolve (N, Typ);
8885 end if;
8886 end Expand_N_Op_Rem;
8887
8888 -----------------------------
8889 -- Expand_N_Op_Rotate_Left --
8890 -----------------------------
8891
8892 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
8893 begin
8894 Binary_Op_Validity_Checks (N);
5216b599
AC
8895
8896 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
8897 -- so we rewrite in terms of logical shifts
8898
8899 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
8900
8901 -- where Bits is the shift count mod Esize (the mod operation here
8902 -- deals with ludicrous large shift counts, which are apparently OK).
8903
8904 -- What about non-binary modulus ???
8905
8906 declare
8907 Loc : constant Source_Ptr := Sloc (N);
8908 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8909 Typ : constant Entity_Id := Etype (N);
8910
8911 begin
8912 if Modify_Tree_For_C then
8913 Rewrite (Right_Opnd (N),
8914 Make_Op_Rem (Loc,
8915 Left_Opnd => Relocate_Node (Right_Opnd (N)),
8916 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8917
8918 Analyze_And_Resolve (Right_Opnd (N), Rtp);
8919
8920 Rewrite (N,
8921 Make_Op_Or (Loc,
8922 Left_Opnd =>
8923 Make_Op_Shift_Left (Loc,
8924 Left_Opnd => Left_Opnd (N),
8925 Right_Opnd => Right_Opnd (N)),
e09a5598 8926
5216b599
AC
8927 Right_Opnd =>
8928 Make_Op_Shift_Right (Loc,
8929 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8930 Right_Opnd =>
8931 Make_Op_Subtract (Loc,
8932 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
8933 Right_Opnd =>
8934 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8935
8936 Analyze_And_Resolve (N, Typ);
8937 end if;
8938 end;
70482933
RK
8939 end Expand_N_Op_Rotate_Left;
8940
8941 ------------------------------
8942 -- Expand_N_Op_Rotate_Right --
8943 ------------------------------
8944
8945 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
8946 begin
8947 Binary_Op_Validity_Checks (N);
5216b599
AC
8948
8949 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
8950 -- so we rewrite in terms of logical shifts
8951
8952 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
8953
8954 -- where Bits is the shift count mod Esize (the mod operation here
8955 -- deals with ludicrous large shift counts, which are apparently OK).
8956
8957 -- What about non-binary modulus ???
8958
8959 declare
8960 Loc : constant Source_Ptr := Sloc (N);
8961 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8962 Typ : constant Entity_Id := Etype (N);
8963
8964 begin
8965 Rewrite (Right_Opnd (N),
8966 Make_Op_Rem (Loc,
8967 Left_Opnd => Relocate_Node (Right_Opnd (N)),
8968 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8969
8970 Analyze_And_Resolve (Right_Opnd (N), Rtp);
8971
8972 if Modify_Tree_For_C then
8973 Rewrite (N,
8974 Make_Op_Or (Loc,
8975 Left_Opnd =>
8976 Make_Op_Shift_Right (Loc,
8977 Left_Opnd => Left_Opnd (N),
8978 Right_Opnd => Right_Opnd (N)),
e09a5598 8979
5216b599
AC
8980 Right_Opnd =>
8981 Make_Op_Shift_Left (Loc,
8982 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8983 Right_Opnd =>
8984 Make_Op_Subtract (Loc,
8985 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
8986 Right_Opnd =>
8987 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8988
8989 Analyze_And_Resolve (N, Typ);
8990 end if;
8991 end;
70482933
RK
8992 end Expand_N_Op_Rotate_Right;
8993
8994 ----------------------------
8995 -- Expand_N_Op_Shift_Left --
8996 ----------------------------
8997
e09a5598
AC
8998 -- Note: nothing in this routine depends on left as opposed to right shifts
8999 -- so we share the routine for expanding shift right operations.
9000
70482933
RK
9001 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
9002 begin
9003 Binary_Op_Validity_Checks (N);
e09a5598
AC
9004
9005 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9006 -- operand is not greater than the word size (since that would not
9007 -- be defined properly by the corresponding C shift operator).
9008
9009 if Modify_Tree_For_C then
9010 declare
9011 Right : constant Node_Id := Right_Opnd (N);
9012 Loc : constant Source_Ptr := Sloc (Right);
9013 Typ : constant Entity_Id := Etype (N);
9014 Siz : constant Uint := Esize (Typ);
9015 Orig : Node_Id;
9016 OK : Boolean;
9017 Lo : Uint;
9018 Hi : Uint;
9019
9020 begin
9021 if Compile_Time_Known_Value (Right) then
9022 if Expr_Value (Right) >= Siz then
9023 Rewrite (N, Make_Integer_Literal (Loc, 0));
9024 Analyze_And_Resolve (N, Typ);
9025 end if;
9026
9027 -- Not compile time known, find range
9028
9029 else
9030 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
9031
9032 -- Nothing to do if known to be OK range, otherwise expand
9033
9034 if not OK or else Hi >= Siz then
9035
9036 -- Prevent recursion on copy of shift node
9037
9038 Orig := Relocate_Node (N);
9039 Set_Analyzed (Orig);
9040
9041 -- Now do the rewrite
9042
9043 Rewrite (N,
9044 Make_If_Expression (Loc,
9045 Expressions => New_List (
9046 Make_Op_Ge (Loc,
9047 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
9048 Right_Opnd => Make_Integer_Literal (Loc, Siz)),
9049 Make_Integer_Literal (Loc, 0),
9050 Orig)));
9051 Analyze_And_Resolve (N, Typ);
9052 end if;
9053 end if;
9054 end;
9055 end if;
70482933
RK
9056 end Expand_N_Op_Shift_Left;
9057
9058 -----------------------------
9059 -- Expand_N_Op_Shift_Right --
9060 -----------------------------
9061
9062 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
9063 begin
e09a5598
AC
9064 -- Share shift left circuit
9065
9066 Expand_N_Op_Shift_Left (N);
70482933
RK
9067 end Expand_N_Op_Shift_Right;
9068
9069 ----------------------------------------
9070 -- Expand_N_Op_Shift_Right_Arithmetic --
9071 ----------------------------------------
9072
9073 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
9074 begin
9075 Binary_Op_Validity_Checks (N);
5216b599
AC
9076
9077 -- If we are in Modify_Tree_For_C mode, there is no shift right
9078 -- arithmetic in C, so we rewrite in terms of logical shifts.
9079
9080 -- Shift_Right (Num, Bits) or
9081 -- (if Num >= Sign
9082 -- then not (Shift_Right (Mask, bits))
9083 -- else 0)
9084
9085 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9086
9087 -- Note: in almost all C compilers it would work to just shift a
9088 -- signed integer right, but it's undefined and we cannot rely on it.
9089
e09a5598
AC
9090 -- Note: the above works fine for shift counts greater than or equal
9091 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9092 -- generates all 1'bits.
9093
5216b599
AC
9094 -- What about non-binary modulus ???
9095
9096 declare
9097 Loc : constant Source_Ptr := Sloc (N);
9098 Typ : constant Entity_Id := Etype (N);
9099 Sign : constant Uint := 2 ** (Esize (Typ) - 1);
9100 Mask : constant Uint := (2 ** Esize (Typ)) - 1;
9101 Left : constant Node_Id := Left_Opnd (N);
9102 Right : constant Node_Id := Right_Opnd (N);
9103 Maskx : Node_Id;
9104
9105 begin
9106 if Modify_Tree_For_C then
9107
9108 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9109 -- compile time as a single constant.
9110
9111 if Compile_Time_Known_Value (Right) then
9112 declare
9113 Val : constant Uint := Expr_Value (Right);
9114
9115 begin
9116 if Val >= Esize (Typ) then
9117 Maskx := Make_Integer_Literal (Loc, Mask);
9118
9119 else
9120 Maskx :=
9121 Make_Integer_Literal (Loc,
9122 Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
9123 end if;
9124 end;
9125
9126 else
9127 Maskx :=
9128 Make_Op_Not (Loc,
9129 Right_Opnd =>
9130 Make_Op_Shift_Right (Loc,
9131 Left_Opnd => Make_Integer_Literal (Loc, Mask),
9132 Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
9133 end if;
9134
9135 -- Now do the rewrite
9136
9137 Rewrite (N,
9138 Make_Op_Or (Loc,
9139 Left_Opnd =>
9140 Make_Op_Shift_Right (Loc,
9141 Left_Opnd => Left,
9142 Right_Opnd => Right),
9143 Right_Opnd =>
9144 Make_If_Expression (Loc,
9145 Expressions => New_List (
9146 Make_Op_Ge (Loc,
9147 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
9148 Right_Opnd => Make_Integer_Literal (Loc, Sign)),
9149 Maskx,
9150 Make_Integer_Literal (Loc, 0)))));
9151 Analyze_And_Resolve (N, Typ);
9152 end if;
9153 end;
70482933
RK
9154 end Expand_N_Op_Shift_Right_Arithmetic;
9155
9156 --------------------------
9157 -- Expand_N_Op_Subtract --
9158 --------------------------
9159
9160 procedure Expand_N_Op_Subtract (N : Node_Id) is
9161 Typ : constant Entity_Id := Etype (N);
9162
9163 begin
9164 Binary_Op_Validity_Checks (N);
9165
b6b5cca8
AC
9166 -- Check for MINIMIZED/ELIMINATED overflow mode
9167
9168 if Minimized_Eliminated_Overflow_Check (N) then
9169 Apply_Arithmetic_Overflow_Check (N);
9170 return;
9171 end if;
9172
70482933
RK
9173 -- N - 0 = N for integer types
9174
9175 if Is_Integer_Type (Typ)
9176 and then Compile_Time_Known_Value (Right_Opnd (N))
9177 and then Expr_Value (Right_Opnd (N)) = 0
9178 then
9179 Rewrite (N, Left_Opnd (N));
9180 return;
9181 end if;
9182
8fc789c8 9183 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 9184
761f7dcb 9185 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
70482933 9186 Apply_Arithmetic_Overflow_Check (N);
70482933
RK
9187 end if;
9188 end Expand_N_Op_Subtract;
9189
9190 ---------------------
9191 -- Expand_N_Op_Xor --
9192 ---------------------
9193
9194 procedure Expand_N_Op_Xor (N : Node_Id) is
9195 Typ : constant Entity_Id := Etype (N);
9196
9197 begin
9198 Binary_Op_Validity_Checks (N);
9199
9200 if Is_Array_Type (Etype (N)) then
9201 Expand_Boolean_Operator (N);
9202
9203 elsif Is_Boolean_Type (Etype (N)) then
9204 Adjust_Condition (Left_Opnd (N));
9205 Adjust_Condition (Right_Opnd (N));
9206 Set_Etype (N, Standard_Boolean);
9207 Adjust_Result_Type (N, Typ);
437f8c1e
AC
9208
9209 elsif Is_Intrinsic_Subprogram (Entity (N)) then
9210 Expand_Intrinsic_Call (N, Entity (N));
9211
70482933
RK
9212 end if;
9213 end Expand_N_Op_Xor;
9214
9215 ----------------------
9216 -- Expand_N_Or_Else --
9217 ----------------------
9218
5875f8d6
AC
9219 procedure Expand_N_Or_Else (N : Node_Id)
9220 renames Expand_Short_Circuit_Operator;
70482933
RK
9221
9222 -----------------------------------
9223 -- Expand_N_Qualified_Expression --
9224 -----------------------------------
9225
9226 procedure Expand_N_Qualified_Expression (N : Node_Id) is
9227 Operand : constant Node_Id := Expression (N);
9228 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
9229
9230 begin
f82944b7
JM
9231 -- Do validity check if validity checking operands
9232
533369aa 9233 if Validity_Checks_On and Validity_Check_Operands then
f82944b7
JM
9234 Ensure_Valid (Operand);
9235 end if;
9236
9237 -- Apply possible constraint check
9238
70482933 9239 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
d79e621a
GD
9240
9241 if Do_Range_Check (Operand) then
9242 Set_Do_Range_Check (Operand, False);
9243 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
9244 end if;
70482933
RK
9245 end Expand_N_Qualified_Expression;
9246
a961aa79
AC
9247 ------------------------------------
9248 -- Expand_N_Quantified_Expression --
9249 ------------------------------------
9250
c0f136cd
AC
9251 -- We expand:
9252
9253 -- for all X in range => Cond
a961aa79 9254
c0f136cd 9255 -- into:
a961aa79 9256
c0f136cd
AC
9257 -- T := True;
9258 -- for X in range loop
9259 -- if not Cond then
9260 -- T := False;
9261 -- exit;
9262 -- end if;
9263 -- end loop;
90c63b09 9264
36504e5f 9265 -- Similarly, an existentially quantified expression:
90c63b09 9266
c0f136cd 9267 -- for some X in range => Cond
90c63b09 9268
c0f136cd 9269 -- becomes:
90c63b09 9270
c0f136cd
AC
9271 -- T := False;
9272 -- for X in range loop
9273 -- if Cond then
9274 -- T := True;
9275 -- exit;
9276 -- end if;
9277 -- end loop;
90c63b09 9278
c0f136cd
AC
9279 -- In both cases, the iteration may be over a container in which case it is
9280 -- given by an iterator specification, not a loop parameter specification.
a961aa79 9281
c0f136cd 9282 procedure Expand_N_Quantified_Expression (N : Node_Id) is
804670f1
AC
9283 Actions : constant List_Id := New_List;
9284 For_All : constant Boolean := All_Present (N);
9285 Iter_Spec : constant Node_Id := Iterator_Specification (N);
9286 Loc : constant Source_Ptr := Sloc (N);
9287 Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
9288 Cond : Node_Id;
9289 Flag : Entity_Id;
9290 Scheme : Node_Id;
9291 Stmts : List_Id;
c56a9ba4 9292
a961aa79 9293 begin
804670f1
AC
9294 -- Create the declaration of the flag which tracks the status of the
9295 -- quantified expression. Generate:
011f9d5d 9296
804670f1 9297 -- Flag : Boolean := (True | False);
011f9d5d 9298
804670f1 9299 Flag := Make_Temporary (Loc, 'T', N);
011f9d5d 9300
804670f1 9301 Append_To (Actions,
90c63b09 9302 Make_Object_Declaration (Loc,
804670f1 9303 Defining_Identifier => Flag,
c0f136cd
AC
9304 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
9305 Expression =>
804670f1
AC
9306 New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
9307
9308 -- Construct the circuitry which tracks the status of the quantified
9309 -- expression. Generate:
9310
9311 -- if [not] Cond then
9312 -- Flag := (False | True);
9313 -- exit;
9314 -- end if;
a961aa79 9315
c0f136cd 9316 Cond := Relocate_Node (Condition (N));
a961aa79 9317
804670f1 9318 if For_All then
c0f136cd 9319 Cond := Make_Op_Not (Loc, Cond);
a961aa79
AC
9320 end if;
9321
804670f1 9322 Stmts := New_List (
c0f136cd
AC
9323 Make_Implicit_If_Statement (N,
9324 Condition => Cond,
9325 Then_Statements => New_List (
9326 Make_Assignment_Statement (Loc,
804670f1 9327 Name => New_Occurrence_Of (Flag, Loc),
c0f136cd 9328 Expression =>
804670f1
AC
9329 New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
9330 Make_Exit_Statement (Loc))));
9331
9332 -- Build the loop equivalent of the quantified expression
c0f136cd 9333
804670f1
AC
9334 if Present (Iter_Spec) then
9335 Scheme :=
011f9d5d 9336 Make_Iteration_Scheme (Loc,
804670f1 9337 Iterator_Specification => Iter_Spec);
c56a9ba4 9338 else
804670f1 9339 Scheme :=
011f9d5d 9340 Make_Iteration_Scheme (Loc,
804670f1 9341 Loop_Parameter_Specification => Loop_Spec);
c56a9ba4
AC
9342 end if;
9343
a961aa79
AC
9344 Append_To (Actions,
9345 Make_Loop_Statement (Loc,
804670f1
AC
9346 Iteration_Scheme => Scheme,
9347 Statements => Stmts,
c0f136cd 9348 End_Label => Empty));
a961aa79 9349
804670f1
AC
9350 -- Transform the quantified expression
9351
a961aa79
AC
9352 Rewrite (N,
9353 Make_Expression_With_Actions (Loc,
804670f1 9354 Expression => New_Occurrence_Of (Flag, Loc),
a961aa79 9355 Actions => Actions));
a961aa79
AC
9356 Analyze_And_Resolve (N, Standard_Boolean);
9357 end Expand_N_Quantified_Expression;
9358
70482933
RK
9359 ---------------------------------
9360 -- Expand_N_Selected_Component --
9361 ---------------------------------
9362
70482933
RK
9363 procedure Expand_N_Selected_Component (N : Node_Id) is
9364 Loc : constant Source_Ptr := Sloc (N);
9365 Par : constant Node_Id := Parent (N);
9366 P : constant Node_Id := Prefix (N);
03eb6036 9367 S : constant Node_Id := Selector_Name (N);
fbf5a39b 9368 Ptyp : Entity_Id := Underlying_Type (Etype (P));
70482933 9369 Disc : Entity_Id;
70482933 9370 New_N : Node_Id;
fbf5a39b 9371 Dcon : Elmt_Id;
d606f1df 9372 Dval : Node_Id;
70482933
RK
9373
9374 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
9375 -- Gigi needs a temporary for prefixes that depend on a discriminant,
9376 -- unless the context of an assignment can provide size information.
fbf5a39b
AC
9377 -- Don't we have a general routine that does this???
9378
53f29d4f
AC
9379 function Is_Subtype_Declaration return Boolean;
9380 -- The replacement of a discriminant reference by its value is required
4317e442
AC
9381 -- if this is part of the initialization of an temporary generated by a
9382 -- change of representation. This shows up as the construction of a
53f29d4f 9383 -- discriminant constraint for a subtype declared at the same point as
4317e442
AC
9384 -- the entity in the prefix of the selected component. We recognize this
9385 -- case when the context of the reference is:
9386 -- subtype ST is T(Obj.D);
9387 -- where the entity for Obj comes from source, and ST has the same sloc.
53f29d4f 9388
fbf5a39b
AC
9389 -----------------------
9390 -- In_Left_Hand_Side --
9391 -----------------------
70482933
RK
9392
9393 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
9394 begin
fbf5a39b 9395 return (Nkind (Parent (Comp)) = N_Assignment_Statement
90c63b09 9396 and then Comp = Name (Parent (Comp)))
fbf5a39b 9397 or else (Present (Parent (Comp))
90c63b09
AC
9398 and then Nkind (Parent (Comp)) in N_Subexpr
9399 and then In_Left_Hand_Side (Parent (Comp)));
70482933
RK
9400 end In_Left_Hand_Side;
9401
53f29d4f
AC
9402 -----------------------------
9403 -- Is_Subtype_Declaration --
9404 -----------------------------
9405
9406 function Is_Subtype_Declaration return Boolean is
9407 Par : constant Node_Id := Parent (N);
53f29d4f
AC
9408 begin
9409 return
9410 Nkind (Par) = N_Index_Or_Discriminant_Constraint
9411 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
9412 and then Comes_From_Source (Entity (Prefix (N)))
9413 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
9414 end Is_Subtype_Declaration;
9415
fbf5a39b
AC
9416 -- Start of processing for Expand_N_Selected_Component
9417
70482933 9418 begin
fbf5a39b
AC
9419 -- Insert explicit dereference if required
9420
9421 if Is_Access_Type (Ptyp) then
702d2020
AC
9422
9423 -- First set prefix type to proper access type, in case it currently
9424 -- has a private (non-access) view of this type.
9425
9426 Set_Etype (P, Ptyp);
9427
fbf5a39b 9428 Insert_Explicit_Dereference (P);
e6f69614 9429 Analyze_And_Resolve (P, Designated_Type (Ptyp));
fbf5a39b
AC
9430
9431 if Ekind (Etype (P)) = E_Private_Subtype
9432 and then Is_For_Access_Subtype (Etype (P))
9433 then
9434 Set_Etype (P, Base_Type (Etype (P)));
9435 end if;
9436
9437 Ptyp := Etype (P);
9438 end if;
9439
9440 -- Deal with discriminant check required
9441
70482933 9442 if Do_Discriminant_Check (N) then
03eb6036
AC
9443 if Present (Discriminant_Checking_Func
9444 (Original_Record_Component (Entity (S))))
9445 then
9446 -- Present the discriminant checking function to the backend, so
9447 -- that it can inline the call to the function.
9448
9449 Add_Inlined_Body
9450 (Discriminant_Checking_Func
9451 (Original_Record_Component (Entity (S))));
70482933 9452
03eb6036 9453 -- Now reset the flag and generate the call
70482933 9454
03eb6036
AC
9455 Set_Do_Discriminant_Check (N, False);
9456 Generate_Discriminant_Check (N);
70482933 9457
03eb6036
AC
9458 -- In the case of Unchecked_Union, no discriminant checking is
9459 -- actually performed.
70482933 9460
03eb6036
AC
9461 else
9462 Set_Do_Discriminant_Check (N, False);
9463 end if;
70482933
RK
9464 end if;
9465
b4592168
GD
9466 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9467 -- function, then additional actuals must be passed.
9468
0791fbe9 9469 if Ada_Version >= Ada_2005
b4592168
GD
9470 and then Is_Build_In_Place_Function_Call (P)
9471 then
9472 Make_Build_In_Place_Call_In_Anonymous_Context (P);
9473 end if;
9474
fbf5a39b
AC
9475 -- Gigi cannot handle unchecked conversions that are the prefix of a
9476 -- selected component with discriminants. This must be checked during
9477 -- expansion, because during analysis the type of the selector is not
9478 -- known at the point the prefix is analyzed. If the conversion is the
9479 -- target of an assignment, then we cannot force the evaluation.
70482933
RK
9480
9481 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
9482 and then Has_Discriminants (Etype (N))
9483 and then not In_Left_Hand_Side (N)
9484 then
9485 Force_Evaluation (Prefix (N));
9486 end if;
9487
9488 -- Remaining processing applies only if selector is a discriminant
9489
9490 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
9491
9492 -- If the selector is a discriminant of a constrained record type,
fbf5a39b
AC
9493 -- we may be able to rewrite the expression with the actual value
9494 -- of the discriminant, a useful optimization in some cases.
70482933
RK
9495
9496 if Is_Record_Type (Ptyp)
9497 and then Has_Discriminants (Ptyp)
9498 and then Is_Constrained (Ptyp)
70482933 9499 then
fbf5a39b 9500 -- Do this optimization for discrete types only, and not for
a90bd866 9501 -- access types (access discriminants get us into trouble).
70482933 9502
fbf5a39b
AC
9503 if not Is_Discrete_Type (Etype (N)) then
9504 null;
9505
9506 -- Don't do this on the left hand of an assignment statement.
0d901290
AC
9507 -- Normally one would think that references like this would not
9508 -- occur, but they do in generated code, and mean that we really
a90bd866 9509 -- do want to assign the discriminant.
fbf5a39b
AC
9510
9511 elsif Nkind (Par) = N_Assignment_Statement
9512 and then Name (Par) = N
9513 then
9514 null;
9515
685094bf 9516 -- Don't do this optimization for the prefix of an attribute or
e2534738 9517 -- the name of an object renaming declaration since these are
685094bf 9518 -- contexts where we do not want the value anyway.
fbf5a39b
AC
9519
9520 elsif (Nkind (Par) = N_Attribute_Reference
533369aa 9521 and then Prefix (Par) = N)
fbf5a39b
AC
9522 or else Is_Renamed_Object (N)
9523 then
9524 null;
9525
9526 -- Don't do this optimization if we are within the code for a
9527 -- discriminant check, since the whole point of such a check may
a90bd866 9528 -- be to verify the condition on which the code below depends.
fbf5a39b
AC
9529
9530 elsif Is_In_Discriminant_Check (N) then
9531 null;
9532
9533 -- Green light to see if we can do the optimization. There is
685094bf
RD
9534 -- still one condition that inhibits the optimization below but
9535 -- now is the time to check the particular discriminant.
fbf5a39b
AC
9536
9537 else
685094bf
RD
9538 -- Loop through discriminants to find the matching discriminant
9539 -- constraint to see if we can copy it.
fbf5a39b
AC
9540
9541 Disc := First_Discriminant (Ptyp);
9542 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
9543 Discr_Loop : while Present (Dcon) loop
d606f1df 9544 Dval := Node (Dcon);
fbf5a39b 9545
bd949ee2
RD
9546 -- Check if this is the matching discriminant and if the
9547 -- discriminant value is simple enough to make sense to
9548 -- copy. We don't want to copy complex expressions, and
9549 -- indeed to do so can cause trouble (before we put in
9550 -- this guard, a discriminant expression containing an
e7d897b8 9551 -- AND THEN was copied, causing problems for coverage
c228a069 9552 -- analysis tools).
bd949ee2 9553
53f29d4f
AC
9554 -- However, if the reference is part of the initialization
9555 -- code generated for an object declaration, we must use
9556 -- the discriminant value from the subtype constraint,
9557 -- because the selected component may be a reference to the
9558 -- object being initialized, whose discriminant is not yet
9559 -- set. This only happens in complex cases involving changes
9560 -- or representation.
9561
bd949ee2
RD
9562 if Disc = Entity (Selector_Name (N))
9563 and then (Is_Entity_Name (Dval)
170b2989
AC
9564 or else Compile_Time_Known_Value (Dval)
9565 or else Is_Subtype_Declaration)
bd949ee2 9566 then
fbf5a39b
AC
9567 -- Here we have the matching discriminant. Check for
9568 -- the case of a discriminant of a component that is
9569 -- constrained by an outer discriminant, which cannot
9570 -- be optimized away.
9571
d606f1df
AC
9572 if Denotes_Discriminant
9573 (Dval, Check_Concurrent => True)
9574 then
9575 exit Discr_Loop;
9576
9577 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
9578 and then
9579 Denotes_Discriminant
9580 (Selector_Name (Original_Node (Dval)), True)
9581 then
9582 exit Discr_Loop;
9583
9584 -- Do not retrieve value if constraint is not static. It
9585 -- is generally not useful, and the constraint may be a
9586 -- rewritten outer discriminant in which case it is in
9587 -- fact incorrect.
9588
9589 elsif Is_Entity_Name (Dval)
d606f1df 9590 and then
533369aa
AC
9591 Nkind (Parent (Entity (Dval))) = N_Object_Declaration
9592 and then Present (Expression (Parent (Entity (Dval))))
9593 and then not
edab6088 9594 Is_OK_Static_Expression
d606f1df 9595 (Expression (Parent (Entity (Dval))))
fbf5a39b
AC
9596 then
9597 exit Discr_Loop;
70482933 9598
685094bf
RD
9599 -- In the context of a case statement, the expression may
9600 -- have the base type of the discriminant, and we need to
9601 -- preserve the constraint to avoid spurious errors on
9602 -- missing cases.
70482933 9603
fbf5a39b 9604 elsif Nkind (Parent (N)) = N_Case_Statement
d606f1df 9605 and then Etype (Dval) /= Etype (Disc)
70482933
RK
9606 then
9607 Rewrite (N,
9608 Make_Qualified_Expression (Loc,
fbf5a39b
AC
9609 Subtype_Mark =>
9610 New_Occurrence_Of (Etype (Disc), Loc),
9611 Expression =>
d606f1df 9612 New_Copy_Tree (Dval)));
ffe9aba8 9613 Analyze_And_Resolve (N, Etype (Disc));
fbf5a39b
AC
9614
9615 -- In case that comes out as a static expression,
9616 -- reset it (a selected component is never static).
9617
9618 Set_Is_Static_Expression (N, False);
9619 return;
9620
9621 -- Otherwise we can just copy the constraint, but the
a90bd866 9622 -- result is certainly not static. In some cases the
ffe9aba8
AC
9623 -- discriminant constraint has been analyzed in the
9624 -- context of the original subtype indication, but for
9625 -- itypes the constraint might not have been analyzed
9626 -- yet, and this must be done now.
fbf5a39b 9627
70482933 9628 else
d606f1df 9629 Rewrite (N, New_Copy_Tree (Dval));
ffe9aba8 9630 Analyze_And_Resolve (N);
fbf5a39b
AC
9631 Set_Is_Static_Expression (N, False);
9632 return;
70482933 9633 end if;
70482933
RK
9634 end if;
9635
fbf5a39b
AC
9636 Next_Elmt (Dcon);
9637 Next_Discriminant (Disc);
9638 end loop Discr_Loop;
70482933 9639
fbf5a39b
AC
9640 -- Note: the above loop should always find a matching
9641 -- discriminant, but if it does not, we just missed an
c228a069
AC
9642 -- optimization due to some glitch (perhaps a previous
9643 -- error), so ignore.
fbf5a39b
AC
9644
9645 end if;
70482933
RK
9646 end if;
9647
9648 -- The only remaining processing is in the case of a discriminant of
9649 -- a concurrent object, where we rewrite the prefix to denote the
9650 -- corresponding record type. If the type is derived and has renamed
9651 -- discriminants, use corresponding discriminant, which is the one
9652 -- that appears in the corresponding record.
9653
9654 if not Is_Concurrent_Type (Ptyp) then
9655 return;
9656 end if;
9657
9658 Disc := Entity (Selector_Name (N));
9659
9660 if Is_Derived_Type (Ptyp)
9661 and then Present (Corresponding_Discriminant (Disc))
9662 then
9663 Disc := Corresponding_Discriminant (Disc);
9664 end if;
9665
9666 New_N :=
9667 Make_Selected_Component (Loc,
9668 Prefix =>
9669 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
9670 New_Copy_Tree (P)),
9671 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
9672
9673 Rewrite (N, New_N);
9674 Analyze (N);
9675 end if;
5972791c 9676
73fe1679 9677 -- Set Atomic_Sync_Required if necessary for atomic component
5972791c 9678
73fe1679
AC
9679 if Nkind (N) = N_Selected_Component then
9680 declare
9681 E : constant Entity_Id := Entity (Selector_Name (N));
9682 Set : Boolean;
9683
9684 begin
9685 -- If component is atomic, but type is not, setting depends on
9686 -- disable/enable state for the component.
9687
9688 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
9689 Set := not Atomic_Synchronization_Disabled (E);
9690
9691 -- If component is not atomic, but its type is atomic, setting
9692 -- depends on disable/enable state for the type.
9693
9694 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9695 Set := not Atomic_Synchronization_Disabled (Etype (E));
9696
9697 -- If both component and type are atomic, we disable if either
9698 -- component or its type have sync disabled.
9699
9700 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9701 Set := (not Atomic_Synchronization_Disabled (E))
9702 and then
9703 (not Atomic_Synchronization_Disabled (Etype (E)));
9704
9705 else
9706 Set := False;
9707 end if;
9708
9709 -- Set flag if required
9710
9711 if Set then
9712 Activate_Atomic_Synchronization (N);
9713 end if;
9714 end;
5972791c 9715 end if;
70482933
RK
9716 end Expand_N_Selected_Component;
9717
9718 --------------------
9719 -- Expand_N_Slice --
9720 --------------------
9721
9722 procedure Expand_N_Slice (N : Node_Id) is
5ff90f08
AC
9723 Loc : constant Source_Ptr := Sloc (N);
9724 Typ : constant Entity_Id := Etype (N);
fbf5a39b 9725
81a5b587 9726 function Is_Procedure_Actual (N : Node_Id) return Boolean;
685094bf
RD
9727 -- Check whether the argument is an actual for a procedure call, in
9728 -- which case the expansion of a bit-packed slice is deferred until the
9729 -- call itself is expanded. The reason this is required is that we might
9730 -- have an IN OUT or OUT parameter, and the copy out is essential, and
9731 -- that copy out would be missed if we created a temporary here in
9732 -- Expand_N_Slice. Note that we don't bother to test specifically for an
9733 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9734 -- is harmless to defer expansion in the IN case, since the call
9735 -- processing will still generate the appropriate copy in operation,
9736 -- which will take care of the slice.
81a5b587 9737
b01bf852 9738 procedure Make_Temporary_For_Slice;
685094bf
RD
9739 -- Create a named variable for the value of the slice, in cases where
9740 -- the back-end cannot handle it properly, e.g. when packed types or
9741 -- unaligned slices are involved.
fbf5a39b 9742
81a5b587
AC
9743 -------------------------
9744 -- Is_Procedure_Actual --
9745 -------------------------
9746
9747 function Is_Procedure_Actual (N : Node_Id) return Boolean is
9748 Par : Node_Id := Parent (N);
08aa9a4a 9749
81a5b587 9750 begin
81a5b587 9751 loop
c6a60aa1
RD
9752 -- If our parent is a procedure call we can return
9753
81a5b587
AC
9754 if Nkind (Par) = N_Procedure_Call_Statement then
9755 return True;
6b6fcd3e 9756
685094bf
RD
9757 -- If our parent is a type conversion, keep climbing the tree,
9758 -- since a type conversion can be a procedure actual. Also keep
9759 -- climbing if parameter association or a qualified expression,
9760 -- since these are additional cases that do can appear on
9761 -- procedure actuals.
6b6fcd3e 9762
303b4d58
AC
9763 elsif Nkind_In (Par, N_Type_Conversion,
9764 N_Parameter_Association,
9765 N_Qualified_Expression)
c6a60aa1 9766 then
81a5b587 9767 Par := Parent (Par);
c6a60aa1
RD
9768
9769 -- Any other case is not what we are looking for
9770
9771 else
9772 return False;
81a5b587
AC
9773 end if;
9774 end loop;
81a5b587
AC
9775 end Is_Procedure_Actual;
9776
b01bf852
AC
9777 ------------------------------
9778 -- Make_Temporary_For_Slice --
9779 ------------------------------
fbf5a39b 9780
b01bf852 9781 procedure Make_Temporary_For_Slice is
b01bf852 9782 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
5ff90f08 9783 Decl : Node_Id;
13d923cc 9784
fbf5a39b
AC
9785 begin
9786 Decl :=
9787 Make_Object_Declaration (Loc,
9788 Defining_Identifier => Ent,
9789 Object_Definition => New_Occurrence_Of (Typ, Loc));
9790
9791 Set_No_Initialization (Decl);
9792
9793 Insert_Actions (N, New_List (
9794 Decl,
9795 Make_Assignment_Statement (Loc,
5ff90f08 9796 Name => New_Occurrence_Of (Ent, Loc),
fbf5a39b
AC
9797 Expression => Relocate_Node (N))));
9798
9799 Rewrite (N, New_Occurrence_Of (Ent, Loc));
9800 Analyze_And_Resolve (N, Typ);
b01bf852 9801 end Make_Temporary_For_Slice;
fbf5a39b 9802
5ff90f08
AC
9803 -- Local variables
9804
800da977
AC
9805 Pref : constant Node_Id := Prefix (N);
9806 Pref_Typ : Entity_Id := Etype (Pref);
5ff90f08 9807
fbf5a39b 9808 -- Start of processing for Expand_N_Slice
70482933
RK
9809
9810 begin
9811 -- Special handling for access types
9812
5ff90f08
AC
9813 if Is_Access_Type (Pref_Typ) then
9814 Pref_Typ := Designated_Type (Pref_Typ);
70482933 9815
5ff90f08 9816 Rewrite (Pref,
e6f69614 9817 Make_Explicit_Dereference (Sloc (N),
5ff90f08 9818 Prefix => Relocate_Node (Pref)));
70482933 9819
5ff90f08 9820 Analyze_And_Resolve (Pref, Pref_Typ);
70482933
RK
9821 end if;
9822
b4592168
GD
9823 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9824 -- function, then additional actuals must be passed.
9825
0791fbe9 9826 if Ada_Version >= Ada_2005
5ff90f08 9827 and then Is_Build_In_Place_Function_Call (Pref)
b4592168 9828 then
5ff90f08 9829 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
b4592168
GD
9830 end if;
9831
70482933
RK
9832 -- The remaining case to be handled is packed slices. We can leave
9833 -- packed slices as they are in the following situations:
9834
9835 -- 1. Right or left side of an assignment (we can handle this
9836 -- situation correctly in the assignment statement expansion).
9837
685094bf
RD
9838 -- 2. Prefix of indexed component (the slide is optimized away in this
9839 -- case, see the start of Expand_N_Slice.)
70482933 9840
685094bf
RD
9841 -- 3. Object renaming declaration, since we want the name of the
9842 -- slice, not the value.
70482933 9843
685094bf
RD
9844 -- 4. Argument to procedure call, since copy-in/copy-out handling may
9845 -- be required, and this is handled in the expansion of call
9846 -- itself.
70482933 9847
685094bf
RD
9848 -- 5. Prefix of an address attribute (this is an error which is caught
9849 -- elsewhere, and the expansion would interfere with generating the
9850 -- error message).
70482933 9851
81a5b587 9852 if not Is_Packed (Typ) then
08aa9a4a 9853
685094bf
RD
9854 -- Apply transformation for actuals of a function call, where
9855 -- Expand_Actuals is not used.
81a5b587
AC
9856
9857 if Nkind (Parent (N)) = N_Function_Call
9858 and then Is_Possibly_Unaligned_Slice (N)
9859 then
b01bf852 9860 Make_Temporary_For_Slice;
81a5b587
AC
9861 end if;
9862
9863 elsif Nkind (Parent (N)) = N_Assignment_Statement
9864 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
533369aa 9865 and then Parent (N) = Name (Parent (Parent (N))))
70482933 9866 then
81a5b587 9867 return;
70482933 9868
81a5b587
AC
9869 elsif Nkind (Parent (N)) = N_Indexed_Component
9870 or else Is_Renamed_Object (N)
9871 or else Is_Procedure_Actual (N)
9872 then
9873 return;
70482933 9874
91b1417d
AC
9875 elsif Nkind (Parent (N)) = N_Attribute_Reference
9876 and then Attribute_Name (Parent (N)) = Name_Address
fbf5a39b 9877 then
81a5b587
AC
9878 return;
9879
9880 else
b01bf852 9881 Make_Temporary_For_Slice;
70482933
RK
9882 end if;
9883 end Expand_N_Slice;
9884
9885 ------------------------------
9886 -- Expand_N_Type_Conversion --
9887 ------------------------------
9888
9889 procedure Expand_N_Type_Conversion (N : Node_Id) is
9890 Loc : constant Source_Ptr := Sloc (N);
9891 Operand : constant Node_Id := Expression (N);
9892 Target_Type : constant Entity_Id := Etype (N);
9893 Operand_Type : Entity_Id := Etype (Operand);
9894
9895 procedure Handle_Changed_Representation;
685094bf
RD
9896 -- This is called in the case of record and array type conversions to
9897 -- see if there is a change of representation to be handled. Change of
9898 -- representation is actually handled at the assignment statement level,
9899 -- and what this procedure does is rewrite node N conversion as an
9900 -- assignment to temporary. If there is no change of representation,
9901 -- then the conversion node is unchanged.
70482933 9902
426908f8
RD
9903 procedure Raise_Accessibility_Error;
9904 -- Called when we know that an accessibility check will fail. Rewrites
9905 -- node N to an appropriate raise statement and outputs warning msgs.
9906 -- The Etype of the raise node is set to Target_Type.
9907
70482933
RK
9908 procedure Real_Range_Check;
9909 -- Handles generation of range check for real target value
9910
d15f9422
AC
9911 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
9912 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
9913 -- evaluates to True.
9914
70482933
RK
9915 -----------------------------------
9916 -- Handle_Changed_Representation --
9917 -----------------------------------
9918
9919 procedure Handle_Changed_Representation is
9920 Temp : Entity_Id;
9921 Decl : Node_Id;
9922 Odef : Node_Id;
9923 Disc : Node_Id;
9924 N_Ix : Node_Id;
9925 Cons : List_Id;
9926
9927 begin
f82944b7 9928 -- Nothing else to do if no change of representation
70482933
RK
9929
9930 if Same_Representation (Operand_Type, Target_Type) then
9931 return;
9932
9933 -- The real change of representation work is done by the assignment
9934 -- statement processing. So if this type conversion is appearing as
9935 -- the expression of an assignment statement, nothing needs to be
9936 -- done to the conversion.
9937
9938 elsif Nkind (Parent (N)) = N_Assignment_Statement then
9939 return;
9940
9941 -- Otherwise we need to generate a temporary variable, and do the
9942 -- change of representation assignment into that temporary variable.
9943 -- The conversion is then replaced by a reference to this variable.
9944
9945 else
9946 Cons := No_List;
9947
685094bf
RD
9948 -- If type is unconstrained we have to add a constraint, copied
9949 -- from the actual value of the left hand side.
70482933
RK
9950
9951 if not Is_Constrained (Target_Type) then
9952 if Has_Discriminants (Operand_Type) then
9953 Disc := First_Discriminant (Operand_Type);
fbf5a39b
AC
9954
9955 if Disc /= First_Stored_Discriminant (Operand_Type) then
9956 Disc := First_Stored_Discriminant (Operand_Type);
9957 end if;
9958
70482933
RK
9959 Cons := New_List;
9960 while Present (Disc) loop
9961 Append_To (Cons,
9962 Make_Selected_Component (Loc,
7675ad4f
AC
9963 Prefix =>
9964 Duplicate_Subexpr_Move_Checks (Operand),
70482933
RK
9965 Selector_Name =>
9966 Make_Identifier (Loc, Chars (Disc))));
9967 Next_Discriminant (Disc);
9968 end loop;
9969
9970 elsif Is_Array_Type (Operand_Type) then
9971 N_Ix := First_Index (Target_Type);
9972 Cons := New_List;
9973
9974 for J in 1 .. Number_Dimensions (Operand_Type) loop
9975
9976 -- We convert the bounds explicitly. We use an unchecked
9977 -- conversion because bounds checks are done elsewhere.
9978
9979 Append_To (Cons,
9980 Make_Range (Loc,
9981 Low_Bound =>
9982 Unchecked_Convert_To (Etype (N_Ix),
9983 Make_Attribute_Reference (Loc,
9984 Prefix =>
fbf5a39b 9985 Duplicate_Subexpr_No_Checks
70482933
RK
9986 (Operand, Name_Req => True),
9987 Attribute_Name => Name_First,
9988 Expressions => New_List (
9989 Make_Integer_Literal (Loc, J)))),
9990
9991 High_Bound =>
9992 Unchecked_Convert_To (Etype (N_Ix),
9993 Make_Attribute_Reference (Loc,
9994 Prefix =>
fbf5a39b 9995 Duplicate_Subexpr_No_Checks
70482933
RK
9996 (Operand, Name_Req => True),
9997 Attribute_Name => Name_Last,
9998 Expressions => New_List (
9999 Make_Integer_Literal (Loc, J))))));
10000
10001 Next_Index (N_Ix);
10002 end loop;
10003 end if;
10004 end if;
10005
10006 Odef := New_Occurrence_Of (Target_Type, Loc);
10007
10008 if Present (Cons) then
10009 Odef :=
10010 Make_Subtype_Indication (Loc,
10011 Subtype_Mark => Odef,
10012 Constraint =>
10013 Make_Index_Or_Discriminant_Constraint (Loc,
10014 Constraints => Cons));
10015 end if;
10016
191fcb3a 10017 Temp := Make_Temporary (Loc, 'C');
70482933
RK
10018 Decl :=
10019 Make_Object_Declaration (Loc,
10020 Defining_Identifier => Temp,
10021 Object_Definition => Odef);
10022
10023 Set_No_Initialization (Decl, True);
10024
10025 -- Insert required actions. It is essential to suppress checks
10026 -- since we have suppressed default initialization, which means
10027 -- that the variable we create may have no discriminants.
10028
10029 Insert_Actions (N,
10030 New_List (
10031 Decl,
10032 Make_Assignment_Statement (Loc,
10033 Name => New_Occurrence_Of (Temp, Loc),
10034 Expression => Relocate_Node (N))),
10035 Suppress => All_Checks);
10036
10037 Rewrite (N, New_Occurrence_Of (Temp, Loc));
10038 return;
10039 end if;
10040 end Handle_Changed_Representation;
10041
426908f8
RD
10042 -------------------------------
10043 -- Raise_Accessibility_Error --
10044 -------------------------------
10045
10046 procedure Raise_Accessibility_Error is
10047 begin
43417b90 10048 Error_Msg_Warn := SPARK_Mode /= On;
426908f8
RD
10049 Rewrite (N,
10050 Make_Raise_Program_Error (Sloc (N),
10051 Reason => PE_Accessibility_Check_Failed));
10052 Set_Etype (N, Target_Type);
10053
4a28b181
AC
10054 Error_Msg_N ("<<accessibility check failure", N);
10055 Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
426908f8
RD
10056 end Raise_Accessibility_Error;
10057
70482933
RK
10058 ----------------------
10059 -- Real_Range_Check --
10060 ----------------------
10061
685094bf
RD
10062 -- Case of conversions to floating-point or fixed-point. If range checks
10063 -- are enabled and the target type has a range constraint, we convert:
70482933
RK
10064
10065 -- typ (x)
10066
10067 -- to
10068
10069 -- Tnn : typ'Base := typ'Base (x);
10070 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10071 -- Tnn
10072
685094bf
RD
10073 -- This is necessary when there is a conversion of integer to float or
10074 -- to fixed-point to ensure that the correct checks are made. It is not
10075 -- necessary for float to float where it is enough to simply set the
10076 -- Do_Range_Check flag.
fbf5a39b 10077
70482933
RK
10078 procedure Real_Range_Check is
10079 Btyp : constant Entity_Id := Base_Type (Target_Type);
10080 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
10081 Hi : constant Node_Id := Type_High_Bound (Target_Type);
fbf5a39b 10082 Xtyp : constant Entity_Id := Etype (Operand);
70482933
RK
10083 Conv : Node_Id;
10084 Tnn : Entity_Id;
10085
10086 begin
10087 -- Nothing to do if conversion was rewritten
10088
10089 if Nkind (N) /= N_Type_Conversion then
10090 return;
10091 end if;
10092
685094bf
RD
10093 -- Nothing to do if range checks suppressed, or target has the same
10094 -- range as the base type (or is the base type).
70482933
RK
10095
10096 if Range_Checks_Suppressed (Target_Type)
533369aa 10097 or else (Lo = Type_Low_Bound (Btyp)
70482933
RK
10098 and then
10099 Hi = Type_High_Bound (Btyp))
10100 then
10101 return;
10102 end if;
10103
685094bf
RD
10104 -- Nothing to do if expression is an entity on which checks have been
10105 -- suppressed.
70482933 10106
fbf5a39b
AC
10107 if Is_Entity_Name (Operand)
10108 and then Range_Checks_Suppressed (Entity (Operand))
10109 then
10110 return;
10111 end if;
10112
685094bf
RD
10113 -- Nothing to do if bounds are all static and we can tell that the
10114 -- expression is within the bounds of the target. Note that if the
10115 -- operand is of an unconstrained floating-point type, then we do
10116 -- not trust it to be in range (might be infinite)
fbf5a39b
AC
10117
10118 declare
f02b8bb8
RD
10119 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
10120 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
fbf5a39b
AC
10121
10122 begin
10123 if (not Is_Floating_Point_Type (Xtyp)
10124 or else Is_Constrained (Xtyp))
10125 and then Compile_Time_Known_Value (S_Lo)
10126 and then Compile_Time_Known_Value (S_Hi)
10127 and then Compile_Time_Known_Value (Hi)
10128 and then Compile_Time_Known_Value (Lo)
10129 then
10130 declare
10131 D_Lov : constant Ureal := Expr_Value_R (Lo);
10132 D_Hiv : constant Ureal := Expr_Value_R (Hi);
10133 S_Lov : Ureal;
10134 S_Hiv : Ureal;
10135
10136 begin
10137 if Is_Real_Type (Xtyp) then
10138 S_Lov := Expr_Value_R (S_Lo);
10139 S_Hiv := Expr_Value_R (S_Hi);
10140 else
10141 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
10142 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
10143 end if;
10144
10145 if D_Hiv > D_Lov
10146 and then S_Lov >= D_Lov
10147 and then S_Hiv <= D_Hiv
10148 then
8b034336
AC
10149 -- Unset the range check flag on the current value of
10150 -- Expression (N), since the captured Operand may have
10151 -- been rewritten (such as for the case of a conversion
10152 -- to a fixed-point type).
10153
10154 Set_Do_Range_Check (Expression (N), False);
10155
fbf5a39b
AC
10156 return;
10157 end if;
10158 end;
10159 end if;
10160 end;
10161
10162 -- For float to float conversions, we are done
10163
10164 if Is_Floating_Point_Type (Xtyp)
10165 and then
10166 Is_Floating_Point_Type (Btyp)
70482933
RK
10167 then
10168 return;
10169 end if;
10170
fbf5a39b 10171 -- Otherwise rewrite the conversion as described above
70482933
RK
10172
10173 Conv := Relocate_Node (N);
eaa826f8 10174 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
70482933
RK
10175 Set_Etype (Conv, Btyp);
10176
f02b8bb8
RD
10177 -- Enable overflow except for case of integer to float conversions,
10178 -- where it is never required, since we can never have overflow in
10179 -- this case.
70482933 10180
fbf5a39b
AC
10181 if not Is_Integer_Type (Etype (Operand)) then
10182 Enable_Overflow_Check (Conv);
70482933
RK
10183 end if;
10184
191fcb3a 10185 Tnn := Make_Temporary (Loc, 'T', Conv);
70482933
RK
10186
10187 Insert_Actions (N, New_List (
10188 Make_Object_Declaration (Loc,
10189 Defining_Identifier => Tnn,
10190 Object_Definition => New_Occurrence_Of (Btyp, Loc),
0ac2a660
AC
10191 Constant_Present => True,
10192 Expression => Conv),
70482933
RK
10193
10194 Make_Raise_Constraint_Error (Loc,
07fc65c4
GB
10195 Condition =>
10196 Make_Or_Else (Loc,
10197 Left_Opnd =>
10198 Make_Op_Lt (Loc,
10199 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10200 Right_Opnd =>
10201 Make_Attribute_Reference (Loc,
10202 Attribute_Name => Name_First,
10203 Prefix =>
10204 New_Occurrence_Of (Target_Type, Loc))),
70482933 10205
07fc65c4
GB
10206 Right_Opnd =>
10207 Make_Op_Gt (Loc,
10208 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10209 Right_Opnd =>
10210 Make_Attribute_Reference (Loc,
10211 Attribute_Name => Name_Last,
10212 Prefix =>
10213 New_Occurrence_Of (Target_Type, Loc)))),
10214 Reason => CE_Range_Check_Failed)));
70482933
RK
10215
10216 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
10217 Analyze_And_Resolve (N, Btyp);
10218 end Real_Range_Check;
10219
d15f9422
AC
10220 -----------------------------
10221 -- Has_Extra_Accessibility --
10222 -----------------------------
10223
10224 -- Returns true for a formal of an anonymous access type or for
10225 -- an Ada 2012-style stand-alone object of an anonymous access type.
10226
10227 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
10228 begin
10229 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
10230 return Present (Effective_Extra_Accessibility (Id));
10231 else
10232 return False;
10233 end if;
10234 end Has_Extra_Accessibility;
10235
70482933
RK
10236 -- Start of processing for Expand_N_Type_Conversion
10237
10238 begin
83851b23 10239 -- First remove check marks put by the semantic analysis on the type
b2502161
AC
10240 -- conversion between array types. We need these checks, and they will
10241 -- be generated by this expansion routine, but we do not depend on these
10242 -- flags being set, and since we do intend to expand the checks in the
10243 -- front end, we don't want them on the tree passed to the back end.
83851b23
AC
10244
10245 if Is_Array_Type (Target_Type) then
10246 if Is_Constrained (Target_Type) then
10247 Set_Do_Length_Check (N, False);
10248 else
10249 Set_Do_Range_Check (Operand, False);
10250 end if;
10251 end if;
10252
685094bf 10253 -- Nothing at all to do if conversion is to the identical type so remove
76efd572
AC
10254 -- the conversion completely, it is useless, except that it may carry
10255 -- an Assignment_OK attribute, which must be propagated to the operand.
70482933
RK
10256
10257 if Operand_Type = Target_Type then
7b00e31d
AC
10258 if Assignment_OK (N) then
10259 Set_Assignment_OK (Operand);
10260 end if;
10261
fbf5a39b 10262 Rewrite (N, Relocate_Node (Operand));
e606088a 10263 goto Done;
70482933
RK
10264 end if;
10265
685094bf
RD
10266 -- Nothing to do if this is the second argument of read. This is a
10267 -- "backwards" conversion that will be handled by the specialized code
10268 -- in attribute processing.
70482933
RK
10269
10270 if Nkind (Parent (N)) = N_Attribute_Reference
10271 and then Attribute_Name (Parent (N)) = Name_Read
10272 and then Next (First (Expressions (Parent (N)))) = N
10273 then
e606088a
AC
10274 goto Done;
10275 end if;
10276
10277 -- Check for case of converting to a type that has an invariant
10278 -- associated with it. This required an invariant check. We convert
10279
10280 -- typ (expr)
10281
10282 -- into
10283
10284 -- do invariant_check (typ (expr)) in typ (expr);
10285
10286 -- using Duplicate_Subexpr to avoid multiple side effects
10287
10288 -- Note: the Comes_From_Source check, and then the resetting of this
10289 -- flag prevents what would otherwise be an infinite recursion.
10290
fd0ff1cf
RD
10291 if Has_Invariants (Target_Type)
10292 and then Present (Invariant_Procedure (Target_Type))
e606088a
AC
10293 and then Comes_From_Source (N)
10294 then
10295 Set_Comes_From_Source (N, False);
10296 Rewrite (N,
10297 Make_Expression_With_Actions (Loc,
10298 Actions => New_List (
10299 Make_Invariant_Call (Duplicate_Subexpr (N))),
10300 Expression => Duplicate_Subexpr_No_Checks (N)));
10301 Analyze_And_Resolve (N, Target_Type);
10302 goto Done;
70482933
RK
10303 end if;
10304
10305 -- Here if we may need to expand conversion
10306
eaa826f8
RD
10307 -- If the operand of the type conversion is an arithmetic operation on
10308 -- signed integers, and the based type of the signed integer type in
10309 -- question is smaller than Standard.Integer, we promote both of the
10310 -- operands to type Integer.
10311
10312 -- For example, if we have
10313
10314 -- target-type (opnd1 + opnd2)
10315
10316 -- and opnd1 and opnd2 are of type short integer, then we rewrite
10317 -- this as:
10318
10319 -- target-type (integer(opnd1) + integer(opnd2))
10320
10321 -- We do this because we are always allowed to compute in a larger type
10322 -- if we do the right thing with the result, and in this case we are
10323 -- going to do a conversion which will do an appropriate check to make
10324 -- sure that things are in range of the target type in any case. This
10325 -- avoids some unnecessary intermediate overflows.
10326
dfcfdc0a
AC
10327 -- We might consider a similar transformation in the case where the
10328 -- target is a real type or a 64-bit integer type, and the operand
10329 -- is an arithmetic operation using a 32-bit integer type. However,
10330 -- we do not bother with this case, because it could cause significant
308e6f3a 10331 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
dfcfdc0a
AC
10332 -- much cheaper, but we don't want different behavior on 32-bit and
10333 -- 64-bit machines. Note that the exclusion of the 64-bit case also
10334 -- handles the configurable run-time cases where 64-bit arithmetic
10335 -- may simply be unavailable.
eaa826f8
RD
10336
10337 -- Note: this circuit is partially redundant with respect to the circuit
10338 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10339 -- the processing here. Also we still need the Checks circuit, since we
10340 -- have to be sure not to generate junk overflow checks in the first
a90bd866 10341 -- place, since it would be trick to remove them here.
eaa826f8 10342
fdfcc663 10343 if Integer_Promotion_Possible (N) then
eaa826f8 10344
fdfcc663 10345 -- All conditions met, go ahead with transformation
eaa826f8 10346
fdfcc663
AC
10347 declare
10348 Opnd : Node_Id;
10349 L, R : Node_Id;
dfcfdc0a 10350
fdfcc663
AC
10351 begin
10352 R :=
10353 Make_Type_Conversion (Loc,
e4494292 10354 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
fdfcc663 10355 Expression => Relocate_Node (Right_Opnd (Operand)));
eaa826f8 10356
5f3f175d
AC
10357 Opnd := New_Op_Node (Nkind (Operand), Loc);
10358 Set_Right_Opnd (Opnd, R);
eaa826f8 10359
5f3f175d 10360 if Nkind (Operand) in N_Binary_Op then
fdfcc663 10361 L :=
eaa826f8 10362 Make_Type_Conversion (Loc,
e4494292 10363 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
fdfcc663
AC
10364 Expression => Relocate_Node (Left_Opnd (Operand)));
10365
5f3f175d
AC
10366 Set_Left_Opnd (Opnd, L);
10367 end if;
eaa826f8 10368
5f3f175d
AC
10369 Rewrite (N,
10370 Make_Type_Conversion (Loc,
10371 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
10372 Expression => Opnd));
dfcfdc0a 10373
5f3f175d 10374 Analyze_And_Resolve (N, Target_Type);
e606088a 10375 goto Done;
fdfcc663
AC
10376 end;
10377 end if;
eaa826f8 10378
f82944b7
JM
10379 -- Do validity check if validity checking operands
10380
533369aa 10381 if Validity_Checks_On and Validity_Check_Operands then
f82944b7
JM
10382 Ensure_Valid (Operand);
10383 end if;
10384
70482933
RK
10385 -- Special case of converting from non-standard boolean type
10386
10387 if Is_Boolean_Type (Operand_Type)
10388 and then (Nonzero_Is_True (Operand_Type))
10389 then
10390 Adjust_Condition (Operand);
10391 Set_Etype (Operand, Standard_Boolean);
10392 Operand_Type := Standard_Boolean;
10393 end if;
10394
10395 -- Case of converting to an access type
10396
10397 if Is_Access_Type (Target_Type) then
10398
d766cee3
RD
10399 -- Apply an accessibility check when the conversion operand is an
10400 -- access parameter (or a renaming thereof), unless conversion was
e84e11ba
GD
10401 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10402 -- Note that other checks may still need to be applied below (such
10403 -- as tagged type checks).
70482933
RK
10404
10405 if Is_Entity_Name (Operand)
d15f9422 10406 and then Has_Extra_Accessibility (Entity (Operand))
70482933 10407 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
d766cee3
RD
10408 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
10409 or else Attribute_Name (Original_Node (N)) = Name_Access)
70482933 10410 then
e84e11ba
GD
10411 Apply_Accessibility_Check
10412 (Operand, Target_Type, Insert_Node => Operand);
70482933 10413
e84e11ba 10414 -- If the level of the operand type is statically deeper than the
685094bf
RD
10415 -- level of the target type, then force Program_Error. Note that this
10416 -- can only occur for cases where the attribute is within the body of
10417 -- an instantiation (otherwise the conversion will already have been
10418 -- rejected as illegal). Note: warnings are issued by the analyzer
10419 -- for the instance cases.
70482933
RK
10420
10421 elsif In_Instance_Body
07fc65c4
GB
10422 and then Type_Access_Level (Operand_Type) >
10423 Type_Access_Level (Target_Type)
70482933 10424 then
426908f8 10425 Raise_Accessibility_Error;
70482933 10426
685094bf
RD
10427 -- When the operand is a selected access discriminant the check needs
10428 -- to be made against the level of the object denoted by the prefix
10429 -- of the selected name. Force Program_Error for this case as well
10430 -- (this accessibility violation can only happen if within the body
10431 -- of an instantiation).
70482933
RK
10432
10433 elsif In_Instance_Body
10434 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
10435 and then Nkind (Operand) = N_Selected_Component
10436 and then Object_Access_Level (Operand) >
10437 Type_Access_Level (Target_Type)
10438 then
426908f8 10439 Raise_Accessibility_Error;
e606088a 10440 goto Done;
70482933
RK
10441 end if;
10442 end if;
10443
10444 -- Case of conversions of tagged types and access to tagged types
10445
685094bf
RD
10446 -- When needed, that is to say when the expression is class-wide, Add
10447 -- runtime a tag check for (strict) downward conversion by using the
10448 -- membership test, generating:
70482933
RK
10449
10450 -- [constraint_error when Operand not in Target_Type'Class]
10451
10452 -- or in the access type case
10453
10454 -- [constraint_error
10455 -- when Operand /= null
10456 -- and then Operand.all not in
10457 -- Designated_Type (Target_Type)'Class]
10458
10459 if (Is_Access_Type (Target_Type)
10460 and then Is_Tagged_Type (Designated_Type (Target_Type)))
10461 or else Is_Tagged_Type (Target_Type)
10462 then
685094bf
RD
10463 -- Do not do any expansion in the access type case if the parent is a
10464 -- renaming, since this is an error situation which will be caught by
10465 -- Sem_Ch8, and the expansion can interfere with this error check.
70482933 10466
e7e4d230 10467 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
e606088a 10468 goto Done;
70482933
RK
10469 end if;
10470
0669bebe 10471 -- Otherwise, proceed with processing tagged conversion
70482933 10472
e7e4d230 10473 Tagged_Conversion : declare
8cea7b64
HK
10474 Actual_Op_Typ : Entity_Id;
10475 Actual_Targ_Typ : Entity_Id;
10476 Make_Conversion : Boolean := False;
10477 Root_Op_Typ : Entity_Id;
70482933 10478
8cea7b64
HK
10479 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
10480 -- Create a membership check to test whether Operand is a member
10481 -- of Targ_Typ. If the original Target_Type is an access, include
10482 -- a test for null value. The check is inserted at N.
10483
10484 --------------------
10485 -- Make_Tag_Check --
10486 --------------------
10487
10488 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
10489 Cond : Node_Id;
10490
10491 begin
10492 -- Generate:
10493 -- [Constraint_Error
10494 -- when Operand /= null
10495 -- and then Operand.all not in Targ_Typ]
10496
10497 if Is_Access_Type (Target_Type) then
10498 Cond :=
10499 Make_And_Then (Loc,
10500 Left_Opnd =>
10501 Make_Op_Ne (Loc,
10502 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
10503 Right_Opnd => Make_Null (Loc)),
10504
10505 Right_Opnd =>
10506 Make_Not_In (Loc,
10507 Left_Opnd =>
10508 Make_Explicit_Dereference (Loc,
10509 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
e4494292 10510 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
8cea7b64
HK
10511
10512 -- Generate:
10513 -- [Constraint_Error when Operand not in Targ_Typ]
10514
10515 else
10516 Cond :=
10517 Make_Not_In (Loc,
10518 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
e4494292 10519 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
8cea7b64
HK
10520 end if;
10521
10522 Insert_Action (N,
10523 Make_Raise_Constraint_Error (Loc,
10524 Condition => Cond,
10525 Reason => CE_Tag_Check_Failed));
10526 end Make_Tag_Check;
10527
e7e4d230 10528 -- Start of processing for Tagged_Conversion
70482933
RK
10529
10530 begin
9732e886 10531 -- Handle entities from the limited view
852dba80 10532
9732e886 10533 if Is_Access_Type (Operand_Type) then
852dba80
AC
10534 Actual_Op_Typ :=
10535 Available_View (Designated_Type (Operand_Type));
9732e886
JM
10536 else
10537 Actual_Op_Typ := Operand_Type;
10538 end if;
10539
10540 if Is_Access_Type (Target_Type) then
852dba80
AC
10541 Actual_Targ_Typ :=
10542 Available_View (Designated_Type (Target_Type));
70482933 10543 else
8cea7b64 10544 Actual_Targ_Typ := Target_Type;
70482933
RK
10545 end if;
10546
8cea7b64
HK
10547 Root_Op_Typ := Root_Type (Actual_Op_Typ);
10548
20b5d666
JM
10549 -- Ada 2005 (AI-251): Handle interface type conversion
10550
8cea7b64 10551 if Is_Interface (Actual_Op_Typ) then
f6f4d8d4 10552 Expand_Interface_Conversion (N);
e606088a 10553 goto Done;
20b5d666
JM
10554 end if;
10555
8cea7b64 10556 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
70482933 10557
8cea7b64
HK
10558 -- Create a runtime tag check for a downward class-wide type
10559 -- conversion.
70482933 10560
8cea7b64 10561 if Is_Class_Wide_Type (Actual_Op_Typ)
852dba80 10562 and then Actual_Op_Typ /= Actual_Targ_Typ
8cea7b64 10563 and then Root_Op_Typ /= Actual_Targ_Typ
4ac2477e
JM
10564 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
10565 Use_Full_View => True)
8cea7b64
HK
10566 then
10567 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
10568 Make_Conversion := True;
10569 end if;
70482933 10570
8cea7b64
HK
10571 -- AI05-0073: If the result subtype of the function is defined
10572 -- by an access_definition designating a specific tagged type
10573 -- T, a check is made that the result value is null or the tag
10574 -- of the object designated by the result value identifies T.
10575 -- Constraint_Error is raised if this check fails.
70482933 10576
92a7cd46 10577 if Nkind (Parent (N)) = N_Simple_Return_Statement then
8cea7b64 10578 declare
e886436a 10579 Func : Entity_Id;
8cea7b64
HK
10580 Func_Typ : Entity_Id;
10581
10582 begin
e886436a 10583 -- Climb scope stack looking for the enclosing function
8cea7b64 10584
e886436a 10585 Func := Current_Scope;
8cea7b64
HK
10586 while Present (Func)
10587 and then Ekind (Func) /= E_Function
10588 loop
10589 Func := Scope (Func);
10590 end loop;
10591
10592 -- The function's return subtype must be defined using
10593 -- an access definition.
10594
10595 if Nkind (Result_Definition (Parent (Func))) =
10596 N_Access_Definition
10597 then
10598 Func_Typ := Directly_Designated_Type (Etype (Func));
10599
10600 -- The return subtype denotes a specific tagged type,
10601 -- in other words, a non class-wide type.
10602
10603 if Is_Tagged_Type (Func_Typ)
10604 and then not Is_Class_Wide_Type (Func_Typ)
10605 then
10606 Make_Tag_Check (Actual_Targ_Typ);
10607 Make_Conversion := True;
10608 end if;
10609 end if;
10610 end;
70482933
RK
10611 end if;
10612
8cea7b64
HK
10613 -- We have generated a tag check for either a class-wide type
10614 -- conversion or for AI05-0073.
70482933 10615
8cea7b64
HK
10616 if Make_Conversion then
10617 declare
10618 Conv : Node_Id;
10619 begin
10620 Conv :=
10621 Make_Unchecked_Type_Conversion (Loc,
10622 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
10623 Expression => Relocate_Node (Expression (N)));
10624 Rewrite (N, Conv);
10625 Analyze_And_Resolve (N, Target_Type);
10626 end;
10627 end if;
70482933 10628 end if;
e7e4d230 10629 end Tagged_Conversion;
70482933
RK
10630
10631 -- Case of other access type conversions
10632
10633 elsif Is_Access_Type (Target_Type) then
10634 Apply_Constraint_Check (Operand, Target_Type);
10635
10636 -- Case of conversions from a fixed-point type
10637
685094bf
RD
10638 -- These conversions require special expansion and processing, found in
10639 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10640 -- since from a semantic point of view, these are simple integer
70482933
RK
10641 -- conversions, which do not need further processing.
10642
10643 elsif Is_Fixed_Point_Type (Operand_Type)
10644 and then not Conversion_OK (N)
10645 then
10646 -- We should never see universal fixed at this case, since the
10647 -- expansion of the constituent divide or multiply should have
10648 -- eliminated the explicit mention of universal fixed.
10649
10650 pragma Assert (Operand_Type /= Universal_Fixed);
10651
685094bf
RD
10652 -- Check for special case of the conversion to universal real that
10653 -- occurs as a result of the use of a round attribute. In this case,
10654 -- the real type for the conversion is taken from the target type of
10655 -- the Round attribute and the result must be marked as rounded.
70482933
RK
10656
10657 if Target_Type = Universal_Real
10658 and then Nkind (Parent (N)) = N_Attribute_Reference
10659 and then Attribute_Name (Parent (N)) = Name_Round
10660 then
10661 Set_Rounded_Result (N);
10662 Set_Etype (N, Etype (Parent (N)));
10663 end if;
10664
10665 -- Otherwise do correct fixed-conversion, but skip these if the
e7e4d230
AC
10666 -- Conversion_OK flag is set, because from a semantic point of view
10667 -- these are simple integer conversions needing no further processing
10668 -- (the backend will simply treat them as integers).
70482933
RK
10669
10670 if not Conversion_OK (N) then
10671 if Is_Fixed_Point_Type (Etype (N)) then
10672 Expand_Convert_Fixed_To_Fixed (N);
10673 Real_Range_Check;
10674
10675 elsif Is_Integer_Type (Etype (N)) then
10676 Expand_Convert_Fixed_To_Integer (N);
10677
10678 else
10679 pragma Assert (Is_Floating_Point_Type (Etype (N)));
10680 Expand_Convert_Fixed_To_Float (N);
10681 Real_Range_Check;
10682 end if;
10683 end if;
10684
10685 -- Case of conversions to a fixed-point type
10686
685094bf
RD
10687 -- These conversions require special expansion and processing, found in
10688 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10689 -- since from a semantic point of view, these are simple integer
10690 -- conversions, which do not need further processing.
70482933
RK
10691
10692 elsif Is_Fixed_Point_Type (Target_Type)
10693 and then not Conversion_OK (N)
10694 then
10695 if Is_Integer_Type (Operand_Type) then
10696 Expand_Convert_Integer_To_Fixed (N);
10697 Real_Range_Check;
10698 else
10699 pragma Assert (Is_Floating_Point_Type (Operand_Type));
10700 Expand_Convert_Float_To_Fixed (N);
10701 Real_Range_Check;
10702 end if;
10703
10704 -- Case of float-to-integer conversions
10705
10706 -- We also handle float-to-fixed conversions with Conversion_OK set
10707 -- since semantically the fixed-point target is treated as though it
10708 -- were an integer in such cases.
10709
10710 elsif Is_Floating_Point_Type (Operand_Type)
10711 and then
10712 (Is_Integer_Type (Target_Type)
10713 or else
10714 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
10715 then
70482933
RK
10716 -- One more check here, gcc is still not able to do conversions of
10717 -- this type with proper overflow checking, and so gigi is doing an
10718 -- approximation of what is required by doing floating-point compares
10719 -- with the end-point. But that can lose precision in some cases, and
f02b8bb8 10720 -- give a wrong result. Converting the operand to Universal_Real is
70482933 10721 -- helpful, but still does not catch all cases with 64-bit integers
e7e4d230 10722 -- on targets with only 64-bit floats.
0669bebe
GB
10723
10724 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
10725 -- Can this code be removed ???
70482933 10726
fbf5a39b
AC
10727 if Do_Range_Check (Operand) then
10728 Rewrite (Operand,
70482933
RK
10729 Make_Type_Conversion (Loc,
10730 Subtype_Mark =>
f02b8bb8 10731 New_Occurrence_Of (Universal_Real, Loc),
70482933 10732 Expression =>
fbf5a39b 10733 Relocate_Node (Operand)));
70482933 10734
f02b8bb8 10735 Set_Etype (Operand, Universal_Real);
fbf5a39b
AC
10736 Enable_Range_Check (Operand);
10737 Set_Do_Range_Check (Expression (Operand), False);
70482933
RK
10738 end if;
10739
10740 -- Case of array conversions
10741
685094bf
RD
10742 -- Expansion of array conversions, add required length/range checks but
10743 -- only do this if there is no change of representation. For handling of
10744 -- this case, see Handle_Changed_Representation.
70482933
RK
10745
10746 elsif Is_Array_Type (Target_Type) then
70482933
RK
10747 if Is_Constrained (Target_Type) then
10748 Apply_Length_Check (Operand, Target_Type);
10749 else
10750 Apply_Range_Check (Operand, Target_Type);
10751 end if;
10752
10753 Handle_Changed_Representation;
10754
10755 -- Case of conversions of discriminated types
10756
685094bf
RD
10757 -- Add required discriminant checks if target is constrained. Again this
10758 -- change is skipped if we have a change of representation.
70482933
RK
10759
10760 elsif Has_Discriminants (Target_Type)
10761 and then Is_Constrained (Target_Type)
10762 then
10763 Apply_Discriminant_Check (Operand, Target_Type);
10764 Handle_Changed_Representation;
10765
10766 -- Case of all other record conversions. The only processing required
10767 -- is to check for a change of representation requiring the special
10768 -- assignment processing.
10769
10770 elsif Is_Record_Type (Target_Type) then
5d09245e
AC
10771
10772 -- Ada 2005 (AI-216): Program_Error is raised when converting from
685094bf
RD
10773 -- a derived Unchecked_Union type to an unconstrained type that is
10774 -- not Unchecked_Union if the operand lacks inferable discriminants.
5d09245e
AC
10775
10776 if Is_Derived_Type (Operand_Type)
10777 and then Is_Unchecked_Union (Base_Type (Operand_Type))
10778 and then not Is_Constrained (Target_Type)
10779 and then not Is_Unchecked_Union (Base_Type (Target_Type))
10780 and then not Has_Inferable_Discriminants (Operand)
10781 then
685094bf 10782 -- To prevent Gigi from generating illegal code, we generate a
5d09245e 10783 -- Program_Error node, but we give it the target type of the
6cb3037c 10784 -- conversion (is this requirement documented somewhere ???)
5d09245e
AC
10785
10786 declare
10787 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
10788 Reason => PE_Unchecked_Union_Restriction);
10789
10790 begin
10791 Set_Etype (PE, Target_Type);
10792 Rewrite (N, PE);
10793
10794 end;
10795 else
10796 Handle_Changed_Representation;
10797 end if;
70482933
RK
10798
10799 -- Case of conversions of enumeration types
10800
10801 elsif Is_Enumeration_Type (Target_Type) then
10802
10803 -- Special processing is required if there is a change of
e7e4d230 10804 -- representation (from enumeration representation clauses).
70482933
RK
10805
10806 if not Same_Representation (Target_Type, Operand_Type) then
10807
10808 -- Convert: x(y) to x'val (ytyp'val (y))
10809
10810 Rewrite (N,
1c66c4f5
AC
10811 Make_Attribute_Reference (Loc,
10812 Prefix => New_Occurrence_Of (Target_Type, Loc),
10813 Attribute_Name => Name_Val,
10814 Expressions => New_List (
10815 Make_Attribute_Reference (Loc,
10816 Prefix => New_Occurrence_Of (Operand_Type, Loc),
10817 Attribute_Name => Name_Pos,
10818 Expressions => New_List (Operand)))));
70482933
RK
10819
10820 Analyze_And_Resolve (N, Target_Type);
10821 end if;
10822
10823 -- Case of conversions to floating-point
10824
10825 elsif Is_Floating_Point_Type (Target_Type) then
10826 Real_Range_Check;
70482933
RK
10827 end if;
10828
685094bf 10829 -- At this stage, either the conversion node has been transformed into
e7e4d230
AC
10830 -- some other equivalent expression, or left as a conversion that can be
10831 -- handled by Gigi, in the following cases:
70482933
RK
10832
10833 -- Conversions with no change of representation or type
10834
685094bf
RD
10835 -- Numeric conversions involving integer, floating- and fixed-point
10836 -- values. Fixed-point values are allowed only if Conversion_OK is
10837 -- set, i.e. if the fixed-point values are to be treated as integers.
70482933 10838
5e1c00fa
RD
10839 -- No other conversions should be passed to Gigi
10840
10841 -- Check: are these rules stated in sinfo??? if so, why restate here???
70482933 10842
685094bf
RD
10843 -- The only remaining step is to generate a range check if we still have
10844 -- a type conversion at this stage and Do_Range_Check is set. For now we
7b536495
AC
10845 -- do this only for conversions of discrete types and for floating-point
10846 -- conversions where the base types of source and target are the same.
fbf5a39b 10847
7b536495 10848 if Nkind (N) = N_Type_Conversion then
fbf5a39b 10849
7b536495
AC
10850 -- For now we only support floating-point cases where the base types
10851 -- of the target type and source expression are the same, so there's
10852 -- potentially only a range check. Conversions where the source and
10853 -- target have different base types are still TBD. ???
fbf5a39b 10854
7b536495
AC
10855 if Is_Floating_Point_Type (Etype (N))
10856 and then
10857 Base_Type (Etype (N)) = Base_Type (Etype (Expression (N)))
10858 then
10859 if Do_Range_Check (Expression (N))
10860 and then Is_Floating_Point_Type (Target_Type)
10861 then
10862 Generate_Range_Check
10863 (Expression (N), Target_Type, CE_Range_Check_Failed);
10864 end if;
fbf5a39b 10865
7b536495
AC
10866 elsif Is_Discrete_Type (Etype (N)) then
10867 declare
10868 Expr : constant Node_Id := Expression (N);
10869 Ftyp : Entity_Id;
10870 Ityp : Entity_Id;
fbf5a39b 10871
7b536495
AC
10872 begin
10873 if Do_Range_Check (Expr)
10874 and then Is_Discrete_Type (Etype (Expr))
fbf5a39b 10875 then
7b536495 10876 Set_Do_Range_Check (Expr, False);
fbf5a39b 10877
7b536495
AC
10878 -- Before we do a range check, we have to deal with treating
10879 -- a fixed-point operand as an integer. The way we do this
10880 -- is simply to do an unchecked conversion to an appropriate
10881 -- integer type large enough to hold the result.
fbf5a39b 10882
7b536495
AC
10883 -- This code is not active yet, because we are only dealing
10884 -- with discrete types so far ???
fbf5a39b 10885
7b536495
AC
10886 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
10887 and then Treat_Fixed_As_Integer (Expr)
10888 then
10889 Ftyp := Base_Type (Etype (Expr));
fbf5a39b 10890
7b536495
AC
10891 if Esize (Ftyp) >= Esize (Standard_Integer) then
10892 Ityp := Standard_Long_Long_Integer;
10893 else
10894 Ityp := Standard_Integer;
10895 end if;
edab6088 10896
7b536495
AC
10897 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
10898 end if;
10899
10900 -- Reset overflow flag, since the range check will include
10901 -- dealing with possible overflow, and generate the check.
10902 -- If Address is either a source type or target type,
10903 -- suppress range check to avoid typing anomalies when
10904 -- it is a visible integer type.
10905
10906 Set_Do_Overflow_Check (N, False);
10907
10908 if not Is_Descendent_Of_Address (Etype (Expr))
10909 and then not Is_Descendent_Of_Address (Target_Type)
10910 then
10911 Generate_Range_Check
10912 (Expr, Target_Type, CE_Range_Check_Failed);
10913 end if;
8a36a0cc 10914 end if;
7b536495
AC
10915 end;
10916 end if;
fbf5a39b 10917 end if;
f02b8bb8 10918
e606088a
AC
10919 -- Here at end of processing
10920
48f91b44
RD
10921 <<Done>>
10922 -- Apply predicate check if required. Note that we can't just call
10923 -- Apply_Predicate_Check here, because the type looks right after
10924 -- the conversion and it would omit the check. The Comes_From_Source
10925 -- guard is necessary to prevent infinite recursions when we generate
10926 -- internal conversions for the purpose of checking predicates.
10927
10928 if Present (Predicate_Function (Target_Type))
10929 and then Target_Type /= Operand_Type
10930 and then Comes_From_Source (N)
10931 then
00332244
AC
10932 declare
10933 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
10934
10935 begin
10936 -- Avoid infinite recursion on the subsequent expansion of
10937 -- of the copy of the original type conversion.
10938
10939 Set_Comes_From_Source (New_Expr, False);
10940 Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
10941 end;
48f91b44 10942 end if;
70482933
RK
10943 end Expand_N_Type_Conversion;
10944
10945 -----------------------------------
10946 -- Expand_N_Unchecked_Expression --
10947 -----------------------------------
10948
e7e4d230 10949 -- Remove the unchecked expression node from the tree. Its job was simply
70482933
RK
10950 -- to make sure that its constituent expression was handled with checks
10951 -- off, and now that that is done, we can remove it from the tree, and
e7e4d230 10952 -- indeed must, since Gigi does not expect to see these nodes.
70482933
RK
10953
10954 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
10955 Exp : constant Node_Id := Expression (N);
70482933 10956 begin
e7e4d230 10957 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
70482933
RK
10958 Rewrite (N, Exp);
10959 end Expand_N_Unchecked_Expression;
10960
10961 ----------------------------------------
10962 -- Expand_N_Unchecked_Type_Conversion --
10963 ----------------------------------------
10964
685094bf
RD
10965 -- If this cannot be handled by Gigi and we haven't already made a
10966 -- temporary for it, do it now.
70482933
RK
10967
10968 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
10969 Target_Type : constant Entity_Id := Etype (N);
10970 Operand : constant Node_Id := Expression (N);
10971 Operand_Type : constant Entity_Id := Etype (Operand);
10972
10973 begin
7b00e31d 10974 -- Nothing at all to do if conversion is to the identical type so remove
76efd572 10975 -- the conversion completely, it is useless, except that it may carry
e7e4d230 10976 -- an Assignment_OK indication which must be propagated to the operand.
7b00e31d
AC
10977
10978 if Operand_Type = Target_Type then
13d923cc 10979
e7e4d230
AC
10980 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
10981
7b00e31d
AC
10982 if Assignment_OK (N) then
10983 Set_Assignment_OK (Operand);
10984 end if;
10985
10986 Rewrite (N, Relocate_Node (Operand));
10987 return;
10988 end if;
10989
70482933
RK
10990 -- If we have a conversion of a compile time known value to a target
10991 -- type and the value is in range of the target type, then we can simply
10992 -- replace the construct by an integer literal of the correct type. We
10993 -- only apply this to integer types being converted. Possibly it may
10994 -- apply in other cases, but it is too much trouble to worry about.
10995
10996 -- Note that we do not do this transformation if the Kill_Range_Check
10997 -- flag is set, since then the value may be outside the expected range.
10998 -- This happens in the Normalize_Scalars case.
10999
20b5d666
JM
11000 -- We also skip this if either the target or operand type is biased
11001 -- because in this case, the unchecked conversion is supposed to
11002 -- preserve the bit pattern, not the integer value.
11003
70482933 11004 if Is_Integer_Type (Target_Type)
20b5d666 11005 and then not Has_Biased_Representation (Target_Type)
70482933 11006 and then Is_Integer_Type (Operand_Type)
20b5d666 11007 and then not Has_Biased_Representation (Operand_Type)
70482933
RK
11008 and then Compile_Time_Known_Value (Operand)
11009 and then not Kill_Range_Check (N)
11010 then
11011 declare
11012 Val : constant Uint := Expr_Value (Operand);
11013
11014 begin
11015 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
11016 and then
11017 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
11018 and then
11019 Val >= Expr_Value (Type_Low_Bound (Target_Type))
11020 and then
11021 Val <= Expr_Value (Type_High_Bound (Target_Type))
11022 then
11023 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
8a36a0cc 11024
685094bf
RD
11025 -- If Address is the target type, just set the type to avoid a
11026 -- spurious type error on the literal when Address is a visible
11027 -- integer type.
8a36a0cc
AC
11028
11029 if Is_Descendent_Of_Address (Target_Type) then
11030 Set_Etype (N, Target_Type);
11031 else
11032 Analyze_And_Resolve (N, Target_Type);
11033 end if;
11034
70482933
RK
11035 return;
11036 end if;
11037 end;
11038 end if;
11039
11040 -- Nothing to do if conversion is safe
11041
11042 if Safe_Unchecked_Type_Conversion (N) then
11043 return;
11044 end if;
11045
11046 -- Otherwise force evaluation unless Assignment_OK flag is set (this
324ac540 11047 -- flag indicates ??? More comments needed here)
70482933
RK
11048
11049 if Assignment_OK (N) then
11050 null;
11051 else
11052 Force_Evaluation (N);
11053 end if;
11054 end Expand_N_Unchecked_Type_Conversion;
11055
11056 ----------------------------
11057 -- Expand_Record_Equality --
11058 ----------------------------
11059
11060 -- For non-variant records, Equality is expanded when needed into:
11061
11062 -- and then Lhs.Discr1 = Rhs.Discr1
11063 -- and then ...
11064 -- and then Lhs.Discrn = Rhs.Discrn
11065 -- and then Lhs.Cmp1 = Rhs.Cmp1
11066 -- and then ...
11067 -- and then Lhs.Cmpn = Rhs.Cmpn
11068
11069 -- The expression is folded by the back-end for adjacent fields. This
11070 -- function is called for tagged record in only one occasion: for imple-
11071 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11072 -- otherwise the primitive "=" is used directly.
11073
11074 function Expand_Record_Equality
11075 (Nod : Node_Id;
11076 Typ : Entity_Id;
11077 Lhs : Node_Id;
11078 Rhs : Node_Id;
2e071734 11079 Bodies : List_Id) return Node_Id
70482933
RK
11080 is
11081 Loc : constant Source_Ptr := Sloc (Nod);
11082
0ab80019
AC
11083 Result : Node_Id;
11084 C : Entity_Id;
11085
11086 First_Time : Boolean := True;
11087
6b670dcf
AC
11088 function Element_To_Compare (C : Entity_Id) return Entity_Id;
11089 -- Return the next discriminant or component to compare, starting with
11090 -- C, skipping inherited components.
0ab80019 11091
6b670dcf
AC
11092 ------------------------
11093 -- Element_To_Compare --
11094 ------------------------
70482933 11095
6b670dcf
AC
11096 function Element_To_Compare (C : Entity_Id) return Entity_Id is
11097 Comp : Entity_Id;
28270211 11098
70482933 11099 begin
6b670dcf 11100 Comp := C;
6b670dcf
AC
11101 loop
11102 -- Exit loop when the next element to be compared is found, or
11103 -- there is no more such element.
70482933 11104
6b670dcf 11105 exit when No (Comp);
8190087e 11106
6b670dcf
AC
11107 exit when Ekind_In (Comp, E_Discriminant, E_Component)
11108 and then not (
70482933 11109
6b670dcf 11110 -- Skip inherited components
70482933 11111
6b670dcf
AC
11112 -- Note: for a tagged type, we always generate the "=" primitive
11113 -- for the base type (not on the first subtype), so the test for
11114 -- Comp /= Original_Record_Component (Comp) is True for
11115 -- inherited components only.
24558db8 11116
6b670dcf 11117 (Is_Tagged_Type (Typ)
28270211 11118 and then Comp /= Original_Record_Component (Comp))
24558db8 11119
6b670dcf 11120 -- Skip _Tag
26bff3d9 11121
6b670dcf
AC
11122 or else Chars (Comp) = Name_uTag
11123
11124 -- The .NET/JVM version of type Root_Controlled contains two
11125 -- fields which should not be considered part of the object. To
11126 -- achieve proper equiality between two controlled objects on
11127 -- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
11128
11129 or else (Chars (Comp) = Name_uParent
28270211
AC
11130 and then VM_Target /= No_VM
11131 and then Etype (Comp) = RTE (RE_Root_Controlled))
6b670dcf
AC
11132
11133 -- Skip interface elements (secondary tags???)
11134
11135 or else Is_Interface (Etype (Comp)));
11136
11137 Next_Entity (Comp);
11138 end loop;
11139
11140 return Comp;
11141 end Element_To_Compare;
70482933 11142
70482933
RK
11143 -- Start of processing for Expand_Record_Equality
11144
11145 begin
70482933
RK
11146 -- Generates the following code: (assuming that Typ has one Discr and
11147 -- component C2 is also a record)
11148
11149 -- True
11150 -- and then Lhs.Discr1 = Rhs.Discr1
11151 -- and then Lhs.C1 = Rhs.C1
11152 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11153 -- and then ...
11154 -- and then Lhs.Cmpn = Rhs.Cmpn
11155
e4494292 11156 Result := New_Occurrence_Of (Standard_True, Loc);
6b670dcf 11157 C := Element_To_Compare (First_Entity (Typ));
70482933 11158 while Present (C) loop
70482933
RK
11159 declare
11160 New_Lhs : Node_Id;
11161 New_Rhs : Node_Id;
8aceda64 11162 Check : Node_Id;
70482933
RK
11163
11164 begin
11165 if First_Time then
11166 First_Time := False;
11167 New_Lhs := Lhs;
11168 New_Rhs := Rhs;
70482933
RK
11169 else
11170 New_Lhs := New_Copy_Tree (Lhs);
11171 New_Rhs := New_Copy_Tree (Rhs);
11172 end if;
11173
8aceda64
AC
11174 Check :=
11175 Expand_Composite_Equality (Nod, Etype (C),
11176 Lhs =>
11177 Make_Selected_Component (Loc,
8d80ff64 11178 Prefix => New_Lhs,
e4494292 11179 Selector_Name => New_Occurrence_Of (C, Loc)),
8aceda64
AC
11180 Rhs =>
11181 Make_Selected_Component (Loc,
8d80ff64 11182 Prefix => New_Rhs,
e4494292 11183 Selector_Name => New_Occurrence_Of (C, Loc)),
8aceda64
AC
11184 Bodies => Bodies);
11185
11186 -- If some (sub)component is an unchecked_union, the whole
11187 -- operation will raise program error.
11188
11189 if Nkind (Check) = N_Raise_Program_Error then
11190 Result := Check;
11191 Set_Etype (Result, Standard_Boolean);
11192 exit;
11193 else
11194 Result :=
11195 Make_And_Then (Loc,
11196 Left_Opnd => Result,
11197 Right_Opnd => Check);
11198 end if;
70482933
RK
11199 end;
11200
6b670dcf 11201 C := Element_To_Compare (Next_Entity (C));
70482933
RK
11202 end loop;
11203
11204 return Result;
11205 end Expand_Record_Equality;
11206
a3068ca6
AC
11207 ---------------------------
11208 -- Expand_Set_Membership --
11209 ---------------------------
11210
11211 procedure Expand_Set_Membership (N : Node_Id) is
11212 Lop : constant Node_Id := Left_Opnd (N);
11213 Alt : Node_Id;
11214 Res : Node_Id;
11215
11216 function Make_Cond (Alt : Node_Id) return Node_Id;
11217 -- If the alternative is a subtype mark, create a simple membership
11218 -- test. Otherwise create an equality test for it.
11219
11220 ---------------
11221 -- Make_Cond --
11222 ---------------
11223
11224 function Make_Cond (Alt : Node_Id) return Node_Id is
11225 Cond : Node_Id;
11226 L : constant Node_Id := New_Copy (Lop);
11227 R : constant Node_Id := Relocate_Node (Alt);
11228
11229 begin
11230 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
11231 or else Nkind (Alt) = N_Range
11232 then
11233 Cond :=
11234 Make_In (Sloc (Alt),
11235 Left_Opnd => L,
11236 Right_Opnd => R);
11237 else
11238 Cond :=
11239 Make_Op_Eq (Sloc (Alt),
11240 Left_Opnd => L,
11241 Right_Opnd => R);
11242 end if;
11243
11244 return Cond;
11245 end Make_Cond;
11246
11247 -- Start of processing for Expand_Set_Membership
11248
11249 begin
11250 Remove_Side_Effects (Lop);
11251
11252 Alt := Last (Alternatives (N));
11253 Res := Make_Cond (Alt);
11254
11255 Prev (Alt);
11256 while Present (Alt) loop
11257 Res :=
11258 Make_Or_Else (Sloc (Alt),
11259 Left_Opnd => Make_Cond (Alt),
11260 Right_Opnd => Res);
11261 Prev (Alt);
11262 end loop;
11263
11264 Rewrite (N, Res);
11265 Analyze_And_Resolve (N, Standard_Boolean);
11266 end Expand_Set_Membership;
11267
5875f8d6
AC
11268 -----------------------------------
11269 -- Expand_Short_Circuit_Operator --
11270 -----------------------------------
11271
955871d3
AC
11272 -- Deal with special expansion if actions are present for the right operand
11273 -- and deal with optimizing case of arguments being True or False. We also
11274 -- deal with the special case of non-standard boolean values.
5875f8d6
AC
11275
11276 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
11277 Loc : constant Source_Ptr := Sloc (N);
11278 Typ : constant Entity_Id := Etype (N);
5875f8d6
AC
11279 Left : constant Node_Id := Left_Opnd (N);
11280 Right : constant Node_Id := Right_Opnd (N);
955871d3 11281 LocR : constant Source_Ptr := Sloc (Right);
5875f8d6
AC
11282 Actlist : List_Id;
11283
11284 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
11285 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
11286 -- If Left = Shortcut_Value then Right need not be evaluated
11287
5875f8d6
AC
11288 begin
11289 -- Deal with non-standard booleans
11290
11291 if Is_Boolean_Type (Typ) then
11292 Adjust_Condition (Left);
11293 Adjust_Condition (Right);
11294 Set_Etype (N, Standard_Boolean);
11295 end if;
11296
11297 -- Check for cases where left argument is known to be True or False
11298
11299 if Compile_Time_Known_Value (Left) then
25adc5fb
AC
11300
11301 -- Mark SCO for left condition as compile time known
11302
11303 if Generate_SCO and then Comes_From_Source (Left) then
11304 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
11305 end if;
11306
5875f8d6
AC
11307 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
11308 -- Any actions associated with Right will be executed unconditionally
11309 -- and can thus be inserted into the tree unconditionally.
11310
11311 if Expr_Value_E (Left) /= Shortcut_Ent then
11312 if Present (Actions (N)) then
11313 Insert_Actions (N, Actions (N));
11314 end if;
11315
11316 Rewrite (N, Right);
11317
11318 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
11319 -- In this case we can forget the actions associated with Right,
11320 -- since they will never be executed.
11321
11322 else
11323 Kill_Dead_Code (Right);
11324 Kill_Dead_Code (Actions (N));
11325 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11326 end if;
11327
11328 Adjust_Result_Type (N, Typ);
11329 return;
11330 end if;
11331
955871d3
AC
11332 -- If Actions are present for the right operand, we have to do some
11333 -- special processing. We can't just let these actions filter back into
11334 -- code preceding the short circuit (which is what would have happened
11335 -- if we had not trapped them in the short-circuit form), since they
11336 -- must only be executed if the right operand of the short circuit is
11337 -- executed and not otherwise.
5875f8d6 11338
955871d3
AC
11339 if Present (Actions (N)) then
11340 Actlist := Actions (N);
5875f8d6 11341
0812b84e
AC
11342 -- We now use an Expression_With_Actions node for the right operand
11343 -- of the short-circuit form. Note that this solves the traceability
11344 -- problems for coverage analysis.
5875f8d6 11345
0812b84e
AC
11346 Rewrite (Right,
11347 Make_Expression_With_Actions (LocR,
11348 Expression => Relocate_Node (Right),
11349 Actions => Actlist));
11350 Set_Actions (N, No_List);
11351 Analyze_And_Resolve (Right, Standard_Boolean);
955871d3 11352
5875f8d6
AC
11353 Adjust_Result_Type (N, Typ);
11354 return;
11355 end if;
11356
11357 -- No actions present, check for cases of right argument True/False
11358
11359 if Compile_Time_Known_Value (Right) then
25adc5fb
AC
11360
11361 -- Mark SCO for left condition as compile time known
11362
11363 if Generate_SCO and then Comes_From_Source (Right) then
11364 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
11365 end if;
11366
5875f8d6
AC
11367 -- Change (Left and then True), (Left or else False) to Left.
11368 -- Note that we know there are no actions associated with the right
11369 -- operand, since we just checked for this case above.
11370
11371 if Expr_Value_E (Right) /= Shortcut_Ent then
11372 Rewrite (N, Left);
11373
11374 -- Change (Left and then False), (Left or else True) to Right,
11375 -- making sure to preserve any side effects associated with the Left
11376 -- operand.
11377
11378 else
11379 Remove_Side_Effects (Left);
11380 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11381 end if;
11382 end if;
11383
11384 Adjust_Result_Type (N, Typ);
11385 end Expand_Short_Circuit_Operator;
11386
70482933
RK
11387 -------------------------------------
11388 -- Fixup_Universal_Fixed_Operation --
11389 -------------------------------------
11390
11391 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
11392 Conv : constant Node_Id := Parent (N);
11393
11394 begin
11395 -- We must have a type conversion immediately above us
11396
11397 pragma Assert (Nkind (Conv) = N_Type_Conversion);
11398
11399 -- Normally the type conversion gives our target type. The exception
11400 -- occurs in the case of the Round attribute, where the conversion
11401 -- will be to universal real, and our real type comes from the Round
11402 -- attribute (as well as an indication that we must round the result)
11403
11404 if Nkind (Parent (Conv)) = N_Attribute_Reference
11405 and then Attribute_Name (Parent (Conv)) = Name_Round
11406 then
11407 Set_Etype (N, Etype (Parent (Conv)));
11408 Set_Rounded_Result (N);
11409
11410 -- Normal case where type comes from conversion above us
11411
11412 else
11413 Set_Etype (N, Etype (Conv));
11414 end if;
11415 end Fixup_Universal_Fixed_Operation;
11416
5d09245e
AC
11417 ---------------------------------
11418 -- Has_Inferable_Discriminants --
11419 ---------------------------------
11420
11421 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
11422
11423 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
11424 -- Determines whether the left-most prefix of a selected component is a
11425 -- formal parameter in a subprogram. Assumes N is a selected component.
11426
11427 --------------------------------
11428 -- Prefix_Is_Formal_Parameter --
11429 --------------------------------
11430
11431 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
83bb90af 11432 Sel_Comp : Node_Id;
5d09245e
AC
11433
11434 begin
11435 -- Move to the left-most prefix by climbing up the tree
11436
83bb90af 11437 Sel_Comp := N;
5d09245e
AC
11438 while Present (Parent (Sel_Comp))
11439 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
11440 loop
11441 Sel_Comp := Parent (Sel_Comp);
11442 end loop;
11443
11444 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
11445 end Prefix_Is_Formal_Parameter;
11446
11447 -- Start of processing for Has_Inferable_Discriminants
11448
11449 begin
5d09245e
AC
11450 -- For selected components, the subtype of the selector must be a
11451 -- constrained Unchecked_Union. If the component is subject to a
11452 -- per-object constraint, then the enclosing object must have inferable
11453 -- discriminants.
11454
83bb90af 11455 if Nkind (N) = N_Selected_Component then
5d09245e
AC
11456 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
11457
11458 -- A small hack. If we have a per-object constrained selected
11459 -- component of a formal parameter, return True since we do not
11460 -- know the actual parameter association yet.
11461
11462 if Prefix_Is_Formal_Parameter (N) then
11463 return True;
5d09245e
AC
11464
11465 -- Otherwise, check the enclosing object and the selector
11466
83bb90af
TQ
11467 else
11468 return Has_Inferable_Discriminants (Prefix (N))
11469 and then Has_Inferable_Discriminants (Selector_Name (N));
11470 end if;
5d09245e
AC
11471
11472 -- The call to Has_Inferable_Discriminants will determine whether
11473 -- the selector has a constrained Unchecked_Union nominal type.
11474
83bb90af
TQ
11475 else
11476 return Has_Inferable_Discriminants (Selector_Name (N));
11477 end if;
5d09245e
AC
11478
11479 -- A qualified expression has inferable discriminants if its subtype
11480 -- mark is a constrained Unchecked_Union subtype.
11481
11482 elsif Nkind (N) = N_Qualified_Expression then
053cf994 11483 return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
5b5b27ad 11484 and then Is_Constrained (Etype (Subtype_Mark (N)));
5d09245e 11485
83bb90af
TQ
11486 -- For all other names, it is sufficient to have a constrained
11487 -- Unchecked_Union nominal subtype.
11488
11489 else
11490 return Is_Unchecked_Union (Base_Type (Etype (N)))
11491 and then Is_Constrained (Etype (N));
11492 end if;
5d09245e
AC
11493 end Has_Inferable_Discriminants;
11494
70482933
RK
11495 -------------------------------
11496 -- Insert_Dereference_Action --
11497 -------------------------------
11498
11499 procedure Insert_Dereference_Action (N : Node_Id) is
8777c5a6 11500
70482933 11501 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
2e071734
AC
11502 -- Return true if type of P is derived from Checked_Pool;
11503
11504 -----------------------------
11505 -- Is_Checked_Storage_Pool --
11506 -----------------------------
70482933
RK
11507
11508 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
11509 T : Entity_Id;
761f7dcb 11510
70482933
RK
11511 begin
11512 if No (P) then
11513 return False;
11514 end if;
11515
11516 T := Etype (P);
11517 while T /= Etype (T) loop
11518 if Is_RTE (T, RE_Checked_Pool) then
11519 return True;
11520 else
11521 T := Etype (T);
11522 end if;
11523 end loop;
11524
11525 return False;
11526 end Is_Checked_Storage_Pool;
11527
b0d71355
HK
11528 -- Local variables
11529
11530 Typ : constant Entity_Id := Etype (N);
11531 Desig : constant Entity_Id := Available_View (Designated_Type (Typ));
11532 Loc : constant Source_Ptr := Sloc (N);
11533 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
11534 Pnod : constant Node_Id := Parent (N);
11535
11536 Addr : Entity_Id;
11537 Alig : Entity_Id;
11538 Deref : Node_Id;
11539 Size : Entity_Id;
11540 Stmt : Node_Id;
11541
70482933
RK
11542 -- Start of processing for Insert_Dereference_Action
11543
11544 begin
e6f69614
AC
11545 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
11546
b0d71355
HK
11547 -- Do not re-expand a dereference which has already been processed by
11548 -- this routine.
11549
11550 if Has_Dereference_Action (Pnod) then
70482933 11551 return;
70482933 11552
b0d71355
HK
11553 -- Do not perform this type of expansion for internally-generated
11554 -- dereferences.
70482933 11555
b0d71355
HK
11556 elsif not Comes_From_Source (Original_Node (Pnod)) then
11557 return;
70482933 11558
b0d71355
HK
11559 -- A dereference action is only applicable to objects which have been
11560 -- allocated on a checked pool.
70482933 11561
b0d71355
HK
11562 elsif not Is_Checked_Storage_Pool (Pool) then
11563 return;
11564 end if;
70482933 11565
b0d71355 11566 -- Extract the address of the dereferenced object. Generate:
8777c5a6 11567
b0d71355 11568 -- Addr : System.Address := <N>'Pool_Address;
70482933 11569
b0d71355 11570 Addr := Make_Temporary (Loc, 'P');
70482933 11571
b0d71355
HK
11572 Insert_Action (N,
11573 Make_Object_Declaration (Loc,
11574 Defining_Identifier => Addr,
11575 Object_Definition =>
e4494292 11576 New_Occurrence_Of (RTE (RE_Address), Loc),
b0d71355
HK
11577 Expression =>
11578 Make_Attribute_Reference (Loc,
11579 Prefix => Duplicate_Subexpr_Move_Checks (N),
11580 Attribute_Name => Name_Pool_Address)));
11581
11582 -- Calculate the size of the dereferenced object. Generate:
8777c5a6 11583
b0d71355
HK
11584 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11585
11586 Deref :=
11587 Make_Explicit_Dereference (Loc,
11588 Prefix => Duplicate_Subexpr_Move_Checks (N));
11589 Set_Has_Dereference_Action (Deref);
70482933 11590
b0d71355
HK
11591 Size := Make_Temporary (Loc, 'S');
11592
11593 Insert_Action (N,
11594 Make_Object_Declaration (Loc,
11595 Defining_Identifier => Size,
8777c5a6 11596
b0d71355 11597 Object_Definition =>
e4494292 11598 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
8777c5a6 11599
b0d71355
HK
11600 Expression =>
11601 Make_Op_Divide (Loc,
11602 Left_Opnd =>
70482933 11603 Make_Attribute_Reference (Loc,
b0d71355 11604 Prefix => Deref,
70482933
RK
11605 Attribute_Name => Name_Size),
11606 Right_Opnd =>
b0d71355 11607 Make_Integer_Literal (Loc, System_Storage_Unit))));
70482933 11608
b0d71355
HK
11609 -- Calculate the alignment of the dereferenced object. Generate:
11610 -- Alig : constant Storage_Count := <N>.all'Alignment;
70482933 11611
b0d71355
HK
11612 Deref :=
11613 Make_Explicit_Dereference (Loc,
11614 Prefix => Duplicate_Subexpr_Move_Checks (N));
11615 Set_Has_Dereference_Action (Deref);
11616
11617 Alig := Make_Temporary (Loc, 'A');
11618
11619 Insert_Action (N,
11620 Make_Object_Declaration (Loc,
11621 Defining_Identifier => Alig,
11622 Object_Definition =>
e4494292 11623 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
b0d71355
HK
11624 Expression =>
11625 Make_Attribute_Reference (Loc,
11626 Prefix => Deref,
11627 Attribute_Name => Name_Alignment)));
11628
11629 -- A dereference of a controlled object requires special processing. The
11630 -- finalization machinery requests additional space from the underlying
11631 -- pool to allocate and hide two pointers. As a result, a checked pool
11632 -- may mark the wrong memory as valid. Since checked pools do not have
11633 -- knowledge of hidden pointers, we have to bring the two pointers back
11634 -- in view in order to restore the original state of the object.
11635
11636 if Needs_Finalization (Desig) then
11637
11638 -- Adjust the address and size of the dereferenced object. Generate:
11639 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11640
11641 Stmt :=
11642 Make_Procedure_Call_Statement (Loc,
11643 Name =>
e4494292 11644 New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
b0d71355 11645 Parameter_Associations => New_List (
e4494292
RD
11646 New_Occurrence_Of (Addr, Loc),
11647 New_Occurrence_Of (Size, Loc),
11648 New_Occurrence_Of (Alig, Loc)));
b0d71355
HK
11649
11650 -- Class-wide types complicate things because we cannot determine
11651 -- statically whether the actual object is truly controlled. We must
11652 -- generate a runtime check to detect this property. Generate:
11653 --
11654 -- if Needs_Finalization (<N>.all'Tag) then
11655 -- <Stmt>;
11656 -- end if;
11657
11658 if Is_Class_Wide_Type (Desig) then
11659 Deref :=
11660 Make_Explicit_Dereference (Loc,
11661 Prefix => Duplicate_Subexpr_Move_Checks (N));
11662 Set_Has_Dereference_Action (Deref);
11663
11664 Stmt :=
8b1011c0 11665 Make_Implicit_If_Statement (N,
b0d71355
HK
11666 Condition =>
11667 Make_Function_Call (Loc,
11668 Name =>
e4494292 11669 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
b0d71355
HK
11670 Parameter_Associations => New_List (
11671 Make_Attribute_Reference (Loc,
11672 Prefix => Deref,
11673 Attribute_Name => Name_Tag))),
11674 Then_Statements => New_List (Stmt));
11675 end if;
11676
11677 Insert_Action (N, Stmt);
11678 end if;
11679
11680 -- Generate:
11681 -- Dereference (Pool, Addr, Size, Alig);
11682
11683 Insert_Action (N,
11684 Make_Procedure_Call_Statement (Loc,
11685 Name =>
e4494292 11686 New_Occurrence_Of
b0d71355
HK
11687 (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
11688 Parameter_Associations => New_List (
e4494292
RD
11689 New_Occurrence_Of (Pool, Loc),
11690 New_Occurrence_Of (Addr, Loc),
11691 New_Occurrence_Of (Size, Loc),
11692 New_Occurrence_Of (Alig, Loc))));
b0d71355
HK
11693
11694 -- Mark the explicit dereference as processed to avoid potential
11695 -- infinite expansion.
11696
11697 Set_Has_Dereference_Action (Pnod);
70482933 11698
fbf5a39b
AC
11699 exception
11700 when RE_Not_Available =>
11701 return;
70482933
RK
11702 end Insert_Dereference_Action;
11703
fdfcc663
AC
11704 --------------------------------
11705 -- Integer_Promotion_Possible --
11706 --------------------------------
11707
11708 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
11709 Operand : constant Node_Id := Expression (N);
11710 Operand_Type : constant Entity_Id := Etype (Operand);
11711 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
11712
11713 begin
11714 pragma Assert (Nkind (N) = N_Type_Conversion);
11715
11716 return
11717
11718 -- We only do the transformation for source constructs. We assume
11719 -- that the expander knows what it is doing when it generates code.
11720
11721 Comes_From_Source (N)
11722
11723 -- If the operand type is Short_Integer or Short_Short_Integer,
11724 -- then we will promote to Integer, which is available on all
11725 -- targets, and is sufficient to ensure no intermediate overflow.
11726 -- Furthermore it is likely to be as efficient or more efficient
11727 -- than using the smaller type for the computation so we do this
11728 -- unconditionally.
11729
11730 and then
11731 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
761f7dcb 11732 or else
fdfcc663
AC
11733 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
11734
11735 -- Test for interesting operation, which includes addition,
5f3f175d
AC
11736 -- division, exponentiation, multiplication, subtraction, absolute
11737 -- value and unary negation. Unary "+" is omitted since it is a
11738 -- no-op and thus can't overflow.
fdfcc663 11739
5f3f175d
AC
11740 and then Nkind_In (Operand, N_Op_Abs,
11741 N_Op_Add,
fdfcc663
AC
11742 N_Op_Divide,
11743 N_Op_Expon,
11744 N_Op_Minus,
11745 N_Op_Multiply,
11746 N_Op_Subtract);
11747 end Integer_Promotion_Possible;
11748
70482933
RK
11749 ------------------------------
11750 -- Make_Array_Comparison_Op --
11751 ------------------------------
11752
11753 -- This is a hand-coded expansion of the following generic function:
11754
11755 -- generic
11756 -- type elem is (<>);
11757 -- type index is (<>);
11758 -- type a is array (index range <>) of elem;
20b5d666 11759
70482933
RK
11760 -- function Gnnn (X : a; Y: a) return boolean is
11761 -- J : index := Y'first;
20b5d666 11762
70482933
RK
11763 -- begin
11764 -- if X'length = 0 then
11765 -- return false;
20b5d666 11766
70482933
RK
11767 -- elsif Y'length = 0 then
11768 -- return true;
20b5d666 11769
70482933
RK
11770 -- else
11771 -- for I in X'range loop
11772 -- if X (I) = Y (J) then
11773 -- if J = Y'last then
11774 -- exit;
11775 -- else
11776 -- J := index'succ (J);
11777 -- end if;
20b5d666 11778
70482933
RK
11779 -- else
11780 -- return X (I) > Y (J);
11781 -- end if;
11782 -- end loop;
20b5d666 11783
70482933
RK
11784 -- return X'length > Y'length;
11785 -- end if;
11786 -- end Gnnn;
11787
11788 -- Note that since we are essentially doing this expansion by hand, we
11789 -- do not need to generate an actual or formal generic part, just the
11790 -- instantiated function itself.
11791
bb012790
AC
11792 -- Perhaps we could have the actual generic available in the run-time,
11793 -- obtained by rtsfind, and actually expand a real instantiation ???
11794
70482933 11795 function Make_Array_Comparison_Op
2e071734
AC
11796 (Typ : Entity_Id;
11797 Nod : Node_Id) return Node_Id
70482933
RK
11798 is
11799 Loc : constant Source_Ptr := Sloc (Nod);
11800
11801 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
11802 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
11803 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
11804 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
11805
11806 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
11807
11808 Loop_Statement : Node_Id;
11809 Loop_Body : Node_Id;
11810 If_Stat : Node_Id;
11811 Inner_If : Node_Id;
11812 Final_Expr : Node_Id;
11813 Func_Body : Node_Id;
11814 Func_Name : Entity_Id;
11815 Formals : List_Id;
11816 Length1 : Node_Id;
11817 Length2 : Node_Id;
11818
11819 begin
11820 -- if J = Y'last then
11821 -- exit;
11822 -- else
11823 -- J := index'succ (J);
11824 -- end if;
11825
11826 Inner_If :=
11827 Make_Implicit_If_Statement (Nod,
11828 Condition =>
11829 Make_Op_Eq (Loc,
e4494292 11830 Left_Opnd => New_Occurrence_Of (J, Loc),
70482933
RK
11831 Right_Opnd =>
11832 Make_Attribute_Reference (Loc,
e4494292 11833 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
11834 Attribute_Name => Name_Last)),
11835
11836 Then_Statements => New_List (
11837 Make_Exit_Statement (Loc)),
11838
11839 Else_Statements =>
11840 New_List (
11841 Make_Assignment_Statement (Loc,
e4494292 11842 Name => New_Occurrence_Of (J, Loc),
70482933
RK
11843 Expression =>
11844 Make_Attribute_Reference (Loc,
e4494292 11845 Prefix => New_Occurrence_Of (Index, Loc),
70482933 11846 Attribute_Name => Name_Succ,
e4494292 11847 Expressions => New_List (New_Occurrence_Of (J, Loc))))));
70482933
RK
11848
11849 -- if X (I) = Y (J) then
11850 -- if ... end if;
11851 -- else
11852 -- return X (I) > Y (J);
11853 -- end if;
11854
11855 Loop_Body :=
11856 Make_Implicit_If_Statement (Nod,
11857 Condition =>
11858 Make_Op_Eq (Loc,
11859 Left_Opnd =>
11860 Make_Indexed_Component (Loc,
e4494292
RD
11861 Prefix => New_Occurrence_Of (X, Loc),
11862 Expressions => New_List (New_Occurrence_Of (I, Loc))),
70482933
RK
11863
11864 Right_Opnd =>
11865 Make_Indexed_Component (Loc,
e4494292
RD
11866 Prefix => New_Occurrence_Of (Y, Loc),
11867 Expressions => New_List (New_Occurrence_Of (J, Loc)))),
70482933
RK
11868
11869 Then_Statements => New_List (Inner_If),
11870
11871 Else_Statements => New_List (
d766cee3 11872 Make_Simple_Return_Statement (Loc,
70482933
RK
11873 Expression =>
11874 Make_Op_Gt (Loc,
11875 Left_Opnd =>
11876 Make_Indexed_Component (Loc,
e4494292
RD
11877 Prefix => New_Occurrence_Of (X, Loc),
11878 Expressions => New_List (New_Occurrence_Of (I, Loc))),
70482933
RK
11879
11880 Right_Opnd =>
11881 Make_Indexed_Component (Loc,
e4494292 11882 Prefix => New_Occurrence_Of (Y, Loc),
70482933 11883 Expressions => New_List (
e4494292 11884 New_Occurrence_Of (J, Loc)))))));
70482933
RK
11885
11886 -- for I in X'range loop
11887 -- if ... end if;
11888 -- end loop;
11889
11890 Loop_Statement :=
11891 Make_Implicit_Loop_Statement (Nod,
11892 Identifier => Empty,
11893
11894 Iteration_Scheme =>
11895 Make_Iteration_Scheme (Loc,
11896 Loop_Parameter_Specification =>
11897 Make_Loop_Parameter_Specification (Loc,
11898 Defining_Identifier => I,
11899 Discrete_Subtype_Definition =>
11900 Make_Attribute_Reference (Loc,
e4494292 11901 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
11902 Attribute_Name => Name_Range))),
11903
11904 Statements => New_List (Loop_Body));
11905
11906 -- if X'length = 0 then
11907 -- return false;
11908 -- elsif Y'length = 0 then
11909 -- return true;
11910 -- else
11911 -- for ... loop ... end loop;
11912 -- return X'length > Y'length;
11913 -- end if;
11914
11915 Length1 :=
11916 Make_Attribute_Reference (Loc,
e4494292 11917 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
11918 Attribute_Name => Name_Length);
11919
11920 Length2 :=
11921 Make_Attribute_Reference (Loc,
e4494292 11922 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
11923 Attribute_Name => Name_Length);
11924
11925 Final_Expr :=
11926 Make_Op_Gt (Loc,
11927 Left_Opnd => Length1,
11928 Right_Opnd => Length2);
11929
11930 If_Stat :=
11931 Make_Implicit_If_Statement (Nod,
11932 Condition =>
11933 Make_Op_Eq (Loc,
11934 Left_Opnd =>
11935 Make_Attribute_Reference (Loc,
e4494292 11936 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
11937 Attribute_Name => Name_Length),
11938 Right_Opnd =>
11939 Make_Integer_Literal (Loc, 0)),
11940
11941 Then_Statements =>
11942 New_List (
d766cee3 11943 Make_Simple_Return_Statement (Loc,
e4494292 11944 Expression => New_Occurrence_Of (Standard_False, Loc))),
70482933
RK
11945
11946 Elsif_Parts => New_List (
11947 Make_Elsif_Part (Loc,
11948 Condition =>
11949 Make_Op_Eq (Loc,
11950 Left_Opnd =>
11951 Make_Attribute_Reference (Loc,
e4494292 11952 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
11953 Attribute_Name => Name_Length),
11954 Right_Opnd =>
11955 Make_Integer_Literal (Loc, 0)),
11956
11957 Then_Statements =>
11958 New_List (
d766cee3 11959 Make_Simple_Return_Statement (Loc,
e4494292 11960 Expression => New_Occurrence_Of (Standard_True, Loc))))),
70482933
RK
11961
11962 Else_Statements => New_List (
11963 Loop_Statement,
d766cee3 11964 Make_Simple_Return_Statement (Loc,
70482933
RK
11965 Expression => Final_Expr)));
11966
11967 -- (X : a; Y: a)
11968
11969 Formals := New_List (
11970 Make_Parameter_Specification (Loc,
11971 Defining_Identifier => X,
e4494292 11972 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
70482933
RK
11973
11974 Make_Parameter_Specification (Loc,
11975 Defining_Identifier => Y,
e4494292 11976 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
70482933
RK
11977
11978 -- function Gnnn (...) return boolean is
11979 -- J : index := Y'first;
11980 -- begin
11981 -- if ... end if;
11982 -- end Gnnn;
11983
191fcb3a 11984 Func_Name := Make_Temporary (Loc, 'G');
70482933
RK
11985
11986 Func_Body :=
11987 Make_Subprogram_Body (Loc,
11988 Specification =>
11989 Make_Function_Specification (Loc,
11990 Defining_Unit_Name => Func_Name,
11991 Parameter_Specifications => Formals,
e4494292 11992 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
70482933
RK
11993
11994 Declarations => New_List (
11995 Make_Object_Declaration (Loc,
11996 Defining_Identifier => J,
e4494292 11997 Object_Definition => New_Occurrence_Of (Index, Loc),
70482933
RK
11998 Expression =>
11999 Make_Attribute_Reference (Loc,
e4494292 12000 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
12001 Attribute_Name => Name_First))),
12002
12003 Handled_Statement_Sequence =>
12004 Make_Handled_Sequence_Of_Statements (Loc,
12005 Statements => New_List (If_Stat)));
12006
12007 return Func_Body;
70482933
RK
12008 end Make_Array_Comparison_Op;
12009
12010 ---------------------------
12011 -- Make_Boolean_Array_Op --
12012 ---------------------------
12013
685094bf
RD
12014 -- For logical operations on boolean arrays, expand in line the following,
12015 -- replacing 'and' with 'or' or 'xor' where needed:
70482933
RK
12016
12017 -- function Annn (A : typ; B: typ) return typ is
12018 -- C : typ;
12019 -- begin
12020 -- for J in A'range loop
12021 -- C (J) := A (J) op B (J);
12022 -- end loop;
12023 -- return C;
12024 -- end Annn;
12025
12026 -- Here typ is the boolean array type
12027
12028 function Make_Boolean_Array_Op
2e071734
AC
12029 (Typ : Entity_Id;
12030 N : Node_Id) return Node_Id
70482933
RK
12031 is
12032 Loc : constant Source_Ptr := Sloc (N);
12033
12034 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
12035 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
12036 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
12037 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
12038
12039 A_J : Node_Id;
12040 B_J : Node_Id;
12041 C_J : Node_Id;
12042 Op : Node_Id;
12043
12044 Formals : List_Id;
12045 Func_Name : Entity_Id;
12046 Func_Body : Node_Id;
12047 Loop_Statement : Node_Id;
12048
12049 begin
12050 A_J :=
12051 Make_Indexed_Component (Loc,
e4494292
RD
12052 Prefix => New_Occurrence_Of (A, Loc),
12053 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12054
12055 B_J :=
12056 Make_Indexed_Component (Loc,
e4494292
RD
12057 Prefix => New_Occurrence_Of (B, Loc),
12058 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12059
12060 C_J :=
12061 Make_Indexed_Component (Loc,
e4494292
RD
12062 Prefix => New_Occurrence_Of (C, Loc),
12063 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12064
12065 if Nkind (N) = N_Op_And then
12066 Op :=
12067 Make_Op_And (Loc,
12068 Left_Opnd => A_J,
12069 Right_Opnd => B_J);
12070
12071 elsif Nkind (N) = N_Op_Or then
12072 Op :=
12073 Make_Op_Or (Loc,
12074 Left_Opnd => A_J,
12075 Right_Opnd => B_J);
12076
12077 else
12078 Op :=
12079 Make_Op_Xor (Loc,
12080 Left_Opnd => A_J,
12081 Right_Opnd => B_J);
12082 end if;
12083
12084 Loop_Statement :=
12085 Make_Implicit_Loop_Statement (N,
12086 Identifier => Empty,
12087
12088 Iteration_Scheme =>
12089 Make_Iteration_Scheme (Loc,
12090 Loop_Parameter_Specification =>
12091 Make_Loop_Parameter_Specification (Loc,
12092 Defining_Identifier => J,
12093 Discrete_Subtype_Definition =>
12094 Make_Attribute_Reference (Loc,
e4494292 12095 Prefix => New_Occurrence_Of (A, Loc),
70482933
RK
12096 Attribute_Name => Name_Range))),
12097
12098 Statements => New_List (
12099 Make_Assignment_Statement (Loc,
12100 Name => C_J,
12101 Expression => Op)));
12102
12103 Formals := New_List (
12104 Make_Parameter_Specification (Loc,
12105 Defining_Identifier => A,
e4494292 12106 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
70482933
RK
12107
12108 Make_Parameter_Specification (Loc,
12109 Defining_Identifier => B,
e4494292 12110 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
70482933 12111
191fcb3a 12112 Func_Name := Make_Temporary (Loc, 'A');
70482933
RK
12113 Set_Is_Inlined (Func_Name);
12114
12115 Func_Body :=
12116 Make_Subprogram_Body (Loc,
12117 Specification =>
12118 Make_Function_Specification (Loc,
12119 Defining_Unit_Name => Func_Name,
12120 Parameter_Specifications => Formals,
e4494292 12121 Result_Definition => New_Occurrence_Of (Typ, Loc)),
70482933
RK
12122
12123 Declarations => New_List (
12124 Make_Object_Declaration (Loc,
12125 Defining_Identifier => C,
e4494292 12126 Object_Definition => New_Occurrence_Of (Typ, Loc))),
70482933
RK
12127
12128 Handled_Statement_Sequence =>
12129 Make_Handled_Sequence_Of_Statements (Loc,
12130 Statements => New_List (
12131 Loop_Statement,
d766cee3 12132 Make_Simple_Return_Statement (Loc,
e4494292 12133 Expression => New_Occurrence_Of (C, Loc)))));
70482933
RK
12134
12135 return Func_Body;
12136 end Make_Boolean_Array_Op;
12137
b6b5cca8
AC
12138 -----------------------------------------
12139 -- Minimized_Eliminated_Overflow_Check --
12140 -----------------------------------------
12141
12142 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
12143 begin
12144 return
12145 Is_Signed_Integer_Type (Etype (N))
a7f1b24f 12146 and then Overflow_Check_Mode in Minimized_Or_Eliminated;
b6b5cca8
AC
12147 end Minimized_Eliminated_Overflow_Check;
12148
0580d807
AC
12149 --------------------------------
12150 -- Optimize_Length_Comparison --
12151 --------------------------------
12152
12153 procedure Optimize_Length_Comparison (N : Node_Id) is
12154 Loc : constant Source_Ptr := Sloc (N);
12155 Typ : constant Entity_Id := Etype (N);
12156 Result : Node_Id;
12157
12158 Left : Node_Id;
12159 Right : Node_Id;
12160 -- First and Last attribute reference nodes, which end up as left and
12161 -- right operands of the optimized result.
12162
12163 Is_Zero : Boolean;
12164 -- True for comparison operand of zero
12165
12166 Comp : Node_Id;
12167 -- Comparison operand, set only if Is_Zero is false
12168
12169 Ent : Entity_Id;
12170 -- Entity whose length is being compared
12171
12172 Index : Node_Id;
12173 -- Integer_Literal node for length attribute expression, or Empty
12174 -- if there is no such expression present.
12175
12176 Ityp : Entity_Id;
12177 -- Type of array index to which 'Length is applied
12178
12179 Op : Node_Kind := Nkind (N);
12180 -- Kind of comparison operator, gets flipped if operands backwards
12181
12182 function Is_Optimizable (N : Node_Id) return Boolean;
abcd9db2
AC
12183 -- Tests N to see if it is an optimizable comparison value (defined as
12184 -- constant zero or one, or something else where the value is known to
12185 -- be positive and in the range of 32-bits, and where the corresponding
12186 -- Length value is also known to be 32-bits. If result is true, sets
12187 -- Is_Zero, Ityp, and Comp accordingly.
0580d807
AC
12188
12189 function Is_Entity_Length (N : Node_Id) return Boolean;
12190 -- Tests if N is a length attribute applied to a simple entity. If so,
12191 -- returns True, and sets Ent to the entity, and Index to the integer
12192 -- literal provided as an attribute expression, or to Empty if none.
12193 -- Also returns True if the expression is a generated type conversion
12194 -- whose expression is of the desired form. This latter case arises
12195 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
12196 -- to check for being in range, which is not needed in this context.
12197 -- Returns False if neither condition holds.
12198
12199 function Prepare_64 (N : Node_Id) return Node_Id;
12200 -- Given a discrete expression, returns a Long_Long_Integer typed
12201 -- expression representing the underlying value of the expression.
12202 -- This is done with an unchecked conversion to the result type. We
12203 -- use unchecked conversion to handle the enumeration type case.
12204
12205 ----------------------
12206 -- Is_Entity_Length --
12207 ----------------------
12208
12209 function Is_Entity_Length (N : Node_Id) return Boolean is
12210 begin
12211 if Nkind (N) = N_Attribute_Reference
12212 and then Attribute_Name (N) = Name_Length
12213 and then Is_Entity_Name (Prefix (N))
12214 then
12215 Ent := Entity (Prefix (N));
12216
12217 if Present (Expressions (N)) then
12218 Index := First (Expressions (N));
12219 else
12220 Index := Empty;
12221 end if;
12222
12223 return True;
12224
12225 elsif Nkind (N) = N_Type_Conversion
12226 and then not Comes_From_Source (N)
12227 then
12228 return Is_Entity_Length (Expression (N));
12229
12230 else
12231 return False;
12232 end if;
12233 end Is_Entity_Length;
12234
12235 --------------------
12236 -- Is_Optimizable --
12237 --------------------
12238
12239 function Is_Optimizable (N : Node_Id) return Boolean is
12240 Val : Uint;
12241 OK : Boolean;
12242 Lo : Uint;
12243 Hi : Uint;
12244 Indx : Node_Id;
12245
12246 begin
12247 if Compile_Time_Known_Value (N) then
12248 Val := Expr_Value (N);
12249
12250 if Val = Uint_0 then
12251 Is_Zero := True;
12252 Comp := Empty;
12253 return True;
12254
12255 elsif Val = Uint_1 then
12256 Is_Zero := False;
12257 Comp := Empty;
12258 return True;
12259 end if;
12260 end if;
12261
12262 -- Here we have to make sure of being within 32-bits
12263
12264 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
12265
12266 if not OK
abcd9db2 12267 or else Lo < Uint_1
0580d807
AC
12268 or else Hi > UI_From_Int (Int'Last)
12269 then
12270 return False;
12271 end if;
12272
abcd9db2
AC
12273 -- Comparison value was within range, so now we must check the index
12274 -- value to make sure it is also within 32-bits.
0580d807
AC
12275
12276 Indx := First_Index (Etype (Ent));
12277
12278 if Present (Index) then
12279 for J in 2 .. UI_To_Int (Intval (Index)) loop
12280 Next_Index (Indx);
12281 end loop;
12282 end if;
12283
12284 Ityp := Etype (Indx);
12285
12286 if Esize (Ityp) > 32 then
12287 return False;
12288 end if;
12289
12290 Is_Zero := False;
12291 Comp := N;
12292 return True;
12293 end Is_Optimizable;
12294
12295 ----------------
12296 -- Prepare_64 --
12297 ----------------
12298
12299 function Prepare_64 (N : Node_Id) return Node_Id is
12300 begin
12301 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
12302 end Prepare_64;
12303
12304 -- Start of processing for Optimize_Length_Comparison
12305
12306 begin
12307 -- Nothing to do if not a comparison
12308
12309 if Op not in N_Op_Compare then
12310 return;
12311 end if;
12312
12313 -- Nothing to do if special -gnatd.P debug flag set
12314
12315 if Debug_Flag_Dot_PP then
12316 return;
12317 end if;
12318
12319 -- Ent'Length op 0/1
12320
12321 if Is_Entity_Length (Left_Opnd (N))
12322 and then Is_Optimizable (Right_Opnd (N))
12323 then
12324 null;
12325
12326 -- 0/1 op Ent'Length
12327
12328 elsif Is_Entity_Length (Right_Opnd (N))
12329 and then Is_Optimizable (Left_Opnd (N))
12330 then
12331 -- Flip comparison to opposite sense
12332
12333 case Op is
12334 when N_Op_Lt => Op := N_Op_Gt;
12335 when N_Op_Le => Op := N_Op_Ge;
12336 when N_Op_Gt => Op := N_Op_Lt;
12337 when N_Op_Ge => Op := N_Op_Le;
12338 when others => null;
12339 end case;
12340
12341 -- Else optimization not possible
12342
12343 else
12344 return;
12345 end if;
12346
12347 -- Fall through if we will do the optimization
12348
12349 -- Cases to handle:
12350
12351 -- X'Length = 0 => X'First > X'Last
12352 -- X'Length = 1 => X'First = X'Last
12353 -- X'Length = n => X'First + (n - 1) = X'Last
12354
12355 -- X'Length /= 0 => X'First <= X'Last
12356 -- X'Length /= 1 => X'First /= X'Last
12357 -- X'Length /= n => X'First + (n - 1) /= X'Last
12358
12359 -- X'Length >= 0 => always true, warn
12360 -- X'Length >= 1 => X'First <= X'Last
12361 -- X'Length >= n => X'First + (n - 1) <= X'Last
12362
12363 -- X'Length > 0 => X'First <= X'Last
12364 -- X'Length > 1 => X'First < X'Last
12365 -- X'Length > n => X'First + (n - 1) < X'Last
12366
12367 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
12368 -- X'Length <= 1 => X'First >= X'Last
12369 -- X'Length <= n => X'First + (n - 1) >= X'Last
12370
12371 -- X'Length < 0 => always false (warn)
12372 -- X'Length < 1 => X'First > X'Last
12373 -- X'Length < n => X'First + (n - 1) > X'Last
12374
12375 -- Note: for the cases of n (not constant 0,1), we require that the
12376 -- corresponding index type be integer or shorter (i.e. not 64-bit),
12377 -- and the same for the comparison value. Then we do the comparison
12378 -- using 64-bit arithmetic (actually long long integer), so that we
12379 -- cannot have overflow intefering with the result.
12380
12381 -- First deal with warning cases
12382
12383 if Is_Zero then
12384 case Op is
12385
12386 -- X'Length >= 0
12387
12388 when N_Op_Ge =>
12389 Rewrite (N,
12390 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
12391 Analyze_And_Resolve (N, Typ);
12392 Warn_On_Known_Condition (N);
12393 return;
12394
12395 -- X'Length < 0
12396
12397 when N_Op_Lt =>
12398 Rewrite (N,
12399 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
12400 Analyze_And_Resolve (N, Typ);
12401 Warn_On_Known_Condition (N);
12402 return;
12403
12404 when N_Op_Le =>
12405 if Constant_Condition_Warnings
12406 and then Comes_From_Source (Original_Node (N))
12407 then
324ac540 12408 Error_Msg_N ("could replace by ""'=""?c?", N);
0580d807
AC
12409 end if;
12410
12411 Op := N_Op_Eq;
12412
12413 when others =>
12414 null;
12415 end case;
12416 end if;
12417
12418 -- Build the First reference we will use
12419
12420 Left :=
12421 Make_Attribute_Reference (Loc,
12422 Prefix => New_Occurrence_Of (Ent, Loc),
12423 Attribute_Name => Name_First);
12424
12425 if Present (Index) then
12426 Set_Expressions (Left, New_List (New_Copy (Index)));
12427 end if;
12428
12429 -- If general value case, then do the addition of (n - 1), and
12430 -- also add the needed conversions to type Long_Long_Integer.
12431
12432 if Present (Comp) then
12433 Left :=
12434 Make_Op_Add (Loc,
12435 Left_Opnd => Prepare_64 (Left),
12436 Right_Opnd =>
12437 Make_Op_Subtract (Loc,
12438 Left_Opnd => Prepare_64 (Comp),
12439 Right_Opnd => Make_Integer_Literal (Loc, 1)));
12440 end if;
12441
12442 -- Build the Last reference we will use
12443
12444 Right :=
12445 Make_Attribute_Reference (Loc,
12446 Prefix => New_Occurrence_Of (Ent, Loc),
12447 Attribute_Name => Name_Last);
12448
12449 if Present (Index) then
12450 Set_Expressions (Right, New_List (New_Copy (Index)));
12451 end if;
12452
12453 -- If general operand, convert Last reference to Long_Long_Integer
12454
12455 if Present (Comp) then
12456 Right := Prepare_64 (Right);
12457 end if;
12458
12459 -- Check for cases to optimize
12460
12461 -- X'Length = 0 => X'First > X'Last
12462 -- X'Length < 1 => X'First > X'Last
12463 -- X'Length < n => X'First + (n - 1) > X'Last
12464
12465 if (Is_Zero and then Op = N_Op_Eq)
12466 or else (not Is_Zero and then Op = N_Op_Lt)
12467 then
12468 Result :=
12469 Make_Op_Gt (Loc,
12470 Left_Opnd => Left,
12471 Right_Opnd => Right);
12472
12473 -- X'Length = 1 => X'First = X'Last
12474 -- X'Length = n => X'First + (n - 1) = X'Last
12475
12476 elsif not Is_Zero and then Op = N_Op_Eq then
12477 Result :=
12478 Make_Op_Eq (Loc,
12479 Left_Opnd => Left,
12480 Right_Opnd => Right);
12481
12482 -- X'Length /= 0 => X'First <= X'Last
12483 -- X'Length > 0 => X'First <= X'Last
12484
12485 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
12486 Result :=
12487 Make_Op_Le (Loc,
12488 Left_Opnd => Left,
12489 Right_Opnd => Right);
12490
12491 -- X'Length /= 1 => X'First /= X'Last
12492 -- X'Length /= n => X'First + (n - 1) /= X'Last
12493
12494 elsif not Is_Zero and then Op = N_Op_Ne then
12495 Result :=
12496 Make_Op_Ne (Loc,
12497 Left_Opnd => Left,
12498 Right_Opnd => Right);
12499
12500 -- X'Length >= 1 => X'First <= X'Last
12501 -- X'Length >= n => X'First + (n - 1) <= X'Last
12502
12503 elsif not Is_Zero and then Op = N_Op_Ge then
12504 Result :=
12505 Make_Op_Le (Loc,
12506 Left_Opnd => Left,
12507 Right_Opnd => Right);
12508
12509 -- X'Length > 1 => X'First < X'Last
12510 -- X'Length > n => X'First + (n = 1) < X'Last
12511
12512 elsif not Is_Zero and then Op = N_Op_Gt then
12513 Result :=
12514 Make_Op_Lt (Loc,
12515 Left_Opnd => Left,
12516 Right_Opnd => Right);
12517
12518 -- X'Length <= 1 => X'First >= X'Last
12519 -- X'Length <= n => X'First + (n - 1) >= X'Last
12520
12521 elsif not Is_Zero and then Op = N_Op_Le then
12522 Result :=
12523 Make_Op_Ge (Loc,
12524 Left_Opnd => Left,
12525 Right_Opnd => Right);
12526
12527 -- Should not happen at this stage
12528
12529 else
12530 raise Program_Error;
12531 end if;
12532
12533 -- Rewrite and finish up
12534
12535 Rewrite (N, Result);
12536 Analyze_And_Resolve (N, Typ);
12537 return;
12538 end Optimize_Length_Comparison;
12539
b2c28399
AC
12540 ------------------------------
12541 -- Process_Transient_Object --
12542 ------------------------------
12543
12544 procedure Process_Transient_Object
12545 (Decl : Node_Id;
12546 Rel_Node : Node_Id)
12547 is
8942b30c
AC
12548 Loc : constant Source_Ptr := Sloc (Decl);
12549 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
12550 Obj_Typ : constant Node_Id := Etype (Obj_Id);
12551 Desig_Typ : Entity_Id;
12552 Expr : Node_Id;
12553 Fin_Stmts : List_Id;
12554 Ptr_Id : Entity_Id;
12555 Temp_Id : Entity_Id;
12556 Temp_Ins : Node_Id;
12557
9ab5d86b 12558 Hook_Context : constant Node_Id := Find_Hook_Context (Rel_Node);
8942b30c
AC
12559 -- Node on which to insert the hook pointer (as an action): the
12560 -- innermost enclosing non-transient scope.
b2c28399 12561
064f4527
TQ
12562 Finalization_Context : Node_Id;
12563 -- Node after which to insert finalization actions
12564
12565 Finalize_Always : Boolean;
9ab5d86b
RD
12566 -- If False, call to finalizer includes a test of whether the hook
12567 -- pointer is null.
b2c28399 12568
8942b30c
AC
12569 begin
12570 -- Step 0: determine where to attach finalization actions in the tree
064f4527 12571
8942b30c
AC
12572 -- Special case for Boolean EWAs: capture expression in a temporary,
12573 -- whose declaration will serve as the context around which to insert
12574 -- finalization code. The finalization thus remains local to the
12575 -- specific condition being evaluated.
064f4527 12576
8942b30c 12577 if Is_Boolean_Type (Etype (Rel_Node)) then
064f4527 12578
9ab5d86b
RD
12579 -- In this case, the finalization context is chosen so that we know
12580 -- at finalization point that the hook pointer is never null, so no
12581 -- need for a test, we can call the finalizer unconditionally, except
12582 -- in the case where the object is created in a specific branch of a
12583 -- conditional expression.
064f4527 12584
8942b30c 12585 Finalize_Always :=
c5c780e6
HK
12586 not Within_Case_Or_If_Expression (Rel_Node)
12587 and then not Nkind_In
12588 (Original_Node (Rel_Node), N_Case_Expression,
12589 N_If_Expression);
064f4527 12590
8942b30c
AC
12591 declare
12592 Loc : constant Source_Ptr := Sloc (Rel_Node);
12593 Temp : constant Entity_Id := Make_Temporary (Loc, 'E', Rel_Node);
b2c28399 12594
8942b30c
AC
12595 begin
12596 Append_To (Actions (Rel_Node),
12597 Make_Object_Declaration (Loc,
12598 Defining_Identifier => Temp,
12599 Constant_Present => True,
12600 Object_Definition =>
12601 New_Occurrence_Of (Etype (Rel_Node), Loc),
12602 Expression => Expression (Rel_Node)));
12603 Finalization_Context := Last (Actions (Rel_Node));
b2c28399 12604
8942b30c 12605 Analyze (Last (Actions (Rel_Node)));
b2c28399 12606
8942b30c
AC
12607 Set_Expression (Rel_Node, New_Occurrence_Of (Temp, Loc));
12608 Analyze (Expression (Rel_Node));
12609 end;
b2c28399 12610
8942b30c
AC
12611 else
12612 Finalize_Always := False;
12613 Finalization_Context := Hook_Context;
12614 end if;
064f4527 12615
b2c28399
AC
12616 -- Step 1: Create the access type which provides a reference to the
12617 -- transient controlled object.
12618
12619 if Is_Access_Type (Obj_Typ) then
12620 Desig_Typ := Directly_Designated_Type (Obj_Typ);
12621 else
12622 Desig_Typ := Obj_Typ;
12623 end if;
12624
12625 Desig_Typ := Base_Type (Desig_Typ);
12626
12627 -- Generate:
12628 -- Ann : access [all] <Desig_Typ>;
12629
12630 Ptr_Id := Make_Temporary (Loc, 'A');
12631
064f4527 12632 Insert_Action (Hook_Context,
b2c28399
AC
12633 Make_Full_Type_Declaration (Loc,
12634 Defining_Identifier => Ptr_Id,
12635 Type_Definition =>
12636 Make_Access_To_Object_Definition (Loc,
12637 All_Present => Ekind (Obj_Typ) = E_General_Access_Type,
e4494292 12638 Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))));
b2c28399
AC
12639
12640 -- Step 2: Create a temporary which acts as a hook to the transient
12641 -- controlled object. Generate:
12642
12643 -- Temp : Ptr_Id := null;
12644
12645 Temp_Id := Make_Temporary (Loc, 'T');
12646
064f4527 12647 Insert_Action (Hook_Context,
b2c28399
AC
12648 Make_Object_Declaration (Loc,
12649 Defining_Identifier => Temp_Id,
e4494292 12650 Object_Definition => New_Occurrence_Of (Ptr_Id, Loc)));
b2c28399
AC
12651
12652 -- Mark the temporary as created for the purposes of exporting the
12653 -- transient controlled object out of the expression_with_action or if
12654 -- expression. This signals the machinery in Build_Finalizer to treat
12655 -- this case specially.
12656
12657 Set_Status_Flag_Or_Transient_Decl (Temp_Id, Decl);
12658
12659 -- Step 3: Hook the transient object to the temporary
12660
a7d08a38
AC
12661 -- This must be inserted right after the object declaration, so that
12662 -- the assignment is executed if, and only if, the object is actually
12663 -- created (whereas the declaration of the hook pointer, and the
12664 -- finalization call, may be inserted at an outer level, and may
12665 -- remain unused for some executions, if the actual creation of
12666 -- the object is conditional).
12667
b2c28399
AC
12668 -- The use of unchecked conversion / unrestricted access is needed to
12669 -- avoid an accessibility violation. Note that the finalization code is
12670 -- structured in such a way that the "hook" is processed only when it
12671 -- points to an existing object.
12672
12673 if Is_Access_Type (Obj_Typ) then
e4494292
RD
12674 Expr :=
12675 Unchecked_Convert_To (Ptr_Id, New_Occurrence_Of (Obj_Id, Loc));
b2c28399
AC
12676 else
12677 Expr :=
12678 Make_Attribute_Reference (Loc,
e4494292 12679 Prefix => New_Occurrence_Of (Obj_Id, Loc),
b2c28399
AC
12680 Attribute_Name => Name_Unrestricted_Access);
12681 end if;
12682
12683 -- Generate:
12684 -- Temp := Ptr_Id (Obj_Id);
12685 -- <or>
12686 -- Temp := Obj_Id'Unrestricted_Access;
12687
97779c34
AC
12688 -- When the transient object is initialized by an aggregate, the hook
12689 -- must capture the object after the last component assignment takes
12690 -- place. Only then is the object fully initialized.
12691
12692 if Ekind (Obj_Id) = E_Variable
12693 and then Present (Last_Aggregate_Assignment (Obj_Id))
12694 then
12695 Temp_Ins := Last_Aggregate_Assignment (Obj_Id);
12696
12697 -- Otherwise the hook seizes the related object immediately
12698
12699 else
12700 Temp_Ins := Decl;
12701 end if;
12702
12703 Insert_After_And_Analyze (Temp_Ins,
a7d08a38 12704 Make_Assignment_Statement (Loc,
e4494292 12705 Name => New_Occurrence_Of (Temp_Id, Loc),
a7d08a38 12706 Expression => Expr));
b2c28399
AC
12707
12708 -- Step 4: Finalize the transient controlled object after the context
12709 -- has been evaluated/elaborated. Generate:
12710
12711 -- if Temp /= null then
12712 -- [Deep_]Finalize (Temp.all);
12713 -- Temp := null;
12714 -- end if;
12715
12716 -- When the node is part of a return statement, there is no need to
12717 -- insert a finalization call, as the general finalization mechanism
12718 -- (see Build_Finalizer) would take care of the transient controlled
12719 -- object on subprogram exit. Note that it would also be impossible to
12720 -- insert the finalization code after the return statement as this will
12721 -- render it unreachable.
12722
064f4527
TQ
12723 if Nkind (Finalization_Context) /= N_Simple_Return_Statement then
12724 Fin_Stmts := New_List (
12725 Make_Final_Call
12726 (Obj_Ref =>
12727 Make_Explicit_Dereference (Loc,
e4494292 12728 Prefix => New_Occurrence_Of (Temp_Id, Loc)),
064f4527 12729 Typ => Desig_Typ),
b2c28399 12730
064f4527 12731 Make_Assignment_Statement (Loc,
e4494292 12732 Name => New_Occurrence_Of (Temp_Id, Loc),
064f4527 12733 Expression => Make_Null (Loc)));
b2c28399 12734
064f4527
TQ
12735 if not Finalize_Always then
12736 Fin_Stmts := New_List (
12737 Make_Implicit_If_Statement (Decl,
12738 Condition =>
12739 Make_Op_Ne (Loc,
e4494292 12740 Left_Opnd => New_Occurrence_Of (Temp_Id, Loc),
064f4527
TQ
12741 Right_Opnd => Make_Null (Loc)),
12742 Then_Statements => Fin_Stmts));
12743 end if;
b2c28399 12744
064f4527 12745 Insert_Actions_After (Finalization_Context, Fin_Stmts);
b2c28399
AC
12746 end if;
12747 end Process_Transient_Object;
12748
70482933
RK
12749 ------------------------
12750 -- Rewrite_Comparison --
12751 ------------------------
12752
12753 procedure Rewrite_Comparison (N : Node_Id) is
c800f862
RD
12754 Warning_Generated : Boolean := False;
12755 -- Set to True if first pass with Assume_Valid generates a warning in
12756 -- which case we skip the second pass to avoid warning overloaded.
12757
12758 Result : Node_Id;
12759 -- Set to Standard_True or Standard_False
12760
d26dc4b5
AC
12761 begin
12762 if Nkind (N) = N_Type_Conversion then
12763 Rewrite_Comparison (Expression (N));
20b5d666 12764 return;
70482933 12765
d26dc4b5 12766 elsif Nkind (N) not in N_Op_Compare then
20b5d666
JM
12767 return;
12768 end if;
70482933 12769
c800f862
RD
12770 -- Now start looking at the comparison in detail. We potentially go
12771 -- through this loop twice. The first time, Assume_Valid is set False
12772 -- in the call to Compile_Time_Compare. If this call results in a
12773 -- clear result of always True or Always False, that's decisive and
12774 -- we are done. Otherwise we repeat the processing with Assume_Valid
e7e4d230 12775 -- set to True to generate additional warnings. We can skip that step
c800f862
RD
12776 -- if Constant_Condition_Warnings is False.
12777
12778 for AV in False .. True loop
12779 declare
12780 Typ : constant Entity_Id := Etype (N);
12781 Op1 : constant Node_Id := Left_Opnd (N);
12782 Op2 : constant Node_Id := Right_Opnd (N);
70482933 12783
c800f862
RD
12784 Res : constant Compare_Result :=
12785 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
12786 -- Res indicates if compare outcome can be compile time determined
f02b8bb8 12787
c800f862
RD
12788 True_Result : Boolean;
12789 False_Result : Boolean;
f02b8bb8 12790
c800f862
RD
12791 begin
12792 case N_Op_Compare (Nkind (N)) is
d26dc4b5
AC
12793 when N_Op_Eq =>
12794 True_Result := Res = EQ;
12795 False_Result := Res = LT or else Res = GT or else Res = NE;
12796
12797 when N_Op_Ge =>
12798 True_Result := Res in Compare_GE;
12799 False_Result := Res = LT;
12800
12801 if Res = LE
12802 and then Constant_Condition_Warnings
12803 and then Comes_From_Source (Original_Node (N))
12804 and then Nkind (Original_Node (N)) = N_Op_Ge
12805 and then not In_Instance
d26dc4b5 12806 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 12807 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 12808 then
ed2233dc 12809 Error_Msg_N
324ac540
AC
12810 ("can never be greater than, could replace by ""'=""?c?",
12811 N);
c800f862 12812 Warning_Generated := True;
d26dc4b5 12813 end if;
70482933 12814
d26dc4b5
AC
12815 when N_Op_Gt =>
12816 True_Result := Res = GT;
12817 False_Result := Res in Compare_LE;
12818
12819 when N_Op_Lt =>
12820 True_Result := Res = LT;
12821 False_Result := Res in Compare_GE;
12822
12823 when N_Op_Le =>
12824 True_Result := Res in Compare_LE;
12825 False_Result := Res = GT;
12826
12827 if Res = GE
12828 and then Constant_Condition_Warnings
12829 and then Comes_From_Source (Original_Node (N))
12830 and then Nkind (Original_Node (N)) = N_Op_Le
12831 and then not In_Instance
d26dc4b5 12832 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 12833 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 12834 then
ed2233dc 12835 Error_Msg_N
324ac540 12836 ("can never be less than, could replace by ""'=""?c?", N);
c800f862 12837 Warning_Generated := True;
d26dc4b5 12838 end if;
70482933 12839
d26dc4b5
AC
12840 when N_Op_Ne =>
12841 True_Result := Res = NE or else Res = GT or else Res = LT;
12842 False_Result := Res = EQ;
c800f862 12843 end case;
d26dc4b5 12844
c800f862
RD
12845 -- If this is the first iteration, then we actually convert the
12846 -- comparison into True or False, if the result is certain.
d26dc4b5 12847
c800f862
RD
12848 if AV = False then
12849 if True_Result or False_Result then
21791d97 12850 Result := Boolean_Literals (True_Result);
c800f862
RD
12851 Rewrite (N,
12852 Convert_To (Typ,
12853 New_Occurrence_Of (Result, Sloc (N))));
12854 Analyze_And_Resolve (N, Typ);
12855 Warn_On_Known_Condition (N);
12856 return;
12857 end if;
12858
12859 -- If this is the second iteration (AV = True), and the original
e7e4d230
AC
12860 -- node comes from source and we are not in an instance, then give
12861 -- a warning if we know result would be True or False. Note: we
12862 -- know Constant_Condition_Warnings is set if we get here.
c800f862
RD
12863
12864 elsif Comes_From_Source (Original_Node (N))
12865 and then not In_Instance
12866 then
12867 if True_Result then
ed2233dc 12868 Error_Msg_N
324ac540 12869 ("condition can only be False if invalid values present??",
c800f862
RD
12870 N);
12871 elsif False_Result then
ed2233dc 12872 Error_Msg_N
324ac540 12873 ("condition can only be True if invalid values present??",
c800f862
RD
12874 N);
12875 end if;
12876 end if;
12877 end;
12878
12879 -- Skip second iteration if not warning on constant conditions or
e7e4d230
AC
12880 -- if the first iteration already generated a warning of some kind or
12881 -- if we are in any case assuming all values are valid (so that the
12882 -- first iteration took care of the valid case).
c800f862
RD
12883
12884 exit when not Constant_Condition_Warnings;
12885 exit when Warning_Generated;
12886 exit when Assume_No_Invalid_Values;
12887 end loop;
70482933
RK
12888 end Rewrite_Comparison;
12889
fbf5a39b
AC
12890 ----------------------------
12891 -- Safe_In_Place_Array_Op --
12892 ----------------------------
12893
12894 function Safe_In_Place_Array_Op
2e071734
AC
12895 (Lhs : Node_Id;
12896 Op1 : Node_Id;
12897 Op2 : Node_Id) return Boolean
fbf5a39b
AC
12898 is
12899 Target : Entity_Id;
12900
12901 function Is_Safe_Operand (Op : Node_Id) return Boolean;
12902 -- Operand is safe if it cannot overlap part of the target of the
12903 -- operation. If the operand and the target are identical, the operand
12904 -- is safe. The operand can be empty in the case of negation.
12905
12906 function Is_Unaliased (N : Node_Id) return Boolean;
5e1c00fa 12907 -- Check that N is a stand-alone entity
fbf5a39b
AC
12908
12909 ------------------
12910 -- Is_Unaliased --
12911 ------------------
12912
12913 function Is_Unaliased (N : Node_Id) return Boolean is
12914 begin
12915 return
12916 Is_Entity_Name (N)
12917 and then No (Address_Clause (Entity (N)))
12918 and then No (Renamed_Object (Entity (N)));
12919 end Is_Unaliased;
12920
12921 ---------------------
12922 -- Is_Safe_Operand --
12923 ---------------------
12924
12925 function Is_Safe_Operand (Op : Node_Id) return Boolean is
12926 begin
12927 if No (Op) then
12928 return True;
12929
12930 elsif Is_Entity_Name (Op) then
12931 return Is_Unaliased (Op);
12932
303b4d58 12933 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
fbf5a39b
AC
12934 return Is_Unaliased (Prefix (Op));
12935
12936 elsif Nkind (Op) = N_Slice then
12937 return
12938 Is_Unaliased (Prefix (Op))
12939 and then Entity (Prefix (Op)) /= Target;
12940
12941 elsif Nkind (Op) = N_Op_Not then
12942 return Is_Safe_Operand (Right_Opnd (Op));
12943
12944 else
12945 return False;
12946 end if;
12947 end Is_Safe_Operand;
12948
b6b5cca8 12949 -- Start of processing for Safe_In_Place_Array_Op
fbf5a39b
AC
12950
12951 begin
685094bf
RD
12952 -- Skip this processing if the component size is different from system
12953 -- storage unit (since at least for NOT this would cause problems).
fbf5a39b 12954
eaa826f8 12955 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
fbf5a39b
AC
12956 return False;
12957
26bff3d9 12958 -- Cannot do in place stuff on VM_Target since cannot pass addresses
fbf5a39b 12959
26bff3d9 12960 elsif VM_Target /= No_VM then
fbf5a39b
AC
12961 return False;
12962
12963 -- Cannot do in place stuff if non-standard Boolean representation
12964
eaa826f8 12965 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
fbf5a39b
AC
12966 return False;
12967
12968 elsif not Is_Unaliased (Lhs) then
12969 return False;
e7e4d230 12970
fbf5a39b
AC
12971 else
12972 Target := Entity (Lhs);
e7e4d230 12973 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
fbf5a39b
AC
12974 end if;
12975 end Safe_In_Place_Array_Op;
12976
70482933
RK
12977 -----------------------
12978 -- Tagged_Membership --
12979 -----------------------
12980
685094bf
RD
12981 -- There are two different cases to consider depending on whether the right
12982 -- operand is a class-wide type or not. If not we just compare the actual
12983 -- tag of the left expr to the target type tag:
70482933
RK
12984 --
12985 -- Left_Expr.Tag = Right_Type'Tag;
12986 --
685094bf
RD
12987 -- If it is a class-wide type we use the RT function CW_Membership which is
12988 -- usually implemented by looking in the ancestor tables contained in the
12989 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
70482933 12990
0669bebe
GB
12991 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
12992 -- function IW_Membership which is usually implemented by looking in the
12993 -- table of abstract interface types plus the ancestor table contained in
12994 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
12995
82878151
AC
12996 procedure Tagged_Membership
12997 (N : Node_Id;
12998 SCIL_Node : out Node_Id;
12999 Result : out Node_Id)
13000 is
70482933
RK
13001 Left : constant Node_Id := Left_Opnd (N);
13002 Right : constant Node_Id := Right_Opnd (N);
13003 Loc : constant Source_Ptr := Sloc (N);
13004
38171f43 13005 Full_R_Typ : Entity_Id;
70482933 13006 Left_Type : Entity_Id;
82878151 13007 New_Node : Node_Id;
70482933
RK
13008 Right_Type : Entity_Id;
13009 Obj_Tag : Node_Id;
13010
13011 begin
82878151
AC
13012 SCIL_Node := Empty;
13013
852dba80
AC
13014 -- Handle entities from the limited view
13015
13016 Left_Type := Available_View (Etype (Left));
13017 Right_Type := Available_View (Etype (Right));
70482933 13018
6cce2156
GD
13019 -- In the case where the type is an access type, the test is applied
13020 -- using the designated types (needed in Ada 2012 for implicit anonymous
13021 -- access conversions, for AI05-0149).
13022
13023 if Is_Access_Type (Right_Type) then
13024 Left_Type := Designated_Type (Left_Type);
13025 Right_Type := Designated_Type (Right_Type);
13026 end if;
13027
70482933
RK
13028 if Is_Class_Wide_Type (Left_Type) then
13029 Left_Type := Root_Type (Left_Type);
13030 end if;
13031
38171f43
AC
13032 if Is_Class_Wide_Type (Right_Type) then
13033 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
13034 else
13035 Full_R_Typ := Underlying_Type (Right_Type);
13036 end if;
13037
70482933
RK
13038 Obj_Tag :=
13039 Make_Selected_Component (Loc,
13040 Prefix => Relocate_Node (Left),
a9d8907c 13041 Selector_Name =>
e4494292 13042 New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
70482933
RK
13043
13044 if Is_Class_Wide_Type (Right_Type) then
758c442c 13045
0669bebe
GB
13046 -- No need to issue a run-time check if we statically know that the
13047 -- result of this membership test is always true. For example,
13048 -- considering the following declarations:
13049
13050 -- type Iface is interface;
13051 -- type T is tagged null record;
13052 -- type DT is new T and Iface with null record;
13053
13054 -- Obj1 : T;
13055 -- Obj2 : DT;
13056
13057 -- These membership tests are always true:
13058
13059 -- Obj1 in T'Class
13060 -- Obj2 in T'Class;
13061 -- Obj2 in Iface'Class;
13062
13063 -- We do not need to handle cases where the membership is illegal.
13064 -- For example:
13065
13066 -- Obj1 in DT'Class; -- Compile time error
13067 -- Obj1 in Iface'Class; -- Compile time error
13068
13069 if not Is_Class_Wide_Type (Left_Type)
4ac2477e
JM
13070 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
13071 Use_Full_View => True)
533369aa
AC
13072 or else (Is_Interface (Etype (Right_Type))
13073 and then Interface_Present_In_Ancestor
761f7dcb
AC
13074 (Typ => Left_Type,
13075 Iface => Etype (Right_Type))))
0669bebe 13076 then
e4494292 13077 Result := New_Occurrence_Of (Standard_True, Loc);
82878151 13078 return;
0669bebe
GB
13079 end if;
13080
758c442c
GD
13081 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13082
630d30e9
RD
13083 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
13084
0669bebe 13085 -- Support to: "Iface_CW_Typ in Typ'Class"
630d30e9
RD
13086
13087 or else Is_Interface (Left_Type)
13088 then
dfd99a80
TQ
13089 -- Issue error if IW_Membership operation not available in a
13090 -- configurable run time setting.
13091
13092 if not RTE_Available (RE_IW_Membership) then
b4592168
GD
13093 Error_Msg_CRT
13094 ("dynamic membership test on interface types", N);
82878151
AC
13095 Result := Empty;
13096 return;
dfd99a80
TQ
13097 end if;
13098
82878151 13099 Result :=
758c442c
GD
13100 Make_Function_Call (Loc,
13101 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
13102 Parameter_Associations => New_List (
13103 Make_Attribute_Reference (Loc,
13104 Prefix => Obj_Tag,
13105 Attribute_Name => Name_Address),
e4494292 13106 New_Occurrence_Of (
38171f43 13107 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
758c442c
GD
13108 Loc)));
13109
13110 -- Ada 95: Normal case
13111
13112 else
82878151
AC
13113 Build_CW_Membership (Loc,
13114 Obj_Tag_Node => Obj_Tag,
13115 Typ_Tag_Node =>
e4494292 13116 New_Occurrence_Of (
38171f43 13117 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
82878151
AC
13118 Related_Nod => N,
13119 New_Node => New_Node);
13120
13121 -- Generate the SCIL node for this class-wide membership test.
13122 -- Done here because the previous call to Build_CW_Membership
13123 -- relocates Obj_Tag.
13124
13125 if Generate_SCIL then
13126 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
13127 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
13128 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
13129 end if;
13130
13131 Result := New_Node;
758c442c
GD
13132 end if;
13133
0669bebe
GB
13134 -- Right_Type is not a class-wide type
13135
70482933 13136 else
0669bebe
GB
13137 -- No need to check the tag of the object if Right_Typ is abstract
13138
13139 if Is_Abstract_Type (Right_Type) then
e4494292 13140 Result := New_Occurrence_Of (Standard_False, Loc);
0669bebe
GB
13141
13142 else
82878151 13143 Result :=
0669bebe
GB
13144 Make_Op_Eq (Loc,
13145 Left_Opnd => Obj_Tag,
13146 Right_Opnd =>
e4494292 13147 New_Occurrence_Of
38171f43 13148 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
0669bebe 13149 end if;
70482933 13150 end if;
70482933
RK
13151 end Tagged_Membership;
13152
13153 ------------------------------
13154 -- Unary_Op_Validity_Checks --
13155 ------------------------------
13156
13157 procedure Unary_Op_Validity_Checks (N : Node_Id) is
13158 begin
13159 if Validity_Checks_On and Validity_Check_Operands then
13160 Ensure_Valid (Right_Opnd (N));
13161 end if;
13162 end Unary_Op_Validity_Checks;
13163
13164end Exp_Ch4;