]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_ch4.adb
sem_util.adb (Extensions_Visible_Status): Modify the logic to account for non-SPARK...
[thirdparty/gcc.git] / gcc / ada / exp_ch4.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 4 --
59262ebb 6-- --
70482933
RK
7-- B o d y --
8-- --
da574a86 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
bded454f 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Aggr; use Exp_Aggr;
0669bebe 33with Exp_Atag; use Exp_Atag;
6cce2156 34with Exp_Ch2; use Exp_Ch2;
70482933 35with Exp_Ch3; use Exp_Ch3;
20b5d666 36with Exp_Ch6; use Exp_Ch6;
70482933
RK
37with Exp_Ch7; use Exp_Ch7;
38with Exp_Ch9; use Exp_Ch9;
20b5d666 39with Exp_Disp; use Exp_Disp;
70482933 40with Exp_Fixd; use Exp_Fixd;
437f8c1e 41with Exp_Intr; use Exp_Intr;
70482933
RK
42with Exp_Pakd; use Exp_Pakd;
43with Exp_Tss; use Exp_Tss;
44with Exp_Util; use Exp_Util;
f02b8bb8 45with Freeze; use Freeze;
70482933 46with Inline; use Inline;
df3e68b1 47with Lib; use Lib;
26bff3d9 48with Namet; use Namet;
70482933
RK
49with Nlists; use Nlists;
50with Nmake; use Nmake;
51with Opt; use Opt;
25adc5fb 52with Par_SCO; use Par_SCO;
0669bebe
GB
53with Restrict; use Restrict;
54with Rident; use Rident;
70482933
RK
55with Rtsfind; use Rtsfind;
56with Sem; use Sem;
a4100e55 57with Sem_Aux; use Sem_Aux;
70482933 58with Sem_Cat; use Sem_Cat;
5d09245e 59with Sem_Ch3; use Sem_Ch3;
11fa950b 60with Sem_Ch8; use Sem_Ch8;
70482933
RK
61with Sem_Ch13; use Sem_Ch13;
62with Sem_Eval; use Sem_Eval;
63with Sem_Res; use Sem_Res;
64with Sem_Type; use Sem_Type;
65with Sem_Util; use Sem_Util;
07fc65c4 66with Sem_Warn; use Sem_Warn;
70482933 67with Sinfo; use Sinfo;
70482933
RK
68with Snames; use Snames;
69with Stand; use Stand;
7665e4bd 70with SCIL_LL; use SCIL_LL;
07fc65c4 71with Targparm; use Targparm;
70482933
RK
72with Tbuild; use Tbuild;
73with Ttypes; use Ttypes;
74with Uintp; use Uintp;
75with Urealp; use Urealp;
76with Validsw; use Validsw;
77
78package body Exp_Ch4 is
79
15ce9ca2
AC
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
70482933
RK
83
84 procedure Binary_Op_Validity_Checks (N : Node_Id);
85 pragma Inline (Binary_Op_Validity_Checks);
86 -- Performs validity checks for a binary operator
87
fbf5a39b
AC
88 procedure Build_Boolean_Array_Proc_Call
89 (N : Node_Id;
90 Op1 : Node_Id;
91 Op2 : Node_Id);
303b4d58 92 -- If a boolean array assignment can be done in place, build call to
fbf5a39b
AC
93 -- corresponding library procedure.
94
11fa950b
AC
95 function Current_Anonymous_Master return Entity_Id;
96 -- Return the entity of the heterogeneous finalization master belonging to
97 -- the current unit (either function, package or procedure). This master
98 -- services all anonymous access-to-controlled types. If the current unit
99 -- does not have such master, create one.
df3e68b1 100
26bff3d9
JM
101 procedure Displace_Allocator_Pointer (N : Node_Id);
102 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
103 -- Expand_Allocator_Expression. Allocating class-wide interface objects
104 -- this routine displaces the pointer to the allocated object to reference
105 -- the component referencing the corresponding secondary dispatch table.
106
fbf5a39b
AC
107 procedure Expand_Allocator_Expression (N : Node_Id);
108 -- Subsidiary to Expand_N_Allocator, for the case when the expression
109 -- is a qualified expression or an aggregate.
110
70482933
RK
111 procedure Expand_Array_Comparison (N : Node_Id);
112 -- This routine handles expansion of the comparison operators (N_Op_Lt,
113 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
114 -- code for these operators is similar, differing only in the details of
fbf5a39b
AC
115 -- the actual comparison call that is made. Special processing (call a
116 -- run-time routine)
70482933
RK
117
118 function Expand_Array_Equality
119 (Nod : Node_Id;
70482933
RK
120 Lhs : Node_Id;
121 Rhs : Node_Id;
0da2c8ac
AC
122 Bodies : List_Id;
123 Typ : Entity_Id) return Node_Id;
70482933 124 -- Expand an array equality into a call to a function implementing this
685094bf
RD
125 -- equality, and a call to it. Loc is the location for the generated nodes.
126 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
127 -- on which to attach bodies of local functions that are created in the
128 -- process. It is the responsibility of the caller to insert those bodies
129 -- at the right place. Nod provides the Sloc value for the generated code.
130 -- Normally the types used for the generated equality routine are taken
131 -- from Lhs and Rhs. However, in some situations of generated code, the
132 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
133 -- the type to be used for the formal parameters.
70482933
RK
134
135 procedure Expand_Boolean_Operator (N : Node_Id);
685094bf
RD
136 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
137 -- case of array type arguments.
70482933 138
5875f8d6
AC
139 procedure Expand_Short_Circuit_Operator (N : Node_Id);
140 -- Common expansion processing for short-circuit boolean operators
141
456cbfa5 142 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
5707e389
AC
143 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
144 -- where we allow comparison of "out of range" values.
456cbfa5 145
70482933
RK
146 function Expand_Composite_Equality
147 (Nod : Node_Id;
148 Typ : Entity_Id;
149 Lhs : Node_Id;
150 Rhs : Node_Id;
2e071734 151 Bodies : List_Id) return Node_Id;
685094bf
RD
152 -- Local recursive function used to expand equality for nested composite
153 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
d26d790d
AC
154 -- to attach bodies of local functions that are created in the process. It
155 -- is the responsibility of the caller to insert those bodies at the right
156 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
157 -- the left and right sides for the comparison, and Typ is the type of the
158 -- objects to compare.
70482933 159
fdac1f80
AC
160 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
161 -- Routine to expand concatenation of a sequence of two or more operands
162 -- (in the list Operands) and replace node Cnode with the result of the
163 -- concatenation. The operands can be of any appropriate type, and can
164 -- include both arrays and singleton elements.
70482933 165
f6194278 166 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
5707e389
AC
167 -- N is an N_In membership test mode, with the overflow check mode set to
168 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
169 -- integer type. This is a case where top level processing is required to
170 -- handle overflow checks in subtrees.
f6194278 171
70482933 172 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
685094bf
RD
173 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
174 -- fixed. We do not have such a type at runtime, so the purpose of this
175 -- routine is to find the real type by looking up the tree. We also
176 -- determine if the operation must be rounded.
70482933 177
5d09245e
AC
178 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
179 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
180 -- discriminants if it has a constrained nominal type, unless the object
181 -- is a component of an enclosing Unchecked_Union object that is subject
182 -- to a per-object constraint and the enclosing object lacks inferable
183 -- discriminants.
184 --
185 -- An expression of an Unchecked_Union type has inferable discriminants
186 -- if it is either a name of an object with inferable discriminants or a
187 -- qualified expression whose subtype mark denotes a constrained subtype.
188
70482933 189 procedure Insert_Dereference_Action (N : Node_Id);
e6f69614
AC
190 -- N is an expression whose type is an access. When the type of the
191 -- associated storage pool is derived from Checked_Pool, generate a
192 -- call to the 'Dereference' primitive operation.
70482933
RK
193
194 function Make_Array_Comparison_Op
2e071734
AC
195 (Typ : Entity_Id;
196 Nod : Node_Id) return Node_Id;
685094bf
RD
197 -- Comparisons between arrays are expanded in line. This function produces
198 -- the body of the implementation of (a > b), where a and b are one-
199 -- dimensional arrays of some discrete type. The original node is then
200 -- expanded into the appropriate call to this function. Nod provides the
201 -- Sloc value for the generated code.
70482933
RK
202
203 function Make_Boolean_Array_Op
2e071734
AC
204 (Typ : Entity_Id;
205 N : Node_Id) return Node_Id;
685094bf
RD
206 -- Boolean operations on boolean arrays are expanded in line. This function
207 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
208 -- b). It is used only the normal case and not the packed case. The type
209 -- involved, Typ, is the Boolean array type, and the logical operations in
210 -- the body are simple boolean operations. Note that Typ is always a
211 -- constrained type (the caller has ensured this by using
212 -- Convert_To_Actual_Subtype if necessary).
70482933 213
b6b5cca8 214 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
a7f1b24f
RD
215 -- For signed arithmetic operations when the current overflow mode is
216 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
217 -- as the first thing we do. We then return. We count on the recursive
218 -- apparatus for overflow checks to call us back with an equivalent
219 -- operation that is in CHECKED mode, avoiding a recursive entry into this
220 -- routine, and that is when we will proceed with the expansion of the
221 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
222 -- these optimizations without first making this check, since there may be
223 -- operands further down the tree that are relying on the recursive calls
224 -- triggered by the top level nodes to properly process overflow checking
225 -- and remaining expansion on these nodes. Note that this call back may be
226 -- skipped if the operation is done in Bignum mode but that's fine, since
227 -- the Bignum call takes care of everything.
b6b5cca8 228
0580d807
AC
229 procedure Optimize_Length_Comparison (N : Node_Id);
230 -- Given an expression, if it is of the form X'Length op N (or the other
231 -- way round), where N is known at compile time to be 0 or 1, and X is a
232 -- simple entity, and op is a comparison operator, optimizes it into a
233 -- comparison of First and Last.
234
b2c28399
AC
235 procedure Process_Transient_Object
236 (Decl : Node_Id;
237 Rel_Node : Node_Id);
238 -- Subsidiary routine to the expansion of expression_with_actions and if
239 -- expressions. Generate all the necessary code to finalize a transient
240 -- controlled object when the enclosing context is elaborated or evaluated.
241 -- Decl denotes the declaration of the transient controlled object which is
242 -- usually the result of a controlled function call. Rel_Node denotes the
243 -- context, either an expression_with_actions or an if expression.
244
70482933 245 procedure Rewrite_Comparison (N : Node_Id);
20b5d666 246 -- If N is the node for a comparison whose outcome can be determined at
d26dc4b5
AC
247 -- compile time, then the node N can be rewritten with True or False. If
248 -- the outcome cannot be determined at compile time, the call has no
249 -- effect. If N is a type conversion, then this processing is applied to
250 -- its expression. If N is neither comparison nor a type conversion, the
251 -- call has no effect.
70482933 252
82878151
AC
253 procedure Tagged_Membership
254 (N : Node_Id;
255 SCIL_Node : out Node_Id;
256 Result : out Node_Id);
70482933
RK
257 -- Construct the expression corresponding to the tagged membership test.
258 -- Deals with a second operand being (or not) a class-wide type.
259
fbf5a39b 260 function Safe_In_Place_Array_Op
2e071734
AC
261 (Lhs : Node_Id;
262 Op1 : Node_Id;
263 Op2 : Node_Id) return Boolean;
685094bf
RD
264 -- In the context of an assignment, where the right-hand side is a boolean
265 -- operation on arrays, check whether operation can be performed in place.
fbf5a39b 266
70482933
RK
267 procedure Unary_Op_Validity_Checks (N : Node_Id);
268 pragma Inline (Unary_Op_Validity_Checks);
269 -- Performs validity checks for a unary operator
270
271 -------------------------------
272 -- Binary_Op_Validity_Checks --
273 -------------------------------
274
275 procedure Binary_Op_Validity_Checks (N : Node_Id) is
276 begin
277 if Validity_Checks_On and Validity_Check_Operands then
278 Ensure_Valid (Left_Opnd (N));
279 Ensure_Valid (Right_Opnd (N));
280 end if;
281 end Binary_Op_Validity_Checks;
282
fbf5a39b
AC
283 ------------------------------------
284 -- Build_Boolean_Array_Proc_Call --
285 ------------------------------------
286
287 procedure Build_Boolean_Array_Proc_Call
288 (N : Node_Id;
289 Op1 : Node_Id;
290 Op2 : Node_Id)
291 is
292 Loc : constant Source_Ptr := Sloc (N);
293 Kind : constant Node_Kind := Nkind (Expression (N));
294 Target : constant Node_Id :=
295 Make_Attribute_Reference (Loc,
296 Prefix => Name (N),
297 Attribute_Name => Name_Address);
298
bed8af19 299 Arg1 : Node_Id := Op1;
fbf5a39b
AC
300 Arg2 : Node_Id := Op2;
301 Call_Node : Node_Id;
302 Proc_Name : Entity_Id;
303
304 begin
305 if Kind = N_Op_Not then
306 if Nkind (Op1) in N_Binary_Op then
307
5e1c00fa 308 -- Use negated version of the binary operators
fbf5a39b
AC
309
310 if Nkind (Op1) = N_Op_And then
311 Proc_Name := RTE (RE_Vector_Nand);
312
313 elsif Nkind (Op1) = N_Op_Or then
314 Proc_Name := RTE (RE_Vector_Nor);
315
316 else pragma Assert (Nkind (Op1) = N_Op_Xor);
317 Proc_Name := RTE (RE_Vector_Xor);
318 end if;
319
320 Call_Node :=
321 Make_Procedure_Call_Statement (Loc,
322 Name => New_Occurrence_Of (Proc_Name, Loc),
323
324 Parameter_Associations => New_List (
325 Target,
326 Make_Attribute_Reference (Loc,
327 Prefix => Left_Opnd (Op1),
328 Attribute_Name => Name_Address),
329
330 Make_Attribute_Reference (Loc,
331 Prefix => Right_Opnd (Op1),
332 Attribute_Name => Name_Address),
333
334 Make_Attribute_Reference (Loc,
335 Prefix => Left_Opnd (Op1),
336 Attribute_Name => Name_Length)));
337
338 else
339 Proc_Name := RTE (RE_Vector_Not);
340
341 Call_Node :=
342 Make_Procedure_Call_Statement (Loc,
343 Name => New_Occurrence_Of (Proc_Name, Loc),
344 Parameter_Associations => New_List (
345 Target,
346
347 Make_Attribute_Reference (Loc,
348 Prefix => Op1,
349 Attribute_Name => Name_Address),
350
351 Make_Attribute_Reference (Loc,
352 Prefix => Op1,
353 Attribute_Name => Name_Length)));
354 end if;
355
356 else
357 -- We use the following equivalences:
358
359 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
360 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
361 -- (not X) xor (not Y) = X xor Y
362 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
363
364 if Nkind (Op1) = N_Op_Not then
bed8af19
AC
365 Arg1 := Right_Opnd (Op1);
366 Arg2 := Right_Opnd (Op2);
533369aa 367
fbf5a39b
AC
368 if Kind = N_Op_And then
369 Proc_Name := RTE (RE_Vector_Nor);
fbf5a39b
AC
370 elsif Kind = N_Op_Or then
371 Proc_Name := RTE (RE_Vector_Nand);
fbf5a39b
AC
372 else
373 Proc_Name := RTE (RE_Vector_Xor);
374 end if;
375
376 else
377 if Kind = N_Op_And then
378 Proc_Name := RTE (RE_Vector_And);
fbf5a39b
AC
379 elsif Kind = N_Op_Or then
380 Proc_Name := RTE (RE_Vector_Or);
fbf5a39b
AC
381 elsif Nkind (Op2) = N_Op_Not then
382 Proc_Name := RTE (RE_Vector_Nxor);
383 Arg2 := Right_Opnd (Op2);
fbf5a39b
AC
384 else
385 Proc_Name := RTE (RE_Vector_Xor);
386 end if;
387 end if;
388
389 Call_Node :=
390 Make_Procedure_Call_Statement (Loc,
391 Name => New_Occurrence_Of (Proc_Name, Loc),
392 Parameter_Associations => New_List (
393 Target,
955871d3
AC
394 Make_Attribute_Reference (Loc,
395 Prefix => Arg1,
396 Attribute_Name => Name_Address),
397 Make_Attribute_Reference (Loc,
398 Prefix => Arg2,
399 Attribute_Name => Name_Address),
400 Make_Attribute_Reference (Loc,
a8ef12e5 401 Prefix => Arg1,
955871d3 402 Attribute_Name => Name_Length)));
fbf5a39b
AC
403 end if;
404
405 Rewrite (N, Call_Node);
406 Analyze (N);
407
408 exception
409 when RE_Not_Available =>
410 return;
411 end Build_Boolean_Array_Proc_Call;
412
11fa950b
AC
413 ------------------------------
414 -- Current_Anonymous_Master --
415 ------------------------------
df3e68b1 416
11fa950b 417 function Current_Anonymous_Master return Entity_Id is
2c17ca0a
AC
418 Decls : List_Id;
419 Loc : Source_Ptr;
420 Subp_Body : Node_Id;
421 Unit_Decl : Node_Id;
422 Unit_Id : Entity_Id;
df3e68b1 423
ca5af305 424 begin
11fa950b
AC
425 Unit_Id := Cunit_Entity (Current_Sem_Unit);
426
427 -- Find the entity of the current unit
428
429 if Ekind (Unit_Id) = E_Subprogram_Body then
430
431 -- When processing subprogram bodies, the proper scope is always that
432 -- of the spec.
433
434 Subp_Body := Unit_Id;
435 while Present (Subp_Body)
436 and then Nkind (Subp_Body) /= N_Subprogram_Body
437 loop
438 Subp_Body := Parent (Subp_Body);
439 end loop;
440
441 Unit_Id := Corresponding_Spec (Subp_Body);
442 end if;
443
444 Loc := Sloc (Unit_Id);
445 Unit_Decl := Unit (Cunit (Current_Sem_Unit));
446
447 -- Find the declarations list of the current unit
448
449 if Nkind (Unit_Decl) = N_Package_Declaration then
450 Unit_Decl := Specification (Unit_Decl);
451 Decls := Visible_Declarations (Unit_Decl);
df3e68b1 452
ca5af305 453 if No (Decls) then
11fa950b
AC
454 Decls := New_List (Make_Null_Statement (Loc));
455 Set_Visible_Declarations (Unit_Decl, Decls);
df3e68b1 456
ca5af305 457 elsif Is_Empty_List (Decls) then
11fa950b 458 Append_To (Decls, Make_Null_Statement (Loc));
df3e68b1
HK
459 end if;
460
ca5af305 461 else
11fa950b 462 Decls := Declarations (Unit_Decl);
f553e7bc 463
ca5af305 464 if No (Decls) then
11fa950b
AC
465 Decls := New_List (Make_Null_Statement (Loc));
466 Set_Declarations (Unit_Decl, Decls);
df3e68b1 467
ca5af305 468 elsif Is_Empty_List (Decls) then
11fa950b 469 Append_To (Decls, Make_Null_Statement (Loc));
ca5af305 470 end if;
df3e68b1
HK
471 end if;
472
11fa950b
AC
473 -- The current unit has an existing anonymous master, traverse its
474 -- declarations and locate the entity.
df3e68b1 475
11fa950b 476 if Has_Anonymous_Master (Unit_Id) then
2c17ca0a
AC
477 declare
478 Decl : Node_Id;
479 Fin_Mas_Id : Entity_Id;
df3e68b1 480
2c17ca0a
AC
481 begin
482 Decl := First (Decls);
483 while Present (Decl) loop
df3e68b1 484
2c17ca0a
AC
485 -- Look for the first variable in the declarations whole type
486 -- is Finalization_Master.
df3e68b1 487
2c17ca0a
AC
488 if Nkind (Decl) = N_Object_Declaration then
489 Fin_Mas_Id := Defining_Identifier (Decl);
490
491 if Ekind (Fin_Mas_Id) = E_Variable
492 and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
493 then
494 return Fin_Mas_Id;
495 end if;
496 end if;
497
498 Next (Decl);
499 end loop;
500
501 -- The master was not found even though the unit was labeled as
502 -- having one.
df3e68b1 503
2c17ca0a
AC
504 raise Program_Error;
505 end;
11fa950b
AC
506
507 -- Create a new anonymous master
508
509 else
510 declare
511 First_Decl : constant Node_Id := First (Decls);
512 Action : Node_Id;
2c17ca0a 513 Fin_Mas_Id : Entity_Id;
df3e68b1 514
11fa950b
AC
515 begin
516 -- Since the master and its associated initialization is inserted
517 -- at top level, use the scope of the unit when analyzing.
518
519 Push_Scope (Unit_Id);
520
521 -- Create the finalization master
522
523 Fin_Mas_Id :=
524 Make_Defining_Identifier (Loc,
525 Chars => New_External_Name (Chars (Unit_Id), "AM"));
526
527 -- Generate:
528 -- <Fin_Mas_Id> : Finalization_Master;
529
530 Action :=
531 Make_Object_Declaration (Loc,
532 Defining_Identifier => Fin_Mas_Id,
533 Object_Definition =>
e4494292 534 New_Occurrence_Of (RTE (RE_Finalization_Master), Loc));
11fa950b
AC
535
536 Insert_Before_And_Analyze (First_Decl, Action);
537
538 -- Mark the unit to prevent the generation of multiple masters
539
540 Set_Has_Anonymous_Master (Unit_Id);
541
542 -- Do not set the base pool and mode of operation on .NET/JVM
543 -- since those targets do not support pools and all VM masters
544 -- are heterogeneous by default.
545
546 if VM_Target = No_VM then
547
548 -- Generate:
549 -- Set_Base_Pool
550 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
551
552 Action :=
553 Make_Procedure_Call_Statement (Loc,
554 Name =>
e4494292 555 New_Occurrence_Of (RTE (RE_Set_Base_Pool), Loc),
11fa950b
AC
556
557 Parameter_Associations => New_List (
e4494292 558 New_Occurrence_Of (Fin_Mas_Id, Loc),
11fa950b
AC
559 Make_Attribute_Reference (Loc,
560 Prefix =>
e4494292 561 New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
11fa950b
AC
562 Attribute_Name => Name_Unrestricted_Access)));
563
564 Insert_Before_And_Analyze (First_Decl, Action);
565
566 -- Generate:
567 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
568
569 Action :=
570 Make_Procedure_Call_Statement (Loc,
571 Name =>
e4494292 572 New_Occurrence_Of (RTE (RE_Set_Is_Heterogeneous), Loc),
11fa950b 573 Parameter_Associations => New_List (
e4494292 574 New_Occurrence_Of (Fin_Mas_Id, Loc)));
11fa950b
AC
575
576 Insert_Before_And_Analyze (First_Decl, Action);
577 end if;
578
579 -- Restore the original state of the scope stack
580
581 Pop_Scope;
582
583 return Fin_Mas_Id;
584 end;
585 end if;
586 end Current_Anonymous_Master;
df3e68b1 587
26bff3d9
JM
588 --------------------------------
589 -- Displace_Allocator_Pointer --
590 --------------------------------
591
592 procedure Displace_Allocator_Pointer (N : Node_Id) is
593 Loc : constant Source_Ptr := Sloc (N);
594 Orig_Node : constant Node_Id := Original_Node (N);
595 Dtyp : Entity_Id;
596 Etyp : Entity_Id;
597 PtrT : Entity_Id;
598
599 begin
303b4d58
AC
600 -- Do nothing in case of VM targets: the virtual machine will handle
601 -- interfaces directly.
602
1f110335 603 if not Tagged_Type_Expansion then
303b4d58
AC
604 return;
605 end if;
606
26bff3d9
JM
607 pragma Assert (Nkind (N) = N_Identifier
608 and then Nkind (Orig_Node) = N_Allocator);
609
610 PtrT := Etype (Orig_Node);
d6a24cdb 611 Dtyp := Available_View (Designated_Type (PtrT));
26bff3d9
JM
612 Etyp := Etype (Expression (Orig_Node));
613
533369aa
AC
614 if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
615
26bff3d9
JM
616 -- If the type of the allocator expression is not an interface type
617 -- we can generate code to reference the record component containing
618 -- the pointer to the secondary dispatch table.
619
620 if not Is_Interface (Etyp) then
621 declare
622 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
623
624 begin
625 -- 1) Get access to the allocated object
626
627 Rewrite (N,
5972791c 628 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
26bff3d9
JM
629 Set_Etype (N, Etyp);
630 Set_Analyzed (N);
631
632 -- 2) Add the conversion to displace the pointer to reference
633 -- the secondary dispatch table.
634
635 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
636 Analyze_And_Resolve (N, Dtyp);
637
638 -- 3) The 'access to the secondary dispatch table will be used
639 -- as the value returned by the allocator.
640
641 Rewrite (N,
642 Make_Attribute_Reference (Loc,
643 Prefix => Relocate_Node (N),
644 Attribute_Name => Name_Access));
645 Set_Etype (N, Saved_Typ);
646 Set_Analyzed (N);
647 end;
648
649 -- If the type of the allocator expression is an interface type we
650 -- generate a run-time call to displace "this" to reference the
651 -- component containing the pointer to the secondary dispatch table
652 -- or else raise Constraint_Error if the actual object does not
533369aa 653 -- implement the target interface. This case corresponds to the
26bff3d9
JM
654 -- following example:
655
8fc789c8 656 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
26bff3d9
JM
657 -- begin
658 -- return new Iface_2'Class'(Obj);
659 -- end Op;
660
661 else
662 Rewrite (N,
663 Unchecked_Convert_To (PtrT,
664 Make_Function_Call (Loc,
e4494292 665 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
26bff3d9
JM
666 Parameter_Associations => New_List (
667 Unchecked_Convert_To (RTE (RE_Address),
668 Relocate_Node (N)),
669
670 New_Occurrence_Of
671 (Elists.Node
672 (First_Elmt
673 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
674 Loc)))));
675 Analyze_And_Resolve (N, PtrT);
676 end if;
677 end if;
678 end Displace_Allocator_Pointer;
679
fbf5a39b
AC
680 ---------------------------------
681 -- Expand_Allocator_Expression --
682 ---------------------------------
683
684 procedure Expand_Allocator_Expression (N : Node_Id) is
f02b8bb8
RD
685 Loc : constant Source_Ptr := Sloc (N);
686 Exp : constant Node_Id := Expression (Expression (N));
f02b8bb8
RD
687 PtrT : constant Entity_Id := Etype (N);
688 DesigT : constant Entity_Id := Designated_Type (PtrT);
26bff3d9
JM
689
690 procedure Apply_Accessibility_Check
691 (Ref : Node_Id;
692 Built_In_Place : Boolean := False);
693 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
685094bf
RD
694 -- type, generate an accessibility check to verify that the level of the
695 -- type of the created object is not deeper than the level of the access
50878404 696 -- type. If the type of the qualified expression is class-wide, then
685094bf
RD
697 -- always generate the check (except in the case where it is known to be
698 -- unnecessary, see comment below). Otherwise, only generate the check
699 -- if the level of the qualified expression type is statically deeper
700 -- than the access type.
701 --
702 -- Although the static accessibility will generally have been performed
703 -- as a legality check, it won't have been done in cases where the
704 -- allocator appears in generic body, so a run-time check is needed in
705 -- general. One special case is when the access type is declared in the
706 -- same scope as the class-wide allocator, in which case the check can
707 -- never fail, so it need not be generated.
708 --
709 -- As an open issue, there seem to be cases where the static level
710 -- associated with the class-wide object's underlying type is not
711 -- sufficient to perform the proper accessibility check, such as for
712 -- allocators in nested subprograms or accept statements initialized by
713 -- class-wide formals when the actual originates outside at a deeper
714 -- static level. The nested subprogram case might require passing
715 -- accessibility levels along with class-wide parameters, and the task
716 -- case seems to be an actual gap in the language rules that needs to
717 -- be fixed by the ARG. ???
26bff3d9
JM
718
719 -------------------------------
720 -- Apply_Accessibility_Check --
721 -------------------------------
722
723 procedure Apply_Accessibility_Check
724 (Ref : Node_Id;
725 Built_In_Place : Boolean := False)
726 is
a98838ff
HK
727 Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
728 Cond : Node_Id;
729 Fin_Call : Node_Id;
730 Free_Stmt : Node_Id;
731 Obj_Ref : Node_Id;
732 Stmts : List_Id;
26bff3d9
JM
733
734 begin
0791fbe9 735 if Ada_Version >= Ada_2005
26bff3d9 736 and then Is_Class_Wide_Type (DesigT)
a98838ff 737 and then (Tagged_Type_Expansion or else VM_Target /= No_VM)
3217f71e 738 and then not Scope_Suppress.Suppress (Accessibility_Check)
26bff3d9
JM
739 and then
740 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
741 or else
742 (Is_Class_Wide_Type (Etype (Exp))
743 and then Scope (PtrT) /= Current_Scope))
744 then
e761d11c 745 -- If the allocator was built in place, Ref is already a reference
26bff3d9 746 -- to the access object initialized to the result of the allocator
e761d11c
AC
747 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
748 -- Remove_Side_Effects for cases where the build-in-place call may
749 -- still be the prefix of the reference (to avoid generating
750 -- duplicate calls). Otherwise, it is the entity associated with
751 -- the object containing the address of the allocated object.
26bff3d9
JM
752
753 if Built_In_Place then
e761d11c 754 Remove_Side_Effects (Ref);
a98838ff 755 Obj_Ref := New_Copy_Tree (Ref);
26bff3d9 756 else
e4494292 757 Obj_Ref := New_Occurrence_Of (Ref, Loc);
50878404
AC
758 end if;
759
b6c8e5be
AC
760 -- For access to interface types we must generate code to displace
761 -- the pointer to the base of the object since the subsequent code
762 -- references components located in the TSD of the object (which
763 -- is associated with the primary dispatch table --see a-tags.ads)
764 -- and also generates code invoking Free, which requires also a
765 -- reference to the base of the unallocated object.
766
cc6f5d75 767 if Is_Interface (DesigT) and then Tagged_Type_Expansion then
b6c8e5be
AC
768 Obj_Ref :=
769 Unchecked_Convert_To (Etype (Obj_Ref),
770 Make_Function_Call (Loc,
662c2ad4
RD
771 Name =>
772 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
b6c8e5be
AC
773 Parameter_Associations => New_List (
774 Unchecked_Convert_To (RTE (RE_Address),
775 New_Copy_Tree (Obj_Ref)))));
776 end if;
777
50878404
AC
778 -- Step 1: Create the object clean up code
779
780 Stmts := New_List;
781
a98838ff
HK
782 -- Deallocate the object if the accessibility check fails. This
783 -- is done only on targets or profiles that support deallocation.
784
785 -- Free (Obj_Ref);
786
787 if RTE_Available (RE_Free) then
788 Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
789 Set_Storage_Pool (Free_Stmt, Pool_Id);
790
791 Append_To (Stmts, Free_Stmt);
792
793 -- The target or profile cannot deallocate objects
794
795 else
796 Free_Stmt := Empty;
797 end if;
798
799 -- Finalize the object if applicable. Generate:
a530b8bb
AC
800
801 -- [Deep_]Finalize (Obj_Ref.all);
802
2cbac6c6 803 if Needs_Finalization (DesigT) then
a98838ff 804 Fin_Call :=
cc6f5d75
AC
805 Make_Final_Call
806 (Obj_Ref =>
807 Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
808 Typ => DesigT);
a98838ff
HK
809
810 -- When the target or profile supports deallocation, wrap the
811 -- finalization call in a block to ensure proper deallocation
812 -- even if finalization fails. Generate:
813
814 -- begin
815 -- <Fin_Call>
816 -- exception
817 -- when others =>
818 -- <Free_Stmt>
819 -- raise;
820 -- end;
821
822 if Present (Free_Stmt) then
823 Fin_Call :=
824 Make_Block_Statement (Loc,
825 Handled_Statement_Sequence =>
826 Make_Handled_Sequence_Of_Statements (Loc,
827 Statements => New_List (Fin_Call),
828
829 Exception_Handlers => New_List (
830 Make_Exception_Handler (Loc,
831 Exception_Choices => New_List (
832 Make_Others_Choice (Loc)),
833
834 Statements => New_List (
835 New_Copy_Tree (Free_Stmt),
836 Make_Raise_Statement (Loc))))));
837 end if;
838
839 Prepend_To (Stmts, Fin_Call);
f46faa08
AC
840 end if;
841
50878404
AC
842 -- Signal the accessibility failure through a Program_Error
843
844 Append_To (Stmts,
845 Make_Raise_Program_Error (Loc,
e4494292 846 Condition => New_Occurrence_Of (Standard_True, Loc),
50878404
AC
847 Reason => PE_Accessibility_Check_Failed));
848
849 -- Step 2: Create the accessibility comparison
850
851 -- Generate:
852 -- Ref'Tag
853
b6c8e5be
AC
854 Obj_Ref :=
855 Make_Attribute_Reference (Loc,
856 Prefix => Obj_Ref,
857 Attribute_Name => Name_Tag);
f46faa08 858
50878404
AC
859 -- For tagged types, determine the accessibility level by looking
860 -- at the type specific data of the dispatch table. Generate:
861
862 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
863
f46faa08 864 if Tagged_Type_Expansion then
50878404 865 Cond := Build_Get_Access_Level (Loc, Obj_Ref);
f46faa08 866
50878404
AC
867 -- Use a runtime call to determine the accessibility level when
868 -- compiling on virtual machine targets. Generate:
f46faa08 869
50878404 870 -- Get_Access_Level (Ref'Tag)
f46faa08
AC
871
872 else
50878404
AC
873 Cond :=
874 Make_Function_Call (Loc,
875 Name =>
e4494292 876 New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
50878404 877 Parameter_Associations => New_List (Obj_Ref));
26bff3d9
JM
878 end if;
879
50878404
AC
880 Cond :=
881 Make_Op_Gt (Loc,
882 Left_Opnd => Cond,
883 Right_Opnd =>
884 Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
885
886 -- Due to the complexity and side effects of the check, utilize an
887 -- if statement instead of the regular Program_Error circuitry.
888
26bff3d9 889 Insert_Action (N,
8b1011c0 890 Make_Implicit_If_Statement (N,
50878404
AC
891 Condition => Cond,
892 Then_Statements => Stmts));
26bff3d9
JM
893 end if;
894 end Apply_Accessibility_Check;
895
896 -- Local variables
897
df3e68b1
HK
898 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
899 Indic : constant Node_Id := Subtype_Mark (Expression (N));
900 T : constant Entity_Id := Entity (Indic);
901 Node : Node_Id;
902 Tag_Assign : Node_Id;
903 Temp : Entity_Id;
904 Temp_Decl : Node_Id;
fbf5a39b 905
d26dc4b5
AC
906 TagT : Entity_Id := Empty;
907 -- Type used as source for tag assignment
908
909 TagR : Node_Id := Empty;
910 -- Target reference for tag assignment
911
26bff3d9
JM
912 -- Start of processing for Expand_Allocator_Expression
913
fbf5a39b 914 begin
3bfb3c03
JM
915 -- Handle call to C++ constructor
916
917 if Is_CPP_Constructor_Call (Exp) then
918 Make_CPP_Constructor_Call_In_Allocator
919 (Allocator => N,
920 Function_Call => Exp);
921 return;
922 end if;
923
885c4871 924 -- In the case of an Ada 2012 allocator whose initial value comes from a
63585f75
SB
925 -- function call, pass "the accessibility level determined by the point
926 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
927 -- Expand_Call but it couldn't be done there (because the Etype of the
928 -- allocator wasn't set then) so we generate the parameter here. See
929 -- the Boolean variable Defer in (a block within) Expand_Call.
930
931 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
932 declare
933 Subp : Entity_Id;
934
935 begin
936 if Nkind (Name (Exp)) = N_Explicit_Dereference then
937 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
938 else
939 Subp := Entity (Name (Exp));
940 end if;
941
57a3fca9
AC
942 Subp := Ultimate_Alias (Subp);
943
63585f75
SB
944 if Present (Extra_Accessibility_Of_Result (Subp)) then
945 Add_Extra_Actual_To_Call
946 (Subprogram_Call => Exp,
947 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
948 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
949 end if;
950 end;
951 end if;
952
f6194278 953 -- Case of tagged type or type requiring finalization
63585f75
SB
954
955 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
fadcf313 956
685094bf
RD
957 -- Ada 2005 (AI-318-02): If the initialization expression is a call
958 -- to a build-in-place function, then access to the allocated object
959 -- must be passed to the function. Currently we limit such functions
960 -- to those with constrained limited result subtypes, but eventually
961 -- we plan to expand the allowed forms of functions that are treated
962 -- as build-in-place.
20b5d666 963
0791fbe9 964 if Ada_Version >= Ada_2005
20b5d666
JM
965 and then Is_Build_In_Place_Function_Call (Exp)
966 then
967 Make_Build_In_Place_Call_In_Allocator (N, Exp);
26bff3d9
JM
968 Apply_Accessibility_Check (N, Built_In_Place => True);
969 return;
20b5d666
JM
970 end if;
971
ca5af305
AC
972 -- Actions inserted before:
973 -- Temp : constant ptr_T := new T'(Expression);
974 -- Temp._tag = T'tag; -- when not class-wide
975 -- [Deep_]Adjust (Temp.all);
fbf5a39b 976
ca5af305 977 -- We analyze by hand the new internal allocator to avoid any
6b6041ec 978 -- recursion and inappropriate call to Initialize.
7324bf49 979
20b5d666
JM
980 -- We don't want to remove side effects when the expression must be
981 -- built in place. In the case of a build-in-place function call,
982 -- that could lead to a duplication of the call, which was already
983 -- substituted for the allocator.
984
26bff3d9 985 if not Aggr_In_Place then
fbf5a39b
AC
986 Remove_Side_Effects (Exp);
987 end if;
988
e86a3a7e 989 Temp := Make_Temporary (Loc, 'P', N);
fbf5a39b
AC
990
991 -- For a class wide allocation generate the following code:
992
993 -- type Equiv_Record is record ... end record;
994 -- implicit subtype CW is <Class_Wide_Subytpe>;
995 -- temp : PtrT := new CW'(CW!(expr));
996
997 if Is_Class_Wide_Type (T) then
998 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
999
26bff3d9
JM
1000 -- Ada 2005 (AI-251): If the expression is a class-wide interface
1001 -- object we generate code to move up "this" to reference the
1002 -- base of the object before allocating the new object.
1003
1004 -- Note that Exp'Address is recursively expanded into a call
1005 -- to Base_Address (Exp.Tag)
1006
1007 if Is_Class_Wide_Type (Etype (Exp))
1008 and then Is_Interface (Etype (Exp))
1f110335 1009 and then Tagged_Type_Expansion
26bff3d9
JM
1010 then
1011 Set_Expression
1012 (Expression (N),
1013 Unchecked_Convert_To (Entity (Indic),
1014 Make_Explicit_Dereference (Loc,
1015 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
1016 Make_Attribute_Reference (Loc,
1017 Prefix => Exp,
1018 Attribute_Name => Name_Address)))));
26bff3d9
JM
1019 else
1020 Set_Expression
1021 (Expression (N),
1022 Unchecked_Convert_To (Entity (Indic), Exp));
1023 end if;
fbf5a39b
AC
1024
1025 Analyze_And_Resolve (Expression (N), Entity (Indic));
1026 end if;
1027
df3e68b1 1028 -- Processing for allocators returning non-interface types
fbf5a39b 1029
26bff3d9
JM
1030 if not Is_Interface (Directly_Designated_Type (PtrT)) then
1031 if Aggr_In_Place then
df3e68b1 1032 Temp_Decl :=
26bff3d9
JM
1033 Make_Object_Declaration (Loc,
1034 Defining_Identifier => Temp,
e4494292 1035 Object_Definition => New_Occurrence_Of (PtrT, Loc),
26bff3d9
JM
1036 Expression =>
1037 Make_Allocator (Loc,
df3e68b1 1038 Expression =>
e4494292 1039 New_Occurrence_Of (Etype (Exp), Loc)));
fbf5a39b 1040
fad0600d
AC
1041 -- Copy the Comes_From_Source flag for the allocator we just
1042 -- built, since logically this allocator is a replacement of
1043 -- the original allocator node. This is for proper handling of
1044 -- restriction No_Implicit_Heap_Allocations.
1045
26bff3d9 1046 Set_Comes_From_Source
df3e68b1 1047 (Expression (Temp_Decl), Comes_From_Source (N));
fbf5a39b 1048
df3e68b1
HK
1049 Set_No_Initialization (Expression (Temp_Decl));
1050 Insert_Action (N, Temp_Decl);
fbf5a39b 1051
ca5af305 1052 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1053 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fad0600d 1054
d3f70b35 1055 -- Attach the object to the associated finalization master.
deb8dacc
HK
1056 -- This is done manually on .NET/JVM since those compilers do
1057 -- no support pools and can't benefit from internally generated
1058 -- Allocate / Deallocate procedures.
1059
1060 if VM_Target /= No_VM
1061 and then Is_Controlled (DesigT)
d3f70b35 1062 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1063 then
1064 Insert_Action (N,
cc6f5d75
AC
1065 Make_Attach_Call
1066 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1067 Ptr_Typ => PtrT));
deb8dacc
HK
1068 end if;
1069
26bff3d9
JM
1070 else
1071 Node := Relocate_Node (N);
1072 Set_Analyzed (Node);
df3e68b1
HK
1073
1074 Temp_Decl :=
26bff3d9
JM
1075 Make_Object_Declaration (Loc,
1076 Defining_Identifier => Temp,
1077 Constant_Present => True,
e4494292 1078 Object_Definition => New_Occurrence_Of (PtrT, Loc),
df3e68b1
HK
1079 Expression => Node);
1080
1081 Insert_Action (N, Temp_Decl);
ca5af305 1082 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
deb8dacc 1083
d3f70b35 1084 -- Attach the object to the associated finalization master.
deb8dacc
HK
1085 -- This is done manually on .NET/JVM since those compilers do
1086 -- no support pools and can't benefit from internally generated
1087 -- Allocate / Deallocate procedures.
1088
1089 if VM_Target /= No_VM
1090 and then Is_Controlled (DesigT)
d3f70b35 1091 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1092 then
1093 Insert_Action (N,
cc6f5d75
AC
1094 Make_Attach_Call
1095 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1096 Ptr_Typ => PtrT));
deb8dacc 1097 end if;
fbf5a39b
AC
1098 end if;
1099
26bff3d9
JM
1100 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1101 -- interface type. In this case we use the type of the qualified
1102 -- expression to allocate the object.
1103
fbf5a39b 1104 else
26bff3d9 1105 declare
191fcb3a 1106 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
26bff3d9 1107 New_Decl : Node_Id;
fbf5a39b 1108
26bff3d9
JM
1109 begin
1110 New_Decl :=
1111 Make_Full_Type_Declaration (Loc,
1112 Defining_Identifier => Def_Id,
cc6f5d75 1113 Type_Definition =>
26bff3d9
JM
1114 Make_Access_To_Object_Definition (Loc,
1115 All_Present => True,
1116 Null_Exclusion_Present => False,
0929eaeb
AC
1117 Constant_Present =>
1118 Is_Access_Constant (Etype (N)),
26bff3d9 1119 Subtype_Indication =>
e4494292 1120 New_Occurrence_Of (Etype (Exp), Loc)));
26bff3d9
JM
1121
1122 Insert_Action (N, New_Decl);
1123
df3e68b1
HK
1124 -- Inherit the allocation-related attributes from the original
1125 -- access type.
26bff3d9 1126
24d4b3d5
AC
1127 Set_Finalization_Master
1128 (Def_Id, Finalization_Master (PtrT));
df3e68b1 1129
24d4b3d5
AC
1130 Set_Associated_Storage_Pool
1131 (Def_Id, Associated_Storage_Pool (PtrT));
758c442c 1132
26bff3d9
JM
1133 -- Declare the object using the previous type declaration
1134
1135 if Aggr_In_Place then
df3e68b1 1136 Temp_Decl :=
26bff3d9
JM
1137 Make_Object_Declaration (Loc,
1138 Defining_Identifier => Temp,
e4494292 1139 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
26bff3d9
JM
1140 Expression =>
1141 Make_Allocator (Loc,
e4494292 1142 New_Occurrence_Of (Etype (Exp), Loc)));
26bff3d9 1143
fad0600d
AC
1144 -- Copy the Comes_From_Source flag for the allocator we just
1145 -- built, since logically this allocator is a replacement of
1146 -- the original allocator node. This is for proper handling
1147 -- of restriction No_Implicit_Heap_Allocations.
1148
26bff3d9 1149 Set_Comes_From_Source
df3e68b1 1150 (Expression (Temp_Decl), Comes_From_Source (N));
26bff3d9 1151
df3e68b1
HK
1152 Set_No_Initialization (Expression (Temp_Decl));
1153 Insert_Action (N, Temp_Decl);
26bff3d9 1154
ca5af305 1155 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1156 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
26bff3d9 1157
26bff3d9
JM
1158 else
1159 Node := Relocate_Node (N);
1160 Set_Analyzed (Node);
df3e68b1
HK
1161
1162 Temp_Decl :=
26bff3d9
JM
1163 Make_Object_Declaration (Loc,
1164 Defining_Identifier => Temp,
1165 Constant_Present => True,
e4494292 1166 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
df3e68b1
HK
1167 Expression => Node);
1168
1169 Insert_Action (N, Temp_Decl);
ca5af305 1170 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
26bff3d9
JM
1171 end if;
1172
1173 -- Generate an additional object containing the address of the
1174 -- returned object. The type of this second object declaration
685094bf
RD
1175 -- is the correct type required for the common processing that
1176 -- is still performed by this subprogram. The displacement of
1177 -- this pointer to reference the component associated with the
1178 -- interface type will be done at the end of common processing.
26bff3d9
JM
1179
1180 New_Decl :=
1181 Make_Object_Declaration (Loc,
243cae0a 1182 Defining_Identifier => Make_Temporary (Loc, 'P'),
e4494292 1183 Object_Definition => New_Occurrence_Of (PtrT, Loc),
243cae0a 1184 Expression =>
df3e68b1 1185 Unchecked_Convert_To (PtrT,
e4494292 1186 New_Occurrence_Of (Temp, Loc)));
26bff3d9
JM
1187
1188 Insert_Action (N, New_Decl);
1189
df3e68b1
HK
1190 Temp_Decl := New_Decl;
1191 Temp := Defining_Identifier (New_Decl);
26bff3d9 1192 end;
758c442c
GD
1193 end if;
1194
26bff3d9
JM
1195 Apply_Accessibility_Check (Temp);
1196
1197 -- Generate the tag assignment
1198
1199 -- Suppress the tag assignment when VM_Target because VM tags are
1200 -- represented implicitly in objects.
1201
1f110335 1202 if not Tagged_Type_Expansion then
26bff3d9 1203 null;
fbf5a39b 1204
26bff3d9
JM
1205 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1206 -- interface objects because in this case the tag does not change.
d26dc4b5 1207
26bff3d9
JM
1208 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1209 pragma Assert (Is_Class_Wide_Type
1210 (Directly_Designated_Type (Etype (N))));
d26dc4b5
AC
1211 null;
1212
1213 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1214 TagT := T;
e4494292 1215 TagR := New_Occurrence_Of (Temp, Loc);
d26dc4b5
AC
1216
1217 elsif Is_Private_Type (T)
1218 and then Is_Tagged_Type (Underlying_Type (T))
fbf5a39b 1219 then
d26dc4b5 1220 TagT := Underlying_Type (T);
dfd99a80
TQ
1221 TagR :=
1222 Unchecked_Convert_To (Underlying_Type (T),
1223 Make_Explicit_Dereference (Loc,
e4494292 1224 Prefix => New_Occurrence_Of (Temp, Loc)));
d26dc4b5
AC
1225 end if;
1226
1227 if Present (TagT) then
38171f43
AC
1228 declare
1229 Full_T : constant Entity_Id := Underlying_Type (TagT);
e4494292 1230
38171f43
AC
1231 begin
1232 Tag_Assign :=
1233 Make_Assignment_Statement (Loc,
cc6f5d75 1234 Name =>
38171f43 1235 Make_Selected_Component (Loc,
cc6f5d75 1236 Prefix => TagR,
38171f43 1237 Selector_Name =>
e4494292
RD
1238 New_Occurrence_Of
1239 (First_Tag_Component (Full_T), Loc)),
1240
38171f43
AC
1241 Expression =>
1242 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 1243 New_Occurrence_Of
38171f43
AC
1244 (Elists.Node
1245 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1246 end;
fbf5a39b
AC
1247
1248 -- The previous assignment has to be done in any case
1249
1250 Set_Assignment_OK (Name (Tag_Assign));
1251 Insert_Action (N, Tag_Assign);
fbf5a39b
AC
1252 end if;
1253
533369aa
AC
1254 if Needs_Finalization (DesigT) and then Needs_Finalization (T) then
1255
df3e68b1
HK
1256 -- Generate an Adjust call if the object will be moved. In Ada
1257 -- 2005, the object may be inherently limited, in which case
1258 -- there is no Adjust procedure, and the object is built in
1259 -- place. In Ada 95, the object can be limited but not
1260 -- inherently limited if this allocator came from a return
1261 -- statement (we're allocating the result on the secondary
1262 -- stack). In that case, the object will be moved, so we _do_
1263 -- want to Adjust.
1264
1265 if not Aggr_In_Place
51245e2d 1266 and then not Is_Limited_View (T)
df3e68b1
HK
1267 then
1268 Insert_Action (N,
fbf5a39b 1269
533369aa
AC
1270 -- An unchecked conversion is needed in the classwide case
1271 -- because the designated type can be an ancestor of the
1272 -- subtype mark of the allocator.
fbf5a39b 1273
533369aa
AC
1274 Make_Adjust_Call
1275 (Obj_Ref =>
1276 Unchecked_Convert_To (T,
1277 Make_Explicit_Dereference (Loc,
e4494292 1278 Prefix => New_Occurrence_Of (Temp, Loc))),
533369aa 1279 Typ => T));
df3e68b1 1280 end if;
b254da66
AC
1281
1282 -- Generate:
1283 -- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1284
2bfa5484 1285 -- Do not generate this call in the following cases:
c5f5123f 1286
2bfa5484
HK
1287 -- * .NET/JVM - these targets do not support address arithmetic
1288 -- and unchecked conversion, key elements of Finalize_Address.
c5f5123f 1289
2bfa5484
HK
1290 -- * CodePeer mode - TSS primitive Finalize_Address is not
1291 -- created in this mode.
b254da66
AC
1292
1293 if VM_Target = No_VM
1294 and then not CodePeer_Mode
1295 and then Present (Finalization_Master (PtrT))
f7bb41af
AC
1296 and then Present (Temp_Decl)
1297 and then Nkind (Expression (Temp_Decl)) = N_Allocator
b254da66
AC
1298 then
1299 Insert_Action (N,
1300 Make_Set_Finalize_Address_Call
1301 (Loc => Loc,
1302 Typ => T,
1303 Ptr_Typ => PtrT));
1304 end if;
fbf5a39b
AC
1305 end if;
1306
e4494292 1307 Rewrite (N, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1308 Analyze_And_Resolve (N, PtrT);
1309
685094bf
RD
1310 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1311 -- component containing the secondary dispatch table of the interface
1312 -- type.
26bff3d9
JM
1313
1314 if Is_Interface (Directly_Designated_Type (PtrT)) then
1315 Displace_Allocator_Pointer (N);
1316 end if;
1317
fbf5a39b 1318 elsif Aggr_In_Place then
e86a3a7e 1319 Temp := Make_Temporary (Loc, 'P', N);
df3e68b1 1320 Temp_Decl :=
fbf5a39b
AC
1321 Make_Object_Declaration (Loc,
1322 Defining_Identifier => Temp,
e4494292 1323 Object_Definition => New_Occurrence_Of (PtrT, Loc),
df3e68b1
HK
1324 Expression =>
1325 Make_Allocator (Loc,
e4494292 1326 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
fbf5a39b 1327
fad0600d
AC
1328 -- Copy the Comes_From_Source flag for the allocator we just built,
1329 -- since logically this allocator is a replacement of the original
1330 -- allocator node. This is for proper handling of restriction
1331 -- No_Implicit_Heap_Allocations.
1332
fbf5a39b 1333 Set_Comes_From_Source
df3e68b1
HK
1334 (Expression (Temp_Decl), Comes_From_Source (N));
1335
1336 Set_No_Initialization (Expression (Temp_Decl));
1337 Insert_Action (N, Temp_Decl);
1338
ca5af305 1339 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1340 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fbf5a39b 1341
d3f70b35
AC
1342 -- Attach the object to the associated finalization master. Thisis
1343 -- done manually on .NET/JVM since those compilers do no support
deb8dacc
HK
1344 -- pools and cannot benefit from internally generated Allocate and
1345 -- Deallocate procedures.
1346
1347 if VM_Target /= No_VM
1348 and then Is_Controlled (DesigT)
d3f70b35 1349 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1350 then
1351 Insert_Action (N,
243cae0a 1352 Make_Attach_Call
e4494292 1353 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
243cae0a 1354 Ptr_Typ => PtrT));
deb8dacc
HK
1355 end if;
1356
e4494292 1357 Rewrite (N, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1358 Analyze_And_Resolve (N, PtrT);
1359
533369aa 1360 elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
51e4c4b9
AC
1361 Install_Null_Excluding_Check (Exp);
1362
f02b8bb8 1363 elsif Is_Access_Type (DesigT)
fbf5a39b
AC
1364 and then Nkind (Exp) = N_Allocator
1365 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1366 then
0da2c8ac 1367 -- Apply constraint to designated subtype indication
fbf5a39b 1368
cc6f5d75
AC
1369 Apply_Constraint_Check
1370 (Expression (Exp), Designated_Type (DesigT), No_Sliding => True);
fbf5a39b
AC
1371
1372 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1373
1374 -- Propagate constraint_error to enclosing allocator
1375
1376 Rewrite (Exp, New_Copy (Expression (Exp)));
1377 end if;
1df4f514 1378
fbf5a39b 1379 else
14f0f659
AC
1380 Build_Allocate_Deallocate_Proc (N, True);
1381
36c73552
AC
1382 -- If we have:
1383 -- type A is access T1;
1384 -- X : A := new T2'(...);
1385 -- T1 and T2 can be different subtypes, and we might need to check
1386 -- both constraints. First check against the type of the qualified
1387 -- expression.
1388
1389 Apply_Constraint_Check (Exp, T, No_Sliding => True);
fbf5a39b 1390
d79e621a 1391 if Do_Range_Check (Exp) then
d79e621a
GD
1392 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1393 end if;
1394
685094bf
RD
1395 -- A check is also needed in cases where the designated subtype is
1396 -- constrained and differs from the subtype given in the qualified
1397 -- expression. Note that the check on the qualified expression does
1398 -- not allow sliding, but this check does (a relaxation from Ada 83).
fbf5a39b 1399
f02b8bb8 1400 if Is_Constrained (DesigT)
9450205a 1401 and then not Subtypes_Statically_Match (T, DesigT)
fbf5a39b
AC
1402 then
1403 Apply_Constraint_Check
f02b8bb8 1404 (Exp, DesigT, No_Sliding => False);
d79e621a
GD
1405
1406 if Do_Range_Check (Exp) then
d79e621a
GD
1407 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1408 end if;
f02b8bb8
RD
1409 end if;
1410
685094bf
RD
1411 -- For an access to unconstrained packed array, GIGI needs to see an
1412 -- expression with a constrained subtype in order to compute the
1413 -- proper size for the allocator.
f02b8bb8
RD
1414
1415 if Is_Array_Type (T)
1416 and then not Is_Constrained (T)
1417 and then Is_Packed (T)
1418 then
1419 declare
191fcb3a 1420 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
f02b8bb8
RD
1421 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1422 begin
1423 Insert_Action (Exp,
1424 Make_Subtype_Declaration (Loc,
1425 Defining_Identifier => ConstrT,
25ebc085
AC
1426 Subtype_Indication =>
1427 Make_Subtype_From_Expr (Internal_Exp, T)));
f02b8bb8
RD
1428 Freeze_Itype (ConstrT, Exp);
1429 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1430 end;
fbf5a39b 1431 end if;
f02b8bb8 1432
685094bf
RD
1433 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1434 -- to a build-in-place function, then access to the allocated object
1435 -- must be passed to the function. Currently we limit such functions
1436 -- to those with constrained limited result subtypes, but eventually
1437 -- we plan to expand the allowed forms of functions that are treated
1438 -- as build-in-place.
20b5d666 1439
0791fbe9 1440 if Ada_Version >= Ada_2005
20b5d666
JM
1441 and then Is_Build_In_Place_Function_Call (Exp)
1442 then
1443 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1444 end if;
fbf5a39b
AC
1445 end if;
1446
1447 exception
1448 when RE_Not_Available =>
1449 return;
1450 end Expand_Allocator_Expression;
1451
70482933
RK
1452 -----------------------------
1453 -- Expand_Array_Comparison --
1454 -----------------------------
1455
685094bf
RD
1456 -- Expansion is only required in the case of array types. For the unpacked
1457 -- case, an appropriate runtime routine is called. For packed cases, and
1458 -- also in some other cases where a runtime routine cannot be called, the
1459 -- form of the expansion is:
70482933
RK
1460
1461 -- [body for greater_nn; boolean_expression]
1462
1463 -- The body is built by Make_Array_Comparison_Op, and the form of the
1464 -- Boolean expression depends on the operator involved.
1465
1466 procedure Expand_Array_Comparison (N : Node_Id) is
1467 Loc : constant Source_Ptr := Sloc (N);
1468 Op1 : Node_Id := Left_Opnd (N);
1469 Op2 : Node_Id := Right_Opnd (N);
1470 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
fbf5a39b 1471 Ctyp : constant Entity_Id := Component_Type (Typ1);
70482933
RK
1472
1473 Expr : Node_Id;
1474 Func_Body : Node_Id;
1475 Func_Name : Entity_Id;
1476
fbf5a39b
AC
1477 Comp : RE_Id;
1478
9bc43c53
AC
1479 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1480 -- True for byte addressable target
91b1417d 1481
fbf5a39b 1482 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
685094bf
RD
1483 -- Returns True if the length of the given operand is known to be less
1484 -- than 4. Returns False if this length is known to be four or greater
1485 -- or is not known at compile time.
fbf5a39b
AC
1486
1487 ------------------------
1488 -- Length_Less_Than_4 --
1489 ------------------------
1490
1491 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1492 Otyp : constant Entity_Id := Etype (Opnd);
1493
1494 begin
1495 if Ekind (Otyp) = E_String_Literal_Subtype then
1496 return String_Literal_Length (Otyp) < 4;
1497
1498 else
1499 declare
1500 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1501 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1502 Hi : constant Node_Id := Type_High_Bound (Ityp);
1503 Lov : Uint;
1504 Hiv : Uint;
1505
1506 begin
1507 if Compile_Time_Known_Value (Lo) then
1508 Lov := Expr_Value (Lo);
1509 else
1510 return False;
1511 end if;
1512
1513 if Compile_Time_Known_Value (Hi) then
1514 Hiv := Expr_Value (Hi);
1515 else
1516 return False;
1517 end if;
1518
1519 return Hiv < Lov + 3;
1520 end;
1521 end if;
1522 end Length_Less_Than_4;
1523
1524 -- Start of processing for Expand_Array_Comparison
1525
70482933 1526 begin
fbf5a39b
AC
1527 -- Deal first with unpacked case, where we can call a runtime routine
1528 -- except that we avoid this for targets for which are not addressable
26bff3d9 1529 -- by bytes, and for the JVM/CIL, since they do not support direct
fbf5a39b
AC
1530 -- addressing of array components.
1531
1532 if not Is_Bit_Packed_Array (Typ1)
9bc43c53 1533 and then Byte_Addressable
26bff3d9 1534 and then VM_Target = No_VM
fbf5a39b
AC
1535 then
1536 -- The call we generate is:
1537
1538 -- Compare_Array_xn[_Unaligned]
1539 -- (left'address, right'address, left'length, right'length) <op> 0
1540
1541 -- x = U for unsigned, S for signed
1542 -- n = 8,16,32,64 for component size
1543 -- Add _Unaligned if length < 4 and component size is 8.
1544 -- <op> is the standard comparison operator
1545
1546 if Component_Size (Typ1) = 8 then
1547 if Length_Less_Than_4 (Op1)
1548 or else
1549 Length_Less_Than_4 (Op2)
1550 then
1551 if Is_Unsigned_Type (Ctyp) then
1552 Comp := RE_Compare_Array_U8_Unaligned;
1553 else
1554 Comp := RE_Compare_Array_S8_Unaligned;
1555 end if;
1556
1557 else
1558 if Is_Unsigned_Type (Ctyp) then
1559 Comp := RE_Compare_Array_U8;
1560 else
1561 Comp := RE_Compare_Array_S8;
1562 end if;
1563 end if;
1564
1565 elsif Component_Size (Typ1) = 16 then
1566 if Is_Unsigned_Type (Ctyp) then
1567 Comp := RE_Compare_Array_U16;
1568 else
1569 Comp := RE_Compare_Array_S16;
1570 end if;
1571
1572 elsif Component_Size (Typ1) = 32 then
1573 if Is_Unsigned_Type (Ctyp) then
1574 Comp := RE_Compare_Array_U32;
1575 else
1576 Comp := RE_Compare_Array_S32;
1577 end if;
1578
1579 else pragma Assert (Component_Size (Typ1) = 64);
1580 if Is_Unsigned_Type (Ctyp) then
1581 Comp := RE_Compare_Array_U64;
1582 else
1583 Comp := RE_Compare_Array_S64;
1584 end if;
1585 end if;
1586
1587 Remove_Side_Effects (Op1, Name_Req => True);
1588 Remove_Side_Effects (Op2, Name_Req => True);
1589
1590 Rewrite (Op1,
1591 Make_Function_Call (Sloc (Op1),
1592 Name => New_Occurrence_Of (RTE (Comp), Loc),
1593
1594 Parameter_Associations => New_List (
1595 Make_Attribute_Reference (Loc,
1596 Prefix => Relocate_Node (Op1),
1597 Attribute_Name => Name_Address),
1598
1599 Make_Attribute_Reference (Loc,
1600 Prefix => Relocate_Node (Op2),
1601 Attribute_Name => Name_Address),
1602
1603 Make_Attribute_Reference (Loc,
1604 Prefix => Relocate_Node (Op1),
1605 Attribute_Name => Name_Length),
1606
1607 Make_Attribute_Reference (Loc,
1608 Prefix => Relocate_Node (Op2),
1609 Attribute_Name => Name_Length))));
1610
1611 Rewrite (Op2,
1612 Make_Integer_Literal (Sloc (Op2),
1613 Intval => Uint_0));
1614
1615 Analyze_And_Resolve (Op1, Standard_Integer);
1616 Analyze_And_Resolve (Op2, Standard_Integer);
1617 return;
1618 end if;
1619
1620 -- Cases where we cannot make runtime call
1621
70482933
RK
1622 -- For (a <= b) we convert to not (a > b)
1623
1624 if Chars (N) = Name_Op_Le then
1625 Rewrite (N,
1626 Make_Op_Not (Loc,
1627 Right_Opnd =>
1628 Make_Op_Gt (Loc,
1629 Left_Opnd => Op1,
1630 Right_Opnd => Op2)));
1631 Analyze_And_Resolve (N, Standard_Boolean);
1632 return;
1633
1634 -- For < the Boolean expression is
1635 -- greater__nn (op2, op1)
1636
1637 elsif Chars (N) = Name_Op_Lt then
1638 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1639
1640 -- Switch operands
1641
1642 Op1 := Right_Opnd (N);
1643 Op2 := Left_Opnd (N);
1644
1645 -- For (a >= b) we convert to not (a < b)
1646
1647 elsif Chars (N) = Name_Op_Ge then
1648 Rewrite (N,
1649 Make_Op_Not (Loc,
1650 Right_Opnd =>
1651 Make_Op_Lt (Loc,
1652 Left_Opnd => Op1,
1653 Right_Opnd => Op2)));
1654 Analyze_And_Resolve (N, Standard_Boolean);
1655 return;
1656
1657 -- For > the Boolean expression is
1658 -- greater__nn (op1, op2)
1659
1660 else
1661 pragma Assert (Chars (N) = Name_Op_Gt);
1662 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1663 end if;
1664
1665 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1666 Expr :=
1667 Make_Function_Call (Loc,
e4494292 1668 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
1669 Parameter_Associations => New_List (Op1, Op2));
1670
1671 Insert_Action (N, Func_Body);
1672 Rewrite (N, Expr);
1673 Analyze_And_Resolve (N, Standard_Boolean);
1674
fbf5a39b
AC
1675 exception
1676 when RE_Not_Available =>
1677 return;
70482933
RK
1678 end Expand_Array_Comparison;
1679
1680 ---------------------------
1681 -- Expand_Array_Equality --
1682 ---------------------------
1683
685094bf
RD
1684 -- Expand an equality function for multi-dimensional arrays. Here is an
1685 -- example of such a function for Nb_Dimension = 2
70482933 1686
0da2c8ac 1687 -- function Enn (A : atyp; B : btyp) return boolean is
70482933 1688 -- begin
fbf5a39b
AC
1689 -- if (A'length (1) = 0 or else A'length (2) = 0)
1690 -- and then
1691 -- (B'length (1) = 0 or else B'length (2) = 0)
1692 -- then
1693 -- return True; -- RM 4.5.2(22)
1694 -- end if;
0da2c8ac 1695
fbf5a39b
AC
1696 -- if A'length (1) /= B'length (1)
1697 -- or else
1698 -- A'length (2) /= B'length (2)
1699 -- then
1700 -- return False; -- RM 4.5.2(23)
1701 -- end if;
0da2c8ac 1702
fbf5a39b 1703 -- declare
523456db
AC
1704 -- A1 : Index_T1 := A'first (1);
1705 -- B1 : Index_T1 := B'first (1);
fbf5a39b 1706 -- begin
523456db 1707 -- loop
fbf5a39b 1708 -- declare
523456db
AC
1709 -- A2 : Index_T2 := A'first (2);
1710 -- B2 : Index_T2 := B'first (2);
fbf5a39b 1711 -- begin
523456db 1712 -- loop
fbf5a39b
AC
1713 -- if A (A1, A2) /= B (B1, B2) then
1714 -- return False;
70482933 1715 -- end if;
0da2c8ac 1716
523456db
AC
1717 -- exit when A2 = A'last (2);
1718 -- A2 := Index_T2'succ (A2);
0da2c8ac 1719 -- B2 := Index_T2'succ (B2);
70482933 1720 -- end loop;
fbf5a39b 1721 -- end;
0da2c8ac 1722
523456db
AC
1723 -- exit when A1 = A'last (1);
1724 -- A1 := Index_T1'succ (A1);
0da2c8ac 1725 -- B1 := Index_T1'succ (B1);
70482933 1726 -- end loop;
fbf5a39b 1727 -- end;
0da2c8ac 1728
70482933
RK
1729 -- return true;
1730 -- end Enn;
1731
685094bf
RD
1732 -- Note on the formal types used (atyp and btyp). If either of the arrays
1733 -- is of a private type, we use the underlying type, and do an unchecked
1734 -- conversion of the actual. If either of the arrays has a bound depending
1735 -- on a discriminant, then we use the base type since otherwise we have an
1736 -- escaped discriminant in the function.
0da2c8ac 1737
685094bf
RD
1738 -- If both arrays are constrained and have the same bounds, we can generate
1739 -- a loop with an explicit iteration scheme using a 'Range attribute over
1740 -- the first array.
523456db 1741
70482933
RK
1742 function Expand_Array_Equality
1743 (Nod : Node_Id;
70482933
RK
1744 Lhs : Node_Id;
1745 Rhs : Node_Id;
0da2c8ac
AC
1746 Bodies : List_Id;
1747 Typ : Entity_Id) return Node_Id
70482933
RK
1748 is
1749 Loc : constant Source_Ptr := Sloc (Nod);
fbf5a39b
AC
1750 Decls : constant List_Id := New_List;
1751 Index_List1 : constant List_Id := New_List;
1752 Index_List2 : constant List_Id := New_List;
1753
1754 Actuals : List_Id;
1755 Formals : List_Id;
1756 Func_Name : Entity_Id;
1757 Func_Body : Node_Id;
70482933
RK
1758
1759 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1760 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1761
0da2c8ac
AC
1762 Ltyp : Entity_Id;
1763 Rtyp : Entity_Id;
1764 -- The parameter types to be used for the formals
1765
fbf5a39b
AC
1766 function Arr_Attr
1767 (Arr : Entity_Id;
1768 Nam : Name_Id;
2e071734 1769 Num : Int) return Node_Id;
5e1c00fa 1770 -- This builds the attribute reference Arr'Nam (Expr)
fbf5a39b 1771
70482933 1772 function Component_Equality (Typ : Entity_Id) return Node_Id;
685094bf 1773 -- Create one statement to compare corresponding components, designated
3b42c566 1774 -- by a full set of indexes.
70482933 1775
0da2c8ac 1776 function Get_Arg_Type (N : Node_Id) return Entity_Id;
685094bf
RD
1777 -- Given one of the arguments, computes the appropriate type to be used
1778 -- for that argument in the corresponding function formal
0da2c8ac 1779
fbf5a39b 1780 function Handle_One_Dimension
70482933 1781 (N : Int;
2e071734 1782 Index : Node_Id) return Node_Id;
0da2c8ac 1783 -- This procedure returns the following code
fbf5a39b
AC
1784 --
1785 -- declare
523456db 1786 -- Bn : Index_T := B'First (N);
fbf5a39b 1787 -- begin
523456db 1788 -- loop
fbf5a39b 1789 -- xxx
523456db
AC
1790 -- exit when An = A'Last (N);
1791 -- An := Index_T'Succ (An)
0da2c8ac 1792 -- Bn := Index_T'Succ (Bn)
fbf5a39b
AC
1793 -- end loop;
1794 -- end;
1795 --
3b42c566 1796 -- If both indexes are constrained and identical, the procedure
523456db
AC
1797 -- returns a simpler loop:
1798 --
1799 -- for An in A'Range (N) loop
1800 -- xxx
1801 -- end loop
0da2c8ac 1802 --
523456db 1803 -- N is the dimension for which we are generating a loop. Index is the
685094bf
RD
1804 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1805 -- xxx statement is either the loop or declare for the next dimension
1806 -- or if this is the last dimension the comparison of corresponding
1807 -- components of the arrays.
fbf5a39b 1808 --
685094bf 1809 -- The actual way the code works is to return the comparison of
a90bd866 1810 -- corresponding components for the N+1 call. That's neater.
fbf5a39b
AC
1811
1812 function Test_Empty_Arrays return Node_Id;
1813 -- This function constructs the test for both arrays being empty
1814 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1815 -- and then
1816 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1817
1818 function Test_Lengths_Correspond return Node_Id;
685094bf
RD
1819 -- This function constructs the test for arrays having different lengths
1820 -- in at least one index position, in which case the resulting code is:
fbf5a39b
AC
1821
1822 -- A'length (1) /= B'length (1)
1823 -- or else
1824 -- A'length (2) /= B'length (2)
1825 -- or else
1826 -- ...
1827
1828 --------------
1829 -- Arr_Attr --
1830 --------------
1831
1832 function Arr_Attr
1833 (Arr : Entity_Id;
1834 Nam : Name_Id;
2e071734 1835 Num : Int) return Node_Id
fbf5a39b
AC
1836 is
1837 begin
1838 return
1839 Make_Attribute_Reference (Loc,
cc6f5d75
AC
1840 Attribute_Name => Nam,
1841 Prefix => New_Occurrence_Of (Arr, Loc),
1842 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
fbf5a39b 1843 end Arr_Attr;
70482933
RK
1844
1845 ------------------------
1846 -- Component_Equality --
1847 ------------------------
1848
1849 function Component_Equality (Typ : Entity_Id) return Node_Id is
1850 Test : Node_Id;
1851 L, R : Node_Id;
1852
1853 begin
1854 -- if a(i1...) /= b(j1...) then return false; end if;
1855
1856 L :=
1857 Make_Indexed_Component (Loc,
7675ad4f 1858 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
1859 Expressions => Index_List1);
1860
1861 R :=
1862 Make_Indexed_Component (Loc,
7675ad4f 1863 Prefix => Make_Identifier (Loc, Chars (B)),
70482933
RK
1864 Expressions => Index_List2);
1865
1866 Test := Expand_Composite_Equality
1867 (Nod, Component_Type (Typ), L, R, Decls);
1868
a9d8907c
JM
1869 -- If some (sub)component is an unchecked_union, the whole operation
1870 -- will raise program error.
8aceda64
AC
1871
1872 if Nkind (Test) = N_Raise_Program_Error then
a9d8907c
JM
1873
1874 -- This node is going to be inserted at a location where a
685094bf
RD
1875 -- statement is expected: clear its Etype so analysis will set
1876 -- it to the expected Standard_Void_Type.
a9d8907c
JM
1877
1878 Set_Etype (Test, Empty);
8aceda64
AC
1879 return Test;
1880
1881 else
1882 return
1883 Make_Implicit_If_Statement (Nod,
cc6f5d75 1884 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
8aceda64 1885 Then_Statements => New_List (
d766cee3 1886 Make_Simple_Return_Statement (Loc,
8aceda64
AC
1887 Expression => New_Occurrence_Of (Standard_False, Loc))));
1888 end if;
70482933
RK
1889 end Component_Equality;
1890
0da2c8ac
AC
1891 ------------------
1892 -- Get_Arg_Type --
1893 ------------------
1894
1895 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1896 T : Entity_Id;
1897 X : Node_Id;
1898
1899 begin
1900 T := Etype (N);
1901
1902 if No (T) then
1903 return Typ;
1904
1905 else
1906 T := Underlying_Type (T);
1907
1908 X := First_Index (T);
1909 while Present (X) loop
761f7dcb
AC
1910 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1911 or else
1912 Denotes_Discriminant (Type_High_Bound (Etype (X)))
0da2c8ac
AC
1913 then
1914 T := Base_Type (T);
1915 exit;
1916 end if;
1917
1918 Next_Index (X);
1919 end loop;
1920
1921 return T;
1922 end if;
1923 end Get_Arg_Type;
1924
fbf5a39b
AC
1925 --------------------------
1926 -- Handle_One_Dimension --
1927 ---------------------------
70482933 1928
fbf5a39b 1929 function Handle_One_Dimension
70482933 1930 (N : Int;
2e071734 1931 Index : Node_Id) return Node_Id
70482933 1932 is
0da2c8ac 1933 Need_Separate_Indexes : constant Boolean :=
761f7dcb 1934 Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
0da2c8ac 1935 -- If the index types are identical, and we are working with
685094bf
RD
1936 -- constrained types, then we can use the same index for both
1937 -- of the arrays.
0da2c8ac 1938
191fcb3a 1939 An : constant Entity_Id := Make_Temporary (Loc, 'A');
0da2c8ac
AC
1940
1941 Bn : Entity_Id;
1942 Index_T : Entity_Id;
1943 Stm_List : List_Id;
1944 Loop_Stm : Node_Id;
70482933
RK
1945
1946 begin
0da2c8ac
AC
1947 if N > Number_Dimensions (Ltyp) then
1948 return Component_Equality (Ltyp);
fbf5a39b 1949 end if;
70482933 1950
0da2c8ac
AC
1951 -- Case where we generate a loop
1952
1953 Index_T := Base_Type (Etype (Index));
1954
1955 if Need_Separate_Indexes then
191fcb3a 1956 Bn := Make_Temporary (Loc, 'B');
0da2c8ac
AC
1957 else
1958 Bn := An;
1959 end if;
70482933 1960
e4494292
RD
1961 Append (New_Occurrence_Of (An, Loc), Index_List1);
1962 Append (New_Occurrence_Of (Bn, Loc), Index_List2);
70482933 1963
0da2c8ac
AC
1964 Stm_List := New_List (
1965 Handle_One_Dimension (N + 1, Next_Index (Index)));
70482933 1966
0da2c8ac 1967 if Need_Separate_Indexes then
a9d8907c 1968
3b42c566 1969 -- Generate guard for loop, followed by increments of indexes
523456db
AC
1970
1971 Append_To (Stm_List,
1972 Make_Exit_Statement (Loc,
1973 Condition =>
1974 Make_Op_Eq (Loc,
cc6f5d75 1975 Left_Opnd => New_Occurrence_Of (An, Loc),
523456db
AC
1976 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1977
1978 Append_To (Stm_List,
1979 Make_Assignment_Statement (Loc,
e4494292 1980 Name => New_Occurrence_Of (An, Loc),
523456db
AC
1981 Expression =>
1982 Make_Attribute_Reference (Loc,
e4494292 1983 Prefix => New_Occurrence_Of (Index_T, Loc),
523456db 1984 Attribute_Name => Name_Succ,
e4494292
RD
1985 Expressions => New_List (
1986 New_Occurrence_Of (An, Loc)))));
523456db 1987
0da2c8ac
AC
1988 Append_To (Stm_List,
1989 Make_Assignment_Statement (Loc,
e4494292 1990 Name => New_Occurrence_Of (Bn, Loc),
0da2c8ac
AC
1991 Expression =>
1992 Make_Attribute_Reference (Loc,
e4494292 1993 Prefix => New_Occurrence_Of (Index_T, Loc),
0da2c8ac 1994 Attribute_Name => Name_Succ,
e4494292
RD
1995 Expressions => New_List (
1996 New_Occurrence_Of (Bn, Loc)))));
0da2c8ac
AC
1997 end if;
1998
a9d8907c
JM
1999 -- If separate indexes, we need a declare block for An and Bn, and a
2000 -- loop without an iteration scheme.
0da2c8ac
AC
2001
2002 if Need_Separate_Indexes then
523456db
AC
2003 Loop_Stm :=
2004 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
2005
0da2c8ac
AC
2006 return
2007 Make_Block_Statement (Loc,
2008 Declarations => New_List (
523456db
AC
2009 Make_Object_Declaration (Loc,
2010 Defining_Identifier => An,
e4494292 2011 Object_Definition => New_Occurrence_Of (Index_T, Loc),
523456db
AC
2012 Expression => Arr_Attr (A, Name_First, N)),
2013
0da2c8ac
AC
2014 Make_Object_Declaration (Loc,
2015 Defining_Identifier => Bn,
e4494292 2016 Object_Definition => New_Occurrence_Of (Index_T, Loc),
0da2c8ac 2017 Expression => Arr_Attr (B, Name_First, N))),
523456db 2018
0da2c8ac
AC
2019 Handled_Statement_Sequence =>
2020 Make_Handled_Sequence_Of_Statements (Loc,
2021 Statements => New_List (Loop_Stm)));
2022
523456db
AC
2023 -- If no separate indexes, return loop statement with explicit
2024 -- iteration scheme on its own
0da2c8ac
AC
2025
2026 else
523456db
AC
2027 Loop_Stm :=
2028 Make_Implicit_Loop_Statement (Nod,
2029 Statements => Stm_List,
2030 Iteration_Scheme =>
2031 Make_Iteration_Scheme (Loc,
2032 Loop_Parameter_Specification =>
2033 Make_Loop_Parameter_Specification (Loc,
2034 Defining_Identifier => An,
2035 Discrete_Subtype_Definition =>
2036 Arr_Attr (A, Name_Range, N))));
0da2c8ac
AC
2037 return Loop_Stm;
2038 end if;
fbf5a39b
AC
2039 end Handle_One_Dimension;
2040
2041 -----------------------
2042 -- Test_Empty_Arrays --
2043 -----------------------
2044
2045 function Test_Empty_Arrays return Node_Id is
2046 Alist : Node_Id;
2047 Blist : Node_Id;
2048
2049 Atest : Node_Id;
2050 Btest : Node_Id;
70482933 2051
fbf5a39b
AC
2052 begin
2053 Alist := Empty;
2054 Blist := Empty;
0da2c8ac 2055 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
2056 Atest :=
2057 Make_Op_Eq (Loc,
2058 Left_Opnd => Arr_Attr (A, Name_Length, J),
2059 Right_Opnd => Make_Integer_Literal (Loc, 0));
2060
2061 Btest :=
2062 Make_Op_Eq (Loc,
2063 Left_Opnd => Arr_Attr (B, Name_Length, J),
2064 Right_Opnd => Make_Integer_Literal (Loc, 0));
2065
2066 if No (Alist) then
2067 Alist := Atest;
2068 Blist := Btest;
70482933 2069
fbf5a39b
AC
2070 else
2071 Alist :=
2072 Make_Or_Else (Loc,
2073 Left_Opnd => Relocate_Node (Alist),
2074 Right_Opnd => Atest);
2075
2076 Blist :=
2077 Make_Or_Else (Loc,
2078 Left_Opnd => Relocate_Node (Blist),
2079 Right_Opnd => Btest);
2080 end if;
2081 end loop;
70482933 2082
fbf5a39b
AC
2083 return
2084 Make_And_Then (Loc,
2085 Left_Opnd => Alist,
2086 Right_Opnd => Blist);
2087 end Test_Empty_Arrays;
70482933 2088
fbf5a39b
AC
2089 -----------------------------
2090 -- Test_Lengths_Correspond --
2091 -----------------------------
70482933 2092
fbf5a39b
AC
2093 function Test_Lengths_Correspond return Node_Id is
2094 Result : Node_Id;
2095 Rtest : Node_Id;
2096
2097 begin
2098 Result := Empty;
0da2c8ac 2099 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
2100 Rtest :=
2101 Make_Op_Ne (Loc,
2102 Left_Opnd => Arr_Attr (A, Name_Length, J),
2103 Right_Opnd => Arr_Attr (B, Name_Length, J));
2104
2105 if No (Result) then
2106 Result := Rtest;
2107 else
2108 Result :=
2109 Make_Or_Else (Loc,
2110 Left_Opnd => Relocate_Node (Result),
2111 Right_Opnd => Rtest);
2112 end if;
2113 end loop;
2114
2115 return Result;
2116 end Test_Lengths_Correspond;
70482933
RK
2117
2118 -- Start of processing for Expand_Array_Equality
2119
2120 begin
0da2c8ac
AC
2121 Ltyp := Get_Arg_Type (Lhs);
2122 Rtyp := Get_Arg_Type (Rhs);
2123
685094bf
RD
2124 -- For now, if the argument types are not the same, go to the base type,
2125 -- since the code assumes that the formals have the same type. This is
2126 -- fixable in future ???
0da2c8ac
AC
2127
2128 if Ltyp /= Rtyp then
2129 Ltyp := Base_Type (Ltyp);
2130 Rtyp := Base_Type (Rtyp);
2131 pragma Assert (Ltyp = Rtyp);
2132 end if;
2133
2134 -- Build list of formals for function
2135
70482933
RK
2136 Formals := New_List (
2137 Make_Parameter_Specification (Loc,
2138 Defining_Identifier => A,
e4494292 2139 Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
70482933
RK
2140
2141 Make_Parameter_Specification (Loc,
2142 Defining_Identifier => B,
e4494292 2143 Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
70482933 2144
191fcb3a 2145 Func_Name := Make_Temporary (Loc, 'E');
70482933 2146
fbf5a39b 2147 -- Build statement sequence for function
70482933
RK
2148
2149 Func_Body :=
2150 Make_Subprogram_Body (Loc,
2151 Specification =>
2152 Make_Function_Specification (Loc,
2153 Defining_Unit_Name => Func_Name,
2154 Parameter_Specifications => Formals,
e4494292 2155 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
fbf5a39b
AC
2156
2157 Declarations => Decls,
2158
70482933
RK
2159 Handled_Statement_Sequence =>
2160 Make_Handled_Sequence_Of_Statements (Loc,
2161 Statements => New_List (
fbf5a39b
AC
2162
2163 Make_Implicit_If_Statement (Nod,
cc6f5d75 2164 Condition => Test_Empty_Arrays,
fbf5a39b 2165 Then_Statements => New_List (
d766cee3 2166 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
2167 Expression =>
2168 New_Occurrence_Of (Standard_True, Loc)))),
2169
2170 Make_Implicit_If_Statement (Nod,
cc6f5d75 2171 Condition => Test_Lengths_Correspond,
fbf5a39b 2172 Then_Statements => New_List (
d766cee3 2173 Make_Simple_Return_Statement (Loc,
cc6f5d75 2174 Expression => New_Occurrence_Of (Standard_False, Loc)))),
fbf5a39b 2175
0da2c8ac 2176 Handle_One_Dimension (1, First_Index (Ltyp)),
fbf5a39b 2177
d766cee3 2178 Make_Simple_Return_Statement (Loc,
70482933
RK
2179 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2180
2181 Set_Has_Completion (Func_Name, True);
0da2c8ac 2182 Set_Is_Inlined (Func_Name);
70482933 2183
685094bf
RD
2184 -- If the array type is distinct from the type of the arguments, it
2185 -- is the full view of a private type. Apply an unchecked conversion
2186 -- to insure that analysis of the call succeeds.
70482933 2187
0da2c8ac
AC
2188 declare
2189 L, R : Node_Id;
2190
2191 begin
2192 L := Lhs;
2193 R := Rhs;
2194
2195 if No (Etype (Lhs))
2196 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
2197 then
2198 L := OK_Convert_To (Ltyp, Lhs);
2199 end if;
2200
2201 if No (Etype (Rhs))
2202 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
2203 then
2204 R := OK_Convert_To (Rtyp, Rhs);
2205 end if;
2206
2207 Actuals := New_List (L, R);
2208 end;
70482933
RK
2209
2210 Append_To (Bodies, Func_Body);
2211
2212 return
2213 Make_Function_Call (Loc,
e4494292 2214 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
2215 Parameter_Associations => Actuals);
2216 end Expand_Array_Equality;
2217
2218 -----------------------------
2219 -- Expand_Boolean_Operator --
2220 -----------------------------
2221
685094bf
RD
2222 -- Note that we first get the actual subtypes of the operands, since we
2223 -- always want to deal with types that have bounds.
70482933
RK
2224
2225 procedure Expand_Boolean_Operator (N : Node_Id) is
fbf5a39b 2226 Typ : constant Entity_Id := Etype (N);
70482933
RK
2227
2228 begin
685094bf
RD
2229 -- Special case of bit packed array where both operands are known to be
2230 -- properly aligned. In this case we use an efficient run time routine
2231 -- to carry out the operation (see System.Bit_Ops).
a9d8907c
JM
2232
2233 if Is_Bit_Packed_Array (Typ)
2234 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2235 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2236 then
70482933 2237 Expand_Packed_Boolean_Operator (N);
a9d8907c
JM
2238 return;
2239 end if;
70482933 2240
a9d8907c
JM
2241 -- For the normal non-packed case, the general expansion is to build
2242 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2243 -- and then inserting it into the tree. The original operator node is
2244 -- then rewritten as a call to this function. We also use this in the
2245 -- packed case if either operand is a possibly unaligned object.
70482933 2246
a9d8907c
JM
2247 declare
2248 Loc : constant Source_Ptr := Sloc (N);
2249 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2250 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2251 Func_Body : Node_Id;
2252 Func_Name : Entity_Id;
fbf5a39b 2253
a9d8907c
JM
2254 begin
2255 Convert_To_Actual_Subtype (L);
2256 Convert_To_Actual_Subtype (R);
2257 Ensure_Defined (Etype (L), N);
2258 Ensure_Defined (Etype (R), N);
2259 Apply_Length_Check (R, Etype (L));
2260
b4592168
GD
2261 if Nkind (N) = N_Op_Xor then
2262 Silly_Boolean_Array_Xor_Test (N, Etype (L));
2263 end if;
2264
a9d8907c
JM
2265 if Nkind (Parent (N)) = N_Assignment_Statement
2266 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2267 then
2268 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
fbf5a39b 2269
a9d8907c
JM
2270 elsif Nkind (Parent (N)) = N_Op_Not
2271 and then Nkind (N) = N_Op_And
cc6f5d75 2272 and then Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
a9d8907c
JM
2273 then
2274 return;
2275 else
fbf5a39b 2276
a9d8907c
JM
2277 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2278 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2279 Insert_Action (N, Func_Body);
70482933 2280
a9d8907c 2281 -- Now rewrite the expression with a call
70482933 2282
a9d8907c
JM
2283 Rewrite (N,
2284 Make_Function_Call (Loc,
e4494292 2285 Name => New_Occurrence_Of (Func_Name, Loc),
a9d8907c
JM
2286 Parameter_Associations =>
2287 New_List (
2288 L,
2289 Make_Type_Conversion
e4494292 2290 (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
70482933 2291
a9d8907c
JM
2292 Analyze_And_Resolve (N, Typ);
2293 end if;
2294 end;
70482933
RK
2295 end Expand_Boolean_Operator;
2296
456cbfa5
AC
2297 ------------------------------------------------
2298 -- Expand_Compare_Minimize_Eliminate_Overflow --
2299 ------------------------------------------------
2300
2301 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2302 Loc : constant Source_Ptr := Sloc (N);
2303
71fb4dc8
AC
2304 Result_Type : constant Entity_Id := Etype (N);
2305 -- Capture result type (could be a derived boolean type)
2306
456cbfa5
AC
2307 Llo, Lhi : Uint;
2308 Rlo, Rhi : Uint;
2309
2310 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2311 -- Entity for Long_Long_Integer'Base
2312
15c94a55 2313 Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
a7f1b24f 2314 -- Current overflow checking mode
456cbfa5
AC
2315
2316 procedure Set_True;
2317 procedure Set_False;
2318 -- These procedures rewrite N with an occurrence of Standard_True or
2319 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2320
2321 ---------------
2322 -- Set_False --
2323 ---------------
2324
2325 procedure Set_False is
2326 begin
2327 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2328 Warn_On_Known_Condition (N);
2329 end Set_False;
2330
2331 --------------
2332 -- Set_True --
2333 --------------
2334
2335 procedure Set_True is
2336 begin
2337 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2338 Warn_On_Known_Condition (N);
2339 end Set_True;
2340
2341 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2342
2343 begin
2344 -- Nothing to do unless we have a comparison operator with operands
2345 -- that are signed integer types, and we are operating in either
2346 -- MINIMIZED or ELIMINATED overflow checking mode.
2347
2348 if Nkind (N) not in N_Op_Compare
2349 or else Check not in Minimized_Or_Eliminated
2350 or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2351 then
2352 return;
2353 end if;
2354
2355 -- OK, this is the case we are interested in. First step is to process
2356 -- our operands using the Minimize_Eliminate circuitry which applies
2357 -- this processing to the two operand subtrees.
2358
a7f1b24f 2359 Minimize_Eliminate_Overflows
c7e152b5 2360 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
a7f1b24f 2361 Minimize_Eliminate_Overflows
c7e152b5 2362 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
456cbfa5 2363
65f7ed64
AC
2364 -- See if the range information decides the result of the comparison.
2365 -- We can only do this if we in fact have full range information (which
2366 -- won't be the case if either operand is bignum at this stage).
456cbfa5 2367
65f7ed64
AC
2368 if Llo /= No_Uint and then Rlo /= No_Uint then
2369 case N_Op_Compare (Nkind (N)) is
456cbfa5
AC
2370 when N_Op_Eq =>
2371 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2372 Set_True;
a40ada7e 2373 elsif Llo > Rhi or else Lhi < Rlo then
456cbfa5
AC
2374 Set_False;
2375 end if;
2376
2377 when N_Op_Ge =>
2378 if Llo >= Rhi then
2379 Set_True;
2380 elsif Lhi < Rlo then
2381 Set_False;
2382 end if;
2383
2384 when N_Op_Gt =>
2385 if Llo > Rhi then
2386 Set_True;
2387 elsif Lhi <= Rlo then
2388 Set_False;
2389 end if;
2390
2391 when N_Op_Le =>
2392 if Llo > Rhi then
2393 Set_False;
2394 elsif Lhi <= Rlo then
2395 Set_True;
2396 end if;
2397
2398 when N_Op_Lt =>
2399 if Llo >= Rhi then
456cbfa5 2400 Set_False;
b6b5cca8
AC
2401 elsif Lhi < Rlo then
2402 Set_True;
456cbfa5
AC
2403 end if;
2404
2405 when N_Op_Ne =>
2406 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
456cbfa5 2407 Set_False;
a40ada7e
RD
2408 elsif Llo > Rhi or else Lhi < Rlo then
2409 Set_True;
456cbfa5 2410 end if;
65f7ed64 2411 end case;
456cbfa5 2412
65f7ed64 2413 -- All done if we did the rewrite
456cbfa5 2414
65f7ed64
AC
2415 if Nkind (N) not in N_Op_Compare then
2416 return;
2417 end if;
456cbfa5
AC
2418 end if;
2419
2420 -- Otherwise, time to do the comparison
2421
2422 declare
2423 Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2424 Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2425
2426 begin
2427 -- If the two operands have the same signed integer type we are
2428 -- all set, nothing more to do. This is the case where either
2429 -- both operands were unchanged, or we rewrote both of them to
2430 -- be Long_Long_Integer.
2431
2432 -- Note: Entity for the comparison may be wrong, but it's not worth
2433 -- the effort to change it, since the back end does not use it.
2434
2435 if Is_Signed_Integer_Type (Ltype)
2436 and then Base_Type (Ltype) = Base_Type (Rtype)
2437 then
2438 return;
2439
2440 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2441
2442 elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2443 declare
2444 Left : Node_Id := Left_Opnd (N);
2445 Right : Node_Id := Right_Opnd (N);
2446 -- Bignum references for left and right operands
2447
2448 begin
2449 if not Is_RTE (Ltype, RE_Bignum) then
2450 Left := Convert_To_Bignum (Left);
2451 elsif not Is_RTE (Rtype, RE_Bignum) then
2452 Right := Convert_To_Bignum (Right);
2453 end if;
2454
71fb4dc8 2455 -- We rewrite our node with:
456cbfa5 2456
71fb4dc8
AC
2457 -- do
2458 -- Bnn : Result_Type;
2459 -- declare
2460 -- M : Mark_Id := SS_Mark;
2461 -- begin
2462 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2463 -- SS_Release (M);
2464 -- end;
2465 -- in
2466 -- Bnn
2467 -- end
456cbfa5
AC
2468
2469 declare
71fb4dc8 2470 Blk : constant Node_Id := Make_Bignum_Block (Loc);
456cbfa5
AC
2471 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2472 Ent : RE_Id;
2473
2474 begin
2475 case N_Op_Compare (Nkind (N)) is
2476 when N_Op_Eq => Ent := RE_Big_EQ;
2477 when N_Op_Ge => Ent := RE_Big_GE;
2478 when N_Op_Gt => Ent := RE_Big_GT;
2479 when N_Op_Le => Ent := RE_Big_LE;
2480 when N_Op_Lt => Ent := RE_Big_LT;
2481 when N_Op_Ne => Ent := RE_Big_NE;
2482 end case;
2483
71fb4dc8 2484 -- Insert assignment to Bnn into the bignum block
456cbfa5
AC
2485
2486 Insert_Before
2487 (First (Statements (Handled_Statement_Sequence (Blk))),
2488 Make_Assignment_Statement (Loc,
2489 Name => New_Occurrence_Of (Bnn, Loc),
2490 Expression =>
2491 Make_Function_Call (Loc,
2492 Name =>
2493 New_Occurrence_Of (RTE (Ent), Loc),
2494 Parameter_Associations => New_List (Left, Right))));
2495
71fb4dc8
AC
2496 -- Now do the rewrite with expression actions
2497
2498 Rewrite (N,
2499 Make_Expression_With_Actions (Loc,
2500 Actions => New_List (
2501 Make_Object_Declaration (Loc,
2502 Defining_Identifier => Bnn,
2503 Object_Definition =>
2504 New_Occurrence_Of (Result_Type, Loc)),
2505 Blk),
2506 Expression => New_Occurrence_Of (Bnn, Loc)));
2507 Analyze_And_Resolve (N, Result_Type);
456cbfa5
AC
2508 end;
2509 end;
2510
2511 -- No bignums involved, but types are different, so we must have
2512 -- rewritten one of the operands as a Long_Long_Integer but not
2513 -- the other one.
2514
2515 -- If left operand is Long_Long_Integer, convert right operand
2516 -- and we are done (with a comparison of two Long_Long_Integers).
2517
2518 elsif Ltype = LLIB then
2519 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2520 Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2521 return;
2522
2523 -- If right operand is Long_Long_Integer, convert left operand
2524 -- and we are done (with a comparison of two Long_Long_Integers).
2525
2526 -- This is the only remaining possibility
2527
2528 else pragma Assert (Rtype = LLIB);
2529 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2530 Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2531 return;
2532 end if;
2533 end;
2534 end Expand_Compare_Minimize_Eliminate_Overflow;
2535
70482933
RK
2536 -------------------------------
2537 -- Expand_Composite_Equality --
2538 -------------------------------
2539
2540 -- This function is only called for comparing internal fields of composite
2541 -- types when these fields are themselves composites. This is a special
2542 -- case because it is not possible to respect normal Ada visibility rules.
2543
2544 function Expand_Composite_Equality
2545 (Nod : Node_Id;
2546 Typ : Entity_Id;
2547 Lhs : Node_Id;
2548 Rhs : Node_Id;
2e071734 2549 Bodies : List_Id) return Node_Id
70482933
RK
2550 is
2551 Loc : constant Source_Ptr := Sloc (Nod);
2552 Full_Type : Entity_Id;
2553 Prim : Elmt_Id;
2554 Eq_Op : Entity_Id;
2555
7efc3f2d
AC
2556 function Find_Primitive_Eq return Node_Id;
2557 -- AI05-0123: Locate primitive equality for type if it exists, and
2558 -- build the corresponding call. If operation is abstract, replace
2559 -- call with an explicit raise. Return Empty if there is no primitive.
2560
2561 -----------------------
2562 -- Find_Primitive_Eq --
2563 -----------------------
2564
2565 function Find_Primitive_Eq return Node_Id is
2566 Prim_E : Elmt_Id;
2567 Prim : Node_Id;
2568
2569 begin
2570 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2571 while Present (Prim_E) loop
2572 Prim := Node (Prim_E);
2573
2574 -- Locate primitive equality with the right signature
2575
2576 if Chars (Prim) = Name_Op_Eq
2577 and then Etype (First_Formal (Prim)) =
39ade2f9 2578 Etype (Next_Formal (First_Formal (Prim)))
7efc3f2d
AC
2579 and then Etype (Prim) = Standard_Boolean
2580 then
2581 if Is_Abstract_Subprogram (Prim) then
2582 return
2583 Make_Raise_Program_Error (Loc,
2584 Reason => PE_Explicit_Raise);
2585
2586 else
2587 return
2588 Make_Function_Call (Loc,
e4494292 2589 Name => New_Occurrence_Of (Prim, Loc),
7efc3f2d
AC
2590 Parameter_Associations => New_List (Lhs, Rhs));
2591 end if;
2592 end if;
2593
2594 Next_Elmt (Prim_E);
2595 end loop;
2596
2597 -- If not found, predefined operation will be used
2598
2599 return Empty;
2600 end Find_Primitive_Eq;
2601
2602 -- Start of processing for Expand_Composite_Equality
2603
70482933
RK
2604 begin
2605 if Is_Private_Type (Typ) then
2606 Full_Type := Underlying_Type (Typ);
2607 else
2608 Full_Type := Typ;
2609 end if;
2610
ced8450b
ES
2611 -- If the private type has no completion the context may be the
2612 -- expansion of a composite equality for a composite type with some
2613 -- still incomplete components. The expression will not be analyzed
2614 -- until the enclosing type is completed, at which point this will be
2615 -- properly expanded, unless there is a bona fide completion error.
70482933
RK
2616
2617 if No (Full_Type) then
ced8450b 2618 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933
RK
2619 end if;
2620
2621 Full_Type := Base_Type (Full_Type);
2622
da1b76c1
HK
2623 -- When the base type itself is private, use the full view to expand
2624 -- the composite equality.
2625
2626 if Is_Private_Type (Full_Type) then
2627 Full_Type := Underlying_Type (Full_Type);
2628 end if;
2629
16788d44
RD
2630 -- Case of array types
2631
70482933
RK
2632 if Is_Array_Type (Full_Type) then
2633
2634 -- If the operand is an elementary type other than a floating-point
2635 -- type, then we can simply use the built-in block bitwise equality,
2636 -- since the predefined equality operators always apply and bitwise
2637 -- equality is fine for all these cases.
2638
2639 if Is_Elementary_Type (Component_Type (Full_Type))
2640 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2641 then
39ade2f9 2642 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933 2643
685094bf
RD
2644 -- For composite component types, and floating-point types, use the
2645 -- expansion. This deals with tagged component types (where we use
2646 -- the applicable equality routine) and floating-point, (where we
2647 -- need to worry about negative zeroes), and also the case of any
2648 -- composite type recursively containing such fields.
70482933
RK
2649
2650 else
0da2c8ac 2651 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
70482933
RK
2652 end if;
2653
16788d44
RD
2654 -- Case of tagged record types
2655
70482933
RK
2656 elsif Is_Tagged_Type (Full_Type) then
2657
2658 -- Call the primitive operation "=" of this type
2659
2660 if Is_Class_Wide_Type (Full_Type) then
2661 Full_Type := Root_Type (Full_Type);
2662 end if;
2663
685094bf
RD
2664 -- If this is derived from an untagged private type completed with a
2665 -- tagged type, it does not have a full view, so we use the primitive
2666 -- operations of the private type. This check should no longer be
2667 -- necessary when these types receive their full views ???
70482933
RK
2668
2669 if Is_Private_Type (Typ)
2670 and then not Is_Tagged_Type (Typ)
2671 and then not Is_Controlled (Typ)
2672 and then Is_Derived_Type (Typ)
2673 and then No (Full_View (Typ))
2674 then
2675 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2676 else
2677 Prim := First_Elmt (Primitive_Operations (Full_Type));
2678 end if;
2679
2680 loop
2681 Eq_Op := Node (Prim);
2682 exit when Chars (Eq_Op) = Name_Op_Eq
2683 and then Etype (First_Formal (Eq_Op)) =
e6f69614
AC
2684 Etype (Next_Formal (First_Formal (Eq_Op)))
2685 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
70482933
RK
2686 Next_Elmt (Prim);
2687 pragma Assert (Present (Prim));
2688 end loop;
2689
2690 Eq_Op := Node (Prim);
2691
2692 return
2693 Make_Function_Call (Loc,
e4494292 2694 Name => New_Occurrence_Of (Eq_Op, Loc),
70482933
RK
2695 Parameter_Associations =>
2696 New_List
2697 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2698 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2699
16788d44
RD
2700 -- Case of untagged record types
2701
70482933 2702 elsif Is_Record_Type (Full_Type) then
fbf5a39b 2703 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
70482933
RK
2704
2705 if Present (Eq_Op) then
2706 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2707
685094bf
RD
2708 -- Inherited equality from parent type. Convert the actuals to
2709 -- match signature of operation.
70482933
RK
2710
2711 declare
fbf5a39b 2712 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
70482933
RK
2713
2714 begin
2715 return
2716 Make_Function_Call (Loc,
e4494292 2717 Name => New_Occurrence_Of (Eq_Op, Loc),
39ade2f9
AC
2718 Parameter_Associations => New_List (
2719 OK_Convert_To (T, Lhs),
2720 OK_Convert_To (T, Rhs)));
70482933
RK
2721 end;
2722
2723 else
5d09245e
AC
2724 -- Comparison between Unchecked_Union components
2725
2726 if Is_Unchecked_Union (Full_Type) then
2727 declare
2728 Lhs_Type : Node_Id := Full_Type;
2729 Rhs_Type : Node_Id := Full_Type;
2730 Lhs_Discr_Val : Node_Id;
2731 Rhs_Discr_Val : Node_Id;
2732
2733 begin
2734 -- Lhs subtype
2735
2736 if Nkind (Lhs) = N_Selected_Component then
2737 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2738 end if;
2739
2740 -- Rhs subtype
2741
2742 if Nkind (Rhs) = N_Selected_Component then
2743 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2744 end if;
2745
2746 -- Lhs of the composite equality
2747
2748 if Is_Constrained (Lhs_Type) then
2749
685094bf 2750 -- Since the enclosing record type can never be an
5d09245e
AC
2751 -- Unchecked_Union (this code is executed for records
2752 -- that do not have variants), we may reference its
2753 -- discriminant(s).
2754
2755 if Nkind (Lhs) = N_Selected_Component
533369aa
AC
2756 and then Has_Per_Object_Constraint
2757 (Entity (Selector_Name (Lhs)))
5d09245e
AC
2758 then
2759 Lhs_Discr_Val :=
2760 Make_Selected_Component (Loc,
39ade2f9 2761 Prefix => Prefix (Lhs),
5d09245e 2762 Selector_Name =>
39ade2f9
AC
2763 New_Copy
2764 (Get_Discriminant_Value
2765 (First_Discriminant (Lhs_Type),
2766 Lhs_Type,
2767 Stored_Constraint (Lhs_Type))));
5d09245e
AC
2768
2769 else
39ade2f9
AC
2770 Lhs_Discr_Val :=
2771 New_Copy
2772 (Get_Discriminant_Value
2773 (First_Discriminant (Lhs_Type),
2774 Lhs_Type,
2775 Stored_Constraint (Lhs_Type)));
5d09245e
AC
2776
2777 end if;
2778 else
2779 -- It is not possible to infer the discriminant since
2780 -- the subtype is not constrained.
2781
8aceda64 2782 return
5d09245e 2783 Make_Raise_Program_Error (Loc,
8aceda64 2784 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2785 end if;
2786
2787 -- Rhs of the composite equality
2788
2789 if Is_Constrained (Rhs_Type) then
2790 if Nkind (Rhs) = N_Selected_Component
39ade2f9
AC
2791 and then Has_Per_Object_Constraint
2792 (Entity (Selector_Name (Rhs)))
5d09245e
AC
2793 then
2794 Rhs_Discr_Val :=
2795 Make_Selected_Component (Loc,
39ade2f9 2796 Prefix => Prefix (Rhs),
5d09245e 2797 Selector_Name =>
39ade2f9
AC
2798 New_Copy
2799 (Get_Discriminant_Value
2800 (First_Discriminant (Rhs_Type),
2801 Rhs_Type,
2802 Stored_Constraint (Rhs_Type))));
5d09245e
AC
2803
2804 else
39ade2f9
AC
2805 Rhs_Discr_Val :=
2806 New_Copy
2807 (Get_Discriminant_Value
2808 (First_Discriminant (Rhs_Type),
2809 Rhs_Type,
2810 Stored_Constraint (Rhs_Type)));
5d09245e
AC
2811
2812 end if;
2813 else
8aceda64 2814 return
5d09245e 2815 Make_Raise_Program_Error (Loc,
8aceda64 2816 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2817 end if;
2818
2819 -- Call the TSS equality function with the inferred
2820 -- discriminant values.
2821
2822 return
2823 Make_Function_Call (Loc,
e4494292 2824 Name => New_Occurrence_Of (Eq_Op, Loc),
5d09245e
AC
2825 Parameter_Associations => New_List (
2826 Lhs,
2827 Rhs,
2828 Lhs_Discr_Val,
2829 Rhs_Discr_Val));
2830 end;
d151d6a3 2831
316e3a13
RD
2832 -- All cases other than comparing Unchecked_Union types
2833
d151d6a3 2834 else
7f1a5156
EB
2835 declare
2836 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
7f1a5156
EB
2837 begin
2838 return
2839 Make_Function_Call (Loc,
316e3a13
RD
2840 Name =>
2841 New_Occurrence_Of (Eq_Op, Loc),
7f1a5156
EB
2842 Parameter_Associations => New_List (
2843 OK_Convert_To (T, Lhs),
2844 OK_Convert_To (T, Rhs)));
2845 end;
5d09245e 2846 end if;
d151d6a3 2847 end if;
5d09245e 2848
3058f181
BD
2849 -- Equality composes in Ada 2012 for untagged record types. It also
2850 -- composes for bounded strings, because they are part of the
2851 -- predefined environment. We could make it compose for bounded
2852 -- strings by making them tagged, or by making sure all subcomponents
2853 -- are set to the same value, even when not used. Instead, we have
2854 -- this special case in the compiler, because it's more efficient.
2855
2856 elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
5d09245e 2857
08daa782 2858 -- If no TSS has been created for the type, check whether there is
7efc3f2d 2859 -- a primitive equality declared for it.
d151d6a3
AC
2860
2861 declare
3058f181 2862 Op : constant Node_Id := Find_Primitive_Eq;
d151d6a3
AC
2863
2864 begin
a1fc903a
AC
2865 -- Use user-defined primitive if it exists, otherwise use
2866 -- predefined equality.
2867
3058f181
BD
2868 if Present (Op) then
2869 return Op;
7efc3f2d 2870 else
7efc3f2d
AC
2871 return Make_Op_Eq (Loc, Lhs, Rhs);
2872 end if;
d151d6a3
AC
2873 end;
2874
70482933
RK
2875 else
2876 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2877 end if;
2878
16788d44 2879 -- Non-composite types (always use predefined equality)
70482933 2880
16788d44 2881 else
70482933
RK
2882 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2883 end if;
2884 end Expand_Composite_Equality;
2885
fdac1f80
AC
2886 ------------------------
2887 -- Expand_Concatenate --
2888 ------------------------
70482933 2889
fdac1f80
AC
2890 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2891 Loc : constant Source_Ptr := Sloc (Cnode);
70482933 2892
fdac1f80
AC
2893 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2894 -- Result type of concatenation
70482933 2895
fdac1f80
AC
2896 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2897 -- Component type. Elements of this component type can appear as one
2898 -- of the operands of concatenation as well as arrays.
70482933 2899
ecc4ddde
AC
2900 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2901 -- Index subtype
2902
2903 Ityp : constant Entity_Id := Base_Type (Istyp);
2904 -- Index type. This is the base type of the index subtype, and is used
2905 -- for all computed bounds (which may be out of range of Istyp in the
2906 -- case of null ranges).
70482933 2907
46ff89f3 2908 Artyp : Entity_Id;
fdac1f80
AC
2909 -- This is the type we use to do arithmetic to compute the bounds and
2910 -- lengths of operands. The choice of this type is a little subtle and
2911 -- is discussed in a separate section at the start of the body code.
70482933 2912
fdac1f80
AC
2913 Concatenation_Error : exception;
2914 -- Raised if concatenation is sure to raise a CE
70482933 2915
0ac73189
AC
2916 Result_May_Be_Null : Boolean := True;
2917 -- Reset to False if at least one operand is encountered which is known
2918 -- at compile time to be non-null. Used for handling the special case
2919 -- of setting the high bound to the last operand high bound for a null
2920 -- result, thus ensuring a proper high bound in the super-flat case.
2921
df46b832 2922 N : constant Nat := List_Length (Opnds);
fdac1f80 2923 -- Number of concatenation operands including possibly null operands
df46b832
AC
2924
2925 NN : Nat := 0;
a29262fd
AC
2926 -- Number of operands excluding any known to be null, except that the
2927 -- last operand is always retained, in case it provides the bounds for
2928 -- a null result.
2929
2930 Opnd : Node_Id;
2931 -- Current operand being processed in the loop through operands. After
2932 -- this loop is complete, always contains the last operand (which is not
2933 -- the same as Operands (NN), since null operands are skipped).
df46b832
AC
2934
2935 -- Arrays describing the operands, only the first NN entries of each
2936 -- array are set (NN < N when we exclude known null operands).
2937
2938 Is_Fixed_Length : array (1 .. N) of Boolean;
2939 -- True if length of corresponding operand known at compile time
2940
2941 Operands : array (1 .. N) of Node_Id;
a29262fd
AC
2942 -- Set to the corresponding entry in the Opnds list (but note that null
2943 -- operands are excluded, so not all entries in the list are stored).
df46b832
AC
2944
2945 Fixed_Length : array (1 .. N) of Uint;
fdac1f80
AC
2946 -- Set to length of operand. Entries in this array are set only if the
2947 -- corresponding entry in Is_Fixed_Length is True.
df46b832 2948
0ac73189
AC
2949 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2950 -- Set to lower bound of operand. Either an integer literal in the case
2951 -- where the bound is known at compile time, else actual lower bound.
2952 -- The operand low bound is of type Ityp.
2953
df46b832
AC
2954 Var_Length : array (1 .. N) of Entity_Id;
2955 -- Set to an entity of type Natural that contains the length of an
2956 -- operand whose length is not known at compile time. Entries in this
2957 -- array are set only if the corresponding entry in Is_Fixed_Length
46ff89f3 2958 -- is False. The entity is of type Artyp.
df46b832
AC
2959
2960 Aggr_Length : array (0 .. N) of Node_Id;
fdac1f80
AC
2961 -- The J'th entry in an expression node that represents the total length
2962 -- of operands 1 through J. It is either an integer literal node, or a
2963 -- reference to a constant entity with the right value, so it is fine
2964 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
46ff89f3 2965 -- entry always is set to zero. The length is of type Artyp.
df46b832
AC
2966
2967 Low_Bound : Node_Id;
0ac73189
AC
2968 -- A tree node representing the low bound of the result (of type Ityp).
2969 -- This is either an integer literal node, or an identifier reference to
2970 -- a constant entity initialized to the appropriate value.
2971
88a27b18
AC
2972 Last_Opnd_Low_Bound : Node_Id;
2973 -- A tree node representing the low bound of the last operand. This
2974 -- need only be set if the result could be null. It is used for the
2975 -- special case of setting the right low bound for a null result.
2976 -- This is of type Ityp.
2977
a29262fd
AC
2978 Last_Opnd_High_Bound : Node_Id;
2979 -- A tree node representing the high bound of the last operand. This
2980 -- need only be set if the result could be null. It is used for the
2981 -- special case of setting the right high bound for a null result.
2982 -- This is of type Ityp.
2983
0ac73189
AC
2984 High_Bound : Node_Id;
2985 -- A tree node representing the high bound of the result (of type Ityp)
df46b832
AC
2986
2987 Result : Node_Id;
0ac73189 2988 -- Result of the concatenation (of type Ityp)
df46b832 2989
d0f8d157 2990 Actions : constant List_Id := New_List;
4c9fe6c7 2991 -- Collect actions to be inserted
d0f8d157 2992
fa969310 2993 Known_Non_Null_Operand_Seen : Boolean;
308e6f3a 2994 -- Set True during generation of the assignments of operands into
fa969310
AC
2995 -- result once an operand known to be non-null has been seen.
2996
2997 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2998 -- This function makes an N_Integer_Literal node that is returned in
2999 -- analyzed form with the type set to Artyp. Importantly this literal
3000 -- is not flagged as static, so that if we do computations with it that
3001 -- result in statically detected out of range conditions, we will not
3002 -- generate error messages but instead warning messages.
3003
46ff89f3 3004 function To_Artyp (X : Node_Id) return Node_Id;
fdac1f80 3005 -- Given a node of type Ityp, returns the corresponding value of type
76c597a1
AC
3006 -- Artyp. For non-enumeration types, this is a plain integer conversion.
3007 -- For enum types, the Pos of the value is returned.
fdac1f80
AC
3008
3009 function To_Ityp (X : Node_Id) return Node_Id;
0ac73189 3010 -- The inverse function (uses Val in the case of enumeration types)
fdac1f80 3011
fa969310
AC
3012 ------------------------
3013 -- Make_Artyp_Literal --
3014 ------------------------
3015
3016 function Make_Artyp_Literal (Val : Nat) return Node_Id is
3017 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
3018 begin
3019 Set_Etype (Result, Artyp);
3020 Set_Analyzed (Result, True);
3021 Set_Is_Static_Expression (Result, False);
3022 return Result;
3023 end Make_Artyp_Literal;
76c597a1 3024
fdac1f80 3025 --------------
46ff89f3 3026 -- To_Artyp --
fdac1f80
AC
3027 --------------
3028
46ff89f3 3029 function To_Artyp (X : Node_Id) return Node_Id is
fdac1f80 3030 begin
46ff89f3 3031 if Ityp = Base_Type (Artyp) then
fdac1f80
AC
3032 return X;
3033
3034 elsif Is_Enumeration_Type (Ityp) then
3035 return
3036 Make_Attribute_Reference (Loc,
3037 Prefix => New_Occurrence_Of (Ityp, Loc),
3038 Attribute_Name => Name_Pos,
3039 Expressions => New_List (X));
3040
3041 else
46ff89f3 3042 return Convert_To (Artyp, X);
fdac1f80 3043 end if;
46ff89f3 3044 end To_Artyp;
fdac1f80
AC
3045
3046 -------------
3047 -- To_Ityp --
3048 -------------
3049
3050 function To_Ityp (X : Node_Id) return Node_Id is
3051 begin
2fc05e3d 3052 if Is_Enumeration_Type (Ityp) then
fdac1f80
AC
3053 return
3054 Make_Attribute_Reference (Loc,
3055 Prefix => New_Occurrence_Of (Ityp, Loc),
3056 Attribute_Name => Name_Val,
3057 Expressions => New_List (X));
3058
3059 -- Case where we will do a type conversion
3060
3061 else
76c597a1
AC
3062 if Ityp = Base_Type (Artyp) then
3063 return X;
fdac1f80 3064 else
76c597a1 3065 return Convert_To (Ityp, X);
fdac1f80
AC
3066 end if;
3067 end if;
3068 end To_Ityp;
3069
3070 -- Local Declarations
3071
00ba7be8
AC
3072 Lib_Level_Target : constant Boolean :=
3073 Nkind (Parent (Cnode)) = N_Object_Declaration
3074 and then
3075 Is_Library_Level_Entity (Defining_Identifier (Parent (Cnode)));
3076
3077 -- If the concatenation declares a library level entity, we call the
3078 -- built-in concatenation routines to prevent code bloat, regardless
3079 -- of optimization level. This is space-efficient, and prevent linking
3080 -- problems when units are compiled with different optimizations.
3081
0ac73189
AC
3082 Opnd_Typ : Entity_Id;
3083 Ent : Entity_Id;
3084 Len : Uint;
3085 J : Nat;
3086 Clen : Node_Id;
3087 Set : Boolean;
70482933 3088
f46faa08
AC
3089 -- Start of processing for Expand_Concatenate
3090
70482933 3091 begin
fdac1f80
AC
3092 -- Choose an appropriate computational type
3093
3094 -- We will be doing calculations of lengths and bounds in this routine
3095 -- and computing one from the other in some cases, e.g. getting the high
3096 -- bound by adding the length-1 to the low bound.
3097
3098 -- We can't just use the index type, or even its base type for this
3099 -- purpose for two reasons. First it might be an enumeration type which
308e6f3a
RW
3100 -- is not suitable for computations of any kind, and second it may
3101 -- simply not have enough range. For example if the index type is
3102 -- -128..+127 then lengths can be up to 256, which is out of range of
3103 -- the type.
fdac1f80
AC
3104
3105 -- For enumeration types, we can simply use Standard_Integer, this is
3106 -- sufficient since the actual number of enumeration literals cannot
3107 -- possibly exceed the range of integer (remember we will be doing the
0ac73189 3108 -- arithmetic with POS values, not representation values).
fdac1f80
AC
3109
3110 if Is_Enumeration_Type (Ityp) then
46ff89f3 3111 Artyp := Standard_Integer;
fdac1f80 3112
59262ebb
AC
3113 -- If index type is Positive, we use the standard unsigned type, to give
3114 -- more room on the top of the range, obviating the need for an overflow
3115 -- check when creating the upper bound. This is needed to avoid junk
3116 -- overflow checks in the common case of String types.
3117
3118 -- ??? Disabled for now
3119
3120 -- elsif Istyp = Standard_Positive then
3121 -- Artyp := Standard_Unsigned;
3122
2fc05e3d
AC
3123 -- For modular types, we use a 32-bit modular type for types whose size
3124 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3125 -- identity type, and for larger unsigned types we use 64-bits.
fdac1f80 3126
2fc05e3d 3127 elsif Is_Modular_Integer_Type (Ityp) then
ecc4ddde 3128 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
46ff89f3 3129 Artyp := Standard_Unsigned;
ecc4ddde 3130 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
46ff89f3 3131 Artyp := Ityp;
fdac1f80 3132 else
46ff89f3 3133 Artyp := RTE (RE_Long_Long_Unsigned);
fdac1f80
AC
3134 end if;
3135
2fc05e3d 3136 -- Similar treatment for signed types
fdac1f80
AC
3137
3138 else
ecc4ddde 3139 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
46ff89f3 3140 Artyp := Standard_Integer;
ecc4ddde 3141 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
46ff89f3 3142 Artyp := Ityp;
fdac1f80 3143 else
46ff89f3 3144 Artyp := Standard_Long_Long_Integer;
fdac1f80
AC
3145 end if;
3146 end if;
3147
fa969310
AC
3148 -- Supply dummy entry at start of length array
3149
3150 Aggr_Length (0) := Make_Artyp_Literal (0);
3151
fdac1f80 3152 -- Go through operands setting up the above arrays
70482933 3153
df46b832
AC
3154 J := 1;
3155 while J <= N loop
3156 Opnd := Remove_Head (Opnds);
0ac73189 3157 Opnd_Typ := Etype (Opnd);
fdac1f80
AC
3158
3159 -- The parent got messed up when we put the operands in a list,
d347f572
AC
3160 -- so now put back the proper parent for the saved operand, that
3161 -- is to say the concatenation node, to make sure that each operand
3162 -- is seen as a subexpression, e.g. if actions must be inserted.
fdac1f80 3163
d347f572 3164 Set_Parent (Opnd, Cnode);
fdac1f80
AC
3165
3166 -- Set will be True when we have setup one entry in the array
3167
df46b832
AC
3168 Set := False;
3169
fdac1f80 3170 -- Singleton element (or character literal) case
df46b832 3171
0ac73189 3172 if Base_Type (Opnd_Typ) = Ctyp then
df46b832
AC
3173 NN := NN + 1;
3174 Operands (NN) := Opnd;
3175 Is_Fixed_Length (NN) := True;
3176 Fixed_Length (NN) := Uint_1;
0ac73189 3177 Result_May_Be_Null := False;
fdac1f80 3178
a29262fd
AC
3179 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3180 -- since we know that the result cannot be null).
fdac1f80 3181
0ac73189
AC
3182 Opnd_Low_Bound (NN) :=
3183 Make_Attribute_Reference (Loc,
e4494292 3184 Prefix => New_Occurrence_Of (Istyp, Loc),
0ac73189
AC
3185 Attribute_Name => Name_First);
3186
df46b832
AC
3187 Set := True;
3188
fdac1f80 3189 -- String literal case (can only occur for strings of course)
df46b832
AC
3190
3191 elsif Nkind (Opnd) = N_String_Literal then
0ac73189 3192 Len := String_Literal_Length (Opnd_Typ);
df46b832 3193
a29262fd
AC
3194 if Len /= 0 then
3195 Result_May_Be_Null := False;
3196 end if;
3197
88a27b18 3198 -- Capture last operand low and high bound if result could be null
a29262fd
AC
3199
3200 if J = N and then Result_May_Be_Null then
88a27b18
AC
3201 Last_Opnd_Low_Bound :=
3202 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3203
a29262fd 3204 Last_Opnd_High_Bound :=
88a27b18 3205 Make_Op_Subtract (Loc,
a29262fd
AC
3206 Left_Opnd =>
3207 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
59262ebb 3208 Right_Opnd => Make_Integer_Literal (Loc, 1));
a29262fd
AC
3209 end if;
3210
3211 -- Skip null string literal
fdac1f80 3212
0ac73189 3213 if J < N and then Len = 0 then
df46b832
AC
3214 goto Continue;
3215 end if;
3216
3217 NN := NN + 1;
3218 Operands (NN) := Opnd;
3219 Is_Fixed_Length (NN) := True;
0ac73189
AC
3220
3221 -- Set length and bounds
3222
df46b832 3223 Fixed_Length (NN) := Len;
0ac73189
AC
3224
3225 Opnd_Low_Bound (NN) :=
3226 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3227
df46b832
AC
3228 Set := True;
3229
3230 -- All other cases
3231
3232 else
3233 -- Check constrained case with known bounds
3234
0ac73189 3235 if Is_Constrained (Opnd_Typ) then
df46b832 3236 declare
df46b832
AC
3237 Index : constant Node_Id := First_Index (Opnd_Typ);
3238 Indx_Typ : constant Entity_Id := Etype (Index);
3239 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
3240 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
3241
3242 begin
fdac1f80
AC
3243 -- Fixed length constrained array type with known at compile
3244 -- time bounds is last case of fixed length operand.
df46b832
AC
3245
3246 if Compile_Time_Known_Value (Lo)
3247 and then
3248 Compile_Time_Known_Value (Hi)
3249 then
3250 declare
3251 Loval : constant Uint := Expr_Value (Lo);
3252 Hival : constant Uint := Expr_Value (Hi);
3253 Len : constant Uint :=
3254 UI_Max (Hival - Loval + 1, Uint_0);
3255
3256 begin
0ac73189
AC
3257 if Len > 0 then
3258 Result_May_Be_Null := False;
df46b832 3259 end if;
0ac73189 3260
88a27b18 3261 -- Capture last operand bounds if result could be null
a29262fd
AC
3262
3263 if J = N and then Result_May_Be_Null then
88a27b18
AC
3264 Last_Opnd_Low_Bound :=
3265 Convert_To (Ityp,
3266 Make_Integer_Literal (Loc, Expr_Value (Lo)));
3267
a29262fd
AC
3268 Last_Opnd_High_Bound :=
3269 Convert_To (Ityp,
39ade2f9 3270 Make_Integer_Literal (Loc, Expr_Value (Hi)));
a29262fd
AC
3271 end if;
3272
3273 -- Exclude null length case unless last operand
0ac73189 3274
a29262fd 3275 if J < N and then Len = 0 then
0ac73189
AC
3276 goto Continue;
3277 end if;
3278
3279 NN := NN + 1;
3280 Operands (NN) := Opnd;
3281 Is_Fixed_Length (NN) := True;
3282 Fixed_Length (NN) := Len;
3283
39ade2f9
AC
3284 Opnd_Low_Bound (NN) :=
3285 To_Ityp
3286 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
0ac73189 3287 Set := True;
df46b832
AC
3288 end;
3289 end if;
3290 end;
3291 end if;
3292
0ac73189
AC
3293 -- All cases where the length is not known at compile time, or the
3294 -- special case of an operand which is known to be null but has a
3295 -- lower bound other than 1 or is other than a string type.
df46b832
AC
3296
3297 if not Set then
3298 NN := NN + 1;
0ac73189
AC
3299
3300 -- Capture operand bounds
3301
3302 Opnd_Low_Bound (NN) :=
3303 Make_Attribute_Reference (Loc,
3304 Prefix =>
3305 Duplicate_Subexpr (Opnd, Name_Req => True),
3306 Attribute_Name => Name_First);
3307
88a27b18
AC
3308 -- Capture last operand bounds if result could be null
3309
a29262fd 3310 if J = N and Result_May_Be_Null then
88a27b18
AC
3311 Last_Opnd_Low_Bound :=
3312 Convert_To (Ityp,
3313 Make_Attribute_Reference (Loc,
3314 Prefix =>
3315 Duplicate_Subexpr (Opnd, Name_Req => True),
3316 Attribute_Name => Name_First));
3317
a29262fd
AC
3318 Last_Opnd_High_Bound :=
3319 Convert_To (Ityp,
3320 Make_Attribute_Reference (Loc,
3321 Prefix =>
3322 Duplicate_Subexpr (Opnd, Name_Req => True),
3323 Attribute_Name => Name_Last));
3324 end if;
0ac73189
AC
3325
3326 -- Capture length of operand in entity
3327
df46b832
AC
3328 Operands (NN) := Opnd;
3329 Is_Fixed_Length (NN) := False;
3330
191fcb3a 3331 Var_Length (NN) := Make_Temporary (Loc, 'L');
df46b832 3332
d0f8d157 3333 Append_To (Actions,
df46b832
AC
3334 Make_Object_Declaration (Loc,
3335 Defining_Identifier => Var_Length (NN),
3336 Constant_Present => True,
39ade2f9 3337 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
3338 Expression =>
3339 Make_Attribute_Reference (Loc,
3340 Prefix =>
3341 Duplicate_Subexpr (Opnd, Name_Req => True),
d0f8d157 3342 Attribute_Name => Name_Length)));
df46b832
AC
3343 end if;
3344 end if;
3345
3346 -- Set next entry in aggregate length array
3347
3348 -- For first entry, make either integer literal for fixed length
0ac73189 3349 -- or a reference to the saved length for variable length.
df46b832
AC
3350
3351 if NN = 1 then
3352 if Is_Fixed_Length (1) then
39ade2f9 3353 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
df46b832 3354 else
e4494292 3355 Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
df46b832
AC
3356 end if;
3357
3358 -- If entry is fixed length and only fixed lengths so far, make
3359 -- appropriate new integer literal adding new length.
3360
3361 elsif Is_Fixed_Length (NN)
3362 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3363 then
3364 Aggr_Length (NN) :=
3365 Make_Integer_Literal (Loc,
3366 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3367
d0f8d157
AC
3368 -- All other cases, construct an addition node for the length and
3369 -- create an entity initialized to this length.
df46b832
AC
3370
3371 else
191fcb3a 3372 Ent := Make_Temporary (Loc, 'L');
df46b832
AC
3373
3374 if Is_Fixed_Length (NN) then
3375 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3376 else
e4494292 3377 Clen := New_Occurrence_Of (Var_Length (NN), Loc);
df46b832
AC
3378 end if;
3379
d0f8d157 3380 Append_To (Actions,
df46b832
AC
3381 Make_Object_Declaration (Loc,
3382 Defining_Identifier => Ent,
3383 Constant_Present => True,
39ade2f9 3384 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
3385 Expression =>
3386 Make_Op_Add (Loc,
3387 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
d0f8d157 3388 Right_Opnd => Clen)));
df46b832 3389
76c597a1 3390 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
df46b832
AC
3391 end if;
3392
3393 <<Continue>>
3394 J := J + 1;
3395 end loop;
3396
a29262fd 3397 -- If we have only skipped null operands, return the last operand
df46b832
AC
3398
3399 if NN = 0 then
a29262fd 3400 Result := Opnd;
df46b832
AC
3401 goto Done;
3402 end if;
3403
3404 -- If we have only one non-null operand, return it and we are done.
3405 -- There is one case in which this cannot be done, and that is when
fdac1f80
AC
3406 -- the sole operand is of the element type, in which case it must be
3407 -- converted to an array, and the easiest way of doing that is to go
df46b832
AC
3408 -- through the normal general circuit.
3409
533369aa 3410 if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
df46b832
AC
3411 Result := Operands (1);
3412 goto Done;
3413 end if;
3414
3415 -- Cases where we have a real concatenation
3416
fdac1f80
AC
3417 -- Next step is to find the low bound for the result array that we
3418 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3419
3420 -- If the ultimate ancestor of the index subtype is a constrained array
3421 -- definition, then the lower bound is that of the index subtype as
3422 -- specified by (RM 4.5.3(6)).
3423
3424 -- The right test here is to go to the root type, and then the ultimate
3425 -- ancestor is the first subtype of this root type.
3426
3427 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
0ac73189 3428 Low_Bound :=
fdac1f80
AC
3429 Make_Attribute_Reference (Loc,
3430 Prefix =>
3431 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
0ac73189 3432 Attribute_Name => Name_First);
df46b832
AC
3433
3434 -- If the first operand in the list has known length we know that
3435 -- the lower bound of the result is the lower bound of this operand.
3436
fdac1f80 3437 elsif Is_Fixed_Length (1) then
0ac73189 3438 Low_Bound := Opnd_Low_Bound (1);
df46b832
AC
3439
3440 -- OK, we don't know the lower bound, we have to build a horrible
9b16cb57 3441 -- if expression node of the form
df46b832
AC
3442
3443 -- if Cond1'Length /= 0 then
0ac73189 3444 -- Opnd1 low bound
df46b832
AC
3445 -- else
3446 -- if Opnd2'Length /= 0 then
0ac73189 3447 -- Opnd2 low bound
df46b832
AC
3448 -- else
3449 -- ...
3450
3451 -- The nesting ends either when we hit an operand whose length is known
3452 -- at compile time, or on reaching the last operand, whose low bound we
3453 -- take unconditionally whether or not it is null. It's easiest to do
3454 -- this with a recursive procedure:
3455
3456 else
3457 declare
3458 function Get_Known_Bound (J : Nat) return Node_Id;
3459 -- Returns the lower bound determined by operands J .. NN
3460
3461 ---------------------
3462 -- Get_Known_Bound --
3463 ---------------------
3464
3465 function Get_Known_Bound (J : Nat) return Node_Id is
df46b832 3466 begin
0ac73189
AC
3467 if Is_Fixed_Length (J) or else J = NN then
3468 return New_Copy (Opnd_Low_Bound (J));
70482933
RK
3469
3470 else
df46b832 3471 return
9b16cb57 3472 Make_If_Expression (Loc,
df46b832
AC
3473 Expressions => New_List (
3474
3475 Make_Op_Ne (Loc,
e4494292
RD
3476 Left_Opnd =>
3477 New_Occurrence_Of (Var_Length (J), Loc),
3478 Right_Opnd =>
3479 Make_Integer_Literal (Loc, 0)),
df46b832 3480
0ac73189 3481 New_Copy (Opnd_Low_Bound (J)),
df46b832 3482 Get_Known_Bound (J + 1)));
70482933 3483 end if;
df46b832 3484 end Get_Known_Bound;
70482933 3485
df46b832 3486 begin
191fcb3a 3487 Ent := Make_Temporary (Loc, 'L');
df46b832 3488
d0f8d157 3489 Append_To (Actions,
df46b832
AC
3490 Make_Object_Declaration (Loc,
3491 Defining_Identifier => Ent,
3492 Constant_Present => True,
0ac73189 3493 Object_Definition => New_Occurrence_Of (Ityp, Loc),
d0f8d157 3494 Expression => Get_Known_Bound (1)));
df46b832 3495
e4494292 3496 Low_Bound := New_Occurrence_Of (Ent, Loc);
df46b832
AC
3497 end;
3498 end if;
70482933 3499
76c597a1
AC
3500 -- Now we can safely compute the upper bound, normally
3501 -- Low_Bound + Length - 1.
0ac73189
AC
3502
3503 High_Bound :=
cc6f5d75
AC
3504 To_Ityp
3505 (Make_Op_Add (Loc,
3506 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3507 Right_Opnd =>
3508 Make_Op_Subtract (Loc,
3509 Left_Opnd => New_Copy (Aggr_Length (NN)),
3510 Right_Opnd => Make_Artyp_Literal (1))));
0ac73189 3511
59262ebb 3512 -- Note that calculation of the high bound may cause overflow in some
bded454f
RD
3513 -- very weird cases, so in the general case we need an overflow check on
3514 -- the high bound. We can avoid this for the common case of string types
3515 -- and other types whose index is Positive, since we chose a wider range
3516 -- for the arithmetic type.
76c597a1 3517
59262ebb
AC
3518 if Istyp /= Standard_Positive then
3519 Activate_Overflow_Check (High_Bound);
3520 end if;
76c597a1
AC
3521
3522 -- Handle the exceptional case where the result is null, in which case
a29262fd
AC
3523 -- case the bounds come from the last operand (so that we get the proper
3524 -- bounds if the last operand is super-flat).
3525
0ac73189 3526 if Result_May_Be_Null then
88a27b18 3527 Low_Bound :=
9b16cb57 3528 Make_If_Expression (Loc,
88a27b18
AC
3529 Expressions => New_List (
3530 Make_Op_Eq (Loc,
3531 Left_Opnd => New_Copy (Aggr_Length (NN)),
3532 Right_Opnd => Make_Artyp_Literal (0)),
3533 Last_Opnd_Low_Bound,
3534 Low_Bound));
3535
0ac73189 3536 High_Bound :=
9b16cb57 3537 Make_If_Expression (Loc,
0ac73189
AC
3538 Expressions => New_List (
3539 Make_Op_Eq (Loc,
3540 Left_Opnd => New_Copy (Aggr_Length (NN)),
fa969310 3541 Right_Opnd => Make_Artyp_Literal (0)),
a29262fd 3542 Last_Opnd_High_Bound,
0ac73189
AC
3543 High_Bound));
3544 end if;
3545
d0f8d157
AC
3546 -- Here is where we insert the saved up actions
3547
3548 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3549
602a7ec0
AC
3550 -- Now we construct an array object with appropriate bounds. We mark
3551 -- the target as internal to prevent useless initialization when
e526d0c7
AC
3552 -- Initialize_Scalars is enabled. Also since this is the actual result
3553 -- entity, we make sure we have debug information for the result.
70482933 3554
191fcb3a 3555 Ent := Make_Temporary (Loc, 'S');
008f6fd3 3556 Set_Is_Internal (Ent);
e526d0c7 3557 Set_Needs_Debug_Info (Ent);
70482933 3558
76c597a1 3559 -- If the bound is statically known to be out of range, we do not want
fa969310
AC
3560 -- to abort, we want a warning and a runtime constraint error. Note that
3561 -- we have arranged that the result will not be treated as a static
3562 -- constant, so we won't get an illegality during this insertion.
76c597a1 3563
df46b832
AC
3564 Insert_Action (Cnode,
3565 Make_Object_Declaration (Loc,
3566 Defining_Identifier => Ent,
df46b832
AC
3567 Object_Definition =>
3568 Make_Subtype_Indication (Loc,
fdac1f80 3569 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
df46b832
AC
3570 Constraint =>
3571 Make_Index_Or_Discriminant_Constraint (Loc,
3572 Constraints => New_List (
3573 Make_Range (Loc,
0ac73189
AC
3574 Low_Bound => Low_Bound,
3575 High_Bound => High_Bound))))),
df46b832
AC
3576 Suppress => All_Checks);
3577
d1f453b7
RD
3578 -- If the result of the concatenation appears as the initializing
3579 -- expression of an object declaration, we can just rename the
3580 -- result, rather than copying it.
3581
3582 Set_OK_To_Rename (Ent);
3583
76c597a1
AC
3584 -- Catch the static out of range case now
3585
3586 if Raises_Constraint_Error (High_Bound) then
3587 raise Concatenation_Error;
3588 end if;
3589
df46b832
AC
3590 -- Now we will generate the assignments to do the actual concatenation
3591
bded454f
RD
3592 -- There is one case in which we will not do this, namely when all the
3593 -- following conditions are met:
3594
3595 -- The result type is Standard.String
3596
3597 -- There are nine or fewer retained (non-null) operands
3598
ffec8e81 3599 -- The optimization level is -O0
bded454f
RD
3600
3601 -- The corresponding System.Concat_n.Str_Concat_n routine is
3602 -- available in the run time.
3603
3604 -- The debug flag gnatd.c is not set
3605
3606 -- If all these conditions are met then we generate a call to the
3607 -- relevant concatenation routine. The purpose of this is to avoid
3608 -- undesirable code bloat at -O0.
3609
3610 if Atyp = Standard_String
3611 and then NN in 2 .. 9
00ba7be8 3612 and then (Lib_Level_Target
62a64085 3613 or else ((Optimization_Level = 0 or else Debug_Flag_Dot_CC)
cc6f5d75 3614 and then not Debug_Flag_Dot_C))
bded454f
RD
3615 then
3616 declare
3617 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3618 (RE_Str_Concat_2,
3619 RE_Str_Concat_3,
3620 RE_Str_Concat_4,
3621 RE_Str_Concat_5,
3622 RE_Str_Concat_6,
3623 RE_Str_Concat_7,
3624 RE_Str_Concat_8,
3625 RE_Str_Concat_9);
3626
3627 begin
3628 if RTE_Available (RR (NN)) then
3629 declare
3630 Opnds : constant List_Id :=
3631 New_List (New_Occurrence_Of (Ent, Loc));
3632
3633 begin
3634 for J in 1 .. NN loop
3635 if Is_List_Member (Operands (J)) then
3636 Remove (Operands (J));
3637 end if;
3638
3639 if Base_Type (Etype (Operands (J))) = Ctyp then
3640 Append_To (Opnds,
3641 Make_Aggregate (Loc,
3642 Component_Associations => New_List (
3643 Make_Component_Association (Loc,
3644 Choices => New_List (
3645 Make_Integer_Literal (Loc, 1)),
3646 Expression => Operands (J)))));
3647
3648 else
3649 Append_To (Opnds, Operands (J));
3650 end if;
3651 end loop;
3652
3653 Insert_Action (Cnode,
3654 Make_Procedure_Call_Statement (Loc,
e4494292 3655 Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
bded454f
RD
3656 Parameter_Associations => Opnds));
3657
e4494292 3658 Result := New_Occurrence_Of (Ent, Loc);
bded454f
RD
3659 goto Done;
3660 end;
3661 end if;
3662 end;
3663 end if;
3664
3665 -- Not special case so generate the assignments
3666
76c597a1
AC
3667 Known_Non_Null_Operand_Seen := False;
3668
df46b832
AC
3669 for J in 1 .. NN loop
3670 declare
3671 Lo : constant Node_Id :=
3672 Make_Op_Add (Loc,
46ff89f3 3673 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
3674 Right_Opnd => Aggr_Length (J - 1));
3675
3676 Hi : constant Node_Id :=
3677 Make_Op_Add (Loc,
46ff89f3 3678 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
3679 Right_Opnd =>
3680 Make_Op_Subtract (Loc,
3681 Left_Opnd => Aggr_Length (J),
fa969310 3682 Right_Opnd => Make_Artyp_Literal (1)));
70482933 3683
df46b832 3684 begin
fdac1f80
AC
3685 -- Singleton case, simple assignment
3686
3687 if Base_Type (Etype (Operands (J))) = Ctyp then
76c597a1 3688 Known_Non_Null_Operand_Seen := True;
df46b832
AC
3689 Insert_Action (Cnode,
3690 Make_Assignment_Statement (Loc,
3691 Name =>
3692 Make_Indexed_Component (Loc,
3693 Prefix => New_Occurrence_Of (Ent, Loc),
fdac1f80 3694 Expressions => New_List (To_Ityp (Lo))),
df46b832
AC
3695 Expression => Operands (J)),
3696 Suppress => All_Checks);
70482933 3697
76c597a1
AC
3698 -- Array case, slice assignment, skipped when argument is fixed
3699 -- length and known to be null.
fdac1f80 3700
76c597a1
AC
3701 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3702 declare
3703 Assign : Node_Id :=
3704 Make_Assignment_Statement (Loc,
3705 Name =>
3706 Make_Slice (Loc,
3707 Prefix =>
3708 New_Occurrence_Of (Ent, Loc),
3709 Discrete_Range =>
3710 Make_Range (Loc,
3711 Low_Bound => To_Ityp (Lo),
3712 High_Bound => To_Ityp (Hi))),
3713 Expression => Operands (J));
3714 begin
3715 if Is_Fixed_Length (J) then
3716 Known_Non_Null_Operand_Seen := True;
3717
3718 elsif not Known_Non_Null_Operand_Seen then
3719
3720 -- Here if operand length is not statically known and no
3721 -- operand known to be non-null has been processed yet.
3722 -- If operand length is 0, we do not need to perform the
3723 -- assignment, and we must avoid the evaluation of the
3724 -- high bound of the slice, since it may underflow if the
3725 -- low bound is Ityp'First.
3726
3727 Assign :=
3728 Make_Implicit_If_Statement (Cnode,
39ade2f9 3729 Condition =>
76c597a1 3730 Make_Op_Ne (Loc,
39ade2f9 3731 Left_Opnd =>
76c597a1
AC
3732 New_Occurrence_Of (Var_Length (J), Loc),
3733 Right_Opnd => Make_Integer_Literal (Loc, 0)),
39ade2f9 3734 Then_Statements => New_List (Assign));
76c597a1 3735 end if;
fa969310 3736
76c597a1
AC
3737 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3738 end;
df46b832
AC
3739 end if;
3740 end;
3741 end loop;
70482933 3742
0ac73189
AC
3743 -- Finally we build the result, which is a reference to the array object
3744
e4494292 3745 Result := New_Occurrence_Of (Ent, Loc);
70482933 3746
df46b832
AC
3747 <<Done>>
3748 Rewrite (Cnode, Result);
fdac1f80
AC
3749 Analyze_And_Resolve (Cnode, Atyp);
3750
3751 exception
3752 when Concatenation_Error =>
76c597a1
AC
3753
3754 -- Kill warning generated for the declaration of the static out of
3755 -- range high bound, and instead generate a Constraint_Error with
3756 -- an appropriate specific message.
3757
3758 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3759 Apply_Compile_Time_Constraint_Error
3760 (N => Cnode,
324ac540 3761 Msg => "concatenation result upper bound out of range??",
76c597a1 3762 Reason => CE_Range_Check_Failed);
fdac1f80 3763 end Expand_Concatenate;
70482933 3764
f6194278
RD
3765 ---------------------------------------------------
3766 -- Expand_Membership_Minimize_Eliminate_Overflow --
3767 ---------------------------------------------------
3768
3769 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3770 pragma Assert (Nkind (N) = N_In);
3771 -- Despite the name, this routine applies only to N_In, not to
3772 -- N_Not_In. The latter is always rewritten as not (X in Y).
3773
71fb4dc8
AC
3774 Result_Type : constant Entity_Id := Etype (N);
3775 -- Capture result type, may be a derived boolean type
3776
b6b5cca8
AC
3777 Loc : constant Source_Ptr := Sloc (N);
3778 Lop : constant Node_Id := Left_Opnd (N);
3779 Rop : constant Node_Id := Right_Opnd (N);
3780
3781 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3782 -- is thus tempting to capture these values, but due to the rewrites
3783 -- that occur as a result of overflow checking, these values change
3784 -- as we go along, and it is safe just to always use Etype explicitly.
f6194278
RD
3785
3786 Restype : constant Entity_Id := Etype (N);
3787 -- Save result type
3788
3789 Lo, Hi : Uint;
d8192289 3790 -- Bounds in Minimize calls, not used currently
f6194278
RD
3791
3792 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3793 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3794
3795 begin
a7f1b24f 3796 Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
f6194278
RD
3797
3798 -- If right operand is a subtype name, and the subtype name has no
3799 -- predicate, then we can just replace the right operand with an
3800 -- explicit range T'First .. T'Last, and use the explicit range code.
3801
b6b5cca8
AC
3802 if Nkind (Rop) /= N_Range
3803 and then No (Predicate_Function (Etype (Rop)))
3804 then
3805 declare
3806 Rtyp : constant Entity_Id := Etype (Rop);
3807 begin
3808 Rewrite (Rop,
3809 Make_Range (Loc,
cc6f5d75 3810 Low_Bound =>
b6b5cca8
AC
3811 Make_Attribute_Reference (Loc,
3812 Attribute_Name => Name_First,
e4494292 3813 Prefix => New_Occurrence_Of (Rtyp, Loc)),
b6b5cca8
AC
3814 High_Bound =>
3815 Make_Attribute_Reference (Loc,
3816 Attribute_Name => Name_Last,
e4494292 3817 Prefix => New_Occurrence_Of (Rtyp, Loc))));
b6b5cca8
AC
3818 Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3819 end;
f6194278
RD
3820 end if;
3821
3822 -- Here for the explicit range case. Note that the bounds of the range
3823 -- have not been processed for minimized or eliminated checks.
3824
3825 if Nkind (Rop) = N_Range then
a7f1b24f 3826 Minimize_Eliminate_Overflows
b6b5cca8 3827 (Low_Bound (Rop), Lo, Hi, Top_Level => False);
a7f1b24f 3828 Minimize_Eliminate_Overflows
c7e152b5 3829 (High_Bound (Rop), Lo, Hi, Top_Level => False);
f6194278
RD
3830
3831 -- We have A in B .. C, treated as A >= B and then A <= C
3832
3833 -- Bignum case
3834
b6b5cca8 3835 if Is_RTE (Etype (Lop), RE_Bignum)
f6194278
RD
3836 or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3837 or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3838 then
3839 declare
3840 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3841 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
71fb4dc8
AC
3842 L : constant Entity_Id :=
3843 Make_Defining_Identifier (Loc, Name_uL);
f6194278
RD
3844 Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
3845 Lbound : constant Node_Id :=
3846 Convert_To_Bignum (Low_Bound (Rop));
3847 Hbound : constant Node_Id :=
3848 Convert_To_Bignum (High_Bound (Rop));
3849
71fb4dc8
AC
3850 -- Now we rewrite the membership test node to look like
3851
3852 -- do
3853 -- Bnn : Result_Type;
3854 -- declare
3855 -- M : Mark_Id := SS_Mark;
3856 -- L : Bignum := Lopnd;
3857 -- begin
3858 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3859 -- SS_Release (M);
3860 -- end;
3861 -- in
3862 -- Bnn
3863 -- end
f6194278
RD
3864
3865 begin
71fb4dc8
AC
3866 -- Insert declaration of L into declarations of bignum block
3867
f6194278
RD
3868 Insert_After
3869 (Last (Declarations (Blk)),
3870 Make_Object_Declaration (Loc,
71fb4dc8 3871 Defining_Identifier => L,
f6194278
RD
3872 Object_Definition =>
3873 New_Occurrence_Of (RTE (RE_Bignum), Loc),
3874 Expression => Lopnd));
3875
71fb4dc8
AC
3876 -- Insert assignment to Bnn into expressions of bignum block
3877
f6194278
RD
3878 Insert_Before
3879 (First (Statements (Handled_Statement_Sequence (Blk))),
3880 Make_Assignment_Statement (Loc,
3881 Name => New_Occurrence_Of (Bnn, Loc),
3882 Expression =>
3883 Make_And_Then (Loc,
cc6f5d75 3884 Left_Opnd =>
f6194278
RD
3885 Make_Function_Call (Loc,
3886 Name =>
3887 New_Occurrence_Of (RTE (RE_Big_GE), Loc),
71fb4dc8
AC
3888 Parameter_Associations => New_List (
3889 New_Occurrence_Of (L, Loc),
3890 Lbound)),
cc6f5d75 3891
f6194278
RD
3892 Right_Opnd =>
3893 Make_Function_Call (Loc,
3894 Name =>
71fb4dc8
AC
3895 New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3896 Parameter_Associations => New_List (
3897 New_Occurrence_Of (L, Loc),
3898 Hbound)))));
f6194278 3899
71fb4dc8 3900 -- Now rewrite the node
f6194278 3901
71fb4dc8
AC
3902 Rewrite (N,
3903 Make_Expression_With_Actions (Loc,
3904 Actions => New_List (
3905 Make_Object_Declaration (Loc,
3906 Defining_Identifier => Bnn,
3907 Object_Definition =>
3908 New_Occurrence_Of (Result_Type, Loc)),
3909 Blk),
3910 Expression => New_Occurrence_Of (Bnn, Loc)));
3911 Analyze_And_Resolve (N, Result_Type);
f6194278
RD
3912 return;
3913 end;
3914
3915 -- Here if no bignums around
3916
3917 else
3918 -- Case where types are all the same
3919
b6b5cca8 3920 if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
f6194278 3921 and then
b6b5cca8 3922 Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
f6194278
RD
3923 then
3924 null;
3925
3926 -- If types are not all the same, it means that we have rewritten
3927 -- at least one of them to be of type Long_Long_Integer, and we
3928 -- will convert the other operands to Long_Long_Integer.
3929
3930 else
3931 Convert_To_And_Rewrite (LLIB, Lop);
71fb4dc8
AC
3932 Set_Analyzed (Lop, False);
3933 Analyze_And_Resolve (Lop, LLIB);
3934
3935 -- For the right operand, avoid unnecessary recursion into
3936 -- this routine, we know that overflow is not possible.
f6194278
RD
3937
3938 Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3939 Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3940 Set_Analyzed (Rop, False);
71fb4dc8 3941 Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
f6194278
RD
3942 end if;
3943
3944 -- Now the three operands are of the same signed integer type,
b6b5cca8
AC
3945 -- so we can use the normal expansion routine for membership,
3946 -- setting the flag to prevent recursion into this procedure.
f6194278
RD
3947
3948 Set_No_Minimize_Eliminate (N);
3949 Expand_N_In (N);
3950 end if;
3951
3952 -- Right operand is a subtype name and the subtype has a predicate. We
f6636994
AC
3953 -- have to make sure the predicate is checked, and for that we need to
3954 -- use the standard N_In circuitry with appropriate types.
f6194278
RD
3955
3956 else
b6b5cca8 3957 pragma Assert (Present (Predicate_Function (Etype (Rop))));
f6194278
RD
3958
3959 -- If types are "right", just call Expand_N_In preventing recursion
3960
b6b5cca8 3961 if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
f6194278
RD
3962 Set_No_Minimize_Eliminate (N);
3963 Expand_N_In (N);
3964
3965 -- Bignum case
3966
b6b5cca8 3967 elsif Is_RTE (Etype (Lop), RE_Bignum) then
f6194278 3968
71fb4dc8 3969 -- For X in T, we want to rewrite our node as
f6194278 3970
71fb4dc8
AC
3971 -- do
3972 -- Bnn : Result_Type;
f6194278 3973
71fb4dc8
AC
3974 -- declare
3975 -- M : Mark_Id := SS_Mark;
3976 -- Lnn : Long_Long_Integer'Base
3977 -- Nnn : Bignum;
f6194278 3978
71fb4dc8
AC
3979 -- begin
3980 -- Nnn := X;
3981
3982 -- if not Bignum_In_LLI_Range (Nnn) then
3983 -- Bnn := False;
3984 -- else
3985 -- Lnn := From_Bignum (Nnn);
3986 -- Bnn :=
3987 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3988 -- and then T'Base (Lnn) in T;
3989 -- end if;
cc6f5d75
AC
3990
3991 -- SS_Release (M);
71fb4dc8
AC
3992 -- end
3993 -- in
3994 -- Bnn
3995 -- end
f6194278 3996
f6636994 3997 -- A bit gruesome, but there doesn't seem to be a simpler way
f6194278
RD
3998
3999 declare
b6b5cca8
AC
4000 Blk : constant Node_Id := Make_Bignum_Block (Loc);
4001 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
4002 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
4003 Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
71fb4dc8
AC
4004 T : constant Entity_Id := Etype (Rop);
4005 TB : constant Entity_Id := Base_Type (T);
b6b5cca8 4006 Nin : Node_Id;
f6194278
RD
4007
4008 begin
71fb4dc8 4009 -- Mark the last membership operation to prevent recursion
f6194278
RD
4010
4011 Nin :=
4012 Make_In (Loc,
f6636994
AC
4013 Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
4014 Right_Opnd => New_Occurrence_Of (T, Loc));
f6194278
RD
4015 Set_No_Minimize_Eliminate (Nin);
4016
4017 -- Now decorate the block
4018
4019 Insert_After
4020 (Last (Declarations (Blk)),
4021 Make_Object_Declaration (Loc,
4022 Defining_Identifier => Lnn,
4023 Object_Definition => New_Occurrence_Of (LLIB, Loc)));
4024
4025 Insert_After
4026 (Last (Declarations (Blk)),
4027 Make_Object_Declaration (Loc,
4028 Defining_Identifier => Nnn,
4029 Object_Definition =>
4030 New_Occurrence_Of (RTE (RE_Bignum), Loc)));
4031
4032 Insert_List_Before
4033 (First (Statements (Handled_Statement_Sequence (Blk))),
4034 New_List (
4035 Make_Assignment_Statement (Loc,
4036 Name => New_Occurrence_Of (Nnn, Loc),
4037 Expression => Relocate_Node (Lop)),
4038
8b1011c0 4039 Make_Implicit_If_Statement (N,
f6194278 4040 Condition =>
71fb4dc8
AC
4041 Make_Op_Not (Loc,
4042 Right_Opnd =>
4043 Make_Function_Call (Loc,
4044 Name =>
4045 New_Occurrence_Of
4046 (RTE (RE_Bignum_In_LLI_Range), Loc),
4047 Parameter_Associations => New_List (
4048 New_Occurrence_Of (Nnn, Loc)))),
f6194278
RD
4049
4050 Then_Statements => New_List (
4051 Make_Assignment_Statement (Loc,
4052 Name => New_Occurrence_Of (Bnn, Loc),
4053 Expression =>
4054 New_Occurrence_Of (Standard_False, Loc))),
4055
4056 Else_Statements => New_List (
4057 Make_Assignment_Statement (Loc,
4058 Name => New_Occurrence_Of (Lnn, Loc),
4059 Expression =>
4060 Make_Function_Call (Loc,
4061 Name =>
4062 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4063 Parameter_Associations => New_List (
4064 New_Occurrence_Of (Nnn, Loc)))),
4065
4066 Make_Assignment_Statement (Loc,
71fb4dc8 4067 Name => New_Occurrence_Of (Bnn, Loc),
f6194278
RD
4068 Expression =>
4069 Make_And_Then (Loc,
71fb4dc8 4070 Left_Opnd =>
f6194278 4071 Make_In (Loc,
71fb4dc8 4072 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
f6194278 4073 Right_Opnd =>
71fb4dc8
AC
4074 Make_Range (Loc,
4075 Low_Bound =>
4076 Convert_To (LLIB,
4077 Make_Attribute_Reference (Loc,
4078 Attribute_Name => Name_First,
4079 Prefix =>
4080 New_Occurrence_Of (TB, Loc))),
4081
4082 High_Bound =>
4083 Convert_To (LLIB,
4084 Make_Attribute_Reference (Loc,
4085 Attribute_Name => Name_Last,
4086 Prefix =>
4087 New_Occurrence_Of (TB, Loc))))),
4088
f6194278
RD
4089 Right_Opnd => Nin))))));
4090
71fb4dc8 4091 -- Now we can do the rewrite
f6194278 4092
71fb4dc8
AC
4093 Rewrite (N,
4094 Make_Expression_With_Actions (Loc,
4095 Actions => New_List (
4096 Make_Object_Declaration (Loc,
4097 Defining_Identifier => Bnn,
4098 Object_Definition =>
4099 New_Occurrence_Of (Result_Type, Loc)),
4100 Blk),
4101 Expression => New_Occurrence_Of (Bnn, Loc)));
4102 Analyze_And_Resolve (N, Result_Type);
f6194278
RD
4103 return;
4104 end;
4105
4106 -- Not bignum case, but types don't match (this means we rewrote the
b6b5cca8 4107 -- left operand to be Long_Long_Integer).
f6194278
RD
4108
4109 else
b6b5cca8 4110 pragma Assert (Base_Type (Etype (Lop)) = LLIB);
f6194278 4111
71fb4dc8
AC
4112 -- We rewrite the membership test as (where T is the type with
4113 -- the predicate, i.e. the type of the right operand)
f6194278 4114
71fb4dc8
AC
4115 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4116 -- and then T'Base (Lop) in T
f6194278
RD
4117
4118 declare
71fb4dc8
AC
4119 T : constant Entity_Id := Etype (Rop);
4120 TB : constant Entity_Id := Base_Type (T);
f6194278
RD
4121 Nin : Node_Id;
4122
4123 begin
4124 -- The last membership test is marked to prevent recursion
4125
4126 Nin :=
4127 Make_In (Loc,
71fb4dc8
AC
4128 Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
4129 Right_Opnd => New_Occurrence_Of (T, Loc));
f6194278
RD
4130 Set_No_Minimize_Eliminate (Nin);
4131
4132 -- Now do the rewrite
4133
4134 Rewrite (N,
4135 Make_And_Then (Loc,
71fb4dc8 4136 Left_Opnd =>
f6194278
RD
4137 Make_In (Loc,
4138 Left_Opnd => Lop,
4139 Right_Opnd =>
71fb4dc8
AC
4140 Make_Range (Loc,
4141 Low_Bound =>
4142 Convert_To (LLIB,
4143 Make_Attribute_Reference (Loc,
4144 Attribute_Name => Name_First,
cc6f5d75
AC
4145 Prefix =>
4146 New_Occurrence_Of (TB, Loc))),
71fb4dc8
AC
4147 High_Bound =>
4148 Convert_To (LLIB,
4149 Make_Attribute_Reference (Loc,
4150 Attribute_Name => Name_Last,
cc6f5d75
AC
4151 Prefix =>
4152 New_Occurrence_Of (TB, Loc))))),
f6194278 4153 Right_Opnd => Nin));
71fb4dc8
AC
4154 Set_Analyzed (N, False);
4155 Analyze_And_Resolve (N, Restype);
f6194278
RD
4156 end;
4157 end if;
4158 end if;
4159 end Expand_Membership_Minimize_Eliminate_Overflow;
4160
70482933
RK
4161 ------------------------
4162 -- Expand_N_Allocator --
4163 ------------------------
4164
4165 procedure Expand_N_Allocator (N : Node_Id) is
8b1011c0
AC
4166 Etyp : constant Entity_Id := Etype (Expression (N));
4167 Loc : constant Source_Ptr := Sloc (N);
4168 PtrT : constant Entity_Id := Etype (N);
70482933 4169
26bff3d9
JM
4170 procedure Rewrite_Coextension (N : Node_Id);
4171 -- Static coextensions have the same lifetime as the entity they
8fc789c8 4172 -- constrain. Such occurrences can be rewritten as aliased objects
26bff3d9 4173 -- and their unrestricted access used instead of the coextension.
0669bebe 4174
8aec446b 4175 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
507ed3fd
AC
4176 -- Given a constrained array type E, returns a node representing the
4177 -- code to compute the size in storage elements for the given type.
205c14b0 4178 -- This is done without using the attribute (which malfunctions for
507ed3fd 4179 -- large sizes ???)
8aec446b 4180
26bff3d9
JM
4181 -------------------------
4182 -- Rewrite_Coextension --
4183 -------------------------
4184
4185 procedure Rewrite_Coextension (N : Node_Id) is
e5a22243
AC
4186 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
4187 Temp_Decl : Node_Id;
26bff3d9 4188
df3e68b1 4189 begin
26bff3d9
JM
4190 -- Generate:
4191 -- Cnn : aliased Etyp;
4192
df3e68b1
HK
4193 Temp_Decl :=
4194 Make_Object_Declaration (Loc,
4195 Defining_Identifier => Temp_Id,
243cae0a
AC
4196 Aliased_Present => True,
4197 Object_Definition => New_Occurrence_Of (Etyp, Loc));
26bff3d9 4198
26bff3d9 4199 if Nkind (Expression (N)) = N_Qualified_Expression then
df3e68b1 4200 Set_Expression (Temp_Decl, Expression (Expression (N)));
0669bebe 4201 end if;
26bff3d9 4202
e5a22243 4203 Insert_Action (N, Temp_Decl);
26bff3d9
JM
4204 Rewrite (N,
4205 Make_Attribute_Reference (Loc,
243cae0a 4206 Prefix => New_Occurrence_Of (Temp_Id, Loc),
26bff3d9
JM
4207 Attribute_Name => Name_Unrestricted_Access));
4208
4209 Analyze_And_Resolve (N, PtrT);
4210 end Rewrite_Coextension;
0669bebe 4211
8aec446b
AC
4212 ------------------------------
4213 -- Size_In_Storage_Elements --
4214 ------------------------------
4215
4216 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4217 begin
4218 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4219 -- However, the reason for the existence of this function is
4220 -- to construct a test for sizes too large, which means near the
4221 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4222 -- is that we get overflows when sizes are greater than 2**31.
4223
507ed3fd 4224 -- So what we end up doing for array types is to use the expression:
8aec446b
AC
4225
4226 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4227
46202729 4228 -- which avoids this problem. All this is a bit bogus, but it does
8aec446b
AC
4229 -- mean we catch common cases of trying to allocate arrays that
4230 -- are too large, and which in the absence of a check results in
4231 -- undetected chaos ???
4232
ce532f42
AC
4233 -- Note in particular that this is a pessimistic estimate in the
4234 -- case of packed array types, where an array element might occupy
4235 -- just a fraction of a storage element???
4236
507ed3fd
AC
4237 declare
4238 Len : Node_Id;
4239 Res : Node_Id;
8aec446b 4240
507ed3fd
AC
4241 begin
4242 for J in 1 .. Number_Dimensions (E) loop
4243 Len :=
4244 Make_Attribute_Reference (Loc,
4245 Prefix => New_Occurrence_Of (E, Loc),
4246 Attribute_Name => Name_Length,
243cae0a 4247 Expressions => New_List (Make_Integer_Literal (Loc, J)));
8aec446b 4248
507ed3fd
AC
4249 if J = 1 then
4250 Res := Len;
8aec446b 4251
507ed3fd
AC
4252 else
4253 Res :=
4254 Make_Op_Multiply (Loc,
4255 Left_Opnd => Res,
4256 Right_Opnd => Len);
4257 end if;
4258 end loop;
8aec446b 4259
8aec446b 4260 return
507ed3fd
AC
4261 Make_Op_Multiply (Loc,
4262 Left_Opnd => Len,
4263 Right_Opnd =>
4264 Make_Attribute_Reference (Loc,
4265 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4266 Attribute_Name => Name_Max_Size_In_Storage_Elements));
4267 end;
8aec446b
AC
4268 end Size_In_Storage_Elements;
4269
8b1011c0
AC
4270 -- Local variables
4271
70861157 4272 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
8b1011c0
AC
4273 Desig : Entity_Id;
4274 Nod : Node_Id;
4275 Pool : Entity_Id;
4276 Rel_Typ : Entity_Id;
4277 Temp : Entity_Id;
4278
0669bebe
GB
4279 -- Start of processing for Expand_N_Allocator
4280
70482933
RK
4281 begin
4282 -- RM E.2.3(22). We enforce that the expected type of an allocator
4283 -- shall not be a remote access-to-class-wide-limited-private type
4284
4285 -- Why is this being done at expansion time, seems clearly wrong ???
4286
4287 Validate_Remote_Access_To_Class_Wide_Type (N);
4288
ca5af305
AC
4289 -- Processing for anonymous access-to-controlled types. These access
4290 -- types receive a special finalization master which appears in the
4291 -- declarations of the enclosing semantic unit. This expansion is done
84f4072a
JM
4292 -- now to ensure that any additional types generated by this routine or
4293 -- Expand_Allocator_Expression inherit the proper type attributes.
ca5af305 4294
84f4072a 4295 if (Ekind (PtrT) = E_Anonymous_Access_Type
533369aa 4296 or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
ca5af305
AC
4297 and then Needs_Finalization (Dtyp)
4298 then
8b1011c0
AC
4299 -- Detect the allocation of an anonymous controlled object where the
4300 -- type of the context is named. For example:
4301
4302 -- procedure Proc (Ptr : Named_Access_Typ);
4303 -- Proc (new Designated_Typ);
4304
4305 -- Regardless of the anonymous-to-named access type conversion, the
4306 -- lifetime of the object must be associated with the named access
0088ba92 4307 -- type. Use the finalization-related attributes of this type.
8b1011c0
AC
4308
4309 if Nkind_In (Parent (N), N_Type_Conversion,
4310 N_Unchecked_Type_Conversion)
4311 and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4312 E_Access_Type,
4313 E_General_Access_Type)
4314 then
4315 Rel_Typ := Etype (Parent (N));
4316 else
4317 Rel_Typ := Empty;
4318 end if;
4319
b254da66
AC
4320 -- Anonymous access-to-controlled types allocate on the global pool.
4321 -- Do not set this attribute on .NET/JVM since those targets do not
24d4b3d5 4322 -- support pools. Note that this is a "root type only" attribute.
ca5af305 4323
bde73c6b 4324 if No (Associated_Storage_Pool (PtrT)) and then VM_Target = No_VM then
8b1011c0 4325 if Present (Rel_Typ) then
7a5b62b0 4326 Set_Associated_Storage_Pool
24d4b3d5 4327 (Root_Type (PtrT), Associated_Storage_Pool (Rel_Typ));
8b1011c0 4328 else
7a5b62b0 4329 Set_Associated_Storage_Pool
24d4b3d5 4330 (Root_Type (PtrT), RTE (RE_Global_Pool_Object));
8b1011c0 4331 end if;
ca5af305
AC
4332 end if;
4333
4334 -- The finalization master must be inserted and analyzed as part of
5114f3ff 4335 -- the current semantic unit. Note that the master is updated when
24d4b3d5
AC
4336 -- analysis changes current units. Note that this is a "root type
4337 -- only" attribute.
ca5af305 4338
5114f3ff 4339 if Present (Rel_Typ) then
24d4b3d5
AC
4340 Set_Finalization_Master
4341 (Root_Type (PtrT), Finalization_Master (Rel_Typ));
5114f3ff 4342 else
24d4b3d5
AC
4343 Set_Finalization_Master
4344 (Root_Type (PtrT), Current_Anonymous_Master);
ca5af305
AC
4345 end if;
4346 end if;
4347
4348 -- Set the storage pool and find the appropriate version of Allocate to
8417f4b2
AC
4349 -- call. Do not overwrite the storage pool if it is already set, which
4350 -- can happen for build-in-place function returns (see
200b7162 4351 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
70482933 4352
200b7162
BD
4353 if No (Storage_Pool (N)) then
4354 Pool := Associated_Storage_Pool (Root_Type (PtrT));
70482933 4355
200b7162
BD
4356 if Present (Pool) then
4357 Set_Storage_Pool (N, Pool);
fbf5a39b 4358
200b7162
BD
4359 if Is_RTE (Pool, RE_SS_Pool) then
4360 if VM_Target = No_VM then
4361 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4362 end if;
fbf5a39b 4363
a8551b5f
AC
4364 -- In the case of an allocator for a simple storage pool, locate
4365 -- and save a reference to the pool type's Allocate routine.
4366
4367 elsif Present (Get_Rep_Pragma
f6205414 4368 (Etype (Pool), Name_Simple_Storage_Pool_Type))
a8551b5f
AC
4369 then
4370 declare
a8551b5f 4371 Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
260359e3 4372 Alloc_Op : Entity_Id;
a8551b5f 4373 begin
260359e3 4374 Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
a8551b5f
AC
4375 while Present (Alloc_Op) loop
4376 if Scope (Alloc_Op) = Scope (Pool_Type)
4377 and then Present (First_Formal (Alloc_Op))
4378 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4379 then
4380 Set_Procedure_To_Call (N, Alloc_Op);
a8551b5f 4381 exit;
260359e3
AC
4382 else
4383 Alloc_Op := Homonym (Alloc_Op);
a8551b5f 4384 end if;
a8551b5f
AC
4385 end loop;
4386 end;
4387
200b7162
BD
4388 elsif Is_Class_Wide_Type (Etype (Pool)) then
4389 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4390
4391 else
4392 Set_Procedure_To_Call (N,
4393 Find_Prim_Op (Etype (Pool), Name_Allocate));
4394 end if;
70482933
RK
4395 end if;
4396 end if;
4397
685094bf
RD
4398 -- Under certain circumstances we can replace an allocator by an access
4399 -- to statically allocated storage. The conditions, as noted in AARM
4400 -- 3.10 (10c) are as follows:
70482933
RK
4401
4402 -- Size and initial value is known at compile time
4403 -- Access type is access-to-constant
4404
fbf5a39b
AC
4405 -- The allocator is not part of a constraint on a record component,
4406 -- because in that case the inserted actions are delayed until the
4407 -- record declaration is fully analyzed, which is too late for the
4408 -- analysis of the rewritten allocator.
4409
70482933
RK
4410 if Is_Access_Constant (PtrT)
4411 and then Nkind (Expression (N)) = N_Qualified_Expression
4412 and then Compile_Time_Known_Value (Expression (Expression (N)))
243cae0a
AC
4413 and then Size_Known_At_Compile_Time
4414 (Etype (Expression (Expression (N))))
fbf5a39b 4415 and then not Is_Record_Type (Current_Scope)
70482933
RK
4416 then
4417 -- Here we can do the optimization. For the allocator
4418
4419 -- new x'(y)
4420
4421 -- We insert an object declaration
4422
4423 -- Tnn : aliased x := y;
4424
685094bf
RD
4425 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4426 -- marked as requiring static allocation.
70482933 4427
df3e68b1 4428 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
70482933
RK
4429 Desig := Subtype_Mark (Expression (N));
4430
4431 -- If context is constrained, use constrained subtype directly,
8fc789c8 4432 -- so that the constant is not labelled as having a nominally
70482933
RK
4433 -- unconstrained subtype.
4434
0da2c8ac
AC
4435 if Entity (Desig) = Base_Type (Dtyp) then
4436 Desig := New_Occurrence_Of (Dtyp, Loc);
70482933
RK
4437 end if;
4438
4439 Insert_Action (N,
4440 Make_Object_Declaration (Loc,
4441 Defining_Identifier => Temp,
4442 Aliased_Present => True,
4443 Constant_Present => Is_Access_Constant (PtrT),
4444 Object_Definition => Desig,
4445 Expression => Expression (Expression (N))));
4446
4447 Rewrite (N,
4448 Make_Attribute_Reference (Loc,
243cae0a 4449 Prefix => New_Occurrence_Of (Temp, Loc),
70482933
RK
4450 Attribute_Name => Name_Unrestricted_Access));
4451
4452 Analyze_And_Resolve (N, PtrT);
4453
685094bf 4454 -- We set the variable as statically allocated, since we don't want
a90bd866 4455 -- it going on the stack of the current procedure.
70482933
RK
4456
4457 Set_Is_Statically_Allocated (Temp);
4458 return;
4459 end if;
4460
0669bebe
GB
4461 -- Same if the allocator is an access discriminant for a local object:
4462 -- instead of an allocator we create a local value and constrain the
308e6f3a 4463 -- enclosing object with the corresponding access attribute.
0669bebe 4464
26bff3d9
JM
4465 if Is_Static_Coextension (N) then
4466 Rewrite_Coextension (N);
0669bebe
GB
4467 return;
4468 end if;
4469
8aec446b
AC
4470 -- Check for size too large, we do this because the back end misses
4471 -- proper checks here and can generate rubbish allocation calls when
4472 -- we are near the limit. We only do this for the 32-bit address case
4473 -- since that is from a practical point of view where we see a problem.
4474
4475 if System_Address_Size = 32
4476 and then not Storage_Checks_Suppressed (PtrT)
4477 and then not Storage_Checks_Suppressed (Dtyp)
4478 and then not Storage_Checks_Suppressed (Etyp)
4479 then
4480 -- The check we want to generate should look like
4481
4482 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4483 -- raise Storage_Error;
4484 -- end if;
4485
308e6f3a 4486 -- where 3.5 gigabytes is a constant large enough to accommodate any
507ed3fd
AC
4487 -- reasonable request for. But we can't do it this way because at
4488 -- least at the moment we don't compute this attribute right, and
4489 -- can silently give wrong results when the result gets large. Since
4490 -- this is all about large results, that's bad, so instead we only
205c14b0 4491 -- apply the check for constrained arrays, and manually compute the
507ed3fd 4492 -- value of the attribute ???
8aec446b 4493
507ed3fd
AC
4494 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
4495 Insert_Action (N,
4496 Make_Raise_Storage_Error (Loc,
4497 Condition =>
4498 Make_Op_Gt (Loc,
4499 Left_Opnd => Size_In_Storage_Elements (Etyp),
4500 Right_Opnd =>
243cae0a 4501 Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
507ed3fd
AC
4502 Reason => SE_Object_Too_Large));
4503 end if;
8aec446b
AC
4504 end if;
4505
b3b26ace
AC
4506 -- If no storage pool has been specified and we have the restriction
4507 -- No_Standard_Allocators_After_Elaboration is present, then generate
4508 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4509
4510 if Nkind (N) = N_Allocator
4511 and then No (Storage_Pool (N))
4512 and then Restriction_Active (No_Standard_Allocators_After_Elaboration)
4513 then
4514 Insert_Action (N,
4515 Make_Procedure_Call_Statement (Loc,
4516 Name =>
4517 New_Occurrence_Of (RTE (RE_Check_Standard_Allocator), Loc)));
4518 end if;
4519
0da2c8ac 4520 -- Handle case of qualified expression (other than optimization above)
cac5a801
AC
4521 -- First apply constraint checks, because the bounds or discriminants
4522 -- in the aggregate might not match the subtype mark in the allocator.
0da2c8ac 4523
70482933 4524 if Nkind (Expression (N)) = N_Qualified_Expression then
cac5a801
AC
4525 Apply_Constraint_Check
4526 (Expression (Expression (N)), Etype (Expression (N)));
4527
fbf5a39b 4528 Expand_Allocator_Expression (N);
26bff3d9
JM
4529 return;
4530 end if;
fbf5a39b 4531
26bff3d9
JM
4532 -- If the allocator is for a type which requires initialization, and
4533 -- there is no initial value (i.e. operand is a subtype indication
685094bf
RD
4534 -- rather than a qualified expression), then we must generate a call to
4535 -- the initialization routine using an expressions action node:
70482933 4536
26bff3d9 4537 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
70482933 4538
26bff3d9
JM
4539 -- Here ptr_T is the pointer type for the allocator, and T is the
4540 -- subtype of the allocator. A special case arises if the designated
4541 -- type of the access type is a task or contains tasks. In this case
4542 -- the call to Init (Temp.all ...) is replaced by code that ensures
4543 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
6be44a9a 4544 -- for details). In addition, if the type T is a task type, then the
26bff3d9 4545 -- first argument to Init must be converted to the task record type.
70482933 4546
26bff3d9 4547 declare
df3e68b1
HK
4548 T : constant Entity_Id := Entity (Expression (N));
4549 Args : List_Id;
4550 Decls : List_Id;
4551 Decl : Node_Id;
4552 Discr : Elmt_Id;
4553 Init : Entity_Id;
4554 Init_Arg1 : Node_Id;
4555 Temp_Decl : Node_Id;
4556 Temp_Type : Entity_Id;
70482933 4557
26bff3d9
JM
4558 begin
4559 if No_Initialization (N) then
df3e68b1
HK
4560
4561 -- Even though this might be a simple allocation, create a custom
deb8dacc
HK
4562 -- Allocate if the context requires it. Since .NET/JVM compilers
4563 -- do not support pools, this step is skipped.
df3e68b1 4564
deb8dacc 4565 if VM_Target = No_VM
d3f70b35 4566 and then Present (Finalization_Master (PtrT))
deb8dacc 4567 then
df3e68b1 4568 Build_Allocate_Deallocate_Proc
ca5af305 4569 (N => N,
df3e68b1
HK
4570 Is_Allocate => True);
4571 end if;
70482933 4572
26bff3d9 4573 -- Case of no initialization procedure present
70482933 4574
26bff3d9 4575 elsif not Has_Non_Null_Base_Init_Proc (T) then
70482933 4576
26bff3d9 4577 -- Case of simple initialization required
70482933 4578
26bff3d9 4579 if Needs_Simple_Initialization (T) then
b4592168 4580 Check_Restriction (No_Default_Initialization, N);
26bff3d9
JM
4581 Rewrite (Expression (N),
4582 Make_Qualified_Expression (Loc,
4583 Subtype_Mark => New_Occurrence_Of (T, Loc),
b4592168 4584 Expression => Get_Simple_Init_Val (T, N)));
70482933 4585
26bff3d9
JM
4586 Analyze_And_Resolve (Expression (Expression (N)), T);
4587 Analyze_And_Resolve (Expression (N), T);
4588 Set_Paren_Count (Expression (Expression (N)), 1);
4589 Expand_N_Allocator (N);
70482933 4590
26bff3d9 4591 -- No initialization required
70482933
RK
4592
4593 else
26bff3d9
JM
4594 null;
4595 end if;
70482933 4596
26bff3d9 4597 -- Case of initialization procedure present, must be called
70482933 4598
26bff3d9 4599 else
b4592168 4600 Check_Restriction (No_Default_Initialization, N);
70482933 4601
b4592168
GD
4602 if not Restriction_Active (No_Default_Initialization) then
4603 Init := Base_Init_Proc (T);
4604 Nod := N;
191fcb3a 4605 Temp := Make_Temporary (Loc, 'P');
70482933 4606
b4592168 4607 -- Construct argument list for the initialization routine call
70482933 4608
df3e68b1 4609 Init_Arg1 :=
b4592168 4610 Make_Explicit_Dereference (Loc,
df3e68b1 4611 Prefix =>
e4494292 4612 New_Occurrence_Of (Temp, Loc));
df3e68b1
HK
4613
4614 Set_Assignment_OK (Init_Arg1);
b4592168 4615 Temp_Type := PtrT;
26bff3d9 4616
b4592168
GD
4617 -- The initialization procedure expects a specific type. if the
4618 -- context is access to class wide, indicate that the object
4619 -- being allocated has the right specific type.
70482933 4620
b4592168 4621 if Is_Class_Wide_Type (Dtyp) then
df3e68b1 4622 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
b4592168 4623 end if;
70482933 4624
b4592168
GD
4625 -- If designated type is a concurrent type or if it is private
4626 -- type whose definition is a concurrent type, the first
4627 -- argument in the Init routine has to be unchecked conversion
4628 -- to the corresponding record type. If the designated type is
243cae0a 4629 -- a derived type, also convert the argument to its root type.
20b5d666 4630
b4592168 4631 if Is_Concurrent_Type (T) then
df3e68b1
HK
4632 Init_Arg1 :=
4633 Unchecked_Convert_To (
4634 Corresponding_Record_Type (T), Init_Arg1);
70482933 4635
b4592168
GD
4636 elsif Is_Private_Type (T)
4637 and then Present (Full_View (T))
4638 and then Is_Concurrent_Type (Full_View (T))
4639 then
df3e68b1 4640 Init_Arg1 :=
b4592168 4641 Unchecked_Convert_To
df3e68b1 4642 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
70482933 4643
b4592168
GD
4644 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
4645 declare
4646 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
df3e68b1 4647
b4592168 4648 begin
df3e68b1
HK
4649 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
4650 Set_Etype (Init_Arg1, Ftyp);
b4592168
GD
4651 end;
4652 end if;
70482933 4653
df3e68b1 4654 Args := New_List (Init_Arg1);
70482933 4655
b4592168
GD
4656 -- For the task case, pass the Master_Id of the access type as
4657 -- the value of the _Master parameter, and _Chain as the value
4658 -- of the _Chain parameter (_Chain will be defined as part of
4659 -- the generated code for the allocator).
70482933 4660
b4592168
GD
4661 -- In Ada 2005, the context may be a function that returns an
4662 -- anonymous access type. In that case the Master_Id has been
4663 -- created when expanding the function declaration.
70482933 4664
b4592168
GD
4665 if Has_Task (T) then
4666 if No (Master_Id (Base_Type (PtrT))) then
70482933 4667
b4592168
GD
4668 -- The designated type was an incomplete type, and the
4669 -- access type did not get expanded. Salvage it now.
70482933 4670
b941ae65 4671 if not Restriction_Active (No_Task_Hierarchy) then
3d67b239
AC
4672 if Present (Parent (Base_Type (PtrT))) then
4673 Expand_N_Full_Type_Declaration
4674 (Parent (Base_Type (PtrT)));
4675
0d5fbf52
AC
4676 -- The only other possibility is an itype. For this
4677 -- case, the master must exist in the context. This is
4678 -- the case when the allocator initializes an access
4679 -- component in an init-proc.
3d67b239 4680
0d5fbf52 4681 else
3d67b239
AC
4682 pragma Assert (Is_Itype (PtrT));
4683 Build_Master_Renaming (PtrT, N);
4684 end if;
b941ae65 4685 end if;
b4592168 4686 end if;
70482933 4687
b4592168
GD
4688 -- If the context of the allocator is a declaration or an
4689 -- assignment, we can generate a meaningful image for it,
4690 -- even though subsequent assignments might remove the
4691 -- connection between task and entity. We build this image
4692 -- when the left-hand side is a simple variable, a simple
4693 -- indexed assignment or a simple selected component.
4694
4695 if Nkind (Parent (N)) = N_Assignment_Statement then
4696 declare
4697 Nam : constant Node_Id := Name (Parent (N));
4698
4699 begin
4700 if Is_Entity_Name (Nam) then
4701 Decls :=
4702 Build_Task_Image_Decls
4703 (Loc,
4704 New_Occurrence_Of
4705 (Entity (Nam), Sloc (Nam)), T);
4706
243cae0a
AC
4707 elsif Nkind_In (Nam, N_Indexed_Component,
4708 N_Selected_Component)
b4592168
GD
4709 and then Is_Entity_Name (Prefix (Nam))
4710 then
4711 Decls :=
4712 Build_Task_Image_Decls
4713 (Loc, Nam, Etype (Prefix (Nam)));
4714 else
4715 Decls := Build_Task_Image_Decls (Loc, T, T);
4716 end if;
4717 end;
70482933 4718
b4592168
GD
4719 elsif Nkind (Parent (N)) = N_Object_Declaration then
4720 Decls :=
4721 Build_Task_Image_Decls
4722 (Loc, Defining_Identifier (Parent (N)), T);
70482933 4723
b4592168
GD
4724 else
4725 Decls := Build_Task_Image_Decls (Loc, T, T);
4726 end if;
26bff3d9 4727
87dc09cb 4728 if Restriction_Active (No_Task_Hierarchy) then
3c1ecd7e
AC
4729 Append_To (Args,
4730 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
87dc09cb
AC
4731 else
4732 Append_To (Args,
e4494292 4733 New_Occurrence_Of
87dc09cb
AC
4734 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
4735 end if;
4736
b4592168 4737 Append_To (Args, Make_Identifier (Loc, Name_uChain));
26bff3d9 4738
b4592168
GD
4739 Decl := Last (Decls);
4740 Append_To (Args,
4741 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
26bff3d9 4742
87dc09cb 4743 -- Has_Task is false, Decls not used
26bff3d9 4744
b4592168
GD
4745 else
4746 Decls := No_List;
26bff3d9
JM
4747 end if;
4748
b4592168
GD
4749 -- Add discriminants if discriminated type
4750
4751 declare
4752 Dis : Boolean := False;
4753 Typ : Entity_Id;
4754
4755 begin
4756 if Has_Discriminants (T) then
4757 Dis := True;
4758 Typ := T;
4759
4760 elsif Is_Private_Type (T)
4761 and then Present (Full_View (T))
4762 and then Has_Discriminants (Full_View (T))
20b5d666 4763 then
b4592168
GD
4764 Dis := True;
4765 Typ := Full_View (T);
20b5d666 4766 end if;
70482933 4767
b4592168 4768 if Dis then
26bff3d9 4769
b4592168 4770 -- If the allocated object will be constrained by the
685094bf
RD
4771 -- default values for discriminants, then build a subtype
4772 -- with those defaults, and change the allocated subtype
4773 -- to that. Note that this happens in fewer cases in Ada
4774 -- 2005 (AI-363).
26bff3d9 4775
b4592168
GD
4776 if not Is_Constrained (Typ)
4777 and then Present (Discriminant_Default_Value
df3e68b1 4778 (First_Discriminant (Typ)))
0791fbe9 4779 and then (Ada_Version < Ada_2005
cc96a1b8 4780 or else not
0fbcb11c
ES
4781 Object_Type_Has_Constrained_Partial_View
4782 (Typ, Current_Scope))
20b5d666 4783 then
b4592168 4784 Typ := Build_Default_Subtype (Typ, N);
e4494292 4785 Set_Expression (N, New_Occurrence_Of (Typ, Loc));
20b5d666
JM
4786 end if;
4787
b4592168
GD
4788 Discr := First_Elmt (Discriminant_Constraint (Typ));
4789 while Present (Discr) loop
4790 Nod := Node (Discr);
4791 Append (New_Copy_Tree (Node (Discr)), Args);
20b5d666 4792
b4592168
GD
4793 -- AI-416: when the discriminant constraint is an
4794 -- anonymous access type make sure an accessibility
4795 -- check is inserted if necessary (3.10.2(22.q/2))
20b5d666 4796
0791fbe9 4797 if Ada_Version >= Ada_2005
b4592168
GD
4798 and then
4799 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
4800 then
e84e11ba
GD
4801 Apply_Accessibility_Check
4802 (Nod, Typ, Insert_Node => Nod);
b4592168 4803 end if;
20b5d666 4804
b4592168
GD
4805 Next_Elmt (Discr);
4806 end loop;
4807 end if;
4808 end;
70482933 4809
4b985e20 4810 -- We set the allocator as analyzed so that when we analyze
9b16cb57
RD
4811 -- the if expression node, we do not get an unwanted recursive
4812 -- expansion of the allocator expression.
70482933 4813
b4592168
GD
4814 Set_Analyzed (N, True);
4815 Nod := Relocate_Node (N);
70482933 4816
b4592168 4817 -- Here is the transformation:
ca5af305
AC
4818 -- input: new Ctrl_Typ
4819 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4820 -- Ctrl_TypIP (Temp.all, ...);
4821 -- [Deep_]Initialize (Temp.all);
70482933 4822
ca5af305
AC
4823 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4824 -- is the subtype of the allocator.
70482933 4825
b4592168
GD
4826 Temp_Decl :=
4827 Make_Object_Declaration (Loc,
4828 Defining_Identifier => Temp,
4829 Constant_Present => True,
e4494292 4830 Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
b4592168 4831 Expression => Nod);
70482933 4832
b4592168
GD
4833 Set_Assignment_OK (Temp_Decl);
4834 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
70482933 4835
ca5af305 4836 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 4837
b4592168
GD
4838 -- If the designated type is a task type or contains tasks,
4839 -- create block to activate created tasks, and insert
4840 -- declaration for Task_Image variable ahead of call.
70482933 4841
b4592168
GD
4842 if Has_Task (T) then
4843 declare
4844 L : constant List_Id := New_List;
4845 Blk : Node_Id;
4846 begin
4847 Build_Task_Allocate_Block (L, Nod, Args);
4848 Blk := Last (L);
4849 Insert_List_Before (First (Declarations (Blk)), Decls);
4850 Insert_Actions (N, L);
4851 end;
70482933 4852
b4592168
GD
4853 else
4854 Insert_Action (N,
4855 Make_Procedure_Call_Statement (Loc,
e4494292 4856 Name => New_Occurrence_Of (Init, Loc),
b4592168
GD
4857 Parameter_Associations => Args));
4858 end if;
70482933 4859
048e5cef 4860 if Needs_Finalization (T) then
70482933 4861
df3e68b1
HK
4862 -- Generate:
4863 -- [Deep_]Initialize (Init_Arg1);
70482933 4864
df3e68b1 4865 Insert_Action (N,
243cae0a
AC
4866 Make_Init_Call
4867 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4868 Typ => T));
b4592168 4869
b254da66 4870 if Present (Finalization_Master (PtrT)) then
deb8dacc 4871
b254da66
AC
4872 -- Special processing for .NET/JVM, the allocated object
4873 -- is attached to the finalization master. Generate:
deb8dacc 4874
b254da66 4875 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
deb8dacc 4876
b254da66
AC
4877 -- Types derived from [Limited_]Controlled are the only
4878 -- ones considered since they have fields Prev and Next.
4879
e0c32166
AC
4880 if VM_Target /= No_VM then
4881 if Is_Controlled (T) then
4882 Insert_Action (N,
4883 Make_Attach_Call
4884 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4885 Ptr_Typ => PtrT));
4886 end if;
b254da66
AC
4887
4888 -- Default case, generate:
4889
4890 -- Set_Finalize_Address
4891 -- (<PtrT>FM, <T>FD'Unrestricted_Access);
4892
5114f3ff
AC
4893 -- Do not generate this call in CodePeer mode, as TSS
4894 -- primitive Finalize_Address is not created in this
4895 -- mode.
b254da66 4896
5114f3ff 4897 elsif not CodePeer_Mode then
b254da66
AC
4898 Insert_Action (N,
4899 Make_Set_Finalize_Address_Call
4900 (Loc => Loc,
4901 Typ => T,
4902 Ptr_Typ => PtrT));
4903 end if;
b4592168 4904 end if;
70482933
RK
4905 end if;
4906
e4494292 4907 Rewrite (N, New_Occurrence_Of (Temp, Loc));
b4592168
GD
4908 Analyze_And_Resolve (N, PtrT);
4909 end if;
26bff3d9
JM
4910 end if;
4911 end;
f82944b7 4912
26bff3d9
JM
4913 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4914 -- object that has been rewritten as a reference, we displace "this"
4915 -- to reference properly its secondary dispatch table.
4916
533369aa 4917 if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
26bff3d9 4918 Displace_Allocator_Pointer (N);
f82944b7
JM
4919 end if;
4920
fbf5a39b
AC
4921 exception
4922 when RE_Not_Available =>
4923 return;
70482933
RK
4924 end Expand_N_Allocator;
4925
4926 -----------------------
4927 -- Expand_N_And_Then --
4928 -----------------------
4929
5875f8d6
AC
4930 procedure Expand_N_And_Then (N : Node_Id)
4931 renames Expand_Short_Circuit_Operator;
70482933 4932
19d846a0
RD
4933 ------------------------------
4934 -- Expand_N_Case_Expression --
4935 ------------------------------
4936
4937 procedure Expand_N_Case_Expression (N : Node_Id) is
4938 Loc : constant Source_Ptr := Sloc (N);
4939 Typ : constant Entity_Id := Etype (N);
4940 Cstmt : Node_Id;
27a8f150 4941 Decl : Node_Id;
19d846a0
RD
4942 Tnn : Entity_Id;
4943 Pnn : Entity_Id;
4944 Actions : List_Id;
4945 Ttyp : Entity_Id;
4946 Alt : Node_Id;
4947 Fexp : Node_Id;
4948
4949 begin
b6b5cca8
AC
4950 -- Check for MINIMIZED/ELIMINATED overflow mode
4951
4952 if Minimized_Eliminated_Overflow_Check (N) then
4b1c4f20
RD
4953 Apply_Arithmetic_Overflow_Check (N);
4954 return;
4955 end if;
4956
ff1f1705
AC
4957 -- If the case expression is a predicate specification, do not
4958 -- expand, because it will be converted to the proper predicate
4959 -- form when building the predicate function.
4960
4961 if Ekind_In (Current_Scope, E_Function, E_Procedure)
4962 and then Is_Predicate_Function (Current_Scope)
4963 then
4964 return;
4965 end if;
4966
19d846a0
RD
4967 -- We expand
4968
4969 -- case X is when A => AX, when B => BX ...
4970
4971 -- to
4972
4973 -- do
4974 -- Tnn : typ;
4975 -- case X is
4976 -- when A =>
4977 -- Tnn := AX;
4978 -- when B =>
4979 -- Tnn := BX;
4980 -- ...
4981 -- end case;
4982 -- in Tnn end;
4983
4984 -- However, this expansion is wrong for limited types, and also
4985 -- wrong for unconstrained types (since the bounds may not be the
4986 -- same in all branches). Furthermore it involves an extra copy
4987 -- for large objects. So we take care of this by using the following
2492305b 4988 -- modified expansion for non-elementary types:
19d846a0
RD
4989
4990 -- do
4991 -- type Pnn is access all typ;
4992 -- Tnn : Pnn;
4993 -- case X is
4994 -- when A =>
4995 -- T := AX'Unrestricted_Access;
4996 -- when B =>
4997 -- T := BX'Unrestricted_Access;
4998 -- ...
4999 -- end case;
5000 -- in Tnn.all end;
5001
5002 Cstmt :=
5003 Make_Case_Statement (Loc,
5004 Expression => Expression (N),
5005 Alternatives => New_List);
5006
414c6563
AC
5007 -- Preserve the original context for which the case statement is being
5008 -- generated. This is needed by the finalization machinery to prevent
5009 -- the premature finalization of controlled objects found within the
5010 -- case statement.
5011
5012 Set_From_Conditional_Expression (Cstmt);
5013
19d846a0
RD
5014 Actions := New_List;
5015
5016 -- Scalar case
5017
2492305b 5018 if Is_Elementary_Type (Typ) then
19d846a0
RD
5019 Ttyp := Typ;
5020
5021 else
5022 Pnn := Make_Temporary (Loc, 'P');
5023 Append_To (Actions,
5024 Make_Full_Type_Declaration (Loc,
5025 Defining_Identifier => Pnn,
11d59a86 5026 Type_Definition =>
19d846a0 5027 Make_Access_To_Object_Definition (Loc,
11d59a86 5028 All_Present => True,
e4494292 5029 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
19d846a0
RD
5030 Ttyp := Pnn;
5031 end if;
5032
5033 Tnn := Make_Temporary (Loc, 'T');
27a8f150
AC
5034
5035 -- Create declaration for target of expression, and indicate that it
5036 -- does not require initialization.
5037
11d59a86
AC
5038 Decl :=
5039 Make_Object_Declaration (Loc,
19d846a0 5040 Defining_Identifier => Tnn,
27a8f150
AC
5041 Object_Definition => New_Occurrence_Of (Ttyp, Loc));
5042 Set_No_Initialization (Decl);
5043 Append_To (Actions, Decl);
19d846a0
RD
5044
5045 -- Now process the alternatives
5046
5047 Alt := First (Alternatives (N));
5048 while Present (Alt) loop
5049 declare
eaed0c37
AC
5050 Aexp : Node_Id := Expression (Alt);
5051 Aloc : constant Source_Ptr := Sloc (Aexp);
5052 Stats : List_Id;
19d846a0
RD
5053
5054 begin
eaed0c37
AC
5055 -- As described above, take Unrestricted_Access for case of non-
5056 -- scalar types, to avoid big copies, and special cases.
05dbd302 5057
2492305b 5058 if not Is_Elementary_Type (Typ) then
19d846a0
RD
5059 Aexp :=
5060 Make_Attribute_Reference (Aloc,
5061 Prefix => Relocate_Node (Aexp),
5062 Attribute_Name => Name_Unrestricted_Access);
5063 end if;
5064
eaed0c37
AC
5065 Stats := New_List (
5066 Make_Assignment_Statement (Aloc,
5067 Name => New_Occurrence_Of (Tnn, Loc),
5068 Expression => Aexp));
5069
5070 -- Propagate declarations inserted in the node by Insert_Actions
5071 -- (for example, temporaries generated to remove side effects).
5072 -- These actions must remain attached to the alternative, given
5073 -- that they are generated by the corresponding expression.
5074
5075 if Present (Sinfo.Actions (Alt)) then
5076 Prepend_List (Sinfo.Actions (Alt), Stats);
5077 end if;
5078
19d846a0
RD
5079 Append_To
5080 (Alternatives (Cstmt),
5081 Make_Case_Statement_Alternative (Sloc (Alt),
5082 Discrete_Choices => Discrete_Choices (Alt),
eaed0c37 5083 Statements => Stats));
19d846a0
RD
5084 end;
5085
5086 Next (Alt);
5087 end loop;
5088
5089 Append_To (Actions, Cstmt);
5090
5091 -- Construct and return final expression with actions
5092
2492305b 5093 if Is_Elementary_Type (Typ) then
19d846a0
RD
5094 Fexp := New_Occurrence_Of (Tnn, Loc);
5095 else
5096 Fexp :=
5097 Make_Explicit_Dereference (Loc,
5098 Prefix => New_Occurrence_Of (Tnn, Loc));
5099 end if;
5100
5101 Rewrite (N,
5102 Make_Expression_With_Actions (Loc,
5103 Expression => Fexp,
5104 Actions => Actions));
5105
5106 Analyze_And_Resolve (N, Typ);
5107 end Expand_N_Case_Expression;
5108
9b16cb57
RD
5109 -----------------------------------
5110 -- Expand_N_Explicit_Dereference --
5111 -----------------------------------
5112
5113 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5114 begin
5115 -- Insert explicit dereference call for the checked storage pool case
5116
5117 Insert_Dereference_Action (Prefix (N));
5118
5119 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5120 -- we set the atomic sync flag.
5121
5122 if Is_Atomic (Etype (N))
5123 and then not Atomic_Synchronization_Disabled (Etype (N))
5124 then
5125 Activate_Atomic_Synchronization (N);
5126 end if;
5127 end Expand_N_Explicit_Dereference;
5128
5129 --------------------------------------
5130 -- Expand_N_Expression_With_Actions --
5131 --------------------------------------
5132
5133 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
3a845e07 5134
4c7e0990 5135 function Process_Action (Act : Node_Id) return Traverse_Result;
b2c28399
AC
5136 -- Inspect and process a single action of an expression_with_actions for
5137 -- transient controlled objects. If such objects are found, the routine
5138 -- generates code to clean them up when the context of the expression is
5139 -- evaluated or elaborated.
9b16cb57 5140
4c7e0990
AC
5141 --------------------
5142 -- Process_Action --
5143 --------------------
5144
5145 function Process_Action (Act : Node_Id) return Traverse_Result is
4c7e0990
AC
5146 begin
5147 if Nkind (Act) = N_Object_Declaration
5148 and then Is_Finalizable_Transient (Act, N)
5149 then
b2c28399
AC
5150 Process_Transient_Object (Act, N);
5151 return Abandon;
9b16cb57 5152
4c7e0990
AC
5153 -- Avoid processing temporary function results multiple times when
5154 -- dealing with nested expression_with_actions.
9b16cb57 5155
4c7e0990
AC
5156 elsif Nkind (Act) = N_Expression_With_Actions then
5157 return Abandon;
5158
b2c28399
AC
5159 -- Do not process temporary function results in loops. This is done
5160 -- by Expand_N_Loop_Statement and Build_Finalizer.
4c7e0990
AC
5161
5162 elsif Nkind (Act) = N_Loop_Statement then
5163 return Abandon;
9b16cb57
RD
5164 end if;
5165
4c7e0990
AC
5166 return OK;
5167 end Process_Action;
9b16cb57 5168
4c7e0990 5169 procedure Process_Single_Action is new Traverse_Proc (Process_Action);
9b16cb57
RD
5170
5171 -- Local variables
5172
4c7e0990 5173 Act : Node_Id;
9b16cb57
RD
5174
5175 -- Start of processing for Expand_N_Expression_With_Actions
5176
5177 begin
e0f63680
AC
5178 -- Process the actions as described above
5179
4c7e0990 5180 Act := First (Actions (N));
e0f63680
AC
5181 while Present (Act) loop
5182 Process_Single_Action (Act);
5183 Next (Act);
5184 end loop;
5185
ebdaa81b 5186 -- Deal with case where there are no actions. In this case we simply
5a521b8a 5187 -- rewrite the node with its expression since we don't need the actions
ebdaa81b
AC
5188 -- and the specification of this node does not allow a null action list.
5189
5a521b8a
AC
5190 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5191 -- the expanded tree and relying on being able to retrieve the original
5192 -- tree in cases like this. This raises a whole lot of issues of whether
5193 -- we have problems elsewhere, which will be addressed in the future???
5194
e0f63680 5195 if Is_Empty_List (Actions (N)) then
5a521b8a 5196 Rewrite (N, Relocate_Node (Expression (N)));
ebdaa81b 5197 end if;
9b16cb57
RD
5198 end Expand_N_Expression_With_Actions;
5199
5200 ----------------------------
5201 -- Expand_N_If_Expression --
5202 ----------------------------
70482933 5203
4b985e20 5204 -- Deal with limited types and condition actions
70482933 5205
9b16cb57 5206 procedure Expand_N_If_Expression (N : Node_Id) is
b2c28399
AC
5207 procedure Process_Actions (Actions : List_Id);
5208 -- Inspect and process a single action list of an if expression for
5209 -- transient controlled objects. If such objects are found, the routine
5210 -- generates code to clean them up when the context of the expression is
5211 -- evaluated or elaborated.
3cebd1c0 5212
b2c28399
AC
5213 ---------------------
5214 -- Process_Actions --
5215 ---------------------
3cebd1c0 5216
b2c28399
AC
5217 procedure Process_Actions (Actions : List_Id) is
5218 Act : Node_Id;
3cebd1c0
AC
5219
5220 begin
b2c28399
AC
5221 Act := First (Actions);
5222 while Present (Act) loop
5223 if Nkind (Act) = N_Object_Declaration
5224 and then Is_Finalizable_Transient (Act, N)
5225 then
5226 Process_Transient_Object (Act, N);
5227 end if;
3cebd1c0 5228
b2c28399
AC
5229 Next (Act);
5230 end loop;
5231 end Process_Actions;
3cebd1c0
AC
5232
5233 -- Local variables
5234
70482933
RK
5235 Loc : constant Source_Ptr := Sloc (N);
5236 Cond : constant Node_Id := First (Expressions (N));
5237 Thenx : constant Node_Id := Next (Cond);
5238 Elsex : constant Node_Id := Next (Thenx);
5239 Typ : constant Entity_Id := Etype (N);
c471e2da 5240
3cebd1c0 5241 Actions : List_Id;
602a7ec0
AC
5242 Cnn : Entity_Id;
5243 Decl : Node_Id;
3cebd1c0 5244 Expr : Node_Id;
602a7ec0
AC
5245 New_If : Node_Id;
5246 New_N : Node_Id;
b2c28399 5247 Ptr_Typ : Entity_Id;
70482933 5248
a53c5613
AC
5249 -- Start of processing for Expand_N_If_Expression
5250
70482933 5251 begin
b6b5cca8
AC
5252 -- Check for MINIMIZED/ELIMINATED overflow mode
5253
5254 if Minimized_Eliminated_Overflow_Check (N) then
5255 Apply_Arithmetic_Overflow_Check (N);
5256 return;
5257 end if;
5258
602a7ec0 5259 -- Fold at compile time if condition known. We have already folded
9b16cb57
RD
5260 -- static if expressions, but it is possible to fold any case in which
5261 -- the condition is known at compile time, even though the result is
5262 -- non-static.
602a7ec0
AC
5263
5264 -- Note that we don't do the fold of such cases in Sem_Elab because
5265 -- it can cause infinite loops with the expander adding a conditional
5266 -- expression, and Sem_Elab circuitry removing it repeatedly.
5267
5268 if Compile_Time_Known_Value (Cond) then
5269 if Is_True (Expr_Value (Cond)) then
cc6f5d75 5270 Expr := Thenx;
602a7ec0
AC
5271 Actions := Then_Actions (N);
5272 else
cc6f5d75 5273 Expr := Elsex;
602a7ec0
AC
5274 Actions := Else_Actions (N);
5275 end if;
5276
5277 Remove (Expr);
ae77c68b
AC
5278
5279 if Present (Actions) then
ae77c68b
AC
5280 Rewrite (N,
5281 Make_Expression_With_Actions (Loc,
5282 Expression => Relocate_Node (Expr),
5283 Actions => Actions));
5284 Analyze_And_Resolve (N, Typ);
ae77c68b
AC
5285 else
5286 Rewrite (N, Relocate_Node (Expr));
5287 end if;
602a7ec0
AC
5288
5289 -- Note that the result is never static (legitimate cases of static
9b16cb57 5290 -- if expressions were folded in Sem_Eval).
602a7ec0
AC
5291
5292 Set_Is_Static_Expression (N, False);
5293 return;
5294 end if;
5295
113a9fb6
AC
5296 -- If the type is limited, and the back end does not handle limited
5297 -- types, then we expand as follows to avoid the possibility of
5298 -- improper copying.
ac7120ce 5299
c471e2da
AC
5300 -- type Ptr is access all Typ;
5301 -- Cnn : Ptr;
ac7120ce
RD
5302 -- if cond then
5303 -- <<then actions>>
5304 -- Cnn := then-expr'Unrestricted_Access;
5305 -- else
5306 -- <<else actions>>
5307 -- Cnn := else-expr'Unrestricted_Access;
5308 -- end if;
5309
9b16cb57 5310 -- and replace the if expression by a reference to Cnn.all.
ac7120ce 5311
305caf42
AC
5312 -- This special case can be skipped if the back end handles limited
5313 -- types properly and ensures that no incorrect copies are made.
5314
5315 if Is_By_Reference_Type (Typ)
5316 and then not Back_End_Handles_Limited_Types
5317 then
b2c28399
AC
5318 -- When the "then" or "else" expressions involve controlled function
5319 -- calls, generated temporaries are chained on the corresponding list
5320 -- of actions. These temporaries need to be finalized after the if
5321 -- expression is evaluated.
3cebd1c0 5322
b2c28399
AC
5323 Process_Actions (Then_Actions (N));
5324 Process_Actions (Else_Actions (N));
3cebd1c0 5325
b2c28399
AC
5326 -- Generate:
5327 -- type Ann is access all Typ;
3cebd1c0 5328
b2c28399 5329 Ptr_Typ := Make_Temporary (Loc, 'A');
3cebd1c0 5330
b2c28399
AC
5331 Insert_Action (N,
5332 Make_Full_Type_Declaration (Loc,
5333 Defining_Identifier => Ptr_Typ,
5334 Type_Definition =>
5335 Make_Access_To_Object_Definition (Loc,
5336 All_Present => True,
e4494292 5337 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
3cebd1c0 5338
b2c28399
AC
5339 -- Generate:
5340 -- Cnn : Ann;
3cebd1c0 5341
b2c28399 5342 Cnn := Make_Temporary (Loc, 'C', N);
3cebd1c0 5343
b2c28399
AC
5344 Decl :=
5345 Make_Object_Declaration (Loc,
5346 Defining_Identifier => Cnn,
5347 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
3cebd1c0 5348
b2c28399
AC
5349 -- Generate:
5350 -- if Cond then
5351 -- Cnn := <Thenx>'Unrestricted_Access;
5352 -- else
5353 -- Cnn := <Elsex>'Unrestricted_Access;
5354 -- end if;
3cebd1c0 5355
b2c28399
AC
5356 New_If :=
5357 Make_Implicit_If_Statement (N,
5358 Condition => Relocate_Node (Cond),
5359 Then_Statements => New_List (
5360 Make_Assignment_Statement (Sloc (Thenx),
e4494292 5361 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
b2c28399
AC
5362 Expression =>
5363 Make_Attribute_Reference (Loc,
5364 Prefix => Relocate_Node (Thenx),
5365 Attribute_Name => Name_Unrestricted_Access))),
3cebd1c0 5366
b2c28399
AC
5367 Else_Statements => New_List (
5368 Make_Assignment_Statement (Sloc (Elsex),
e4494292 5369 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
b2c28399
AC
5370 Expression =>
5371 Make_Attribute_Reference (Loc,
5372 Prefix => Relocate_Node (Elsex),
5373 Attribute_Name => Name_Unrestricted_Access))));
3cebd1c0 5374
414c6563
AC
5375 -- Preserve the original context for which the if statement is being
5376 -- generated. This is needed by the finalization machinery to prevent
5377 -- the premature finalization of controlled objects found within the
5378 -- if statement.
5379
5380 Set_From_Conditional_Expression (New_If);
5381
5382 New_N :=
5383 Make_Explicit_Dereference (Loc,
5384 Prefix => New_Occurrence_Of (Cnn, Loc));
fb1949a0 5385
113a9fb6
AC
5386 -- If the result is an unconstrained array and the if expression is in a
5387 -- context other than the initializing expression of the declaration of
5388 -- an object, then we pull out the if expression as follows:
5389
5390 -- Cnn : constant typ := if-expression
5391
5392 -- and then replace the if expression with an occurrence of Cnn. This
5393 -- avoids the need in the back end to create on-the-fly variable length
5394 -- temporaries (which it cannot do!)
5395
5396 -- Note that the test for being in an object declaration avoids doing an
5397 -- unnecessary expansion, and also avoids infinite recursion.
5398
5399 elsif Is_Array_Type (Typ) and then not Is_Constrained (Typ)
5400 and then (Nkind (Parent (N)) /= N_Object_Declaration
5401 or else Expression (Parent (N)) /= N)
5402 then
5403 declare
5404 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
5405 begin
5406 Insert_Action (N,
5407 Make_Object_Declaration (Loc,
5408 Defining_Identifier => Cnn,
5409 Constant_Present => True,
5410 Object_Definition => New_Occurrence_Of (Typ, Loc),
5411 Expression => Relocate_Node (N),
5412 Has_Init_Expression => True));
5413
5414 Rewrite (N, New_Occurrence_Of (Cnn, Loc));
5415 return;
5416 end;
5417
c471e2da
AC
5418 -- For other types, we only need to expand if there are other actions
5419 -- associated with either branch.
5420
5421 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
c471e2da 5422
0812b84e 5423 -- We now wrap the actions into the appropriate expression
fb1949a0 5424
0812b84e
AC
5425 if Present (Then_Actions (N)) then
5426 Rewrite (Thenx,
b2c28399
AC
5427 Make_Expression_With_Actions (Sloc (Thenx),
5428 Actions => Then_Actions (N),
5429 Expression => Relocate_Node (Thenx)));
5430
0812b84e
AC
5431 Set_Then_Actions (N, No_List);
5432 Analyze_And_Resolve (Thenx, Typ);
5433 end if;
305caf42 5434
0812b84e
AC
5435 if Present (Else_Actions (N)) then
5436 Rewrite (Elsex,
b2c28399
AC
5437 Make_Expression_With_Actions (Sloc (Elsex),
5438 Actions => Else_Actions (N),
5439 Expression => Relocate_Node (Elsex)));
5440
0812b84e
AC
5441 Set_Else_Actions (N, No_List);
5442 Analyze_And_Resolve (Elsex, Typ);
305caf42
AC
5443 end if;
5444
0812b84e
AC
5445 return;
5446
b2c28399
AC
5447 -- If no actions then no expansion needed, gigi will handle it using the
5448 -- same approach as a C conditional expression.
305caf42
AC
5449
5450 else
c471e2da
AC
5451 return;
5452 end if;
5453
305caf42
AC
5454 -- Fall through here for either the limited expansion, or the case of
5455 -- inserting actions for non-limited types. In both these cases, we must
5456 -- move the SLOC of the parent If statement to the newly created one and
3fc5d116
RD
5457 -- change it to the SLOC of the expression which, after expansion, will
5458 -- correspond to what is being evaluated.
c471e2da 5459
533369aa 5460 if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
c471e2da
AC
5461 Set_Sloc (New_If, Sloc (Parent (N)));
5462 Set_Sloc (Parent (N), Loc);
5463 end if;
70482933 5464
3fc5d116
RD
5465 -- Make sure Then_Actions and Else_Actions are appropriately moved
5466 -- to the new if statement.
5467
c471e2da
AC
5468 if Present (Then_Actions (N)) then
5469 Insert_List_Before
5470 (First (Then_Statements (New_If)), Then_Actions (N));
70482933 5471 end if;
c471e2da
AC
5472
5473 if Present (Else_Actions (N)) then
5474 Insert_List_Before
5475 (First (Else_Statements (New_If)), Else_Actions (N));
5476 end if;
5477
5478 Insert_Action (N, Decl);
5479 Insert_Action (N, New_If);
5480 Rewrite (N, New_N);
5481 Analyze_And_Resolve (N, Typ);
9b16cb57 5482 end Expand_N_If_Expression;
35a1c212 5483
70482933
RK
5484 -----------------
5485 -- Expand_N_In --
5486 -----------------
5487
5488 procedure Expand_N_In (N : Node_Id) is
7324bf49 5489 Loc : constant Source_Ptr := Sloc (N);
4818e7b9 5490 Restyp : constant Entity_Id := Etype (N);
7324bf49
AC
5491 Lop : constant Node_Id := Left_Opnd (N);
5492 Rop : constant Node_Id := Right_Opnd (N);
5493 Static : constant Boolean := Is_OK_Static_Expression (N);
70482933 5494
4818e7b9
RD
5495 Ltyp : Entity_Id;
5496 Rtyp : Entity_Id;
5497
630d30e9
RD
5498 procedure Substitute_Valid_Check;
5499 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5500 -- test for the left operand being in range of its subtype.
5501
5502 ----------------------------
5503 -- Substitute_Valid_Check --
5504 ----------------------------
5505
5506 procedure Substitute_Valid_Check is
5507 begin
c7532b2d
AC
5508 Rewrite (N,
5509 Make_Attribute_Reference (Loc,
5510 Prefix => Relocate_Node (Lop),
5511 Attribute_Name => Name_Valid));
630d30e9 5512
c7532b2d 5513 Analyze_And_Resolve (N, Restyp);
630d30e9 5514
acad3c0a
AC
5515 -- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5516 -- in which case, this usage makes sense, and in any case, we have
5517 -- actually eliminated the danger of optimization above.
5518
a7f1b24f 5519 if Overflow_Check_Mode not in Minimized_Or_Eliminated then
324ac540
AC
5520 Error_Msg_N
5521 ("??explicit membership test may be optimized away", N);
acad3c0a 5522 Error_Msg_N -- CODEFIX
324ac540 5523 ("\??use ''Valid attribute instead", N);
acad3c0a
AC
5524 end if;
5525
c7532b2d 5526 return;
630d30e9
RD
5527 end Substitute_Valid_Check;
5528
5529 -- Start of processing for Expand_N_In
5530
70482933 5531 begin
308e6f3a 5532 -- If set membership case, expand with separate procedure
4818e7b9 5533
197e4514 5534 if Present (Alternatives (N)) then
a3068ca6 5535 Expand_Set_Membership (N);
197e4514
AC
5536 return;
5537 end if;
5538
4818e7b9
RD
5539 -- Not set membership, proceed with expansion
5540
5541 Ltyp := Etype (Left_Opnd (N));
5542 Rtyp := Etype (Right_Opnd (N));
5543
5707e389 5544 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
f6194278
RD
5545 -- type, then expand with a separate procedure. Note the use of the
5546 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5547
a7f1b24f 5548 if Overflow_Check_Mode in Minimized_Or_Eliminated
f6194278
RD
5549 and then Is_Signed_Integer_Type (Ltyp)
5550 and then not No_Minimize_Eliminate (N)
5551 then
5552 Expand_Membership_Minimize_Eliminate_Overflow (N);
5553 return;
5554 end if;
5555
630d30e9
RD
5556 -- Check case of explicit test for an expression in range of its
5557 -- subtype. This is suspicious usage and we replace it with a 'Valid
b6b5cca8 5558 -- test and give a warning for scalar types.
630d30e9 5559
4818e7b9 5560 if Is_Scalar_Type (Ltyp)
b6b5cca8
AC
5561
5562 -- Only relevant for source comparisons
5563
5564 and then Comes_From_Source (N)
5565
5566 -- In floating-point this is a standard way to check for finite values
5567 -- and using 'Valid would typically be a pessimization.
5568
4818e7b9 5569 and then not Is_Floating_Point_Type (Ltyp)
b6b5cca8
AC
5570
5571 -- Don't give the message unless right operand is a type entity and
5572 -- the type of the left operand matches this type. Note that this
5573 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5574 -- checks have changed the type of the left operand.
5575
630d30e9 5576 and then Nkind (Rop) in N_Has_Entity
4818e7b9 5577 and then Ltyp = Entity (Rop)
b6b5cca8
AC
5578
5579 -- Skip in VM mode, where we have no sense of invalid values. The
5580 -- warning still seems relevant, but not important enough to worry.
5581
26bff3d9 5582 and then VM_Target = No_VM
b6b5cca8
AC
5583
5584 -- Skip this for predicated types, where such expressions are a
5585 -- reasonable way of testing if something meets the predicate.
5586
3d6db7f8 5587 and then not Present (Predicate_Function (Ltyp))
630d30e9
RD
5588 then
5589 Substitute_Valid_Check;
5590 return;
5591 end if;
5592
20b5d666
JM
5593 -- Do validity check on operands
5594
5595 if Validity_Checks_On and Validity_Check_Operands then
5596 Ensure_Valid (Left_Opnd (N));
5597 Validity_Check_Range (Right_Opnd (N));
5598 end if;
5599
630d30e9 5600 -- Case of explicit range
fbf5a39b
AC
5601
5602 if Nkind (Rop) = N_Range then
5603 declare
630d30e9
RD
5604 Lo : constant Node_Id := Low_Bound (Rop);
5605 Hi : constant Node_Id := High_Bound (Rop);
5606
5607 Lo_Orig : constant Node_Id := Original_Node (Lo);
5608 Hi_Orig : constant Node_Id := Original_Node (Hi);
5609
c800f862
RD
5610 Lcheck : Compare_Result;
5611 Ucheck : Compare_Result;
fbf5a39b 5612
d766cee3
RD
5613 Warn1 : constant Boolean :=
5614 Constant_Condition_Warnings
c800f862
RD
5615 and then Comes_From_Source (N)
5616 and then not In_Instance;
d766cee3 5617 -- This must be true for any of the optimization warnings, we
9a0ddeee
AC
5618 -- clearly want to give them only for source with the flag on. We
5619 -- also skip these warnings in an instance since it may be the
5620 -- case that different instantiations have different ranges.
d766cee3
RD
5621
5622 Warn2 : constant Boolean :=
5623 Warn1
5624 and then Nkind (Original_Node (Rop)) = N_Range
5625 and then Is_Integer_Type (Etype (Lo));
5626 -- For the case where only one bound warning is elided, we also
5627 -- insist on an explicit range and an integer type. The reason is
5628 -- that the use of enumeration ranges including an end point is
9a0ddeee
AC
5629 -- common, as is the use of a subtype name, one of whose bounds is
5630 -- the same as the type of the expression.
d766cee3 5631
fbf5a39b 5632 begin
c95e0edc 5633 -- If test is explicit x'First .. x'Last, replace by valid check
630d30e9 5634
e606088a
AC
5635 -- Could use some individual comments for this complex test ???
5636
d766cee3 5637 if Is_Scalar_Type (Ltyp)
b6b5cca8
AC
5638
5639 -- And left operand is X'First where X matches left operand
5640 -- type (this eliminates cases of type mismatch, including
5641 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5642 -- type of the left operand.
5643
630d30e9
RD
5644 and then Nkind (Lo_Orig) = N_Attribute_Reference
5645 and then Attribute_Name (Lo_Orig) = Name_First
5646 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
d766cee3 5647 and then Entity (Prefix (Lo_Orig)) = Ltyp
b6b5cca8 5648
cc6f5d75 5649 -- Same tests for right operand
b6b5cca8 5650
630d30e9
RD
5651 and then Nkind (Hi_Orig) = N_Attribute_Reference
5652 and then Attribute_Name (Hi_Orig) = Name_Last
5653 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
d766cee3 5654 and then Entity (Prefix (Hi_Orig)) = Ltyp
b6b5cca8
AC
5655
5656 -- Relevant only for source cases
5657
630d30e9 5658 and then Comes_From_Source (N)
b6b5cca8
AC
5659
5660 -- Omit for VM cases, where we don't have invalid values
5661
26bff3d9 5662 and then VM_Target = No_VM
630d30e9
RD
5663 then
5664 Substitute_Valid_Check;
4818e7b9 5665 goto Leave;
630d30e9
RD
5666 end if;
5667
d766cee3
RD
5668 -- If bounds of type are known at compile time, and the end points
5669 -- are known at compile time and identical, this is another case
5670 -- for substituting a valid test. We only do this for discrete
5671 -- types, since it won't arise in practice for float types.
5672
5673 if Comes_From_Source (N)
5674 and then Is_Discrete_Type (Ltyp)
5675 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
5676 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
5677 and then Compile_Time_Known_Value (Lo)
5678 and then Compile_Time_Known_Value (Hi)
5679 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
5680 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
94eefd2e 5681
f6194278
RD
5682 -- Kill warnings in instances, since they may be cases where we
5683 -- have a test in the generic that makes sense with some types
5684 -- and not with other types.
94eefd2e
RD
5685
5686 and then not In_Instance
d766cee3
RD
5687 then
5688 Substitute_Valid_Check;
4818e7b9 5689 goto Leave;
d766cee3
RD
5690 end if;
5691
9a0ddeee
AC
5692 -- If we have an explicit range, do a bit of optimization based on
5693 -- range analysis (we may be able to kill one or both checks).
630d30e9 5694
c800f862
RD
5695 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
5696 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
5697
630d30e9
RD
5698 -- If either check is known to fail, replace result by False since
5699 -- the other check does not matter. Preserve the static flag for
5700 -- legality checks, because we are constant-folding beyond RM 4.9.
fbf5a39b
AC
5701
5702 if Lcheck = LT or else Ucheck = GT then
c800f862 5703 if Warn1 then
685bc70f
AC
5704 Error_Msg_N ("?c?range test optimized away", N);
5705 Error_Msg_N ("\?c?value is known to be out of range", N);
d766cee3
RD
5706 end if;
5707
e4494292 5708 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 5709 Analyze_And_Resolve (N, Restyp);
7324bf49 5710 Set_Is_Static_Expression (N, Static);
4818e7b9 5711 goto Leave;
fbf5a39b 5712
685094bf
RD
5713 -- If both checks are known to succeed, replace result by True,
5714 -- since we know we are in range.
fbf5a39b
AC
5715
5716 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
c800f862 5717 if Warn1 then
685bc70f
AC
5718 Error_Msg_N ("?c?range test optimized away", N);
5719 Error_Msg_N ("\?c?value is known to be in range", N);
d766cee3
RD
5720 end if;
5721
e4494292 5722 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4818e7b9 5723 Analyze_And_Resolve (N, Restyp);
7324bf49 5724 Set_Is_Static_Expression (N, Static);
4818e7b9 5725 goto Leave;
fbf5a39b 5726
d766cee3
RD
5727 -- If lower bound check succeeds and upper bound check is not
5728 -- known to succeed or fail, then replace the range check with
5729 -- a comparison against the upper bound.
fbf5a39b
AC
5730
5731 elsif Lcheck in Compare_GE then
94eefd2e 5732 if Warn2 and then not In_Instance then
324ac540
AC
5733 Error_Msg_N ("??lower bound test optimized away", Lo);
5734 Error_Msg_N ("\??value is known to be in range", Lo);
d766cee3
RD
5735 end if;
5736
fbf5a39b
AC
5737 Rewrite (N,
5738 Make_Op_Le (Loc,
5739 Left_Opnd => Lop,
5740 Right_Opnd => High_Bound (Rop)));
4818e7b9
RD
5741 Analyze_And_Resolve (N, Restyp);
5742 goto Leave;
fbf5a39b 5743
d766cee3
RD
5744 -- If upper bound check succeeds and lower bound check is not
5745 -- known to succeed or fail, then replace the range check with
5746 -- a comparison against the lower bound.
fbf5a39b
AC
5747
5748 elsif Ucheck in Compare_LE then
94eefd2e 5749 if Warn2 and then not In_Instance then
324ac540
AC
5750 Error_Msg_N ("??upper bound test optimized away", Hi);
5751 Error_Msg_N ("\??value is known to be in range", Hi);
d766cee3
RD
5752 end if;
5753
fbf5a39b
AC
5754 Rewrite (N,
5755 Make_Op_Ge (Loc,
5756 Left_Opnd => Lop,
5757 Right_Opnd => Low_Bound (Rop)));
4818e7b9
RD
5758 Analyze_And_Resolve (N, Restyp);
5759 goto Leave;
fbf5a39b 5760 end if;
c800f862
RD
5761
5762 -- We couldn't optimize away the range check, but there is one
5763 -- more issue. If we are checking constant conditionals, then we
5764 -- see if we can determine the outcome assuming everything is
5765 -- valid, and if so give an appropriate warning.
5766
5767 if Warn1 and then not Assume_No_Invalid_Values then
5768 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
5769 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
5770
5771 -- Result is out of range for valid value
5772
5773 if Lcheck = LT or else Ucheck = GT then
ed2233dc 5774 Error_Msg_N
685bc70f 5775 ("?c?value can only be in range if it is invalid", N);
c800f862
RD
5776
5777 -- Result is in range for valid value
5778
5779 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
ed2233dc 5780 Error_Msg_N
685bc70f 5781 ("?c?value can only be out of range if it is invalid", N);
c800f862
RD
5782
5783 -- Lower bound check succeeds if value is valid
5784
5785 elsif Warn2 and then Lcheck in Compare_GE then
ed2233dc 5786 Error_Msg_N
685bc70f 5787 ("?c?lower bound check only fails if it is invalid", Lo);
c800f862
RD
5788
5789 -- Upper bound check succeeds if value is valid
5790
5791 elsif Warn2 and then Ucheck in Compare_LE then
ed2233dc 5792 Error_Msg_N
685bc70f 5793 ("?c?upper bound check only fails for invalid values", Hi);
c800f862
RD
5794 end if;
5795 end if;
fbf5a39b
AC
5796 end;
5797
5798 -- For all other cases of an explicit range, nothing to be done
70482933 5799
4818e7b9 5800 goto Leave;
70482933
RK
5801
5802 -- Here right operand is a subtype mark
5803
5804 else
5805 declare
82878151
AC
5806 Typ : Entity_Id := Etype (Rop);
5807 Is_Acc : constant Boolean := Is_Access_Type (Typ);
5808 Cond : Node_Id := Empty;
5809 New_N : Node_Id;
5810 Obj : Node_Id := Lop;
5811 SCIL_Node : Node_Id;
70482933
RK
5812
5813 begin
5814 Remove_Side_Effects (Obj);
5815
5816 -- For tagged type, do tagged membership operation
5817
5818 if Is_Tagged_Type (Typ) then
fbf5a39b 5819
26bff3d9
JM
5820 -- No expansion will be performed when VM_Target, as the VM
5821 -- back-ends will handle the membership tests directly (tags
5822 -- are not explicitly represented in Java objects, so the
5823 -- normal tagged membership expansion is not what we want).
70482933 5824
1f110335 5825 if Tagged_Type_Expansion then
82878151
AC
5826 Tagged_Membership (N, SCIL_Node, New_N);
5827 Rewrite (N, New_N);
4818e7b9 5828 Analyze_And_Resolve (N, Restyp);
82878151
AC
5829
5830 -- Update decoration of relocated node referenced by the
5831 -- SCIL node.
5832
9a0ddeee 5833 if Generate_SCIL and then Present (SCIL_Node) then
7665e4bd 5834 Set_SCIL_Node (N, SCIL_Node);
82878151 5835 end if;
70482933
RK
5836 end if;
5837
4818e7b9 5838 goto Leave;
70482933 5839
c95e0edc 5840 -- If type is scalar type, rewrite as x in t'First .. t'Last.
70482933 5841 -- This reason we do this is that the bounds may have the wrong
c800f862
RD
5842 -- type if they come from the original type definition. Also this
5843 -- way we get all the processing above for an explicit range.
70482933 5844
f6194278 5845 -- Don't do this for predicated types, since in this case we
a90bd866 5846 -- want to check the predicate.
c0f136cd 5847
c7532b2d
AC
5848 elsif Is_Scalar_Type (Typ) then
5849 if No (Predicate_Function (Typ)) then
5850 Rewrite (Rop,
5851 Make_Range (Loc,
5852 Low_Bound =>
5853 Make_Attribute_Reference (Loc,
5854 Attribute_Name => Name_First,
e4494292 5855 Prefix => New_Occurrence_Of (Typ, Loc)),
c7532b2d
AC
5856
5857 High_Bound =>
5858 Make_Attribute_Reference (Loc,
5859 Attribute_Name => Name_Last,
e4494292 5860 Prefix => New_Occurrence_Of (Typ, Loc))));
c7532b2d
AC
5861 Analyze_And_Resolve (N, Restyp);
5862 end if;
70482933 5863
4818e7b9 5864 goto Leave;
5d09245e
AC
5865
5866 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5867 -- a membership test if the subtype mark denotes a constrained
5868 -- Unchecked_Union subtype and the expression lacks inferable
5869 -- discriminants.
5870
5871 elsif Is_Unchecked_Union (Base_Type (Typ))
5872 and then Is_Constrained (Typ)
5873 and then not Has_Inferable_Discriminants (Lop)
5874 then
5875 Insert_Action (N,
5876 Make_Raise_Program_Error (Loc,
5877 Reason => PE_Unchecked_Union_Restriction));
5878
9a0ddeee 5879 -- Prevent Gigi from generating incorrect code by rewriting the
f6194278 5880 -- test as False. What is this undocumented thing about ???
5d09245e 5881
9a0ddeee 5882 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 5883 goto Leave;
70482933
RK
5884 end if;
5885
fbf5a39b
AC
5886 -- Here we have a non-scalar type
5887
70482933
RK
5888 if Is_Acc then
5889 Typ := Designated_Type (Typ);
5890 end if;
5891
5892 if not Is_Constrained (Typ) then
e4494292 5893 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4818e7b9 5894 Analyze_And_Resolve (N, Restyp);
70482933 5895
685094bf
RD
5896 -- For the constrained array case, we have to check the subscripts
5897 -- for an exact match if the lengths are non-zero (the lengths
5898 -- must match in any case).
70482933
RK
5899
5900 elsif Is_Array_Type (Typ) then
fbf5a39b 5901 Check_Subscripts : declare
9a0ddeee 5902 function Build_Attribute_Reference
2e071734
AC
5903 (E : Node_Id;
5904 Nam : Name_Id;
5905 Dim : Nat) return Node_Id;
9a0ddeee 5906 -- Build attribute reference E'Nam (Dim)
70482933 5907
9a0ddeee
AC
5908 -------------------------------
5909 -- Build_Attribute_Reference --
5910 -------------------------------
fbf5a39b 5911
9a0ddeee 5912 function Build_Attribute_Reference
2e071734
AC
5913 (E : Node_Id;
5914 Nam : Name_Id;
5915 Dim : Nat) return Node_Id
70482933
RK
5916 is
5917 begin
5918 return
5919 Make_Attribute_Reference (Loc,
9a0ddeee 5920 Prefix => E,
70482933 5921 Attribute_Name => Nam,
9a0ddeee 5922 Expressions => New_List (
70482933 5923 Make_Integer_Literal (Loc, Dim)));
9a0ddeee 5924 end Build_Attribute_Reference;
70482933 5925
fad0600d 5926 -- Start of processing for Check_Subscripts
fbf5a39b 5927
70482933
RK
5928 begin
5929 for J in 1 .. Number_Dimensions (Typ) loop
5930 Evolve_And_Then (Cond,
5931 Make_Op_Eq (Loc,
5932 Left_Opnd =>
9a0ddeee 5933 Build_Attribute_Reference
fbf5a39b
AC
5934 (Duplicate_Subexpr_No_Checks (Obj),
5935 Name_First, J),
70482933 5936 Right_Opnd =>
9a0ddeee 5937 Build_Attribute_Reference
70482933
RK
5938 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
5939
5940 Evolve_And_Then (Cond,
5941 Make_Op_Eq (Loc,
5942 Left_Opnd =>
9a0ddeee 5943 Build_Attribute_Reference
fbf5a39b
AC
5944 (Duplicate_Subexpr_No_Checks (Obj),
5945 Name_Last, J),
70482933 5946 Right_Opnd =>
9a0ddeee 5947 Build_Attribute_Reference
70482933
RK
5948 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
5949 end loop;
5950
5951 if Is_Acc then
fbf5a39b
AC
5952 Cond :=
5953 Make_Or_Else (Loc,
cc6f5d75 5954 Left_Opnd =>
fbf5a39b
AC
5955 Make_Op_Eq (Loc,
5956 Left_Opnd => Obj,
5957 Right_Opnd => Make_Null (Loc)),
5958 Right_Opnd => Cond);
70482933
RK
5959 end if;
5960
5961 Rewrite (N, Cond);
4818e7b9 5962 Analyze_And_Resolve (N, Restyp);
fbf5a39b 5963 end Check_Subscripts;
70482933 5964
685094bf
RD
5965 -- These are the cases where constraint checks may be required,
5966 -- e.g. records with possible discriminants
70482933
RK
5967
5968 else
5969 -- Expand the test into a series of discriminant comparisons.
685094bf
RD
5970 -- The expression that is built is the negation of the one that
5971 -- is used for checking discriminant constraints.
70482933
RK
5972
5973 Obj := Relocate_Node (Left_Opnd (N));
5974
5975 if Has_Discriminants (Typ) then
5976 Cond := Make_Op_Not (Loc,
5977 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
5978
5979 if Is_Acc then
5980 Cond := Make_Or_Else (Loc,
cc6f5d75 5981 Left_Opnd =>
70482933
RK
5982 Make_Op_Eq (Loc,
5983 Left_Opnd => Obj,
5984 Right_Opnd => Make_Null (Loc)),
5985 Right_Opnd => Cond);
5986 end if;
5987
5988 else
5989 Cond := New_Occurrence_Of (Standard_True, Loc);
5990 end if;
5991
5992 Rewrite (N, Cond);
4818e7b9 5993 Analyze_And_Resolve (N, Restyp);
70482933 5994 end if;
6cce2156
GD
5995
5996 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5997 -- expression of an anonymous access type. This can involve an
5998 -- accessibility test and a tagged type membership test in the
5999 -- case of tagged designated types.
6000
6001 if Ada_Version >= Ada_2012
6002 and then Is_Acc
6003 and then Ekind (Ltyp) = E_Anonymous_Access_Type
6004 then
6005 declare
6006 Expr_Entity : Entity_Id := Empty;
6007 New_N : Node_Id;
6008 Param_Level : Node_Id;
6009 Type_Level : Node_Id;
996c8821 6010
6cce2156
GD
6011 begin
6012 if Is_Entity_Name (Lop) then
6013 Expr_Entity := Param_Entity (Lop);
996c8821 6014
6cce2156
GD
6015 if not Present (Expr_Entity) then
6016 Expr_Entity := Entity (Lop);
6017 end if;
6018 end if;
6019
6020 -- If a conversion of the anonymous access value to the
6021 -- tested type would be illegal, then the result is False.
6022
6023 if not Valid_Conversion
6024 (Lop, Rtyp, Lop, Report_Errs => False)
6025 then
6026 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6027 Analyze_And_Resolve (N, Restyp);
6028
6029 -- Apply an accessibility check if the access object has an
6030 -- associated access level and when the level of the type is
6031 -- less deep than the level of the access parameter. This
6032 -- only occur for access parameters and stand-alone objects
6033 -- of an anonymous access type.
6034
6035 else
6036 if Present (Expr_Entity)
996c8821
RD
6037 and then
6038 Present
6039 (Effective_Extra_Accessibility (Expr_Entity))
6040 and then UI_Gt (Object_Access_Level (Lop),
6041 Type_Access_Level (Rtyp))
6cce2156
GD
6042 then
6043 Param_Level :=
6044 New_Occurrence_Of
d15f9422 6045 (Effective_Extra_Accessibility (Expr_Entity), Loc);
6cce2156
GD
6046
6047 Type_Level :=
6048 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
6049
6050 -- Return True only if the accessibility level of the
6051 -- expression entity is not deeper than the level of
6052 -- the tested access type.
6053
6054 Rewrite (N,
6055 Make_And_Then (Loc,
6056 Left_Opnd => Relocate_Node (N),
6057 Right_Opnd => Make_Op_Le (Loc,
6058 Left_Opnd => Param_Level,
6059 Right_Opnd => Type_Level)));
6060
6061 Analyze_And_Resolve (N);
6062 end if;
6063
6064 -- If the designated type is tagged, do tagged membership
6065 -- operation.
6066
6067 -- *** NOTE: we have to check not null before doing the
6068 -- tagged membership test (but maybe that can be done
6069 -- inside Tagged_Membership?).
6070
6071 if Is_Tagged_Type (Typ) then
6072 Rewrite (N,
6073 Make_And_Then (Loc,
6074 Left_Opnd => Relocate_Node (N),
6075 Right_Opnd =>
6076 Make_Op_Ne (Loc,
6077 Left_Opnd => Obj,
6078 Right_Opnd => Make_Null (Loc))));
6079
6080 -- No expansion will be performed when VM_Target, as
6081 -- the VM back-ends will handle the membership tests
6082 -- directly (tags are not explicitly represented in
6083 -- Java objects, so the normal tagged membership
6084 -- expansion is not what we want).
6085
6086 if Tagged_Type_Expansion then
6087
6088 -- Note that we have to pass Original_Node, because
6089 -- the membership test might already have been
6090 -- rewritten by earlier parts of membership test.
6091
6092 Tagged_Membership
6093 (Original_Node (N), SCIL_Node, New_N);
6094
6095 -- Update decoration of relocated node referenced
6096 -- by the SCIL node.
6097
6098 if Generate_SCIL and then Present (SCIL_Node) then
6099 Set_SCIL_Node (New_N, SCIL_Node);
6100 end if;
6101
6102 Rewrite (N,
6103 Make_And_Then (Loc,
6104 Left_Opnd => Relocate_Node (N),
6105 Right_Opnd => New_N));
6106
6107 Analyze_And_Resolve (N, Restyp);
6108 end if;
6109 end if;
6110 end if;
6111 end;
6112 end if;
70482933
RK
6113 end;
6114 end if;
4818e7b9
RD
6115
6116 -- At this point, we have done the processing required for the basic
6117 -- membership test, but not yet dealt with the predicate.
6118
6119 <<Leave>>
6120
c7532b2d
AC
6121 -- If a predicate is present, then we do the predicate test, but we
6122 -- most certainly want to omit this if we are within the predicate
a90bd866 6123 -- function itself, since otherwise we have an infinite recursion.
3d6db7f8
GD
6124 -- The check should also not be emitted when testing against a range
6125 -- (the check is only done when the right operand is a subtype; see
6126 -- RM12-4.5.2 (28.1/3-30/3)).
4818e7b9 6127
c7532b2d
AC
6128 declare
6129 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
4818e7b9 6130
c7532b2d
AC
6131 begin
6132 if Present (PFunc)
6133 and then Current_Scope /= PFunc
3d6db7f8 6134 and then Nkind (Rop) /= N_Range
c7532b2d
AC
6135 then
6136 Rewrite (N,
6137 Make_And_Then (Loc,
6138 Left_Opnd => Relocate_Node (N),
fc142f63 6139 Right_Opnd => Make_Predicate_Call (Rtyp, Lop, Mem => True)));
4818e7b9 6140
c7532b2d 6141 -- Analyze new expression, mark left operand as analyzed to
b2009d46
AC
6142 -- avoid infinite recursion adding predicate calls. Similarly,
6143 -- suppress further range checks on the call.
4818e7b9 6144
c7532b2d 6145 Set_Analyzed (Left_Opnd (N));
b2009d46 6146 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
4818e7b9 6147
c7532b2d
AC
6148 -- All done, skip attempt at compile time determination of result
6149
6150 return;
6151 end if;
6152 end;
70482933
RK
6153 end Expand_N_In;
6154
6155 --------------------------------
6156 -- Expand_N_Indexed_Component --
6157 --------------------------------
6158
6159 procedure Expand_N_Indexed_Component (N : Node_Id) is
6160 Loc : constant Source_Ptr := Sloc (N);
6161 Typ : constant Entity_Id := Etype (N);
6162 P : constant Node_Id := Prefix (N);
6163 T : constant Entity_Id := Etype (P);
5972791c 6164 Atp : Entity_Id;
70482933
RK
6165
6166 begin
685094bf
RD
6167 -- A special optimization, if we have an indexed component that is
6168 -- selecting from a slice, then we can eliminate the slice, since, for
6169 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6170 -- the range check required by the slice. The range check for the slice
6171 -- itself has already been generated. The range check for the
6172 -- subscripting operation is ensured by converting the subject to
6173 -- the subtype of the slice.
6174
6175 -- This optimization not only generates better code, avoiding slice
6176 -- messing especially in the packed case, but more importantly bypasses
6177 -- some problems in handling this peculiar case, for example, the issue
6178 -- of dealing specially with object renamings.
70482933 6179
45ec05e1
RD
6180 if Nkind (P) = N_Slice
6181
6182 -- This optimization is disabled for CodePeer because it can transform
6183 -- an index-check constraint_error into a range-check constraint_error
6184 -- and CodePeer cares about that distinction.
6185
6186 and then not CodePeer_Mode
6187 then
70482933
RK
6188 Rewrite (N,
6189 Make_Indexed_Component (Loc,
cc6f5d75 6190 Prefix => Prefix (P),
70482933
RK
6191 Expressions => New_List (
6192 Convert_To
6193 (Etype (First_Index (Etype (P))),
6194 First (Expressions (N))))));
6195 Analyze_And_Resolve (N, Typ);
6196 return;
6197 end if;
6198
b4592168
GD
6199 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6200 -- function, then additional actuals must be passed.
6201
0791fbe9 6202 if Ada_Version >= Ada_2005
b4592168
GD
6203 and then Is_Build_In_Place_Function_Call (P)
6204 then
6205 Make_Build_In_Place_Call_In_Anonymous_Context (P);
6206 end if;
6207
685094bf 6208 -- If the prefix is an access type, then we unconditionally rewrite if
09494c32 6209 -- as an explicit dereference. This simplifies processing for several
685094bf
RD
6210 -- cases, including packed array cases and certain cases in which checks
6211 -- must be generated. We used to try to do this only when it was
6212 -- necessary, but it cleans up the code to do it all the time.
70482933
RK
6213
6214 if Is_Access_Type (T) then
2717634d 6215 Insert_Explicit_Dereference (P);
70482933 6216 Analyze_And_Resolve (P, Designated_Type (T));
5972791c
AC
6217 Atp := Designated_Type (T);
6218 else
6219 Atp := T;
70482933
RK
6220 end if;
6221
fbf5a39b
AC
6222 -- Generate index and validity checks
6223
6224 Generate_Index_Checks (N);
6225
70482933
RK
6226 if Validity_Checks_On and then Validity_Check_Subscripts then
6227 Apply_Subscript_Validity_Checks (N);
6228 end if;
6229
5972791c
AC
6230 -- If selecting from an array with atomic components, and atomic sync
6231 -- is not suppressed for this array type, set atomic sync flag.
6232
6233 if (Has_Atomic_Components (Atp)
6234 and then not Atomic_Synchronization_Disabled (Atp))
6235 or else (Is_Atomic (Typ)
6236 and then not Atomic_Synchronization_Disabled (Typ))
6237 then
4c318253 6238 Activate_Atomic_Synchronization (N);
5972791c
AC
6239 end if;
6240
70482933
RK
6241 -- All done for the non-packed case
6242
6243 if not Is_Packed (Etype (Prefix (N))) then
6244 return;
6245 end if;
6246
6247 -- For packed arrays that are not bit-packed (i.e. the case of an array
8fc789c8 6248 -- with one or more index types with a non-contiguous enumeration type),
70482933
RK
6249 -- we can always use the normal packed element get circuit.
6250
6251 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6252 Expand_Packed_Element_Reference (N);
6253 return;
6254 end if;
6255
8ca597af
RD
6256 -- For a reference to a component of a bit packed array, we convert it
6257 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6258 -- want to do this for simple references, and not for:
70482933 6259
685094bf
RD
6260 -- Left side of assignment, or prefix of left side of assignment, or
6261 -- prefix of the prefix, to handle packed arrays of packed arrays,
70482933
RK
6262 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6263
6264 -- Renaming objects in renaming associations
6265 -- This case is handled when a use of the renamed variable occurs
6266
6267 -- Actual parameters for a procedure call
6268 -- This case is handled in Exp_Ch6.Expand_Actuals
6269
6270 -- The second expression in a 'Read attribute reference
6271
47d3b920 6272 -- The prefix of an address or bit or size attribute reference
70482933
RK
6273
6274 -- The following circuit detects these exceptions
6275
6276 declare
6277 Child : Node_Id := N;
6278 Parnt : Node_Id := Parent (N);
6279
6280 begin
6281 loop
6282 if Nkind (Parnt) = N_Unchecked_Expression then
6283 null;
6284
303b4d58
AC
6285 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
6286 N_Procedure_Call_Statement)
70482933
RK
6287 or else (Nkind (Parnt) = N_Parameter_Association
6288 and then
6289 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
6290 then
6291 return;
6292
6293 elsif Nkind (Parnt) = N_Attribute_Reference
b69cd36a
AC
6294 and then Nam_In (Attribute_Name (Parnt), Name_Address,
6295 Name_Bit,
6296 Name_Size)
70482933
RK
6297 and then Prefix (Parnt) = Child
6298 then
6299 return;
6300
6301 elsif Nkind (Parnt) = N_Assignment_Statement
6302 and then Name (Parnt) = Child
6303 then
6304 return;
6305
685094bf
RD
6306 -- If the expression is an index of an indexed component, it must
6307 -- be expanded regardless of context.
fbf5a39b
AC
6308
6309 elsif Nkind (Parnt) = N_Indexed_Component
6310 and then Child /= Prefix (Parnt)
6311 then
6312 Expand_Packed_Element_Reference (N);
6313 return;
6314
6315 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
6316 and then Name (Parent (Parnt)) = Parnt
6317 then
6318 return;
6319
70482933
RK
6320 elsif Nkind (Parnt) = N_Attribute_Reference
6321 and then Attribute_Name (Parnt) = Name_Read
6322 and then Next (First (Expressions (Parnt))) = Child
6323 then
6324 return;
6325
303b4d58 6326 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
533369aa 6327 and then Prefix (Parnt) = Child
70482933
RK
6328 then
6329 null;
6330
6331 else
6332 Expand_Packed_Element_Reference (N);
6333 return;
6334 end if;
6335
685094bf
RD
6336 -- Keep looking up tree for unchecked expression, or if we are the
6337 -- prefix of a possible assignment left side.
70482933
RK
6338
6339 Child := Parnt;
6340 Parnt := Parent (Child);
6341 end loop;
6342 end;
70482933
RK
6343 end Expand_N_Indexed_Component;
6344
6345 ---------------------
6346 -- Expand_N_Not_In --
6347 ---------------------
6348
6349 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6350 -- can be done. This avoids needing to duplicate this expansion code.
6351
6352 procedure Expand_N_Not_In (N : Node_Id) is
630d30e9
RD
6353 Loc : constant Source_Ptr := Sloc (N);
6354 Typ : constant Entity_Id := Etype (N);
6355 Cfs : constant Boolean := Comes_From_Source (N);
70482933
RK
6356
6357 begin
6358 Rewrite (N,
6359 Make_Op_Not (Loc,
6360 Right_Opnd =>
6361 Make_In (Loc,
6362 Left_Opnd => Left_Opnd (N),
d766cee3 6363 Right_Opnd => Right_Opnd (N))));
630d30e9 6364
197e4514
AC
6365 -- If this is a set membership, preserve list of alternatives
6366
6367 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
6368
d766cee3 6369 -- We want this to appear as coming from source if original does (see
8fc789c8 6370 -- transformations in Expand_N_In).
630d30e9
RD
6371
6372 Set_Comes_From_Source (N, Cfs);
6373 Set_Comes_From_Source (Right_Opnd (N), Cfs);
6374
8fc789c8 6375 -- Now analyze transformed node
630d30e9 6376
70482933
RK
6377 Analyze_And_Resolve (N, Typ);
6378 end Expand_N_Not_In;
6379
6380 -------------------
6381 -- Expand_N_Null --
6382 -------------------
6383
a3f2babd
AC
6384 -- The only replacement required is for the case of a null of a type that
6385 -- is an access to protected subprogram, or a subtype thereof. We represent
6386 -- such access values as a record, and so we must replace the occurrence of
6387 -- null by the equivalent record (with a null address and a null pointer in
6388 -- it), so that the backend creates the proper value.
70482933
RK
6389
6390 procedure Expand_N_Null (N : Node_Id) is
6391 Loc : constant Source_Ptr := Sloc (N);
a3f2babd 6392 Typ : constant Entity_Id := Base_Type (Etype (N));
70482933
RK
6393 Agg : Node_Id;
6394
6395 begin
26bff3d9 6396 if Is_Access_Protected_Subprogram_Type (Typ) then
70482933
RK
6397 Agg :=
6398 Make_Aggregate (Loc,
6399 Expressions => New_List (
6400 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
6401 Make_Null (Loc)));
6402
6403 Rewrite (N, Agg);
6404 Analyze_And_Resolve (N, Equivalent_Type (Typ));
6405
685094bf
RD
6406 -- For subsequent semantic analysis, the node must retain its type.
6407 -- Gigi in any case replaces this type by the corresponding record
6408 -- type before processing the node.
70482933
RK
6409
6410 Set_Etype (N, Typ);
6411 end if;
fbf5a39b
AC
6412
6413 exception
6414 when RE_Not_Available =>
6415 return;
70482933
RK
6416 end Expand_N_Null;
6417
6418 ---------------------
6419 -- Expand_N_Op_Abs --
6420 ---------------------
6421
6422 procedure Expand_N_Op_Abs (N : Node_Id) is
6423 Loc : constant Source_Ptr := Sloc (N);
cc6f5d75 6424 Expr : constant Node_Id := Right_Opnd (N);
70482933
RK
6425
6426 begin
6427 Unary_Op_Validity_Checks (N);
6428
b6b5cca8
AC
6429 -- Check for MINIMIZED/ELIMINATED overflow mode
6430
6431 if Minimized_Eliminated_Overflow_Check (N) then
6432 Apply_Arithmetic_Overflow_Check (N);
6433 return;
6434 end if;
6435
70482933
RK
6436 -- Deal with software overflow checking
6437
07fc65c4 6438 if not Backend_Overflow_Checks_On_Target
533369aa
AC
6439 and then Is_Signed_Integer_Type (Etype (N))
6440 and then Do_Overflow_Check (N)
70482933 6441 then
685094bf
RD
6442 -- The only case to worry about is when the argument is equal to the
6443 -- largest negative number, so what we do is to insert the check:
70482933 6444
fbf5a39b 6445 -- [constraint_error when Expr = typ'Base'First]
70482933
RK
6446
6447 -- with the usual Duplicate_Subexpr use coding for expr
6448
fbf5a39b
AC
6449 Insert_Action (N,
6450 Make_Raise_Constraint_Error (Loc,
6451 Condition =>
6452 Make_Op_Eq (Loc,
70482933 6453 Left_Opnd => Duplicate_Subexpr (Expr),
fbf5a39b
AC
6454 Right_Opnd =>
6455 Make_Attribute_Reference (Loc,
cc6f5d75 6456 Prefix =>
fbf5a39b
AC
6457 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
6458 Attribute_Name => Name_First)),
6459 Reason => CE_Overflow_Check_Failed));
6460 end if;
70482933
RK
6461 end Expand_N_Op_Abs;
6462
6463 ---------------------
6464 -- Expand_N_Op_Add --
6465 ---------------------
6466
6467 procedure Expand_N_Op_Add (N : Node_Id) is
6468 Typ : constant Entity_Id := Etype (N);
6469
6470 begin
6471 Binary_Op_Validity_Checks (N);
6472
b6b5cca8
AC
6473 -- Check for MINIMIZED/ELIMINATED overflow mode
6474
6475 if Minimized_Eliminated_Overflow_Check (N) then
6476 Apply_Arithmetic_Overflow_Check (N);
6477 return;
6478 end if;
6479
70482933
RK
6480 -- N + 0 = 0 + N = N for integer types
6481
6482 if Is_Integer_Type (Typ) then
6483 if Compile_Time_Known_Value (Right_Opnd (N))
6484 and then Expr_Value (Right_Opnd (N)) = Uint_0
6485 then
6486 Rewrite (N, Left_Opnd (N));
6487 return;
6488
6489 elsif Compile_Time_Known_Value (Left_Opnd (N))
6490 and then Expr_Value (Left_Opnd (N)) = Uint_0
6491 then
6492 Rewrite (N, Right_Opnd (N));
6493 return;
6494 end if;
6495 end if;
6496
fbf5a39b 6497 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 6498
761f7dcb 6499 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
70482933
RK
6500 Apply_Arithmetic_Overflow_Check (N);
6501 return;
70482933 6502 end if;
dfaff97b
RD
6503
6504 -- Overflow checks for floating-point if -gnateF mode active
6505
6506 Check_Float_Op_Overflow (N);
70482933
RK
6507 end Expand_N_Op_Add;
6508
6509 ---------------------
6510 -- Expand_N_Op_And --
6511 ---------------------
6512
6513 procedure Expand_N_Op_And (N : Node_Id) is
6514 Typ : constant Entity_Id := Etype (N);
6515
6516 begin
6517 Binary_Op_Validity_Checks (N);
6518
6519 if Is_Array_Type (Etype (N)) then
6520 Expand_Boolean_Operator (N);
6521
6522 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
6523 Adjust_Condition (Left_Opnd (N));
6524 Adjust_Condition (Right_Opnd (N));
6525 Set_Etype (N, Standard_Boolean);
6526 Adjust_Result_Type (N, Typ);
437f8c1e
AC
6527
6528 elsif Is_Intrinsic_Subprogram (Entity (N)) then
6529 Expand_Intrinsic_Call (N, Entity (N));
6530
70482933
RK
6531 end if;
6532 end Expand_N_Op_And;
6533
6534 ------------------------
6535 -- Expand_N_Op_Concat --
6536 ------------------------
6537
6538 procedure Expand_N_Op_Concat (N : Node_Id) is
70482933
RK
6539 Opnds : List_Id;
6540 -- List of operands to be concatenated
6541
70482933 6542 Cnode : Node_Id;
685094bf
RD
6543 -- Node which is to be replaced by the result of concatenating the nodes
6544 -- in the list Opnds.
70482933 6545
70482933 6546 begin
fbf5a39b
AC
6547 -- Ensure validity of both operands
6548
70482933
RK
6549 Binary_Op_Validity_Checks (N);
6550
685094bf
RD
6551 -- If we are the left operand of a concatenation higher up the tree,
6552 -- then do nothing for now, since we want to deal with a series of
6553 -- concatenations as a unit.
70482933
RK
6554
6555 if Nkind (Parent (N)) = N_Op_Concat
6556 and then N = Left_Opnd (Parent (N))
6557 then
6558 return;
6559 end if;
6560
6561 -- We get here with a concatenation whose left operand may be a
6562 -- concatenation itself with a consistent type. We need to process
6563 -- these concatenation operands from left to right, which means
6564 -- from the deepest node in the tree to the highest node.
6565
6566 Cnode := N;
6567 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
6568 Cnode := Left_Opnd (Cnode);
6569 end loop;
6570
64425dff
BD
6571 -- Now Cnode is the deepest concatenation, and its parents are the
6572 -- concatenation nodes above, so now we process bottom up, doing the
64425dff 6573 -- operands.
70482933 6574
df46b832
AC
6575 -- The outer loop runs more than once if more than one concatenation
6576 -- type is involved.
70482933
RK
6577
6578 Outer : loop
6579 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
6580 Set_Parent (Opnds, N);
6581
df46b832 6582 -- The inner loop gathers concatenation operands
70482933
RK
6583
6584 Inner : while Cnode /= N
70482933
RK
6585 and then Base_Type (Etype (Cnode)) =
6586 Base_Type (Etype (Parent (Cnode)))
6587 loop
6588 Cnode := Parent (Cnode);
6589 Append (Right_Opnd (Cnode), Opnds);
6590 end loop Inner;
6591
43c58950
AC
6592 -- Note: The following code is a temporary workaround for N731-034
6593 -- and N829-028 and will be kept until the general issue of internal
6594 -- symbol serialization is addressed. The workaround is kept under a
6595 -- debug switch to avoid permiating into the general case.
6596
6597 -- Wrap the node to concatenate into an expression actions node to
6598 -- keep it nicely packaged. This is useful in the case of an assert
6599 -- pragma with a concatenation where we want to be able to delete
6600 -- the concatenation and all its expansion stuff.
6601
6602 if Debug_Flag_Dot_H then
6603 declare
6604 Cnod : constant Node_Id := Relocate_Node (Cnode);
6605 Typ : constant Entity_Id := Base_Type (Etype (Cnode));
6606
6607 begin
6608 -- Note: use Rewrite rather than Replace here, so that for
6609 -- example Why_Not_Static can find the original concatenation
6610 -- node OK!
6611
6612 Rewrite (Cnode,
6613 Make_Expression_With_Actions (Sloc (Cnode),
6614 Actions => New_List (Make_Null_Statement (Sloc (Cnode))),
6615 Expression => Cnod));
6616
6617 Expand_Concatenate (Cnod, Opnds);
6618 Analyze_And_Resolve (Cnode, Typ);
6619 end;
6620
6621 -- Default case
6622
6623 else
6624 Expand_Concatenate (Cnode, Opnds);
6625 end if;
70482933
RK
6626
6627 exit Outer when Cnode = N;
6628 Cnode := Parent (Cnode);
6629 end loop Outer;
6630 end Expand_N_Op_Concat;
6631
6632 ------------------------
6633 -- Expand_N_Op_Divide --
6634 ------------------------
6635
6636 procedure Expand_N_Op_Divide (N : Node_Id) is
f82944b7
JM
6637 Loc : constant Source_Ptr := Sloc (N);
6638 Lopnd : constant Node_Id := Left_Opnd (N);
6639 Ropnd : constant Node_Id := Right_Opnd (N);
6640 Ltyp : constant Entity_Id := Etype (Lopnd);
6641 Rtyp : constant Entity_Id := Etype (Ropnd);
6642 Typ : Entity_Id := Etype (N);
6643 Rknow : constant Boolean := Is_Integer_Type (Typ)
6644 and then
6645 Compile_Time_Known_Value (Ropnd);
6646 Rval : Uint;
70482933
RK
6647
6648 begin
6649 Binary_Op_Validity_Checks (N);
6650
b6b5cca8
AC
6651 -- Check for MINIMIZED/ELIMINATED overflow mode
6652
6653 if Minimized_Eliminated_Overflow_Check (N) then
6654 Apply_Arithmetic_Overflow_Check (N);
6655 return;
6656 end if;
6657
6658 -- Otherwise proceed with expansion of division
6659
f82944b7
JM
6660 if Rknow then
6661 Rval := Expr_Value (Ropnd);
6662 end if;
6663
70482933
RK
6664 -- N / 1 = N for integer types
6665
f82944b7
JM
6666 if Rknow and then Rval = Uint_1 then
6667 Rewrite (N, Lopnd);
70482933
RK
6668 return;
6669 end if;
6670
6671 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6672 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6673 -- operand is an unsigned integer, as required for this to work.
6674
f82944b7
JM
6675 if Nkind (Ropnd) = N_Op_Expon
6676 and then Is_Power_Of_2_For_Shift (Ropnd)
fbf5a39b
AC
6677
6678 -- We cannot do this transformation in configurable run time mode if we
51bf9bdf 6679 -- have 64-bit integers and long shifts are not available.
fbf5a39b 6680
761f7dcb 6681 and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
70482933
RK
6682 then
6683 Rewrite (N,
6684 Make_Op_Shift_Right (Loc,
f82944b7 6685 Left_Opnd => Lopnd,
70482933 6686 Right_Opnd =>
f82944b7 6687 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
70482933
RK
6688 Analyze_And_Resolve (N, Typ);
6689 return;
6690 end if;
6691
6692 -- Do required fixup of universal fixed operation
6693
6694 if Typ = Universal_Fixed then
6695 Fixup_Universal_Fixed_Operation (N);
6696 Typ := Etype (N);
6697 end if;
6698
6699 -- Divisions with fixed-point results
6700
6701 if Is_Fixed_Point_Type (Typ) then
6702
685094bf
RD
6703 -- No special processing if Treat_Fixed_As_Integer is set, since
6704 -- from a semantic point of view such operations are simply integer
6705 -- operations and will be treated that way.
70482933
RK
6706
6707 if not Treat_Fixed_As_Integer (N) then
6708 if Is_Integer_Type (Rtyp) then
6709 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
6710 else
6711 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
6712 end if;
6713 end if;
6714
685094bf
RD
6715 -- Other cases of division of fixed-point operands. Again we exclude the
6716 -- case where Treat_Fixed_As_Integer is set.
70482933 6717
761f7dcb 6718 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
70482933
RK
6719 and then not Treat_Fixed_As_Integer (N)
6720 then
6721 if Is_Integer_Type (Typ) then
6722 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
6723 else
6724 pragma Assert (Is_Floating_Point_Type (Typ));
6725 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
6726 end if;
6727
685094bf
RD
6728 -- Mixed-mode operations can appear in a non-static universal context,
6729 -- in which case the integer argument must be converted explicitly.
70482933 6730
533369aa 6731 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
f82944b7
JM
6732 Rewrite (Ropnd,
6733 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
70482933 6734
f82944b7 6735 Analyze_And_Resolve (Ropnd, Universal_Real);
70482933 6736
533369aa 6737 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
f82944b7
JM
6738 Rewrite (Lopnd,
6739 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
70482933 6740
f82944b7 6741 Analyze_And_Resolve (Lopnd, Universal_Real);
70482933 6742
f02b8bb8 6743 -- Non-fixed point cases, do integer zero divide and overflow checks
70482933
RK
6744
6745 elsif Is_Integer_Type (Typ) then
a91e9ac7 6746 Apply_Divide_Checks (N);
70482933 6747 end if;
dfaff97b
RD
6748
6749 -- Overflow checks for floating-point if -gnateF mode active
6750
6751 Check_Float_Op_Overflow (N);
70482933
RK
6752 end Expand_N_Op_Divide;
6753
6754 --------------------
6755 -- Expand_N_Op_Eq --
6756 --------------------
6757
6758 procedure Expand_N_Op_Eq (N : Node_Id) is
fbf5a39b
AC
6759 Loc : constant Source_Ptr := Sloc (N);
6760 Typ : constant Entity_Id := Etype (N);
6761 Lhs : constant Node_Id := Left_Opnd (N);
6762 Rhs : constant Node_Id := Right_Opnd (N);
6763 Bodies : constant List_Id := New_List;
6764 A_Typ : constant Entity_Id := Etype (Lhs);
6765
70482933
RK
6766 Typl : Entity_Id := A_Typ;
6767 Op_Name : Entity_Id;
6768 Prim : Elmt_Id;
70482933
RK
6769
6770 procedure Build_Equality_Call (Eq : Entity_Id);
6771 -- If a constructed equality exists for the type or for its parent,
6772 -- build and analyze call, adding conversions if the operation is
6773 -- inherited.
6774
5d09245e 6775 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
8fc789c8 6776 -- Determines whether a type has a subcomponent of an unconstrained
5d09245e
AC
6777 -- Unchecked_Union subtype. Typ is a record type.
6778
70482933
RK
6779 -------------------------
6780 -- Build_Equality_Call --
6781 -------------------------
6782
6783 procedure Build_Equality_Call (Eq : Entity_Id) is
6784 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
cc6f5d75
AC
6785 L_Exp : Node_Id := Relocate_Node (Lhs);
6786 R_Exp : Node_Id := Relocate_Node (Rhs);
70482933
RK
6787
6788 begin
dda38714
AC
6789 -- Adjust operands if necessary to comparison type
6790
70482933
RK
6791 if Base_Type (Op_Type) /= Base_Type (A_Typ)
6792 and then not Is_Class_Wide_Type (A_Typ)
6793 then
6794 L_Exp := OK_Convert_To (Op_Type, L_Exp);
6795 R_Exp := OK_Convert_To (Op_Type, R_Exp);
6796 end if;
6797
5d09245e
AC
6798 -- If we have an Unchecked_Union, we need to add the inferred
6799 -- discriminant values as actuals in the function call. At this
6800 -- point, the expansion has determined that both operands have
6801 -- inferable discriminants.
6802
6803 if Is_Unchecked_Union (Op_Type) then
6804 declare
fa1608c2
ES
6805 Lhs_Type : constant Node_Id := Etype (L_Exp);
6806 Rhs_Type : constant Node_Id := Etype (R_Exp);
6807
6808 Lhs_Discr_Vals : Elist_Id;
6809 -- List of inferred discriminant values for left operand.
6810
6811 Rhs_Discr_Vals : Elist_Id;
6812 -- List of inferred discriminant values for right operand.
6813
6814 Discr : Entity_Id;
5d09245e
AC
6815
6816 begin
fa1608c2
ES
6817 Lhs_Discr_Vals := New_Elmt_List;
6818 Rhs_Discr_Vals := New_Elmt_List;
6819
5d09245e
AC
6820 -- Per-object constrained selected components require special
6821 -- attention. If the enclosing scope of the component is an
f02b8bb8 6822 -- Unchecked_Union, we cannot reference its discriminants
fa1608c2
ES
6823 -- directly. This is why we use the extra parameters of the
6824 -- equality function of the enclosing Unchecked_Union.
5d09245e
AC
6825
6826 -- type UU_Type (Discr : Integer := 0) is
6827 -- . . .
6828 -- end record;
6829 -- pragma Unchecked_Union (UU_Type);
6830
6831 -- 1. Unchecked_Union enclosing record:
6832
6833 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6834 -- . . .
6835 -- Comp : UU_Type (Discr);
6836 -- . . .
6837 -- end Enclosing_UU_Type;
6838 -- pragma Unchecked_Union (Enclosing_UU_Type);
6839
6840 -- Obj1 : Enclosing_UU_Type;
6841 -- Obj2 : Enclosing_UU_Type (1);
6842
2717634d 6843 -- [. . .] Obj1 = Obj2 [. . .]
5d09245e
AC
6844
6845 -- Generated code:
6846
6847 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6848
6849 -- A and B are the formal parameters of the equality function
6850 -- of Enclosing_UU_Type. The function always has two extra
fa1608c2
ES
6851 -- formals to capture the inferred discriminant values for
6852 -- each discriminant of the type.
5d09245e
AC
6853
6854 -- 2. Non-Unchecked_Union enclosing record:
6855
6856 -- type
6857 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6858 -- is record
6859 -- . . .
6860 -- Comp : UU_Type (Discr);
6861 -- . . .
6862 -- end Enclosing_Non_UU_Type;
6863
6864 -- Obj1 : Enclosing_Non_UU_Type;
6865 -- Obj2 : Enclosing_Non_UU_Type (1);
6866
630d30e9 6867 -- ... Obj1 = Obj2 ...
5d09245e
AC
6868
6869 -- Generated code:
6870
6871 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6872 -- obj1.discr, obj2.discr)) then
6873
6874 -- In this case we can directly reference the discriminants of
6875 -- the enclosing record.
6876
fa1608c2 6877 -- Process left operand of equality
5d09245e
AC
6878
6879 if Nkind (Lhs) = N_Selected_Component
533369aa
AC
6880 and then
6881 Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
5d09245e 6882 then
fa1608c2
ES
6883 -- If enclosing record is an Unchecked_Union, use formals
6884 -- corresponding to each discriminant. The name of the
6885 -- formal is that of the discriminant, with added suffix,
6886 -- see Exp_Ch3.Build_Record_Equality for details.
5d09245e 6887
dda38714 6888 if Is_Unchecked_Union (Scope (Entity (Selector_Name (Lhs))))
5d09245e 6889 then
fa1608c2
ES
6890 Discr :=
6891 First_Discriminant
6892 (Scope (Entity (Selector_Name (Lhs))));
6893 while Present (Discr) loop
cc6f5d75
AC
6894 Append_Elmt
6895 (Make_Identifier (Loc,
6896 Chars => New_External_Name (Chars (Discr), 'A')),
6897 To => Lhs_Discr_Vals);
fa1608c2
ES
6898 Next_Discriminant (Discr);
6899 end loop;
5d09245e 6900
fa1608c2
ES
6901 -- If enclosing record is of a non-Unchecked_Union type, it
6902 -- is possible to reference its discriminants directly.
5d09245e
AC
6903
6904 else
fa1608c2
ES
6905 Discr := First_Discriminant (Lhs_Type);
6906 while Present (Discr) loop
cc6f5d75
AC
6907 Append_Elmt
6908 (Make_Selected_Component (Loc,
6909 Prefix => Prefix (Lhs),
6910 Selector_Name =>
6911 New_Copy
6912 (Get_Discriminant_Value (Discr,
6913 Lhs_Type,
6914 Stored_Constraint (Lhs_Type)))),
6915 To => Lhs_Discr_Vals);
fa1608c2
ES
6916 Next_Discriminant (Discr);
6917 end loop;
5d09245e
AC
6918 end if;
6919
fa1608c2
ES
6920 -- Otherwise operand is on object with a constrained type.
6921 -- Infer the discriminant values from the constraint.
5d09245e
AC
6922
6923 else
fa1608c2
ES
6924
6925 Discr := First_Discriminant (Lhs_Type);
6926 while Present (Discr) loop
cc6f5d75
AC
6927 Append_Elmt
6928 (New_Copy
6929 (Get_Discriminant_Value (Discr,
fa1608c2
ES
6930 Lhs_Type,
6931 Stored_Constraint (Lhs_Type))),
cc6f5d75 6932 To => Lhs_Discr_Vals);
fa1608c2
ES
6933 Next_Discriminant (Discr);
6934 end loop;
5d09245e
AC
6935 end if;
6936
fa1608c2 6937 -- Similar processing for right operand of equality
5d09245e
AC
6938
6939 if Nkind (Rhs) = N_Selected_Component
533369aa
AC
6940 and then
6941 Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
5d09245e 6942 then
5e1c00fa 6943 if Is_Unchecked_Union
cc6f5d75 6944 (Scope (Entity (Selector_Name (Rhs))))
5d09245e 6945 then
fa1608c2
ES
6946 Discr :=
6947 First_Discriminant
6948 (Scope (Entity (Selector_Name (Rhs))));
6949 while Present (Discr) loop
cc6f5d75
AC
6950 Append_Elmt
6951 (Make_Identifier (Loc,
6952 Chars => New_External_Name (Chars (Discr), 'B')),
6953 To => Rhs_Discr_Vals);
fa1608c2
ES
6954 Next_Discriminant (Discr);
6955 end loop;
5d09245e
AC
6956
6957 else
fa1608c2
ES
6958 Discr := First_Discriminant (Rhs_Type);
6959 while Present (Discr) loop
cc6f5d75
AC
6960 Append_Elmt
6961 (Make_Selected_Component (Loc,
6962 Prefix => Prefix (Rhs),
6963 Selector_Name =>
6964 New_Copy (Get_Discriminant_Value
6965 (Discr,
6966 Rhs_Type,
6967 Stored_Constraint (Rhs_Type)))),
6968 To => Rhs_Discr_Vals);
fa1608c2
ES
6969 Next_Discriminant (Discr);
6970 end loop;
5d09245e 6971 end if;
5d09245e 6972
fa1608c2
ES
6973 else
6974 Discr := First_Discriminant (Rhs_Type);
6975 while Present (Discr) loop
cc6f5d75
AC
6976 Append_Elmt
6977 (New_Copy (Get_Discriminant_Value
6978 (Discr,
6979 Rhs_Type,
6980 Stored_Constraint (Rhs_Type))),
6981 To => Rhs_Discr_Vals);
fa1608c2
ES
6982 Next_Discriminant (Discr);
6983 end loop;
5d09245e
AC
6984 end if;
6985
fa1608c2
ES
6986 -- Now merge the list of discriminant values so that values
6987 -- of corresponding discriminants are adjacent.
6988
6989 declare
6990 Params : List_Id;
6991 L_Elmt : Elmt_Id;
6992 R_Elmt : Elmt_Id;
6993
6994 begin
6995 Params := New_List (L_Exp, R_Exp);
6996 L_Elmt := First_Elmt (Lhs_Discr_Vals);
6997 R_Elmt := First_Elmt (Rhs_Discr_Vals);
6998 while Present (L_Elmt) loop
6999 Append_To (Params, Node (L_Elmt));
7000 Append_To (Params, Node (R_Elmt));
7001 Next_Elmt (L_Elmt);
7002 Next_Elmt (R_Elmt);
7003 end loop;
7004
7005 Rewrite (N,
7006 Make_Function_Call (Loc,
e4494292 7007 Name => New_Occurrence_Of (Eq, Loc),
fa1608c2
ES
7008 Parameter_Associations => Params));
7009 end;
5d09245e
AC
7010 end;
7011
7012 -- Normal case, not an unchecked union
7013
7014 else
7015 Rewrite (N,
7016 Make_Function_Call (Loc,
e4494292 7017 Name => New_Occurrence_Of (Eq, Loc),
5d09245e
AC
7018 Parameter_Associations => New_List (L_Exp, R_Exp)));
7019 end if;
70482933
RK
7020
7021 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7022 end Build_Equality_Call;
7023
5d09245e
AC
7024 ------------------------------------
7025 -- Has_Unconstrained_UU_Component --
7026 ------------------------------------
7027
7028 function Has_Unconstrained_UU_Component
7029 (Typ : Node_Id) return Boolean
7030 is
7031 Tdef : constant Node_Id :=
57848bf7 7032 Type_Definition (Declaration_Node (Base_Type (Typ)));
5d09245e
AC
7033 Clist : Node_Id;
7034 Vpart : Node_Id;
7035
7036 function Component_Is_Unconstrained_UU
7037 (Comp : Node_Id) return Boolean;
7038 -- Determines whether the subtype of the component is an
7039 -- unconstrained Unchecked_Union.
7040
7041 function Variant_Is_Unconstrained_UU
7042 (Variant : Node_Id) return Boolean;
7043 -- Determines whether a component of the variant has an unconstrained
7044 -- Unchecked_Union subtype.
7045
7046 -----------------------------------
7047 -- Component_Is_Unconstrained_UU --
7048 -----------------------------------
7049
7050 function Component_Is_Unconstrained_UU
7051 (Comp : Node_Id) return Boolean
7052 is
7053 begin
7054 if Nkind (Comp) /= N_Component_Declaration then
7055 return False;
7056 end if;
7057
7058 declare
7059 Sindic : constant Node_Id :=
7060 Subtype_Indication (Component_Definition (Comp));
7061
7062 begin
7063 -- Unconstrained nominal type. In the case of a constraint
7064 -- present, the node kind would have been N_Subtype_Indication.
7065
7066 if Nkind (Sindic) = N_Identifier then
7067 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
7068 end if;
7069
7070 return False;
7071 end;
7072 end Component_Is_Unconstrained_UU;
7073
7074 ---------------------------------
7075 -- Variant_Is_Unconstrained_UU --
7076 ---------------------------------
7077
7078 function Variant_Is_Unconstrained_UU
7079 (Variant : Node_Id) return Boolean
7080 is
7081 Clist : constant Node_Id := Component_List (Variant);
7082
7083 begin
7084 if Is_Empty_List (Component_Items (Clist)) then
7085 return False;
7086 end if;
7087
f02b8bb8
RD
7088 -- We only need to test one component
7089
5d09245e
AC
7090 declare
7091 Comp : Node_Id := First (Component_Items (Clist));
7092
7093 begin
7094 while Present (Comp) loop
5d09245e
AC
7095 if Component_Is_Unconstrained_UU (Comp) then
7096 return True;
7097 end if;
7098
7099 Next (Comp);
7100 end loop;
7101 end;
7102
7103 -- None of the components withing the variant were of
7104 -- unconstrained Unchecked_Union type.
7105
7106 return False;
7107 end Variant_Is_Unconstrained_UU;
7108
7109 -- Start of processing for Has_Unconstrained_UU_Component
7110
7111 begin
7112 if Null_Present (Tdef) then
7113 return False;
7114 end if;
7115
7116 Clist := Component_List (Tdef);
7117 Vpart := Variant_Part (Clist);
7118
7119 -- Inspect available components
7120
7121 if Present (Component_Items (Clist)) then
7122 declare
7123 Comp : Node_Id := First (Component_Items (Clist));
7124
7125 begin
7126 while Present (Comp) loop
7127
8fc789c8 7128 -- One component is sufficient
5d09245e
AC
7129
7130 if Component_Is_Unconstrained_UU (Comp) then
7131 return True;
7132 end if;
7133
7134 Next (Comp);
7135 end loop;
7136 end;
7137 end if;
7138
7139 -- Inspect available components withing variants
7140
7141 if Present (Vpart) then
7142 declare
7143 Variant : Node_Id := First (Variants (Vpart));
7144
7145 begin
7146 while Present (Variant) loop
7147
8fc789c8 7148 -- One component within a variant is sufficient
5d09245e
AC
7149
7150 if Variant_Is_Unconstrained_UU (Variant) then
7151 return True;
7152 end if;
7153
7154 Next (Variant);
7155 end loop;
7156 end;
7157 end if;
7158
7159 -- Neither the available components, nor the components inside the
7160 -- variant parts were of an unconstrained Unchecked_Union subtype.
7161
7162 return False;
7163 end Has_Unconstrained_UU_Component;
7164
70482933
RK
7165 -- Start of processing for Expand_N_Op_Eq
7166
7167 begin
7168 Binary_Op_Validity_Checks (N);
7169
456cbfa5
AC
7170 -- Deal with private types
7171
70482933
RK
7172 if Ekind (Typl) = E_Private_Type then
7173 Typl := Underlying_Type (Typl);
70482933
RK
7174 elsif Ekind (Typl) = E_Private_Subtype then
7175 Typl := Underlying_Type (Base_Type (Typl));
f02b8bb8
RD
7176 else
7177 null;
70482933
RK
7178 end if;
7179
7180 -- It may happen in error situations that the underlying type is not
7181 -- set. The error will be detected later, here we just defend the
7182 -- expander code.
7183
7184 if No (Typl) then
7185 return;
7186 end if;
7187
a92230c5
AC
7188 -- Now get the implementation base type (note that plain Base_Type here
7189 -- might lead us back to the private type, which is not what we want!)
7190
7191 Typl := Implementation_Base_Type (Typl);
70482933 7192
dda38714
AC
7193 -- Equality between variant records results in a call to a routine
7194 -- that has conditional tests of the discriminant value(s), and hence
7195 -- violates the No_Implicit_Conditionals restriction.
7196
7197 if Has_Variant_Part (Typl) then
7198 declare
7199 Msg : Boolean;
7200
7201 begin
7202 Check_Restriction (Msg, No_Implicit_Conditionals, N);
7203
7204 if Msg then
7205 Error_Msg_N
7206 ("\comparison of variant records tests discriminants", N);
7207 return;
7208 end if;
7209 end;
7210 end if;
7211
456cbfa5 7212 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7213 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7214
7215 Expand_Compare_Minimize_Eliminate_Overflow (N);
7216
7217 if Nkind (N) /= N_Op_Eq then
7218 return;
7219 end if;
7220
70482933
RK
7221 -- Boolean types (requiring handling of non-standard case)
7222
f02b8bb8 7223 if Is_Boolean_Type (Typl) then
70482933
RK
7224 Adjust_Condition (Left_Opnd (N));
7225 Adjust_Condition (Right_Opnd (N));
7226 Set_Etype (N, Standard_Boolean);
7227 Adjust_Result_Type (N, Typ);
7228
7229 -- Array types
7230
7231 elsif Is_Array_Type (Typl) then
7232
1033834f
RD
7233 -- If we are doing full validity checking, and it is possible for the
7234 -- array elements to be invalid then expand out array comparisons to
7235 -- make sure that we check the array elements.
fbf5a39b 7236
1033834f
RD
7237 if Validity_Check_Operands
7238 and then not Is_Known_Valid (Component_Type (Typl))
7239 then
fbf5a39b
AC
7240 declare
7241 Save_Force_Validity_Checks : constant Boolean :=
7242 Force_Validity_Checks;
7243 begin
7244 Force_Validity_Checks := True;
7245 Rewrite (N,
0da2c8ac
AC
7246 Expand_Array_Equality
7247 (N,
7248 Relocate_Node (Lhs),
7249 Relocate_Node (Rhs),
7250 Bodies,
7251 Typl));
7252 Insert_Actions (N, Bodies);
fbf5a39b
AC
7253 Analyze_And_Resolve (N, Standard_Boolean);
7254 Force_Validity_Checks := Save_Force_Validity_Checks;
7255 end;
7256
a9d8907c 7257 -- Packed case where both operands are known aligned
70482933 7258
a9d8907c
JM
7259 elsif Is_Bit_Packed_Array (Typl)
7260 and then not Is_Possibly_Unaligned_Object (Lhs)
7261 and then not Is_Possibly_Unaligned_Object (Rhs)
7262 then
70482933
RK
7263 Expand_Packed_Eq (N);
7264
5e1c00fa
RD
7265 -- Where the component type is elementary we can use a block bit
7266 -- comparison (if supported on the target) exception in the case
7267 -- of floating-point (negative zero issues require element by
7268 -- element comparison), and atomic types (where we must be sure
a9d8907c 7269 -- to load elements independently) and possibly unaligned arrays.
70482933 7270
70482933
RK
7271 elsif Is_Elementary_Type (Component_Type (Typl))
7272 and then not Is_Floating_Point_Type (Component_Type (Typl))
5e1c00fa 7273 and then not Is_Atomic (Component_Type (Typl))
a9d8907c
JM
7274 and then not Is_Possibly_Unaligned_Object (Lhs)
7275 and then not Is_Possibly_Unaligned_Object (Rhs)
fbf5a39b 7276 and then Support_Composite_Compare_On_Target
70482933
RK
7277 then
7278 null;
7279
685094bf
RD
7280 -- For composite and floating-point cases, expand equality loop to
7281 -- make sure of using proper comparisons for tagged types, and
7282 -- correctly handling the floating-point case.
70482933
RK
7283
7284 else
7285 Rewrite (N,
0da2c8ac
AC
7286 Expand_Array_Equality
7287 (N,
7288 Relocate_Node (Lhs),
7289 Relocate_Node (Rhs),
7290 Bodies,
7291 Typl));
70482933
RK
7292 Insert_Actions (N, Bodies, Suppress => All_Checks);
7293 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7294 end if;
7295
7296 -- Record Types
7297
7298 elsif Is_Record_Type (Typl) then
7299
7300 -- For tagged types, use the primitive "="
7301
7302 if Is_Tagged_Type (Typl) then
7303
0669bebe
GB
7304 -- No need to do anything else compiling under restriction
7305 -- No_Dispatching_Calls. During the semantic analysis we
7306 -- already notified such violation.
7307
7308 if Restriction_Active (No_Dispatching_Calls) then
7309 return;
7310 end if;
7311
685094bf
RD
7312 -- If this is derived from an untagged private type completed with
7313 -- a tagged type, it does not have a full view, so we use the
7314 -- primitive operations of the private type. This check should no
7315 -- longer be necessary when these types get their full views???
70482933
RK
7316
7317 if Is_Private_Type (A_Typ)
7318 and then not Is_Tagged_Type (A_Typ)
7319 and then Is_Derived_Type (A_Typ)
7320 and then No (Full_View (A_Typ))
7321 then
685094bf
RD
7322 -- Search for equality operation, checking that the operands
7323 -- have the same type. Note that we must find a matching entry,
a90bd866 7324 -- or something is very wrong.
2e071734 7325
70482933
RK
7326 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
7327
2e071734
AC
7328 while Present (Prim) loop
7329 exit when Chars (Node (Prim)) = Name_Op_Eq
7330 and then Etype (First_Formal (Node (Prim))) =
7331 Etype (Next_Formal (First_Formal (Node (Prim))))
7332 and then
7333 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7334
70482933 7335 Next_Elmt (Prim);
70482933
RK
7336 end loop;
7337
2e071734 7338 pragma Assert (Present (Prim));
70482933 7339 Op_Name := Node (Prim);
fbf5a39b
AC
7340
7341 -- Find the type's predefined equality or an overriding
3dddb11e 7342 -- user-defined equality. The reason for not simply calling
fbf5a39b 7343 -- Find_Prim_Op here is that there may be a user-defined
3dddb11e
ES
7344 -- overloaded equality op that precedes the equality that we
7345 -- want, so we have to explicitly search (e.g., there could be
7346 -- an equality with two different parameter types).
fbf5a39b 7347
70482933 7348 else
fbf5a39b 7349 if Is_Class_Wide_Type (Typl) then
3dddb11e 7350 Typl := Find_Specific_Type (Typl);
fbf5a39b
AC
7351 end if;
7352
7353 Prim := First_Elmt (Primitive_Operations (Typl));
fbf5a39b
AC
7354 while Present (Prim) loop
7355 exit when Chars (Node (Prim)) = Name_Op_Eq
7356 and then Etype (First_Formal (Node (Prim))) =
7357 Etype (Next_Formal (First_Formal (Node (Prim))))
12e0c41c
AC
7358 and then
7359 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
fbf5a39b
AC
7360
7361 Next_Elmt (Prim);
fbf5a39b
AC
7362 end loop;
7363
2e071734 7364 pragma Assert (Present (Prim));
fbf5a39b 7365 Op_Name := Node (Prim);
70482933
RK
7366 end if;
7367
7368 Build_Equality_Call (Op_Name);
7369
5d09245e
AC
7370 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7371 -- predefined equality operator for a type which has a subcomponent
7372 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7373
7374 elsif Has_Unconstrained_UU_Component (Typl) then
7375 Insert_Action (N,
7376 Make_Raise_Program_Error (Loc,
7377 Reason => PE_Unchecked_Union_Restriction));
7378
7379 -- Prevent Gigi from generating incorrect code by rewriting the
6cb3037c 7380 -- equality as a standard False. (is this documented somewhere???)
5d09245e
AC
7381
7382 Rewrite (N,
7383 New_Occurrence_Of (Standard_False, Loc));
7384
7385 elsif Is_Unchecked_Union (Typl) then
7386
7387 -- If we can infer the discriminants of the operands, we make a
7388 -- call to the TSS equality function.
7389
7390 if Has_Inferable_Discriminants (Lhs)
7391 and then
7392 Has_Inferable_Discriminants (Rhs)
7393 then
7394 Build_Equality_Call
7395 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7396
7397 else
7398 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7399 -- the predefined equality operator for an Unchecked_Union type
7400 -- if either of the operands lack inferable discriminants.
7401
7402 Insert_Action (N,
7403 Make_Raise_Program_Error (Loc,
7404 Reason => PE_Unchecked_Union_Restriction));
7405
29ad9ea5
AC
7406 -- Emit a warning on source equalities only, otherwise the
7407 -- message may appear out of place due to internal use. The
7408 -- warning is unconditional because it is required by the
7409 -- language.
7410
7411 if Comes_From_Source (N) then
7412 Error_Msg_N
facfa165 7413 ("Unchecked_Union discriminants cannot be determined??",
29ad9ea5
AC
7414 N);
7415 Error_Msg_N
facfa165 7416 ("\Program_Error will be raised for equality operation??",
29ad9ea5
AC
7417 N);
7418 end if;
7419
5d09245e 7420 -- Prevent Gigi from generating incorrect code by rewriting
6cb3037c 7421 -- the equality as a standard False (documented where???).
5d09245e
AC
7422
7423 Rewrite (N,
7424 New_Occurrence_Of (Standard_False, Loc));
5d09245e
AC
7425 end if;
7426
70482933
RK
7427 -- If a type support function is present (for complex cases), use it
7428
fbf5a39b
AC
7429 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
7430 Build_Equality_Call
7431 (TSS (Root_Type (Typl), TSS_Composite_Equality));
70482933 7432
8d80ff64
AC
7433 -- When comparing two Bounded_Strings, use the primitive equality of
7434 -- the root Super_String type.
7435
7436 elsif Is_Bounded_String (Typl) then
7437 Prim :=
7438 First_Elmt (Collect_Primitive_Operations (Root_Type (Typl)));
7439
7440 while Present (Prim) loop
7441 exit when Chars (Node (Prim)) = Name_Op_Eq
7442 and then Etype (First_Formal (Node (Prim))) =
7443 Etype (Next_Formal (First_Formal (Node (Prim))))
7444 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7445
7446 Next_Elmt (Prim);
7447 end loop;
7448
7449 -- A Super_String type should always have a primitive equality
7450
7451 pragma Assert (Present (Prim));
7452 Build_Equality_Call (Node (Prim));
7453
70482933 7454 -- Otherwise expand the component by component equality. Note that
8fc789c8 7455 -- we never use block-bit comparisons for records, because of the
70482933
RK
7456 -- problems with gaps. The backend will often be able to recombine
7457 -- the separate comparisons that we generate here.
7458
7459 else
7460 Remove_Side_Effects (Lhs);
7461 Remove_Side_Effects (Rhs);
7462 Rewrite (N,
7463 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
7464
7465 Insert_Actions (N, Bodies, Suppress => All_Checks);
7466 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7467 end if;
7468 end if;
7469
d26dc4b5 7470 -- Test if result is known at compile time
70482933 7471
d26dc4b5 7472 Rewrite_Comparison (N);
f02b8bb8 7473
0580d807 7474 Optimize_Length_Comparison (N);
70482933
RK
7475 end Expand_N_Op_Eq;
7476
7477 -----------------------
7478 -- Expand_N_Op_Expon --
7479 -----------------------
7480
7481 procedure Expand_N_Op_Expon (N : Node_Id) is
7482 Loc : constant Source_Ptr := Sloc (N);
7483 Typ : constant Entity_Id := Etype (N);
7484 Rtyp : constant Entity_Id := Root_Type (Typ);
7485 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
07fc65c4 7486 Bastyp : constant Node_Id := Etype (Base);
70482933
RK
7487 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
7488 Exptyp : constant Entity_Id := Etype (Exp);
7489 Ovflo : constant Boolean := Do_Overflow_Check (N);
7490 Expv : Uint;
70482933
RK
7491 Temp : Node_Id;
7492 Rent : RE_Id;
7493 Ent : Entity_Id;
fbf5a39b 7494 Etyp : Entity_Id;
cb42ba5d 7495 Xnode : Node_Id;
70482933
RK
7496
7497 begin
7498 Binary_Op_Validity_Checks (N);
7499
5114f3ff 7500 -- CodePeer wants to see the unexpanded N_Op_Expon node
8f66cda7 7501
5114f3ff 7502 if CodePeer_Mode then
8f66cda7
AC
7503 return;
7504 end if;
7505
685094bf
RD
7506 -- If either operand is of a private type, then we have the use of an
7507 -- intrinsic operator, and we get rid of the privateness, by using root
7508 -- types of underlying types for the actual operation. Otherwise the
7509 -- private types will cause trouble if we expand multiplications or
7510 -- shifts etc. We also do this transformation if the result type is
7511 -- different from the base type.
07fc65c4
GB
7512
7513 if Is_Private_Type (Etype (Base))
8f66cda7
AC
7514 or else Is_Private_Type (Typ)
7515 or else Is_Private_Type (Exptyp)
7516 or else Rtyp /= Root_Type (Bastyp)
07fc65c4
GB
7517 then
7518 declare
7519 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
7520 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
07fc65c4
GB
7521 begin
7522 Rewrite (N,
7523 Unchecked_Convert_To (Typ,
7524 Make_Op_Expon (Loc,
7525 Left_Opnd => Unchecked_Convert_To (Bt, Base),
7526 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
7527 Analyze_And_Resolve (N, Typ);
7528 return;
7529 end;
7530 end if;
7531
b6b5cca8 7532 -- Check for MINIMIZED/ELIMINATED overflow mode
6cb3037c 7533
b6b5cca8 7534 if Minimized_Eliminated_Overflow_Check (N) then
6cb3037c
AC
7535 Apply_Arithmetic_Overflow_Check (N);
7536 return;
7537 end if;
7538
cb42ba5d
AC
7539 -- Test for case of known right argument where we can replace the
7540 -- exponentiation by an equivalent expression using multiplication.
70482933 7541
6c3c671e
AC
7542 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7543 -- configurable run-time mode, we may not have the exponentiation
7544 -- routine available, and we don't want the legality of the program
7545 -- to depend on how clever the compiler is in knowing values.
7546
7547 if CRT_Safe_Compile_Time_Known_Value (Exp) then
70482933
RK
7548 Expv := Expr_Value (Exp);
7549
7550 -- We only fold small non-negative exponents. You might think we
7551 -- could fold small negative exponents for the real case, but we
7552 -- can't because we are required to raise Constraint_Error for
7553 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7554 -- See ACVC test C4A012B.
7555
7556 if Expv >= 0 and then Expv <= 4 then
7557
7558 -- X ** 0 = 1 (or 1.0)
7559
7560 if Expv = 0 then
abcbd24c
ST
7561
7562 -- Call Remove_Side_Effects to ensure that any side effects
7563 -- in the ignored left operand (in particular function calls
7564 -- to user defined functions) are properly executed.
7565
7566 Remove_Side_Effects (Base);
7567
70482933
RK
7568 if Ekind (Typ) in Integer_Kind then
7569 Xnode := Make_Integer_Literal (Loc, Intval => 1);
7570 else
7571 Xnode := Make_Real_Literal (Loc, Ureal_1);
7572 end if;
7573
7574 -- X ** 1 = X
7575
7576 elsif Expv = 1 then
7577 Xnode := Base;
7578
7579 -- X ** 2 = X * X
7580
7581 elsif Expv = 2 then
7582 Xnode :=
7583 Make_Op_Multiply (Loc,
7584 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b 7585 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
7586
7587 -- X ** 3 = X * X * X
7588
7589 elsif Expv = 3 then
7590 Xnode :=
7591 Make_Op_Multiply (Loc,
7592 Left_Opnd =>
7593 Make_Op_Multiply (Loc,
7594 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b
AC
7595 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
7596 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
7597
7598 -- X ** 4 ->
cb42ba5d
AC
7599
7600 -- do
70482933 7601 -- En : constant base'type := base * base;
cb42ba5d 7602 -- in
70482933
RK
7603 -- En * En
7604
cb42ba5d
AC
7605 else
7606 pragma Assert (Expv = 4);
191fcb3a 7607 Temp := Make_Temporary (Loc, 'E', Base);
70482933 7608
cb42ba5d
AC
7609 Xnode :=
7610 Make_Expression_With_Actions (Loc,
7611 Actions => New_List (
7612 Make_Object_Declaration (Loc,
7613 Defining_Identifier => Temp,
7614 Constant_Present => True,
e4494292 7615 Object_Definition => New_Occurrence_Of (Typ, Loc),
cb42ba5d
AC
7616 Expression =>
7617 Make_Op_Multiply (Loc,
7618 Left_Opnd =>
7619 Duplicate_Subexpr (Base),
7620 Right_Opnd =>
7621 Duplicate_Subexpr_No_Checks (Base)))),
7622
70482933
RK
7623 Expression =>
7624 Make_Op_Multiply (Loc,
e4494292
RD
7625 Left_Opnd => New_Occurrence_Of (Temp, Loc),
7626 Right_Opnd => New_Occurrence_Of (Temp, Loc)));
70482933
RK
7627 end if;
7628
7629 Rewrite (N, Xnode);
7630 Analyze_And_Resolve (N, Typ);
7631 return;
7632 end if;
7633 end if;
7634
7635 -- Case of (2 ** expression) appearing as an argument of an integer
7636 -- multiplication, or as the right argument of a division of a non-
fbf5a39b 7637 -- negative integer. In such cases we leave the node untouched, setting
70482933
RK
7638 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7639 -- of the higher level node converts it into a shift.
7640
51bf9bdf
AC
7641 -- Another case is 2 ** N in any other context. We simply convert
7642 -- this to 1 * 2 ** N, and then the above transformation applies.
7643
685094bf
RD
7644 -- Note: this transformation is not applicable for a modular type with
7645 -- a non-binary modulus in the multiplication case, since we get a wrong
7646 -- result if the shift causes an overflow before the modular reduction.
7647
8b4230c8
AC
7648 -- Note: we used to check that Exptyp was an unsigned type. But that is
7649 -- an unnecessary check, since if Exp is negative, we have a run-time
7650 -- error that is either caught (so we get the right result) or we have
7651 -- suppressed the check, in which case the code is erroneous anyway.
7652
70482933 7653 if Nkind (Base) = N_Integer_Literal
6c3c671e
AC
7654 and then CRT_Safe_Compile_Time_Known_Value (Base)
7655 and then Expr_Value (Base) = Uint_2
70482933
RK
7656 and then Is_Integer_Type (Root_Type (Exptyp))
7657 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
70482933 7658 and then not Ovflo
70482933 7659 then
51bf9bdf 7660 -- First the multiply and divide cases
70482933 7661
51bf9bdf
AC
7662 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
7663 declare
7664 P : constant Node_Id := Parent (N);
7665 L : constant Node_Id := Left_Opnd (P);
7666 R : constant Node_Id := Right_Opnd (P);
7667
7668 begin
7669 if (Nkind (P) = N_Op_Multiply
7670 and then not Non_Binary_Modulus (Typ)
7671 and then
7672 ((Is_Integer_Type (Etype (L)) and then R = N)
7673 or else
7674 (Is_Integer_Type (Etype (R)) and then L = N))
7675 and then not Do_Overflow_Check (P))
7676 or else
7677 (Nkind (P) = N_Op_Divide
533369aa
AC
7678 and then Is_Integer_Type (Etype (L))
7679 and then Is_Unsigned_Type (Etype (L))
7680 and then R = N
7681 and then not Do_Overflow_Check (P))
51bf9bdf
AC
7682 then
7683 Set_Is_Power_Of_2_For_Shift (N);
7684 return;
7685 end if;
7686 end;
7687
7688 -- Now the other cases
7689
7690 elsif not Non_Binary_Modulus (Typ) then
7691 Rewrite (N,
7692 Make_Op_Multiply (Loc,
7693 Left_Opnd => Make_Integer_Literal (Loc, 1),
7694 Right_Opnd => Relocate_Node (N)));
7695 Analyze_And_Resolve (N, Typ);
7696 return;
7697 end if;
70482933
RK
7698 end if;
7699
07fc65c4
GB
7700 -- Fall through if exponentiation must be done using a runtime routine
7701
07fc65c4 7702 -- First deal with modular case
70482933
RK
7703
7704 if Is_Modular_Integer_Type (Rtyp) then
7705
7706 -- Non-binary case, we call the special exponentiation routine for
7707 -- the non-binary case, converting the argument to Long_Long_Integer
7708 -- and passing the modulus value. Then the result is converted back
7709 -- to the base type.
7710
7711 if Non_Binary_Modulus (Rtyp) then
70482933
RK
7712 Rewrite (N,
7713 Convert_To (Typ,
7714 Make_Function_Call (Loc,
cc6f5d75
AC
7715 Name =>
7716 New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
70482933 7717 Parameter_Associations => New_List (
e9daba51 7718 Convert_To (RTE (RE_Unsigned), Base),
70482933
RK
7719 Make_Integer_Literal (Loc, Modulus (Rtyp)),
7720 Exp))));
7721
685094bf
RD
7722 -- Binary case, in this case, we call one of two routines, either the
7723 -- unsigned integer case, or the unsigned long long integer case,
7724 -- with a final "and" operation to do the required mod.
70482933
RK
7725
7726 else
7727 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
7728 Ent := RTE (RE_Exp_Unsigned);
7729 else
7730 Ent := RTE (RE_Exp_Long_Long_Unsigned);
7731 end if;
7732
7733 Rewrite (N,
7734 Convert_To (Typ,
7735 Make_Op_And (Loc,
cc6f5d75 7736 Left_Opnd =>
70482933 7737 Make_Function_Call (Loc,
cc6f5d75 7738 Name => New_Occurrence_Of (Ent, Loc),
70482933
RK
7739 Parameter_Associations => New_List (
7740 Convert_To (Etype (First_Formal (Ent)), Base),
7741 Exp)),
7742 Right_Opnd =>
7743 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
7744
7745 end if;
7746
7747 -- Common exit point for modular type case
7748
7749 Analyze_And_Resolve (N, Typ);
7750 return;
7751
fbf5a39b
AC
7752 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7753 -- It is not worth having routines for Short_[Short_]Integer, since for
7754 -- most machines it would not help, and it would generate more code that
dfd99a80 7755 -- might need certification when a certified run time is required.
70482933 7756
fbf5a39b 7757 -- In the integer cases, we have two routines, one for when overflow
dfd99a80
TQ
7758 -- checks are required, and one when they are not required, since there
7759 -- is a real gain in omitting checks on many machines.
70482933 7760
fbf5a39b
AC
7761 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
7762 or else (Rtyp = Base_Type (Standard_Long_Integer)
761f7dcb
AC
7763 and then
7764 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
7765 or else Rtyp = Universal_Integer
70482933 7766 then
fbf5a39b
AC
7767 Etyp := Standard_Long_Long_Integer;
7768
ebb6b0bd
AC
7769 -- Overflow checking is the only choice on the AAMP target, where
7770 -- arithmetic instructions check overflow automatically, so only
7771 -- one version of the exponentiation unit is needed.
7772
1037b0f4 7773 if Ovflo or AAMP_On_Target then
70482933
RK
7774 Rent := RE_Exp_Long_Long_Integer;
7775 else
7776 Rent := RE_Exn_Long_Long_Integer;
7777 end if;
7778
fbf5a39b
AC
7779 elsif Is_Signed_Integer_Type (Rtyp) then
7780 Etyp := Standard_Integer;
70482933 7781
ebb6b0bd
AC
7782 -- Overflow checking is the only choice on the AAMP target, where
7783 -- arithmetic instructions check overflow automatically, so only
7784 -- one version of the exponentiation unit is needed.
7785
1037b0f4 7786 if Ovflo or AAMP_On_Target then
fbf5a39b 7787 Rent := RE_Exp_Integer;
70482933 7788 else
fbf5a39b 7789 Rent := RE_Exn_Integer;
70482933 7790 end if;
fbf5a39b
AC
7791
7792 -- Floating-point cases, always done using Long_Long_Float. We do not
7793 -- need separate routines for the overflow case here, since in the case
7794 -- of floating-point, we generate infinities anyway as a rule (either
7795 -- that or we automatically trap overflow), and if there is an infinity
7796 -- generated and a range check is required, the check will fail anyway.
7797
7798 else
7799 pragma Assert (Is_Floating_Point_Type (Rtyp));
7800 Etyp := Standard_Long_Long_Float;
7801 Rent := RE_Exn_Long_Long_Float;
70482933
RK
7802 end if;
7803
7804 -- Common processing for integer cases and floating-point cases.
fbf5a39b 7805 -- If we are in the right type, we can call runtime routine directly
70482933 7806
fbf5a39b 7807 if Typ = Etyp
70482933
RK
7808 and then Rtyp /= Universal_Integer
7809 and then Rtyp /= Universal_Real
7810 then
7811 Rewrite (N,
7812 Make_Function_Call (Loc,
e4494292 7813 Name => New_Occurrence_Of (RTE (Rent), Loc),
70482933
RK
7814 Parameter_Associations => New_List (Base, Exp)));
7815
7816 -- Otherwise we have to introduce conversions (conversions are also
fbf5a39b 7817 -- required in the universal cases, since the runtime routine is
1147c704 7818 -- typed using one of the standard types).
70482933
RK
7819
7820 else
7821 Rewrite (N,
7822 Convert_To (Typ,
7823 Make_Function_Call (Loc,
e4494292 7824 Name => New_Occurrence_Of (RTE (Rent), Loc),
70482933 7825 Parameter_Associations => New_List (
fbf5a39b 7826 Convert_To (Etyp, Base),
70482933
RK
7827 Exp))));
7828 end if;
7829
7830 Analyze_And_Resolve (N, Typ);
7831 return;
7832
fbf5a39b
AC
7833 exception
7834 when RE_Not_Available =>
7835 return;
70482933
RK
7836 end Expand_N_Op_Expon;
7837
7838 --------------------
7839 -- Expand_N_Op_Ge --
7840 --------------------
7841
7842 procedure Expand_N_Op_Ge (N : Node_Id) is
7843 Typ : constant Entity_Id := Etype (N);
7844 Op1 : constant Node_Id := Left_Opnd (N);
7845 Op2 : constant Node_Id := Right_Opnd (N);
7846 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7847
7848 begin
7849 Binary_Op_Validity_Checks (N);
7850
456cbfa5 7851 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7852 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7853
7854 Expand_Compare_Minimize_Eliminate_Overflow (N);
7855
7856 if Nkind (N) /= N_Op_Ge then
7857 return;
7858 end if;
7859
7860 -- Array type case
7861
f02b8bb8 7862 if Is_Array_Type (Typ1) then
70482933
RK
7863 Expand_Array_Comparison (N);
7864 return;
7865 end if;
7866
456cbfa5
AC
7867 -- Deal with boolean operands
7868
70482933
RK
7869 if Is_Boolean_Type (Typ1) then
7870 Adjust_Condition (Op1);
7871 Adjust_Condition (Op2);
7872 Set_Etype (N, Standard_Boolean);
7873 Adjust_Result_Type (N, Typ);
7874 end if;
7875
7876 Rewrite_Comparison (N);
f02b8bb8 7877
0580d807 7878 Optimize_Length_Comparison (N);
70482933
RK
7879 end Expand_N_Op_Ge;
7880
7881 --------------------
7882 -- Expand_N_Op_Gt --
7883 --------------------
7884
7885 procedure Expand_N_Op_Gt (N : Node_Id) is
7886 Typ : constant Entity_Id := Etype (N);
7887 Op1 : constant Node_Id := Left_Opnd (N);
7888 Op2 : constant Node_Id := Right_Opnd (N);
7889 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7890
7891 begin
7892 Binary_Op_Validity_Checks (N);
7893
456cbfa5 7894 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7895 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7896
7897 Expand_Compare_Minimize_Eliminate_Overflow (N);
7898
7899 if Nkind (N) /= N_Op_Gt then
7900 return;
7901 end if;
7902
7903 -- Deal with array type operands
7904
f02b8bb8 7905 if Is_Array_Type (Typ1) then
70482933
RK
7906 Expand_Array_Comparison (N);
7907 return;
7908 end if;
7909
456cbfa5
AC
7910 -- Deal with boolean type operands
7911
70482933
RK
7912 if Is_Boolean_Type (Typ1) then
7913 Adjust_Condition (Op1);
7914 Adjust_Condition (Op2);
7915 Set_Etype (N, Standard_Boolean);
7916 Adjust_Result_Type (N, Typ);
7917 end if;
7918
7919 Rewrite_Comparison (N);
f02b8bb8 7920
0580d807 7921 Optimize_Length_Comparison (N);
70482933
RK
7922 end Expand_N_Op_Gt;
7923
7924 --------------------
7925 -- Expand_N_Op_Le --
7926 --------------------
7927
7928 procedure Expand_N_Op_Le (N : Node_Id) is
7929 Typ : constant Entity_Id := Etype (N);
7930 Op1 : constant Node_Id := Left_Opnd (N);
7931 Op2 : constant Node_Id := Right_Opnd (N);
7932 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7933
7934 begin
7935 Binary_Op_Validity_Checks (N);
7936
456cbfa5 7937 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7938 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7939
7940 Expand_Compare_Minimize_Eliminate_Overflow (N);
7941
7942 if Nkind (N) /= N_Op_Le then
7943 return;
7944 end if;
7945
7946 -- Deal with array type operands
7947
f02b8bb8 7948 if Is_Array_Type (Typ1) then
70482933
RK
7949 Expand_Array_Comparison (N);
7950 return;
7951 end if;
7952
456cbfa5
AC
7953 -- Deal with Boolean type operands
7954
70482933
RK
7955 if Is_Boolean_Type (Typ1) then
7956 Adjust_Condition (Op1);
7957 Adjust_Condition (Op2);
7958 Set_Etype (N, Standard_Boolean);
7959 Adjust_Result_Type (N, Typ);
7960 end if;
7961
7962 Rewrite_Comparison (N);
f02b8bb8 7963
0580d807 7964 Optimize_Length_Comparison (N);
70482933
RK
7965 end Expand_N_Op_Le;
7966
7967 --------------------
7968 -- Expand_N_Op_Lt --
7969 --------------------
7970
7971 procedure Expand_N_Op_Lt (N : Node_Id) is
7972 Typ : constant Entity_Id := Etype (N);
7973 Op1 : constant Node_Id := Left_Opnd (N);
7974 Op2 : constant Node_Id := Right_Opnd (N);
7975 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7976
7977 begin
7978 Binary_Op_Validity_Checks (N);
7979
456cbfa5 7980 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7981 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7982
7983 Expand_Compare_Minimize_Eliminate_Overflow (N);
7984
7985 if Nkind (N) /= N_Op_Lt then
7986 return;
7987 end if;
7988
7989 -- Deal with array type operands
7990
f02b8bb8 7991 if Is_Array_Type (Typ1) then
70482933
RK
7992 Expand_Array_Comparison (N);
7993 return;
7994 end if;
7995
456cbfa5
AC
7996 -- Deal with Boolean type operands
7997
70482933
RK
7998 if Is_Boolean_Type (Typ1) then
7999 Adjust_Condition (Op1);
8000 Adjust_Condition (Op2);
8001 Set_Etype (N, Standard_Boolean);
8002 Adjust_Result_Type (N, Typ);
8003 end if;
8004
8005 Rewrite_Comparison (N);
f02b8bb8 8006
0580d807 8007 Optimize_Length_Comparison (N);
70482933
RK
8008 end Expand_N_Op_Lt;
8009
8010 -----------------------
8011 -- Expand_N_Op_Minus --
8012 -----------------------
8013
8014 procedure Expand_N_Op_Minus (N : Node_Id) is
8015 Loc : constant Source_Ptr := Sloc (N);
8016 Typ : constant Entity_Id := Etype (N);
8017
8018 begin
8019 Unary_Op_Validity_Checks (N);
8020
b6b5cca8
AC
8021 -- Check for MINIMIZED/ELIMINATED overflow mode
8022
8023 if Minimized_Eliminated_Overflow_Check (N) then
8024 Apply_Arithmetic_Overflow_Check (N);
8025 return;
8026 end if;
8027
07fc65c4 8028 if not Backend_Overflow_Checks_On_Target
70482933
RK
8029 and then Is_Signed_Integer_Type (Etype (N))
8030 and then Do_Overflow_Check (N)
8031 then
8032 -- Software overflow checking expands -expr into (0 - expr)
8033
8034 Rewrite (N,
8035 Make_Op_Subtract (Loc,
8036 Left_Opnd => Make_Integer_Literal (Loc, 0),
8037 Right_Opnd => Right_Opnd (N)));
8038
8039 Analyze_And_Resolve (N, Typ);
70482933
RK
8040 end if;
8041 end Expand_N_Op_Minus;
8042
8043 ---------------------
8044 -- Expand_N_Op_Mod --
8045 ---------------------
8046
8047 procedure Expand_N_Op_Mod (N : Node_Id) is
8048 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 8049 Typ : constant Entity_Id := Etype (N);
70482933
RK
8050 DDC : constant Boolean := Do_Division_Check (N);
8051
b6b5cca8
AC
8052 Left : Node_Id;
8053 Right : Node_Id;
8054
70482933
RK
8055 LLB : Uint;
8056 Llo : Uint;
8057 Lhi : Uint;
8058 LOK : Boolean;
8059 Rlo : Uint;
8060 Rhi : Uint;
8061 ROK : Boolean;
8062
1033834f
RD
8063 pragma Warnings (Off, Lhi);
8064
70482933
RK
8065 begin
8066 Binary_Op_Validity_Checks (N);
8067
b6b5cca8
AC
8068 -- Check for MINIMIZED/ELIMINATED overflow mode
8069
8070 if Minimized_Eliminated_Overflow_Check (N) then
8071 Apply_Arithmetic_Overflow_Check (N);
8072 return;
8073 end if;
8074
9a6dc470
RD
8075 if Is_Integer_Type (Etype (N)) then
8076 Apply_Divide_Checks (N);
b6b5cca8
AC
8077
8078 -- All done if we don't have a MOD any more, which can happen as a
8079 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8080
8081 if Nkind (N) /= N_Op_Mod then
8082 return;
8083 end if;
9a6dc470
RD
8084 end if;
8085
b6b5cca8
AC
8086 -- Proceed with expansion of mod operator
8087
8088 Left := Left_Opnd (N);
8089 Right := Right_Opnd (N);
8090
5d5e9775
AC
8091 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
8092 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
70482933 8093
2c9f8c0a
AC
8094 -- Convert mod to rem if operands are both known to be non-negative, or
8095 -- both known to be non-positive (these are the cases in which rem and
8096 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8097 -- likely that this will improve the quality of code, (the operation now
8098 -- corresponds to the hardware remainder), and it does not seem likely
8099 -- that it could be harmful. It also avoids some cases of the elaborate
8100 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8101
8102 if (LOK and ROK)
8103 and then ((Llo >= 0 and then Rlo >= 0)
cc6f5d75 8104 or else
2c9f8c0a
AC
8105 (Lhi <= 0 and then Rhi <= 0))
8106 then
70482933
RK
8107 Rewrite (N,
8108 Make_Op_Rem (Sloc (N),
8109 Left_Opnd => Left_Opnd (N),
8110 Right_Opnd => Right_Opnd (N)));
8111
685094bf
RD
8112 -- Instead of reanalyzing the node we do the analysis manually. This
8113 -- avoids anomalies when the replacement is done in an instance and
8114 -- is epsilon more efficient.
70482933
RK
8115
8116 Set_Entity (N, Standard_Entity (S_Op_Rem));
fbf5a39b 8117 Set_Etype (N, Typ);
70482933
RK
8118 Set_Do_Division_Check (N, DDC);
8119 Expand_N_Op_Rem (N);
8120 Set_Analyzed (N);
2c9f8c0a 8121 return;
70482933
RK
8122
8123 -- Otherwise, normal mod processing
8124
8125 else
fbf5a39b
AC
8126 -- Apply optimization x mod 1 = 0. We don't really need that with
8127 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
8128 -- certainly harmless.
8129
8130 if Is_Integer_Type (Etype (N))
8131 and then Compile_Time_Known_Value (Right)
8132 and then Expr_Value (Right) = Uint_1
8133 then
abcbd24c
ST
8134 -- Call Remove_Side_Effects to ensure that any side effects in
8135 -- the ignored left operand (in particular function calls to
8136 -- user defined functions) are properly executed.
8137
8138 Remove_Side_Effects (Left);
8139
fbf5a39b
AC
8140 Rewrite (N, Make_Integer_Literal (Loc, 0));
8141 Analyze_And_Resolve (N, Typ);
8142 return;
8143 end if;
8144
2c9f8c0a
AC
8145 -- If we still have a mod operator and we are in Modify_Tree_For_C
8146 -- mode, and we have a signed integer type, then here is where we do
8147 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8148 -- for the special handling of the annoying case of largest negative
8149 -- number mod minus one.
8150
8151 if Nkind (N) = N_Op_Mod
8152 and then Is_Signed_Integer_Type (Typ)
8153 and then Modify_Tree_For_C
8154 then
8155 -- In the general case, we expand A mod B as
8156
8157 -- Tnn : constant typ := A rem B;
8158 -- ..
8159 -- (if (A >= 0) = (B >= 0) then Tnn
8160 -- elsif Tnn = 0 then 0
8161 -- else Tnn + B)
8162
8163 -- The comparison can be written simply as A >= 0 if we know that
8164 -- B >= 0 which is a very common case.
8165
8166 -- An important optimization is when B is known at compile time
8167 -- to be 2**K for some constant. In this case we can simply AND
8168 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8169 -- and that works for both the positive and negative cases.
8170
8171 declare
8172 P2 : constant Nat := Power_Of_Two (Right);
8173
8174 begin
8175 if P2 /= 0 then
8176 Rewrite (N,
8177 Unchecked_Convert_To (Typ,
8178 Make_Op_And (Loc,
8179 Left_Opnd =>
8180 Unchecked_Convert_To
8181 (Corresponding_Unsigned_Type (Typ), Left),
8182 Right_Opnd =>
8183 Make_Integer_Literal (Loc, 2 ** P2 - 1))));
8184 Analyze_And_Resolve (N, Typ);
8185 return;
8186 end if;
8187 end;
8188
8189 -- Here for the full rewrite
8190
8191 declare
8192 Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
8193 Cmp : Node_Id;
8194
8195 begin
8196 Cmp :=
8197 Make_Op_Ge (Loc,
8198 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
8199 Right_Opnd => Make_Integer_Literal (Loc, 0));
8200
8201 if not LOK or else Rlo < 0 then
8202 Cmp :=
8203 Make_Op_Eq (Loc,
8204 Left_Opnd => Cmp,
8205 Right_Opnd =>
8206 Make_Op_Ge (Loc,
8207 Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
8208 Right_Opnd => Make_Integer_Literal (Loc, 0)));
8209 end if;
8210
8211 Insert_Action (N,
8212 Make_Object_Declaration (Loc,
8213 Defining_Identifier => Tnn,
8214 Constant_Present => True,
8215 Object_Definition => New_Occurrence_Of (Typ, Loc),
8216 Expression =>
8217 Make_Op_Rem (Loc,
8218 Left_Opnd => Left,
8219 Right_Opnd => Right)));
8220
8221 Rewrite (N,
8222 Make_If_Expression (Loc,
8223 Expressions => New_List (
8224 Cmp,
8225 New_Occurrence_Of (Tnn, Loc),
8226 Make_If_Expression (Loc,
8227 Is_Elsif => True,
8228 Expressions => New_List (
8229 Make_Op_Eq (Loc,
8230 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8231 Right_Opnd => Make_Integer_Literal (Loc, 0)),
8232 Make_Integer_Literal (Loc, 0),
8233 Make_Op_Add (Loc,
8234 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8235 Right_Opnd =>
8236 Duplicate_Subexpr_No_Checks (Right)))))));
8237
8238 Analyze_And_Resolve (N, Typ);
8239 return;
8240 end;
8241 end if;
8242
8243 -- Deal with annoying case of largest negative number mod minus one.
8244 -- Gigi may not handle this case correctly, because on some targets,
8245 -- the mod value is computed using a divide instruction which gives
8246 -- an overflow trap for this case.
b9daa96e
AC
8247
8248 -- It would be a bit more efficient to figure out which targets
8249 -- this is really needed for, but in practice it is reasonable
8250 -- to do the following special check in all cases, since it means
8251 -- we get a clearer message, and also the overhead is minimal given
8252 -- that division is expensive in any case.
70482933 8253
685094bf
RD
8254 -- In fact the check is quite easy, if the right operand is -1, then
8255 -- the mod value is always 0, and we can just ignore the left operand
8256 -- completely in this case.
70482933 8257
9a6dc470
RD
8258 -- This only applies if we still have a mod operator. Skip if we
8259 -- have already rewritten this (e.g. in the case of eliminated
8260 -- overflow checks which have driven us into bignum mode).
fbf5a39b 8261
9a6dc470 8262 if Nkind (N) = N_Op_Mod then
70482933 8263
9a6dc470
RD
8264 -- The operand type may be private (e.g. in the expansion of an
8265 -- intrinsic operation) so we must use the underlying type to get
8266 -- the bounds, and convert the literals explicitly.
70482933 8267
9a6dc470
RD
8268 LLB :=
8269 Expr_Value
8270 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
8271
8272 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
761f7dcb 8273 and then ((not LOK) or else (Llo = LLB))
9a6dc470
RD
8274 then
8275 Rewrite (N,
9b16cb57 8276 Make_If_Expression (Loc,
9a6dc470
RD
8277 Expressions => New_List (
8278 Make_Op_Eq (Loc,
8279 Left_Opnd => Duplicate_Subexpr (Right),
8280 Right_Opnd =>
8281 Unchecked_Convert_To (Typ,
8282 Make_Integer_Literal (Loc, -1))),
8283 Unchecked_Convert_To (Typ,
8284 Make_Integer_Literal (Loc, Uint_0)),
8285 Relocate_Node (N))));
8286
8287 Set_Analyzed (Next (Next (First (Expressions (N)))));
8288 Analyze_And_Resolve (N, Typ);
8289 end if;
70482933
RK
8290 end if;
8291 end if;
8292 end Expand_N_Op_Mod;
8293
8294 --------------------------
8295 -- Expand_N_Op_Multiply --
8296 --------------------------
8297
8298 procedure Expand_N_Op_Multiply (N : Node_Id) is
abcbd24c
ST
8299 Loc : constant Source_Ptr := Sloc (N);
8300 Lop : constant Node_Id := Left_Opnd (N);
8301 Rop : constant Node_Id := Right_Opnd (N);
fbf5a39b 8302
abcbd24c 8303 Lp2 : constant Boolean :=
533369aa 8304 Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
abcbd24c 8305 Rp2 : constant Boolean :=
533369aa 8306 Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
fbf5a39b 8307
70482933
RK
8308 Ltyp : constant Entity_Id := Etype (Lop);
8309 Rtyp : constant Entity_Id := Etype (Rop);
8310 Typ : Entity_Id := Etype (N);
8311
8312 begin
8313 Binary_Op_Validity_Checks (N);
8314
b6b5cca8
AC
8315 -- Check for MINIMIZED/ELIMINATED overflow mode
8316
8317 if Minimized_Eliminated_Overflow_Check (N) then
8318 Apply_Arithmetic_Overflow_Check (N);
8319 return;
8320 end if;
8321
70482933
RK
8322 -- Special optimizations for integer types
8323
8324 if Is_Integer_Type (Typ) then
8325
abcbd24c 8326 -- N * 0 = 0 for integer types
70482933 8327
abcbd24c
ST
8328 if Compile_Time_Known_Value (Rop)
8329 and then Expr_Value (Rop) = Uint_0
70482933 8330 then
abcbd24c
ST
8331 -- Call Remove_Side_Effects to ensure that any side effects in
8332 -- the ignored left operand (in particular function calls to
8333 -- user defined functions) are properly executed.
8334
8335 Remove_Side_Effects (Lop);
8336
8337 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8338 Analyze_And_Resolve (N, Typ);
8339 return;
8340 end if;
8341
8342 -- Similar handling for 0 * N = 0
8343
8344 if Compile_Time_Known_Value (Lop)
8345 and then Expr_Value (Lop) = Uint_0
8346 then
8347 Remove_Side_Effects (Rop);
70482933
RK
8348 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8349 Analyze_And_Resolve (N, Typ);
8350 return;
8351 end if;
8352
8353 -- N * 1 = 1 * N = N for integer types
8354
fbf5a39b
AC
8355 -- This optimisation is not done if we are going to
8356 -- rewrite the product 1 * 2 ** N to a shift.
8357
8358 if Compile_Time_Known_Value (Rop)
8359 and then Expr_Value (Rop) = Uint_1
8360 and then not Lp2
70482933 8361 then
fbf5a39b 8362 Rewrite (N, Lop);
70482933
RK
8363 return;
8364
fbf5a39b
AC
8365 elsif Compile_Time_Known_Value (Lop)
8366 and then Expr_Value (Lop) = Uint_1
8367 and then not Rp2
70482933 8368 then
fbf5a39b 8369 Rewrite (N, Rop);
70482933
RK
8370 return;
8371 end if;
8372 end if;
8373
70482933
RK
8374 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8375 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8376 -- operand is an integer, as required for this to work.
8377
fbf5a39b
AC
8378 if Rp2 then
8379 if Lp2 then
70482933 8380
fbf5a39b 8381 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
70482933
RK
8382
8383 Rewrite (N,
8384 Make_Op_Expon (Loc,
8385 Left_Opnd => Make_Integer_Literal (Loc, 2),
8386 Right_Opnd =>
8387 Make_Op_Add (Loc,
8388 Left_Opnd => Right_Opnd (Lop),
8389 Right_Opnd => Right_Opnd (Rop))));
8390 Analyze_And_Resolve (N, Typ);
8391 return;
8392
8393 else
eefe3761
AC
8394 -- If the result is modular, perform the reduction of the result
8395 -- appropriately.
8396
8397 if Is_Modular_Integer_Type (Typ)
8398 and then not Non_Binary_Modulus (Typ)
8399 then
8400 Rewrite (N,
573e5dd6
RD
8401 Make_Op_And (Loc,
8402 Left_Opnd =>
8403 Make_Op_Shift_Left (Loc,
8404 Left_Opnd => Lop,
8405 Right_Opnd =>
8406 Convert_To (Standard_Natural, Right_Opnd (Rop))),
8407 Right_Opnd =>
eefe3761 8408 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
573e5dd6 8409
eefe3761
AC
8410 else
8411 Rewrite (N,
8412 Make_Op_Shift_Left (Loc,
8413 Left_Opnd => Lop,
8414 Right_Opnd =>
8415 Convert_To (Standard_Natural, Right_Opnd (Rop))));
8416 end if;
8417
70482933
RK
8418 Analyze_And_Resolve (N, Typ);
8419 return;
8420 end if;
8421
8422 -- Same processing for the operands the other way round
8423
fbf5a39b 8424 elsif Lp2 then
eefe3761
AC
8425 if Is_Modular_Integer_Type (Typ)
8426 and then not Non_Binary_Modulus (Typ)
8427 then
8428 Rewrite (N,
573e5dd6
RD
8429 Make_Op_And (Loc,
8430 Left_Opnd =>
8431 Make_Op_Shift_Left (Loc,
8432 Left_Opnd => Rop,
8433 Right_Opnd =>
8434 Convert_To (Standard_Natural, Right_Opnd (Lop))),
8435 Right_Opnd =>
8436 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8437
eefe3761
AC
8438 else
8439 Rewrite (N,
8440 Make_Op_Shift_Left (Loc,
8441 Left_Opnd => Rop,
8442 Right_Opnd =>
8443 Convert_To (Standard_Natural, Right_Opnd (Lop))));
8444 end if;
8445
70482933
RK
8446 Analyze_And_Resolve (N, Typ);
8447 return;
8448 end if;
8449
8450 -- Do required fixup of universal fixed operation
8451
8452 if Typ = Universal_Fixed then
8453 Fixup_Universal_Fixed_Operation (N);
8454 Typ := Etype (N);
8455 end if;
8456
8457 -- Multiplications with fixed-point results
8458
8459 if Is_Fixed_Point_Type (Typ) then
8460
685094bf
RD
8461 -- No special processing if Treat_Fixed_As_Integer is set, since from
8462 -- a semantic point of view such operations are simply integer
8463 -- operations and will be treated that way.
70482933
RK
8464
8465 if not Treat_Fixed_As_Integer (N) then
8466
8467 -- Case of fixed * integer => fixed
8468
8469 if Is_Integer_Type (Rtyp) then
8470 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
8471
8472 -- Case of integer * fixed => fixed
8473
8474 elsif Is_Integer_Type (Ltyp) then
8475 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
8476
8477 -- Case of fixed * fixed => fixed
8478
8479 else
8480 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
8481 end if;
8482 end if;
8483
685094bf
RD
8484 -- Other cases of multiplication of fixed-point operands. Again we
8485 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
70482933
RK
8486
8487 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
8488 and then not Treat_Fixed_As_Integer (N)
8489 then
8490 if Is_Integer_Type (Typ) then
8491 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
8492 else
8493 pragma Assert (Is_Floating_Point_Type (Typ));
8494 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
8495 end if;
8496
685094bf
RD
8497 -- Mixed-mode operations can appear in a non-static universal context,
8498 -- in which case the integer argument must be converted explicitly.
70482933 8499
533369aa 8500 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
70482933 8501 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
70482933
RK
8502 Analyze_And_Resolve (Rop, Universal_Real);
8503
533369aa 8504 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
70482933 8505 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
70482933
RK
8506 Analyze_And_Resolve (Lop, Universal_Real);
8507
8508 -- Non-fixed point cases, check software overflow checking required
8509
8510 elsif Is_Signed_Integer_Type (Etype (N)) then
8511 Apply_Arithmetic_Overflow_Check (N);
8512 end if;
dfaff97b
RD
8513
8514 -- Overflow checks for floating-point if -gnateF mode active
8515
8516 Check_Float_Op_Overflow (N);
70482933
RK
8517 end Expand_N_Op_Multiply;
8518
8519 --------------------
8520 -- Expand_N_Op_Ne --
8521 --------------------
8522
70482933 8523 procedure Expand_N_Op_Ne (N : Node_Id) is
f02b8bb8 8524 Typ : constant Entity_Id := Etype (Left_Opnd (N));
70482933
RK
8525
8526 begin
f02b8bb8 8527 -- Case of elementary type with standard operator
70482933 8528
f02b8bb8
RD
8529 if Is_Elementary_Type (Typ)
8530 and then Sloc (Entity (N)) = Standard_Location
8531 then
8532 Binary_Op_Validity_Checks (N);
70482933 8533
456cbfa5 8534 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
60b68e56 8535 -- means we no longer have a /= operation, we are all done.
456cbfa5
AC
8536
8537 Expand_Compare_Minimize_Eliminate_Overflow (N);
8538
8539 if Nkind (N) /= N_Op_Ne then
8540 return;
8541 end if;
8542
f02b8bb8 8543 -- Boolean types (requiring handling of non-standard case)
70482933 8544
f02b8bb8
RD
8545 if Is_Boolean_Type (Typ) then
8546 Adjust_Condition (Left_Opnd (N));
8547 Adjust_Condition (Right_Opnd (N));
8548 Set_Etype (N, Standard_Boolean);
8549 Adjust_Result_Type (N, Typ);
8550 end if;
fbf5a39b 8551
f02b8bb8
RD
8552 Rewrite_Comparison (N);
8553
f02b8bb8
RD
8554 -- For all cases other than elementary types, we rewrite node as the
8555 -- negation of an equality operation, and reanalyze. The equality to be
8556 -- used is defined in the same scope and has the same signature. This
8557 -- signature must be set explicitly since in an instance it may not have
8558 -- the same visibility as in the generic unit. This avoids duplicating
8559 -- or factoring the complex code for record/array equality tests etc.
8560
8561 else
8562 declare
8563 Loc : constant Source_Ptr := Sloc (N);
8564 Neg : Node_Id;
8565 Ne : constant Entity_Id := Entity (N);
8566
8567 begin
8568 Binary_Op_Validity_Checks (N);
8569
8570 Neg :=
8571 Make_Op_Not (Loc,
8572 Right_Opnd =>
8573 Make_Op_Eq (Loc,
8574 Left_Opnd => Left_Opnd (N),
8575 Right_Opnd => Right_Opnd (N)));
8576 Set_Paren_Count (Right_Opnd (Neg), 1);
8577
8578 if Scope (Ne) /= Standard_Standard then
8579 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
8580 end if;
8581
4637729f 8582 -- For navigation purposes, we want to treat the inequality as an
f02b8bb8 8583 -- implicit reference to the corresponding equality. Preserve the
4637729f 8584 -- Comes_From_ source flag to generate proper Xref entries.
f02b8bb8
RD
8585
8586 Preserve_Comes_From_Source (Neg, N);
8587 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
8588 Rewrite (N, Neg);
8589 Analyze_And_Resolve (N, Standard_Boolean);
8590 end;
8591 end if;
0580d807
AC
8592
8593 Optimize_Length_Comparison (N);
70482933
RK
8594 end Expand_N_Op_Ne;
8595
8596 ---------------------
8597 -- Expand_N_Op_Not --
8598 ---------------------
8599
685094bf 8600 -- If the argument is other than a Boolean array type, there is no special
7a5b62b0
AC
8601 -- expansion required, except for dealing with validity checks, and non-
8602 -- standard boolean representations.
70482933 8603
7a5b62b0
AC
8604 -- For the packed array case, we call the special routine in Exp_Pakd,
8605 -- except that if the component size is greater than one, we use the
8606 -- standard routine generating a gruesome loop (it is so peculiar to have
8607 -- packed arrays with non-standard Boolean representations anyway, so it
8608 -- does not matter that we do not handle this case efficiently).
70482933 8609
7a5b62b0
AC
8610 -- For the unpacked array case (and for the special packed case where we
8611 -- have non standard Booleans, as discussed above), we generate and insert
8612 -- into the tree the following function definition:
70482933
RK
8613
8614 -- function Nnnn (A : arr) is
8615 -- B : arr;
8616 -- begin
8617 -- for J in a'range loop
8618 -- B (J) := not A (J);
8619 -- end loop;
8620 -- return B;
8621 -- end Nnnn;
8622
8623 -- Here arr is the actual subtype of the parameter (and hence always
8624 -- constrained). Then we replace the not with a call to this function.
8625
8626 procedure Expand_N_Op_Not (N : Node_Id) is
8627 Loc : constant Source_Ptr := Sloc (N);
8628 Typ : constant Entity_Id := Etype (N);
8629 Opnd : Node_Id;
8630 Arr : Entity_Id;
8631 A : Entity_Id;
8632 B : Entity_Id;
8633 J : Entity_Id;
8634 A_J : Node_Id;
8635 B_J : Node_Id;
8636
8637 Func_Name : Entity_Id;
8638 Loop_Statement : Node_Id;
8639
8640 begin
8641 Unary_Op_Validity_Checks (N);
8642
8643 -- For boolean operand, deal with non-standard booleans
8644
8645 if Is_Boolean_Type (Typ) then
8646 Adjust_Condition (Right_Opnd (N));
8647 Set_Etype (N, Standard_Boolean);
8648 Adjust_Result_Type (N, Typ);
8649 return;
8650 end if;
8651
da94696d 8652 -- Only array types need any other processing
70482933 8653
da94696d 8654 if not Is_Array_Type (Typ) then
70482933
RK
8655 return;
8656 end if;
8657
a9d8907c
JM
8658 -- Case of array operand. If bit packed with a component size of 1,
8659 -- handle it in Exp_Pakd if the operand is known to be aligned.
70482933 8660
a9d8907c
JM
8661 if Is_Bit_Packed_Array (Typ)
8662 and then Component_Size (Typ) = 1
8663 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
8664 then
70482933
RK
8665 Expand_Packed_Not (N);
8666 return;
8667 end if;
8668
fbf5a39b
AC
8669 -- Case of array operand which is not bit-packed. If the context is
8670 -- a safe assignment, call in-place operation, If context is a larger
8671 -- boolean expression in the context of a safe assignment, expansion is
8672 -- done by enclosing operation.
70482933
RK
8673
8674 Opnd := Relocate_Node (Right_Opnd (N));
8675 Convert_To_Actual_Subtype (Opnd);
8676 Arr := Etype (Opnd);
8677 Ensure_Defined (Arr, N);
b4592168 8678 Silly_Boolean_Array_Not_Test (N, Arr);
70482933 8679
fbf5a39b
AC
8680 if Nkind (Parent (N)) = N_Assignment_Statement then
8681 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
8682 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8683 return;
8684
5e1c00fa 8685 -- Special case the negation of a binary operation
fbf5a39b 8686
303b4d58 8687 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
fbf5a39b 8688 and then Safe_In_Place_Array_Op
303b4d58 8689 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
fbf5a39b
AC
8690 then
8691 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8692 return;
8693 end if;
8694
8695 elsif Nkind (Parent (N)) in N_Binary_Op
8696 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
8697 then
8698 declare
8699 Op1 : constant Node_Id := Left_Opnd (Parent (N));
8700 Op2 : constant Node_Id := Right_Opnd (Parent (N));
8701 Lhs : constant Node_Id := Name (Parent (Parent (N)));
8702
8703 begin
8704 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
fbf5a39b 8705
aa9a7dd7
AC
8706 -- (not A) op (not B) can be reduced to a single call
8707
8708 if N = Op1 and then Nkind (Op2) = N_Op_Not then
fbf5a39b
AC
8709 return;
8710
bed8af19
AC
8711 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
8712 return;
8713
aa9a7dd7 8714 -- A xor (not B) can also be special-cased
fbf5a39b 8715
aa9a7dd7 8716 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
fbf5a39b
AC
8717 return;
8718 end if;
8719 end if;
8720 end;
8721 end if;
8722
70482933
RK
8723 A := Make_Defining_Identifier (Loc, Name_uA);
8724 B := Make_Defining_Identifier (Loc, Name_uB);
8725 J := Make_Defining_Identifier (Loc, Name_uJ);
8726
8727 A_J :=
8728 Make_Indexed_Component (Loc,
e4494292
RD
8729 Prefix => New_Occurrence_Of (A, Loc),
8730 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
8731
8732 B_J :=
8733 Make_Indexed_Component (Loc,
e4494292
RD
8734 Prefix => New_Occurrence_Of (B, Loc),
8735 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
8736
8737 Loop_Statement :=
8738 Make_Implicit_Loop_Statement (N,
8739 Identifier => Empty,
8740
8741 Iteration_Scheme =>
8742 Make_Iteration_Scheme (Loc,
8743 Loop_Parameter_Specification =>
8744 Make_Loop_Parameter_Specification (Loc,
0d901290 8745 Defining_Identifier => J,
70482933
RK
8746 Discrete_Subtype_Definition =>
8747 Make_Attribute_Reference (Loc,
0d901290 8748 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
8749 Attribute_Name => Name_Range))),
8750
8751 Statements => New_List (
8752 Make_Assignment_Statement (Loc,
8753 Name => B_J,
8754 Expression => Make_Op_Not (Loc, A_J))));
8755
191fcb3a 8756 Func_Name := Make_Temporary (Loc, 'N');
70482933
RK
8757 Set_Is_Inlined (Func_Name);
8758
8759 Insert_Action (N,
8760 Make_Subprogram_Body (Loc,
8761 Specification =>
8762 Make_Function_Specification (Loc,
8763 Defining_Unit_Name => Func_Name,
8764 Parameter_Specifications => New_List (
8765 Make_Parameter_Specification (Loc,
8766 Defining_Identifier => A,
e4494292
RD
8767 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8768 Result_Definition => New_Occurrence_Of (Typ, Loc)),
70482933
RK
8769
8770 Declarations => New_List (
8771 Make_Object_Declaration (Loc,
8772 Defining_Identifier => B,
e4494292 8773 Object_Definition => New_Occurrence_Of (Arr, Loc))),
70482933
RK
8774
8775 Handled_Statement_Sequence =>
8776 Make_Handled_Sequence_Of_Statements (Loc,
8777 Statements => New_List (
8778 Loop_Statement,
d766cee3 8779 Make_Simple_Return_Statement (Loc,
0d901290 8780 Expression => Make_Identifier (Loc, Chars (B)))))));
70482933
RK
8781
8782 Rewrite (N,
8783 Make_Function_Call (Loc,
e4494292 8784 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
8785 Parameter_Associations => New_List (Opnd)));
8786
8787 Analyze_And_Resolve (N, Typ);
8788 end Expand_N_Op_Not;
8789
8790 --------------------
8791 -- Expand_N_Op_Or --
8792 --------------------
8793
8794 procedure Expand_N_Op_Or (N : Node_Id) is
8795 Typ : constant Entity_Id := Etype (N);
8796
8797 begin
8798 Binary_Op_Validity_Checks (N);
8799
8800 if Is_Array_Type (Etype (N)) then
8801 Expand_Boolean_Operator (N);
8802
8803 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
8804 Adjust_Condition (Left_Opnd (N));
8805 Adjust_Condition (Right_Opnd (N));
8806 Set_Etype (N, Standard_Boolean);
8807 Adjust_Result_Type (N, Typ);
437f8c1e
AC
8808
8809 elsif Is_Intrinsic_Subprogram (Entity (N)) then
8810 Expand_Intrinsic_Call (N, Entity (N));
8811
70482933
RK
8812 end if;
8813 end Expand_N_Op_Or;
8814
8815 ----------------------
8816 -- Expand_N_Op_Plus --
8817 ----------------------
8818
8819 procedure Expand_N_Op_Plus (N : Node_Id) is
8820 begin
8821 Unary_Op_Validity_Checks (N);
b6b5cca8
AC
8822
8823 -- Check for MINIMIZED/ELIMINATED overflow mode
8824
8825 if Minimized_Eliminated_Overflow_Check (N) then
8826 Apply_Arithmetic_Overflow_Check (N);
8827 return;
8828 end if;
70482933
RK
8829 end Expand_N_Op_Plus;
8830
8831 ---------------------
8832 -- Expand_N_Op_Rem --
8833 ---------------------
8834
8835 procedure Expand_N_Op_Rem (N : Node_Id) is
8836 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 8837 Typ : constant Entity_Id := Etype (N);
70482933 8838
b6b5cca8
AC
8839 Left : Node_Id;
8840 Right : Node_Id;
70482933 8841
5d5e9775
AC
8842 Lo : Uint;
8843 Hi : Uint;
8844 OK : Boolean;
70482933 8845
5d5e9775
AC
8846 Lneg : Boolean;
8847 Rneg : Boolean;
8848 -- Set if corresponding operand can be negative
8849
8850 pragma Unreferenced (Hi);
1033834f 8851
70482933
RK
8852 begin
8853 Binary_Op_Validity_Checks (N);
8854
b6b5cca8
AC
8855 -- Check for MINIMIZED/ELIMINATED overflow mode
8856
8857 if Minimized_Eliminated_Overflow_Check (N) then
8858 Apply_Arithmetic_Overflow_Check (N);
8859 return;
8860 end if;
8861
70482933 8862 if Is_Integer_Type (Etype (N)) then
a91e9ac7 8863 Apply_Divide_Checks (N);
b6b5cca8
AC
8864
8865 -- All done if we don't have a REM any more, which can happen as a
8866 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8867
8868 if Nkind (N) /= N_Op_Rem then
8869 return;
8870 end if;
70482933
RK
8871 end if;
8872
b6b5cca8
AC
8873 -- Proceed with expansion of REM
8874
8875 Left := Left_Opnd (N);
8876 Right := Right_Opnd (N);
8877
685094bf
RD
8878 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
8879 -- but it is useful with other back ends (e.g. AAMP), and is certainly
8880 -- harmless.
fbf5a39b
AC
8881
8882 if Is_Integer_Type (Etype (N))
8883 and then Compile_Time_Known_Value (Right)
8884 and then Expr_Value (Right) = Uint_1
8885 then
abcbd24c
ST
8886 -- Call Remove_Side_Effects to ensure that any side effects in the
8887 -- ignored left operand (in particular function calls to user defined
8888 -- functions) are properly executed.
8889
8890 Remove_Side_Effects (Left);
8891
fbf5a39b
AC
8892 Rewrite (N, Make_Integer_Literal (Loc, 0));
8893 Analyze_And_Resolve (N, Typ);
8894 return;
8895 end if;
8896
685094bf 8897 -- Deal with annoying case of largest negative number remainder minus
b9daa96e
AC
8898 -- one. Gigi may not handle this case correctly, because on some
8899 -- targets, the mod value is computed using a divide instruction
8900 -- which gives an overflow trap for this case.
8901
8902 -- It would be a bit more efficient to figure out which targets this
8903 -- is really needed for, but in practice it is reasonable to do the
8904 -- following special check in all cases, since it means we get a clearer
8905 -- message, and also the overhead is minimal given that division is
8906 -- expensive in any case.
70482933 8907
685094bf
RD
8908 -- In fact the check is quite easy, if the right operand is -1, then
8909 -- the remainder is always 0, and we can just ignore the left operand
8910 -- completely in this case.
70482933 8911
5d5e9775
AC
8912 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
8913 Lneg := (not OK) or else Lo < 0;
fbf5a39b 8914
5d5e9775
AC
8915 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
8916 Rneg := (not OK) or else Lo < 0;
fbf5a39b 8917
5d5e9775
AC
8918 -- We won't mess with trying to find out if the left operand can really
8919 -- be the largest negative number (that's a pain in the case of private
8920 -- types and this is really marginal). We will just assume that we need
8921 -- the test if the left operand can be negative at all.
fbf5a39b 8922
5d5e9775 8923 if Lneg and Rneg then
70482933 8924 Rewrite (N,
9b16cb57 8925 Make_If_Expression (Loc,
70482933
RK
8926 Expressions => New_List (
8927 Make_Op_Eq (Loc,
0d901290 8928 Left_Opnd => Duplicate_Subexpr (Right),
70482933 8929 Right_Opnd =>
0d901290 8930 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
70482933 8931
fbf5a39b
AC
8932 Unchecked_Convert_To (Typ,
8933 Make_Integer_Literal (Loc, Uint_0)),
70482933
RK
8934
8935 Relocate_Node (N))));
8936
8937 Set_Analyzed (Next (Next (First (Expressions (N)))));
8938 Analyze_And_Resolve (N, Typ);
8939 end if;
8940 end Expand_N_Op_Rem;
8941
8942 -----------------------------
8943 -- Expand_N_Op_Rotate_Left --
8944 -----------------------------
8945
8946 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
8947 begin
8948 Binary_Op_Validity_Checks (N);
5216b599
AC
8949
8950 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
8951 -- so we rewrite in terms of logical shifts
8952
8953 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
8954
8955 -- where Bits is the shift count mod Esize (the mod operation here
8956 -- deals with ludicrous large shift counts, which are apparently OK).
8957
8958 -- What about non-binary modulus ???
8959
8960 declare
8961 Loc : constant Source_Ptr := Sloc (N);
8962 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8963 Typ : constant Entity_Id := Etype (N);
8964
8965 begin
8966 if Modify_Tree_For_C then
8967 Rewrite (Right_Opnd (N),
8968 Make_Op_Rem (Loc,
8969 Left_Opnd => Relocate_Node (Right_Opnd (N)),
8970 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8971
8972 Analyze_And_Resolve (Right_Opnd (N), Rtp);
8973
8974 Rewrite (N,
8975 Make_Op_Or (Loc,
8976 Left_Opnd =>
8977 Make_Op_Shift_Left (Loc,
8978 Left_Opnd => Left_Opnd (N),
8979 Right_Opnd => Right_Opnd (N)),
e09a5598 8980
5216b599
AC
8981 Right_Opnd =>
8982 Make_Op_Shift_Right (Loc,
8983 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8984 Right_Opnd =>
8985 Make_Op_Subtract (Loc,
8986 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
8987 Right_Opnd =>
8988 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8989
8990 Analyze_And_Resolve (N, Typ);
8991 end if;
8992 end;
70482933
RK
8993 end Expand_N_Op_Rotate_Left;
8994
8995 ------------------------------
8996 -- Expand_N_Op_Rotate_Right --
8997 ------------------------------
8998
8999 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
9000 begin
9001 Binary_Op_Validity_Checks (N);
5216b599
AC
9002
9003 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
9004 -- so we rewrite in terms of logical shifts
9005
9006 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
9007
9008 -- where Bits is the shift count mod Esize (the mod operation here
9009 -- deals with ludicrous large shift counts, which are apparently OK).
9010
9011 -- What about non-binary modulus ???
9012
9013 declare
9014 Loc : constant Source_Ptr := Sloc (N);
9015 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
9016 Typ : constant Entity_Id := Etype (N);
9017
9018 begin
9019 Rewrite (Right_Opnd (N),
9020 Make_Op_Rem (Loc,
9021 Left_Opnd => Relocate_Node (Right_Opnd (N)),
9022 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
9023
9024 Analyze_And_Resolve (Right_Opnd (N), Rtp);
9025
9026 if Modify_Tree_For_C then
9027 Rewrite (N,
9028 Make_Op_Or (Loc,
9029 Left_Opnd =>
9030 Make_Op_Shift_Right (Loc,
9031 Left_Opnd => Left_Opnd (N),
9032 Right_Opnd => Right_Opnd (N)),
e09a5598 9033
5216b599
AC
9034 Right_Opnd =>
9035 Make_Op_Shift_Left (Loc,
9036 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
9037 Right_Opnd =>
9038 Make_Op_Subtract (Loc,
9039 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
9040 Right_Opnd =>
9041 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
9042
9043 Analyze_And_Resolve (N, Typ);
9044 end if;
9045 end;
70482933
RK
9046 end Expand_N_Op_Rotate_Right;
9047
9048 ----------------------------
9049 -- Expand_N_Op_Shift_Left --
9050 ----------------------------
9051
e09a5598
AC
9052 -- Note: nothing in this routine depends on left as opposed to right shifts
9053 -- so we share the routine for expanding shift right operations.
9054
70482933
RK
9055 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
9056 begin
9057 Binary_Op_Validity_Checks (N);
e09a5598
AC
9058
9059 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9060 -- operand is not greater than the word size (since that would not
9061 -- be defined properly by the corresponding C shift operator).
9062
9063 if Modify_Tree_For_C then
9064 declare
9065 Right : constant Node_Id := Right_Opnd (N);
9066 Loc : constant Source_Ptr := Sloc (Right);
9067 Typ : constant Entity_Id := Etype (N);
9068 Siz : constant Uint := Esize (Typ);
9069 Orig : Node_Id;
9070 OK : Boolean;
9071 Lo : Uint;
9072 Hi : Uint;
9073
9074 begin
9075 if Compile_Time_Known_Value (Right) then
9076 if Expr_Value (Right) >= Siz then
9077 Rewrite (N, Make_Integer_Literal (Loc, 0));
9078 Analyze_And_Resolve (N, Typ);
9079 end if;
9080
9081 -- Not compile time known, find range
9082
9083 else
9084 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
9085
9086 -- Nothing to do if known to be OK range, otherwise expand
9087
9088 if not OK or else Hi >= Siz then
9089
9090 -- Prevent recursion on copy of shift node
9091
9092 Orig := Relocate_Node (N);
9093 Set_Analyzed (Orig);
9094
9095 -- Now do the rewrite
9096
9097 Rewrite (N,
9098 Make_If_Expression (Loc,
9099 Expressions => New_List (
9100 Make_Op_Ge (Loc,
9101 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
9102 Right_Opnd => Make_Integer_Literal (Loc, Siz)),
9103 Make_Integer_Literal (Loc, 0),
9104 Orig)));
9105 Analyze_And_Resolve (N, Typ);
9106 end if;
9107 end if;
9108 end;
9109 end if;
70482933
RK
9110 end Expand_N_Op_Shift_Left;
9111
9112 -----------------------------
9113 -- Expand_N_Op_Shift_Right --
9114 -----------------------------
9115
9116 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
9117 begin
e09a5598
AC
9118 -- Share shift left circuit
9119
9120 Expand_N_Op_Shift_Left (N);
70482933
RK
9121 end Expand_N_Op_Shift_Right;
9122
9123 ----------------------------------------
9124 -- Expand_N_Op_Shift_Right_Arithmetic --
9125 ----------------------------------------
9126
9127 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
9128 begin
9129 Binary_Op_Validity_Checks (N);
5216b599
AC
9130
9131 -- If we are in Modify_Tree_For_C mode, there is no shift right
9132 -- arithmetic in C, so we rewrite in terms of logical shifts.
9133
9134 -- Shift_Right (Num, Bits) or
9135 -- (if Num >= Sign
9136 -- then not (Shift_Right (Mask, bits))
9137 -- else 0)
9138
9139 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9140
9141 -- Note: in almost all C compilers it would work to just shift a
9142 -- signed integer right, but it's undefined and we cannot rely on it.
9143
e09a5598
AC
9144 -- Note: the above works fine for shift counts greater than or equal
9145 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9146 -- generates all 1'bits.
9147
5216b599
AC
9148 -- What about non-binary modulus ???
9149
9150 declare
9151 Loc : constant Source_Ptr := Sloc (N);
9152 Typ : constant Entity_Id := Etype (N);
9153 Sign : constant Uint := 2 ** (Esize (Typ) - 1);
9154 Mask : constant Uint := (2 ** Esize (Typ)) - 1;
9155 Left : constant Node_Id := Left_Opnd (N);
9156 Right : constant Node_Id := Right_Opnd (N);
9157 Maskx : Node_Id;
9158
9159 begin
9160 if Modify_Tree_For_C then
9161
9162 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9163 -- compile time as a single constant.
9164
9165 if Compile_Time_Known_Value (Right) then
9166 declare
9167 Val : constant Uint := Expr_Value (Right);
9168
9169 begin
9170 if Val >= Esize (Typ) then
9171 Maskx := Make_Integer_Literal (Loc, Mask);
9172
9173 else
9174 Maskx :=
9175 Make_Integer_Literal (Loc,
9176 Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
9177 end if;
9178 end;
9179
9180 else
9181 Maskx :=
9182 Make_Op_Not (Loc,
9183 Right_Opnd =>
9184 Make_Op_Shift_Right (Loc,
9185 Left_Opnd => Make_Integer_Literal (Loc, Mask),
9186 Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
9187 end if;
9188
9189 -- Now do the rewrite
9190
9191 Rewrite (N,
9192 Make_Op_Or (Loc,
9193 Left_Opnd =>
9194 Make_Op_Shift_Right (Loc,
9195 Left_Opnd => Left,
9196 Right_Opnd => Right),
9197 Right_Opnd =>
9198 Make_If_Expression (Loc,
9199 Expressions => New_List (
9200 Make_Op_Ge (Loc,
9201 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
9202 Right_Opnd => Make_Integer_Literal (Loc, Sign)),
9203 Maskx,
9204 Make_Integer_Literal (Loc, 0)))));
9205 Analyze_And_Resolve (N, Typ);
9206 end if;
9207 end;
70482933
RK
9208 end Expand_N_Op_Shift_Right_Arithmetic;
9209
9210 --------------------------
9211 -- Expand_N_Op_Subtract --
9212 --------------------------
9213
9214 procedure Expand_N_Op_Subtract (N : Node_Id) is
9215 Typ : constant Entity_Id := Etype (N);
9216
9217 begin
9218 Binary_Op_Validity_Checks (N);
9219
b6b5cca8
AC
9220 -- Check for MINIMIZED/ELIMINATED overflow mode
9221
9222 if Minimized_Eliminated_Overflow_Check (N) then
9223 Apply_Arithmetic_Overflow_Check (N);
9224 return;
9225 end if;
9226
70482933
RK
9227 -- N - 0 = N for integer types
9228
9229 if Is_Integer_Type (Typ)
9230 and then Compile_Time_Known_Value (Right_Opnd (N))
9231 and then Expr_Value (Right_Opnd (N)) = 0
9232 then
9233 Rewrite (N, Left_Opnd (N));
9234 return;
9235 end if;
9236
8fc789c8 9237 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 9238
761f7dcb 9239 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
70482933 9240 Apply_Arithmetic_Overflow_Check (N);
70482933 9241 end if;
dfaff97b
RD
9242
9243 -- Overflow checks for floating-point if -gnateF mode active
9244
9245 Check_Float_Op_Overflow (N);
70482933
RK
9246 end Expand_N_Op_Subtract;
9247
9248 ---------------------
9249 -- Expand_N_Op_Xor --
9250 ---------------------
9251
9252 procedure Expand_N_Op_Xor (N : Node_Id) is
9253 Typ : constant Entity_Id := Etype (N);
9254
9255 begin
9256 Binary_Op_Validity_Checks (N);
9257
9258 if Is_Array_Type (Etype (N)) then
9259 Expand_Boolean_Operator (N);
9260
9261 elsif Is_Boolean_Type (Etype (N)) then
9262 Adjust_Condition (Left_Opnd (N));
9263 Adjust_Condition (Right_Opnd (N));
9264 Set_Etype (N, Standard_Boolean);
9265 Adjust_Result_Type (N, Typ);
437f8c1e
AC
9266
9267 elsif Is_Intrinsic_Subprogram (Entity (N)) then
9268 Expand_Intrinsic_Call (N, Entity (N));
9269
70482933
RK
9270 end if;
9271 end Expand_N_Op_Xor;
9272
9273 ----------------------
9274 -- Expand_N_Or_Else --
9275 ----------------------
9276
5875f8d6
AC
9277 procedure Expand_N_Or_Else (N : Node_Id)
9278 renames Expand_Short_Circuit_Operator;
70482933
RK
9279
9280 -----------------------------------
9281 -- Expand_N_Qualified_Expression --
9282 -----------------------------------
9283
9284 procedure Expand_N_Qualified_Expression (N : Node_Id) is
9285 Operand : constant Node_Id := Expression (N);
9286 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
9287
9288 begin
f82944b7
JM
9289 -- Do validity check if validity checking operands
9290
533369aa 9291 if Validity_Checks_On and Validity_Check_Operands then
f82944b7
JM
9292 Ensure_Valid (Operand);
9293 end if;
9294
9295 -- Apply possible constraint check
9296
70482933 9297 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
d79e621a
GD
9298
9299 if Do_Range_Check (Operand) then
9300 Set_Do_Range_Check (Operand, False);
9301 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
9302 end if;
70482933
RK
9303 end Expand_N_Qualified_Expression;
9304
a961aa79
AC
9305 ------------------------------------
9306 -- Expand_N_Quantified_Expression --
9307 ------------------------------------
9308
c0f136cd
AC
9309 -- We expand:
9310
9311 -- for all X in range => Cond
a961aa79 9312
c0f136cd 9313 -- into:
a961aa79 9314
c0f136cd
AC
9315 -- T := True;
9316 -- for X in range loop
9317 -- if not Cond then
9318 -- T := False;
9319 -- exit;
9320 -- end if;
9321 -- end loop;
90c63b09 9322
36504e5f 9323 -- Similarly, an existentially quantified expression:
90c63b09 9324
c0f136cd 9325 -- for some X in range => Cond
90c63b09 9326
c0f136cd 9327 -- becomes:
90c63b09 9328
c0f136cd
AC
9329 -- T := False;
9330 -- for X in range loop
9331 -- if Cond then
9332 -- T := True;
9333 -- exit;
9334 -- end if;
9335 -- end loop;
90c63b09 9336
c0f136cd
AC
9337 -- In both cases, the iteration may be over a container in which case it is
9338 -- given by an iterator specification, not a loop parameter specification.
a961aa79 9339
c0f136cd 9340 procedure Expand_N_Quantified_Expression (N : Node_Id) is
804670f1
AC
9341 Actions : constant List_Id := New_List;
9342 For_All : constant Boolean := All_Present (N);
9343 Iter_Spec : constant Node_Id := Iterator_Specification (N);
9344 Loc : constant Source_Ptr := Sloc (N);
9345 Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
9346 Cond : Node_Id;
9347 Flag : Entity_Id;
9348 Scheme : Node_Id;
9349 Stmts : List_Id;
c56a9ba4 9350
a961aa79 9351 begin
804670f1
AC
9352 -- Create the declaration of the flag which tracks the status of the
9353 -- quantified expression. Generate:
011f9d5d 9354
804670f1 9355 -- Flag : Boolean := (True | False);
011f9d5d 9356
804670f1 9357 Flag := Make_Temporary (Loc, 'T', N);
011f9d5d 9358
804670f1 9359 Append_To (Actions,
90c63b09 9360 Make_Object_Declaration (Loc,
804670f1 9361 Defining_Identifier => Flag,
c0f136cd
AC
9362 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
9363 Expression =>
804670f1
AC
9364 New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
9365
9366 -- Construct the circuitry which tracks the status of the quantified
9367 -- expression. Generate:
9368
9369 -- if [not] Cond then
9370 -- Flag := (False | True);
9371 -- exit;
9372 -- end if;
a961aa79 9373
c0f136cd 9374 Cond := Relocate_Node (Condition (N));
a961aa79 9375
804670f1 9376 if For_All then
c0f136cd 9377 Cond := Make_Op_Not (Loc, Cond);
a961aa79
AC
9378 end if;
9379
804670f1 9380 Stmts := New_List (
c0f136cd
AC
9381 Make_Implicit_If_Statement (N,
9382 Condition => Cond,
9383 Then_Statements => New_List (
9384 Make_Assignment_Statement (Loc,
804670f1 9385 Name => New_Occurrence_Of (Flag, Loc),
c0f136cd 9386 Expression =>
804670f1
AC
9387 New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
9388 Make_Exit_Statement (Loc))));
9389
9390 -- Build the loop equivalent of the quantified expression
c0f136cd 9391
804670f1
AC
9392 if Present (Iter_Spec) then
9393 Scheme :=
011f9d5d 9394 Make_Iteration_Scheme (Loc,
804670f1 9395 Iterator_Specification => Iter_Spec);
c56a9ba4 9396 else
804670f1 9397 Scheme :=
011f9d5d 9398 Make_Iteration_Scheme (Loc,
804670f1 9399 Loop_Parameter_Specification => Loop_Spec);
c56a9ba4
AC
9400 end if;
9401
a961aa79
AC
9402 Append_To (Actions,
9403 Make_Loop_Statement (Loc,
804670f1
AC
9404 Iteration_Scheme => Scheme,
9405 Statements => Stmts,
c0f136cd 9406 End_Label => Empty));
a961aa79 9407
804670f1
AC
9408 -- Transform the quantified expression
9409
a961aa79
AC
9410 Rewrite (N,
9411 Make_Expression_With_Actions (Loc,
804670f1 9412 Expression => New_Occurrence_Of (Flag, Loc),
a961aa79 9413 Actions => Actions));
a961aa79
AC
9414 Analyze_And_Resolve (N, Standard_Boolean);
9415 end Expand_N_Quantified_Expression;
9416
70482933
RK
9417 ---------------------------------
9418 -- Expand_N_Selected_Component --
9419 ---------------------------------
9420
70482933
RK
9421 procedure Expand_N_Selected_Component (N : Node_Id) is
9422 Loc : constant Source_Ptr := Sloc (N);
9423 Par : constant Node_Id := Parent (N);
9424 P : constant Node_Id := Prefix (N);
03eb6036 9425 S : constant Node_Id := Selector_Name (N);
fbf5a39b 9426 Ptyp : Entity_Id := Underlying_Type (Etype (P));
70482933 9427 Disc : Entity_Id;
70482933 9428 New_N : Node_Id;
fbf5a39b 9429 Dcon : Elmt_Id;
d606f1df 9430 Dval : Node_Id;
70482933
RK
9431
9432 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
9433 -- Gigi needs a temporary for prefixes that depend on a discriminant,
9434 -- unless the context of an assignment can provide size information.
fbf5a39b
AC
9435 -- Don't we have a general routine that does this???
9436
53f29d4f
AC
9437 function Is_Subtype_Declaration return Boolean;
9438 -- The replacement of a discriminant reference by its value is required
4317e442
AC
9439 -- if this is part of the initialization of an temporary generated by a
9440 -- change of representation. This shows up as the construction of a
53f29d4f 9441 -- discriminant constraint for a subtype declared at the same point as
4317e442
AC
9442 -- the entity in the prefix of the selected component. We recognize this
9443 -- case when the context of the reference is:
9444 -- subtype ST is T(Obj.D);
9445 -- where the entity for Obj comes from source, and ST has the same sloc.
53f29d4f 9446
fbf5a39b
AC
9447 -----------------------
9448 -- In_Left_Hand_Side --
9449 -----------------------
70482933
RK
9450
9451 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
9452 begin
fbf5a39b 9453 return (Nkind (Parent (Comp)) = N_Assignment_Statement
90c63b09 9454 and then Comp = Name (Parent (Comp)))
fbf5a39b 9455 or else (Present (Parent (Comp))
90c63b09
AC
9456 and then Nkind (Parent (Comp)) in N_Subexpr
9457 and then In_Left_Hand_Side (Parent (Comp)));
70482933
RK
9458 end In_Left_Hand_Side;
9459
53f29d4f
AC
9460 -----------------------------
9461 -- Is_Subtype_Declaration --
9462 -----------------------------
9463
9464 function Is_Subtype_Declaration return Boolean is
9465 Par : constant Node_Id := Parent (N);
53f29d4f
AC
9466 begin
9467 return
9468 Nkind (Par) = N_Index_Or_Discriminant_Constraint
9469 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
9470 and then Comes_From_Source (Entity (Prefix (N)))
9471 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
9472 end Is_Subtype_Declaration;
9473
fbf5a39b
AC
9474 -- Start of processing for Expand_N_Selected_Component
9475
70482933 9476 begin
fbf5a39b
AC
9477 -- Insert explicit dereference if required
9478
9479 if Is_Access_Type (Ptyp) then
702d2020
AC
9480
9481 -- First set prefix type to proper access type, in case it currently
9482 -- has a private (non-access) view of this type.
9483
9484 Set_Etype (P, Ptyp);
9485
fbf5a39b 9486 Insert_Explicit_Dereference (P);
e6f69614 9487 Analyze_And_Resolve (P, Designated_Type (Ptyp));
fbf5a39b
AC
9488
9489 if Ekind (Etype (P)) = E_Private_Subtype
9490 and then Is_For_Access_Subtype (Etype (P))
9491 then
9492 Set_Etype (P, Base_Type (Etype (P)));
9493 end if;
9494
9495 Ptyp := Etype (P);
9496 end if;
9497
9498 -- Deal with discriminant check required
9499
70482933 9500 if Do_Discriminant_Check (N) then
03eb6036
AC
9501 if Present (Discriminant_Checking_Func
9502 (Original_Record_Component (Entity (S))))
9503 then
9504 -- Present the discriminant checking function to the backend, so
9505 -- that it can inline the call to the function.
9506
9507 Add_Inlined_Body
9508 (Discriminant_Checking_Func
9509 (Original_Record_Component (Entity (S))));
70482933 9510
03eb6036 9511 -- Now reset the flag and generate the call
70482933 9512
03eb6036
AC
9513 Set_Do_Discriminant_Check (N, False);
9514 Generate_Discriminant_Check (N);
70482933 9515
03eb6036
AC
9516 -- In the case of Unchecked_Union, no discriminant checking is
9517 -- actually performed.
70482933 9518
03eb6036
AC
9519 else
9520 Set_Do_Discriminant_Check (N, False);
9521 end if;
70482933
RK
9522 end if;
9523
b4592168
GD
9524 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9525 -- function, then additional actuals must be passed.
9526
0791fbe9 9527 if Ada_Version >= Ada_2005
b4592168
GD
9528 and then Is_Build_In_Place_Function_Call (P)
9529 then
9530 Make_Build_In_Place_Call_In_Anonymous_Context (P);
9531 end if;
9532
fbf5a39b
AC
9533 -- Gigi cannot handle unchecked conversions that are the prefix of a
9534 -- selected component with discriminants. This must be checked during
9535 -- expansion, because during analysis the type of the selector is not
9536 -- known at the point the prefix is analyzed. If the conversion is the
9537 -- target of an assignment, then we cannot force the evaluation.
70482933
RK
9538
9539 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
9540 and then Has_Discriminants (Etype (N))
9541 and then not In_Left_Hand_Side (N)
9542 then
9543 Force_Evaluation (Prefix (N));
9544 end if;
9545
9546 -- Remaining processing applies only if selector is a discriminant
9547
9548 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
9549
9550 -- If the selector is a discriminant of a constrained record type,
fbf5a39b
AC
9551 -- we may be able to rewrite the expression with the actual value
9552 -- of the discriminant, a useful optimization in some cases.
70482933
RK
9553
9554 if Is_Record_Type (Ptyp)
9555 and then Has_Discriminants (Ptyp)
9556 and then Is_Constrained (Ptyp)
70482933 9557 then
fbf5a39b 9558 -- Do this optimization for discrete types only, and not for
a90bd866 9559 -- access types (access discriminants get us into trouble).
70482933 9560
fbf5a39b
AC
9561 if not Is_Discrete_Type (Etype (N)) then
9562 null;
9563
9564 -- Don't do this on the left hand of an assignment statement.
0d901290
AC
9565 -- Normally one would think that references like this would not
9566 -- occur, but they do in generated code, and mean that we really
a90bd866 9567 -- do want to assign the discriminant.
fbf5a39b
AC
9568
9569 elsif Nkind (Par) = N_Assignment_Statement
9570 and then Name (Par) = N
9571 then
9572 null;
9573
685094bf 9574 -- Don't do this optimization for the prefix of an attribute or
e2534738 9575 -- the name of an object renaming declaration since these are
685094bf 9576 -- contexts where we do not want the value anyway.
fbf5a39b
AC
9577
9578 elsif (Nkind (Par) = N_Attribute_Reference
533369aa 9579 and then Prefix (Par) = N)
fbf5a39b
AC
9580 or else Is_Renamed_Object (N)
9581 then
9582 null;
9583
9584 -- Don't do this optimization if we are within the code for a
9585 -- discriminant check, since the whole point of such a check may
a90bd866 9586 -- be to verify the condition on which the code below depends.
fbf5a39b
AC
9587
9588 elsif Is_In_Discriminant_Check (N) then
9589 null;
9590
9591 -- Green light to see if we can do the optimization. There is
685094bf
RD
9592 -- still one condition that inhibits the optimization below but
9593 -- now is the time to check the particular discriminant.
fbf5a39b
AC
9594
9595 else
685094bf
RD
9596 -- Loop through discriminants to find the matching discriminant
9597 -- constraint to see if we can copy it.
fbf5a39b
AC
9598
9599 Disc := First_Discriminant (Ptyp);
9600 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
9601 Discr_Loop : while Present (Dcon) loop
d606f1df 9602 Dval := Node (Dcon);
fbf5a39b 9603
bd949ee2
RD
9604 -- Check if this is the matching discriminant and if the
9605 -- discriminant value is simple enough to make sense to
9606 -- copy. We don't want to copy complex expressions, and
9607 -- indeed to do so can cause trouble (before we put in
9608 -- this guard, a discriminant expression containing an
e7d897b8 9609 -- AND THEN was copied, causing problems for coverage
c228a069 9610 -- analysis tools).
bd949ee2 9611
53f29d4f
AC
9612 -- However, if the reference is part of the initialization
9613 -- code generated for an object declaration, we must use
9614 -- the discriminant value from the subtype constraint,
9615 -- because the selected component may be a reference to the
9616 -- object being initialized, whose discriminant is not yet
9617 -- set. This only happens in complex cases involving changes
9618 -- or representation.
9619
bd949ee2
RD
9620 if Disc = Entity (Selector_Name (N))
9621 and then (Is_Entity_Name (Dval)
170b2989
AC
9622 or else Compile_Time_Known_Value (Dval)
9623 or else Is_Subtype_Declaration)
bd949ee2 9624 then
fbf5a39b
AC
9625 -- Here we have the matching discriminant. Check for
9626 -- the case of a discriminant of a component that is
9627 -- constrained by an outer discriminant, which cannot
9628 -- be optimized away.
9629
d606f1df
AC
9630 if Denotes_Discriminant
9631 (Dval, Check_Concurrent => True)
9632 then
9633 exit Discr_Loop;
9634
9635 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
9636 and then
9637 Denotes_Discriminant
9638 (Selector_Name (Original_Node (Dval)), True)
9639 then
9640 exit Discr_Loop;
9641
9642 -- Do not retrieve value if constraint is not static. It
9643 -- is generally not useful, and the constraint may be a
9644 -- rewritten outer discriminant in which case it is in
9645 -- fact incorrect.
9646
9647 elsif Is_Entity_Name (Dval)
d606f1df 9648 and then
533369aa
AC
9649 Nkind (Parent (Entity (Dval))) = N_Object_Declaration
9650 and then Present (Expression (Parent (Entity (Dval))))
9651 and then not
edab6088 9652 Is_OK_Static_Expression
d606f1df 9653 (Expression (Parent (Entity (Dval))))
fbf5a39b
AC
9654 then
9655 exit Discr_Loop;
70482933 9656
685094bf
RD
9657 -- In the context of a case statement, the expression may
9658 -- have the base type of the discriminant, and we need to
9659 -- preserve the constraint to avoid spurious errors on
9660 -- missing cases.
70482933 9661
fbf5a39b 9662 elsif Nkind (Parent (N)) = N_Case_Statement
d606f1df 9663 and then Etype (Dval) /= Etype (Disc)
70482933
RK
9664 then
9665 Rewrite (N,
9666 Make_Qualified_Expression (Loc,
fbf5a39b
AC
9667 Subtype_Mark =>
9668 New_Occurrence_Of (Etype (Disc), Loc),
9669 Expression =>
d606f1df 9670 New_Copy_Tree (Dval)));
ffe9aba8 9671 Analyze_And_Resolve (N, Etype (Disc));
fbf5a39b
AC
9672
9673 -- In case that comes out as a static expression,
9674 -- reset it (a selected component is never static).
9675
9676 Set_Is_Static_Expression (N, False);
9677 return;
9678
9679 -- Otherwise we can just copy the constraint, but the
a90bd866 9680 -- result is certainly not static. In some cases the
ffe9aba8
AC
9681 -- discriminant constraint has been analyzed in the
9682 -- context of the original subtype indication, but for
9683 -- itypes the constraint might not have been analyzed
9684 -- yet, and this must be done now.
fbf5a39b 9685
70482933 9686 else
d606f1df 9687 Rewrite (N, New_Copy_Tree (Dval));
ffe9aba8 9688 Analyze_And_Resolve (N);
fbf5a39b
AC
9689 Set_Is_Static_Expression (N, False);
9690 return;
70482933 9691 end if;
70482933
RK
9692 end if;
9693
fbf5a39b
AC
9694 Next_Elmt (Dcon);
9695 Next_Discriminant (Disc);
9696 end loop Discr_Loop;
70482933 9697
fbf5a39b
AC
9698 -- Note: the above loop should always find a matching
9699 -- discriminant, but if it does not, we just missed an
c228a069
AC
9700 -- optimization due to some glitch (perhaps a previous
9701 -- error), so ignore.
fbf5a39b
AC
9702
9703 end if;
70482933
RK
9704 end if;
9705
9706 -- The only remaining processing is in the case of a discriminant of
9707 -- a concurrent object, where we rewrite the prefix to denote the
9708 -- corresponding record type. If the type is derived and has renamed
9709 -- discriminants, use corresponding discriminant, which is the one
9710 -- that appears in the corresponding record.
9711
9712 if not Is_Concurrent_Type (Ptyp) then
9713 return;
9714 end if;
9715
9716 Disc := Entity (Selector_Name (N));
9717
9718 if Is_Derived_Type (Ptyp)
9719 and then Present (Corresponding_Discriminant (Disc))
9720 then
9721 Disc := Corresponding_Discriminant (Disc);
9722 end if;
9723
9724 New_N :=
9725 Make_Selected_Component (Loc,
9726 Prefix =>
9727 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
9728 New_Copy_Tree (P)),
9729 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
9730
9731 Rewrite (N, New_N);
9732 Analyze (N);
9733 end if;
5972791c 9734
73fe1679 9735 -- Set Atomic_Sync_Required if necessary for atomic component
5972791c 9736
73fe1679
AC
9737 if Nkind (N) = N_Selected_Component then
9738 declare
9739 E : constant Entity_Id := Entity (Selector_Name (N));
9740 Set : Boolean;
9741
9742 begin
9743 -- If component is atomic, but type is not, setting depends on
9744 -- disable/enable state for the component.
9745
9746 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
9747 Set := not Atomic_Synchronization_Disabled (E);
9748
9749 -- If component is not atomic, but its type is atomic, setting
9750 -- depends on disable/enable state for the type.
9751
9752 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9753 Set := not Atomic_Synchronization_Disabled (Etype (E));
9754
9755 -- If both component and type are atomic, we disable if either
9756 -- component or its type have sync disabled.
9757
9758 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9759 Set := (not Atomic_Synchronization_Disabled (E))
9760 and then
9761 (not Atomic_Synchronization_Disabled (Etype (E)));
9762
9763 else
9764 Set := False;
9765 end if;
9766
9767 -- Set flag if required
9768
9769 if Set then
9770 Activate_Atomic_Synchronization (N);
9771 end if;
9772 end;
5972791c 9773 end if;
70482933
RK
9774 end Expand_N_Selected_Component;
9775
9776 --------------------
9777 -- Expand_N_Slice --
9778 --------------------
9779
9780 procedure Expand_N_Slice (N : Node_Id) is
5ff90f08
AC
9781 Loc : constant Source_Ptr := Sloc (N);
9782 Typ : constant Entity_Id := Etype (N);
fbf5a39b 9783
81a5b587 9784 function Is_Procedure_Actual (N : Node_Id) return Boolean;
685094bf
RD
9785 -- Check whether the argument is an actual for a procedure call, in
9786 -- which case the expansion of a bit-packed slice is deferred until the
9787 -- call itself is expanded. The reason this is required is that we might
9788 -- have an IN OUT or OUT parameter, and the copy out is essential, and
9789 -- that copy out would be missed if we created a temporary here in
9790 -- Expand_N_Slice. Note that we don't bother to test specifically for an
9791 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9792 -- is harmless to defer expansion in the IN case, since the call
9793 -- processing will still generate the appropriate copy in operation,
9794 -- which will take care of the slice.
81a5b587 9795
b01bf852 9796 procedure Make_Temporary_For_Slice;
685094bf
RD
9797 -- Create a named variable for the value of the slice, in cases where
9798 -- the back-end cannot handle it properly, e.g. when packed types or
9799 -- unaligned slices are involved.
fbf5a39b 9800
81a5b587
AC
9801 -------------------------
9802 -- Is_Procedure_Actual --
9803 -------------------------
9804
9805 function Is_Procedure_Actual (N : Node_Id) return Boolean is
9806 Par : Node_Id := Parent (N);
08aa9a4a 9807
81a5b587 9808 begin
81a5b587 9809 loop
c6a60aa1
RD
9810 -- If our parent is a procedure call we can return
9811
81a5b587
AC
9812 if Nkind (Par) = N_Procedure_Call_Statement then
9813 return True;
6b6fcd3e 9814
685094bf
RD
9815 -- If our parent is a type conversion, keep climbing the tree,
9816 -- since a type conversion can be a procedure actual. Also keep
9817 -- climbing if parameter association or a qualified expression,
9818 -- since these are additional cases that do can appear on
9819 -- procedure actuals.
6b6fcd3e 9820
303b4d58
AC
9821 elsif Nkind_In (Par, N_Type_Conversion,
9822 N_Parameter_Association,
9823 N_Qualified_Expression)
c6a60aa1 9824 then
81a5b587 9825 Par := Parent (Par);
c6a60aa1
RD
9826
9827 -- Any other case is not what we are looking for
9828
9829 else
9830 return False;
81a5b587
AC
9831 end if;
9832 end loop;
81a5b587
AC
9833 end Is_Procedure_Actual;
9834
b01bf852
AC
9835 ------------------------------
9836 -- Make_Temporary_For_Slice --
9837 ------------------------------
fbf5a39b 9838
b01bf852 9839 procedure Make_Temporary_For_Slice is
b01bf852 9840 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
5ff90f08 9841 Decl : Node_Id;
13d923cc 9842
fbf5a39b
AC
9843 begin
9844 Decl :=
9845 Make_Object_Declaration (Loc,
9846 Defining_Identifier => Ent,
9847 Object_Definition => New_Occurrence_Of (Typ, Loc));
9848
9849 Set_No_Initialization (Decl);
9850
9851 Insert_Actions (N, New_List (
9852 Decl,
9853 Make_Assignment_Statement (Loc,
5ff90f08 9854 Name => New_Occurrence_Of (Ent, Loc),
fbf5a39b
AC
9855 Expression => Relocate_Node (N))));
9856
9857 Rewrite (N, New_Occurrence_Of (Ent, Loc));
9858 Analyze_And_Resolve (N, Typ);
b01bf852 9859 end Make_Temporary_For_Slice;
fbf5a39b 9860
5ff90f08
AC
9861 -- Local variables
9862
800da977
AC
9863 Pref : constant Node_Id := Prefix (N);
9864 Pref_Typ : Entity_Id := Etype (Pref);
5ff90f08 9865
fbf5a39b 9866 -- Start of processing for Expand_N_Slice
70482933
RK
9867
9868 begin
9869 -- Special handling for access types
9870
5ff90f08
AC
9871 if Is_Access_Type (Pref_Typ) then
9872 Pref_Typ := Designated_Type (Pref_Typ);
70482933 9873
5ff90f08 9874 Rewrite (Pref,
e6f69614 9875 Make_Explicit_Dereference (Sloc (N),
5ff90f08 9876 Prefix => Relocate_Node (Pref)));
70482933 9877
5ff90f08 9878 Analyze_And_Resolve (Pref, Pref_Typ);
70482933
RK
9879 end if;
9880
b4592168
GD
9881 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9882 -- function, then additional actuals must be passed.
9883
0791fbe9 9884 if Ada_Version >= Ada_2005
5ff90f08 9885 and then Is_Build_In_Place_Function_Call (Pref)
b4592168 9886 then
5ff90f08 9887 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
b4592168
GD
9888 end if;
9889
70482933
RK
9890 -- The remaining case to be handled is packed slices. We can leave
9891 -- packed slices as they are in the following situations:
9892
9893 -- 1. Right or left side of an assignment (we can handle this
9894 -- situation correctly in the assignment statement expansion).
9895
685094bf
RD
9896 -- 2. Prefix of indexed component (the slide is optimized away in this
9897 -- case, see the start of Expand_N_Slice.)
70482933 9898
685094bf
RD
9899 -- 3. Object renaming declaration, since we want the name of the
9900 -- slice, not the value.
70482933 9901
685094bf
RD
9902 -- 4. Argument to procedure call, since copy-in/copy-out handling may
9903 -- be required, and this is handled in the expansion of call
9904 -- itself.
70482933 9905
685094bf
RD
9906 -- 5. Prefix of an address attribute (this is an error which is caught
9907 -- elsewhere, and the expansion would interfere with generating the
9908 -- error message).
70482933 9909
81a5b587 9910 if not Is_Packed (Typ) then
08aa9a4a 9911
685094bf
RD
9912 -- Apply transformation for actuals of a function call, where
9913 -- Expand_Actuals is not used.
81a5b587
AC
9914
9915 if Nkind (Parent (N)) = N_Function_Call
9916 and then Is_Possibly_Unaligned_Slice (N)
9917 then
b01bf852 9918 Make_Temporary_For_Slice;
81a5b587
AC
9919 end if;
9920
9921 elsif Nkind (Parent (N)) = N_Assignment_Statement
9922 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
533369aa 9923 and then Parent (N) = Name (Parent (Parent (N))))
70482933 9924 then
81a5b587 9925 return;
70482933 9926
81a5b587
AC
9927 elsif Nkind (Parent (N)) = N_Indexed_Component
9928 or else Is_Renamed_Object (N)
9929 or else Is_Procedure_Actual (N)
9930 then
9931 return;
70482933 9932
91b1417d
AC
9933 elsif Nkind (Parent (N)) = N_Attribute_Reference
9934 and then Attribute_Name (Parent (N)) = Name_Address
fbf5a39b 9935 then
81a5b587
AC
9936 return;
9937
9938 else
b01bf852 9939 Make_Temporary_For_Slice;
70482933
RK
9940 end if;
9941 end Expand_N_Slice;
9942
9943 ------------------------------
9944 -- Expand_N_Type_Conversion --
9945 ------------------------------
9946
9947 procedure Expand_N_Type_Conversion (N : Node_Id) is
9948 Loc : constant Source_Ptr := Sloc (N);
9949 Operand : constant Node_Id := Expression (N);
9950 Target_Type : constant Entity_Id := Etype (N);
9951 Operand_Type : Entity_Id := Etype (Operand);
9952
9953 procedure Handle_Changed_Representation;
685094bf
RD
9954 -- This is called in the case of record and array type conversions to
9955 -- see if there is a change of representation to be handled. Change of
9956 -- representation is actually handled at the assignment statement level,
9957 -- and what this procedure does is rewrite node N conversion as an
9958 -- assignment to temporary. If there is no change of representation,
9959 -- then the conversion node is unchanged.
70482933 9960
426908f8
RD
9961 procedure Raise_Accessibility_Error;
9962 -- Called when we know that an accessibility check will fail. Rewrites
9963 -- node N to an appropriate raise statement and outputs warning msgs.
9964 -- The Etype of the raise node is set to Target_Type.
9965
70482933
RK
9966 procedure Real_Range_Check;
9967 -- Handles generation of range check for real target value
9968
d15f9422
AC
9969 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
9970 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
9971 -- evaluates to True.
9972
70482933
RK
9973 -----------------------------------
9974 -- Handle_Changed_Representation --
9975 -----------------------------------
9976
9977 procedure Handle_Changed_Representation is
9978 Temp : Entity_Id;
9979 Decl : Node_Id;
9980 Odef : Node_Id;
9981 Disc : Node_Id;
9982 N_Ix : Node_Id;
9983 Cons : List_Id;
9984
9985 begin
f82944b7 9986 -- Nothing else to do if no change of representation
70482933
RK
9987
9988 if Same_Representation (Operand_Type, Target_Type) then
9989 return;
9990
9991 -- The real change of representation work is done by the assignment
9992 -- statement processing. So if this type conversion is appearing as
9993 -- the expression of an assignment statement, nothing needs to be
9994 -- done to the conversion.
9995
9996 elsif Nkind (Parent (N)) = N_Assignment_Statement then
9997 return;
9998
9999 -- Otherwise we need to generate a temporary variable, and do the
10000 -- change of representation assignment into that temporary variable.
10001 -- The conversion is then replaced by a reference to this variable.
10002
10003 else
10004 Cons := No_List;
10005
685094bf
RD
10006 -- If type is unconstrained we have to add a constraint, copied
10007 -- from the actual value of the left hand side.
70482933
RK
10008
10009 if not Is_Constrained (Target_Type) then
10010 if Has_Discriminants (Operand_Type) then
10011 Disc := First_Discriminant (Operand_Type);
fbf5a39b
AC
10012
10013 if Disc /= First_Stored_Discriminant (Operand_Type) then
10014 Disc := First_Stored_Discriminant (Operand_Type);
10015 end if;
10016
70482933
RK
10017 Cons := New_List;
10018 while Present (Disc) loop
10019 Append_To (Cons,
10020 Make_Selected_Component (Loc,
7675ad4f
AC
10021 Prefix =>
10022 Duplicate_Subexpr_Move_Checks (Operand),
70482933
RK
10023 Selector_Name =>
10024 Make_Identifier (Loc, Chars (Disc))));
10025 Next_Discriminant (Disc);
10026 end loop;
10027
10028 elsif Is_Array_Type (Operand_Type) then
10029 N_Ix := First_Index (Target_Type);
10030 Cons := New_List;
10031
10032 for J in 1 .. Number_Dimensions (Operand_Type) loop
10033
10034 -- We convert the bounds explicitly. We use an unchecked
10035 -- conversion because bounds checks are done elsewhere.
10036
10037 Append_To (Cons,
10038 Make_Range (Loc,
10039 Low_Bound =>
10040 Unchecked_Convert_To (Etype (N_Ix),
10041 Make_Attribute_Reference (Loc,
10042 Prefix =>
fbf5a39b 10043 Duplicate_Subexpr_No_Checks
70482933
RK
10044 (Operand, Name_Req => True),
10045 Attribute_Name => Name_First,
10046 Expressions => New_List (
10047 Make_Integer_Literal (Loc, J)))),
10048
10049 High_Bound =>
10050 Unchecked_Convert_To (Etype (N_Ix),
10051 Make_Attribute_Reference (Loc,
10052 Prefix =>
fbf5a39b 10053 Duplicate_Subexpr_No_Checks
70482933
RK
10054 (Operand, Name_Req => True),
10055 Attribute_Name => Name_Last,
10056 Expressions => New_List (
10057 Make_Integer_Literal (Loc, J))))));
10058
10059 Next_Index (N_Ix);
10060 end loop;
10061 end if;
10062 end if;
10063
10064 Odef := New_Occurrence_Of (Target_Type, Loc);
10065
10066 if Present (Cons) then
10067 Odef :=
10068 Make_Subtype_Indication (Loc,
10069 Subtype_Mark => Odef,
10070 Constraint =>
10071 Make_Index_Or_Discriminant_Constraint (Loc,
10072 Constraints => Cons));
10073 end if;
10074
191fcb3a 10075 Temp := Make_Temporary (Loc, 'C');
70482933
RK
10076 Decl :=
10077 Make_Object_Declaration (Loc,
10078 Defining_Identifier => Temp,
10079 Object_Definition => Odef);
10080
10081 Set_No_Initialization (Decl, True);
10082
10083 -- Insert required actions. It is essential to suppress checks
10084 -- since we have suppressed default initialization, which means
10085 -- that the variable we create may have no discriminants.
10086
10087 Insert_Actions (N,
10088 New_List (
10089 Decl,
10090 Make_Assignment_Statement (Loc,
10091 Name => New_Occurrence_Of (Temp, Loc),
10092 Expression => Relocate_Node (N))),
10093 Suppress => All_Checks);
10094
10095 Rewrite (N, New_Occurrence_Of (Temp, Loc));
10096 return;
10097 end if;
10098 end Handle_Changed_Representation;
10099
426908f8
RD
10100 -------------------------------
10101 -- Raise_Accessibility_Error --
10102 -------------------------------
10103
10104 procedure Raise_Accessibility_Error is
10105 begin
43417b90 10106 Error_Msg_Warn := SPARK_Mode /= On;
426908f8
RD
10107 Rewrite (N,
10108 Make_Raise_Program_Error (Sloc (N),
10109 Reason => PE_Accessibility_Check_Failed));
10110 Set_Etype (N, Target_Type);
10111
4a28b181
AC
10112 Error_Msg_N ("<<accessibility check failure", N);
10113 Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
426908f8
RD
10114 end Raise_Accessibility_Error;
10115
70482933
RK
10116 ----------------------
10117 -- Real_Range_Check --
10118 ----------------------
10119
685094bf
RD
10120 -- Case of conversions to floating-point or fixed-point. If range checks
10121 -- are enabled and the target type has a range constraint, we convert:
70482933
RK
10122
10123 -- typ (x)
10124
10125 -- to
10126
10127 -- Tnn : typ'Base := typ'Base (x);
10128 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10129 -- Tnn
10130
685094bf
RD
10131 -- This is necessary when there is a conversion of integer to float or
10132 -- to fixed-point to ensure that the correct checks are made. It is not
10133 -- necessary for float to float where it is enough to simply set the
10134 -- Do_Range_Check flag.
fbf5a39b 10135
70482933
RK
10136 procedure Real_Range_Check is
10137 Btyp : constant Entity_Id := Base_Type (Target_Type);
10138 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
10139 Hi : constant Node_Id := Type_High_Bound (Target_Type);
fbf5a39b 10140 Xtyp : constant Entity_Id := Etype (Operand);
70482933
RK
10141 Conv : Node_Id;
10142 Tnn : Entity_Id;
10143
10144 begin
10145 -- Nothing to do if conversion was rewritten
10146
10147 if Nkind (N) /= N_Type_Conversion then
10148 return;
10149 end if;
10150
685094bf
RD
10151 -- Nothing to do if range checks suppressed, or target has the same
10152 -- range as the base type (or is the base type).
70482933
RK
10153
10154 if Range_Checks_Suppressed (Target_Type)
533369aa 10155 or else (Lo = Type_Low_Bound (Btyp)
70482933
RK
10156 and then
10157 Hi = Type_High_Bound (Btyp))
10158 then
10159 return;
10160 end if;
10161
685094bf
RD
10162 -- Nothing to do if expression is an entity on which checks have been
10163 -- suppressed.
70482933 10164
fbf5a39b
AC
10165 if Is_Entity_Name (Operand)
10166 and then Range_Checks_Suppressed (Entity (Operand))
10167 then
10168 return;
10169 end if;
10170
685094bf
RD
10171 -- Nothing to do if bounds are all static and we can tell that the
10172 -- expression is within the bounds of the target. Note that if the
10173 -- operand is of an unconstrained floating-point type, then we do
10174 -- not trust it to be in range (might be infinite)
fbf5a39b
AC
10175
10176 declare
f02b8bb8
RD
10177 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
10178 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
fbf5a39b
AC
10179
10180 begin
10181 if (not Is_Floating_Point_Type (Xtyp)
10182 or else Is_Constrained (Xtyp))
10183 and then Compile_Time_Known_Value (S_Lo)
10184 and then Compile_Time_Known_Value (S_Hi)
10185 and then Compile_Time_Known_Value (Hi)
10186 and then Compile_Time_Known_Value (Lo)
10187 then
10188 declare
10189 D_Lov : constant Ureal := Expr_Value_R (Lo);
10190 D_Hiv : constant Ureal := Expr_Value_R (Hi);
10191 S_Lov : Ureal;
10192 S_Hiv : Ureal;
10193
10194 begin
10195 if Is_Real_Type (Xtyp) then
10196 S_Lov := Expr_Value_R (S_Lo);
10197 S_Hiv := Expr_Value_R (S_Hi);
10198 else
10199 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
10200 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
10201 end if;
10202
10203 if D_Hiv > D_Lov
10204 and then S_Lov >= D_Lov
10205 and then S_Hiv <= D_Hiv
10206 then
8b034336
AC
10207 -- Unset the range check flag on the current value of
10208 -- Expression (N), since the captured Operand may have
10209 -- been rewritten (such as for the case of a conversion
10210 -- to a fixed-point type).
10211
10212 Set_Do_Range_Check (Expression (N), False);
10213
fbf5a39b
AC
10214 return;
10215 end if;
10216 end;
10217 end if;
10218 end;
10219
10220 -- For float to float conversions, we are done
10221
10222 if Is_Floating_Point_Type (Xtyp)
10223 and then
10224 Is_Floating_Point_Type (Btyp)
70482933
RK
10225 then
10226 return;
10227 end if;
10228
fbf5a39b 10229 -- Otherwise rewrite the conversion as described above
70482933
RK
10230
10231 Conv := Relocate_Node (N);
eaa826f8 10232 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
70482933
RK
10233 Set_Etype (Conv, Btyp);
10234
f02b8bb8
RD
10235 -- Enable overflow except for case of integer to float conversions,
10236 -- where it is never required, since we can never have overflow in
10237 -- this case.
70482933 10238
fbf5a39b
AC
10239 if not Is_Integer_Type (Etype (Operand)) then
10240 Enable_Overflow_Check (Conv);
70482933
RK
10241 end if;
10242
191fcb3a 10243 Tnn := Make_Temporary (Loc, 'T', Conv);
70482933
RK
10244
10245 Insert_Actions (N, New_List (
10246 Make_Object_Declaration (Loc,
10247 Defining_Identifier => Tnn,
10248 Object_Definition => New_Occurrence_Of (Btyp, Loc),
0ac2a660
AC
10249 Constant_Present => True,
10250 Expression => Conv),
70482933
RK
10251
10252 Make_Raise_Constraint_Error (Loc,
07fc65c4
GB
10253 Condition =>
10254 Make_Or_Else (Loc,
10255 Left_Opnd =>
10256 Make_Op_Lt (Loc,
10257 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10258 Right_Opnd =>
10259 Make_Attribute_Reference (Loc,
10260 Attribute_Name => Name_First,
10261 Prefix =>
10262 New_Occurrence_Of (Target_Type, Loc))),
70482933 10263
07fc65c4
GB
10264 Right_Opnd =>
10265 Make_Op_Gt (Loc,
10266 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10267 Right_Opnd =>
10268 Make_Attribute_Reference (Loc,
10269 Attribute_Name => Name_Last,
10270 Prefix =>
10271 New_Occurrence_Of (Target_Type, Loc)))),
10272 Reason => CE_Range_Check_Failed)));
70482933
RK
10273
10274 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
10275 Analyze_And_Resolve (N, Btyp);
10276 end Real_Range_Check;
10277
d15f9422
AC
10278 -----------------------------
10279 -- Has_Extra_Accessibility --
10280 -----------------------------
10281
10282 -- Returns true for a formal of an anonymous access type or for
10283 -- an Ada 2012-style stand-alone object of an anonymous access type.
10284
10285 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
10286 begin
10287 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
10288 return Present (Effective_Extra_Accessibility (Id));
10289 else
10290 return False;
10291 end if;
10292 end Has_Extra_Accessibility;
10293
70482933
RK
10294 -- Start of processing for Expand_N_Type_Conversion
10295
10296 begin
83851b23 10297 -- First remove check marks put by the semantic analysis on the type
b2502161
AC
10298 -- conversion between array types. We need these checks, and they will
10299 -- be generated by this expansion routine, but we do not depend on these
10300 -- flags being set, and since we do intend to expand the checks in the
10301 -- front end, we don't want them on the tree passed to the back end.
83851b23
AC
10302
10303 if Is_Array_Type (Target_Type) then
10304 if Is_Constrained (Target_Type) then
10305 Set_Do_Length_Check (N, False);
10306 else
10307 Set_Do_Range_Check (Operand, False);
10308 end if;
10309 end if;
10310
685094bf 10311 -- Nothing at all to do if conversion is to the identical type so remove
76efd572
AC
10312 -- the conversion completely, it is useless, except that it may carry
10313 -- an Assignment_OK attribute, which must be propagated to the operand.
70482933
RK
10314
10315 if Operand_Type = Target_Type then
7b00e31d
AC
10316 if Assignment_OK (N) then
10317 Set_Assignment_OK (Operand);
10318 end if;
10319
fbf5a39b 10320 Rewrite (N, Relocate_Node (Operand));
e606088a 10321 goto Done;
70482933
RK
10322 end if;
10323
685094bf
RD
10324 -- Nothing to do if this is the second argument of read. This is a
10325 -- "backwards" conversion that will be handled by the specialized code
10326 -- in attribute processing.
70482933
RK
10327
10328 if Nkind (Parent (N)) = N_Attribute_Reference
10329 and then Attribute_Name (Parent (N)) = Name_Read
10330 and then Next (First (Expressions (Parent (N)))) = N
10331 then
e606088a
AC
10332 goto Done;
10333 end if;
10334
10335 -- Check for case of converting to a type that has an invariant
10336 -- associated with it. This required an invariant check. We convert
10337
10338 -- typ (expr)
10339
10340 -- into
10341
10342 -- do invariant_check (typ (expr)) in typ (expr);
10343
10344 -- using Duplicate_Subexpr to avoid multiple side effects
10345
10346 -- Note: the Comes_From_Source check, and then the resetting of this
10347 -- flag prevents what would otherwise be an infinite recursion.
10348
fd0ff1cf
RD
10349 if Has_Invariants (Target_Type)
10350 and then Present (Invariant_Procedure (Target_Type))
e606088a
AC
10351 and then Comes_From_Source (N)
10352 then
10353 Set_Comes_From_Source (N, False);
10354 Rewrite (N,
10355 Make_Expression_With_Actions (Loc,
10356 Actions => New_List (
10357 Make_Invariant_Call (Duplicate_Subexpr (N))),
10358 Expression => Duplicate_Subexpr_No_Checks (N)));
10359 Analyze_And_Resolve (N, Target_Type);
10360 goto Done;
70482933
RK
10361 end if;
10362
10363 -- Here if we may need to expand conversion
10364
eaa826f8
RD
10365 -- If the operand of the type conversion is an arithmetic operation on
10366 -- signed integers, and the based type of the signed integer type in
10367 -- question is smaller than Standard.Integer, we promote both of the
10368 -- operands to type Integer.
10369
10370 -- For example, if we have
10371
10372 -- target-type (opnd1 + opnd2)
10373
10374 -- and opnd1 and opnd2 are of type short integer, then we rewrite
10375 -- this as:
10376
10377 -- target-type (integer(opnd1) + integer(opnd2))
10378
10379 -- We do this because we are always allowed to compute in a larger type
10380 -- if we do the right thing with the result, and in this case we are
10381 -- going to do a conversion which will do an appropriate check to make
10382 -- sure that things are in range of the target type in any case. This
10383 -- avoids some unnecessary intermediate overflows.
10384
dfcfdc0a
AC
10385 -- We might consider a similar transformation in the case where the
10386 -- target is a real type or a 64-bit integer type, and the operand
10387 -- is an arithmetic operation using a 32-bit integer type. However,
10388 -- we do not bother with this case, because it could cause significant
308e6f3a 10389 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
dfcfdc0a
AC
10390 -- much cheaper, but we don't want different behavior on 32-bit and
10391 -- 64-bit machines. Note that the exclusion of the 64-bit case also
10392 -- handles the configurable run-time cases where 64-bit arithmetic
10393 -- may simply be unavailable.
eaa826f8
RD
10394
10395 -- Note: this circuit is partially redundant with respect to the circuit
10396 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10397 -- the processing here. Also we still need the Checks circuit, since we
10398 -- have to be sure not to generate junk overflow checks in the first
a90bd866 10399 -- place, since it would be trick to remove them here.
eaa826f8 10400
fdfcc663 10401 if Integer_Promotion_Possible (N) then
eaa826f8 10402
fdfcc663 10403 -- All conditions met, go ahead with transformation
eaa826f8 10404
fdfcc663
AC
10405 declare
10406 Opnd : Node_Id;
10407 L, R : Node_Id;
dfcfdc0a 10408
fdfcc663
AC
10409 begin
10410 R :=
10411 Make_Type_Conversion (Loc,
e4494292 10412 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
fdfcc663 10413 Expression => Relocate_Node (Right_Opnd (Operand)));
eaa826f8 10414
5f3f175d
AC
10415 Opnd := New_Op_Node (Nkind (Operand), Loc);
10416 Set_Right_Opnd (Opnd, R);
eaa826f8 10417
5f3f175d 10418 if Nkind (Operand) in N_Binary_Op then
fdfcc663 10419 L :=
eaa826f8 10420 Make_Type_Conversion (Loc,
e4494292 10421 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
fdfcc663
AC
10422 Expression => Relocate_Node (Left_Opnd (Operand)));
10423
5f3f175d
AC
10424 Set_Left_Opnd (Opnd, L);
10425 end if;
eaa826f8 10426
5f3f175d
AC
10427 Rewrite (N,
10428 Make_Type_Conversion (Loc,
10429 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
10430 Expression => Opnd));
dfcfdc0a 10431
5f3f175d 10432 Analyze_And_Resolve (N, Target_Type);
e606088a 10433 goto Done;
fdfcc663
AC
10434 end;
10435 end if;
eaa826f8 10436
f82944b7
JM
10437 -- Do validity check if validity checking operands
10438
533369aa 10439 if Validity_Checks_On and Validity_Check_Operands then
f82944b7
JM
10440 Ensure_Valid (Operand);
10441 end if;
10442
70482933
RK
10443 -- Special case of converting from non-standard boolean type
10444
10445 if Is_Boolean_Type (Operand_Type)
10446 and then (Nonzero_Is_True (Operand_Type))
10447 then
10448 Adjust_Condition (Operand);
10449 Set_Etype (Operand, Standard_Boolean);
10450 Operand_Type := Standard_Boolean;
10451 end if;
10452
10453 -- Case of converting to an access type
10454
10455 if Is_Access_Type (Target_Type) then
10456
d766cee3
RD
10457 -- Apply an accessibility check when the conversion operand is an
10458 -- access parameter (or a renaming thereof), unless conversion was
e84e11ba
GD
10459 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10460 -- Note that other checks may still need to be applied below (such
10461 -- as tagged type checks).
70482933
RK
10462
10463 if Is_Entity_Name (Operand)
d15f9422 10464 and then Has_Extra_Accessibility (Entity (Operand))
70482933 10465 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
d766cee3
RD
10466 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
10467 or else Attribute_Name (Original_Node (N)) = Name_Access)
70482933 10468 then
e84e11ba
GD
10469 Apply_Accessibility_Check
10470 (Operand, Target_Type, Insert_Node => Operand);
70482933 10471
e84e11ba 10472 -- If the level of the operand type is statically deeper than the
685094bf
RD
10473 -- level of the target type, then force Program_Error. Note that this
10474 -- can only occur for cases where the attribute is within the body of
6c56d9b8
AC
10475 -- an instantiation, otherwise the conversion will already have been
10476 -- rejected as illegal.
10477
10478 -- Note: warnings are issued by the analyzer for the instance cases
70482933
RK
10479
10480 elsif In_Instance_Body
6c56d9b8
AC
10481
10482 -- The case where the target type is an anonymous access type of
10483 -- a discriminant is excluded, because the level of such a type
10484 -- depends on the context and currently the level returned for such
10485 -- types is zero, resulting in warnings about about check failures
10486 -- in certain legal cases involving class-wide interfaces as the
10487 -- designated type (some cases, such as return statements, are
10488 -- checked at run time, but not clear if these are handled right
10489 -- in general, see 3.10.2(12/2-12.5/3) ???).
10490
ad5edba5
AC
10491 and then
10492 not (Ekind (Target_Type) = E_Anonymous_Access_Type
10493 and then Present (Associated_Node_For_Itype (Target_Type))
10494 and then Nkind (Associated_Node_For_Itype (Target_Type)) =
10495 N_Discriminant_Specification)
10496 and then
10497 Type_Access_Level (Operand_Type) > Type_Access_Level (Target_Type)
70482933 10498 then
426908f8 10499 Raise_Accessibility_Error;
70482933 10500
685094bf
RD
10501 -- When the operand is a selected access discriminant the check needs
10502 -- to be made against the level of the object denoted by the prefix
10503 -- of the selected name. Force Program_Error for this case as well
10504 -- (this accessibility violation can only happen if within the body
10505 -- of an instantiation).
70482933
RK
10506
10507 elsif In_Instance_Body
10508 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
10509 and then Nkind (Operand) = N_Selected_Component
10510 and then Object_Access_Level (Operand) >
10511 Type_Access_Level (Target_Type)
10512 then
426908f8 10513 Raise_Accessibility_Error;
e606088a 10514 goto Done;
70482933
RK
10515 end if;
10516 end if;
10517
10518 -- Case of conversions of tagged types and access to tagged types
10519
685094bf
RD
10520 -- When needed, that is to say when the expression is class-wide, Add
10521 -- runtime a tag check for (strict) downward conversion by using the
10522 -- membership test, generating:
70482933
RK
10523
10524 -- [constraint_error when Operand not in Target_Type'Class]
10525
10526 -- or in the access type case
10527
10528 -- [constraint_error
10529 -- when Operand /= null
10530 -- and then Operand.all not in
10531 -- Designated_Type (Target_Type)'Class]
10532
10533 if (Is_Access_Type (Target_Type)
10534 and then Is_Tagged_Type (Designated_Type (Target_Type)))
10535 or else Is_Tagged_Type (Target_Type)
10536 then
685094bf
RD
10537 -- Do not do any expansion in the access type case if the parent is a
10538 -- renaming, since this is an error situation which will be caught by
10539 -- Sem_Ch8, and the expansion can interfere with this error check.
70482933 10540
e7e4d230 10541 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
e606088a 10542 goto Done;
70482933
RK
10543 end if;
10544
0669bebe 10545 -- Otherwise, proceed with processing tagged conversion
70482933 10546
e7e4d230 10547 Tagged_Conversion : declare
8cea7b64
HK
10548 Actual_Op_Typ : Entity_Id;
10549 Actual_Targ_Typ : Entity_Id;
10550 Make_Conversion : Boolean := False;
10551 Root_Op_Typ : Entity_Id;
70482933 10552
8cea7b64
HK
10553 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
10554 -- Create a membership check to test whether Operand is a member
10555 -- of Targ_Typ. If the original Target_Type is an access, include
10556 -- a test for null value. The check is inserted at N.
10557
10558 --------------------
10559 -- Make_Tag_Check --
10560 --------------------
10561
10562 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
10563 Cond : Node_Id;
10564
10565 begin
10566 -- Generate:
10567 -- [Constraint_Error
10568 -- when Operand /= null
10569 -- and then Operand.all not in Targ_Typ]
10570
10571 if Is_Access_Type (Target_Type) then
10572 Cond :=
10573 Make_And_Then (Loc,
10574 Left_Opnd =>
10575 Make_Op_Ne (Loc,
10576 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
10577 Right_Opnd => Make_Null (Loc)),
10578
10579 Right_Opnd =>
10580 Make_Not_In (Loc,
10581 Left_Opnd =>
10582 Make_Explicit_Dereference (Loc,
10583 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
e4494292 10584 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
8cea7b64
HK
10585
10586 -- Generate:
10587 -- [Constraint_Error when Operand not in Targ_Typ]
10588
10589 else
10590 Cond :=
10591 Make_Not_In (Loc,
10592 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
e4494292 10593 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
8cea7b64
HK
10594 end if;
10595
10596 Insert_Action (N,
10597 Make_Raise_Constraint_Error (Loc,
10598 Condition => Cond,
10599 Reason => CE_Tag_Check_Failed));
10600 end Make_Tag_Check;
10601
e7e4d230 10602 -- Start of processing for Tagged_Conversion
70482933
RK
10603
10604 begin
9732e886 10605 -- Handle entities from the limited view
852dba80 10606
9732e886 10607 if Is_Access_Type (Operand_Type) then
852dba80
AC
10608 Actual_Op_Typ :=
10609 Available_View (Designated_Type (Operand_Type));
9732e886
JM
10610 else
10611 Actual_Op_Typ := Operand_Type;
10612 end if;
10613
10614 if Is_Access_Type (Target_Type) then
852dba80
AC
10615 Actual_Targ_Typ :=
10616 Available_View (Designated_Type (Target_Type));
70482933 10617 else
8cea7b64 10618 Actual_Targ_Typ := Target_Type;
70482933
RK
10619 end if;
10620
8cea7b64
HK
10621 Root_Op_Typ := Root_Type (Actual_Op_Typ);
10622
20b5d666
JM
10623 -- Ada 2005 (AI-251): Handle interface type conversion
10624
3cb9a885 10625 if Is_Interface (Actual_Op_Typ)
58b81ab0
AC
10626 or else
10627 Is_Interface (Actual_Targ_Typ)
3cb9a885 10628 then
f6f4d8d4 10629 Expand_Interface_Conversion (N);
e606088a 10630 goto Done;
20b5d666
JM
10631 end if;
10632
8cea7b64 10633 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
70482933 10634
8cea7b64
HK
10635 -- Create a runtime tag check for a downward class-wide type
10636 -- conversion.
70482933 10637
8cea7b64 10638 if Is_Class_Wide_Type (Actual_Op_Typ)
852dba80 10639 and then Actual_Op_Typ /= Actual_Targ_Typ
8cea7b64 10640 and then Root_Op_Typ /= Actual_Targ_Typ
4ac2477e
JM
10641 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
10642 Use_Full_View => True)
8cea7b64
HK
10643 then
10644 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
10645 Make_Conversion := True;
10646 end if;
70482933 10647
8cea7b64
HK
10648 -- AI05-0073: If the result subtype of the function is defined
10649 -- by an access_definition designating a specific tagged type
10650 -- T, a check is made that the result value is null or the tag
10651 -- of the object designated by the result value identifies T.
10652 -- Constraint_Error is raised if this check fails.
70482933 10653
92a7cd46 10654 if Nkind (Parent (N)) = N_Simple_Return_Statement then
8cea7b64 10655 declare
e886436a 10656 Func : Entity_Id;
8cea7b64
HK
10657 Func_Typ : Entity_Id;
10658
10659 begin
e886436a 10660 -- Climb scope stack looking for the enclosing function
8cea7b64 10661
e886436a 10662 Func := Current_Scope;
8cea7b64
HK
10663 while Present (Func)
10664 and then Ekind (Func) /= E_Function
10665 loop
10666 Func := Scope (Func);
10667 end loop;
10668
10669 -- The function's return subtype must be defined using
10670 -- an access definition.
10671
10672 if Nkind (Result_Definition (Parent (Func))) =
10673 N_Access_Definition
10674 then
10675 Func_Typ := Directly_Designated_Type (Etype (Func));
10676
10677 -- The return subtype denotes a specific tagged type,
10678 -- in other words, a non class-wide type.
10679
10680 if Is_Tagged_Type (Func_Typ)
10681 and then not Is_Class_Wide_Type (Func_Typ)
10682 then
10683 Make_Tag_Check (Actual_Targ_Typ);
10684 Make_Conversion := True;
10685 end if;
10686 end if;
10687 end;
70482933
RK
10688 end if;
10689
8cea7b64
HK
10690 -- We have generated a tag check for either a class-wide type
10691 -- conversion or for AI05-0073.
70482933 10692
8cea7b64
HK
10693 if Make_Conversion then
10694 declare
10695 Conv : Node_Id;
10696 begin
10697 Conv :=
10698 Make_Unchecked_Type_Conversion (Loc,
10699 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
10700 Expression => Relocate_Node (Expression (N)));
10701 Rewrite (N, Conv);
10702 Analyze_And_Resolve (N, Target_Type);
10703 end;
10704 end if;
70482933 10705 end if;
e7e4d230 10706 end Tagged_Conversion;
70482933
RK
10707
10708 -- Case of other access type conversions
10709
10710 elsif Is_Access_Type (Target_Type) then
10711 Apply_Constraint_Check (Operand, Target_Type);
10712
10713 -- Case of conversions from a fixed-point type
10714
685094bf
RD
10715 -- These conversions require special expansion and processing, found in
10716 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10717 -- since from a semantic point of view, these are simple integer
70482933
RK
10718 -- conversions, which do not need further processing.
10719
10720 elsif Is_Fixed_Point_Type (Operand_Type)
10721 and then not Conversion_OK (N)
10722 then
10723 -- We should never see universal fixed at this case, since the
10724 -- expansion of the constituent divide or multiply should have
10725 -- eliminated the explicit mention of universal fixed.
10726
10727 pragma Assert (Operand_Type /= Universal_Fixed);
10728
685094bf
RD
10729 -- Check for special case of the conversion to universal real that
10730 -- occurs as a result of the use of a round attribute. In this case,
10731 -- the real type for the conversion is taken from the target type of
10732 -- the Round attribute and the result must be marked as rounded.
70482933
RK
10733
10734 if Target_Type = Universal_Real
10735 and then Nkind (Parent (N)) = N_Attribute_Reference
10736 and then Attribute_Name (Parent (N)) = Name_Round
10737 then
10738 Set_Rounded_Result (N);
10739 Set_Etype (N, Etype (Parent (N)));
10740 end if;
10741
10742 -- Otherwise do correct fixed-conversion, but skip these if the
e7e4d230
AC
10743 -- Conversion_OK flag is set, because from a semantic point of view
10744 -- these are simple integer conversions needing no further processing
10745 -- (the backend will simply treat them as integers).
70482933
RK
10746
10747 if not Conversion_OK (N) then
10748 if Is_Fixed_Point_Type (Etype (N)) then
10749 Expand_Convert_Fixed_To_Fixed (N);
10750 Real_Range_Check;
10751
10752 elsif Is_Integer_Type (Etype (N)) then
10753 Expand_Convert_Fixed_To_Integer (N);
10754
10755 else
10756 pragma Assert (Is_Floating_Point_Type (Etype (N)));
10757 Expand_Convert_Fixed_To_Float (N);
10758 Real_Range_Check;
10759 end if;
10760 end if;
10761
10762 -- Case of conversions to a fixed-point type
10763
685094bf
RD
10764 -- These conversions require special expansion and processing, found in
10765 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10766 -- since from a semantic point of view, these are simple integer
10767 -- conversions, which do not need further processing.
70482933
RK
10768
10769 elsif Is_Fixed_Point_Type (Target_Type)
10770 and then not Conversion_OK (N)
10771 then
10772 if Is_Integer_Type (Operand_Type) then
10773 Expand_Convert_Integer_To_Fixed (N);
10774 Real_Range_Check;
10775 else
10776 pragma Assert (Is_Floating_Point_Type (Operand_Type));
10777 Expand_Convert_Float_To_Fixed (N);
10778 Real_Range_Check;
10779 end if;
10780
10781 -- Case of float-to-integer conversions
10782
10783 -- We also handle float-to-fixed conversions with Conversion_OK set
10784 -- since semantically the fixed-point target is treated as though it
10785 -- were an integer in such cases.
10786
10787 elsif Is_Floating_Point_Type (Operand_Type)
10788 and then
10789 (Is_Integer_Type (Target_Type)
10790 or else
10791 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
10792 then
70482933
RK
10793 -- One more check here, gcc is still not able to do conversions of
10794 -- this type with proper overflow checking, and so gigi is doing an
10795 -- approximation of what is required by doing floating-point compares
10796 -- with the end-point. But that can lose precision in some cases, and
f02b8bb8 10797 -- give a wrong result. Converting the operand to Universal_Real is
70482933 10798 -- helpful, but still does not catch all cases with 64-bit integers
e7e4d230 10799 -- on targets with only 64-bit floats.
0669bebe
GB
10800
10801 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
10802 -- Can this code be removed ???
70482933 10803
fbf5a39b
AC
10804 if Do_Range_Check (Operand) then
10805 Rewrite (Operand,
70482933
RK
10806 Make_Type_Conversion (Loc,
10807 Subtype_Mark =>
f02b8bb8 10808 New_Occurrence_Of (Universal_Real, Loc),
70482933 10809 Expression =>
fbf5a39b 10810 Relocate_Node (Operand)));
70482933 10811
f02b8bb8 10812 Set_Etype (Operand, Universal_Real);
fbf5a39b
AC
10813 Enable_Range_Check (Operand);
10814 Set_Do_Range_Check (Expression (Operand), False);
70482933
RK
10815 end if;
10816
10817 -- Case of array conversions
10818
685094bf
RD
10819 -- Expansion of array conversions, add required length/range checks but
10820 -- only do this if there is no change of representation. For handling of
10821 -- this case, see Handle_Changed_Representation.
70482933
RK
10822
10823 elsif Is_Array_Type (Target_Type) then
70482933
RK
10824 if Is_Constrained (Target_Type) then
10825 Apply_Length_Check (Operand, Target_Type);
10826 else
10827 Apply_Range_Check (Operand, Target_Type);
10828 end if;
10829
10830 Handle_Changed_Representation;
10831
10832 -- Case of conversions of discriminated types
10833
685094bf
RD
10834 -- Add required discriminant checks if target is constrained. Again this
10835 -- change is skipped if we have a change of representation.
70482933
RK
10836
10837 elsif Has_Discriminants (Target_Type)
10838 and then Is_Constrained (Target_Type)
10839 then
10840 Apply_Discriminant_Check (Operand, Target_Type);
10841 Handle_Changed_Representation;
10842
10843 -- Case of all other record conversions. The only processing required
10844 -- is to check for a change of representation requiring the special
10845 -- assignment processing.
10846
10847 elsif Is_Record_Type (Target_Type) then
5d09245e
AC
10848
10849 -- Ada 2005 (AI-216): Program_Error is raised when converting from
685094bf
RD
10850 -- a derived Unchecked_Union type to an unconstrained type that is
10851 -- not Unchecked_Union if the operand lacks inferable discriminants.
5d09245e
AC
10852
10853 if Is_Derived_Type (Operand_Type)
10854 and then Is_Unchecked_Union (Base_Type (Operand_Type))
10855 and then not Is_Constrained (Target_Type)
10856 and then not Is_Unchecked_Union (Base_Type (Target_Type))
10857 and then not Has_Inferable_Discriminants (Operand)
10858 then
685094bf 10859 -- To prevent Gigi from generating illegal code, we generate a
5d09245e 10860 -- Program_Error node, but we give it the target type of the
6cb3037c 10861 -- conversion (is this requirement documented somewhere ???)
5d09245e
AC
10862
10863 declare
10864 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
10865 Reason => PE_Unchecked_Union_Restriction);
10866
10867 begin
10868 Set_Etype (PE, Target_Type);
10869 Rewrite (N, PE);
10870
10871 end;
10872 else
10873 Handle_Changed_Representation;
10874 end if;
70482933
RK
10875
10876 -- Case of conversions of enumeration types
10877
10878 elsif Is_Enumeration_Type (Target_Type) then
10879
10880 -- Special processing is required if there is a change of
e7e4d230 10881 -- representation (from enumeration representation clauses).
70482933
RK
10882
10883 if not Same_Representation (Target_Type, Operand_Type) then
10884
10885 -- Convert: x(y) to x'val (ytyp'val (y))
10886
10887 Rewrite (N,
1c66c4f5
AC
10888 Make_Attribute_Reference (Loc,
10889 Prefix => New_Occurrence_Of (Target_Type, Loc),
10890 Attribute_Name => Name_Val,
10891 Expressions => New_List (
10892 Make_Attribute_Reference (Loc,
10893 Prefix => New_Occurrence_Of (Operand_Type, Loc),
10894 Attribute_Name => Name_Pos,
10895 Expressions => New_List (Operand)))));
70482933
RK
10896
10897 Analyze_And_Resolve (N, Target_Type);
10898 end if;
10899
10900 -- Case of conversions to floating-point
10901
10902 elsif Is_Floating_Point_Type (Target_Type) then
10903 Real_Range_Check;
70482933
RK
10904 end if;
10905
685094bf 10906 -- At this stage, either the conversion node has been transformed into
e7e4d230
AC
10907 -- some other equivalent expression, or left as a conversion that can be
10908 -- handled by Gigi, in the following cases:
70482933
RK
10909
10910 -- Conversions with no change of representation or type
10911
685094bf
RD
10912 -- Numeric conversions involving integer, floating- and fixed-point
10913 -- values. Fixed-point values are allowed only if Conversion_OK is
10914 -- set, i.e. if the fixed-point values are to be treated as integers.
70482933 10915
5e1c00fa
RD
10916 -- No other conversions should be passed to Gigi
10917
10918 -- Check: are these rules stated in sinfo??? if so, why restate here???
70482933 10919
685094bf
RD
10920 -- The only remaining step is to generate a range check if we still have
10921 -- a type conversion at this stage and Do_Range_Check is set. For now we
f5655e4a
AC
10922 -- do this only for conversions of discrete types and for float-to-float
10923 -- conversions.
fbf5a39b 10924
7b536495 10925 if Nkind (N) = N_Type_Conversion then
fbf5a39b 10926
f5655e4a
AC
10927 -- For now we only support floating-point cases where both source
10928 -- and target are floating-point types. Conversions where the source
10929 -- and target involve integer or fixed-point types are still TBD,
10930 -- though not clear whether those can even happen at this point, due
10931 -- to transformations above. ???
fbf5a39b 10932
7b536495 10933 if Is_Floating_Point_Type (Etype (N))
f5655e4a 10934 and then Is_Floating_Point_Type (Etype (Expression (N)))
7b536495
AC
10935 then
10936 if Do_Range_Check (Expression (N))
10937 and then Is_Floating_Point_Type (Target_Type)
10938 then
10939 Generate_Range_Check
10940 (Expression (N), Target_Type, CE_Range_Check_Failed);
10941 end if;
fbf5a39b 10942
f5655e4a
AC
10943 -- Discrete-to-discrete conversions
10944
7b536495
AC
10945 elsif Is_Discrete_Type (Etype (N)) then
10946 declare
10947 Expr : constant Node_Id := Expression (N);
10948 Ftyp : Entity_Id;
10949 Ityp : Entity_Id;
fbf5a39b 10950
7b536495
AC
10951 begin
10952 if Do_Range_Check (Expr)
10953 and then Is_Discrete_Type (Etype (Expr))
fbf5a39b 10954 then
7b536495 10955 Set_Do_Range_Check (Expr, False);
fbf5a39b 10956
7b536495
AC
10957 -- Before we do a range check, we have to deal with treating
10958 -- a fixed-point operand as an integer. The way we do this
10959 -- is simply to do an unchecked conversion to an appropriate
10960 -- integer type large enough to hold the result.
fbf5a39b 10961
7b536495
AC
10962 -- This code is not active yet, because we are only dealing
10963 -- with discrete types so far ???
fbf5a39b 10964
7b536495
AC
10965 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
10966 and then Treat_Fixed_As_Integer (Expr)
10967 then
10968 Ftyp := Base_Type (Etype (Expr));
fbf5a39b 10969
7b536495
AC
10970 if Esize (Ftyp) >= Esize (Standard_Integer) then
10971 Ityp := Standard_Long_Long_Integer;
10972 else
10973 Ityp := Standard_Integer;
10974 end if;
edab6088 10975
7b536495
AC
10976 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
10977 end if;
10978
10979 -- Reset overflow flag, since the range check will include
10980 -- dealing with possible overflow, and generate the check.
10981 -- If Address is either a source type or target type,
10982 -- suppress range check to avoid typing anomalies when
10983 -- it is a visible integer type.
10984
10985 Set_Do_Overflow_Check (N, False);
10986
10987 if not Is_Descendent_Of_Address (Etype (Expr))
10988 and then not Is_Descendent_Of_Address (Target_Type)
10989 then
10990 Generate_Range_Check
10991 (Expr, Target_Type, CE_Range_Check_Failed);
10992 end if;
8a36a0cc 10993 end if;
7b536495
AC
10994 end;
10995 end if;
fbf5a39b 10996 end if;
f02b8bb8 10997
e606088a
AC
10998 -- Here at end of processing
10999
48f91b44
RD
11000 <<Done>>
11001 -- Apply predicate check if required. Note that we can't just call
11002 -- Apply_Predicate_Check here, because the type looks right after
11003 -- the conversion and it would omit the check. The Comes_From_Source
11004 -- guard is necessary to prevent infinite recursions when we generate
11005 -- internal conversions for the purpose of checking predicates.
11006
11007 if Present (Predicate_Function (Target_Type))
11008 and then Target_Type /= Operand_Type
11009 and then Comes_From_Source (N)
11010 then
00332244
AC
11011 declare
11012 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
11013
11014 begin
11015 -- Avoid infinite recursion on the subsequent expansion of
11016 -- of the copy of the original type conversion.
11017
11018 Set_Comes_From_Source (New_Expr, False);
11019 Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
11020 end;
48f91b44 11021 end if;
70482933
RK
11022 end Expand_N_Type_Conversion;
11023
11024 -----------------------------------
11025 -- Expand_N_Unchecked_Expression --
11026 -----------------------------------
11027
e7e4d230 11028 -- Remove the unchecked expression node from the tree. Its job was simply
70482933
RK
11029 -- to make sure that its constituent expression was handled with checks
11030 -- off, and now that that is done, we can remove it from the tree, and
e7e4d230 11031 -- indeed must, since Gigi does not expect to see these nodes.
70482933
RK
11032
11033 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
11034 Exp : constant Node_Id := Expression (N);
70482933 11035 begin
e7e4d230 11036 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
70482933
RK
11037 Rewrite (N, Exp);
11038 end Expand_N_Unchecked_Expression;
11039
11040 ----------------------------------------
11041 -- Expand_N_Unchecked_Type_Conversion --
11042 ----------------------------------------
11043
685094bf
RD
11044 -- If this cannot be handled by Gigi and we haven't already made a
11045 -- temporary for it, do it now.
70482933
RK
11046
11047 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
11048 Target_Type : constant Entity_Id := Etype (N);
11049 Operand : constant Node_Id := Expression (N);
11050 Operand_Type : constant Entity_Id := Etype (Operand);
11051
11052 begin
7b00e31d 11053 -- Nothing at all to do if conversion is to the identical type so remove
76efd572 11054 -- the conversion completely, it is useless, except that it may carry
e7e4d230 11055 -- an Assignment_OK indication which must be propagated to the operand.
7b00e31d
AC
11056
11057 if Operand_Type = Target_Type then
13d923cc 11058
e7e4d230
AC
11059 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
11060
7b00e31d
AC
11061 if Assignment_OK (N) then
11062 Set_Assignment_OK (Operand);
11063 end if;
11064
11065 Rewrite (N, Relocate_Node (Operand));
11066 return;
11067 end if;
11068
70482933
RK
11069 -- If we have a conversion of a compile time known value to a target
11070 -- type and the value is in range of the target type, then we can simply
11071 -- replace the construct by an integer literal of the correct type. We
11072 -- only apply this to integer types being converted. Possibly it may
11073 -- apply in other cases, but it is too much trouble to worry about.
11074
11075 -- Note that we do not do this transformation if the Kill_Range_Check
11076 -- flag is set, since then the value may be outside the expected range.
11077 -- This happens in the Normalize_Scalars case.
11078
20b5d666
JM
11079 -- We also skip this if either the target or operand type is biased
11080 -- because in this case, the unchecked conversion is supposed to
11081 -- preserve the bit pattern, not the integer value.
11082
70482933 11083 if Is_Integer_Type (Target_Type)
20b5d666 11084 and then not Has_Biased_Representation (Target_Type)
70482933 11085 and then Is_Integer_Type (Operand_Type)
20b5d666 11086 and then not Has_Biased_Representation (Operand_Type)
70482933
RK
11087 and then Compile_Time_Known_Value (Operand)
11088 and then not Kill_Range_Check (N)
11089 then
11090 declare
11091 Val : constant Uint := Expr_Value (Operand);
11092
11093 begin
11094 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
11095 and then
11096 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
11097 and then
11098 Val >= Expr_Value (Type_Low_Bound (Target_Type))
11099 and then
11100 Val <= Expr_Value (Type_High_Bound (Target_Type))
11101 then
11102 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
8a36a0cc 11103
685094bf
RD
11104 -- If Address is the target type, just set the type to avoid a
11105 -- spurious type error on the literal when Address is a visible
11106 -- integer type.
8a36a0cc
AC
11107
11108 if Is_Descendent_Of_Address (Target_Type) then
11109 Set_Etype (N, Target_Type);
11110 else
11111 Analyze_And_Resolve (N, Target_Type);
11112 end if;
11113
70482933
RK
11114 return;
11115 end if;
11116 end;
11117 end if;
11118
11119 -- Nothing to do if conversion is safe
11120
11121 if Safe_Unchecked_Type_Conversion (N) then
11122 return;
11123 end if;
11124
11125 -- Otherwise force evaluation unless Assignment_OK flag is set (this
324ac540 11126 -- flag indicates ??? More comments needed here)
70482933
RK
11127
11128 if Assignment_OK (N) then
11129 null;
11130 else
11131 Force_Evaluation (N);
11132 end if;
11133 end Expand_N_Unchecked_Type_Conversion;
11134
11135 ----------------------------
11136 -- Expand_Record_Equality --
11137 ----------------------------
11138
11139 -- For non-variant records, Equality is expanded when needed into:
11140
11141 -- and then Lhs.Discr1 = Rhs.Discr1
11142 -- and then ...
11143 -- and then Lhs.Discrn = Rhs.Discrn
11144 -- and then Lhs.Cmp1 = Rhs.Cmp1
11145 -- and then ...
11146 -- and then Lhs.Cmpn = Rhs.Cmpn
11147
11148 -- The expression is folded by the back-end for adjacent fields. This
11149 -- function is called for tagged record in only one occasion: for imple-
11150 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11151 -- otherwise the primitive "=" is used directly.
11152
11153 function Expand_Record_Equality
11154 (Nod : Node_Id;
11155 Typ : Entity_Id;
11156 Lhs : Node_Id;
11157 Rhs : Node_Id;
2e071734 11158 Bodies : List_Id) return Node_Id
70482933
RK
11159 is
11160 Loc : constant Source_Ptr := Sloc (Nod);
11161
0ab80019
AC
11162 Result : Node_Id;
11163 C : Entity_Id;
11164
11165 First_Time : Boolean := True;
11166
6b670dcf
AC
11167 function Element_To_Compare (C : Entity_Id) return Entity_Id;
11168 -- Return the next discriminant or component to compare, starting with
11169 -- C, skipping inherited components.
0ab80019 11170
6b670dcf
AC
11171 ------------------------
11172 -- Element_To_Compare --
11173 ------------------------
70482933 11174
6b670dcf
AC
11175 function Element_To_Compare (C : Entity_Id) return Entity_Id is
11176 Comp : Entity_Id;
28270211 11177
70482933 11178 begin
6b670dcf 11179 Comp := C;
6b670dcf
AC
11180 loop
11181 -- Exit loop when the next element to be compared is found, or
11182 -- there is no more such element.
70482933 11183
6b670dcf 11184 exit when No (Comp);
8190087e 11185
6b670dcf
AC
11186 exit when Ekind_In (Comp, E_Discriminant, E_Component)
11187 and then not (
70482933 11188
6b670dcf 11189 -- Skip inherited components
70482933 11190
6b670dcf
AC
11191 -- Note: for a tagged type, we always generate the "=" primitive
11192 -- for the base type (not on the first subtype), so the test for
11193 -- Comp /= Original_Record_Component (Comp) is True for
11194 -- inherited components only.
24558db8 11195
6b670dcf 11196 (Is_Tagged_Type (Typ)
28270211 11197 and then Comp /= Original_Record_Component (Comp))
24558db8 11198
6b670dcf 11199 -- Skip _Tag
26bff3d9 11200
6b670dcf
AC
11201 or else Chars (Comp) = Name_uTag
11202
11203 -- The .NET/JVM version of type Root_Controlled contains two
11204 -- fields which should not be considered part of the object. To
11205 -- achieve proper equiality between two controlled objects on
11206 -- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
11207
11208 or else (Chars (Comp) = Name_uParent
28270211
AC
11209 and then VM_Target /= No_VM
11210 and then Etype (Comp) = RTE (RE_Root_Controlled))
6b670dcf
AC
11211
11212 -- Skip interface elements (secondary tags???)
11213
11214 or else Is_Interface (Etype (Comp)));
11215
11216 Next_Entity (Comp);
11217 end loop;
11218
11219 return Comp;
11220 end Element_To_Compare;
70482933 11221
70482933
RK
11222 -- Start of processing for Expand_Record_Equality
11223
11224 begin
70482933
RK
11225 -- Generates the following code: (assuming that Typ has one Discr and
11226 -- component C2 is also a record)
11227
11228 -- True
11229 -- and then Lhs.Discr1 = Rhs.Discr1
11230 -- and then Lhs.C1 = Rhs.C1
11231 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11232 -- and then ...
11233 -- and then Lhs.Cmpn = Rhs.Cmpn
11234
e4494292 11235 Result := New_Occurrence_Of (Standard_True, Loc);
6b670dcf 11236 C := Element_To_Compare (First_Entity (Typ));
70482933 11237 while Present (C) loop
70482933
RK
11238 declare
11239 New_Lhs : Node_Id;
11240 New_Rhs : Node_Id;
8aceda64 11241 Check : Node_Id;
70482933
RK
11242
11243 begin
11244 if First_Time then
11245 First_Time := False;
11246 New_Lhs := Lhs;
11247 New_Rhs := Rhs;
70482933
RK
11248 else
11249 New_Lhs := New_Copy_Tree (Lhs);
11250 New_Rhs := New_Copy_Tree (Rhs);
11251 end if;
11252
8aceda64
AC
11253 Check :=
11254 Expand_Composite_Equality (Nod, Etype (C),
11255 Lhs =>
11256 Make_Selected_Component (Loc,
8d80ff64 11257 Prefix => New_Lhs,
e4494292 11258 Selector_Name => New_Occurrence_Of (C, Loc)),
8aceda64
AC
11259 Rhs =>
11260 Make_Selected_Component (Loc,
8d80ff64 11261 Prefix => New_Rhs,
e4494292 11262 Selector_Name => New_Occurrence_Of (C, Loc)),
8aceda64
AC
11263 Bodies => Bodies);
11264
11265 -- If some (sub)component is an unchecked_union, the whole
11266 -- operation will raise program error.
11267
11268 if Nkind (Check) = N_Raise_Program_Error then
11269 Result := Check;
11270 Set_Etype (Result, Standard_Boolean);
11271 exit;
11272 else
11273 Result :=
11274 Make_And_Then (Loc,
11275 Left_Opnd => Result,
11276 Right_Opnd => Check);
11277 end if;
70482933
RK
11278 end;
11279
6b670dcf 11280 C := Element_To_Compare (Next_Entity (C));
70482933
RK
11281 end loop;
11282
11283 return Result;
11284 end Expand_Record_Equality;
11285
a3068ca6
AC
11286 ---------------------------
11287 -- Expand_Set_Membership --
11288 ---------------------------
11289
11290 procedure Expand_Set_Membership (N : Node_Id) is
11291 Lop : constant Node_Id := Left_Opnd (N);
11292 Alt : Node_Id;
11293 Res : Node_Id;
11294
11295 function Make_Cond (Alt : Node_Id) return Node_Id;
11296 -- If the alternative is a subtype mark, create a simple membership
11297 -- test. Otherwise create an equality test for it.
11298
11299 ---------------
11300 -- Make_Cond --
11301 ---------------
11302
11303 function Make_Cond (Alt : Node_Id) return Node_Id is
11304 Cond : Node_Id;
11305 L : constant Node_Id := New_Copy (Lop);
11306 R : constant Node_Id := Relocate_Node (Alt);
11307
11308 begin
11309 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
11310 or else Nkind (Alt) = N_Range
11311 then
11312 Cond :=
11313 Make_In (Sloc (Alt),
11314 Left_Opnd => L,
11315 Right_Opnd => R);
11316 else
11317 Cond :=
11318 Make_Op_Eq (Sloc (Alt),
11319 Left_Opnd => L,
11320 Right_Opnd => R);
11321 end if;
11322
11323 return Cond;
11324 end Make_Cond;
11325
11326 -- Start of processing for Expand_Set_Membership
11327
11328 begin
11329 Remove_Side_Effects (Lop);
11330
11331 Alt := Last (Alternatives (N));
11332 Res := Make_Cond (Alt);
11333
11334 Prev (Alt);
11335 while Present (Alt) loop
11336 Res :=
11337 Make_Or_Else (Sloc (Alt),
11338 Left_Opnd => Make_Cond (Alt),
11339 Right_Opnd => Res);
11340 Prev (Alt);
11341 end loop;
11342
11343 Rewrite (N, Res);
11344 Analyze_And_Resolve (N, Standard_Boolean);
11345 end Expand_Set_Membership;
11346
5875f8d6
AC
11347 -----------------------------------
11348 -- Expand_Short_Circuit_Operator --
11349 -----------------------------------
11350
955871d3
AC
11351 -- Deal with special expansion if actions are present for the right operand
11352 -- and deal with optimizing case of arguments being True or False. We also
11353 -- deal with the special case of non-standard boolean values.
5875f8d6
AC
11354
11355 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
11356 Loc : constant Source_Ptr := Sloc (N);
11357 Typ : constant Entity_Id := Etype (N);
5875f8d6
AC
11358 Left : constant Node_Id := Left_Opnd (N);
11359 Right : constant Node_Id := Right_Opnd (N);
955871d3 11360 LocR : constant Source_Ptr := Sloc (Right);
5875f8d6
AC
11361 Actlist : List_Id;
11362
11363 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
11364 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
11365 -- If Left = Shortcut_Value then Right need not be evaluated
11366
5875f8d6
AC
11367 begin
11368 -- Deal with non-standard booleans
11369
11370 if Is_Boolean_Type (Typ) then
11371 Adjust_Condition (Left);
11372 Adjust_Condition (Right);
11373 Set_Etype (N, Standard_Boolean);
11374 end if;
11375
11376 -- Check for cases where left argument is known to be True or False
11377
11378 if Compile_Time_Known_Value (Left) then
25adc5fb
AC
11379
11380 -- Mark SCO for left condition as compile time known
11381
11382 if Generate_SCO and then Comes_From_Source (Left) then
11383 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
11384 end if;
11385
5875f8d6
AC
11386 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
11387 -- Any actions associated with Right will be executed unconditionally
11388 -- and can thus be inserted into the tree unconditionally.
11389
11390 if Expr_Value_E (Left) /= Shortcut_Ent then
11391 if Present (Actions (N)) then
11392 Insert_Actions (N, Actions (N));
11393 end if;
11394
11395 Rewrite (N, Right);
11396
11397 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
11398 -- In this case we can forget the actions associated with Right,
11399 -- since they will never be executed.
11400
11401 else
11402 Kill_Dead_Code (Right);
11403 Kill_Dead_Code (Actions (N));
11404 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11405 end if;
11406
11407 Adjust_Result_Type (N, Typ);
11408 return;
11409 end if;
11410
955871d3
AC
11411 -- If Actions are present for the right operand, we have to do some
11412 -- special processing. We can't just let these actions filter back into
11413 -- code preceding the short circuit (which is what would have happened
11414 -- if we had not trapped them in the short-circuit form), since they
11415 -- must only be executed if the right operand of the short circuit is
11416 -- executed and not otherwise.
5875f8d6 11417
955871d3
AC
11418 if Present (Actions (N)) then
11419 Actlist := Actions (N);
5875f8d6 11420
0812b84e
AC
11421 -- We now use an Expression_With_Actions node for the right operand
11422 -- of the short-circuit form. Note that this solves the traceability
11423 -- problems for coverage analysis.
5875f8d6 11424
0812b84e
AC
11425 Rewrite (Right,
11426 Make_Expression_With_Actions (LocR,
11427 Expression => Relocate_Node (Right),
11428 Actions => Actlist));
11429 Set_Actions (N, No_List);
11430 Analyze_And_Resolve (Right, Standard_Boolean);
955871d3 11431
5875f8d6
AC
11432 Adjust_Result_Type (N, Typ);
11433 return;
11434 end if;
11435
11436 -- No actions present, check for cases of right argument True/False
11437
11438 if Compile_Time_Known_Value (Right) then
25adc5fb
AC
11439
11440 -- Mark SCO for left condition as compile time known
11441
11442 if Generate_SCO and then Comes_From_Source (Right) then
11443 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
11444 end if;
11445
5875f8d6
AC
11446 -- Change (Left and then True), (Left or else False) to Left.
11447 -- Note that we know there are no actions associated with the right
11448 -- operand, since we just checked for this case above.
11449
11450 if Expr_Value_E (Right) /= Shortcut_Ent then
11451 Rewrite (N, Left);
11452
11453 -- Change (Left and then False), (Left or else True) to Right,
11454 -- making sure to preserve any side effects associated with the Left
11455 -- operand.
11456
11457 else
11458 Remove_Side_Effects (Left);
11459 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11460 end if;
11461 end if;
11462
11463 Adjust_Result_Type (N, Typ);
11464 end Expand_Short_Circuit_Operator;
11465
70482933
RK
11466 -------------------------------------
11467 -- Fixup_Universal_Fixed_Operation --
11468 -------------------------------------
11469
11470 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
11471 Conv : constant Node_Id := Parent (N);
11472
11473 begin
11474 -- We must have a type conversion immediately above us
11475
11476 pragma Assert (Nkind (Conv) = N_Type_Conversion);
11477
11478 -- Normally the type conversion gives our target type. The exception
11479 -- occurs in the case of the Round attribute, where the conversion
11480 -- will be to universal real, and our real type comes from the Round
11481 -- attribute (as well as an indication that we must round the result)
11482
11483 if Nkind (Parent (Conv)) = N_Attribute_Reference
11484 and then Attribute_Name (Parent (Conv)) = Name_Round
11485 then
11486 Set_Etype (N, Etype (Parent (Conv)));
11487 Set_Rounded_Result (N);
11488
11489 -- Normal case where type comes from conversion above us
11490
11491 else
11492 Set_Etype (N, Etype (Conv));
11493 end if;
11494 end Fixup_Universal_Fixed_Operation;
11495
5d09245e
AC
11496 ---------------------------------
11497 -- Has_Inferable_Discriminants --
11498 ---------------------------------
11499
11500 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
11501
11502 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
11503 -- Determines whether the left-most prefix of a selected component is a
11504 -- formal parameter in a subprogram. Assumes N is a selected component.
11505
11506 --------------------------------
11507 -- Prefix_Is_Formal_Parameter --
11508 --------------------------------
11509
11510 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
83bb90af 11511 Sel_Comp : Node_Id;
5d09245e
AC
11512
11513 begin
11514 -- Move to the left-most prefix by climbing up the tree
11515
83bb90af 11516 Sel_Comp := N;
5d09245e
AC
11517 while Present (Parent (Sel_Comp))
11518 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
11519 loop
11520 Sel_Comp := Parent (Sel_Comp);
11521 end loop;
11522
11523 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
11524 end Prefix_Is_Formal_Parameter;
11525
11526 -- Start of processing for Has_Inferable_Discriminants
11527
11528 begin
5d09245e
AC
11529 -- For selected components, the subtype of the selector must be a
11530 -- constrained Unchecked_Union. If the component is subject to a
11531 -- per-object constraint, then the enclosing object must have inferable
11532 -- discriminants.
11533
83bb90af 11534 if Nkind (N) = N_Selected_Component then
5d09245e
AC
11535 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
11536
11537 -- A small hack. If we have a per-object constrained selected
11538 -- component of a formal parameter, return True since we do not
11539 -- know the actual parameter association yet.
11540
11541 if Prefix_Is_Formal_Parameter (N) then
11542 return True;
5d09245e
AC
11543
11544 -- Otherwise, check the enclosing object and the selector
11545
83bb90af
TQ
11546 else
11547 return Has_Inferable_Discriminants (Prefix (N))
11548 and then Has_Inferable_Discriminants (Selector_Name (N));
11549 end if;
5d09245e
AC
11550
11551 -- The call to Has_Inferable_Discriminants will determine whether
11552 -- the selector has a constrained Unchecked_Union nominal type.
11553
83bb90af
TQ
11554 else
11555 return Has_Inferable_Discriminants (Selector_Name (N));
11556 end if;
5d09245e
AC
11557
11558 -- A qualified expression has inferable discriminants if its subtype
11559 -- mark is a constrained Unchecked_Union subtype.
11560
11561 elsif Nkind (N) = N_Qualified_Expression then
053cf994 11562 return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
5b5b27ad 11563 and then Is_Constrained (Etype (Subtype_Mark (N)));
5d09245e 11564
83bb90af
TQ
11565 -- For all other names, it is sufficient to have a constrained
11566 -- Unchecked_Union nominal subtype.
11567
11568 else
11569 return Is_Unchecked_Union (Base_Type (Etype (N)))
11570 and then Is_Constrained (Etype (N));
11571 end if;
5d09245e
AC
11572 end Has_Inferable_Discriminants;
11573
70482933
RK
11574 -------------------------------
11575 -- Insert_Dereference_Action --
11576 -------------------------------
11577
11578 procedure Insert_Dereference_Action (N : Node_Id) is
8777c5a6 11579
70482933 11580 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
2e071734
AC
11581 -- Return true if type of P is derived from Checked_Pool;
11582
11583 -----------------------------
11584 -- Is_Checked_Storage_Pool --
11585 -----------------------------
70482933
RK
11586
11587 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
11588 T : Entity_Id;
761f7dcb 11589
70482933
RK
11590 begin
11591 if No (P) then
11592 return False;
11593 end if;
11594
11595 T := Etype (P);
11596 while T /= Etype (T) loop
11597 if Is_RTE (T, RE_Checked_Pool) then
11598 return True;
11599 else
11600 T := Etype (T);
11601 end if;
11602 end loop;
11603
11604 return False;
11605 end Is_Checked_Storage_Pool;
11606
b0d71355
HK
11607 -- Local variables
11608
11609 Typ : constant Entity_Id := Etype (N);
11610 Desig : constant Entity_Id := Available_View (Designated_Type (Typ));
11611 Loc : constant Source_Ptr := Sloc (N);
11612 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
11613 Pnod : constant Node_Id := Parent (N);
11614
51dcceec
AC
11615 Addr : Entity_Id;
11616 Alig : Entity_Id;
11617 Deref : Node_Id;
11618 Size : Entity_Id;
11619 Size_Bits : Node_Id;
11620 Stmt : Node_Id;
b0d71355 11621
70482933
RK
11622 -- Start of processing for Insert_Dereference_Action
11623
11624 begin
e6f69614
AC
11625 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
11626
b0d71355
HK
11627 -- Do not re-expand a dereference which has already been processed by
11628 -- this routine.
11629
11630 if Has_Dereference_Action (Pnod) then
70482933 11631 return;
70482933 11632
b0d71355
HK
11633 -- Do not perform this type of expansion for internally-generated
11634 -- dereferences.
70482933 11635
b0d71355
HK
11636 elsif not Comes_From_Source (Original_Node (Pnod)) then
11637 return;
70482933 11638
b0d71355
HK
11639 -- A dereference action is only applicable to objects which have been
11640 -- allocated on a checked pool.
70482933 11641
b0d71355
HK
11642 elsif not Is_Checked_Storage_Pool (Pool) then
11643 return;
11644 end if;
70482933 11645
b0d71355 11646 -- Extract the address of the dereferenced object. Generate:
8777c5a6 11647
b0d71355 11648 -- Addr : System.Address := <N>'Pool_Address;
70482933 11649
b0d71355 11650 Addr := Make_Temporary (Loc, 'P');
70482933 11651
b0d71355
HK
11652 Insert_Action (N,
11653 Make_Object_Declaration (Loc,
11654 Defining_Identifier => Addr,
11655 Object_Definition =>
e4494292 11656 New_Occurrence_Of (RTE (RE_Address), Loc),
b0d71355
HK
11657 Expression =>
11658 Make_Attribute_Reference (Loc,
11659 Prefix => Duplicate_Subexpr_Move_Checks (N),
11660 Attribute_Name => Name_Pool_Address)));
11661
11662 -- Calculate the size of the dereferenced object. Generate:
8777c5a6 11663
b0d71355
HK
11664 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11665
11666 Deref :=
11667 Make_Explicit_Dereference (Loc,
11668 Prefix => Duplicate_Subexpr_Move_Checks (N));
11669 Set_Has_Dereference_Action (Deref);
70482933 11670
51dcceec
AC
11671 Size_Bits :=
11672 Make_Attribute_Reference (Loc,
11673 Prefix => Deref,
11674 Attribute_Name => Name_Size);
11675
11676 -- Special case of an unconstrained array: need to add descriptor size
11677
11678 if Is_Array_Type (Desig)
11679 and then not Is_Constrained (First_Subtype (Desig))
11680 then
11681 Size_Bits :=
11682 Make_Op_Add (Loc,
11683 Left_Opnd =>
11684 Make_Attribute_Reference (Loc,
11685 Prefix =>
11686 New_Occurrence_Of (First_Subtype (Desig), Loc),
11687 Attribute_Name => Name_Descriptor_Size),
11688 Right_Opnd => Size_Bits);
11689 end if;
b0d71355 11690
51dcceec 11691 Size := Make_Temporary (Loc, 'S');
b0d71355
HK
11692 Insert_Action (N,
11693 Make_Object_Declaration (Loc,
11694 Defining_Identifier => Size,
11695 Object_Definition =>
e4494292 11696 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
b0d71355
HK
11697 Expression =>
11698 Make_Op_Divide (Loc,
51dcceec
AC
11699 Left_Opnd => Size_Bits,
11700 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
70482933 11701
b0d71355
HK
11702 -- Calculate the alignment of the dereferenced object. Generate:
11703 -- Alig : constant Storage_Count := <N>.all'Alignment;
70482933 11704
b0d71355
HK
11705 Deref :=
11706 Make_Explicit_Dereference (Loc,
11707 Prefix => Duplicate_Subexpr_Move_Checks (N));
11708 Set_Has_Dereference_Action (Deref);
11709
11710 Alig := Make_Temporary (Loc, 'A');
b0d71355
HK
11711 Insert_Action (N,
11712 Make_Object_Declaration (Loc,
11713 Defining_Identifier => Alig,
11714 Object_Definition =>
e4494292 11715 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
b0d71355
HK
11716 Expression =>
11717 Make_Attribute_Reference (Loc,
11718 Prefix => Deref,
11719 Attribute_Name => Name_Alignment)));
11720
11721 -- A dereference of a controlled object requires special processing. The
11722 -- finalization machinery requests additional space from the underlying
11723 -- pool to allocate and hide two pointers. As a result, a checked pool
11724 -- may mark the wrong memory as valid. Since checked pools do not have
11725 -- knowledge of hidden pointers, we have to bring the two pointers back
11726 -- in view in order to restore the original state of the object.
11727
11728 if Needs_Finalization (Desig) then
11729
11730 -- Adjust the address and size of the dereferenced object. Generate:
11731 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11732
11733 Stmt :=
11734 Make_Procedure_Call_Statement (Loc,
11735 Name =>
e4494292 11736 New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
b0d71355 11737 Parameter_Associations => New_List (
e4494292
RD
11738 New_Occurrence_Of (Addr, Loc),
11739 New_Occurrence_Of (Size, Loc),
11740 New_Occurrence_Of (Alig, Loc)));
b0d71355
HK
11741
11742 -- Class-wide types complicate things because we cannot determine
11743 -- statically whether the actual object is truly controlled. We must
11744 -- generate a runtime check to detect this property. Generate:
11745 --
11746 -- if Needs_Finalization (<N>.all'Tag) then
11747 -- <Stmt>;
11748 -- end if;
11749
11750 if Is_Class_Wide_Type (Desig) then
11751 Deref :=
11752 Make_Explicit_Dereference (Loc,
11753 Prefix => Duplicate_Subexpr_Move_Checks (N));
11754 Set_Has_Dereference_Action (Deref);
11755
11756 Stmt :=
8b1011c0 11757 Make_Implicit_If_Statement (N,
b0d71355
HK
11758 Condition =>
11759 Make_Function_Call (Loc,
11760 Name =>
e4494292 11761 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
b0d71355
HK
11762 Parameter_Associations => New_List (
11763 Make_Attribute_Reference (Loc,
11764 Prefix => Deref,
11765 Attribute_Name => Name_Tag))),
11766 Then_Statements => New_List (Stmt));
11767 end if;
11768
11769 Insert_Action (N, Stmt);
11770 end if;
11771
11772 -- Generate:
11773 -- Dereference (Pool, Addr, Size, Alig);
11774
11775 Insert_Action (N,
11776 Make_Procedure_Call_Statement (Loc,
11777 Name =>
e4494292 11778 New_Occurrence_Of
b0d71355
HK
11779 (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
11780 Parameter_Associations => New_List (
e4494292
RD
11781 New_Occurrence_Of (Pool, Loc),
11782 New_Occurrence_Of (Addr, Loc),
11783 New_Occurrence_Of (Size, Loc),
11784 New_Occurrence_Of (Alig, Loc))));
b0d71355
HK
11785
11786 -- Mark the explicit dereference as processed to avoid potential
11787 -- infinite expansion.
11788
11789 Set_Has_Dereference_Action (Pnod);
70482933 11790
fbf5a39b
AC
11791 exception
11792 when RE_Not_Available =>
11793 return;
70482933
RK
11794 end Insert_Dereference_Action;
11795
fdfcc663
AC
11796 --------------------------------
11797 -- Integer_Promotion_Possible --
11798 --------------------------------
11799
11800 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
11801 Operand : constant Node_Id := Expression (N);
11802 Operand_Type : constant Entity_Id := Etype (Operand);
11803 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
11804
11805 begin
11806 pragma Assert (Nkind (N) = N_Type_Conversion);
11807
11808 return
11809
11810 -- We only do the transformation for source constructs. We assume
11811 -- that the expander knows what it is doing when it generates code.
11812
11813 Comes_From_Source (N)
11814
11815 -- If the operand type is Short_Integer or Short_Short_Integer,
11816 -- then we will promote to Integer, which is available on all
11817 -- targets, and is sufficient to ensure no intermediate overflow.
11818 -- Furthermore it is likely to be as efficient or more efficient
11819 -- than using the smaller type for the computation so we do this
11820 -- unconditionally.
11821
11822 and then
11823 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
761f7dcb 11824 or else
fdfcc663
AC
11825 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
11826
11827 -- Test for interesting operation, which includes addition,
5f3f175d
AC
11828 -- division, exponentiation, multiplication, subtraction, absolute
11829 -- value and unary negation. Unary "+" is omitted since it is a
11830 -- no-op and thus can't overflow.
fdfcc663 11831
5f3f175d
AC
11832 and then Nkind_In (Operand, N_Op_Abs,
11833 N_Op_Add,
fdfcc663
AC
11834 N_Op_Divide,
11835 N_Op_Expon,
11836 N_Op_Minus,
11837 N_Op_Multiply,
11838 N_Op_Subtract);
11839 end Integer_Promotion_Possible;
11840
70482933
RK
11841 ------------------------------
11842 -- Make_Array_Comparison_Op --
11843 ------------------------------
11844
11845 -- This is a hand-coded expansion of the following generic function:
11846
11847 -- generic
11848 -- type elem is (<>);
11849 -- type index is (<>);
11850 -- type a is array (index range <>) of elem;
20b5d666 11851
70482933
RK
11852 -- function Gnnn (X : a; Y: a) return boolean is
11853 -- J : index := Y'first;
20b5d666 11854
70482933
RK
11855 -- begin
11856 -- if X'length = 0 then
11857 -- return false;
20b5d666 11858
70482933
RK
11859 -- elsif Y'length = 0 then
11860 -- return true;
20b5d666 11861
70482933
RK
11862 -- else
11863 -- for I in X'range loop
11864 -- if X (I) = Y (J) then
11865 -- if J = Y'last then
11866 -- exit;
11867 -- else
11868 -- J := index'succ (J);
11869 -- end if;
20b5d666 11870
70482933
RK
11871 -- else
11872 -- return X (I) > Y (J);
11873 -- end if;
11874 -- end loop;
20b5d666 11875
70482933
RK
11876 -- return X'length > Y'length;
11877 -- end if;
11878 -- end Gnnn;
11879
11880 -- Note that since we are essentially doing this expansion by hand, we
11881 -- do not need to generate an actual or formal generic part, just the
11882 -- instantiated function itself.
11883
bb012790
AC
11884 -- Perhaps we could have the actual generic available in the run-time,
11885 -- obtained by rtsfind, and actually expand a real instantiation ???
11886
70482933 11887 function Make_Array_Comparison_Op
2e071734
AC
11888 (Typ : Entity_Id;
11889 Nod : Node_Id) return Node_Id
70482933
RK
11890 is
11891 Loc : constant Source_Ptr := Sloc (Nod);
11892
11893 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
11894 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
11895 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
11896 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
11897
11898 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
11899
11900 Loop_Statement : Node_Id;
11901 Loop_Body : Node_Id;
11902 If_Stat : Node_Id;
11903 Inner_If : Node_Id;
11904 Final_Expr : Node_Id;
11905 Func_Body : Node_Id;
11906 Func_Name : Entity_Id;
11907 Formals : List_Id;
11908 Length1 : Node_Id;
11909 Length2 : Node_Id;
11910
11911 begin
11912 -- if J = Y'last then
11913 -- exit;
11914 -- else
11915 -- J := index'succ (J);
11916 -- end if;
11917
11918 Inner_If :=
11919 Make_Implicit_If_Statement (Nod,
11920 Condition =>
11921 Make_Op_Eq (Loc,
e4494292 11922 Left_Opnd => New_Occurrence_Of (J, Loc),
70482933
RK
11923 Right_Opnd =>
11924 Make_Attribute_Reference (Loc,
e4494292 11925 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
11926 Attribute_Name => Name_Last)),
11927
11928 Then_Statements => New_List (
11929 Make_Exit_Statement (Loc)),
11930
11931 Else_Statements =>
11932 New_List (
11933 Make_Assignment_Statement (Loc,
e4494292 11934 Name => New_Occurrence_Of (J, Loc),
70482933
RK
11935 Expression =>
11936 Make_Attribute_Reference (Loc,
e4494292 11937 Prefix => New_Occurrence_Of (Index, Loc),
70482933 11938 Attribute_Name => Name_Succ,
e4494292 11939 Expressions => New_List (New_Occurrence_Of (J, Loc))))));
70482933
RK
11940
11941 -- if X (I) = Y (J) then
11942 -- if ... end if;
11943 -- else
11944 -- return X (I) > Y (J);
11945 -- end if;
11946
11947 Loop_Body :=
11948 Make_Implicit_If_Statement (Nod,
11949 Condition =>
11950 Make_Op_Eq (Loc,
11951 Left_Opnd =>
11952 Make_Indexed_Component (Loc,
e4494292
RD
11953 Prefix => New_Occurrence_Of (X, Loc),
11954 Expressions => New_List (New_Occurrence_Of (I, Loc))),
70482933
RK
11955
11956 Right_Opnd =>
11957 Make_Indexed_Component (Loc,
e4494292
RD
11958 Prefix => New_Occurrence_Of (Y, Loc),
11959 Expressions => New_List (New_Occurrence_Of (J, Loc)))),
70482933
RK
11960
11961 Then_Statements => New_List (Inner_If),
11962
11963 Else_Statements => New_List (
d766cee3 11964 Make_Simple_Return_Statement (Loc,
70482933
RK
11965 Expression =>
11966 Make_Op_Gt (Loc,
11967 Left_Opnd =>
11968 Make_Indexed_Component (Loc,
e4494292
RD
11969 Prefix => New_Occurrence_Of (X, Loc),
11970 Expressions => New_List (New_Occurrence_Of (I, Loc))),
70482933
RK
11971
11972 Right_Opnd =>
11973 Make_Indexed_Component (Loc,
e4494292 11974 Prefix => New_Occurrence_Of (Y, Loc),
70482933 11975 Expressions => New_List (
e4494292 11976 New_Occurrence_Of (J, Loc)))))));
70482933
RK
11977
11978 -- for I in X'range loop
11979 -- if ... end if;
11980 -- end loop;
11981
11982 Loop_Statement :=
11983 Make_Implicit_Loop_Statement (Nod,
11984 Identifier => Empty,
11985
11986 Iteration_Scheme =>
11987 Make_Iteration_Scheme (Loc,
11988 Loop_Parameter_Specification =>
11989 Make_Loop_Parameter_Specification (Loc,
11990 Defining_Identifier => I,
11991 Discrete_Subtype_Definition =>
11992 Make_Attribute_Reference (Loc,
e4494292 11993 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
11994 Attribute_Name => Name_Range))),
11995
11996 Statements => New_List (Loop_Body));
11997
11998 -- if X'length = 0 then
11999 -- return false;
12000 -- elsif Y'length = 0 then
12001 -- return true;
12002 -- else
12003 -- for ... loop ... end loop;
12004 -- return X'length > Y'length;
12005 -- end if;
12006
12007 Length1 :=
12008 Make_Attribute_Reference (Loc,
e4494292 12009 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
12010 Attribute_Name => Name_Length);
12011
12012 Length2 :=
12013 Make_Attribute_Reference (Loc,
e4494292 12014 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
12015 Attribute_Name => Name_Length);
12016
12017 Final_Expr :=
12018 Make_Op_Gt (Loc,
12019 Left_Opnd => Length1,
12020 Right_Opnd => Length2);
12021
12022 If_Stat :=
12023 Make_Implicit_If_Statement (Nod,
12024 Condition =>
12025 Make_Op_Eq (Loc,
12026 Left_Opnd =>
12027 Make_Attribute_Reference (Loc,
e4494292 12028 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
12029 Attribute_Name => Name_Length),
12030 Right_Opnd =>
12031 Make_Integer_Literal (Loc, 0)),
12032
12033 Then_Statements =>
12034 New_List (
d766cee3 12035 Make_Simple_Return_Statement (Loc,
e4494292 12036 Expression => New_Occurrence_Of (Standard_False, Loc))),
70482933
RK
12037
12038 Elsif_Parts => New_List (
12039 Make_Elsif_Part (Loc,
12040 Condition =>
12041 Make_Op_Eq (Loc,
12042 Left_Opnd =>
12043 Make_Attribute_Reference (Loc,
e4494292 12044 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
12045 Attribute_Name => Name_Length),
12046 Right_Opnd =>
12047 Make_Integer_Literal (Loc, 0)),
12048
12049 Then_Statements =>
12050 New_List (
d766cee3 12051 Make_Simple_Return_Statement (Loc,
e4494292 12052 Expression => New_Occurrence_Of (Standard_True, Loc))))),
70482933
RK
12053
12054 Else_Statements => New_List (
12055 Loop_Statement,
d766cee3 12056 Make_Simple_Return_Statement (Loc,
70482933
RK
12057 Expression => Final_Expr)));
12058
12059 -- (X : a; Y: a)
12060
12061 Formals := New_List (
12062 Make_Parameter_Specification (Loc,
12063 Defining_Identifier => X,
e4494292 12064 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
70482933
RK
12065
12066 Make_Parameter_Specification (Loc,
12067 Defining_Identifier => Y,
e4494292 12068 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
70482933
RK
12069
12070 -- function Gnnn (...) return boolean is
12071 -- J : index := Y'first;
12072 -- begin
12073 -- if ... end if;
12074 -- end Gnnn;
12075
191fcb3a 12076 Func_Name := Make_Temporary (Loc, 'G');
70482933
RK
12077
12078 Func_Body :=
12079 Make_Subprogram_Body (Loc,
12080 Specification =>
12081 Make_Function_Specification (Loc,
12082 Defining_Unit_Name => Func_Name,
12083 Parameter_Specifications => Formals,
e4494292 12084 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
70482933
RK
12085
12086 Declarations => New_List (
12087 Make_Object_Declaration (Loc,
12088 Defining_Identifier => J,
e4494292 12089 Object_Definition => New_Occurrence_Of (Index, Loc),
70482933
RK
12090 Expression =>
12091 Make_Attribute_Reference (Loc,
e4494292 12092 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
12093 Attribute_Name => Name_First))),
12094
12095 Handled_Statement_Sequence =>
12096 Make_Handled_Sequence_Of_Statements (Loc,
12097 Statements => New_List (If_Stat)));
12098
12099 return Func_Body;
70482933
RK
12100 end Make_Array_Comparison_Op;
12101
12102 ---------------------------
12103 -- Make_Boolean_Array_Op --
12104 ---------------------------
12105
685094bf
RD
12106 -- For logical operations on boolean arrays, expand in line the following,
12107 -- replacing 'and' with 'or' or 'xor' where needed:
70482933
RK
12108
12109 -- function Annn (A : typ; B: typ) return typ is
12110 -- C : typ;
12111 -- begin
12112 -- for J in A'range loop
12113 -- C (J) := A (J) op B (J);
12114 -- end loop;
12115 -- return C;
12116 -- end Annn;
12117
12118 -- Here typ is the boolean array type
12119
12120 function Make_Boolean_Array_Op
2e071734
AC
12121 (Typ : Entity_Id;
12122 N : Node_Id) return Node_Id
70482933
RK
12123 is
12124 Loc : constant Source_Ptr := Sloc (N);
12125
12126 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
12127 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
12128 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
12129 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
12130
12131 A_J : Node_Id;
12132 B_J : Node_Id;
12133 C_J : Node_Id;
12134 Op : Node_Id;
12135
12136 Formals : List_Id;
12137 Func_Name : Entity_Id;
12138 Func_Body : Node_Id;
12139 Loop_Statement : Node_Id;
12140
12141 begin
12142 A_J :=
12143 Make_Indexed_Component (Loc,
e4494292
RD
12144 Prefix => New_Occurrence_Of (A, Loc),
12145 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12146
12147 B_J :=
12148 Make_Indexed_Component (Loc,
e4494292
RD
12149 Prefix => New_Occurrence_Of (B, Loc),
12150 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12151
12152 C_J :=
12153 Make_Indexed_Component (Loc,
e4494292
RD
12154 Prefix => New_Occurrence_Of (C, Loc),
12155 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12156
12157 if Nkind (N) = N_Op_And then
12158 Op :=
12159 Make_Op_And (Loc,
12160 Left_Opnd => A_J,
12161 Right_Opnd => B_J);
12162
12163 elsif Nkind (N) = N_Op_Or then
12164 Op :=
12165 Make_Op_Or (Loc,
12166 Left_Opnd => A_J,
12167 Right_Opnd => B_J);
12168
12169 else
12170 Op :=
12171 Make_Op_Xor (Loc,
12172 Left_Opnd => A_J,
12173 Right_Opnd => B_J);
12174 end if;
12175
12176 Loop_Statement :=
12177 Make_Implicit_Loop_Statement (N,
12178 Identifier => Empty,
12179
12180 Iteration_Scheme =>
12181 Make_Iteration_Scheme (Loc,
12182 Loop_Parameter_Specification =>
12183 Make_Loop_Parameter_Specification (Loc,
12184 Defining_Identifier => J,
12185 Discrete_Subtype_Definition =>
12186 Make_Attribute_Reference (Loc,
e4494292 12187 Prefix => New_Occurrence_Of (A, Loc),
70482933
RK
12188 Attribute_Name => Name_Range))),
12189
12190 Statements => New_List (
12191 Make_Assignment_Statement (Loc,
12192 Name => C_J,
12193 Expression => Op)));
12194
12195 Formals := New_List (
12196 Make_Parameter_Specification (Loc,
12197 Defining_Identifier => A,
e4494292 12198 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
70482933
RK
12199
12200 Make_Parameter_Specification (Loc,
12201 Defining_Identifier => B,
e4494292 12202 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
70482933 12203
191fcb3a 12204 Func_Name := Make_Temporary (Loc, 'A');
70482933
RK
12205 Set_Is_Inlined (Func_Name);
12206
12207 Func_Body :=
12208 Make_Subprogram_Body (Loc,
12209 Specification =>
12210 Make_Function_Specification (Loc,
12211 Defining_Unit_Name => Func_Name,
12212 Parameter_Specifications => Formals,
e4494292 12213 Result_Definition => New_Occurrence_Of (Typ, Loc)),
70482933
RK
12214
12215 Declarations => New_List (
12216 Make_Object_Declaration (Loc,
12217 Defining_Identifier => C,
e4494292 12218 Object_Definition => New_Occurrence_Of (Typ, Loc))),
70482933
RK
12219
12220 Handled_Statement_Sequence =>
12221 Make_Handled_Sequence_Of_Statements (Loc,
12222 Statements => New_List (
12223 Loop_Statement,
d766cee3 12224 Make_Simple_Return_Statement (Loc,
e4494292 12225 Expression => New_Occurrence_Of (C, Loc)))));
70482933
RK
12226
12227 return Func_Body;
12228 end Make_Boolean_Array_Op;
12229
b6b5cca8
AC
12230 -----------------------------------------
12231 -- Minimized_Eliminated_Overflow_Check --
12232 -----------------------------------------
12233
12234 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
12235 begin
12236 return
12237 Is_Signed_Integer_Type (Etype (N))
a7f1b24f 12238 and then Overflow_Check_Mode in Minimized_Or_Eliminated;
b6b5cca8
AC
12239 end Minimized_Eliminated_Overflow_Check;
12240
0580d807
AC
12241 --------------------------------
12242 -- Optimize_Length_Comparison --
12243 --------------------------------
12244
12245 procedure Optimize_Length_Comparison (N : Node_Id) is
12246 Loc : constant Source_Ptr := Sloc (N);
12247 Typ : constant Entity_Id := Etype (N);
12248 Result : Node_Id;
12249
12250 Left : Node_Id;
12251 Right : Node_Id;
12252 -- First and Last attribute reference nodes, which end up as left and
12253 -- right operands of the optimized result.
12254
12255 Is_Zero : Boolean;
12256 -- True for comparison operand of zero
12257
12258 Comp : Node_Id;
12259 -- Comparison operand, set only if Is_Zero is false
12260
12261 Ent : Entity_Id;
12262 -- Entity whose length is being compared
12263
12264 Index : Node_Id;
12265 -- Integer_Literal node for length attribute expression, or Empty
12266 -- if there is no such expression present.
12267
12268 Ityp : Entity_Id;
12269 -- Type of array index to which 'Length is applied
12270
12271 Op : Node_Kind := Nkind (N);
12272 -- Kind of comparison operator, gets flipped if operands backwards
12273
12274 function Is_Optimizable (N : Node_Id) return Boolean;
abcd9db2
AC
12275 -- Tests N to see if it is an optimizable comparison value (defined as
12276 -- constant zero or one, or something else where the value is known to
12277 -- be positive and in the range of 32-bits, and where the corresponding
12278 -- Length value is also known to be 32-bits. If result is true, sets
12279 -- Is_Zero, Ityp, and Comp accordingly.
0580d807
AC
12280
12281 function Is_Entity_Length (N : Node_Id) return Boolean;
12282 -- Tests if N is a length attribute applied to a simple entity. If so,
12283 -- returns True, and sets Ent to the entity, and Index to the integer
12284 -- literal provided as an attribute expression, or to Empty if none.
12285 -- Also returns True if the expression is a generated type conversion
12286 -- whose expression is of the desired form. This latter case arises
12287 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
12288 -- to check for being in range, which is not needed in this context.
12289 -- Returns False if neither condition holds.
12290
12291 function Prepare_64 (N : Node_Id) return Node_Id;
12292 -- Given a discrete expression, returns a Long_Long_Integer typed
12293 -- expression representing the underlying value of the expression.
12294 -- This is done with an unchecked conversion to the result type. We
12295 -- use unchecked conversion to handle the enumeration type case.
12296
12297 ----------------------
12298 -- Is_Entity_Length --
12299 ----------------------
12300
12301 function Is_Entity_Length (N : Node_Id) return Boolean is
12302 begin
12303 if Nkind (N) = N_Attribute_Reference
12304 and then Attribute_Name (N) = Name_Length
12305 and then Is_Entity_Name (Prefix (N))
12306 then
12307 Ent := Entity (Prefix (N));
12308
12309 if Present (Expressions (N)) then
12310 Index := First (Expressions (N));
12311 else
12312 Index := Empty;
12313 end if;
12314
12315 return True;
12316
12317 elsif Nkind (N) = N_Type_Conversion
12318 and then not Comes_From_Source (N)
12319 then
12320 return Is_Entity_Length (Expression (N));
12321
12322 else
12323 return False;
12324 end if;
12325 end Is_Entity_Length;
12326
12327 --------------------
12328 -- Is_Optimizable --
12329 --------------------
12330
12331 function Is_Optimizable (N : Node_Id) return Boolean is
12332 Val : Uint;
12333 OK : Boolean;
12334 Lo : Uint;
12335 Hi : Uint;
12336 Indx : Node_Id;
12337
12338 begin
12339 if Compile_Time_Known_Value (N) then
12340 Val := Expr_Value (N);
12341
12342 if Val = Uint_0 then
12343 Is_Zero := True;
12344 Comp := Empty;
12345 return True;
12346
12347 elsif Val = Uint_1 then
12348 Is_Zero := False;
12349 Comp := Empty;
12350 return True;
12351 end if;
12352 end if;
12353
12354 -- Here we have to make sure of being within 32-bits
12355
12356 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
12357
12358 if not OK
abcd9db2 12359 or else Lo < Uint_1
0580d807
AC
12360 or else Hi > UI_From_Int (Int'Last)
12361 then
12362 return False;
12363 end if;
12364
abcd9db2
AC
12365 -- Comparison value was within range, so now we must check the index
12366 -- value to make sure it is also within 32-bits.
0580d807
AC
12367
12368 Indx := First_Index (Etype (Ent));
12369
12370 if Present (Index) then
12371 for J in 2 .. UI_To_Int (Intval (Index)) loop
12372 Next_Index (Indx);
12373 end loop;
12374 end if;
12375
12376 Ityp := Etype (Indx);
12377
12378 if Esize (Ityp) > 32 then
12379 return False;
12380 end if;
12381
12382 Is_Zero := False;
12383 Comp := N;
12384 return True;
12385 end Is_Optimizable;
12386
12387 ----------------
12388 -- Prepare_64 --
12389 ----------------
12390
12391 function Prepare_64 (N : Node_Id) return Node_Id is
12392 begin
12393 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
12394 end Prepare_64;
12395
12396 -- Start of processing for Optimize_Length_Comparison
12397
12398 begin
12399 -- Nothing to do if not a comparison
12400
12401 if Op not in N_Op_Compare then
12402 return;
12403 end if;
12404
12405 -- Nothing to do if special -gnatd.P debug flag set
12406
12407 if Debug_Flag_Dot_PP then
12408 return;
12409 end if;
12410
12411 -- Ent'Length op 0/1
12412
12413 if Is_Entity_Length (Left_Opnd (N))
12414 and then Is_Optimizable (Right_Opnd (N))
12415 then
12416 null;
12417
12418 -- 0/1 op Ent'Length
12419
12420 elsif Is_Entity_Length (Right_Opnd (N))
12421 and then Is_Optimizable (Left_Opnd (N))
12422 then
12423 -- Flip comparison to opposite sense
12424
12425 case Op is
12426 when N_Op_Lt => Op := N_Op_Gt;
12427 when N_Op_Le => Op := N_Op_Ge;
12428 when N_Op_Gt => Op := N_Op_Lt;
12429 when N_Op_Ge => Op := N_Op_Le;
12430 when others => null;
12431 end case;
12432
12433 -- Else optimization not possible
12434
12435 else
12436 return;
12437 end if;
12438
12439 -- Fall through if we will do the optimization
12440
12441 -- Cases to handle:
12442
12443 -- X'Length = 0 => X'First > X'Last
12444 -- X'Length = 1 => X'First = X'Last
12445 -- X'Length = n => X'First + (n - 1) = X'Last
12446
12447 -- X'Length /= 0 => X'First <= X'Last
12448 -- X'Length /= 1 => X'First /= X'Last
12449 -- X'Length /= n => X'First + (n - 1) /= X'Last
12450
12451 -- X'Length >= 0 => always true, warn
12452 -- X'Length >= 1 => X'First <= X'Last
12453 -- X'Length >= n => X'First + (n - 1) <= X'Last
12454
12455 -- X'Length > 0 => X'First <= X'Last
12456 -- X'Length > 1 => X'First < X'Last
12457 -- X'Length > n => X'First + (n - 1) < X'Last
12458
12459 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
12460 -- X'Length <= 1 => X'First >= X'Last
12461 -- X'Length <= n => X'First + (n - 1) >= X'Last
12462
12463 -- X'Length < 0 => always false (warn)
12464 -- X'Length < 1 => X'First > X'Last
12465 -- X'Length < n => X'First + (n - 1) > X'Last
12466
12467 -- Note: for the cases of n (not constant 0,1), we require that the
12468 -- corresponding index type be integer or shorter (i.e. not 64-bit),
12469 -- and the same for the comparison value. Then we do the comparison
12470 -- using 64-bit arithmetic (actually long long integer), so that we
12471 -- cannot have overflow intefering with the result.
12472
12473 -- First deal with warning cases
12474
12475 if Is_Zero then
12476 case Op is
12477
12478 -- X'Length >= 0
12479
12480 when N_Op_Ge =>
12481 Rewrite (N,
12482 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
12483 Analyze_And_Resolve (N, Typ);
12484 Warn_On_Known_Condition (N);
12485 return;
12486
12487 -- X'Length < 0
12488
12489 when N_Op_Lt =>
12490 Rewrite (N,
12491 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
12492 Analyze_And_Resolve (N, Typ);
12493 Warn_On_Known_Condition (N);
12494 return;
12495
12496 when N_Op_Le =>
12497 if Constant_Condition_Warnings
12498 and then Comes_From_Source (Original_Node (N))
12499 then
324ac540 12500 Error_Msg_N ("could replace by ""'=""?c?", N);
0580d807
AC
12501 end if;
12502
12503 Op := N_Op_Eq;
12504
12505 when others =>
12506 null;
12507 end case;
12508 end if;
12509
12510 -- Build the First reference we will use
12511
12512 Left :=
12513 Make_Attribute_Reference (Loc,
12514 Prefix => New_Occurrence_Of (Ent, Loc),
12515 Attribute_Name => Name_First);
12516
12517 if Present (Index) then
12518 Set_Expressions (Left, New_List (New_Copy (Index)));
12519 end if;
12520
12521 -- If general value case, then do the addition of (n - 1), and
12522 -- also add the needed conversions to type Long_Long_Integer.
12523
12524 if Present (Comp) then
12525 Left :=
12526 Make_Op_Add (Loc,
12527 Left_Opnd => Prepare_64 (Left),
12528 Right_Opnd =>
12529 Make_Op_Subtract (Loc,
12530 Left_Opnd => Prepare_64 (Comp),
12531 Right_Opnd => Make_Integer_Literal (Loc, 1)));
12532 end if;
12533
12534 -- Build the Last reference we will use
12535
12536 Right :=
12537 Make_Attribute_Reference (Loc,
12538 Prefix => New_Occurrence_Of (Ent, Loc),
12539 Attribute_Name => Name_Last);
12540
12541 if Present (Index) then
12542 Set_Expressions (Right, New_List (New_Copy (Index)));
12543 end if;
12544
12545 -- If general operand, convert Last reference to Long_Long_Integer
12546
12547 if Present (Comp) then
12548 Right := Prepare_64 (Right);
12549 end if;
12550
12551 -- Check for cases to optimize
12552
12553 -- X'Length = 0 => X'First > X'Last
12554 -- X'Length < 1 => X'First > X'Last
12555 -- X'Length < n => X'First + (n - 1) > X'Last
12556
12557 if (Is_Zero and then Op = N_Op_Eq)
12558 or else (not Is_Zero and then Op = N_Op_Lt)
12559 then
12560 Result :=
12561 Make_Op_Gt (Loc,
12562 Left_Opnd => Left,
12563 Right_Opnd => Right);
12564
12565 -- X'Length = 1 => X'First = X'Last
12566 -- X'Length = n => X'First + (n - 1) = X'Last
12567
12568 elsif not Is_Zero and then Op = N_Op_Eq then
12569 Result :=
12570 Make_Op_Eq (Loc,
12571 Left_Opnd => Left,
12572 Right_Opnd => Right);
12573
12574 -- X'Length /= 0 => X'First <= X'Last
12575 -- X'Length > 0 => X'First <= X'Last
12576
12577 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
12578 Result :=
12579 Make_Op_Le (Loc,
12580 Left_Opnd => Left,
12581 Right_Opnd => Right);
12582
12583 -- X'Length /= 1 => X'First /= X'Last
12584 -- X'Length /= n => X'First + (n - 1) /= X'Last
12585
12586 elsif not Is_Zero and then Op = N_Op_Ne then
12587 Result :=
12588 Make_Op_Ne (Loc,
12589 Left_Opnd => Left,
12590 Right_Opnd => Right);
12591
12592 -- X'Length >= 1 => X'First <= X'Last
12593 -- X'Length >= n => X'First + (n - 1) <= X'Last
12594
12595 elsif not Is_Zero and then Op = N_Op_Ge then
12596 Result :=
12597 Make_Op_Le (Loc,
12598 Left_Opnd => Left,
12599 Right_Opnd => Right);
12600
12601 -- X'Length > 1 => X'First < X'Last
12602 -- X'Length > n => X'First + (n = 1) < X'Last
12603
12604 elsif not Is_Zero and then Op = N_Op_Gt then
12605 Result :=
12606 Make_Op_Lt (Loc,
12607 Left_Opnd => Left,
12608 Right_Opnd => Right);
12609
12610 -- X'Length <= 1 => X'First >= X'Last
12611 -- X'Length <= n => X'First + (n - 1) >= X'Last
12612
12613 elsif not Is_Zero and then Op = N_Op_Le then
12614 Result :=
12615 Make_Op_Ge (Loc,
12616 Left_Opnd => Left,
12617 Right_Opnd => Right);
12618
12619 -- Should not happen at this stage
12620
12621 else
12622 raise Program_Error;
12623 end if;
12624
12625 -- Rewrite and finish up
12626
12627 Rewrite (N, Result);
12628 Analyze_And_Resolve (N, Typ);
12629 return;
12630 end Optimize_Length_Comparison;
12631
b2c28399
AC
12632 ------------------------------
12633 -- Process_Transient_Object --
12634 ------------------------------
12635
12636 procedure Process_Transient_Object
12637 (Decl : Node_Id;
12638 Rel_Node : Node_Id)
12639 is
8942b30c
AC
12640 Loc : constant Source_Ptr := Sloc (Decl);
12641 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
12642 Obj_Typ : constant Node_Id := Etype (Obj_Id);
12643 Desig_Typ : Entity_Id;
12644 Expr : Node_Id;
12645 Fin_Stmts : List_Id;
12646 Ptr_Id : Entity_Id;
12647 Temp_Id : Entity_Id;
12648 Temp_Ins : Node_Id;
12649
9ab5d86b 12650 Hook_Context : constant Node_Id := Find_Hook_Context (Rel_Node);
8942b30c
AC
12651 -- Node on which to insert the hook pointer (as an action): the
12652 -- innermost enclosing non-transient scope.
b2c28399 12653
064f4527
TQ
12654 Finalization_Context : Node_Id;
12655 -- Node after which to insert finalization actions
12656
12657 Finalize_Always : Boolean;
9ab5d86b
RD
12658 -- If False, call to finalizer includes a test of whether the hook
12659 -- pointer is null.
b2c28399 12660
8942b30c
AC
12661 begin
12662 -- Step 0: determine where to attach finalization actions in the tree
064f4527 12663
8942b30c
AC
12664 -- Special case for Boolean EWAs: capture expression in a temporary,
12665 -- whose declaration will serve as the context around which to insert
12666 -- finalization code. The finalization thus remains local to the
12667 -- specific condition being evaluated.
064f4527 12668
8942b30c 12669 if Is_Boolean_Type (Etype (Rel_Node)) then
064f4527 12670
9ab5d86b
RD
12671 -- In this case, the finalization context is chosen so that we know
12672 -- at finalization point that the hook pointer is never null, so no
12673 -- need for a test, we can call the finalizer unconditionally, except
12674 -- in the case where the object is created in a specific branch of a
12675 -- conditional expression.
064f4527 12676
8942b30c 12677 Finalize_Always :=
c5c780e6
HK
12678 not Within_Case_Or_If_Expression (Rel_Node)
12679 and then not Nkind_In
12680 (Original_Node (Rel_Node), N_Case_Expression,
12681 N_If_Expression);
064f4527 12682
8942b30c
AC
12683 declare
12684 Loc : constant Source_Ptr := Sloc (Rel_Node);
12685 Temp : constant Entity_Id := Make_Temporary (Loc, 'E', Rel_Node);
b2c28399 12686
8942b30c
AC
12687 begin
12688 Append_To (Actions (Rel_Node),
12689 Make_Object_Declaration (Loc,
12690 Defining_Identifier => Temp,
12691 Constant_Present => True,
12692 Object_Definition =>
12693 New_Occurrence_Of (Etype (Rel_Node), Loc),
12694 Expression => Expression (Rel_Node)));
12695 Finalization_Context := Last (Actions (Rel_Node));
b2c28399 12696
8942b30c 12697 Analyze (Last (Actions (Rel_Node)));
b2c28399 12698
8942b30c
AC
12699 Set_Expression (Rel_Node, New_Occurrence_Of (Temp, Loc));
12700 Analyze (Expression (Rel_Node));
12701 end;
b2c28399 12702
8942b30c
AC
12703 else
12704 Finalize_Always := False;
12705 Finalization_Context := Hook_Context;
12706 end if;
064f4527 12707
b2c28399
AC
12708 -- Step 1: Create the access type which provides a reference to the
12709 -- transient controlled object.
12710
12711 if Is_Access_Type (Obj_Typ) then
12712 Desig_Typ := Directly_Designated_Type (Obj_Typ);
12713 else
12714 Desig_Typ := Obj_Typ;
12715 end if;
12716
12717 Desig_Typ := Base_Type (Desig_Typ);
12718
12719 -- Generate:
12720 -- Ann : access [all] <Desig_Typ>;
12721
12722 Ptr_Id := Make_Temporary (Loc, 'A');
12723
064f4527 12724 Insert_Action (Hook_Context,
b2c28399
AC
12725 Make_Full_Type_Declaration (Loc,
12726 Defining_Identifier => Ptr_Id,
12727 Type_Definition =>
12728 Make_Access_To_Object_Definition (Loc,
12729 All_Present => Ekind (Obj_Typ) = E_General_Access_Type,
e4494292 12730 Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))));
b2c28399
AC
12731
12732 -- Step 2: Create a temporary which acts as a hook to the transient
12733 -- controlled object. Generate:
12734
12735 -- Temp : Ptr_Id := null;
12736
12737 Temp_Id := Make_Temporary (Loc, 'T');
12738
064f4527 12739 Insert_Action (Hook_Context,
b2c28399
AC
12740 Make_Object_Declaration (Loc,
12741 Defining_Identifier => Temp_Id,
e4494292 12742 Object_Definition => New_Occurrence_Of (Ptr_Id, Loc)));
b2c28399
AC
12743
12744 -- Mark the temporary as created for the purposes of exporting the
12745 -- transient controlled object out of the expression_with_action or if
12746 -- expression. This signals the machinery in Build_Finalizer to treat
12747 -- this case specially.
12748
12749 Set_Status_Flag_Or_Transient_Decl (Temp_Id, Decl);
12750
12751 -- Step 3: Hook the transient object to the temporary
12752
a7d08a38
AC
12753 -- This must be inserted right after the object declaration, so that
12754 -- the assignment is executed if, and only if, the object is actually
12755 -- created (whereas the declaration of the hook pointer, and the
12756 -- finalization call, may be inserted at an outer level, and may
12757 -- remain unused for some executions, if the actual creation of
12758 -- the object is conditional).
12759
b2c28399
AC
12760 -- The use of unchecked conversion / unrestricted access is needed to
12761 -- avoid an accessibility violation. Note that the finalization code is
12762 -- structured in such a way that the "hook" is processed only when it
12763 -- points to an existing object.
12764
12765 if Is_Access_Type (Obj_Typ) then
e4494292
RD
12766 Expr :=
12767 Unchecked_Convert_To (Ptr_Id, New_Occurrence_Of (Obj_Id, Loc));
b2c28399
AC
12768 else
12769 Expr :=
12770 Make_Attribute_Reference (Loc,
e4494292 12771 Prefix => New_Occurrence_Of (Obj_Id, Loc),
b2c28399
AC
12772 Attribute_Name => Name_Unrestricted_Access);
12773 end if;
12774
12775 -- Generate:
12776 -- Temp := Ptr_Id (Obj_Id);
12777 -- <or>
12778 -- Temp := Obj_Id'Unrestricted_Access;
12779
97779c34
AC
12780 -- When the transient object is initialized by an aggregate, the hook
12781 -- must capture the object after the last component assignment takes
12782 -- place. Only then is the object fully initialized.
12783
12784 if Ekind (Obj_Id) = E_Variable
12785 and then Present (Last_Aggregate_Assignment (Obj_Id))
12786 then
12787 Temp_Ins := Last_Aggregate_Assignment (Obj_Id);
12788
12789 -- Otherwise the hook seizes the related object immediately
12790
12791 else
12792 Temp_Ins := Decl;
12793 end if;
12794
12795 Insert_After_And_Analyze (Temp_Ins,
a7d08a38 12796 Make_Assignment_Statement (Loc,
e4494292 12797 Name => New_Occurrence_Of (Temp_Id, Loc),
a7d08a38 12798 Expression => Expr));
b2c28399
AC
12799
12800 -- Step 4: Finalize the transient controlled object after the context
12801 -- has been evaluated/elaborated. Generate:
12802
12803 -- if Temp /= null then
12804 -- [Deep_]Finalize (Temp.all);
12805 -- Temp := null;
12806 -- end if;
12807
12808 -- When the node is part of a return statement, there is no need to
12809 -- insert a finalization call, as the general finalization mechanism
12810 -- (see Build_Finalizer) would take care of the transient controlled
12811 -- object on subprogram exit. Note that it would also be impossible to
12812 -- insert the finalization code after the return statement as this will
12813 -- render it unreachable.
12814
064f4527
TQ
12815 if Nkind (Finalization_Context) /= N_Simple_Return_Statement then
12816 Fin_Stmts := New_List (
12817 Make_Final_Call
12818 (Obj_Ref =>
12819 Make_Explicit_Dereference (Loc,
e4494292 12820 Prefix => New_Occurrence_Of (Temp_Id, Loc)),
064f4527 12821 Typ => Desig_Typ),
b2c28399 12822
064f4527 12823 Make_Assignment_Statement (Loc,
e4494292 12824 Name => New_Occurrence_Of (Temp_Id, Loc),
064f4527 12825 Expression => Make_Null (Loc)));
b2c28399 12826
064f4527
TQ
12827 if not Finalize_Always then
12828 Fin_Stmts := New_List (
12829 Make_Implicit_If_Statement (Decl,
12830 Condition =>
12831 Make_Op_Ne (Loc,
e4494292 12832 Left_Opnd => New_Occurrence_Of (Temp_Id, Loc),
064f4527
TQ
12833 Right_Opnd => Make_Null (Loc)),
12834 Then_Statements => Fin_Stmts));
12835 end if;
b2c28399 12836
064f4527 12837 Insert_Actions_After (Finalization_Context, Fin_Stmts);
b2c28399
AC
12838 end if;
12839 end Process_Transient_Object;
12840
70482933
RK
12841 ------------------------
12842 -- Rewrite_Comparison --
12843 ------------------------
12844
12845 procedure Rewrite_Comparison (N : Node_Id) is
c800f862
RD
12846 Warning_Generated : Boolean := False;
12847 -- Set to True if first pass with Assume_Valid generates a warning in
12848 -- which case we skip the second pass to avoid warning overloaded.
12849
12850 Result : Node_Id;
12851 -- Set to Standard_True or Standard_False
12852
d26dc4b5
AC
12853 begin
12854 if Nkind (N) = N_Type_Conversion then
12855 Rewrite_Comparison (Expression (N));
20b5d666 12856 return;
70482933 12857
d26dc4b5 12858 elsif Nkind (N) not in N_Op_Compare then
20b5d666
JM
12859 return;
12860 end if;
70482933 12861
c800f862
RD
12862 -- Now start looking at the comparison in detail. We potentially go
12863 -- through this loop twice. The first time, Assume_Valid is set False
12864 -- in the call to Compile_Time_Compare. If this call results in a
12865 -- clear result of always True or Always False, that's decisive and
12866 -- we are done. Otherwise we repeat the processing with Assume_Valid
e7e4d230 12867 -- set to True to generate additional warnings. We can skip that step
c800f862
RD
12868 -- if Constant_Condition_Warnings is False.
12869
12870 for AV in False .. True loop
12871 declare
12872 Typ : constant Entity_Id := Etype (N);
12873 Op1 : constant Node_Id := Left_Opnd (N);
12874 Op2 : constant Node_Id := Right_Opnd (N);
70482933 12875
c800f862
RD
12876 Res : constant Compare_Result :=
12877 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
12878 -- Res indicates if compare outcome can be compile time determined
f02b8bb8 12879
c800f862
RD
12880 True_Result : Boolean;
12881 False_Result : Boolean;
f02b8bb8 12882
c800f862
RD
12883 begin
12884 case N_Op_Compare (Nkind (N)) is
d26dc4b5
AC
12885 when N_Op_Eq =>
12886 True_Result := Res = EQ;
12887 False_Result := Res = LT or else Res = GT or else Res = NE;
12888
12889 when N_Op_Ge =>
12890 True_Result := Res in Compare_GE;
12891 False_Result := Res = LT;
12892
12893 if Res = LE
12894 and then Constant_Condition_Warnings
12895 and then Comes_From_Source (Original_Node (N))
12896 and then Nkind (Original_Node (N)) = N_Op_Ge
12897 and then not In_Instance
d26dc4b5 12898 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 12899 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 12900 then
ed2233dc 12901 Error_Msg_N
324ac540
AC
12902 ("can never be greater than, could replace by ""'=""?c?",
12903 N);
c800f862 12904 Warning_Generated := True;
d26dc4b5 12905 end if;
70482933 12906
d26dc4b5
AC
12907 when N_Op_Gt =>
12908 True_Result := Res = GT;
12909 False_Result := Res in Compare_LE;
12910
12911 when N_Op_Lt =>
12912 True_Result := Res = LT;
12913 False_Result := Res in Compare_GE;
12914
12915 when N_Op_Le =>
12916 True_Result := Res in Compare_LE;
12917 False_Result := Res = GT;
12918
12919 if Res = GE
12920 and then Constant_Condition_Warnings
12921 and then Comes_From_Source (Original_Node (N))
12922 and then Nkind (Original_Node (N)) = N_Op_Le
12923 and then not In_Instance
d26dc4b5 12924 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 12925 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 12926 then
ed2233dc 12927 Error_Msg_N
324ac540 12928 ("can never be less than, could replace by ""'=""?c?", N);
c800f862 12929 Warning_Generated := True;
d26dc4b5 12930 end if;
70482933 12931
d26dc4b5
AC
12932 when N_Op_Ne =>
12933 True_Result := Res = NE or else Res = GT or else Res = LT;
12934 False_Result := Res = EQ;
c800f862 12935 end case;
d26dc4b5 12936
c800f862
RD
12937 -- If this is the first iteration, then we actually convert the
12938 -- comparison into True or False, if the result is certain.
d26dc4b5 12939
c800f862
RD
12940 if AV = False then
12941 if True_Result or False_Result then
21791d97 12942 Result := Boolean_Literals (True_Result);
c800f862
RD
12943 Rewrite (N,
12944 Convert_To (Typ,
12945 New_Occurrence_Of (Result, Sloc (N))));
12946 Analyze_And_Resolve (N, Typ);
12947 Warn_On_Known_Condition (N);
12948 return;
12949 end if;
12950
12951 -- If this is the second iteration (AV = True), and the original
e7e4d230
AC
12952 -- node comes from source and we are not in an instance, then give
12953 -- a warning if we know result would be True or False. Note: we
12954 -- know Constant_Condition_Warnings is set if we get here.
c800f862
RD
12955
12956 elsif Comes_From_Source (Original_Node (N))
12957 and then not In_Instance
12958 then
12959 if True_Result then
ed2233dc 12960 Error_Msg_N
324ac540 12961 ("condition can only be False if invalid values present??",
c800f862
RD
12962 N);
12963 elsif False_Result then
ed2233dc 12964 Error_Msg_N
324ac540 12965 ("condition can only be True if invalid values present??",
c800f862
RD
12966 N);
12967 end if;
12968 end if;
12969 end;
12970
12971 -- Skip second iteration if not warning on constant conditions or
e7e4d230
AC
12972 -- if the first iteration already generated a warning of some kind or
12973 -- if we are in any case assuming all values are valid (so that the
12974 -- first iteration took care of the valid case).
c800f862
RD
12975
12976 exit when not Constant_Condition_Warnings;
12977 exit when Warning_Generated;
12978 exit when Assume_No_Invalid_Values;
12979 end loop;
70482933
RK
12980 end Rewrite_Comparison;
12981
fbf5a39b
AC
12982 ----------------------------
12983 -- Safe_In_Place_Array_Op --
12984 ----------------------------
12985
12986 function Safe_In_Place_Array_Op
2e071734
AC
12987 (Lhs : Node_Id;
12988 Op1 : Node_Id;
12989 Op2 : Node_Id) return Boolean
fbf5a39b
AC
12990 is
12991 Target : Entity_Id;
12992
12993 function Is_Safe_Operand (Op : Node_Id) return Boolean;
12994 -- Operand is safe if it cannot overlap part of the target of the
12995 -- operation. If the operand and the target are identical, the operand
12996 -- is safe. The operand can be empty in the case of negation.
12997
12998 function Is_Unaliased (N : Node_Id) return Boolean;
5e1c00fa 12999 -- Check that N is a stand-alone entity
fbf5a39b
AC
13000
13001 ------------------
13002 -- Is_Unaliased --
13003 ------------------
13004
13005 function Is_Unaliased (N : Node_Id) return Boolean is
13006 begin
13007 return
13008 Is_Entity_Name (N)
13009 and then No (Address_Clause (Entity (N)))
13010 and then No (Renamed_Object (Entity (N)));
13011 end Is_Unaliased;
13012
13013 ---------------------
13014 -- Is_Safe_Operand --
13015 ---------------------
13016
13017 function Is_Safe_Operand (Op : Node_Id) return Boolean is
13018 begin
13019 if No (Op) then
13020 return True;
13021
13022 elsif Is_Entity_Name (Op) then
13023 return Is_Unaliased (Op);
13024
303b4d58 13025 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
fbf5a39b
AC
13026 return Is_Unaliased (Prefix (Op));
13027
13028 elsif Nkind (Op) = N_Slice then
13029 return
13030 Is_Unaliased (Prefix (Op))
13031 and then Entity (Prefix (Op)) /= Target;
13032
13033 elsif Nkind (Op) = N_Op_Not then
13034 return Is_Safe_Operand (Right_Opnd (Op));
13035
13036 else
13037 return False;
13038 end if;
13039 end Is_Safe_Operand;
13040
b6b5cca8 13041 -- Start of processing for Safe_In_Place_Array_Op
fbf5a39b
AC
13042
13043 begin
685094bf
RD
13044 -- Skip this processing if the component size is different from system
13045 -- storage unit (since at least for NOT this would cause problems).
fbf5a39b 13046
eaa826f8 13047 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
fbf5a39b
AC
13048 return False;
13049
26bff3d9 13050 -- Cannot do in place stuff on VM_Target since cannot pass addresses
fbf5a39b 13051
26bff3d9 13052 elsif VM_Target /= No_VM then
fbf5a39b
AC
13053 return False;
13054
13055 -- Cannot do in place stuff if non-standard Boolean representation
13056
eaa826f8 13057 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
fbf5a39b
AC
13058 return False;
13059
13060 elsif not Is_Unaliased (Lhs) then
13061 return False;
e7e4d230 13062
fbf5a39b
AC
13063 else
13064 Target := Entity (Lhs);
e7e4d230 13065 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
fbf5a39b
AC
13066 end if;
13067 end Safe_In_Place_Array_Op;
13068
70482933
RK
13069 -----------------------
13070 -- Tagged_Membership --
13071 -----------------------
13072
685094bf
RD
13073 -- There are two different cases to consider depending on whether the right
13074 -- operand is a class-wide type or not. If not we just compare the actual
13075 -- tag of the left expr to the target type tag:
70482933
RK
13076 --
13077 -- Left_Expr.Tag = Right_Type'Tag;
13078 --
685094bf
RD
13079 -- If it is a class-wide type we use the RT function CW_Membership which is
13080 -- usually implemented by looking in the ancestor tables contained in the
13081 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
70482933 13082
0669bebe
GB
13083 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13084 -- function IW_Membership which is usually implemented by looking in the
13085 -- table of abstract interface types plus the ancestor table contained in
13086 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13087
82878151
AC
13088 procedure Tagged_Membership
13089 (N : Node_Id;
13090 SCIL_Node : out Node_Id;
13091 Result : out Node_Id)
13092 is
70482933
RK
13093 Left : constant Node_Id := Left_Opnd (N);
13094 Right : constant Node_Id := Right_Opnd (N);
13095 Loc : constant Source_Ptr := Sloc (N);
13096
38171f43 13097 Full_R_Typ : Entity_Id;
70482933 13098 Left_Type : Entity_Id;
82878151 13099 New_Node : Node_Id;
70482933
RK
13100 Right_Type : Entity_Id;
13101 Obj_Tag : Node_Id;
13102
13103 begin
82878151
AC
13104 SCIL_Node := Empty;
13105
852dba80
AC
13106 -- Handle entities from the limited view
13107
13108 Left_Type := Available_View (Etype (Left));
13109 Right_Type := Available_View (Etype (Right));
70482933 13110
6cce2156
GD
13111 -- In the case where the type is an access type, the test is applied
13112 -- using the designated types (needed in Ada 2012 for implicit anonymous
13113 -- access conversions, for AI05-0149).
13114
13115 if Is_Access_Type (Right_Type) then
13116 Left_Type := Designated_Type (Left_Type);
13117 Right_Type := Designated_Type (Right_Type);
13118 end if;
13119
70482933
RK
13120 if Is_Class_Wide_Type (Left_Type) then
13121 Left_Type := Root_Type (Left_Type);
13122 end if;
13123
38171f43
AC
13124 if Is_Class_Wide_Type (Right_Type) then
13125 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
13126 else
13127 Full_R_Typ := Underlying_Type (Right_Type);
13128 end if;
13129
70482933
RK
13130 Obj_Tag :=
13131 Make_Selected_Component (Loc,
13132 Prefix => Relocate_Node (Left),
a9d8907c 13133 Selector_Name =>
e4494292 13134 New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
70482933
RK
13135
13136 if Is_Class_Wide_Type (Right_Type) then
758c442c 13137
0669bebe
GB
13138 -- No need to issue a run-time check if we statically know that the
13139 -- result of this membership test is always true. For example,
13140 -- considering the following declarations:
13141
13142 -- type Iface is interface;
13143 -- type T is tagged null record;
13144 -- type DT is new T and Iface with null record;
13145
13146 -- Obj1 : T;
13147 -- Obj2 : DT;
13148
13149 -- These membership tests are always true:
13150
13151 -- Obj1 in T'Class
13152 -- Obj2 in T'Class;
13153 -- Obj2 in Iface'Class;
13154
13155 -- We do not need to handle cases where the membership is illegal.
13156 -- For example:
13157
13158 -- Obj1 in DT'Class; -- Compile time error
13159 -- Obj1 in Iface'Class; -- Compile time error
13160
13161 if not Is_Class_Wide_Type (Left_Type)
4ac2477e
JM
13162 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
13163 Use_Full_View => True)
533369aa
AC
13164 or else (Is_Interface (Etype (Right_Type))
13165 and then Interface_Present_In_Ancestor
761f7dcb
AC
13166 (Typ => Left_Type,
13167 Iface => Etype (Right_Type))))
0669bebe 13168 then
e4494292 13169 Result := New_Occurrence_Of (Standard_True, Loc);
82878151 13170 return;
0669bebe
GB
13171 end if;
13172
758c442c
GD
13173 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13174
630d30e9
RD
13175 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
13176
0669bebe 13177 -- Support to: "Iface_CW_Typ in Typ'Class"
630d30e9
RD
13178
13179 or else Is_Interface (Left_Type)
13180 then
dfd99a80
TQ
13181 -- Issue error if IW_Membership operation not available in a
13182 -- configurable run time setting.
13183
13184 if not RTE_Available (RE_IW_Membership) then
b4592168
GD
13185 Error_Msg_CRT
13186 ("dynamic membership test on interface types", N);
82878151
AC
13187 Result := Empty;
13188 return;
dfd99a80
TQ
13189 end if;
13190
82878151 13191 Result :=
758c442c
GD
13192 Make_Function_Call (Loc,
13193 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
13194 Parameter_Associations => New_List (
13195 Make_Attribute_Reference (Loc,
13196 Prefix => Obj_Tag,
13197 Attribute_Name => Name_Address),
e4494292 13198 New_Occurrence_Of (
38171f43 13199 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
758c442c
GD
13200 Loc)));
13201
13202 -- Ada 95: Normal case
13203
13204 else
82878151
AC
13205 Build_CW_Membership (Loc,
13206 Obj_Tag_Node => Obj_Tag,
13207 Typ_Tag_Node =>
e4494292 13208 New_Occurrence_Of (
38171f43 13209 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
82878151
AC
13210 Related_Nod => N,
13211 New_Node => New_Node);
13212
13213 -- Generate the SCIL node for this class-wide membership test.
13214 -- Done here because the previous call to Build_CW_Membership
13215 -- relocates Obj_Tag.
13216
13217 if Generate_SCIL then
13218 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
13219 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
13220 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
13221 end if;
13222
13223 Result := New_Node;
758c442c
GD
13224 end if;
13225
0669bebe
GB
13226 -- Right_Type is not a class-wide type
13227
70482933 13228 else
0669bebe
GB
13229 -- No need to check the tag of the object if Right_Typ is abstract
13230
13231 if Is_Abstract_Type (Right_Type) then
e4494292 13232 Result := New_Occurrence_Of (Standard_False, Loc);
0669bebe
GB
13233
13234 else
82878151 13235 Result :=
0669bebe
GB
13236 Make_Op_Eq (Loc,
13237 Left_Opnd => Obj_Tag,
13238 Right_Opnd =>
e4494292 13239 New_Occurrence_Of
38171f43 13240 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
0669bebe 13241 end if;
70482933 13242 end if;
70482933
RK
13243 end Tagged_Membership;
13244
13245 ------------------------------
13246 -- Unary_Op_Validity_Checks --
13247 ------------------------------
13248
13249 procedure Unary_Op_Validity_Checks (N : Node_Id) is
13250 begin
13251 if Validity_Checks_On and Validity_Check_Operands then
13252 Ensure_Valid (Right_Opnd (N));
13253 end if;
13254 end Unary_Op_Validity_Checks;
13255
13256end Exp_Ch4;