]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_ch4.adb
a-coinho.adb, [...]: Fix parameter mode of Update_Element.
[thirdparty/gcc.git] / gcc / ada / exp_ch4.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 4 --
59262ebb 6-- --
70482933
RK
7-- B o d y --
8-- --
da574a86 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
bded454f 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Aggr; use Exp_Aggr;
0669bebe 33with Exp_Atag; use Exp_Atag;
6cce2156 34with Exp_Ch2; use Exp_Ch2;
70482933 35with Exp_Ch3; use Exp_Ch3;
20b5d666 36with Exp_Ch6; use Exp_Ch6;
70482933
RK
37with Exp_Ch7; use Exp_Ch7;
38with Exp_Ch9; use Exp_Ch9;
20b5d666 39with Exp_Disp; use Exp_Disp;
70482933 40with Exp_Fixd; use Exp_Fixd;
437f8c1e 41with Exp_Intr; use Exp_Intr;
70482933
RK
42with Exp_Pakd; use Exp_Pakd;
43with Exp_Tss; use Exp_Tss;
44with Exp_Util; use Exp_Util;
45with Exp_VFpt; use Exp_VFpt;
f02b8bb8 46with Freeze; use Freeze;
70482933 47with Inline; use Inline;
df3e68b1 48with Lib; use Lib;
26bff3d9 49with Namet; use Namet;
70482933
RK
50with Nlists; use Nlists;
51with Nmake; use Nmake;
52with Opt; use Opt;
25adc5fb 53with Par_SCO; use Par_SCO;
0669bebe
GB
54with Restrict; use Restrict;
55with Rident; use Rident;
70482933
RK
56with Rtsfind; use Rtsfind;
57with Sem; use Sem;
a4100e55 58with Sem_Aux; use Sem_Aux;
70482933 59with Sem_Cat; use Sem_Cat;
5d09245e 60with Sem_Ch3; use Sem_Ch3;
11fa950b 61with Sem_Ch8; use Sem_Ch8;
70482933
RK
62with Sem_Ch13; use Sem_Ch13;
63with Sem_Eval; use Sem_Eval;
64with Sem_Res; use Sem_Res;
65with Sem_Type; use Sem_Type;
66with Sem_Util; use Sem_Util;
07fc65c4 67with Sem_Warn; use Sem_Warn;
70482933 68with Sinfo; use Sinfo;
70482933
RK
69with Snames; use Snames;
70with Stand; use Stand;
7665e4bd 71with SCIL_LL; use SCIL_LL;
07fc65c4 72with Targparm; use Targparm;
70482933
RK
73with Tbuild; use Tbuild;
74with Ttypes; use Ttypes;
75with Uintp; use Uintp;
76with Urealp; use Urealp;
77with Validsw; use Validsw;
78
79package body Exp_Ch4 is
80
15ce9ca2
AC
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
70482933
RK
84
85 procedure Binary_Op_Validity_Checks (N : Node_Id);
86 pragma Inline (Binary_Op_Validity_Checks);
87 -- Performs validity checks for a binary operator
88
fbf5a39b
AC
89 procedure Build_Boolean_Array_Proc_Call
90 (N : Node_Id;
91 Op1 : Node_Id;
92 Op2 : Node_Id);
303b4d58 93 -- If a boolean array assignment can be done in place, build call to
fbf5a39b
AC
94 -- corresponding library procedure.
95
11fa950b
AC
96 function Current_Anonymous_Master return Entity_Id;
97 -- Return the entity of the heterogeneous finalization master belonging to
98 -- the current unit (either function, package or procedure). This master
99 -- services all anonymous access-to-controlled types. If the current unit
100 -- does not have such master, create one.
df3e68b1 101
26bff3d9
JM
102 procedure Displace_Allocator_Pointer (N : Node_Id);
103 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
104 -- Expand_Allocator_Expression. Allocating class-wide interface objects
105 -- this routine displaces the pointer to the allocated object to reference
106 -- the component referencing the corresponding secondary dispatch table.
107
fbf5a39b
AC
108 procedure Expand_Allocator_Expression (N : Node_Id);
109 -- Subsidiary to Expand_N_Allocator, for the case when the expression
110 -- is a qualified expression or an aggregate.
111
70482933
RK
112 procedure Expand_Array_Comparison (N : Node_Id);
113 -- This routine handles expansion of the comparison operators (N_Op_Lt,
114 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
115 -- code for these operators is similar, differing only in the details of
fbf5a39b
AC
116 -- the actual comparison call that is made. Special processing (call a
117 -- run-time routine)
70482933
RK
118
119 function Expand_Array_Equality
120 (Nod : Node_Id;
70482933
RK
121 Lhs : Node_Id;
122 Rhs : Node_Id;
0da2c8ac
AC
123 Bodies : List_Id;
124 Typ : Entity_Id) return Node_Id;
70482933 125 -- Expand an array equality into a call to a function implementing this
685094bf
RD
126 -- equality, and a call to it. Loc is the location for the generated nodes.
127 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
128 -- on which to attach bodies of local functions that are created in the
129 -- process. It is the responsibility of the caller to insert those bodies
130 -- at the right place. Nod provides the Sloc value for the generated code.
131 -- Normally the types used for the generated equality routine are taken
132 -- from Lhs and Rhs. However, in some situations of generated code, the
133 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
134 -- the type to be used for the formal parameters.
70482933
RK
135
136 procedure Expand_Boolean_Operator (N : Node_Id);
685094bf
RD
137 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
138 -- case of array type arguments.
70482933 139
5875f8d6
AC
140 procedure Expand_Short_Circuit_Operator (N : Node_Id);
141 -- Common expansion processing for short-circuit boolean operators
142
456cbfa5 143 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
5707e389
AC
144 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
145 -- where we allow comparison of "out of range" values.
456cbfa5 146
70482933
RK
147 function Expand_Composite_Equality
148 (Nod : Node_Id;
149 Typ : Entity_Id;
150 Lhs : Node_Id;
151 Rhs : Node_Id;
2e071734 152 Bodies : List_Id) return Node_Id;
685094bf
RD
153 -- Local recursive function used to expand equality for nested composite
154 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
155 -- to attach bodies of local functions that are created in the process.
3058f181 156 -- It is the responsibility of the caller to insert those bodies at the
685094bf
RD
157 -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
158 -- are the left and right sides for the comparison, and Typ is the type of
3058f181 159 -- the objects to compare.
70482933 160
fdac1f80
AC
161 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
162 -- Routine to expand concatenation of a sequence of two or more operands
163 -- (in the list Operands) and replace node Cnode with the result of the
164 -- concatenation. The operands can be of any appropriate type, and can
165 -- include both arrays and singleton elements.
70482933 166
f6194278 167 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
5707e389
AC
168 -- N is an N_In membership test mode, with the overflow check mode set to
169 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
170 -- integer type. This is a case where top level processing is required to
171 -- handle overflow checks in subtrees.
f6194278 172
70482933 173 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
685094bf
RD
174 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
175 -- fixed. We do not have such a type at runtime, so the purpose of this
176 -- routine is to find the real type by looking up the tree. We also
177 -- determine if the operation must be rounded.
70482933 178
5d09245e
AC
179 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
180 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
181 -- discriminants if it has a constrained nominal type, unless the object
182 -- is a component of an enclosing Unchecked_Union object that is subject
183 -- to a per-object constraint and the enclosing object lacks inferable
184 -- discriminants.
185 --
186 -- An expression of an Unchecked_Union type has inferable discriminants
187 -- if it is either a name of an object with inferable discriminants or a
188 -- qualified expression whose subtype mark denotes a constrained subtype.
189
70482933 190 procedure Insert_Dereference_Action (N : Node_Id);
e6f69614
AC
191 -- N is an expression whose type is an access. When the type of the
192 -- associated storage pool is derived from Checked_Pool, generate a
193 -- call to the 'Dereference' primitive operation.
70482933
RK
194
195 function Make_Array_Comparison_Op
2e071734
AC
196 (Typ : Entity_Id;
197 Nod : Node_Id) return Node_Id;
685094bf
RD
198 -- Comparisons between arrays are expanded in line. This function produces
199 -- the body of the implementation of (a > b), where a and b are one-
200 -- dimensional arrays of some discrete type. The original node is then
201 -- expanded into the appropriate call to this function. Nod provides the
202 -- Sloc value for the generated code.
70482933
RK
203
204 function Make_Boolean_Array_Op
2e071734
AC
205 (Typ : Entity_Id;
206 N : Node_Id) return Node_Id;
685094bf
RD
207 -- Boolean operations on boolean arrays are expanded in line. This function
208 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
209 -- b). It is used only the normal case and not the packed case. The type
210 -- involved, Typ, is the Boolean array type, and the logical operations in
211 -- the body are simple boolean operations. Note that Typ is always a
212 -- constrained type (the caller has ensured this by using
213 -- Convert_To_Actual_Subtype if necessary).
70482933 214
b6b5cca8 215 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
a7f1b24f
RD
216 -- For signed arithmetic operations when the current overflow mode is
217 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
218 -- as the first thing we do. We then return. We count on the recursive
219 -- apparatus for overflow checks to call us back with an equivalent
220 -- operation that is in CHECKED mode, avoiding a recursive entry into this
221 -- routine, and that is when we will proceed with the expansion of the
222 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
223 -- these optimizations without first making this check, since there may be
224 -- operands further down the tree that are relying on the recursive calls
225 -- triggered by the top level nodes to properly process overflow checking
226 -- and remaining expansion on these nodes. Note that this call back may be
227 -- skipped if the operation is done in Bignum mode but that's fine, since
228 -- the Bignum call takes care of everything.
b6b5cca8 229
0580d807
AC
230 procedure Optimize_Length_Comparison (N : Node_Id);
231 -- Given an expression, if it is of the form X'Length op N (or the other
232 -- way round), where N is known at compile time to be 0 or 1, and X is a
233 -- simple entity, and op is a comparison operator, optimizes it into a
234 -- comparison of First and Last.
235
b2c28399
AC
236 procedure Process_Transient_Object
237 (Decl : Node_Id;
238 Rel_Node : Node_Id);
239 -- Subsidiary routine to the expansion of expression_with_actions and if
240 -- expressions. Generate all the necessary code to finalize a transient
241 -- controlled object when the enclosing context is elaborated or evaluated.
242 -- Decl denotes the declaration of the transient controlled object which is
243 -- usually the result of a controlled function call. Rel_Node denotes the
244 -- context, either an expression_with_actions or an if expression.
245
70482933 246 procedure Rewrite_Comparison (N : Node_Id);
20b5d666 247 -- If N is the node for a comparison whose outcome can be determined at
d26dc4b5
AC
248 -- compile time, then the node N can be rewritten with True or False. If
249 -- the outcome cannot be determined at compile time, the call has no
250 -- effect. If N is a type conversion, then this processing is applied to
251 -- its expression. If N is neither comparison nor a type conversion, the
252 -- call has no effect.
70482933 253
82878151
AC
254 procedure Tagged_Membership
255 (N : Node_Id;
256 SCIL_Node : out Node_Id;
257 Result : out Node_Id);
70482933
RK
258 -- Construct the expression corresponding to the tagged membership test.
259 -- Deals with a second operand being (or not) a class-wide type.
260
fbf5a39b 261 function Safe_In_Place_Array_Op
2e071734
AC
262 (Lhs : Node_Id;
263 Op1 : Node_Id;
264 Op2 : Node_Id) return Boolean;
685094bf
RD
265 -- In the context of an assignment, where the right-hand side is a boolean
266 -- operation on arrays, check whether operation can be performed in place.
fbf5a39b 267
70482933
RK
268 procedure Unary_Op_Validity_Checks (N : Node_Id);
269 pragma Inline (Unary_Op_Validity_Checks);
270 -- Performs validity checks for a unary operator
271
272 -------------------------------
273 -- Binary_Op_Validity_Checks --
274 -------------------------------
275
276 procedure Binary_Op_Validity_Checks (N : Node_Id) is
277 begin
278 if Validity_Checks_On and Validity_Check_Operands then
279 Ensure_Valid (Left_Opnd (N));
280 Ensure_Valid (Right_Opnd (N));
281 end if;
282 end Binary_Op_Validity_Checks;
283
fbf5a39b
AC
284 ------------------------------------
285 -- Build_Boolean_Array_Proc_Call --
286 ------------------------------------
287
288 procedure Build_Boolean_Array_Proc_Call
289 (N : Node_Id;
290 Op1 : Node_Id;
291 Op2 : Node_Id)
292 is
293 Loc : constant Source_Ptr := Sloc (N);
294 Kind : constant Node_Kind := Nkind (Expression (N));
295 Target : constant Node_Id :=
296 Make_Attribute_Reference (Loc,
297 Prefix => Name (N),
298 Attribute_Name => Name_Address);
299
bed8af19 300 Arg1 : Node_Id := Op1;
fbf5a39b
AC
301 Arg2 : Node_Id := Op2;
302 Call_Node : Node_Id;
303 Proc_Name : Entity_Id;
304
305 begin
306 if Kind = N_Op_Not then
307 if Nkind (Op1) in N_Binary_Op then
308
5e1c00fa 309 -- Use negated version of the binary operators
fbf5a39b
AC
310
311 if Nkind (Op1) = N_Op_And then
312 Proc_Name := RTE (RE_Vector_Nand);
313
314 elsif Nkind (Op1) = N_Op_Or then
315 Proc_Name := RTE (RE_Vector_Nor);
316
317 else pragma Assert (Nkind (Op1) = N_Op_Xor);
318 Proc_Name := RTE (RE_Vector_Xor);
319 end if;
320
321 Call_Node :=
322 Make_Procedure_Call_Statement (Loc,
323 Name => New_Occurrence_Of (Proc_Name, Loc),
324
325 Parameter_Associations => New_List (
326 Target,
327 Make_Attribute_Reference (Loc,
328 Prefix => Left_Opnd (Op1),
329 Attribute_Name => Name_Address),
330
331 Make_Attribute_Reference (Loc,
332 Prefix => Right_Opnd (Op1),
333 Attribute_Name => Name_Address),
334
335 Make_Attribute_Reference (Loc,
336 Prefix => Left_Opnd (Op1),
337 Attribute_Name => Name_Length)));
338
339 else
340 Proc_Name := RTE (RE_Vector_Not);
341
342 Call_Node :=
343 Make_Procedure_Call_Statement (Loc,
344 Name => New_Occurrence_Of (Proc_Name, Loc),
345 Parameter_Associations => New_List (
346 Target,
347
348 Make_Attribute_Reference (Loc,
349 Prefix => Op1,
350 Attribute_Name => Name_Address),
351
352 Make_Attribute_Reference (Loc,
353 Prefix => Op1,
354 Attribute_Name => Name_Length)));
355 end if;
356
357 else
358 -- We use the following equivalences:
359
360 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
361 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
362 -- (not X) xor (not Y) = X xor Y
363 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
364
365 if Nkind (Op1) = N_Op_Not then
bed8af19
AC
366 Arg1 := Right_Opnd (Op1);
367 Arg2 := Right_Opnd (Op2);
533369aa 368
fbf5a39b
AC
369 if Kind = N_Op_And then
370 Proc_Name := RTE (RE_Vector_Nor);
fbf5a39b
AC
371 elsif Kind = N_Op_Or then
372 Proc_Name := RTE (RE_Vector_Nand);
fbf5a39b
AC
373 else
374 Proc_Name := RTE (RE_Vector_Xor);
375 end if;
376
377 else
378 if Kind = N_Op_And then
379 Proc_Name := RTE (RE_Vector_And);
fbf5a39b
AC
380 elsif Kind = N_Op_Or then
381 Proc_Name := RTE (RE_Vector_Or);
fbf5a39b
AC
382 elsif Nkind (Op2) = N_Op_Not then
383 Proc_Name := RTE (RE_Vector_Nxor);
384 Arg2 := Right_Opnd (Op2);
fbf5a39b
AC
385 else
386 Proc_Name := RTE (RE_Vector_Xor);
387 end if;
388 end if;
389
390 Call_Node :=
391 Make_Procedure_Call_Statement (Loc,
392 Name => New_Occurrence_Of (Proc_Name, Loc),
393 Parameter_Associations => New_List (
394 Target,
955871d3
AC
395 Make_Attribute_Reference (Loc,
396 Prefix => Arg1,
397 Attribute_Name => Name_Address),
398 Make_Attribute_Reference (Loc,
399 Prefix => Arg2,
400 Attribute_Name => Name_Address),
401 Make_Attribute_Reference (Loc,
a8ef12e5 402 Prefix => Arg1,
955871d3 403 Attribute_Name => Name_Length)));
fbf5a39b
AC
404 end if;
405
406 Rewrite (N, Call_Node);
407 Analyze (N);
408
409 exception
410 when RE_Not_Available =>
411 return;
412 end Build_Boolean_Array_Proc_Call;
413
11fa950b
AC
414 ------------------------------
415 -- Current_Anonymous_Master --
416 ------------------------------
df3e68b1 417
11fa950b 418 function Current_Anonymous_Master return Entity_Id is
2c17ca0a
AC
419 Decls : List_Id;
420 Loc : Source_Ptr;
421 Subp_Body : Node_Id;
422 Unit_Decl : Node_Id;
423 Unit_Id : Entity_Id;
df3e68b1 424
ca5af305 425 begin
11fa950b
AC
426 Unit_Id := Cunit_Entity (Current_Sem_Unit);
427
428 -- Find the entity of the current unit
429
430 if Ekind (Unit_Id) = E_Subprogram_Body then
431
432 -- When processing subprogram bodies, the proper scope is always that
433 -- of the spec.
434
435 Subp_Body := Unit_Id;
436 while Present (Subp_Body)
437 and then Nkind (Subp_Body) /= N_Subprogram_Body
438 loop
439 Subp_Body := Parent (Subp_Body);
440 end loop;
441
442 Unit_Id := Corresponding_Spec (Subp_Body);
443 end if;
444
445 Loc := Sloc (Unit_Id);
446 Unit_Decl := Unit (Cunit (Current_Sem_Unit));
447
448 -- Find the declarations list of the current unit
449
450 if Nkind (Unit_Decl) = N_Package_Declaration then
451 Unit_Decl := Specification (Unit_Decl);
452 Decls := Visible_Declarations (Unit_Decl);
df3e68b1 453
ca5af305 454 if No (Decls) then
11fa950b
AC
455 Decls := New_List (Make_Null_Statement (Loc));
456 Set_Visible_Declarations (Unit_Decl, Decls);
df3e68b1 457
ca5af305 458 elsif Is_Empty_List (Decls) then
11fa950b 459 Append_To (Decls, Make_Null_Statement (Loc));
df3e68b1
HK
460 end if;
461
ca5af305 462 else
11fa950b 463 Decls := Declarations (Unit_Decl);
f553e7bc 464
ca5af305 465 if No (Decls) then
11fa950b
AC
466 Decls := New_List (Make_Null_Statement (Loc));
467 Set_Declarations (Unit_Decl, Decls);
df3e68b1 468
ca5af305 469 elsif Is_Empty_List (Decls) then
11fa950b 470 Append_To (Decls, Make_Null_Statement (Loc));
ca5af305 471 end if;
df3e68b1
HK
472 end if;
473
11fa950b
AC
474 -- The current unit has an existing anonymous master, traverse its
475 -- declarations and locate the entity.
df3e68b1 476
11fa950b 477 if Has_Anonymous_Master (Unit_Id) then
2c17ca0a
AC
478 declare
479 Decl : Node_Id;
480 Fin_Mas_Id : Entity_Id;
df3e68b1 481
2c17ca0a
AC
482 begin
483 Decl := First (Decls);
484 while Present (Decl) loop
df3e68b1 485
2c17ca0a
AC
486 -- Look for the first variable in the declarations whole type
487 -- is Finalization_Master.
df3e68b1 488
2c17ca0a
AC
489 if Nkind (Decl) = N_Object_Declaration then
490 Fin_Mas_Id := Defining_Identifier (Decl);
491
492 if Ekind (Fin_Mas_Id) = E_Variable
493 and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
494 then
495 return Fin_Mas_Id;
496 end if;
497 end if;
498
499 Next (Decl);
500 end loop;
501
502 -- The master was not found even though the unit was labeled as
503 -- having one.
df3e68b1 504
2c17ca0a
AC
505 raise Program_Error;
506 end;
11fa950b
AC
507
508 -- Create a new anonymous master
509
510 else
511 declare
512 First_Decl : constant Node_Id := First (Decls);
513 Action : Node_Id;
2c17ca0a 514 Fin_Mas_Id : Entity_Id;
df3e68b1 515
11fa950b
AC
516 begin
517 -- Since the master and its associated initialization is inserted
518 -- at top level, use the scope of the unit when analyzing.
519
520 Push_Scope (Unit_Id);
521
522 -- Create the finalization master
523
524 Fin_Mas_Id :=
525 Make_Defining_Identifier (Loc,
526 Chars => New_External_Name (Chars (Unit_Id), "AM"));
527
528 -- Generate:
529 -- <Fin_Mas_Id> : Finalization_Master;
530
531 Action :=
532 Make_Object_Declaration (Loc,
533 Defining_Identifier => Fin_Mas_Id,
534 Object_Definition =>
e4494292 535 New_Occurrence_Of (RTE (RE_Finalization_Master), Loc));
11fa950b
AC
536
537 Insert_Before_And_Analyze (First_Decl, Action);
538
539 -- Mark the unit to prevent the generation of multiple masters
540
541 Set_Has_Anonymous_Master (Unit_Id);
542
543 -- Do not set the base pool and mode of operation on .NET/JVM
544 -- since those targets do not support pools and all VM masters
545 -- are heterogeneous by default.
546
547 if VM_Target = No_VM then
548
549 -- Generate:
550 -- Set_Base_Pool
551 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
552
553 Action :=
554 Make_Procedure_Call_Statement (Loc,
555 Name =>
e4494292 556 New_Occurrence_Of (RTE (RE_Set_Base_Pool), Loc),
11fa950b
AC
557
558 Parameter_Associations => New_List (
e4494292 559 New_Occurrence_Of (Fin_Mas_Id, Loc),
11fa950b
AC
560 Make_Attribute_Reference (Loc,
561 Prefix =>
e4494292 562 New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
11fa950b
AC
563 Attribute_Name => Name_Unrestricted_Access)));
564
565 Insert_Before_And_Analyze (First_Decl, Action);
566
567 -- Generate:
568 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
569
570 Action :=
571 Make_Procedure_Call_Statement (Loc,
572 Name =>
e4494292 573 New_Occurrence_Of (RTE (RE_Set_Is_Heterogeneous), Loc),
11fa950b 574 Parameter_Associations => New_List (
e4494292 575 New_Occurrence_Of (Fin_Mas_Id, Loc)));
11fa950b
AC
576
577 Insert_Before_And_Analyze (First_Decl, Action);
578 end if;
579
580 -- Restore the original state of the scope stack
581
582 Pop_Scope;
583
584 return Fin_Mas_Id;
585 end;
586 end if;
587 end Current_Anonymous_Master;
df3e68b1 588
26bff3d9
JM
589 --------------------------------
590 -- Displace_Allocator_Pointer --
591 --------------------------------
592
593 procedure Displace_Allocator_Pointer (N : Node_Id) is
594 Loc : constant Source_Ptr := Sloc (N);
595 Orig_Node : constant Node_Id := Original_Node (N);
596 Dtyp : Entity_Id;
597 Etyp : Entity_Id;
598 PtrT : Entity_Id;
599
600 begin
303b4d58
AC
601 -- Do nothing in case of VM targets: the virtual machine will handle
602 -- interfaces directly.
603
1f110335 604 if not Tagged_Type_Expansion then
303b4d58
AC
605 return;
606 end if;
607
26bff3d9
JM
608 pragma Assert (Nkind (N) = N_Identifier
609 and then Nkind (Orig_Node) = N_Allocator);
610
611 PtrT := Etype (Orig_Node);
d6a24cdb 612 Dtyp := Available_View (Designated_Type (PtrT));
26bff3d9
JM
613 Etyp := Etype (Expression (Orig_Node));
614
533369aa
AC
615 if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
616
26bff3d9
JM
617 -- If the type of the allocator expression is not an interface type
618 -- we can generate code to reference the record component containing
619 -- the pointer to the secondary dispatch table.
620
621 if not Is_Interface (Etyp) then
622 declare
623 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
624
625 begin
626 -- 1) Get access to the allocated object
627
628 Rewrite (N,
5972791c 629 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
26bff3d9
JM
630 Set_Etype (N, Etyp);
631 Set_Analyzed (N);
632
633 -- 2) Add the conversion to displace the pointer to reference
634 -- the secondary dispatch table.
635
636 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
637 Analyze_And_Resolve (N, Dtyp);
638
639 -- 3) The 'access to the secondary dispatch table will be used
640 -- as the value returned by the allocator.
641
642 Rewrite (N,
643 Make_Attribute_Reference (Loc,
644 Prefix => Relocate_Node (N),
645 Attribute_Name => Name_Access));
646 Set_Etype (N, Saved_Typ);
647 Set_Analyzed (N);
648 end;
649
650 -- If the type of the allocator expression is an interface type we
651 -- generate a run-time call to displace "this" to reference the
652 -- component containing the pointer to the secondary dispatch table
653 -- or else raise Constraint_Error if the actual object does not
533369aa 654 -- implement the target interface. This case corresponds to the
26bff3d9
JM
655 -- following example:
656
8fc789c8 657 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
26bff3d9
JM
658 -- begin
659 -- return new Iface_2'Class'(Obj);
660 -- end Op;
661
662 else
663 Rewrite (N,
664 Unchecked_Convert_To (PtrT,
665 Make_Function_Call (Loc,
e4494292 666 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
26bff3d9
JM
667 Parameter_Associations => New_List (
668 Unchecked_Convert_To (RTE (RE_Address),
669 Relocate_Node (N)),
670
671 New_Occurrence_Of
672 (Elists.Node
673 (First_Elmt
674 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
675 Loc)))));
676 Analyze_And_Resolve (N, PtrT);
677 end if;
678 end if;
679 end Displace_Allocator_Pointer;
680
fbf5a39b
AC
681 ---------------------------------
682 -- Expand_Allocator_Expression --
683 ---------------------------------
684
685 procedure Expand_Allocator_Expression (N : Node_Id) is
f02b8bb8
RD
686 Loc : constant Source_Ptr := Sloc (N);
687 Exp : constant Node_Id := Expression (Expression (N));
f02b8bb8
RD
688 PtrT : constant Entity_Id := Etype (N);
689 DesigT : constant Entity_Id := Designated_Type (PtrT);
26bff3d9
JM
690
691 procedure Apply_Accessibility_Check
692 (Ref : Node_Id;
693 Built_In_Place : Boolean := False);
694 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
685094bf
RD
695 -- type, generate an accessibility check to verify that the level of the
696 -- type of the created object is not deeper than the level of the access
50878404 697 -- type. If the type of the qualified expression is class-wide, then
685094bf
RD
698 -- always generate the check (except in the case where it is known to be
699 -- unnecessary, see comment below). Otherwise, only generate the check
700 -- if the level of the qualified expression type is statically deeper
701 -- than the access type.
702 --
703 -- Although the static accessibility will generally have been performed
704 -- as a legality check, it won't have been done in cases where the
705 -- allocator appears in generic body, so a run-time check is needed in
706 -- general. One special case is when the access type is declared in the
707 -- same scope as the class-wide allocator, in which case the check can
708 -- never fail, so it need not be generated.
709 --
710 -- As an open issue, there seem to be cases where the static level
711 -- associated with the class-wide object's underlying type is not
712 -- sufficient to perform the proper accessibility check, such as for
713 -- allocators in nested subprograms or accept statements initialized by
714 -- class-wide formals when the actual originates outside at a deeper
715 -- static level. The nested subprogram case might require passing
716 -- accessibility levels along with class-wide parameters, and the task
717 -- case seems to be an actual gap in the language rules that needs to
718 -- be fixed by the ARG. ???
26bff3d9
JM
719
720 -------------------------------
721 -- Apply_Accessibility_Check --
722 -------------------------------
723
724 procedure Apply_Accessibility_Check
725 (Ref : Node_Id;
726 Built_In_Place : Boolean := False)
727 is
a98838ff
HK
728 Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
729 Cond : Node_Id;
730 Fin_Call : Node_Id;
731 Free_Stmt : Node_Id;
732 Obj_Ref : Node_Id;
733 Stmts : List_Id;
26bff3d9
JM
734
735 begin
0791fbe9 736 if Ada_Version >= Ada_2005
26bff3d9 737 and then Is_Class_Wide_Type (DesigT)
a98838ff 738 and then (Tagged_Type_Expansion or else VM_Target /= No_VM)
3217f71e 739 and then not Scope_Suppress.Suppress (Accessibility_Check)
26bff3d9
JM
740 and then
741 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
742 or else
743 (Is_Class_Wide_Type (Etype (Exp))
744 and then Scope (PtrT) /= Current_Scope))
745 then
e761d11c 746 -- If the allocator was built in place, Ref is already a reference
26bff3d9 747 -- to the access object initialized to the result of the allocator
e761d11c
AC
748 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
749 -- Remove_Side_Effects for cases where the build-in-place call may
750 -- still be the prefix of the reference (to avoid generating
751 -- duplicate calls). Otherwise, it is the entity associated with
752 -- the object containing the address of the allocated object.
26bff3d9
JM
753
754 if Built_In_Place then
e761d11c 755 Remove_Side_Effects (Ref);
a98838ff 756 Obj_Ref := New_Copy_Tree (Ref);
26bff3d9 757 else
e4494292 758 Obj_Ref := New_Occurrence_Of (Ref, Loc);
50878404
AC
759 end if;
760
761 -- Step 1: Create the object clean up code
762
763 Stmts := New_List;
764
a98838ff
HK
765 -- Deallocate the object if the accessibility check fails. This
766 -- is done only on targets or profiles that support deallocation.
767
768 -- Free (Obj_Ref);
769
770 if RTE_Available (RE_Free) then
771 Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
772 Set_Storage_Pool (Free_Stmt, Pool_Id);
773
774 Append_To (Stmts, Free_Stmt);
775
776 -- The target or profile cannot deallocate objects
777
778 else
779 Free_Stmt := Empty;
780 end if;
781
782 -- Finalize the object if applicable. Generate:
a530b8bb
AC
783
784 -- [Deep_]Finalize (Obj_Ref.all);
785
2cbac6c6 786 if Needs_Finalization (DesigT) then
a98838ff 787 Fin_Call :=
2cbac6c6
AC
788 Make_Final_Call (
789 Obj_Ref =>
790 Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
a98838ff
HK
791 Typ => DesigT);
792
793 -- When the target or profile supports deallocation, wrap the
794 -- finalization call in a block to ensure proper deallocation
795 -- even if finalization fails. Generate:
796
797 -- begin
798 -- <Fin_Call>
799 -- exception
800 -- when others =>
801 -- <Free_Stmt>
802 -- raise;
803 -- end;
804
805 if Present (Free_Stmt) then
806 Fin_Call :=
807 Make_Block_Statement (Loc,
808 Handled_Statement_Sequence =>
809 Make_Handled_Sequence_Of_Statements (Loc,
810 Statements => New_List (Fin_Call),
811
812 Exception_Handlers => New_List (
813 Make_Exception_Handler (Loc,
814 Exception_Choices => New_List (
815 Make_Others_Choice (Loc)),
816
817 Statements => New_List (
818 New_Copy_Tree (Free_Stmt),
819 Make_Raise_Statement (Loc))))));
820 end if;
821
822 Prepend_To (Stmts, Fin_Call);
f46faa08
AC
823 end if;
824
50878404
AC
825 -- Signal the accessibility failure through a Program_Error
826
827 Append_To (Stmts,
828 Make_Raise_Program_Error (Loc,
e4494292 829 Condition => New_Occurrence_Of (Standard_True, Loc),
50878404
AC
830 Reason => PE_Accessibility_Check_Failed));
831
832 -- Step 2: Create the accessibility comparison
833
da574a86
AC
834 -- Reference the tag: for a renaming of an access to an interface
835 -- object Obj_Ref already references the tag of the secondary
836 -- dispatch table.
837
601bb6b3
AC
838 if Nkind (Obj_Ref) in N_Has_Entity
839 and then Present (Entity (Obj_Ref))
da574a86
AC
840 and then Present (Renamed_Object (Entity (Obj_Ref)))
841 and then Is_Interface (DesigT)
842 then
843 null;
844
50878404
AC
845 -- Generate:
846 -- Ref'Tag
847
da574a86
AC
848 else
849 Obj_Ref :=
850 Make_Attribute_Reference (Loc,
851 Prefix => Obj_Ref,
852 Attribute_Name => Name_Tag);
853 end if;
f46faa08 854
50878404
AC
855 -- For tagged types, determine the accessibility level by looking
856 -- at the type specific data of the dispatch table. Generate:
857
858 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
859
f46faa08 860 if Tagged_Type_Expansion then
50878404 861 Cond := Build_Get_Access_Level (Loc, Obj_Ref);
f46faa08 862
50878404
AC
863 -- Use a runtime call to determine the accessibility level when
864 -- compiling on virtual machine targets. Generate:
f46faa08 865
50878404 866 -- Get_Access_Level (Ref'Tag)
f46faa08
AC
867
868 else
50878404
AC
869 Cond :=
870 Make_Function_Call (Loc,
871 Name =>
e4494292 872 New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
50878404 873 Parameter_Associations => New_List (Obj_Ref));
26bff3d9
JM
874 end if;
875
50878404
AC
876 Cond :=
877 Make_Op_Gt (Loc,
878 Left_Opnd => Cond,
879 Right_Opnd =>
880 Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
881
882 -- Due to the complexity and side effects of the check, utilize an
883 -- if statement instead of the regular Program_Error circuitry.
884
26bff3d9 885 Insert_Action (N,
8b1011c0 886 Make_Implicit_If_Statement (N,
50878404
AC
887 Condition => Cond,
888 Then_Statements => Stmts));
26bff3d9
JM
889 end if;
890 end Apply_Accessibility_Check;
891
892 -- Local variables
893
df3e68b1
HK
894 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
895 Indic : constant Node_Id := Subtype_Mark (Expression (N));
896 T : constant Entity_Id := Entity (Indic);
897 Node : Node_Id;
898 Tag_Assign : Node_Id;
899 Temp : Entity_Id;
900 Temp_Decl : Node_Id;
fbf5a39b 901
d26dc4b5
AC
902 TagT : Entity_Id := Empty;
903 -- Type used as source for tag assignment
904
905 TagR : Node_Id := Empty;
906 -- Target reference for tag assignment
907
26bff3d9
JM
908 -- Start of processing for Expand_Allocator_Expression
909
fbf5a39b 910 begin
3bfb3c03
JM
911 -- Handle call to C++ constructor
912
913 if Is_CPP_Constructor_Call (Exp) then
914 Make_CPP_Constructor_Call_In_Allocator
915 (Allocator => N,
916 Function_Call => Exp);
917 return;
918 end if;
919
885c4871 920 -- In the case of an Ada 2012 allocator whose initial value comes from a
63585f75
SB
921 -- function call, pass "the accessibility level determined by the point
922 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
923 -- Expand_Call but it couldn't be done there (because the Etype of the
924 -- allocator wasn't set then) so we generate the parameter here. See
925 -- the Boolean variable Defer in (a block within) Expand_Call.
926
927 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
928 declare
929 Subp : Entity_Id;
930
931 begin
932 if Nkind (Name (Exp)) = N_Explicit_Dereference then
933 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
934 else
935 Subp := Entity (Name (Exp));
936 end if;
937
57a3fca9
AC
938 Subp := Ultimate_Alias (Subp);
939
63585f75
SB
940 if Present (Extra_Accessibility_Of_Result (Subp)) then
941 Add_Extra_Actual_To_Call
942 (Subprogram_Call => Exp,
943 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
944 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
945 end if;
946 end;
947 end if;
948
f6194278 949 -- Case of tagged type or type requiring finalization
63585f75
SB
950
951 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
fadcf313 952
685094bf
RD
953 -- Ada 2005 (AI-318-02): If the initialization expression is a call
954 -- to a build-in-place function, then access to the allocated object
955 -- must be passed to the function. Currently we limit such functions
956 -- to those with constrained limited result subtypes, but eventually
957 -- we plan to expand the allowed forms of functions that are treated
958 -- as build-in-place.
20b5d666 959
0791fbe9 960 if Ada_Version >= Ada_2005
20b5d666
JM
961 and then Is_Build_In_Place_Function_Call (Exp)
962 then
963 Make_Build_In_Place_Call_In_Allocator (N, Exp);
26bff3d9
JM
964 Apply_Accessibility_Check (N, Built_In_Place => True);
965 return;
20b5d666
JM
966 end if;
967
ca5af305
AC
968 -- Actions inserted before:
969 -- Temp : constant ptr_T := new T'(Expression);
970 -- Temp._tag = T'tag; -- when not class-wide
971 -- [Deep_]Adjust (Temp.all);
fbf5a39b 972
ca5af305 973 -- We analyze by hand the new internal allocator to avoid any
6b6041ec 974 -- recursion and inappropriate call to Initialize.
7324bf49 975
20b5d666
JM
976 -- We don't want to remove side effects when the expression must be
977 -- built in place. In the case of a build-in-place function call,
978 -- that could lead to a duplication of the call, which was already
979 -- substituted for the allocator.
980
26bff3d9 981 if not Aggr_In_Place then
fbf5a39b
AC
982 Remove_Side_Effects (Exp);
983 end if;
984
e86a3a7e 985 Temp := Make_Temporary (Loc, 'P', N);
fbf5a39b
AC
986
987 -- For a class wide allocation generate the following code:
988
989 -- type Equiv_Record is record ... end record;
990 -- implicit subtype CW is <Class_Wide_Subytpe>;
991 -- temp : PtrT := new CW'(CW!(expr));
992
993 if Is_Class_Wide_Type (T) then
994 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
995
26bff3d9
JM
996 -- Ada 2005 (AI-251): If the expression is a class-wide interface
997 -- object we generate code to move up "this" to reference the
998 -- base of the object before allocating the new object.
999
1000 -- Note that Exp'Address is recursively expanded into a call
1001 -- to Base_Address (Exp.Tag)
1002
1003 if Is_Class_Wide_Type (Etype (Exp))
1004 and then Is_Interface (Etype (Exp))
1f110335 1005 and then Tagged_Type_Expansion
26bff3d9
JM
1006 then
1007 Set_Expression
1008 (Expression (N),
1009 Unchecked_Convert_To (Entity (Indic),
1010 Make_Explicit_Dereference (Loc,
1011 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
1012 Make_Attribute_Reference (Loc,
1013 Prefix => Exp,
1014 Attribute_Name => Name_Address)))));
26bff3d9
JM
1015 else
1016 Set_Expression
1017 (Expression (N),
1018 Unchecked_Convert_To (Entity (Indic), Exp));
1019 end if;
fbf5a39b
AC
1020
1021 Analyze_And_Resolve (Expression (N), Entity (Indic));
1022 end if;
1023
df3e68b1 1024 -- Processing for allocators returning non-interface types
fbf5a39b 1025
26bff3d9
JM
1026 if not Is_Interface (Directly_Designated_Type (PtrT)) then
1027 if Aggr_In_Place then
df3e68b1 1028 Temp_Decl :=
26bff3d9
JM
1029 Make_Object_Declaration (Loc,
1030 Defining_Identifier => Temp,
e4494292 1031 Object_Definition => New_Occurrence_Of (PtrT, Loc),
26bff3d9
JM
1032 Expression =>
1033 Make_Allocator (Loc,
df3e68b1 1034 Expression =>
e4494292 1035 New_Occurrence_Of (Etype (Exp), Loc)));
fbf5a39b 1036
fad0600d
AC
1037 -- Copy the Comes_From_Source flag for the allocator we just
1038 -- built, since logically this allocator is a replacement of
1039 -- the original allocator node. This is for proper handling of
1040 -- restriction No_Implicit_Heap_Allocations.
1041
26bff3d9 1042 Set_Comes_From_Source
df3e68b1 1043 (Expression (Temp_Decl), Comes_From_Source (N));
fbf5a39b 1044
df3e68b1
HK
1045 Set_No_Initialization (Expression (Temp_Decl));
1046 Insert_Action (N, Temp_Decl);
fbf5a39b 1047
ca5af305 1048 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1049 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fad0600d 1050
d3f70b35 1051 -- Attach the object to the associated finalization master.
deb8dacc
HK
1052 -- This is done manually on .NET/JVM since those compilers do
1053 -- no support pools and can't benefit from internally generated
1054 -- Allocate / Deallocate procedures.
1055
1056 if VM_Target /= No_VM
1057 and then Is_Controlled (DesigT)
d3f70b35 1058 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1059 then
1060 Insert_Action (N,
1061 Make_Attach_Call (
e4494292 1062 Obj_Ref => New_Occurrence_Of (Temp, Loc),
deb8dacc
HK
1063 Ptr_Typ => PtrT));
1064 end if;
1065
26bff3d9
JM
1066 else
1067 Node := Relocate_Node (N);
1068 Set_Analyzed (Node);
df3e68b1
HK
1069
1070 Temp_Decl :=
26bff3d9
JM
1071 Make_Object_Declaration (Loc,
1072 Defining_Identifier => Temp,
1073 Constant_Present => True,
e4494292 1074 Object_Definition => New_Occurrence_Of (PtrT, Loc),
df3e68b1
HK
1075 Expression => Node);
1076
1077 Insert_Action (N, Temp_Decl);
ca5af305 1078 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
deb8dacc 1079
d3f70b35 1080 -- Attach the object to the associated finalization master.
deb8dacc
HK
1081 -- This is done manually on .NET/JVM since those compilers do
1082 -- no support pools and can't benefit from internally generated
1083 -- Allocate / Deallocate procedures.
1084
1085 if VM_Target /= No_VM
1086 and then Is_Controlled (DesigT)
d3f70b35 1087 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1088 then
1089 Insert_Action (N,
1090 Make_Attach_Call (
1091 Obj_Ref =>
e4494292 1092 New_Occurrence_Of (Temp, Loc),
deb8dacc
HK
1093 Ptr_Typ => PtrT));
1094 end if;
fbf5a39b
AC
1095 end if;
1096
26bff3d9
JM
1097 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1098 -- interface type. In this case we use the type of the qualified
1099 -- expression to allocate the object.
1100
fbf5a39b 1101 else
26bff3d9 1102 declare
191fcb3a 1103 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
26bff3d9 1104 New_Decl : Node_Id;
fbf5a39b 1105
26bff3d9
JM
1106 begin
1107 New_Decl :=
1108 Make_Full_Type_Declaration (Loc,
1109 Defining_Identifier => Def_Id,
1110 Type_Definition =>
1111 Make_Access_To_Object_Definition (Loc,
1112 All_Present => True,
1113 Null_Exclusion_Present => False,
0929eaeb
AC
1114 Constant_Present =>
1115 Is_Access_Constant (Etype (N)),
26bff3d9 1116 Subtype_Indication =>
e4494292 1117 New_Occurrence_Of (Etype (Exp), Loc)));
26bff3d9
JM
1118
1119 Insert_Action (N, New_Decl);
1120
df3e68b1
HK
1121 -- Inherit the allocation-related attributes from the original
1122 -- access type.
26bff3d9 1123
d3f70b35 1124 Set_Finalization_Master (Def_Id, Finalization_Master (PtrT));
df3e68b1
HK
1125
1126 Set_Associated_Storage_Pool (Def_Id,
1127 Associated_Storage_Pool (PtrT));
758c442c 1128
26bff3d9
JM
1129 -- Declare the object using the previous type declaration
1130
1131 if Aggr_In_Place then
df3e68b1 1132 Temp_Decl :=
26bff3d9
JM
1133 Make_Object_Declaration (Loc,
1134 Defining_Identifier => Temp,
e4494292 1135 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
26bff3d9
JM
1136 Expression =>
1137 Make_Allocator (Loc,
e4494292 1138 New_Occurrence_Of (Etype (Exp), Loc)));
26bff3d9 1139
fad0600d
AC
1140 -- Copy the Comes_From_Source flag for the allocator we just
1141 -- built, since logically this allocator is a replacement of
1142 -- the original allocator node. This is for proper handling
1143 -- of restriction No_Implicit_Heap_Allocations.
1144
26bff3d9 1145 Set_Comes_From_Source
df3e68b1 1146 (Expression (Temp_Decl), Comes_From_Source (N));
26bff3d9 1147
df3e68b1
HK
1148 Set_No_Initialization (Expression (Temp_Decl));
1149 Insert_Action (N, Temp_Decl);
26bff3d9 1150
ca5af305 1151 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1152 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
26bff3d9 1153
26bff3d9
JM
1154 else
1155 Node := Relocate_Node (N);
1156 Set_Analyzed (Node);
df3e68b1
HK
1157
1158 Temp_Decl :=
26bff3d9
JM
1159 Make_Object_Declaration (Loc,
1160 Defining_Identifier => Temp,
1161 Constant_Present => True,
e4494292 1162 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
df3e68b1
HK
1163 Expression => Node);
1164
1165 Insert_Action (N, Temp_Decl);
ca5af305 1166 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
26bff3d9
JM
1167 end if;
1168
1169 -- Generate an additional object containing the address of the
1170 -- returned object. The type of this second object declaration
685094bf
RD
1171 -- is the correct type required for the common processing that
1172 -- is still performed by this subprogram. The displacement of
1173 -- this pointer to reference the component associated with the
1174 -- interface type will be done at the end of common processing.
26bff3d9
JM
1175
1176 New_Decl :=
1177 Make_Object_Declaration (Loc,
243cae0a 1178 Defining_Identifier => Make_Temporary (Loc, 'P'),
e4494292 1179 Object_Definition => New_Occurrence_Of (PtrT, Loc),
243cae0a 1180 Expression =>
df3e68b1 1181 Unchecked_Convert_To (PtrT,
e4494292 1182 New_Occurrence_Of (Temp, Loc)));
26bff3d9
JM
1183
1184 Insert_Action (N, New_Decl);
1185
df3e68b1
HK
1186 Temp_Decl := New_Decl;
1187 Temp := Defining_Identifier (New_Decl);
26bff3d9 1188 end;
758c442c
GD
1189 end if;
1190
26bff3d9
JM
1191 Apply_Accessibility_Check (Temp);
1192
1193 -- Generate the tag assignment
1194
1195 -- Suppress the tag assignment when VM_Target because VM tags are
1196 -- represented implicitly in objects.
1197
1f110335 1198 if not Tagged_Type_Expansion then
26bff3d9 1199 null;
fbf5a39b 1200
26bff3d9
JM
1201 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1202 -- interface objects because in this case the tag does not change.
d26dc4b5 1203
26bff3d9
JM
1204 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1205 pragma Assert (Is_Class_Wide_Type
1206 (Directly_Designated_Type (Etype (N))));
d26dc4b5
AC
1207 null;
1208
1209 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1210 TagT := T;
e4494292 1211 TagR := New_Occurrence_Of (Temp, Loc);
d26dc4b5
AC
1212
1213 elsif Is_Private_Type (T)
1214 and then Is_Tagged_Type (Underlying_Type (T))
fbf5a39b 1215 then
d26dc4b5 1216 TagT := Underlying_Type (T);
dfd99a80
TQ
1217 TagR :=
1218 Unchecked_Convert_To (Underlying_Type (T),
1219 Make_Explicit_Dereference (Loc,
e4494292 1220 Prefix => New_Occurrence_Of (Temp, Loc)));
d26dc4b5
AC
1221 end if;
1222
1223 if Present (TagT) then
38171f43
AC
1224 declare
1225 Full_T : constant Entity_Id := Underlying_Type (TagT);
e4494292 1226
38171f43
AC
1227 begin
1228 Tag_Assign :=
1229 Make_Assignment_Statement (Loc,
1230 Name =>
1231 Make_Selected_Component (Loc,
1232 Prefix => TagR,
1233 Selector_Name =>
e4494292
RD
1234 New_Occurrence_Of
1235 (First_Tag_Component (Full_T), Loc)),
1236
38171f43
AC
1237 Expression =>
1238 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 1239 New_Occurrence_Of
38171f43
AC
1240 (Elists.Node
1241 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1242 end;
fbf5a39b
AC
1243
1244 -- The previous assignment has to be done in any case
1245
1246 Set_Assignment_OK (Name (Tag_Assign));
1247 Insert_Action (N, Tag_Assign);
fbf5a39b
AC
1248 end if;
1249
533369aa
AC
1250 if Needs_Finalization (DesigT) and then Needs_Finalization (T) then
1251
df3e68b1
HK
1252 -- Generate an Adjust call if the object will be moved. In Ada
1253 -- 2005, the object may be inherently limited, in which case
1254 -- there is no Adjust procedure, and the object is built in
1255 -- place. In Ada 95, the object can be limited but not
1256 -- inherently limited if this allocator came from a return
1257 -- statement (we're allocating the result on the secondary
1258 -- stack). In that case, the object will be moved, so we _do_
1259 -- want to Adjust.
1260
1261 if not Aggr_In_Place
51245e2d 1262 and then not Is_Limited_View (T)
df3e68b1
HK
1263 then
1264 Insert_Action (N,
fbf5a39b 1265
533369aa
AC
1266 -- An unchecked conversion is needed in the classwide case
1267 -- because the designated type can be an ancestor of the
1268 -- subtype mark of the allocator.
fbf5a39b 1269
533369aa
AC
1270 Make_Adjust_Call
1271 (Obj_Ref =>
1272 Unchecked_Convert_To (T,
1273 Make_Explicit_Dereference (Loc,
e4494292 1274 Prefix => New_Occurrence_Of (Temp, Loc))),
533369aa 1275 Typ => T));
df3e68b1 1276 end if;
b254da66
AC
1277
1278 -- Generate:
1279 -- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1280
2bfa5484 1281 -- Do not generate this call in the following cases:
c5f5123f 1282
2bfa5484
HK
1283 -- * .NET/JVM - these targets do not support address arithmetic
1284 -- and unchecked conversion, key elements of Finalize_Address.
c5f5123f 1285
2bfa5484
HK
1286 -- * CodePeer mode - TSS primitive Finalize_Address is not
1287 -- created in this mode.
b254da66
AC
1288
1289 if VM_Target = No_VM
1290 and then not CodePeer_Mode
1291 and then Present (Finalization_Master (PtrT))
f7bb41af
AC
1292 and then Present (Temp_Decl)
1293 and then Nkind (Expression (Temp_Decl)) = N_Allocator
b254da66
AC
1294 then
1295 Insert_Action (N,
1296 Make_Set_Finalize_Address_Call
1297 (Loc => Loc,
1298 Typ => T,
1299 Ptr_Typ => PtrT));
1300 end if;
fbf5a39b
AC
1301 end if;
1302
e4494292 1303 Rewrite (N, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1304 Analyze_And_Resolve (N, PtrT);
1305
685094bf
RD
1306 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1307 -- component containing the secondary dispatch table of the interface
1308 -- type.
26bff3d9
JM
1309
1310 if Is_Interface (Directly_Designated_Type (PtrT)) then
1311 Displace_Allocator_Pointer (N);
1312 end if;
1313
fbf5a39b 1314 elsif Aggr_In_Place then
e86a3a7e 1315 Temp := Make_Temporary (Loc, 'P', N);
df3e68b1 1316 Temp_Decl :=
fbf5a39b
AC
1317 Make_Object_Declaration (Loc,
1318 Defining_Identifier => Temp,
e4494292 1319 Object_Definition => New_Occurrence_Of (PtrT, Loc),
df3e68b1
HK
1320 Expression =>
1321 Make_Allocator (Loc,
e4494292 1322 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
fbf5a39b 1323
fad0600d
AC
1324 -- Copy the Comes_From_Source flag for the allocator we just built,
1325 -- since logically this allocator is a replacement of the original
1326 -- allocator node. This is for proper handling of restriction
1327 -- No_Implicit_Heap_Allocations.
1328
fbf5a39b 1329 Set_Comes_From_Source
df3e68b1
HK
1330 (Expression (Temp_Decl), Comes_From_Source (N));
1331
1332 Set_No_Initialization (Expression (Temp_Decl));
1333 Insert_Action (N, Temp_Decl);
1334
ca5af305 1335 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1336 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fbf5a39b 1337
d3f70b35
AC
1338 -- Attach the object to the associated finalization master. Thisis
1339 -- done manually on .NET/JVM since those compilers do no support
deb8dacc
HK
1340 -- pools and cannot benefit from internally generated Allocate and
1341 -- Deallocate procedures.
1342
1343 if VM_Target /= No_VM
1344 and then Is_Controlled (DesigT)
d3f70b35 1345 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1346 then
1347 Insert_Action (N,
243cae0a 1348 Make_Attach_Call
e4494292 1349 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
243cae0a 1350 Ptr_Typ => PtrT));
deb8dacc
HK
1351 end if;
1352
e4494292 1353 Rewrite (N, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1354 Analyze_And_Resolve (N, PtrT);
1355
533369aa 1356 elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
51e4c4b9
AC
1357 Install_Null_Excluding_Check (Exp);
1358
f02b8bb8 1359 elsif Is_Access_Type (DesigT)
fbf5a39b
AC
1360 and then Nkind (Exp) = N_Allocator
1361 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1362 then
0da2c8ac 1363 -- Apply constraint to designated subtype indication
fbf5a39b
AC
1364
1365 Apply_Constraint_Check (Expression (Exp),
f02b8bb8 1366 Designated_Type (DesigT),
fbf5a39b
AC
1367 No_Sliding => True);
1368
1369 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1370
1371 -- Propagate constraint_error to enclosing allocator
1372
1373 Rewrite (Exp, New_Copy (Expression (Exp)));
1374 end if;
1df4f514 1375
fbf5a39b 1376 else
14f0f659
AC
1377 Build_Allocate_Deallocate_Proc (N, True);
1378
36c73552
AC
1379 -- If we have:
1380 -- type A is access T1;
1381 -- X : A := new T2'(...);
1382 -- T1 and T2 can be different subtypes, and we might need to check
1383 -- both constraints. First check against the type of the qualified
1384 -- expression.
1385
1386 Apply_Constraint_Check (Exp, T, No_Sliding => True);
fbf5a39b 1387
d79e621a
GD
1388 if Do_Range_Check (Exp) then
1389 Set_Do_Range_Check (Exp, False);
1390 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1391 end if;
1392
685094bf
RD
1393 -- A check is also needed in cases where the designated subtype is
1394 -- constrained and differs from the subtype given in the qualified
1395 -- expression. Note that the check on the qualified expression does
1396 -- not allow sliding, but this check does (a relaxation from Ada 83).
fbf5a39b 1397
f02b8bb8 1398 if Is_Constrained (DesigT)
9450205a 1399 and then not Subtypes_Statically_Match (T, DesigT)
fbf5a39b
AC
1400 then
1401 Apply_Constraint_Check
f02b8bb8 1402 (Exp, DesigT, No_Sliding => False);
d79e621a
GD
1403
1404 if Do_Range_Check (Exp) then
1405 Set_Do_Range_Check (Exp, False);
1406 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1407 end if;
f02b8bb8
RD
1408 end if;
1409
685094bf
RD
1410 -- For an access to unconstrained packed array, GIGI needs to see an
1411 -- expression with a constrained subtype in order to compute the
1412 -- proper size for the allocator.
f02b8bb8
RD
1413
1414 if Is_Array_Type (T)
1415 and then not Is_Constrained (T)
1416 and then Is_Packed (T)
1417 then
1418 declare
191fcb3a 1419 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
f02b8bb8
RD
1420 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1421 begin
1422 Insert_Action (Exp,
1423 Make_Subtype_Declaration (Loc,
1424 Defining_Identifier => ConstrT,
25ebc085
AC
1425 Subtype_Indication =>
1426 Make_Subtype_From_Expr (Internal_Exp, T)));
f02b8bb8
RD
1427 Freeze_Itype (ConstrT, Exp);
1428 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1429 end;
fbf5a39b 1430 end if;
f02b8bb8 1431
685094bf
RD
1432 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1433 -- to a build-in-place function, then access to the allocated object
1434 -- must be passed to the function. Currently we limit such functions
1435 -- to those with constrained limited result subtypes, but eventually
1436 -- we plan to expand the allowed forms of functions that are treated
1437 -- as build-in-place.
20b5d666 1438
0791fbe9 1439 if Ada_Version >= Ada_2005
20b5d666
JM
1440 and then Is_Build_In_Place_Function_Call (Exp)
1441 then
1442 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1443 end if;
fbf5a39b
AC
1444 end if;
1445
1446 exception
1447 when RE_Not_Available =>
1448 return;
1449 end Expand_Allocator_Expression;
1450
70482933
RK
1451 -----------------------------
1452 -- Expand_Array_Comparison --
1453 -----------------------------
1454
685094bf
RD
1455 -- Expansion is only required in the case of array types. For the unpacked
1456 -- case, an appropriate runtime routine is called. For packed cases, and
1457 -- also in some other cases where a runtime routine cannot be called, the
1458 -- form of the expansion is:
70482933
RK
1459
1460 -- [body for greater_nn; boolean_expression]
1461
1462 -- The body is built by Make_Array_Comparison_Op, and the form of the
1463 -- Boolean expression depends on the operator involved.
1464
1465 procedure Expand_Array_Comparison (N : Node_Id) is
1466 Loc : constant Source_Ptr := Sloc (N);
1467 Op1 : Node_Id := Left_Opnd (N);
1468 Op2 : Node_Id := Right_Opnd (N);
1469 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
fbf5a39b 1470 Ctyp : constant Entity_Id := Component_Type (Typ1);
70482933
RK
1471
1472 Expr : Node_Id;
1473 Func_Body : Node_Id;
1474 Func_Name : Entity_Id;
1475
fbf5a39b
AC
1476 Comp : RE_Id;
1477
9bc43c53
AC
1478 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1479 -- True for byte addressable target
91b1417d 1480
fbf5a39b 1481 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
685094bf
RD
1482 -- Returns True if the length of the given operand is known to be less
1483 -- than 4. Returns False if this length is known to be four or greater
1484 -- or is not known at compile time.
fbf5a39b
AC
1485
1486 ------------------------
1487 -- Length_Less_Than_4 --
1488 ------------------------
1489
1490 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1491 Otyp : constant Entity_Id := Etype (Opnd);
1492
1493 begin
1494 if Ekind (Otyp) = E_String_Literal_Subtype then
1495 return String_Literal_Length (Otyp) < 4;
1496
1497 else
1498 declare
1499 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1500 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1501 Hi : constant Node_Id := Type_High_Bound (Ityp);
1502 Lov : Uint;
1503 Hiv : Uint;
1504
1505 begin
1506 if Compile_Time_Known_Value (Lo) then
1507 Lov := Expr_Value (Lo);
1508 else
1509 return False;
1510 end if;
1511
1512 if Compile_Time_Known_Value (Hi) then
1513 Hiv := Expr_Value (Hi);
1514 else
1515 return False;
1516 end if;
1517
1518 return Hiv < Lov + 3;
1519 end;
1520 end if;
1521 end Length_Less_Than_4;
1522
1523 -- Start of processing for Expand_Array_Comparison
1524
70482933 1525 begin
fbf5a39b
AC
1526 -- Deal first with unpacked case, where we can call a runtime routine
1527 -- except that we avoid this for targets for which are not addressable
26bff3d9 1528 -- by bytes, and for the JVM/CIL, since they do not support direct
fbf5a39b
AC
1529 -- addressing of array components.
1530
1531 if not Is_Bit_Packed_Array (Typ1)
9bc43c53 1532 and then Byte_Addressable
26bff3d9 1533 and then VM_Target = No_VM
fbf5a39b
AC
1534 then
1535 -- The call we generate is:
1536
1537 -- Compare_Array_xn[_Unaligned]
1538 -- (left'address, right'address, left'length, right'length) <op> 0
1539
1540 -- x = U for unsigned, S for signed
1541 -- n = 8,16,32,64 for component size
1542 -- Add _Unaligned if length < 4 and component size is 8.
1543 -- <op> is the standard comparison operator
1544
1545 if Component_Size (Typ1) = 8 then
1546 if Length_Less_Than_4 (Op1)
1547 or else
1548 Length_Less_Than_4 (Op2)
1549 then
1550 if Is_Unsigned_Type (Ctyp) then
1551 Comp := RE_Compare_Array_U8_Unaligned;
1552 else
1553 Comp := RE_Compare_Array_S8_Unaligned;
1554 end if;
1555
1556 else
1557 if Is_Unsigned_Type (Ctyp) then
1558 Comp := RE_Compare_Array_U8;
1559 else
1560 Comp := RE_Compare_Array_S8;
1561 end if;
1562 end if;
1563
1564 elsif Component_Size (Typ1) = 16 then
1565 if Is_Unsigned_Type (Ctyp) then
1566 Comp := RE_Compare_Array_U16;
1567 else
1568 Comp := RE_Compare_Array_S16;
1569 end if;
1570
1571 elsif Component_Size (Typ1) = 32 then
1572 if Is_Unsigned_Type (Ctyp) then
1573 Comp := RE_Compare_Array_U32;
1574 else
1575 Comp := RE_Compare_Array_S32;
1576 end if;
1577
1578 else pragma Assert (Component_Size (Typ1) = 64);
1579 if Is_Unsigned_Type (Ctyp) then
1580 Comp := RE_Compare_Array_U64;
1581 else
1582 Comp := RE_Compare_Array_S64;
1583 end if;
1584 end if;
1585
1586 Remove_Side_Effects (Op1, Name_Req => True);
1587 Remove_Side_Effects (Op2, Name_Req => True);
1588
1589 Rewrite (Op1,
1590 Make_Function_Call (Sloc (Op1),
1591 Name => New_Occurrence_Of (RTE (Comp), Loc),
1592
1593 Parameter_Associations => New_List (
1594 Make_Attribute_Reference (Loc,
1595 Prefix => Relocate_Node (Op1),
1596 Attribute_Name => Name_Address),
1597
1598 Make_Attribute_Reference (Loc,
1599 Prefix => Relocate_Node (Op2),
1600 Attribute_Name => Name_Address),
1601
1602 Make_Attribute_Reference (Loc,
1603 Prefix => Relocate_Node (Op1),
1604 Attribute_Name => Name_Length),
1605
1606 Make_Attribute_Reference (Loc,
1607 Prefix => Relocate_Node (Op2),
1608 Attribute_Name => Name_Length))));
1609
1610 Rewrite (Op2,
1611 Make_Integer_Literal (Sloc (Op2),
1612 Intval => Uint_0));
1613
1614 Analyze_And_Resolve (Op1, Standard_Integer);
1615 Analyze_And_Resolve (Op2, Standard_Integer);
1616 return;
1617 end if;
1618
1619 -- Cases where we cannot make runtime call
1620
70482933
RK
1621 -- For (a <= b) we convert to not (a > b)
1622
1623 if Chars (N) = Name_Op_Le then
1624 Rewrite (N,
1625 Make_Op_Not (Loc,
1626 Right_Opnd =>
1627 Make_Op_Gt (Loc,
1628 Left_Opnd => Op1,
1629 Right_Opnd => Op2)));
1630 Analyze_And_Resolve (N, Standard_Boolean);
1631 return;
1632
1633 -- For < the Boolean expression is
1634 -- greater__nn (op2, op1)
1635
1636 elsif Chars (N) = Name_Op_Lt then
1637 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1638
1639 -- Switch operands
1640
1641 Op1 := Right_Opnd (N);
1642 Op2 := Left_Opnd (N);
1643
1644 -- For (a >= b) we convert to not (a < b)
1645
1646 elsif Chars (N) = Name_Op_Ge then
1647 Rewrite (N,
1648 Make_Op_Not (Loc,
1649 Right_Opnd =>
1650 Make_Op_Lt (Loc,
1651 Left_Opnd => Op1,
1652 Right_Opnd => Op2)));
1653 Analyze_And_Resolve (N, Standard_Boolean);
1654 return;
1655
1656 -- For > the Boolean expression is
1657 -- greater__nn (op1, op2)
1658
1659 else
1660 pragma Assert (Chars (N) = Name_Op_Gt);
1661 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1662 end if;
1663
1664 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1665 Expr :=
1666 Make_Function_Call (Loc,
e4494292 1667 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
1668 Parameter_Associations => New_List (Op1, Op2));
1669
1670 Insert_Action (N, Func_Body);
1671 Rewrite (N, Expr);
1672 Analyze_And_Resolve (N, Standard_Boolean);
1673
fbf5a39b
AC
1674 exception
1675 when RE_Not_Available =>
1676 return;
70482933
RK
1677 end Expand_Array_Comparison;
1678
1679 ---------------------------
1680 -- Expand_Array_Equality --
1681 ---------------------------
1682
685094bf
RD
1683 -- Expand an equality function for multi-dimensional arrays. Here is an
1684 -- example of such a function for Nb_Dimension = 2
70482933 1685
0da2c8ac 1686 -- function Enn (A : atyp; B : btyp) return boolean is
70482933 1687 -- begin
fbf5a39b
AC
1688 -- if (A'length (1) = 0 or else A'length (2) = 0)
1689 -- and then
1690 -- (B'length (1) = 0 or else B'length (2) = 0)
1691 -- then
1692 -- return True; -- RM 4.5.2(22)
1693 -- end if;
0da2c8ac 1694
fbf5a39b
AC
1695 -- if A'length (1) /= B'length (1)
1696 -- or else
1697 -- A'length (2) /= B'length (2)
1698 -- then
1699 -- return False; -- RM 4.5.2(23)
1700 -- end if;
0da2c8ac 1701
fbf5a39b 1702 -- declare
523456db
AC
1703 -- A1 : Index_T1 := A'first (1);
1704 -- B1 : Index_T1 := B'first (1);
fbf5a39b 1705 -- begin
523456db 1706 -- loop
fbf5a39b 1707 -- declare
523456db
AC
1708 -- A2 : Index_T2 := A'first (2);
1709 -- B2 : Index_T2 := B'first (2);
fbf5a39b 1710 -- begin
523456db 1711 -- loop
fbf5a39b
AC
1712 -- if A (A1, A2) /= B (B1, B2) then
1713 -- return False;
70482933 1714 -- end if;
0da2c8ac 1715
523456db
AC
1716 -- exit when A2 = A'last (2);
1717 -- A2 := Index_T2'succ (A2);
0da2c8ac 1718 -- B2 := Index_T2'succ (B2);
70482933 1719 -- end loop;
fbf5a39b 1720 -- end;
0da2c8ac 1721
523456db
AC
1722 -- exit when A1 = A'last (1);
1723 -- A1 := Index_T1'succ (A1);
0da2c8ac 1724 -- B1 := Index_T1'succ (B1);
70482933 1725 -- end loop;
fbf5a39b 1726 -- end;
0da2c8ac 1727
70482933
RK
1728 -- return true;
1729 -- end Enn;
1730
685094bf
RD
1731 -- Note on the formal types used (atyp and btyp). If either of the arrays
1732 -- is of a private type, we use the underlying type, and do an unchecked
1733 -- conversion of the actual. If either of the arrays has a bound depending
1734 -- on a discriminant, then we use the base type since otherwise we have an
1735 -- escaped discriminant in the function.
0da2c8ac 1736
685094bf
RD
1737 -- If both arrays are constrained and have the same bounds, we can generate
1738 -- a loop with an explicit iteration scheme using a 'Range attribute over
1739 -- the first array.
523456db 1740
70482933
RK
1741 function Expand_Array_Equality
1742 (Nod : Node_Id;
70482933
RK
1743 Lhs : Node_Id;
1744 Rhs : Node_Id;
0da2c8ac
AC
1745 Bodies : List_Id;
1746 Typ : Entity_Id) return Node_Id
70482933
RK
1747 is
1748 Loc : constant Source_Ptr := Sloc (Nod);
fbf5a39b
AC
1749 Decls : constant List_Id := New_List;
1750 Index_List1 : constant List_Id := New_List;
1751 Index_List2 : constant List_Id := New_List;
1752
1753 Actuals : List_Id;
1754 Formals : List_Id;
1755 Func_Name : Entity_Id;
1756 Func_Body : Node_Id;
70482933
RK
1757
1758 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1759 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1760
0da2c8ac
AC
1761 Ltyp : Entity_Id;
1762 Rtyp : Entity_Id;
1763 -- The parameter types to be used for the formals
1764
fbf5a39b
AC
1765 function Arr_Attr
1766 (Arr : Entity_Id;
1767 Nam : Name_Id;
2e071734 1768 Num : Int) return Node_Id;
5e1c00fa 1769 -- This builds the attribute reference Arr'Nam (Expr)
fbf5a39b 1770
70482933 1771 function Component_Equality (Typ : Entity_Id) return Node_Id;
685094bf 1772 -- Create one statement to compare corresponding components, designated
3b42c566 1773 -- by a full set of indexes.
70482933 1774
0da2c8ac 1775 function Get_Arg_Type (N : Node_Id) return Entity_Id;
685094bf
RD
1776 -- Given one of the arguments, computes the appropriate type to be used
1777 -- for that argument in the corresponding function formal
0da2c8ac 1778
fbf5a39b 1779 function Handle_One_Dimension
70482933 1780 (N : Int;
2e071734 1781 Index : Node_Id) return Node_Id;
0da2c8ac 1782 -- This procedure returns the following code
fbf5a39b
AC
1783 --
1784 -- declare
523456db 1785 -- Bn : Index_T := B'First (N);
fbf5a39b 1786 -- begin
523456db 1787 -- loop
fbf5a39b 1788 -- xxx
523456db
AC
1789 -- exit when An = A'Last (N);
1790 -- An := Index_T'Succ (An)
0da2c8ac 1791 -- Bn := Index_T'Succ (Bn)
fbf5a39b
AC
1792 -- end loop;
1793 -- end;
1794 --
3b42c566 1795 -- If both indexes are constrained and identical, the procedure
523456db
AC
1796 -- returns a simpler loop:
1797 --
1798 -- for An in A'Range (N) loop
1799 -- xxx
1800 -- end loop
0da2c8ac 1801 --
523456db 1802 -- N is the dimension for which we are generating a loop. Index is the
685094bf
RD
1803 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1804 -- xxx statement is either the loop or declare for the next dimension
1805 -- or if this is the last dimension the comparison of corresponding
1806 -- components of the arrays.
fbf5a39b 1807 --
685094bf 1808 -- The actual way the code works is to return the comparison of
a90bd866 1809 -- corresponding components for the N+1 call. That's neater.
fbf5a39b
AC
1810
1811 function Test_Empty_Arrays return Node_Id;
1812 -- This function constructs the test for both arrays being empty
1813 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1814 -- and then
1815 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1816
1817 function Test_Lengths_Correspond return Node_Id;
685094bf
RD
1818 -- This function constructs the test for arrays having different lengths
1819 -- in at least one index position, in which case the resulting code is:
fbf5a39b
AC
1820
1821 -- A'length (1) /= B'length (1)
1822 -- or else
1823 -- A'length (2) /= B'length (2)
1824 -- or else
1825 -- ...
1826
1827 --------------
1828 -- Arr_Attr --
1829 --------------
1830
1831 function Arr_Attr
1832 (Arr : Entity_Id;
1833 Nam : Name_Id;
2e071734 1834 Num : Int) return Node_Id
fbf5a39b
AC
1835 is
1836 begin
1837 return
1838 Make_Attribute_Reference (Loc,
1839 Attribute_Name => Nam,
e4494292 1840 Prefix => New_Occurrence_Of (Arr, Loc),
fbf5a39b
AC
1841 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1842 end Arr_Attr;
70482933
RK
1843
1844 ------------------------
1845 -- Component_Equality --
1846 ------------------------
1847
1848 function Component_Equality (Typ : Entity_Id) return Node_Id is
1849 Test : Node_Id;
1850 L, R : Node_Id;
1851
1852 begin
1853 -- if a(i1...) /= b(j1...) then return false; end if;
1854
1855 L :=
1856 Make_Indexed_Component (Loc,
7675ad4f 1857 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
1858 Expressions => Index_List1);
1859
1860 R :=
1861 Make_Indexed_Component (Loc,
7675ad4f 1862 Prefix => Make_Identifier (Loc, Chars (B)),
70482933
RK
1863 Expressions => Index_List2);
1864
1865 Test := Expand_Composite_Equality
1866 (Nod, Component_Type (Typ), L, R, Decls);
1867
a9d8907c
JM
1868 -- If some (sub)component is an unchecked_union, the whole operation
1869 -- will raise program error.
8aceda64
AC
1870
1871 if Nkind (Test) = N_Raise_Program_Error then
a9d8907c
JM
1872
1873 -- This node is going to be inserted at a location where a
685094bf
RD
1874 -- statement is expected: clear its Etype so analysis will set
1875 -- it to the expected Standard_Void_Type.
a9d8907c
JM
1876
1877 Set_Etype (Test, Empty);
8aceda64
AC
1878 return Test;
1879
1880 else
1881 return
1882 Make_Implicit_If_Statement (Nod,
1883 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1884 Then_Statements => New_List (
d766cee3 1885 Make_Simple_Return_Statement (Loc,
8aceda64
AC
1886 Expression => New_Occurrence_Of (Standard_False, Loc))));
1887 end if;
70482933
RK
1888 end Component_Equality;
1889
0da2c8ac
AC
1890 ------------------
1891 -- Get_Arg_Type --
1892 ------------------
1893
1894 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1895 T : Entity_Id;
1896 X : Node_Id;
1897
1898 begin
1899 T := Etype (N);
1900
1901 if No (T) then
1902 return Typ;
1903
1904 else
1905 T := Underlying_Type (T);
1906
1907 X := First_Index (T);
1908 while Present (X) loop
761f7dcb
AC
1909 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1910 or else
1911 Denotes_Discriminant (Type_High_Bound (Etype (X)))
0da2c8ac
AC
1912 then
1913 T := Base_Type (T);
1914 exit;
1915 end if;
1916
1917 Next_Index (X);
1918 end loop;
1919
1920 return T;
1921 end if;
1922 end Get_Arg_Type;
1923
fbf5a39b
AC
1924 --------------------------
1925 -- Handle_One_Dimension --
1926 ---------------------------
70482933 1927
fbf5a39b 1928 function Handle_One_Dimension
70482933 1929 (N : Int;
2e071734 1930 Index : Node_Id) return Node_Id
70482933 1931 is
0da2c8ac 1932 Need_Separate_Indexes : constant Boolean :=
761f7dcb 1933 Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
0da2c8ac 1934 -- If the index types are identical, and we are working with
685094bf
RD
1935 -- constrained types, then we can use the same index for both
1936 -- of the arrays.
0da2c8ac 1937
191fcb3a 1938 An : constant Entity_Id := Make_Temporary (Loc, 'A');
0da2c8ac
AC
1939
1940 Bn : Entity_Id;
1941 Index_T : Entity_Id;
1942 Stm_List : List_Id;
1943 Loop_Stm : Node_Id;
70482933
RK
1944
1945 begin
0da2c8ac
AC
1946 if N > Number_Dimensions (Ltyp) then
1947 return Component_Equality (Ltyp);
fbf5a39b 1948 end if;
70482933 1949
0da2c8ac
AC
1950 -- Case where we generate a loop
1951
1952 Index_T := Base_Type (Etype (Index));
1953
1954 if Need_Separate_Indexes then
191fcb3a 1955 Bn := Make_Temporary (Loc, 'B');
0da2c8ac
AC
1956 else
1957 Bn := An;
1958 end if;
70482933 1959
e4494292
RD
1960 Append (New_Occurrence_Of (An, Loc), Index_List1);
1961 Append (New_Occurrence_Of (Bn, Loc), Index_List2);
70482933 1962
0da2c8ac
AC
1963 Stm_List := New_List (
1964 Handle_One_Dimension (N + 1, Next_Index (Index)));
70482933 1965
0da2c8ac 1966 if Need_Separate_Indexes then
a9d8907c 1967
3b42c566 1968 -- Generate guard for loop, followed by increments of indexes
523456db
AC
1969
1970 Append_To (Stm_List,
1971 Make_Exit_Statement (Loc,
1972 Condition =>
1973 Make_Op_Eq (Loc,
e4494292 1974 Left_Opnd => New_Occurrence_Of (An, Loc),
523456db
AC
1975 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1976
1977 Append_To (Stm_List,
1978 Make_Assignment_Statement (Loc,
e4494292 1979 Name => New_Occurrence_Of (An, Loc),
523456db
AC
1980 Expression =>
1981 Make_Attribute_Reference (Loc,
e4494292 1982 Prefix => New_Occurrence_Of (Index_T, Loc),
523456db 1983 Attribute_Name => Name_Succ,
e4494292
RD
1984 Expressions => New_List (
1985 New_Occurrence_Of (An, Loc)))));
523456db 1986
0da2c8ac
AC
1987 Append_To (Stm_List,
1988 Make_Assignment_Statement (Loc,
e4494292 1989 Name => New_Occurrence_Of (Bn, Loc),
0da2c8ac
AC
1990 Expression =>
1991 Make_Attribute_Reference (Loc,
e4494292 1992 Prefix => New_Occurrence_Of (Index_T, Loc),
0da2c8ac 1993 Attribute_Name => Name_Succ,
e4494292
RD
1994 Expressions => New_List (
1995 New_Occurrence_Of (Bn, Loc)))));
0da2c8ac
AC
1996 end if;
1997
a9d8907c
JM
1998 -- If separate indexes, we need a declare block for An and Bn, and a
1999 -- loop without an iteration scheme.
0da2c8ac
AC
2000
2001 if Need_Separate_Indexes then
523456db
AC
2002 Loop_Stm :=
2003 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
2004
0da2c8ac
AC
2005 return
2006 Make_Block_Statement (Loc,
2007 Declarations => New_List (
523456db
AC
2008 Make_Object_Declaration (Loc,
2009 Defining_Identifier => An,
e4494292 2010 Object_Definition => New_Occurrence_Of (Index_T, Loc),
523456db
AC
2011 Expression => Arr_Attr (A, Name_First, N)),
2012
0da2c8ac
AC
2013 Make_Object_Declaration (Loc,
2014 Defining_Identifier => Bn,
e4494292 2015 Object_Definition => New_Occurrence_Of (Index_T, Loc),
0da2c8ac 2016 Expression => Arr_Attr (B, Name_First, N))),
523456db 2017
0da2c8ac
AC
2018 Handled_Statement_Sequence =>
2019 Make_Handled_Sequence_Of_Statements (Loc,
2020 Statements => New_List (Loop_Stm)));
2021
523456db
AC
2022 -- If no separate indexes, return loop statement with explicit
2023 -- iteration scheme on its own
0da2c8ac
AC
2024
2025 else
523456db
AC
2026 Loop_Stm :=
2027 Make_Implicit_Loop_Statement (Nod,
2028 Statements => Stm_List,
2029 Iteration_Scheme =>
2030 Make_Iteration_Scheme (Loc,
2031 Loop_Parameter_Specification =>
2032 Make_Loop_Parameter_Specification (Loc,
2033 Defining_Identifier => An,
2034 Discrete_Subtype_Definition =>
2035 Arr_Attr (A, Name_Range, N))));
0da2c8ac
AC
2036 return Loop_Stm;
2037 end if;
fbf5a39b
AC
2038 end Handle_One_Dimension;
2039
2040 -----------------------
2041 -- Test_Empty_Arrays --
2042 -----------------------
2043
2044 function Test_Empty_Arrays return Node_Id is
2045 Alist : Node_Id;
2046 Blist : Node_Id;
2047
2048 Atest : Node_Id;
2049 Btest : Node_Id;
70482933 2050
fbf5a39b
AC
2051 begin
2052 Alist := Empty;
2053 Blist := Empty;
0da2c8ac 2054 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
2055 Atest :=
2056 Make_Op_Eq (Loc,
2057 Left_Opnd => Arr_Attr (A, Name_Length, J),
2058 Right_Opnd => Make_Integer_Literal (Loc, 0));
2059
2060 Btest :=
2061 Make_Op_Eq (Loc,
2062 Left_Opnd => Arr_Attr (B, Name_Length, J),
2063 Right_Opnd => Make_Integer_Literal (Loc, 0));
2064
2065 if No (Alist) then
2066 Alist := Atest;
2067 Blist := Btest;
70482933 2068
fbf5a39b
AC
2069 else
2070 Alist :=
2071 Make_Or_Else (Loc,
2072 Left_Opnd => Relocate_Node (Alist),
2073 Right_Opnd => Atest);
2074
2075 Blist :=
2076 Make_Or_Else (Loc,
2077 Left_Opnd => Relocate_Node (Blist),
2078 Right_Opnd => Btest);
2079 end if;
2080 end loop;
70482933 2081
fbf5a39b
AC
2082 return
2083 Make_And_Then (Loc,
2084 Left_Opnd => Alist,
2085 Right_Opnd => Blist);
2086 end Test_Empty_Arrays;
70482933 2087
fbf5a39b
AC
2088 -----------------------------
2089 -- Test_Lengths_Correspond --
2090 -----------------------------
70482933 2091
fbf5a39b
AC
2092 function Test_Lengths_Correspond return Node_Id is
2093 Result : Node_Id;
2094 Rtest : Node_Id;
2095
2096 begin
2097 Result := Empty;
0da2c8ac 2098 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
2099 Rtest :=
2100 Make_Op_Ne (Loc,
2101 Left_Opnd => Arr_Attr (A, Name_Length, J),
2102 Right_Opnd => Arr_Attr (B, Name_Length, J));
2103
2104 if No (Result) then
2105 Result := Rtest;
2106 else
2107 Result :=
2108 Make_Or_Else (Loc,
2109 Left_Opnd => Relocate_Node (Result),
2110 Right_Opnd => Rtest);
2111 end if;
2112 end loop;
2113
2114 return Result;
2115 end Test_Lengths_Correspond;
70482933
RK
2116
2117 -- Start of processing for Expand_Array_Equality
2118
2119 begin
0da2c8ac
AC
2120 Ltyp := Get_Arg_Type (Lhs);
2121 Rtyp := Get_Arg_Type (Rhs);
2122
685094bf
RD
2123 -- For now, if the argument types are not the same, go to the base type,
2124 -- since the code assumes that the formals have the same type. This is
2125 -- fixable in future ???
0da2c8ac
AC
2126
2127 if Ltyp /= Rtyp then
2128 Ltyp := Base_Type (Ltyp);
2129 Rtyp := Base_Type (Rtyp);
2130 pragma Assert (Ltyp = Rtyp);
2131 end if;
2132
2133 -- Build list of formals for function
2134
70482933
RK
2135 Formals := New_List (
2136 Make_Parameter_Specification (Loc,
2137 Defining_Identifier => A,
e4494292 2138 Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
70482933
RK
2139
2140 Make_Parameter_Specification (Loc,
2141 Defining_Identifier => B,
e4494292 2142 Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
70482933 2143
191fcb3a 2144 Func_Name := Make_Temporary (Loc, 'E');
70482933 2145
fbf5a39b 2146 -- Build statement sequence for function
70482933
RK
2147
2148 Func_Body :=
2149 Make_Subprogram_Body (Loc,
2150 Specification =>
2151 Make_Function_Specification (Loc,
2152 Defining_Unit_Name => Func_Name,
2153 Parameter_Specifications => Formals,
e4494292 2154 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
fbf5a39b
AC
2155
2156 Declarations => Decls,
2157
70482933
RK
2158 Handled_Statement_Sequence =>
2159 Make_Handled_Sequence_Of_Statements (Loc,
2160 Statements => New_List (
fbf5a39b
AC
2161
2162 Make_Implicit_If_Statement (Nod,
2163 Condition => Test_Empty_Arrays,
2164 Then_Statements => New_List (
d766cee3 2165 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
2166 Expression =>
2167 New_Occurrence_Of (Standard_True, Loc)))),
2168
2169 Make_Implicit_If_Statement (Nod,
2170 Condition => Test_Lengths_Correspond,
2171 Then_Statements => New_List (
d766cee3 2172 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
2173 Expression =>
2174 New_Occurrence_Of (Standard_False, Loc)))),
2175
0da2c8ac 2176 Handle_One_Dimension (1, First_Index (Ltyp)),
fbf5a39b 2177
d766cee3 2178 Make_Simple_Return_Statement (Loc,
70482933
RK
2179 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2180
2181 Set_Has_Completion (Func_Name, True);
0da2c8ac 2182 Set_Is_Inlined (Func_Name);
70482933 2183
685094bf
RD
2184 -- If the array type is distinct from the type of the arguments, it
2185 -- is the full view of a private type. Apply an unchecked conversion
2186 -- to insure that analysis of the call succeeds.
70482933 2187
0da2c8ac
AC
2188 declare
2189 L, R : Node_Id;
2190
2191 begin
2192 L := Lhs;
2193 R := Rhs;
2194
2195 if No (Etype (Lhs))
2196 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
2197 then
2198 L := OK_Convert_To (Ltyp, Lhs);
2199 end if;
2200
2201 if No (Etype (Rhs))
2202 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
2203 then
2204 R := OK_Convert_To (Rtyp, Rhs);
2205 end if;
2206
2207 Actuals := New_List (L, R);
2208 end;
70482933
RK
2209
2210 Append_To (Bodies, Func_Body);
2211
2212 return
2213 Make_Function_Call (Loc,
e4494292 2214 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
2215 Parameter_Associations => Actuals);
2216 end Expand_Array_Equality;
2217
2218 -----------------------------
2219 -- Expand_Boolean_Operator --
2220 -----------------------------
2221
685094bf
RD
2222 -- Note that we first get the actual subtypes of the operands, since we
2223 -- always want to deal with types that have bounds.
70482933
RK
2224
2225 procedure Expand_Boolean_Operator (N : Node_Id) is
fbf5a39b 2226 Typ : constant Entity_Id := Etype (N);
70482933
RK
2227
2228 begin
685094bf
RD
2229 -- Special case of bit packed array where both operands are known to be
2230 -- properly aligned. In this case we use an efficient run time routine
2231 -- to carry out the operation (see System.Bit_Ops).
a9d8907c
JM
2232
2233 if Is_Bit_Packed_Array (Typ)
2234 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2235 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2236 then
70482933 2237 Expand_Packed_Boolean_Operator (N);
a9d8907c
JM
2238 return;
2239 end if;
70482933 2240
a9d8907c
JM
2241 -- For the normal non-packed case, the general expansion is to build
2242 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2243 -- and then inserting it into the tree. The original operator node is
2244 -- then rewritten as a call to this function. We also use this in the
2245 -- packed case if either operand is a possibly unaligned object.
70482933 2246
a9d8907c
JM
2247 declare
2248 Loc : constant Source_Ptr := Sloc (N);
2249 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2250 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2251 Func_Body : Node_Id;
2252 Func_Name : Entity_Id;
fbf5a39b 2253
a9d8907c
JM
2254 begin
2255 Convert_To_Actual_Subtype (L);
2256 Convert_To_Actual_Subtype (R);
2257 Ensure_Defined (Etype (L), N);
2258 Ensure_Defined (Etype (R), N);
2259 Apply_Length_Check (R, Etype (L));
2260
b4592168
GD
2261 if Nkind (N) = N_Op_Xor then
2262 Silly_Boolean_Array_Xor_Test (N, Etype (L));
2263 end if;
2264
a9d8907c
JM
2265 if Nkind (Parent (N)) = N_Assignment_Statement
2266 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2267 then
2268 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
fbf5a39b 2269
a9d8907c
JM
2270 elsif Nkind (Parent (N)) = N_Op_Not
2271 and then Nkind (N) = N_Op_And
2272 and then
b4592168 2273 Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
a9d8907c
JM
2274 then
2275 return;
2276 else
fbf5a39b 2277
a9d8907c
JM
2278 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2279 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2280 Insert_Action (N, Func_Body);
70482933 2281
a9d8907c 2282 -- Now rewrite the expression with a call
70482933 2283
a9d8907c
JM
2284 Rewrite (N,
2285 Make_Function_Call (Loc,
e4494292 2286 Name => New_Occurrence_Of (Func_Name, Loc),
a9d8907c
JM
2287 Parameter_Associations =>
2288 New_List (
2289 L,
2290 Make_Type_Conversion
e4494292 2291 (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
70482933 2292
a9d8907c
JM
2293 Analyze_And_Resolve (N, Typ);
2294 end if;
2295 end;
70482933
RK
2296 end Expand_Boolean_Operator;
2297
456cbfa5
AC
2298 ------------------------------------------------
2299 -- Expand_Compare_Minimize_Eliminate_Overflow --
2300 ------------------------------------------------
2301
2302 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2303 Loc : constant Source_Ptr := Sloc (N);
2304
71fb4dc8
AC
2305 Result_Type : constant Entity_Id := Etype (N);
2306 -- Capture result type (could be a derived boolean type)
2307
456cbfa5
AC
2308 Llo, Lhi : Uint;
2309 Rlo, Rhi : Uint;
2310
2311 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2312 -- Entity for Long_Long_Integer'Base
2313
15c94a55 2314 Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
a7f1b24f 2315 -- Current overflow checking mode
456cbfa5
AC
2316
2317 procedure Set_True;
2318 procedure Set_False;
2319 -- These procedures rewrite N with an occurrence of Standard_True or
2320 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2321
2322 ---------------
2323 -- Set_False --
2324 ---------------
2325
2326 procedure Set_False is
2327 begin
2328 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2329 Warn_On_Known_Condition (N);
2330 end Set_False;
2331
2332 --------------
2333 -- Set_True --
2334 --------------
2335
2336 procedure Set_True is
2337 begin
2338 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2339 Warn_On_Known_Condition (N);
2340 end Set_True;
2341
2342 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2343
2344 begin
2345 -- Nothing to do unless we have a comparison operator with operands
2346 -- that are signed integer types, and we are operating in either
2347 -- MINIMIZED or ELIMINATED overflow checking mode.
2348
2349 if Nkind (N) not in N_Op_Compare
2350 or else Check not in Minimized_Or_Eliminated
2351 or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2352 then
2353 return;
2354 end if;
2355
2356 -- OK, this is the case we are interested in. First step is to process
2357 -- our operands using the Minimize_Eliminate circuitry which applies
2358 -- this processing to the two operand subtrees.
2359
a7f1b24f 2360 Minimize_Eliminate_Overflows
c7e152b5 2361 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
a7f1b24f 2362 Minimize_Eliminate_Overflows
c7e152b5 2363 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
456cbfa5 2364
65f7ed64
AC
2365 -- See if the range information decides the result of the comparison.
2366 -- We can only do this if we in fact have full range information (which
2367 -- won't be the case if either operand is bignum at this stage).
456cbfa5 2368
65f7ed64
AC
2369 if Llo /= No_Uint and then Rlo /= No_Uint then
2370 case N_Op_Compare (Nkind (N)) is
456cbfa5
AC
2371 when N_Op_Eq =>
2372 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2373 Set_True;
a40ada7e 2374 elsif Llo > Rhi or else Lhi < Rlo then
456cbfa5
AC
2375 Set_False;
2376 end if;
2377
2378 when N_Op_Ge =>
2379 if Llo >= Rhi then
2380 Set_True;
2381 elsif Lhi < Rlo then
2382 Set_False;
2383 end if;
2384
2385 when N_Op_Gt =>
2386 if Llo > Rhi then
2387 Set_True;
2388 elsif Lhi <= Rlo then
2389 Set_False;
2390 end if;
2391
2392 when N_Op_Le =>
2393 if Llo > Rhi then
2394 Set_False;
2395 elsif Lhi <= Rlo then
2396 Set_True;
2397 end if;
2398
2399 when N_Op_Lt =>
2400 if Llo >= Rhi then
456cbfa5 2401 Set_False;
b6b5cca8
AC
2402 elsif Lhi < Rlo then
2403 Set_True;
456cbfa5
AC
2404 end if;
2405
2406 when N_Op_Ne =>
2407 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
456cbfa5 2408 Set_False;
a40ada7e
RD
2409 elsif Llo > Rhi or else Lhi < Rlo then
2410 Set_True;
456cbfa5 2411 end if;
65f7ed64 2412 end case;
456cbfa5 2413
65f7ed64 2414 -- All done if we did the rewrite
456cbfa5 2415
65f7ed64
AC
2416 if Nkind (N) not in N_Op_Compare then
2417 return;
2418 end if;
456cbfa5
AC
2419 end if;
2420
2421 -- Otherwise, time to do the comparison
2422
2423 declare
2424 Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2425 Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2426
2427 begin
2428 -- If the two operands have the same signed integer type we are
2429 -- all set, nothing more to do. This is the case where either
2430 -- both operands were unchanged, or we rewrote both of them to
2431 -- be Long_Long_Integer.
2432
2433 -- Note: Entity for the comparison may be wrong, but it's not worth
2434 -- the effort to change it, since the back end does not use it.
2435
2436 if Is_Signed_Integer_Type (Ltype)
2437 and then Base_Type (Ltype) = Base_Type (Rtype)
2438 then
2439 return;
2440
2441 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2442
2443 elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2444 declare
2445 Left : Node_Id := Left_Opnd (N);
2446 Right : Node_Id := Right_Opnd (N);
2447 -- Bignum references for left and right operands
2448
2449 begin
2450 if not Is_RTE (Ltype, RE_Bignum) then
2451 Left := Convert_To_Bignum (Left);
2452 elsif not Is_RTE (Rtype, RE_Bignum) then
2453 Right := Convert_To_Bignum (Right);
2454 end if;
2455
71fb4dc8 2456 -- We rewrite our node with:
456cbfa5 2457
71fb4dc8
AC
2458 -- do
2459 -- Bnn : Result_Type;
2460 -- declare
2461 -- M : Mark_Id := SS_Mark;
2462 -- begin
2463 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2464 -- SS_Release (M);
2465 -- end;
2466 -- in
2467 -- Bnn
2468 -- end
456cbfa5
AC
2469
2470 declare
71fb4dc8 2471 Blk : constant Node_Id := Make_Bignum_Block (Loc);
456cbfa5
AC
2472 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2473 Ent : RE_Id;
2474
2475 begin
2476 case N_Op_Compare (Nkind (N)) is
2477 when N_Op_Eq => Ent := RE_Big_EQ;
2478 when N_Op_Ge => Ent := RE_Big_GE;
2479 when N_Op_Gt => Ent := RE_Big_GT;
2480 when N_Op_Le => Ent := RE_Big_LE;
2481 when N_Op_Lt => Ent := RE_Big_LT;
2482 when N_Op_Ne => Ent := RE_Big_NE;
2483 end case;
2484
71fb4dc8 2485 -- Insert assignment to Bnn into the bignum block
456cbfa5
AC
2486
2487 Insert_Before
2488 (First (Statements (Handled_Statement_Sequence (Blk))),
2489 Make_Assignment_Statement (Loc,
2490 Name => New_Occurrence_Of (Bnn, Loc),
2491 Expression =>
2492 Make_Function_Call (Loc,
2493 Name =>
2494 New_Occurrence_Of (RTE (Ent), Loc),
2495 Parameter_Associations => New_List (Left, Right))));
2496
71fb4dc8
AC
2497 -- Now do the rewrite with expression actions
2498
2499 Rewrite (N,
2500 Make_Expression_With_Actions (Loc,
2501 Actions => New_List (
2502 Make_Object_Declaration (Loc,
2503 Defining_Identifier => Bnn,
2504 Object_Definition =>
2505 New_Occurrence_Of (Result_Type, Loc)),
2506 Blk),
2507 Expression => New_Occurrence_Of (Bnn, Loc)));
2508 Analyze_And_Resolve (N, Result_Type);
456cbfa5
AC
2509 end;
2510 end;
2511
2512 -- No bignums involved, but types are different, so we must have
2513 -- rewritten one of the operands as a Long_Long_Integer but not
2514 -- the other one.
2515
2516 -- If left operand is Long_Long_Integer, convert right operand
2517 -- and we are done (with a comparison of two Long_Long_Integers).
2518
2519 elsif Ltype = LLIB then
2520 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2521 Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2522 return;
2523
2524 -- If right operand is Long_Long_Integer, convert left operand
2525 -- and we are done (with a comparison of two Long_Long_Integers).
2526
2527 -- This is the only remaining possibility
2528
2529 else pragma Assert (Rtype = LLIB);
2530 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2531 Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2532 return;
2533 end if;
2534 end;
2535 end Expand_Compare_Minimize_Eliminate_Overflow;
2536
70482933
RK
2537 -------------------------------
2538 -- Expand_Composite_Equality --
2539 -------------------------------
2540
2541 -- This function is only called for comparing internal fields of composite
2542 -- types when these fields are themselves composites. This is a special
2543 -- case because it is not possible to respect normal Ada visibility rules.
2544
2545 function Expand_Composite_Equality
2546 (Nod : Node_Id;
2547 Typ : Entity_Id;
2548 Lhs : Node_Id;
2549 Rhs : Node_Id;
2e071734 2550 Bodies : List_Id) return Node_Id
70482933
RK
2551 is
2552 Loc : constant Source_Ptr := Sloc (Nod);
2553 Full_Type : Entity_Id;
2554 Prim : Elmt_Id;
2555 Eq_Op : Entity_Id;
2556
7efc3f2d
AC
2557 function Find_Primitive_Eq return Node_Id;
2558 -- AI05-0123: Locate primitive equality for type if it exists, and
2559 -- build the corresponding call. If operation is abstract, replace
2560 -- call with an explicit raise. Return Empty if there is no primitive.
2561
2562 -----------------------
2563 -- Find_Primitive_Eq --
2564 -----------------------
2565
2566 function Find_Primitive_Eq return Node_Id is
2567 Prim_E : Elmt_Id;
2568 Prim : Node_Id;
2569
2570 begin
2571 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2572 while Present (Prim_E) loop
2573 Prim := Node (Prim_E);
2574
2575 -- Locate primitive equality with the right signature
2576
2577 if Chars (Prim) = Name_Op_Eq
2578 and then Etype (First_Formal (Prim)) =
39ade2f9 2579 Etype (Next_Formal (First_Formal (Prim)))
7efc3f2d
AC
2580 and then Etype (Prim) = Standard_Boolean
2581 then
2582 if Is_Abstract_Subprogram (Prim) then
2583 return
2584 Make_Raise_Program_Error (Loc,
2585 Reason => PE_Explicit_Raise);
2586
2587 else
2588 return
2589 Make_Function_Call (Loc,
e4494292 2590 Name => New_Occurrence_Of (Prim, Loc),
7efc3f2d
AC
2591 Parameter_Associations => New_List (Lhs, Rhs));
2592 end if;
2593 end if;
2594
2595 Next_Elmt (Prim_E);
2596 end loop;
2597
2598 -- If not found, predefined operation will be used
2599
2600 return Empty;
2601 end Find_Primitive_Eq;
2602
2603 -- Start of processing for Expand_Composite_Equality
2604
70482933
RK
2605 begin
2606 if Is_Private_Type (Typ) then
2607 Full_Type := Underlying_Type (Typ);
2608 else
2609 Full_Type := Typ;
2610 end if;
2611
ced8450b
ES
2612 -- If the private type has no completion the context may be the
2613 -- expansion of a composite equality for a composite type with some
2614 -- still incomplete components. The expression will not be analyzed
2615 -- until the enclosing type is completed, at which point this will be
2616 -- properly expanded, unless there is a bona fide completion error.
70482933
RK
2617
2618 if No (Full_Type) then
ced8450b 2619 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933
RK
2620 end if;
2621
2622 Full_Type := Base_Type (Full_Type);
2623
da1b76c1
HK
2624 -- When the base type itself is private, use the full view to expand
2625 -- the composite equality.
2626
2627 if Is_Private_Type (Full_Type) then
2628 Full_Type := Underlying_Type (Full_Type);
2629 end if;
2630
16788d44
RD
2631 -- Case of array types
2632
70482933
RK
2633 if Is_Array_Type (Full_Type) then
2634
2635 -- If the operand is an elementary type other than a floating-point
2636 -- type, then we can simply use the built-in block bitwise equality,
2637 -- since the predefined equality operators always apply and bitwise
2638 -- equality is fine for all these cases.
2639
2640 if Is_Elementary_Type (Component_Type (Full_Type))
2641 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2642 then
39ade2f9 2643 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933 2644
685094bf
RD
2645 -- For composite component types, and floating-point types, use the
2646 -- expansion. This deals with tagged component types (where we use
2647 -- the applicable equality routine) and floating-point, (where we
2648 -- need to worry about negative zeroes), and also the case of any
2649 -- composite type recursively containing such fields.
70482933
RK
2650
2651 else
0da2c8ac 2652 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
70482933
RK
2653 end if;
2654
16788d44
RD
2655 -- Case of tagged record types
2656
70482933
RK
2657 elsif Is_Tagged_Type (Full_Type) then
2658
2659 -- Call the primitive operation "=" of this type
2660
2661 if Is_Class_Wide_Type (Full_Type) then
2662 Full_Type := Root_Type (Full_Type);
2663 end if;
2664
685094bf
RD
2665 -- If this is derived from an untagged private type completed with a
2666 -- tagged type, it does not have a full view, so we use the primitive
2667 -- operations of the private type. This check should no longer be
2668 -- necessary when these types receive their full views ???
70482933
RK
2669
2670 if Is_Private_Type (Typ)
2671 and then not Is_Tagged_Type (Typ)
2672 and then not Is_Controlled (Typ)
2673 and then Is_Derived_Type (Typ)
2674 and then No (Full_View (Typ))
2675 then
2676 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2677 else
2678 Prim := First_Elmt (Primitive_Operations (Full_Type));
2679 end if;
2680
2681 loop
2682 Eq_Op := Node (Prim);
2683 exit when Chars (Eq_Op) = Name_Op_Eq
2684 and then Etype (First_Formal (Eq_Op)) =
e6f69614
AC
2685 Etype (Next_Formal (First_Formal (Eq_Op)))
2686 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
70482933
RK
2687 Next_Elmt (Prim);
2688 pragma Assert (Present (Prim));
2689 end loop;
2690
2691 Eq_Op := Node (Prim);
2692
2693 return
2694 Make_Function_Call (Loc,
e4494292 2695 Name => New_Occurrence_Of (Eq_Op, Loc),
70482933
RK
2696 Parameter_Associations =>
2697 New_List
2698 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2699 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2700
16788d44
RD
2701 -- Case of untagged record types
2702
70482933 2703 elsif Is_Record_Type (Full_Type) then
fbf5a39b 2704 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
70482933
RK
2705
2706 if Present (Eq_Op) then
2707 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2708
685094bf
RD
2709 -- Inherited equality from parent type. Convert the actuals to
2710 -- match signature of operation.
70482933
RK
2711
2712 declare
fbf5a39b 2713 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
70482933
RK
2714
2715 begin
2716 return
2717 Make_Function_Call (Loc,
e4494292 2718 Name => New_Occurrence_Of (Eq_Op, Loc),
39ade2f9
AC
2719 Parameter_Associations => New_List (
2720 OK_Convert_To (T, Lhs),
2721 OK_Convert_To (T, Rhs)));
70482933
RK
2722 end;
2723
2724 else
5d09245e
AC
2725 -- Comparison between Unchecked_Union components
2726
2727 if Is_Unchecked_Union (Full_Type) then
2728 declare
2729 Lhs_Type : Node_Id := Full_Type;
2730 Rhs_Type : Node_Id := Full_Type;
2731 Lhs_Discr_Val : Node_Id;
2732 Rhs_Discr_Val : Node_Id;
2733
2734 begin
2735 -- Lhs subtype
2736
2737 if Nkind (Lhs) = N_Selected_Component then
2738 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2739 end if;
2740
2741 -- Rhs subtype
2742
2743 if Nkind (Rhs) = N_Selected_Component then
2744 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2745 end if;
2746
2747 -- Lhs of the composite equality
2748
2749 if Is_Constrained (Lhs_Type) then
2750
685094bf 2751 -- Since the enclosing record type can never be an
5d09245e
AC
2752 -- Unchecked_Union (this code is executed for records
2753 -- that do not have variants), we may reference its
2754 -- discriminant(s).
2755
2756 if Nkind (Lhs) = N_Selected_Component
533369aa
AC
2757 and then Has_Per_Object_Constraint
2758 (Entity (Selector_Name (Lhs)))
5d09245e
AC
2759 then
2760 Lhs_Discr_Val :=
2761 Make_Selected_Component (Loc,
39ade2f9 2762 Prefix => Prefix (Lhs),
5d09245e 2763 Selector_Name =>
39ade2f9
AC
2764 New_Copy
2765 (Get_Discriminant_Value
2766 (First_Discriminant (Lhs_Type),
2767 Lhs_Type,
2768 Stored_Constraint (Lhs_Type))));
5d09245e
AC
2769
2770 else
39ade2f9
AC
2771 Lhs_Discr_Val :=
2772 New_Copy
2773 (Get_Discriminant_Value
2774 (First_Discriminant (Lhs_Type),
2775 Lhs_Type,
2776 Stored_Constraint (Lhs_Type)));
5d09245e
AC
2777
2778 end if;
2779 else
2780 -- It is not possible to infer the discriminant since
2781 -- the subtype is not constrained.
2782
8aceda64 2783 return
5d09245e 2784 Make_Raise_Program_Error (Loc,
8aceda64 2785 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2786 end if;
2787
2788 -- Rhs of the composite equality
2789
2790 if Is_Constrained (Rhs_Type) then
2791 if Nkind (Rhs) = N_Selected_Component
39ade2f9
AC
2792 and then Has_Per_Object_Constraint
2793 (Entity (Selector_Name (Rhs)))
5d09245e
AC
2794 then
2795 Rhs_Discr_Val :=
2796 Make_Selected_Component (Loc,
39ade2f9 2797 Prefix => Prefix (Rhs),
5d09245e 2798 Selector_Name =>
39ade2f9
AC
2799 New_Copy
2800 (Get_Discriminant_Value
2801 (First_Discriminant (Rhs_Type),
2802 Rhs_Type,
2803 Stored_Constraint (Rhs_Type))));
5d09245e
AC
2804
2805 else
39ade2f9
AC
2806 Rhs_Discr_Val :=
2807 New_Copy
2808 (Get_Discriminant_Value
2809 (First_Discriminant (Rhs_Type),
2810 Rhs_Type,
2811 Stored_Constraint (Rhs_Type)));
5d09245e
AC
2812
2813 end if;
2814 else
8aceda64 2815 return
5d09245e 2816 Make_Raise_Program_Error (Loc,
8aceda64 2817 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2818 end if;
2819
2820 -- Call the TSS equality function with the inferred
2821 -- discriminant values.
2822
2823 return
2824 Make_Function_Call (Loc,
e4494292 2825 Name => New_Occurrence_Of (Eq_Op, Loc),
5d09245e
AC
2826 Parameter_Associations => New_List (
2827 Lhs,
2828 Rhs,
2829 Lhs_Discr_Val,
2830 Rhs_Discr_Val));
2831 end;
d151d6a3
AC
2832
2833 else
2834 return
2835 Make_Function_Call (Loc,
e4494292 2836 Name => New_Occurrence_Of (Eq_Op, Loc),
d151d6a3 2837 Parameter_Associations => New_List (Lhs, Rhs));
5d09245e 2838 end if;
d151d6a3 2839 end if;
5d09245e 2840
3058f181
BD
2841 -- Equality composes in Ada 2012 for untagged record types. It also
2842 -- composes for bounded strings, because they are part of the
2843 -- predefined environment. We could make it compose for bounded
2844 -- strings by making them tagged, or by making sure all subcomponents
2845 -- are set to the same value, even when not used. Instead, we have
2846 -- this special case in the compiler, because it's more efficient.
2847
2848 elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
5d09245e 2849
08daa782 2850 -- If no TSS has been created for the type, check whether there is
7efc3f2d 2851 -- a primitive equality declared for it.
d151d6a3
AC
2852
2853 declare
3058f181 2854 Op : constant Node_Id := Find_Primitive_Eq;
d151d6a3
AC
2855
2856 begin
a1fc903a
AC
2857 -- Use user-defined primitive if it exists, otherwise use
2858 -- predefined equality.
2859
3058f181
BD
2860 if Present (Op) then
2861 return Op;
7efc3f2d 2862 else
7efc3f2d
AC
2863 return Make_Op_Eq (Loc, Lhs, Rhs);
2864 end if;
d151d6a3
AC
2865 end;
2866
70482933
RK
2867 else
2868 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2869 end if;
2870
16788d44 2871 -- Non-composite types (always use predefined equality)
70482933 2872
16788d44 2873 else
70482933
RK
2874 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2875 end if;
2876 end Expand_Composite_Equality;
2877
fdac1f80
AC
2878 ------------------------
2879 -- Expand_Concatenate --
2880 ------------------------
70482933 2881
fdac1f80
AC
2882 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2883 Loc : constant Source_Ptr := Sloc (Cnode);
70482933 2884
fdac1f80
AC
2885 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2886 -- Result type of concatenation
70482933 2887
fdac1f80
AC
2888 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2889 -- Component type. Elements of this component type can appear as one
2890 -- of the operands of concatenation as well as arrays.
70482933 2891
ecc4ddde
AC
2892 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2893 -- Index subtype
2894
2895 Ityp : constant Entity_Id := Base_Type (Istyp);
2896 -- Index type. This is the base type of the index subtype, and is used
2897 -- for all computed bounds (which may be out of range of Istyp in the
2898 -- case of null ranges).
70482933 2899
46ff89f3 2900 Artyp : Entity_Id;
fdac1f80
AC
2901 -- This is the type we use to do arithmetic to compute the bounds and
2902 -- lengths of operands. The choice of this type is a little subtle and
2903 -- is discussed in a separate section at the start of the body code.
70482933 2904
fdac1f80
AC
2905 Concatenation_Error : exception;
2906 -- Raised if concatenation is sure to raise a CE
70482933 2907
0ac73189
AC
2908 Result_May_Be_Null : Boolean := True;
2909 -- Reset to False if at least one operand is encountered which is known
2910 -- at compile time to be non-null. Used for handling the special case
2911 -- of setting the high bound to the last operand high bound for a null
2912 -- result, thus ensuring a proper high bound in the super-flat case.
2913
df46b832 2914 N : constant Nat := List_Length (Opnds);
fdac1f80 2915 -- Number of concatenation operands including possibly null operands
df46b832
AC
2916
2917 NN : Nat := 0;
a29262fd
AC
2918 -- Number of operands excluding any known to be null, except that the
2919 -- last operand is always retained, in case it provides the bounds for
2920 -- a null result.
2921
2922 Opnd : Node_Id;
2923 -- Current operand being processed in the loop through operands. After
2924 -- this loop is complete, always contains the last operand (which is not
2925 -- the same as Operands (NN), since null operands are skipped).
df46b832
AC
2926
2927 -- Arrays describing the operands, only the first NN entries of each
2928 -- array are set (NN < N when we exclude known null operands).
2929
2930 Is_Fixed_Length : array (1 .. N) of Boolean;
2931 -- True if length of corresponding operand known at compile time
2932
2933 Operands : array (1 .. N) of Node_Id;
a29262fd
AC
2934 -- Set to the corresponding entry in the Opnds list (but note that null
2935 -- operands are excluded, so not all entries in the list are stored).
df46b832
AC
2936
2937 Fixed_Length : array (1 .. N) of Uint;
fdac1f80
AC
2938 -- Set to length of operand. Entries in this array are set only if the
2939 -- corresponding entry in Is_Fixed_Length is True.
df46b832 2940
0ac73189
AC
2941 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2942 -- Set to lower bound of operand. Either an integer literal in the case
2943 -- where the bound is known at compile time, else actual lower bound.
2944 -- The operand low bound is of type Ityp.
2945
df46b832
AC
2946 Var_Length : array (1 .. N) of Entity_Id;
2947 -- Set to an entity of type Natural that contains the length of an
2948 -- operand whose length is not known at compile time. Entries in this
2949 -- array are set only if the corresponding entry in Is_Fixed_Length
46ff89f3 2950 -- is False. The entity is of type Artyp.
df46b832
AC
2951
2952 Aggr_Length : array (0 .. N) of Node_Id;
fdac1f80
AC
2953 -- The J'th entry in an expression node that represents the total length
2954 -- of operands 1 through J. It is either an integer literal node, or a
2955 -- reference to a constant entity with the right value, so it is fine
2956 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
46ff89f3 2957 -- entry always is set to zero. The length is of type Artyp.
df46b832
AC
2958
2959 Low_Bound : Node_Id;
0ac73189
AC
2960 -- A tree node representing the low bound of the result (of type Ityp).
2961 -- This is either an integer literal node, or an identifier reference to
2962 -- a constant entity initialized to the appropriate value.
2963
88a27b18
AC
2964 Last_Opnd_Low_Bound : Node_Id;
2965 -- A tree node representing the low bound of the last operand. This
2966 -- need only be set if the result could be null. It is used for the
2967 -- special case of setting the right low bound for a null result.
2968 -- This is of type Ityp.
2969
a29262fd
AC
2970 Last_Opnd_High_Bound : Node_Id;
2971 -- A tree node representing the high bound of the last operand. This
2972 -- need only be set if the result could be null. It is used for the
2973 -- special case of setting the right high bound for a null result.
2974 -- This is of type Ityp.
2975
0ac73189
AC
2976 High_Bound : Node_Id;
2977 -- A tree node representing the high bound of the result (of type Ityp)
df46b832
AC
2978
2979 Result : Node_Id;
0ac73189 2980 -- Result of the concatenation (of type Ityp)
df46b832 2981
d0f8d157 2982 Actions : constant List_Id := New_List;
4c9fe6c7 2983 -- Collect actions to be inserted
d0f8d157 2984
fa969310 2985 Known_Non_Null_Operand_Seen : Boolean;
308e6f3a 2986 -- Set True during generation of the assignments of operands into
fa969310
AC
2987 -- result once an operand known to be non-null has been seen.
2988
2989 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2990 -- This function makes an N_Integer_Literal node that is returned in
2991 -- analyzed form with the type set to Artyp. Importantly this literal
2992 -- is not flagged as static, so that if we do computations with it that
2993 -- result in statically detected out of range conditions, we will not
2994 -- generate error messages but instead warning messages.
2995
46ff89f3 2996 function To_Artyp (X : Node_Id) return Node_Id;
fdac1f80 2997 -- Given a node of type Ityp, returns the corresponding value of type
76c597a1
AC
2998 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2999 -- For enum types, the Pos of the value is returned.
fdac1f80
AC
3000
3001 function To_Ityp (X : Node_Id) return Node_Id;
0ac73189 3002 -- The inverse function (uses Val in the case of enumeration types)
fdac1f80 3003
fa969310
AC
3004 ------------------------
3005 -- Make_Artyp_Literal --
3006 ------------------------
3007
3008 function Make_Artyp_Literal (Val : Nat) return Node_Id is
3009 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
3010 begin
3011 Set_Etype (Result, Artyp);
3012 Set_Analyzed (Result, True);
3013 Set_Is_Static_Expression (Result, False);
3014 return Result;
3015 end Make_Artyp_Literal;
76c597a1 3016
fdac1f80 3017 --------------
46ff89f3 3018 -- To_Artyp --
fdac1f80
AC
3019 --------------
3020
46ff89f3 3021 function To_Artyp (X : Node_Id) return Node_Id is
fdac1f80 3022 begin
46ff89f3 3023 if Ityp = Base_Type (Artyp) then
fdac1f80
AC
3024 return X;
3025
3026 elsif Is_Enumeration_Type (Ityp) then
3027 return
3028 Make_Attribute_Reference (Loc,
3029 Prefix => New_Occurrence_Of (Ityp, Loc),
3030 Attribute_Name => Name_Pos,
3031 Expressions => New_List (X));
3032
3033 else
46ff89f3 3034 return Convert_To (Artyp, X);
fdac1f80 3035 end if;
46ff89f3 3036 end To_Artyp;
fdac1f80
AC
3037
3038 -------------
3039 -- To_Ityp --
3040 -------------
3041
3042 function To_Ityp (X : Node_Id) return Node_Id is
3043 begin
2fc05e3d 3044 if Is_Enumeration_Type (Ityp) then
fdac1f80
AC
3045 return
3046 Make_Attribute_Reference (Loc,
3047 Prefix => New_Occurrence_Of (Ityp, Loc),
3048 Attribute_Name => Name_Val,
3049 Expressions => New_List (X));
3050
3051 -- Case where we will do a type conversion
3052
3053 else
76c597a1
AC
3054 if Ityp = Base_Type (Artyp) then
3055 return X;
fdac1f80 3056 else
76c597a1 3057 return Convert_To (Ityp, X);
fdac1f80
AC
3058 end if;
3059 end if;
3060 end To_Ityp;
3061
3062 -- Local Declarations
3063
00ba7be8
AC
3064 Lib_Level_Target : constant Boolean :=
3065 Nkind (Parent (Cnode)) = N_Object_Declaration
3066 and then
3067 Is_Library_Level_Entity (Defining_Identifier (Parent (Cnode)));
3068
3069 -- If the concatenation declares a library level entity, we call the
3070 -- built-in concatenation routines to prevent code bloat, regardless
3071 -- of optimization level. This is space-efficient, and prevent linking
3072 -- problems when units are compiled with different optimizations.
3073
0ac73189
AC
3074 Opnd_Typ : Entity_Id;
3075 Ent : Entity_Id;
3076 Len : Uint;
3077 J : Nat;
3078 Clen : Node_Id;
3079 Set : Boolean;
70482933 3080
f46faa08
AC
3081 -- Start of processing for Expand_Concatenate
3082
70482933 3083 begin
fdac1f80
AC
3084 -- Choose an appropriate computational type
3085
3086 -- We will be doing calculations of lengths and bounds in this routine
3087 -- and computing one from the other in some cases, e.g. getting the high
3088 -- bound by adding the length-1 to the low bound.
3089
3090 -- We can't just use the index type, or even its base type for this
3091 -- purpose for two reasons. First it might be an enumeration type which
308e6f3a
RW
3092 -- is not suitable for computations of any kind, and second it may
3093 -- simply not have enough range. For example if the index type is
3094 -- -128..+127 then lengths can be up to 256, which is out of range of
3095 -- the type.
fdac1f80
AC
3096
3097 -- For enumeration types, we can simply use Standard_Integer, this is
3098 -- sufficient since the actual number of enumeration literals cannot
3099 -- possibly exceed the range of integer (remember we will be doing the
0ac73189 3100 -- arithmetic with POS values, not representation values).
fdac1f80
AC
3101
3102 if Is_Enumeration_Type (Ityp) then
46ff89f3 3103 Artyp := Standard_Integer;
fdac1f80 3104
59262ebb
AC
3105 -- If index type is Positive, we use the standard unsigned type, to give
3106 -- more room on the top of the range, obviating the need for an overflow
3107 -- check when creating the upper bound. This is needed to avoid junk
3108 -- overflow checks in the common case of String types.
3109
3110 -- ??? Disabled for now
3111
3112 -- elsif Istyp = Standard_Positive then
3113 -- Artyp := Standard_Unsigned;
3114
2fc05e3d
AC
3115 -- For modular types, we use a 32-bit modular type for types whose size
3116 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3117 -- identity type, and for larger unsigned types we use 64-bits.
fdac1f80 3118
2fc05e3d 3119 elsif Is_Modular_Integer_Type (Ityp) then
ecc4ddde 3120 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
46ff89f3 3121 Artyp := Standard_Unsigned;
ecc4ddde 3122 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
46ff89f3 3123 Artyp := Ityp;
fdac1f80 3124 else
46ff89f3 3125 Artyp := RTE (RE_Long_Long_Unsigned);
fdac1f80
AC
3126 end if;
3127
2fc05e3d 3128 -- Similar treatment for signed types
fdac1f80
AC
3129
3130 else
ecc4ddde 3131 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
46ff89f3 3132 Artyp := Standard_Integer;
ecc4ddde 3133 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
46ff89f3 3134 Artyp := Ityp;
fdac1f80 3135 else
46ff89f3 3136 Artyp := Standard_Long_Long_Integer;
fdac1f80
AC
3137 end if;
3138 end if;
3139
fa969310
AC
3140 -- Supply dummy entry at start of length array
3141
3142 Aggr_Length (0) := Make_Artyp_Literal (0);
3143
fdac1f80 3144 -- Go through operands setting up the above arrays
70482933 3145
df46b832
AC
3146 J := 1;
3147 while J <= N loop
3148 Opnd := Remove_Head (Opnds);
0ac73189 3149 Opnd_Typ := Etype (Opnd);
fdac1f80
AC
3150
3151 -- The parent got messed up when we put the operands in a list,
d347f572
AC
3152 -- so now put back the proper parent for the saved operand, that
3153 -- is to say the concatenation node, to make sure that each operand
3154 -- is seen as a subexpression, e.g. if actions must be inserted.
fdac1f80 3155
d347f572 3156 Set_Parent (Opnd, Cnode);
fdac1f80
AC
3157
3158 -- Set will be True when we have setup one entry in the array
3159
df46b832
AC
3160 Set := False;
3161
fdac1f80 3162 -- Singleton element (or character literal) case
df46b832 3163
0ac73189 3164 if Base_Type (Opnd_Typ) = Ctyp then
df46b832
AC
3165 NN := NN + 1;
3166 Operands (NN) := Opnd;
3167 Is_Fixed_Length (NN) := True;
3168 Fixed_Length (NN) := Uint_1;
0ac73189 3169 Result_May_Be_Null := False;
fdac1f80 3170
a29262fd
AC
3171 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3172 -- since we know that the result cannot be null).
fdac1f80 3173
0ac73189
AC
3174 Opnd_Low_Bound (NN) :=
3175 Make_Attribute_Reference (Loc,
e4494292 3176 Prefix => New_Occurrence_Of (Istyp, Loc),
0ac73189
AC
3177 Attribute_Name => Name_First);
3178
df46b832
AC
3179 Set := True;
3180
fdac1f80 3181 -- String literal case (can only occur for strings of course)
df46b832
AC
3182
3183 elsif Nkind (Opnd) = N_String_Literal then
0ac73189 3184 Len := String_Literal_Length (Opnd_Typ);
df46b832 3185
a29262fd
AC
3186 if Len /= 0 then
3187 Result_May_Be_Null := False;
3188 end if;
3189
88a27b18 3190 -- Capture last operand low and high bound if result could be null
a29262fd
AC
3191
3192 if J = N and then Result_May_Be_Null then
88a27b18
AC
3193 Last_Opnd_Low_Bound :=
3194 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3195
a29262fd 3196 Last_Opnd_High_Bound :=
88a27b18 3197 Make_Op_Subtract (Loc,
a29262fd
AC
3198 Left_Opnd =>
3199 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
59262ebb 3200 Right_Opnd => Make_Integer_Literal (Loc, 1));
a29262fd
AC
3201 end if;
3202
3203 -- Skip null string literal
fdac1f80 3204
0ac73189 3205 if J < N and then Len = 0 then
df46b832
AC
3206 goto Continue;
3207 end if;
3208
3209 NN := NN + 1;
3210 Operands (NN) := Opnd;
3211 Is_Fixed_Length (NN) := True;
0ac73189
AC
3212
3213 -- Set length and bounds
3214
df46b832 3215 Fixed_Length (NN) := Len;
0ac73189
AC
3216
3217 Opnd_Low_Bound (NN) :=
3218 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3219
df46b832
AC
3220 Set := True;
3221
3222 -- All other cases
3223
3224 else
3225 -- Check constrained case with known bounds
3226
0ac73189 3227 if Is_Constrained (Opnd_Typ) then
df46b832 3228 declare
df46b832
AC
3229 Index : constant Node_Id := First_Index (Opnd_Typ);
3230 Indx_Typ : constant Entity_Id := Etype (Index);
3231 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
3232 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
3233
3234 begin
fdac1f80
AC
3235 -- Fixed length constrained array type with known at compile
3236 -- time bounds is last case of fixed length operand.
df46b832
AC
3237
3238 if Compile_Time_Known_Value (Lo)
3239 and then
3240 Compile_Time_Known_Value (Hi)
3241 then
3242 declare
3243 Loval : constant Uint := Expr_Value (Lo);
3244 Hival : constant Uint := Expr_Value (Hi);
3245 Len : constant Uint :=
3246 UI_Max (Hival - Loval + 1, Uint_0);
3247
3248 begin
0ac73189
AC
3249 if Len > 0 then
3250 Result_May_Be_Null := False;
df46b832 3251 end if;
0ac73189 3252
88a27b18 3253 -- Capture last operand bounds if result could be null
a29262fd
AC
3254
3255 if J = N and then Result_May_Be_Null then
88a27b18
AC
3256 Last_Opnd_Low_Bound :=
3257 Convert_To (Ityp,
3258 Make_Integer_Literal (Loc, Expr_Value (Lo)));
3259
a29262fd
AC
3260 Last_Opnd_High_Bound :=
3261 Convert_To (Ityp,
39ade2f9 3262 Make_Integer_Literal (Loc, Expr_Value (Hi)));
a29262fd
AC
3263 end if;
3264
3265 -- Exclude null length case unless last operand
0ac73189 3266
a29262fd 3267 if J < N and then Len = 0 then
0ac73189
AC
3268 goto Continue;
3269 end if;
3270
3271 NN := NN + 1;
3272 Operands (NN) := Opnd;
3273 Is_Fixed_Length (NN) := True;
3274 Fixed_Length (NN) := Len;
3275
39ade2f9
AC
3276 Opnd_Low_Bound (NN) :=
3277 To_Ityp
3278 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
0ac73189 3279 Set := True;
df46b832
AC
3280 end;
3281 end if;
3282 end;
3283 end if;
3284
0ac73189
AC
3285 -- All cases where the length is not known at compile time, or the
3286 -- special case of an operand which is known to be null but has a
3287 -- lower bound other than 1 or is other than a string type.
df46b832
AC
3288
3289 if not Set then
3290 NN := NN + 1;
0ac73189
AC
3291
3292 -- Capture operand bounds
3293
3294 Opnd_Low_Bound (NN) :=
3295 Make_Attribute_Reference (Loc,
3296 Prefix =>
3297 Duplicate_Subexpr (Opnd, Name_Req => True),
3298 Attribute_Name => Name_First);
3299
88a27b18
AC
3300 -- Capture last operand bounds if result could be null
3301
a29262fd 3302 if J = N and Result_May_Be_Null then
88a27b18
AC
3303 Last_Opnd_Low_Bound :=
3304 Convert_To (Ityp,
3305 Make_Attribute_Reference (Loc,
3306 Prefix =>
3307 Duplicate_Subexpr (Opnd, Name_Req => True),
3308 Attribute_Name => Name_First));
3309
a29262fd
AC
3310 Last_Opnd_High_Bound :=
3311 Convert_To (Ityp,
3312 Make_Attribute_Reference (Loc,
3313 Prefix =>
3314 Duplicate_Subexpr (Opnd, Name_Req => True),
3315 Attribute_Name => Name_Last));
3316 end if;
0ac73189
AC
3317
3318 -- Capture length of operand in entity
3319
df46b832
AC
3320 Operands (NN) := Opnd;
3321 Is_Fixed_Length (NN) := False;
3322
191fcb3a 3323 Var_Length (NN) := Make_Temporary (Loc, 'L');
df46b832 3324
d0f8d157 3325 Append_To (Actions,
df46b832
AC
3326 Make_Object_Declaration (Loc,
3327 Defining_Identifier => Var_Length (NN),
3328 Constant_Present => True,
39ade2f9 3329 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
3330 Expression =>
3331 Make_Attribute_Reference (Loc,
3332 Prefix =>
3333 Duplicate_Subexpr (Opnd, Name_Req => True),
d0f8d157 3334 Attribute_Name => Name_Length)));
df46b832
AC
3335 end if;
3336 end if;
3337
3338 -- Set next entry in aggregate length array
3339
3340 -- For first entry, make either integer literal for fixed length
0ac73189 3341 -- or a reference to the saved length for variable length.
df46b832
AC
3342
3343 if NN = 1 then
3344 if Is_Fixed_Length (1) then
39ade2f9 3345 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
df46b832 3346 else
e4494292 3347 Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
df46b832
AC
3348 end if;
3349
3350 -- If entry is fixed length and only fixed lengths so far, make
3351 -- appropriate new integer literal adding new length.
3352
3353 elsif Is_Fixed_Length (NN)
3354 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3355 then
3356 Aggr_Length (NN) :=
3357 Make_Integer_Literal (Loc,
3358 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3359
d0f8d157
AC
3360 -- All other cases, construct an addition node for the length and
3361 -- create an entity initialized to this length.
df46b832
AC
3362
3363 else
191fcb3a 3364 Ent := Make_Temporary (Loc, 'L');
df46b832
AC
3365
3366 if Is_Fixed_Length (NN) then
3367 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3368 else
e4494292 3369 Clen := New_Occurrence_Of (Var_Length (NN), Loc);
df46b832
AC
3370 end if;
3371
d0f8d157 3372 Append_To (Actions,
df46b832
AC
3373 Make_Object_Declaration (Loc,
3374 Defining_Identifier => Ent,
3375 Constant_Present => True,
39ade2f9 3376 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
3377 Expression =>
3378 Make_Op_Add (Loc,
3379 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
d0f8d157 3380 Right_Opnd => Clen)));
df46b832 3381
76c597a1 3382 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
df46b832
AC
3383 end if;
3384
3385 <<Continue>>
3386 J := J + 1;
3387 end loop;
3388
a29262fd 3389 -- If we have only skipped null operands, return the last operand
df46b832
AC
3390
3391 if NN = 0 then
a29262fd 3392 Result := Opnd;
df46b832
AC
3393 goto Done;
3394 end if;
3395
3396 -- If we have only one non-null operand, return it and we are done.
3397 -- There is one case in which this cannot be done, and that is when
fdac1f80
AC
3398 -- the sole operand is of the element type, in which case it must be
3399 -- converted to an array, and the easiest way of doing that is to go
df46b832
AC
3400 -- through the normal general circuit.
3401
533369aa 3402 if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
df46b832
AC
3403 Result := Operands (1);
3404 goto Done;
3405 end if;
3406
3407 -- Cases where we have a real concatenation
3408
fdac1f80
AC
3409 -- Next step is to find the low bound for the result array that we
3410 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3411
3412 -- If the ultimate ancestor of the index subtype is a constrained array
3413 -- definition, then the lower bound is that of the index subtype as
3414 -- specified by (RM 4.5.3(6)).
3415
3416 -- The right test here is to go to the root type, and then the ultimate
3417 -- ancestor is the first subtype of this root type.
3418
3419 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
0ac73189 3420 Low_Bound :=
fdac1f80
AC
3421 Make_Attribute_Reference (Loc,
3422 Prefix =>
3423 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
0ac73189 3424 Attribute_Name => Name_First);
df46b832
AC
3425
3426 -- If the first operand in the list has known length we know that
3427 -- the lower bound of the result is the lower bound of this operand.
3428
fdac1f80 3429 elsif Is_Fixed_Length (1) then
0ac73189 3430 Low_Bound := Opnd_Low_Bound (1);
df46b832
AC
3431
3432 -- OK, we don't know the lower bound, we have to build a horrible
9b16cb57 3433 -- if expression node of the form
df46b832
AC
3434
3435 -- if Cond1'Length /= 0 then
0ac73189 3436 -- Opnd1 low bound
df46b832
AC
3437 -- else
3438 -- if Opnd2'Length /= 0 then
0ac73189 3439 -- Opnd2 low bound
df46b832
AC
3440 -- else
3441 -- ...
3442
3443 -- The nesting ends either when we hit an operand whose length is known
3444 -- at compile time, or on reaching the last operand, whose low bound we
3445 -- take unconditionally whether or not it is null. It's easiest to do
3446 -- this with a recursive procedure:
3447
3448 else
3449 declare
3450 function Get_Known_Bound (J : Nat) return Node_Id;
3451 -- Returns the lower bound determined by operands J .. NN
3452
3453 ---------------------
3454 -- Get_Known_Bound --
3455 ---------------------
3456
3457 function Get_Known_Bound (J : Nat) return Node_Id is
df46b832 3458 begin
0ac73189
AC
3459 if Is_Fixed_Length (J) or else J = NN then
3460 return New_Copy (Opnd_Low_Bound (J));
70482933
RK
3461
3462 else
df46b832 3463 return
9b16cb57 3464 Make_If_Expression (Loc,
df46b832
AC
3465 Expressions => New_List (
3466
3467 Make_Op_Ne (Loc,
e4494292
RD
3468 Left_Opnd =>
3469 New_Occurrence_Of (Var_Length (J), Loc),
3470 Right_Opnd =>
3471 Make_Integer_Literal (Loc, 0)),
df46b832 3472
0ac73189 3473 New_Copy (Opnd_Low_Bound (J)),
df46b832 3474 Get_Known_Bound (J + 1)));
70482933 3475 end if;
df46b832 3476 end Get_Known_Bound;
70482933 3477
df46b832 3478 begin
191fcb3a 3479 Ent := Make_Temporary (Loc, 'L');
df46b832 3480
d0f8d157 3481 Append_To (Actions,
df46b832
AC
3482 Make_Object_Declaration (Loc,
3483 Defining_Identifier => Ent,
3484 Constant_Present => True,
0ac73189 3485 Object_Definition => New_Occurrence_Of (Ityp, Loc),
d0f8d157 3486 Expression => Get_Known_Bound (1)));
df46b832 3487
e4494292 3488 Low_Bound := New_Occurrence_Of (Ent, Loc);
df46b832
AC
3489 end;
3490 end if;
70482933 3491
76c597a1
AC
3492 -- Now we can safely compute the upper bound, normally
3493 -- Low_Bound + Length - 1.
0ac73189
AC
3494
3495 High_Bound :=
3496 To_Ityp (
3497 Make_Op_Add (Loc,
46ff89f3 3498 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
0ac73189
AC
3499 Right_Opnd =>
3500 Make_Op_Subtract (Loc,
3501 Left_Opnd => New_Copy (Aggr_Length (NN)),
fa969310 3502 Right_Opnd => Make_Artyp_Literal (1))));
0ac73189 3503
59262ebb 3504 -- Note that calculation of the high bound may cause overflow in some
bded454f
RD
3505 -- very weird cases, so in the general case we need an overflow check on
3506 -- the high bound. We can avoid this for the common case of string types
3507 -- and other types whose index is Positive, since we chose a wider range
3508 -- for the arithmetic type.
76c597a1 3509
59262ebb
AC
3510 if Istyp /= Standard_Positive then
3511 Activate_Overflow_Check (High_Bound);
3512 end if;
76c597a1
AC
3513
3514 -- Handle the exceptional case where the result is null, in which case
a29262fd
AC
3515 -- case the bounds come from the last operand (so that we get the proper
3516 -- bounds if the last operand is super-flat).
3517
0ac73189 3518 if Result_May_Be_Null then
88a27b18 3519 Low_Bound :=
9b16cb57 3520 Make_If_Expression (Loc,
88a27b18
AC
3521 Expressions => New_List (
3522 Make_Op_Eq (Loc,
3523 Left_Opnd => New_Copy (Aggr_Length (NN)),
3524 Right_Opnd => Make_Artyp_Literal (0)),
3525 Last_Opnd_Low_Bound,
3526 Low_Bound));
3527
0ac73189 3528 High_Bound :=
9b16cb57 3529 Make_If_Expression (Loc,
0ac73189
AC
3530 Expressions => New_List (
3531 Make_Op_Eq (Loc,
3532 Left_Opnd => New_Copy (Aggr_Length (NN)),
fa969310 3533 Right_Opnd => Make_Artyp_Literal (0)),
a29262fd 3534 Last_Opnd_High_Bound,
0ac73189
AC
3535 High_Bound));
3536 end if;
3537
d0f8d157
AC
3538 -- Here is where we insert the saved up actions
3539
3540 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3541
602a7ec0
AC
3542 -- Now we construct an array object with appropriate bounds. We mark
3543 -- the target as internal to prevent useless initialization when
e526d0c7
AC
3544 -- Initialize_Scalars is enabled. Also since this is the actual result
3545 -- entity, we make sure we have debug information for the result.
70482933 3546
191fcb3a 3547 Ent := Make_Temporary (Loc, 'S');
008f6fd3 3548 Set_Is_Internal (Ent);
e526d0c7 3549 Set_Needs_Debug_Info (Ent);
70482933 3550
76c597a1 3551 -- If the bound is statically known to be out of range, we do not want
fa969310
AC
3552 -- to abort, we want a warning and a runtime constraint error. Note that
3553 -- we have arranged that the result will not be treated as a static
3554 -- constant, so we won't get an illegality during this insertion.
76c597a1 3555
df46b832
AC
3556 Insert_Action (Cnode,
3557 Make_Object_Declaration (Loc,
3558 Defining_Identifier => Ent,
df46b832
AC
3559 Object_Definition =>
3560 Make_Subtype_Indication (Loc,
fdac1f80 3561 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
df46b832
AC
3562 Constraint =>
3563 Make_Index_Or_Discriminant_Constraint (Loc,
3564 Constraints => New_List (
3565 Make_Range (Loc,
0ac73189
AC
3566 Low_Bound => Low_Bound,
3567 High_Bound => High_Bound))))),
df46b832
AC
3568 Suppress => All_Checks);
3569
d1f453b7
RD
3570 -- If the result of the concatenation appears as the initializing
3571 -- expression of an object declaration, we can just rename the
3572 -- result, rather than copying it.
3573
3574 Set_OK_To_Rename (Ent);
3575
76c597a1
AC
3576 -- Catch the static out of range case now
3577
3578 if Raises_Constraint_Error (High_Bound) then
3579 raise Concatenation_Error;
3580 end if;
3581
df46b832
AC
3582 -- Now we will generate the assignments to do the actual concatenation
3583
bded454f
RD
3584 -- There is one case in which we will not do this, namely when all the
3585 -- following conditions are met:
3586
3587 -- The result type is Standard.String
3588
3589 -- There are nine or fewer retained (non-null) operands
3590
ffec8e81 3591 -- The optimization level is -O0
bded454f
RD
3592
3593 -- The corresponding System.Concat_n.Str_Concat_n routine is
3594 -- available in the run time.
3595
3596 -- The debug flag gnatd.c is not set
3597
3598 -- If all these conditions are met then we generate a call to the
3599 -- relevant concatenation routine. The purpose of this is to avoid
3600 -- undesirable code bloat at -O0.
3601
3602 if Atyp = Standard_String
3603 and then NN in 2 .. 9
00ba7be8
AC
3604 and then (Lib_Level_Target
3605 or else
3606 ((Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3607 and then not Debug_Flag_Dot_C))
bded454f
RD
3608 then
3609 declare
3610 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3611 (RE_Str_Concat_2,
3612 RE_Str_Concat_3,
3613 RE_Str_Concat_4,
3614 RE_Str_Concat_5,
3615 RE_Str_Concat_6,
3616 RE_Str_Concat_7,
3617 RE_Str_Concat_8,
3618 RE_Str_Concat_9);
3619
3620 begin
3621 if RTE_Available (RR (NN)) then
3622 declare
3623 Opnds : constant List_Id :=
3624 New_List (New_Occurrence_Of (Ent, Loc));
3625
3626 begin
3627 for J in 1 .. NN loop
3628 if Is_List_Member (Operands (J)) then
3629 Remove (Operands (J));
3630 end if;
3631
3632 if Base_Type (Etype (Operands (J))) = Ctyp then
3633 Append_To (Opnds,
3634 Make_Aggregate (Loc,
3635 Component_Associations => New_List (
3636 Make_Component_Association (Loc,
3637 Choices => New_List (
3638 Make_Integer_Literal (Loc, 1)),
3639 Expression => Operands (J)))));
3640
3641 else
3642 Append_To (Opnds, Operands (J));
3643 end if;
3644 end loop;
3645
3646 Insert_Action (Cnode,
3647 Make_Procedure_Call_Statement (Loc,
e4494292 3648 Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
bded454f
RD
3649 Parameter_Associations => Opnds));
3650
e4494292 3651 Result := New_Occurrence_Of (Ent, Loc);
bded454f
RD
3652 goto Done;
3653 end;
3654 end if;
3655 end;
3656 end if;
3657
3658 -- Not special case so generate the assignments
3659
76c597a1
AC
3660 Known_Non_Null_Operand_Seen := False;
3661
df46b832
AC
3662 for J in 1 .. NN loop
3663 declare
3664 Lo : constant Node_Id :=
3665 Make_Op_Add (Loc,
46ff89f3 3666 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
3667 Right_Opnd => Aggr_Length (J - 1));
3668
3669 Hi : constant Node_Id :=
3670 Make_Op_Add (Loc,
46ff89f3 3671 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
3672 Right_Opnd =>
3673 Make_Op_Subtract (Loc,
3674 Left_Opnd => Aggr_Length (J),
fa969310 3675 Right_Opnd => Make_Artyp_Literal (1)));
70482933 3676
df46b832 3677 begin
fdac1f80
AC
3678 -- Singleton case, simple assignment
3679
3680 if Base_Type (Etype (Operands (J))) = Ctyp then
76c597a1 3681 Known_Non_Null_Operand_Seen := True;
df46b832
AC
3682 Insert_Action (Cnode,
3683 Make_Assignment_Statement (Loc,
3684 Name =>
3685 Make_Indexed_Component (Loc,
3686 Prefix => New_Occurrence_Of (Ent, Loc),
fdac1f80 3687 Expressions => New_List (To_Ityp (Lo))),
df46b832
AC
3688 Expression => Operands (J)),
3689 Suppress => All_Checks);
70482933 3690
76c597a1
AC
3691 -- Array case, slice assignment, skipped when argument is fixed
3692 -- length and known to be null.
fdac1f80 3693
76c597a1
AC
3694 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3695 declare
3696 Assign : Node_Id :=
3697 Make_Assignment_Statement (Loc,
3698 Name =>
3699 Make_Slice (Loc,
3700 Prefix =>
3701 New_Occurrence_Of (Ent, Loc),
3702 Discrete_Range =>
3703 Make_Range (Loc,
3704 Low_Bound => To_Ityp (Lo),
3705 High_Bound => To_Ityp (Hi))),
3706 Expression => Operands (J));
3707 begin
3708 if Is_Fixed_Length (J) then
3709 Known_Non_Null_Operand_Seen := True;
3710
3711 elsif not Known_Non_Null_Operand_Seen then
3712
3713 -- Here if operand length is not statically known and no
3714 -- operand known to be non-null has been processed yet.
3715 -- If operand length is 0, we do not need to perform the
3716 -- assignment, and we must avoid the evaluation of the
3717 -- high bound of the slice, since it may underflow if the
3718 -- low bound is Ityp'First.
3719
3720 Assign :=
3721 Make_Implicit_If_Statement (Cnode,
39ade2f9 3722 Condition =>
76c597a1 3723 Make_Op_Ne (Loc,
39ade2f9 3724 Left_Opnd =>
76c597a1
AC
3725 New_Occurrence_Of (Var_Length (J), Loc),
3726 Right_Opnd => Make_Integer_Literal (Loc, 0)),
39ade2f9 3727 Then_Statements => New_List (Assign));
76c597a1 3728 end if;
fa969310 3729
76c597a1
AC
3730 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3731 end;
df46b832
AC
3732 end if;
3733 end;
3734 end loop;
70482933 3735
0ac73189
AC
3736 -- Finally we build the result, which is a reference to the array object
3737
e4494292 3738 Result := New_Occurrence_Of (Ent, Loc);
70482933 3739
df46b832
AC
3740 <<Done>>
3741 Rewrite (Cnode, Result);
fdac1f80
AC
3742 Analyze_And_Resolve (Cnode, Atyp);
3743
3744 exception
3745 when Concatenation_Error =>
76c597a1
AC
3746
3747 -- Kill warning generated for the declaration of the static out of
3748 -- range high bound, and instead generate a Constraint_Error with
3749 -- an appropriate specific message.
3750
3751 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3752 Apply_Compile_Time_Constraint_Error
3753 (N => Cnode,
324ac540 3754 Msg => "concatenation result upper bound out of range??",
76c597a1 3755 Reason => CE_Range_Check_Failed);
fdac1f80 3756 end Expand_Concatenate;
70482933 3757
f6194278
RD
3758 ---------------------------------------------------
3759 -- Expand_Membership_Minimize_Eliminate_Overflow --
3760 ---------------------------------------------------
3761
3762 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3763 pragma Assert (Nkind (N) = N_In);
3764 -- Despite the name, this routine applies only to N_In, not to
3765 -- N_Not_In. The latter is always rewritten as not (X in Y).
3766
71fb4dc8
AC
3767 Result_Type : constant Entity_Id := Etype (N);
3768 -- Capture result type, may be a derived boolean type
3769
b6b5cca8
AC
3770 Loc : constant Source_Ptr := Sloc (N);
3771 Lop : constant Node_Id := Left_Opnd (N);
3772 Rop : constant Node_Id := Right_Opnd (N);
3773
3774 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3775 -- is thus tempting to capture these values, but due to the rewrites
3776 -- that occur as a result of overflow checking, these values change
3777 -- as we go along, and it is safe just to always use Etype explicitly.
f6194278
RD
3778
3779 Restype : constant Entity_Id := Etype (N);
3780 -- Save result type
3781
3782 Lo, Hi : Uint;
d8192289 3783 -- Bounds in Minimize calls, not used currently
f6194278
RD
3784
3785 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3786 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3787
3788 begin
a7f1b24f 3789 Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
f6194278
RD
3790
3791 -- If right operand is a subtype name, and the subtype name has no
3792 -- predicate, then we can just replace the right operand with an
3793 -- explicit range T'First .. T'Last, and use the explicit range code.
3794
b6b5cca8
AC
3795 if Nkind (Rop) /= N_Range
3796 and then No (Predicate_Function (Etype (Rop)))
3797 then
3798 declare
3799 Rtyp : constant Entity_Id := Etype (Rop);
3800 begin
3801 Rewrite (Rop,
3802 Make_Range (Loc,
3803 Low_Bound =>
3804 Make_Attribute_Reference (Loc,
3805 Attribute_Name => Name_First,
e4494292 3806 Prefix => New_Occurrence_Of (Rtyp, Loc)),
b6b5cca8
AC
3807 High_Bound =>
3808 Make_Attribute_Reference (Loc,
3809 Attribute_Name => Name_Last,
e4494292 3810 Prefix => New_Occurrence_Of (Rtyp, Loc))));
b6b5cca8
AC
3811 Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3812 end;
f6194278
RD
3813 end if;
3814
3815 -- Here for the explicit range case. Note that the bounds of the range
3816 -- have not been processed for minimized or eliminated checks.
3817
3818 if Nkind (Rop) = N_Range then
a7f1b24f 3819 Minimize_Eliminate_Overflows
b6b5cca8 3820 (Low_Bound (Rop), Lo, Hi, Top_Level => False);
a7f1b24f 3821 Minimize_Eliminate_Overflows
c7e152b5 3822 (High_Bound (Rop), Lo, Hi, Top_Level => False);
f6194278
RD
3823
3824 -- We have A in B .. C, treated as A >= B and then A <= C
3825
3826 -- Bignum case
3827
b6b5cca8 3828 if Is_RTE (Etype (Lop), RE_Bignum)
f6194278
RD
3829 or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3830 or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3831 then
3832 declare
3833 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3834 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
71fb4dc8
AC
3835 L : constant Entity_Id :=
3836 Make_Defining_Identifier (Loc, Name_uL);
f6194278
RD
3837 Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
3838 Lbound : constant Node_Id :=
3839 Convert_To_Bignum (Low_Bound (Rop));
3840 Hbound : constant Node_Id :=
3841 Convert_To_Bignum (High_Bound (Rop));
3842
71fb4dc8
AC
3843 -- Now we rewrite the membership test node to look like
3844
3845 -- do
3846 -- Bnn : Result_Type;
3847 -- declare
3848 -- M : Mark_Id := SS_Mark;
3849 -- L : Bignum := Lopnd;
3850 -- begin
3851 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3852 -- SS_Release (M);
3853 -- end;
3854 -- in
3855 -- Bnn
3856 -- end
f6194278
RD
3857
3858 begin
71fb4dc8
AC
3859 -- Insert declaration of L into declarations of bignum block
3860
f6194278
RD
3861 Insert_After
3862 (Last (Declarations (Blk)),
3863 Make_Object_Declaration (Loc,
71fb4dc8 3864 Defining_Identifier => L,
f6194278
RD
3865 Object_Definition =>
3866 New_Occurrence_Of (RTE (RE_Bignum), Loc),
3867 Expression => Lopnd));
3868
71fb4dc8
AC
3869 -- Insert assignment to Bnn into expressions of bignum block
3870
f6194278
RD
3871 Insert_Before
3872 (First (Statements (Handled_Statement_Sequence (Blk))),
3873 Make_Assignment_Statement (Loc,
3874 Name => New_Occurrence_Of (Bnn, Loc),
3875 Expression =>
3876 Make_And_Then (Loc,
3877 Left_Opnd =>
3878 Make_Function_Call (Loc,
3879 Name =>
3880 New_Occurrence_Of (RTE (RE_Big_GE), Loc),
71fb4dc8
AC
3881 Parameter_Associations => New_List (
3882 New_Occurrence_Of (L, Loc),
3883 Lbound)),
f6194278
RD
3884 Right_Opnd =>
3885 Make_Function_Call (Loc,
3886 Name =>
71fb4dc8
AC
3887 New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3888 Parameter_Associations => New_List (
3889 New_Occurrence_Of (L, Loc),
3890 Hbound)))));
f6194278 3891
71fb4dc8 3892 -- Now rewrite the node
f6194278 3893
71fb4dc8
AC
3894 Rewrite (N,
3895 Make_Expression_With_Actions (Loc,
3896 Actions => New_List (
3897 Make_Object_Declaration (Loc,
3898 Defining_Identifier => Bnn,
3899 Object_Definition =>
3900 New_Occurrence_Of (Result_Type, Loc)),
3901 Blk),
3902 Expression => New_Occurrence_Of (Bnn, Loc)));
3903 Analyze_And_Resolve (N, Result_Type);
f6194278
RD
3904 return;
3905 end;
3906
3907 -- Here if no bignums around
3908
3909 else
3910 -- Case where types are all the same
3911
b6b5cca8 3912 if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
f6194278 3913 and then
b6b5cca8 3914 Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
f6194278
RD
3915 then
3916 null;
3917
3918 -- If types are not all the same, it means that we have rewritten
3919 -- at least one of them to be of type Long_Long_Integer, and we
3920 -- will convert the other operands to Long_Long_Integer.
3921
3922 else
3923 Convert_To_And_Rewrite (LLIB, Lop);
71fb4dc8
AC
3924 Set_Analyzed (Lop, False);
3925 Analyze_And_Resolve (Lop, LLIB);
3926
3927 -- For the right operand, avoid unnecessary recursion into
3928 -- this routine, we know that overflow is not possible.
f6194278
RD
3929
3930 Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3931 Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3932 Set_Analyzed (Rop, False);
71fb4dc8 3933 Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
f6194278
RD
3934 end if;
3935
3936 -- Now the three operands are of the same signed integer type,
b6b5cca8
AC
3937 -- so we can use the normal expansion routine for membership,
3938 -- setting the flag to prevent recursion into this procedure.
f6194278
RD
3939
3940 Set_No_Minimize_Eliminate (N);
3941 Expand_N_In (N);
3942 end if;
3943
3944 -- Right operand is a subtype name and the subtype has a predicate. We
f6636994
AC
3945 -- have to make sure the predicate is checked, and for that we need to
3946 -- use the standard N_In circuitry with appropriate types.
f6194278
RD
3947
3948 else
b6b5cca8 3949 pragma Assert (Present (Predicate_Function (Etype (Rop))));
f6194278
RD
3950
3951 -- If types are "right", just call Expand_N_In preventing recursion
3952
b6b5cca8 3953 if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
f6194278
RD
3954 Set_No_Minimize_Eliminate (N);
3955 Expand_N_In (N);
3956
3957 -- Bignum case
3958
b6b5cca8 3959 elsif Is_RTE (Etype (Lop), RE_Bignum) then
f6194278 3960
71fb4dc8 3961 -- For X in T, we want to rewrite our node as
f6194278 3962
71fb4dc8
AC
3963 -- do
3964 -- Bnn : Result_Type;
f6194278 3965
71fb4dc8
AC
3966 -- declare
3967 -- M : Mark_Id := SS_Mark;
3968 -- Lnn : Long_Long_Integer'Base
3969 -- Nnn : Bignum;
f6194278 3970
71fb4dc8
AC
3971 -- begin
3972 -- Nnn := X;
3973
3974 -- if not Bignum_In_LLI_Range (Nnn) then
3975 -- Bnn := False;
3976 -- else
3977 -- Lnn := From_Bignum (Nnn);
3978 -- Bnn :=
3979 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3980 -- and then T'Base (Lnn) in T;
3981 -- end if;
f6194278 3982 --
71fb4dc8
AC
3983 -- SS_Release (M);
3984 -- end
3985 -- in
3986 -- Bnn
3987 -- end
f6194278 3988
f6636994 3989 -- A bit gruesome, but there doesn't seem to be a simpler way
f6194278
RD
3990
3991 declare
b6b5cca8
AC
3992 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3993 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3994 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
3995 Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
71fb4dc8
AC
3996 T : constant Entity_Id := Etype (Rop);
3997 TB : constant Entity_Id := Base_Type (T);
b6b5cca8 3998 Nin : Node_Id;
f6194278
RD
3999
4000 begin
71fb4dc8 4001 -- Mark the last membership operation to prevent recursion
f6194278
RD
4002
4003 Nin :=
4004 Make_In (Loc,
f6636994
AC
4005 Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
4006 Right_Opnd => New_Occurrence_Of (T, Loc));
f6194278
RD
4007 Set_No_Minimize_Eliminate (Nin);
4008
4009 -- Now decorate the block
4010
4011 Insert_After
4012 (Last (Declarations (Blk)),
4013 Make_Object_Declaration (Loc,
4014 Defining_Identifier => Lnn,
4015 Object_Definition => New_Occurrence_Of (LLIB, Loc)));
4016
4017 Insert_After
4018 (Last (Declarations (Blk)),
4019 Make_Object_Declaration (Loc,
4020 Defining_Identifier => Nnn,
4021 Object_Definition =>
4022 New_Occurrence_Of (RTE (RE_Bignum), Loc)));
4023
4024 Insert_List_Before
4025 (First (Statements (Handled_Statement_Sequence (Blk))),
4026 New_List (
4027 Make_Assignment_Statement (Loc,
4028 Name => New_Occurrence_Of (Nnn, Loc),
4029 Expression => Relocate_Node (Lop)),
4030
8b1011c0 4031 Make_Implicit_If_Statement (N,
f6194278 4032 Condition =>
71fb4dc8
AC
4033 Make_Op_Not (Loc,
4034 Right_Opnd =>
4035 Make_Function_Call (Loc,
4036 Name =>
4037 New_Occurrence_Of
4038 (RTE (RE_Bignum_In_LLI_Range), Loc),
4039 Parameter_Associations => New_List (
4040 New_Occurrence_Of (Nnn, Loc)))),
f6194278
RD
4041
4042 Then_Statements => New_List (
4043 Make_Assignment_Statement (Loc,
4044 Name => New_Occurrence_Of (Bnn, Loc),
4045 Expression =>
4046 New_Occurrence_Of (Standard_False, Loc))),
4047
4048 Else_Statements => New_List (
4049 Make_Assignment_Statement (Loc,
4050 Name => New_Occurrence_Of (Lnn, Loc),
4051 Expression =>
4052 Make_Function_Call (Loc,
4053 Name =>
4054 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4055 Parameter_Associations => New_List (
4056 New_Occurrence_Of (Nnn, Loc)))),
4057
4058 Make_Assignment_Statement (Loc,
71fb4dc8 4059 Name => New_Occurrence_Of (Bnn, Loc),
f6194278
RD
4060 Expression =>
4061 Make_And_Then (Loc,
71fb4dc8 4062 Left_Opnd =>
f6194278 4063 Make_In (Loc,
71fb4dc8 4064 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
f6194278 4065 Right_Opnd =>
71fb4dc8
AC
4066 Make_Range (Loc,
4067 Low_Bound =>
4068 Convert_To (LLIB,
4069 Make_Attribute_Reference (Loc,
4070 Attribute_Name => Name_First,
4071 Prefix =>
4072 New_Occurrence_Of (TB, Loc))),
4073
4074 High_Bound =>
4075 Convert_To (LLIB,
4076 Make_Attribute_Reference (Loc,
4077 Attribute_Name => Name_Last,
4078 Prefix =>
4079 New_Occurrence_Of (TB, Loc))))),
4080
f6194278
RD
4081 Right_Opnd => Nin))))));
4082
71fb4dc8 4083 -- Now we can do the rewrite
f6194278 4084
71fb4dc8
AC
4085 Rewrite (N,
4086 Make_Expression_With_Actions (Loc,
4087 Actions => New_List (
4088 Make_Object_Declaration (Loc,
4089 Defining_Identifier => Bnn,
4090 Object_Definition =>
4091 New_Occurrence_Of (Result_Type, Loc)),
4092 Blk),
4093 Expression => New_Occurrence_Of (Bnn, Loc)));
4094 Analyze_And_Resolve (N, Result_Type);
f6194278
RD
4095 return;
4096 end;
4097
4098 -- Not bignum case, but types don't match (this means we rewrote the
b6b5cca8 4099 -- left operand to be Long_Long_Integer).
f6194278
RD
4100
4101 else
b6b5cca8 4102 pragma Assert (Base_Type (Etype (Lop)) = LLIB);
f6194278 4103
71fb4dc8
AC
4104 -- We rewrite the membership test as (where T is the type with
4105 -- the predicate, i.e. the type of the right operand)
f6194278 4106
71fb4dc8
AC
4107 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4108 -- and then T'Base (Lop) in T
f6194278
RD
4109
4110 declare
71fb4dc8
AC
4111 T : constant Entity_Id := Etype (Rop);
4112 TB : constant Entity_Id := Base_Type (T);
f6194278
RD
4113 Nin : Node_Id;
4114
4115 begin
4116 -- The last membership test is marked to prevent recursion
4117
4118 Nin :=
4119 Make_In (Loc,
71fb4dc8
AC
4120 Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
4121 Right_Opnd => New_Occurrence_Of (T, Loc));
f6194278
RD
4122 Set_No_Minimize_Eliminate (Nin);
4123
4124 -- Now do the rewrite
4125
4126 Rewrite (N,
4127 Make_And_Then (Loc,
71fb4dc8 4128 Left_Opnd =>
f6194278
RD
4129 Make_In (Loc,
4130 Left_Opnd => Lop,
4131 Right_Opnd =>
71fb4dc8
AC
4132 Make_Range (Loc,
4133 Low_Bound =>
4134 Convert_To (LLIB,
4135 Make_Attribute_Reference (Loc,
4136 Attribute_Name => Name_First,
4137 Prefix => New_Occurrence_Of (TB, Loc))),
4138 High_Bound =>
4139 Convert_To (LLIB,
4140 Make_Attribute_Reference (Loc,
4141 Attribute_Name => Name_Last,
4142 Prefix => New_Occurrence_Of (TB, Loc))))),
f6194278 4143 Right_Opnd => Nin));
71fb4dc8
AC
4144 Set_Analyzed (N, False);
4145 Analyze_And_Resolve (N, Restype);
f6194278
RD
4146 end;
4147 end if;
4148 end if;
4149 end Expand_Membership_Minimize_Eliminate_Overflow;
4150
70482933
RK
4151 ------------------------
4152 -- Expand_N_Allocator --
4153 ------------------------
4154
4155 procedure Expand_N_Allocator (N : Node_Id) is
8b1011c0
AC
4156 Etyp : constant Entity_Id := Etype (Expression (N));
4157 Loc : constant Source_Ptr := Sloc (N);
4158 PtrT : constant Entity_Id := Etype (N);
70482933 4159
26bff3d9
JM
4160 procedure Rewrite_Coextension (N : Node_Id);
4161 -- Static coextensions have the same lifetime as the entity they
8fc789c8 4162 -- constrain. Such occurrences can be rewritten as aliased objects
26bff3d9 4163 -- and their unrestricted access used instead of the coextension.
0669bebe 4164
8aec446b 4165 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
507ed3fd
AC
4166 -- Given a constrained array type E, returns a node representing the
4167 -- code to compute the size in storage elements for the given type.
205c14b0 4168 -- This is done without using the attribute (which malfunctions for
507ed3fd 4169 -- large sizes ???)
8aec446b 4170
26bff3d9
JM
4171 -------------------------
4172 -- Rewrite_Coextension --
4173 -------------------------
4174
4175 procedure Rewrite_Coextension (N : Node_Id) is
e5a22243
AC
4176 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
4177 Temp_Decl : Node_Id;
26bff3d9 4178
df3e68b1 4179 begin
26bff3d9
JM
4180 -- Generate:
4181 -- Cnn : aliased Etyp;
4182
df3e68b1
HK
4183 Temp_Decl :=
4184 Make_Object_Declaration (Loc,
4185 Defining_Identifier => Temp_Id,
243cae0a
AC
4186 Aliased_Present => True,
4187 Object_Definition => New_Occurrence_Of (Etyp, Loc));
26bff3d9 4188
26bff3d9 4189 if Nkind (Expression (N)) = N_Qualified_Expression then
df3e68b1 4190 Set_Expression (Temp_Decl, Expression (Expression (N)));
0669bebe 4191 end if;
26bff3d9 4192
e5a22243 4193 Insert_Action (N, Temp_Decl);
26bff3d9
JM
4194 Rewrite (N,
4195 Make_Attribute_Reference (Loc,
243cae0a 4196 Prefix => New_Occurrence_Of (Temp_Id, Loc),
26bff3d9
JM
4197 Attribute_Name => Name_Unrestricted_Access));
4198
4199 Analyze_And_Resolve (N, PtrT);
4200 end Rewrite_Coextension;
0669bebe 4201
8aec446b
AC
4202 ------------------------------
4203 -- Size_In_Storage_Elements --
4204 ------------------------------
4205
4206 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4207 begin
4208 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4209 -- However, the reason for the existence of this function is
4210 -- to construct a test for sizes too large, which means near the
4211 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4212 -- is that we get overflows when sizes are greater than 2**31.
4213
507ed3fd 4214 -- So what we end up doing for array types is to use the expression:
8aec446b
AC
4215
4216 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4217
46202729 4218 -- which avoids this problem. All this is a bit bogus, but it does
8aec446b
AC
4219 -- mean we catch common cases of trying to allocate arrays that
4220 -- are too large, and which in the absence of a check results in
4221 -- undetected chaos ???
4222
ce532f42
AC
4223 -- Note in particular that this is a pessimistic estimate in the
4224 -- case of packed array types, where an array element might occupy
4225 -- just a fraction of a storage element???
4226
507ed3fd
AC
4227 declare
4228 Len : Node_Id;
4229 Res : Node_Id;
8aec446b 4230
507ed3fd
AC
4231 begin
4232 for J in 1 .. Number_Dimensions (E) loop
4233 Len :=
4234 Make_Attribute_Reference (Loc,
4235 Prefix => New_Occurrence_Of (E, Loc),
4236 Attribute_Name => Name_Length,
243cae0a 4237 Expressions => New_List (Make_Integer_Literal (Loc, J)));
8aec446b 4238
507ed3fd
AC
4239 if J = 1 then
4240 Res := Len;
8aec446b 4241
507ed3fd
AC
4242 else
4243 Res :=
4244 Make_Op_Multiply (Loc,
4245 Left_Opnd => Res,
4246 Right_Opnd => Len);
4247 end if;
4248 end loop;
8aec446b 4249
8aec446b 4250 return
507ed3fd
AC
4251 Make_Op_Multiply (Loc,
4252 Left_Opnd => Len,
4253 Right_Opnd =>
4254 Make_Attribute_Reference (Loc,
4255 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4256 Attribute_Name => Name_Max_Size_In_Storage_Elements));
4257 end;
8aec446b
AC
4258 end Size_In_Storage_Elements;
4259
8b1011c0
AC
4260 -- Local variables
4261
70861157 4262 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
8b1011c0
AC
4263 Desig : Entity_Id;
4264 Nod : Node_Id;
4265 Pool : Entity_Id;
4266 Rel_Typ : Entity_Id;
4267 Temp : Entity_Id;
4268
0669bebe
GB
4269 -- Start of processing for Expand_N_Allocator
4270
70482933
RK
4271 begin
4272 -- RM E.2.3(22). We enforce that the expected type of an allocator
4273 -- shall not be a remote access-to-class-wide-limited-private type
4274
4275 -- Why is this being done at expansion time, seems clearly wrong ???
4276
4277 Validate_Remote_Access_To_Class_Wide_Type (N);
4278
ca5af305
AC
4279 -- Processing for anonymous access-to-controlled types. These access
4280 -- types receive a special finalization master which appears in the
4281 -- declarations of the enclosing semantic unit. This expansion is done
84f4072a
JM
4282 -- now to ensure that any additional types generated by this routine or
4283 -- Expand_Allocator_Expression inherit the proper type attributes.
ca5af305 4284
84f4072a 4285 if (Ekind (PtrT) = E_Anonymous_Access_Type
533369aa 4286 or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
ca5af305
AC
4287 and then Needs_Finalization (Dtyp)
4288 then
8b1011c0
AC
4289 -- Detect the allocation of an anonymous controlled object where the
4290 -- type of the context is named. For example:
4291
4292 -- procedure Proc (Ptr : Named_Access_Typ);
4293 -- Proc (new Designated_Typ);
4294
4295 -- Regardless of the anonymous-to-named access type conversion, the
4296 -- lifetime of the object must be associated with the named access
0088ba92 4297 -- type. Use the finalization-related attributes of this type.
8b1011c0
AC
4298
4299 if Nkind_In (Parent (N), N_Type_Conversion,
4300 N_Unchecked_Type_Conversion)
4301 and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4302 E_Access_Type,
4303 E_General_Access_Type)
4304 then
4305 Rel_Typ := Etype (Parent (N));
4306 else
4307 Rel_Typ := Empty;
4308 end if;
4309
b254da66
AC
4310 -- Anonymous access-to-controlled types allocate on the global pool.
4311 -- Do not set this attribute on .NET/JVM since those targets do not
4312 -- support pools.
ca5af305 4313
bde73c6b 4314 if No (Associated_Storage_Pool (PtrT)) and then VM_Target = No_VM then
8b1011c0
AC
4315 if Present (Rel_Typ) then
4316 Set_Associated_Storage_Pool (PtrT,
4317 Associated_Storage_Pool (Rel_Typ));
4318 else
4319 Set_Associated_Storage_Pool (PtrT,
4320 Get_Global_Pool_For_Access_Type (PtrT));
4321 end if;
ca5af305
AC
4322 end if;
4323
4324 -- The finalization master must be inserted and analyzed as part of
5114f3ff
AC
4325 -- the current semantic unit. Note that the master is updated when
4326 -- analysis changes current units.
ca5af305 4327
5114f3ff
AC
4328 if Present (Rel_Typ) then
4329 Set_Finalization_Master (PtrT, Finalization_Master (Rel_Typ));
4330 else
4331 Set_Finalization_Master (PtrT, Current_Anonymous_Master);
ca5af305
AC
4332 end if;
4333 end if;
4334
4335 -- Set the storage pool and find the appropriate version of Allocate to
8417f4b2
AC
4336 -- call. Do not overwrite the storage pool if it is already set, which
4337 -- can happen for build-in-place function returns (see
200b7162 4338 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
70482933 4339
200b7162
BD
4340 if No (Storage_Pool (N)) then
4341 Pool := Associated_Storage_Pool (Root_Type (PtrT));
70482933 4342
200b7162
BD
4343 if Present (Pool) then
4344 Set_Storage_Pool (N, Pool);
fbf5a39b 4345
200b7162
BD
4346 if Is_RTE (Pool, RE_SS_Pool) then
4347 if VM_Target = No_VM then
4348 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4349 end if;
fbf5a39b 4350
a8551b5f
AC
4351 -- In the case of an allocator for a simple storage pool, locate
4352 -- and save a reference to the pool type's Allocate routine.
4353
4354 elsif Present (Get_Rep_Pragma
f6205414 4355 (Etype (Pool), Name_Simple_Storage_Pool_Type))
a8551b5f
AC
4356 then
4357 declare
a8551b5f 4358 Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
260359e3 4359 Alloc_Op : Entity_Id;
a8551b5f 4360 begin
260359e3 4361 Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
a8551b5f
AC
4362 while Present (Alloc_Op) loop
4363 if Scope (Alloc_Op) = Scope (Pool_Type)
4364 and then Present (First_Formal (Alloc_Op))
4365 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4366 then
4367 Set_Procedure_To_Call (N, Alloc_Op);
a8551b5f 4368 exit;
260359e3
AC
4369 else
4370 Alloc_Op := Homonym (Alloc_Op);
a8551b5f 4371 end if;
a8551b5f
AC
4372 end loop;
4373 end;
4374
200b7162
BD
4375 elsif Is_Class_Wide_Type (Etype (Pool)) then
4376 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4377
4378 else
4379 Set_Procedure_To_Call (N,
4380 Find_Prim_Op (Etype (Pool), Name_Allocate));
4381 end if;
70482933
RK
4382 end if;
4383 end if;
4384
685094bf
RD
4385 -- Under certain circumstances we can replace an allocator by an access
4386 -- to statically allocated storage. The conditions, as noted in AARM
4387 -- 3.10 (10c) are as follows:
70482933
RK
4388
4389 -- Size and initial value is known at compile time
4390 -- Access type is access-to-constant
4391
fbf5a39b
AC
4392 -- The allocator is not part of a constraint on a record component,
4393 -- because in that case the inserted actions are delayed until the
4394 -- record declaration is fully analyzed, which is too late for the
4395 -- analysis of the rewritten allocator.
4396
70482933
RK
4397 if Is_Access_Constant (PtrT)
4398 and then Nkind (Expression (N)) = N_Qualified_Expression
4399 and then Compile_Time_Known_Value (Expression (Expression (N)))
243cae0a
AC
4400 and then Size_Known_At_Compile_Time
4401 (Etype (Expression (Expression (N))))
fbf5a39b 4402 and then not Is_Record_Type (Current_Scope)
70482933
RK
4403 then
4404 -- Here we can do the optimization. For the allocator
4405
4406 -- new x'(y)
4407
4408 -- We insert an object declaration
4409
4410 -- Tnn : aliased x := y;
4411
685094bf
RD
4412 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4413 -- marked as requiring static allocation.
70482933 4414
df3e68b1 4415 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
70482933
RK
4416 Desig := Subtype_Mark (Expression (N));
4417
4418 -- If context is constrained, use constrained subtype directly,
8fc789c8 4419 -- so that the constant is not labelled as having a nominally
70482933
RK
4420 -- unconstrained subtype.
4421
0da2c8ac
AC
4422 if Entity (Desig) = Base_Type (Dtyp) then
4423 Desig := New_Occurrence_Of (Dtyp, Loc);
70482933
RK
4424 end if;
4425
4426 Insert_Action (N,
4427 Make_Object_Declaration (Loc,
4428 Defining_Identifier => Temp,
4429 Aliased_Present => True,
4430 Constant_Present => Is_Access_Constant (PtrT),
4431 Object_Definition => Desig,
4432 Expression => Expression (Expression (N))));
4433
4434 Rewrite (N,
4435 Make_Attribute_Reference (Loc,
243cae0a 4436 Prefix => New_Occurrence_Of (Temp, Loc),
70482933
RK
4437 Attribute_Name => Name_Unrestricted_Access));
4438
4439 Analyze_And_Resolve (N, PtrT);
4440
685094bf 4441 -- We set the variable as statically allocated, since we don't want
a90bd866 4442 -- it going on the stack of the current procedure.
70482933
RK
4443
4444 Set_Is_Statically_Allocated (Temp);
4445 return;
4446 end if;
4447
0669bebe
GB
4448 -- Same if the allocator is an access discriminant for a local object:
4449 -- instead of an allocator we create a local value and constrain the
308e6f3a 4450 -- enclosing object with the corresponding access attribute.
0669bebe 4451
26bff3d9
JM
4452 if Is_Static_Coextension (N) then
4453 Rewrite_Coextension (N);
0669bebe
GB
4454 return;
4455 end if;
4456
8aec446b
AC
4457 -- Check for size too large, we do this because the back end misses
4458 -- proper checks here and can generate rubbish allocation calls when
4459 -- we are near the limit. We only do this for the 32-bit address case
4460 -- since that is from a practical point of view where we see a problem.
4461
4462 if System_Address_Size = 32
4463 and then not Storage_Checks_Suppressed (PtrT)
4464 and then not Storage_Checks_Suppressed (Dtyp)
4465 and then not Storage_Checks_Suppressed (Etyp)
4466 then
4467 -- The check we want to generate should look like
4468
4469 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4470 -- raise Storage_Error;
4471 -- end if;
4472
308e6f3a 4473 -- where 3.5 gigabytes is a constant large enough to accommodate any
507ed3fd
AC
4474 -- reasonable request for. But we can't do it this way because at
4475 -- least at the moment we don't compute this attribute right, and
4476 -- can silently give wrong results when the result gets large. Since
4477 -- this is all about large results, that's bad, so instead we only
205c14b0 4478 -- apply the check for constrained arrays, and manually compute the
507ed3fd 4479 -- value of the attribute ???
8aec446b 4480
507ed3fd
AC
4481 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
4482 Insert_Action (N,
4483 Make_Raise_Storage_Error (Loc,
4484 Condition =>
4485 Make_Op_Gt (Loc,
4486 Left_Opnd => Size_In_Storage_Elements (Etyp),
4487 Right_Opnd =>
243cae0a 4488 Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
507ed3fd
AC
4489 Reason => SE_Object_Too_Large));
4490 end if;
8aec446b
AC
4491 end if;
4492
0da2c8ac 4493 -- Handle case of qualified expression (other than optimization above)
cac5a801
AC
4494 -- First apply constraint checks, because the bounds or discriminants
4495 -- in the aggregate might not match the subtype mark in the allocator.
0da2c8ac 4496
70482933 4497 if Nkind (Expression (N)) = N_Qualified_Expression then
cac5a801
AC
4498 Apply_Constraint_Check
4499 (Expression (Expression (N)), Etype (Expression (N)));
4500
fbf5a39b 4501 Expand_Allocator_Expression (N);
26bff3d9
JM
4502 return;
4503 end if;
fbf5a39b 4504
26bff3d9
JM
4505 -- If the allocator is for a type which requires initialization, and
4506 -- there is no initial value (i.e. operand is a subtype indication
685094bf
RD
4507 -- rather than a qualified expression), then we must generate a call to
4508 -- the initialization routine using an expressions action node:
70482933 4509
26bff3d9 4510 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
70482933 4511
26bff3d9
JM
4512 -- Here ptr_T is the pointer type for the allocator, and T is the
4513 -- subtype of the allocator. A special case arises if the designated
4514 -- type of the access type is a task or contains tasks. In this case
4515 -- the call to Init (Temp.all ...) is replaced by code that ensures
4516 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4517 -- for details). In addition, if the type T is a task T, then the
4518 -- first argument to Init must be converted to the task record type.
70482933 4519
26bff3d9 4520 declare
df3e68b1
HK
4521 T : constant Entity_Id := Entity (Expression (N));
4522 Args : List_Id;
4523 Decls : List_Id;
4524 Decl : Node_Id;
4525 Discr : Elmt_Id;
4526 Init : Entity_Id;
4527 Init_Arg1 : Node_Id;
4528 Temp_Decl : Node_Id;
4529 Temp_Type : Entity_Id;
70482933 4530
26bff3d9
JM
4531 begin
4532 if No_Initialization (N) then
df3e68b1
HK
4533
4534 -- Even though this might be a simple allocation, create a custom
deb8dacc
HK
4535 -- Allocate if the context requires it. Since .NET/JVM compilers
4536 -- do not support pools, this step is skipped.
df3e68b1 4537
deb8dacc 4538 if VM_Target = No_VM
d3f70b35 4539 and then Present (Finalization_Master (PtrT))
deb8dacc 4540 then
df3e68b1 4541 Build_Allocate_Deallocate_Proc
ca5af305 4542 (N => N,
df3e68b1
HK
4543 Is_Allocate => True);
4544 end if;
70482933 4545
26bff3d9 4546 -- Case of no initialization procedure present
70482933 4547
26bff3d9 4548 elsif not Has_Non_Null_Base_Init_Proc (T) then
70482933 4549
26bff3d9 4550 -- Case of simple initialization required
70482933 4551
26bff3d9 4552 if Needs_Simple_Initialization (T) then
b4592168 4553 Check_Restriction (No_Default_Initialization, N);
26bff3d9
JM
4554 Rewrite (Expression (N),
4555 Make_Qualified_Expression (Loc,
4556 Subtype_Mark => New_Occurrence_Of (T, Loc),
b4592168 4557 Expression => Get_Simple_Init_Val (T, N)));
70482933 4558
26bff3d9
JM
4559 Analyze_And_Resolve (Expression (Expression (N)), T);
4560 Analyze_And_Resolve (Expression (N), T);
4561 Set_Paren_Count (Expression (Expression (N)), 1);
4562 Expand_N_Allocator (N);
70482933 4563
26bff3d9 4564 -- No initialization required
70482933
RK
4565
4566 else
26bff3d9
JM
4567 null;
4568 end if;
70482933 4569
26bff3d9 4570 -- Case of initialization procedure present, must be called
70482933 4571
26bff3d9 4572 else
b4592168 4573 Check_Restriction (No_Default_Initialization, N);
70482933 4574
b4592168
GD
4575 if not Restriction_Active (No_Default_Initialization) then
4576 Init := Base_Init_Proc (T);
4577 Nod := N;
191fcb3a 4578 Temp := Make_Temporary (Loc, 'P');
70482933 4579
b4592168 4580 -- Construct argument list for the initialization routine call
70482933 4581
df3e68b1 4582 Init_Arg1 :=
b4592168 4583 Make_Explicit_Dereference (Loc,
df3e68b1 4584 Prefix =>
e4494292 4585 New_Occurrence_Of (Temp, Loc));
df3e68b1
HK
4586
4587 Set_Assignment_OK (Init_Arg1);
b4592168 4588 Temp_Type := PtrT;
26bff3d9 4589
b4592168
GD
4590 -- The initialization procedure expects a specific type. if the
4591 -- context is access to class wide, indicate that the object
4592 -- being allocated has the right specific type.
70482933 4593
b4592168 4594 if Is_Class_Wide_Type (Dtyp) then
df3e68b1 4595 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
b4592168 4596 end if;
70482933 4597
b4592168
GD
4598 -- If designated type is a concurrent type or if it is private
4599 -- type whose definition is a concurrent type, the first
4600 -- argument in the Init routine has to be unchecked conversion
4601 -- to the corresponding record type. If the designated type is
243cae0a 4602 -- a derived type, also convert the argument to its root type.
20b5d666 4603
b4592168 4604 if Is_Concurrent_Type (T) then
df3e68b1
HK
4605 Init_Arg1 :=
4606 Unchecked_Convert_To (
4607 Corresponding_Record_Type (T), Init_Arg1);
70482933 4608
b4592168
GD
4609 elsif Is_Private_Type (T)
4610 and then Present (Full_View (T))
4611 and then Is_Concurrent_Type (Full_View (T))
4612 then
df3e68b1 4613 Init_Arg1 :=
b4592168 4614 Unchecked_Convert_To
df3e68b1 4615 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
70482933 4616
b4592168
GD
4617 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
4618 declare
4619 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
df3e68b1 4620
b4592168 4621 begin
df3e68b1
HK
4622 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
4623 Set_Etype (Init_Arg1, Ftyp);
b4592168
GD
4624 end;
4625 end if;
70482933 4626
df3e68b1 4627 Args := New_List (Init_Arg1);
70482933 4628
b4592168
GD
4629 -- For the task case, pass the Master_Id of the access type as
4630 -- the value of the _Master parameter, and _Chain as the value
4631 -- of the _Chain parameter (_Chain will be defined as part of
4632 -- the generated code for the allocator).
70482933 4633
b4592168
GD
4634 -- In Ada 2005, the context may be a function that returns an
4635 -- anonymous access type. In that case the Master_Id has been
4636 -- created when expanding the function declaration.
70482933 4637
b4592168
GD
4638 if Has_Task (T) then
4639 if No (Master_Id (Base_Type (PtrT))) then
70482933 4640
b4592168
GD
4641 -- The designated type was an incomplete type, and the
4642 -- access type did not get expanded. Salvage it now.
70482933 4643
b941ae65 4644 if not Restriction_Active (No_Task_Hierarchy) then
3d67b239
AC
4645 if Present (Parent (Base_Type (PtrT))) then
4646 Expand_N_Full_Type_Declaration
4647 (Parent (Base_Type (PtrT)));
4648
0d5fbf52
AC
4649 -- The only other possibility is an itype. For this
4650 -- case, the master must exist in the context. This is
4651 -- the case when the allocator initializes an access
4652 -- component in an init-proc.
3d67b239 4653
0d5fbf52 4654 else
3d67b239
AC
4655 pragma Assert (Is_Itype (PtrT));
4656 Build_Master_Renaming (PtrT, N);
4657 end if;
b941ae65 4658 end if;
b4592168 4659 end if;
70482933 4660
b4592168
GD
4661 -- If the context of the allocator is a declaration or an
4662 -- assignment, we can generate a meaningful image for it,
4663 -- even though subsequent assignments might remove the
4664 -- connection between task and entity. We build this image
4665 -- when the left-hand side is a simple variable, a simple
4666 -- indexed assignment or a simple selected component.
4667
4668 if Nkind (Parent (N)) = N_Assignment_Statement then
4669 declare
4670 Nam : constant Node_Id := Name (Parent (N));
4671
4672 begin
4673 if Is_Entity_Name (Nam) then
4674 Decls :=
4675 Build_Task_Image_Decls
4676 (Loc,
4677 New_Occurrence_Of
4678 (Entity (Nam), Sloc (Nam)), T);
4679
243cae0a
AC
4680 elsif Nkind_In (Nam, N_Indexed_Component,
4681 N_Selected_Component)
b4592168
GD
4682 and then Is_Entity_Name (Prefix (Nam))
4683 then
4684 Decls :=
4685 Build_Task_Image_Decls
4686 (Loc, Nam, Etype (Prefix (Nam)));
4687 else
4688 Decls := Build_Task_Image_Decls (Loc, T, T);
4689 end if;
4690 end;
70482933 4691
b4592168
GD
4692 elsif Nkind (Parent (N)) = N_Object_Declaration then
4693 Decls :=
4694 Build_Task_Image_Decls
4695 (Loc, Defining_Identifier (Parent (N)), T);
70482933 4696
b4592168
GD
4697 else
4698 Decls := Build_Task_Image_Decls (Loc, T, T);
4699 end if;
26bff3d9 4700
87dc09cb 4701 if Restriction_Active (No_Task_Hierarchy) then
3c1ecd7e
AC
4702 Append_To (Args,
4703 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
87dc09cb
AC
4704 else
4705 Append_To (Args,
e4494292 4706 New_Occurrence_Of
87dc09cb
AC
4707 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
4708 end if;
4709
b4592168 4710 Append_To (Args, Make_Identifier (Loc, Name_uChain));
26bff3d9 4711
b4592168
GD
4712 Decl := Last (Decls);
4713 Append_To (Args,
4714 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
26bff3d9 4715
87dc09cb 4716 -- Has_Task is false, Decls not used
26bff3d9 4717
b4592168
GD
4718 else
4719 Decls := No_List;
26bff3d9
JM
4720 end if;
4721
b4592168
GD
4722 -- Add discriminants if discriminated type
4723
4724 declare
4725 Dis : Boolean := False;
4726 Typ : Entity_Id;
4727
4728 begin
4729 if Has_Discriminants (T) then
4730 Dis := True;
4731 Typ := T;
4732
4733 elsif Is_Private_Type (T)
4734 and then Present (Full_View (T))
4735 and then Has_Discriminants (Full_View (T))
20b5d666 4736 then
b4592168
GD
4737 Dis := True;
4738 Typ := Full_View (T);
20b5d666 4739 end if;
70482933 4740
b4592168 4741 if Dis then
26bff3d9 4742
b4592168 4743 -- If the allocated object will be constrained by the
685094bf
RD
4744 -- default values for discriminants, then build a subtype
4745 -- with those defaults, and change the allocated subtype
4746 -- to that. Note that this happens in fewer cases in Ada
4747 -- 2005 (AI-363).
26bff3d9 4748
b4592168
GD
4749 if not Is_Constrained (Typ)
4750 and then Present (Discriminant_Default_Value
df3e68b1 4751 (First_Discriminant (Typ)))
0791fbe9 4752 and then (Ada_Version < Ada_2005
cc96a1b8 4753 or else not
0fbcb11c
ES
4754 Object_Type_Has_Constrained_Partial_View
4755 (Typ, Current_Scope))
20b5d666 4756 then
b4592168 4757 Typ := Build_Default_Subtype (Typ, N);
e4494292 4758 Set_Expression (N, New_Occurrence_Of (Typ, Loc));
20b5d666
JM
4759 end if;
4760
b4592168
GD
4761 Discr := First_Elmt (Discriminant_Constraint (Typ));
4762 while Present (Discr) loop
4763 Nod := Node (Discr);
4764 Append (New_Copy_Tree (Node (Discr)), Args);
20b5d666 4765
b4592168
GD
4766 -- AI-416: when the discriminant constraint is an
4767 -- anonymous access type make sure an accessibility
4768 -- check is inserted if necessary (3.10.2(22.q/2))
20b5d666 4769
0791fbe9 4770 if Ada_Version >= Ada_2005
b4592168
GD
4771 and then
4772 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
4773 then
e84e11ba
GD
4774 Apply_Accessibility_Check
4775 (Nod, Typ, Insert_Node => Nod);
b4592168 4776 end if;
20b5d666 4777
b4592168
GD
4778 Next_Elmt (Discr);
4779 end loop;
4780 end if;
4781 end;
70482933 4782
4b985e20 4783 -- We set the allocator as analyzed so that when we analyze
9b16cb57
RD
4784 -- the if expression node, we do not get an unwanted recursive
4785 -- expansion of the allocator expression.
70482933 4786
b4592168
GD
4787 Set_Analyzed (N, True);
4788 Nod := Relocate_Node (N);
70482933 4789
b4592168 4790 -- Here is the transformation:
ca5af305
AC
4791 -- input: new Ctrl_Typ
4792 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4793 -- Ctrl_TypIP (Temp.all, ...);
4794 -- [Deep_]Initialize (Temp.all);
70482933 4795
ca5af305
AC
4796 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4797 -- is the subtype of the allocator.
70482933 4798
b4592168
GD
4799 Temp_Decl :=
4800 Make_Object_Declaration (Loc,
4801 Defining_Identifier => Temp,
4802 Constant_Present => True,
e4494292 4803 Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
b4592168 4804 Expression => Nod);
70482933 4805
b4592168
GD
4806 Set_Assignment_OK (Temp_Decl);
4807 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
70482933 4808
ca5af305 4809 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 4810
b4592168
GD
4811 -- If the designated type is a task type or contains tasks,
4812 -- create block to activate created tasks, and insert
4813 -- declaration for Task_Image variable ahead of call.
70482933 4814
b4592168
GD
4815 if Has_Task (T) then
4816 declare
4817 L : constant List_Id := New_List;
4818 Blk : Node_Id;
4819 begin
4820 Build_Task_Allocate_Block (L, Nod, Args);
4821 Blk := Last (L);
4822 Insert_List_Before (First (Declarations (Blk)), Decls);
4823 Insert_Actions (N, L);
4824 end;
70482933 4825
b4592168
GD
4826 else
4827 Insert_Action (N,
4828 Make_Procedure_Call_Statement (Loc,
e4494292 4829 Name => New_Occurrence_Of (Init, Loc),
b4592168
GD
4830 Parameter_Associations => Args));
4831 end if;
70482933 4832
048e5cef 4833 if Needs_Finalization (T) then
70482933 4834
df3e68b1
HK
4835 -- Generate:
4836 -- [Deep_]Initialize (Init_Arg1);
70482933 4837
df3e68b1 4838 Insert_Action (N,
243cae0a
AC
4839 Make_Init_Call
4840 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4841 Typ => T));
b4592168 4842
b254da66 4843 if Present (Finalization_Master (PtrT)) then
deb8dacc 4844
b254da66
AC
4845 -- Special processing for .NET/JVM, the allocated object
4846 -- is attached to the finalization master. Generate:
deb8dacc 4847
b254da66 4848 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
deb8dacc 4849
b254da66
AC
4850 -- Types derived from [Limited_]Controlled are the only
4851 -- ones considered since they have fields Prev and Next.
4852
e0c32166
AC
4853 if VM_Target /= No_VM then
4854 if Is_Controlled (T) then
4855 Insert_Action (N,
4856 Make_Attach_Call
4857 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4858 Ptr_Typ => PtrT));
4859 end if;
b254da66
AC
4860
4861 -- Default case, generate:
4862
4863 -- Set_Finalize_Address
4864 -- (<PtrT>FM, <T>FD'Unrestricted_Access);
4865
5114f3ff
AC
4866 -- Do not generate this call in CodePeer mode, as TSS
4867 -- primitive Finalize_Address is not created in this
4868 -- mode.
b254da66 4869
5114f3ff 4870 elsif not CodePeer_Mode then
b254da66
AC
4871 Insert_Action (N,
4872 Make_Set_Finalize_Address_Call
4873 (Loc => Loc,
4874 Typ => T,
4875 Ptr_Typ => PtrT));
4876 end if;
b4592168 4877 end if;
70482933
RK
4878 end if;
4879
e4494292 4880 Rewrite (N, New_Occurrence_Of (Temp, Loc));
b4592168
GD
4881 Analyze_And_Resolve (N, PtrT);
4882 end if;
26bff3d9
JM
4883 end if;
4884 end;
f82944b7 4885
26bff3d9
JM
4886 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4887 -- object that has been rewritten as a reference, we displace "this"
4888 -- to reference properly its secondary dispatch table.
4889
533369aa 4890 if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
26bff3d9 4891 Displace_Allocator_Pointer (N);
f82944b7
JM
4892 end if;
4893
fbf5a39b
AC
4894 exception
4895 when RE_Not_Available =>
4896 return;
70482933
RK
4897 end Expand_N_Allocator;
4898
4899 -----------------------
4900 -- Expand_N_And_Then --
4901 -----------------------
4902
5875f8d6
AC
4903 procedure Expand_N_And_Then (N : Node_Id)
4904 renames Expand_Short_Circuit_Operator;
70482933 4905
19d846a0
RD
4906 ------------------------------
4907 -- Expand_N_Case_Expression --
4908 ------------------------------
4909
4910 procedure Expand_N_Case_Expression (N : Node_Id) is
4911 Loc : constant Source_Ptr := Sloc (N);
4912 Typ : constant Entity_Id := Etype (N);
4913 Cstmt : Node_Id;
27a8f150 4914 Decl : Node_Id;
19d846a0
RD
4915 Tnn : Entity_Id;
4916 Pnn : Entity_Id;
4917 Actions : List_Id;
4918 Ttyp : Entity_Id;
4919 Alt : Node_Id;
4920 Fexp : Node_Id;
4921
4922 begin
b6b5cca8
AC
4923 -- Check for MINIMIZED/ELIMINATED overflow mode
4924
4925 if Minimized_Eliminated_Overflow_Check (N) then
4b1c4f20
RD
4926 Apply_Arithmetic_Overflow_Check (N);
4927 return;
4928 end if;
4929
19d846a0
RD
4930 -- We expand
4931
4932 -- case X is when A => AX, when B => BX ...
4933
4934 -- to
4935
4936 -- do
4937 -- Tnn : typ;
4938 -- case X is
4939 -- when A =>
4940 -- Tnn := AX;
4941 -- when B =>
4942 -- Tnn := BX;
4943 -- ...
4944 -- end case;
4945 -- in Tnn end;
4946
4947 -- However, this expansion is wrong for limited types, and also
4948 -- wrong for unconstrained types (since the bounds may not be the
4949 -- same in all branches). Furthermore it involves an extra copy
4950 -- for large objects. So we take care of this by using the following
2492305b 4951 -- modified expansion for non-elementary types:
19d846a0
RD
4952
4953 -- do
4954 -- type Pnn is access all typ;
4955 -- Tnn : Pnn;
4956 -- case X is
4957 -- when A =>
4958 -- T := AX'Unrestricted_Access;
4959 -- when B =>
4960 -- T := BX'Unrestricted_Access;
4961 -- ...
4962 -- end case;
4963 -- in Tnn.all end;
4964
4965 Cstmt :=
4966 Make_Case_Statement (Loc,
4967 Expression => Expression (N),
4968 Alternatives => New_List);
4969
4970 Actions := New_List;
4971
4972 -- Scalar case
4973
2492305b 4974 if Is_Elementary_Type (Typ) then
19d846a0
RD
4975 Ttyp := Typ;
4976
4977 else
4978 Pnn := Make_Temporary (Loc, 'P');
4979 Append_To (Actions,
4980 Make_Full_Type_Declaration (Loc,
4981 Defining_Identifier => Pnn,
11d59a86 4982 Type_Definition =>
19d846a0 4983 Make_Access_To_Object_Definition (Loc,
11d59a86 4984 All_Present => True,
e4494292 4985 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
19d846a0
RD
4986 Ttyp := Pnn;
4987 end if;
4988
4989 Tnn := Make_Temporary (Loc, 'T');
27a8f150
AC
4990
4991 -- Create declaration for target of expression, and indicate that it
4992 -- does not require initialization.
4993
11d59a86
AC
4994 Decl :=
4995 Make_Object_Declaration (Loc,
19d846a0 4996 Defining_Identifier => Tnn,
27a8f150
AC
4997 Object_Definition => New_Occurrence_Of (Ttyp, Loc));
4998 Set_No_Initialization (Decl);
4999 Append_To (Actions, Decl);
19d846a0
RD
5000
5001 -- Now process the alternatives
5002
5003 Alt := First (Alternatives (N));
5004 while Present (Alt) loop
5005 declare
eaed0c37
AC
5006 Aexp : Node_Id := Expression (Alt);
5007 Aloc : constant Source_Ptr := Sloc (Aexp);
5008 Stats : List_Id;
19d846a0
RD
5009
5010 begin
eaed0c37
AC
5011 -- As described above, take Unrestricted_Access for case of non-
5012 -- scalar types, to avoid big copies, and special cases.
05dbd302 5013
2492305b 5014 if not Is_Elementary_Type (Typ) then
19d846a0
RD
5015 Aexp :=
5016 Make_Attribute_Reference (Aloc,
5017 Prefix => Relocate_Node (Aexp),
5018 Attribute_Name => Name_Unrestricted_Access);
5019 end if;
5020
eaed0c37
AC
5021 Stats := New_List (
5022 Make_Assignment_Statement (Aloc,
5023 Name => New_Occurrence_Of (Tnn, Loc),
5024 Expression => Aexp));
5025
5026 -- Propagate declarations inserted in the node by Insert_Actions
5027 -- (for example, temporaries generated to remove side effects).
5028 -- These actions must remain attached to the alternative, given
5029 -- that they are generated by the corresponding expression.
5030
5031 if Present (Sinfo.Actions (Alt)) then
5032 Prepend_List (Sinfo.Actions (Alt), Stats);
5033 end if;
5034
19d846a0
RD
5035 Append_To
5036 (Alternatives (Cstmt),
5037 Make_Case_Statement_Alternative (Sloc (Alt),
5038 Discrete_Choices => Discrete_Choices (Alt),
eaed0c37 5039 Statements => Stats));
19d846a0
RD
5040 end;
5041
5042 Next (Alt);
5043 end loop;
5044
5045 Append_To (Actions, Cstmt);
5046
5047 -- Construct and return final expression with actions
5048
2492305b 5049 if Is_Elementary_Type (Typ) then
19d846a0
RD
5050 Fexp := New_Occurrence_Of (Tnn, Loc);
5051 else
5052 Fexp :=
5053 Make_Explicit_Dereference (Loc,
5054 Prefix => New_Occurrence_Of (Tnn, Loc));
5055 end if;
5056
5057 Rewrite (N,
5058 Make_Expression_With_Actions (Loc,
5059 Expression => Fexp,
5060 Actions => Actions));
5061
5062 Analyze_And_Resolve (N, Typ);
5063 end Expand_N_Case_Expression;
5064
9b16cb57
RD
5065 -----------------------------------
5066 -- Expand_N_Explicit_Dereference --
5067 -----------------------------------
5068
5069 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5070 begin
5071 -- Insert explicit dereference call for the checked storage pool case
5072
5073 Insert_Dereference_Action (Prefix (N));
5074
5075 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5076 -- we set the atomic sync flag.
5077
5078 if Is_Atomic (Etype (N))
5079 and then not Atomic_Synchronization_Disabled (Etype (N))
5080 then
5081 Activate_Atomic_Synchronization (N);
5082 end if;
5083 end Expand_N_Explicit_Dereference;
5084
5085 --------------------------------------
5086 -- Expand_N_Expression_With_Actions --
5087 --------------------------------------
5088
5089 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
3a845e07 5090
4c7e0990 5091 function Process_Action (Act : Node_Id) return Traverse_Result;
b2c28399
AC
5092 -- Inspect and process a single action of an expression_with_actions for
5093 -- transient controlled objects. If such objects are found, the routine
5094 -- generates code to clean them up when the context of the expression is
5095 -- evaluated or elaborated.
9b16cb57 5096
4c7e0990
AC
5097 --------------------
5098 -- Process_Action --
5099 --------------------
5100
5101 function Process_Action (Act : Node_Id) return Traverse_Result is
4c7e0990
AC
5102 begin
5103 if Nkind (Act) = N_Object_Declaration
5104 and then Is_Finalizable_Transient (Act, N)
5105 then
b2c28399
AC
5106 Process_Transient_Object (Act, N);
5107 return Abandon;
9b16cb57 5108
4c7e0990
AC
5109 -- Avoid processing temporary function results multiple times when
5110 -- dealing with nested expression_with_actions.
9b16cb57 5111
4c7e0990
AC
5112 elsif Nkind (Act) = N_Expression_With_Actions then
5113 return Abandon;
5114
b2c28399
AC
5115 -- Do not process temporary function results in loops. This is done
5116 -- by Expand_N_Loop_Statement and Build_Finalizer.
4c7e0990
AC
5117
5118 elsif Nkind (Act) = N_Loop_Statement then
5119 return Abandon;
9b16cb57
RD
5120 end if;
5121
4c7e0990
AC
5122 return OK;
5123 end Process_Action;
9b16cb57 5124
4c7e0990 5125 procedure Process_Single_Action is new Traverse_Proc (Process_Action);
9b16cb57
RD
5126
5127 -- Local variables
5128
4c7e0990 5129 Act : Node_Id;
9b16cb57
RD
5130
5131 -- Start of processing for Expand_N_Expression_With_Actions
5132
5133 begin
e0f63680
AC
5134 -- Process the actions as described above
5135
4c7e0990 5136 Act := First (Actions (N));
e0f63680
AC
5137 while Present (Act) loop
5138 Process_Single_Action (Act);
5139 Next (Act);
5140 end loop;
5141
ebdaa81b 5142 -- Deal with case where there are no actions. In this case we simply
5a521b8a 5143 -- rewrite the node with its expression since we don't need the actions
ebdaa81b
AC
5144 -- and the specification of this node does not allow a null action list.
5145
5a521b8a
AC
5146 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5147 -- the expanded tree and relying on being able to retrieve the original
5148 -- tree in cases like this. This raises a whole lot of issues of whether
5149 -- we have problems elsewhere, which will be addressed in the future???
5150
e0f63680 5151 if Is_Empty_List (Actions (N)) then
5a521b8a 5152 Rewrite (N, Relocate_Node (Expression (N)));
ebdaa81b 5153 end if;
9b16cb57
RD
5154 end Expand_N_Expression_With_Actions;
5155
5156 ----------------------------
5157 -- Expand_N_If_Expression --
5158 ----------------------------
70482933 5159
4b985e20 5160 -- Deal with limited types and condition actions
70482933 5161
9b16cb57 5162 procedure Expand_N_If_Expression (N : Node_Id) is
b2c28399
AC
5163 procedure Process_Actions (Actions : List_Id);
5164 -- Inspect and process a single action list of an if expression for
5165 -- transient controlled objects. If such objects are found, the routine
5166 -- generates code to clean them up when the context of the expression is
5167 -- evaluated or elaborated.
3cebd1c0 5168
b2c28399
AC
5169 ---------------------
5170 -- Process_Actions --
5171 ---------------------
3cebd1c0 5172
b2c28399
AC
5173 procedure Process_Actions (Actions : List_Id) is
5174 Act : Node_Id;
3cebd1c0
AC
5175
5176 begin
b2c28399
AC
5177 Act := First (Actions);
5178 while Present (Act) loop
5179 if Nkind (Act) = N_Object_Declaration
5180 and then Is_Finalizable_Transient (Act, N)
5181 then
5182 Process_Transient_Object (Act, N);
5183 end if;
3cebd1c0 5184
b2c28399
AC
5185 Next (Act);
5186 end loop;
5187 end Process_Actions;
3cebd1c0
AC
5188
5189 -- Local variables
5190
70482933
RK
5191 Loc : constant Source_Ptr := Sloc (N);
5192 Cond : constant Node_Id := First (Expressions (N));
5193 Thenx : constant Node_Id := Next (Cond);
5194 Elsex : constant Node_Id := Next (Thenx);
5195 Typ : constant Entity_Id := Etype (N);
c471e2da 5196
3cebd1c0 5197 Actions : List_Id;
602a7ec0
AC
5198 Cnn : Entity_Id;
5199 Decl : Node_Id;
3cebd1c0 5200 Expr : Node_Id;
602a7ec0
AC
5201 New_If : Node_Id;
5202 New_N : Node_Id;
b2c28399 5203 Ptr_Typ : Entity_Id;
70482933 5204
a53c5613
AC
5205 -- Start of processing for Expand_N_If_Expression
5206
70482933 5207 begin
b6b5cca8
AC
5208 -- Check for MINIMIZED/ELIMINATED overflow mode
5209
5210 if Minimized_Eliminated_Overflow_Check (N) then
5211 Apply_Arithmetic_Overflow_Check (N);
5212 return;
5213 end if;
5214
602a7ec0 5215 -- Fold at compile time if condition known. We have already folded
9b16cb57
RD
5216 -- static if expressions, but it is possible to fold any case in which
5217 -- the condition is known at compile time, even though the result is
5218 -- non-static.
602a7ec0
AC
5219
5220 -- Note that we don't do the fold of such cases in Sem_Elab because
5221 -- it can cause infinite loops with the expander adding a conditional
5222 -- expression, and Sem_Elab circuitry removing it repeatedly.
5223
5224 if Compile_Time_Known_Value (Cond) then
5225 if Is_True (Expr_Value (Cond)) then
5226 Expr := Thenx;
5227 Actions := Then_Actions (N);
5228 else
5229 Expr := Elsex;
5230 Actions := Else_Actions (N);
5231 end if;
5232
5233 Remove (Expr);
ae77c68b
AC
5234
5235 if Present (Actions) then
ae77c68b
AC
5236 Rewrite (N,
5237 Make_Expression_With_Actions (Loc,
5238 Expression => Relocate_Node (Expr),
5239 Actions => Actions));
5240 Analyze_And_Resolve (N, Typ);
ae77c68b
AC
5241 else
5242 Rewrite (N, Relocate_Node (Expr));
5243 end if;
602a7ec0
AC
5244
5245 -- Note that the result is never static (legitimate cases of static
9b16cb57 5246 -- if expressions were folded in Sem_Eval).
602a7ec0
AC
5247
5248 Set_Is_Static_Expression (N, False);
5249 return;
5250 end if;
5251
305caf42
AC
5252 -- If the type is limited or unconstrained, we expand as follows to
5253 -- avoid any possibility of improper copies.
70482933 5254
305caf42
AC
5255 -- Note: it may be possible to avoid this special processing if the
5256 -- back end uses its own mechanisms for handling by-reference types ???
ac7120ce 5257
c471e2da
AC
5258 -- type Ptr is access all Typ;
5259 -- Cnn : Ptr;
ac7120ce
RD
5260 -- if cond then
5261 -- <<then actions>>
5262 -- Cnn := then-expr'Unrestricted_Access;
5263 -- else
5264 -- <<else actions>>
5265 -- Cnn := else-expr'Unrestricted_Access;
5266 -- end if;
5267
9b16cb57 5268 -- and replace the if expression by a reference to Cnn.all.
ac7120ce 5269
305caf42
AC
5270 -- This special case can be skipped if the back end handles limited
5271 -- types properly and ensures that no incorrect copies are made.
5272
5273 if Is_By_Reference_Type (Typ)
5274 and then not Back_End_Handles_Limited_Types
5275 then
b2c28399
AC
5276 -- When the "then" or "else" expressions involve controlled function
5277 -- calls, generated temporaries are chained on the corresponding list
5278 -- of actions. These temporaries need to be finalized after the if
5279 -- expression is evaluated.
3cebd1c0 5280
b2c28399
AC
5281 Process_Actions (Then_Actions (N));
5282 Process_Actions (Else_Actions (N));
3cebd1c0 5283
b2c28399
AC
5284 -- Generate:
5285 -- type Ann is access all Typ;
3cebd1c0 5286
b2c28399 5287 Ptr_Typ := Make_Temporary (Loc, 'A');
3cebd1c0 5288
b2c28399
AC
5289 Insert_Action (N,
5290 Make_Full_Type_Declaration (Loc,
5291 Defining_Identifier => Ptr_Typ,
5292 Type_Definition =>
5293 Make_Access_To_Object_Definition (Loc,
5294 All_Present => True,
e4494292 5295 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
3cebd1c0 5296
b2c28399
AC
5297 -- Generate:
5298 -- Cnn : Ann;
3cebd1c0 5299
b2c28399 5300 Cnn := Make_Temporary (Loc, 'C', N);
3cebd1c0 5301
b2c28399
AC
5302 Decl :=
5303 Make_Object_Declaration (Loc,
5304 Defining_Identifier => Cnn,
5305 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
3cebd1c0 5306
b2c28399
AC
5307 -- Generate:
5308 -- if Cond then
5309 -- Cnn := <Thenx>'Unrestricted_Access;
5310 -- else
5311 -- Cnn := <Elsex>'Unrestricted_Access;
5312 -- end if;
3cebd1c0 5313
b2c28399
AC
5314 New_If :=
5315 Make_Implicit_If_Statement (N,
5316 Condition => Relocate_Node (Cond),
5317 Then_Statements => New_List (
5318 Make_Assignment_Statement (Sloc (Thenx),
e4494292 5319 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
b2c28399
AC
5320 Expression =>
5321 Make_Attribute_Reference (Loc,
5322 Prefix => Relocate_Node (Thenx),
5323 Attribute_Name => Name_Unrestricted_Access))),
3cebd1c0 5324
b2c28399
AC
5325 Else_Statements => New_List (
5326 Make_Assignment_Statement (Sloc (Elsex),
e4494292 5327 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
b2c28399
AC
5328 Expression =>
5329 Make_Attribute_Reference (Loc,
5330 Prefix => Relocate_Node (Elsex),
5331 Attribute_Name => Name_Unrestricted_Access))));
3cebd1c0
AC
5332
5333 New_N :=
5334 Make_Explicit_Dereference (Loc,
5335 Prefix => New_Occurrence_Of (Cnn, Loc));
fb1949a0 5336
c471e2da
AC
5337 -- For other types, we only need to expand if there are other actions
5338 -- associated with either branch.
5339
5340 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
c471e2da 5341
0812b84e 5342 -- We now wrap the actions into the appropriate expression
fb1949a0 5343
0812b84e
AC
5344 if Present (Then_Actions (N)) then
5345 Rewrite (Thenx,
b2c28399
AC
5346 Make_Expression_With_Actions (Sloc (Thenx),
5347 Actions => Then_Actions (N),
5348 Expression => Relocate_Node (Thenx)));
5349
0812b84e
AC
5350 Set_Then_Actions (N, No_List);
5351 Analyze_And_Resolve (Thenx, Typ);
5352 end if;
305caf42 5353
0812b84e
AC
5354 if Present (Else_Actions (N)) then
5355 Rewrite (Elsex,
b2c28399
AC
5356 Make_Expression_With_Actions (Sloc (Elsex),
5357 Actions => Else_Actions (N),
5358 Expression => Relocate_Node (Elsex)));
5359
0812b84e
AC
5360 Set_Else_Actions (N, No_List);
5361 Analyze_And_Resolve (Elsex, Typ);
305caf42
AC
5362 end if;
5363
0812b84e
AC
5364 return;
5365
b2c28399
AC
5366 -- If no actions then no expansion needed, gigi will handle it using the
5367 -- same approach as a C conditional expression.
305caf42
AC
5368
5369 else
c471e2da
AC
5370 return;
5371 end if;
5372
305caf42
AC
5373 -- Fall through here for either the limited expansion, or the case of
5374 -- inserting actions for non-limited types. In both these cases, we must
5375 -- move the SLOC of the parent If statement to the newly created one and
3fc5d116
RD
5376 -- change it to the SLOC of the expression which, after expansion, will
5377 -- correspond to what is being evaluated.
c471e2da 5378
533369aa 5379 if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
c471e2da
AC
5380 Set_Sloc (New_If, Sloc (Parent (N)));
5381 Set_Sloc (Parent (N), Loc);
5382 end if;
70482933 5383
3fc5d116
RD
5384 -- Make sure Then_Actions and Else_Actions are appropriately moved
5385 -- to the new if statement.
5386
c471e2da
AC
5387 if Present (Then_Actions (N)) then
5388 Insert_List_Before
5389 (First (Then_Statements (New_If)), Then_Actions (N));
70482933 5390 end if;
c471e2da
AC
5391
5392 if Present (Else_Actions (N)) then
5393 Insert_List_Before
5394 (First (Else_Statements (New_If)), Else_Actions (N));
5395 end if;
5396
5397 Insert_Action (N, Decl);
5398 Insert_Action (N, New_If);
5399 Rewrite (N, New_N);
5400 Analyze_And_Resolve (N, Typ);
9b16cb57 5401 end Expand_N_If_Expression;
35a1c212 5402
70482933
RK
5403 -----------------
5404 -- Expand_N_In --
5405 -----------------
5406
5407 procedure Expand_N_In (N : Node_Id) is
7324bf49 5408 Loc : constant Source_Ptr := Sloc (N);
4818e7b9 5409 Restyp : constant Entity_Id := Etype (N);
7324bf49
AC
5410 Lop : constant Node_Id := Left_Opnd (N);
5411 Rop : constant Node_Id := Right_Opnd (N);
5412 Static : constant Boolean := Is_OK_Static_Expression (N);
70482933 5413
4818e7b9
RD
5414 Ltyp : Entity_Id;
5415 Rtyp : Entity_Id;
5416
630d30e9
RD
5417 procedure Substitute_Valid_Check;
5418 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5419 -- test for the left operand being in range of its subtype.
5420
5421 ----------------------------
5422 -- Substitute_Valid_Check --
5423 ----------------------------
5424
5425 procedure Substitute_Valid_Check is
5426 begin
c7532b2d
AC
5427 Rewrite (N,
5428 Make_Attribute_Reference (Loc,
5429 Prefix => Relocate_Node (Lop),
5430 Attribute_Name => Name_Valid));
630d30e9 5431
c7532b2d 5432 Analyze_And_Resolve (N, Restyp);
630d30e9 5433
acad3c0a
AC
5434 -- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5435 -- in which case, this usage makes sense, and in any case, we have
5436 -- actually eliminated the danger of optimization above.
5437
a7f1b24f 5438 if Overflow_Check_Mode not in Minimized_Or_Eliminated then
324ac540
AC
5439 Error_Msg_N
5440 ("??explicit membership test may be optimized away", N);
acad3c0a 5441 Error_Msg_N -- CODEFIX
324ac540 5442 ("\??use ''Valid attribute instead", N);
acad3c0a
AC
5443 end if;
5444
c7532b2d 5445 return;
630d30e9
RD
5446 end Substitute_Valid_Check;
5447
5448 -- Start of processing for Expand_N_In
5449
70482933 5450 begin
308e6f3a 5451 -- If set membership case, expand with separate procedure
4818e7b9 5452
197e4514 5453 if Present (Alternatives (N)) then
a3068ca6 5454 Expand_Set_Membership (N);
197e4514
AC
5455 return;
5456 end if;
5457
4818e7b9
RD
5458 -- Not set membership, proceed with expansion
5459
5460 Ltyp := Etype (Left_Opnd (N));
5461 Rtyp := Etype (Right_Opnd (N));
5462
5707e389 5463 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
f6194278
RD
5464 -- type, then expand with a separate procedure. Note the use of the
5465 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5466
a7f1b24f 5467 if Overflow_Check_Mode in Minimized_Or_Eliminated
f6194278
RD
5468 and then Is_Signed_Integer_Type (Ltyp)
5469 and then not No_Minimize_Eliminate (N)
5470 then
5471 Expand_Membership_Minimize_Eliminate_Overflow (N);
5472 return;
5473 end if;
5474
630d30e9
RD
5475 -- Check case of explicit test for an expression in range of its
5476 -- subtype. This is suspicious usage and we replace it with a 'Valid
b6b5cca8 5477 -- test and give a warning for scalar types.
630d30e9 5478
4818e7b9 5479 if Is_Scalar_Type (Ltyp)
b6b5cca8
AC
5480
5481 -- Only relevant for source comparisons
5482
5483 and then Comes_From_Source (N)
5484
5485 -- In floating-point this is a standard way to check for finite values
5486 -- and using 'Valid would typically be a pessimization.
5487
4818e7b9 5488 and then not Is_Floating_Point_Type (Ltyp)
b6b5cca8
AC
5489
5490 -- Don't give the message unless right operand is a type entity and
5491 -- the type of the left operand matches this type. Note that this
5492 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5493 -- checks have changed the type of the left operand.
5494
630d30e9 5495 and then Nkind (Rop) in N_Has_Entity
4818e7b9 5496 and then Ltyp = Entity (Rop)
b6b5cca8
AC
5497
5498 -- Skip in VM mode, where we have no sense of invalid values. The
5499 -- warning still seems relevant, but not important enough to worry.
5500
26bff3d9 5501 and then VM_Target = No_VM
b6b5cca8
AC
5502
5503 -- Skip this for predicated types, where such expressions are a
5504 -- reasonable way of testing if something meets the predicate.
5505
3d6db7f8 5506 and then not Present (Predicate_Function (Ltyp))
630d30e9
RD
5507 then
5508 Substitute_Valid_Check;
5509 return;
5510 end if;
5511
20b5d666
JM
5512 -- Do validity check on operands
5513
5514 if Validity_Checks_On and Validity_Check_Operands then
5515 Ensure_Valid (Left_Opnd (N));
5516 Validity_Check_Range (Right_Opnd (N));
5517 end if;
5518
630d30e9 5519 -- Case of explicit range
fbf5a39b
AC
5520
5521 if Nkind (Rop) = N_Range then
5522 declare
630d30e9
RD
5523 Lo : constant Node_Id := Low_Bound (Rop);
5524 Hi : constant Node_Id := High_Bound (Rop);
5525
5526 Lo_Orig : constant Node_Id := Original_Node (Lo);
5527 Hi_Orig : constant Node_Id := Original_Node (Hi);
5528
c800f862
RD
5529 Lcheck : Compare_Result;
5530 Ucheck : Compare_Result;
fbf5a39b 5531
d766cee3
RD
5532 Warn1 : constant Boolean :=
5533 Constant_Condition_Warnings
c800f862
RD
5534 and then Comes_From_Source (N)
5535 and then not In_Instance;
d766cee3 5536 -- This must be true for any of the optimization warnings, we
9a0ddeee
AC
5537 -- clearly want to give them only for source with the flag on. We
5538 -- also skip these warnings in an instance since it may be the
5539 -- case that different instantiations have different ranges.
d766cee3
RD
5540
5541 Warn2 : constant Boolean :=
5542 Warn1
5543 and then Nkind (Original_Node (Rop)) = N_Range
5544 and then Is_Integer_Type (Etype (Lo));
5545 -- For the case where only one bound warning is elided, we also
5546 -- insist on an explicit range and an integer type. The reason is
5547 -- that the use of enumeration ranges including an end point is
9a0ddeee
AC
5548 -- common, as is the use of a subtype name, one of whose bounds is
5549 -- the same as the type of the expression.
d766cee3 5550
fbf5a39b 5551 begin
c95e0edc 5552 -- If test is explicit x'First .. x'Last, replace by valid check
630d30e9 5553
e606088a
AC
5554 -- Could use some individual comments for this complex test ???
5555
d766cee3 5556 if Is_Scalar_Type (Ltyp)
b6b5cca8
AC
5557
5558 -- And left operand is X'First where X matches left operand
5559 -- type (this eliminates cases of type mismatch, including
5560 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5561 -- type of the left operand.
5562
630d30e9
RD
5563 and then Nkind (Lo_Orig) = N_Attribute_Reference
5564 and then Attribute_Name (Lo_Orig) = Name_First
5565 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
d766cee3 5566 and then Entity (Prefix (Lo_Orig)) = Ltyp
b6b5cca8
AC
5567
5568 -- Same tests for right operand
5569
630d30e9
RD
5570 and then Nkind (Hi_Orig) = N_Attribute_Reference
5571 and then Attribute_Name (Hi_Orig) = Name_Last
5572 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
d766cee3 5573 and then Entity (Prefix (Hi_Orig)) = Ltyp
b6b5cca8
AC
5574
5575 -- Relevant only for source cases
5576
630d30e9 5577 and then Comes_From_Source (N)
b6b5cca8
AC
5578
5579 -- Omit for VM cases, where we don't have invalid values
5580
26bff3d9 5581 and then VM_Target = No_VM
630d30e9
RD
5582 then
5583 Substitute_Valid_Check;
4818e7b9 5584 goto Leave;
630d30e9
RD
5585 end if;
5586
d766cee3
RD
5587 -- If bounds of type are known at compile time, and the end points
5588 -- are known at compile time and identical, this is another case
5589 -- for substituting a valid test. We only do this for discrete
5590 -- types, since it won't arise in practice for float types.
5591
5592 if Comes_From_Source (N)
5593 and then Is_Discrete_Type (Ltyp)
5594 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
5595 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
5596 and then Compile_Time_Known_Value (Lo)
5597 and then Compile_Time_Known_Value (Hi)
5598 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
5599 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
94eefd2e 5600
f6194278
RD
5601 -- Kill warnings in instances, since they may be cases where we
5602 -- have a test in the generic that makes sense with some types
5603 -- and not with other types.
94eefd2e
RD
5604
5605 and then not In_Instance
d766cee3
RD
5606 then
5607 Substitute_Valid_Check;
4818e7b9 5608 goto Leave;
d766cee3
RD
5609 end if;
5610
9a0ddeee
AC
5611 -- If we have an explicit range, do a bit of optimization based on
5612 -- range analysis (we may be able to kill one or both checks).
630d30e9 5613
c800f862
RD
5614 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
5615 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
5616
630d30e9
RD
5617 -- If either check is known to fail, replace result by False since
5618 -- the other check does not matter. Preserve the static flag for
5619 -- legality checks, because we are constant-folding beyond RM 4.9.
fbf5a39b
AC
5620
5621 if Lcheck = LT or else Ucheck = GT then
c800f862 5622 if Warn1 then
685bc70f
AC
5623 Error_Msg_N ("?c?range test optimized away", N);
5624 Error_Msg_N ("\?c?value is known to be out of range", N);
d766cee3
RD
5625 end if;
5626
e4494292 5627 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 5628 Analyze_And_Resolve (N, Restyp);
7324bf49 5629 Set_Is_Static_Expression (N, Static);
4818e7b9 5630 goto Leave;
fbf5a39b 5631
685094bf
RD
5632 -- If both checks are known to succeed, replace result by True,
5633 -- since we know we are in range.
fbf5a39b
AC
5634
5635 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
c800f862 5636 if Warn1 then
685bc70f
AC
5637 Error_Msg_N ("?c?range test optimized away", N);
5638 Error_Msg_N ("\?c?value is known to be in range", N);
d766cee3
RD
5639 end if;
5640
e4494292 5641 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4818e7b9 5642 Analyze_And_Resolve (N, Restyp);
7324bf49 5643 Set_Is_Static_Expression (N, Static);
4818e7b9 5644 goto Leave;
fbf5a39b 5645
d766cee3
RD
5646 -- If lower bound check succeeds and upper bound check is not
5647 -- known to succeed or fail, then replace the range check with
5648 -- a comparison against the upper bound.
fbf5a39b
AC
5649
5650 elsif Lcheck in Compare_GE then
94eefd2e 5651 if Warn2 and then not In_Instance then
324ac540
AC
5652 Error_Msg_N ("??lower bound test optimized away", Lo);
5653 Error_Msg_N ("\??value is known to be in range", Lo);
d766cee3
RD
5654 end if;
5655
fbf5a39b
AC
5656 Rewrite (N,
5657 Make_Op_Le (Loc,
5658 Left_Opnd => Lop,
5659 Right_Opnd => High_Bound (Rop)));
4818e7b9
RD
5660 Analyze_And_Resolve (N, Restyp);
5661 goto Leave;
fbf5a39b 5662
d766cee3
RD
5663 -- If upper bound check succeeds and lower bound check is not
5664 -- known to succeed or fail, then replace the range check with
5665 -- a comparison against the lower bound.
fbf5a39b
AC
5666
5667 elsif Ucheck in Compare_LE then
94eefd2e 5668 if Warn2 and then not In_Instance then
324ac540
AC
5669 Error_Msg_N ("??upper bound test optimized away", Hi);
5670 Error_Msg_N ("\??value is known to be in range", Hi);
d766cee3
RD
5671 end if;
5672
fbf5a39b
AC
5673 Rewrite (N,
5674 Make_Op_Ge (Loc,
5675 Left_Opnd => Lop,
5676 Right_Opnd => Low_Bound (Rop)));
4818e7b9
RD
5677 Analyze_And_Resolve (N, Restyp);
5678 goto Leave;
fbf5a39b 5679 end if;
c800f862
RD
5680
5681 -- We couldn't optimize away the range check, but there is one
5682 -- more issue. If we are checking constant conditionals, then we
5683 -- see if we can determine the outcome assuming everything is
5684 -- valid, and if so give an appropriate warning.
5685
5686 if Warn1 and then not Assume_No_Invalid_Values then
5687 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
5688 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
5689
5690 -- Result is out of range for valid value
5691
5692 if Lcheck = LT or else Ucheck = GT then
ed2233dc 5693 Error_Msg_N
685bc70f 5694 ("?c?value can only be in range if it is invalid", N);
c800f862
RD
5695
5696 -- Result is in range for valid value
5697
5698 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
ed2233dc 5699 Error_Msg_N
685bc70f 5700 ("?c?value can only be out of range if it is invalid", N);
c800f862
RD
5701
5702 -- Lower bound check succeeds if value is valid
5703
5704 elsif Warn2 and then Lcheck in Compare_GE then
ed2233dc 5705 Error_Msg_N
685bc70f 5706 ("?c?lower bound check only fails if it is invalid", Lo);
c800f862
RD
5707
5708 -- Upper bound check succeeds if value is valid
5709
5710 elsif Warn2 and then Ucheck in Compare_LE then
ed2233dc 5711 Error_Msg_N
685bc70f 5712 ("?c?upper bound check only fails for invalid values", Hi);
c800f862
RD
5713 end if;
5714 end if;
fbf5a39b
AC
5715 end;
5716
5717 -- For all other cases of an explicit range, nothing to be done
70482933 5718
4818e7b9 5719 goto Leave;
70482933
RK
5720
5721 -- Here right operand is a subtype mark
5722
5723 else
5724 declare
82878151
AC
5725 Typ : Entity_Id := Etype (Rop);
5726 Is_Acc : constant Boolean := Is_Access_Type (Typ);
5727 Cond : Node_Id := Empty;
5728 New_N : Node_Id;
5729 Obj : Node_Id := Lop;
5730 SCIL_Node : Node_Id;
70482933
RK
5731
5732 begin
5733 Remove_Side_Effects (Obj);
5734
5735 -- For tagged type, do tagged membership operation
5736
5737 if Is_Tagged_Type (Typ) then
fbf5a39b 5738
26bff3d9
JM
5739 -- No expansion will be performed when VM_Target, as the VM
5740 -- back-ends will handle the membership tests directly (tags
5741 -- are not explicitly represented in Java objects, so the
5742 -- normal tagged membership expansion is not what we want).
70482933 5743
1f110335 5744 if Tagged_Type_Expansion then
82878151
AC
5745 Tagged_Membership (N, SCIL_Node, New_N);
5746 Rewrite (N, New_N);
4818e7b9 5747 Analyze_And_Resolve (N, Restyp);
82878151
AC
5748
5749 -- Update decoration of relocated node referenced by the
5750 -- SCIL node.
5751
9a0ddeee 5752 if Generate_SCIL and then Present (SCIL_Node) then
7665e4bd 5753 Set_SCIL_Node (N, SCIL_Node);
82878151 5754 end if;
70482933
RK
5755 end if;
5756
4818e7b9 5757 goto Leave;
70482933 5758
c95e0edc 5759 -- If type is scalar type, rewrite as x in t'First .. t'Last.
70482933 5760 -- This reason we do this is that the bounds may have the wrong
c800f862
RD
5761 -- type if they come from the original type definition. Also this
5762 -- way we get all the processing above for an explicit range.
70482933 5763
f6194278 5764 -- Don't do this for predicated types, since in this case we
a90bd866 5765 -- want to check the predicate.
c0f136cd 5766
c7532b2d
AC
5767 elsif Is_Scalar_Type (Typ) then
5768 if No (Predicate_Function (Typ)) then
5769 Rewrite (Rop,
5770 Make_Range (Loc,
5771 Low_Bound =>
5772 Make_Attribute_Reference (Loc,
5773 Attribute_Name => Name_First,
e4494292 5774 Prefix => New_Occurrence_Of (Typ, Loc)),
c7532b2d
AC
5775
5776 High_Bound =>
5777 Make_Attribute_Reference (Loc,
5778 Attribute_Name => Name_Last,
e4494292 5779 Prefix => New_Occurrence_Of (Typ, Loc))));
c7532b2d
AC
5780 Analyze_And_Resolve (N, Restyp);
5781 end if;
70482933 5782
4818e7b9 5783 goto Leave;
5d09245e
AC
5784
5785 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5786 -- a membership test if the subtype mark denotes a constrained
5787 -- Unchecked_Union subtype and the expression lacks inferable
5788 -- discriminants.
5789
5790 elsif Is_Unchecked_Union (Base_Type (Typ))
5791 and then Is_Constrained (Typ)
5792 and then not Has_Inferable_Discriminants (Lop)
5793 then
5794 Insert_Action (N,
5795 Make_Raise_Program_Error (Loc,
5796 Reason => PE_Unchecked_Union_Restriction));
5797
9a0ddeee 5798 -- Prevent Gigi from generating incorrect code by rewriting the
f6194278 5799 -- test as False. What is this undocumented thing about ???
5d09245e 5800
9a0ddeee 5801 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 5802 goto Leave;
70482933
RK
5803 end if;
5804
fbf5a39b
AC
5805 -- Here we have a non-scalar type
5806
70482933
RK
5807 if Is_Acc then
5808 Typ := Designated_Type (Typ);
5809 end if;
5810
5811 if not Is_Constrained (Typ) then
e4494292 5812 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4818e7b9 5813 Analyze_And_Resolve (N, Restyp);
70482933 5814
685094bf
RD
5815 -- For the constrained array case, we have to check the subscripts
5816 -- for an exact match if the lengths are non-zero (the lengths
5817 -- must match in any case).
70482933
RK
5818
5819 elsif Is_Array_Type (Typ) then
fbf5a39b 5820 Check_Subscripts : declare
9a0ddeee 5821 function Build_Attribute_Reference
2e071734
AC
5822 (E : Node_Id;
5823 Nam : Name_Id;
5824 Dim : Nat) return Node_Id;
9a0ddeee 5825 -- Build attribute reference E'Nam (Dim)
70482933 5826
9a0ddeee
AC
5827 -------------------------------
5828 -- Build_Attribute_Reference --
5829 -------------------------------
fbf5a39b 5830
9a0ddeee 5831 function Build_Attribute_Reference
2e071734
AC
5832 (E : Node_Id;
5833 Nam : Name_Id;
5834 Dim : Nat) return Node_Id
70482933
RK
5835 is
5836 begin
5837 return
5838 Make_Attribute_Reference (Loc,
9a0ddeee 5839 Prefix => E,
70482933 5840 Attribute_Name => Nam,
9a0ddeee 5841 Expressions => New_List (
70482933 5842 Make_Integer_Literal (Loc, Dim)));
9a0ddeee 5843 end Build_Attribute_Reference;
70482933 5844
fad0600d 5845 -- Start of processing for Check_Subscripts
fbf5a39b 5846
70482933
RK
5847 begin
5848 for J in 1 .. Number_Dimensions (Typ) loop
5849 Evolve_And_Then (Cond,
5850 Make_Op_Eq (Loc,
5851 Left_Opnd =>
9a0ddeee 5852 Build_Attribute_Reference
fbf5a39b
AC
5853 (Duplicate_Subexpr_No_Checks (Obj),
5854 Name_First, J),
70482933 5855 Right_Opnd =>
9a0ddeee 5856 Build_Attribute_Reference
70482933
RK
5857 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
5858
5859 Evolve_And_Then (Cond,
5860 Make_Op_Eq (Loc,
5861 Left_Opnd =>
9a0ddeee 5862 Build_Attribute_Reference
fbf5a39b
AC
5863 (Duplicate_Subexpr_No_Checks (Obj),
5864 Name_Last, J),
70482933 5865 Right_Opnd =>
9a0ddeee 5866 Build_Attribute_Reference
70482933
RK
5867 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
5868 end loop;
5869
5870 if Is_Acc then
fbf5a39b
AC
5871 Cond :=
5872 Make_Or_Else (Loc,
5873 Left_Opnd =>
5874 Make_Op_Eq (Loc,
5875 Left_Opnd => Obj,
5876 Right_Opnd => Make_Null (Loc)),
5877 Right_Opnd => Cond);
70482933
RK
5878 end if;
5879
5880 Rewrite (N, Cond);
4818e7b9 5881 Analyze_And_Resolve (N, Restyp);
fbf5a39b 5882 end Check_Subscripts;
70482933 5883
685094bf
RD
5884 -- These are the cases where constraint checks may be required,
5885 -- e.g. records with possible discriminants
70482933
RK
5886
5887 else
5888 -- Expand the test into a series of discriminant comparisons.
685094bf
RD
5889 -- The expression that is built is the negation of the one that
5890 -- is used for checking discriminant constraints.
70482933
RK
5891
5892 Obj := Relocate_Node (Left_Opnd (N));
5893
5894 if Has_Discriminants (Typ) then
5895 Cond := Make_Op_Not (Loc,
5896 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
5897
5898 if Is_Acc then
5899 Cond := Make_Or_Else (Loc,
5900 Left_Opnd =>
5901 Make_Op_Eq (Loc,
5902 Left_Opnd => Obj,
5903 Right_Opnd => Make_Null (Loc)),
5904 Right_Opnd => Cond);
5905 end if;
5906
5907 else
5908 Cond := New_Occurrence_Of (Standard_True, Loc);
5909 end if;
5910
5911 Rewrite (N, Cond);
4818e7b9 5912 Analyze_And_Resolve (N, Restyp);
70482933 5913 end if;
6cce2156
GD
5914
5915 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5916 -- expression of an anonymous access type. This can involve an
5917 -- accessibility test and a tagged type membership test in the
5918 -- case of tagged designated types.
5919
5920 if Ada_Version >= Ada_2012
5921 and then Is_Acc
5922 and then Ekind (Ltyp) = E_Anonymous_Access_Type
5923 then
5924 declare
5925 Expr_Entity : Entity_Id := Empty;
5926 New_N : Node_Id;
5927 Param_Level : Node_Id;
5928 Type_Level : Node_Id;
996c8821 5929
6cce2156
GD
5930 begin
5931 if Is_Entity_Name (Lop) then
5932 Expr_Entity := Param_Entity (Lop);
996c8821 5933
6cce2156
GD
5934 if not Present (Expr_Entity) then
5935 Expr_Entity := Entity (Lop);
5936 end if;
5937 end if;
5938
5939 -- If a conversion of the anonymous access value to the
5940 -- tested type would be illegal, then the result is False.
5941
5942 if not Valid_Conversion
5943 (Lop, Rtyp, Lop, Report_Errs => False)
5944 then
5945 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5946 Analyze_And_Resolve (N, Restyp);
5947
5948 -- Apply an accessibility check if the access object has an
5949 -- associated access level and when the level of the type is
5950 -- less deep than the level of the access parameter. This
5951 -- only occur for access parameters and stand-alone objects
5952 -- of an anonymous access type.
5953
5954 else
5955 if Present (Expr_Entity)
996c8821
RD
5956 and then
5957 Present
5958 (Effective_Extra_Accessibility (Expr_Entity))
5959 and then UI_Gt (Object_Access_Level (Lop),
5960 Type_Access_Level (Rtyp))
6cce2156
GD
5961 then
5962 Param_Level :=
5963 New_Occurrence_Of
d15f9422 5964 (Effective_Extra_Accessibility (Expr_Entity), Loc);
6cce2156
GD
5965
5966 Type_Level :=
5967 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
5968
5969 -- Return True only if the accessibility level of the
5970 -- expression entity is not deeper than the level of
5971 -- the tested access type.
5972
5973 Rewrite (N,
5974 Make_And_Then (Loc,
5975 Left_Opnd => Relocate_Node (N),
5976 Right_Opnd => Make_Op_Le (Loc,
5977 Left_Opnd => Param_Level,
5978 Right_Opnd => Type_Level)));
5979
5980 Analyze_And_Resolve (N);
5981 end if;
5982
5983 -- If the designated type is tagged, do tagged membership
5984 -- operation.
5985
5986 -- *** NOTE: we have to check not null before doing the
5987 -- tagged membership test (but maybe that can be done
5988 -- inside Tagged_Membership?).
5989
5990 if Is_Tagged_Type (Typ) then
5991 Rewrite (N,
5992 Make_And_Then (Loc,
5993 Left_Opnd => Relocate_Node (N),
5994 Right_Opnd =>
5995 Make_Op_Ne (Loc,
5996 Left_Opnd => Obj,
5997 Right_Opnd => Make_Null (Loc))));
5998
5999 -- No expansion will be performed when VM_Target, as
6000 -- the VM back-ends will handle the membership tests
6001 -- directly (tags are not explicitly represented in
6002 -- Java objects, so the normal tagged membership
6003 -- expansion is not what we want).
6004
6005 if Tagged_Type_Expansion then
6006
6007 -- Note that we have to pass Original_Node, because
6008 -- the membership test might already have been
6009 -- rewritten by earlier parts of membership test.
6010
6011 Tagged_Membership
6012 (Original_Node (N), SCIL_Node, New_N);
6013
6014 -- Update decoration of relocated node referenced
6015 -- by the SCIL node.
6016
6017 if Generate_SCIL and then Present (SCIL_Node) then
6018 Set_SCIL_Node (New_N, SCIL_Node);
6019 end if;
6020
6021 Rewrite (N,
6022 Make_And_Then (Loc,
6023 Left_Opnd => Relocate_Node (N),
6024 Right_Opnd => New_N));
6025
6026 Analyze_And_Resolve (N, Restyp);
6027 end if;
6028 end if;
6029 end if;
6030 end;
6031 end if;
70482933
RK
6032 end;
6033 end if;
4818e7b9
RD
6034
6035 -- At this point, we have done the processing required for the basic
6036 -- membership test, but not yet dealt with the predicate.
6037
6038 <<Leave>>
6039
c7532b2d
AC
6040 -- If a predicate is present, then we do the predicate test, but we
6041 -- most certainly want to omit this if we are within the predicate
a90bd866 6042 -- function itself, since otherwise we have an infinite recursion.
3d6db7f8
GD
6043 -- The check should also not be emitted when testing against a range
6044 -- (the check is only done when the right operand is a subtype; see
6045 -- RM12-4.5.2 (28.1/3-30/3)).
4818e7b9 6046
c7532b2d
AC
6047 declare
6048 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
4818e7b9 6049
c7532b2d
AC
6050 begin
6051 if Present (PFunc)
6052 and then Current_Scope /= PFunc
3d6db7f8 6053 and then Nkind (Rop) /= N_Range
c7532b2d
AC
6054 then
6055 Rewrite (N,
6056 Make_And_Then (Loc,
6057 Left_Opnd => Relocate_Node (N),
fc142f63 6058 Right_Opnd => Make_Predicate_Call (Rtyp, Lop, Mem => True)));
4818e7b9 6059
c7532b2d 6060 -- Analyze new expression, mark left operand as analyzed to
b2009d46
AC
6061 -- avoid infinite recursion adding predicate calls. Similarly,
6062 -- suppress further range checks on the call.
4818e7b9 6063
c7532b2d 6064 Set_Analyzed (Left_Opnd (N));
b2009d46 6065 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
4818e7b9 6066
c7532b2d
AC
6067 -- All done, skip attempt at compile time determination of result
6068
6069 return;
6070 end if;
6071 end;
70482933
RK
6072 end Expand_N_In;
6073
6074 --------------------------------
6075 -- Expand_N_Indexed_Component --
6076 --------------------------------
6077
6078 procedure Expand_N_Indexed_Component (N : Node_Id) is
6079 Loc : constant Source_Ptr := Sloc (N);
6080 Typ : constant Entity_Id := Etype (N);
6081 P : constant Node_Id := Prefix (N);
6082 T : constant Entity_Id := Etype (P);
5972791c 6083 Atp : Entity_Id;
70482933
RK
6084
6085 begin
685094bf
RD
6086 -- A special optimization, if we have an indexed component that is
6087 -- selecting from a slice, then we can eliminate the slice, since, for
6088 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6089 -- the range check required by the slice. The range check for the slice
6090 -- itself has already been generated. The range check for the
6091 -- subscripting operation is ensured by converting the subject to
6092 -- the subtype of the slice.
6093
6094 -- This optimization not only generates better code, avoiding slice
6095 -- messing especially in the packed case, but more importantly bypasses
6096 -- some problems in handling this peculiar case, for example, the issue
6097 -- of dealing specially with object renamings.
70482933
RK
6098
6099 if Nkind (P) = N_Slice then
6100 Rewrite (N,
6101 Make_Indexed_Component (Loc,
6102 Prefix => Prefix (P),
6103 Expressions => New_List (
6104 Convert_To
6105 (Etype (First_Index (Etype (P))),
6106 First (Expressions (N))))));
6107 Analyze_And_Resolve (N, Typ);
6108 return;
6109 end if;
6110
b4592168
GD
6111 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6112 -- function, then additional actuals must be passed.
6113
0791fbe9 6114 if Ada_Version >= Ada_2005
b4592168
GD
6115 and then Is_Build_In_Place_Function_Call (P)
6116 then
6117 Make_Build_In_Place_Call_In_Anonymous_Context (P);
6118 end if;
6119
685094bf 6120 -- If the prefix is an access type, then we unconditionally rewrite if
09494c32 6121 -- as an explicit dereference. This simplifies processing for several
685094bf
RD
6122 -- cases, including packed array cases and certain cases in which checks
6123 -- must be generated. We used to try to do this only when it was
6124 -- necessary, but it cleans up the code to do it all the time.
70482933
RK
6125
6126 if Is_Access_Type (T) then
2717634d 6127 Insert_Explicit_Dereference (P);
70482933 6128 Analyze_And_Resolve (P, Designated_Type (T));
5972791c
AC
6129 Atp := Designated_Type (T);
6130 else
6131 Atp := T;
70482933
RK
6132 end if;
6133
fbf5a39b
AC
6134 -- Generate index and validity checks
6135
6136 Generate_Index_Checks (N);
6137
70482933
RK
6138 if Validity_Checks_On and then Validity_Check_Subscripts then
6139 Apply_Subscript_Validity_Checks (N);
6140 end if;
6141
5972791c
AC
6142 -- If selecting from an array with atomic components, and atomic sync
6143 -- is not suppressed for this array type, set atomic sync flag.
6144
6145 if (Has_Atomic_Components (Atp)
6146 and then not Atomic_Synchronization_Disabled (Atp))
6147 or else (Is_Atomic (Typ)
6148 and then not Atomic_Synchronization_Disabled (Typ))
6149 then
4c318253 6150 Activate_Atomic_Synchronization (N);
5972791c
AC
6151 end if;
6152
70482933
RK
6153 -- All done for the non-packed case
6154
6155 if not Is_Packed (Etype (Prefix (N))) then
6156 return;
6157 end if;
6158
6159 -- For packed arrays that are not bit-packed (i.e. the case of an array
8fc789c8 6160 -- with one or more index types with a non-contiguous enumeration type),
70482933
RK
6161 -- we can always use the normal packed element get circuit.
6162
6163 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6164 Expand_Packed_Element_Reference (N);
6165 return;
6166 end if;
6167
6168 -- For a reference to a component of a bit packed array, we have to
6169 -- convert it to a reference to the corresponding Packed_Array_Type.
6170 -- We only want to do this for simple references, and not for:
6171
685094bf
RD
6172 -- Left side of assignment, or prefix of left side of assignment, or
6173 -- prefix of the prefix, to handle packed arrays of packed arrays,
70482933
RK
6174 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6175
6176 -- Renaming objects in renaming associations
6177 -- This case is handled when a use of the renamed variable occurs
6178
6179 -- Actual parameters for a procedure call
6180 -- This case is handled in Exp_Ch6.Expand_Actuals
6181
6182 -- The second expression in a 'Read attribute reference
6183
47d3b920 6184 -- The prefix of an address or bit or size attribute reference
70482933
RK
6185
6186 -- The following circuit detects these exceptions
6187
6188 declare
6189 Child : Node_Id := N;
6190 Parnt : Node_Id := Parent (N);
6191
6192 begin
6193 loop
6194 if Nkind (Parnt) = N_Unchecked_Expression then
6195 null;
6196
303b4d58
AC
6197 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
6198 N_Procedure_Call_Statement)
70482933
RK
6199 or else (Nkind (Parnt) = N_Parameter_Association
6200 and then
6201 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
6202 then
6203 return;
6204
6205 elsif Nkind (Parnt) = N_Attribute_Reference
b69cd36a
AC
6206 and then Nam_In (Attribute_Name (Parnt), Name_Address,
6207 Name_Bit,
6208 Name_Size)
70482933
RK
6209 and then Prefix (Parnt) = Child
6210 then
6211 return;
6212
6213 elsif Nkind (Parnt) = N_Assignment_Statement
6214 and then Name (Parnt) = Child
6215 then
6216 return;
6217
685094bf
RD
6218 -- If the expression is an index of an indexed component, it must
6219 -- be expanded regardless of context.
fbf5a39b
AC
6220
6221 elsif Nkind (Parnt) = N_Indexed_Component
6222 and then Child /= Prefix (Parnt)
6223 then
6224 Expand_Packed_Element_Reference (N);
6225 return;
6226
6227 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
6228 and then Name (Parent (Parnt)) = Parnt
6229 then
6230 return;
6231
70482933
RK
6232 elsif Nkind (Parnt) = N_Attribute_Reference
6233 and then Attribute_Name (Parnt) = Name_Read
6234 and then Next (First (Expressions (Parnt))) = Child
6235 then
6236 return;
6237
303b4d58 6238 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
533369aa 6239 and then Prefix (Parnt) = Child
70482933
RK
6240 then
6241 null;
6242
6243 else
6244 Expand_Packed_Element_Reference (N);
6245 return;
6246 end if;
6247
685094bf
RD
6248 -- Keep looking up tree for unchecked expression, or if we are the
6249 -- prefix of a possible assignment left side.
70482933
RK
6250
6251 Child := Parnt;
6252 Parnt := Parent (Child);
6253 end loop;
6254 end;
70482933
RK
6255 end Expand_N_Indexed_Component;
6256
6257 ---------------------
6258 -- Expand_N_Not_In --
6259 ---------------------
6260
6261 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6262 -- can be done. This avoids needing to duplicate this expansion code.
6263
6264 procedure Expand_N_Not_In (N : Node_Id) is
630d30e9
RD
6265 Loc : constant Source_Ptr := Sloc (N);
6266 Typ : constant Entity_Id := Etype (N);
6267 Cfs : constant Boolean := Comes_From_Source (N);
70482933
RK
6268
6269 begin
6270 Rewrite (N,
6271 Make_Op_Not (Loc,
6272 Right_Opnd =>
6273 Make_In (Loc,
6274 Left_Opnd => Left_Opnd (N),
d766cee3 6275 Right_Opnd => Right_Opnd (N))));
630d30e9 6276
197e4514
AC
6277 -- If this is a set membership, preserve list of alternatives
6278
6279 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
6280
d766cee3 6281 -- We want this to appear as coming from source if original does (see
8fc789c8 6282 -- transformations in Expand_N_In).
630d30e9
RD
6283
6284 Set_Comes_From_Source (N, Cfs);
6285 Set_Comes_From_Source (Right_Opnd (N), Cfs);
6286
8fc789c8 6287 -- Now analyze transformed node
630d30e9 6288
70482933
RK
6289 Analyze_And_Resolve (N, Typ);
6290 end Expand_N_Not_In;
6291
6292 -------------------
6293 -- Expand_N_Null --
6294 -------------------
6295
a3f2babd
AC
6296 -- The only replacement required is for the case of a null of a type that
6297 -- is an access to protected subprogram, or a subtype thereof. We represent
6298 -- such access values as a record, and so we must replace the occurrence of
6299 -- null by the equivalent record (with a null address and a null pointer in
6300 -- it), so that the backend creates the proper value.
70482933
RK
6301
6302 procedure Expand_N_Null (N : Node_Id) is
6303 Loc : constant Source_Ptr := Sloc (N);
a3f2babd 6304 Typ : constant Entity_Id := Base_Type (Etype (N));
70482933
RK
6305 Agg : Node_Id;
6306
6307 begin
26bff3d9 6308 if Is_Access_Protected_Subprogram_Type (Typ) then
70482933
RK
6309 Agg :=
6310 Make_Aggregate (Loc,
6311 Expressions => New_List (
6312 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
6313 Make_Null (Loc)));
6314
6315 Rewrite (N, Agg);
6316 Analyze_And_Resolve (N, Equivalent_Type (Typ));
6317
685094bf
RD
6318 -- For subsequent semantic analysis, the node must retain its type.
6319 -- Gigi in any case replaces this type by the corresponding record
6320 -- type before processing the node.
70482933
RK
6321
6322 Set_Etype (N, Typ);
6323 end if;
fbf5a39b
AC
6324
6325 exception
6326 when RE_Not_Available =>
6327 return;
70482933
RK
6328 end Expand_N_Null;
6329
6330 ---------------------
6331 -- Expand_N_Op_Abs --
6332 ---------------------
6333
6334 procedure Expand_N_Op_Abs (N : Node_Id) is
6335 Loc : constant Source_Ptr := Sloc (N);
6336 Expr : constant Node_Id := Right_Opnd (N);
6337
6338 begin
6339 Unary_Op_Validity_Checks (N);
6340
b6b5cca8
AC
6341 -- Check for MINIMIZED/ELIMINATED overflow mode
6342
6343 if Minimized_Eliminated_Overflow_Check (N) then
6344 Apply_Arithmetic_Overflow_Check (N);
6345 return;
6346 end if;
6347
70482933
RK
6348 -- Deal with software overflow checking
6349
07fc65c4 6350 if not Backend_Overflow_Checks_On_Target
533369aa
AC
6351 and then Is_Signed_Integer_Type (Etype (N))
6352 and then Do_Overflow_Check (N)
70482933 6353 then
685094bf
RD
6354 -- The only case to worry about is when the argument is equal to the
6355 -- largest negative number, so what we do is to insert the check:
70482933 6356
fbf5a39b 6357 -- [constraint_error when Expr = typ'Base'First]
70482933
RK
6358
6359 -- with the usual Duplicate_Subexpr use coding for expr
6360
fbf5a39b
AC
6361 Insert_Action (N,
6362 Make_Raise_Constraint_Error (Loc,
6363 Condition =>
6364 Make_Op_Eq (Loc,
70482933 6365 Left_Opnd => Duplicate_Subexpr (Expr),
fbf5a39b
AC
6366 Right_Opnd =>
6367 Make_Attribute_Reference (Loc,
6368 Prefix =>
6369 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
6370 Attribute_Name => Name_First)),
6371 Reason => CE_Overflow_Check_Failed));
6372 end if;
70482933
RK
6373
6374 -- Vax floating-point types case
6375
fbf5a39b 6376 if Vax_Float (Etype (N)) then
70482933
RK
6377 Expand_Vax_Arith (N);
6378 end if;
6379 end Expand_N_Op_Abs;
6380
6381 ---------------------
6382 -- Expand_N_Op_Add --
6383 ---------------------
6384
6385 procedure Expand_N_Op_Add (N : Node_Id) is
6386 Typ : constant Entity_Id := Etype (N);
6387
6388 begin
6389 Binary_Op_Validity_Checks (N);
6390
b6b5cca8
AC
6391 -- Check for MINIMIZED/ELIMINATED overflow mode
6392
6393 if Minimized_Eliminated_Overflow_Check (N) then
6394 Apply_Arithmetic_Overflow_Check (N);
6395 return;
6396 end if;
6397
70482933
RK
6398 -- N + 0 = 0 + N = N for integer types
6399
6400 if Is_Integer_Type (Typ) then
6401 if Compile_Time_Known_Value (Right_Opnd (N))
6402 and then Expr_Value (Right_Opnd (N)) = Uint_0
6403 then
6404 Rewrite (N, Left_Opnd (N));
6405 return;
6406
6407 elsif Compile_Time_Known_Value (Left_Opnd (N))
6408 and then Expr_Value (Left_Opnd (N)) = Uint_0
6409 then
6410 Rewrite (N, Right_Opnd (N));
6411 return;
6412 end if;
6413 end if;
6414
fbf5a39b 6415 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 6416
761f7dcb 6417 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
70482933
RK
6418 Apply_Arithmetic_Overflow_Check (N);
6419 return;
6420
6421 -- Vax floating-point types case
6422
6423 elsif Vax_Float (Typ) then
6424 Expand_Vax_Arith (N);
6425 end if;
6426 end Expand_N_Op_Add;
6427
6428 ---------------------
6429 -- Expand_N_Op_And --
6430 ---------------------
6431
6432 procedure Expand_N_Op_And (N : Node_Id) is
6433 Typ : constant Entity_Id := Etype (N);
6434
6435 begin
6436 Binary_Op_Validity_Checks (N);
6437
6438 if Is_Array_Type (Etype (N)) then
6439 Expand_Boolean_Operator (N);
6440
6441 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
6442 Adjust_Condition (Left_Opnd (N));
6443 Adjust_Condition (Right_Opnd (N));
6444 Set_Etype (N, Standard_Boolean);
6445 Adjust_Result_Type (N, Typ);
437f8c1e
AC
6446
6447 elsif Is_Intrinsic_Subprogram (Entity (N)) then
6448 Expand_Intrinsic_Call (N, Entity (N));
6449
70482933
RK
6450 end if;
6451 end Expand_N_Op_And;
6452
6453 ------------------------
6454 -- Expand_N_Op_Concat --
6455 ------------------------
6456
6457 procedure Expand_N_Op_Concat (N : Node_Id) is
70482933
RK
6458 Opnds : List_Id;
6459 -- List of operands to be concatenated
6460
70482933 6461 Cnode : Node_Id;
685094bf
RD
6462 -- Node which is to be replaced by the result of concatenating the nodes
6463 -- in the list Opnds.
70482933 6464
70482933 6465 begin
fbf5a39b
AC
6466 -- Ensure validity of both operands
6467
70482933
RK
6468 Binary_Op_Validity_Checks (N);
6469
685094bf
RD
6470 -- If we are the left operand of a concatenation higher up the tree,
6471 -- then do nothing for now, since we want to deal with a series of
6472 -- concatenations as a unit.
70482933
RK
6473
6474 if Nkind (Parent (N)) = N_Op_Concat
6475 and then N = Left_Opnd (Parent (N))
6476 then
6477 return;
6478 end if;
6479
6480 -- We get here with a concatenation whose left operand may be a
6481 -- concatenation itself with a consistent type. We need to process
6482 -- these concatenation operands from left to right, which means
6483 -- from the deepest node in the tree to the highest node.
6484
6485 Cnode := N;
6486 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
6487 Cnode := Left_Opnd (Cnode);
6488 end loop;
6489
64425dff
BD
6490 -- Now Cnode is the deepest concatenation, and its parents are the
6491 -- concatenation nodes above, so now we process bottom up, doing the
64425dff 6492 -- operands.
70482933 6493
df46b832
AC
6494 -- The outer loop runs more than once if more than one concatenation
6495 -- type is involved.
70482933
RK
6496
6497 Outer : loop
6498 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
6499 Set_Parent (Opnds, N);
6500
df46b832 6501 -- The inner loop gathers concatenation operands
70482933
RK
6502
6503 Inner : while Cnode /= N
70482933
RK
6504 and then Base_Type (Etype (Cnode)) =
6505 Base_Type (Etype (Parent (Cnode)))
6506 loop
6507 Cnode := Parent (Cnode);
6508 Append (Right_Opnd (Cnode), Opnds);
6509 end loop Inner;
6510
68bab0fd 6511 Expand_Concatenate (Cnode, Opnds);
70482933
RK
6512
6513 exit Outer when Cnode = N;
6514 Cnode := Parent (Cnode);
6515 end loop Outer;
6516 end Expand_N_Op_Concat;
6517
6518 ------------------------
6519 -- Expand_N_Op_Divide --
6520 ------------------------
6521
6522 procedure Expand_N_Op_Divide (N : Node_Id) is
f82944b7
JM
6523 Loc : constant Source_Ptr := Sloc (N);
6524 Lopnd : constant Node_Id := Left_Opnd (N);
6525 Ropnd : constant Node_Id := Right_Opnd (N);
6526 Ltyp : constant Entity_Id := Etype (Lopnd);
6527 Rtyp : constant Entity_Id := Etype (Ropnd);
6528 Typ : Entity_Id := Etype (N);
6529 Rknow : constant Boolean := Is_Integer_Type (Typ)
6530 and then
6531 Compile_Time_Known_Value (Ropnd);
6532 Rval : Uint;
70482933
RK
6533
6534 begin
6535 Binary_Op_Validity_Checks (N);
6536
b6b5cca8
AC
6537 -- Check for MINIMIZED/ELIMINATED overflow mode
6538
6539 if Minimized_Eliminated_Overflow_Check (N) then
6540 Apply_Arithmetic_Overflow_Check (N);
6541 return;
6542 end if;
6543
6544 -- Otherwise proceed with expansion of division
6545
f82944b7
JM
6546 if Rknow then
6547 Rval := Expr_Value (Ropnd);
6548 end if;
6549
70482933
RK
6550 -- N / 1 = N for integer types
6551
f82944b7
JM
6552 if Rknow and then Rval = Uint_1 then
6553 Rewrite (N, Lopnd);
70482933
RK
6554 return;
6555 end if;
6556
6557 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6558 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6559 -- operand is an unsigned integer, as required for this to work.
6560
f82944b7
JM
6561 if Nkind (Ropnd) = N_Op_Expon
6562 and then Is_Power_Of_2_For_Shift (Ropnd)
fbf5a39b
AC
6563
6564 -- We cannot do this transformation in configurable run time mode if we
51bf9bdf 6565 -- have 64-bit integers and long shifts are not available.
fbf5a39b 6566
761f7dcb 6567 and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
70482933
RK
6568 then
6569 Rewrite (N,
6570 Make_Op_Shift_Right (Loc,
f82944b7 6571 Left_Opnd => Lopnd,
70482933 6572 Right_Opnd =>
f82944b7 6573 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
70482933
RK
6574 Analyze_And_Resolve (N, Typ);
6575 return;
6576 end if;
6577
6578 -- Do required fixup of universal fixed operation
6579
6580 if Typ = Universal_Fixed then
6581 Fixup_Universal_Fixed_Operation (N);
6582 Typ := Etype (N);
6583 end if;
6584
6585 -- Divisions with fixed-point results
6586
6587 if Is_Fixed_Point_Type (Typ) then
6588
685094bf
RD
6589 -- No special processing if Treat_Fixed_As_Integer is set, since
6590 -- from a semantic point of view such operations are simply integer
6591 -- operations and will be treated that way.
70482933
RK
6592
6593 if not Treat_Fixed_As_Integer (N) then
6594 if Is_Integer_Type (Rtyp) then
6595 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
6596 else
6597 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
6598 end if;
6599 end if;
6600
685094bf
RD
6601 -- Other cases of division of fixed-point operands. Again we exclude the
6602 -- case where Treat_Fixed_As_Integer is set.
70482933 6603
761f7dcb 6604 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
70482933
RK
6605 and then not Treat_Fixed_As_Integer (N)
6606 then
6607 if Is_Integer_Type (Typ) then
6608 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
6609 else
6610 pragma Assert (Is_Floating_Point_Type (Typ));
6611 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
6612 end if;
6613
685094bf
RD
6614 -- Mixed-mode operations can appear in a non-static universal context,
6615 -- in which case the integer argument must be converted explicitly.
70482933 6616
533369aa 6617 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
f82944b7
JM
6618 Rewrite (Ropnd,
6619 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
70482933 6620
f82944b7 6621 Analyze_And_Resolve (Ropnd, Universal_Real);
70482933 6622
533369aa 6623 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
f82944b7
JM
6624 Rewrite (Lopnd,
6625 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
70482933 6626
f82944b7 6627 Analyze_And_Resolve (Lopnd, Universal_Real);
70482933 6628
f02b8bb8 6629 -- Non-fixed point cases, do integer zero divide and overflow checks
70482933
RK
6630
6631 elsif Is_Integer_Type (Typ) then
a91e9ac7 6632 Apply_Divide_Checks (N);
fbf5a39b 6633
f02b8bb8
RD
6634 -- Deal with Vax_Float
6635
6636 elsif Vax_Float (Typ) then
6637 Expand_Vax_Arith (N);
6638 return;
70482933
RK
6639 end if;
6640 end Expand_N_Op_Divide;
6641
6642 --------------------
6643 -- Expand_N_Op_Eq --
6644 --------------------
6645
6646 procedure Expand_N_Op_Eq (N : Node_Id) is
fbf5a39b
AC
6647 Loc : constant Source_Ptr := Sloc (N);
6648 Typ : constant Entity_Id := Etype (N);
6649 Lhs : constant Node_Id := Left_Opnd (N);
6650 Rhs : constant Node_Id := Right_Opnd (N);
6651 Bodies : constant List_Id := New_List;
6652 A_Typ : constant Entity_Id := Etype (Lhs);
6653
70482933
RK
6654 Typl : Entity_Id := A_Typ;
6655 Op_Name : Entity_Id;
6656 Prim : Elmt_Id;
70482933
RK
6657
6658 procedure Build_Equality_Call (Eq : Entity_Id);
6659 -- If a constructed equality exists for the type or for its parent,
6660 -- build and analyze call, adding conversions if the operation is
6661 -- inherited.
6662
5d09245e 6663 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
8fc789c8 6664 -- Determines whether a type has a subcomponent of an unconstrained
5d09245e
AC
6665 -- Unchecked_Union subtype. Typ is a record type.
6666
70482933
RK
6667 -------------------------
6668 -- Build_Equality_Call --
6669 -------------------------
6670
6671 procedure Build_Equality_Call (Eq : Entity_Id) is
6672 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
6673 L_Exp : Node_Id := Relocate_Node (Lhs);
6674 R_Exp : Node_Id := Relocate_Node (Rhs);
6675
6676 begin
dda38714
AC
6677 -- Adjust operands if necessary to comparison type
6678
70482933
RK
6679 if Base_Type (Op_Type) /= Base_Type (A_Typ)
6680 and then not Is_Class_Wide_Type (A_Typ)
6681 then
6682 L_Exp := OK_Convert_To (Op_Type, L_Exp);
6683 R_Exp := OK_Convert_To (Op_Type, R_Exp);
6684 end if;
6685
5d09245e
AC
6686 -- If we have an Unchecked_Union, we need to add the inferred
6687 -- discriminant values as actuals in the function call. At this
6688 -- point, the expansion has determined that both operands have
6689 -- inferable discriminants.
6690
6691 if Is_Unchecked_Union (Op_Type) then
6692 declare
fa1608c2
ES
6693 Lhs_Type : constant Node_Id := Etype (L_Exp);
6694 Rhs_Type : constant Node_Id := Etype (R_Exp);
6695
6696 Lhs_Discr_Vals : Elist_Id;
6697 -- List of inferred discriminant values for left operand.
6698
6699 Rhs_Discr_Vals : Elist_Id;
6700 -- List of inferred discriminant values for right operand.
6701
6702 Discr : Entity_Id;
5d09245e
AC
6703
6704 begin
fa1608c2
ES
6705 Lhs_Discr_Vals := New_Elmt_List;
6706 Rhs_Discr_Vals := New_Elmt_List;
6707
5d09245e
AC
6708 -- Per-object constrained selected components require special
6709 -- attention. If the enclosing scope of the component is an
f02b8bb8 6710 -- Unchecked_Union, we cannot reference its discriminants
fa1608c2
ES
6711 -- directly. This is why we use the extra parameters of the
6712 -- equality function of the enclosing Unchecked_Union.
5d09245e
AC
6713
6714 -- type UU_Type (Discr : Integer := 0) is
6715 -- . . .
6716 -- end record;
6717 -- pragma Unchecked_Union (UU_Type);
6718
6719 -- 1. Unchecked_Union enclosing record:
6720
6721 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6722 -- . . .
6723 -- Comp : UU_Type (Discr);
6724 -- . . .
6725 -- end Enclosing_UU_Type;
6726 -- pragma Unchecked_Union (Enclosing_UU_Type);
6727
6728 -- Obj1 : Enclosing_UU_Type;
6729 -- Obj2 : Enclosing_UU_Type (1);
6730
2717634d 6731 -- [. . .] Obj1 = Obj2 [. . .]
5d09245e
AC
6732
6733 -- Generated code:
6734
6735 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6736
6737 -- A and B are the formal parameters of the equality function
6738 -- of Enclosing_UU_Type. The function always has two extra
fa1608c2
ES
6739 -- formals to capture the inferred discriminant values for
6740 -- each discriminant of the type.
5d09245e
AC
6741
6742 -- 2. Non-Unchecked_Union enclosing record:
6743
6744 -- type
6745 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6746 -- is record
6747 -- . . .
6748 -- Comp : UU_Type (Discr);
6749 -- . . .
6750 -- end Enclosing_Non_UU_Type;
6751
6752 -- Obj1 : Enclosing_Non_UU_Type;
6753 -- Obj2 : Enclosing_Non_UU_Type (1);
6754
630d30e9 6755 -- ... Obj1 = Obj2 ...
5d09245e
AC
6756
6757 -- Generated code:
6758
6759 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6760 -- obj1.discr, obj2.discr)) then
6761
6762 -- In this case we can directly reference the discriminants of
6763 -- the enclosing record.
6764
fa1608c2 6765 -- Process left operand of equality
5d09245e
AC
6766
6767 if Nkind (Lhs) = N_Selected_Component
533369aa
AC
6768 and then
6769 Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
5d09245e 6770 then
fa1608c2
ES
6771 -- If enclosing record is an Unchecked_Union, use formals
6772 -- corresponding to each discriminant. The name of the
6773 -- formal is that of the discriminant, with added suffix,
6774 -- see Exp_Ch3.Build_Record_Equality for details.
5d09245e 6775
dda38714 6776 if Is_Unchecked_Union (Scope (Entity (Selector_Name (Lhs))))
5d09245e 6777 then
fa1608c2
ES
6778 Discr :=
6779 First_Discriminant
6780 (Scope (Entity (Selector_Name (Lhs))));
6781 while Present (Discr) loop
6782 Append_Elmt (
6783 Make_Identifier (Loc,
6784 Chars => New_External_Name (Chars (Discr), 'A')),
6785 To => Lhs_Discr_Vals);
6786 Next_Discriminant (Discr);
6787 end loop;
5d09245e 6788
fa1608c2
ES
6789 -- If enclosing record is of a non-Unchecked_Union type, it
6790 -- is possible to reference its discriminants directly.
5d09245e
AC
6791
6792 else
fa1608c2
ES
6793 Discr := First_Discriminant (Lhs_Type);
6794 while Present (Discr) loop
6795 Append_Elmt (
6796 Make_Selected_Component (Loc,
6797 Prefix => Prefix (Lhs),
6798 Selector_Name =>
6799 New_Copy
6800 (Get_Discriminant_Value (Discr,
6801 Lhs_Type,
6802 Stored_Constraint (Lhs_Type)))),
6803 To => Lhs_Discr_Vals);
6804 Next_Discriminant (Discr);
6805 end loop;
5d09245e
AC
6806 end if;
6807
fa1608c2
ES
6808 -- Otherwise operand is on object with a constrained type.
6809 -- Infer the discriminant values from the constraint.
5d09245e
AC
6810
6811 else
fa1608c2
ES
6812
6813 Discr := First_Discriminant (Lhs_Type);
6814 while Present (Discr) loop
6815 Append_Elmt (
6816 New_Copy
6817 (Get_Discriminant_Value (Discr,
6818 Lhs_Type,
6819 Stored_Constraint (Lhs_Type))),
6820 To => Lhs_Discr_Vals);
6821 Next_Discriminant (Discr);
6822 end loop;
5d09245e
AC
6823 end if;
6824
fa1608c2 6825 -- Similar processing for right operand of equality
5d09245e
AC
6826
6827 if Nkind (Rhs) = N_Selected_Component
533369aa
AC
6828 and then
6829 Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
5d09245e 6830 then
5e1c00fa 6831 if Is_Unchecked_Union
fa1608c2 6832 (Scope (Entity (Selector_Name (Rhs))))
5d09245e 6833 then
fa1608c2
ES
6834 Discr :=
6835 First_Discriminant
6836 (Scope (Entity (Selector_Name (Rhs))));
6837 while Present (Discr) loop
6838 Append_Elmt (
6839 Make_Identifier (Loc,
6840 Chars => New_External_Name (Chars (Discr), 'B')),
6841 To => Rhs_Discr_Vals);
6842 Next_Discriminant (Discr);
6843 end loop;
5d09245e
AC
6844
6845 else
fa1608c2
ES
6846 Discr := First_Discriminant (Rhs_Type);
6847 while Present (Discr) loop
6848 Append_Elmt (
6849 Make_Selected_Component (Loc,
6850 Prefix => Prefix (Rhs),
6851 Selector_Name =>
6852 New_Copy (Get_Discriminant_Value
6853 (Discr,
6854 Rhs_Type,
6855 Stored_Constraint (Rhs_Type)))),
6856 To => Rhs_Discr_Vals);
6857 Next_Discriminant (Discr);
6858 end loop;
5d09245e 6859 end if;
5d09245e 6860
fa1608c2
ES
6861 else
6862 Discr := First_Discriminant (Rhs_Type);
6863 while Present (Discr) loop
6864 Append_Elmt (
6865 New_Copy (Get_Discriminant_Value
6866 (Discr,
6867 Rhs_Type,
6868 Stored_Constraint (Rhs_Type))),
6869 To => Rhs_Discr_Vals);
6870 Next_Discriminant (Discr);
6871 end loop;
5d09245e
AC
6872 end if;
6873
fa1608c2
ES
6874 -- Now merge the list of discriminant values so that values
6875 -- of corresponding discriminants are adjacent.
6876
6877 declare
6878 Params : List_Id;
6879 L_Elmt : Elmt_Id;
6880 R_Elmt : Elmt_Id;
6881
6882 begin
6883 Params := New_List (L_Exp, R_Exp);
6884 L_Elmt := First_Elmt (Lhs_Discr_Vals);
6885 R_Elmt := First_Elmt (Rhs_Discr_Vals);
6886 while Present (L_Elmt) loop
6887 Append_To (Params, Node (L_Elmt));
6888 Append_To (Params, Node (R_Elmt));
6889 Next_Elmt (L_Elmt);
6890 Next_Elmt (R_Elmt);
6891 end loop;
6892
6893 Rewrite (N,
6894 Make_Function_Call (Loc,
e4494292 6895 Name => New_Occurrence_Of (Eq, Loc),
fa1608c2
ES
6896 Parameter_Associations => Params));
6897 end;
5d09245e
AC
6898 end;
6899
6900 -- Normal case, not an unchecked union
6901
6902 else
6903 Rewrite (N,
6904 Make_Function_Call (Loc,
e4494292 6905 Name => New_Occurrence_Of (Eq, Loc),
5d09245e
AC
6906 Parameter_Associations => New_List (L_Exp, R_Exp)));
6907 end if;
70482933
RK
6908
6909 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6910 end Build_Equality_Call;
6911
5d09245e
AC
6912 ------------------------------------
6913 -- Has_Unconstrained_UU_Component --
6914 ------------------------------------
6915
6916 function Has_Unconstrained_UU_Component
6917 (Typ : Node_Id) return Boolean
6918 is
6919 Tdef : constant Node_Id :=
57848bf7 6920 Type_Definition (Declaration_Node (Base_Type (Typ)));
5d09245e
AC
6921 Clist : Node_Id;
6922 Vpart : Node_Id;
6923
6924 function Component_Is_Unconstrained_UU
6925 (Comp : Node_Id) return Boolean;
6926 -- Determines whether the subtype of the component is an
6927 -- unconstrained Unchecked_Union.
6928
6929 function Variant_Is_Unconstrained_UU
6930 (Variant : Node_Id) return Boolean;
6931 -- Determines whether a component of the variant has an unconstrained
6932 -- Unchecked_Union subtype.
6933
6934 -----------------------------------
6935 -- Component_Is_Unconstrained_UU --
6936 -----------------------------------
6937
6938 function Component_Is_Unconstrained_UU
6939 (Comp : Node_Id) return Boolean
6940 is
6941 begin
6942 if Nkind (Comp) /= N_Component_Declaration then
6943 return False;
6944 end if;
6945
6946 declare
6947 Sindic : constant Node_Id :=
6948 Subtype_Indication (Component_Definition (Comp));
6949
6950 begin
6951 -- Unconstrained nominal type. In the case of a constraint
6952 -- present, the node kind would have been N_Subtype_Indication.
6953
6954 if Nkind (Sindic) = N_Identifier then
6955 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
6956 end if;
6957
6958 return False;
6959 end;
6960 end Component_Is_Unconstrained_UU;
6961
6962 ---------------------------------
6963 -- Variant_Is_Unconstrained_UU --
6964 ---------------------------------
6965
6966 function Variant_Is_Unconstrained_UU
6967 (Variant : Node_Id) return Boolean
6968 is
6969 Clist : constant Node_Id := Component_List (Variant);
6970
6971 begin
6972 if Is_Empty_List (Component_Items (Clist)) then
6973 return False;
6974 end if;
6975
f02b8bb8
RD
6976 -- We only need to test one component
6977
5d09245e
AC
6978 declare
6979 Comp : Node_Id := First (Component_Items (Clist));
6980
6981 begin
6982 while Present (Comp) loop
5d09245e
AC
6983 if Component_Is_Unconstrained_UU (Comp) then
6984 return True;
6985 end if;
6986
6987 Next (Comp);
6988 end loop;
6989 end;
6990
6991 -- None of the components withing the variant were of
6992 -- unconstrained Unchecked_Union type.
6993
6994 return False;
6995 end Variant_Is_Unconstrained_UU;
6996
6997 -- Start of processing for Has_Unconstrained_UU_Component
6998
6999 begin
7000 if Null_Present (Tdef) then
7001 return False;
7002 end if;
7003
7004 Clist := Component_List (Tdef);
7005 Vpart := Variant_Part (Clist);
7006
7007 -- Inspect available components
7008
7009 if Present (Component_Items (Clist)) then
7010 declare
7011 Comp : Node_Id := First (Component_Items (Clist));
7012
7013 begin
7014 while Present (Comp) loop
7015
8fc789c8 7016 -- One component is sufficient
5d09245e
AC
7017
7018 if Component_Is_Unconstrained_UU (Comp) then
7019 return True;
7020 end if;
7021
7022 Next (Comp);
7023 end loop;
7024 end;
7025 end if;
7026
7027 -- Inspect available components withing variants
7028
7029 if Present (Vpart) then
7030 declare
7031 Variant : Node_Id := First (Variants (Vpart));
7032
7033 begin
7034 while Present (Variant) loop
7035
8fc789c8 7036 -- One component within a variant is sufficient
5d09245e
AC
7037
7038 if Variant_Is_Unconstrained_UU (Variant) then
7039 return True;
7040 end if;
7041
7042 Next (Variant);
7043 end loop;
7044 end;
7045 end if;
7046
7047 -- Neither the available components, nor the components inside the
7048 -- variant parts were of an unconstrained Unchecked_Union subtype.
7049
7050 return False;
7051 end Has_Unconstrained_UU_Component;
7052
70482933
RK
7053 -- Start of processing for Expand_N_Op_Eq
7054
7055 begin
7056 Binary_Op_Validity_Checks (N);
7057
456cbfa5
AC
7058 -- Deal with private types
7059
70482933
RK
7060 if Ekind (Typl) = E_Private_Type then
7061 Typl := Underlying_Type (Typl);
70482933
RK
7062 elsif Ekind (Typl) = E_Private_Subtype then
7063 Typl := Underlying_Type (Base_Type (Typl));
f02b8bb8
RD
7064 else
7065 null;
70482933
RK
7066 end if;
7067
7068 -- It may happen in error situations that the underlying type is not
7069 -- set. The error will be detected later, here we just defend the
7070 -- expander code.
7071
7072 if No (Typl) then
7073 return;
7074 end if;
7075
7076 Typl := Base_Type (Typl);
7077
dda38714
AC
7078 -- Equality between variant records results in a call to a routine
7079 -- that has conditional tests of the discriminant value(s), and hence
7080 -- violates the No_Implicit_Conditionals restriction.
7081
7082 if Has_Variant_Part (Typl) then
7083 declare
7084 Msg : Boolean;
7085
7086 begin
7087 Check_Restriction (Msg, No_Implicit_Conditionals, N);
7088
7089 if Msg then
7090 Error_Msg_N
7091 ("\comparison of variant records tests discriminants", N);
7092 return;
7093 end if;
7094 end;
7095 end if;
7096
456cbfa5 7097 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7098 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7099
7100 Expand_Compare_Minimize_Eliminate_Overflow (N);
7101
7102 if Nkind (N) /= N_Op_Eq then
7103 return;
7104 end if;
7105
70482933
RK
7106 -- Boolean types (requiring handling of non-standard case)
7107
f02b8bb8 7108 if Is_Boolean_Type (Typl) then
70482933
RK
7109 Adjust_Condition (Left_Opnd (N));
7110 Adjust_Condition (Right_Opnd (N));
7111 Set_Etype (N, Standard_Boolean);
7112 Adjust_Result_Type (N, Typ);
7113
7114 -- Array types
7115
7116 elsif Is_Array_Type (Typl) then
7117
1033834f
RD
7118 -- If we are doing full validity checking, and it is possible for the
7119 -- array elements to be invalid then expand out array comparisons to
7120 -- make sure that we check the array elements.
fbf5a39b 7121
1033834f
RD
7122 if Validity_Check_Operands
7123 and then not Is_Known_Valid (Component_Type (Typl))
7124 then
fbf5a39b
AC
7125 declare
7126 Save_Force_Validity_Checks : constant Boolean :=
7127 Force_Validity_Checks;
7128 begin
7129 Force_Validity_Checks := True;
7130 Rewrite (N,
0da2c8ac
AC
7131 Expand_Array_Equality
7132 (N,
7133 Relocate_Node (Lhs),
7134 Relocate_Node (Rhs),
7135 Bodies,
7136 Typl));
7137 Insert_Actions (N, Bodies);
fbf5a39b
AC
7138 Analyze_And_Resolve (N, Standard_Boolean);
7139 Force_Validity_Checks := Save_Force_Validity_Checks;
7140 end;
7141
a9d8907c 7142 -- Packed case where both operands are known aligned
70482933 7143
a9d8907c
JM
7144 elsif Is_Bit_Packed_Array (Typl)
7145 and then not Is_Possibly_Unaligned_Object (Lhs)
7146 and then not Is_Possibly_Unaligned_Object (Rhs)
7147 then
70482933
RK
7148 Expand_Packed_Eq (N);
7149
5e1c00fa
RD
7150 -- Where the component type is elementary we can use a block bit
7151 -- comparison (if supported on the target) exception in the case
7152 -- of floating-point (negative zero issues require element by
7153 -- element comparison), and atomic types (where we must be sure
a9d8907c 7154 -- to load elements independently) and possibly unaligned arrays.
70482933 7155
70482933
RK
7156 elsif Is_Elementary_Type (Component_Type (Typl))
7157 and then not Is_Floating_Point_Type (Component_Type (Typl))
5e1c00fa 7158 and then not Is_Atomic (Component_Type (Typl))
a9d8907c
JM
7159 and then not Is_Possibly_Unaligned_Object (Lhs)
7160 and then not Is_Possibly_Unaligned_Object (Rhs)
fbf5a39b 7161 and then Support_Composite_Compare_On_Target
70482933
RK
7162 then
7163 null;
7164
685094bf
RD
7165 -- For composite and floating-point cases, expand equality loop to
7166 -- make sure of using proper comparisons for tagged types, and
7167 -- correctly handling the floating-point case.
70482933
RK
7168
7169 else
7170 Rewrite (N,
0da2c8ac
AC
7171 Expand_Array_Equality
7172 (N,
7173 Relocate_Node (Lhs),
7174 Relocate_Node (Rhs),
7175 Bodies,
7176 Typl));
70482933
RK
7177 Insert_Actions (N, Bodies, Suppress => All_Checks);
7178 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7179 end if;
7180
7181 -- Record Types
7182
7183 elsif Is_Record_Type (Typl) then
7184
7185 -- For tagged types, use the primitive "="
7186
7187 if Is_Tagged_Type (Typl) then
7188
0669bebe
GB
7189 -- No need to do anything else compiling under restriction
7190 -- No_Dispatching_Calls. During the semantic analysis we
7191 -- already notified such violation.
7192
7193 if Restriction_Active (No_Dispatching_Calls) then
7194 return;
7195 end if;
7196
685094bf
RD
7197 -- If this is derived from an untagged private type completed with
7198 -- a tagged type, it does not have a full view, so we use the
7199 -- primitive operations of the private type. This check should no
7200 -- longer be necessary when these types get their full views???
70482933
RK
7201
7202 if Is_Private_Type (A_Typ)
7203 and then not Is_Tagged_Type (A_Typ)
7204 and then Is_Derived_Type (A_Typ)
7205 and then No (Full_View (A_Typ))
7206 then
685094bf
RD
7207 -- Search for equality operation, checking that the operands
7208 -- have the same type. Note that we must find a matching entry,
a90bd866 7209 -- or something is very wrong.
2e071734 7210
70482933
RK
7211 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
7212
2e071734
AC
7213 while Present (Prim) loop
7214 exit when Chars (Node (Prim)) = Name_Op_Eq
7215 and then Etype (First_Formal (Node (Prim))) =
7216 Etype (Next_Formal (First_Formal (Node (Prim))))
7217 and then
7218 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7219
70482933 7220 Next_Elmt (Prim);
70482933
RK
7221 end loop;
7222
2e071734 7223 pragma Assert (Present (Prim));
70482933 7224 Op_Name := Node (Prim);
fbf5a39b
AC
7225
7226 -- Find the type's predefined equality or an overriding
685094bf 7227 -- user- defined equality. The reason for not simply calling
fbf5a39b 7228 -- Find_Prim_Op here is that there may be a user-defined
685094bf
RD
7229 -- overloaded equality op that precedes the equality that we want,
7230 -- so we have to explicitly search (e.g., there could be an
7231 -- equality with two different parameter types).
fbf5a39b 7232
70482933 7233 else
fbf5a39b
AC
7234 if Is_Class_Wide_Type (Typl) then
7235 Typl := Root_Type (Typl);
7236 end if;
7237
7238 Prim := First_Elmt (Primitive_Operations (Typl));
fbf5a39b
AC
7239 while Present (Prim) loop
7240 exit when Chars (Node (Prim)) = Name_Op_Eq
7241 and then Etype (First_Formal (Node (Prim))) =
7242 Etype (Next_Formal (First_Formal (Node (Prim))))
12e0c41c
AC
7243 and then
7244 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
fbf5a39b
AC
7245
7246 Next_Elmt (Prim);
fbf5a39b
AC
7247 end loop;
7248
2e071734 7249 pragma Assert (Present (Prim));
fbf5a39b 7250 Op_Name := Node (Prim);
70482933
RK
7251 end if;
7252
7253 Build_Equality_Call (Op_Name);
7254
5d09245e
AC
7255 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7256 -- predefined equality operator for a type which has a subcomponent
7257 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7258
7259 elsif Has_Unconstrained_UU_Component (Typl) then
7260 Insert_Action (N,
7261 Make_Raise_Program_Error (Loc,
7262 Reason => PE_Unchecked_Union_Restriction));
7263
7264 -- Prevent Gigi from generating incorrect code by rewriting the
6cb3037c 7265 -- equality as a standard False. (is this documented somewhere???)
5d09245e
AC
7266
7267 Rewrite (N,
7268 New_Occurrence_Of (Standard_False, Loc));
7269
7270 elsif Is_Unchecked_Union (Typl) then
7271
7272 -- If we can infer the discriminants of the operands, we make a
7273 -- call to the TSS equality function.
7274
7275 if Has_Inferable_Discriminants (Lhs)
7276 and then
7277 Has_Inferable_Discriminants (Rhs)
7278 then
7279 Build_Equality_Call
7280 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7281
7282 else
7283 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7284 -- the predefined equality operator for an Unchecked_Union type
7285 -- if either of the operands lack inferable discriminants.
7286
7287 Insert_Action (N,
7288 Make_Raise_Program_Error (Loc,
7289 Reason => PE_Unchecked_Union_Restriction));
7290
7291 -- Prevent Gigi from generating incorrect code by rewriting
6cb3037c 7292 -- the equality as a standard False (documented where???).
5d09245e
AC
7293
7294 Rewrite (N,
7295 New_Occurrence_Of (Standard_False, Loc));
7296
7297 end if;
7298
70482933
RK
7299 -- If a type support function is present (for complex cases), use it
7300
fbf5a39b
AC
7301 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
7302 Build_Equality_Call
7303 (TSS (Root_Type (Typl), TSS_Composite_Equality));
70482933 7304
8d80ff64
AC
7305 -- When comparing two Bounded_Strings, use the primitive equality of
7306 -- the root Super_String type.
7307
7308 elsif Is_Bounded_String (Typl) then
7309 Prim :=
7310 First_Elmt (Collect_Primitive_Operations (Root_Type (Typl)));
7311
7312 while Present (Prim) loop
7313 exit when Chars (Node (Prim)) = Name_Op_Eq
7314 and then Etype (First_Formal (Node (Prim))) =
7315 Etype (Next_Formal (First_Formal (Node (Prim))))
7316 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7317
7318 Next_Elmt (Prim);
7319 end loop;
7320
7321 -- A Super_String type should always have a primitive equality
7322
7323 pragma Assert (Present (Prim));
7324 Build_Equality_Call (Node (Prim));
7325
70482933 7326 -- Otherwise expand the component by component equality. Note that
8fc789c8 7327 -- we never use block-bit comparisons for records, because of the
70482933
RK
7328 -- problems with gaps. The backend will often be able to recombine
7329 -- the separate comparisons that we generate here.
7330
7331 else
7332 Remove_Side_Effects (Lhs);
7333 Remove_Side_Effects (Rhs);
7334 Rewrite (N,
7335 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
7336
7337 Insert_Actions (N, Bodies, Suppress => All_Checks);
7338 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7339 end if;
7340 end if;
7341
d26dc4b5 7342 -- Test if result is known at compile time
70482933 7343
d26dc4b5 7344 Rewrite_Comparison (N);
f02b8bb8
RD
7345
7346 -- If we still have comparison for Vax_Float, process it
7347
7348 if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
7349 Expand_Vax_Comparison (N);
7350 return;
7351 end if;
0580d807
AC
7352
7353 Optimize_Length_Comparison (N);
70482933
RK
7354 end Expand_N_Op_Eq;
7355
7356 -----------------------
7357 -- Expand_N_Op_Expon --
7358 -----------------------
7359
7360 procedure Expand_N_Op_Expon (N : Node_Id) is
7361 Loc : constant Source_Ptr := Sloc (N);
7362 Typ : constant Entity_Id := Etype (N);
7363 Rtyp : constant Entity_Id := Root_Type (Typ);
7364 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
07fc65c4 7365 Bastyp : constant Node_Id := Etype (Base);
70482933
RK
7366 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
7367 Exptyp : constant Entity_Id := Etype (Exp);
7368 Ovflo : constant Boolean := Do_Overflow_Check (N);
7369 Expv : Uint;
70482933
RK
7370 Temp : Node_Id;
7371 Rent : RE_Id;
7372 Ent : Entity_Id;
fbf5a39b 7373 Etyp : Entity_Id;
cb42ba5d 7374 Xnode : Node_Id;
70482933
RK
7375
7376 begin
7377 Binary_Op_Validity_Checks (N);
7378
5114f3ff 7379 -- CodePeer wants to see the unexpanded N_Op_Expon node
8f66cda7 7380
5114f3ff 7381 if CodePeer_Mode then
8f66cda7
AC
7382 return;
7383 end if;
7384
685094bf
RD
7385 -- If either operand is of a private type, then we have the use of an
7386 -- intrinsic operator, and we get rid of the privateness, by using root
7387 -- types of underlying types for the actual operation. Otherwise the
7388 -- private types will cause trouble if we expand multiplications or
7389 -- shifts etc. We also do this transformation if the result type is
7390 -- different from the base type.
07fc65c4
GB
7391
7392 if Is_Private_Type (Etype (Base))
8f66cda7
AC
7393 or else Is_Private_Type (Typ)
7394 or else Is_Private_Type (Exptyp)
7395 or else Rtyp /= Root_Type (Bastyp)
07fc65c4
GB
7396 then
7397 declare
7398 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
7399 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
07fc65c4
GB
7400 begin
7401 Rewrite (N,
7402 Unchecked_Convert_To (Typ,
7403 Make_Op_Expon (Loc,
7404 Left_Opnd => Unchecked_Convert_To (Bt, Base),
7405 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
7406 Analyze_And_Resolve (N, Typ);
7407 return;
7408 end;
7409 end if;
7410
b6b5cca8 7411 -- Check for MINIMIZED/ELIMINATED overflow mode
6cb3037c 7412
b6b5cca8 7413 if Minimized_Eliminated_Overflow_Check (N) then
6cb3037c
AC
7414 Apply_Arithmetic_Overflow_Check (N);
7415 return;
7416 end if;
7417
cb42ba5d
AC
7418 -- Test for case of known right argument where we can replace the
7419 -- exponentiation by an equivalent expression using multiplication.
70482933 7420
6c3c671e
AC
7421 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7422 -- configurable run-time mode, we may not have the exponentiation
7423 -- routine available, and we don't want the legality of the program
7424 -- to depend on how clever the compiler is in knowing values.
7425
7426 if CRT_Safe_Compile_Time_Known_Value (Exp) then
70482933
RK
7427 Expv := Expr_Value (Exp);
7428
7429 -- We only fold small non-negative exponents. You might think we
7430 -- could fold small negative exponents for the real case, but we
7431 -- can't because we are required to raise Constraint_Error for
7432 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7433 -- See ACVC test C4A012B.
7434
7435 if Expv >= 0 and then Expv <= 4 then
7436
7437 -- X ** 0 = 1 (or 1.0)
7438
7439 if Expv = 0 then
abcbd24c
ST
7440
7441 -- Call Remove_Side_Effects to ensure that any side effects
7442 -- in the ignored left operand (in particular function calls
7443 -- to user defined functions) are properly executed.
7444
7445 Remove_Side_Effects (Base);
7446
70482933
RK
7447 if Ekind (Typ) in Integer_Kind then
7448 Xnode := Make_Integer_Literal (Loc, Intval => 1);
7449 else
7450 Xnode := Make_Real_Literal (Loc, Ureal_1);
7451 end if;
7452
7453 -- X ** 1 = X
7454
7455 elsif Expv = 1 then
7456 Xnode := Base;
7457
7458 -- X ** 2 = X * X
7459
7460 elsif Expv = 2 then
7461 Xnode :=
7462 Make_Op_Multiply (Loc,
7463 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b 7464 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
7465
7466 -- X ** 3 = X * X * X
7467
7468 elsif Expv = 3 then
7469 Xnode :=
7470 Make_Op_Multiply (Loc,
7471 Left_Opnd =>
7472 Make_Op_Multiply (Loc,
7473 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b
AC
7474 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
7475 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
7476
7477 -- X ** 4 ->
cb42ba5d
AC
7478
7479 -- do
70482933 7480 -- En : constant base'type := base * base;
cb42ba5d 7481 -- in
70482933
RK
7482 -- En * En
7483
cb42ba5d
AC
7484 else
7485 pragma Assert (Expv = 4);
191fcb3a 7486 Temp := Make_Temporary (Loc, 'E', Base);
70482933 7487
cb42ba5d
AC
7488 Xnode :=
7489 Make_Expression_With_Actions (Loc,
7490 Actions => New_List (
7491 Make_Object_Declaration (Loc,
7492 Defining_Identifier => Temp,
7493 Constant_Present => True,
e4494292 7494 Object_Definition => New_Occurrence_Of (Typ, Loc),
cb42ba5d
AC
7495 Expression =>
7496 Make_Op_Multiply (Loc,
7497 Left_Opnd =>
7498 Duplicate_Subexpr (Base),
7499 Right_Opnd =>
7500 Duplicate_Subexpr_No_Checks (Base)))),
7501
70482933
RK
7502 Expression =>
7503 Make_Op_Multiply (Loc,
e4494292
RD
7504 Left_Opnd => New_Occurrence_Of (Temp, Loc),
7505 Right_Opnd => New_Occurrence_Of (Temp, Loc)));
70482933
RK
7506 end if;
7507
7508 Rewrite (N, Xnode);
7509 Analyze_And_Resolve (N, Typ);
7510 return;
7511 end if;
7512 end if;
7513
7514 -- Case of (2 ** expression) appearing as an argument of an integer
7515 -- multiplication, or as the right argument of a division of a non-
fbf5a39b 7516 -- negative integer. In such cases we leave the node untouched, setting
70482933
RK
7517 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7518 -- of the higher level node converts it into a shift.
7519
51bf9bdf
AC
7520 -- Another case is 2 ** N in any other context. We simply convert
7521 -- this to 1 * 2 ** N, and then the above transformation applies.
7522
685094bf
RD
7523 -- Note: this transformation is not applicable for a modular type with
7524 -- a non-binary modulus in the multiplication case, since we get a wrong
7525 -- result if the shift causes an overflow before the modular reduction.
7526
8b4230c8
AC
7527 -- Note: we used to check that Exptyp was an unsigned type. But that is
7528 -- an unnecessary check, since if Exp is negative, we have a run-time
7529 -- error that is either caught (so we get the right result) or we have
7530 -- suppressed the check, in which case the code is erroneous anyway.
7531
70482933 7532 if Nkind (Base) = N_Integer_Literal
6c3c671e
AC
7533 and then CRT_Safe_Compile_Time_Known_Value (Base)
7534 and then Expr_Value (Base) = Uint_2
70482933
RK
7535 and then Is_Integer_Type (Root_Type (Exptyp))
7536 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
70482933 7537 and then not Ovflo
70482933 7538 then
51bf9bdf 7539 -- First the multiply and divide cases
70482933 7540
51bf9bdf
AC
7541 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
7542 declare
7543 P : constant Node_Id := Parent (N);
7544 L : constant Node_Id := Left_Opnd (P);
7545 R : constant Node_Id := Right_Opnd (P);
7546
7547 begin
7548 if (Nkind (P) = N_Op_Multiply
7549 and then not Non_Binary_Modulus (Typ)
7550 and then
7551 ((Is_Integer_Type (Etype (L)) and then R = N)
7552 or else
7553 (Is_Integer_Type (Etype (R)) and then L = N))
7554 and then not Do_Overflow_Check (P))
7555 or else
7556 (Nkind (P) = N_Op_Divide
533369aa
AC
7557 and then Is_Integer_Type (Etype (L))
7558 and then Is_Unsigned_Type (Etype (L))
7559 and then R = N
7560 and then not Do_Overflow_Check (P))
51bf9bdf
AC
7561 then
7562 Set_Is_Power_Of_2_For_Shift (N);
7563 return;
7564 end if;
7565 end;
7566
7567 -- Now the other cases
7568
7569 elsif not Non_Binary_Modulus (Typ) then
7570 Rewrite (N,
7571 Make_Op_Multiply (Loc,
7572 Left_Opnd => Make_Integer_Literal (Loc, 1),
7573 Right_Opnd => Relocate_Node (N)));
7574 Analyze_And_Resolve (N, Typ);
7575 return;
7576 end if;
70482933
RK
7577 end if;
7578
07fc65c4
GB
7579 -- Fall through if exponentiation must be done using a runtime routine
7580
07fc65c4 7581 -- First deal with modular case
70482933
RK
7582
7583 if Is_Modular_Integer_Type (Rtyp) then
7584
7585 -- Non-binary case, we call the special exponentiation routine for
7586 -- the non-binary case, converting the argument to Long_Long_Integer
7587 -- and passing the modulus value. Then the result is converted back
7588 -- to the base type.
7589
7590 if Non_Binary_Modulus (Rtyp) then
70482933
RK
7591 Rewrite (N,
7592 Convert_To (Typ,
7593 Make_Function_Call (Loc,
e4494292 7594 Name => New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
70482933 7595 Parameter_Associations => New_List (
e9daba51 7596 Convert_To (RTE (RE_Unsigned), Base),
70482933
RK
7597 Make_Integer_Literal (Loc, Modulus (Rtyp)),
7598 Exp))));
7599
685094bf
RD
7600 -- Binary case, in this case, we call one of two routines, either the
7601 -- unsigned integer case, or the unsigned long long integer case,
7602 -- with a final "and" operation to do the required mod.
70482933
RK
7603
7604 else
7605 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
7606 Ent := RTE (RE_Exp_Unsigned);
7607 else
7608 Ent := RTE (RE_Exp_Long_Long_Unsigned);
7609 end if;
7610
7611 Rewrite (N,
7612 Convert_To (Typ,
7613 Make_Op_And (Loc,
7614 Left_Opnd =>
7615 Make_Function_Call (Loc,
e4494292 7616 Name => New_Occurrence_Of (Ent, Loc),
70482933
RK
7617 Parameter_Associations => New_List (
7618 Convert_To (Etype (First_Formal (Ent)), Base),
7619 Exp)),
7620 Right_Opnd =>
7621 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
7622
7623 end if;
7624
7625 -- Common exit point for modular type case
7626
7627 Analyze_And_Resolve (N, Typ);
7628 return;
7629
fbf5a39b
AC
7630 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7631 -- It is not worth having routines for Short_[Short_]Integer, since for
7632 -- most machines it would not help, and it would generate more code that
dfd99a80 7633 -- might need certification when a certified run time is required.
70482933 7634
fbf5a39b 7635 -- In the integer cases, we have two routines, one for when overflow
dfd99a80
TQ
7636 -- checks are required, and one when they are not required, since there
7637 -- is a real gain in omitting checks on many machines.
70482933 7638
fbf5a39b
AC
7639 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
7640 or else (Rtyp = Base_Type (Standard_Long_Integer)
761f7dcb
AC
7641 and then
7642 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
7643 or else Rtyp = Universal_Integer
70482933 7644 then
fbf5a39b
AC
7645 Etyp := Standard_Long_Long_Integer;
7646
ebb6b0bd
AC
7647 -- Overflow checking is the only choice on the AAMP target, where
7648 -- arithmetic instructions check overflow automatically, so only
7649 -- one version of the exponentiation unit is needed.
7650
1037b0f4 7651 if Ovflo or AAMP_On_Target then
70482933
RK
7652 Rent := RE_Exp_Long_Long_Integer;
7653 else
7654 Rent := RE_Exn_Long_Long_Integer;
7655 end if;
7656
fbf5a39b
AC
7657 elsif Is_Signed_Integer_Type (Rtyp) then
7658 Etyp := Standard_Integer;
70482933 7659
ebb6b0bd
AC
7660 -- Overflow checking is the only choice on the AAMP target, where
7661 -- arithmetic instructions check overflow automatically, so only
7662 -- one version of the exponentiation unit is needed.
7663
1037b0f4 7664 if Ovflo or AAMP_On_Target then
fbf5a39b 7665 Rent := RE_Exp_Integer;
70482933 7666 else
fbf5a39b 7667 Rent := RE_Exn_Integer;
70482933 7668 end if;
fbf5a39b
AC
7669
7670 -- Floating-point cases, always done using Long_Long_Float. We do not
7671 -- need separate routines for the overflow case here, since in the case
7672 -- of floating-point, we generate infinities anyway as a rule (either
7673 -- that or we automatically trap overflow), and if there is an infinity
7674 -- generated and a range check is required, the check will fail anyway.
7675
7676 else
7677 pragma Assert (Is_Floating_Point_Type (Rtyp));
7678 Etyp := Standard_Long_Long_Float;
7679 Rent := RE_Exn_Long_Long_Float;
70482933
RK
7680 end if;
7681
7682 -- Common processing for integer cases and floating-point cases.
fbf5a39b 7683 -- If we are in the right type, we can call runtime routine directly
70482933 7684
fbf5a39b 7685 if Typ = Etyp
70482933
RK
7686 and then Rtyp /= Universal_Integer
7687 and then Rtyp /= Universal_Real
7688 then
7689 Rewrite (N,
7690 Make_Function_Call (Loc,
e4494292 7691 Name => New_Occurrence_Of (RTE (Rent), Loc),
70482933
RK
7692 Parameter_Associations => New_List (Base, Exp)));
7693
7694 -- Otherwise we have to introduce conversions (conversions are also
fbf5a39b 7695 -- required in the universal cases, since the runtime routine is
1147c704 7696 -- typed using one of the standard types).
70482933
RK
7697
7698 else
7699 Rewrite (N,
7700 Convert_To (Typ,
7701 Make_Function_Call (Loc,
e4494292 7702 Name => New_Occurrence_Of (RTE (Rent), Loc),
70482933 7703 Parameter_Associations => New_List (
fbf5a39b 7704 Convert_To (Etyp, Base),
70482933
RK
7705 Exp))));
7706 end if;
7707
7708 Analyze_And_Resolve (N, Typ);
7709 return;
7710
fbf5a39b
AC
7711 exception
7712 when RE_Not_Available =>
7713 return;
70482933
RK
7714 end Expand_N_Op_Expon;
7715
7716 --------------------
7717 -- Expand_N_Op_Ge --
7718 --------------------
7719
7720 procedure Expand_N_Op_Ge (N : Node_Id) is
7721 Typ : constant Entity_Id := Etype (N);
7722 Op1 : constant Node_Id := Left_Opnd (N);
7723 Op2 : constant Node_Id := Right_Opnd (N);
7724 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7725
7726 begin
7727 Binary_Op_Validity_Checks (N);
7728
456cbfa5 7729 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7730 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7731
7732 Expand_Compare_Minimize_Eliminate_Overflow (N);
7733
7734 if Nkind (N) /= N_Op_Ge then
7735 return;
7736 end if;
7737
7738 -- Array type case
7739
f02b8bb8 7740 if Is_Array_Type (Typ1) then
70482933
RK
7741 Expand_Array_Comparison (N);
7742 return;
7743 end if;
7744
456cbfa5
AC
7745 -- Deal with boolean operands
7746
70482933
RK
7747 if Is_Boolean_Type (Typ1) then
7748 Adjust_Condition (Op1);
7749 Adjust_Condition (Op2);
7750 Set_Etype (N, Standard_Boolean);
7751 Adjust_Result_Type (N, Typ);
7752 end if;
7753
7754 Rewrite_Comparison (N);
f02b8bb8
RD
7755
7756 -- If we still have comparison, and Vax_Float type, process it
7757
7758 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7759 Expand_Vax_Comparison (N);
7760 return;
7761 end if;
0580d807
AC
7762
7763 Optimize_Length_Comparison (N);
70482933
RK
7764 end Expand_N_Op_Ge;
7765
7766 --------------------
7767 -- Expand_N_Op_Gt --
7768 --------------------
7769
7770 procedure Expand_N_Op_Gt (N : Node_Id) is
7771 Typ : constant Entity_Id := Etype (N);
7772 Op1 : constant Node_Id := Left_Opnd (N);
7773 Op2 : constant Node_Id := Right_Opnd (N);
7774 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7775
7776 begin
7777 Binary_Op_Validity_Checks (N);
7778
456cbfa5 7779 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7780 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7781
7782 Expand_Compare_Minimize_Eliminate_Overflow (N);
7783
7784 if Nkind (N) /= N_Op_Gt then
7785 return;
7786 end if;
7787
7788 -- Deal with array type operands
7789
f02b8bb8 7790 if Is_Array_Type (Typ1) then
70482933
RK
7791 Expand_Array_Comparison (N);
7792 return;
7793 end if;
7794
456cbfa5
AC
7795 -- Deal with boolean type operands
7796
70482933
RK
7797 if Is_Boolean_Type (Typ1) then
7798 Adjust_Condition (Op1);
7799 Adjust_Condition (Op2);
7800 Set_Etype (N, Standard_Boolean);
7801 Adjust_Result_Type (N, Typ);
7802 end if;
7803
7804 Rewrite_Comparison (N);
f02b8bb8
RD
7805
7806 -- If we still have comparison, and Vax_Float type, process it
7807
7808 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7809 Expand_Vax_Comparison (N);
7810 return;
7811 end if;
0580d807
AC
7812
7813 Optimize_Length_Comparison (N);
70482933
RK
7814 end Expand_N_Op_Gt;
7815
7816 --------------------
7817 -- Expand_N_Op_Le --
7818 --------------------
7819
7820 procedure Expand_N_Op_Le (N : Node_Id) is
7821 Typ : constant Entity_Id := Etype (N);
7822 Op1 : constant Node_Id := Left_Opnd (N);
7823 Op2 : constant Node_Id := Right_Opnd (N);
7824 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7825
7826 begin
7827 Binary_Op_Validity_Checks (N);
7828
456cbfa5 7829 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7830 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7831
7832 Expand_Compare_Minimize_Eliminate_Overflow (N);
7833
7834 if Nkind (N) /= N_Op_Le then
7835 return;
7836 end if;
7837
7838 -- Deal with array type operands
7839
f02b8bb8 7840 if Is_Array_Type (Typ1) then
70482933
RK
7841 Expand_Array_Comparison (N);
7842 return;
7843 end if;
7844
456cbfa5
AC
7845 -- Deal with Boolean type operands
7846
70482933
RK
7847 if Is_Boolean_Type (Typ1) then
7848 Adjust_Condition (Op1);
7849 Adjust_Condition (Op2);
7850 Set_Etype (N, Standard_Boolean);
7851 Adjust_Result_Type (N, Typ);
7852 end if;
7853
7854 Rewrite_Comparison (N);
f02b8bb8
RD
7855
7856 -- If we still have comparison, and Vax_Float type, process it
7857
7858 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7859 Expand_Vax_Comparison (N);
7860 return;
7861 end if;
0580d807
AC
7862
7863 Optimize_Length_Comparison (N);
70482933
RK
7864 end Expand_N_Op_Le;
7865
7866 --------------------
7867 -- Expand_N_Op_Lt --
7868 --------------------
7869
7870 procedure Expand_N_Op_Lt (N : Node_Id) is
7871 Typ : constant Entity_Id := Etype (N);
7872 Op1 : constant Node_Id := Left_Opnd (N);
7873 Op2 : constant Node_Id := Right_Opnd (N);
7874 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7875
7876 begin
7877 Binary_Op_Validity_Checks (N);
7878
456cbfa5 7879 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 7880 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
7881
7882 Expand_Compare_Minimize_Eliminate_Overflow (N);
7883
7884 if Nkind (N) /= N_Op_Lt then
7885 return;
7886 end if;
7887
7888 -- Deal with array type operands
7889
f02b8bb8 7890 if Is_Array_Type (Typ1) then
70482933
RK
7891 Expand_Array_Comparison (N);
7892 return;
7893 end if;
7894
456cbfa5
AC
7895 -- Deal with Boolean type operands
7896
70482933
RK
7897 if Is_Boolean_Type (Typ1) then
7898 Adjust_Condition (Op1);
7899 Adjust_Condition (Op2);
7900 Set_Etype (N, Standard_Boolean);
7901 Adjust_Result_Type (N, Typ);
7902 end if;
7903
7904 Rewrite_Comparison (N);
f02b8bb8
RD
7905
7906 -- If we still have comparison, and Vax_Float type, process it
7907
7908 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7909 Expand_Vax_Comparison (N);
7910 return;
7911 end if;
0580d807
AC
7912
7913 Optimize_Length_Comparison (N);
70482933
RK
7914 end Expand_N_Op_Lt;
7915
7916 -----------------------
7917 -- Expand_N_Op_Minus --
7918 -----------------------
7919
7920 procedure Expand_N_Op_Minus (N : Node_Id) is
7921 Loc : constant Source_Ptr := Sloc (N);
7922 Typ : constant Entity_Id := Etype (N);
7923
7924 begin
7925 Unary_Op_Validity_Checks (N);
7926
b6b5cca8
AC
7927 -- Check for MINIMIZED/ELIMINATED overflow mode
7928
7929 if Minimized_Eliminated_Overflow_Check (N) then
7930 Apply_Arithmetic_Overflow_Check (N);
7931 return;
7932 end if;
7933
07fc65c4 7934 if not Backend_Overflow_Checks_On_Target
70482933
RK
7935 and then Is_Signed_Integer_Type (Etype (N))
7936 and then Do_Overflow_Check (N)
7937 then
7938 -- Software overflow checking expands -expr into (0 - expr)
7939
7940 Rewrite (N,
7941 Make_Op_Subtract (Loc,
7942 Left_Opnd => Make_Integer_Literal (Loc, 0),
7943 Right_Opnd => Right_Opnd (N)));
7944
7945 Analyze_And_Resolve (N, Typ);
7946
7947 -- Vax floating-point types case
7948
7949 elsif Vax_Float (Etype (N)) then
7950 Expand_Vax_Arith (N);
7951 end if;
7952 end Expand_N_Op_Minus;
7953
7954 ---------------------
7955 -- Expand_N_Op_Mod --
7956 ---------------------
7957
7958 procedure Expand_N_Op_Mod (N : Node_Id) is
7959 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 7960 Typ : constant Entity_Id := Etype (N);
70482933
RK
7961 DDC : constant Boolean := Do_Division_Check (N);
7962
b6b5cca8
AC
7963 Left : Node_Id;
7964 Right : Node_Id;
7965
70482933
RK
7966 LLB : Uint;
7967 Llo : Uint;
7968 Lhi : Uint;
7969 LOK : Boolean;
7970 Rlo : Uint;
7971 Rhi : Uint;
7972 ROK : Boolean;
7973
1033834f
RD
7974 pragma Warnings (Off, Lhi);
7975
70482933
RK
7976 begin
7977 Binary_Op_Validity_Checks (N);
7978
b6b5cca8
AC
7979 -- Check for MINIMIZED/ELIMINATED overflow mode
7980
7981 if Minimized_Eliminated_Overflow_Check (N) then
7982 Apply_Arithmetic_Overflow_Check (N);
7983 return;
7984 end if;
7985
9a6dc470
RD
7986 if Is_Integer_Type (Etype (N)) then
7987 Apply_Divide_Checks (N);
b6b5cca8
AC
7988
7989 -- All done if we don't have a MOD any more, which can happen as a
7990 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
7991
7992 if Nkind (N) /= N_Op_Mod then
7993 return;
7994 end if;
9a6dc470
RD
7995 end if;
7996
b6b5cca8
AC
7997 -- Proceed with expansion of mod operator
7998
7999 Left := Left_Opnd (N);
8000 Right := Right_Opnd (N);
8001
5d5e9775
AC
8002 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
8003 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
70482933 8004
2c9f8c0a
AC
8005 -- Convert mod to rem if operands are both known to be non-negative, or
8006 -- both known to be non-positive (these are the cases in which rem and
8007 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8008 -- likely that this will improve the quality of code, (the operation now
8009 -- corresponds to the hardware remainder), and it does not seem likely
8010 -- that it could be harmful. It also avoids some cases of the elaborate
8011 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8012
8013 if (LOK and ROK)
8014 and then ((Llo >= 0 and then Rlo >= 0)
8015 or else
8016 (Lhi <= 0 and then Rhi <= 0))
8017 then
70482933
RK
8018 Rewrite (N,
8019 Make_Op_Rem (Sloc (N),
8020 Left_Opnd => Left_Opnd (N),
8021 Right_Opnd => Right_Opnd (N)));
8022
685094bf
RD
8023 -- Instead of reanalyzing the node we do the analysis manually. This
8024 -- avoids anomalies when the replacement is done in an instance and
8025 -- is epsilon more efficient.
70482933
RK
8026
8027 Set_Entity (N, Standard_Entity (S_Op_Rem));
fbf5a39b 8028 Set_Etype (N, Typ);
70482933
RK
8029 Set_Do_Division_Check (N, DDC);
8030 Expand_N_Op_Rem (N);
8031 Set_Analyzed (N);
2c9f8c0a 8032 return;
70482933
RK
8033
8034 -- Otherwise, normal mod processing
8035
8036 else
fbf5a39b
AC
8037 -- Apply optimization x mod 1 = 0. We don't really need that with
8038 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
8039 -- certainly harmless.
8040
8041 if Is_Integer_Type (Etype (N))
8042 and then Compile_Time_Known_Value (Right)
8043 and then Expr_Value (Right) = Uint_1
8044 then
abcbd24c
ST
8045 -- Call Remove_Side_Effects to ensure that any side effects in
8046 -- the ignored left operand (in particular function calls to
8047 -- user defined functions) are properly executed.
8048
8049 Remove_Side_Effects (Left);
8050
fbf5a39b
AC
8051 Rewrite (N, Make_Integer_Literal (Loc, 0));
8052 Analyze_And_Resolve (N, Typ);
8053 return;
8054 end if;
8055
2c9f8c0a
AC
8056 -- If we still have a mod operator and we are in Modify_Tree_For_C
8057 -- mode, and we have a signed integer type, then here is where we do
8058 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8059 -- for the special handling of the annoying case of largest negative
8060 -- number mod minus one.
8061
8062 if Nkind (N) = N_Op_Mod
8063 and then Is_Signed_Integer_Type (Typ)
8064 and then Modify_Tree_For_C
8065 then
8066 -- In the general case, we expand A mod B as
8067
8068 -- Tnn : constant typ := A rem B;
8069 -- ..
8070 -- (if (A >= 0) = (B >= 0) then Tnn
8071 -- elsif Tnn = 0 then 0
8072 -- else Tnn + B)
8073
8074 -- The comparison can be written simply as A >= 0 if we know that
8075 -- B >= 0 which is a very common case.
8076
8077 -- An important optimization is when B is known at compile time
8078 -- to be 2**K for some constant. In this case we can simply AND
8079 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8080 -- and that works for both the positive and negative cases.
8081
8082 declare
8083 P2 : constant Nat := Power_Of_Two (Right);
8084
8085 begin
8086 if P2 /= 0 then
8087 Rewrite (N,
8088 Unchecked_Convert_To (Typ,
8089 Make_Op_And (Loc,
8090 Left_Opnd =>
8091 Unchecked_Convert_To
8092 (Corresponding_Unsigned_Type (Typ), Left),
8093 Right_Opnd =>
8094 Make_Integer_Literal (Loc, 2 ** P2 - 1))));
8095 Analyze_And_Resolve (N, Typ);
8096 return;
8097 end if;
8098 end;
8099
8100 -- Here for the full rewrite
8101
8102 declare
8103 Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
8104 Cmp : Node_Id;
8105
8106 begin
8107 Cmp :=
8108 Make_Op_Ge (Loc,
8109 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
8110 Right_Opnd => Make_Integer_Literal (Loc, 0));
8111
8112 if not LOK or else Rlo < 0 then
8113 Cmp :=
8114 Make_Op_Eq (Loc,
8115 Left_Opnd => Cmp,
8116 Right_Opnd =>
8117 Make_Op_Ge (Loc,
8118 Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
8119 Right_Opnd => Make_Integer_Literal (Loc, 0)));
8120 end if;
8121
8122 Insert_Action (N,
8123 Make_Object_Declaration (Loc,
8124 Defining_Identifier => Tnn,
8125 Constant_Present => True,
8126 Object_Definition => New_Occurrence_Of (Typ, Loc),
8127 Expression =>
8128 Make_Op_Rem (Loc,
8129 Left_Opnd => Left,
8130 Right_Opnd => Right)));
8131
8132 Rewrite (N,
8133 Make_If_Expression (Loc,
8134 Expressions => New_List (
8135 Cmp,
8136 New_Occurrence_Of (Tnn, Loc),
8137 Make_If_Expression (Loc,
8138 Is_Elsif => True,
8139 Expressions => New_List (
8140 Make_Op_Eq (Loc,
8141 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8142 Right_Opnd => Make_Integer_Literal (Loc, 0)),
8143 Make_Integer_Literal (Loc, 0),
8144 Make_Op_Add (Loc,
8145 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8146 Right_Opnd =>
8147 Duplicate_Subexpr_No_Checks (Right)))))));
8148
8149 Analyze_And_Resolve (N, Typ);
8150 return;
8151 end;
8152 end if;
8153
8154 -- Deal with annoying case of largest negative number mod minus one.
8155 -- Gigi may not handle this case correctly, because on some targets,
8156 -- the mod value is computed using a divide instruction which gives
8157 -- an overflow trap for this case.
b9daa96e
AC
8158
8159 -- It would be a bit more efficient to figure out which targets
8160 -- this is really needed for, but in practice it is reasonable
8161 -- to do the following special check in all cases, since it means
8162 -- we get a clearer message, and also the overhead is minimal given
8163 -- that division is expensive in any case.
70482933 8164
685094bf
RD
8165 -- In fact the check is quite easy, if the right operand is -1, then
8166 -- the mod value is always 0, and we can just ignore the left operand
8167 -- completely in this case.
70482933 8168
9a6dc470
RD
8169 -- This only applies if we still have a mod operator. Skip if we
8170 -- have already rewritten this (e.g. in the case of eliminated
8171 -- overflow checks which have driven us into bignum mode).
fbf5a39b 8172
9a6dc470 8173 if Nkind (N) = N_Op_Mod then
70482933 8174
9a6dc470
RD
8175 -- The operand type may be private (e.g. in the expansion of an
8176 -- intrinsic operation) so we must use the underlying type to get
8177 -- the bounds, and convert the literals explicitly.
70482933 8178
9a6dc470
RD
8179 LLB :=
8180 Expr_Value
8181 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
8182
8183 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
761f7dcb 8184 and then ((not LOK) or else (Llo = LLB))
9a6dc470
RD
8185 then
8186 Rewrite (N,
9b16cb57 8187 Make_If_Expression (Loc,
9a6dc470
RD
8188 Expressions => New_List (
8189 Make_Op_Eq (Loc,
8190 Left_Opnd => Duplicate_Subexpr (Right),
8191 Right_Opnd =>
8192 Unchecked_Convert_To (Typ,
8193 Make_Integer_Literal (Loc, -1))),
8194 Unchecked_Convert_To (Typ,
8195 Make_Integer_Literal (Loc, Uint_0)),
8196 Relocate_Node (N))));
8197
8198 Set_Analyzed (Next (Next (First (Expressions (N)))));
8199 Analyze_And_Resolve (N, Typ);
8200 end if;
70482933
RK
8201 end if;
8202 end if;
8203 end Expand_N_Op_Mod;
8204
8205 --------------------------
8206 -- Expand_N_Op_Multiply --
8207 --------------------------
8208
8209 procedure Expand_N_Op_Multiply (N : Node_Id) is
abcbd24c
ST
8210 Loc : constant Source_Ptr := Sloc (N);
8211 Lop : constant Node_Id := Left_Opnd (N);
8212 Rop : constant Node_Id := Right_Opnd (N);
fbf5a39b 8213
abcbd24c 8214 Lp2 : constant Boolean :=
533369aa 8215 Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
abcbd24c 8216 Rp2 : constant Boolean :=
533369aa 8217 Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
fbf5a39b 8218
70482933
RK
8219 Ltyp : constant Entity_Id := Etype (Lop);
8220 Rtyp : constant Entity_Id := Etype (Rop);
8221 Typ : Entity_Id := Etype (N);
8222
8223 begin
8224 Binary_Op_Validity_Checks (N);
8225
b6b5cca8
AC
8226 -- Check for MINIMIZED/ELIMINATED overflow mode
8227
8228 if Minimized_Eliminated_Overflow_Check (N) then
8229 Apply_Arithmetic_Overflow_Check (N);
8230 return;
8231 end if;
8232
70482933
RK
8233 -- Special optimizations for integer types
8234
8235 if Is_Integer_Type (Typ) then
8236
abcbd24c 8237 -- N * 0 = 0 for integer types
70482933 8238
abcbd24c
ST
8239 if Compile_Time_Known_Value (Rop)
8240 and then Expr_Value (Rop) = Uint_0
70482933 8241 then
abcbd24c
ST
8242 -- Call Remove_Side_Effects to ensure that any side effects in
8243 -- the ignored left operand (in particular function calls to
8244 -- user defined functions) are properly executed.
8245
8246 Remove_Side_Effects (Lop);
8247
8248 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8249 Analyze_And_Resolve (N, Typ);
8250 return;
8251 end if;
8252
8253 -- Similar handling for 0 * N = 0
8254
8255 if Compile_Time_Known_Value (Lop)
8256 and then Expr_Value (Lop) = Uint_0
8257 then
8258 Remove_Side_Effects (Rop);
70482933
RK
8259 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8260 Analyze_And_Resolve (N, Typ);
8261 return;
8262 end if;
8263
8264 -- N * 1 = 1 * N = N for integer types
8265
fbf5a39b
AC
8266 -- This optimisation is not done if we are going to
8267 -- rewrite the product 1 * 2 ** N to a shift.
8268
8269 if Compile_Time_Known_Value (Rop)
8270 and then Expr_Value (Rop) = Uint_1
8271 and then not Lp2
70482933 8272 then
fbf5a39b 8273 Rewrite (N, Lop);
70482933
RK
8274 return;
8275
fbf5a39b
AC
8276 elsif Compile_Time_Known_Value (Lop)
8277 and then Expr_Value (Lop) = Uint_1
8278 and then not Rp2
70482933 8279 then
fbf5a39b 8280 Rewrite (N, Rop);
70482933
RK
8281 return;
8282 end if;
8283 end if;
8284
70482933
RK
8285 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8286 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8287 -- operand is an integer, as required for this to work.
8288
fbf5a39b
AC
8289 if Rp2 then
8290 if Lp2 then
70482933 8291
fbf5a39b 8292 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
70482933
RK
8293
8294 Rewrite (N,
8295 Make_Op_Expon (Loc,
8296 Left_Opnd => Make_Integer_Literal (Loc, 2),
8297 Right_Opnd =>
8298 Make_Op_Add (Loc,
8299 Left_Opnd => Right_Opnd (Lop),
8300 Right_Opnd => Right_Opnd (Rop))));
8301 Analyze_And_Resolve (N, Typ);
8302 return;
8303
8304 else
eefe3761
AC
8305 -- If the result is modular, perform the reduction of the result
8306 -- appropriately.
8307
8308 if Is_Modular_Integer_Type (Typ)
8309 and then not Non_Binary_Modulus (Typ)
8310 then
8311 Rewrite (N,
573e5dd6
RD
8312 Make_Op_And (Loc,
8313 Left_Opnd =>
8314 Make_Op_Shift_Left (Loc,
8315 Left_Opnd => Lop,
8316 Right_Opnd =>
8317 Convert_To (Standard_Natural, Right_Opnd (Rop))),
8318 Right_Opnd =>
eefe3761 8319 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
573e5dd6 8320
eefe3761
AC
8321 else
8322 Rewrite (N,
8323 Make_Op_Shift_Left (Loc,
8324 Left_Opnd => Lop,
8325 Right_Opnd =>
8326 Convert_To (Standard_Natural, Right_Opnd (Rop))));
8327 end if;
8328
70482933
RK
8329 Analyze_And_Resolve (N, Typ);
8330 return;
8331 end if;
8332
8333 -- Same processing for the operands the other way round
8334
fbf5a39b 8335 elsif Lp2 then
eefe3761
AC
8336 if Is_Modular_Integer_Type (Typ)
8337 and then not Non_Binary_Modulus (Typ)
8338 then
8339 Rewrite (N,
573e5dd6
RD
8340 Make_Op_And (Loc,
8341 Left_Opnd =>
8342 Make_Op_Shift_Left (Loc,
8343 Left_Opnd => Rop,
8344 Right_Opnd =>
8345 Convert_To (Standard_Natural, Right_Opnd (Lop))),
8346 Right_Opnd =>
8347 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8348
eefe3761
AC
8349 else
8350 Rewrite (N,
8351 Make_Op_Shift_Left (Loc,
8352 Left_Opnd => Rop,
8353 Right_Opnd =>
8354 Convert_To (Standard_Natural, Right_Opnd (Lop))));
8355 end if;
8356
70482933
RK
8357 Analyze_And_Resolve (N, Typ);
8358 return;
8359 end if;
8360
8361 -- Do required fixup of universal fixed operation
8362
8363 if Typ = Universal_Fixed then
8364 Fixup_Universal_Fixed_Operation (N);
8365 Typ := Etype (N);
8366 end if;
8367
8368 -- Multiplications with fixed-point results
8369
8370 if Is_Fixed_Point_Type (Typ) then
8371
685094bf
RD
8372 -- No special processing if Treat_Fixed_As_Integer is set, since from
8373 -- a semantic point of view such operations are simply integer
8374 -- operations and will be treated that way.
70482933
RK
8375
8376 if not Treat_Fixed_As_Integer (N) then
8377
8378 -- Case of fixed * integer => fixed
8379
8380 if Is_Integer_Type (Rtyp) then
8381 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
8382
8383 -- Case of integer * fixed => fixed
8384
8385 elsif Is_Integer_Type (Ltyp) then
8386 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
8387
8388 -- Case of fixed * fixed => fixed
8389
8390 else
8391 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
8392 end if;
8393 end if;
8394
685094bf
RD
8395 -- Other cases of multiplication of fixed-point operands. Again we
8396 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
70482933
RK
8397
8398 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
8399 and then not Treat_Fixed_As_Integer (N)
8400 then
8401 if Is_Integer_Type (Typ) then
8402 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
8403 else
8404 pragma Assert (Is_Floating_Point_Type (Typ));
8405 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
8406 end if;
8407
685094bf
RD
8408 -- Mixed-mode operations can appear in a non-static universal context,
8409 -- in which case the integer argument must be converted explicitly.
70482933 8410
533369aa 8411 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
70482933 8412 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
70482933
RK
8413 Analyze_And_Resolve (Rop, Universal_Real);
8414
533369aa 8415 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
70482933 8416 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
70482933
RK
8417 Analyze_And_Resolve (Lop, Universal_Real);
8418
8419 -- Non-fixed point cases, check software overflow checking required
8420
8421 elsif Is_Signed_Integer_Type (Etype (N)) then
8422 Apply_Arithmetic_Overflow_Check (N);
f02b8bb8
RD
8423
8424 -- Deal with VAX float case
8425
8426 elsif Vax_Float (Typ) then
8427 Expand_Vax_Arith (N);
8428 return;
70482933
RK
8429 end if;
8430 end Expand_N_Op_Multiply;
8431
8432 --------------------
8433 -- Expand_N_Op_Ne --
8434 --------------------
8435
70482933 8436 procedure Expand_N_Op_Ne (N : Node_Id) is
f02b8bb8 8437 Typ : constant Entity_Id := Etype (Left_Opnd (N));
70482933
RK
8438
8439 begin
f02b8bb8 8440 -- Case of elementary type with standard operator
70482933 8441
f02b8bb8
RD
8442 if Is_Elementary_Type (Typ)
8443 and then Sloc (Entity (N)) = Standard_Location
8444 then
8445 Binary_Op_Validity_Checks (N);
70482933 8446
456cbfa5 8447 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
60b68e56 8448 -- means we no longer have a /= operation, we are all done.
456cbfa5
AC
8449
8450 Expand_Compare_Minimize_Eliminate_Overflow (N);
8451
8452 if Nkind (N) /= N_Op_Ne then
8453 return;
8454 end if;
8455
f02b8bb8 8456 -- Boolean types (requiring handling of non-standard case)
70482933 8457
f02b8bb8
RD
8458 if Is_Boolean_Type (Typ) then
8459 Adjust_Condition (Left_Opnd (N));
8460 Adjust_Condition (Right_Opnd (N));
8461 Set_Etype (N, Standard_Boolean);
8462 Adjust_Result_Type (N, Typ);
8463 end if;
fbf5a39b 8464
f02b8bb8
RD
8465 Rewrite_Comparison (N);
8466
8467 -- If we still have comparison for Vax_Float, process it
8468
8469 if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
8470 Expand_Vax_Comparison (N);
8471 return;
8472 end if;
8473
8474 -- For all cases other than elementary types, we rewrite node as the
8475 -- negation of an equality operation, and reanalyze. The equality to be
8476 -- used is defined in the same scope and has the same signature. This
8477 -- signature must be set explicitly since in an instance it may not have
8478 -- the same visibility as in the generic unit. This avoids duplicating
8479 -- or factoring the complex code for record/array equality tests etc.
8480
8481 else
8482 declare
8483 Loc : constant Source_Ptr := Sloc (N);
8484 Neg : Node_Id;
8485 Ne : constant Entity_Id := Entity (N);
8486
8487 begin
8488 Binary_Op_Validity_Checks (N);
8489
8490 Neg :=
8491 Make_Op_Not (Loc,
8492 Right_Opnd =>
8493 Make_Op_Eq (Loc,
8494 Left_Opnd => Left_Opnd (N),
8495 Right_Opnd => Right_Opnd (N)));
8496 Set_Paren_Count (Right_Opnd (Neg), 1);
8497
8498 if Scope (Ne) /= Standard_Standard then
8499 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
8500 end if;
8501
4637729f 8502 -- For navigation purposes, we want to treat the inequality as an
f02b8bb8 8503 -- implicit reference to the corresponding equality. Preserve the
4637729f 8504 -- Comes_From_ source flag to generate proper Xref entries.
f02b8bb8
RD
8505
8506 Preserve_Comes_From_Source (Neg, N);
8507 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
8508 Rewrite (N, Neg);
8509 Analyze_And_Resolve (N, Standard_Boolean);
8510 end;
8511 end if;
0580d807
AC
8512
8513 Optimize_Length_Comparison (N);
70482933
RK
8514 end Expand_N_Op_Ne;
8515
8516 ---------------------
8517 -- Expand_N_Op_Not --
8518 ---------------------
8519
685094bf 8520 -- If the argument is other than a Boolean array type, there is no special
c77599d5 8521 -- expansion required, except for VMS operations on signed integers.
70482933
RK
8522
8523 -- For the packed case, we call the special routine in Exp_Pakd, except
8524 -- that if the component size is greater than one, we use the standard
8525 -- routine generating a gruesome loop (it is so peculiar to have packed
685094bf
RD
8526 -- arrays with non-standard Boolean representations anyway, so it does not
8527 -- matter that we do not handle this case efficiently).
70482933 8528
685094bf
RD
8529 -- For the unpacked case (and for the special packed case where we have non
8530 -- standard Booleans, as discussed above), we generate and insert into the
8531 -- tree the following function definition:
70482933
RK
8532
8533 -- function Nnnn (A : arr) is
8534 -- B : arr;
8535 -- begin
8536 -- for J in a'range loop
8537 -- B (J) := not A (J);
8538 -- end loop;
8539 -- return B;
8540 -- end Nnnn;
8541
8542 -- Here arr is the actual subtype of the parameter (and hence always
8543 -- constrained). Then we replace the not with a call to this function.
8544
8545 procedure Expand_N_Op_Not (N : Node_Id) is
8546 Loc : constant Source_Ptr := Sloc (N);
8547 Typ : constant Entity_Id := Etype (N);
8548 Opnd : Node_Id;
8549 Arr : Entity_Id;
8550 A : Entity_Id;
8551 B : Entity_Id;
8552 J : Entity_Id;
8553 A_J : Node_Id;
8554 B_J : Node_Id;
8555
8556 Func_Name : Entity_Id;
8557 Loop_Statement : Node_Id;
8558
8559 begin
8560 Unary_Op_Validity_Checks (N);
8561
8562 -- For boolean operand, deal with non-standard booleans
8563
8564 if Is_Boolean_Type (Typ) then
8565 Adjust_Condition (Right_Opnd (N));
8566 Set_Etype (N, Standard_Boolean);
8567 Adjust_Result_Type (N, Typ);
8568 return;
8569 end if;
8570
880dabb5
AC
8571 -- For the VMS "not" on signed integer types, use conversion to and from
8572 -- a predefined modular type.
c77599d5
AC
8573
8574 if Is_VMS_Operator (Entity (N)) then
8575 declare
9bebf0e9
AC
8576 Rtyp : Entity_Id;
8577 Utyp : Entity_Id;
8578
c77599d5 8579 begin
9bebf0e9
AC
8580 -- If this is a derived type, retrieve original VMS type so that
8581 -- the proper sized type is used for intermediate values.
8582
8583 if Is_Derived_Type (Typ) then
8584 Rtyp := First_Subtype (Etype (Typ));
8585 else
8586 Rtyp := Typ;
8587 end if;
8588
0d901290
AC
8589 -- The proper unsigned type must have a size compatible with the
8590 -- operand, to prevent misalignment.
9bebf0e9
AC
8591
8592 if RM_Size (Rtyp) <= 8 then
8593 Utyp := RTE (RE_Unsigned_8);
8594
8595 elsif RM_Size (Rtyp) <= 16 then
8596 Utyp := RTE (RE_Unsigned_16);
8597
8598 elsif RM_Size (Rtyp) = RM_Size (Standard_Unsigned) then
bc20523f 8599 Utyp := RTE (RE_Unsigned_32);
9bebf0e9
AC
8600
8601 else
8602 Utyp := RTE (RE_Long_Long_Unsigned);
8603 end if;
8604
c77599d5
AC
8605 Rewrite (N,
8606 Unchecked_Convert_To (Typ,
9bebf0e9
AC
8607 Make_Op_Not (Loc,
8608 Unchecked_Convert_To (Utyp, Right_Opnd (N)))));
c77599d5
AC
8609 Analyze_And_Resolve (N, Typ);
8610 return;
8611 end;
8612 end if;
8613
da94696d 8614 -- Only array types need any other processing
70482933 8615
da94696d 8616 if not Is_Array_Type (Typ) then
70482933
RK
8617 return;
8618 end if;
8619
a9d8907c
JM
8620 -- Case of array operand. If bit packed with a component size of 1,
8621 -- handle it in Exp_Pakd if the operand is known to be aligned.
70482933 8622
a9d8907c
JM
8623 if Is_Bit_Packed_Array (Typ)
8624 and then Component_Size (Typ) = 1
8625 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
8626 then
70482933
RK
8627 Expand_Packed_Not (N);
8628 return;
8629 end if;
8630
fbf5a39b
AC
8631 -- Case of array operand which is not bit-packed. If the context is
8632 -- a safe assignment, call in-place operation, If context is a larger
8633 -- boolean expression in the context of a safe assignment, expansion is
8634 -- done by enclosing operation.
70482933
RK
8635
8636 Opnd := Relocate_Node (Right_Opnd (N));
8637 Convert_To_Actual_Subtype (Opnd);
8638 Arr := Etype (Opnd);
8639 Ensure_Defined (Arr, N);
b4592168 8640 Silly_Boolean_Array_Not_Test (N, Arr);
70482933 8641
fbf5a39b
AC
8642 if Nkind (Parent (N)) = N_Assignment_Statement then
8643 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
8644 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8645 return;
8646
5e1c00fa 8647 -- Special case the negation of a binary operation
fbf5a39b 8648
303b4d58 8649 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
fbf5a39b 8650 and then Safe_In_Place_Array_Op
303b4d58 8651 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
fbf5a39b
AC
8652 then
8653 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8654 return;
8655 end if;
8656
8657 elsif Nkind (Parent (N)) in N_Binary_Op
8658 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
8659 then
8660 declare
8661 Op1 : constant Node_Id := Left_Opnd (Parent (N));
8662 Op2 : constant Node_Id := Right_Opnd (Parent (N));
8663 Lhs : constant Node_Id := Name (Parent (Parent (N)));
8664
8665 begin
8666 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
fbf5a39b 8667
aa9a7dd7
AC
8668 -- (not A) op (not B) can be reduced to a single call
8669
8670 if N = Op1 and then Nkind (Op2) = N_Op_Not then
fbf5a39b
AC
8671 return;
8672
bed8af19
AC
8673 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
8674 return;
8675
aa9a7dd7 8676 -- A xor (not B) can also be special-cased
fbf5a39b 8677
aa9a7dd7 8678 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
fbf5a39b
AC
8679 return;
8680 end if;
8681 end if;
8682 end;
8683 end if;
8684
70482933
RK
8685 A := Make_Defining_Identifier (Loc, Name_uA);
8686 B := Make_Defining_Identifier (Loc, Name_uB);
8687 J := Make_Defining_Identifier (Loc, Name_uJ);
8688
8689 A_J :=
8690 Make_Indexed_Component (Loc,
e4494292
RD
8691 Prefix => New_Occurrence_Of (A, Loc),
8692 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
8693
8694 B_J :=
8695 Make_Indexed_Component (Loc,
e4494292
RD
8696 Prefix => New_Occurrence_Of (B, Loc),
8697 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
8698
8699 Loop_Statement :=
8700 Make_Implicit_Loop_Statement (N,
8701 Identifier => Empty,
8702
8703 Iteration_Scheme =>
8704 Make_Iteration_Scheme (Loc,
8705 Loop_Parameter_Specification =>
8706 Make_Loop_Parameter_Specification (Loc,
0d901290 8707 Defining_Identifier => J,
70482933
RK
8708 Discrete_Subtype_Definition =>
8709 Make_Attribute_Reference (Loc,
0d901290 8710 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
8711 Attribute_Name => Name_Range))),
8712
8713 Statements => New_List (
8714 Make_Assignment_Statement (Loc,
8715 Name => B_J,
8716 Expression => Make_Op_Not (Loc, A_J))));
8717
191fcb3a 8718 Func_Name := Make_Temporary (Loc, 'N');
70482933
RK
8719 Set_Is_Inlined (Func_Name);
8720
8721 Insert_Action (N,
8722 Make_Subprogram_Body (Loc,
8723 Specification =>
8724 Make_Function_Specification (Loc,
8725 Defining_Unit_Name => Func_Name,
8726 Parameter_Specifications => New_List (
8727 Make_Parameter_Specification (Loc,
8728 Defining_Identifier => A,
e4494292
RD
8729 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8730 Result_Definition => New_Occurrence_Of (Typ, Loc)),
70482933
RK
8731
8732 Declarations => New_List (
8733 Make_Object_Declaration (Loc,
8734 Defining_Identifier => B,
e4494292 8735 Object_Definition => New_Occurrence_Of (Arr, Loc))),
70482933
RK
8736
8737 Handled_Statement_Sequence =>
8738 Make_Handled_Sequence_Of_Statements (Loc,
8739 Statements => New_List (
8740 Loop_Statement,
d766cee3 8741 Make_Simple_Return_Statement (Loc,
0d901290 8742 Expression => Make_Identifier (Loc, Chars (B)))))));
70482933
RK
8743
8744 Rewrite (N,
8745 Make_Function_Call (Loc,
e4494292 8746 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
8747 Parameter_Associations => New_List (Opnd)));
8748
8749 Analyze_And_Resolve (N, Typ);
8750 end Expand_N_Op_Not;
8751
8752 --------------------
8753 -- Expand_N_Op_Or --
8754 --------------------
8755
8756 procedure Expand_N_Op_Or (N : Node_Id) is
8757 Typ : constant Entity_Id := Etype (N);
8758
8759 begin
8760 Binary_Op_Validity_Checks (N);
8761
8762 if Is_Array_Type (Etype (N)) then
8763 Expand_Boolean_Operator (N);
8764
8765 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
8766 Adjust_Condition (Left_Opnd (N));
8767 Adjust_Condition (Right_Opnd (N));
8768 Set_Etype (N, Standard_Boolean);
8769 Adjust_Result_Type (N, Typ);
437f8c1e
AC
8770
8771 elsif Is_Intrinsic_Subprogram (Entity (N)) then
8772 Expand_Intrinsic_Call (N, Entity (N));
8773
70482933
RK
8774 end if;
8775 end Expand_N_Op_Or;
8776
8777 ----------------------
8778 -- Expand_N_Op_Plus --
8779 ----------------------
8780
8781 procedure Expand_N_Op_Plus (N : Node_Id) is
8782 begin
8783 Unary_Op_Validity_Checks (N);
b6b5cca8
AC
8784
8785 -- Check for MINIMIZED/ELIMINATED overflow mode
8786
8787 if Minimized_Eliminated_Overflow_Check (N) then
8788 Apply_Arithmetic_Overflow_Check (N);
8789 return;
8790 end if;
70482933
RK
8791 end Expand_N_Op_Plus;
8792
8793 ---------------------
8794 -- Expand_N_Op_Rem --
8795 ---------------------
8796
8797 procedure Expand_N_Op_Rem (N : Node_Id) is
8798 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 8799 Typ : constant Entity_Id := Etype (N);
70482933 8800
b6b5cca8
AC
8801 Left : Node_Id;
8802 Right : Node_Id;
70482933 8803
5d5e9775
AC
8804 Lo : Uint;
8805 Hi : Uint;
8806 OK : Boolean;
70482933 8807
5d5e9775
AC
8808 Lneg : Boolean;
8809 Rneg : Boolean;
8810 -- Set if corresponding operand can be negative
8811
8812 pragma Unreferenced (Hi);
1033834f 8813
70482933
RK
8814 begin
8815 Binary_Op_Validity_Checks (N);
8816
b6b5cca8
AC
8817 -- Check for MINIMIZED/ELIMINATED overflow mode
8818
8819 if Minimized_Eliminated_Overflow_Check (N) then
8820 Apply_Arithmetic_Overflow_Check (N);
8821 return;
8822 end if;
8823
70482933 8824 if Is_Integer_Type (Etype (N)) then
a91e9ac7 8825 Apply_Divide_Checks (N);
b6b5cca8
AC
8826
8827 -- All done if we don't have a REM any more, which can happen as a
8828 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8829
8830 if Nkind (N) /= N_Op_Rem then
8831 return;
8832 end if;
70482933
RK
8833 end if;
8834
b6b5cca8
AC
8835 -- Proceed with expansion of REM
8836
8837 Left := Left_Opnd (N);
8838 Right := Right_Opnd (N);
8839
685094bf
RD
8840 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
8841 -- but it is useful with other back ends (e.g. AAMP), and is certainly
8842 -- harmless.
fbf5a39b
AC
8843
8844 if Is_Integer_Type (Etype (N))
8845 and then Compile_Time_Known_Value (Right)
8846 and then Expr_Value (Right) = Uint_1
8847 then
abcbd24c
ST
8848 -- Call Remove_Side_Effects to ensure that any side effects in the
8849 -- ignored left operand (in particular function calls to user defined
8850 -- functions) are properly executed.
8851
8852 Remove_Side_Effects (Left);
8853
fbf5a39b
AC
8854 Rewrite (N, Make_Integer_Literal (Loc, 0));
8855 Analyze_And_Resolve (N, Typ);
8856 return;
8857 end if;
8858
685094bf 8859 -- Deal with annoying case of largest negative number remainder minus
b9daa96e
AC
8860 -- one. Gigi may not handle this case correctly, because on some
8861 -- targets, the mod value is computed using a divide instruction
8862 -- which gives an overflow trap for this case.
8863
8864 -- It would be a bit more efficient to figure out which targets this
8865 -- is really needed for, but in practice it is reasonable to do the
8866 -- following special check in all cases, since it means we get a clearer
8867 -- message, and also the overhead is minimal given that division is
8868 -- expensive in any case.
70482933 8869
685094bf
RD
8870 -- In fact the check is quite easy, if the right operand is -1, then
8871 -- the remainder is always 0, and we can just ignore the left operand
8872 -- completely in this case.
70482933 8873
5d5e9775
AC
8874 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
8875 Lneg := (not OK) or else Lo < 0;
fbf5a39b 8876
5d5e9775
AC
8877 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
8878 Rneg := (not OK) or else Lo < 0;
fbf5a39b 8879
5d5e9775
AC
8880 -- We won't mess with trying to find out if the left operand can really
8881 -- be the largest negative number (that's a pain in the case of private
8882 -- types and this is really marginal). We will just assume that we need
8883 -- the test if the left operand can be negative at all.
fbf5a39b 8884
5d5e9775 8885 if Lneg and Rneg then
70482933 8886 Rewrite (N,
9b16cb57 8887 Make_If_Expression (Loc,
70482933
RK
8888 Expressions => New_List (
8889 Make_Op_Eq (Loc,
0d901290 8890 Left_Opnd => Duplicate_Subexpr (Right),
70482933 8891 Right_Opnd =>
0d901290 8892 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
70482933 8893
fbf5a39b
AC
8894 Unchecked_Convert_To (Typ,
8895 Make_Integer_Literal (Loc, Uint_0)),
70482933
RK
8896
8897 Relocate_Node (N))));
8898
8899 Set_Analyzed (Next (Next (First (Expressions (N)))));
8900 Analyze_And_Resolve (N, Typ);
8901 end if;
8902 end Expand_N_Op_Rem;
8903
8904 -----------------------------
8905 -- Expand_N_Op_Rotate_Left --
8906 -----------------------------
8907
8908 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
8909 begin
8910 Binary_Op_Validity_Checks (N);
5216b599
AC
8911
8912 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
8913 -- so we rewrite in terms of logical shifts
8914
8915 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
8916
8917 -- where Bits is the shift count mod Esize (the mod operation here
8918 -- deals with ludicrous large shift counts, which are apparently OK).
8919
8920 -- What about non-binary modulus ???
8921
8922 declare
8923 Loc : constant Source_Ptr := Sloc (N);
8924 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8925 Typ : constant Entity_Id := Etype (N);
8926
8927 begin
8928 if Modify_Tree_For_C then
8929 Rewrite (Right_Opnd (N),
8930 Make_Op_Rem (Loc,
8931 Left_Opnd => Relocate_Node (Right_Opnd (N)),
8932 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8933
8934 Analyze_And_Resolve (Right_Opnd (N), Rtp);
8935
8936 Rewrite (N,
8937 Make_Op_Or (Loc,
8938 Left_Opnd =>
8939 Make_Op_Shift_Left (Loc,
8940 Left_Opnd => Left_Opnd (N),
8941 Right_Opnd => Right_Opnd (N)),
e09a5598 8942
5216b599
AC
8943 Right_Opnd =>
8944 Make_Op_Shift_Right (Loc,
8945 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8946 Right_Opnd =>
8947 Make_Op_Subtract (Loc,
8948 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
8949 Right_Opnd =>
8950 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8951
8952 Analyze_And_Resolve (N, Typ);
8953 end if;
8954 end;
70482933
RK
8955 end Expand_N_Op_Rotate_Left;
8956
8957 ------------------------------
8958 -- Expand_N_Op_Rotate_Right --
8959 ------------------------------
8960
8961 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
8962 begin
8963 Binary_Op_Validity_Checks (N);
5216b599
AC
8964
8965 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
8966 -- so we rewrite in terms of logical shifts
8967
8968 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
8969
8970 -- where Bits is the shift count mod Esize (the mod operation here
8971 -- deals with ludicrous large shift counts, which are apparently OK).
8972
8973 -- What about non-binary modulus ???
8974
8975 declare
8976 Loc : constant Source_Ptr := Sloc (N);
8977 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8978 Typ : constant Entity_Id := Etype (N);
8979
8980 begin
8981 Rewrite (Right_Opnd (N),
8982 Make_Op_Rem (Loc,
8983 Left_Opnd => Relocate_Node (Right_Opnd (N)),
8984 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8985
8986 Analyze_And_Resolve (Right_Opnd (N), Rtp);
8987
8988 if Modify_Tree_For_C then
8989 Rewrite (N,
8990 Make_Op_Or (Loc,
8991 Left_Opnd =>
8992 Make_Op_Shift_Right (Loc,
8993 Left_Opnd => Left_Opnd (N),
8994 Right_Opnd => Right_Opnd (N)),
e09a5598 8995
5216b599
AC
8996 Right_Opnd =>
8997 Make_Op_Shift_Left (Loc,
8998 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8999 Right_Opnd =>
9000 Make_Op_Subtract (Loc,
9001 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
9002 Right_Opnd =>
9003 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
9004
9005 Analyze_And_Resolve (N, Typ);
9006 end if;
9007 end;
70482933
RK
9008 end Expand_N_Op_Rotate_Right;
9009
9010 ----------------------------
9011 -- Expand_N_Op_Shift_Left --
9012 ----------------------------
9013
e09a5598
AC
9014 -- Note: nothing in this routine depends on left as opposed to right shifts
9015 -- so we share the routine for expanding shift right operations.
9016
70482933
RK
9017 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
9018 begin
9019 Binary_Op_Validity_Checks (N);
e09a5598
AC
9020
9021 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9022 -- operand is not greater than the word size (since that would not
9023 -- be defined properly by the corresponding C shift operator).
9024
9025 if Modify_Tree_For_C then
9026 declare
9027 Right : constant Node_Id := Right_Opnd (N);
9028 Loc : constant Source_Ptr := Sloc (Right);
9029 Typ : constant Entity_Id := Etype (N);
9030 Siz : constant Uint := Esize (Typ);
9031 Orig : Node_Id;
9032 OK : Boolean;
9033 Lo : Uint;
9034 Hi : Uint;
9035
9036 begin
9037 if Compile_Time_Known_Value (Right) then
9038 if Expr_Value (Right) >= Siz then
9039 Rewrite (N, Make_Integer_Literal (Loc, 0));
9040 Analyze_And_Resolve (N, Typ);
9041 end if;
9042
9043 -- Not compile time known, find range
9044
9045 else
9046 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
9047
9048 -- Nothing to do if known to be OK range, otherwise expand
9049
9050 if not OK or else Hi >= Siz then
9051
9052 -- Prevent recursion on copy of shift node
9053
9054 Orig := Relocate_Node (N);
9055 Set_Analyzed (Orig);
9056
9057 -- Now do the rewrite
9058
9059 Rewrite (N,
9060 Make_If_Expression (Loc,
9061 Expressions => New_List (
9062 Make_Op_Ge (Loc,
9063 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
9064 Right_Opnd => Make_Integer_Literal (Loc, Siz)),
9065 Make_Integer_Literal (Loc, 0),
9066 Orig)));
9067 Analyze_And_Resolve (N, Typ);
9068 end if;
9069 end if;
9070 end;
9071 end if;
70482933
RK
9072 end Expand_N_Op_Shift_Left;
9073
9074 -----------------------------
9075 -- Expand_N_Op_Shift_Right --
9076 -----------------------------
9077
9078 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
9079 begin
e09a5598
AC
9080 -- Share shift left circuit
9081
9082 Expand_N_Op_Shift_Left (N);
70482933
RK
9083 end Expand_N_Op_Shift_Right;
9084
9085 ----------------------------------------
9086 -- Expand_N_Op_Shift_Right_Arithmetic --
9087 ----------------------------------------
9088
9089 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
9090 begin
9091 Binary_Op_Validity_Checks (N);
5216b599
AC
9092
9093 -- If we are in Modify_Tree_For_C mode, there is no shift right
9094 -- arithmetic in C, so we rewrite in terms of logical shifts.
9095
9096 -- Shift_Right (Num, Bits) or
9097 -- (if Num >= Sign
9098 -- then not (Shift_Right (Mask, bits))
9099 -- else 0)
9100
9101 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9102
9103 -- Note: in almost all C compilers it would work to just shift a
9104 -- signed integer right, but it's undefined and we cannot rely on it.
9105
e09a5598
AC
9106 -- Note: the above works fine for shift counts greater than or equal
9107 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9108 -- generates all 1'bits.
9109
5216b599
AC
9110 -- What about non-binary modulus ???
9111
9112 declare
9113 Loc : constant Source_Ptr := Sloc (N);
9114 Typ : constant Entity_Id := Etype (N);
9115 Sign : constant Uint := 2 ** (Esize (Typ) - 1);
9116 Mask : constant Uint := (2 ** Esize (Typ)) - 1;
9117 Left : constant Node_Id := Left_Opnd (N);
9118 Right : constant Node_Id := Right_Opnd (N);
9119 Maskx : Node_Id;
9120
9121 begin
9122 if Modify_Tree_For_C then
9123
9124 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9125 -- compile time as a single constant.
9126
9127 if Compile_Time_Known_Value (Right) then
9128 declare
9129 Val : constant Uint := Expr_Value (Right);
9130
9131 begin
9132 if Val >= Esize (Typ) then
9133 Maskx := Make_Integer_Literal (Loc, Mask);
9134
9135 else
9136 Maskx :=
9137 Make_Integer_Literal (Loc,
9138 Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
9139 end if;
9140 end;
9141
9142 else
9143 Maskx :=
9144 Make_Op_Not (Loc,
9145 Right_Opnd =>
9146 Make_Op_Shift_Right (Loc,
9147 Left_Opnd => Make_Integer_Literal (Loc, Mask),
9148 Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
9149 end if;
9150
9151 -- Now do the rewrite
9152
9153 Rewrite (N,
9154 Make_Op_Or (Loc,
9155 Left_Opnd =>
9156 Make_Op_Shift_Right (Loc,
9157 Left_Opnd => Left,
9158 Right_Opnd => Right),
9159 Right_Opnd =>
9160 Make_If_Expression (Loc,
9161 Expressions => New_List (
9162 Make_Op_Ge (Loc,
9163 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
9164 Right_Opnd => Make_Integer_Literal (Loc, Sign)),
9165 Maskx,
9166 Make_Integer_Literal (Loc, 0)))));
9167 Analyze_And_Resolve (N, Typ);
9168 end if;
9169 end;
70482933
RK
9170 end Expand_N_Op_Shift_Right_Arithmetic;
9171
9172 --------------------------
9173 -- Expand_N_Op_Subtract --
9174 --------------------------
9175
9176 procedure Expand_N_Op_Subtract (N : Node_Id) is
9177 Typ : constant Entity_Id := Etype (N);
9178
9179 begin
9180 Binary_Op_Validity_Checks (N);
9181
b6b5cca8
AC
9182 -- Check for MINIMIZED/ELIMINATED overflow mode
9183
9184 if Minimized_Eliminated_Overflow_Check (N) then
9185 Apply_Arithmetic_Overflow_Check (N);
9186 return;
9187 end if;
9188
70482933
RK
9189 -- N - 0 = N for integer types
9190
9191 if Is_Integer_Type (Typ)
9192 and then Compile_Time_Known_Value (Right_Opnd (N))
9193 and then Expr_Value (Right_Opnd (N)) = 0
9194 then
9195 Rewrite (N, Left_Opnd (N));
9196 return;
9197 end if;
9198
8fc789c8 9199 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 9200
761f7dcb 9201 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
70482933
RK
9202 Apply_Arithmetic_Overflow_Check (N);
9203
0d901290 9204 -- VAX floating-point types case
70482933
RK
9205
9206 elsif Vax_Float (Typ) then
9207 Expand_Vax_Arith (N);
9208 end if;
9209 end Expand_N_Op_Subtract;
9210
9211 ---------------------
9212 -- Expand_N_Op_Xor --
9213 ---------------------
9214
9215 procedure Expand_N_Op_Xor (N : Node_Id) is
9216 Typ : constant Entity_Id := Etype (N);
9217
9218 begin
9219 Binary_Op_Validity_Checks (N);
9220
9221 if Is_Array_Type (Etype (N)) then
9222 Expand_Boolean_Operator (N);
9223
9224 elsif Is_Boolean_Type (Etype (N)) then
9225 Adjust_Condition (Left_Opnd (N));
9226 Adjust_Condition (Right_Opnd (N));
9227 Set_Etype (N, Standard_Boolean);
9228 Adjust_Result_Type (N, Typ);
437f8c1e
AC
9229
9230 elsif Is_Intrinsic_Subprogram (Entity (N)) then
9231 Expand_Intrinsic_Call (N, Entity (N));
9232
70482933
RK
9233 end if;
9234 end Expand_N_Op_Xor;
9235
9236 ----------------------
9237 -- Expand_N_Or_Else --
9238 ----------------------
9239
5875f8d6
AC
9240 procedure Expand_N_Or_Else (N : Node_Id)
9241 renames Expand_Short_Circuit_Operator;
70482933
RK
9242
9243 -----------------------------------
9244 -- Expand_N_Qualified_Expression --
9245 -----------------------------------
9246
9247 procedure Expand_N_Qualified_Expression (N : Node_Id) is
9248 Operand : constant Node_Id := Expression (N);
9249 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
9250
9251 begin
f82944b7
JM
9252 -- Do validity check if validity checking operands
9253
533369aa 9254 if Validity_Checks_On and Validity_Check_Operands then
f82944b7
JM
9255 Ensure_Valid (Operand);
9256 end if;
9257
9258 -- Apply possible constraint check
9259
70482933 9260 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
d79e621a
GD
9261
9262 if Do_Range_Check (Operand) then
9263 Set_Do_Range_Check (Operand, False);
9264 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
9265 end if;
70482933
RK
9266 end Expand_N_Qualified_Expression;
9267
a961aa79
AC
9268 ------------------------------------
9269 -- Expand_N_Quantified_Expression --
9270 ------------------------------------
9271
c0f136cd
AC
9272 -- We expand:
9273
9274 -- for all X in range => Cond
a961aa79 9275
c0f136cd 9276 -- into:
a961aa79 9277
c0f136cd
AC
9278 -- T := True;
9279 -- for X in range loop
9280 -- if not Cond then
9281 -- T := False;
9282 -- exit;
9283 -- end if;
9284 -- end loop;
90c63b09 9285
36504e5f 9286 -- Similarly, an existentially quantified expression:
90c63b09 9287
c0f136cd 9288 -- for some X in range => Cond
90c63b09 9289
c0f136cd 9290 -- becomes:
90c63b09 9291
c0f136cd
AC
9292 -- T := False;
9293 -- for X in range loop
9294 -- if Cond then
9295 -- T := True;
9296 -- exit;
9297 -- end if;
9298 -- end loop;
90c63b09 9299
c0f136cd
AC
9300 -- In both cases, the iteration may be over a container in which case it is
9301 -- given by an iterator specification, not a loop parameter specification.
a961aa79 9302
c0f136cd 9303 procedure Expand_N_Quantified_Expression (N : Node_Id) is
804670f1
AC
9304 Actions : constant List_Id := New_List;
9305 For_All : constant Boolean := All_Present (N);
9306 Iter_Spec : constant Node_Id := Iterator_Specification (N);
9307 Loc : constant Source_Ptr := Sloc (N);
9308 Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
9309 Cond : Node_Id;
9310 Flag : Entity_Id;
9311 Scheme : Node_Id;
9312 Stmts : List_Id;
c56a9ba4 9313
a961aa79 9314 begin
804670f1
AC
9315 -- Create the declaration of the flag which tracks the status of the
9316 -- quantified expression. Generate:
011f9d5d 9317
804670f1 9318 -- Flag : Boolean := (True | False);
011f9d5d 9319
804670f1 9320 Flag := Make_Temporary (Loc, 'T', N);
011f9d5d 9321
804670f1 9322 Append_To (Actions,
90c63b09 9323 Make_Object_Declaration (Loc,
804670f1 9324 Defining_Identifier => Flag,
c0f136cd
AC
9325 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
9326 Expression =>
804670f1
AC
9327 New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
9328
9329 -- Construct the circuitry which tracks the status of the quantified
9330 -- expression. Generate:
9331
9332 -- if [not] Cond then
9333 -- Flag := (False | True);
9334 -- exit;
9335 -- end if;
a961aa79 9336
c0f136cd 9337 Cond := Relocate_Node (Condition (N));
a961aa79 9338
804670f1 9339 if For_All then
c0f136cd 9340 Cond := Make_Op_Not (Loc, Cond);
a961aa79
AC
9341 end if;
9342
804670f1 9343 Stmts := New_List (
c0f136cd
AC
9344 Make_Implicit_If_Statement (N,
9345 Condition => Cond,
9346 Then_Statements => New_List (
9347 Make_Assignment_Statement (Loc,
804670f1 9348 Name => New_Occurrence_Of (Flag, Loc),
c0f136cd 9349 Expression =>
804670f1
AC
9350 New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
9351 Make_Exit_Statement (Loc))));
9352
9353 -- Build the loop equivalent of the quantified expression
c0f136cd 9354
804670f1
AC
9355 if Present (Iter_Spec) then
9356 Scheme :=
011f9d5d 9357 Make_Iteration_Scheme (Loc,
804670f1 9358 Iterator_Specification => Iter_Spec);
c56a9ba4 9359 else
804670f1 9360 Scheme :=
011f9d5d 9361 Make_Iteration_Scheme (Loc,
804670f1 9362 Loop_Parameter_Specification => Loop_Spec);
c56a9ba4
AC
9363 end if;
9364
a961aa79
AC
9365 Append_To (Actions,
9366 Make_Loop_Statement (Loc,
804670f1
AC
9367 Iteration_Scheme => Scheme,
9368 Statements => Stmts,
c0f136cd 9369 End_Label => Empty));
a961aa79 9370
804670f1
AC
9371 -- Transform the quantified expression
9372
a961aa79
AC
9373 Rewrite (N,
9374 Make_Expression_With_Actions (Loc,
804670f1 9375 Expression => New_Occurrence_Of (Flag, Loc),
a961aa79 9376 Actions => Actions));
a961aa79
AC
9377 Analyze_And_Resolve (N, Standard_Boolean);
9378 end Expand_N_Quantified_Expression;
9379
70482933
RK
9380 ---------------------------------
9381 -- Expand_N_Selected_Component --
9382 ---------------------------------
9383
70482933
RK
9384 procedure Expand_N_Selected_Component (N : Node_Id) is
9385 Loc : constant Source_Ptr := Sloc (N);
9386 Par : constant Node_Id := Parent (N);
9387 P : constant Node_Id := Prefix (N);
03eb6036 9388 S : constant Node_Id := Selector_Name (N);
fbf5a39b 9389 Ptyp : Entity_Id := Underlying_Type (Etype (P));
70482933 9390 Disc : Entity_Id;
70482933 9391 New_N : Node_Id;
fbf5a39b 9392 Dcon : Elmt_Id;
d606f1df 9393 Dval : Node_Id;
70482933
RK
9394
9395 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
9396 -- Gigi needs a temporary for prefixes that depend on a discriminant,
9397 -- unless the context of an assignment can provide size information.
fbf5a39b
AC
9398 -- Don't we have a general routine that does this???
9399
53f29d4f
AC
9400 function Is_Subtype_Declaration return Boolean;
9401 -- The replacement of a discriminant reference by its value is required
4317e442
AC
9402 -- if this is part of the initialization of an temporary generated by a
9403 -- change of representation. This shows up as the construction of a
53f29d4f 9404 -- discriminant constraint for a subtype declared at the same point as
4317e442
AC
9405 -- the entity in the prefix of the selected component. We recognize this
9406 -- case when the context of the reference is:
9407 -- subtype ST is T(Obj.D);
9408 -- where the entity for Obj comes from source, and ST has the same sloc.
53f29d4f 9409
fbf5a39b
AC
9410 -----------------------
9411 -- In_Left_Hand_Side --
9412 -----------------------
70482933
RK
9413
9414 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
9415 begin
fbf5a39b 9416 return (Nkind (Parent (Comp)) = N_Assignment_Statement
90c63b09 9417 and then Comp = Name (Parent (Comp)))
fbf5a39b 9418 or else (Present (Parent (Comp))
90c63b09
AC
9419 and then Nkind (Parent (Comp)) in N_Subexpr
9420 and then In_Left_Hand_Side (Parent (Comp)));
70482933
RK
9421 end In_Left_Hand_Side;
9422
53f29d4f
AC
9423 -----------------------------
9424 -- Is_Subtype_Declaration --
9425 -----------------------------
9426
9427 function Is_Subtype_Declaration return Boolean is
9428 Par : constant Node_Id := Parent (N);
53f29d4f
AC
9429 begin
9430 return
9431 Nkind (Par) = N_Index_Or_Discriminant_Constraint
9432 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
9433 and then Comes_From_Source (Entity (Prefix (N)))
9434 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
9435 end Is_Subtype_Declaration;
9436
fbf5a39b
AC
9437 -- Start of processing for Expand_N_Selected_Component
9438
70482933 9439 begin
fbf5a39b
AC
9440 -- Insert explicit dereference if required
9441
9442 if Is_Access_Type (Ptyp) then
702d2020
AC
9443
9444 -- First set prefix type to proper access type, in case it currently
9445 -- has a private (non-access) view of this type.
9446
9447 Set_Etype (P, Ptyp);
9448
fbf5a39b 9449 Insert_Explicit_Dereference (P);
e6f69614 9450 Analyze_And_Resolve (P, Designated_Type (Ptyp));
fbf5a39b
AC
9451
9452 if Ekind (Etype (P)) = E_Private_Subtype
9453 and then Is_For_Access_Subtype (Etype (P))
9454 then
9455 Set_Etype (P, Base_Type (Etype (P)));
9456 end if;
9457
9458 Ptyp := Etype (P);
9459 end if;
9460
9461 -- Deal with discriminant check required
9462
70482933 9463 if Do_Discriminant_Check (N) then
03eb6036
AC
9464 if Present (Discriminant_Checking_Func
9465 (Original_Record_Component (Entity (S))))
9466 then
9467 -- Present the discriminant checking function to the backend, so
9468 -- that it can inline the call to the function.
9469
9470 Add_Inlined_Body
9471 (Discriminant_Checking_Func
9472 (Original_Record_Component (Entity (S))));
70482933 9473
03eb6036 9474 -- Now reset the flag and generate the call
70482933 9475
03eb6036
AC
9476 Set_Do_Discriminant_Check (N, False);
9477 Generate_Discriminant_Check (N);
70482933 9478
03eb6036
AC
9479 -- In the case of Unchecked_Union, no discriminant checking is
9480 -- actually performed.
70482933 9481
03eb6036
AC
9482 else
9483 Set_Do_Discriminant_Check (N, False);
9484 end if;
70482933
RK
9485 end if;
9486
b4592168
GD
9487 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9488 -- function, then additional actuals must be passed.
9489
0791fbe9 9490 if Ada_Version >= Ada_2005
b4592168
GD
9491 and then Is_Build_In_Place_Function_Call (P)
9492 then
9493 Make_Build_In_Place_Call_In_Anonymous_Context (P);
9494 end if;
9495
fbf5a39b
AC
9496 -- Gigi cannot handle unchecked conversions that are the prefix of a
9497 -- selected component with discriminants. This must be checked during
9498 -- expansion, because during analysis the type of the selector is not
9499 -- known at the point the prefix is analyzed. If the conversion is the
9500 -- target of an assignment, then we cannot force the evaluation.
70482933
RK
9501
9502 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
9503 and then Has_Discriminants (Etype (N))
9504 and then not In_Left_Hand_Side (N)
9505 then
9506 Force_Evaluation (Prefix (N));
9507 end if;
9508
9509 -- Remaining processing applies only if selector is a discriminant
9510
9511 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
9512
9513 -- If the selector is a discriminant of a constrained record type,
fbf5a39b
AC
9514 -- we may be able to rewrite the expression with the actual value
9515 -- of the discriminant, a useful optimization in some cases.
70482933
RK
9516
9517 if Is_Record_Type (Ptyp)
9518 and then Has_Discriminants (Ptyp)
9519 and then Is_Constrained (Ptyp)
70482933 9520 then
fbf5a39b 9521 -- Do this optimization for discrete types only, and not for
a90bd866 9522 -- access types (access discriminants get us into trouble).
70482933 9523
fbf5a39b
AC
9524 if not Is_Discrete_Type (Etype (N)) then
9525 null;
9526
9527 -- Don't do this on the left hand of an assignment statement.
0d901290
AC
9528 -- Normally one would think that references like this would not
9529 -- occur, but they do in generated code, and mean that we really
a90bd866 9530 -- do want to assign the discriminant.
fbf5a39b
AC
9531
9532 elsif Nkind (Par) = N_Assignment_Statement
9533 and then Name (Par) = N
9534 then
9535 null;
9536
685094bf 9537 -- Don't do this optimization for the prefix of an attribute or
e2534738 9538 -- the name of an object renaming declaration since these are
685094bf 9539 -- contexts where we do not want the value anyway.
fbf5a39b
AC
9540
9541 elsif (Nkind (Par) = N_Attribute_Reference
533369aa 9542 and then Prefix (Par) = N)
fbf5a39b
AC
9543 or else Is_Renamed_Object (N)
9544 then
9545 null;
9546
9547 -- Don't do this optimization if we are within the code for a
9548 -- discriminant check, since the whole point of such a check may
a90bd866 9549 -- be to verify the condition on which the code below depends.
fbf5a39b
AC
9550
9551 elsif Is_In_Discriminant_Check (N) then
9552 null;
9553
9554 -- Green light to see if we can do the optimization. There is
685094bf
RD
9555 -- still one condition that inhibits the optimization below but
9556 -- now is the time to check the particular discriminant.
fbf5a39b
AC
9557
9558 else
685094bf
RD
9559 -- Loop through discriminants to find the matching discriminant
9560 -- constraint to see if we can copy it.
fbf5a39b
AC
9561
9562 Disc := First_Discriminant (Ptyp);
9563 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
9564 Discr_Loop : while Present (Dcon) loop
d606f1df 9565 Dval := Node (Dcon);
fbf5a39b 9566
bd949ee2
RD
9567 -- Check if this is the matching discriminant and if the
9568 -- discriminant value is simple enough to make sense to
9569 -- copy. We don't want to copy complex expressions, and
9570 -- indeed to do so can cause trouble (before we put in
9571 -- this guard, a discriminant expression containing an
e7d897b8 9572 -- AND THEN was copied, causing problems for coverage
c228a069 9573 -- analysis tools).
bd949ee2 9574
53f29d4f
AC
9575 -- However, if the reference is part of the initialization
9576 -- code generated for an object declaration, we must use
9577 -- the discriminant value from the subtype constraint,
9578 -- because the selected component may be a reference to the
9579 -- object being initialized, whose discriminant is not yet
9580 -- set. This only happens in complex cases involving changes
9581 -- or representation.
9582
bd949ee2
RD
9583 if Disc = Entity (Selector_Name (N))
9584 and then (Is_Entity_Name (Dval)
170b2989
AC
9585 or else Compile_Time_Known_Value (Dval)
9586 or else Is_Subtype_Declaration)
bd949ee2 9587 then
fbf5a39b
AC
9588 -- Here we have the matching discriminant. Check for
9589 -- the case of a discriminant of a component that is
9590 -- constrained by an outer discriminant, which cannot
9591 -- be optimized away.
9592
d606f1df
AC
9593 if Denotes_Discriminant
9594 (Dval, Check_Concurrent => True)
9595 then
9596 exit Discr_Loop;
9597
9598 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
9599 and then
9600 Denotes_Discriminant
9601 (Selector_Name (Original_Node (Dval)), True)
9602 then
9603 exit Discr_Loop;
9604
9605 -- Do not retrieve value if constraint is not static. It
9606 -- is generally not useful, and the constraint may be a
9607 -- rewritten outer discriminant in which case it is in
9608 -- fact incorrect.
9609
9610 elsif Is_Entity_Name (Dval)
d606f1df 9611 and then
533369aa
AC
9612 Nkind (Parent (Entity (Dval))) = N_Object_Declaration
9613 and then Present (Expression (Parent (Entity (Dval))))
9614 and then not
9615 Is_Static_Expression
d606f1df 9616 (Expression (Parent (Entity (Dval))))
fbf5a39b
AC
9617 then
9618 exit Discr_Loop;
70482933 9619
685094bf
RD
9620 -- In the context of a case statement, the expression may
9621 -- have the base type of the discriminant, and we need to
9622 -- preserve the constraint to avoid spurious errors on
9623 -- missing cases.
70482933 9624
fbf5a39b 9625 elsif Nkind (Parent (N)) = N_Case_Statement
d606f1df 9626 and then Etype (Dval) /= Etype (Disc)
70482933
RK
9627 then
9628 Rewrite (N,
9629 Make_Qualified_Expression (Loc,
fbf5a39b
AC
9630 Subtype_Mark =>
9631 New_Occurrence_Of (Etype (Disc), Loc),
9632 Expression =>
d606f1df 9633 New_Copy_Tree (Dval)));
ffe9aba8 9634 Analyze_And_Resolve (N, Etype (Disc));
fbf5a39b
AC
9635
9636 -- In case that comes out as a static expression,
9637 -- reset it (a selected component is never static).
9638
9639 Set_Is_Static_Expression (N, False);
9640 return;
9641
9642 -- Otherwise we can just copy the constraint, but the
a90bd866 9643 -- result is certainly not static. In some cases the
ffe9aba8
AC
9644 -- discriminant constraint has been analyzed in the
9645 -- context of the original subtype indication, but for
9646 -- itypes the constraint might not have been analyzed
9647 -- yet, and this must be done now.
fbf5a39b 9648
70482933 9649 else
d606f1df 9650 Rewrite (N, New_Copy_Tree (Dval));
ffe9aba8 9651 Analyze_And_Resolve (N);
fbf5a39b
AC
9652 Set_Is_Static_Expression (N, False);
9653 return;
70482933 9654 end if;
70482933
RK
9655 end if;
9656
fbf5a39b
AC
9657 Next_Elmt (Dcon);
9658 Next_Discriminant (Disc);
9659 end loop Discr_Loop;
70482933 9660
fbf5a39b
AC
9661 -- Note: the above loop should always find a matching
9662 -- discriminant, but if it does not, we just missed an
c228a069
AC
9663 -- optimization due to some glitch (perhaps a previous
9664 -- error), so ignore.
fbf5a39b
AC
9665
9666 end if;
70482933
RK
9667 end if;
9668
9669 -- The only remaining processing is in the case of a discriminant of
9670 -- a concurrent object, where we rewrite the prefix to denote the
9671 -- corresponding record type. If the type is derived and has renamed
9672 -- discriminants, use corresponding discriminant, which is the one
9673 -- that appears in the corresponding record.
9674
9675 if not Is_Concurrent_Type (Ptyp) then
9676 return;
9677 end if;
9678
9679 Disc := Entity (Selector_Name (N));
9680
9681 if Is_Derived_Type (Ptyp)
9682 and then Present (Corresponding_Discriminant (Disc))
9683 then
9684 Disc := Corresponding_Discriminant (Disc);
9685 end if;
9686
9687 New_N :=
9688 Make_Selected_Component (Loc,
9689 Prefix =>
9690 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
9691 New_Copy_Tree (P)),
9692 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
9693
9694 Rewrite (N, New_N);
9695 Analyze (N);
9696 end if;
5972791c 9697
73fe1679 9698 -- Set Atomic_Sync_Required if necessary for atomic component
5972791c 9699
73fe1679
AC
9700 if Nkind (N) = N_Selected_Component then
9701 declare
9702 E : constant Entity_Id := Entity (Selector_Name (N));
9703 Set : Boolean;
9704
9705 begin
9706 -- If component is atomic, but type is not, setting depends on
9707 -- disable/enable state for the component.
9708
9709 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
9710 Set := not Atomic_Synchronization_Disabled (E);
9711
9712 -- If component is not atomic, but its type is atomic, setting
9713 -- depends on disable/enable state for the type.
9714
9715 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9716 Set := not Atomic_Synchronization_Disabled (Etype (E));
9717
9718 -- If both component and type are atomic, we disable if either
9719 -- component or its type have sync disabled.
9720
9721 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9722 Set := (not Atomic_Synchronization_Disabled (E))
9723 and then
9724 (not Atomic_Synchronization_Disabled (Etype (E)));
9725
9726 else
9727 Set := False;
9728 end if;
9729
9730 -- Set flag if required
9731
9732 if Set then
9733 Activate_Atomic_Synchronization (N);
9734 end if;
9735 end;
5972791c 9736 end if;
70482933
RK
9737 end Expand_N_Selected_Component;
9738
9739 --------------------
9740 -- Expand_N_Slice --
9741 --------------------
9742
9743 procedure Expand_N_Slice (N : Node_Id) is
5ff90f08
AC
9744 Loc : constant Source_Ptr := Sloc (N);
9745 Typ : constant Entity_Id := Etype (N);
fbf5a39b 9746
81a5b587 9747 function Is_Procedure_Actual (N : Node_Id) return Boolean;
685094bf
RD
9748 -- Check whether the argument is an actual for a procedure call, in
9749 -- which case the expansion of a bit-packed slice is deferred until the
9750 -- call itself is expanded. The reason this is required is that we might
9751 -- have an IN OUT or OUT parameter, and the copy out is essential, and
9752 -- that copy out would be missed if we created a temporary here in
9753 -- Expand_N_Slice. Note that we don't bother to test specifically for an
9754 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9755 -- is harmless to defer expansion in the IN case, since the call
9756 -- processing will still generate the appropriate copy in operation,
9757 -- which will take care of the slice.
81a5b587 9758
b01bf852 9759 procedure Make_Temporary_For_Slice;
685094bf
RD
9760 -- Create a named variable for the value of the slice, in cases where
9761 -- the back-end cannot handle it properly, e.g. when packed types or
9762 -- unaligned slices are involved.
fbf5a39b 9763
81a5b587
AC
9764 -------------------------
9765 -- Is_Procedure_Actual --
9766 -------------------------
9767
9768 function Is_Procedure_Actual (N : Node_Id) return Boolean is
9769 Par : Node_Id := Parent (N);
08aa9a4a 9770
81a5b587 9771 begin
81a5b587 9772 loop
c6a60aa1
RD
9773 -- If our parent is a procedure call we can return
9774
81a5b587
AC
9775 if Nkind (Par) = N_Procedure_Call_Statement then
9776 return True;
6b6fcd3e 9777
685094bf
RD
9778 -- If our parent is a type conversion, keep climbing the tree,
9779 -- since a type conversion can be a procedure actual. Also keep
9780 -- climbing if parameter association or a qualified expression,
9781 -- since these are additional cases that do can appear on
9782 -- procedure actuals.
6b6fcd3e 9783
303b4d58
AC
9784 elsif Nkind_In (Par, N_Type_Conversion,
9785 N_Parameter_Association,
9786 N_Qualified_Expression)
c6a60aa1 9787 then
81a5b587 9788 Par := Parent (Par);
c6a60aa1
RD
9789
9790 -- Any other case is not what we are looking for
9791
9792 else
9793 return False;
81a5b587
AC
9794 end if;
9795 end loop;
81a5b587
AC
9796 end Is_Procedure_Actual;
9797
b01bf852
AC
9798 ------------------------------
9799 -- Make_Temporary_For_Slice --
9800 ------------------------------
fbf5a39b 9801
b01bf852 9802 procedure Make_Temporary_For_Slice is
b01bf852 9803 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
5ff90f08 9804 Decl : Node_Id;
13d923cc 9805
fbf5a39b
AC
9806 begin
9807 Decl :=
9808 Make_Object_Declaration (Loc,
9809 Defining_Identifier => Ent,
9810 Object_Definition => New_Occurrence_Of (Typ, Loc));
9811
9812 Set_No_Initialization (Decl);
9813
9814 Insert_Actions (N, New_List (
9815 Decl,
9816 Make_Assignment_Statement (Loc,
5ff90f08 9817 Name => New_Occurrence_Of (Ent, Loc),
fbf5a39b
AC
9818 Expression => Relocate_Node (N))));
9819
9820 Rewrite (N, New_Occurrence_Of (Ent, Loc));
9821 Analyze_And_Resolve (N, Typ);
b01bf852 9822 end Make_Temporary_For_Slice;
fbf5a39b 9823
5ff90f08
AC
9824 -- Local variables
9825
800da977
AC
9826 Pref : constant Node_Id := Prefix (N);
9827 Pref_Typ : Entity_Id := Etype (Pref);
5ff90f08 9828
fbf5a39b 9829 -- Start of processing for Expand_N_Slice
70482933
RK
9830
9831 begin
9832 -- Special handling for access types
9833
5ff90f08
AC
9834 if Is_Access_Type (Pref_Typ) then
9835 Pref_Typ := Designated_Type (Pref_Typ);
70482933 9836
5ff90f08 9837 Rewrite (Pref,
e6f69614 9838 Make_Explicit_Dereference (Sloc (N),
5ff90f08 9839 Prefix => Relocate_Node (Pref)));
70482933 9840
5ff90f08 9841 Analyze_And_Resolve (Pref, Pref_Typ);
70482933
RK
9842 end if;
9843
b4592168
GD
9844 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9845 -- function, then additional actuals must be passed.
9846
0791fbe9 9847 if Ada_Version >= Ada_2005
5ff90f08 9848 and then Is_Build_In_Place_Function_Call (Pref)
b4592168 9849 then
5ff90f08 9850 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
b4592168
GD
9851 end if;
9852
70482933
RK
9853 -- The remaining case to be handled is packed slices. We can leave
9854 -- packed slices as they are in the following situations:
9855
9856 -- 1. Right or left side of an assignment (we can handle this
9857 -- situation correctly in the assignment statement expansion).
9858
685094bf
RD
9859 -- 2. Prefix of indexed component (the slide is optimized away in this
9860 -- case, see the start of Expand_N_Slice.)
70482933 9861
685094bf
RD
9862 -- 3. Object renaming declaration, since we want the name of the
9863 -- slice, not the value.
70482933 9864
685094bf
RD
9865 -- 4. Argument to procedure call, since copy-in/copy-out handling may
9866 -- be required, and this is handled in the expansion of call
9867 -- itself.
70482933 9868
685094bf
RD
9869 -- 5. Prefix of an address attribute (this is an error which is caught
9870 -- elsewhere, and the expansion would interfere with generating the
9871 -- error message).
70482933 9872
81a5b587 9873 if not Is_Packed (Typ) then
08aa9a4a 9874
685094bf
RD
9875 -- Apply transformation for actuals of a function call, where
9876 -- Expand_Actuals is not used.
81a5b587
AC
9877
9878 if Nkind (Parent (N)) = N_Function_Call
9879 and then Is_Possibly_Unaligned_Slice (N)
9880 then
b01bf852 9881 Make_Temporary_For_Slice;
81a5b587
AC
9882 end if;
9883
9884 elsif Nkind (Parent (N)) = N_Assignment_Statement
9885 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
533369aa 9886 and then Parent (N) = Name (Parent (Parent (N))))
70482933 9887 then
81a5b587 9888 return;
70482933 9889
81a5b587
AC
9890 elsif Nkind (Parent (N)) = N_Indexed_Component
9891 or else Is_Renamed_Object (N)
9892 or else Is_Procedure_Actual (N)
9893 then
9894 return;
70482933 9895
91b1417d
AC
9896 elsif Nkind (Parent (N)) = N_Attribute_Reference
9897 and then Attribute_Name (Parent (N)) = Name_Address
fbf5a39b 9898 then
81a5b587
AC
9899 return;
9900
9901 else
b01bf852 9902 Make_Temporary_For_Slice;
70482933
RK
9903 end if;
9904 end Expand_N_Slice;
9905
9906 ------------------------------
9907 -- Expand_N_Type_Conversion --
9908 ------------------------------
9909
9910 procedure Expand_N_Type_Conversion (N : Node_Id) is
9911 Loc : constant Source_Ptr := Sloc (N);
9912 Operand : constant Node_Id := Expression (N);
9913 Target_Type : constant Entity_Id := Etype (N);
9914 Operand_Type : Entity_Id := Etype (Operand);
9915
9916 procedure Handle_Changed_Representation;
685094bf
RD
9917 -- This is called in the case of record and array type conversions to
9918 -- see if there is a change of representation to be handled. Change of
9919 -- representation is actually handled at the assignment statement level,
9920 -- and what this procedure does is rewrite node N conversion as an
9921 -- assignment to temporary. If there is no change of representation,
9922 -- then the conversion node is unchanged.
70482933 9923
426908f8
RD
9924 procedure Raise_Accessibility_Error;
9925 -- Called when we know that an accessibility check will fail. Rewrites
9926 -- node N to an appropriate raise statement and outputs warning msgs.
9927 -- The Etype of the raise node is set to Target_Type.
9928
70482933
RK
9929 procedure Real_Range_Check;
9930 -- Handles generation of range check for real target value
9931
d15f9422
AC
9932 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
9933 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
9934 -- evaluates to True.
9935
70482933
RK
9936 -----------------------------------
9937 -- Handle_Changed_Representation --
9938 -----------------------------------
9939
9940 procedure Handle_Changed_Representation is
9941 Temp : Entity_Id;
9942 Decl : Node_Id;
9943 Odef : Node_Id;
9944 Disc : Node_Id;
9945 N_Ix : Node_Id;
9946 Cons : List_Id;
9947
9948 begin
f82944b7 9949 -- Nothing else to do if no change of representation
70482933
RK
9950
9951 if Same_Representation (Operand_Type, Target_Type) then
9952 return;
9953
9954 -- The real change of representation work is done by the assignment
9955 -- statement processing. So if this type conversion is appearing as
9956 -- the expression of an assignment statement, nothing needs to be
9957 -- done to the conversion.
9958
9959 elsif Nkind (Parent (N)) = N_Assignment_Statement then
9960 return;
9961
9962 -- Otherwise we need to generate a temporary variable, and do the
9963 -- change of representation assignment into that temporary variable.
9964 -- The conversion is then replaced by a reference to this variable.
9965
9966 else
9967 Cons := No_List;
9968
685094bf
RD
9969 -- If type is unconstrained we have to add a constraint, copied
9970 -- from the actual value of the left hand side.
70482933
RK
9971
9972 if not Is_Constrained (Target_Type) then
9973 if Has_Discriminants (Operand_Type) then
9974 Disc := First_Discriminant (Operand_Type);
fbf5a39b
AC
9975
9976 if Disc /= First_Stored_Discriminant (Operand_Type) then
9977 Disc := First_Stored_Discriminant (Operand_Type);
9978 end if;
9979
70482933
RK
9980 Cons := New_List;
9981 while Present (Disc) loop
9982 Append_To (Cons,
9983 Make_Selected_Component (Loc,
7675ad4f
AC
9984 Prefix =>
9985 Duplicate_Subexpr_Move_Checks (Operand),
70482933
RK
9986 Selector_Name =>
9987 Make_Identifier (Loc, Chars (Disc))));
9988 Next_Discriminant (Disc);
9989 end loop;
9990
9991 elsif Is_Array_Type (Operand_Type) then
9992 N_Ix := First_Index (Target_Type);
9993 Cons := New_List;
9994
9995 for J in 1 .. Number_Dimensions (Operand_Type) loop
9996
9997 -- We convert the bounds explicitly. We use an unchecked
9998 -- conversion because bounds checks are done elsewhere.
9999
10000 Append_To (Cons,
10001 Make_Range (Loc,
10002 Low_Bound =>
10003 Unchecked_Convert_To (Etype (N_Ix),
10004 Make_Attribute_Reference (Loc,
10005 Prefix =>
fbf5a39b 10006 Duplicate_Subexpr_No_Checks
70482933
RK
10007 (Operand, Name_Req => True),
10008 Attribute_Name => Name_First,
10009 Expressions => New_List (
10010 Make_Integer_Literal (Loc, J)))),
10011
10012 High_Bound =>
10013 Unchecked_Convert_To (Etype (N_Ix),
10014 Make_Attribute_Reference (Loc,
10015 Prefix =>
fbf5a39b 10016 Duplicate_Subexpr_No_Checks
70482933
RK
10017 (Operand, Name_Req => True),
10018 Attribute_Name => Name_Last,
10019 Expressions => New_List (
10020 Make_Integer_Literal (Loc, J))))));
10021
10022 Next_Index (N_Ix);
10023 end loop;
10024 end if;
10025 end if;
10026
10027 Odef := New_Occurrence_Of (Target_Type, Loc);
10028
10029 if Present (Cons) then
10030 Odef :=
10031 Make_Subtype_Indication (Loc,
10032 Subtype_Mark => Odef,
10033 Constraint =>
10034 Make_Index_Or_Discriminant_Constraint (Loc,
10035 Constraints => Cons));
10036 end if;
10037
191fcb3a 10038 Temp := Make_Temporary (Loc, 'C');
70482933
RK
10039 Decl :=
10040 Make_Object_Declaration (Loc,
10041 Defining_Identifier => Temp,
10042 Object_Definition => Odef);
10043
10044 Set_No_Initialization (Decl, True);
10045
10046 -- Insert required actions. It is essential to suppress checks
10047 -- since we have suppressed default initialization, which means
10048 -- that the variable we create may have no discriminants.
10049
10050 Insert_Actions (N,
10051 New_List (
10052 Decl,
10053 Make_Assignment_Statement (Loc,
10054 Name => New_Occurrence_Of (Temp, Loc),
10055 Expression => Relocate_Node (N))),
10056 Suppress => All_Checks);
10057
10058 Rewrite (N, New_Occurrence_Of (Temp, Loc));
10059 return;
10060 end if;
10061 end Handle_Changed_Representation;
10062
426908f8
RD
10063 -------------------------------
10064 -- Raise_Accessibility_Error --
10065 -------------------------------
10066
10067 procedure Raise_Accessibility_Error is
10068 begin
43417b90 10069 Error_Msg_Warn := SPARK_Mode /= On;
426908f8
RD
10070 Rewrite (N,
10071 Make_Raise_Program_Error (Sloc (N),
10072 Reason => PE_Accessibility_Check_Failed));
10073 Set_Etype (N, Target_Type);
10074
4a28b181
AC
10075 Error_Msg_N ("<<accessibility check failure", N);
10076 Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
426908f8
RD
10077 end Raise_Accessibility_Error;
10078
70482933
RK
10079 ----------------------
10080 -- Real_Range_Check --
10081 ----------------------
10082
685094bf
RD
10083 -- Case of conversions to floating-point or fixed-point. If range checks
10084 -- are enabled and the target type has a range constraint, we convert:
70482933
RK
10085
10086 -- typ (x)
10087
10088 -- to
10089
10090 -- Tnn : typ'Base := typ'Base (x);
10091 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10092 -- Tnn
10093
685094bf
RD
10094 -- This is necessary when there is a conversion of integer to float or
10095 -- to fixed-point to ensure that the correct checks are made. It is not
10096 -- necessary for float to float where it is enough to simply set the
10097 -- Do_Range_Check flag.
fbf5a39b 10098
70482933
RK
10099 procedure Real_Range_Check is
10100 Btyp : constant Entity_Id := Base_Type (Target_Type);
10101 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
10102 Hi : constant Node_Id := Type_High_Bound (Target_Type);
fbf5a39b 10103 Xtyp : constant Entity_Id := Etype (Operand);
70482933
RK
10104 Conv : Node_Id;
10105 Tnn : Entity_Id;
10106
10107 begin
10108 -- Nothing to do if conversion was rewritten
10109
10110 if Nkind (N) /= N_Type_Conversion then
10111 return;
10112 end if;
10113
685094bf
RD
10114 -- Nothing to do if range checks suppressed, or target has the same
10115 -- range as the base type (or is the base type).
70482933
RK
10116
10117 if Range_Checks_Suppressed (Target_Type)
533369aa 10118 or else (Lo = Type_Low_Bound (Btyp)
70482933
RK
10119 and then
10120 Hi = Type_High_Bound (Btyp))
10121 then
10122 return;
10123 end if;
10124
685094bf
RD
10125 -- Nothing to do if expression is an entity on which checks have been
10126 -- suppressed.
70482933 10127
fbf5a39b
AC
10128 if Is_Entity_Name (Operand)
10129 and then Range_Checks_Suppressed (Entity (Operand))
10130 then
10131 return;
10132 end if;
10133
685094bf
RD
10134 -- Nothing to do if bounds are all static and we can tell that the
10135 -- expression is within the bounds of the target. Note that if the
10136 -- operand is of an unconstrained floating-point type, then we do
10137 -- not trust it to be in range (might be infinite)
fbf5a39b
AC
10138
10139 declare
f02b8bb8
RD
10140 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
10141 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
fbf5a39b
AC
10142
10143 begin
10144 if (not Is_Floating_Point_Type (Xtyp)
10145 or else Is_Constrained (Xtyp))
10146 and then Compile_Time_Known_Value (S_Lo)
10147 and then Compile_Time_Known_Value (S_Hi)
10148 and then Compile_Time_Known_Value (Hi)
10149 and then Compile_Time_Known_Value (Lo)
10150 then
10151 declare
10152 D_Lov : constant Ureal := Expr_Value_R (Lo);
10153 D_Hiv : constant Ureal := Expr_Value_R (Hi);
10154 S_Lov : Ureal;
10155 S_Hiv : Ureal;
10156
10157 begin
10158 if Is_Real_Type (Xtyp) then
10159 S_Lov := Expr_Value_R (S_Lo);
10160 S_Hiv := Expr_Value_R (S_Hi);
10161 else
10162 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
10163 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
10164 end if;
10165
10166 if D_Hiv > D_Lov
10167 and then S_Lov >= D_Lov
10168 and then S_Hiv <= D_Hiv
10169 then
10170 Set_Do_Range_Check (Operand, False);
10171 return;
10172 end if;
10173 end;
10174 end if;
10175 end;
10176
10177 -- For float to float conversions, we are done
10178
10179 if Is_Floating_Point_Type (Xtyp)
10180 and then
10181 Is_Floating_Point_Type (Btyp)
70482933
RK
10182 then
10183 return;
10184 end if;
10185
fbf5a39b 10186 -- Otherwise rewrite the conversion as described above
70482933
RK
10187
10188 Conv := Relocate_Node (N);
eaa826f8 10189 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
70482933
RK
10190 Set_Etype (Conv, Btyp);
10191
f02b8bb8
RD
10192 -- Enable overflow except for case of integer to float conversions,
10193 -- where it is never required, since we can never have overflow in
10194 -- this case.
70482933 10195
fbf5a39b
AC
10196 if not Is_Integer_Type (Etype (Operand)) then
10197 Enable_Overflow_Check (Conv);
70482933
RK
10198 end if;
10199
191fcb3a 10200 Tnn := Make_Temporary (Loc, 'T', Conv);
70482933
RK
10201
10202 Insert_Actions (N, New_List (
10203 Make_Object_Declaration (Loc,
10204 Defining_Identifier => Tnn,
10205 Object_Definition => New_Occurrence_Of (Btyp, Loc),
0ac2a660
AC
10206 Constant_Present => True,
10207 Expression => Conv),
70482933
RK
10208
10209 Make_Raise_Constraint_Error (Loc,
07fc65c4
GB
10210 Condition =>
10211 Make_Or_Else (Loc,
10212 Left_Opnd =>
10213 Make_Op_Lt (Loc,
10214 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10215 Right_Opnd =>
10216 Make_Attribute_Reference (Loc,
10217 Attribute_Name => Name_First,
10218 Prefix =>
10219 New_Occurrence_Of (Target_Type, Loc))),
70482933 10220
07fc65c4
GB
10221 Right_Opnd =>
10222 Make_Op_Gt (Loc,
10223 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10224 Right_Opnd =>
10225 Make_Attribute_Reference (Loc,
10226 Attribute_Name => Name_Last,
10227 Prefix =>
10228 New_Occurrence_Of (Target_Type, Loc)))),
10229 Reason => CE_Range_Check_Failed)));
70482933
RK
10230
10231 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
10232 Analyze_And_Resolve (N, Btyp);
10233 end Real_Range_Check;
10234
d15f9422
AC
10235 -----------------------------
10236 -- Has_Extra_Accessibility --
10237 -----------------------------
10238
10239 -- Returns true for a formal of an anonymous access type or for
10240 -- an Ada 2012-style stand-alone object of an anonymous access type.
10241
10242 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
10243 begin
10244 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
10245 return Present (Effective_Extra_Accessibility (Id));
10246 else
10247 return False;
10248 end if;
10249 end Has_Extra_Accessibility;
10250
70482933
RK
10251 -- Start of processing for Expand_N_Type_Conversion
10252
10253 begin
83851b23 10254 -- First remove check marks put by the semantic analysis on the type
b2502161
AC
10255 -- conversion between array types. We need these checks, and they will
10256 -- be generated by this expansion routine, but we do not depend on these
10257 -- flags being set, and since we do intend to expand the checks in the
10258 -- front end, we don't want them on the tree passed to the back end.
83851b23
AC
10259
10260 if Is_Array_Type (Target_Type) then
10261 if Is_Constrained (Target_Type) then
10262 Set_Do_Length_Check (N, False);
10263 else
10264 Set_Do_Range_Check (Operand, False);
10265 end if;
10266 end if;
10267
685094bf 10268 -- Nothing at all to do if conversion is to the identical type so remove
76efd572
AC
10269 -- the conversion completely, it is useless, except that it may carry
10270 -- an Assignment_OK attribute, which must be propagated to the operand.
70482933
RK
10271
10272 if Operand_Type = Target_Type then
7b00e31d
AC
10273 if Assignment_OK (N) then
10274 Set_Assignment_OK (Operand);
10275 end if;
10276
fbf5a39b 10277 Rewrite (N, Relocate_Node (Operand));
e606088a 10278 goto Done;
70482933
RK
10279 end if;
10280
685094bf
RD
10281 -- Nothing to do if this is the second argument of read. This is a
10282 -- "backwards" conversion that will be handled by the specialized code
10283 -- in attribute processing.
70482933
RK
10284
10285 if Nkind (Parent (N)) = N_Attribute_Reference
10286 and then Attribute_Name (Parent (N)) = Name_Read
10287 and then Next (First (Expressions (Parent (N)))) = N
10288 then
e606088a
AC
10289 goto Done;
10290 end if;
10291
10292 -- Check for case of converting to a type that has an invariant
10293 -- associated with it. This required an invariant check. We convert
10294
10295 -- typ (expr)
10296
10297 -- into
10298
10299 -- do invariant_check (typ (expr)) in typ (expr);
10300
10301 -- using Duplicate_Subexpr to avoid multiple side effects
10302
10303 -- Note: the Comes_From_Source check, and then the resetting of this
10304 -- flag prevents what would otherwise be an infinite recursion.
10305
fd0ff1cf
RD
10306 if Has_Invariants (Target_Type)
10307 and then Present (Invariant_Procedure (Target_Type))
e606088a
AC
10308 and then Comes_From_Source (N)
10309 then
10310 Set_Comes_From_Source (N, False);
10311 Rewrite (N,
10312 Make_Expression_With_Actions (Loc,
10313 Actions => New_List (
10314 Make_Invariant_Call (Duplicate_Subexpr (N))),
10315 Expression => Duplicate_Subexpr_No_Checks (N)));
10316 Analyze_And_Resolve (N, Target_Type);
10317 goto Done;
70482933
RK
10318 end if;
10319
10320 -- Here if we may need to expand conversion
10321
eaa826f8
RD
10322 -- If the operand of the type conversion is an arithmetic operation on
10323 -- signed integers, and the based type of the signed integer type in
10324 -- question is smaller than Standard.Integer, we promote both of the
10325 -- operands to type Integer.
10326
10327 -- For example, if we have
10328
10329 -- target-type (opnd1 + opnd2)
10330
10331 -- and opnd1 and opnd2 are of type short integer, then we rewrite
10332 -- this as:
10333
10334 -- target-type (integer(opnd1) + integer(opnd2))
10335
10336 -- We do this because we are always allowed to compute in a larger type
10337 -- if we do the right thing with the result, and in this case we are
10338 -- going to do a conversion which will do an appropriate check to make
10339 -- sure that things are in range of the target type in any case. This
10340 -- avoids some unnecessary intermediate overflows.
10341
dfcfdc0a
AC
10342 -- We might consider a similar transformation in the case where the
10343 -- target is a real type or a 64-bit integer type, and the operand
10344 -- is an arithmetic operation using a 32-bit integer type. However,
10345 -- we do not bother with this case, because it could cause significant
308e6f3a 10346 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
dfcfdc0a
AC
10347 -- much cheaper, but we don't want different behavior on 32-bit and
10348 -- 64-bit machines. Note that the exclusion of the 64-bit case also
10349 -- handles the configurable run-time cases where 64-bit arithmetic
10350 -- may simply be unavailable.
eaa826f8
RD
10351
10352 -- Note: this circuit is partially redundant with respect to the circuit
10353 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10354 -- the processing here. Also we still need the Checks circuit, since we
10355 -- have to be sure not to generate junk overflow checks in the first
a90bd866 10356 -- place, since it would be trick to remove them here.
eaa826f8 10357
fdfcc663 10358 if Integer_Promotion_Possible (N) then
eaa826f8 10359
fdfcc663 10360 -- All conditions met, go ahead with transformation
eaa826f8 10361
fdfcc663
AC
10362 declare
10363 Opnd : Node_Id;
10364 L, R : Node_Id;
dfcfdc0a 10365
fdfcc663
AC
10366 begin
10367 R :=
10368 Make_Type_Conversion (Loc,
e4494292 10369 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
fdfcc663 10370 Expression => Relocate_Node (Right_Opnd (Operand)));
eaa826f8 10371
5f3f175d
AC
10372 Opnd := New_Op_Node (Nkind (Operand), Loc);
10373 Set_Right_Opnd (Opnd, R);
eaa826f8 10374
5f3f175d 10375 if Nkind (Operand) in N_Binary_Op then
fdfcc663 10376 L :=
eaa826f8 10377 Make_Type_Conversion (Loc,
e4494292 10378 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
fdfcc663
AC
10379 Expression => Relocate_Node (Left_Opnd (Operand)));
10380
5f3f175d
AC
10381 Set_Left_Opnd (Opnd, L);
10382 end if;
eaa826f8 10383
5f3f175d
AC
10384 Rewrite (N,
10385 Make_Type_Conversion (Loc,
10386 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
10387 Expression => Opnd));
dfcfdc0a 10388
5f3f175d 10389 Analyze_And_Resolve (N, Target_Type);
e606088a 10390 goto Done;
fdfcc663
AC
10391 end;
10392 end if;
eaa826f8 10393
f82944b7
JM
10394 -- Do validity check if validity checking operands
10395
533369aa 10396 if Validity_Checks_On and Validity_Check_Operands then
f82944b7
JM
10397 Ensure_Valid (Operand);
10398 end if;
10399
70482933
RK
10400 -- Special case of converting from non-standard boolean type
10401
10402 if Is_Boolean_Type (Operand_Type)
10403 and then (Nonzero_Is_True (Operand_Type))
10404 then
10405 Adjust_Condition (Operand);
10406 Set_Etype (Operand, Standard_Boolean);
10407 Operand_Type := Standard_Boolean;
10408 end if;
10409
10410 -- Case of converting to an access type
10411
10412 if Is_Access_Type (Target_Type) then
10413
d766cee3
RD
10414 -- Apply an accessibility check when the conversion operand is an
10415 -- access parameter (or a renaming thereof), unless conversion was
e84e11ba
GD
10416 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10417 -- Note that other checks may still need to be applied below (such
10418 -- as tagged type checks).
70482933
RK
10419
10420 if Is_Entity_Name (Operand)
d15f9422 10421 and then Has_Extra_Accessibility (Entity (Operand))
70482933 10422 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
d766cee3
RD
10423 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
10424 or else Attribute_Name (Original_Node (N)) = Name_Access)
70482933 10425 then
e84e11ba
GD
10426 Apply_Accessibility_Check
10427 (Operand, Target_Type, Insert_Node => Operand);
70482933 10428
e84e11ba 10429 -- If the level of the operand type is statically deeper than the
685094bf
RD
10430 -- level of the target type, then force Program_Error. Note that this
10431 -- can only occur for cases where the attribute is within the body of
10432 -- an instantiation (otherwise the conversion will already have been
10433 -- rejected as illegal). Note: warnings are issued by the analyzer
10434 -- for the instance cases.
70482933
RK
10435
10436 elsif In_Instance_Body
07fc65c4
GB
10437 and then Type_Access_Level (Operand_Type) >
10438 Type_Access_Level (Target_Type)
70482933 10439 then
426908f8 10440 Raise_Accessibility_Error;
70482933 10441
685094bf
RD
10442 -- When the operand is a selected access discriminant the check needs
10443 -- to be made against the level of the object denoted by the prefix
10444 -- of the selected name. Force Program_Error for this case as well
10445 -- (this accessibility violation can only happen if within the body
10446 -- of an instantiation).
70482933
RK
10447
10448 elsif In_Instance_Body
10449 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
10450 and then Nkind (Operand) = N_Selected_Component
10451 and then Object_Access_Level (Operand) >
10452 Type_Access_Level (Target_Type)
10453 then
426908f8 10454 Raise_Accessibility_Error;
e606088a 10455 goto Done;
70482933
RK
10456 end if;
10457 end if;
10458
10459 -- Case of conversions of tagged types and access to tagged types
10460
685094bf
RD
10461 -- When needed, that is to say when the expression is class-wide, Add
10462 -- runtime a tag check for (strict) downward conversion by using the
10463 -- membership test, generating:
70482933
RK
10464
10465 -- [constraint_error when Operand not in Target_Type'Class]
10466
10467 -- or in the access type case
10468
10469 -- [constraint_error
10470 -- when Operand /= null
10471 -- and then Operand.all not in
10472 -- Designated_Type (Target_Type)'Class]
10473
10474 if (Is_Access_Type (Target_Type)
10475 and then Is_Tagged_Type (Designated_Type (Target_Type)))
10476 or else Is_Tagged_Type (Target_Type)
10477 then
685094bf
RD
10478 -- Do not do any expansion in the access type case if the parent is a
10479 -- renaming, since this is an error situation which will be caught by
10480 -- Sem_Ch8, and the expansion can interfere with this error check.
70482933 10481
e7e4d230 10482 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
e606088a 10483 goto Done;
70482933
RK
10484 end if;
10485
0669bebe 10486 -- Otherwise, proceed with processing tagged conversion
70482933 10487
e7e4d230 10488 Tagged_Conversion : declare
8cea7b64
HK
10489 Actual_Op_Typ : Entity_Id;
10490 Actual_Targ_Typ : Entity_Id;
10491 Make_Conversion : Boolean := False;
10492 Root_Op_Typ : Entity_Id;
70482933 10493
8cea7b64
HK
10494 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
10495 -- Create a membership check to test whether Operand is a member
10496 -- of Targ_Typ. If the original Target_Type is an access, include
10497 -- a test for null value. The check is inserted at N.
10498
10499 --------------------
10500 -- Make_Tag_Check --
10501 --------------------
10502
10503 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
10504 Cond : Node_Id;
10505
10506 begin
10507 -- Generate:
10508 -- [Constraint_Error
10509 -- when Operand /= null
10510 -- and then Operand.all not in Targ_Typ]
10511
10512 if Is_Access_Type (Target_Type) then
10513 Cond :=
10514 Make_And_Then (Loc,
10515 Left_Opnd =>
10516 Make_Op_Ne (Loc,
10517 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
10518 Right_Opnd => Make_Null (Loc)),
10519
10520 Right_Opnd =>
10521 Make_Not_In (Loc,
10522 Left_Opnd =>
10523 Make_Explicit_Dereference (Loc,
10524 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
e4494292 10525 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
8cea7b64
HK
10526
10527 -- Generate:
10528 -- [Constraint_Error when Operand not in Targ_Typ]
10529
10530 else
10531 Cond :=
10532 Make_Not_In (Loc,
10533 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
e4494292 10534 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
8cea7b64
HK
10535 end if;
10536
10537 Insert_Action (N,
10538 Make_Raise_Constraint_Error (Loc,
10539 Condition => Cond,
10540 Reason => CE_Tag_Check_Failed));
10541 end Make_Tag_Check;
10542
e7e4d230 10543 -- Start of processing for Tagged_Conversion
70482933
RK
10544
10545 begin
9732e886 10546 -- Handle entities from the limited view
852dba80 10547
9732e886 10548 if Is_Access_Type (Operand_Type) then
852dba80
AC
10549 Actual_Op_Typ :=
10550 Available_View (Designated_Type (Operand_Type));
9732e886
JM
10551 else
10552 Actual_Op_Typ := Operand_Type;
10553 end if;
10554
10555 if Is_Access_Type (Target_Type) then
852dba80
AC
10556 Actual_Targ_Typ :=
10557 Available_View (Designated_Type (Target_Type));
70482933 10558 else
8cea7b64 10559 Actual_Targ_Typ := Target_Type;
70482933
RK
10560 end if;
10561
8cea7b64
HK
10562 Root_Op_Typ := Root_Type (Actual_Op_Typ);
10563
20b5d666
JM
10564 -- Ada 2005 (AI-251): Handle interface type conversion
10565
8cea7b64 10566 if Is_Interface (Actual_Op_Typ) then
f6f4d8d4 10567 Expand_Interface_Conversion (N);
e606088a 10568 goto Done;
20b5d666
JM
10569 end if;
10570
8cea7b64 10571 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
70482933 10572
8cea7b64
HK
10573 -- Create a runtime tag check for a downward class-wide type
10574 -- conversion.
70482933 10575
8cea7b64 10576 if Is_Class_Wide_Type (Actual_Op_Typ)
852dba80 10577 and then Actual_Op_Typ /= Actual_Targ_Typ
8cea7b64 10578 and then Root_Op_Typ /= Actual_Targ_Typ
4ac2477e
JM
10579 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
10580 Use_Full_View => True)
8cea7b64
HK
10581 then
10582 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
10583 Make_Conversion := True;
10584 end if;
70482933 10585
8cea7b64
HK
10586 -- AI05-0073: If the result subtype of the function is defined
10587 -- by an access_definition designating a specific tagged type
10588 -- T, a check is made that the result value is null or the tag
10589 -- of the object designated by the result value identifies T.
10590 -- Constraint_Error is raised if this check fails.
70482933 10591
92a7cd46 10592 if Nkind (Parent (N)) = N_Simple_Return_Statement then
8cea7b64 10593 declare
e886436a 10594 Func : Entity_Id;
8cea7b64
HK
10595 Func_Typ : Entity_Id;
10596
10597 begin
e886436a 10598 -- Climb scope stack looking for the enclosing function
8cea7b64 10599
e886436a 10600 Func := Current_Scope;
8cea7b64
HK
10601 while Present (Func)
10602 and then Ekind (Func) /= E_Function
10603 loop
10604 Func := Scope (Func);
10605 end loop;
10606
10607 -- The function's return subtype must be defined using
10608 -- an access definition.
10609
10610 if Nkind (Result_Definition (Parent (Func))) =
10611 N_Access_Definition
10612 then
10613 Func_Typ := Directly_Designated_Type (Etype (Func));
10614
10615 -- The return subtype denotes a specific tagged type,
10616 -- in other words, a non class-wide type.
10617
10618 if Is_Tagged_Type (Func_Typ)
10619 and then not Is_Class_Wide_Type (Func_Typ)
10620 then
10621 Make_Tag_Check (Actual_Targ_Typ);
10622 Make_Conversion := True;
10623 end if;
10624 end if;
10625 end;
70482933
RK
10626 end if;
10627
8cea7b64
HK
10628 -- We have generated a tag check for either a class-wide type
10629 -- conversion or for AI05-0073.
70482933 10630
8cea7b64
HK
10631 if Make_Conversion then
10632 declare
10633 Conv : Node_Id;
10634 begin
10635 Conv :=
10636 Make_Unchecked_Type_Conversion (Loc,
10637 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
10638 Expression => Relocate_Node (Expression (N)));
10639 Rewrite (N, Conv);
10640 Analyze_And_Resolve (N, Target_Type);
10641 end;
10642 end if;
70482933 10643 end if;
e7e4d230 10644 end Tagged_Conversion;
70482933
RK
10645
10646 -- Case of other access type conversions
10647
10648 elsif Is_Access_Type (Target_Type) then
10649 Apply_Constraint_Check (Operand, Target_Type);
10650
10651 -- Case of conversions from a fixed-point type
10652
685094bf
RD
10653 -- These conversions require special expansion and processing, found in
10654 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10655 -- since from a semantic point of view, these are simple integer
70482933
RK
10656 -- conversions, which do not need further processing.
10657
10658 elsif Is_Fixed_Point_Type (Operand_Type)
10659 and then not Conversion_OK (N)
10660 then
10661 -- We should never see universal fixed at this case, since the
10662 -- expansion of the constituent divide or multiply should have
10663 -- eliminated the explicit mention of universal fixed.
10664
10665 pragma Assert (Operand_Type /= Universal_Fixed);
10666
685094bf
RD
10667 -- Check for special case of the conversion to universal real that
10668 -- occurs as a result of the use of a round attribute. In this case,
10669 -- the real type for the conversion is taken from the target type of
10670 -- the Round attribute and the result must be marked as rounded.
70482933
RK
10671
10672 if Target_Type = Universal_Real
10673 and then Nkind (Parent (N)) = N_Attribute_Reference
10674 and then Attribute_Name (Parent (N)) = Name_Round
10675 then
10676 Set_Rounded_Result (N);
10677 Set_Etype (N, Etype (Parent (N)));
10678 end if;
10679
10680 -- Otherwise do correct fixed-conversion, but skip these if the
e7e4d230
AC
10681 -- Conversion_OK flag is set, because from a semantic point of view
10682 -- these are simple integer conversions needing no further processing
10683 -- (the backend will simply treat them as integers).
70482933
RK
10684
10685 if not Conversion_OK (N) then
10686 if Is_Fixed_Point_Type (Etype (N)) then
10687 Expand_Convert_Fixed_To_Fixed (N);
10688 Real_Range_Check;
10689
10690 elsif Is_Integer_Type (Etype (N)) then
10691 Expand_Convert_Fixed_To_Integer (N);
10692
10693 else
10694 pragma Assert (Is_Floating_Point_Type (Etype (N)));
10695 Expand_Convert_Fixed_To_Float (N);
10696 Real_Range_Check;
10697 end if;
10698 end if;
10699
10700 -- Case of conversions to a fixed-point type
10701
685094bf
RD
10702 -- These conversions require special expansion and processing, found in
10703 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10704 -- since from a semantic point of view, these are simple integer
10705 -- conversions, which do not need further processing.
70482933
RK
10706
10707 elsif Is_Fixed_Point_Type (Target_Type)
10708 and then not Conversion_OK (N)
10709 then
10710 if Is_Integer_Type (Operand_Type) then
10711 Expand_Convert_Integer_To_Fixed (N);
10712 Real_Range_Check;
10713 else
10714 pragma Assert (Is_Floating_Point_Type (Operand_Type));
10715 Expand_Convert_Float_To_Fixed (N);
10716 Real_Range_Check;
10717 end if;
10718
10719 -- Case of float-to-integer conversions
10720
10721 -- We also handle float-to-fixed conversions with Conversion_OK set
10722 -- since semantically the fixed-point target is treated as though it
10723 -- were an integer in such cases.
10724
10725 elsif Is_Floating_Point_Type (Operand_Type)
10726 and then
10727 (Is_Integer_Type (Target_Type)
10728 or else
10729 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
10730 then
70482933
RK
10731 -- One more check here, gcc is still not able to do conversions of
10732 -- this type with proper overflow checking, and so gigi is doing an
10733 -- approximation of what is required by doing floating-point compares
10734 -- with the end-point. But that can lose precision in some cases, and
f02b8bb8 10735 -- give a wrong result. Converting the operand to Universal_Real is
70482933 10736 -- helpful, but still does not catch all cases with 64-bit integers
e7e4d230 10737 -- on targets with only 64-bit floats.
0669bebe
GB
10738
10739 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
10740 -- Can this code be removed ???
70482933 10741
fbf5a39b
AC
10742 if Do_Range_Check (Operand) then
10743 Rewrite (Operand,
70482933
RK
10744 Make_Type_Conversion (Loc,
10745 Subtype_Mark =>
f02b8bb8 10746 New_Occurrence_Of (Universal_Real, Loc),
70482933 10747 Expression =>
fbf5a39b 10748 Relocate_Node (Operand)));
70482933 10749
f02b8bb8 10750 Set_Etype (Operand, Universal_Real);
fbf5a39b
AC
10751 Enable_Range_Check (Operand);
10752 Set_Do_Range_Check (Expression (Operand), False);
70482933
RK
10753 end if;
10754
10755 -- Case of array conversions
10756
685094bf
RD
10757 -- Expansion of array conversions, add required length/range checks but
10758 -- only do this if there is no change of representation. For handling of
10759 -- this case, see Handle_Changed_Representation.
70482933
RK
10760
10761 elsif Is_Array_Type (Target_Type) then
70482933
RK
10762 if Is_Constrained (Target_Type) then
10763 Apply_Length_Check (Operand, Target_Type);
10764 else
10765 Apply_Range_Check (Operand, Target_Type);
10766 end if;
10767
10768 Handle_Changed_Representation;
10769
10770 -- Case of conversions of discriminated types
10771
685094bf
RD
10772 -- Add required discriminant checks if target is constrained. Again this
10773 -- change is skipped if we have a change of representation.
70482933
RK
10774
10775 elsif Has_Discriminants (Target_Type)
10776 and then Is_Constrained (Target_Type)
10777 then
10778 Apply_Discriminant_Check (Operand, Target_Type);
10779 Handle_Changed_Representation;
10780
10781 -- Case of all other record conversions. The only processing required
10782 -- is to check for a change of representation requiring the special
10783 -- assignment processing.
10784
10785 elsif Is_Record_Type (Target_Type) then
5d09245e
AC
10786
10787 -- Ada 2005 (AI-216): Program_Error is raised when converting from
685094bf
RD
10788 -- a derived Unchecked_Union type to an unconstrained type that is
10789 -- not Unchecked_Union if the operand lacks inferable discriminants.
5d09245e
AC
10790
10791 if Is_Derived_Type (Operand_Type)
10792 and then Is_Unchecked_Union (Base_Type (Operand_Type))
10793 and then not Is_Constrained (Target_Type)
10794 and then not Is_Unchecked_Union (Base_Type (Target_Type))
10795 and then not Has_Inferable_Discriminants (Operand)
10796 then
685094bf 10797 -- To prevent Gigi from generating illegal code, we generate a
5d09245e 10798 -- Program_Error node, but we give it the target type of the
6cb3037c 10799 -- conversion (is this requirement documented somewhere ???)
5d09245e
AC
10800
10801 declare
10802 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
10803 Reason => PE_Unchecked_Union_Restriction);
10804
10805 begin
10806 Set_Etype (PE, Target_Type);
10807 Rewrite (N, PE);
10808
10809 end;
10810 else
10811 Handle_Changed_Representation;
10812 end if;
70482933
RK
10813
10814 -- Case of conversions of enumeration types
10815
10816 elsif Is_Enumeration_Type (Target_Type) then
10817
10818 -- Special processing is required if there is a change of
e7e4d230 10819 -- representation (from enumeration representation clauses).
70482933
RK
10820
10821 if not Same_Representation (Target_Type, Operand_Type) then
10822
10823 -- Convert: x(y) to x'val (ytyp'val (y))
10824
10825 Rewrite (N,
1c66c4f5
AC
10826 Make_Attribute_Reference (Loc,
10827 Prefix => New_Occurrence_Of (Target_Type, Loc),
10828 Attribute_Name => Name_Val,
10829 Expressions => New_List (
10830 Make_Attribute_Reference (Loc,
10831 Prefix => New_Occurrence_Of (Operand_Type, Loc),
10832 Attribute_Name => Name_Pos,
10833 Expressions => New_List (Operand)))));
70482933
RK
10834
10835 Analyze_And_Resolve (N, Target_Type);
10836 end if;
10837
10838 -- Case of conversions to floating-point
10839
10840 elsif Is_Floating_Point_Type (Target_Type) then
10841 Real_Range_Check;
70482933
RK
10842 end if;
10843
685094bf 10844 -- At this stage, either the conversion node has been transformed into
e7e4d230
AC
10845 -- some other equivalent expression, or left as a conversion that can be
10846 -- handled by Gigi, in the following cases:
70482933
RK
10847
10848 -- Conversions with no change of representation or type
10849
685094bf
RD
10850 -- Numeric conversions involving integer, floating- and fixed-point
10851 -- values. Fixed-point values are allowed only if Conversion_OK is
10852 -- set, i.e. if the fixed-point values are to be treated as integers.
70482933 10853
5e1c00fa
RD
10854 -- No other conversions should be passed to Gigi
10855
10856 -- Check: are these rules stated in sinfo??? if so, why restate here???
70482933 10857
685094bf
RD
10858 -- The only remaining step is to generate a range check if we still have
10859 -- a type conversion at this stage and Do_Range_Check is set. For now we
10860 -- do this only for conversions of discrete types.
fbf5a39b
AC
10861
10862 if Nkind (N) = N_Type_Conversion
10863 and then Is_Discrete_Type (Etype (N))
10864 then
10865 declare
10866 Expr : constant Node_Id := Expression (N);
10867 Ftyp : Entity_Id;
10868 Ityp : Entity_Id;
10869
10870 begin
10871 if Do_Range_Check (Expr)
10872 and then Is_Discrete_Type (Etype (Expr))
10873 then
10874 Set_Do_Range_Check (Expr, False);
10875
685094bf
RD
10876 -- Before we do a range check, we have to deal with treating a
10877 -- fixed-point operand as an integer. The way we do this is
10878 -- simply to do an unchecked conversion to an appropriate
fbf5a39b
AC
10879 -- integer type large enough to hold the result.
10880
10881 -- This code is not active yet, because we are only dealing
10882 -- with discrete types so far ???
10883
10884 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
10885 and then Treat_Fixed_As_Integer (Expr)
10886 then
10887 Ftyp := Base_Type (Etype (Expr));
10888
10889 if Esize (Ftyp) >= Esize (Standard_Integer) then
10890 Ityp := Standard_Long_Long_Integer;
10891 else
10892 Ityp := Standard_Integer;
10893 end if;
10894
10895 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
10896 end if;
10897
10898 -- Reset overflow flag, since the range check will include
e7e4d230 10899 -- dealing with possible overflow, and generate the check. If
685094bf 10900 -- Address is either a source type or target type, suppress
8a36a0cc
AC
10901 -- range check to avoid typing anomalies when it is a visible
10902 -- integer type.
fbf5a39b
AC
10903
10904 Set_Do_Overflow_Check (N, False);
8a36a0cc
AC
10905 if not Is_Descendent_Of_Address (Etype (Expr))
10906 and then not Is_Descendent_Of_Address (Target_Type)
10907 then
10908 Generate_Range_Check
10909 (Expr, Target_Type, CE_Range_Check_Failed);
10910 end if;
fbf5a39b
AC
10911 end if;
10912 end;
10913 end if;
f02b8bb8
RD
10914
10915 -- Final step, if the result is a type conversion involving Vax_Float
10916 -- types, then it is subject for further special processing.
10917
10918 if Nkind (N) = N_Type_Conversion
10919 and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
10920 then
10921 Expand_Vax_Conversion (N);
e606088a 10922 goto Done;
f02b8bb8 10923 end if;
e606088a
AC
10924
10925 -- Here at end of processing
10926
48f91b44
RD
10927 <<Done>>
10928 -- Apply predicate check if required. Note that we can't just call
10929 -- Apply_Predicate_Check here, because the type looks right after
10930 -- the conversion and it would omit the check. The Comes_From_Source
10931 -- guard is necessary to prevent infinite recursions when we generate
10932 -- internal conversions for the purpose of checking predicates.
10933
10934 if Present (Predicate_Function (Target_Type))
10935 and then Target_Type /= Operand_Type
10936 and then Comes_From_Source (N)
10937 then
00332244
AC
10938 declare
10939 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
10940
10941 begin
10942 -- Avoid infinite recursion on the subsequent expansion of
10943 -- of the copy of the original type conversion.
10944
10945 Set_Comes_From_Source (New_Expr, False);
10946 Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
10947 end;
48f91b44 10948 end if;
70482933
RK
10949 end Expand_N_Type_Conversion;
10950
10951 -----------------------------------
10952 -- Expand_N_Unchecked_Expression --
10953 -----------------------------------
10954
e7e4d230 10955 -- Remove the unchecked expression node from the tree. Its job was simply
70482933
RK
10956 -- to make sure that its constituent expression was handled with checks
10957 -- off, and now that that is done, we can remove it from the tree, and
e7e4d230 10958 -- indeed must, since Gigi does not expect to see these nodes.
70482933
RK
10959
10960 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
10961 Exp : constant Node_Id := Expression (N);
70482933 10962 begin
e7e4d230 10963 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
70482933
RK
10964 Rewrite (N, Exp);
10965 end Expand_N_Unchecked_Expression;
10966
10967 ----------------------------------------
10968 -- Expand_N_Unchecked_Type_Conversion --
10969 ----------------------------------------
10970
685094bf
RD
10971 -- If this cannot be handled by Gigi and we haven't already made a
10972 -- temporary for it, do it now.
70482933
RK
10973
10974 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
10975 Target_Type : constant Entity_Id := Etype (N);
10976 Operand : constant Node_Id := Expression (N);
10977 Operand_Type : constant Entity_Id := Etype (Operand);
10978
10979 begin
7b00e31d 10980 -- Nothing at all to do if conversion is to the identical type so remove
76efd572 10981 -- the conversion completely, it is useless, except that it may carry
e7e4d230 10982 -- an Assignment_OK indication which must be propagated to the operand.
7b00e31d
AC
10983
10984 if Operand_Type = Target_Type then
13d923cc 10985
e7e4d230
AC
10986 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
10987
7b00e31d
AC
10988 if Assignment_OK (N) then
10989 Set_Assignment_OK (Operand);
10990 end if;
10991
10992 Rewrite (N, Relocate_Node (Operand));
10993 return;
10994 end if;
10995
70482933
RK
10996 -- If we have a conversion of a compile time known value to a target
10997 -- type and the value is in range of the target type, then we can simply
10998 -- replace the construct by an integer literal of the correct type. We
10999 -- only apply this to integer types being converted. Possibly it may
11000 -- apply in other cases, but it is too much trouble to worry about.
11001
11002 -- Note that we do not do this transformation if the Kill_Range_Check
11003 -- flag is set, since then the value may be outside the expected range.
11004 -- This happens in the Normalize_Scalars case.
11005
20b5d666
JM
11006 -- We also skip this if either the target or operand type is biased
11007 -- because in this case, the unchecked conversion is supposed to
11008 -- preserve the bit pattern, not the integer value.
11009
70482933 11010 if Is_Integer_Type (Target_Type)
20b5d666 11011 and then not Has_Biased_Representation (Target_Type)
70482933 11012 and then Is_Integer_Type (Operand_Type)
20b5d666 11013 and then not Has_Biased_Representation (Operand_Type)
70482933
RK
11014 and then Compile_Time_Known_Value (Operand)
11015 and then not Kill_Range_Check (N)
11016 then
11017 declare
11018 Val : constant Uint := Expr_Value (Operand);
11019
11020 begin
11021 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
11022 and then
11023 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
11024 and then
11025 Val >= Expr_Value (Type_Low_Bound (Target_Type))
11026 and then
11027 Val <= Expr_Value (Type_High_Bound (Target_Type))
11028 then
11029 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
8a36a0cc 11030
685094bf
RD
11031 -- If Address is the target type, just set the type to avoid a
11032 -- spurious type error on the literal when Address is a visible
11033 -- integer type.
8a36a0cc
AC
11034
11035 if Is_Descendent_Of_Address (Target_Type) then
11036 Set_Etype (N, Target_Type);
11037 else
11038 Analyze_And_Resolve (N, Target_Type);
11039 end if;
11040
70482933
RK
11041 return;
11042 end if;
11043 end;
11044 end if;
11045
11046 -- Nothing to do if conversion is safe
11047
11048 if Safe_Unchecked_Type_Conversion (N) then
11049 return;
11050 end if;
11051
11052 -- Otherwise force evaluation unless Assignment_OK flag is set (this
324ac540 11053 -- flag indicates ??? More comments needed here)
70482933
RK
11054
11055 if Assignment_OK (N) then
11056 null;
11057 else
11058 Force_Evaluation (N);
11059 end if;
11060 end Expand_N_Unchecked_Type_Conversion;
11061
11062 ----------------------------
11063 -- Expand_Record_Equality --
11064 ----------------------------
11065
11066 -- For non-variant records, Equality is expanded when needed into:
11067
11068 -- and then Lhs.Discr1 = Rhs.Discr1
11069 -- and then ...
11070 -- and then Lhs.Discrn = Rhs.Discrn
11071 -- and then Lhs.Cmp1 = Rhs.Cmp1
11072 -- and then ...
11073 -- and then Lhs.Cmpn = Rhs.Cmpn
11074
11075 -- The expression is folded by the back-end for adjacent fields. This
11076 -- function is called for tagged record in only one occasion: for imple-
11077 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11078 -- otherwise the primitive "=" is used directly.
11079
11080 function Expand_Record_Equality
11081 (Nod : Node_Id;
11082 Typ : Entity_Id;
11083 Lhs : Node_Id;
11084 Rhs : Node_Id;
2e071734 11085 Bodies : List_Id) return Node_Id
70482933
RK
11086 is
11087 Loc : constant Source_Ptr := Sloc (Nod);
11088
0ab80019
AC
11089 Result : Node_Id;
11090 C : Entity_Id;
11091
11092 First_Time : Boolean := True;
11093
6b670dcf
AC
11094 function Element_To_Compare (C : Entity_Id) return Entity_Id;
11095 -- Return the next discriminant or component to compare, starting with
11096 -- C, skipping inherited components.
0ab80019 11097
6b670dcf
AC
11098 ------------------------
11099 -- Element_To_Compare --
11100 ------------------------
70482933 11101
6b670dcf
AC
11102 function Element_To_Compare (C : Entity_Id) return Entity_Id is
11103 Comp : Entity_Id;
28270211 11104
70482933 11105 begin
6b670dcf 11106 Comp := C;
6b670dcf
AC
11107 loop
11108 -- Exit loop when the next element to be compared is found, or
11109 -- there is no more such element.
70482933 11110
6b670dcf 11111 exit when No (Comp);
8190087e 11112
6b670dcf
AC
11113 exit when Ekind_In (Comp, E_Discriminant, E_Component)
11114 and then not (
70482933 11115
6b670dcf 11116 -- Skip inherited components
70482933 11117
6b670dcf
AC
11118 -- Note: for a tagged type, we always generate the "=" primitive
11119 -- for the base type (not on the first subtype), so the test for
11120 -- Comp /= Original_Record_Component (Comp) is True for
11121 -- inherited components only.
24558db8 11122
6b670dcf 11123 (Is_Tagged_Type (Typ)
28270211 11124 and then Comp /= Original_Record_Component (Comp))
24558db8 11125
6b670dcf 11126 -- Skip _Tag
26bff3d9 11127
6b670dcf
AC
11128 or else Chars (Comp) = Name_uTag
11129
11130 -- The .NET/JVM version of type Root_Controlled contains two
11131 -- fields which should not be considered part of the object. To
11132 -- achieve proper equiality between two controlled objects on
11133 -- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
11134
11135 or else (Chars (Comp) = Name_uParent
28270211
AC
11136 and then VM_Target /= No_VM
11137 and then Etype (Comp) = RTE (RE_Root_Controlled))
6b670dcf
AC
11138
11139 -- Skip interface elements (secondary tags???)
11140
11141 or else Is_Interface (Etype (Comp)));
11142
11143 Next_Entity (Comp);
11144 end loop;
11145
11146 return Comp;
11147 end Element_To_Compare;
70482933 11148
70482933
RK
11149 -- Start of processing for Expand_Record_Equality
11150
11151 begin
70482933
RK
11152 -- Generates the following code: (assuming that Typ has one Discr and
11153 -- component C2 is also a record)
11154
11155 -- True
11156 -- and then Lhs.Discr1 = Rhs.Discr1
11157 -- and then Lhs.C1 = Rhs.C1
11158 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11159 -- and then ...
11160 -- and then Lhs.Cmpn = Rhs.Cmpn
11161
e4494292 11162 Result := New_Occurrence_Of (Standard_True, Loc);
6b670dcf 11163 C := Element_To_Compare (First_Entity (Typ));
70482933 11164 while Present (C) loop
70482933
RK
11165 declare
11166 New_Lhs : Node_Id;
11167 New_Rhs : Node_Id;
8aceda64 11168 Check : Node_Id;
70482933
RK
11169
11170 begin
11171 if First_Time then
11172 First_Time := False;
11173 New_Lhs := Lhs;
11174 New_Rhs := Rhs;
70482933
RK
11175 else
11176 New_Lhs := New_Copy_Tree (Lhs);
11177 New_Rhs := New_Copy_Tree (Rhs);
11178 end if;
11179
8aceda64
AC
11180 Check :=
11181 Expand_Composite_Equality (Nod, Etype (C),
11182 Lhs =>
11183 Make_Selected_Component (Loc,
8d80ff64 11184 Prefix => New_Lhs,
e4494292 11185 Selector_Name => New_Occurrence_Of (C, Loc)),
8aceda64
AC
11186 Rhs =>
11187 Make_Selected_Component (Loc,
8d80ff64 11188 Prefix => New_Rhs,
e4494292 11189 Selector_Name => New_Occurrence_Of (C, Loc)),
8aceda64
AC
11190 Bodies => Bodies);
11191
11192 -- If some (sub)component is an unchecked_union, the whole
11193 -- operation will raise program error.
11194
11195 if Nkind (Check) = N_Raise_Program_Error then
11196 Result := Check;
11197 Set_Etype (Result, Standard_Boolean);
11198 exit;
11199 else
11200 Result :=
11201 Make_And_Then (Loc,
11202 Left_Opnd => Result,
11203 Right_Opnd => Check);
11204 end if;
70482933
RK
11205 end;
11206
6b670dcf 11207 C := Element_To_Compare (Next_Entity (C));
70482933
RK
11208 end loop;
11209
11210 return Result;
11211 end Expand_Record_Equality;
11212
a3068ca6
AC
11213 ---------------------------
11214 -- Expand_Set_Membership --
11215 ---------------------------
11216
11217 procedure Expand_Set_Membership (N : Node_Id) is
11218 Lop : constant Node_Id := Left_Opnd (N);
11219 Alt : Node_Id;
11220 Res : Node_Id;
11221
11222 function Make_Cond (Alt : Node_Id) return Node_Id;
11223 -- If the alternative is a subtype mark, create a simple membership
11224 -- test. Otherwise create an equality test for it.
11225
11226 ---------------
11227 -- Make_Cond --
11228 ---------------
11229
11230 function Make_Cond (Alt : Node_Id) return Node_Id is
11231 Cond : Node_Id;
11232 L : constant Node_Id := New_Copy (Lop);
11233 R : constant Node_Id := Relocate_Node (Alt);
11234
11235 begin
11236 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
11237 or else Nkind (Alt) = N_Range
11238 then
11239 Cond :=
11240 Make_In (Sloc (Alt),
11241 Left_Opnd => L,
11242 Right_Opnd => R);
11243 else
11244 Cond :=
11245 Make_Op_Eq (Sloc (Alt),
11246 Left_Opnd => L,
11247 Right_Opnd => R);
11248 end if;
11249
11250 return Cond;
11251 end Make_Cond;
11252
11253 -- Start of processing for Expand_Set_Membership
11254
11255 begin
11256 Remove_Side_Effects (Lop);
11257
11258 Alt := Last (Alternatives (N));
11259 Res := Make_Cond (Alt);
11260
11261 Prev (Alt);
11262 while Present (Alt) loop
11263 Res :=
11264 Make_Or_Else (Sloc (Alt),
11265 Left_Opnd => Make_Cond (Alt),
11266 Right_Opnd => Res);
11267 Prev (Alt);
11268 end loop;
11269
11270 Rewrite (N, Res);
11271 Analyze_And_Resolve (N, Standard_Boolean);
11272 end Expand_Set_Membership;
11273
5875f8d6
AC
11274 -----------------------------------
11275 -- Expand_Short_Circuit_Operator --
11276 -----------------------------------
11277
955871d3
AC
11278 -- Deal with special expansion if actions are present for the right operand
11279 -- and deal with optimizing case of arguments being True or False. We also
11280 -- deal with the special case of non-standard boolean values.
5875f8d6
AC
11281
11282 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
11283 Loc : constant Source_Ptr := Sloc (N);
11284 Typ : constant Entity_Id := Etype (N);
5875f8d6
AC
11285 Left : constant Node_Id := Left_Opnd (N);
11286 Right : constant Node_Id := Right_Opnd (N);
955871d3 11287 LocR : constant Source_Ptr := Sloc (Right);
5875f8d6
AC
11288 Actlist : List_Id;
11289
11290 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
11291 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
11292 -- If Left = Shortcut_Value then Right need not be evaluated
11293
5875f8d6
AC
11294 begin
11295 -- Deal with non-standard booleans
11296
11297 if Is_Boolean_Type (Typ) then
11298 Adjust_Condition (Left);
11299 Adjust_Condition (Right);
11300 Set_Etype (N, Standard_Boolean);
11301 end if;
11302
11303 -- Check for cases where left argument is known to be True or False
11304
11305 if Compile_Time_Known_Value (Left) then
25adc5fb
AC
11306
11307 -- Mark SCO for left condition as compile time known
11308
11309 if Generate_SCO and then Comes_From_Source (Left) then
11310 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
11311 end if;
11312
5875f8d6
AC
11313 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
11314 -- Any actions associated with Right will be executed unconditionally
11315 -- and can thus be inserted into the tree unconditionally.
11316
11317 if Expr_Value_E (Left) /= Shortcut_Ent then
11318 if Present (Actions (N)) then
11319 Insert_Actions (N, Actions (N));
11320 end if;
11321
11322 Rewrite (N, Right);
11323
11324 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
11325 -- In this case we can forget the actions associated with Right,
11326 -- since they will never be executed.
11327
11328 else
11329 Kill_Dead_Code (Right);
11330 Kill_Dead_Code (Actions (N));
11331 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11332 end if;
11333
11334 Adjust_Result_Type (N, Typ);
11335 return;
11336 end if;
11337
955871d3
AC
11338 -- If Actions are present for the right operand, we have to do some
11339 -- special processing. We can't just let these actions filter back into
11340 -- code preceding the short circuit (which is what would have happened
11341 -- if we had not trapped them in the short-circuit form), since they
11342 -- must only be executed if the right operand of the short circuit is
11343 -- executed and not otherwise.
5875f8d6 11344
955871d3
AC
11345 if Present (Actions (N)) then
11346 Actlist := Actions (N);
5875f8d6 11347
0812b84e
AC
11348 -- We now use an Expression_With_Actions node for the right operand
11349 -- of the short-circuit form. Note that this solves the traceability
11350 -- problems for coverage analysis.
5875f8d6 11351
0812b84e
AC
11352 Rewrite (Right,
11353 Make_Expression_With_Actions (LocR,
11354 Expression => Relocate_Node (Right),
11355 Actions => Actlist));
11356 Set_Actions (N, No_List);
11357 Analyze_And_Resolve (Right, Standard_Boolean);
955871d3 11358
5875f8d6
AC
11359 Adjust_Result_Type (N, Typ);
11360 return;
11361 end if;
11362
11363 -- No actions present, check for cases of right argument True/False
11364
11365 if Compile_Time_Known_Value (Right) then
25adc5fb
AC
11366
11367 -- Mark SCO for left condition as compile time known
11368
11369 if Generate_SCO and then Comes_From_Source (Right) then
11370 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
11371 end if;
11372
5875f8d6
AC
11373 -- Change (Left and then True), (Left or else False) to Left.
11374 -- Note that we know there are no actions associated with the right
11375 -- operand, since we just checked for this case above.
11376
11377 if Expr_Value_E (Right) /= Shortcut_Ent then
11378 Rewrite (N, Left);
11379
11380 -- Change (Left and then False), (Left or else True) to Right,
11381 -- making sure to preserve any side effects associated with the Left
11382 -- operand.
11383
11384 else
11385 Remove_Side_Effects (Left);
11386 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11387 end if;
11388 end if;
11389
11390 Adjust_Result_Type (N, Typ);
11391 end Expand_Short_Circuit_Operator;
11392
70482933
RK
11393 -------------------------------------
11394 -- Fixup_Universal_Fixed_Operation --
11395 -------------------------------------
11396
11397 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
11398 Conv : constant Node_Id := Parent (N);
11399
11400 begin
11401 -- We must have a type conversion immediately above us
11402
11403 pragma Assert (Nkind (Conv) = N_Type_Conversion);
11404
11405 -- Normally the type conversion gives our target type. The exception
11406 -- occurs in the case of the Round attribute, where the conversion
11407 -- will be to universal real, and our real type comes from the Round
11408 -- attribute (as well as an indication that we must round the result)
11409
11410 if Nkind (Parent (Conv)) = N_Attribute_Reference
11411 and then Attribute_Name (Parent (Conv)) = Name_Round
11412 then
11413 Set_Etype (N, Etype (Parent (Conv)));
11414 Set_Rounded_Result (N);
11415
11416 -- Normal case where type comes from conversion above us
11417
11418 else
11419 Set_Etype (N, Etype (Conv));
11420 end if;
11421 end Fixup_Universal_Fixed_Operation;
11422
5d09245e
AC
11423 ---------------------------------
11424 -- Has_Inferable_Discriminants --
11425 ---------------------------------
11426
11427 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
11428
11429 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
11430 -- Determines whether the left-most prefix of a selected component is a
11431 -- formal parameter in a subprogram. Assumes N is a selected component.
11432
11433 --------------------------------
11434 -- Prefix_Is_Formal_Parameter --
11435 --------------------------------
11436
11437 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
83bb90af 11438 Sel_Comp : Node_Id;
5d09245e
AC
11439
11440 begin
11441 -- Move to the left-most prefix by climbing up the tree
11442
83bb90af 11443 Sel_Comp := N;
5d09245e
AC
11444 while Present (Parent (Sel_Comp))
11445 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
11446 loop
11447 Sel_Comp := Parent (Sel_Comp);
11448 end loop;
11449
11450 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
11451 end Prefix_Is_Formal_Parameter;
11452
11453 -- Start of processing for Has_Inferable_Discriminants
11454
11455 begin
5d09245e
AC
11456 -- For selected components, the subtype of the selector must be a
11457 -- constrained Unchecked_Union. If the component is subject to a
11458 -- per-object constraint, then the enclosing object must have inferable
11459 -- discriminants.
11460
83bb90af 11461 if Nkind (N) = N_Selected_Component then
5d09245e
AC
11462 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
11463
11464 -- A small hack. If we have a per-object constrained selected
11465 -- component of a formal parameter, return True since we do not
11466 -- know the actual parameter association yet.
11467
11468 if Prefix_Is_Formal_Parameter (N) then
11469 return True;
5d09245e
AC
11470
11471 -- Otherwise, check the enclosing object and the selector
11472
83bb90af
TQ
11473 else
11474 return Has_Inferable_Discriminants (Prefix (N))
11475 and then Has_Inferable_Discriminants (Selector_Name (N));
11476 end if;
5d09245e
AC
11477
11478 -- The call to Has_Inferable_Discriminants will determine whether
11479 -- the selector has a constrained Unchecked_Union nominal type.
11480
83bb90af
TQ
11481 else
11482 return Has_Inferable_Discriminants (Selector_Name (N));
11483 end if;
5d09245e
AC
11484
11485 -- A qualified expression has inferable discriminants if its subtype
11486 -- mark is a constrained Unchecked_Union subtype.
11487
11488 elsif Nkind (N) = N_Qualified_Expression then
053cf994 11489 return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
5b5b27ad 11490 and then Is_Constrained (Etype (Subtype_Mark (N)));
5d09245e 11491
83bb90af
TQ
11492 -- For all other names, it is sufficient to have a constrained
11493 -- Unchecked_Union nominal subtype.
11494
11495 else
11496 return Is_Unchecked_Union (Base_Type (Etype (N)))
11497 and then Is_Constrained (Etype (N));
11498 end if;
5d09245e
AC
11499 end Has_Inferable_Discriminants;
11500
70482933
RK
11501 -------------------------------
11502 -- Insert_Dereference_Action --
11503 -------------------------------
11504
11505 procedure Insert_Dereference_Action (N : Node_Id) is
8777c5a6 11506
70482933 11507 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
2e071734
AC
11508 -- Return true if type of P is derived from Checked_Pool;
11509
11510 -----------------------------
11511 -- Is_Checked_Storage_Pool --
11512 -----------------------------
70482933
RK
11513
11514 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
11515 T : Entity_Id;
761f7dcb 11516
70482933
RK
11517 begin
11518 if No (P) then
11519 return False;
11520 end if;
11521
11522 T := Etype (P);
11523 while T /= Etype (T) loop
11524 if Is_RTE (T, RE_Checked_Pool) then
11525 return True;
11526 else
11527 T := Etype (T);
11528 end if;
11529 end loop;
11530
11531 return False;
11532 end Is_Checked_Storage_Pool;
11533
b0d71355
HK
11534 -- Local variables
11535
11536 Typ : constant Entity_Id := Etype (N);
11537 Desig : constant Entity_Id := Available_View (Designated_Type (Typ));
11538 Loc : constant Source_Ptr := Sloc (N);
11539 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
11540 Pnod : constant Node_Id := Parent (N);
11541
11542 Addr : Entity_Id;
11543 Alig : Entity_Id;
11544 Deref : Node_Id;
11545 Size : Entity_Id;
11546 Stmt : Node_Id;
11547
70482933
RK
11548 -- Start of processing for Insert_Dereference_Action
11549
11550 begin
e6f69614
AC
11551 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
11552
b0d71355
HK
11553 -- Do not re-expand a dereference which has already been processed by
11554 -- this routine.
11555
11556 if Has_Dereference_Action (Pnod) then
70482933 11557 return;
70482933 11558
b0d71355
HK
11559 -- Do not perform this type of expansion for internally-generated
11560 -- dereferences.
70482933 11561
b0d71355
HK
11562 elsif not Comes_From_Source (Original_Node (Pnod)) then
11563 return;
70482933 11564
b0d71355
HK
11565 -- A dereference action is only applicable to objects which have been
11566 -- allocated on a checked pool.
70482933 11567
b0d71355
HK
11568 elsif not Is_Checked_Storage_Pool (Pool) then
11569 return;
11570 end if;
70482933 11571
b0d71355 11572 -- Extract the address of the dereferenced object. Generate:
8777c5a6 11573
b0d71355 11574 -- Addr : System.Address := <N>'Pool_Address;
70482933 11575
b0d71355 11576 Addr := Make_Temporary (Loc, 'P');
70482933 11577
b0d71355
HK
11578 Insert_Action (N,
11579 Make_Object_Declaration (Loc,
11580 Defining_Identifier => Addr,
11581 Object_Definition =>
e4494292 11582 New_Occurrence_Of (RTE (RE_Address), Loc),
b0d71355
HK
11583 Expression =>
11584 Make_Attribute_Reference (Loc,
11585 Prefix => Duplicate_Subexpr_Move_Checks (N),
11586 Attribute_Name => Name_Pool_Address)));
11587
11588 -- Calculate the size of the dereferenced object. Generate:
8777c5a6 11589
b0d71355
HK
11590 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11591
11592 Deref :=
11593 Make_Explicit_Dereference (Loc,
11594 Prefix => Duplicate_Subexpr_Move_Checks (N));
11595 Set_Has_Dereference_Action (Deref);
70482933 11596
b0d71355
HK
11597 Size := Make_Temporary (Loc, 'S');
11598
11599 Insert_Action (N,
11600 Make_Object_Declaration (Loc,
11601 Defining_Identifier => Size,
8777c5a6 11602
b0d71355 11603 Object_Definition =>
e4494292 11604 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
8777c5a6 11605
b0d71355
HK
11606 Expression =>
11607 Make_Op_Divide (Loc,
11608 Left_Opnd =>
70482933 11609 Make_Attribute_Reference (Loc,
b0d71355 11610 Prefix => Deref,
70482933
RK
11611 Attribute_Name => Name_Size),
11612 Right_Opnd =>
b0d71355 11613 Make_Integer_Literal (Loc, System_Storage_Unit))));
70482933 11614
b0d71355
HK
11615 -- Calculate the alignment of the dereferenced object. Generate:
11616 -- Alig : constant Storage_Count := <N>.all'Alignment;
70482933 11617
b0d71355
HK
11618 Deref :=
11619 Make_Explicit_Dereference (Loc,
11620 Prefix => Duplicate_Subexpr_Move_Checks (N));
11621 Set_Has_Dereference_Action (Deref);
11622
11623 Alig := Make_Temporary (Loc, 'A');
11624
11625 Insert_Action (N,
11626 Make_Object_Declaration (Loc,
11627 Defining_Identifier => Alig,
11628 Object_Definition =>
e4494292 11629 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
b0d71355
HK
11630 Expression =>
11631 Make_Attribute_Reference (Loc,
11632 Prefix => Deref,
11633 Attribute_Name => Name_Alignment)));
11634
11635 -- A dereference of a controlled object requires special processing. The
11636 -- finalization machinery requests additional space from the underlying
11637 -- pool to allocate and hide two pointers. As a result, a checked pool
11638 -- may mark the wrong memory as valid. Since checked pools do not have
11639 -- knowledge of hidden pointers, we have to bring the two pointers back
11640 -- in view in order to restore the original state of the object.
11641
11642 if Needs_Finalization (Desig) then
11643
11644 -- Adjust the address and size of the dereferenced object. Generate:
11645 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11646
11647 Stmt :=
11648 Make_Procedure_Call_Statement (Loc,
11649 Name =>
e4494292 11650 New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
b0d71355 11651 Parameter_Associations => New_List (
e4494292
RD
11652 New_Occurrence_Of (Addr, Loc),
11653 New_Occurrence_Of (Size, Loc),
11654 New_Occurrence_Of (Alig, Loc)));
b0d71355
HK
11655
11656 -- Class-wide types complicate things because we cannot determine
11657 -- statically whether the actual object is truly controlled. We must
11658 -- generate a runtime check to detect this property. Generate:
11659 --
11660 -- if Needs_Finalization (<N>.all'Tag) then
11661 -- <Stmt>;
11662 -- end if;
11663
11664 if Is_Class_Wide_Type (Desig) then
11665 Deref :=
11666 Make_Explicit_Dereference (Loc,
11667 Prefix => Duplicate_Subexpr_Move_Checks (N));
11668 Set_Has_Dereference_Action (Deref);
11669
11670 Stmt :=
8b1011c0 11671 Make_Implicit_If_Statement (N,
b0d71355
HK
11672 Condition =>
11673 Make_Function_Call (Loc,
11674 Name =>
e4494292 11675 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
b0d71355
HK
11676 Parameter_Associations => New_List (
11677 Make_Attribute_Reference (Loc,
11678 Prefix => Deref,
11679 Attribute_Name => Name_Tag))),
11680 Then_Statements => New_List (Stmt));
11681 end if;
11682
11683 Insert_Action (N, Stmt);
11684 end if;
11685
11686 -- Generate:
11687 -- Dereference (Pool, Addr, Size, Alig);
11688
11689 Insert_Action (N,
11690 Make_Procedure_Call_Statement (Loc,
11691 Name =>
e4494292 11692 New_Occurrence_Of
b0d71355
HK
11693 (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
11694 Parameter_Associations => New_List (
e4494292
RD
11695 New_Occurrence_Of (Pool, Loc),
11696 New_Occurrence_Of (Addr, Loc),
11697 New_Occurrence_Of (Size, Loc),
11698 New_Occurrence_Of (Alig, Loc))));
b0d71355
HK
11699
11700 -- Mark the explicit dereference as processed to avoid potential
11701 -- infinite expansion.
11702
11703 Set_Has_Dereference_Action (Pnod);
70482933 11704
fbf5a39b
AC
11705 exception
11706 when RE_Not_Available =>
11707 return;
70482933
RK
11708 end Insert_Dereference_Action;
11709
fdfcc663
AC
11710 --------------------------------
11711 -- Integer_Promotion_Possible --
11712 --------------------------------
11713
11714 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
11715 Operand : constant Node_Id := Expression (N);
11716 Operand_Type : constant Entity_Id := Etype (Operand);
11717 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
11718
11719 begin
11720 pragma Assert (Nkind (N) = N_Type_Conversion);
11721
11722 return
11723
11724 -- We only do the transformation for source constructs. We assume
11725 -- that the expander knows what it is doing when it generates code.
11726
11727 Comes_From_Source (N)
11728
11729 -- If the operand type is Short_Integer or Short_Short_Integer,
11730 -- then we will promote to Integer, which is available on all
11731 -- targets, and is sufficient to ensure no intermediate overflow.
11732 -- Furthermore it is likely to be as efficient or more efficient
11733 -- than using the smaller type for the computation so we do this
11734 -- unconditionally.
11735
11736 and then
11737 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
761f7dcb 11738 or else
fdfcc663
AC
11739 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
11740
11741 -- Test for interesting operation, which includes addition,
5f3f175d
AC
11742 -- division, exponentiation, multiplication, subtraction, absolute
11743 -- value and unary negation. Unary "+" is omitted since it is a
11744 -- no-op and thus can't overflow.
fdfcc663 11745
5f3f175d
AC
11746 and then Nkind_In (Operand, N_Op_Abs,
11747 N_Op_Add,
fdfcc663
AC
11748 N_Op_Divide,
11749 N_Op_Expon,
11750 N_Op_Minus,
11751 N_Op_Multiply,
11752 N_Op_Subtract);
11753 end Integer_Promotion_Possible;
11754
70482933
RK
11755 ------------------------------
11756 -- Make_Array_Comparison_Op --
11757 ------------------------------
11758
11759 -- This is a hand-coded expansion of the following generic function:
11760
11761 -- generic
11762 -- type elem is (<>);
11763 -- type index is (<>);
11764 -- type a is array (index range <>) of elem;
20b5d666 11765
70482933
RK
11766 -- function Gnnn (X : a; Y: a) return boolean is
11767 -- J : index := Y'first;
20b5d666 11768
70482933
RK
11769 -- begin
11770 -- if X'length = 0 then
11771 -- return false;
20b5d666 11772
70482933
RK
11773 -- elsif Y'length = 0 then
11774 -- return true;
20b5d666 11775
70482933
RK
11776 -- else
11777 -- for I in X'range loop
11778 -- if X (I) = Y (J) then
11779 -- if J = Y'last then
11780 -- exit;
11781 -- else
11782 -- J := index'succ (J);
11783 -- end if;
20b5d666 11784
70482933
RK
11785 -- else
11786 -- return X (I) > Y (J);
11787 -- end if;
11788 -- end loop;
20b5d666 11789
70482933
RK
11790 -- return X'length > Y'length;
11791 -- end if;
11792 -- end Gnnn;
11793
11794 -- Note that since we are essentially doing this expansion by hand, we
11795 -- do not need to generate an actual or formal generic part, just the
11796 -- instantiated function itself.
11797
11798 function Make_Array_Comparison_Op
2e071734
AC
11799 (Typ : Entity_Id;
11800 Nod : Node_Id) return Node_Id
70482933
RK
11801 is
11802 Loc : constant Source_Ptr := Sloc (Nod);
11803
11804 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
11805 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
11806 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
11807 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
11808
11809 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
11810
11811 Loop_Statement : Node_Id;
11812 Loop_Body : Node_Id;
11813 If_Stat : Node_Id;
11814 Inner_If : Node_Id;
11815 Final_Expr : Node_Id;
11816 Func_Body : Node_Id;
11817 Func_Name : Entity_Id;
11818 Formals : List_Id;
11819 Length1 : Node_Id;
11820 Length2 : Node_Id;
11821
11822 begin
11823 -- if J = Y'last then
11824 -- exit;
11825 -- else
11826 -- J := index'succ (J);
11827 -- end if;
11828
11829 Inner_If :=
11830 Make_Implicit_If_Statement (Nod,
11831 Condition =>
11832 Make_Op_Eq (Loc,
e4494292 11833 Left_Opnd => New_Occurrence_Of (J, Loc),
70482933
RK
11834 Right_Opnd =>
11835 Make_Attribute_Reference (Loc,
e4494292 11836 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
11837 Attribute_Name => Name_Last)),
11838
11839 Then_Statements => New_List (
11840 Make_Exit_Statement (Loc)),
11841
11842 Else_Statements =>
11843 New_List (
11844 Make_Assignment_Statement (Loc,
e4494292 11845 Name => New_Occurrence_Of (J, Loc),
70482933
RK
11846 Expression =>
11847 Make_Attribute_Reference (Loc,
e4494292 11848 Prefix => New_Occurrence_Of (Index, Loc),
70482933 11849 Attribute_Name => Name_Succ,
e4494292 11850 Expressions => New_List (New_Occurrence_Of (J, Loc))))));
70482933
RK
11851
11852 -- if X (I) = Y (J) then
11853 -- if ... end if;
11854 -- else
11855 -- return X (I) > Y (J);
11856 -- end if;
11857
11858 Loop_Body :=
11859 Make_Implicit_If_Statement (Nod,
11860 Condition =>
11861 Make_Op_Eq (Loc,
11862 Left_Opnd =>
11863 Make_Indexed_Component (Loc,
e4494292
RD
11864 Prefix => New_Occurrence_Of (X, Loc),
11865 Expressions => New_List (New_Occurrence_Of (I, Loc))),
70482933
RK
11866
11867 Right_Opnd =>
11868 Make_Indexed_Component (Loc,
e4494292
RD
11869 Prefix => New_Occurrence_Of (Y, Loc),
11870 Expressions => New_List (New_Occurrence_Of (J, Loc)))),
70482933
RK
11871
11872 Then_Statements => New_List (Inner_If),
11873
11874 Else_Statements => New_List (
d766cee3 11875 Make_Simple_Return_Statement (Loc,
70482933
RK
11876 Expression =>
11877 Make_Op_Gt (Loc,
11878 Left_Opnd =>
11879 Make_Indexed_Component (Loc,
e4494292
RD
11880 Prefix => New_Occurrence_Of (X, Loc),
11881 Expressions => New_List (New_Occurrence_Of (I, Loc))),
70482933
RK
11882
11883 Right_Opnd =>
11884 Make_Indexed_Component (Loc,
e4494292 11885 Prefix => New_Occurrence_Of (Y, Loc),
70482933 11886 Expressions => New_List (
e4494292 11887 New_Occurrence_Of (J, Loc)))))));
70482933
RK
11888
11889 -- for I in X'range loop
11890 -- if ... end if;
11891 -- end loop;
11892
11893 Loop_Statement :=
11894 Make_Implicit_Loop_Statement (Nod,
11895 Identifier => Empty,
11896
11897 Iteration_Scheme =>
11898 Make_Iteration_Scheme (Loc,
11899 Loop_Parameter_Specification =>
11900 Make_Loop_Parameter_Specification (Loc,
11901 Defining_Identifier => I,
11902 Discrete_Subtype_Definition =>
11903 Make_Attribute_Reference (Loc,
e4494292 11904 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
11905 Attribute_Name => Name_Range))),
11906
11907 Statements => New_List (Loop_Body));
11908
11909 -- if X'length = 0 then
11910 -- return false;
11911 -- elsif Y'length = 0 then
11912 -- return true;
11913 -- else
11914 -- for ... loop ... end loop;
11915 -- return X'length > Y'length;
11916 -- end if;
11917
11918 Length1 :=
11919 Make_Attribute_Reference (Loc,
e4494292 11920 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
11921 Attribute_Name => Name_Length);
11922
11923 Length2 :=
11924 Make_Attribute_Reference (Loc,
e4494292 11925 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
11926 Attribute_Name => Name_Length);
11927
11928 Final_Expr :=
11929 Make_Op_Gt (Loc,
11930 Left_Opnd => Length1,
11931 Right_Opnd => Length2);
11932
11933 If_Stat :=
11934 Make_Implicit_If_Statement (Nod,
11935 Condition =>
11936 Make_Op_Eq (Loc,
11937 Left_Opnd =>
11938 Make_Attribute_Reference (Loc,
e4494292 11939 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
11940 Attribute_Name => Name_Length),
11941 Right_Opnd =>
11942 Make_Integer_Literal (Loc, 0)),
11943
11944 Then_Statements =>
11945 New_List (
d766cee3 11946 Make_Simple_Return_Statement (Loc,
e4494292 11947 Expression => New_Occurrence_Of (Standard_False, Loc))),
70482933
RK
11948
11949 Elsif_Parts => New_List (
11950 Make_Elsif_Part (Loc,
11951 Condition =>
11952 Make_Op_Eq (Loc,
11953 Left_Opnd =>
11954 Make_Attribute_Reference (Loc,
e4494292 11955 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
11956 Attribute_Name => Name_Length),
11957 Right_Opnd =>
11958 Make_Integer_Literal (Loc, 0)),
11959
11960 Then_Statements =>
11961 New_List (
d766cee3 11962 Make_Simple_Return_Statement (Loc,
e4494292 11963 Expression => New_Occurrence_Of (Standard_True, Loc))))),
70482933
RK
11964
11965 Else_Statements => New_List (
11966 Loop_Statement,
d766cee3 11967 Make_Simple_Return_Statement (Loc,
70482933
RK
11968 Expression => Final_Expr)));
11969
11970 -- (X : a; Y: a)
11971
11972 Formals := New_List (
11973 Make_Parameter_Specification (Loc,
11974 Defining_Identifier => X,
e4494292 11975 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
70482933
RK
11976
11977 Make_Parameter_Specification (Loc,
11978 Defining_Identifier => Y,
e4494292 11979 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
70482933
RK
11980
11981 -- function Gnnn (...) return boolean is
11982 -- J : index := Y'first;
11983 -- begin
11984 -- if ... end if;
11985 -- end Gnnn;
11986
191fcb3a 11987 Func_Name := Make_Temporary (Loc, 'G');
70482933
RK
11988
11989 Func_Body :=
11990 Make_Subprogram_Body (Loc,
11991 Specification =>
11992 Make_Function_Specification (Loc,
11993 Defining_Unit_Name => Func_Name,
11994 Parameter_Specifications => Formals,
e4494292 11995 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
70482933
RK
11996
11997 Declarations => New_List (
11998 Make_Object_Declaration (Loc,
11999 Defining_Identifier => J,
e4494292 12000 Object_Definition => New_Occurrence_Of (Index, Loc),
70482933
RK
12001 Expression =>
12002 Make_Attribute_Reference (Loc,
e4494292 12003 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
12004 Attribute_Name => Name_First))),
12005
12006 Handled_Statement_Sequence =>
12007 Make_Handled_Sequence_Of_Statements (Loc,
12008 Statements => New_List (If_Stat)));
12009
12010 return Func_Body;
70482933
RK
12011 end Make_Array_Comparison_Op;
12012
12013 ---------------------------
12014 -- Make_Boolean_Array_Op --
12015 ---------------------------
12016
685094bf
RD
12017 -- For logical operations on boolean arrays, expand in line the following,
12018 -- replacing 'and' with 'or' or 'xor' where needed:
70482933
RK
12019
12020 -- function Annn (A : typ; B: typ) return typ is
12021 -- C : typ;
12022 -- begin
12023 -- for J in A'range loop
12024 -- C (J) := A (J) op B (J);
12025 -- end loop;
12026 -- return C;
12027 -- end Annn;
12028
12029 -- Here typ is the boolean array type
12030
12031 function Make_Boolean_Array_Op
2e071734
AC
12032 (Typ : Entity_Id;
12033 N : Node_Id) return Node_Id
70482933
RK
12034 is
12035 Loc : constant Source_Ptr := Sloc (N);
12036
12037 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
12038 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
12039 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
12040 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
12041
12042 A_J : Node_Id;
12043 B_J : Node_Id;
12044 C_J : Node_Id;
12045 Op : Node_Id;
12046
12047 Formals : List_Id;
12048 Func_Name : Entity_Id;
12049 Func_Body : Node_Id;
12050 Loop_Statement : Node_Id;
12051
12052 begin
12053 A_J :=
12054 Make_Indexed_Component (Loc,
e4494292
RD
12055 Prefix => New_Occurrence_Of (A, Loc),
12056 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12057
12058 B_J :=
12059 Make_Indexed_Component (Loc,
e4494292
RD
12060 Prefix => New_Occurrence_Of (B, Loc),
12061 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12062
12063 C_J :=
12064 Make_Indexed_Component (Loc,
e4494292
RD
12065 Prefix => New_Occurrence_Of (C, Loc),
12066 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
12067
12068 if Nkind (N) = N_Op_And then
12069 Op :=
12070 Make_Op_And (Loc,
12071 Left_Opnd => A_J,
12072 Right_Opnd => B_J);
12073
12074 elsif Nkind (N) = N_Op_Or then
12075 Op :=
12076 Make_Op_Or (Loc,
12077 Left_Opnd => A_J,
12078 Right_Opnd => B_J);
12079
12080 else
12081 Op :=
12082 Make_Op_Xor (Loc,
12083 Left_Opnd => A_J,
12084 Right_Opnd => B_J);
12085 end if;
12086
12087 Loop_Statement :=
12088 Make_Implicit_Loop_Statement (N,
12089 Identifier => Empty,
12090
12091 Iteration_Scheme =>
12092 Make_Iteration_Scheme (Loc,
12093 Loop_Parameter_Specification =>
12094 Make_Loop_Parameter_Specification (Loc,
12095 Defining_Identifier => J,
12096 Discrete_Subtype_Definition =>
12097 Make_Attribute_Reference (Loc,
e4494292 12098 Prefix => New_Occurrence_Of (A, Loc),
70482933
RK
12099 Attribute_Name => Name_Range))),
12100
12101 Statements => New_List (
12102 Make_Assignment_Statement (Loc,
12103 Name => C_J,
12104 Expression => Op)));
12105
12106 Formals := New_List (
12107 Make_Parameter_Specification (Loc,
12108 Defining_Identifier => A,
e4494292 12109 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
70482933
RK
12110
12111 Make_Parameter_Specification (Loc,
12112 Defining_Identifier => B,
e4494292 12113 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
70482933 12114
191fcb3a 12115 Func_Name := Make_Temporary (Loc, 'A');
70482933
RK
12116 Set_Is_Inlined (Func_Name);
12117
12118 Func_Body :=
12119 Make_Subprogram_Body (Loc,
12120 Specification =>
12121 Make_Function_Specification (Loc,
12122 Defining_Unit_Name => Func_Name,
12123 Parameter_Specifications => Formals,
e4494292 12124 Result_Definition => New_Occurrence_Of (Typ, Loc)),
70482933
RK
12125
12126 Declarations => New_List (
12127 Make_Object_Declaration (Loc,
12128 Defining_Identifier => C,
e4494292 12129 Object_Definition => New_Occurrence_Of (Typ, Loc))),
70482933
RK
12130
12131 Handled_Statement_Sequence =>
12132 Make_Handled_Sequence_Of_Statements (Loc,
12133 Statements => New_List (
12134 Loop_Statement,
d766cee3 12135 Make_Simple_Return_Statement (Loc,
e4494292 12136 Expression => New_Occurrence_Of (C, Loc)))));
70482933
RK
12137
12138 return Func_Body;
12139 end Make_Boolean_Array_Op;
12140
b6b5cca8
AC
12141 -----------------------------------------
12142 -- Minimized_Eliminated_Overflow_Check --
12143 -----------------------------------------
12144
12145 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
12146 begin
12147 return
12148 Is_Signed_Integer_Type (Etype (N))
a7f1b24f 12149 and then Overflow_Check_Mode in Minimized_Or_Eliminated;
b6b5cca8
AC
12150 end Minimized_Eliminated_Overflow_Check;
12151
0580d807
AC
12152 --------------------------------
12153 -- Optimize_Length_Comparison --
12154 --------------------------------
12155
12156 procedure Optimize_Length_Comparison (N : Node_Id) is
12157 Loc : constant Source_Ptr := Sloc (N);
12158 Typ : constant Entity_Id := Etype (N);
12159 Result : Node_Id;
12160
12161 Left : Node_Id;
12162 Right : Node_Id;
12163 -- First and Last attribute reference nodes, which end up as left and
12164 -- right operands of the optimized result.
12165
12166 Is_Zero : Boolean;
12167 -- True for comparison operand of zero
12168
12169 Comp : Node_Id;
12170 -- Comparison operand, set only if Is_Zero is false
12171
12172 Ent : Entity_Id;
12173 -- Entity whose length is being compared
12174
12175 Index : Node_Id;
12176 -- Integer_Literal node for length attribute expression, or Empty
12177 -- if there is no such expression present.
12178
12179 Ityp : Entity_Id;
12180 -- Type of array index to which 'Length is applied
12181
12182 Op : Node_Kind := Nkind (N);
12183 -- Kind of comparison operator, gets flipped if operands backwards
12184
12185 function Is_Optimizable (N : Node_Id) return Boolean;
abcd9db2
AC
12186 -- Tests N to see if it is an optimizable comparison value (defined as
12187 -- constant zero or one, or something else where the value is known to
12188 -- be positive and in the range of 32-bits, and where the corresponding
12189 -- Length value is also known to be 32-bits. If result is true, sets
12190 -- Is_Zero, Ityp, and Comp accordingly.
0580d807
AC
12191
12192 function Is_Entity_Length (N : Node_Id) return Boolean;
12193 -- Tests if N is a length attribute applied to a simple entity. If so,
12194 -- returns True, and sets Ent to the entity, and Index to the integer
12195 -- literal provided as an attribute expression, or to Empty if none.
12196 -- Also returns True if the expression is a generated type conversion
12197 -- whose expression is of the desired form. This latter case arises
12198 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
12199 -- to check for being in range, which is not needed in this context.
12200 -- Returns False if neither condition holds.
12201
12202 function Prepare_64 (N : Node_Id) return Node_Id;
12203 -- Given a discrete expression, returns a Long_Long_Integer typed
12204 -- expression representing the underlying value of the expression.
12205 -- This is done with an unchecked conversion to the result type. We
12206 -- use unchecked conversion to handle the enumeration type case.
12207
12208 ----------------------
12209 -- Is_Entity_Length --
12210 ----------------------
12211
12212 function Is_Entity_Length (N : Node_Id) return Boolean is
12213 begin
12214 if Nkind (N) = N_Attribute_Reference
12215 and then Attribute_Name (N) = Name_Length
12216 and then Is_Entity_Name (Prefix (N))
12217 then
12218 Ent := Entity (Prefix (N));
12219
12220 if Present (Expressions (N)) then
12221 Index := First (Expressions (N));
12222 else
12223 Index := Empty;
12224 end if;
12225
12226 return True;
12227
12228 elsif Nkind (N) = N_Type_Conversion
12229 and then not Comes_From_Source (N)
12230 then
12231 return Is_Entity_Length (Expression (N));
12232
12233 else
12234 return False;
12235 end if;
12236 end Is_Entity_Length;
12237
12238 --------------------
12239 -- Is_Optimizable --
12240 --------------------
12241
12242 function Is_Optimizable (N : Node_Id) return Boolean is
12243 Val : Uint;
12244 OK : Boolean;
12245 Lo : Uint;
12246 Hi : Uint;
12247 Indx : Node_Id;
12248
12249 begin
12250 if Compile_Time_Known_Value (N) then
12251 Val := Expr_Value (N);
12252
12253 if Val = Uint_0 then
12254 Is_Zero := True;
12255 Comp := Empty;
12256 return True;
12257
12258 elsif Val = Uint_1 then
12259 Is_Zero := False;
12260 Comp := Empty;
12261 return True;
12262 end if;
12263 end if;
12264
12265 -- Here we have to make sure of being within 32-bits
12266
12267 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
12268
12269 if not OK
abcd9db2 12270 or else Lo < Uint_1
0580d807
AC
12271 or else Hi > UI_From_Int (Int'Last)
12272 then
12273 return False;
12274 end if;
12275
abcd9db2
AC
12276 -- Comparison value was within range, so now we must check the index
12277 -- value to make sure it is also within 32-bits.
0580d807
AC
12278
12279 Indx := First_Index (Etype (Ent));
12280
12281 if Present (Index) then
12282 for J in 2 .. UI_To_Int (Intval (Index)) loop
12283 Next_Index (Indx);
12284 end loop;
12285 end if;
12286
12287 Ityp := Etype (Indx);
12288
12289 if Esize (Ityp) > 32 then
12290 return False;
12291 end if;
12292
12293 Is_Zero := False;
12294 Comp := N;
12295 return True;
12296 end Is_Optimizable;
12297
12298 ----------------
12299 -- Prepare_64 --
12300 ----------------
12301
12302 function Prepare_64 (N : Node_Id) return Node_Id is
12303 begin
12304 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
12305 end Prepare_64;
12306
12307 -- Start of processing for Optimize_Length_Comparison
12308
12309 begin
12310 -- Nothing to do if not a comparison
12311
12312 if Op not in N_Op_Compare then
12313 return;
12314 end if;
12315
12316 -- Nothing to do if special -gnatd.P debug flag set
12317
12318 if Debug_Flag_Dot_PP then
12319 return;
12320 end if;
12321
12322 -- Ent'Length op 0/1
12323
12324 if Is_Entity_Length (Left_Opnd (N))
12325 and then Is_Optimizable (Right_Opnd (N))
12326 then
12327 null;
12328
12329 -- 0/1 op Ent'Length
12330
12331 elsif Is_Entity_Length (Right_Opnd (N))
12332 and then Is_Optimizable (Left_Opnd (N))
12333 then
12334 -- Flip comparison to opposite sense
12335
12336 case Op is
12337 when N_Op_Lt => Op := N_Op_Gt;
12338 when N_Op_Le => Op := N_Op_Ge;
12339 when N_Op_Gt => Op := N_Op_Lt;
12340 when N_Op_Ge => Op := N_Op_Le;
12341 when others => null;
12342 end case;
12343
12344 -- Else optimization not possible
12345
12346 else
12347 return;
12348 end if;
12349
12350 -- Fall through if we will do the optimization
12351
12352 -- Cases to handle:
12353
12354 -- X'Length = 0 => X'First > X'Last
12355 -- X'Length = 1 => X'First = X'Last
12356 -- X'Length = n => X'First + (n - 1) = X'Last
12357
12358 -- X'Length /= 0 => X'First <= X'Last
12359 -- X'Length /= 1 => X'First /= X'Last
12360 -- X'Length /= n => X'First + (n - 1) /= X'Last
12361
12362 -- X'Length >= 0 => always true, warn
12363 -- X'Length >= 1 => X'First <= X'Last
12364 -- X'Length >= n => X'First + (n - 1) <= X'Last
12365
12366 -- X'Length > 0 => X'First <= X'Last
12367 -- X'Length > 1 => X'First < X'Last
12368 -- X'Length > n => X'First + (n - 1) < X'Last
12369
12370 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
12371 -- X'Length <= 1 => X'First >= X'Last
12372 -- X'Length <= n => X'First + (n - 1) >= X'Last
12373
12374 -- X'Length < 0 => always false (warn)
12375 -- X'Length < 1 => X'First > X'Last
12376 -- X'Length < n => X'First + (n - 1) > X'Last
12377
12378 -- Note: for the cases of n (not constant 0,1), we require that the
12379 -- corresponding index type be integer or shorter (i.e. not 64-bit),
12380 -- and the same for the comparison value. Then we do the comparison
12381 -- using 64-bit arithmetic (actually long long integer), so that we
12382 -- cannot have overflow intefering with the result.
12383
12384 -- First deal with warning cases
12385
12386 if Is_Zero then
12387 case Op is
12388
12389 -- X'Length >= 0
12390
12391 when N_Op_Ge =>
12392 Rewrite (N,
12393 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
12394 Analyze_And_Resolve (N, Typ);
12395 Warn_On_Known_Condition (N);
12396 return;
12397
12398 -- X'Length < 0
12399
12400 when N_Op_Lt =>
12401 Rewrite (N,
12402 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
12403 Analyze_And_Resolve (N, Typ);
12404 Warn_On_Known_Condition (N);
12405 return;
12406
12407 when N_Op_Le =>
12408 if Constant_Condition_Warnings
12409 and then Comes_From_Source (Original_Node (N))
12410 then
324ac540 12411 Error_Msg_N ("could replace by ""'=""?c?", N);
0580d807
AC
12412 end if;
12413
12414 Op := N_Op_Eq;
12415
12416 when others =>
12417 null;
12418 end case;
12419 end if;
12420
12421 -- Build the First reference we will use
12422
12423 Left :=
12424 Make_Attribute_Reference (Loc,
12425 Prefix => New_Occurrence_Of (Ent, Loc),
12426 Attribute_Name => Name_First);
12427
12428 if Present (Index) then
12429 Set_Expressions (Left, New_List (New_Copy (Index)));
12430 end if;
12431
12432 -- If general value case, then do the addition of (n - 1), and
12433 -- also add the needed conversions to type Long_Long_Integer.
12434
12435 if Present (Comp) then
12436 Left :=
12437 Make_Op_Add (Loc,
12438 Left_Opnd => Prepare_64 (Left),
12439 Right_Opnd =>
12440 Make_Op_Subtract (Loc,
12441 Left_Opnd => Prepare_64 (Comp),
12442 Right_Opnd => Make_Integer_Literal (Loc, 1)));
12443 end if;
12444
12445 -- Build the Last reference we will use
12446
12447 Right :=
12448 Make_Attribute_Reference (Loc,
12449 Prefix => New_Occurrence_Of (Ent, Loc),
12450 Attribute_Name => Name_Last);
12451
12452 if Present (Index) then
12453 Set_Expressions (Right, New_List (New_Copy (Index)));
12454 end if;
12455
12456 -- If general operand, convert Last reference to Long_Long_Integer
12457
12458 if Present (Comp) then
12459 Right := Prepare_64 (Right);
12460 end if;
12461
12462 -- Check for cases to optimize
12463
12464 -- X'Length = 0 => X'First > X'Last
12465 -- X'Length < 1 => X'First > X'Last
12466 -- X'Length < n => X'First + (n - 1) > X'Last
12467
12468 if (Is_Zero and then Op = N_Op_Eq)
12469 or else (not Is_Zero and then Op = N_Op_Lt)
12470 then
12471 Result :=
12472 Make_Op_Gt (Loc,
12473 Left_Opnd => Left,
12474 Right_Opnd => Right);
12475
12476 -- X'Length = 1 => X'First = X'Last
12477 -- X'Length = n => X'First + (n - 1) = X'Last
12478
12479 elsif not Is_Zero and then Op = N_Op_Eq then
12480 Result :=
12481 Make_Op_Eq (Loc,
12482 Left_Opnd => Left,
12483 Right_Opnd => Right);
12484
12485 -- X'Length /= 0 => X'First <= X'Last
12486 -- X'Length > 0 => X'First <= X'Last
12487
12488 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
12489 Result :=
12490 Make_Op_Le (Loc,
12491 Left_Opnd => Left,
12492 Right_Opnd => Right);
12493
12494 -- X'Length /= 1 => X'First /= X'Last
12495 -- X'Length /= n => X'First + (n - 1) /= X'Last
12496
12497 elsif not Is_Zero and then Op = N_Op_Ne then
12498 Result :=
12499 Make_Op_Ne (Loc,
12500 Left_Opnd => Left,
12501 Right_Opnd => Right);
12502
12503 -- X'Length >= 1 => X'First <= X'Last
12504 -- X'Length >= n => X'First + (n - 1) <= X'Last
12505
12506 elsif not Is_Zero and then Op = N_Op_Ge then
12507 Result :=
12508 Make_Op_Le (Loc,
12509 Left_Opnd => Left,
12510 Right_Opnd => Right);
12511
12512 -- X'Length > 1 => X'First < X'Last
12513 -- X'Length > n => X'First + (n = 1) < X'Last
12514
12515 elsif not Is_Zero and then Op = N_Op_Gt then
12516 Result :=
12517 Make_Op_Lt (Loc,
12518 Left_Opnd => Left,
12519 Right_Opnd => Right);
12520
12521 -- X'Length <= 1 => X'First >= X'Last
12522 -- X'Length <= n => X'First + (n - 1) >= X'Last
12523
12524 elsif not Is_Zero and then Op = N_Op_Le then
12525 Result :=
12526 Make_Op_Ge (Loc,
12527 Left_Opnd => Left,
12528 Right_Opnd => Right);
12529
12530 -- Should not happen at this stage
12531
12532 else
12533 raise Program_Error;
12534 end if;
12535
12536 -- Rewrite and finish up
12537
12538 Rewrite (N, Result);
12539 Analyze_And_Resolve (N, Typ);
12540 return;
12541 end Optimize_Length_Comparison;
12542
b2c28399
AC
12543 ------------------------------
12544 -- Process_Transient_Object --
12545 ------------------------------
12546
12547 procedure Process_Transient_Object
12548 (Decl : Node_Id;
12549 Rel_Node : Node_Id)
12550 is
064f4527
TQ
12551 Hook_Context : Node_Id;
12552 -- Node on which to insert the hook pointer (as an action)
b2c28399 12553
064f4527
TQ
12554 Finalization_Context : Node_Id;
12555 -- Node after which to insert finalization actions
12556
12557 Finalize_Always : Boolean;
12558 -- If False, call to finalizer includes a test of whether the
12559 -- hook pointer is null.
b2c28399 12560
064f4527 12561 procedure Find_Enclosing_Contexts (N : Node_Id);
0083dd66 12562 -- Find the logical context where N appears, and initialize
064f4527
TQ
12563 -- Hook_Context and Finalization_Context accordingly. Also
12564 -- sets Finalize_Always.
12565
12566 -----------------------------
12567 -- Find_Enclosing_Contexts --
12568 -----------------------------
12569
12570 procedure Find_Enclosing_Contexts (N : Node_Id) is
b2c28399
AC
12571 Par : Node_Id;
12572 Top : Node_Id;
12573
a7d08a38
AC
12574 Wrapped_Node : Node_Id;
12575 -- Note: if we are in a transient scope, we want to reuse it as
12576 -- the context for actions insertion, if possible. But if N is itself
12577 -- part of the stored actions for the current transient scope,
12578 -- then we need to insert at the appropriate (inner) location in
12579 -- the not as an action on Node_To_Be_Wrapped.
0247964d 12580
a7d08a38 12581 In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
0247964d 12582
a7d08a38 12583 begin
b2c28399
AC
12584 -- When the node is inside a case/if expression, the lifetime of any
12585 -- temporary controlled object is extended. Find a suitable insertion
12586 -- node by locating the topmost case or if expressions.
12587
a7d08a38 12588 if In_Cond_Expr then
b2c28399
AC
12589 Par := N;
12590 Top := N;
12591 while Present (Par) loop
12592 if Nkind_In (Original_Node (Par), N_Case_Expression,
12593 N_If_Expression)
12594 then
12595 Top := Par;
12596
12597 -- Prevent the search from going too far
12598
12599 elsif Is_Body_Or_Package_Declaration (Par) then
12600 exit;
12601 end if;
12602
12603 Par := Parent (Par);
12604 end loop;
12605
12606 -- The topmost case or if expression is now recovered, but it may
12607 -- still not be the correct place to add generated code. Climb to
c2e54001
AC
12608 -- find a parent that is part of a declarative or statement list,
12609 -- and is not a list of actuals in a call.
b2c28399
AC
12610
12611 Par := Top;
12612 while Present (Par) loop
12613 if Is_List_Member (Par)
12614 and then not Nkind_In (Par, N_Component_Association,
12615 N_Discriminant_Association,
12616 N_Parameter_Association,
12617 N_Pragma_Argument_Association)
c2e54001
AC
12618 and then not Nkind_In
12619 (Parent (Par), N_Function_Call,
12620 N_Procedure_Call_Statement,
12621 N_Entry_Call_Statement)
12622
b2c28399 12623 then
064f4527
TQ
12624 Hook_Context := Par;
12625 goto Hook_Context_Found;
b2c28399
AC
12626
12627 -- Prevent the search from going too far
12628
12629 elsif Is_Body_Or_Package_Declaration (Par) then
12630 exit;
12631 end if;
12632
12633 Par := Parent (Par);
12634 end loop;
12635
064f4527
TQ
12636 Hook_Context := Par;
12637 goto Hook_Context_Found;
b2c28399
AC
12638
12639 else
b2c28399
AC
12640 Par := N;
12641 while Present (Par) loop
12642
12643 -- Keep climbing past various operators
12644
12645 if Nkind (Parent (Par)) in N_Op
12646 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
12647 then
12648 Par := Parent (Par);
12649 else
12650 exit;
12651 end if;
12652 end loop;
12653
12654 Top := Par;
12655
12656 -- The node may be located in a pragma in which case return the
12657 -- pragma itself:
12658
12659 -- pragma Precondition (... and then Ctrl_Func_Call ...);
12660
12661 -- Similar case occurs when the node is related to an object
12662 -- declaration or assignment:
12663
12664 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
12665
12666 -- Another case to consider is when the node is part of a return
12667 -- statement:
12668
12669 -- return ... and then Ctrl_Func_Call ...;
12670
12671 -- Another case is when the node acts as a formal in a procedure
12672 -- call statement:
12673
12674 -- Proc (... and then Ctrl_Func_Call ...);
12675
a7d08a38
AC
12676 if Scope_Is_Transient then
12677 Wrapped_Node := Node_To_Be_Wrapped;
12678 else
12679 Wrapped_Node := Empty;
12680 end if;
12681
b2c28399 12682 while Present (Par) loop
a7d08a38 12683 if Par = Wrapped_Node
1f0b1e48
RD
12684 or else Nkind_In (Par, N_Assignment_Statement,
12685 N_Object_Declaration,
12686 N_Pragma,
12687 N_Procedure_Call_Statement,
12688 N_Simple_Return_Statement)
b2c28399 12689 then
064f4527
TQ
12690 Hook_Context := Par;
12691 goto Hook_Context_Found;
b2c28399
AC
12692
12693 -- Prevent the search from going too far
12694
12695 elsif Is_Body_Or_Package_Declaration (Par) then
12696 exit;
12697 end if;
12698
12699 Par := Parent (Par);
12700 end loop;
12701
12702 -- Return the topmost short circuit operator
12703
064f4527 12704 Hook_Context := Top;
b2c28399 12705 end if;
064f4527
TQ
12706
12707 <<Hook_Context_Found>>
12708
12709 -- Special case for Boolean EWAs: capture expression in a temporary,
12710 -- whose declaration will serve as the context around which to insert
12711 -- finalization code. The finalization thus remains local to the
12712 -- specific condition being evaluated.
12713
12714 if Is_Boolean_Type (Etype (N)) then
12715
12716 -- In this case, the finalization context is chosen so that
12717 -- we know at finalization point that the hook pointer is
12718 -- never null, so no need for a test, we can call the finalizer
a7d08a38
AC
12719 -- unconditionally, except in the case where the object is
12720 -- created in a specific branch of a conditional expression.
064f4527 12721
a7d08a38
AC
12722 Finalize_Always :=
12723 not (In_Cond_Expr
1f0b1e48
RD
12724 or else
12725 Nkind_In (Original_Node (N), N_Case_Expression,
12726 N_If_Expression));
064f4527
TQ
12727
12728 declare
12729 Loc : constant Source_Ptr := Sloc (N);
12730 Temp : constant Entity_Id := Make_Temporary (Loc, 'E', N);
1f0b1e48 12731
064f4527
TQ
12732 begin
12733 Append_To (Actions (N),
12734 Make_Object_Declaration (Loc,
12735 Defining_Identifier => Temp,
12736 Constant_Present => True,
12737 Object_Definition =>
12738 New_Occurrence_Of (Etype (N), Loc),
12739 Expression => Expression (N)));
12740 Finalization_Context := Last (Actions (N));
12741
12742 Analyze (Last (Actions (N)));
12743
12744 Set_Expression (N, New_Occurrence_Of (Temp, Loc));
12745 Analyze (Expression (N));
12746 end;
12747
12748 else
12749 Finalize_Always := False;
12750 Finalization_Context := Hook_Context;
12751 end if;
12752 end Find_Enclosing_Contexts;
b2c28399
AC
12753
12754 -- Local variables
12755
b2c28399
AC
12756 Loc : constant Source_Ptr := Sloc (Decl);
12757 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
12758 Obj_Typ : constant Node_Id := Etype (Obj_Id);
12759 Desig_Typ : Entity_Id;
12760 Expr : Node_Id;
064f4527 12761 Fin_Stmts : List_Id;
b2c28399
AC
12762 Ptr_Id : Entity_Id;
12763 Temp_Id : Entity_Id;
97779c34 12764 Temp_Ins : Node_Id;
b2c28399
AC
12765
12766 -- Start of processing for Process_Transient_Object
12767
12768 begin
064f4527
TQ
12769 Find_Enclosing_Contexts (Rel_Node);
12770
b2c28399
AC
12771 -- Step 1: Create the access type which provides a reference to the
12772 -- transient controlled object.
12773
12774 if Is_Access_Type (Obj_Typ) then
12775 Desig_Typ := Directly_Designated_Type (Obj_Typ);
12776 else
12777 Desig_Typ := Obj_Typ;
12778 end if;
12779
12780 Desig_Typ := Base_Type (Desig_Typ);
12781
12782 -- Generate:
12783 -- Ann : access [all] <Desig_Typ>;
12784
12785 Ptr_Id := Make_Temporary (Loc, 'A');
12786
064f4527 12787 Insert_Action (Hook_Context,
b2c28399
AC
12788 Make_Full_Type_Declaration (Loc,
12789 Defining_Identifier => Ptr_Id,
12790 Type_Definition =>
12791 Make_Access_To_Object_Definition (Loc,
12792 All_Present => Ekind (Obj_Typ) = E_General_Access_Type,
e4494292 12793 Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))));
b2c28399
AC
12794
12795 -- Step 2: Create a temporary which acts as a hook to the transient
12796 -- controlled object. Generate:
12797
12798 -- Temp : Ptr_Id := null;
12799
12800 Temp_Id := Make_Temporary (Loc, 'T');
12801
064f4527 12802 Insert_Action (Hook_Context,
b2c28399
AC
12803 Make_Object_Declaration (Loc,
12804 Defining_Identifier => Temp_Id,
e4494292 12805 Object_Definition => New_Occurrence_Of (Ptr_Id, Loc)));
b2c28399
AC
12806
12807 -- Mark the temporary as created for the purposes of exporting the
12808 -- transient controlled object out of the expression_with_action or if
12809 -- expression. This signals the machinery in Build_Finalizer to treat
12810 -- this case specially.
12811
12812 Set_Status_Flag_Or_Transient_Decl (Temp_Id, Decl);
12813
12814 -- Step 3: Hook the transient object to the temporary
12815
a7d08a38
AC
12816 -- This must be inserted right after the object declaration, so that
12817 -- the assignment is executed if, and only if, the object is actually
12818 -- created (whereas the declaration of the hook pointer, and the
12819 -- finalization call, may be inserted at an outer level, and may
12820 -- remain unused for some executions, if the actual creation of
12821 -- the object is conditional).
12822
b2c28399
AC
12823 -- The use of unchecked conversion / unrestricted access is needed to
12824 -- avoid an accessibility violation. Note that the finalization code is
12825 -- structured in such a way that the "hook" is processed only when it
12826 -- points to an existing object.
12827
12828 if Is_Access_Type (Obj_Typ) then
e4494292
RD
12829 Expr :=
12830 Unchecked_Convert_To (Ptr_Id, New_Occurrence_Of (Obj_Id, Loc));
b2c28399
AC
12831 else
12832 Expr :=
12833 Make_Attribute_Reference (Loc,
e4494292 12834 Prefix => New_Occurrence_Of (Obj_Id, Loc),
b2c28399
AC
12835 Attribute_Name => Name_Unrestricted_Access);
12836 end if;
12837
12838 -- Generate:
12839 -- Temp := Ptr_Id (Obj_Id);
12840 -- <or>
12841 -- Temp := Obj_Id'Unrestricted_Access;
12842
97779c34
AC
12843 -- When the transient object is initialized by an aggregate, the hook
12844 -- must capture the object after the last component assignment takes
12845 -- place. Only then is the object fully initialized.
12846
12847 if Ekind (Obj_Id) = E_Variable
12848 and then Present (Last_Aggregate_Assignment (Obj_Id))
12849 then
12850 Temp_Ins := Last_Aggregate_Assignment (Obj_Id);
12851
12852 -- Otherwise the hook seizes the related object immediately
12853
12854 else
12855 Temp_Ins := Decl;
12856 end if;
12857
12858 Insert_After_And_Analyze (Temp_Ins,
a7d08a38 12859 Make_Assignment_Statement (Loc,
e4494292 12860 Name => New_Occurrence_Of (Temp_Id, Loc),
a7d08a38 12861 Expression => Expr));
b2c28399
AC
12862
12863 -- Step 4: Finalize the transient controlled object after the context
12864 -- has been evaluated/elaborated. Generate:
12865
12866 -- if Temp /= null then
12867 -- [Deep_]Finalize (Temp.all);
12868 -- Temp := null;
12869 -- end if;
12870
12871 -- When the node is part of a return statement, there is no need to
12872 -- insert a finalization call, as the general finalization mechanism
12873 -- (see Build_Finalizer) would take care of the transient controlled
12874 -- object on subprogram exit. Note that it would also be impossible to
12875 -- insert the finalization code after the return statement as this will
12876 -- render it unreachable.
12877
064f4527
TQ
12878 if Nkind (Finalization_Context) /= N_Simple_Return_Statement then
12879 Fin_Stmts := New_List (
12880 Make_Final_Call
12881 (Obj_Ref =>
12882 Make_Explicit_Dereference (Loc,
e4494292 12883 Prefix => New_Occurrence_Of (Temp_Id, Loc)),
064f4527 12884 Typ => Desig_Typ),
b2c28399 12885
064f4527 12886 Make_Assignment_Statement (Loc,
e4494292 12887 Name => New_Occurrence_Of (Temp_Id, Loc),
064f4527 12888 Expression => Make_Null (Loc)));
b2c28399 12889
064f4527
TQ
12890 if not Finalize_Always then
12891 Fin_Stmts := New_List (
12892 Make_Implicit_If_Statement (Decl,
12893 Condition =>
12894 Make_Op_Ne (Loc,
e4494292 12895 Left_Opnd => New_Occurrence_Of (Temp_Id, Loc),
064f4527
TQ
12896 Right_Opnd => Make_Null (Loc)),
12897 Then_Statements => Fin_Stmts));
12898 end if;
b2c28399 12899
064f4527 12900 Insert_Actions_After (Finalization_Context, Fin_Stmts);
b2c28399
AC
12901 end if;
12902 end Process_Transient_Object;
12903
70482933
RK
12904 ------------------------
12905 -- Rewrite_Comparison --
12906 ------------------------
12907
12908 procedure Rewrite_Comparison (N : Node_Id) is
c800f862
RD
12909 Warning_Generated : Boolean := False;
12910 -- Set to True if first pass with Assume_Valid generates a warning in
12911 -- which case we skip the second pass to avoid warning overloaded.
12912
12913 Result : Node_Id;
12914 -- Set to Standard_True or Standard_False
12915
d26dc4b5
AC
12916 begin
12917 if Nkind (N) = N_Type_Conversion then
12918 Rewrite_Comparison (Expression (N));
20b5d666 12919 return;
70482933 12920
d26dc4b5 12921 elsif Nkind (N) not in N_Op_Compare then
20b5d666
JM
12922 return;
12923 end if;
70482933 12924
c800f862
RD
12925 -- Now start looking at the comparison in detail. We potentially go
12926 -- through this loop twice. The first time, Assume_Valid is set False
12927 -- in the call to Compile_Time_Compare. If this call results in a
12928 -- clear result of always True or Always False, that's decisive and
12929 -- we are done. Otherwise we repeat the processing with Assume_Valid
e7e4d230 12930 -- set to True to generate additional warnings. We can skip that step
c800f862
RD
12931 -- if Constant_Condition_Warnings is False.
12932
12933 for AV in False .. True loop
12934 declare
12935 Typ : constant Entity_Id := Etype (N);
12936 Op1 : constant Node_Id := Left_Opnd (N);
12937 Op2 : constant Node_Id := Right_Opnd (N);
70482933 12938
c800f862
RD
12939 Res : constant Compare_Result :=
12940 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
12941 -- Res indicates if compare outcome can be compile time determined
f02b8bb8 12942
c800f862
RD
12943 True_Result : Boolean;
12944 False_Result : Boolean;
f02b8bb8 12945
c800f862
RD
12946 begin
12947 case N_Op_Compare (Nkind (N)) is
d26dc4b5
AC
12948 when N_Op_Eq =>
12949 True_Result := Res = EQ;
12950 False_Result := Res = LT or else Res = GT or else Res = NE;
12951
12952 when N_Op_Ge =>
12953 True_Result := Res in Compare_GE;
12954 False_Result := Res = LT;
12955
12956 if Res = LE
12957 and then Constant_Condition_Warnings
12958 and then Comes_From_Source (Original_Node (N))
12959 and then Nkind (Original_Node (N)) = N_Op_Ge
12960 and then not In_Instance
d26dc4b5 12961 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 12962 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 12963 then
ed2233dc 12964 Error_Msg_N
324ac540
AC
12965 ("can never be greater than, could replace by ""'=""?c?",
12966 N);
c800f862 12967 Warning_Generated := True;
d26dc4b5 12968 end if;
70482933 12969
d26dc4b5
AC
12970 when N_Op_Gt =>
12971 True_Result := Res = GT;
12972 False_Result := Res in Compare_LE;
12973
12974 when N_Op_Lt =>
12975 True_Result := Res = LT;
12976 False_Result := Res in Compare_GE;
12977
12978 when N_Op_Le =>
12979 True_Result := Res in Compare_LE;
12980 False_Result := Res = GT;
12981
12982 if Res = GE
12983 and then Constant_Condition_Warnings
12984 and then Comes_From_Source (Original_Node (N))
12985 and then Nkind (Original_Node (N)) = N_Op_Le
12986 and then not In_Instance
d26dc4b5 12987 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 12988 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 12989 then
ed2233dc 12990 Error_Msg_N
324ac540 12991 ("can never be less than, could replace by ""'=""?c?", N);
c800f862 12992 Warning_Generated := True;
d26dc4b5 12993 end if;
70482933 12994
d26dc4b5
AC
12995 when N_Op_Ne =>
12996 True_Result := Res = NE or else Res = GT or else Res = LT;
12997 False_Result := Res = EQ;
c800f862 12998 end case;
d26dc4b5 12999
c800f862
RD
13000 -- If this is the first iteration, then we actually convert the
13001 -- comparison into True or False, if the result is certain.
d26dc4b5 13002
c800f862
RD
13003 if AV = False then
13004 if True_Result or False_Result then
21791d97 13005 Result := Boolean_Literals (True_Result);
c800f862
RD
13006 Rewrite (N,
13007 Convert_To (Typ,
13008 New_Occurrence_Of (Result, Sloc (N))));
13009 Analyze_And_Resolve (N, Typ);
13010 Warn_On_Known_Condition (N);
13011 return;
13012 end if;
13013
13014 -- If this is the second iteration (AV = True), and the original
e7e4d230
AC
13015 -- node comes from source and we are not in an instance, then give
13016 -- a warning if we know result would be True or False. Note: we
13017 -- know Constant_Condition_Warnings is set if we get here.
c800f862
RD
13018
13019 elsif Comes_From_Source (Original_Node (N))
13020 and then not In_Instance
13021 then
13022 if True_Result then
ed2233dc 13023 Error_Msg_N
324ac540 13024 ("condition can only be False if invalid values present??",
c800f862
RD
13025 N);
13026 elsif False_Result then
ed2233dc 13027 Error_Msg_N
324ac540 13028 ("condition can only be True if invalid values present??",
c800f862
RD
13029 N);
13030 end if;
13031 end if;
13032 end;
13033
13034 -- Skip second iteration if not warning on constant conditions or
e7e4d230
AC
13035 -- if the first iteration already generated a warning of some kind or
13036 -- if we are in any case assuming all values are valid (so that the
13037 -- first iteration took care of the valid case).
c800f862
RD
13038
13039 exit when not Constant_Condition_Warnings;
13040 exit when Warning_Generated;
13041 exit when Assume_No_Invalid_Values;
13042 end loop;
70482933
RK
13043 end Rewrite_Comparison;
13044
fbf5a39b
AC
13045 ----------------------------
13046 -- Safe_In_Place_Array_Op --
13047 ----------------------------
13048
13049 function Safe_In_Place_Array_Op
2e071734
AC
13050 (Lhs : Node_Id;
13051 Op1 : Node_Id;
13052 Op2 : Node_Id) return Boolean
fbf5a39b
AC
13053 is
13054 Target : Entity_Id;
13055
13056 function Is_Safe_Operand (Op : Node_Id) return Boolean;
13057 -- Operand is safe if it cannot overlap part of the target of the
13058 -- operation. If the operand and the target are identical, the operand
13059 -- is safe. The operand can be empty in the case of negation.
13060
13061 function Is_Unaliased (N : Node_Id) return Boolean;
5e1c00fa 13062 -- Check that N is a stand-alone entity
fbf5a39b
AC
13063
13064 ------------------
13065 -- Is_Unaliased --
13066 ------------------
13067
13068 function Is_Unaliased (N : Node_Id) return Boolean is
13069 begin
13070 return
13071 Is_Entity_Name (N)
13072 and then No (Address_Clause (Entity (N)))
13073 and then No (Renamed_Object (Entity (N)));
13074 end Is_Unaliased;
13075
13076 ---------------------
13077 -- Is_Safe_Operand --
13078 ---------------------
13079
13080 function Is_Safe_Operand (Op : Node_Id) return Boolean is
13081 begin
13082 if No (Op) then
13083 return True;
13084
13085 elsif Is_Entity_Name (Op) then
13086 return Is_Unaliased (Op);
13087
303b4d58 13088 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
fbf5a39b
AC
13089 return Is_Unaliased (Prefix (Op));
13090
13091 elsif Nkind (Op) = N_Slice then
13092 return
13093 Is_Unaliased (Prefix (Op))
13094 and then Entity (Prefix (Op)) /= Target;
13095
13096 elsif Nkind (Op) = N_Op_Not then
13097 return Is_Safe_Operand (Right_Opnd (Op));
13098
13099 else
13100 return False;
13101 end if;
13102 end Is_Safe_Operand;
13103
b6b5cca8 13104 -- Start of processing for Safe_In_Place_Array_Op
fbf5a39b
AC
13105
13106 begin
685094bf
RD
13107 -- Skip this processing if the component size is different from system
13108 -- storage unit (since at least for NOT this would cause problems).
fbf5a39b 13109
eaa826f8 13110 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
fbf5a39b
AC
13111 return False;
13112
26bff3d9 13113 -- Cannot do in place stuff on VM_Target since cannot pass addresses
fbf5a39b 13114
26bff3d9 13115 elsif VM_Target /= No_VM then
fbf5a39b
AC
13116 return False;
13117
13118 -- Cannot do in place stuff if non-standard Boolean representation
13119
eaa826f8 13120 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
fbf5a39b
AC
13121 return False;
13122
13123 elsif not Is_Unaliased (Lhs) then
13124 return False;
e7e4d230 13125
fbf5a39b
AC
13126 else
13127 Target := Entity (Lhs);
e7e4d230 13128 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
fbf5a39b
AC
13129 end if;
13130 end Safe_In_Place_Array_Op;
13131
70482933
RK
13132 -----------------------
13133 -- Tagged_Membership --
13134 -----------------------
13135
685094bf
RD
13136 -- There are two different cases to consider depending on whether the right
13137 -- operand is a class-wide type or not. If not we just compare the actual
13138 -- tag of the left expr to the target type tag:
70482933
RK
13139 --
13140 -- Left_Expr.Tag = Right_Type'Tag;
13141 --
685094bf
RD
13142 -- If it is a class-wide type we use the RT function CW_Membership which is
13143 -- usually implemented by looking in the ancestor tables contained in the
13144 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
70482933 13145
0669bebe
GB
13146 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13147 -- function IW_Membership which is usually implemented by looking in the
13148 -- table of abstract interface types plus the ancestor table contained in
13149 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13150
82878151
AC
13151 procedure Tagged_Membership
13152 (N : Node_Id;
13153 SCIL_Node : out Node_Id;
13154 Result : out Node_Id)
13155 is
70482933
RK
13156 Left : constant Node_Id := Left_Opnd (N);
13157 Right : constant Node_Id := Right_Opnd (N);
13158 Loc : constant Source_Ptr := Sloc (N);
13159
38171f43 13160 Full_R_Typ : Entity_Id;
70482933 13161 Left_Type : Entity_Id;
82878151 13162 New_Node : Node_Id;
70482933
RK
13163 Right_Type : Entity_Id;
13164 Obj_Tag : Node_Id;
13165
13166 begin
82878151
AC
13167 SCIL_Node := Empty;
13168
852dba80
AC
13169 -- Handle entities from the limited view
13170
13171 Left_Type := Available_View (Etype (Left));
13172 Right_Type := Available_View (Etype (Right));
70482933 13173
6cce2156
GD
13174 -- In the case where the type is an access type, the test is applied
13175 -- using the designated types (needed in Ada 2012 for implicit anonymous
13176 -- access conversions, for AI05-0149).
13177
13178 if Is_Access_Type (Right_Type) then
13179 Left_Type := Designated_Type (Left_Type);
13180 Right_Type := Designated_Type (Right_Type);
13181 end if;
13182
70482933
RK
13183 if Is_Class_Wide_Type (Left_Type) then
13184 Left_Type := Root_Type (Left_Type);
13185 end if;
13186
38171f43
AC
13187 if Is_Class_Wide_Type (Right_Type) then
13188 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
13189 else
13190 Full_R_Typ := Underlying_Type (Right_Type);
13191 end if;
13192
70482933
RK
13193 Obj_Tag :=
13194 Make_Selected_Component (Loc,
13195 Prefix => Relocate_Node (Left),
a9d8907c 13196 Selector_Name =>
e4494292 13197 New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
70482933
RK
13198
13199 if Is_Class_Wide_Type (Right_Type) then
758c442c 13200
0669bebe
GB
13201 -- No need to issue a run-time check if we statically know that the
13202 -- result of this membership test is always true. For example,
13203 -- considering the following declarations:
13204
13205 -- type Iface is interface;
13206 -- type T is tagged null record;
13207 -- type DT is new T and Iface with null record;
13208
13209 -- Obj1 : T;
13210 -- Obj2 : DT;
13211
13212 -- These membership tests are always true:
13213
13214 -- Obj1 in T'Class
13215 -- Obj2 in T'Class;
13216 -- Obj2 in Iface'Class;
13217
13218 -- We do not need to handle cases where the membership is illegal.
13219 -- For example:
13220
13221 -- Obj1 in DT'Class; -- Compile time error
13222 -- Obj1 in Iface'Class; -- Compile time error
13223
13224 if not Is_Class_Wide_Type (Left_Type)
4ac2477e
JM
13225 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
13226 Use_Full_View => True)
533369aa
AC
13227 or else (Is_Interface (Etype (Right_Type))
13228 and then Interface_Present_In_Ancestor
761f7dcb
AC
13229 (Typ => Left_Type,
13230 Iface => Etype (Right_Type))))
0669bebe 13231 then
e4494292 13232 Result := New_Occurrence_Of (Standard_True, Loc);
82878151 13233 return;
0669bebe
GB
13234 end if;
13235
758c442c
GD
13236 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13237
630d30e9
RD
13238 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
13239
0669bebe 13240 -- Support to: "Iface_CW_Typ in Typ'Class"
630d30e9
RD
13241
13242 or else Is_Interface (Left_Type)
13243 then
dfd99a80
TQ
13244 -- Issue error if IW_Membership operation not available in a
13245 -- configurable run time setting.
13246
13247 if not RTE_Available (RE_IW_Membership) then
b4592168
GD
13248 Error_Msg_CRT
13249 ("dynamic membership test on interface types", N);
82878151
AC
13250 Result := Empty;
13251 return;
dfd99a80
TQ
13252 end if;
13253
82878151 13254 Result :=
758c442c
GD
13255 Make_Function_Call (Loc,
13256 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
13257 Parameter_Associations => New_List (
13258 Make_Attribute_Reference (Loc,
13259 Prefix => Obj_Tag,
13260 Attribute_Name => Name_Address),
e4494292 13261 New_Occurrence_Of (
38171f43 13262 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
758c442c
GD
13263 Loc)));
13264
13265 -- Ada 95: Normal case
13266
13267 else
82878151
AC
13268 Build_CW_Membership (Loc,
13269 Obj_Tag_Node => Obj_Tag,
13270 Typ_Tag_Node =>
e4494292 13271 New_Occurrence_Of (
38171f43 13272 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
82878151
AC
13273 Related_Nod => N,
13274 New_Node => New_Node);
13275
13276 -- Generate the SCIL node for this class-wide membership test.
13277 -- Done here because the previous call to Build_CW_Membership
13278 -- relocates Obj_Tag.
13279
13280 if Generate_SCIL then
13281 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
13282 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
13283 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
13284 end if;
13285
13286 Result := New_Node;
758c442c
GD
13287 end if;
13288
0669bebe
GB
13289 -- Right_Type is not a class-wide type
13290
70482933 13291 else
0669bebe
GB
13292 -- No need to check the tag of the object if Right_Typ is abstract
13293
13294 if Is_Abstract_Type (Right_Type) then
e4494292 13295 Result := New_Occurrence_Of (Standard_False, Loc);
0669bebe
GB
13296
13297 else
82878151 13298 Result :=
0669bebe
GB
13299 Make_Op_Eq (Loc,
13300 Left_Opnd => Obj_Tag,
13301 Right_Opnd =>
e4494292 13302 New_Occurrence_Of
38171f43 13303 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
0669bebe 13304 end if;
70482933 13305 end if;
70482933
RK
13306 end Tagged_Membership;
13307
13308 ------------------------------
13309 -- Unary_Op_Validity_Checks --
13310 ------------------------------
13311
13312 procedure Unary_Op_Validity_Checks (N : Node_Id) is
13313 begin
13314 if Validity_Checks_On and Validity_Check_Operands then
13315 Ensure_Valid (Right_Opnd (N));
13316 end if;
13317 end Unary_Op_Validity_Checks;
13318
13319end Exp_Ch4;