]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
df3e68b1 9-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
2010d078
AC
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Debug; use Debug;
28with Einfo; use Einfo;
29with Elists; use Elists;
30with Errout; use Errout;
1ce1f005 31with Exp_Ch3; use Exp_Ch3;
70482933 32with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 33with Exp_Disp; use Exp_Disp;
70482933
RK
34with Exp_Pakd; use Exp_Pakd;
35with Exp_Util; use Exp_Util;
fbf5a39b 36with Exp_Tss; use Exp_Tss;
70482933 37with Layout; use Layout;
ca0cb93e 38with Lib; use Lib;
7d8b9c99 39with Namet; use Namet;
70482933
RK
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
70482933 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
70482933
RK
47with Sem_Cat; use Sem_Cat;
48with Sem_Ch6; use Sem_Ch6;
49with Sem_Ch7; use Sem_Ch7;
50with Sem_Ch8; use Sem_Ch8;
51with Sem_Ch13; use Sem_Ch13;
52with Sem_Eval; use Sem_Eval;
53with Sem_Mech; use Sem_Mech;
54with Sem_Prag; use Sem_Prag;
55with Sem_Res; use Sem_Res;
56with Sem_Util; use Sem_Util;
57with Sinfo; use Sinfo;
58with Snames; use Snames;
59with Stand; use Stand;
60with Targparm; use Targparm;
61with Tbuild; use Tbuild;
62with Ttypes; use Ttypes;
63with Uintp; use Uintp;
64with Urealp; use Urealp;
65
66package body Freeze is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
78
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
49e90211 83 -- Build body for a renaming declaration, insert in tree and analyze
70482933 84
fbf5a39b
AC
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 87 -- at the point the object is frozen.
fbf5a39b 88
70482933
RK
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
93
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
100
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
c159409f 103 N : Node_Id;
70482933
RK
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
c159409f
AC
106 -- nodes to Result, modifying Result from No_List if necessary. N has
107 -- the same usage as in Freeze_Entity.
70482933
RK
108
109 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
110 -- Freeze enumeration type. The Esize field is set as processing
111 -- proceeds (i.e. set by default when the type is declared and then
112 -- adjusted by rep clauses. What this procedure does is to make sure
113 -- that if a foreign convention is specified, and no specific size
114 -- is given, then the size must be at least Integer'Size.
115
70482933
RK
116 procedure Freeze_Static_Object (E : Entity_Id);
117 -- If an object is frozen which has Is_Statically_Allocated set, then
118 -- all referenced types must also be marked with this flag. This routine
119 -- is in charge of meeting this requirement for the object entity E.
120
121 procedure Freeze_Subprogram (E : Entity_Id);
122 -- Perform freezing actions for a subprogram (create extra formals,
123 -- and set proper default mechanism values). Note that this routine
124 -- is not called for internal subprograms, for which neither of these
125 -- actions is needed (or desirable, we do not want for example to have
126 -- these extra formals present in initialization procedures, where they
127 -- would serve no purpose). In this call E is either a subprogram or
128 -- a subprogram type (i.e. an access to a subprogram).
129
130 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 131 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
132 -- view. Used to determine whether the designated type of an access type
133 -- should be frozen when the access type is frozen. This is done when an
134 -- allocator is frozen, or an expression that may involve attributes of
135 -- the designated type. Otherwise freezing the access type does not freeze
136 -- the designated type.
70482933
RK
137
138 procedure Process_Default_Expressions
139 (E : Entity_Id;
140 After : in out Node_Id);
c159409f
AC
141 -- This procedure is called for each subprogram to complete processing of
142 -- default expressions at the point where all types are known to be frozen.
143 -- The expressions must be analyzed in full, to make sure that all error
144 -- processing is done (they have only been pre-analyzed). If the expression
145 -- is not an entity or literal, its analysis may generate code which must
146 -- not be executed. In that case we build a function body to hold that
147 -- code. This wrapper function serves no other purpose (it used to be
148 -- called to evaluate the default, but now the default is inlined at each
149 -- point of call).
70482933
RK
150
151 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
c159409f
AC
152 -- Typ is a record or array type that is being frozen. This routine sets
153 -- the default component alignment from the scope stack values if the
154 -- alignment is otherwise not specified.
70482933
RK
155
156 procedure Check_Debug_Info_Needed (T : Entity_Id);
157 -- As each entity is frozen, this routine is called to deal with the
158 -- setting of Debug_Info_Needed for the entity. This flag is set if
159 -- the entity comes from source, or if we are in Debug_Generated_Code
160 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
161 -- the flag if Debug_Info_Off is set. This procedure also ensures that
162 -- subsidiary entities have the flag set as required.
70482933 163
c6823a20 164 procedure Undelay_Type (T : Entity_Id);
c159409f
AC
165 -- T is a type of a component that we know to be an Itype. We don't want
166 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
167 -- Full_View or Corresponding_Record_Type.
c6823a20 168
fbf5a39b
AC
169 procedure Warn_Overlay
170 (Expr : Node_Id;
171 Typ : Entity_Id;
172 Nam : Node_Id);
173 -- Expr is the expression for an address clause for entity Nam whose type
174 -- is Typ. If Typ has a default initialization, and there is no explicit
175 -- initialization in the source declaration, check whether the address
176 -- clause might cause overlaying of an entity, and emit a warning on the
177 -- side effect that the initialization will cause.
178
70482933
RK
179 -------------------------------
180 -- Adjust_Esize_For_Alignment --
181 -------------------------------
182
183 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
184 Align : Uint;
185
186 begin
187 if Known_Esize (Typ) and then Known_Alignment (Typ) then
188 Align := Alignment_In_Bits (Typ);
189
190 if Align > Esize (Typ)
191 and then Align <= Standard_Long_Long_Integer_Size
192 then
193 Set_Esize (Typ, Align);
194 end if;
195 end if;
196 end Adjust_Esize_For_Alignment;
197
198 ------------------------------------
199 -- Build_And_Analyze_Renamed_Body --
200 ------------------------------------
201
202 procedure Build_And_Analyze_Renamed_Body
203 (Decl : Node_Id;
204 New_S : Entity_Id;
205 After : in out Node_Id)
206 is
ca0cb93e
AC
207 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
208 Ent : constant Entity_Id := Defining_Entity (Decl);
209 Body_Node : Node_Id;
210 Renamed_Subp : Entity_Id;
d4fc0fb4 211
70482933 212 begin
1c612f29
RD
213 -- If the renamed subprogram is intrinsic, there is no need for a
214 -- wrapper body: we set the alias that will be called and expanded which
215 -- completes the declaration. This transformation is only legal if the
216 -- renamed entity has already been elaborated.
ca0cb93e 217
d4fc0fb4
AC
218 -- Note that it is legal for a renaming_as_body to rename an intrinsic
219 -- subprogram, as long as the renaming occurs before the new entity
220 -- is frozen. See RM 8.5.4 (5).
221
222 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
545cb5be 223 and then Is_Entity_Name (Name (Body_Decl))
d4fc0fb4 224 then
ca0cb93e
AC
225 Renamed_Subp := Entity (Name (Body_Decl));
226 else
227 Renamed_Subp := Empty;
228 end if;
229
230 if Present (Renamed_Subp)
231 and then Is_Intrinsic_Subprogram (Renamed_Subp)
ca0cb93e
AC
232 and then
233 (not In_Same_Source_Unit (Renamed_Subp, Ent)
234 or else Sloc (Renamed_Subp) < Sloc (Ent))
879e23f0 235
308e6f3a 236 -- We can make the renaming entity intrinsic if the renamed function
545cb5be
AC
237 -- has an interface name, or if it is one of the shift/rotate
238 -- operations known to the compiler.
879e23f0 239
545cb5be
AC
240 and then (Present (Interface_Name (Renamed_Subp))
241 or else Chars (Renamed_Subp) = Name_Rotate_Left
242 or else Chars (Renamed_Subp) = Name_Rotate_Right
243 or else Chars (Renamed_Subp) = Name_Shift_Left
244 or else Chars (Renamed_Subp) = Name_Shift_Right
245 or else Chars (Renamed_Subp) = Name_Shift_Right_Arithmetic)
ca0cb93e
AC
246 then
247 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
545cb5be 248
ca0cb93e
AC
249 if Present (Alias (Renamed_Subp)) then
250 Set_Alias (Ent, Alias (Renamed_Subp));
d4fc0fb4 251 else
ca0cb93e 252 Set_Alias (Ent, Renamed_Subp);
d4fc0fb4
AC
253 end if;
254
255 Set_Is_Intrinsic_Subprogram (Ent);
256 Set_Has_Completion (Ent);
257
258 else
259 Body_Node := Build_Renamed_Body (Decl, New_S);
260 Insert_After (After, Body_Node);
261 Mark_Rewrite_Insertion (Body_Node);
262 Analyze (Body_Node);
263 After := Body_Node;
264 end if;
70482933
RK
265 end Build_And_Analyze_Renamed_Body;
266
267 ------------------------
268 -- Build_Renamed_Body --
269 ------------------------
270
271 function Build_Renamed_Body
272 (Decl : Node_Id;
fbf5a39b 273 New_S : Entity_Id) return Node_Id
70482933
RK
274 is
275 Loc : constant Source_Ptr := Sloc (New_S);
545cb5be
AC
276 -- We use for the source location of the renamed body, the location of
277 -- the spec entity. It might seem more natural to use the location of
278 -- the renaming declaration itself, but that would be wrong, since then
279 -- the body we create would look as though it was created far too late,
280 -- and this could cause problems with elaboration order analysis,
281 -- particularly in connection with instantiations.
70482933
RK
282
283 N : constant Node_Id := Unit_Declaration_Node (New_S);
284 Nam : constant Node_Id := Name (N);
285 Old_S : Entity_Id;
286 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
287 Actuals : List_Id := No_List;
288 Call_Node : Node_Id;
289 Call_Name : Node_Id;
290 Body_Node : Node_Id;
291 Formal : Entity_Id;
292 O_Formal : Entity_Id;
293 Param_Spec : Node_Id;
294
def46b54
RD
295 Pref : Node_Id := Empty;
296 -- If the renamed entity is a primitive operation given in prefix form,
297 -- the prefix is the target object and it has to be added as the first
298 -- actual in the generated call.
299
70482933 300 begin
def46b54
RD
301 -- Determine the entity being renamed, which is the target of the call
302 -- statement. If the name is an explicit dereference, this is a renaming
303 -- of a subprogram type rather than a subprogram. The name itself is
304 -- fully analyzed.
70482933
RK
305
306 if Nkind (Nam) = N_Selected_Component then
307 Old_S := Entity (Selector_Name (Nam));
308
309 elsif Nkind (Nam) = N_Explicit_Dereference then
310 Old_S := Etype (Nam);
311
312 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
313 if Is_Entity_Name (Prefix (Nam)) then
314 Old_S := Entity (Prefix (Nam));
315 else
316 Old_S := Entity (Selector_Name (Prefix (Nam)));
317 end if;
318
319 elsif Nkind (Nam) = N_Character_Literal then
320 Old_S := Etype (New_S);
321
322 else
323 Old_S := Entity (Nam);
324 end if;
325
326 if Is_Entity_Name (Nam) then
07fc65c4 327
def46b54
RD
328 -- If the renamed entity is a predefined operator, retain full name
329 -- to ensure its visibility.
07fc65c4
GB
330
331 if Ekind (Old_S) = E_Operator
332 and then Nkind (Nam) = N_Expanded_Name
333 then
334 Call_Name := New_Copy (Name (N));
335 else
336 Call_Name := New_Reference_To (Old_S, Loc);
337 end if;
338
70482933 339 else
def46b54
RD
340 if Nkind (Nam) = N_Selected_Component
341 and then Present (First_Formal (Old_S))
342 and then
343 (Is_Controlling_Formal (First_Formal (Old_S))
344 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
345 then
346
347 -- Retrieve the target object, to be added as a first actual
348 -- in the call.
349
350 Call_Name := New_Occurrence_Of (Old_S, Loc);
351 Pref := Prefix (Nam);
352
353 else
354 Call_Name := New_Copy (Name (N));
355 end if;
70482933 356
545cb5be 357 -- Original name may have been overloaded, but is fully resolved now
70482933
RK
358
359 Set_Is_Overloaded (Call_Name, False);
360 end if;
361
def46b54 362 -- For simple renamings, subsequent calls can be expanded directly as
d4fc0fb4
AC
363 -- calls to the renamed entity. The body must be generated in any case
364 -- for calls that may appear elsewhere.
70482933 365
545cb5be 366 if Ekind_In (Old_S, E_Function, E_Procedure)
70482933
RK
367 and then Nkind (Decl) = N_Subprogram_Declaration
368 then
369 Set_Body_To_Inline (Decl, Old_S);
370 end if;
371
372 -- The body generated for this renaming is an internal artifact, and
373 -- does not constitute a freeze point for the called entity.
374
375 Set_Must_Not_Freeze (Call_Name);
376
377 Formal := First_Formal (Defining_Entity (Decl));
378
def46b54
RD
379 if Present (Pref) then
380 declare
381 Pref_Type : constant Entity_Id := Etype (Pref);
382 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
383
384 begin
def46b54 385 -- The controlling formal may be an access parameter, or the
e14c931f 386 -- actual may be an access value, so adjust accordingly.
def46b54
RD
387
388 if Is_Access_Type (Pref_Type)
389 and then not Is_Access_Type (Form_Type)
390 then
391 Actuals := New_List
392 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
393
394 elsif Is_Access_Type (Form_Type)
395 and then not Is_Access_Type (Pref)
396 then
397 Actuals := New_List
398 (Make_Attribute_Reference (Loc,
399 Attribute_Name => Name_Access,
400 Prefix => Relocate_Node (Pref)));
401 else
402 Actuals := New_List (Pref);
403 end if;
404 end;
405
406 elsif Present (Formal) then
70482933
RK
407 Actuals := New_List;
408
def46b54
RD
409 else
410 Actuals := No_List;
411 end if;
412
413 if Present (Formal) then
70482933
RK
414 while Present (Formal) loop
415 Append (New_Reference_To (Formal, Loc), Actuals);
416 Next_Formal (Formal);
417 end loop;
418 end if;
419
def46b54
RD
420 -- If the renamed entity is an entry, inherit its profile. For other
421 -- renamings as bodies, both profiles must be subtype conformant, so it
422 -- is not necessary to replace the profile given in the declaration.
423 -- However, default values that are aggregates are rewritten when
424 -- partially analyzed, so we recover the original aggregate to insure
425 -- that subsequent conformity checking works. Similarly, if the default
426 -- expression was constant-folded, recover the original expression.
70482933
RK
427
428 Formal := First_Formal (Defining_Entity (Decl));
429
430 if Present (Formal) then
431 O_Formal := First_Formal (Old_S);
432 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
433 while Present (Formal) loop
434 if Is_Entry (Old_S) then
70482933
RK
435 if Nkind (Parameter_Type (Param_Spec)) /=
436 N_Access_Definition
437 then
438 Set_Etype (Formal, Etype (O_Formal));
439 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
440 end if;
441
07fc65c4
GB
442 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
443 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
444 Nkind (Default_Value (O_Formal))
445 then
70482933
RK
446 Set_Expression (Param_Spec,
447 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
448 end if;
449
450 Next_Formal (Formal);
451 Next_Formal (O_Formal);
452 Next (Param_Spec);
453 end loop;
454 end if;
455
456 -- If the renamed entity is a function, the generated body contains a
457 -- return statement. Otherwise, build a procedure call. If the entity is
458 -- an entry, subsequent analysis of the call will transform it into the
459 -- proper entry or protected operation call. If the renamed entity is
460 -- a character literal, return it directly.
461
462 if Ekind (Old_S) = E_Function
463 or else Ekind (Old_S) = E_Operator
464 or else (Ekind (Old_S) = E_Subprogram_Type
465 and then Etype (Old_S) /= Standard_Void_Type)
466 then
467 Call_Node :=
86cde7b1 468 Make_Simple_Return_Statement (Loc,
70482933
RK
469 Expression =>
470 Make_Function_Call (Loc,
471 Name => Call_Name,
472 Parameter_Associations => Actuals));
473
474 elsif Ekind (Old_S) = E_Enumeration_Literal then
475 Call_Node :=
86cde7b1 476 Make_Simple_Return_Statement (Loc,
70482933
RK
477 Expression => New_Occurrence_Of (Old_S, Loc));
478
479 elsif Nkind (Nam) = N_Character_Literal then
480 Call_Node :=
86cde7b1 481 Make_Simple_Return_Statement (Loc,
70482933
RK
482 Expression => Call_Name);
483
484 else
485 Call_Node :=
486 Make_Procedure_Call_Statement (Loc,
487 Name => Call_Name,
488 Parameter_Associations => Actuals);
489 end if;
490
49e90211 491 -- Create entities for subprogram body and formals
70482933
RK
492
493 Set_Defining_Unit_Name (Spec,
494 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
495
496 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
497 while Present (Param_Spec) loop
498 Set_Defining_Identifier (Param_Spec,
499 Make_Defining_Identifier (Loc,
500 Chars => Chars (Defining_Identifier (Param_Spec))));
501 Next (Param_Spec);
502 end loop;
503
504 Body_Node :=
505 Make_Subprogram_Body (Loc,
506 Specification => Spec,
507 Declarations => New_List,
508 Handled_Statement_Sequence =>
509 Make_Handled_Sequence_Of_Statements (Loc,
510 Statements => New_List (Call_Node)));
511
512 if Nkind (Decl) /= N_Subprogram_Declaration then
513 Rewrite (N,
514 Make_Subprogram_Declaration (Loc,
515 Specification => Specification (N)));
516 end if;
517
518 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
519 -- the body is analyzed when the renamed entity is frozen, it may
520 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
521
522 if Nkind (N) = N_Subprogram_Renaming_Declaration
523 and then Present (Corresponding_Spec (N))
524 then
525 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
526 else
527 Set_Corresponding_Spec (Body_Node, New_S);
528 end if;
529
530 return Body_Node;
531 end Build_Renamed_Body;
532
fbf5a39b
AC
533 --------------------------
534 -- Check_Address_Clause --
535 --------------------------
536
537 procedure Check_Address_Clause (E : Entity_Id) is
538 Addr : constant Node_Id := Address_Clause (E);
539 Expr : Node_Id;
540 Decl : constant Node_Id := Declaration_Node (E);
541 Typ : constant Entity_Id := Etype (E);
542
543 begin
544 if Present (Addr) then
545 Expr := Expression (Addr);
546
0d901290 547 if Needs_Constant_Address (Decl, Typ) then
fbf5a39b 548 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
549
550 -- Has_Delayed_Freeze was set on E when the address clause was
551 -- analyzed. Reset the flag now unless freeze actions were
552 -- attached to it in the mean time.
553
554 if No (Freeze_Node (E)) then
555 Set_Has_Delayed_Freeze (E, False);
556 end if;
fbf5a39b
AC
557 end if;
558
1d57c04f
AC
559 -- If Rep_Clauses are to be ignored, remove address clause from
560 -- list attached to entity, because it may be illegal for gigi,
561 -- for example by breaking order of elaboration..
562
563 if Ignore_Rep_Clauses then
564 declare
565 Rep : Node_Id;
566
567 begin
568 Rep := First_Rep_Item (E);
569
570 if Rep = Addr then
571 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
572
573 else
574 while Present (Rep)
575 and then Next_Rep_Item (Rep) /= Addr
576 loop
577 Rep := Next_Rep_Item (Rep);
578 end loop;
579 end if;
580
581 if Present (Rep) then
582 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
583 end if;
584 end;
585
586 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
587
588 elsif not Error_Posted (Expr)
048e5cef 589 and then not Needs_Finalization (Typ)
fbf5a39b
AC
590 then
591 Warn_Overlay (Expr, Typ, Name (Addr));
592 end if;
593 end if;
594 end Check_Address_Clause;
595
70482933
RK
596 -----------------------------
597 -- Check_Compile_Time_Size --
598 -----------------------------
599
600 procedure Check_Compile_Time_Size (T : Entity_Id) is
601
c6823a20 602 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 603 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 604 -- field, of T checking for a size clause that was given which attempts
2593c3e1 605 -- to give a smaller size, and also checking for an alignment clause.
70482933
RK
606
607 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 608 -- Recursive function that does all the work
70482933
RK
609
610 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
611 -- If T is a constrained subtype, its size is not known if any of its
612 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 613 -- The test is conservative and doesn't check that the components are
70482933
RK
614 -- in fact constrained by non-static discriminant values. Could be made
615 -- more precise ???
616
617 --------------------
618 -- Set_Small_Size --
619 --------------------
620
c6823a20 621 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
622 begin
623 if S > 32 then
624 return;
625
2593c3e1
AC
626 -- Check for bad size clause given
627
70482933
RK
628 elsif Has_Size_Clause (T) then
629 if RM_Size (T) < S then
630 Error_Msg_Uint_1 := S;
631 Error_Msg_NE
d58b9515 632 ("size for& too small, minimum allowed is ^",
70482933 633 Size_Clause (T), T);
70482933
RK
634 end if;
635
fc893455 636 -- Set size if not set already
70482933 637
fc893455
AC
638 elsif Unknown_RM_Size (T) then
639 Set_RM_Size (T, S);
70482933
RK
640 end if;
641 end Set_Small_Size;
642
643 ----------------
644 -- Size_Known --
645 ----------------
646
647 function Size_Known (T : Entity_Id) return Boolean is
648 Index : Entity_Id;
649 Comp : Entity_Id;
650 Ctyp : Entity_Id;
651 Low : Node_Id;
652 High : Node_Id;
653
654 begin
655 if Size_Known_At_Compile_Time (T) then
656 return True;
657
c6a9797e
RD
658 -- Always True for scalar types. This is true even for generic formal
659 -- scalar types. We used to return False in the latter case, but the
660 -- size is known at compile time, even in the template, we just do
661 -- not know the exact size but that's not the point of this routine.
662
70482933
RK
663 elsif Is_Scalar_Type (T)
664 or else Is_Task_Type (T)
665 then
c6a9797e
RD
666 return True;
667
668 -- Array types
70482933
RK
669
670 elsif Is_Array_Type (T) then
c6a9797e
RD
671
672 -- String literals always have known size, and we can set it
673
70482933 674 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
675 Set_Small_Size (T, Component_Size (T)
676 * String_Literal_Length (T));
70482933
RK
677 return True;
678
c6a9797e
RD
679 -- Unconstrained types never have known at compile time size
680
70482933
RK
681 elsif not Is_Constrained (T) then
682 return False;
683
def46b54
RD
684 -- Don't do any recursion on type with error posted, since we may
685 -- have a malformed type that leads us into a loop.
07fc65c4
GB
686
687 elsif Error_Posted (T) then
688 return False;
689
c6a9797e
RD
690 -- Otherwise if component size unknown, then array size unknown
691
70482933
RK
692 elsif not Size_Known (Component_Type (T)) then
693 return False;
694 end if;
695
def46b54
RD
696 -- Check for all indexes static, and also compute possible size
697 -- (in case it is less than 32 and may be packable).
70482933
RK
698
699 declare
700 Esiz : Uint := Component_Size (T);
701 Dim : Uint;
702
703 begin
704 Index := First_Index (T);
70482933
RK
705 while Present (Index) loop
706 if Nkind (Index) = N_Range then
707 Get_Index_Bounds (Index, Low, High);
708
709 elsif Error_Posted (Scalar_Range (Etype (Index))) then
710 return False;
711
712 else
713 Low := Type_Low_Bound (Etype (Index));
714 High := Type_High_Bound (Etype (Index));
715 end if;
716
717 if not Compile_Time_Known_Value (Low)
718 or else not Compile_Time_Known_Value (High)
719 or else Etype (Index) = Any_Type
720 then
721 return False;
722
723 else
724 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
725
726 if Dim >= 0 then
727 Esiz := Esiz * Dim;
728 else
729 Esiz := Uint_0;
730 end if;
731 end if;
732
733 Next_Index (Index);
734 end loop;
735
c6823a20 736 Set_Small_Size (T, Esiz);
70482933
RK
737 return True;
738 end;
739
c6a9797e
RD
740 -- Access types always have known at compile time sizes
741
70482933
RK
742 elsif Is_Access_Type (T) then
743 return True;
744
c6a9797e
RD
745 -- For non-generic private types, go to underlying type if present
746
70482933
RK
747 elsif Is_Private_Type (T)
748 and then not Is_Generic_Type (T)
749 and then Present (Underlying_Type (T))
750 then
def46b54
RD
751 -- Don't do any recursion on type with error posted, since we may
752 -- have a malformed type that leads us into a loop.
07fc65c4
GB
753
754 if Error_Posted (T) then
755 return False;
756 else
757 return Size_Known (Underlying_Type (T));
758 end if;
70482933 759
c6a9797e
RD
760 -- Record types
761
70482933 762 elsif Is_Record_Type (T) then
fbf5a39b
AC
763
764 -- A class-wide type is never considered to have a known size
765
70482933
RK
766 if Is_Class_Wide_Type (T) then
767 return False;
768
fbf5a39b 769 -- A subtype of a variant record must not have non-static
308e6f3a 770 -- discriminated components.
fbf5a39b
AC
771
772 elsif T /= Base_Type (T)
773 and then not Static_Discriminated_Components (T)
774 then
775 return False;
70482933 776
def46b54
RD
777 -- Don't do any recursion on type with error posted, since we may
778 -- have a malformed type that leads us into a loop.
07fc65c4
GB
779
780 elsif Error_Posted (T) then
781 return False;
fbf5a39b 782 end if;
07fc65c4 783
fbf5a39b 784 -- Now look at the components of the record
70482933 785
fbf5a39b 786 declare
def46b54
RD
787 -- The following two variables are used to keep track of the
788 -- size of packed records if we can tell the size of the packed
789 -- record in the front end. Packed_Size_Known is True if so far
790 -- we can figure out the size. It is initialized to True for a
791 -- packed record, unless the record has discriminants. The
792 -- reason we eliminate the discriminated case is that we don't
793 -- know the way the back end lays out discriminated packed
794 -- records. If Packed_Size_Known is True, then Packed_Size is
795 -- the size in bits so far.
fbf5a39b
AC
796
797 Packed_Size_Known : Boolean :=
798 Is_Packed (T)
799 and then not Has_Discriminants (T);
800
801 Packed_Size : Uint := Uint_0;
802
803 begin
804 -- Test for variant part present
805
806 if Has_Discriminants (T)
807 and then Present (Parent (T))
808 and then Nkind (Parent (T)) = N_Full_Type_Declaration
809 and then Nkind (Type_Definition (Parent (T))) =
545cb5be 810 N_Record_Definition
fbf5a39b
AC
811 and then not Null_Present (Type_Definition (Parent (T)))
812 and then Present (Variant_Part
813 (Component_List (Type_Definition (Parent (T)))))
814 then
815 -- If variant part is present, and type is unconstrained,
816 -- then we must have defaulted discriminants, or a size
817 -- clause must be present for the type, or else the size
818 -- is definitely not known at compile time.
819
820 if not Is_Constrained (T)
821 and then
545cb5be 822 No (Discriminant_Default_Value (First_Discriminant (T)))
fc893455 823 and then Unknown_RM_Size (T)
70482933 824 then
fbf5a39b
AC
825 return False;
826 end if;
827 end if;
70482933 828
fbf5a39b
AC
829 -- Loop through components
830
fea9e956 831 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 832 while Present (Comp) loop
fea9e956 833 Ctyp := Etype (Comp);
fbf5a39b 834
fea9e956
ES
835 -- We do not know the packed size if there is a component
836 -- clause present (we possibly could, but this would only
837 -- help in the case of a record with partial rep clauses.
838 -- That's because in the case of full rep clauses, the
839 -- size gets figured out anyway by a different circuit).
fbf5a39b 840
fea9e956
ES
841 if Present (Component_Clause (Comp)) then
842 Packed_Size_Known := False;
843 end if;
70482933 844
fea9e956
ES
845 -- We need to identify a component that is an array where
846 -- the index type is an enumeration type with non-standard
847 -- representation, and some bound of the type depends on a
848 -- discriminant.
70482933 849
fea9e956 850 -- This is because gigi computes the size by doing a
e14c931f 851 -- substitution of the appropriate discriminant value in
fea9e956
ES
852 -- the size expression for the base type, and gigi is not
853 -- clever enough to evaluate the resulting expression (which
854 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 855
fea9e956
ES
856 -- It would be nice if gigi would either recognize that
857 -- this expression can be computed at compile time, or
858 -- alternatively figured out the size from the subtype
859 -- directly, where all the information is at hand ???
fbf5a39b 860
fea9e956
ES
861 if Is_Array_Type (Etype (Comp))
862 and then Present (Packed_Array_Type (Etype (Comp)))
863 then
864 declare
865 Ocomp : constant Entity_Id :=
866 Original_Record_Component (Comp);
867 OCtyp : constant Entity_Id := Etype (Ocomp);
868 Ind : Node_Id;
869 Indtyp : Entity_Id;
870 Lo, Hi : Node_Id;
70482933 871
fea9e956
ES
872 begin
873 Ind := First_Index (OCtyp);
874 while Present (Ind) loop
875 Indtyp := Etype (Ind);
70482933 876
fea9e956
ES
877 if Is_Enumeration_Type (Indtyp)
878 and then Has_Non_Standard_Rep (Indtyp)
879 then
880 Lo := Type_Low_Bound (Indtyp);
881 Hi := Type_High_Bound (Indtyp);
fbf5a39b 882
fea9e956
ES
883 if Is_Entity_Name (Lo)
884 and then Ekind (Entity (Lo)) = E_Discriminant
885 then
886 return False;
fbf5a39b 887
fea9e956
ES
888 elsif Is_Entity_Name (Hi)
889 and then Ekind (Entity (Hi)) = E_Discriminant
890 then
891 return False;
892 end if;
893 end if;
fbf5a39b 894
fea9e956
ES
895 Next_Index (Ind);
896 end loop;
897 end;
898 end if;
70482933 899
def46b54
RD
900 -- Clearly size of record is not known if the size of one of
901 -- the components is not known.
70482933 902
fea9e956
ES
903 if not Size_Known (Ctyp) then
904 return False;
905 end if;
70482933 906
fea9e956 907 -- Accumulate packed size if possible
70482933 908
fea9e956 909 if Packed_Size_Known then
70482933 910
fea9e956
ES
911 -- We can only deal with elementary types, since for
912 -- non-elementary components, alignment enters into the
913 -- picture, and we don't know enough to handle proper
914 -- alignment in this context. Packed arrays count as
915 -- elementary if the representation is a modular type.
fbf5a39b 916
fea9e956
ES
917 if Is_Elementary_Type (Ctyp)
918 or else (Is_Array_Type (Ctyp)
2593c3e1
AC
919 and then Present (Packed_Array_Type (Ctyp))
920 and then Is_Modular_Integer_Type
921 (Packed_Array_Type (Ctyp)))
fea9e956 922 then
2593c3e1
AC
923 -- If RM_Size is known and static, then we can keep
924 -- accumulating the packed size.
70482933 925
fea9e956 926 if Known_Static_RM_Size (Ctyp) then
70482933 927
fea9e956
ES
928 -- A little glitch, to be removed sometime ???
929 -- gigi does not understand zero sizes yet.
930
931 if RM_Size (Ctyp) = Uint_0 then
70482933 932 Packed_Size_Known := False;
fea9e956
ES
933
934 -- Normal case where we can keep accumulating the
935 -- packed array size.
936
937 else
938 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 939 end if;
fbf5a39b 940
fea9e956
ES
941 -- If we have a field whose RM_Size is not known then
942 -- we can't figure out the packed size here.
fbf5a39b
AC
943
944 else
945 Packed_Size_Known := False;
70482933 946 end if;
fea9e956
ES
947
948 -- If we have a non-elementary type we can't figure out
949 -- the packed array size (alignment issues).
950
951 else
952 Packed_Size_Known := False;
70482933 953 end if;
fbf5a39b 954 end if;
70482933 955
fea9e956 956 Next_Component_Or_Discriminant (Comp);
fbf5a39b 957 end loop;
70482933 958
fbf5a39b 959 if Packed_Size_Known then
c6823a20 960 Set_Small_Size (T, Packed_Size);
fbf5a39b 961 end if;
70482933 962
fbf5a39b
AC
963 return True;
964 end;
70482933 965
c6a9797e
RD
966 -- All other cases, size not known at compile time
967
70482933
RK
968 else
969 return False;
970 end if;
971 end Size_Known;
972
973 -------------------------------------
974 -- Static_Discriminated_Components --
975 -------------------------------------
976
977 function Static_Discriminated_Components
0da2c8ac 978 (T : Entity_Id) return Boolean
70482933
RK
979 is
980 Constraint : Elmt_Id;
981
982 begin
983 if Has_Discriminants (T)
984 and then Present (Discriminant_Constraint (T))
985 and then Present (First_Component (T))
986 then
987 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
988 while Present (Constraint) loop
989 if not Compile_Time_Known_Value (Node (Constraint)) then
990 return False;
991 end if;
992
993 Next_Elmt (Constraint);
994 end loop;
995 end if;
996
997 return True;
998 end Static_Discriminated_Components;
999
1000 -- Start of processing for Check_Compile_Time_Size
1001
1002 begin
1003 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1004 end Check_Compile_Time_Size;
1005
1006 -----------------------------
1007 -- Check_Debug_Info_Needed --
1008 -----------------------------
1009
1010 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1011 begin
1b24ada5 1012 if Debug_Info_Off (T) then
70482933
RK
1013 return;
1014
1015 elsif Comes_From_Source (T)
1016 or else Debug_Generated_Code
1017 or else Debug_Flag_VV
1b24ada5 1018 or else Needs_Debug_Info (T)
70482933
RK
1019 then
1020 Set_Debug_Info_Needed (T);
1021 end if;
1022 end Check_Debug_Info_Needed;
1023
1024 ----------------------------
1025 -- Check_Strict_Alignment --
1026 ----------------------------
1027
1028 procedure Check_Strict_Alignment (E : Entity_Id) is
1029 Comp : Entity_Id;
1030
1031 begin
1032 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1033 Set_Strict_Alignment (E);
1034
1035 elsif Is_Array_Type (E) then
1036 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1037
1038 elsif Is_Record_Type (E) then
1039 if Is_Limited_Record (E) then
1040 Set_Strict_Alignment (E);
1041 return;
1042 end if;
1043
1044 Comp := First_Component (E);
70482933
RK
1045 while Present (Comp) loop
1046 if not Is_Type (Comp)
1047 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1048 or else Is_Aliased (Comp))
70482933
RK
1049 then
1050 Set_Strict_Alignment (E);
1051 return;
1052 end if;
1053
1054 Next_Component (Comp);
1055 end loop;
1056 end if;
1057 end Check_Strict_Alignment;
1058
1059 -------------------------
1060 -- Check_Unsigned_Type --
1061 -------------------------
1062
1063 procedure Check_Unsigned_Type (E : Entity_Id) is
1064 Ancestor : Entity_Id;
1065 Lo_Bound : Node_Id;
1066 Btyp : Entity_Id;
1067
1068 begin
1069 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1070 return;
1071 end if;
1072
1073 -- Do not attempt to analyze case where range was in error
1074
199c6a10
AC
1075 if No (Scalar_Range (E))
1076 or else Error_Posted (Scalar_Range (E))
1077 then
70482933
RK
1078 return;
1079 end if;
1080
1081 -- The situation that is non trivial is something like
1082
1083 -- subtype x1 is integer range -10 .. +10;
1084 -- subtype x2 is x1 range 0 .. V1;
1085 -- subtype x3 is x2 range V2 .. V3;
1086 -- subtype x4 is x3 range V4 .. V5;
1087
1088 -- where Vn are variables. Here the base type is signed, but we still
1089 -- know that x4 is unsigned because of the lower bound of x2.
1090
1091 -- The only way to deal with this is to look up the ancestor chain
1092
1093 Ancestor := E;
1094 loop
1095 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1096 return;
1097 end if;
1098
1099 Lo_Bound := Type_Low_Bound (Ancestor);
1100
1101 if Compile_Time_Known_Value (Lo_Bound) then
1102
1103 if Expr_Rep_Value (Lo_Bound) >= 0 then
1104 Set_Is_Unsigned_Type (E, True);
1105 end if;
1106
1107 return;
1108
1109 else
1110 Ancestor := Ancestor_Subtype (Ancestor);
1111
1112 -- If no ancestor had a static lower bound, go to base type
1113
1114 if No (Ancestor) then
1115
1116 -- Note: the reason we still check for a compile time known
1117 -- value for the base type is that at least in the case of
1118 -- generic formals, we can have bounds that fail this test,
1119 -- and there may be other cases in error situations.
1120
1121 Btyp := Base_Type (E);
1122
1123 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1124 return;
1125 end if;
1126
1127 Lo_Bound := Type_Low_Bound (Base_Type (E));
1128
1129 if Compile_Time_Known_Value (Lo_Bound)
1130 and then Expr_Rep_Value (Lo_Bound) >= 0
1131 then
1132 Set_Is_Unsigned_Type (E, True);
1133 end if;
1134
1135 return;
70482933
RK
1136 end if;
1137 end if;
1138 end loop;
1139 end Check_Unsigned_Type;
1140
cfb120b5
AC
1141 -------------------------
1142 -- Is_Atomic_Aggregate --
1143 -------------------------
fbf5a39b 1144
cfb120b5 1145 function Is_Atomic_Aggregate
b0159fbe
AC
1146 (E : Entity_Id;
1147 Typ : Entity_Id) return Boolean
1148 is
fbf5a39b
AC
1149 Loc : constant Source_Ptr := Sloc (E);
1150 New_N : Node_Id;
b0159fbe 1151 Par : Node_Id;
fbf5a39b
AC
1152 Temp : Entity_Id;
1153
1154 begin
b0159fbe
AC
1155 Par := Parent (E);
1156
01957849 1157 -- Array may be qualified, so find outer context
b0159fbe
AC
1158
1159 if Nkind (Par) = N_Qualified_Expression then
1160 Par := Parent (Par);
1161 end if;
1162
fb2e11ee 1163 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1164 and then Comes_From_Source (Par)
fbf5a39b 1165 then
b29def53 1166 Temp := Make_Temporary (Loc, 'T', E);
fbf5a39b
AC
1167 New_N :=
1168 Make_Object_Declaration (Loc,
1169 Defining_Identifier => Temp,
c6a9797e
RD
1170 Object_Definition => New_Occurrence_Of (Typ, Loc),
1171 Expression => Relocate_Node (E));
b0159fbe 1172 Insert_Before (Par, New_N);
fbf5a39b
AC
1173 Analyze (New_N);
1174
b0159fbe
AC
1175 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1176 return True;
2c1b72d7 1177
b0159fbe
AC
1178 else
1179 return False;
fbf5a39b 1180 end if;
cfb120b5 1181 end Is_Atomic_Aggregate;
fbf5a39b 1182
70482933
RK
1183 ----------------
1184 -- Freeze_All --
1185 ----------------
1186
1187 -- Note: the easy coding for this procedure would be to just build a
1188 -- single list of freeze nodes and then insert them and analyze them
1189 -- all at once. This won't work, because the analysis of earlier freeze
1190 -- nodes may recursively freeze types which would otherwise appear later
1191 -- on in the freeze list. So we must analyze and expand the freeze nodes
1192 -- as they are generated.
1193
1194 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1195 E : Entity_Id;
1196 Decl : Node_Id;
1197
1198 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1199 -- This is the internal recursive routine that does freezing of entities
1200 -- (but NOT the analysis of default expressions, which should not be
1201 -- recursive, we don't want to analyze those till we are sure that ALL
1202 -- the types are frozen).
70482933 1203
fbf5a39b
AC
1204 --------------------
1205 -- Freeze_All_Ent --
1206 --------------------
1207
545cb5be 1208 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1209 E : Entity_Id;
1210 Flist : List_Id;
1211 Lastn : Node_Id;
1212
1213 procedure Process_Flist;
def46b54
RD
1214 -- If freeze nodes are present, insert and analyze, and reset cursor
1215 -- for next insertion.
70482933 1216
fbf5a39b
AC
1217 -------------------
1218 -- Process_Flist --
1219 -------------------
1220
70482933
RK
1221 procedure Process_Flist is
1222 begin
1223 if Is_Non_Empty_List (Flist) then
1224 Lastn := Next (After);
1225 Insert_List_After_And_Analyze (After, Flist);
1226
1227 if Present (Lastn) then
1228 After := Prev (Lastn);
1229 else
1230 After := Last (List_Containing (After));
1231 end if;
1232 end if;
1233 end Process_Flist;
1234
fbf5a39b
AC
1235 -- Start or processing for Freeze_All_Ent
1236
70482933
RK
1237 begin
1238 E := From;
1239 while Present (E) loop
1240
1241 -- If the entity is an inner package which is not a package
def46b54
RD
1242 -- renaming, then its entities must be frozen at this point. Note
1243 -- that such entities do NOT get frozen at the end of the nested
1244 -- package itself (only library packages freeze).
70482933
RK
1245
1246 -- Same is true for task declarations, where anonymous records
1247 -- created for entry parameters must be frozen.
1248
1249 if Ekind (E) = E_Package
1250 and then No (Renamed_Object (E))
1251 and then not Is_Child_Unit (E)
1252 and then not Is_Frozen (E)
1253 then
7d8b9c99 1254 Push_Scope (E);
70482933
RK
1255 Install_Visible_Declarations (E);
1256 Install_Private_Declarations (E);
1257
1258 Freeze_All (First_Entity (E), After);
1259
1260 End_Package_Scope (E);
1261
d3cb4cc0
AC
1262 if Is_Generic_Instance (E)
1263 and then Has_Delayed_Freeze (E)
1264 then
1265 Set_Has_Delayed_Freeze (E, False);
1266 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1267 end if;
1268
70482933
RK
1269 elsif Ekind (E) in Task_Kind
1270 and then
1271 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1272 or else
70482933
RK
1273 Nkind (Parent (E)) = N_Single_Task_Declaration)
1274 then
7d8b9c99 1275 Push_Scope (E);
70482933
RK
1276 Freeze_All (First_Entity (E), After);
1277 End_Scope;
1278
1279 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1280 -- primitive operations of the parent have been frozen, so that
1281 -- their addresses will be in the parent's dispatch table at the
1282 -- point it is inherited.
70482933
RK
1283
1284 elsif Ekind (E) = E_Record_Type
1285 and then Is_Tagged_Type (E)
1286 and then Is_Tagged_Type (Etype (E))
1287 and then Is_Derived_Type (E)
1288 then
1289 declare
1290 Prim_List : constant Elist_Id :=
1291 Primitive_Operations (Etype (E));
fbf5a39b
AC
1292
1293 Prim : Elmt_Id;
1294 Subp : Entity_Id;
70482933
RK
1295
1296 begin
df3e68b1 1297 Prim := First_Elmt (Prim_List);
70482933
RK
1298 while Present (Prim) loop
1299 Subp := Node (Prim);
1300
1301 if Comes_From_Source (Subp)
1302 and then not Is_Frozen (Subp)
1303 then
c159409f 1304 Flist := Freeze_Entity (Subp, After);
70482933
RK
1305 Process_Flist;
1306 end if;
1307
1308 Next_Elmt (Prim);
1309 end loop;
1310 end;
1311 end if;
1312
1313 if not Is_Frozen (E) then
c159409f 1314 Flist := Freeze_Entity (E, After);
70482933 1315 Process_Flist;
47e11d08
AC
1316
1317 -- If already frozen, and there are delayed aspects, this is where
1318 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1319 -- for a description of how we handle aspect visibility).
1320
1321 elsif Has_Delayed_Aspects (E) then
1322 declare
1323 Ritem : Node_Id;
1324
1325 begin
1326 Ritem := First_Rep_Item (E);
1327 while Present (Ritem) loop
1328 if Nkind (Ritem) = N_Aspect_Specification
bd949ee2 1329 and then Entity (Ritem) = E
47e11d08
AC
1330 and then Is_Delayed_Aspect (Ritem)
1331 then
1332 Check_Aspect_At_End_Of_Declarations (Ritem);
1333 end if;
1334
1335 Ritem := Next_Rep_Item (Ritem);
1336 end loop;
1337 end;
70482933
RK
1338 end if;
1339
def46b54
RD
1340 -- If an incomplete type is still not frozen, this may be a
1341 -- premature freezing because of a body declaration that follows.
1342 -- Indicate where the freezing took place.
fbf5a39b 1343
def46b54
RD
1344 -- If the freezing is caused by the end of the current declarative
1345 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1346
1347 if not Is_Frozen (E)
1348 and then Ekind (E) = E_Incomplete_Type
1349 then
1350 declare
1351 Bod : constant Node_Id := Next (After);
1352
1353 begin
545cb5be
AC
1354 if (Nkind_In (Bod, N_Subprogram_Body,
1355 N_Entry_Body,
1356 N_Package_Body,
1357 N_Protected_Body,
1358 N_Task_Body)
fbf5a39b
AC
1359 or else Nkind (Bod) in N_Body_Stub)
1360 and then
1361 List_Containing (After) = List_Containing (Parent (E))
1362 then
1363 Error_Msg_Sloc := Sloc (Next (After));
1364 Error_Msg_NE
1365 ("type& is frozen# before its full declaration",
1366 Parent (E), E);
1367 end if;
1368 end;
1369 end if;
1370
70482933
RK
1371 Next_Entity (E);
1372 end loop;
1373 end Freeze_All_Ent;
1374
1375 -- Start of processing for Freeze_All
1376
1377 begin
1378 Freeze_All_Ent (From, After);
1379
1380 -- Now that all types are frozen, we can deal with default expressions
1381 -- that require us to build a default expression functions. This is the
1382 -- point at which such functions are constructed (after all types that
1383 -- might be used in such expressions have been frozen).
fbf5a39b 1384
d4fc0fb4
AC
1385 -- For subprograms that are renaming_as_body, we create the wrapper
1386 -- bodies as needed.
1387
70482933
RK
1388 -- We also add finalization chains to access types whose designated
1389 -- types are controlled. This is normally done when freezing the type,
1390 -- but this misses recursive type definitions where the later members
c6a9797e 1391 -- of the recursion introduce controlled components.
70482933
RK
1392
1393 -- Loop through entities
1394
1395 E := From;
1396 while Present (E) loop
70482933
RK
1397 if Is_Subprogram (E) then
1398
1399 if not Default_Expressions_Processed (E) then
1400 Process_Default_Expressions (E, After);
1401 end if;
1402
1403 if not Has_Completion (E) then
1404 Decl := Unit_Declaration_Node (E);
1405
1406 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1407 Build_And_Analyze_Renamed_Body (Decl, E, After);
1408
1409 elsif Nkind (Decl) = N_Subprogram_Declaration
1410 and then Present (Corresponding_Body (Decl))
1411 and then
1412 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1413 = N_Subprogram_Renaming_Declaration
70482933
RK
1414 then
1415 Build_And_Analyze_Renamed_Body
1416 (Decl, Corresponding_Body (Decl), After);
1417 end if;
1418 end if;
1419
1420 elsif Ekind (E) in Task_Kind
1421 and then
1422 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1423 or else
70482933
RK
1424 Nkind (Parent (E)) = N_Single_Task_Declaration)
1425 then
1426 declare
1427 Ent : Entity_Id;
545cb5be 1428
70482933
RK
1429 begin
1430 Ent := First_Entity (E);
70482933 1431 while Present (Ent) loop
70482933
RK
1432 if Is_Entry (Ent)
1433 and then not Default_Expressions_Processed (Ent)
1434 then
1435 Process_Default_Expressions (Ent, After);
1436 end if;
1437
1438 Next_Entity (Ent);
1439 end loop;
1440 end;
1441
ca5af305
AC
1442 -- We add finalization masters to access types whose designated types
1443 -- require finalization. This is normally done when freezing the
1444 -- type, but this misses recursive type definitions where the later
1445 -- members of the recursion introduce controlled components (such as
1446 -- can happen when incomplete types are involved), as well cases
1447 -- where a component type is private and the controlled full type
1448 -- occurs after the access type is frozen. Cases that don't need a
1449 -- finalization master are generic formal types (the actual type will
1450 -- have it) and types with Java and CIL conventions, since those are
1451 -- used for API bindings. (Are there any other cases that should be
1452 -- excluded here???)
df3e68b1 1453
70482933
RK
1454 elsif Is_Access_Type (E)
1455 and then Comes_From_Source (E)
df3e68b1 1456 and then not Is_Generic_Type (E)
048e5cef 1457 and then Needs_Finalization (Designated_Type (E))
70482933 1458 then
ca5af305 1459 Build_Finalization_Master (E);
70482933
RK
1460 end if;
1461
1462 Next_Entity (E);
1463 end loop;
70482933
RK
1464 end Freeze_All;
1465
1466 -----------------------
1467 -- Freeze_And_Append --
1468 -----------------------
1469
1470 procedure Freeze_And_Append
1471 (Ent : Entity_Id;
c159409f 1472 N : Node_Id;
70482933
RK
1473 Result : in out List_Id)
1474 is
c159409f 1475 L : constant List_Id := Freeze_Entity (Ent, N);
70482933
RK
1476 begin
1477 if Is_Non_Empty_List (L) then
1478 if Result = No_List then
1479 Result := L;
1480 else
1481 Append_List (L, Result);
1482 end if;
1483 end if;
1484 end Freeze_And_Append;
1485
1486 -------------------
1487 -- Freeze_Before --
1488 -------------------
1489
1490 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
c159409f 1491 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
70482933
RK
1492 begin
1493 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1494 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1495 end if;
1496 end Freeze_Before;
1497
1498 -------------------
1499 -- Freeze_Entity --
1500 -------------------
1501
c159409f
AC
1502 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1503 Loc : constant Source_Ptr := Sloc (N);
c6823a20 1504 Test_E : Entity_Id := E;
70482933
RK
1505 Comp : Entity_Id;
1506 F_Node : Node_Id;
70482933
RK
1507 Indx : Node_Id;
1508 Formal : Entity_Id;
1509 Atype : Entity_Id;
1510
90878b12
AC
1511 Result : List_Id := No_List;
1512 -- List of freezing actions, left at No_List if none
1513
4c8a5bb8
AC
1514 Has_Default_Initialization : Boolean := False;
1515 -- This flag gets set to true for a variable with default initialization
1516
90878b12
AC
1517 procedure Add_To_Result (N : Node_Id);
1518 -- N is a freezing action to be appended to the Result
1519
70482933 1520 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1521 -- Check that an Access or Unchecked_Access attribute with a prefix
1522 -- which is the current instance type can only be applied when the type
1523 -- is limited.
70482933 1524
67b3acf8
RD
1525 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1526 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1527 -- integer literal without an explicit corresponding size clause. The
1528 -- caller has checked that Utype is a modular integer type.
1529
70482933
RK
1530 function After_Last_Declaration return Boolean;
1531 -- If Loc is a freeze_entity that appears after the last declaration
1532 -- in the scope, inhibit error messages on late completion.
1533
1534 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1535 -- Freeze each component, handle some representation clauses, and freeze
1536 -- primitive operations if this is a tagged type.
70482933 1537
90878b12
AC
1538 -------------------
1539 -- Add_To_Result --
1540 -------------------
1541
1542 procedure Add_To_Result (N : Node_Id) is
1543 begin
1544 if No (Result) then
1545 Result := New_List (N);
1546 else
1547 Append (N, Result);
1548 end if;
1549 end Add_To_Result;
1550
70482933
RK
1551 ----------------------------
1552 -- After_Last_Declaration --
1553 ----------------------------
1554
1555 function After_Last_Declaration return Boolean is
fb2e11ee 1556 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1557 begin
1558 if Nkind (Spec) = N_Package_Specification then
1559 if Present (Private_Declarations (Spec)) then
1560 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1561 elsif Present (Visible_Declarations (Spec)) then
1562 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1563 else
1564 return False;
1565 end if;
70482933
RK
1566 else
1567 return False;
1568 end if;
1569 end After_Last_Declaration;
1570
1571 ----------------------------
1572 -- Check_Current_Instance --
1573 ----------------------------
1574
1575 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1576
32c760e6
ES
1577 Rec_Type : constant Entity_Id :=
1578 Scope (Defining_Identifier (Comp_Decl));
1579
1580 Decl : constant Node_Id := Parent (Rec_Type);
1581
70482933 1582 function Process (N : Node_Id) return Traverse_Result;
49e90211 1583 -- Process routine to apply check to given node
70482933 1584
fbf5a39b
AC
1585 -------------
1586 -- Process --
1587 -------------
1588
70482933
RK
1589 function Process (N : Node_Id) return Traverse_Result is
1590 begin
1591 case Nkind (N) is
1592 when N_Attribute_Reference =>
def46b54 1593 if (Attribute_Name (N) = Name_Access
70482933
RK
1594 or else
1595 Attribute_Name (N) = Name_Unchecked_Access)
1596 and then Is_Entity_Name (Prefix (N))
1597 and then Is_Type (Entity (Prefix (N)))
1598 and then Entity (Prefix (N)) = E
1599 then
1600 Error_Msg_N
1601 ("current instance must be a limited type", Prefix (N));
1602 return Abandon;
1603 else
1604 return OK;
1605 end if;
1606
1607 when others => return OK;
1608 end case;
1609 end Process;
1610
1611 procedure Traverse is new Traverse_Proc (Process);
1612
1613 -- Start of processing for Check_Current_Instance
1614
1615 begin
32c760e6
ES
1616 -- In Ada95, the (imprecise) rule is that the current instance of a
1617 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1618 -- either a tagged type, or a limited record.
1619
1620 if Is_Limited_Type (Rec_Type)
0791fbe9 1621 and then (Ada_Version < Ada_2005 or else Is_Tagged_Type (Rec_Type))
32c760e6
ES
1622 then
1623 return;
1624
1625 elsif Nkind (Decl) = N_Full_Type_Declaration
1626 and then Limited_Present (Type_Definition (Decl))
1627 then
1628 return;
1629
1630 else
1631 Traverse (Comp_Decl);
1632 end if;
70482933
RK
1633 end Check_Current_Instance;
1634
67b3acf8
RD
1635 ------------------------------
1636 -- Check_Suspicious_Modulus --
1637 ------------------------------
1638
1639 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1640 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1641
1642 begin
1643 if Nkind (Decl) = N_Full_Type_Declaration then
1644 declare
1645 Tdef : constant Node_Id := Type_Definition (Decl);
1646 begin
1647 if Nkind (Tdef) = N_Modular_Type_Definition then
1648 declare
1649 Modulus : constant Node_Id :=
1650 Original_Node (Expression (Tdef));
1651 begin
1652 if Nkind (Modulus) = N_Integer_Literal then
1653 declare
1654 Modv : constant Uint := Intval (Modulus);
1655 Sizv : constant Uint := RM_Size (Utype);
1656
1657 begin
1658 -- First case, modulus and size are the same. This
1659 -- happens if you have something like mod 32, with
1660 -- an explicit size of 32, this is for sure a case
1661 -- where the warning is given, since it is seems
1662 -- very unlikely that someone would want e.g. a
1663 -- five bit type stored in 32 bits. It is much
1664 -- more likely they wanted a 32-bit type.
1665
1666 if Modv = Sizv then
1667 null;
1668
1669 -- Second case, the modulus is 32 or 64 and no
1670 -- size clause is present. This is a less clear
1671 -- case for giving the warning, but in the case
1672 -- of 32/64 (5-bit or 6-bit types) these seem rare
1673 -- enough that it is a likely error (and in any
1674 -- case using 2**5 or 2**6 in these cases seems
1675 -- clearer. We don't include 8 or 16 here, simply
1676 -- because in practice 3-bit and 4-bit types are
1677 -- more common and too many false positives if
1678 -- we warn in these cases.
1679
1680 elsif not Has_Size_Clause (Utype)
1681 and then (Modv = Uint_32 or else Modv = Uint_64)
1682 then
1683 null;
1684
1685 -- No warning needed
1686
1687 else
1688 return;
1689 end if;
1690
1691 -- If we fall through, give warning
1692
1693 Error_Msg_Uint_1 := Modv;
1694 Error_Msg_N
1695 ("?2 '*'*^' may have been intended here",
1696 Modulus);
1697 end;
1698 end if;
1699 end;
1700 end if;
1701 end;
1702 end if;
1703 end Check_Suspicious_Modulus;
1704
70482933
RK
1705 ------------------------
1706 -- Freeze_Record_Type --
1707 ------------------------
1708
1709 procedure Freeze_Record_Type (Rec : Entity_Id) is
1710 Comp : Entity_Id;
fbf5a39b 1711 IR : Node_Id;
70482933 1712 ADC : Node_Id;
c6823a20 1713 Prev : Entity_Id;
70482933 1714
67ce0d7e
RD
1715 Junk : Boolean;
1716 pragma Warnings (Off, Junk);
1717
70482933
RK
1718 Unplaced_Component : Boolean := False;
1719 -- Set True if we find at least one component with no component
1720 -- clause (used to warn about useless Pack pragmas).
1721
1722 Placed_Component : Boolean := False;
1723 -- Set True if we find at least one component with a component
8dc10d38
AC
1724 -- clause (used to warn about useless Bit_Order pragmas, and also
1725 -- to detect cases where Implicit_Packing may have an effect).
1726
1727 All_Scalar_Components : Boolean := True;
1728 -- Set False if we encounter a component of a non-scalar type
1729
1730 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1731 Scalar_Component_Total_Esize : Uint := Uint_0;
1732 -- Accumulates total RM_Size values and total Esize values of all
1733 -- scalar components. Used for processing of Implicit_Packing.
70482933 1734
e18d6a15
JM
1735 function Check_Allocator (N : Node_Id) return Node_Id;
1736 -- If N is an allocator, possibly wrapped in one or more level of
1737 -- qualified expression(s), return the inner allocator node, else
1738 -- return Empty.
19590d70 1739
7d8b9c99
RD
1740 procedure Check_Itype (Typ : Entity_Id);
1741 -- If the component subtype is an access to a constrained subtype of
1742 -- an already frozen type, make the subtype frozen as well. It might
1743 -- otherwise be frozen in the wrong scope, and a freeze node on
1744 -- subtype has no effect. Similarly, if the component subtype is a
1745 -- regular (not protected) access to subprogram, set the anonymous
1746 -- subprogram type to frozen as well, to prevent an out-of-scope
1747 -- freeze node at some eventual point of call. Protected operations
1748 -- are handled elsewhere.
6e059adb 1749
19590d70
GD
1750 ---------------------
1751 -- Check_Allocator --
1752 ---------------------
1753
e18d6a15
JM
1754 function Check_Allocator (N : Node_Id) return Node_Id is
1755 Inner : Node_Id;
19590d70 1756 begin
e18d6a15 1757 Inner := N;
e18d6a15
JM
1758 loop
1759 if Nkind (Inner) = N_Allocator then
1760 return Inner;
e18d6a15
JM
1761 elsif Nkind (Inner) = N_Qualified_Expression then
1762 Inner := Expression (Inner);
e18d6a15
JM
1763 else
1764 return Empty;
1765 end if;
1766 end loop;
19590d70
GD
1767 end Check_Allocator;
1768
6871ba5f
AC
1769 -----------------
1770 -- Check_Itype --
1771 -----------------
1772
7d8b9c99
RD
1773 procedure Check_Itype (Typ : Entity_Id) is
1774 Desig : constant Entity_Id := Designated_Type (Typ);
1775
6e059adb
AC
1776 begin
1777 if not Is_Frozen (Desig)
1778 and then Is_Frozen (Base_Type (Desig))
1779 then
1780 Set_Is_Frozen (Desig);
1781
1782 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1783 -- access subtype is elaborated early enough. This cannot be
1784 -- done if the subtype may depend on discriminants.
6e059adb
AC
1785
1786 if Ekind (Comp) = E_Component
1787 and then Is_Itype (Etype (Comp))
1788 and then not Has_Discriminants (Rec)
1789 then
1790 IR := Make_Itype_Reference (Sloc (Comp));
1791 Set_Itype (IR, Desig);
90878b12 1792 Add_To_Result (IR);
6e059adb 1793 end if;
7d8b9c99
RD
1794
1795 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1796 and then Convention (Desig) /= Convention_Protected
1797 then
1798 Set_Is_Frozen (Desig);
6e059adb
AC
1799 end if;
1800 end Check_Itype;
1801
1802 -- Start of processing for Freeze_Record_Type
1803
70482933 1804 begin
49e90211 1805 -- Freeze components and embedded subtypes
70482933
RK
1806
1807 Comp := First_Entity (Rec);
c6823a20 1808 Prev := Empty;
c6823a20 1809 while Present (Comp) loop
70482933 1810
8a95f4e8 1811 -- First handle the component case
70482933
RK
1812
1813 if Ekind (Comp) = E_Component
1814 or else Ekind (Comp) = E_Discriminant
1815 then
70482933
RK
1816 declare
1817 CC : constant Node_Id := Component_Clause (Comp);
1818
1819 begin
c6823a20
EB
1820 -- Freezing a record type freezes the type of each of its
1821 -- components. However, if the type of the component is
1822 -- part of this record, we do not want or need a separate
1823 -- Freeze_Node. Note that Is_Itype is wrong because that's
1824 -- also set in private type cases. We also can't check for
1825 -- the Scope being exactly Rec because of private types and
1826 -- record extensions.
1827
1828 if Is_Itype (Etype (Comp))
1829 and then Is_Record_Type (Underlying_Type
1830 (Scope (Etype (Comp))))
1831 then
1832 Undelay_Type (Etype (Comp));
1833 end if;
1834
c159409f 1835 Freeze_And_Append (Etype (Comp), N, Result);
c6823a20 1836
0da2c8ac
AC
1837 -- Check for error of component clause given for variable
1838 -- sized type. We have to delay this test till this point,
1839 -- since the component type has to be frozen for us to know
1840 -- if it is variable length. We omit this test in a generic
1841 -- context, it will be applied at instantiation time.
1842
70482933
RK
1843 if Present (CC) then
1844 Placed_Component := True;
1845
07fc65c4
GB
1846 if Inside_A_Generic then
1847 null;
1848
7d8b9c99
RD
1849 elsif not
1850 Size_Known_At_Compile_Time
1851 (Underlying_Type (Etype (Comp)))
70482933
RK
1852 then
1853 Error_Msg_N
1854 ("component clause not allowed for variable " &
1855 "length component", CC);
1856 end if;
1857
1858 else
1859 Unplaced_Component := True;
1860 end if;
70482933 1861
0da2c8ac 1862 -- Case of component requires byte alignment
70482933 1863
0da2c8ac 1864 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1865
0da2c8ac 1866 -- Set the enclosing record to also require byte align
70482933 1867
0da2c8ac 1868 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1869
7d8b9c99
RD
1870 -- Check for component clause that is inconsistent with
1871 -- the required byte boundary alignment.
70482933 1872
0da2c8ac
AC
1873 if Present (CC)
1874 and then Normalized_First_Bit (Comp) mod
1875 System_Storage_Unit /= 0
1876 then
1877 Error_Msg_N
1878 ("component & must be byte aligned",
1879 Component_Name (Component_Clause (Comp)));
1880 end if;
1881 end if;
0da2c8ac 1882 end;
70482933
RK
1883 end if;
1884
8a95f4e8
RD
1885 -- Gather data for possible Implicit_Packing later. Note that at
1886 -- this stage we might be dealing with a real component, or with
1887 -- an implicit subtype declaration.
8dc10d38 1888
426d2717
AC
1889 if not Is_Scalar_Type (Etype (Comp)) then
1890 All_Scalar_Components := False;
1891 else
1892 Scalar_Component_Total_RM_Size :=
1893 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1894 Scalar_Component_Total_Esize :=
1895 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
1896 end if;
1897
c6823a20
EB
1898 -- If the component is an Itype with Delayed_Freeze and is either
1899 -- a record or array subtype and its base type has not yet been
545cb5be
AC
1900 -- frozen, we must remove this from the entity list of this record
1901 -- and put it on the entity list of the scope of its base type.
1902 -- Note that we know that this is not the type of a component
1903 -- since we cleared Has_Delayed_Freeze for it in the previous
1904 -- loop. Thus this must be the Designated_Type of an access type,
1905 -- which is the type of a component.
c6823a20
EB
1906
1907 if Is_Itype (Comp)
1908 and then Is_Type (Scope (Comp))
1909 and then Is_Composite_Type (Comp)
1910 and then Base_Type (Comp) /= Comp
1911 and then Has_Delayed_Freeze (Comp)
1912 and then not Is_Frozen (Base_Type (Comp))
1913 then
1914 declare
1915 Will_Be_Frozen : Boolean := False;
1b24ada5 1916 S : Entity_Id;
c6823a20
EB
1917
1918 begin
fea9e956
ES
1919 -- We have a pretty bad kludge here. Suppose Rec is subtype
1920 -- being defined in a subprogram that's created as part of
1921 -- the freezing of Rec'Base. In that case, we know that
1922 -- Comp'Base must have already been frozen by the time we
1923 -- get to elaborate this because Gigi doesn't elaborate any
1924 -- bodies until it has elaborated all of the declarative
1925 -- part. But Is_Frozen will not be set at this point because
1926 -- we are processing code in lexical order.
1927
1928 -- We detect this case by going up the Scope chain of Rec
1929 -- and seeing if we have a subprogram scope before reaching
1930 -- the top of the scope chain or that of Comp'Base. If we
1931 -- do, then mark that Comp'Base will actually be frozen. If
1932 -- so, we merely undelay it.
c6823a20 1933
1b24ada5 1934 S := Scope (Rec);
c6823a20
EB
1935 while Present (S) loop
1936 if Is_Subprogram (S) then
1937 Will_Be_Frozen := True;
1938 exit;
1939 elsif S = Scope (Base_Type (Comp)) then
1940 exit;
1941 end if;
1942
1943 S := Scope (S);
1944 end loop;
1945
1946 if Will_Be_Frozen then
1947 Undelay_Type (Comp);
1948 else
1949 if Present (Prev) then
1950 Set_Next_Entity (Prev, Next_Entity (Comp));
1951 else
1952 Set_First_Entity (Rec, Next_Entity (Comp));
1953 end if;
1954
1955 -- Insert in entity list of scope of base type (which
1956 -- must be an enclosing scope, because still unfrozen).
1957
1958 Append_Entity (Comp, Scope (Base_Type (Comp)));
1959 end if;
1960 end;
1961
def46b54
RD
1962 -- If the component is an access type with an allocator as default
1963 -- value, the designated type will be frozen by the corresponding
1964 -- expression in init_proc. In order to place the freeze node for
1965 -- the designated type before that for the current record type,
1966 -- freeze it now.
c6823a20
EB
1967
1968 -- Same process if the component is an array of access types,
1969 -- initialized with an aggregate. If the designated type is
def46b54
RD
1970 -- private, it cannot contain allocators, and it is premature
1971 -- to freeze the type, so we check for this as well.
c6823a20
EB
1972
1973 elsif Is_Access_Type (Etype (Comp))
1974 and then Present (Parent (Comp))
1975 and then Present (Expression (Parent (Comp)))
c6823a20
EB
1976 then
1977 declare
e18d6a15
JM
1978 Alloc : constant Node_Id :=
1979 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
1980
1981 begin
e18d6a15 1982 if Present (Alloc) then
19590d70 1983
e18d6a15
JM
1984 -- If component is pointer to a classwide type, freeze
1985 -- the specific type in the expression being allocated.
1986 -- The expression may be a subtype indication, in which
1987 -- case freeze the subtype mark.
c6823a20 1988
e18d6a15
JM
1989 if Is_Class_Wide_Type
1990 (Designated_Type (Etype (Comp)))
0f4cb75c 1991 then
e18d6a15
JM
1992 if Is_Entity_Name (Expression (Alloc)) then
1993 Freeze_And_Append
c159409f 1994 (Entity (Expression (Alloc)), N, Result);
e18d6a15
JM
1995 elsif
1996 Nkind (Expression (Alloc)) = N_Subtype_Indication
1997 then
1998 Freeze_And_Append
1999 (Entity (Subtype_Mark (Expression (Alloc))),
c159409f 2000 N, Result);
e18d6a15 2001 end if;
0f4cb75c 2002
e18d6a15
JM
2003 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2004 Check_Itype (Etype (Comp));
0f4cb75c 2005
e18d6a15
JM
2006 else
2007 Freeze_And_Append
c159409f 2008 (Designated_Type (Etype (Comp)), N, Result);
e18d6a15 2009 end if;
c6823a20
EB
2010 end if;
2011 end;
2012
2013 elsif Is_Access_Type (Etype (Comp))
2014 and then Is_Itype (Designated_Type (Etype (Comp)))
2015 then
7d8b9c99 2016 Check_Itype (Etype (Comp));
c6823a20
EB
2017
2018 elsif Is_Array_Type (Etype (Comp))
2019 and then Is_Access_Type (Component_Type (Etype (Comp)))
2020 and then Present (Parent (Comp))
2021 and then Nkind (Parent (Comp)) = N_Component_Declaration
2022 and then Present (Expression (Parent (Comp)))
2023 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2024 and then Is_Fully_Defined
2025 (Designated_Type (Component_Type (Etype (Comp))))
2026 then
2027 Freeze_And_Append
2028 (Designated_Type
c159409f 2029 (Component_Type (Etype (Comp))), N, Result);
c6823a20
EB
2030 end if;
2031
2032 Prev := Comp;
70482933
RK
2033 Next_Entity (Comp);
2034 end loop;
2035
164e06c6 2036 -- Deal with Bit_Order aspect specifying a non-default bit order
fea9e956
ES
2037
2038 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2039 if not Placed_Component then
2040 ADC :=
2041 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
ed2233dc 2042 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
fea9e956
ES
2043 Error_Msg_N
2044 ("\?since no component clauses were specified", ADC);
2045
8a95f4e8 2046 -- Here is where we do the processing for reversed bit order
70482933 2047
8a95f4e8 2048 else
fea9e956
ES
2049 Adjust_Record_For_Reverse_Bit_Order (Rec);
2050 end if;
70482933
RK
2051 end if;
2052
8a95f4e8
RD
2053 -- Complete error checking on record representation clause (e.g.
2054 -- overlap of components). This is called after adjusting the
2055 -- record for reverse bit order.
2056
2057 declare
2058 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
2059 begin
2060 if Present (RRC) then
2061 Check_Record_Representation_Clause (RRC);
2062 end if;
2063 end;
2064
1b24ada5
RD
2065 -- Set OK_To_Reorder_Components depending on debug flags
2066
d347f572 2067 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
1b24ada5
RD
2068 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2069 or else
2070 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2071 then
2072 Set_OK_To_Reorder_Components (Rec);
2073 end if;
2074 end if;
2075
ee094616
RD
2076 -- Check for useless pragma Pack when all components placed. We only
2077 -- do this check for record types, not subtypes, since a subtype may
2078 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2079 -- sense to pack other subtypes or the parent type. We do not give
2080 -- this warning if Optimize_Alignment is set to Space, since the
2081 -- pragma Pack does have an effect in this case (it always resets
2082 -- the alignment to one).
70482933 2083
ee094616
RD
2084 if Ekind (Rec) = E_Record_Type
2085 and then Is_Packed (Rec)
70482933 2086 and then not Unplaced_Component
1b24ada5 2087 and then Optimize_Alignment /= 'S'
70482933 2088 then
def46b54
RD
2089 -- Reset packed status. Probably not necessary, but we do it so
2090 -- that there is no chance of the back end doing something strange
2091 -- with this redundant indication of packing.
ee094616 2092
70482933 2093 Set_Is_Packed (Rec, False);
ee094616
RD
2094
2095 -- Give warning if redundant constructs warnings on
2096
2097 if Warn_On_Redundant_Constructs then
ed2233dc 2098 Error_Msg_N -- CODEFIX
ee094616
RD
2099 ("?pragma Pack has no effect, no unplaced components",
2100 Get_Rep_Pragma (Rec, Name_Pack));
2101 end if;
70482933
RK
2102 end if;
2103
ee094616
RD
2104 -- If this is the record corresponding to a remote type, freeze the
2105 -- remote type here since that is what we are semantically freezing.
2106 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2107
2108 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2109 -- Finally, enforce the restriction that access attributes with a
2110 -- current instance prefix can only apply to limited types.
70482933 2111
8dc10d38 2112 if Ekind (Rec) = E_Record_Type then
70482933 2113 if Present (Corresponding_Remote_Type (Rec)) then
c159409f 2114 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
70482933
RK
2115 end if;
2116
2117 Comp := First_Component (Rec);
70482933 2118 while Present (Comp) loop
80fa4617
EB
2119
2120 -- Do not set Has_Controlled_Component on a class-wide
2121 -- equivalent type. See Make_CW_Equivalent_Type.
2122
2123 if not Is_Class_Wide_Equivalent_Type (Rec)
2124 and then (Has_Controlled_Component (Etype (Comp))
2125 or else (Chars (Comp) /= Name_uParent
2126 and then Is_Controlled (Etype (Comp)))
2127 or else (Is_Protected_Type (Etype (Comp))
2128 and then Present
2129 (Corresponding_Record_Type
2130 (Etype (Comp)))
2131 and then Has_Controlled_Component
2132 (Corresponding_Record_Type
2133 (Etype (Comp)))))
70482933
RK
2134 then
2135 Set_Has_Controlled_Component (Rec);
2136 exit;
2137 end if;
2138
2139 if Has_Unchecked_Union (Etype (Comp)) then
2140 Set_Has_Unchecked_Union (Rec);
2141 end if;
2142
32c760e6
ES
2143 if Has_Per_Object_Constraint (Comp) then
2144
ee094616
RD
2145 -- Scan component declaration for likely misuses of current
2146 -- instance, either in a constraint or a default expression.
70482933
RK
2147
2148 Check_Current_Instance (Parent (Comp));
2149 end if;
2150
2151 Next_Component (Comp);
2152 end loop;
2153 end if;
2154
2155 Set_Component_Alignment_If_Not_Set (Rec);
2156
ee094616
RD
2157 -- For first subtypes, check if there are any fixed-point fields with
2158 -- component clauses, where we must check the size. This is not done
2159 -- till the freeze point, since for fixed-point types, we do not know
2160 -- the size until the type is frozen. Similar processing applies to
2161 -- bit packed arrays.
70482933
RK
2162
2163 if Is_First_Subtype (Rec) then
2164 Comp := First_Component (Rec);
70482933
RK
2165 while Present (Comp) loop
2166 if Present (Component_Clause (Comp))
d05ef0ab
AC
2167 and then (Is_Fixed_Point_Type (Etype (Comp))
2168 or else
2169 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2170 then
2171 Check_Size
d05ef0ab 2172 (Component_Name (Component_Clause (Comp)),
70482933
RK
2173 Etype (Comp),
2174 Esize (Comp),
2175 Junk);
2176 end if;
2177
2178 Next_Component (Comp);
2179 end loop;
2180 end if;
7d8b9c99
RD
2181
2182 -- Generate warning for applying C or C++ convention to a record
2183 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2184 -- case, since the whole point in this case is interface C. We also
2185 -- do not generate this within instantiations, since we will have
2186 -- generated a message on the template.
7d8b9c99
RD
2187
2188 if Has_Discriminants (E)
2189 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2190 and then (Convention (E) = Convention_C
2191 or else
2192 Convention (E) = Convention_CPP)
2193 and then Comes_From_Source (E)
1b24ada5
RD
2194 and then not In_Instance
2195 and then not Has_Warnings_Off (E)
2196 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2197 then
2198 declare
2199 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2200 A2 : Node_Id;
2201
2202 begin
2203 if Present (Cprag) then
2204 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2205
2206 if Convention (E) = Convention_C then
2207 Error_Msg_N
2208 ("?variant record has no direct equivalent in C", A2);
2209 else
2210 Error_Msg_N
2211 ("?variant record has no direct equivalent in C++", A2);
2212 end if;
2213
2214 Error_Msg_NE
2215 ("\?use of convention for type& is dubious", A2, E);
2216 end if;
2217 end;
2218 end if;
8dc10d38 2219
ce14c577 2220 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 2221
426d2717 2222 if not Is_Packed (Rec)
ce14c577
AC
2223
2224 -- No implicit packing if even one component is explicitly placed
2225
426d2717 2226 and then not Placed_Component
ce14c577
AC
2227
2228 -- Must have size clause and all scalar components
2229
8dc10d38
AC
2230 and then Has_Size_Clause (Rec)
2231 and then All_Scalar_Components
ce14c577
AC
2232
2233 -- Do not try implicit packing on records with discriminants, too
2234 -- complicated, especially in the variant record case.
2235
8dc10d38 2236 and then not Has_Discriminants (Rec)
ce14c577
AC
2237
2238 -- We can implicitly pack if the specified size of the record is
2239 -- less than the sum of the object sizes (no point in packing if
2240 -- this is not the case).
2241
fc893455 2242 and then RM_Size (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
2243
2244 -- And the total RM size cannot be greater than the specified size
2245 -- since otherwise packing will not get us where we have to be!
2246
fc893455 2247 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
ce14c577 2248
25ebc085
AC
2249 -- Never do implicit packing in CodePeer or ALFA modes since
2250 -- we don't do any packing in this mode, since this generates
2251 -- over-complex code that confuses static analysis, and in
2252 -- general, neither CodePeer not GNATprove care about the
2253 -- internal representation of objects.
ce14c577 2254
d58b9515 2255 and then not CodePeer_Mode
25ebc085 2256 and then not ALFA_Mode
8dc10d38 2257 then
426d2717
AC
2258 -- If implicit packing enabled, do it
2259
2260 if Implicit_Packing then
2261 Set_Is_Packed (Rec);
2262
2263 -- Otherwise flag the size clause
2264
2265 else
2266 declare
2267 Sz : constant Node_Id := Size_Clause (Rec);
2268 begin
ed2233dc 2269 Error_Msg_NE -- CODEFIX
426d2717 2270 ("size given for& too small", Sz, Rec);
ed2233dc 2271 Error_Msg_N -- CODEFIX
426d2717
AC
2272 ("\use explicit pragma Pack "
2273 & "or use pragma Implicit_Packing", Sz);
2274 end;
2275 end if;
8dc10d38 2276 end if;
70482933
RK
2277 end Freeze_Record_Type;
2278
2279 -- Start of processing for Freeze_Entity
2280
2281 begin
c6823a20
EB
2282 -- We are going to test for various reasons why this entity need not be
2283 -- frozen here, but in the case of an Itype that's defined within a
2284 -- record, that test actually applies to the record.
2285
2286 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2287 Test_E := Scope (E);
2288 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2289 and then Is_Record_Type (Underlying_Type (Scope (E)))
2290 then
2291 Test_E := Underlying_Type (Scope (E));
2292 end if;
2293
fbf5a39b 2294 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2295
2296 if Is_Frozen (E) then
2297 return No_List;
2298
c6823a20
EB
2299 -- It is improper to freeze an external entity within a generic because
2300 -- its freeze node will appear in a non-valid context. The entity will
2301 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2302
c6823a20 2303 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2304 return No_List;
2305
164e06c6
AC
2306 -- AI05-0213: A formal incomplete type does not freeze the actual. In
2307 -- the instance, the same applies to the subtype renaming the actual.
d3cb4cc0
AC
2308
2309 elsif Is_Private_Type (E)
2310 and then Is_Generic_Actual_Type (E)
2311 and then No (Full_View (Base_Type (E)))
2312 and then Ada_Version >= Ada_2012
2313 then
2314 return No_List;
2315
70482933
RK
2316 -- Do not freeze a global entity within an inner scope created during
2317 -- expansion. A call to subprogram E within some internal procedure
2318 -- (a stream attribute for example) might require freezing E, but the
2319 -- freeze node must appear in the same declarative part as E itself.
2320 -- The two-pass elaboration mechanism in gigi guarantees that E will
2321 -- be frozen before the inner call is elaborated. We exclude constants
2322 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2323 -- must be diagnosed (e.g. in the case of a deferred constant being used
2324 -- in a default expression). If the enclosing subprogram comes from
2325 -- source, or is a generic instance, then the freeze point is the one
2326 -- mandated by the language, and we freeze the entity. A subprogram that
2327 -- is a child unit body that acts as a spec does not have a spec that
2328 -- comes from source, but can only come from source.
70482933 2329
c6823a20
EB
2330 elsif In_Open_Scopes (Scope (Test_E))
2331 and then Scope (Test_E) /= Current_Scope
2332 and then Ekind (Test_E) /= E_Constant
70482933
RK
2333 then
2334 declare
3cae7f14 2335 S : Entity_Id;
70482933
RK
2336
2337 begin
3cae7f14 2338 S := Current_Scope;
70482933
RK
2339 while Present (S) loop
2340 if Is_Overloadable (S) then
2341 if Comes_From_Source (S)
2342 or else Is_Generic_Instance (S)
fea9e956 2343 or else Is_Child_Unit (S)
70482933
RK
2344 then
2345 exit;
2346 else
2347 return No_List;
2348 end if;
2349 end if;
2350
2351 S := Scope (S);
2352 end loop;
2353 end;
555360a5
AC
2354
2355 -- Similarly, an inlined instance body may make reference to global
2356 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2357 -- for them, and in the absence of inlining freezing will take place in
2358 -- their own scope. Normally instance bodies are analyzed after the
2359 -- enclosing compilation, and everything has been frozen at the proper
2360 -- place, but with front-end inlining an instance body is compiled
2361 -- before the end of the enclosing scope, and as a result out-of-order
2362 -- freezing must be prevented.
555360a5
AC
2363
2364 elsif Front_End_Inlining
7d8b9c99 2365 and then In_Instance_Body
c6823a20 2366 and then Present (Scope (Test_E))
555360a5
AC
2367 then
2368 declare
3cae7f14 2369 S : Entity_Id;
c6823a20 2370
555360a5 2371 begin
3cae7f14 2372 S := Scope (Test_E);
555360a5
AC
2373 while Present (S) loop
2374 if Is_Generic_Instance (S) then
2375 exit;
2376 else
2377 S := Scope (S);
2378 end if;
2379 end loop;
2380
2381 if No (S) then
2382 return No_List;
2383 end if;
2384 end;
70482933
RK
2385 end if;
2386
6bb88533 2387 -- Deal with delayed aspect specifications. The analysis of the aspect
308e6f3a 2388 -- is required to be delayed to the freeze point, so we evaluate the
c159409f
AC
2389 -- pragma or attribute definition clause in the tree at this point.
2390
2391 if Has_Delayed_Aspects (E) then
2392 declare
2393 Ritem : Node_Id;
2394 Aitem : Node_Id;
2395
2396 begin
6bb88533
AC
2397 -- Look for aspect specification entries for this entity
2398
c159409f
AC
2399 Ritem := First_Rep_Item (E);
2400 while Present (Ritem) loop
6bb88533
AC
2401 if Nkind (Ritem) = N_Aspect_Specification
2402 and then Entity (Ritem) = E
47e11d08 2403 and then Is_Delayed_Aspect (Ritem)
d3cb4cc0 2404 and then Scope (E) = Current_Scope
6bb88533 2405 then
c159409f 2406 Aitem := Aspect_Rep_Item (Ritem);
a01b9df6
AC
2407
2408 -- Skip if this is an aspect with no corresponding pragma
2409 -- or attribute definition node (such as Default_Value).
2410
2411 if Present (Aitem) then
2412 Set_Parent (Aitem, Ritem);
2413 Analyze (Aitem);
2414 end if;
c159409f
AC
2415 end if;
2416
2417 Next_Rep_Item (Ritem);
2418 end loop;
2419 end;
2420 end if;
2421
70482933
RK
2422 -- Here to freeze the entity
2423
70482933
RK
2424 Set_Is_Frozen (E);
2425
2426 -- Case of entity being frozen is other than a type
2427
2428 if not Is_Type (E) then
2429
2430 -- If entity is exported or imported and does not have an external
2431 -- name, now is the time to provide the appropriate default name.
2432 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
2433 -- for any stubbed routine. For the case on intrinsics, if no
2434 -- external name is specified, then calls will be handled in
545cb5be
AC
2435 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
2436 -- external name is provided, then Expand_Intrinsic_Call leaves
75a64833 2437 -- calls in place for expansion by GIGI.
70482933
RK
2438
2439 if (Is_Imported (E) or else Is_Exported (E))
2440 and then No (Interface_Name (E))
2441 and then Convention (E) /= Convention_Stubbed
75a64833 2442 and then Convention (E) /= Convention_Intrinsic
70482933
RK
2443 then
2444 Set_Encoded_Interface_Name
2445 (E, Get_Default_External_Name (E));
fbf5a39b 2446
bbaba73f
EB
2447 -- If entity is an atomic object appearing in a declaration and
2448 -- the expression is an aggregate, assign it to a temporary to
2449 -- ensure that the actual assignment is done atomically rather
2450 -- than component-wise (the assignment to the temp may be done
2451 -- component-wise, but that is harmless).
fbf5a39b
AC
2452
2453 elsif Is_Atomic (E)
2454 and then Nkind (Parent (E)) = N_Object_Declaration
2455 and then Present (Expression (Parent (E)))
bbaba73f 2456 and then Nkind (Expression (Parent (E))) = N_Aggregate
f96b2d85 2457 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 2458 then
b0159fbe 2459 null;
70482933
RK
2460 end if;
2461
2462 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2463 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 2464 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
2465 -- created since we now know whether the subprogram will use a
2466 -- foreign convention.
70482933
RK
2467
2468 if Is_Subprogram (E) then
70482933 2469 if not Is_Internal (E) then
70482933 2470 declare
6d11af89 2471 F_Type : Entity_Id;
def46b54 2472 R_Type : Entity_Id;
6d11af89 2473 Warn_Node : Node_Id;
70482933 2474
70482933
RK
2475 begin
2476 -- Loop through formals
2477
2478 Formal := First_Formal (E);
70482933 2479 while Present (Formal) loop
70482933 2480 F_Type := Etype (Formal);
406935b6
AC
2481
2482 -- AI05-0151 : incomplete types can appear in a profile.
2483 -- By the time the entity is frozen, the full view must
2484 -- be available, unless it is a limited view.
2485
2486 if Is_Incomplete_Type (F_Type)
2487 and then Present (Full_View (F_Type))
2488 then
2489 F_Type := Full_View (F_Type);
2490 Set_Etype (Formal, F_Type);
2491 end if;
2492
c159409f 2493 Freeze_And_Append (F_Type, N, Result);
70482933
RK
2494
2495 if Is_Private_Type (F_Type)
2496 and then Is_Private_Type (Base_Type (F_Type))
2497 and then No (Full_View (Base_Type (F_Type)))
2498 and then not Is_Generic_Type (F_Type)
2499 and then not Is_Derived_Type (F_Type)
2500 then
2501 -- If the type of a formal is incomplete, subprogram
2502 -- is being frozen prematurely. Within an instance
2503 -- (but not within a wrapper package) this is an
fb2e11ee 2504 -- artifact of our need to regard the end of an
70482933
RK
2505 -- instantiation as a freeze point. Otherwise it is
2506 -- a definite error.
fbf5a39b 2507
70482933
RK
2508 if In_Instance then
2509 Set_Is_Frozen (E, False);
2510 return No_List;
2511
86cde7b1
RD
2512 elsif not After_Last_Declaration
2513 and then not Freezing_Library_Level_Tagged_Type
2514 then
70482933
RK
2515 Error_Msg_Node_1 := F_Type;
2516 Error_Msg
2517 ("type& must be fully defined before this point",
2518 Loc);
2519 end if;
2520 end if;
2521
def46b54 2522 -- Check suspicious parameter for C function. These tests
1b24ada5 2523 -- apply only to exported/imported subprograms.
70482933 2524
def46b54 2525 if Warn_On_Export_Import
1b24ada5 2526 and then Comes_From_Source (E)
def46b54
RD
2527 and then (Convention (E) = Convention_C
2528 or else
2529 Convention (E) = Convention_CPP)
def46b54 2530 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2531 and then Convention (E) /= Convention (Formal)
2532 and then not Has_Warnings_Off (E)
2533 and then not Has_Warnings_Off (F_Type)
2534 and then not Has_Warnings_Off (Formal)
fbf5a39b 2535 then
b3afa59b
AC
2536 -- Qualify mention of formals with subprogram name
2537
70482933 2538 Error_Msg_Qual_Level := 1;
def46b54
RD
2539
2540 -- Check suspicious use of fat C pointer
2541
2542 if Is_Access_Type (F_Type)
2543 and then Esize (F_Type) > Ttypes.System_Address_Size
2544 then
2545 Error_Msg_N
b3afa59b
AC
2546 ("?type of & does not correspond to C pointer!",
2547 Formal);
def46b54
RD
2548
2549 -- Check suspicious return of boolean
2550
2551 elsif Root_Type (F_Type) = Standard_Boolean
2552 and then Convention (F_Type) = Convention_Ada
67198556
RD
2553 and then not Has_Warnings_Off (F_Type)
2554 and then not Has_Size_Clause (F_Type)
6a2afd13 2555 and then VM_Target = No_VM
def46b54 2556 then
ed2233dc 2557 Error_Msg_N ("& is an 8-bit Ada Boolean?", Formal);
b3afa59b
AC
2558 Error_Msg_N
2559 ("\use appropriate corresponding type in C "
2560 & "(e.g. char)?", Formal);
def46b54
RD
2561
2562 -- Check suspicious tagged type
2563
2564 elsif (Is_Tagged_Type (F_Type)
2565 or else (Is_Access_Type (F_Type)
2566 and then
2567 Is_Tagged_Type
2568 (Designated_Type (F_Type))))
2569 and then Convention (E) = Convention_C
2570 then
2571 Error_Msg_N
e7d72fb9 2572 ("?& involves a tagged type which does not "
def46b54
RD
2573 & "correspond to any C type!", Formal);
2574
2575 -- Check wrong convention subprogram pointer
2576
2577 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2578 and then not Has_Foreign_Convention (F_Type)
2579 then
2580 Error_Msg_N
2581 ("?subprogram pointer & should "
2582 & "have foreign convention!", Formal);
2583 Error_Msg_Sloc := Sloc (F_Type);
2584 Error_Msg_NE
2585 ("\?add Convention pragma to declaration of &#",
2586 Formal, F_Type);
2587 end if;
2588
b3afa59b
AC
2589 -- Turn off name qualification after message output
2590
70482933
RK
2591 Error_Msg_Qual_Level := 0;
2592 end if;
2593
2594 -- Check for unconstrained array in exported foreign
2595 -- convention case.
2596
def46b54 2597 if Has_Foreign_Convention (E)
70482933
RK
2598 and then not Is_Imported (E)
2599 and then Is_Array_Type (F_Type)
2600 and then not Is_Constrained (F_Type)
fbf5a39b 2601 and then Warn_On_Export_Import
3acdda2d
AC
2602
2603 -- Exclude VM case, since both .NET and JVM can handle
2604 -- unconstrained arrays without a problem.
2605
2606 and then VM_Target = No_VM
70482933
RK
2607 then
2608 Error_Msg_Qual_Level := 1;
6d11af89
AC
2609
2610 -- If this is an inherited operation, place the
2611 -- warning on the derived type declaration, rather
2612 -- than on the original subprogram.
2613
2614 if Nkind (Original_Node (Parent (E))) =
2615 N_Full_Type_Declaration
2616 then
2617 Warn_Node := Parent (E);
2618
2619 if Formal = First_Formal (E) then
2620 Error_Msg_NE
add9f797 2621 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2622 end if;
2623 else
2624 Warn_Node := Formal;
2625 end if;
2626
2627 Error_Msg_NE
70482933 2628 ("?type of argument& is unconstrained array",
6d11af89
AC
2629 Warn_Node, Formal);
2630 Error_Msg_NE
70482933 2631 ("?foreign caller must pass bounds explicitly",
6d11af89 2632 Warn_Node, Formal);
70482933
RK
2633 Error_Msg_Qual_Level := 0;
2634 end if;
2635
d8db0bca
JM
2636 if not From_With_Type (F_Type) then
2637 if Is_Access_Type (F_Type) then
2638 F_Type := Designated_Type (F_Type);
2639 end if;
2640
7d8b9c99
RD
2641 -- If the formal is an anonymous_access_to_subprogram
2642 -- freeze the subprogram type as well, to prevent
2643 -- scope anomalies in gigi, because there is no other
2644 -- clear point at which it could be frozen.
2645
93bcda23 2646 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2647 and then Ekind (F_Type) = E_Subprogram_Type
2648 then
c159409f 2649 Freeze_And_Append (F_Type, N, Result);
d8db0bca
JM
2650 end if;
2651 end if;
2652
70482933
RK
2653 Next_Formal (Formal);
2654 end loop;
2655
5e39baa6 2656 -- Case of function: similar checks on return type
70482933
RK
2657
2658 if Ekind (E) = E_Function then
def46b54
RD
2659
2660 -- Freeze return type
2661
2662 R_Type := Etype (E);
406935b6
AC
2663
2664 -- AI05-0151: the return type may have been incomplete
2665 -- at the point of declaration.
2666
2667 if Ekind (R_Type) = E_Incomplete_Type
2668 and then Present (Full_View (R_Type))
2669 then
2670 R_Type := Full_View (R_Type);
2671 Set_Etype (E, R_Type);
2672 end if;
2673
c159409f 2674 Freeze_And_Append (R_Type, N, Result);
def46b54
RD
2675
2676 -- Check suspicious return type for C function
70482933 2677
fbf5a39b 2678 if Warn_On_Export_Import
def46b54
RD
2679 and then (Convention (E) = Convention_C
2680 or else
2681 Convention (E) = Convention_CPP)
def46b54 2682 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2683 then
def46b54
RD
2684 -- Check suspicious return of fat C pointer
2685
2686 if Is_Access_Type (R_Type)
2687 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2688 and then not Has_Warnings_Off (E)
2689 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2690 then
2691 Error_Msg_N
2692 ("?return type of& does not "
2693 & "correspond to C pointer!", E);
2694
2695 -- Check suspicious return of boolean
2696
2697 elsif Root_Type (R_Type) = Standard_Boolean
2698 and then Convention (R_Type) = Convention_Ada
6a2afd13 2699 and then VM_Target = No_VM
1b24ada5
RD
2700 and then not Has_Warnings_Off (E)
2701 and then not Has_Warnings_Off (R_Type)
67198556 2702 and then not Has_Size_Clause (R_Type)
def46b54 2703 then
b3afa59b
AC
2704 declare
2705 N : constant Node_Id :=
2706 Result_Definition (Declaration_Node (E));
2707 begin
2708 Error_Msg_NE
2709 ("return type of & is an 8-bit Ada Boolean?",
2710 N, E);
2711 Error_Msg_NE
2712 ("\use appropriate corresponding type in C "
2713 & "(e.g. char)?", N, E);
2714 end;
70482933 2715
def46b54
RD
2716 -- Check suspicious return tagged type
2717
2718 elsif (Is_Tagged_Type (R_Type)
2719 or else (Is_Access_Type (R_Type)
2720 and then
2721 Is_Tagged_Type
2722 (Designated_Type (R_Type))))
2723 and then Convention (E) = Convention_C
1b24ada5
RD
2724 and then not Has_Warnings_Off (E)
2725 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2726 then
2727 Error_Msg_N
2728 ("?return type of & does not "
2729 & "correspond to C type!", E);
2730
2731 -- Check return of wrong convention subprogram pointer
2732
2733 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2734 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2735 and then not Has_Warnings_Off (E)
2736 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2737 then
2738 Error_Msg_N
2739 ("?& should return a foreign "
2740 & "convention subprogram pointer", E);
2741 Error_Msg_Sloc := Sloc (R_Type);
2742 Error_Msg_NE
2743 ("\?add Convention pragma to declaration of& #",
2744 E, R_Type);
2745 end if;
2746 end if;
2747
308e6f3a 2748 -- Give warning for suspicious return of a result of an
e7d72fb9
AC
2749 -- unconstrained array type in a foreign convention
2750 -- function.
59366db6 2751
e7d72fb9
AC
2752 if Has_Foreign_Convention (E)
2753
2c1b72d7 2754 -- We are looking for a return of unconstrained array
e7d72fb9
AC
2755
2756 and then Is_Array_Type (R_Type)
93bcda23 2757 and then not Is_Constrained (R_Type)
e7d72fb9 2758
2c1b72d7
AC
2759 -- Exclude imported routines, the warning does not
2760 -- belong on the import, but rather on the routine
2761 -- definition.
e7d72fb9 2762
70482933 2763 and then not Is_Imported (E)
e7d72fb9 2764
2c1b72d7
AC
2765 -- Exclude VM case, since both .NET and JVM can handle
2766 -- return of unconstrained arrays without a problem.
e7d72fb9 2767
f3b57ab0 2768 and then VM_Target = No_VM
e7d72fb9 2769
2c1b72d7
AC
2770 -- Check that general warning is enabled, and that it
2771 -- is not suppressed for this particular case.
e7d72fb9 2772
fbf5a39b 2773 and then Warn_On_Export_Import
1b24ada5 2774 and then not Has_Warnings_Off (E)
93bcda23 2775 and then not Has_Warnings_Off (R_Type)
70482933
RK
2776 then
2777 Error_Msg_N
fbf5a39b 2778 ("?foreign convention function& should not " &
1b24ada5 2779 "return unconstrained array!", E);
70482933
RK
2780 end if;
2781 end if;
2782 end;
2783 end if;
2784
2785 -- Must freeze its parent first if it is a derived subprogram
2786
2787 if Present (Alias (E)) then
c159409f 2788 Freeze_And_Append (Alias (E), N, Result);
70482933
RK
2789 end if;
2790
19590d70
GD
2791 -- We don't freeze internal subprograms, because we don't normally
2792 -- want addition of extra formals or mechanism setting to happen
2793 -- for those. However we do pass through predefined dispatching
2794 -- cases, since extra formals may be needed in some cases, such as
2795 -- for the stream 'Input function (build-in-place formals).
2796
2797 if not Is_Internal (E)
2798 or else Is_Predefined_Dispatching_Operation (E)
2799 then
70482933
RK
2800 Freeze_Subprogram (E);
2801 end if;
2802
2803 -- Here for other than a subprogram or type
2804
2805 else
2806 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2807 -- freeze it first (RM 13.14(10)).
70482933 2808
ac72c9c5 2809 if Present (Etype (E))
70482933
RK
2810 and then Ekind (E) /= E_Generic_Function
2811 then
c159409f 2812 Freeze_And_Append (Etype (E), N, Result);
70482933
RK
2813 end if;
2814
2c9beb8a 2815 -- Special processing for objects created by object declaration
70482933
RK
2816
2817 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 2818
6823270c
AC
2819 -- Abstract type allowed only for C++ imported variables or
2820 -- constants.
2821
2822 -- Note: we inhibit this check for objects that do not come
2823 -- from source because there is at least one case (the
2824 -- expansion of x'class'input where x is abstract) where we
2825 -- legitimately generate an abstract object.
2826
2827 if Is_Abstract_Type (Etype (E))
2828 and then Comes_From_Source (Parent (E))
2829 and then not (Is_Imported (E)
2830 and then Is_CPP_Class (Etype (E)))
2831 then
2832 Error_Msg_N ("type of object cannot be abstract",
2833 Object_Definition (Parent (E)));
2834
2835 if Is_CPP_Class (Etype (E)) then
ed2233dc
AC
2836 Error_Msg_NE
2837 ("\} may need a cpp_constructor",
6823270c
AC
2838 Object_Definition (Parent (E)), Etype (E));
2839 end if;
2840 end if;
2841
2c9beb8a
RD
2842 -- For object created by object declaration, perform required
2843 -- categorization (preelaborate and pure) checks. Defer these
2844 -- checks to freeze time since pragma Import inhibits default
2845 -- initialization and thus pragma Import affects these checks.
2846
70482933 2847 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2848
1ce1f005 2849 -- If there is an address clause, check that it is valid
2c9beb8a 2850
fbf5a39b 2851 Check_Address_Clause (E);
2c9beb8a 2852
1ce1f005
GD
2853 -- If the object needs any kind of default initialization, an
2854 -- error must be issued if No_Default_Initialization applies.
2855 -- The check doesn't apply to imported objects, which are not
2856 -- ever default initialized, and is why the check is deferred
2857 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2858 -- Deferred constants are also exempted from this test because
2859 -- their completion is explicit, or through an import pragma.
1ce1f005 2860
4fec4e7a
ES
2861 if Ekind (E) = E_Constant
2862 and then Present (Full_View (E))
2863 then
2864 null;
2865
2866 elsif Comes_From_Source (E)
b6e209b5 2867 and then not Is_Imported (E)
1ce1f005
GD
2868 and then not Has_Init_Expression (Declaration_Node (E))
2869 and then
2870 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2871 and then not No_Initialization (Declaration_Node (E))
2872 and then not Is_Value_Type (Etype (E))
5b1e6aca 2873 and then not Initialization_Suppressed (Etype (E)))
1ce1f005
GD
2874 or else
2875 (Needs_Simple_Initialization (Etype (E))
2876 and then not Is_Internal (E)))
2877 then
4c8a5bb8 2878 Has_Default_Initialization := True;
1ce1f005
GD
2879 Check_Restriction
2880 (No_Default_Initialization, Declaration_Node (E));
2881 end if;
2882
4c8a5bb8
AC
2883 -- Check that a Thread_Local_Storage variable does not have
2884 -- default initialization, and any explicit initialization must
2885 -- either be the null constant or a static constant.
2886
2887 if Has_Pragma_Thread_Local_Storage (E) then
2888 declare
2889 Decl : constant Node_Id := Declaration_Node (E);
2890 begin
2891 if Has_Default_Initialization
2892 or else
2893 (Has_Init_Expression (Decl)
2894 and then
2895 (No (Expression (Decl))
2896 or else not
2897 (Is_Static_Expression (Expression (Decl))
2898 or else
2899 Nkind (Expression (Decl)) = N_Null)))
2900 then
2901 Error_Msg_NE
2902 ("Thread_Local_Storage variable& is "
2903 & "improperly initialized", Decl, E);
2904 Error_Msg_NE
2905 ("\only allowed initialization is explicit "
2906 & "NULL or static expression", Decl, E);
2907 end if;
2908 end;
2909 end if;
2910
def46b54
RD
2911 -- For imported objects, set Is_Public unless there is also an
2912 -- address clause, which means that there is no external symbol
2913 -- needed for the Import (Is_Public may still be set for other
2914 -- unrelated reasons). Note that we delayed this processing
2915 -- till freeze time so that we can be sure not to set the flag
2916 -- if there is an address clause. If there is such a clause,
2917 -- then the only purpose of the Import pragma is to suppress
2918 -- implicit initialization.
2c9beb8a
RD
2919
2920 if Is_Imported (E)
add9f797 2921 and then No (Address_Clause (E))
2c9beb8a
RD
2922 then
2923 Set_Is_Public (E);
2924 end if;
7d8b9c99
RD
2925
2926 -- For convention C objects of an enumeration type, warn if
2927 -- the size is not integer size and no explicit size given.
2928 -- Skip warning for Boolean, and Character, assume programmer
2929 -- expects 8-bit sizes for these cases.
2930
2931 if (Convention (E) = Convention_C
2932 or else
2933 Convention (E) = Convention_CPP)
2934 and then Is_Enumeration_Type (Etype (E))
2935 and then not Is_Character_Type (Etype (E))
2936 and then not Is_Boolean_Type (Etype (E))
2937 and then Esize (Etype (E)) < Standard_Integer_Size
2938 and then not Has_Size_Clause (E)
2939 then
2940 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2941 Error_Msg_N
2942 ("?convention C enumeration object has size less than ^",
2943 E);
2944 Error_Msg_N ("\?use explicit size clause to set size", E);
2945 end if;
70482933
RK
2946 end if;
2947
2948 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2949 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2950
2951 -- Note: Atomic[_Components] also sets Volatile[_Components]
2952
2953 if Ekind (E) = E_Constant
2954 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2955 and then not Is_Imported (E)
2956 then
2957 -- Make sure we actually have a pragma, and have not merely
2958 -- inherited the indication from elsewhere (e.g. an address
2959 -- clause, which is not good enough in RM terms!)
2960
1d571f3b 2961 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2962 or else
1d571f3b 2963 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2964 then
2965 Error_Msg_N
91b1417d 2966 ("stand alone atomic constant must be " &
def46b54 2967 "imported (RM C.6(13))", E);
91b1417d 2968
1d571f3b 2969 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2970 or else
1d571f3b 2971 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2972 then
2973 Error_Msg_N
2974 ("stand alone volatile constant must be " &
86cde7b1 2975 "imported (RM C.6(13))", E);
70482933
RK
2976 end if;
2977 end if;
2978
2979 -- Static objects require special handling
2980
2981 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2982 and then Is_Statically_Allocated (E)
2983 then
2984 Freeze_Static_Object (E);
2985 end if;
2986
2987 -- Remaining step is to layout objects
2988
2989 if Ekind (E) = E_Variable
2990 or else
2991 Ekind (E) = E_Constant
2992 or else
2993 Ekind (E) = E_Loop_Parameter
2994 or else
2995 Is_Formal (E)
2996 then
2997 Layout_Object (E);
2998 end if;
2999 end if;
3000
3001 -- Case of a type or subtype being frozen
3002
3003 else
31b5873d
GD
3004 -- We used to check here that a full type must have preelaborable
3005 -- initialization if it completes a private type specified with
308e6f3a 3006 -- pragma Preelaborable_Initialization, but that missed cases where
31b5873d
GD
3007 -- the types occur within a generic package, since the freezing
3008 -- that occurs within a containing scope generally skips traversal
3009 -- of a generic unit's declarations (those will be frozen within
3010 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 3011
70482933
RK
3012 -- The type may be defined in a generic unit. This can occur when
3013 -- freezing a generic function that returns the type (which is
3014 -- defined in a parent unit). It is clearly meaningless to freeze
3015 -- this type. However, if it is a subtype, its size may be determi-
3016 -- nable and used in subsequent checks, so might as well try to
3017 -- compute it.
3018
3019 if Present (Scope (E))
3020 and then Is_Generic_Unit (Scope (E))
3021 then
3022 Check_Compile_Time_Size (E);
3023 return No_List;
3024 end if;
3025
3026 -- Deal with special cases of freezing for subtype
3027
3028 if E /= Base_Type (E) then
3029
86cde7b1
RD
3030 -- Before we do anything else, a specialized test for the case of
3031 -- a size given for an array where the array needs to be packed,
3032 -- but was not so the size cannot be honored. This would of course
3033 -- be caught by the backend, and indeed we don't catch all cases.
3034 -- The point is that we can give a better error message in those
3035 -- cases that we do catch with the circuitry here. Also if pragma
3036 -- Implicit_Packing is set, this is where the packing occurs.
3037
3038 -- The reason we do this so early is that the processing in the
3039 -- automatic packing case affects the layout of the base type, so
3040 -- it must be done before we freeze the base type.
3041
3042 if Is_Array_Type (E) then
3043 declare
3044 Lo, Hi : Node_Id;
3045 Ctyp : constant Entity_Id := Component_Type (E);
3046
3047 begin
3048 -- Check enabling conditions. These are straightforward
3049 -- except for the test for a limited composite type. This
3050 -- eliminates the rare case of a array of limited components
3051 -- where there are issues of whether or not we can go ahead
3052 -- and pack the array (since we can't freely pack and unpack
3053 -- arrays if they are limited).
3054
3055 -- Note that we check the root type explicitly because the
3056 -- whole point is we are doing this test before we have had
3057 -- a chance to freeze the base type (and it is that freeze
3058 -- action that causes stuff to be inherited).
3059
3060 if Present (Size_Clause (E))
fc893455 3061 and then Known_Static_RM_Size (E)
86cde7b1
RD
3062 and then not Is_Packed (E)
3063 and then not Has_Pragma_Pack (E)
3064 and then Number_Dimensions (E) = 1
3065 and then not Has_Component_Size_Clause (E)
fc893455 3066 and then Known_Static_RM_Size (Ctyp)
86cde7b1
RD
3067 and then not Is_Limited_Composite (E)
3068 and then not Is_Packed (Root_Type (E))
3069 and then not Has_Component_Size_Clause (Root_Type (E))
d58b9515 3070 and then not CodePeer_Mode
25ebc085 3071 and then not ALFA_Mode
86cde7b1
RD
3072 then
3073 Get_Index_Bounds (First_Index (E), Lo, Hi);
3074
3075 if Compile_Time_Known_Value (Lo)
3076 and then Compile_Time_Known_Value (Hi)
3077 and then Known_Static_RM_Size (Ctyp)
3078 and then RM_Size (Ctyp) < 64
3079 then
3080 declare
3081 Lov : constant Uint := Expr_Value (Lo);
3082 Hiv : constant Uint := Expr_Value (Hi);
3083 Len : constant Uint := UI_Max
3084 (Uint_0,
3085 Hiv - Lov + 1);
3086 Rsiz : constant Uint := RM_Size (Ctyp);
3087 SZ : constant Node_Id := Size_Clause (E);
3088 Btyp : constant Entity_Id := Base_Type (E);
3089
3090 -- What we are looking for here is the situation where
3091 -- the RM_Size given would be exactly right if there
3092 -- was a pragma Pack (resulting in the component size
3093 -- being the same as the RM_Size). Furthermore, the
3094 -- component type size must be an odd size (not a
5a989c6b
AC
3095 -- multiple of storage unit). If the component RM size
3096 -- is an exact number of storage units that is a power
3097 -- of two, the array is not packed and has a standard
3098 -- representation.
86cde7b1
RD
3099
3100 begin
3101 if RM_Size (E) = Len * Rsiz
3102 and then Rsiz mod System_Storage_Unit /= 0
3103 then
3104 -- For implicit packing mode, just set the
fd366a46 3105 -- component size silently.
86cde7b1
RD
3106
3107 if Implicit_Packing then
3108 Set_Component_Size (Btyp, Rsiz);
3109 Set_Is_Bit_Packed_Array (Btyp);
3110 Set_Is_Packed (Btyp);
3111 Set_Has_Non_Standard_Rep (Btyp);
3112
3113 -- Otherwise give an error message
3114
3115 else
3116 Error_Msg_NE
3117 ("size given for& too small", SZ, E);
ed2233dc 3118 Error_Msg_N -- CODEFIX
86cde7b1
RD
3119 ("\use explicit pragma Pack "
3120 & "or use pragma Implicit_Packing", SZ);
3121 end if;
5a989c6b
AC
3122
3123 elsif RM_Size (E) = Len * Rsiz
3124 and then Implicit_Packing
3125 and then
3126 (Rsiz / System_Storage_Unit = 1
3127 or else Rsiz / System_Storage_Unit = 2
3128 or else Rsiz / System_Storage_Unit = 4)
3129 then
3130
3131 -- Not a packed array, but indicate the desired
3132 -- component size, for the back-end.
3133
3134 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
3135 end if;
3136 end;
3137 end if;
3138 end if;
3139 end;
3140 end if;
3141
def46b54 3142 -- If ancestor subtype present, freeze that first. Note that this
8110ee3b 3143 -- will also get the base type frozen. Need RM reference ???
70482933
RK
3144
3145 Atype := Ancestor_Subtype (E);
3146
3147 if Present (Atype) then
c159409f 3148 Freeze_And_Append (Atype, N, Result);
70482933 3149
8110ee3b 3150 -- No ancestor subtype present
70482933 3151
8110ee3b
RD
3152 else
3153 -- See if we have a nearest ancestor that has a predicate.
3154 -- That catches the case of derived type with a predicate.
3155 -- Need RM reference here ???
3156
3157 Atype := Nearest_Ancestor (E);
3158
3159 if Present (Atype) and then Has_Predicates (Atype) then
3160 Freeze_And_Append (Atype, N, Result);
3161 end if;
3162
3163 -- Freeze base type before freezing the entity (RM 13.14(15))
3164
3165 if E /= Base_Type (E) then
3166 Freeze_And_Append (Base_Type (E), N, Result);
3167 end if;
70482933
RK
3168 end if;
3169
fbf5a39b 3170 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
3171
3172 elsif Is_Derived_Type (E) then
c159409f
AC
3173 Freeze_And_Append (Etype (E), N, Result);
3174 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
70482933
RK
3175 end if;
3176
3177 -- For array type, freeze index types and component type first
fbf5a39b 3178 -- before freezing the array (RM 13.14(15)).
70482933
RK
3179
3180 if Is_Array_Type (E) then
3181 declare
094cefda
AC
3182 FS : constant Entity_Id := First_Subtype (E);
3183 Ctyp : constant Entity_Id := Component_Type (E);
3184 Clause : Entity_Id;
70482933
RK
3185
3186 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
3187 -- Set true if any of the index types is an enumeration type
3188 -- with a non-standard representation.
70482933
RK
3189
3190 begin
c159409f 3191 Freeze_And_Append (Ctyp, N, Result);
70482933
RK
3192
3193 Indx := First_Index (E);
3194 while Present (Indx) loop
c159409f 3195 Freeze_And_Append (Etype (Indx), N, Result);
70482933
RK
3196
3197 if Is_Enumeration_Type (Etype (Indx))
3198 and then Has_Non_Standard_Rep (Etype (Indx))
3199 then
3200 Non_Standard_Enum := True;
3201 end if;
3202
3203 Next_Index (Indx);
3204 end loop;
3205
07fc65c4 3206 -- Processing that is done only for base types
70482933
RK
3207
3208 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3209
3210 -- Propagate flags for component type
3211
70482933
RK
3212 if Is_Controlled (Component_Type (E))
3213 or else Has_Controlled_Component (Ctyp)
3214 then
3215 Set_Has_Controlled_Component (E);
3216 end if;
3217
3218 if Has_Unchecked_Union (Component_Type (E)) then
3219 Set_Has_Unchecked_Union (E);
3220 end if;
70482933 3221
07fc65c4
GB
3222 -- If packing was requested or if the component size was set
3223 -- explicitly, then see if bit packing is required. This
3224 -- processing is only done for base types, since all the
3225 -- representation aspects involved are type-related. This
3226 -- is not just an optimization, if we start processing the
e14c931f 3227 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3228 -- type (this is because Is_Packed has a slightly different
3229 -- meaning before and after freezing).
70482933 3230
70482933
RK
3231 declare
3232 Csiz : Uint;
3233 Esiz : Uint;
3234
3235 begin
3236 if (Is_Packed (E) or else Has_Pragma_Pack (E))
70482933 3237 and then Known_Static_RM_Size (Ctyp)
094cefda 3238 and then not Has_Component_Size_Clause (E)
70482933
RK
3239 then
3240 Csiz := UI_Max (RM_Size (Ctyp), 1);
3241
3242 elsif Known_Component_Size (E) then
3243 Csiz := Component_Size (E);
3244
3245 elsif not Known_Static_Esize (Ctyp) then
3246 Csiz := Uint_0;
3247
3248 else
3249 Esiz := Esize (Ctyp);
3250
3251 -- We can set the component size if it is less than
3252 -- 16, rounding it up to the next storage unit size.
3253
3254 if Esiz <= 8 then
3255 Csiz := Uint_8;
3256 elsif Esiz <= 16 then
3257 Csiz := Uint_16;
3258 else
3259 Csiz := Uint_0;
3260 end if;
3261
7d8b9c99
RD
3262 -- Set component size up to match alignment if it
3263 -- would otherwise be less than the alignment. This
3264 -- deals with cases of types whose alignment exceeds
3265 -- their size (padded types).
70482933
RK
3266
3267 if Csiz /= 0 then
3268 declare
3269 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3270 begin
3271 if Csiz < A then
3272 Csiz := A;
3273 end if;
3274 end;
3275 end if;
70482933
RK
3276 end if;
3277
86cde7b1
RD
3278 -- Case of component size that may result in packing
3279
70482933 3280 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3281 declare
3282 Ent : constant Entity_Id :=
3283 First_Subtype (E);
3284 Pack_Pragma : constant Node_Id :=
3285 Get_Rep_Pragma (Ent, Name_Pack);
3286 Comp_Size_C : constant Node_Id :=
3287 Get_Attribute_Definition_Clause
3288 (Ent, Attribute_Component_Size);
3289 begin
3290 -- Warn if we have pack and component size so that
3291 -- the pack is ignored.
70482933 3292
86cde7b1
RD
3293 -- Note: here we must check for the presence of a
3294 -- component size before checking for a Pack pragma
3295 -- to deal with the case where the array type is a
3296 -- derived type whose parent is currently private.
3297
3298 if Present (Comp_Size_C)
3299 and then Has_Pragma_Pack (Ent)
094cefda 3300 and then Warn_On_Redundant_Constructs
86cde7b1
RD
3301 then
3302 Error_Msg_Sloc := Sloc (Comp_Size_C);
3303 Error_Msg_NE
3304 ("?pragma Pack for& ignored!",
3305 Pack_Pragma, Ent);
3306 Error_Msg_N
3307 ("\?explicit component size given#!",
3308 Pack_Pragma);
094cefda
AC
3309 Set_Is_Packed (Base_Type (Ent), False);
3310 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
86cde7b1 3311 end if;
70482933 3312
86cde7b1
RD
3313 -- Set component size if not already set by a
3314 -- component size clause.
70482933 3315
86cde7b1
RD
3316 if not Present (Comp_Size_C) then
3317 Set_Component_Size (E, Csiz);
3318 end if;
fbf5a39b 3319
86cde7b1
RD
3320 -- Check for base type of 8, 16, 32 bits, where an
3321 -- unsigned subtype has a length one less than the
3322 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3323
86cde7b1
RD
3324 -- In such cases, if a component size was not set
3325 -- explicitly, then generate a warning.
fbf5a39b 3326
86cde7b1
RD
3327 if Has_Pragma_Pack (E)
3328 and then not Present (Comp_Size_C)
3329 and then
3330 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3331 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3332 then
3333 Error_Msg_Uint_1 := Csiz;
3334
3335 if Present (Pack_Pragma) then
3336 Error_Msg_N
3337 ("?pragma Pack causes component size "
3338 & "to be ^!", Pack_Pragma);
3339 Error_Msg_N
3340 ("\?use Component_Size to set "
3341 & "desired value!", Pack_Pragma);
3342 end if;
fbf5a39b 3343 end if;
fbf5a39b 3344
86cde7b1
RD
3345 -- Actual packing is not needed for 8, 16, 32, 64.
3346 -- Also not needed for 24 if alignment is 1.
70482933 3347
86cde7b1
RD
3348 if Csiz = 8
3349 or else Csiz = 16
3350 or else Csiz = 32
3351 or else Csiz = 64
3352 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3353 then
3354 -- Here the array was requested to be packed,
3355 -- but the packing request had no effect, so
3356 -- Is_Packed is reset.
70482933 3357
86cde7b1
RD
3358 -- Note: semantically this means that we lose
3359 -- track of the fact that a derived type
3360 -- inherited a pragma Pack that was non-
3361 -- effective, but that seems fine.
70482933 3362
86cde7b1
RD
3363 -- We regard a Pack pragma as a request to set
3364 -- a representation characteristic, and this
3365 -- request may be ignored.
70482933 3366
094cefda
AC
3367 Set_Is_Packed (Base_Type (E), False);
3368 Set_Is_Bit_Packed_Array (Base_Type (E), False);
70482933 3369
094cefda
AC
3370 if Known_Static_Esize (Component_Type (E))
3371 and then Esize (Component_Type (E)) = Csiz
3372 then
3373 Set_Has_Non_Standard_Rep
3374 (Base_Type (E), False);
3375 end if;
3376
3377 -- In all other cases, packing is indeed needed
70482933 3378
86cde7b1 3379 else
094cefda
AC
3380 Set_Has_Non_Standard_Rep (Base_Type (E), True);
3381 Set_Is_Bit_Packed_Array (Base_Type (E), True);
3382 Set_Is_Packed (Base_Type (E), True);
86cde7b1
RD
3383 end if;
3384 end;
70482933
RK
3385 end if;
3386 end;
07fc65c4 3387
094cefda
AC
3388 -- Check for Atomic_Components or Aliased with unsuitable
3389 -- packing or explicit component size clause given.
3390
3391 if (Has_Atomic_Components (E)
3392 or else Has_Aliased_Components (E))
3393 and then (Has_Component_Size_Clause (E)
3394 or else Is_Packed (E))
3395 then
3396 Alias_Atomic_Check : declare
3397
3398 procedure Complain_CS (T : String);
3399 -- Outputs error messages for incorrect CS clause or
3400 -- pragma Pack for aliased or atomic components (T is
3401 -- "aliased" or "atomic");
3402
3403 -----------------
3404 -- Complain_CS --
3405 -----------------
3406
3407 procedure Complain_CS (T : String) is
3408 begin
3409 if Has_Component_Size_Clause (E) then
3410 Clause :=
3411 Get_Attribute_Definition_Clause
3412 (FS, Attribute_Component_Size);
3413
3414 if Known_Static_Esize (Ctyp) then
3415 Error_Msg_N
3416 ("incorrect component size for "
3417 & T & " components", Clause);
3418 Error_Msg_Uint_1 := Esize (Ctyp);
3419 Error_Msg_N
3420 ("\only allowed value is^", Clause);
3421
3422 else
3423 Error_Msg_N
3424 ("component size cannot be given for "
3425 & T & " components", Clause);
3426 end if;
3427
3428 else
3429 Error_Msg_N
3430 ("cannot pack " & T & " components",
3431 Get_Rep_Pragma (FS, Name_Pack));
3432 end if;
3433
3434 return;
3435 end Complain_CS;
3436
3437 -- Start of processing for Alias_Atomic_Check
3438
3439 begin
fc893455
AC
3440
3441 -- If object size of component type isn't known, we
3442 -- cannot be sure so we defer to the back end.
3443
3444 if not Known_Static_Esize (Ctyp) then
3445 null;
3446
84df40f7 3447 -- Case where component size has no effect. First
fc893455
AC
3448 -- check for object size of component type multiple
3449 -- of the storage unit size.
094cefda 3450
fc893455 3451 elsif Esize (Ctyp) mod System_Storage_Unit = 0
84df40f7
AC
3452
3453 -- OK in both packing case and component size case
3454 -- if RM size is known and static and the same as
3455 -- the object size.
3456
3457 and then
3458 ((Known_Static_RM_Size (Ctyp)
3459 and then Esize (Ctyp) = RM_Size (Ctyp))
3460
3461 -- Or if we have an explicit component size
3462 -- clause and the component size and object size
3463 -- are equal.
3464
3465 or else
3466 (Has_Component_Size_Clause (E)
3467 and then Component_Size (E) = Esize (Ctyp)))
094cefda
AC
3468 then
3469 null;
3470
3471 elsif Has_Aliased_Components (E)
3472 or else Is_Aliased (Ctyp)
3473 then
3474 Complain_CS ("aliased");
3475
3476 elsif Has_Atomic_Components (E)
3477 or else Is_Atomic (Ctyp)
3478 then
3479 Complain_CS ("atomic");
3480 end if;
3481 end Alias_Atomic_Check;
3482 end if;
3483
3484 -- Warn for case of atomic type
3485
3486 Clause := Get_Rep_Pragma (FS, Name_Atomic);
3487
3488 if Present (Clause)
3489 and then not Addressable (Component_Size (FS))
3490 then
3491 Error_Msg_NE
3492 ("non-atomic components of type& may not be "
3493 & "accessible by separate tasks?", Clause, E);
3494
3495 if Has_Component_Size_Clause (E) then
3496 Error_Msg_Sloc :=
3497 Sloc
3498 (Get_Attribute_Definition_Clause
3499 (FS, Attribute_Component_Size));
3500 Error_Msg_N
3501 ("\because of component size clause#?",
3502 Clause);
3503
3504 elsif Has_Pragma_Pack (E) then
3505 Error_Msg_Sloc :=
3506 Sloc (Get_Rep_Pragma (FS, Name_Pack));
3507 Error_Msg_N
3508 ("\because of pragma Pack#?", Clause);
3509 end if;
3510 end if;
3511
07fc65c4
GB
3512 -- Processing that is done only for subtypes
3513
3514 else
3515 -- Acquire alignment from base type
3516
3517 if Unknown_Alignment (E) then
3518 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3519 Adjust_Esize_Alignment (E);
07fc65c4
GB
3520 end if;
3521 end if;
3522
d05ef0ab
AC
3523 -- For bit-packed arrays, check the size
3524
75a64833 3525 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
d05ef0ab 3526 declare
67ce0d7e
RD
3527 SizC : constant Node_Id := Size_Clause (E);
3528
d05ef0ab 3529 Discard : Boolean;
67ce0d7e 3530 pragma Warnings (Off, Discard);
d05ef0ab
AC
3531
3532 begin
3533 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3534 -- clause at this stage, but it is not worth worrying
3535 -- about. Post error on the entity name in the size
d05ef0ab
AC
3536 -- clause if present, else on the type entity itself.
3537
3538 if Present (SizC) then
7d8b9c99 3539 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3540 else
7d8b9c99 3541 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3542 end if;
3543 end;
3544 end if;
3545
2d4e0553
AC
3546 -- If any of the index types was an enumeration type with a
3547 -- non-standard rep clause, then we indicate that the array
3548 -- type is always packed (even if it is not bit packed).
70482933
RK
3549
3550 if Non_Standard_Enum then
3551 Set_Has_Non_Standard_Rep (Base_Type (E));
3552 Set_Is_Packed (Base_Type (E));
3553 end if;
70482933 3554
0da2c8ac 3555 Set_Component_Alignment_If_Not_Set (E);
70482933 3556
0da2c8ac
AC
3557 -- If the array is packed, we must create the packed array
3558 -- type to be used to actually implement the type. This is
3559 -- only needed for real array types (not for string literal
3560 -- types, since they are present only for the front end).
70482933 3561
0da2c8ac
AC
3562 if Is_Packed (E)
3563 and then Ekind (E) /= E_String_Literal_Subtype
3564 then
3565 Create_Packed_Array_Type (E);
c159409f 3566 Freeze_And_Append (Packed_Array_Type (E), N, Result);
70482933 3567
0da2c8ac 3568 -- Size information of packed array type is copied to the
fea9e956 3569 -- array type, since this is really the representation. But
def46b54
RD
3570 -- do not override explicit existing size values. If the
3571 -- ancestor subtype is constrained the packed_array_type
3572 -- will be inherited from it, but the size may have been
3573 -- provided already, and must not be overridden either.
fea9e956 3574
def46b54
RD
3575 if not Has_Size_Clause (E)
3576 and then
3577 (No (Ancestor_Subtype (E))
3578 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3579 then
fea9e956
ES
3580 Set_Esize (E, Esize (Packed_Array_Type (E)));
3581 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3582 end if;
70482933 3583
fea9e956
ES
3584 if not Has_Alignment_Clause (E) then
3585 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3586 end if;
0da2c8ac
AC
3587 end if;
3588
def46b54
RD
3589 -- For non-packed arrays set the alignment of the array to the
3590 -- alignment of the component type if it is unknown. Skip this
3591 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3592
3593 if not Is_Packed (E)
3594 and then Unknown_Alignment (E)
3595 and then Known_Alignment (Ctyp)
3596 and then Known_Static_Component_Size (E)
3597 and then Known_Static_Esize (Ctyp)
3598 and then Esize (Ctyp) = Component_Size (E)
3599 and then not Is_Atomic (E)
3600 then
3601 Set_Alignment (E, Alignment (Component_Type (E)));
3602 end if;
3603 end;
70482933 3604
fbf5a39b
AC
3605 -- For a class-wide type, the corresponding specific type is
3606 -- frozen as well (RM 13.14(15))
70482933
RK
3607
3608 elsif Is_Class_Wide_Type (E) then
c159409f 3609 Freeze_And_Append (Root_Type (E), N, Result);
70482933 3610
86cde7b1
RD
3611 -- If the base type of the class-wide type is still incomplete,
3612 -- the class-wide remains unfrozen as well. This is legal when
3613 -- E is the formal of a primitive operation of some other type
3614 -- which is being frozen.
3615
3616 if not Is_Frozen (Root_Type (E)) then
3617 Set_Is_Frozen (E, False);
3618 return Result;
3619 end if;
3620
70482933
RK
3621 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3622 -- parent of a derived type) and it is a library-level entity,
3623 -- generate an itype reference for it. Otherwise, its first
3624 -- explicit reference may be in an inner scope, which will be
3625 -- rejected by the back-end.
3626
3627 if Is_Itype (E)
3628 and then Is_Compilation_Unit (Scope (E))
3629 then
70482933 3630 declare
fbf5a39b 3631 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3632
3633 begin
3634 Set_Itype (Ref, E);
90878b12 3635 Add_To_Result (Ref);
70482933
RK
3636 end;
3637 end if;
3638
def46b54 3639 -- The equivalent type associated with a class-wide subtype needs
cbae498b 3640 -- to be frozen to ensure that its layout is done.
fbf5a39b
AC
3641
3642 if Ekind (E) = E_Class_Wide_Subtype
3643 and then Present (Equivalent_Type (E))
3644 then
c159409f 3645 Freeze_And_Append (Equivalent_Type (E), N, Result);
fbf5a39b
AC
3646 end if;
3647
3648 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3649 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3650 -- Is_Record_Type, because we don't want to attempt the freeze for
3651 -- the case of a private type with record extension (we will do that
3652 -- later when the full type is frozen).
70482933
RK
3653
3654 elsif Ekind (E) = E_Record_Type
fd366a46 3655 or else Ekind (E) = E_Record_Subtype
70482933
RK
3656 then
3657 Freeze_Record_Type (E);
3658
3659 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3660 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3661 -- record type is essentially part of the concurrent type.
3662 -- Freeze as well all local entities. This includes record types
3663 -- created for entry parameter blocks, and whatever local entities
3664 -- may appear in the private part.
3665
3666 elsif Is_Concurrent_Type (E) then
3667 if Present (Corresponding_Record_Type (E)) then
3668 Freeze_And_Append
c159409f 3669 (Corresponding_Record_Type (E), N, Result);
70482933
RK
3670 end if;
3671
3672 Comp := First_Entity (E);
70482933
RK
3673 while Present (Comp) loop
3674 if Is_Type (Comp) then
c159409f 3675 Freeze_And_Append (Comp, N, Result);
70482933
RK
3676
3677 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3678 if Is_Itype (Etype (Comp))
3679 and then Underlying_Type (Scope (Etype (Comp))) = E
3680 then
3681 Undelay_Type (Etype (Comp));
3682 end if;
3683
c159409f 3684 Freeze_And_Append (Etype (Comp), N, Result);
70482933
RK
3685 end if;
3686
3687 Next_Entity (Comp);
3688 end loop;
3689
ee094616
RD
3690 -- Private types are required to point to the same freeze node as
3691 -- their corresponding full views. The freeze node itself has to
3692 -- point to the partial view of the entity (because from the partial
3693 -- view, we can retrieve the full view, but not the reverse).
3694 -- However, in order to freeze correctly, we need to freeze the full
3695 -- view. If we are freezing at the end of a scope (or within the
3696 -- scope of the private type), the partial and full views will have
3697 -- been swapped, the full view appears first in the entity chain and
3698 -- the swapping mechanism ensures that the pointers are properly set
3699 -- (on scope exit).
3700
3701 -- If we encounter the partial view before the full view (e.g. when
3702 -- freezing from another scope), we freeze the full view, and then
3703 -- set the pointers appropriately since we cannot rely on swapping to
3704 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3705
3706 elsif Is_Incomplete_Or_Private_Type (E)
3707 and then not Is_Generic_Type (E)
3708 then
86cde7b1
RD
3709 -- The construction of the dispatch table associated with library
3710 -- level tagged types forces freezing of all the primitives of the
3711 -- type, which may cause premature freezing of the partial view.
3712 -- For example:
3713
3714 -- package Pkg is
3715 -- type T is tagged private;
3716 -- type DT is new T with private;
3717 -- procedure Prim (X : in out T; Y : in out DT'class);
3718 -- private
3719 -- type T is tagged null record;
3720 -- Obj : T;
3721 -- type DT is new T with null record;
3722 -- end;
3723
3724 -- In this case the type will be frozen later by the usual
3725 -- mechanism: an object declaration, an instantiation, or the
3726 -- end of a declarative part.
3727
3728 if Is_Library_Level_Tagged_Type (E)
3729 and then not Present (Full_View (E))
3730 then
3731 Set_Is_Frozen (E, False);
3732 return Result;
3733
70482933
RK
3734 -- Case of full view present
3735
86cde7b1 3736 elsif Present (Full_View (E)) then
70482933 3737
ee094616
RD
3738 -- If full view has already been frozen, then no further
3739 -- processing is required
70482933
RK
3740
3741 if Is_Frozen (Full_View (E)) then
70482933
RK
3742 Set_Has_Delayed_Freeze (E, False);
3743 Set_Freeze_Node (E, Empty);
3744 Check_Debug_Info_Needed (E);
3745
ee094616
RD
3746 -- Otherwise freeze full view and patch the pointers so that
3747 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3748
3749 else
fbf5a39b
AC
3750 declare
3751 Full : constant Entity_Id := Full_View (E);
70482933 3752
fbf5a39b
AC
3753 begin
3754 if Is_Private_Type (Full)
3755 and then Present (Underlying_Full_View (Full))
3756 then
3757 Freeze_And_Append
c159409f 3758 (Underlying_Full_View (Full), N, Result);
fbf5a39b 3759 end if;
70482933 3760
c159409f 3761 Freeze_And_Append (Full, N, Result);
70482933 3762
fbf5a39b
AC
3763 if Has_Delayed_Freeze (E) then
3764 F_Node := Freeze_Node (Full);
70482933 3765
fbf5a39b
AC
3766 if Present (F_Node) then
3767 Set_Freeze_Node (E, F_Node);
3768 Set_Entity (F_Node, E);
3769
3770 else
def46b54
RD
3771 -- {Incomplete,Private}_Subtypes with Full_Views
3772 -- constrained by discriminants.
fbf5a39b
AC
3773
3774 Set_Has_Delayed_Freeze (E, False);
3775 Set_Freeze_Node (E, Empty);
3776 end if;
70482933 3777 end if;
fbf5a39b 3778 end;
70482933
RK
3779
3780 Check_Debug_Info_Needed (E);
3781 end if;
3782
ee094616
RD
3783 -- AI-117 requires that the convention of a partial view be the
3784 -- same as the convention of the full view. Note that this is a
3785 -- recognized breach of privacy, but it's essential for logical
3786 -- consistency of representation, and the lack of a rule in
3787 -- RM95 was an oversight.
70482933
RK
3788
3789 Set_Convention (E, Convention (Full_View (E)));
3790
3791 Set_Size_Known_At_Compile_Time (E,
3792 Size_Known_At_Compile_Time (Full_View (E)));
3793
3794 -- Size information is copied from the full view to the
def46b54 3795 -- incomplete or private view for consistency.
70482933 3796
ee094616
RD
3797 -- We skip this is the full view is not a type. This is very
3798 -- strange of course, and can only happen as a result of
3799 -- certain illegalities, such as a premature attempt to derive
3800 -- from an incomplete type.
70482933
RK
3801
3802 if Is_Type (Full_View (E)) then
3803 Set_Size_Info (E, Full_View (E));
3804 Set_RM_Size (E, RM_Size (Full_View (E)));
3805 end if;
3806
3807 return Result;
3808
3809 -- Case of no full view present. If entity is derived or subtype,
3810 -- it is safe to freeze, correctness depends on the frozen status
3811 -- of parent. Otherwise it is either premature usage, or a Taft
3812 -- amendment type, so diagnosis is at the point of use and the
3813 -- type might be frozen later.
3814
3815 elsif E /= Base_Type (E)
3816 or else Is_Derived_Type (E)
3817 then
3818 null;
3819
3820 else
3821 Set_Is_Frozen (E, False);
3822 return No_List;
3823 end if;
3824
3825 -- For access subprogram, freeze types of all formals, the return
3826 -- type was already frozen, since it is the Etype of the function.
8aec446b 3827 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3828 -- they cannot be incomplete.
70482933
RK
3829
3830 elsif Ekind (E) = E_Subprogram_Type then
3831 Formal := First_Formal (E);
3832 while Present (Formal) loop
8aec446b
AC
3833 if Ekind (Etype (Formal)) = E_Incomplete_Type
3834 and then No (Full_View (Etype (Formal)))
3835 and then not Is_Value_Type (Etype (Formal))
3836 then
3837 if Is_Tagged_Type (Etype (Formal)) then
3838 null;
dd386db0 3839
3cae7f14 3840 -- AI05-151: Incomplete types are allowed in access to
dd386db0
AC
3841 -- subprogram specifications.
3842
3843 elsif Ada_Version < Ada_2012 then
8aec446b
AC
3844 Error_Msg_NE
3845 ("invalid use of incomplete type&", E, Etype (Formal));
3846 end if;
3847 end if;
3848
c159409f 3849 Freeze_And_Append (Etype (Formal), N, Result);
70482933
RK
3850 Next_Formal (Formal);
3851 end loop;
3852
70482933
RK
3853 Freeze_Subprogram (E);
3854
ee094616
RD
3855 -- For access to a protected subprogram, freeze the equivalent type
3856 -- (however this is not set if we are not generating code or if this
3857 -- is an anonymous type used just for resolution).
70482933 3858
fea9e956 3859 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3860 if Present (Equivalent_Type (E)) then
c159409f 3861 Freeze_And_Append (Equivalent_Type (E), N, Result);
d8db0bca 3862 end if;
70482933
RK
3863 end if;
3864
3865 -- Generic types are never seen by the back-end, and are also not
3866 -- processed by the expander (since the expander is turned off for
3867 -- generic processing), so we never need freeze nodes for them.
3868
3869 if Is_Generic_Type (E) then
3870 return Result;
3871 end if;
3872
3873 -- Some special processing for non-generic types to complete
3874 -- representation details not known till the freeze point.
3875
3876 if Is_Fixed_Point_Type (E) then
3877 Freeze_Fixed_Point_Type (E);
3878
ee094616
RD
3879 -- Some error checks required for ordinary fixed-point type. Defer
3880 -- these till the freeze-point since we need the small and range
3881 -- values. We only do these checks for base types
fbf5a39b 3882
d347f572 3883 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
fbf5a39b
AC
3884 if Small_Value (E) < Ureal_2_M_80 then
3885 Error_Msg_Name_1 := Name_Small;
3886 Error_Msg_N
7d8b9c99 3887 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3888
3889 elsif Small_Value (E) > Ureal_2_80 then
3890 Error_Msg_Name_1 := Name_Small;
3891 Error_Msg_N
7d8b9c99 3892 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3893 end if;
3894
3895 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3896 Error_Msg_Name_1 := Name_First;
3897 Error_Msg_N
7d8b9c99 3898 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3899 end if;
3900
3901 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3902 Error_Msg_Name_1 := Name_Last;
3903 Error_Msg_N
7d8b9c99 3904 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3905 end if;
3906 end if;
3907
70482933
RK
3908 elsif Is_Enumeration_Type (E) then
3909 Freeze_Enumeration_Type (E);
3910
3911 elsif Is_Integer_Type (E) then
3912 Adjust_Esize_For_Alignment (E);
3913
79afa047
AC
3914 if Is_Modular_Integer_Type (E)
3915 and then Warn_On_Suspicious_Modulus_Value
3916 then
67b3acf8
RD
3917 Check_Suspicious_Modulus (E);
3918 end if;
3919
edd63e9b
ES
3920 elsif Is_Access_Type (E) then
3921
fab2daeb
AC
3922 -- If a pragma Default_Storage_Pool applies, and this type has no
3923 -- Storage_Pool or Storage_Size clause (which must have occurred
3924 -- before the freezing point), then use the default. This applies
3925 -- only to base types.
3926
3927 if Present (Default_Pool)
d347f572 3928 and then Is_Base_Type (E)
fab2daeb
AC
3929 and then not Has_Storage_Size_Clause (E)
3930 and then No (Associated_Storage_Pool (E))
3931 then
3932 -- Case of pragma Default_Storage_Pool (null)
3933
3934 if Nkind (Default_Pool) = N_Null then
3935 Set_No_Pool_Assigned (E);
3936
3937 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
3938
3939 else
3940 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
3941 end if;
3942 end if;
3943
edd63e9b
ES
3944 -- Check restriction for standard storage pool
3945
3946 if No (Associated_Storage_Pool (E)) then
3947 Check_Restriction (No_Standard_Storage_Pools, E);
3948 end if;
3949
3950 -- Deal with error message for pure access type. This is not an
3951 -- error in Ada 2005 if there is no pool (see AI-366).
3952
3953 if Is_Pure_Unit_Access_Type (E)
0791fbe9 3954 and then (Ada_Version < Ada_2005
2c1b72d7 3955 or else not No_Pool_Assigned (E))
edd63e9b
ES
3956 then
3957 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e 3958
0791fbe9 3959 if Ada_Version >= Ada_2005 then
c6a9797e
RD
3960 Error_Msg_N
3961 ("\would be legal if Storage_Size of 0 given?", E);
3962
3963 elsif No_Pool_Assigned (E) then
3964 Error_Msg_N
3965 ("\would be legal in Ada 2005?", E);
3966
3967 else
3968 Error_Msg_N
3969 ("\would be legal in Ada 2005 if "
3970 & "Storage_Size of 0 given?", E);
3971 end if;
edd63e9b 3972 end if;
70482933
RK
3973 end if;
3974
edd63e9b
ES
3975 -- Case of composite types
3976
70482933
RK
3977 if Is_Composite_Type (E) then
3978
edd63e9b
ES
3979 -- AI-117 requires that all new primitives of a tagged type must
3980 -- inherit the convention of the full view of the type. Inherited
3981 -- and overriding operations are defined to inherit the convention
3982 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3983 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3984 -- and New_Overloaded_Entity). Here we set the convention of
3985 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3986 -- that any new primitives inherit the type's convention. Class-
3987 -- wide types can have a foreign convention inherited from their
3988 -- specific type, but are excluded from this since they don't have
3989 -- any associated primitives.
70482933
RK
3990
3991 if Is_Tagged_Type (E)
3992 and then not Is_Class_Wide_Type (E)
3993 and then Convention (E) /= Convention_Ada
3994 then
3995 declare
3996 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3997 Prim : Elmt_Id;
3cae7f14 3998
70482933 3999 begin
07fc65c4 4000 Prim := First_Elmt (Prim_List);
70482933
RK
4001 while Present (Prim) loop
4002 if Convention (Node (Prim)) = Convention_Ada then
4003 Set_Convention (Node (Prim), Convention (E));
4004 end if;
4005
4006 Next_Elmt (Prim);
4007 end loop;
4008 end;
4009 end if;
4010 end if;
4011
ee094616
RD
4012 -- Now that all types from which E may depend are frozen, see if the
4013 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 4014 -- strict alignment is required
70482933
RK
4015
4016 Check_Compile_Time_Size (E);
4017 Check_Unsigned_Type (E);
4018
4019 if Base_Type (E) = E then
4020 Check_Strict_Alignment (E);
4021 end if;
4022
4023 -- Do not allow a size clause for a type which does not have a size
4024 -- that is known at compile time
4025
4026 if Has_Size_Clause (E)
4027 and then not Size_Known_At_Compile_Time (E)
4028 then
e14c931f 4029 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
4030 -- in all errors mode, since this is often a junk message
4031
4032 if not Error_Posted (E) then
4033 Error_Msg_N
4034 ("size clause not allowed for variable length type",
4035 Size_Clause (E));
4036 end if;
70482933
RK
4037 end if;
4038
a01b9df6
AC
4039 -- Now we set/verify the representation information, in particular
4040 -- the size and alignment values. This processing is not required for
4041 -- generic types, since generic types do not play any part in code
4042 -- generation, and so the size and alignment values for such types
4043 -- are irrelevant.
70482933
RK
4044
4045 if Is_Generic_Type (E) then
4046 return Result;
4047
4048 -- Otherwise we call the layout procedure
4049
4050 else
4051 Layout_Type (E);
4052 end if;
a01b9df6
AC
4053
4054 -- If the type has a Defaut_Value/Default_Component_Value aspect,
4055 -- this is where we analye the expression (after the type is frozen,
4056 -- since in the case of Default_Value, we are analyzing with the
4057 -- type itself, and we treat Default_Component_Value similarly for
4058 -- the sake of uniformity.
4059
4060 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
4061 declare
4062 Nam : Name_Id;
4063 Aspect : Node_Id;
4064 Exp : Node_Id;
4065 Typ : Entity_Id;
4066
4067 begin
4068 if Is_Scalar_Type (E) then
4069 Nam := Name_Default_Value;
4070 Typ := E;
4071 else
4072 Nam := Name_Default_Component_Value;
4073 Typ := Component_Type (E);
4074 end if;
4075
4076 Aspect := Get_Rep_Item_For_Entity (E, Nam);
4077 Exp := Expression (Aspect);
4078 Analyze_And_Resolve (Exp, Typ);
4079
4080 if Etype (Exp) /= Any_Type then
4081 if not Is_Static_Expression (Exp) then
4082 Error_Msg_Name_1 := Nam;
4083 Flag_Non_Static_Expr
4084 ("aspect% requires static expression", Exp);
4085 end if;
4086 end if;
4087 end;
4088 end if;
70482933
RK
4089
4090 -- End of freeze processing for type entities
4091 end if;
4092
4093 -- Here is where we logically freeze the current entity. If it has a
4094 -- freeze node, then this is the point at which the freeze node is
4095 -- linked into the result list.
4096
4097 if Has_Delayed_Freeze (E) then
4098
4099 -- If a freeze node is already allocated, use it, otherwise allocate
4100 -- a new one. The preallocation happens in the case of anonymous base
4101 -- types, where we preallocate so that we can set First_Subtype_Link.
4102 -- Note that we reset the Sloc to the current freeze location.
4103
4104 if Present (Freeze_Node (E)) then
4105 F_Node := Freeze_Node (E);
4106 Set_Sloc (F_Node, Loc);
4107
4108 else
4109 F_Node := New_Node (N_Freeze_Entity, Loc);
4110 Set_Freeze_Node (E, F_Node);
4111 Set_Access_Types_To_Process (F_Node, No_Elist);
4112 Set_TSS_Elist (F_Node, No_Elist);
4113 Set_Actions (F_Node, No_List);
4114 end if;
4115
4116 Set_Entity (F_Node, E);
90878b12 4117 Add_To_Result (F_Node);
35ae2ed8
AC
4118
4119 -- A final pass over record types with discriminants. If the type
4120 -- has an incomplete declaration, there may be constrained access
4121 -- subtypes declared elsewhere, which do not depend on the discrimi-
4122 -- nants of the type, and which are used as component types (i.e.
4123 -- the full view is a recursive type). The designated types of these
4124 -- subtypes can only be elaborated after the type itself, and they
4125 -- need an itype reference.
4126
4127 if Ekind (E) = E_Record_Type
4128 and then Has_Discriminants (E)
4129 then
4130 declare
4131 Comp : Entity_Id;
4132 IR : Node_Id;
4133 Typ : Entity_Id;
4134
4135 begin
4136 Comp := First_Component (E);
35ae2ed8
AC
4137 while Present (Comp) loop
4138 Typ := Etype (Comp);
4139
4140 if Ekind (Comp) = E_Component
4141 and then Is_Access_Type (Typ)
4142 and then Scope (Typ) /= E
4143 and then Base_Type (Designated_Type (Typ)) = E
4144 and then Is_Itype (Designated_Type (Typ))
4145 then
4146 IR := Make_Itype_Reference (Sloc (Comp));
4147 Set_Itype (IR, Designated_Type (Typ));
4148 Append (IR, Result);
4149 end if;
4150
4151 Next_Component (Comp);
4152 end loop;
4153 end;
4154 end if;
70482933
RK
4155 end if;
4156
4157 -- When a type is frozen, the first subtype of the type is frozen as
4158 -- well (RM 13.14(15)). This has to be done after freezing the type,
4159 -- since obviously the first subtype depends on its own base type.
4160
4161 if Is_Type (E) then
c159409f 4162 Freeze_And_Append (First_Subtype (E), N, Result);
70482933
RK
4163
4164 -- If we just froze a tagged non-class wide record, then freeze the
4165 -- corresponding class-wide type. This must be done after the tagged
4166 -- type itself is frozen, because the class-wide type refers to the
4167 -- tagged type which generates the class.
4168
4169 if Is_Tagged_Type (E)
4170 and then not Is_Class_Wide_Type (E)
4171 and then Present (Class_Wide_Type (E))
4172 then
c159409f 4173 Freeze_And_Append (Class_Wide_Type (E), N, Result);
70482933
RK
4174 end if;
4175 end if;
4176
4177 Check_Debug_Info_Needed (E);
4178
4179 -- Special handling for subprograms
4180
4181 if Is_Subprogram (E) then
4182
4183 -- If subprogram has address clause then reset Is_Public flag, since
4184 -- we do not want the backend to generate external references.
4185
4186 if Present (Address_Clause (E))
4187 and then not Is_Library_Level_Entity (E)
4188 then
4189 Set_Is_Public (E, False);
4190
4191 -- If no address clause and not intrinsic, then for imported
4192 -- subprogram in main unit, generate descriptor if we are in
4193 -- Propagate_Exceptions mode.
4194
90878b12
AC
4195 -- This is very odd code, it makes a null result, why ???
4196
70482933
RK
4197 elsif Propagate_Exceptions
4198 and then Is_Imported (E)
4199 and then not Is_Intrinsic_Subprogram (E)
4200 and then Convention (E) /= Convention_Stubbed
4201 then
4202 if Result = No_List then
4203 Result := Empty_List;
4204 end if;
70482933 4205 end if;
70482933
RK
4206 end if;
4207
4208 return Result;
4209 end Freeze_Entity;
4210
4211 -----------------------------
4212 -- Freeze_Enumeration_Type --
4213 -----------------------------
4214
4215 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4216 begin
d677afa9
ES
4217 -- By default, if no size clause is present, an enumeration type with
4218 -- Convention C is assumed to interface to a C enum, and has integer
4219 -- size. This applies to types. For subtypes, verify that its base
4220 -- type has no size clause either.
4221
70482933
RK
4222 if Has_Foreign_Convention (Typ)
4223 and then not Has_Size_Clause (Typ)
d677afa9 4224 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
4225 and then Esize (Typ) < Standard_Integer_Size
4226 then
4227 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 4228
70482933 4229 else
d677afa9
ES
4230 -- If the enumeration type interfaces to C, and it has a size clause
4231 -- that specifies less than int size, it warrants a warning. The
4232 -- user may intend the C type to be an enum or a char, so this is
4233 -- not by itself an error that the Ada compiler can detect, but it
4234 -- it is a worth a heads-up. For Boolean and Character types we
4235 -- assume that the programmer has the proper C type in mind.
4236
4237 if Convention (Typ) = Convention_C
4238 and then Has_Size_Clause (Typ)
4239 and then Esize (Typ) /= Esize (Standard_Integer)
4240 and then not Is_Boolean_Type (Typ)
4241 and then not Is_Character_Type (Typ)
4242 then
4243 Error_Msg_N
4244 ("C enum types have the size of a C int?", Size_Clause (Typ));
4245 end if;
4246
70482933
RK
4247 Adjust_Esize_For_Alignment (Typ);
4248 end if;
4249 end Freeze_Enumeration_Type;
4250
4251 -----------------------
4252 -- Freeze_Expression --
4253 -----------------------
4254
4255 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
4256 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4257 Typ : Entity_Id;
4258 Nam : Entity_Id;
4259 Desig_Typ : Entity_Id;
4260 P : Node_Id;
4261 Parent_P : Node_Id;
70482933
RK
4262
4263 Freeze_Outside : Boolean := False;
4264 -- This flag is set true if the entity must be frozen outside the
4265 -- current subprogram. This happens in the case of expander generated
4266 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4267 -- not freeze all entities like other bodies, but which nevertheless
4268 -- may reference entities that have to be frozen before the body and
4269 -- obviously cannot be frozen inside the body.
4270
4271 function In_Exp_Body (N : Node_Id) return Boolean;
4272 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 4273 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
4274 -- subprogram (init proc, stream subprogram, or renaming as body).
4275 -- If so, this is not a freezing context.
70482933 4276
fbf5a39b
AC
4277 -----------------
4278 -- In_Exp_Body --
4279 -----------------
4280
70482933 4281 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
4282 P : Node_Id;
4283 Id : Entity_Id;
70482933
RK
4284
4285 begin
4286 if Nkind (N) = N_Subprogram_Body then
4287 P := N;
4288 else
4289 P := Parent (N);
4290 end if;
4291
4292 if Nkind (P) /= N_Subprogram_Body then
4293 return False;
4294
4295 else
7d8b9c99
RD
4296 Id := Defining_Unit_Name (Specification (P));
4297
4298 if Nkind (Id) = N_Defining_Identifier
4299 and then (Is_Init_Proc (Id) or else
4300 Is_TSS (Id, TSS_Stream_Input) or else
4301 Is_TSS (Id, TSS_Stream_Output) or else
4302 Is_TSS (Id, TSS_Stream_Read) or else
4303 Is_TSS (Id, TSS_Stream_Write) or else
4304 Nkind (Original_Node (P)) =
4305 N_Subprogram_Renaming_Declaration)
70482933
RK
4306 then
4307 return True;
4308 else
4309 return False;
4310 end if;
4311 end if;
70482933
RK
4312 end In_Exp_Body;
4313
4314 -- Start of processing for Freeze_Expression
4315
4316 begin
edd63e9b
ES
4317 -- Immediate return if freezing is inhibited. This flag is set by the
4318 -- analyzer to stop freezing on generated expressions that would cause
4319 -- freezing if they were in the source program, but which are not
4320 -- supposed to freeze, since they are created.
70482933
RK
4321
4322 if Must_Not_Freeze (N) then
4323 return;
4324 end if;
4325
4326 -- If expression is non-static, then it does not freeze in a default
4327 -- expression, see section "Handling of Default Expressions" in the
4328 -- spec of package Sem for further details. Note that we have to
4329 -- make sure that we actually have a real expression (if we have
4330 -- a subtype indication, we can't test Is_Static_Expression!)
4331
c6a9797e 4332 if In_Spec_Exp
70482933
RK
4333 and then Nkind (N) in N_Subexpr
4334 and then not Is_Static_Expression (N)
4335 then
4336 return;
4337 end if;
4338
4339 -- Freeze type of expression if not frozen already
4340
fbf5a39b
AC
4341 Typ := Empty;
4342
4343 if Nkind (N) in N_Has_Etype then
4344 if not Is_Frozen (Etype (N)) then
4345 Typ := Etype (N);
4346
4347 -- Base type may be an derived numeric type that is frozen at
4348 -- the point of declaration, but first_subtype is still unfrozen.
4349
4350 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4351 Typ := First_Subtype (Etype (N));
4352 end if;
70482933
RK
4353 end if;
4354
4355 -- For entity name, freeze entity if not frozen already. A special
4356 -- exception occurs for an identifier that did not come from source.
4357 -- We don't let such identifiers freeze a non-internal entity, i.e.
4358 -- an entity that did come from source, since such an identifier was
4359 -- generated by the expander, and cannot have any semantic effect on
4360 -- the freezing semantics. For example, this stops the parameter of
4361 -- an initialization procedure from freezing the variable.
4362
4363 if Is_Entity_Name (N)
4364 and then not Is_Frozen (Entity (N))
4365 and then (Nkind (N) /= N_Identifier
4366 or else Comes_From_Source (N)
4367 or else not Comes_From_Source (Entity (N)))
4368 then
4369 Nam := Entity (N);
70482933
RK
4370 else
4371 Nam := Empty;
4372 end if;
4373
49e90211 4374 -- For an allocator freeze designated type if not frozen already
70482933 4375
ee094616
RD
4376 -- For an aggregate whose component type is an access type, freeze the
4377 -- designated type now, so that its freeze does not appear within the
4378 -- loop that might be created in the expansion of the aggregate. If the
4379 -- designated type is a private type without full view, the expression
4380 -- cannot contain an allocator, so the type is not frozen.
70482933 4381
7aedb36a
AC
4382 -- For a function, we freeze the entity when the subprogram declaration
4383 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 4384 -- before the declaration is frozen. We need to generate the extra
7aedb36a 4385 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
4386 -- the proper actuals. This only applies to Ada subprograms, not to
4387 -- imported ones.
7aedb36a 4388
70482933 4389 Desig_Typ := Empty;
70482933 4390
fbf5a39b 4391 case Nkind (N) is
70482933
RK
4392 when N_Allocator =>
4393 Desig_Typ := Designated_Type (Etype (N));
4394
4395 when N_Aggregate =>
4396 if Is_Array_Type (Etype (N))
4397 and then Is_Access_Type (Component_Type (Etype (N)))
4398 then
4399 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4400 end if;
4401
4402 when N_Selected_Component |
4403 N_Indexed_Component |
4404 N_Slice =>
4405
4406 if Is_Access_Type (Etype (Prefix (N))) then
4407 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4408 end if;
4409
7aedb36a
AC
4410 when N_Identifier =>
4411 if Present (Nam)
4412 and then Ekind (Nam) = E_Function
4413 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 4414 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
4415 then
4416 Create_Extra_Formals (Nam);
4417 end if;
4418
70482933
RK
4419 when others =>
4420 null;
70482933
RK
4421 end case;
4422
4423 if Desig_Typ /= Empty
4424 and then (Is_Frozen (Desig_Typ)
4425 or else (not Is_Fully_Defined (Desig_Typ)))
4426 then
4427 Desig_Typ := Empty;
4428 end if;
4429
4430 -- All done if nothing needs freezing
4431
4432 if No (Typ)
4433 and then No (Nam)
4434 and then No (Desig_Typ)
4435 then
4436 return;
4437 end if;
4438
f6cf5b85 4439 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
4440 -- exiting from the loop when it is appropriate to insert the freeze
4441 -- node before the current node P.
4442
bce79204
AC
4443 -- Also checks some special exceptions to the freezing rules. These
4444 -- cases result in a direct return, bypassing the freeze action.
70482933
RK
4445
4446 P := N;
4447 loop
4448 Parent_P := Parent (P);
4449
ee094616
RD
4450 -- If we don't have a parent, then we are not in a well-formed tree.
4451 -- This is an unusual case, but there are some legitimate situations
4452 -- in which this occurs, notably when the expressions in the range of
4453 -- a type declaration are resolved. We simply ignore the freeze
4454 -- request in this case. Is this right ???
70482933
RK
4455
4456 if No (Parent_P) then
4457 return;
4458 end if;
4459
4460 -- See if we have got to an appropriate point in the tree
4461
4462 case Nkind (Parent_P) is
4463
edd63e9b
ES
4464 -- A special test for the exception of (RM 13.14(8)) for the case
4465 -- of per-object expressions (RM 3.8(18)) occurring in component
4466 -- definition or a discrete subtype definition. Note that we test
4467 -- for a component declaration which includes both cases we are
4468 -- interested in, and furthermore the tree does not have explicit
4469 -- nodes for either of these two constructs.
70482933
RK
4470
4471 when N_Component_Declaration =>
4472
4473 -- The case we want to test for here is an identifier that is
4474 -- a per-object expression, this is either a discriminant that
4475 -- appears in a context other than the component declaration
4476 -- or it is a reference to the type of the enclosing construct.
4477
4478 -- For either of these cases, we skip the freezing
4479
c6a9797e 4480 if not In_Spec_Expression
70482933
RK
4481 and then Nkind (N) = N_Identifier
4482 and then (Present (Entity (N)))
4483 then
4484 -- We recognize the discriminant case by just looking for
4485 -- a reference to a discriminant. It can only be one for
4486 -- the enclosing construct. Skip freezing in this case.
4487
4488 if Ekind (Entity (N)) = E_Discriminant then
4489 return;
4490
4491 -- For the case of a reference to the enclosing record,
4492 -- (or task or protected type), we look for a type that
4493 -- matches the current scope.
4494
4495 elsif Entity (N) = Current_Scope then
4496 return;
4497 end if;
4498 end if;
4499
edd63e9b
ES
4500 -- If we have an enumeration literal that appears as the choice in
4501 -- the aggregate of an enumeration representation clause, then
4502 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4503
4504 when N_Enumeration_Representation_Clause =>
4505
4506 -- The case we are looking for is an enumeration literal
4507
4508 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4509 and then Is_Enumeration_Type (Etype (N))
4510 then
4511 -- If enumeration literal appears directly as the choice,
e14c931f 4512 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4513
4514 if Nkind (Parent (N)) = N_Component_Association
4515 and then First (Choices (Parent (N))) = N
4516 then
4517 return;
4518
ee094616
RD
4519 -- If enumeration literal appears as the name of function
4520 -- which is the choice, then also do not freeze. This
4521 -- happens in the overloaded literal case, where the
70482933
RK
4522 -- enumeration literal is temporarily changed to a function
4523 -- call for overloading analysis purposes.
4524
4525 elsif Nkind (Parent (N)) = N_Function_Call
4526 and then
4527 Nkind (Parent (Parent (N))) = N_Component_Association
4528 and then
4529 First (Choices (Parent (Parent (N)))) = Parent (N)
4530 then
4531 return;
4532 end if;
4533 end if;
4534
4535 -- Normally if the parent is a handled sequence of statements,
4536 -- then the current node must be a statement, and that is an
4537 -- appropriate place to insert a freeze node.
4538
4539 when N_Handled_Sequence_Of_Statements =>
4540
edd63e9b
ES
4541 -- An exception occurs when the sequence of statements is for
4542 -- an expander generated body that did not do the usual freeze
4543 -- all operation. In this case we usually want to freeze
4544 -- outside this body, not inside it, and we skip past the
4545 -- subprogram body that we are inside.
70482933
RK
4546
4547 if In_Exp_Body (Parent_P) then
4548
4549 -- However, we *do* want to freeze at this point if we have
4550 -- an entity to freeze, and that entity is declared *inside*
4551 -- the body of the expander generated procedure. This case
4552 -- is recognized by the scope of the type, which is either
4553 -- the spec for some enclosing body, or (in the case of
4554 -- init_procs, for which there are no separate specs) the
4555 -- current scope.
4556
4557 declare
4558 Subp : constant Node_Id := Parent (Parent_P);
4559 Cspc : Entity_Id;
4560
4561 begin
4562 if Nkind (Subp) = N_Subprogram_Body then
4563 Cspc := Corresponding_Spec (Subp);
4564
4565 if (Present (Typ) and then Scope (Typ) = Cspc)
4566 or else
4567 (Present (Nam) and then Scope (Nam) = Cspc)
4568 then
4569 exit;
4570
4571 elsif Present (Typ)
4572 and then Scope (Typ) = Current_Scope
4573 and then Current_Scope = Defining_Entity (Subp)
4574 then
4575 exit;
4576 end if;
4577 end if;
4578 end;
4579
4580 -- If not that exception to the exception, then this is
4581 -- where we delay the freeze till outside the body.
4582
4583 Parent_P := Parent (Parent_P);
4584 Freeze_Outside := True;
4585
4586 -- Here if normal case where we are in handled statement
4587 -- sequence and want to do the insertion right there.
4588
4589 else
4590 exit;
4591 end if;
4592
ee094616
RD
4593 -- If parent is a body or a spec or a block, then the current node
4594 -- is a statement or declaration and we can insert the freeze node
4595 -- before it.
70482933 4596
8b3c6430
AC
4597 when N_Block_Statement |
4598 N_Entry_Body |
70482933 4599 N_Package_Body |
8b3c6430 4600 N_Package_Specification |
70482933 4601 N_Protected_Body |
8b3c6430
AC
4602 N_Subprogram_Body |
4603 N_Task_Body => exit;
70482933
RK
4604
4605 -- The expander is allowed to define types in any statements list,
4606 -- so any of the following parent nodes also mark a freezing point
4607 -- if the actual node is in a list of statements or declarations.
4608
8b3c6430
AC
4609 when N_Abortable_Part |
4610 N_Accept_Alternative |
4611 N_And_Then |
70482933
RK
4612 N_Case_Statement_Alternative |
4613 N_Compilation_Unit_Aux |
70482933 4614 N_Conditional_Entry_Call |
8b3c6430
AC
4615 N_Delay_Alternative |
4616 N_Elsif_Part |
70482933 4617 N_Entry_Call_Alternative |
8b3c6430
AC
4618 N_Exception_Handler |
4619 N_Extended_Return_Statement |
4620 N_Freeze_Entity |
4621 N_If_Statement |
bce79204 4622 N_Or_Else |
8b3c6430
AC
4623 N_Selective_Accept |
4624 N_Triggering_Alternative =>
70482933
RK
4625
4626 exit when Is_List_Member (P);
4627
4628 -- Note: The N_Loop_Statement is a special case. A type that
4629 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4630 -- occurs only because of a loop expanded by the expander), so we
4631 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4632 -- of any entity which comes from source. (if they have predefined
4633 -- type, that type does not appear to come from source, but the
4634 -- entity should not be frozen here).
70482933
RK
4635
4636 when N_Loop_Statement =>
4637 exit when not Comes_From_Source (Etype (N))
4638 and then (No (Nam) or else not Comes_From_Source (Nam));
4639
4640 -- For all other cases, keep looking at parents
4641
4642 when others =>
4643 null;
4644 end case;
4645
4646 -- We fall through the case if we did not yet find the proper
4647 -- place in the free for inserting the freeze node, so climb!
4648
4649 P := Parent_P;
4650 end loop;
4651
edd63e9b
ES
4652 -- If the expression appears in a record or an initialization procedure,
4653 -- the freeze nodes are collected and attached to the current scope, to
4654 -- be inserted and analyzed on exit from the scope, to insure that
4655 -- generated entities appear in the correct scope. If the expression is
4656 -- a default for a discriminant specification, the scope is still void.
4657 -- The expression can also appear in the discriminant part of a private
4658 -- or concurrent type.
70482933 4659
c6823a20 4660 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4661 -- enclosing record declaration, the freeze nodes must be attached to
4662 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4663 -- enclosing declaration list.
4664
ee094616
RD
4665 -- The other case requiring this special handling is if we are in a
4666 -- default expression, since in that case we are about to freeze a
4667 -- static type, and the freeze scope needs to be the outer scope, not
4668 -- the scope of the subprogram with the default parameter.
70482933 4669
c6a9797e
RD
4670 -- For default expressions and other spec expressions in generic units,
4671 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4672 -- placing them at the proper place, after the generic unit.
70482933 4673
c6a9797e 4674 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4675 or else Freeze_Outside
4676 or else (Is_Type (Current_Scope)
4677 and then (not Is_Concurrent_Type (Current_Scope)
4678 or else not Has_Completion (Current_Scope)))
4679 or else Ekind (Current_Scope) = E_Void
4680 then
4681 declare
c159409f
AC
4682 N : constant Node_Id := Current_Scope;
4683 Freeze_Nodes : List_Id := No_List;
4684 Pos : Int := Scope_Stack.Last;
70482933
RK
4685
4686 begin
4687 if Present (Desig_Typ) then
c159409f 4688 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
70482933
RK
4689 end if;
4690
4691 if Present (Typ) then
c159409f 4692 Freeze_And_Append (Typ, N, Freeze_Nodes);
70482933
RK
4693 end if;
4694
4695 if Present (Nam) then
c159409f 4696 Freeze_And_Append (Nam, N, Freeze_Nodes);
70482933
RK
4697 end if;
4698
c6823a20
EB
4699 -- The current scope may be that of a constrained component of
4700 -- an enclosing record declaration, which is above the current
4701 -- scope in the scope stack.
6191e212
AC
4702 -- If the expression is within a top-level pragma, as for a pre-
4703 -- condition on a library-level subprogram, nothing to do.
c6823a20 4704
6191e212
AC
4705 if not Is_Compilation_Unit (Current_Scope)
4706 and then Is_Record_Type (Scope (Current_Scope))
4707 then
c6823a20
EB
4708 Pos := Pos - 1;
4709 end if;
4710
70482933 4711 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4712 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4713 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
c159409f 4714 Freeze_Nodes;
70482933 4715 else
cd5a9750
AC
4716 Append_List (Freeze_Nodes,
4717 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
70482933
RK
4718 end if;
4719 end if;
4720 end;
4721
4722 return;
4723 end if;
4724
4725 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4726 -- adjustment, if we are in spec-expression analysis mode, these freeze
4727 -- actions must not be thrown away (normally all inserted actions are
4728 -- thrown away in this mode. However, the freeze actions are from static
4729 -- expressions and one of the important reasons we are doing this
ee094616 4730 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4731 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4732 -- This also means they get properly analyzed and expanded.
70482933 4733
c6a9797e 4734 In_Spec_Expression := False;
70482933 4735
fbf5a39b 4736 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4737
4738 if Present (Desig_Typ) then
4739 Freeze_Before (P, Desig_Typ);
4740 end if;
4741
fbf5a39b 4742 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4743 -- the enumeration representation clause exception in the loop above.
4744
4745 if Present (Typ) then
4746 Freeze_Before (P, Typ);
4747 end if;
4748
fbf5a39b 4749 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4750
4751 if Present (Nam) then
4752 Freeze_Before (P, Nam);
4753 end if;
4754
c6a9797e
RD
4755 -- Restore In_Spec_Expression flag
4756
4757 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4758 end Freeze_Expression;
4759
4760 -----------------------------
4761 -- Freeze_Fixed_Point_Type --
4762 -----------------------------
4763
edd63e9b
ES
4764 -- Certain fixed-point types and subtypes, including implicit base types
4765 -- and declared first subtypes, have not yet set up a range. This is
4766 -- because the range cannot be set until the Small and Size values are
4767 -- known, and these are not known till the type is frozen.
70482933 4768
edd63e9b
ES
4769 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4770 -- whose bounds are unanalyzed real literals. This routine will recognize
4771 -- this case, and transform this range node into a properly typed range
4772 -- with properly analyzed and resolved values.
70482933
RK
4773
4774 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4775 Rng : constant Node_Id := Scalar_Range (Typ);
4776 Lo : constant Node_Id := Low_Bound (Rng);
4777 Hi : constant Node_Id := High_Bound (Rng);
4778 Btyp : constant Entity_Id := Base_Type (Typ);
4779 Brng : constant Node_Id := Scalar_Range (Btyp);
4780 BLo : constant Node_Id := Low_Bound (Brng);
4781 BHi : constant Node_Id := High_Bound (Brng);
4782 Small : constant Ureal := Small_Value (Typ);
4783 Loval : Ureal;
4784 Hival : Ureal;
4785 Atype : Entity_Id;
4786
4787 Actual_Size : Nat;
4788
4789 function Fsize (Lov, Hiv : Ureal) return Nat;
4790 -- Returns size of type with given bounds. Also leaves these
4791 -- bounds set as the current bounds of the Typ.
4792
0da2c8ac
AC
4793 -----------
4794 -- Fsize --
4795 -----------
4796
70482933
RK
4797 function Fsize (Lov, Hiv : Ureal) return Nat is
4798 begin
4799 Set_Realval (Lo, Lov);
4800 Set_Realval (Hi, Hiv);
4801 return Minimum_Size (Typ);
4802 end Fsize;
4803
0da2c8ac 4804 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4805
4806 begin
4807 -- If Esize of a subtype has not previously been set, set it now
4808
4809 if Unknown_Esize (Typ) then
4810 Atype := Ancestor_Subtype (Typ);
4811
4812 if Present (Atype) then
fbf5a39b 4813 Set_Esize (Typ, Esize (Atype));
70482933 4814 else
fbf5a39b 4815 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4816 end if;
4817 end if;
4818
ee094616
RD
4819 -- Immediate return if the range is already analyzed. This means that
4820 -- the range is already set, and does not need to be computed by this
4821 -- routine.
70482933
RK
4822
4823 if Analyzed (Rng) then
4824 return;
4825 end if;
4826
4827 -- Immediate return if either of the bounds raises Constraint_Error
4828
4829 if Raises_Constraint_Error (Lo)
4830 or else Raises_Constraint_Error (Hi)
4831 then
4832 return;
4833 end if;
4834
4835 Loval := Realval (Lo);
4836 Hival := Realval (Hi);
4837
4838 -- Ordinary fixed-point case
4839
4840 if Is_Ordinary_Fixed_Point_Type (Typ) then
4841
4842 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4843 -- end-points up or down by small. Generally we prefer to fudge up,
4844 -- i.e. widen the bounds for non-model numbers so that the end points
4845 -- are included. However there are cases in which this cannot be
4846 -- done, and indeed cases in which we may need to narrow the bounds.
4847 -- The following circuit makes the decision.
70482933 4848
ee094616
RD
4849 -- Note: our terminology here is that Incl_EP means that the bounds
4850 -- are widened by Small if necessary to include the end points, and
4851 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4852 -- end-points if this reduces the size.
70482933
RK
4853
4854 -- Note that in the Incl case, all we care about is including the
4855 -- end-points. In the Excl case, we want to narrow the bounds as
4856 -- much as permitted by the RM, to give the smallest possible size.
4857
4858 Fudge : declare
4859 Loval_Incl_EP : Ureal;
4860 Hival_Incl_EP : Ureal;
4861
4862 Loval_Excl_EP : Ureal;
4863 Hival_Excl_EP : Ureal;
4864
4865 Size_Incl_EP : Nat;
4866 Size_Excl_EP : Nat;
4867
4868 Model_Num : Ureal;
4869 First_Subt : Entity_Id;
4870 Actual_Lo : Ureal;
4871 Actual_Hi : Ureal;
4872
4873 begin
4874 -- First step. Base types are required to be symmetrical. Right
4875 -- now, the base type range is a copy of the first subtype range.
4876 -- This will be corrected before we are done, but right away we
4877 -- need to deal with the case where both bounds are non-negative.
4878 -- In this case, we set the low bound to the negative of the high
4879 -- bound, to make sure that the size is computed to include the
4880 -- required sign. Note that we do not need to worry about the
4881 -- case of both bounds negative, because the sign will be dealt
4882 -- with anyway. Furthermore we can't just go making such a bound
4883 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4884 -- extra negative value which could not be accommodated on the
70482933
RK
4885 -- positive side.
4886
4887 if Typ = Btyp
4888 and then not UR_Is_Negative (Loval)
4889 and then Hival > Loval
4890 then
4891 Loval := -Hival;
4892 Set_Realval (Lo, Loval);
4893 end if;
4894
4895 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4896 -- then we do nothing to include it, but we are allowed to backoff
4897 -- to the next adjacent model number when we exclude it. If it is
4898 -- not a model number then we straddle the two values with the
4899 -- model numbers on either side.
70482933
RK
4900
4901 Model_Num := UR_Trunc (Loval / Small) * Small;
4902
4903 if Loval = Model_Num then
4904 Loval_Incl_EP := Model_Num;
4905 else
4906 Loval_Incl_EP := Model_Num - Small;
4907 end if;
4908
4909 -- The low value excluding the end point is Small greater, but
4910 -- we do not do this exclusion if the low value is positive,
4911 -- since it can't help the size and could actually hurt by
4912 -- crossing the high bound.
4913
4914 if UR_Is_Negative (Loval_Incl_EP) then
4915 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4916
4917 -- If the value went from negative to zero, then we have the
4918 -- case where Loval_Incl_EP is the model number just below
4919 -- zero, so we want to stick to the negative value for the
4920 -- base type to maintain the condition that the size will
4921 -- include signed values.
4922
4923 if Typ = Btyp
4924 and then UR_Is_Zero (Loval_Excl_EP)
4925 then
4926 Loval_Excl_EP := Loval_Incl_EP;
4927 end if;
4928
70482933
RK
4929 else
4930 Loval_Excl_EP := Loval_Incl_EP;
4931 end if;
4932
4933 -- Similar processing for upper bound and high value
4934
4935 Model_Num := UR_Trunc (Hival / Small) * Small;
4936
4937 if Hival = Model_Num then
4938 Hival_Incl_EP := Model_Num;
4939 else
4940 Hival_Incl_EP := Model_Num + Small;
4941 end if;
4942
4943 if UR_Is_Positive (Hival_Incl_EP) then
4944 Hival_Excl_EP := Hival_Incl_EP - Small;
4945 else
4946 Hival_Excl_EP := Hival_Incl_EP;
4947 end if;
4948
ee094616
RD
4949 -- One further adjustment is needed. In the case of subtypes, we
4950 -- cannot go outside the range of the base type, or we get
70482933 4951 -- peculiarities, and the base type range is already set. This
ee094616
RD
4952 -- only applies to the Incl values, since clearly the Excl values
4953 -- are already as restricted as they are allowed to be.
70482933
RK
4954
4955 if Typ /= Btyp then
4956 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4957 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4958 end if;
4959
4960 -- Get size including and excluding end points
4961
4962 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4963 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4964
4965 -- No need to exclude end-points if it does not reduce size
4966
4967 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4968 Loval_Excl_EP := Loval_Incl_EP;
4969 end if;
4970
4971 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4972 Hival_Excl_EP := Hival_Incl_EP;
4973 end if;
4974
4975 -- Now we set the actual size to be used. We want to use the
4976 -- bounds fudged up to include the end-points but only if this
4977 -- can be done without violating a specifically given size
4978 -- size clause or causing an unacceptable increase in size.
4979
4980 -- Case of size clause given
4981
4982 if Has_Size_Clause (Typ) then
4983
4984 -- Use the inclusive size only if it is consistent with
4985 -- the explicitly specified size.
4986
4987 if Size_Incl_EP <= RM_Size (Typ) then
4988 Actual_Lo := Loval_Incl_EP;
4989 Actual_Hi := Hival_Incl_EP;
4990 Actual_Size := Size_Incl_EP;
4991
4992 -- If the inclusive size is too large, we try excluding
4993 -- the end-points (will be caught later if does not work).
4994
4995 else
4996 Actual_Lo := Loval_Excl_EP;
4997 Actual_Hi := Hival_Excl_EP;
4998 Actual_Size := Size_Excl_EP;
4999 end if;
5000
5001 -- Case of size clause not given
5002
5003 else
5004 -- If we have a base type whose corresponding first subtype
5005 -- has an explicit size that is large enough to include our
5006 -- end-points, then do so. There is no point in working hard
5007 -- to get a base type whose size is smaller than the specified
5008 -- size of the first subtype.
5009
5010 First_Subt := First_Subtype (Typ);
5011
5012 if Has_Size_Clause (First_Subt)
5013 and then Size_Incl_EP <= Esize (First_Subt)
5014 then
5015 Actual_Size := Size_Incl_EP;
5016 Actual_Lo := Loval_Incl_EP;
5017 Actual_Hi := Hival_Incl_EP;
5018
5019 -- If excluding the end-points makes the size smaller and
5020 -- results in a size of 8,16,32,64, then we take the smaller
5021 -- size. For the 64 case, this is compulsory. For the other
5022 -- cases, it seems reasonable. We like to include end points
5023 -- if we can, but not at the expense of moving to the next
5024 -- natural boundary of size.
5025
5026 elsif Size_Incl_EP /= Size_Excl_EP
094cefda 5027 and then Addressable (Size_Excl_EP)
70482933
RK
5028 then
5029 Actual_Size := Size_Excl_EP;
5030 Actual_Lo := Loval_Excl_EP;
5031 Actual_Hi := Hival_Excl_EP;
5032
5033 -- Otherwise we can definitely include the end points
5034
5035 else
5036 Actual_Size := Size_Incl_EP;
5037 Actual_Lo := Loval_Incl_EP;
5038 Actual_Hi := Hival_Incl_EP;
5039 end if;
5040
edd63e9b
ES
5041 -- One pathological case: normally we never fudge a low bound
5042 -- down, since it would seem to increase the size (if it has
5043 -- any effect), but for ranges containing single value, or no
5044 -- values, the high bound can be small too large. Consider:
70482933
RK
5045
5046 -- type t is delta 2.0**(-14)
5047 -- range 131072.0 .. 0;
5048
edd63e9b
ES
5049 -- That lower bound is *just* outside the range of 32 bits, and
5050 -- does need fudging down in this case. Note that the bounds
5051 -- will always have crossed here, since the high bound will be
5052 -- fudged down if necessary, as in the case of:
70482933
RK
5053
5054 -- type t is delta 2.0**(-14)
5055 -- range 131072.0 .. 131072.0;
5056
edd63e9b
ES
5057 -- So we detect the situation by looking for crossed bounds,
5058 -- and if the bounds are crossed, and the low bound is greater
5059 -- than zero, we will always back it off by small, since this
5060 -- is completely harmless.
70482933
RK
5061
5062 if Actual_Lo > Actual_Hi then
5063 if UR_Is_Positive (Actual_Lo) then
5064 Actual_Lo := Loval_Incl_EP - Small;
5065 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
5066
5067 -- And of course, we need to do exactly the same parallel
5068 -- fudge for flat ranges in the negative region.
5069
5070 elsif UR_Is_Negative (Actual_Hi) then
5071 Actual_Hi := Hival_Incl_EP + Small;
5072 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
5073 end if;
5074 end if;
5075 end if;
5076
5077 Set_Realval (Lo, Actual_Lo);
5078 Set_Realval (Hi, Actual_Hi);
5079 end Fudge;
5080
5081 -- For the decimal case, none of this fudging is required, since there
5082 -- are no end-point problems in the decimal case (the end-points are
5083 -- always included).
5084
5085 else
5086 Actual_Size := Fsize (Loval, Hival);
5087 end if;
5088
5089 -- At this stage, the actual size has been calculated and the proper
5090 -- required bounds are stored in the low and high bounds.
5091
5092 if Actual_Size > 64 then
5093 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
5094 Error_Msg_N
7d8b9c99
RD
5095 ("size required (^) for type& too large, maximum allowed is 64",
5096 Typ);
70482933
RK
5097 Actual_Size := 64;
5098 end if;
5099
5100 -- Check size against explicit given size
5101
5102 if Has_Size_Clause (Typ) then
5103 if Actual_Size > RM_Size (Typ) then
5104 Error_Msg_Uint_1 := RM_Size (Typ);
5105 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
5106 Error_Msg_NE
7d8b9c99 5107 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
5108 Size_Clause (Typ), Typ);
5109
5110 else
5111 Actual_Size := UI_To_Int (Esize (Typ));
5112 end if;
5113
5114 -- Increase size to next natural boundary if no size clause given
5115
5116 else
5117 if Actual_Size <= 8 then
5118 Actual_Size := 8;
5119 elsif Actual_Size <= 16 then
5120 Actual_Size := 16;
5121 elsif Actual_Size <= 32 then
5122 Actual_Size := 32;
5123 else
5124 Actual_Size := 64;
5125 end if;
5126
5127 Init_Esize (Typ, Actual_Size);
5128 Adjust_Esize_For_Alignment (Typ);
5129 end if;
5130
edd63e9b
ES
5131 -- If we have a base type, then expand the bounds so that they extend to
5132 -- the full width of the allocated size in bits, to avoid junk range
5133 -- checks on intermediate computations.
70482933
RK
5134
5135 if Base_Type (Typ) = Typ then
5136 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
5137 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
5138 end if;
5139
5140 -- Final step is to reanalyze the bounds using the proper type
5141 -- and set the Corresponding_Integer_Value fields of the literals.
5142
5143 Set_Etype (Lo, Empty);
5144 Set_Analyzed (Lo, False);
5145 Analyze (Lo);
5146
edd63e9b
ES
5147 -- Resolve with universal fixed if the base type, and the base type if
5148 -- it is a subtype. Note we can't resolve the base type with itself,
5149 -- that would be a reference before definition.
70482933
RK
5150
5151 if Typ = Btyp then
5152 Resolve (Lo, Universal_Fixed);
5153 else
5154 Resolve (Lo, Btyp);
5155 end if;
5156
5157 -- Set corresponding integer value for bound
5158
5159 Set_Corresponding_Integer_Value
5160 (Lo, UR_To_Uint (Realval (Lo) / Small));
5161
5162 -- Similar processing for high bound
5163
5164 Set_Etype (Hi, Empty);
5165 Set_Analyzed (Hi, False);
5166 Analyze (Hi);
5167
5168 if Typ = Btyp then
5169 Resolve (Hi, Universal_Fixed);
5170 else
5171 Resolve (Hi, Btyp);
5172 end if;
5173
5174 Set_Corresponding_Integer_Value
5175 (Hi, UR_To_Uint (Realval (Hi) / Small));
5176
5177 -- Set type of range to correspond to bounds
5178
5179 Set_Etype (Rng, Etype (Lo));
5180
fbf5a39b 5181 -- Set Esize to calculated size if not set already
70482933 5182
fbf5a39b
AC
5183 if Unknown_Esize (Typ) then
5184 Init_Esize (Typ, Actual_Size);
5185 end if;
70482933
RK
5186
5187 -- Set RM_Size if not already set. If already set, check value
5188
5189 declare
5190 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
5191
5192 begin
5193 if RM_Size (Typ) /= Uint_0 then
5194 if RM_Size (Typ) < Minsiz then
5195 Error_Msg_Uint_1 := RM_Size (Typ);
5196 Error_Msg_Uint_2 := Minsiz;
5197 Error_Msg_NE
7d8b9c99 5198 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
5199 Size_Clause (Typ), Typ);
5200 end if;
5201
5202 else
5203 Set_RM_Size (Typ, Minsiz);
5204 end if;
5205 end;
70482933
RK
5206 end Freeze_Fixed_Point_Type;
5207
5208 ------------------
5209 -- Freeze_Itype --
5210 ------------------
5211
5212 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5213 L : List_Id;
5214
5215 begin
5216 Set_Has_Delayed_Freeze (T);
c159409f 5217 L := Freeze_Entity (T, N);
70482933
RK
5218
5219 if Is_Non_Empty_List (L) then
5220 Insert_Actions (N, L);
5221 end if;
5222 end Freeze_Itype;
5223
5224 --------------------------
5225 -- Freeze_Static_Object --
5226 --------------------------
5227
5228 procedure Freeze_Static_Object (E : Entity_Id) is
5229
5230 Cannot_Be_Static : exception;
5231 -- Exception raised if the type of a static object cannot be made
5232 -- static. This happens if the type depends on non-global objects.
5233
5234 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
5235 -- Called to ensure that an expression used as part of a type definition
5236 -- is statically allocatable, which means that the expression type is
5237 -- statically allocatable, and the expression is either static, or a
5238 -- reference to a library level constant.
70482933
RK
5239
5240 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5241 -- Called to mark a type as static, checking that it is possible
5242 -- to set the type as static. If it is not possible, then the
5243 -- exception Cannot_Be_Static is raised.
5244
5245 -----------------------------
5246 -- Ensure_Expression_Is_SA --
5247 -----------------------------
5248
5249 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5250 Ent : Entity_Id;
5251
5252 begin
5253 Ensure_Type_Is_SA (Etype (N));
5254
5255 if Is_Static_Expression (N) then
5256 return;
5257
5258 elsif Nkind (N) = N_Identifier then
5259 Ent := Entity (N);
5260
5261 if Present (Ent)
5262 and then Ekind (Ent) = E_Constant
5263 and then Is_Library_Level_Entity (Ent)
5264 then
5265 return;
5266 end if;
5267 end if;
5268
5269 raise Cannot_Be_Static;
5270 end Ensure_Expression_Is_SA;
5271
5272 -----------------------
5273 -- Ensure_Type_Is_SA --
5274 -----------------------
5275
5276 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5277 N : Node_Id;
5278 C : Entity_Id;
5279
5280 begin
5281 -- If type is library level, we are all set
5282
5283 if Is_Library_Level_Entity (Typ) then
5284 return;
5285 end if;
5286
ee094616
RD
5287 -- We are also OK if the type already marked as statically allocated,
5288 -- which means we processed it before.
70482933
RK
5289
5290 if Is_Statically_Allocated (Typ) then
5291 return;
5292 end if;
5293
5294 -- Mark type as statically allocated
5295
5296 Set_Is_Statically_Allocated (Typ);
5297
5298 -- Check that it is safe to statically allocate this type
5299
5300 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5301 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5302 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5303
5304 elsif Is_Array_Type (Typ) then
5305 N := First_Index (Typ);
5306 while Present (N) loop
5307 Ensure_Type_Is_SA (Etype (N));
5308 Next_Index (N);
5309 end loop;
5310
5311 Ensure_Type_Is_SA (Component_Type (Typ));
5312
5313 elsif Is_Access_Type (Typ) then
5314 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5315
5316 declare
5317 F : Entity_Id;
5318 T : constant Entity_Id := Etype (Designated_Type (Typ));
5319
5320 begin
5321 if T /= Standard_Void_Type then
5322 Ensure_Type_Is_SA (T);
5323 end if;
5324
5325 F := First_Formal (Designated_Type (Typ));
70482933
RK
5326 while Present (F) loop
5327 Ensure_Type_Is_SA (Etype (F));
5328 Next_Formal (F);
5329 end loop;
5330 end;
5331
5332 else
5333 Ensure_Type_Is_SA (Designated_Type (Typ));
5334 end if;
5335
5336 elsif Is_Record_Type (Typ) then
5337 C := First_Entity (Typ);
70482933
RK
5338 while Present (C) loop
5339 if Ekind (C) = E_Discriminant
5340 or else Ekind (C) = E_Component
5341 then
5342 Ensure_Type_Is_SA (Etype (C));
5343
5344 elsif Is_Type (C) then
5345 Ensure_Type_Is_SA (C);
5346 end if;
5347
5348 Next_Entity (C);
5349 end loop;
5350
5351 elsif Ekind (Typ) = E_Subprogram_Type then
5352 Ensure_Type_Is_SA (Etype (Typ));
5353
5354 C := First_Formal (Typ);
5355 while Present (C) loop
5356 Ensure_Type_Is_SA (Etype (C));
5357 Next_Formal (C);
5358 end loop;
5359
5360 else
5361 raise Cannot_Be_Static;
5362 end if;
5363 end Ensure_Type_Is_SA;
5364
5365 -- Start of processing for Freeze_Static_Object
5366
5367 begin
5368 Ensure_Type_Is_SA (Etype (E));
5369
5370 exception
5371 when Cannot_Be_Static =>
5372
09494c32
AC
5373 -- If the object that cannot be static is imported or exported, then
5374 -- issue an error message saying that this object cannot be imported
5375 -- or exported. If it has an address clause it is an overlay in the
5376 -- current partition and the static requirement is not relevant.
d606f1df 5377 -- Do not issue any error message when ignoring rep clauses.
09494c32 5378
d606f1df
AC
5379 if Ignore_Rep_Clauses then
5380 null;
5381
5382 elsif Is_Imported (E) then
5383 if No (Address_Clause (E)) then
5384 Error_Msg_N
5385 ("& cannot be imported (local type is not constant)", E);
5386 end if;
70482933
RK
5387
5388 -- Otherwise must be exported, something is wrong if compiler
5389 -- is marking something as statically allocated which cannot be).
5390
5391 else pragma Assert (Is_Exported (E));
5392 Error_Msg_N
5393 ("& cannot be exported (local type is not constant)", E);
5394 end if;
5395 end Freeze_Static_Object;
5396
5397 -----------------------
5398 -- Freeze_Subprogram --
5399 -----------------------
5400
5401 procedure Freeze_Subprogram (E : Entity_Id) is
5402 Retype : Entity_Id;
5403 F : Entity_Id;
5404
5405 begin
5406 -- Subprogram may not have an address clause unless it is imported
5407
5408 if Present (Address_Clause (E)) then
5409 if not Is_Imported (E) then
5410 Error_Msg_N
5411 ("address clause can only be given " &
5412 "for imported subprogram",
5413 Name (Address_Clause (E)));
5414 end if;
5415 end if;
5416
91b1417d
AC
5417 -- Reset the Pure indication on an imported subprogram unless an
5418 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5419 -- otherwise it is an insidious error to call a non-pure function from
5420 -- pure unit and have calls mysteriously optimized away. What happens
5421 -- here is that the Import can bypass the normal check to ensure that
5422 -- pure units call only pure subprograms.
91b1417d
AC
5423
5424 if Is_Imported (E)
5425 and then Is_Pure (E)
5426 and then not Has_Pragma_Pure_Function (E)
5427 then
5428 Set_Is_Pure (E, False);
5429 end if;
5430
70482933
RK
5431 -- For non-foreign convention subprograms, this is where we create
5432 -- the extra formals (for accessibility level and constrained bit
5433 -- information). We delay this till the freeze point precisely so
5434 -- that we know the convention!
5435
5436 if not Has_Foreign_Convention (E) then
5437 Create_Extra_Formals (E);
5438 Set_Mechanisms (E);
5439
5440 -- If this is convention Ada and a Valued_Procedure, that's odd
5441
5442 if Ekind (E) = E_Procedure
5443 and then Is_Valued_Procedure (E)
5444 and then Convention (E) = Convention_Ada
fbf5a39b 5445 and then Warn_On_Export_Import
70482933
RK
5446 then
5447 Error_Msg_N
5448 ("?Valued_Procedure has no effect for convention Ada", E);
5449 Set_Is_Valued_Procedure (E, False);
5450 end if;
5451
5452 -- Case of foreign convention
5453
5454 else
5455 Set_Mechanisms (E);
5456
fbf5a39b 5457 -- For foreign conventions, warn about return of an
70482933
RK
5458 -- unconstrained array.
5459
5460 -- Note: we *do* allow a return by descriptor for the VMS case,
5461 -- though here there is probably more to be done ???
5462
5463 if Ekind (E) = E_Function then
5464 Retype := Underlying_Type (Etype (E));
5465
5466 -- If no return type, probably some other error, e.g. a
5467 -- missing full declaration, so ignore.
5468
5469 if No (Retype) then
5470 null;
5471
5472 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5473 -- earlier on, and there is nothing else to check here. Specific
5474 -- instantiations may lead to erroneous behavior.
70482933
RK
5475
5476 elsif Is_Generic_Type (Etype (E)) then
5477 null;
5478
e7d72fb9 5479 -- Display warning if returning unconstrained array
59366db6 5480
70482933
RK
5481 elsif Is_Array_Type (Retype)
5482 and then not Is_Constrained (Retype)
e7d72fb9 5483
2c1b72d7
AC
5484 -- Exclude cases where descriptor mechanism is set, since the
5485 -- VMS descriptor mechanisms allow such unconstrained returns.
e7d72fb9 5486
70482933 5487 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9 5488
df3e68b1
HK
5489 -- Check appropriate warning is enabled (should we check for
5490 -- Warnings (Off) on specific entities here, probably so???)
e7d72fb9 5491
fbf5a39b 5492 and then Warn_On_Export_Import
e7d72fb9 5493
2c1b72d7
AC
5494 -- Exclude the VM case, since return of unconstrained arrays
5495 -- is properly handled in both the JVM and .NET cases.
e7d72fb9 5496
f3b57ab0 5497 and then VM_Target = No_VM
70482933 5498 then
fbf5a39b
AC
5499 Error_Msg_N
5500 ("?foreign convention function& should not return " &
5501 "unconstrained array", E);
70482933
RK
5502 return;
5503 end if;
5504 end if;
5505
5506 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5507 -- subprogram have defaults, then emit an appropriate warning since
5508 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5509
5510 if Is_Exported (E) then
5511 F := First_Formal (E);
5512 while Present (F) loop
fbf5a39b
AC
5513 if Warn_On_Export_Import
5514 and then Present (Default_Value (F))
5515 then
70482933
RK
5516 Error_Msg_N
5517 ("?parameter cannot be defaulted in non-Ada call",
5518 Default_Value (F));
5519 end if;
5520
5521 Next_Formal (F);
5522 end loop;
5523 end if;
5524 end if;
5525
e7d72fb9
AC
5526 -- For VMS, descriptor mechanisms for parameters are allowed only for
5527 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5528 -- allowed for parameters of exported subprograms.
70482933
RK
5529
5530 if OpenVMS_On_Target then
7d8b9c99
RD
5531 if Is_Exported (E) then
5532 F := First_Formal (E);
5533 while Present (F) loop
5534 if Mechanism (F) = By_Descriptor_NCA then
5535 Error_Msg_N
5536 ("'N'C'A' descriptor for parameter not permitted", F);
5537 Error_Msg_N
5538 ("\can only be used for imported subprogram", F);
5539 end if;
5540
5541 Next_Formal (F);
5542 end loop;
5543
5544 elsif not Is_Imported (E) then
70482933
RK
5545 F := First_Formal (E);
5546 while Present (F) loop
5547 if Mechanism (F) in Descriptor_Codes then
5548 Error_Msg_N
5549 ("descriptor mechanism for parameter not permitted", F);
5550 Error_Msg_N
7d8b9c99 5551 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5552 end if;
5553
5554 Next_Formal (F);
5555 end loop;
5556 end if;
5557 end if;
edd63e9b
ES
5558
5559 -- Pragma Inline_Always is disallowed for dispatching subprograms
5560 -- because the address of such subprograms is saved in the dispatch
5561 -- table to support dispatching calls, and dispatching calls cannot
5562 -- be inlined. This is consistent with the restriction against using
5563 -- 'Access or 'Address on an Inline_Always subprogram.
5564
def46b54
RD
5565 if Is_Dispatching_Operation (E)
5566 and then Has_Pragma_Inline_Always (E)
5567 then
edd63e9b
ES
5568 Error_Msg_N
5569 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5570 end if;
c6a9797e
RD
5571
5572 -- Because of the implicit representation of inherited predefined
5573 -- operators in the front-end, the overriding status of the operation
5574 -- may be affected when a full view of a type is analyzed, and this is
5575 -- not captured by the analysis of the corresponding type declaration.
5576 -- Therefore the correctness of a not-overriding indicator must be
5577 -- rechecked when the subprogram is frozen.
5578
5579 if Nkind (E) = N_Defining_Operator_Symbol
5580 and then not Error_Posted (Parent (E))
5581 then
5582 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5583 end if;
70482933
RK
5584 end Freeze_Subprogram;
5585
15ce9ca2
AC
5586 ----------------------
5587 -- Is_Fully_Defined --
5588 ----------------------
70482933 5589
70482933
RK
5590 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5591 begin
5592 if Ekind (T) = E_Class_Wide_Type then
5593 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5594
5595 elsif Is_Array_Type (T) then
5596 return Is_Fully_Defined (Component_Type (T));
5597
5598 elsif Is_Record_Type (T)
5599 and not Is_Private_Type (T)
5600 then
ee094616
RD
5601 -- Verify that the record type has no components with private types
5602 -- without completion.
657a9dd9
AC
5603
5604 declare
5605 Comp : Entity_Id;
bde58e32 5606
657a9dd9
AC
5607 begin
5608 Comp := First_Component (T);
657a9dd9
AC
5609 while Present (Comp) loop
5610 if not Is_Fully_Defined (Etype (Comp)) then
5611 return False;
5612 end if;
5613
5614 Next_Component (Comp);
5615 end loop;
5616 return True;
5617 end;
5618
30537990 5619 -- For the designated type of an access to subprogram, all types in
4519314c
AC
5620 -- the profile must be fully defined.
5621
5622 elsif Ekind (T) = E_Subprogram_Type then
5623 declare
5624 F : Entity_Id;
5625
5626 begin
5627 F := First_Formal (T);
5628 while Present (F) loop
5629 if not Is_Fully_Defined (Etype (F)) then
5630 return False;
5631 end if;
5632
5633 Next_Formal (F);
5634 end loop;
5635
5636 return Is_Fully_Defined (Etype (T));
5637 end;
5638
86cde7b1
RD
5639 else
5640 return not Is_Private_Type (T)
5641 or else Present (Full_View (Base_Type (T)));
70482933
RK
5642 end if;
5643 end Is_Fully_Defined;
5644
70d904ca 5645 ---------------------------------
70482933
RK
5646 -- Process_Default_Expressions --
5647 ---------------------------------
5648
5649 procedure Process_Default_Expressions
5650 (E : Entity_Id;
5651 After : in out Node_Id)
5652 is
5653 Loc : constant Source_Ptr := Sloc (E);
5654 Dbody : Node_Id;
5655 Formal : Node_Id;
5656 Dcopy : Node_Id;
5657 Dnam : Entity_Id;
5658
5659 begin
5660 Set_Default_Expressions_Processed (E);
5661
ee094616
RD
5662 -- A subprogram instance and its associated anonymous subprogram share
5663 -- their signature. The default expression functions are defined in the
5664 -- wrapper packages for the anonymous subprogram, and should not be
5665 -- generated again for the instance.
70482933
RK
5666
5667 if Is_Generic_Instance (E)
5668 and then Present (Alias (E))
5669 and then Default_Expressions_Processed (Alias (E))
5670 then
5671 return;
5672 end if;
5673
5674 Formal := First_Formal (E);
70482933
RK
5675 while Present (Formal) loop
5676 if Present (Default_Value (Formal)) then
5677
5678 -- We work with a copy of the default expression because we
5679 -- do not want to disturb the original, since this would mess
5680 -- up the conformance checking.
5681
5682 Dcopy := New_Copy_Tree (Default_Value (Formal));
5683
5684 -- The analysis of the expression may generate insert actions,
5685 -- which of course must not be executed. We wrap those actions
5686 -- in a procedure that is not called, and later on eliminated.
5687 -- The following cases have no side-effects, and are analyzed
5688 -- directly.
5689
5690 if Nkind (Dcopy) = N_Identifier
5691 or else Nkind (Dcopy) = N_Expanded_Name
5692 or else Nkind (Dcopy) = N_Integer_Literal
5693 or else (Nkind (Dcopy) = N_Real_Literal
5694 and then not Vax_Float (Etype (Dcopy)))
5695 or else Nkind (Dcopy) = N_Character_Literal
5696 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5697 or else Known_Null (Dcopy)
70482933
RK
5698 or else (Nkind (Dcopy) = N_Attribute_Reference
5699 and then
5700 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5701 then
5702
5703 -- If there is no default function, we must still do a full
ee094616
RD
5704 -- analyze call on the default value, to ensure that all error
5705 -- checks are performed, e.g. those associated with static
5706 -- evaluation. Note: this branch will always be taken if the
5707 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5708
5709 -- Note: the setting of parent here is to meet the requirement
5710 -- that we can only analyze the expression while attached to
5711 -- the tree. Really the requirement is that the parent chain
5712 -- be set, we don't actually need to be in the tree.
5713
5714 Set_Parent (Dcopy, Declaration_Node (Formal));
5715 Analyze (Dcopy);
5716
5717 -- Default expressions are resolved with their own type if the
5718 -- context is generic, to avoid anomalies with private types.
5719
5720 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5721 Resolve (Dcopy);
70482933
RK
5722 else
5723 Resolve (Dcopy, Etype (Formal));
5724 end if;
5725
5726 -- If that resolved expression will raise constraint error,
5727 -- then flag the default value as raising constraint error.
5728 -- This allows a proper error message on the calls.
5729
5730 if Raises_Constraint_Error (Dcopy) then
5731 Set_Raises_Constraint_Error (Default_Value (Formal));
5732 end if;
5733
5734 -- If the default is a parameterless call, we use the name of
5735 -- the called function directly, and there is no body to build.
5736
5737 elsif Nkind (Dcopy) = N_Function_Call
5738 and then No (Parameter_Associations (Dcopy))
5739 then
5740 null;
5741
5742 -- Else construct and analyze the body of a wrapper procedure
5743 -- that contains an object declaration to hold the expression.
5744 -- Given that this is done only to complete the analysis, it
5745 -- simpler to build a procedure than a function which might
5746 -- involve secondary stack expansion.
5747
5748 else
b29def53 5749 Dnam := Make_Temporary (Loc, 'D');
70482933
RK
5750
5751 Dbody :=
5752 Make_Subprogram_Body (Loc,
5753 Specification =>
5754 Make_Procedure_Specification (Loc,
5755 Defining_Unit_Name => Dnam),
5756
5757 Declarations => New_List (
5758 Make_Object_Declaration (Loc,
2c1b72d7
AC
5759 Defining_Identifier => Make_Temporary (Loc, 'T'),
5760 Object_Definition =>
df3e68b1 5761 New_Occurrence_Of (Etype (Formal), Loc),
2c1b72d7 5762 Expression => New_Copy_Tree (Dcopy))),
70482933
RK
5763
5764 Handled_Statement_Sequence =>
5765 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 5766 Statements => Empty_List));
70482933
RK
5767
5768 Set_Scope (Dnam, Scope (E));
5769 Set_Assignment_OK (First (Declarations (Dbody)));
5770 Set_Is_Eliminated (Dnam);
5771 Insert_After (After, Dbody);
5772 Analyze (Dbody);
5773 After := Dbody;
5774 end if;
5775 end if;
5776
5777 Next_Formal (Formal);
5778 end loop;
70482933
RK
5779 end Process_Default_Expressions;
5780
5781 ----------------------------------------
5782 -- Set_Component_Alignment_If_Not_Set --
5783 ----------------------------------------
5784
5785 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5786 begin
5787 -- Ignore if not base type, subtypes don't need anything
5788
5789 if Typ /= Base_Type (Typ) then
5790 return;
5791 end if;
5792
5793 -- Do not override existing representation
5794
5795 if Is_Packed (Typ) then
5796 return;
5797
5798 elsif Has_Specified_Layout (Typ) then
5799 return;
5800
5801 elsif Component_Alignment (Typ) /= Calign_Default then
5802 return;
5803
5804 else
5805 Set_Component_Alignment
5806 (Typ, Scope_Stack.Table
5807 (Scope_Stack.Last).Component_Alignment_Default);
5808 end if;
5809 end Set_Component_Alignment_If_Not_Set;
5810
c6823a20
EB
5811 ------------------
5812 -- Undelay_Type --
5813 ------------------
5814
5815 procedure Undelay_Type (T : Entity_Id) is
5816 begin
5817 Set_Has_Delayed_Freeze (T, False);
5818 Set_Freeze_Node (T, Empty);
5819
5820 -- Since we don't want T to have a Freeze_Node, we don't want its
5821 -- Full_View or Corresponding_Record_Type to have one either.
5822
5823 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5824 -- want is to be sure that for an Itype that's part of record R and is a
5825 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5826 -- points of R and T. We have no way of doing that directly, so what we
5827 -- do is force most such Itypes to be frozen as part of freezing R via
5828 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5829 -- (mostly the designated types of access types that are defined as part
5830 -- of the record).
c6823a20
EB
5831
5832 if Is_Private_Type (T)
5833 and then Present (Full_View (T))
5834 and then Is_Itype (Full_View (T))
5835 and then Is_Record_Type (Scope (Full_View (T)))
5836 then
5837 Undelay_Type (Full_View (T));
5838 end if;
5839
5840 if Is_Concurrent_Type (T)
5841 and then Present (Corresponding_Record_Type (T))
5842 and then Is_Itype (Corresponding_Record_Type (T))
5843 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5844 then
5845 Undelay_Type (Corresponding_Record_Type (T));
5846 end if;
5847 end Undelay_Type;
5848
fbf5a39b
AC
5849 ------------------
5850 -- Warn_Overlay --
5851 ------------------
5852
5853 procedure Warn_Overlay
5854 (Expr : Node_Id;
5855 Typ : Entity_Id;
5856 Nam : Entity_Id)
5857 is
5858 Ent : constant Entity_Id := Entity (Nam);
49e90211 5859 -- The object to which the address clause applies
fbf5a39b
AC
5860
5861 Init : Node_Id;
5862 Old : Entity_Id := Empty;
5863 Decl : Node_Id;
5864
5865 begin
5866 -- No warning if address clause overlay warnings are off
5867
5868 if not Address_Clause_Overlay_Warnings then
5869 return;
5870 end if;
5871
5872 -- No warning if there is an explicit initialization
5873
5874 Init := Original_Node (Expression (Declaration_Node (Ent)));
5875
5876 if Present (Init) and then Comes_From_Source (Init) then
5877 return;
5878 end if;
5879
edd63e9b 5880 -- We only give the warning for non-imported entities of a type for
0ac73189 5881 -- which a non-null base init proc is defined, or for objects of access
a5d83d61 5882 -- types with implicit null initialization, or when Normalize_Scalars
0ac73189
AC
5883 -- applies and the type is scalar or a string type (the latter being
5884 -- tested for because predefined String types are initialized by inline
a5d83d61
AC
5885 -- code rather than by an init_proc). Note that we do not give the
5886 -- warning for Initialize_Scalars, since we suppressed initialization
e526d0c7 5887 -- in this case. Also, do not warn if Suppress_Initialization is set.
fbf5a39b
AC
5888
5889 if Present (Expr)
fbf5a39b 5890 and then not Is_Imported (Ent)
e526d0c7 5891 and then not Initialization_Suppressed (Typ)
0ac73189 5892 and then (Has_Non_Null_Base_Init_Proc (Typ)
e526d0c7
AC
5893 or else Is_Access_Type (Typ)
5894 or else (Normalize_Scalars
5895 and then (Is_Scalar_Type (Typ)
5896 or else Is_String_Type (Typ))))
fbf5a39b
AC
5897 then
5898 if Nkind (Expr) = N_Attribute_Reference
5899 and then Is_Entity_Name (Prefix (Expr))
5900 then
5901 Old := Entity (Prefix (Expr));
5902
5903 elsif Is_Entity_Name (Expr)
5904 and then Ekind (Entity (Expr)) = E_Constant
5905 then
5906 Decl := Declaration_Node (Entity (Expr));
5907
5908 if Nkind (Decl) = N_Object_Declaration
5909 and then Present (Expression (Decl))
5910 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5911 and then Is_Entity_Name (Prefix (Expression (Decl)))
5912 then
5913 Old := Entity (Prefix (Expression (Decl)));
5914
5915 elsif Nkind (Expr) = N_Function_Call then
5916 return;
5917 end if;
5918
ee094616
RD
5919 -- A function call (most likely to To_Address) is probably not an
5920 -- overlay, so skip warning. Ditto if the function call was inlined
5921 -- and transformed into an entity.
fbf5a39b
AC
5922
5923 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5924 return;
5925 end if;
5926
5927 Decl := Next (Parent (Expr));
5928
5929 -- If a pragma Import follows, we assume that it is for the current
5930 -- target of the address clause, and skip the warning.
5931
5932 if Present (Decl)
5933 and then Nkind (Decl) = N_Pragma
1b24ada5 5934 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5935 then
5936 return;
5937 end if;
5938
5939 if Present (Old) then
5940 Error_Msg_Node_2 := Old;
5941 Error_Msg_N
5942 ("default initialization of & may modify &?",
5943 Nam);
5944 else
5945 Error_Msg_N
5946 ("default initialization of & may modify overlaid storage?",
5947 Nam);
5948 end if;
5949
5950 -- Add friendly warning if initialization comes from a packed array
5951 -- component.
5952
5953 if Is_Record_Type (Typ) then
5954 declare
5955 Comp : Entity_Id;
5956
5957 begin
5958 Comp := First_Component (Typ);
fbf5a39b
AC
5959 while Present (Comp) loop
5960 if Nkind (Parent (Comp)) = N_Component_Declaration
5961 and then Present (Expression (Parent (Comp)))
5962 then
5963 exit;
5964 elsif Is_Array_Type (Etype (Comp))
5965 and then Present (Packed_Array_Type (Etype (Comp)))
5966 then
5967 Error_Msg_NE
3f1ede06
RD
5968 ("\packed array component& " &
5969 "will be initialized to zero?",
5970 Nam, Comp);
fbf5a39b
AC
5971 exit;
5972 else
5973 Next_Component (Comp);
5974 end if;
5975 end loop;
5976 end;
5977 end if;
5978
5979 Error_Msg_N
3f1ede06 5980 ("\use pragma Import for & to " &
86cde7b1 5981 "suppress initialization (RM B.1(24))?",
3f1ede06 5982 Nam);
fbf5a39b
AC
5983 end if;
5984 end Warn_Overlay;
5985
70482933 5986end Freeze;