]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
einfo.adb (Itype_Printed): New flag
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
57747aec 9-- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
cb5fee25
KC
19-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20-- Boston, MA 02110-1301, USA. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Ch7; use Exp_Ch7;
70482933
RK
33with Exp_Pakd; use Exp_Pakd;
34with Exp_Util; use Exp_Util;
fbf5a39b 35with Exp_Tss; use Exp_Tss;
70482933 36with Layout; use Layout;
07fc65c4 37with Lib.Xref; use Lib.Xref;
70482933
RK
38with Nlists; use Nlists;
39with Nmake; use Nmake;
40with Opt; use Opt;
41with Restrict; use Restrict;
6e937c1c 42with Rident; use Rident;
70482933
RK
43with Sem; use Sem;
44with Sem_Cat; use Sem_Cat;
45with Sem_Ch6; use Sem_Ch6;
46with Sem_Ch7; use Sem_Ch7;
47with Sem_Ch8; use Sem_Ch8;
48with Sem_Ch13; use Sem_Ch13;
49with Sem_Eval; use Sem_Eval;
50with Sem_Mech; use Sem_Mech;
51with Sem_Prag; use Sem_Prag;
52with Sem_Res; use Sem_Res;
53with Sem_Util; use Sem_Util;
54with Sinfo; use Sinfo;
55with Snames; use Snames;
56with Stand; use Stand;
57with Targparm; use Targparm;
58with Tbuild; use Tbuild;
59with Ttypes; use Ttypes;
60with Uintp; use Uintp;
61with Urealp; use Urealp;
62
63package body Freeze is
64
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
68
69 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
70 -- Typ is a type that is being frozen. If no size clause is given,
71 -- but a default Esize has been computed, then this default Esize is
72 -- adjusted up if necessary to be consistent with a given alignment,
73 -- but never to a value greater than Long_Long_Integer'Size. This
74 -- is used for all discrete types and for fixed-point types.
75
76 procedure Build_And_Analyze_Renamed_Body
77 (Decl : Node_Id;
78 New_S : Entity_Id;
79 After : in out Node_Id);
49e90211 80 -- Build body for a renaming declaration, insert in tree and analyze
70482933 81
fbf5a39b
AC
82 procedure Check_Address_Clause (E : Entity_Id);
83 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 84 -- at the point the object is frozen.
fbf5a39b 85
70482933
RK
86 procedure Check_Strict_Alignment (E : Entity_Id);
87 -- E is a base type. If E is tagged or has a component that is aliased
88 -- or tagged or contains something this is aliased or tagged, set
89 -- Strict_Alignment.
90
91 procedure Check_Unsigned_Type (E : Entity_Id);
92 pragma Inline (Check_Unsigned_Type);
93 -- If E is a fixed-point or discrete type, then all the necessary work
94 -- to freeze it is completed except for possible setting of the flag
95 -- Is_Unsigned_Type, which is done by this procedure. The call has no
96 -- effect if the entity E is not a discrete or fixed-point type.
97
98 procedure Freeze_And_Append
99 (Ent : Entity_Id;
100 Loc : Source_Ptr;
101 Result : in out List_Id);
102 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
103 -- nodes to Result, modifying Result from No_List if necessary.
104
105 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
106 -- Freeze enumeration type. The Esize field is set as processing
107 -- proceeds (i.e. set by default when the type is declared and then
108 -- adjusted by rep clauses. What this procedure does is to make sure
109 -- that if a foreign convention is specified, and no specific size
110 -- is given, then the size must be at least Integer'Size.
111
70482933
RK
112 procedure Freeze_Static_Object (E : Entity_Id);
113 -- If an object is frozen which has Is_Statically_Allocated set, then
114 -- all referenced types must also be marked with this flag. This routine
115 -- is in charge of meeting this requirement for the object entity E.
116
117 procedure Freeze_Subprogram (E : Entity_Id);
118 -- Perform freezing actions for a subprogram (create extra formals,
119 -- and set proper default mechanism values). Note that this routine
120 -- is not called for internal subprograms, for which neither of these
121 -- actions is needed (or desirable, we do not want for example to have
122 -- these extra formals present in initialization procedures, where they
123 -- would serve no purpose). In this call E is either a subprogram or
124 -- a subprogram type (i.e. an access to a subprogram).
125
126 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 127 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
128 -- view. Used to determine whether the designated type of an access type
129 -- should be frozen when the access type is frozen. This is done when an
130 -- allocator is frozen, or an expression that may involve attributes of
131 -- the designated type. Otherwise freezing the access type does not freeze
132 -- the designated type.
70482933
RK
133
134 procedure Process_Default_Expressions
135 (E : Entity_Id;
136 After : in out Node_Id);
137 -- This procedure is called for each subprogram to complete processing
138 -- of default expressions at the point where all types are known to be
139 -- frozen. The expressions must be analyzed in full, to make sure that
140 -- all error processing is done (they have only been pre-analyzed). If
141 -- the expression is not an entity or literal, its analysis may generate
142 -- code which must not be executed. In that case we build a function
143 -- body to hold that code. This wrapper function serves no other purpose
144 -- (it used to be called to evaluate the default, but now the default is
145 -- inlined at each point of call).
146
147 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
148 -- Typ is a record or array type that is being frozen. This routine
149 -- sets the default component alignment from the scope stack values
150 -- if the alignment is otherwise not specified.
151
152 procedure Check_Debug_Info_Needed (T : Entity_Id);
153 -- As each entity is frozen, this routine is called to deal with the
154 -- setting of Debug_Info_Needed for the entity. This flag is set if
155 -- the entity comes from source, or if we are in Debug_Generated_Code
156 -- mode or if the -gnatdV debug flag is set. However, it never sets
157 -- the flag if Debug_Info_Off is set.
158
159 procedure Set_Debug_Info_Needed (T : Entity_Id);
160 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
161 -- also on any entities that are needed by T (for an object, the type
162 -- of the object is needed, and for a type, the subsidiary types are
163 -- needed -- see body for details). Never has any effect on T if the
164 -- Debug_Info_Off flag is set.
165
c6823a20
EB
166 procedure Undelay_Type (T : Entity_Id);
167 -- T is a type of a component that we know to be an Itype.
168 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
169 -- Do the same for any Full_View or Corresponding_Record_Type.
170
fbf5a39b
AC
171 procedure Warn_Overlay
172 (Expr : Node_Id;
173 Typ : Entity_Id;
174 Nam : Node_Id);
175 -- Expr is the expression for an address clause for entity Nam whose type
176 -- is Typ. If Typ has a default initialization, and there is no explicit
177 -- initialization in the source declaration, check whether the address
178 -- clause might cause overlaying of an entity, and emit a warning on the
179 -- side effect that the initialization will cause.
180
70482933
RK
181 -------------------------------
182 -- Adjust_Esize_For_Alignment --
183 -------------------------------
184
185 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
186 Align : Uint;
187
188 begin
189 if Known_Esize (Typ) and then Known_Alignment (Typ) then
190 Align := Alignment_In_Bits (Typ);
191
192 if Align > Esize (Typ)
193 and then Align <= Standard_Long_Long_Integer_Size
194 then
195 Set_Esize (Typ, Align);
196 end if;
197 end if;
198 end Adjust_Esize_For_Alignment;
199
200 ------------------------------------
201 -- Build_And_Analyze_Renamed_Body --
202 ------------------------------------
203
204 procedure Build_And_Analyze_Renamed_Body
205 (Decl : Node_Id;
206 New_S : Entity_Id;
207 After : in out Node_Id)
208 is
209 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
210
211 begin
212 Insert_After (After, Body_Node);
213 Mark_Rewrite_Insertion (Body_Node);
214 Analyze (Body_Node);
215 After := Body_Node;
216 end Build_And_Analyze_Renamed_Body;
217
218 ------------------------
219 -- Build_Renamed_Body --
220 ------------------------
221
222 function Build_Renamed_Body
223 (Decl : Node_Id;
fbf5a39b 224 New_S : Entity_Id) return Node_Id
70482933
RK
225 is
226 Loc : constant Source_Ptr := Sloc (New_S);
227 -- We use for the source location of the renamed body, the location
228 -- of the spec entity. It might seem more natural to use the location
229 -- of the renaming declaration itself, but that would be wrong, since
230 -- then the body we create would look as though it was created far
231 -- too late, and this could cause problems with elaboration order
232 -- analysis, particularly in connection with instantiations.
233
234 N : constant Node_Id := Unit_Declaration_Node (New_S);
235 Nam : constant Node_Id := Name (N);
236 Old_S : Entity_Id;
237 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
238 Actuals : List_Id := No_List;
239 Call_Node : Node_Id;
240 Call_Name : Node_Id;
241 Body_Node : Node_Id;
242 Formal : Entity_Id;
243 O_Formal : Entity_Id;
244 Param_Spec : Node_Id;
245
246 begin
247 -- Determine the entity being renamed, which is the target of the
248 -- call statement. If the name is an explicit dereference, this is
249 -- a renaming of a subprogram type rather than a subprogram. The
250 -- name itself is fully analyzed.
251
252 if Nkind (Nam) = N_Selected_Component then
253 Old_S := Entity (Selector_Name (Nam));
254
255 elsif Nkind (Nam) = N_Explicit_Dereference then
256 Old_S := Etype (Nam);
257
258 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
259 if Is_Entity_Name (Prefix (Nam)) then
260 Old_S := Entity (Prefix (Nam));
261 else
262 Old_S := Entity (Selector_Name (Prefix (Nam)));
263 end if;
264
265 elsif Nkind (Nam) = N_Character_Literal then
266 Old_S := Etype (New_S);
267
268 else
269 Old_S := Entity (Nam);
270 end if;
271
272 if Is_Entity_Name (Nam) then
07fc65c4
GB
273
274 -- If the renamed entity is a predefined operator, retain full
275 -- name to ensure its visibility.
276
277 if Ekind (Old_S) = E_Operator
278 and then Nkind (Nam) = N_Expanded_Name
279 then
280 Call_Name := New_Copy (Name (N));
281 else
282 Call_Name := New_Reference_To (Old_S, Loc);
283 end if;
284
70482933
RK
285 else
286 Call_Name := New_Copy (Name (N));
287
288 -- The original name may have been overloaded, but
289 -- is fully resolved now.
290
291 Set_Is_Overloaded (Call_Name, False);
292 end if;
293
294 -- For simple renamings, subsequent calls can be expanded directly
295 -- as called to the renamed entity. The body must be generated in
296 -- any case for calls they may appear elsewhere.
297
298 if (Ekind (Old_S) = E_Function
299 or else Ekind (Old_S) = E_Procedure)
300 and then Nkind (Decl) = N_Subprogram_Declaration
301 then
302 Set_Body_To_Inline (Decl, Old_S);
303 end if;
304
305 -- The body generated for this renaming is an internal artifact, and
306 -- does not constitute a freeze point for the called entity.
307
308 Set_Must_Not_Freeze (Call_Name);
309
310 Formal := First_Formal (Defining_Entity (Decl));
311
312 if Present (Formal) then
313 Actuals := New_List;
314
315 while Present (Formal) loop
316 Append (New_Reference_To (Formal, Loc), Actuals);
317 Next_Formal (Formal);
318 end loop;
319 end if;
320
321 -- If the renamed entity is an entry, inherit its profile. For
322 -- other renamings as bodies, both profiles must be subtype
323 -- conformant, so it is not necessary to replace the profile given
324 -- in the declaration. However, default values that are aggregates
325 -- are rewritten when partially analyzed, so we recover the original
326 -- aggregate to insure that subsequent conformity checking works.
07fc65c4
GB
327 -- Similarly, if the default expression was constant-folded, recover
328 -- the original expression.
70482933
RK
329
330 Formal := First_Formal (Defining_Entity (Decl));
331
332 if Present (Formal) then
333 O_Formal := First_Formal (Old_S);
334 Param_Spec := First (Parameter_Specifications (Spec));
335
336 while Present (Formal) loop
337 if Is_Entry (Old_S) then
338
339 if Nkind (Parameter_Type (Param_Spec)) /=
340 N_Access_Definition
341 then
342 Set_Etype (Formal, Etype (O_Formal));
343 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
344 end if;
345
07fc65c4
GB
346 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
347 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
348 Nkind (Default_Value (O_Formal))
349 then
70482933
RK
350 Set_Expression (Param_Spec,
351 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
352 end if;
353
354 Next_Formal (Formal);
355 Next_Formal (O_Formal);
356 Next (Param_Spec);
357 end loop;
358 end if;
359
360 -- If the renamed entity is a function, the generated body contains a
361 -- return statement. Otherwise, build a procedure call. If the entity is
362 -- an entry, subsequent analysis of the call will transform it into the
363 -- proper entry or protected operation call. If the renamed entity is
364 -- a character literal, return it directly.
365
366 if Ekind (Old_S) = E_Function
367 or else Ekind (Old_S) = E_Operator
368 or else (Ekind (Old_S) = E_Subprogram_Type
369 and then Etype (Old_S) /= Standard_Void_Type)
370 then
371 Call_Node :=
372 Make_Return_Statement (Loc,
373 Expression =>
374 Make_Function_Call (Loc,
375 Name => Call_Name,
376 Parameter_Associations => Actuals));
377
378 elsif Ekind (Old_S) = E_Enumeration_Literal then
379 Call_Node :=
380 Make_Return_Statement (Loc,
381 Expression => New_Occurrence_Of (Old_S, Loc));
382
383 elsif Nkind (Nam) = N_Character_Literal then
384 Call_Node :=
385 Make_Return_Statement (Loc,
386 Expression => Call_Name);
387
388 else
389 Call_Node :=
390 Make_Procedure_Call_Statement (Loc,
391 Name => Call_Name,
392 Parameter_Associations => Actuals);
393 end if;
394
49e90211 395 -- Create entities for subprogram body and formals
70482933
RK
396
397 Set_Defining_Unit_Name (Spec,
398 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
399
400 Param_Spec := First (Parameter_Specifications (Spec));
401
402 while Present (Param_Spec) loop
403 Set_Defining_Identifier (Param_Spec,
404 Make_Defining_Identifier (Loc,
405 Chars => Chars (Defining_Identifier (Param_Spec))));
406 Next (Param_Spec);
407 end loop;
408
409 Body_Node :=
410 Make_Subprogram_Body (Loc,
411 Specification => Spec,
412 Declarations => New_List,
413 Handled_Statement_Sequence =>
414 Make_Handled_Sequence_Of_Statements (Loc,
415 Statements => New_List (Call_Node)));
416
417 if Nkind (Decl) /= N_Subprogram_Declaration then
418 Rewrite (N,
419 Make_Subprogram_Declaration (Loc,
420 Specification => Specification (N)));
421 end if;
422
423 -- Link the body to the entity whose declaration it completes. If
424 -- the body is analyzed when the renamed entity is frozen, it may be
425 -- necessary to restore the proper scope (see package Exp_Ch13).
426
427 if Nkind (N) = N_Subprogram_Renaming_Declaration
428 and then Present (Corresponding_Spec (N))
429 then
430 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
431 else
432 Set_Corresponding_Spec (Body_Node, New_S);
433 end if;
434
435 return Body_Node;
436 end Build_Renamed_Body;
437
fbf5a39b
AC
438 --------------------------
439 -- Check_Address_Clause --
440 --------------------------
441
442 procedure Check_Address_Clause (E : Entity_Id) is
443 Addr : constant Node_Id := Address_Clause (E);
444 Expr : Node_Id;
445 Decl : constant Node_Id := Declaration_Node (E);
446 Typ : constant Entity_Id := Etype (E);
447
448 begin
449 if Present (Addr) then
450 Expr := Expression (Addr);
451
452 -- If we have no initialization of any kind, then we don't
453 -- need to place any restrictions on the address clause, because
454 -- the object will be elaborated after the address clause is
455 -- evaluated. This happens if the declaration has no initial
456 -- expression, or the type has no implicit initialization, or
457 -- the object is imported.
458
459 -- The same holds for all initialized scalar types and all
460 -- access types. Packed bit arrays of size up to 64 are
461 -- represented using a modular type with an initialization
462 -- (to zero) and can be processed like other initialized
463 -- scalar types.
464
465 -- If the type is controlled, code to attach the object to a
466 -- finalization chain is generated at the point of declaration,
467 -- and therefore the elaboration of the object cannot be delayed:
468 -- the address expression must be a constant.
469
470 if (No (Expression (Decl))
471 and then not Controlled_Type (Typ)
472 and then
473 (not Has_Non_Null_Base_Init_Proc (Typ)
474 or else Is_Imported (E)))
475
476 or else
477 (Present (Expression (Decl))
478 and then Is_Scalar_Type (Typ))
479
480 or else
481 Is_Access_Type (Typ)
482
483 or else
484 (Is_Bit_Packed_Array (Typ)
485 and then
486 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
487 then
488 null;
489
490 -- Otherwise, we require the address clause to be constant
491 -- because the call to the initialization procedure (or the
492 -- attach code) has to happen at the point of the declaration.
493
494 else
495 Check_Constant_Address_Clause (Expr, E);
496 Set_Has_Delayed_Freeze (E, False);
497 end if;
498
499 if not Error_Posted (Expr)
500 and then not Controlled_Type (Typ)
501 then
502 Warn_Overlay (Expr, Typ, Name (Addr));
503 end if;
504 end if;
505 end Check_Address_Clause;
506
70482933
RK
507 -----------------------------
508 -- Check_Compile_Time_Size --
509 -----------------------------
510
511 procedure Check_Compile_Time_Size (T : Entity_Id) is
512
c6823a20 513 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 514 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 515 -- field, of T checking for a size clause that was given which attempts
70482933
RK
516 -- to give a smaller size.
517
518 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 519 -- Recursive function that does all the work
70482933
RK
520
521 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
522 -- If T is a constrained subtype, its size is not known if any of its
523 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 524 -- The test is conservative and doesn't check that the components are
70482933
RK
525 -- in fact constrained by non-static discriminant values. Could be made
526 -- more precise ???
527
528 --------------------
529 -- Set_Small_Size --
530 --------------------
531
c6823a20 532 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
533 begin
534 if S > 32 then
535 return;
536
537 elsif Has_Size_Clause (T) then
538 if RM_Size (T) < S then
539 Error_Msg_Uint_1 := S;
540 Error_Msg_NE
541 ("size for & is too small, minimum is ^",
542 Size_Clause (T), T);
543
544 elsif Unknown_Esize (T) then
545 Set_Esize (T, S);
546 end if;
547
548 -- Set sizes if not set already
549
550 else
551 if Unknown_Esize (T) then
552 Set_Esize (T, S);
553 end if;
554
555 if Unknown_RM_Size (T) then
556 Set_RM_Size (T, S);
557 end if;
558 end if;
559 end Set_Small_Size;
560
561 ----------------
562 -- Size_Known --
563 ----------------
564
565 function Size_Known (T : Entity_Id) return Boolean is
566 Index : Entity_Id;
567 Comp : Entity_Id;
568 Ctyp : Entity_Id;
569 Low : Node_Id;
570 High : Node_Id;
571
572 begin
573 if Size_Known_At_Compile_Time (T) then
574 return True;
575
70482933
RK
576 elsif Is_Scalar_Type (T)
577 or else Is_Task_Type (T)
578 then
579 return not Is_Generic_Type (T);
580
581 elsif Is_Array_Type (T) then
70482933 582 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
583 Set_Small_Size (T, Component_Size (T)
584 * String_Literal_Length (T));
70482933
RK
585 return True;
586
587 elsif not Is_Constrained (T) then
588 return False;
589
07fc65c4
GB
590 -- Don't do any recursion on type with error posted, since
591 -- we may have a malformed type that leads us into a loop
592
593 elsif Error_Posted (T) then
594 return False;
595
70482933
RK
596 elsif not Size_Known (Component_Type (T)) then
597 return False;
598 end if;
599
600 -- Check for all indexes static, and also compute possible
601 -- size (in case it is less than 32 and may be packable).
602
603 declare
604 Esiz : Uint := Component_Size (T);
605 Dim : Uint;
606
607 begin
608 Index := First_Index (T);
70482933
RK
609 while Present (Index) loop
610 if Nkind (Index) = N_Range then
611 Get_Index_Bounds (Index, Low, High);
612
613 elsif Error_Posted (Scalar_Range (Etype (Index))) then
614 return False;
615
616 else
617 Low := Type_Low_Bound (Etype (Index));
618 High := Type_High_Bound (Etype (Index));
619 end if;
620
621 if not Compile_Time_Known_Value (Low)
622 or else not Compile_Time_Known_Value (High)
623 or else Etype (Index) = Any_Type
624 then
625 return False;
626
627 else
628 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
629
630 if Dim >= 0 then
631 Esiz := Esiz * Dim;
632 else
633 Esiz := Uint_0;
634 end if;
635 end if;
636
637 Next_Index (Index);
638 end loop;
639
c6823a20 640 Set_Small_Size (T, Esiz);
70482933
RK
641 return True;
642 end;
643
644 elsif Is_Access_Type (T) then
645 return True;
646
647 elsif Is_Private_Type (T)
648 and then not Is_Generic_Type (T)
649 and then Present (Underlying_Type (T))
650 then
07fc65c4
GB
651 -- Don't do any recursion on type with error posted, since
652 -- we may have a malformed type that leads us into a loop
653
654 if Error_Posted (T) then
655 return False;
656 else
657 return Size_Known (Underlying_Type (T));
658 end if;
70482933
RK
659
660 elsif Is_Record_Type (T) then
fbf5a39b
AC
661
662 -- A class-wide type is never considered to have a known size
663
70482933
RK
664 if Is_Class_Wide_Type (T) then
665 return False;
666
fbf5a39b
AC
667 -- A subtype of a variant record must not have non-static
668 -- discriminanted components.
669
670 elsif T /= Base_Type (T)
671 and then not Static_Discriminated_Components (T)
672 then
673 return False;
70482933 674
07fc65c4
GB
675 -- Don't do any recursion on type with error posted, since
676 -- we may have a malformed type that leads us into a loop
677
678 elsif Error_Posted (T) then
679 return False;
fbf5a39b 680 end if;
07fc65c4 681
fbf5a39b 682 -- Now look at the components of the record
70482933 683
fbf5a39b
AC
684 declare
685 -- The following two variables are used to keep track of
686 -- the size of packed records if we can tell the size of
687 -- the packed record in the front end. Packed_Size_Known
688 -- is True if so far we can figure out the size. It is
689 -- initialized to True for a packed record, unless the
690 -- record has discriminants. The reason we eliminate the
691 -- discriminated case is that we don't know the way the
692 -- back end lays out discriminated packed records. If
693 -- Packed_Size_Known is True, then Packed_Size is the
694 -- size in bits so far.
695
696 Packed_Size_Known : Boolean :=
697 Is_Packed (T)
698 and then not Has_Discriminants (T);
699
700 Packed_Size : Uint := Uint_0;
701
702 begin
703 -- Test for variant part present
704
705 if Has_Discriminants (T)
706 and then Present (Parent (T))
707 and then Nkind (Parent (T)) = N_Full_Type_Declaration
708 and then Nkind (Type_Definition (Parent (T))) =
709 N_Record_Definition
710 and then not Null_Present (Type_Definition (Parent (T)))
711 and then Present (Variant_Part
712 (Component_List (Type_Definition (Parent (T)))))
713 then
714 -- If variant part is present, and type is unconstrained,
715 -- then we must have defaulted discriminants, or a size
716 -- clause must be present for the type, or else the size
717 -- is definitely not known at compile time.
718
719 if not Is_Constrained (T)
720 and then
721 No (Discriminant_Default_Value
722 (First_Discriminant (T)))
723 and then Unknown_Esize (T)
70482933 724 then
fbf5a39b
AC
725 return False;
726 end if;
727 end if;
70482933 728
fbf5a39b
AC
729 -- Loop through components
730
731 Comp := First_Entity (T);
732 while Present (Comp) loop
733 if Ekind (Comp) = E_Component
734 or else
735 Ekind (Comp) = E_Discriminant
736 then
737 Ctyp := Etype (Comp);
738
739 -- We do not know the packed size if there is a
740 -- component clause present (we possibly could,
741 -- but this would only help in the case of a record
742 -- with partial rep clauses. That's because in the
743 -- case of full rep clauses, the size gets figured
744 -- out anyway by a different circuit).
745
746 if Present (Component_Clause (Comp)) then
70482933
RK
747 Packed_Size_Known := False;
748 end if;
70482933 749
fbf5a39b
AC
750 -- We need to identify a component that is an array
751 -- where the index type is an enumeration type with
752 -- non-standard representation, and some bound of the
753 -- type depends on a discriminant.
754
755 -- This is because gigi computes the size by doing a
756 -- substituation of the appropriate discriminant value
757 -- in the size expression for the base type, and gigi
758 -- is not clever enough to evaluate the resulting
759 -- expression (which involves a call to rep_to_pos)
760 -- at compile time.
761
762 -- It would be nice if gigi would either recognize that
763 -- this expression can be computed at compile time, or
764 -- alternatively figured out the size from the subtype
765 -- directly, where all the information is at hand ???
766
767 if Is_Array_Type (Etype (Comp))
768 and then Present (Packed_Array_Type (Etype (Comp)))
70482933 769 then
fbf5a39b
AC
770 declare
771 Ocomp : constant Entity_Id :=
772 Original_Record_Component (Comp);
773 OCtyp : constant Entity_Id := Etype (Ocomp);
774 Ind : Node_Id;
775 Indtyp : Entity_Id;
776 Lo, Hi : Node_Id;
70482933 777
fbf5a39b
AC
778 begin
779 Ind := First_Index (OCtyp);
780 while Present (Ind) loop
781 Indtyp := Etype (Ind);
782
783 if Is_Enumeration_Type (Indtyp)
784 and then Has_Non_Standard_Rep (Indtyp)
785 then
786 Lo := Type_Low_Bound (Indtyp);
787 Hi := Type_High_Bound (Indtyp);
788
789 if Is_Entity_Name (Lo)
790 and then
791 Ekind (Entity (Lo)) = E_Discriminant
792 then
793 return False;
794
795 elsif Is_Entity_Name (Hi)
796 and then
797 Ekind (Entity (Hi)) = E_Discriminant
798 then
799 return False;
800 end if;
801 end if;
802
803 Next_Index (Ind);
804 end loop;
805 end;
806 end if;
70482933 807
fbf5a39b
AC
808 -- Clearly size of record is not known if the size of
809 -- one of the components is not known.
70482933 810
fbf5a39b
AC
811 if not Size_Known (Ctyp) then
812 return False;
813 end if;
814
815 -- Accumulate packed size if possible
816
817 if Packed_Size_Known then
818
819 -- We can only deal with elementary types, since for
820 -- non-elementary components, alignment enters into
821 -- the picture, and we don't know enough to handle
822 -- proper alignment in this context. Packed arrays
823 -- count as elementary if the representation is a
824 -- modular type.
70482933 825
fbf5a39b
AC
826 if Is_Elementary_Type (Ctyp)
827 or else (Is_Array_Type (Ctyp)
828 and then
829 Present (Packed_Array_Type (Ctyp))
830 and then
831 Is_Modular_Integer_Type
832 (Packed_Array_Type (Ctyp)))
833 then
70482933
RK
834 -- If RM_Size is known and static, then we can
835 -- keep accumulating the packed size.
836
837 if Known_Static_RM_Size (Ctyp) then
838
839 -- A little glitch, to be removed sometime ???
840 -- gigi does not understand zero sizes yet.
841
842 if RM_Size (Ctyp) = Uint_0 then
843 Packed_Size_Known := False;
70482933 844
fbf5a39b
AC
845 -- Normal case where we can keep accumulating
846 -- the packed array size.
847
848 else
849 Packed_Size := Packed_Size + RM_Size (Ctyp);
850 end if;
70482933
RK
851
852 -- If we have a field whose RM_Size is not known
853 -- then we can't figure out the packed size here.
854
855 else
856 Packed_Size_Known := False;
857 end if;
fbf5a39b
AC
858
859 -- If we have a non-elementary type we can't figure
860 -- out the packed array size (alignment issues).
861
862 else
863 Packed_Size_Known := False;
70482933
RK
864 end if;
865 end if;
fbf5a39b 866 end if;
70482933 867
fbf5a39b
AC
868 Next_Entity (Comp);
869 end loop;
70482933 870
fbf5a39b 871 if Packed_Size_Known then
c6823a20 872 Set_Small_Size (T, Packed_Size);
fbf5a39b 873 end if;
70482933 874
fbf5a39b
AC
875 return True;
876 end;
70482933
RK
877
878 else
879 return False;
880 end if;
881 end Size_Known;
882
883 -------------------------------------
884 -- Static_Discriminated_Components --
885 -------------------------------------
886
887 function Static_Discriminated_Components
0da2c8ac 888 (T : Entity_Id) return Boolean
70482933
RK
889 is
890 Constraint : Elmt_Id;
891
892 begin
893 if Has_Discriminants (T)
894 and then Present (Discriminant_Constraint (T))
895 and then Present (First_Component (T))
896 then
897 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
898 while Present (Constraint) loop
899 if not Compile_Time_Known_Value (Node (Constraint)) then
900 return False;
901 end if;
902
903 Next_Elmt (Constraint);
904 end loop;
905 end if;
906
907 return True;
908 end Static_Discriminated_Components;
909
910 -- Start of processing for Check_Compile_Time_Size
911
912 begin
913 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
914 end Check_Compile_Time_Size;
915
916 -----------------------------
917 -- Check_Debug_Info_Needed --
918 -----------------------------
919
920 procedure Check_Debug_Info_Needed (T : Entity_Id) is
921 begin
922 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
923 return;
924
925 elsif Comes_From_Source (T)
926 or else Debug_Generated_Code
927 or else Debug_Flag_VV
928 then
929 Set_Debug_Info_Needed (T);
930 end if;
931 end Check_Debug_Info_Needed;
932
933 ----------------------------
934 -- Check_Strict_Alignment --
935 ----------------------------
936
937 procedure Check_Strict_Alignment (E : Entity_Id) is
938 Comp : Entity_Id;
939
940 begin
941 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
942 Set_Strict_Alignment (E);
943
944 elsif Is_Array_Type (E) then
945 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
946
947 elsif Is_Record_Type (E) then
948 if Is_Limited_Record (E) then
949 Set_Strict_Alignment (E);
950 return;
951 end if;
952
953 Comp := First_Component (E);
954
955 while Present (Comp) loop
956 if not Is_Type (Comp)
957 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 958 or else Is_Aliased (Comp))
70482933
RK
959 then
960 Set_Strict_Alignment (E);
961 return;
962 end if;
963
964 Next_Component (Comp);
965 end loop;
966 end if;
967 end Check_Strict_Alignment;
968
969 -------------------------
970 -- Check_Unsigned_Type --
971 -------------------------
972
973 procedure Check_Unsigned_Type (E : Entity_Id) is
974 Ancestor : Entity_Id;
975 Lo_Bound : Node_Id;
976 Btyp : Entity_Id;
977
978 begin
979 if not Is_Discrete_Or_Fixed_Point_Type (E) then
980 return;
981 end if;
982
983 -- Do not attempt to analyze case where range was in error
984
985 if Error_Posted (Scalar_Range (E)) then
986 return;
987 end if;
988
989 -- The situation that is non trivial is something like
990
991 -- subtype x1 is integer range -10 .. +10;
992 -- subtype x2 is x1 range 0 .. V1;
993 -- subtype x3 is x2 range V2 .. V3;
994 -- subtype x4 is x3 range V4 .. V5;
995
996 -- where Vn are variables. Here the base type is signed, but we still
997 -- know that x4 is unsigned because of the lower bound of x2.
998
999 -- The only way to deal with this is to look up the ancestor chain
1000
1001 Ancestor := E;
1002 loop
1003 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1004 return;
1005 end if;
1006
1007 Lo_Bound := Type_Low_Bound (Ancestor);
1008
1009 if Compile_Time_Known_Value (Lo_Bound) then
1010
1011 if Expr_Rep_Value (Lo_Bound) >= 0 then
1012 Set_Is_Unsigned_Type (E, True);
1013 end if;
1014
1015 return;
1016
1017 else
1018 Ancestor := Ancestor_Subtype (Ancestor);
1019
1020 -- If no ancestor had a static lower bound, go to base type
1021
1022 if No (Ancestor) then
1023
1024 -- Note: the reason we still check for a compile time known
1025 -- value for the base type is that at least in the case of
1026 -- generic formals, we can have bounds that fail this test,
1027 -- and there may be other cases in error situations.
1028
1029 Btyp := Base_Type (E);
1030
1031 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1032 return;
1033 end if;
1034
1035 Lo_Bound := Type_Low_Bound (Base_Type (E));
1036
1037 if Compile_Time_Known_Value (Lo_Bound)
1038 and then Expr_Rep_Value (Lo_Bound) >= 0
1039 then
1040 Set_Is_Unsigned_Type (E, True);
1041 end if;
1042
1043 return;
70482933
RK
1044 end if;
1045 end if;
1046 end loop;
1047 end Check_Unsigned_Type;
1048
fbf5a39b
AC
1049 -----------------------------
1050 -- Expand_Atomic_Aggregate --
1051 -----------------------------
1052
1053 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1054 Loc : constant Source_Ptr := Sloc (E);
1055 New_N : Node_Id;
1056 Temp : Entity_Id;
1057
1058 begin
1059 if (Nkind (Parent (E)) = N_Object_Declaration
1060 or else Nkind (Parent (E)) = N_Assignment_Statement)
1061 and then Comes_From_Source (Parent (E))
1062 and then Nkind (E) = N_Aggregate
1063 then
1064 Temp :=
1065 Make_Defining_Identifier (Loc,
1066 New_Internal_Name ('T'));
1067
1068 New_N :=
1069 Make_Object_Declaration (Loc,
1070 Defining_Identifier => Temp,
1071 Object_definition => New_Occurrence_Of (Typ, Loc),
1072 Expression => Relocate_Node (E));
1073 Insert_Before (Parent (E), New_N);
1074 Analyze (New_N);
1075
1076 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1077
1078 -- To prevent the temporary from being constant-folded (which
1079 -- would lead to the same piecemeal assignment on the original
1080 -- target) indicate to the back-end that the temporary is a
1081 -- variable with real storage. See description of this flag
1082 -- in Einfo, and the notes on N_Assignment_Statement and
1083 -- N_Object_Declaration in Sinfo.
1084
1085 Set_Is_True_Constant (Temp, False);
1086 end if;
1087 end Expand_Atomic_Aggregate;
1088
70482933
RK
1089 ----------------
1090 -- Freeze_All --
1091 ----------------
1092
1093 -- Note: the easy coding for this procedure would be to just build a
1094 -- single list of freeze nodes and then insert them and analyze them
1095 -- all at once. This won't work, because the analysis of earlier freeze
1096 -- nodes may recursively freeze types which would otherwise appear later
1097 -- on in the freeze list. So we must analyze and expand the freeze nodes
1098 -- as they are generated.
1099
1100 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1101 Loc : constant Source_Ptr := Sloc (After);
1102 E : Entity_Id;
1103 Decl : Node_Id;
1104
1105 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1106 -- This is the internal recursive routine that does freezing of
1107 -- entities (but NOT the analysis of default expressions, which
1108 -- should not be recursive, we don't want to analyze those till
1109 -- we are sure that ALL the types are frozen).
1110
fbf5a39b
AC
1111 --------------------
1112 -- Freeze_All_Ent --
1113 --------------------
1114
70482933
RK
1115 procedure Freeze_All_Ent
1116 (From : Entity_Id;
1117 After : in out Node_Id)
1118 is
1119 E : Entity_Id;
1120 Flist : List_Id;
1121 Lastn : Node_Id;
1122
1123 procedure Process_Flist;
1124 -- If freeze nodes are present, insert and analyze, and reset
1125 -- cursor for next insertion.
1126
fbf5a39b
AC
1127 -------------------
1128 -- Process_Flist --
1129 -------------------
1130
70482933
RK
1131 procedure Process_Flist is
1132 begin
1133 if Is_Non_Empty_List (Flist) then
1134 Lastn := Next (After);
1135 Insert_List_After_And_Analyze (After, Flist);
1136
1137 if Present (Lastn) then
1138 After := Prev (Lastn);
1139 else
1140 After := Last (List_Containing (After));
1141 end if;
1142 end if;
1143 end Process_Flist;
1144
fbf5a39b
AC
1145 -- Start or processing for Freeze_All_Ent
1146
70482933
RK
1147 begin
1148 E := From;
1149 while Present (E) loop
1150
1151 -- If the entity is an inner package which is not a package
1152 -- renaming, then its entities must be frozen at this point.
1153 -- Note that such entities do NOT get frozen at the end of
1154 -- the nested package itself (only library packages freeze).
1155
1156 -- Same is true for task declarations, where anonymous records
1157 -- created for entry parameters must be frozen.
1158
1159 if Ekind (E) = E_Package
1160 and then No (Renamed_Object (E))
1161 and then not Is_Child_Unit (E)
1162 and then not Is_Frozen (E)
1163 then
1164 New_Scope (E);
1165 Install_Visible_Declarations (E);
1166 Install_Private_Declarations (E);
1167
1168 Freeze_All (First_Entity (E), After);
1169
1170 End_Package_Scope (E);
1171
1172 elsif Ekind (E) in Task_Kind
1173 and then
1174 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1175 or else
70482933
RK
1176 Nkind (Parent (E)) = N_Single_Task_Declaration)
1177 then
1178 New_Scope (E);
1179 Freeze_All (First_Entity (E), After);
1180 End_Scope;
1181
1182 -- For a derived tagged type, we must ensure that all the
1183 -- primitive operations of the parent have been frozen, so
1184 -- that their addresses will be in the parent's dispatch table
1185 -- at the point it is inherited.
1186
1187 elsif Ekind (E) = E_Record_Type
1188 and then Is_Tagged_Type (E)
1189 and then Is_Tagged_Type (Etype (E))
1190 and then Is_Derived_Type (E)
1191 then
1192 declare
1193 Prim_List : constant Elist_Id :=
1194 Primitive_Operations (Etype (E));
fbf5a39b
AC
1195
1196 Prim : Elmt_Id;
1197 Subp : Entity_Id;
70482933
RK
1198
1199 begin
1200 Prim := First_Elmt (Prim_List);
1201
1202 while Present (Prim) loop
1203 Subp := Node (Prim);
1204
1205 if Comes_From_Source (Subp)
1206 and then not Is_Frozen (Subp)
1207 then
1208 Flist := Freeze_Entity (Subp, Loc);
1209 Process_Flist;
1210 end if;
1211
1212 Next_Elmt (Prim);
1213 end loop;
1214 end;
1215 end if;
1216
1217 if not Is_Frozen (E) then
1218 Flist := Freeze_Entity (E, Loc);
1219 Process_Flist;
1220 end if;
1221
fbf5a39b
AC
1222 -- If an incomplete type is still not frozen, this may be
1223 -- a premature freezing because of a body declaration that
1224 -- follows. Indicate where the freezing took place.
1225
1226 -- If the freezing is caused by the end of the current
1227 -- declarative part, it is a Taft Amendment type, and there
1228 -- is no error.
1229
1230 if not Is_Frozen (E)
1231 and then Ekind (E) = E_Incomplete_Type
1232 then
1233 declare
1234 Bod : constant Node_Id := Next (After);
1235
1236 begin
1237 if (Nkind (Bod) = N_Subprogram_Body
1238 or else Nkind (Bod) = N_Entry_Body
1239 or else Nkind (Bod) = N_Package_Body
1240 or else Nkind (Bod) = N_Protected_Body
1241 or else Nkind (Bod) = N_Task_Body
1242 or else Nkind (Bod) in N_Body_Stub)
1243 and then
1244 List_Containing (After) = List_Containing (Parent (E))
1245 then
1246 Error_Msg_Sloc := Sloc (Next (After));
1247 Error_Msg_NE
1248 ("type& is frozen# before its full declaration",
1249 Parent (E), E);
1250 end if;
1251 end;
1252 end if;
1253
70482933
RK
1254 Next_Entity (E);
1255 end loop;
1256 end Freeze_All_Ent;
1257
1258 -- Start of processing for Freeze_All
1259
1260 begin
1261 Freeze_All_Ent (From, After);
1262
1263 -- Now that all types are frozen, we can deal with default expressions
1264 -- that require us to build a default expression functions. This is the
1265 -- point at which such functions are constructed (after all types that
1266 -- might be used in such expressions have been frozen).
fbf5a39b 1267
70482933
RK
1268 -- We also add finalization chains to access types whose designated
1269 -- types are controlled. This is normally done when freezing the type,
1270 -- but this misses recursive type definitions where the later members
1271 -- of the recursion introduce controlled components (e.g. 5624-001).
1272
1273 -- Loop through entities
1274
1275 E := From;
1276 while Present (E) loop
70482933
RK
1277 if Is_Subprogram (E) then
1278
1279 if not Default_Expressions_Processed (E) then
1280 Process_Default_Expressions (E, After);
1281 end if;
1282
1283 if not Has_Completion (E) then
1284 Decl := Unit_Declaration_Node (E);
1285
1286 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1287 Build_And_Analyze_Renamed_Body (Decl, E, After);
1288
1289 elsif Nkind (Decl) = N_Subprogram_Declaration
1290 and then Present (Corresponding_Body (Decl))
1291 and then
1292 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1293 = N_Subprogram_Renaming_Declaration
70482933
RK
1294 then
1295 Build_And_Analyze_Renamed_Body
1296 (Decl, Corresponding_Body (Decl), After);
1297 end if;
1298 end if;
1299
1300 elsif Ekind (E) in Task_Kind
1301 and then
1302 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1303 or else
70482933
RK
1304 Nkind (Parent (E)) = N_Single_Task_Declaration)
1305 then
1306 declare
1307 Ent : Entity_Id;
70482933
RK
1308 begin
1309 Ent := First_Entity (E);
1310
1311 while Present (Ent) loop
1312
1313 if Is_Entry (Ent)
1314 and then not Default_Expressions_Processed (Ent)
1315 then
1316 Process_Default_Expressions (Ent, After);
1317 end if;
1318
1319 Next_Entity (Ent);
1320 end loop;
1321 end;
1322
1323 elsif Is_Access_Type (E)
1324 and then Comes_From_Source (E)
1325 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1326 and then Controlled_Type (Designated_Type (E))
1327 and then No (Associated_Final_Chain (E))
1328 then
1329 Build_Final_List (Parent (E), E);
1330 end if;
1331
1332 Next_Entity (E);
1333 end loop;
70482933
RK
1334 end Freeze_All;
1335
1336 -----------------------
1337 -- Freeze_And_Append --
1338 -----------------------
1339
1340 procedure Freeze_And_Append
1341 (Ent : Entity_Id;
1342 Loc : Source_Ptr;
1343 Result : in out List_Id)
1344 is
1345 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1346 begin
1347 if Is_Non_Empty_List (L) then
1348 if Result = No_List then
1349 Result := L;
1350 else
1351 Append_List (L, Result);
1352 end if;
1353 end if;
1354 end Freeze_And_Append;
1355
1356 -------------------
1357 -- Freeze_Before --
1358 -------------------
1359
1360 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1361 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1362 begin
1363 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1364 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1365 end if;
1366 end Freeze_Before;
1367
1368 -------------------
1369 -- Freeze_Entity --
1370 -------------------
1371
1372 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1373 Test_E : Entity_Id := E;
70482933
RK
1374 Comp : Entity_Id;
1375 F_Node : Node_Id;
1376 Result : List_Id;
1377 Indx : Node_Id;
1378 Formal : Entity_Id;
1379 Atype : Entity_Id;
1380
1381 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1382 -- Check that an Access or Unchecked_Access attribute with a prefix
1383 -- which is the current instance type can only be applied when the type
1384 -- is limited.
70482933
RK
1385
1386 function After_Last_Declaration return Boolean;
1387 -- If Loc is a freeze_entity that appears after the last declaration
1388 -- in the scope, inhibit error messages on late completion.
1389
1390 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1391 -- Freeze each component, handle some representation clauses, and freeze
1392 -- primitive operations if this is a tagged type.
70482933
RK
1393
1394 ----------------------------
1395 -- After_Last_Declaration --
1396 ----------------------------
1397
1398 function After_Last_Declaration return Boolean is
fbf5a39b 1399 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1400
1401 begin
1402 if Nkind (Spec) = N_Package_Specification then
1403 if Present (Private_Declarations (Spec)) then
1404 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1405
1406 elsif Present (Visible_Declarations (Spec)) then
1407 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1408 else
1409 return False;
1410 end if;
1411
1412 else
1413 return False;
1414 end if;
1415 end After_Last_Declaration;
1416
1417 ----------------------------
1418 -- Check_Current_Instance --
1419 ----------------------------
1420
1421 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1422
1423 function Process (N : Node_Id) return Traverse_Result;
49e90211 1424 -- Process routine to apply check to given node
70482933 1425
fbf5a39b
AC
1426 -------------
1427 -- Process --
1428 -------------
1429
70482933
RK
1430 function Process (N : Node_Id) return Traverse_Result is
1431 begin
1432 case Nkind (N) is
1433 when N_Attribute_Reference =>
1434 if (Attribute_Name (N) = Name_Access
1435 or else
1436 Attribute_Name (N) = Name_Unchecked_Access)
1437 and then Is_Entity_Name (Prefix (N))
1438 and then Is_Type (Entity (Prefix (N)))
1439 and then Entity (Prefix (N)) = E
1440 then
1441 Error_Msg_N
1442 ("current instance must be a limited type", Prefix (N));
1443 return Abandon;
1444 else
1445 return OK;
1446 end if;
1447
1448 when others => return OK;
1449 end case;
1450 end Process;
1451
1452 procedure Traverse is new Traverse_Proc (Process);
1453
1454 -- Start of processing for Check_Current_Instance
1455
1456 begin
1457 Traverse (Comp_Decl);
1458 end Check_Current_Instance;
1459
1460 ------------------------
1461 -- Freeze_Record_Type --
1462 ------------------------
1463
1464 procedure Freeze_Record_Type (Rec : Entity_Id) is
1465 Comp : Entity_Id;
fbf5a39b 1466 IR : Node_Id;
70482933
RK
1467 Junk : Boolean;
1468 ADC : Node_Id;
c6823a20 1469 Prev : Entity_Id;
70482933
RK
1470
1471 Unplaced_Component : Boolean := False;
1472 -- Set True if we find at least one component with no component
1473 -- clause (used to warn about useless Pack pragmas).
1474
1475 Placed_Component : Boolean := False;
1476 -- Set True if we find at least one component with a component
1477 -- clause (used to warn about useless Bit_Order pragmas).
1478
6e059adb
AC
1479 procedure Check_Itype (Desig : Entity_Id);
1480 -- If the component subtype is an access to a constrained subtype
1481 -- of an already frozen type, make the subtype frozen as well. It
1482 -- might otherwise be frozen in the wrong scope, and a freeze node
1483 -- on subtype has no effect.
1484
6871ba5f
AC
1485 -----------------
1486 -- Check_Itype --
1487 -----------------
1488
6e059adb
AC
1489 procedure Check_Itype (Desig : Entity_Id) is
1490 begin
1491 if not Is_Frozen (Desig)
1492 and then Is_Frozen (Base_Type (Desig))
1493 then
1494 Set_Is_Frozen (Desig);
1495
1496 -- In addition, add an Itype_Reference to ensure that the
1497 -- access subtype is elaborated early enough. This cannot
1498 -- be done if the subtype may depend on discriminants.
1499
1500 if Ekind (Comp) = E_Component
1501 and then Is_Itype (Etype (Comp))
1502 and then not Has_Discriminants (Rec)
1503 then
1504 IR := Make_Itype_Reference (Sloc (Comp));
1505 Set_Itype (IR, Desig);
1506
1507 if No (Result) then
1508 Result := New_List (IR);
1509 else
1510 Append (IR, Result);
1511 end if;
1512 end if;
1513 end if;
1514 end Check_Itype;
1515
1516 -- Start of processing for Freeze_Record_Type
1517
70482933 1518 begin
fbf5a39b
AC
1519 -- If this is a subtype of a controlled type, declared without
1520 -- a constraint, the _controller may not appear in the component
1521 -- list if the parent was not frozen at the point of subtype
1522 -- declaration. Inherit the _controller component now.
1523
1524 if Rec /= Base_Type (Rec)
1525 and then Has_Controlled_Component (Rec)
1526 then
1527 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1528 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1529 then
1530 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1531
49e90211 1532 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1533 -- record component, the base type may not yet be frozen, and its
1534 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1535 -- for the itype, so it will be frozen after the base type. This
1536 -- freeze node is used to communicate with the expander, in order
1537 -- to create the controller for the enclosing record, and it is
1538 -- deleted afterwards (see exp_ch3). It must not be created when
1539 -- expansion is off, because it might appear in the wrong context
1540 -- for the back end.
fbf5a39b
AC
1541
1542 elsif Is_Itype (Rec)
1543 and then Has_Delayed_Freeze (Base_Type (Rec))
1544 and then
1545 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1546 N_Component_Declaration
1547 and then Expander_Active
fbf5a39b
AC
1548 then
1549 Ensure_Freeze_Node (Rec);
1550 end if;
1551 end if;
1552
49e90211 1553 -- Freeze components and embedded subtypes
70482933
RK
1554
1555 Comp := First_Entity (Rec);
c6823a20 1556 Prev := Empty;
70482933 1557
c6823a20 1558 while Present (Comp) loop
70482933 1559
49e90211 1560 -- First handle the (real) component case
70482933
RK
1561
1562 if Ekind (Comp) = E_Component
1563 or else Ekind (Comp) = E_Discriminant
1564 then
70482933
RK
1565 declare
1566 CC : constant Node_Id := Component_Clause (Comp);
1567
1568 begin
c6823a20
EB
1569 -- Freezing a record type freezes the type of each of its
1570 -- components. However, if the type of the component is
1571 -- part of this record, we do not want or need a separate
1572 -- Freeze_Node. Note that Is_Itype is wrong because that's
1573 -- also set in private type cases. We also can't check for
1574 -- the Scope being exactly Rec because of private types and
1575 -- record extensions.
1576
1577 if Is_Itype (Etype (Comp))
1578 and then Is_Record_Type (Underlying_Type
1579 (Scope (Etype (Comp))))
1580 then
1581 Undelay_Type (Etype (Comp));
1582 end if;
1583
1584 Freeze_And_Append (Etype (Comp), Loc, Result);
1585
0da2c8ac
AC
1586 -- Check for error of component clause given for variable
1587 -- sized type. We have to delay this test till this point,
1588 -- since the component type has to be frozen for us to know
1589 -- if it is variable length. We omit this test in a generic
1590 -- context, it will be applied at instantiation time.
1591
70482933
RK
1592 if Present (CC) then
1593 Placed_Component := True;
1594
07fc65c4
GB
1595 if Inside_A_Generic then
1596 null;
1597
1598 elsif not Size_Known_At_Compile_Time
70482933 1599 (Underlying_Type (Etype (Comp)))
70482933
RK
1600 then
1601 Error_Msg_N
1602 ("component clause not allowed for variable " &
1603 "length component", CC);
1604 end if;
1605
1606 else
1607 Unplaced_Component := True;
1608 end if;
70482933 1609
0da2c8ac 1610 -- Case of component requires byte alignment
70482933 1611
0da2c8ac 1612 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1613
0da2c8ac 1614 -- Set the enclosing record to also require byte align
70482933 1615
0da2c8ac 1616 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1617
0da2c8ac
AC
1618 -- Check for component clause that is inconsistent
1619 -- with the required byte boundary alignment.
70482933 1620
0da2c8ac
AC
1621 if Present (CC)
1622 and then Normalized_First_Bit (Comp) mod
1623 System_Storage_Unit /= 0
1624 then
1625 Error_Msg_N
1626 ("component & must be byte aligned",
1627 Component_Name (Component_Clause (Comp)));
1628 end if;
1629 end if;
70482933 1630
0da2c8ac
AC
1631 -- If component clause is present, then deal with the
1632 -- non-default bit order case. We cannot do this before
1633 -- the freeze point, because there is no required order
1634 -- for the component clause and the bit_order clause.
70482933 1635
0da2c8ac
AC
1636 -- We only do this processing for the base type, and in
1637 -- fact that's important, since otherwise if there are
1638 -- record subtypes, we could reverse the bits once for
1639 -- each subtype, which would be incorrect.
70482933 1640
0da2c8ac
AC
1641 if Present (CC)
1642 and then Reverse_Bit_Order (Rec)
1643 and then Ekind (E) = E_Record_Type
1644 then
1645 declare
1646 CFB : constant Uint := Component_Bit_Offset (Comp);
1647 CSZ : constant Uint := Esize (Comp);
1648 CLC : constant Node_Id := Component_Clause (Comp);
1649 Pos : constant Node_Id := Position (CLC);
1650 FB : constant Node_Id := First_Bit (CLC);
1651
1652 Storage_Unit_Offset : constant Uint :=
1653 CFB / System_Storage_Unit;
1654
1655 Start_Bit : constant Uint :=
1656 CFB mod System_Storage_Unit;
1657
1658 begin
1659 -- Cases where field goes over storage unit boundary
1660
1661 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1662
0da2c8ac
AC
1663 -- Allow multi-byte field but generate warning
1664
1665 if Start_Bit mod System_Storage_Unit = 0
1666 and then CSZ mod System_Storage_Unit = 0
1667 then
70482933 1668 Error_Msg_N
0da2c8ac
AC
1669 ("multi-byte field specified with non-standard"
1670 & " Bit_Order?", CLC);
1671
1672 if Bytes_Big_Endian then
1673 Error_Msg_N
1674 ("bytes are not reversed "
1675 & "(component is big-endian)?", CLC);
1676 else
1677 Error_Msg_N
1678 ("bytes are not reversed "
1679 & "(component is little-endian)?", CLC);
1680 end if;
1681
1682 -- Do not allow non-contiguous field
1683
70482933
RK
1684 else
1685 Error_Msg_N
0da2c8ac
AC
1686 ("attempt to specify non-contiguous field"
1687 & " not permitted", CLC);
1688 Error_Msg_N
1689 ("\(caused by non-standard Bit_Order "
1690 & "specified)", CLC);
70482933
RK
1691 end if;
1692
0da2c8ac 1693 -- Case where field fits in one storage unit
70482933
RK
1694
1695 else
0da2c8ac 1696 -- Give warning if suspicious component clause
70482933 1697
0da2c8ac
AC
1698 if Intval (FB) >= System_Storage_Unit then
1699 Error_Msg_N
1700 ("?Bit_Order clause does not affect " &
1701 "byte ordering", Pos);
1702 Error_Msg_Uint_1 :=
1703 Intval (Pos) + Intval (FB) /
1704 System_Storage_Unit;
1705 Error_Msg_N
1706 ("?position normalized to ^ before bit " &
1707 "order interpreted", Pos);
1708 end if;
70482933 1709
0da2c8ac
AC
1710 -- Here is where we fix up the Component_Bit_Offset
1711 -- value to account for the reverse bit order.
1712 -- Some examples of what needs to be done are:
70482933 1713
0da2c8ac
AC
1714 -- First_Bit .. Last_Bit Component_Bit_Offset
1715 -- old new old new
70482933 1716
0da2c8ac
AC
1717 -- 0 .. 0 7 .. 7 0 7
1718 -- 0 .. 1 6 .. 7 0 6
1719 -- 0 .. 2 5 .. 7 0 5
1720 -- 0 .. 7 0 .. 7 0 4
70482933 1721
0da2c8ac
AC
1722 -- 1 .. 1 6 .. 6 1 6
1723 -- 1 .. 4 3 .. 6 1 3
1724 -- 4 .. 7 0 .. 3 4 0
70482933 1725
0da2c8ac
AC
1726 -- The general rule is that the first bit is
1727 -- is obtained by subtracting the old ending bit
1728 -- from storage_unit - 1.
70482933 1729
0da2c8ac
AC
1730 Set_Component_Bit_Offset
1731 (Comp,
1732 (Storage_Unit_Offset * System_Storage_Unit) +
1733 (System_Storage_Unit - 1) -
1734 (Start_Bit + CSZ - 1));
70482933 1735
0da2c8ac
AC
1736 Set_Normalized_First_Bit
1737 (Comp,
1738 Component_Bit_Offset (Comp) mod
1739 System_Storage_Unit);
1740 end if;
1741 end;
1742 end if;
1743 end;
70482933
RK
1744 end if;
1745
c6823a20
EB
1746 -- If the component is an Itype with Delayed_Freeze and is either
1747 -- a record or array subtype and its base type has not yet been
1748 -- frozen, we must remove this from the entity list of this
1749 -- record and put it on the entity list of the scope of its base
1750 -- type. Note that we know that this is not the type of a
1751 -- component since we cleared Has_Delayed_Freeze for it in the
1752 -- previous loop. Thus this must be the Designated_Type of an
1753 -- access type, which is the type of a component.
1754
1755 if Is_Itype (Comp)
1756 and then Is_Type (Scope (Comp))
1757 and then Is_Composite_Type (Comp)
1758 and then Base_Type (Comp) /= Comp
1759 and then Has_Delayed_Freeze (Comp)
1760 and then not Is_Frozen (Base_Type (Comp))
1761 then
1762 declare
1763 Will_Be_Frozen : Boolean := False;
1764 S : Entity_Id := Scope (Rec);
1765
1766 begin
1767 -- We have a pretty bad kludge here. Suppose Rec is a
1768 -- subtype being defined in a subprogram that's created
1769 -- as part of the freezing of Rec'Base. In that case,
1770 -- we know that Comp'Base must have already been frozen by
1771 -- the time we get to elaborate this because Gigi doesn't
1772 -- elaborate any bodies until it has elaborated all of the
1773 -- declarative part. But Is_Frozen will not be set at this
1774 -- point because we are processing code in lexical order.
1775
1776 -- We detect this case by going up the Scope chain of
1777 -- Rec and seeing if we have a subprogram scope before
1778 -- reaching the top of the scope chain or that of Comp'Base.
1779 -- If we do, then mark that Comp'Base will actually be
1780 -- frozen. If so, we merely undelay it.
1781
1782 while Present (S) loop
1783 if Is_Subprogram (S) then
1784 Will_Be_Frozen := True;
1785 exit;
1786 elsif S = Scope (Base_Type (Comp)) then
1787 exit;
1788 end if;
1789
1790 S := Scope (S);
1791 end loop;
1792
1793 if Will_Be_Frozen then
1794 Undelay_Type (Comp);
1795 else
1796 if Present (Prev) then
1797 Set_Next_Entity (Prev, Next_Entity (Comp));
1798 else
1799 Set_First_Entity (Rec, Next_Entity (Comp));
1800 end if;
1801
1802 -- Insert in entity list of scope of base type (which
1803 -- must be an enclosing scope, because still unfrozen).
1804
1805 Append_Entity (Comp, Scope (Base_Type (Comp)));
1806 end if;
1807 end;
1808
1809 -- If the component is an access type with an allocator as
1810 -- default value, the designated type will be frozen by the
1811 -- corresponding expression in init_proc. In order to place the
1812 -- freeze node for the designated type before that for the
1813 -- current record type, freeze it now.
1814
1815 -- Same process if the component is an array of access types,
1816 -- initialized with an aggregate. If the designated type is
1817 -- private, it cannot contain allocators, and it is premature to
1818 -- freeze the type, so we check for this as well.
1819
1820 elsif Is_Access_Type (Etype (Comp))
1821 and then Present (Parent (Comp))
1822 and then Present (Expression (Parent (Comp)))
1823 and then Nkind (Expression (Parent (Comp))) = N_Allocator
1824 then
1825 declare
1826 Alloc : constant Node_Id := Expression (Parent (Comp));
1827
1828 begin
1829 -- If component is pointer to a classwide type, freeze
1830 -- the specific type in the expression being allocated.
1831 -- The expression may be a subtype indication, in which
1832 -- case freeze the subtype mark.
1833
1834 if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then
1835 if Is_Entity_Name (Expression (Alloc)) then
1836 Freeze_And_Append
1837 (Entity (Expression (Alloc)), Loc, Result);
1838 elsif
1839 Nkind (Expression (Alloc)) = N_Subtype_Indication
1840 then
1841 Freeze_And_Append
1842 (Entity (Subtype_Mark (Expression (Alloc))),
1843 Loc, Result);
1844 end if;
1845
1846 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1847 Check_Itype (Designated_Type (Etype (Comp)));
1848
1849 else
1850 Freeze_And_Append
1851 (Designated_Type (Etype (Comp)), Loc, Result);
1852 end if;
1853 end;
1854
1855 elsif Is_Access_Type (Etype (Comp))
1856 and then Is_Itype (Designated_Type (Etype (Comp)))
1857 then
1858 Check_Itype (Designated_Type (Etype (Comp)));
1859
1860 elsif Is_Array_Type (Etype (Comp))
1861 and then Is_Access_Type (Component_Type (Etype (Comp)))
1862 and then Present (Parent (Comp))
1863 and then Nkind (Parent (Comp)) = N_Component_Declaration
1864 and then Present (Expression (Parent (Comp)))
1865 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1866 and then Is_Fully_Defined
1867 (Designated_Type (Component_Type (Etype (Comp))))
1868 then
1869 Freeze_And_Append
1870 (Designated_Type
1871 (Component_Type (Etype (Comp))), Loc, Result);
1872 end if;
1873
1874 Prev := Comp;
70482933
RK
1875 Next_Entity (Comp);
1876 end loop;
1877
1878 -- Check for useless pragma Bit_Order
1879
1880 if not Placed_Component and then Reverse_Bit_Order (Rec) then
1881 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1882 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
1883 Error_Msg_N ("\?since no component clauses were specified", ADC);
1884 end if;
1885
1886 -- Check for useless pragma Pack when all components placed
1887
1888 if Is_Packed (Rec)
1889 and then not Unplaced_Component
1890 and then Warn_On_Redundant_Constructs
1891 then
1892 Error_Msg_N
1893 ("?pragma Pack has no effect, no unplaced components",
1894 Get_Rep_Pragma (Rec, Name_Pack));
1895 Set_Is_Packed (Rec, False);
1896 end if;
1897
1898 -- If this is the record corresponding to a remote type,
1899 -- freeze the remote type here since that is what we are
fbf5a39b
AC
1900 -- semantically freezing. This prevents having the freeze
1901 -- node for that type in an inner scope.
70482933
RK
1902
1903 -- Also, Check for controlled components and unchecked unions.
1904 -- Finally, enforce the restriction that access attributes with
1905 -- a current instance prefix can only apply to limited types.
1906
1907 if Ekind (Rec) = E_Record_Type then
70482933
RK
1908 if Present (Corresponding_Remote_Type (Rec)) then
1909 Freeze_And_Append
1910 (Corresponding_Remote_Type (Rec), Loc, Result);
1911 end if;
1912
1913 Comp := First_Component (Rec);
70482933
RK
1914 while Present (Comp) loop
1915 if Has_Controlled_Component (Etype (Comp))
1916 or else (Chars (Comp) /= Name_uParent
1917 and then Is_Controlled (Etype (Comp)))
1918 or else (Is_Protected_Type (Etype (Comp))
1919 and then Present
1920 (Corresponding_Record_Type (Etype (Comp)))
1921 and then Has_Controlled_Component
1922 (Corresponding_Record_Type (Etype (Comp))))
1923 then
1924 Set_Has_Controlled_Component (Rec);
1925 exit;
1926 end if;
1927
1928 if Has_Unchecked_Union (Etype (Comp)) then
1929 Set_Has_Unchecked_Union (Rec);
1930 end if;
1931
1932 if Has_Per_Object_Constraint (Comp)
1933 and then not Is_Limited_Type (Rec)
1934 then
1935 -- Scan component declaration for likely misuses of
1936 -- current instance, either in a constraint or in a
1937 -- default expression.
1938
1939 Check_Current_Instance (Parent (Comp));
1940 end if;
1941
1942 Next_Component (Comp);
1943 end loop;
1944 end if;
1945
1946 Set_Component_Alignment_If_Not_Set (Rec);
1947
1948 -- For first subtypes, check if there are any fixed-point
1949 -- fields with component clauses, where we must check the size.
1950 -- This is not done till the freeze point, since for fixed-point
1951 -- types, we do not know the size until the type is frozen.
d05ef0ab 1952 -- Similar processing applies to bit packed arrays.
70482933
RK
1953
1954 if Is_First_Subtype (Rec) then
1955 Comp := First_Component (Rec);
1956
1957 while Present (Comp) loop
1958 if Present (Component_Clause (Comp))
d05ef0ab
AC
1959 and then (Is_Fixed_Point_Type (Etype (Comp))
1960 or else
1961 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
1962 then
1963 Check_Size
d05ef0ab 1964 (Component_Name (Component_Clause (Comp)),
70482933
RK
1965 Etype (Comp),
1966 Esize (Comp),
1967 Junk);
1968 end if;
1969
1970 Next_Component (Comp);
1971 end loop;
1972 end if;
1973 end Freeze_Record_Type;
1974
1975 -- Start of processing for Freeze_Entity
1976
1977 begin
c6823a20
EB
1978 -- We are going to test for various reasons why this entity need not be
1979 -- frozen here, but in the case of an Itype that's defined within a
1980 -- record, that test actually applies to the record.
1981
1982 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
1983 Test_E := Scope (E);
1984 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
1985 and then Is_Record_Type (Underlying_Type (Scope (E)))
1986 then
1987 Test_E := Underlying_Type (Scope (E));
1988 end if;
1989
fbf5a39b 1990 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
1991
1992 if Is_Frozen (E) then
1993 return No_List;
1994
c6823a20
EB
1995 -- It is improper to freeze an external entity within a generic because
1996 -- its freeze node will appear in a non-valid context. The entity will
1997 -- be frozen in the proper scope after the current generic is analyzed.
70482933 1998
c6823a20 1999 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2000 return No_List;
2001
2002 -- Do not freeze a global entity within an inner scope created during
2003 -- expansion. A call to subprogram E within some internal procedure
2004 -- (a stream attribute for example) might require freezing E, but the
2005 -- freeze node must appear in the same declarative part as E itself.
2006 -- The two-pass elaboration mechanism in gigi guarantees that E will
2007 -- be frozen before the inner call is elaborated. We exclude constants
2008 -- from this test, because deferred constants may be frozen early, and
2009 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
2010 -- comes from source, or is a generic instance, then the freeze point
2011 -- is the one mandated by the language. and we freze the entity.
2012
c6823a20
EB
2013 elsif In_Open_Scopes (Scope (Test_E))
2014 and then Scope (Test_E) /= Current_Scope
2015 and then Ekind (Test_E) /= E_Constant
70482933
RK
2016 then
2017 declare
2018 S : Entity_Id := Current_Scope;
2019
2020 begin
2021 while Present (S) loop
2022 if Is_Overloadable (S) then
2023 if Comes_From_Source (S)
2024 or else Is_Generic_Instance (S)
2025 then
2026 exit;
2027 else
2028 return No_List;
2029 end if;
2030 end if;
2031
2032 S := Scope (S);
2033 end loop;
2034 end;
555360a5
AC
2035
2036 -- Similarly, an inlined instance body may make reference to global
2037 -- entities, but these references cannot be the proper freezing point
2038 -- for them, and the the absence of inlining freezing will take place
2039 -- in their own scope. Normally instance bodies are analyzed after
2040 -- the enclosing compilation, and everything has been frozen at the
2041 -- proper place, but with front-end inlining an instance body is
2042 -- compiled before the end of the enclosing scope, and as a result
2043 -- out-of-order freezing must be prevented.
2044
2045 elsif Front_End_Inlining
2046 and then In_Instance_Body
c6823a20 2047 and then Present (Scope (Test_E))
555360a5
AC
2048 then
2049 declare
c6823a20
EB
2050 S : Entity_Id := Scope (Test_E);
2051
555360a5
AC
2052 begin
2053 while Present (S) loop
2054 if Is_Generic_Instance (S) then
2055 exit;
2056 else
2057 S := Scope (S);
2058 end if;
2059 end loop;
2060
2061 if No (S) then
2062 return No_List;
2063 end if;
2064 end;
70482933
RK
2065 end if;
2066
2067 -- Here to freeze the entity
2068
2069 Result := No_List;
2070 Set_Is_Frozen (E);
2071
2072 -- Case of entity being frozen is other than a type
2073
2074 if not Is_Type (E) then
2075
2076 -- If entity is exported or imported and does not have an external
2077 -- name, now is the time to provide the appropriate default name.
2078 -- Skip this if the entity is stubbed, since we don't need a name
2079 -- for any stubbed routine.
2080
2081 if (Is_Imported (E) or else Is_Exported (E))
2082 and then No (Interface_Name (E))
2083 and then Convention (E) /= Convention_Stubbed
2084 then
2085 Set_Encoded_Interface_Name
2086 (E, Get_Default_External_Name (E));
fbf5a39b
AC
2087
2088 -- Special processing for atomic objects appearing in object decls
2089
2090 elsif Is_Atomic (E)
2091 and then Nkind (Parent (E)) = N_Object_Declaration
2092 and then Present (Expression (Parent (E)))
2093 then
2094 declare
2095 Expr : constant Node_Id := Expression (Parent (E));
2096
2097 begin
2098 -- If expression is an aggregate, assign to a temporary to
2099 -- ensure that the actual assignment is done atomically rather
2100 -- than component-wise (the assignment to the temp may be done
2101 -- component-wise, but that is harmless.
2102
2103 if Nkind (Expr) = N_Aggregate then
2104 Expand_Atomic_Aggregate (Expr, Etype (E));
2105
2106 -- If the expression is a reference to a record or array
2107 -- object entity, then reset Is_True_Constant to False so
2108 -- that the compiler will not optimize away the intermediate
2109 -- object, which we need in this case for the same reason
2110 -- (to ensure that the actual assignment is atomic, rather
2111 -- than component-wise).
2112
2113 elsif Is_Entity_Name (Expr)
2114 and then (Is_Record_Type (Etype (Expr))
2115 or else
2116 Is_Array_Type (Etype (Expr)))
2117 then
2118 Set_Is_True_Constant (Entity (Expr), False);
2119 end if;
2120 end;
70482933
RK
2121 end if;
2122
2123 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2124 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
2125 -- This is also the point where any extra formal parameters are
2126 -- created since we now know whether the subprogram will use
2127 -- a foreign convention.
2128
2129 if Is_Subprogram (E) then
70482933 2130 if not Is_Internal (E) then
70482933 2131 declare
6d11af89
AC
2132 F_Type : Entity_Id;
2133 Warn_Node : Node_Id;
70482933
RK
2134
2135 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
2136 -- Determines if given type entity is a fat pointer type
2137 -- used as an argument type or return type to a subprogram
2138 -- with C or C++ convention set.
2139
2140 --------------------------
2141 -- Is_Fat_C_Access_Type --
2142 --------------------------
2143
2144 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
2145 begin
2146 return (Convention (E) = Convention_C
2147 or else
2148 Convention (E) = Convention_CPP)
2149 and then Is_Access_Type (T)
2150 and then Esize (T) > Ttypes.System_Address_Size;
2151 end Is_Fat_C_Ptr_Type;
2152
2153 begin
2154 -- Loop through formals
2155
2156 Formal := First_Formal (E);
70482933 2157 while Present (Formal) loop
70482933
RK
2158 F_Type := Etype (Formal);
2159 Freeze_And_Append (F_Type, Loc, Result);
2160
2161 if Is_Private_Type (F_Type)
2162 and then Is_Private_Type (Base_Type (F_Type))
2163 and then No (Full_View (Base_Type (F_Type)))
2164 and then not Is_Generic_Type (F_Type)
2165 and then not Is_Derived_Type (F_Type)
2166 then
2167 -- If the type of a formal is incomplete, subprogram
2168 -- is being frozen prematurely. Within an instance
2169 -- (but not within a wrapper package) this is an
2170 -- an artifact of our need to regard the end of an
2171 -- instantiation as a freeze point. Otherwise it is
2172 -- a definite error.
fbf5a39b 2173
70482933
RK
2174 -- and then not Is_Wrapper_Package (Current_Scope) ???
2175
2176 if In_Instance then
2177 Set_Is_Frozen (E, False);
2178 return No_List;
2179
2180 elsif not After_Last_Declaration then
2181 Error_Msg_Node_1 := F_Type;
2182 Error_Msg
2183 ("type& must be fully defined before this point",
2184 Loc);
2185 end if;
2186 end if;
2187
2188 -- Check bad use of fat C pointer
2189
fbf5a39b
AC
2190 if Warn_On_Export_Import and then
2191 Is_Fat_C_Ptr_Type (F_Type)
2192 then
70482933
RK
2193 Error_Msg_Qual_Level := 1;
2194 Error_Msg_N
2195 ("?type of & does not correspond to C pointer",
2196 Formal);
2197 Error_Msg_Qual_Level := 0;
2198 end if;
2199
2200 -- Check for unconstrained array in exported foreign
2201 -- convention case.
2202
2203 if Convention (E) in Foreign_Convention
2204 and then not Is_Imported (E)
2205 and then Is_Array_Type (F_Type)
2206 and then not Is_Constrained (F_Type)
fbf5a39b 2207 and then Warn_On_Export_Import
70482933
RK
2208 then
2209 Error_Msg_Qual_Level := 1;
6d11af89
AC
2210
2211 -- If this is an inherited operation, place the
2212 -- warning on the derived type declaration, rather
2213 -- than on the original subprogram.
2214
2215 if Nkind (Original_Node (Parent (E))) =
2216 N_Full_Type_Declaration
2217 then
2218 Warn_Node := Parent (E);
2219
2220 if Formal = First_Formal (E) then
2221 Error_Msg_NE
2222 ("?in inherited operation&!", Warn_Node, E);
2223 end if;
2224 else
2225 Warn_Node := Formal;
2226 end if;
2227
2228 Error_Msg_NE
70482933 2229 ("?type of argument& is unconstrained array",
6d11af89
AC
2230 Warn_Node, Formal);
2231 Error_Msg_NE
70482933 2232 ("?foreign caller must pass bounds explicitly",
6d11af89 2233 Warn_Node, Formal);
70482933
RK
2234 Error_Msg_Qual_Level := 0;
2235 end if;
2236
d8db0bca
JM
2237 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2238 -- types with unknown discriminants. For example:
2239
2240 -- type T (<>) is tagged;
2241 -- procedure P (X : access T); -- ERROR
2242 -- procedure P (X : T); -- ERROR
2243
2244 if not From_With_Type (F_Type) then
2245 if Is_Access_Type (F_Type) then
2246 F_Type := Designated_Type (F_Type);
2247 end if;
2248
2249 if Ekind (F_Type) = E_Incomplete_Type
2250 and then Is_Tagged_Type (F_Type)
2251 and then not Is_Class_Wide_Type (F_Type)
2252 and then No (Full_View (F_Type))
2253 and then Unknown_Discriminants_Present
2254 (Parent (F_Type))
2255 and then No (Stored_Constraint (F_Type))
2256 then
2257 Error_Msg_N
2258 ("(Ada 2005): invalid use of unconstrained tagged"
2259 & " incomplete type", E);
57747aec
ES
2260
2261 elsif Ekind (F_Type) = E_Subprogram_Type then
2262 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2263 end if;
2264 end if;
2265
70482933
RK
2266 Next_Formal (Formal);
2267 end loop;
2268
2269 -- Check return type
2270
2271 if Ekind (E) = E_Function then
2272 Freeze_And_Append (Etype (E), Loc, Result);
2273
fbf5a39b
AC
2274 if Warn_On_Export_Import
2275 and then Is_Fat_C_Ptr_Type (Etype (E))
2276 then
70482933
RK
2277 Error_Msg_N
2278 ("?return type of& does not correspond to C pointer",
2279 E);
2280
2281 elsif Is_Array_Type (Etype (E))
2282 and then not Is_Constrained (Etype (E))
2283 and then not Is_Imported (E)
2284 and then Convention (E) in Foreign_Convention
fbf5a39b 2285 and then Warn_On_Export_Import
70482933
RK
2286 then
2287 Error_Msg_N
fbf5a39b 2288 ("?foreign convention function& should not " &
70482933 2289 "return unconstrained array", E);
d8db0bca
JM
2290
2291 -- Ada 2005 (AI-326): Check wrong use of tagged
2292 -- incomplete type
2293 --
2294 -- type T is tagged;
2295 -- function F (X : Boolean) return T; -- ERROR
2296
2297 elsif Ekind (Etype (E)) = E_Incomplete_Type
2298 and then Is_Tagged_Type (Etype (E))
2299 and then No (Full_View (Etype (E)))
2300 then
2301 Error_Msg_N
2302 ("(Ada 2005): invalid use of tagged incomplete type",
2303 E);
70482933
RK
2304 end if;
2305 end if;
2306 end;
2307 end if;
2308
2309 -- Must freeze its parent first if it is a derived subprogram
2310
2311 if Present (Alias (E)) then
2312 Freeze_And_Append (Alias (E), Loc, Result);
2313 end if;
2314
2315 -- If the return type requires a transient scope, and we are on
2316 -- a target allowing functions to return with a depressed stack
2317 -- pointer, then we mark the function as requiring this treatment.
2318
2319 if Ekind (E) = E_Function
2320 and then Functions_Return_By_DSP_On_Target
2321 and then Requires_Transient_Scope (Etype (E))
2322 then
2323 Set_Function_Returns_With_DSP (E);
2324 end if;
2325
2326 if not Is_Internal (E) then
2327 Freeze_Subprogram (E);
2328 end if;
2329
2330 -- Here for other than a subprogram or type
2331
2332 else
2333 -- If entity has a type, and it is not a generic unit, then
2334 -- freeze it first (RM 13.14(10))
2335
2336 if Present (Etype (E))
2337 and then Ekind (E) /= E_Generic_Function
2338 then
2339 Freeze_And_Append (Etype (E), Loc, Result);
2340 end if;
2341
2c9beb8a 2342 -- Special processing for objects created by object declaration
70482933
RK
2343
2344 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a
RD
2345
2346 -- For object created by object declaration, perform required
2347 -- categorization (preelaborate and pure) checks. Defer these
2348 -- checks to freeze time since pragma Import inhibits default
2349 -- initialization and thus pragma Import affects these checks.
2350
70482933 2351 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a
RD
2352
2353 -- If there is an address clause, check it is valid
2354
fbf5a39b 2355 Check_Address_Clause (E);
2c9beb8a
RD
2356
2357 -- For imported objects, set Is_Public unless there is also
2358 -- an address clause, which means that there is no external
2359 -- symbol needed for the Import (Is_Public may still be set
2360 -- for other unrelated reasons). Note that we delayed this
2361 -- processing till freeze time so that we can be sure not
2362 -- to set the flag if there is an address clause. If there
2363 -- is such a clause, then the only purpose of the import
2364 -- pragma is to suppress implicit initialization.
2365
2366 if Is_Imported (E)
2367 and then not Present (Address_Clause (E))
2368 then
2369 Set_Is_Public (E);
2370 end if;
70482933
RK
2371 end if;
2372
2373 -- Check that a constant which has a pragma Volatile[_Components]
2374 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
2375
2376 -- Note: Atomic[_Components] also sets Volatile[_Components]
2377
2378 if Ekind (E) = E_Constant
2379 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2380 and then not Is_Imported (E)
2381 then
2382 -- Make sure we actually have a pragma, and have not merely
2383 -- inherited the indication from elsewhere (e.g. an address
2384 -- clause, which is not good enough in RM terms!)
2385
1d571f3b 2386 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2387 or else
1d571f3b 2388 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2389 then
2390 Error_Msg_N
91b1417d
AC
2391 ("stand alone atomic constant must be " &
2392 "imported ('R'M 'C.6(13))", E);
2393
1d571f3b 2394 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2395 or else
1d571f3b 2396 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2397 then
2398 Error_Msg_N
2399 ("stand alone volatile constant must be " &
2400 "imported ('R'M 'C.6(13))", E);
70482933
RK
2401 end if;
2402 end if;
2403
2404 -- Static objects require special handling
2405
2406 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2407 and then Is_Statically_Allocated (E)
2408 then
2409 Freeze_Static_Object (E);
2410 end if;
2411
2412 -- Remaining step is to layout objects
2413
2414 if Ekind (E) = E_Variable
2415 or else
2416 Ekind (E) = E_Constant
2417 or else
2418 Ekind (E) = E_Loop_Parameter
2419 or else
2420 Is_Formal (E)
2421 then
2422 Layout_Object (E);
2423 end if;
2424 end if;
2425
2426 -- Case of a type or subtype being frozen
2427
2428 else
2429 -- The type may be defined in a generic unit. This can occur when
2430 -- freezing a generic function that returns the type (which is
2431 -- defined in a parent unit). It is clearly meaningless to freeze
2432 -- this type. However, if it is a subtype, its size may be determi-
2433 -- nable and used in subsequent checks, so might as well try to
2434 -- compute it.
2435
2436 if Present (Scope (E))
2437 and then Is_Generic_Unit (Scope (E))
2438 then
2439 Check_Compile_Time_Size (E);
2440 return No_List;
2441 end if;
2442
2443 -- Deal with special cases of freezing for subtype
2444
2445 if E /= Base_Type (E) then
2446
2447 -- If ancestor subtype present, freeze that first.
2448 -- Note that this will also get the base type frozen.
2449
2450 Atype := Ancestor_Subtype (E);
2451
2452 if Present (Atype) then
2453 Freeze_And_Append (Atype, Loc, Result);
2454
2455 -- Otherwise freeze the base type of the entity before
fbf5a39b 2456 -- freezing the entity itself, (RM 13.14(15)).
70482933
RK
2457
2458 elsif E /= Base_Type (E) then
2459 Freeze_And_Append (Base_Type (E), Loc, Result);
2460 end if;
2461
fbf5a39b 2462 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2463
2464 elsif Is_Derived_Type (E) then
2465 Freeze_And_Append (Etype (E), Loc, Result);
2466 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2467 end if;
2468
2469 -- For array type, freeze index types and component type first
fbf5a39b 2470 -- before freezing the array (RM 13.14(15)).
70482933
RK
2471
2472 if Is_Array_Type (E) then
2473 declare
fbf5a39b
AC
2474 Ctyp : constant Entity_Id := Component_Type (E);
2475 Pnod : Node_Id;
70482933
RK
2476
2477 Non_Standard_Enum : Boolean := False;
2478 -- Set true if any of the index types is an enumeration
2479 -- type with a non-standard representation.
2480
2481 begin
2482 Freeze_And_Append (Ctyp, Loc, Result);
2483
2484 Indx := First_Index (E);
2485 while Present (Indx) loop
2486 Freeze_And_Append (Etype (Indx), Loc, Result);
2487
2488 if Is_Enumeration_Type (Etype (Indx))
2489 and then Has_Non_Standard_Rep (Etype (Indx))
2490 then
2491 Non_Standard_Enum := True;
2492 end if;
2493
2494 Next_Index (Indx);
2495 end loop;
2496
07fc65c4 2497 -- Processing that is done only for base types
70482933
RK
2498
2499 if Ekind (E) = E_Array_Type then
07fc65c4
GB
2500
2501 -- Propagate flags for component type
2502
70482933
RK
2503 if Is_Controlled (Component_Type (E))
2504 or else Has_Controlled_Component (Ctyp)
2505 then
2506 Set_Has_Controlled_Component (E);
2507 end if;
2508
2509 if Has_Unchecked_Union (Component_Type (E)) then
2510 Set_Has_Unchecked_Union (E);
2511 end if;
70482933 2512
07fc65c4
GB
2513 -- If packing was requested or if the component size was set
2514 -- explicitly, then see if bit packing is required. This
2515 -- processing is only done for base types, since all the
2516 -- representation aspects involved are type-related. This
2517 -- is not just an optimization, if we start processing the
2518 -- subtypes, they intefere with the settings on the base
2519 -- type (this is because Is_Packed has a slightly different
2520 -- meaning before and after freezing).
70482933 2521
70482933
RK
2522 declare
2523 Csiz : Uint;
2524 Esiz : Uint;
2525
2526 begin
2527 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2528 and then not Has_Atomic_Components (E)
2529 and then Known_Static_RM_Size (Ctyp)
2530 then
2531 Csiz := UI_Max (RM_Size (Ctyp), 1);
2532
2533 elsif Known_Component_Size (E) then
2534 Csiz := Component_Size (E);
2535
2536 elsif not Known_Static_Esize (Ctyp) then
2537 Csiz := Uint_0;
2538
2539 else
2540 Esiz := Esize (Ctyp);
2541
2542 -- We can set the component size if it is less than
2543 -- 16, rounding it up to the next storage unit size.
2544
2545 if Esiz <= 8 then
2546 Csiz := Uint_8;
2547 elsif Esiz <= 16 then
2548 Csiz := Uint_16;
2549 else
2550 Csiz := Uint_0;
2551 end if;
2552
2553 -- Set component size up to match alignment if
2554 -- it would otherwise be less than the alignment.
2555 -- This deals with cases of types whose alignment
2556 -- exceeds their sizes (padded types).
2557
2558 if Csiz /= 0 then
2559 declare
2560 A : constant Uint := Alignment_In_Bits (Ctyp);
2561
2562 begin
2563 if Csiz < A then
2564 Csiz := A;
2565 end if;
2566 end;
2567 end if;
2568
2569 end if;
2570
2571 if 1 <= Csiz and then Csiz <= 64 then
2572
2573 -- We set the component size for all cases 1-64
2574
2575 Set_Component_Size (Base_Type (E), Csiz);
2576
fbf5a39b
AC
2577 -- Check for base type of 8,16,32 bits, where the
2578 -- subtype has a length one less than the base type
2579 -- and is unsigned (e.g. Natural subtype of Integer)
2580
2581 -- In such cases, if a component size was not set
2582 -- explicitly, then generate a warning.
2583
2584 if Has_Pragma_Pack (E)
2585 and then not Has_Component_Size_Clause (E)
2586 and then
2587 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2588 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2589 then
2590 Error_Msg_Uint_1 := Csiz;
2591 Pnod :=
2592 Get_Rep_Pragma (First_Subtype (E), Name_Pack);
2593
2594 if Present (Pnod) then
2595 Error_Msg_N
2596 ("pragma Pack causes component size to be ^?",
2597 Pnod);
2598 Error_Msg_N
2599 ("\use Component_Size to set desired value",
2600 Pnod);
2601 end if;
2602 end if;
2603
70482933
RK
2604 -- Actual packing is not needed for 8,16,32,64
2605 -- Also not needed for 24 if alignment is 1
2606
2607 if Csiz = 8
2608 or else Csiz = 16
2609 or else Csiz = 32
2610 or else Csiz = 64
2611 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2612 then
2613 -- Here the array was requested to be packed, but
2614 -- the packing request had no effect, so Is_Packed
2615 -- is reset.
2616
2617 -- Note: semantically this means that we lose
2618 -- track of the fact that a derived type inherited
2619 -- a pack pragma that was non-effective, but that
2620 -- seems fine.
2621
2622 -- We regard a Pack pragma as a request to set a
2623 -- representation characteristic, and this request
2624 -- may be ignored.
2625
2626 Set_Is_Packed (Base_Type (E), False);
2627
2628 -- In all other cases, packing is indeed needed
2629
2630 else
2631 Set_Has_Non_Standard_Rep (Base_Type (E));
2632 Set_Is_Bit_Packed_Array (Base_Type (E));
2633 Set_Is_Packed (Base_Type (E));
2634 end if;
2635 end if;
2636 end;
07fc65c4
GB
2637
2638 -- Processing that is done only for subtypes
2639
2640 else
2641 -- Acquire alignment from base type
2642
2643 if Unknown_Alignment (E) then
2644 Set_Alignment (E, Alignment (Base_Type (E)));
2645 end if;
2646 end if;
2647
d05ef0ab
AC
2648 -- For bit-packed arrays, check the size
2649
2650 if Is_Bit_Packed_Array (E)
2651 and then Known_Esize (E)
2652 then
2653 declare
2654 Discard : Boolean;
2655 SizC : constant Node_Id := Size_Clause (E);
2656
2657 begin
2658 -- It is not clear if it is possible to have no size
2659 -- clause at this stage, but this is not worth worrying
2660 -- about. Post the error on the entity name in the size
2661 -- clause if present, else on the type entity itself.
2662
2663 if Present (SizC) then
2664 Check_Size (Name (SizC), E, Esize (E), Discard);
2665 else
2666 Check_Size (E, E, Esize (E), Discard);
2667 end if;
2668 end;
2669 end if;
2670
07fc65c4
GB
2671 -- Check one common case of a size given where the array
2672 -- needs to be packed, but was not so the size cannot be
2673 -- honored. This would of course be caught by the backend,
2674 -- and indeed we don't catch all cases. The point is that
2675 -- we can give a better error message in those cases that
2676 -- we do catch with the circuitry here.
2677
fbf5a39b
AC
2678 declare
2679 Lo, Hi : Node_Id;
2680 Ctyp : constant Entity_Id := Component_Type (E);
07fc65c4 2681
fbf5a39b
AC
2682 begin
2683 if Present (Size_Clause (E))
2684 and then Known_Static_Esize (E)
2685 and then not Is_Bit_Packed_Array (E)
2686 and then not Has_Pragma_Pack (E)
2687 and then Number_Dimensions (E) = 1
2688 and then not Has_Component_Size_Clause (E)
2689 and then Known_Static_Esize (Ctyp)
2690 then
07fc65c4
GB
2691 Get_Index_Bounds (First_Index (E), Lo, Hi);
2692
2693 if Compile_Time_Known_Value (Lo)
2694 and then Compile_Time_Known_Value (Hi)
2695 and then Known_Static_RM_Size (Ctyp)
2696 and then RM_Size (Ctyp) < 64
2697 then
2698 declare
fbf5a39b
AC
2699 Lov : constant Uint := Expr_Value (Lo);
2700 Hiv : constant Uint := Expr_Value (Hi);
2701 Len : constant Uint :=
2702 UI_Max (Uint_0, Hiv - Lov + 1);
2703 Rsiz : constant Uint := RM_Size (Ctyp);
2704
2705 -- What we are looking for here is the situation
2706 -- where the Esize given would be exactly right
2707 -- if there was a pragma Pack (resulting in the
2708 -- component size being the same as the RM_Size).
2709 -- Furthermore, the component type size must be
2710 -- an odd size (not a multiple of storage unit)
07fc65c4
GB
2711
2712 begin
fbf5a39b
AC
2713 if Esize (E) = Len * Rsiz
2714 and then Rsiz mod System_Storage_Unit /= 0
07fc65c4
GB
2715 then
2716 Error_Msg_NE
2717 ("size given for& too small",
2718 Size_Clause (E), E);
2719 Error_Msg_N
2720 ("\explicit pragma Pack is required",
2721 Size_Clause (E));
2722 end if;
2723 end;
2724 end if;
fbf5a39b
AC
2725 end if;
2726 end;
70482933
RK
2727
2728 -- If any of the index types was an enumeration type with
2729 -- a non-standard rep clause, then we indicate that the
2730 -- array type is always packed (even if it is not bit packed).
2731
2732 if Non_Standard_Enum then
2733 Set_Has_Non_Standard_Rep (Base_Type (E));
2734 Set_Is_Packed (Base_Type (E));
2735 end if;
70482933 2736
0da2c8ac 2737 Set_Component_Alignment_If_Not_Set (E);
70482933 2738
0da2c8ac
AC
2739 -- If the array is packed, we must create the packed array
2740 -- type to be used to actually implement the type. This is
2741 -- only needed for real array types (not for string literal
2742 -- types, since they are present only for the front end).
70482933 2743
0da2c8ac
AC
2744 if Is_Packed (E)
2745 and then Ekind (E) /= E_String_Literal_Subtype
2746 then
2747 Create_Packed_Array_Type (E);
2748 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 2749
0da2c8ac
AC
2750 -- Size information of packed array type is copied to the
2751 -- array type, since this is really the representation.
70482933 2752
0da2c8ac
AC
2753 Set_Size_Info (E, Packed_Array_Type (E));
2754 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
2755 end if;
2756
2757 -- For non-packed arrays set the alignment of the array
2758 -- to the alignment of the component type if it is unknown.
2759 -- Skip this in the atomic case, since atomic arrays may
2760 -- need larger alignments.
2761
2762 if not Is_Packed (E)
2763 and then Unknown_Alignment (E)
2764 and then Known_Alignment (Ctyp)
2765 and then Known_Static_Component_Size (E)
2766 and then Known_Static_Esize (Ctyp)
2767 and then Esize (Ctyp) = Component_Size (E)
2768 and then not Is_Atomic (E)
2769 then
2770 Set_Alignment (E, Alignment (Component_Type (E)));
2771 end if;
2772 end;
70482933 2773
fbf5a39b
AC
2774 -- For a class-wide type, the corresponding specific type is
2775 -- frozen as well (RM 13.14(15))
70482933
RK
2776
2777 elsif Is_Class_Wide_Type (E) then
2778 Freeze_And_Append (Root_Type (E), Loc, Result);
2779
2780 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2781 -- parent of a derived type) and it is a library-level entity,
2782 -- generate an itype reference for it. Otherwise, its first
2783 -- explicit reference may be in an inner scope, which will be
2784 -- rejected by the back-end.
2785
2786 if Is_Itype (E)
2787 and then Is_Compilation_Unit (Scope (E))
2788 then
70482933 2789 declare
fbf5a39b 2790 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
2791
2792 begin
2793 Set_Itype (Ref, E);
2794 if No (Result) then
2795 Result := New_List (Ref);
2796 else
2797 Append (Ref, Result);
2798 end if;
2799 end;
2800 end if;
2801
fbf5a39b
AC
2802 -- The equivalent type associated with a class-wide subtype
2803 -- needs to be frozen to ensure that its layout is done.
2804 -- Class-wide subtypes are currently only frozen on targets
2805 -- requiring front-end layout (see New_Class_Wide_Subtype
2806 -- and Make_CW_Equivalent_Type in exp_util.adb).
2807
2808 if Ekind (E) = E_Class_Wide_Subtype
2809 and then Present (Equivalent_Type (E))
2810 then
2811 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2812 end if;
2813
2814 -- For a record (sub)type, freeze all the component types (RM
2815 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
70482933
RK
2816 -- using Is_Record_Type, because we don't want to attempt the
2817 -- freeze for the case of a private type with record extension
2818 -- (we will do that later when the full type is frozen).
2819
2820 elsif Ekind (E) = E_Record_Type
2821 or else Ekind (E) = E_Record_Subtype
2822 then
2823 Freeze_Record_Type (E);
2824
2825 -- For a concurrent type, freeze corresponding record type. This
2826 -- does not correpond to any specific rule in the RM, but the
2827 -- record type is essentially part of the concurrent type.
2828 -- Freeze as well all local entities. This includes record types
2829 -- created for entry parameter blocks, and whatever local entities
2830 -- may appear in the private part.
2831
2832 elsif Is_Concurrent_Type (E) then
2833 if Present (Corresponding_Record_Type (E)) then
2834 Freeze_And_Append
2835 (Corresponding_Record_Type (E), Loc, Result);
2836 end if;
2837
2838 Comp := First_Entity (E);
2839
2840 while Present (Comp) loop
2841 if Is_Type (Comp) then
2842 Freeze_And_Append (Comp, Loc, Result);
2843
2844 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
2845 if Is_Itype (Etype (Comp))
2846 and then Underlying_Type (Scope (Etype (Comp))) = E
2847 then
2848 Undelay_Type (Etype (Comp));
2849 end if;
2850
70482933
RK
2851 Freeze_And_Append (Etype (Comp), Loc, Result);
2852 end if;
2853
2854 Next_Entity (Comp);
2855 end loop;
2856
2857 -- Private types are required to point to the same freeze node
2858 -- as their corresponding full views. The freeze node itself
2859 -- has to point to the partial view of the entity (because
2860 -- from the partial view, we can retrieve the full view, but
2861 -- not the reverse). However, in order to freeze correctly,
2862 -- we need to freeze the full view. If we are freezing at the
2863 -- end of a scope (or within the scope of the private type),
2864 -- the partial and full views will have been swapped, the
2865 -- full view appears first in the entity chain and the swapping
fbf5a39b 2866 -- mechanism ensures that the pointers are properly set (on
70482933
RK
2867 -- scope exit).
2868
2869 -- If we encounter the partial view before the full view
2870 -- (e.g. when freezing from another scope), we freeze the
2871 -- full view, and then set the pointers appropriately since
2872 -- we cannot rely on swapping to fix things up (subtypes in an
2873 -- outer scope might not get swapped).
2874
2875 elsif Is_Incomplete_Or_Private_Type (E)
2876 and then not Is_Generic_Type (E)
2877 then
2878 -- Case of full view present
2879
2880 if Present (Full_View (E)) then
2881
2882 -- If full view has already been frozen, then no
2883 -- further processing is required
2884
2885 if Is_Frozen (Full_View (E)) then
2886
2887 Set_Has_Delayed_Freeze (E, False);
2888 Set_Freeze_Node (E, Empty);
2889 Check_Debug_Info_Needed (E);
2890
2891 -- Otherwise freeze full view and patch the pointers
fbf5a39b
AC
2892 -- so that the freeze node will elaborate both views
2893 -- in the back-end.
70482933
RK
2894
2895 else
fbf5a39b
AC
2896 declare
2897 Full : constant Entity_Id := Full_View (E);
70482933 2898
fbf5a39b
AC
2899 begin
2900 if Is_Private_Type (Full)
2901 and then Present (Underlying_Full_View (Full))
2902 then
2903 Freeze_And_Append
2904 (Underlying_Full_View (Full), Loc, Result);
2905 end if;
70482933 2906
fbf5a39b 2907 Freeze_And_Append (Full, Loc, Result);
70482933 2908
fbf5a39b
AC
2909 if Has_Delayed_Freeze (E) then
2910 F_Node := Freeze_Node (Full);
70482933 2911
fbf5a39b
AC
2912 if Present (F_Node) then
2913 Set_Freeze_Node (E, F_Node);
2914 Set_Entity (F_Node, E);
2915
2916 else
2917 -- {Incomplete,Private}_Subtypes
2918 -- with Full_Views constrained by discriminants
2919
2920 Set_Has_Delayed_Freeze (E, False);
2921 Set_Freeze_Node (E, Empty);
2922 end if;
70482933 2923 end if;
fbf5a39b 2924 end;
70482933
RK
2925
2926 Check_Debug_Info_Needed (E);
2927 end if;
2928
2929 -- AI-117 requires that the convention of a partial view
2930 -- be the same as the convention of the full view. Note
2931 -- that this is a recognized breach of privacy, but it's
2932 -- essential for logical consistency of representation,
2933 -- and the lack of a rule in RM95 was an oversight.
2934
2935 Set_Convention (E, Convention (Full_View (E)));
2936
2937 Set_Size_Known_At_Compile_Time (E,
2938 Size_Known_At_Compile_Time (Full_View (E)));
2939
2940 -- Size information is copied from the full view to the
2941 -- incomplete or private view for consistency
2942
2943 -- We skip this is the full view is not a type. This is
2944 -- very strange of course, and can only happen as a result
2945 -- of certain illegalities, such as a premature attempt to
2946 -- derive from an incomplete type.
2947
2948 if Is_Type (Full_View (E)) then
2949 Set_Size_Info (E, Full_View (E));
2950 Set_RM_Size (E, RM_Size (Full_View (E)));
2951 end if;
2952
2953 return Result;
2954
2955 -- Case of no full view present. If entity is derived or subtype,
2956 -- it is safe to freeze, correctness depends on the frozen status
2957 -- of parent. Otherwise it is either premature usage, or a Taft
2958 -- amendment type, so diagnosis is at the point of use and the
2959 -- type might be frozen later.
2960
2961 elsif E /= Base_Type (E)
2962 or else Is_Derived_Type (E)
2963 then
2964 null;
2965
2966 else
2967 Set_Is_Frozen (E, False);
2968 return No_List;
2969 end if;
2970
2971 -- For access subprogram, freeze types of all formals, the return
2972 -- type was already frozen, since it is the Etype of the function.
2973
2974 elsif Ekind (E) = E_Subprogram_Type then
2975 Formal := First_Formal (E);
2976 while Present (Formal) loop
2977 Freeze_And_Append (Etype (Formal), Loc, Result);
2978 Next_Formal (Formal);
2979 end loop;
2980
2981 -- If the return type requires a transient scope, and we are on
2982 -- a target allowing functions to return with a depressed stack
2983 -- pointer, then we mark the function as requiring this treatment.
2984
2985 if Functions_Return_By_DSP_On_Target
2986 and then Requires_Transient_Scope (Etype (E))
2987 then
2988 Set_Function_Returns_With_DSP (E);
2989 end if;
2990
2991 Freeze_Subprogram (E);
2992
d8db0bca
JM
2993 -- AI-326: Check wrong use of tag incomplete type
2994 --
2995 -- type T is tagged;
2996 -- type Acc is access function (X : T) return T; -- ERROR
2997
2998 if Ekind (Etype (E)) = E_Incomplete_Type
2999 and then Is_Tagged_Type (Etype (E))
3000 and then No (Full_View (Etype (E)))
3001 then
3002 Error_Msg_N
3003 ("(Ada 2005): invalid use of tagged incomplete type", E);
3004 end if;
3005
70482933 3006 -- For access to a protected subprogram, freeze the equivalent
57747aec 3007 -- type (however this is not set if we are not generating code
70482933
RK
3008 -- or if this is an anonymous type used just for resolution).
3009
d8db0bca
JM
3010 elsif Ekind (E) = E_Access_Protected_Subprogram_Type then
3011
3012 -- AI-326: Check wrong use of tagged incomplete types
3013
3014 -- type T is tagged;
3015 -- type As3D is access protected
3016 -- function (X : Float) return T; -- ERROR
3017
3018 declare
3019 Etyp : Entity_Id;
3020
3021 begin
3022 Etyp := Etype (Directly_Designated_Type (E));
3023
3024 if Is_Class_Wide_Type (Etyp) then
3025 Etyp := Etype (Etyp);
3026 end if;
3027
3028 if Ekind (Etyp) = E_Incomplete_Type
3029 and then Is_Tagged_Type (Etyp)
3030 and then No (Full_View (Etyp))
3031 then
3032 Error_Msg_N
3033 ("(Ada 2005): invalid use of tagged incomplete type", E);
3034 end if;
3035 end;
3036
57747aec 3037 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3038 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3039 end if;
70482933
RK
3040 end if;
3041
3042 -- Generic types are never seen by the back-end, and are also not
3043 -- processed by the expander (since the expander is turned off for
3044 -- generic processing), so we never need freeze nodes for them.
3045
3046 if Is_Generic_Type (E) then
3047 return Result;
3048 end if;
3049
3050 -- Some special processing for non-generic types to complete
3051 -- representation details not known till the freeze point.
3052
3053 if Is_Fixed_Point_Type (E) then
3054 Freeze_Fixed_Point_Type (E);
3055
fbf5a39b
AC
3056 -- Some error checks required for ordinary fixed-point type.
3057 -- Defer these till the freeze-point since we need the small
3058 -- and range values. We only do these checks for base types
3059
3060 if Is_Ordinary_Fixed_Point_Type (E)
3061 and then E = Base_Type (E)
3062 then
3063 if Small_Value (E) < Ureal_2_M_80 then
3064 Error_Msg_Name_1 := Name_Small;
3065 Error_Msg_N
3066 ("`&''%` is too small, minimum is 2.0'*'*(-80)", E);
3067
3068 elsif Small_Value (E) > Ureal_2_80 then
3069 Error_Msg_Name_1 := Name_Small;
3070 Error_Msg_N
3071 ("`&''%` is too large, maximum is 2.0'*'*80", E);
3072 end if;
3073
3074 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3075 Error_Msg_Name_1 := Name_First;
3076 Error_Msg_N
3077 ("`&''%` is too small, minimum is -10.0'*'*36", E);
3078 end if;
3079
3080 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3081 Error_Msg_Name_1 := Name_Last;
3082 Error_Msg_N
3083 ("`&''%` is too large, maximum is 10.0'*'*36", E);
3084 end if;
3085 end if;
3086
70482933
RK
3087 elsif Is_Enumeration_Type (E) then
3088 Freeze_Enumeration_Type (E);
3089
3090 elsif Is_Integer_Type (E) then
3091 Adjust_Esize_For_Alignment (E);
3092
edd63e9b
ES
3093 elsif Is_Access_Type (E) then
3094
3095 -- Check restriction for standard storage pool
3096
3097 if No (Associated_Storage_Pool (E)) then
3098 Check_Restriction (No_Standard_Storage_Pools, E);
3099 end if;
3100
3101 -- Deal with error message for pure access type. This is not an
3102 -- error in Ada 2005 if there is no pool (see AI-366).
3103
3104 if Is_Pure_Unit_Access_Type (E)
3105 and then (Ada_Version < Ada_05
3106 or else not No_Pool_Assigned (E))
3107 then
3108 Error_Msg_N ("named access type not allowed in pure unit", E);
3109 end if;
70482933
RK
3110 end if;
3111
edd63e9b
ES
3112 -- Case of composite types
3113
70482933
RK
3114 if Is_Composite_Type (E) then
3115
edd63e9b
ES
3116 -- AI-117 requires that all new primitives of a tagged type must
3117 -- inherit the convention of the full view of the type. Inherited
3118 -- and overriding operations are defined to inherit the convention
3119 -- of their parent or overridden subprogram (also specified in
3120 -- AI-117), and that will have occurred earlier (in
3121 -- Derive_Subprogram and New_Overloaded_Entity). Here we set the
3122 -- convention of primitives that are still convention Ada, which
3123 -- will ensure that any new primitives inherit the type's
3124 -- convention. Class-wide types can have a foreign convention
3125 -- inherited from their specific type, but are excluded from this
3126 -- since they don't have any associated primitives.
70482933
RK
3127
3128 if Is_Tagged_Type (E)
3129 and then not Is_Class_Wide_Type (E)
3130 and then Convention (E) /= Convention_Ada
3131 then
3132 declare
3133 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3134 Prim : Elmt_Id;
70482933 3135 begin
07fc65c4 3136 Prim := First_Elmt (Prim_List);
70482933
RK
3137 while Present (Prim) loop
3138 if Convention (Node (Prim)) = Convention_Ada then
3139 Set_Convention (Node (Prim), Convention (E));
3140 end if;
3141
3142 Next_Elmt (Prim);
3143 end loop;
3144 end;
3145 end if;
3146 end if;
3147
07fc65c4
GB
3148 -- Generate primitive operation references for a tagged type
3149
3150 if Is_Tagged_Type (E)
3151 and then not Is_Class_Wide_Type (E)
3152 then
3153 declare
edd63e9b 3154 Prim_List : Elist_Id;
07fc65c4
GB
3155 Prim : Elmt_Id;
3156 Ent : Entity_Id;
3157
3158 begin
edd63e9b
ES
3159 -- Ada 2005 (AI-345): In case of concurrent type generate
3160 -- reference to the wrapper that allow us to dispatch calls
3161 -- through their implemented abstract interface types.
3162
3163 -- The check for Present here is to protect against previously
3164 -- reported critical errors.
3165
3166 if Is_Concurrent_Type (E)
3167 and then Present (Corresponding_Record_Type (E))
3168 then
3169 pragma Assert (not Is_Empty_Elmt_List
3170 (Abstract_Interfaces
3171 (Corresponding_Record_Type (E))));
3172
3173 Prim_List := Primitive_Operations
3174 (Corresponding_Record_Type (E));
3175 else
3176 Prim_List := Primitive_Operations (E);
3177 end if;
3178
3179 -- Loop to generate references for primitive operations
3180
07fc65c4
GB
3181 Prim := First_Elmt (Prim_List);
3182 while Present (Prim) loop
3183 Ent := Node (Prim);
3184
edd63e9b
ES
3185 -- If the operation is derived, get the original for cross-
3186 -- reference purposes (it is the original for which we want
3187 -- the xref, and for which the comes from source test needs
3188 -- to be performed).
07fc65c4
GB
3189
3190 while Present (Alias (Ent)) loop
3191 Ent := Alias (Ent);
3192 end loop;
3193
3194 Generate_Reference (E, Ent, 'p', Set_Ref => False);
3195 Next_Elmt (Prim);
3196 end loop;
3197
3198 -- If we get an exception, then something peculiar has happened
3199 -- probably as a result of a previous error. Since this is only
3200 -- for non-critical cross-references, ignore the error.
3201
3202 exception
3203 when others => null;
3204 end;
3205 end if;
3206
70482933
RK
3207 -- Now that all types from which E may depend are frozen, see
3208 -- if the size is known at compile time, if it must be unsigned,
3209 -- or if strict alignent is required
3210
3211 Check_Compile_Time_Size (E);
3212 Check_Unsigned_Type (E);
3213
3214 if Base_Type (E) = E then
3215 Check_Strict_Alignment (E);
3216 end if;
3217
3218 -- Do not allow a size clause for a type which does not have a size
3219 -- that is known at compile time
3220
3221 if Has_Size_Clause (E)
3222 and then not Size_Known_At_Compile_Time (E)
3223 then
07fc65c4
GB
3224 -- Supress this message if errors posted on E, even if we are
3225 -- in all errors mode, since this is often a junk message
3226
3227 if not Error_Posted (E) then
3228 Error_Msg_N
3229 ("size clause not allowed for variable length type",
3230 Size_Clause (E));
3231 end if;
70482933
RK
3232 end if;
3233
3234 -- Remaining process is to set/verify the representation information,
3235 -- in particular the size and alignment values. This processing is
3236 -- not required for generic types, since generic types do not play
3237 -- any part in code generation, and so the size and alignment values
c6823a20 3238 -- for such types are irrelevant.
70482933
RK
3239
3240 if Is_Generic_Type (E) then
3241 return Result;
3242
3243 -- Otherwise we call the layout procedure
3244
3245 else
3246 Layout_Type (E);
3247 end if;
3248
3249 -- End of freeze processing for type entities
3250 end if;
3251
3252 -- Here is where we logically freeze the current entity. If it has a
3253 -- freeze node, then this is the point at which the freeze node is
3254 -- linked into the result list.
3255
3256 if Has_Delayed_Freeze (E) then
3257
3258 -- If a freeze node is already allocated, use it, otherwise allocate
3259 -- a new one. The preallocation happens in the case of anonymous base
3260 -- types, where we preallocate so that we can set First_Subtype_Link.
3261 -- Note that we reset the Sloc to the current freeze location.
3262
3263 if Present (Freeze_Node (E)) then
3264 F_Node := Freeze_Node (E);
3265 Set_Sloc (F_Node, Loc);
3266
3267 else
3268 F_Node := New_Node (N_Freeze_Entity, Loc);
3269 Set_Freeze_Node (E, F_Node);
3270 Set_Access_Types_To_Process (F_Node, No_Elist);
3271 Set_TSS_Elist (F_Node, No_Elist);
3272 Set_Actions (F_Node, No_List);
3273 end if;
3274
3275 Set_Entity (F_Node, E);
3276
3277 if Result = No_List then
3278 Result := New_List (F_Node);
3279 else
3280 Append (F_Node, Result);
3281 end if;
35ae2ed8
AC
3282
3283 -- A final pass over record types with discriminants. If the type
3284 -- has an incomplete declaration, there may be constrained access
3285 -- subtypes declared elsewhere, which do not depend on the discrimi-
3286 -- nants of the type, and which are used as component types (i.e.
3287 -- the full view is a recursive type). The designated types of these
3288 -- subtypes can only be elaborated after the type itself, and they
3289 -- need an itype reference.
3290
3291 if Ekind (E) = E_Record_Type
3292 and then Has_Discriminants (E)
3293 then
3294 declare
3295 Comp : Entity_Id;
3296 IR : Node_Id;
3297 Typ : Entity_Id;
3298
3299 begin
3300 Comp := First_Component (E);
3301
3302 while Present (Comp) loop
3303 Typ := Etype (Comp);
3304
3305 if Ekind (Comp) = E_Component
3306 and then Is_Access_Type (Typ)
3307 and then Scope (Typ) /= E
3308 and then Base_Type (Designated_Type (Typ)) = E
3309 and then Is_Itype (Designated_Type (Typ))
3310 then
3311 IR := Make_Itype_Reference (Sloc (Comp));
3312 Set_Itype (IR, Designated_Type (Typ));
3313 Append (IR, Result);
3314 end if;
3315
3316 Next_Component (Comp);
3317 end loop;
3318 end;
3319 end if;
70482933
RK
3320 end if;
3321
3322 -- When a type is frozen, the first subtype of the type is frozen as
3323 -- well (RM 13.14(15)). This has to be done after freezing the type,
3324 -- since obviously the first subtype depends on its own base type.
3325
3326 if Is_Type (E) then
3327 Freeze_And_Append (First_Subtype (E), Loc, Result);
3328
3329 -- If we just froze a tagged non-class wide record, then freeze the
3330 -- corresponding class-wide type. This must be done after the tagged
3331 -- type itself is frozen, because the class-wide type refers to the
3332 -- tagged type which generates the class.
3333
3334 if Is_Tagged_Type (E)
3335 and then not Is_Class_Wide_Type (E)
3336 and then Present (Class_Wide_Type (E))
3337 then
3338 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3339 end if;
3340 end if;
3341
3342 Check_Debug_Info_Needed (E);
3343
3344 -- Special handling for subprograms
3345
3346 if Is_Subprogram (E) then
3347
3348 -- If subprogram has address clause then reset Is_Public flag, since
3349 -- we do not want the backend to generate external references.
3350
3351 if Present (Address_Clause (E))
3352 and then not Is_Library_Level_Entity (E)
3353 then
3354 Set_Is_Public (E, False);
3355
3356 -- If no address clause and not intrinsic, then for imported
3357 -- subprogram in main unit, generate descriptor if we are in
3358 -- Propagate_Exceptions mode.
3359
3360 elsif Propagate_Exceptions
3361 and then Is_Imported (E)
3362 and then not Is_Intrinsic_Subprogram (E)
3363 and then Convention (E) /= Convention_Stubbed
3364 then
3365 if Result = No_List then
3366 Result := Empty_List;
3367 end if;
70482933 3368 end if;
70482933
RK
3369 end if;
3370
3371 return Result;
3372 end Freeze_Entity;
3373
3374 -----------------------------
3375 -- Freeze_Enumeration_Type --
3376 -----------------------------
3377
3378 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3379 begin
3380 if Has_Foreign_Convention (Typ)
3381 and then not Has_Size_Clause (Typ)
3382 and then Esize (Typ) < Standard_Integer_Size
3383 then
3384 Init_Esize (Typ, Standard_Integer_Size);
70482933
RK
3385 else
3386 Adjust_Esize_For_Alignment (Typ);
3387 end if;
3388 end Freeze_Enumeration_Type;
3389
3390 -----------------------
3391 -- Freeze_Expression --
3392 -----------------------
3393
3394 procedure Freeze_Expression (N : Node_Id) is
3395 In_Def_Exp : constant Boolean := In_Default_Expression;
3396 Typ : Entity_Id;
3397 Nam : Entity_Id;
3398 Desig_Typ : Entity_Id;
3399 P : Node_Id;
3400 Parent_P : Node_Id;
3401
3402 Freeze_Outside : Boolean := False;
3403 -- This flag is set true if the entity must be frozen outside the
3404 -- current subprogram. This happens in the case of expander generated
3405 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3406 -- not freeze all entities like other bodies, but which nevertheless
3407 -- may reference entities that have to be frozen before the body and
3408 -- obviously cannot be frozen inside the body.
3409
3410 function In_Exp_Body (N : Node_Id) return Boolean;
3411 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 3412 -- it is the handled statement sequence of an expander-generated
70482933
RK
3413 -- subprogram (init proc, or stream subprogram). If so, it returns
3414 -- True, otherwise False.
3415
fbf5a39b
AC
3416 -----------------
3417 -- In_Exp_Body --
3418 -----------------
3419
70482933
RK
3420 function In_Exp_Body (N : Node_Id) return Boolean is
3421 P : Node_Id;
3422
3423 begin
3424 if Nkind (N) = N_Subprogram_Body then
3425 P := N;
3426 else
3427 P := Parent (N);
3428 end if;
3429
3430 if Nkind (P) /= N_Subprogram_Body then
3431 return False;
3432
3433 else
3434 P := Defining_Unit_Name (Specification (P));
3435
3436 if Nkind (P) = N_Defining_Identifier
fbf5a39b
AC
3437 and then (Is_Init_Proc (P) or else
3438 Is_TSS (P, TSS_Stream_Input) or else
3439 Is_TSS (P, TSS_Stream_Output) or else
3440 Is_TSS (P, TSS_Stream_Read) or else
3441 Is_TSS (P, TSS_Stream_Write))
70482933
RK
3442 then
3443 return True;
3444 else
3445 return False;
3446 end if;
3447 end if;
70482933
RK
3448 end In_Exp_Body;
3449
3450 -- Start of processing for Freeze_Expression
3451
3452 begin
edd63e9b
ES
3453 -- Immediate return if freezing is inhibited. This flag is set by the
3454 -- analyzer to stop freezing on generated expressions that would cause
3455 -- freezing if they were in the source program, but which are not
3456 -- supposed to freeze, since they are created.
70482933
RK
3457
3458 if Must_Not_Freeze (N) then
3459 return;
3460 end if;
3461
3462 -- If expression is non-static, then it does not freeze in a default
3463 -- expression, see section "Handling of Default Expressions" in the
3464 -- spec of package Sem for further details. Note that we have to
3465 -- make sure that we actually have a real expression (if we have
3466 -- a subtype indication, we can't test Is_Static_Expression!)
3467
3468 if In_Def_Exp
3469 and then Nkind (N) in N_Subexpr
3470 and then not Is_Static_Expression (N)
3471 then
3472 return;
3473 end if;
3474
3475 -- Freeze type of expression if not frozen already
3476
fbf5a39b
AC
3477 Typ := Empty;
3478
3479 if Nkind (N) in N_Has_Etype then
3480 if not Is_Frozen (Etype (N)) then
3481 Typ := Etype (N);
3482
3483 -- Base type may be an derived numeric type that is frozen at
3484 -- the point of declaration, but first_subtype is still unfrozen.
3485
3486 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3487 Typ := First_Subtype (Etype (N));
3488 end if;
70482933
RK
3489 end if;
3490
3491 -- For entity name, freeze entity if not frozen already. A special
3492 -- exception occurs for an identifier that did not come from source.
3493 -- We don't let such identifiers freeze a non-internal entity, i.e.
3494 -- an entity that did come from source, since such an identifier was
3495 -- generated by the expander, and cannot have any semantic effect on
3496 -- the freezing semantics. For example, this stops the parameter of
3497 -- an initialization procedure from freezing the variable.
3498
3499 if Is_Entity_Name (N)
3500 and then not Is_Frozen (Entity (N))
3501 and then (Nkind (N) /= N_Identifier
3502 or else Comes_From_Source (N)
3503 or else not Comes_From_Source (Entity (N)))
3504 then
3505 Nam := Entity (N);
70482933
RK
3506 else
3507 Nam := Empty;
3508 end if;
3509
49e90211 3510 -- For an allocator freeze designated type if not frozen already
70482933
RK
3511
3512 -- For an aggregate whose component type is an access type, freeze
3513 -- the designated type now, so that its freeze does not appear within
3514 -- the loop that might be created in the expansion of the aggregate.
3515 -- If the designated type is a private type without full view, the
3516 -- expression cannot contain an allocator, so the type is not frozen.
3517
3518 Desig_Typ := Empty;
70482933 3519
fbf5a39b 3520 case Nkind (N) is
70482933
RK
3521 when N_Allocator =>
3522 Desig_Typ := Designated_Type (Etype (N));
3523
3524 when N_Aggregate =>
3525 if Is_Array_Type (Etype (N))
3526 and then Is_Access_Type (Component_Type (Etype (N)))
3527 then
3528 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3529 end if;
3530
3531 when N_Selected_Component |
3532 N_Indexed_Component |
3533 N_Slice =>
3534
3535 if Is_Access_Type (Etype (Prefix (N))) then
3536 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3537 end if;
3538
3539 when others =>
3540 null;
70482933
RK
3541 end case;
3542
3543 if Desig_Typ /= Empty
3544 and then (Is_Frozen (Desig_Typ)
3545 or else (not Is_Fully_Defined (Desig_Typ)))
3546 then
3547 Desig_Typ := Empty;
3548 end if;
3549
3550 -- All done if nothing needs freezing
3551
3552 if No (Typ)
3553 and then No (Nam)
3554 and then No (Desig_Typ)
3555 then
3556 return;
3557 end if;
3558
3559 -- Loop for looking at the right place to insert the freeze nodes
3560 -- exiting from the loop when it is appropriate to insert the freeze
3561 -- node before the current node P.
3562
3563 -- Also checks some special exceptions to the freezing rules. These
3564 -- cases result in a direct return, bypassing the freeze action.
3565
3566 P := N;
3567 loop
3568 Parent_P := Parent (P);
3569
3570 -- If we don't have a parent, then we are not in a well-formed
3571 -- tree. This is an unusual case, but there are some legitimate
3572 -- situations in which this occurs, notably when the expressions
3573 -- in the range of a type declaration are resolved. We simply
3574 -- ignore the freeze request in this case. Is this right ???
3575
3576 if No (Parent_P) then
3577 return;
3578 end if;
3579
3580 -- See if we have got to an appropriate point in the tree
3581
3582 case Nkind (Parent_P) is
3583
edd63e9b
ES
3584 -- A special test for the exception of (RM 13.14(8)) for the case
3585 -- of per-object expressions (RM 3.8(18)) occurring in component
3586 -- definition or a discrete subtype definition. Note that we test
3587 -- for a component declaration which includes both cases we are
3588 -- interested in, and furthermore the tree does not have explicit
3589 -- nodes for either of these two constructs.
70482933
RK
3590
3591 when N_Component_Declaration =>
3592
3593 -- The case we want to test for here is an identifier that is
3594 -- a per-object expression, this is either a discriminant that
3595 -- appears in a context other than the component declaration
3596 -- or it is a reference to the type of the enclosing construct.
3597
3598 -- For either of these cases, we skip the freezing
3599
3600 if not In_Default_Expression
3601 and then Nkind (N) = N_Identifier
3602 and then (Present (Entity (N)))
3603 then
3604 -- We recognize the discriminant case by just looking for
3605 -- a reference to a discriminant. It can only be one for
3606 -- the enclosing construct. Skip freezing in this case.
3607
3608 if Ekind (Entity (N)) = E_Discriminant then
3609 return;
3610
3611 -- For the case of a reference to the enclosing record,
3612 -- (or task or protected type), we look for a type that
3613 -- matches the current scope.
3614
3615 elsif Entity (N) = Current_Scope then
3616 return;
3617 end if;
3618 end if;
3619
edd63e9b
ES
3620 -- If we have an enumeration literal that appears as the choice in
3621 -- the aggregate of an enumeration representation clause, then
3622 -- freezing does not occur (RM 13.14(10)).
70482933
RK
3623
3624 when N_Enumeration_Representation_Clause =>
3625
3626 -- The case we are looking for is an enumeration literal
3627
3628 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
3629 and then Is_Enumeration_Type (Etype (N))
3630 then
3631 -- If enumeration literal appears directly as the choice,
3632 -- do not freeze (this is the normal non-overloade case)
3633
3634 if Nkind (Parent (N)) = N_Component_Association
3635 and then First (Choices (Parent (N))) = N
3636 then
3637 return;
3638
3639 -- If enumeration literal appears as the name of a
3640 -- function which is the choice, then also do not freeze.
3641 -- This happens in the overloaded literal case, where the
3642 -- enumeration literal is temporarily changed to a function
3643 -- call for overloading analysis purposes.
3644
3645 elsif Nkind (Parent (N)) = N_Function_Call
3646 and then
3647 Nkind (Parent (Parent (N))) = N_Component_Association
3648 and then
3649 First (Choices (Parent (Parent (N)))) = Parent (N)
3650 then
3651 return;
3652 end if;
3653 end if;
3654
3655 -- Normally if the parent is a handled sequence of statements,
3656 -- then the current node must be a statement, and that is an
3657 -- appropriate place to insert a freeze node.
3658
3659 when N_Handled_Sequence_Of_Statements =>
3660
edd63e9b
ES
3661 -- An exception occurs when the sequence of statements is for
3662 -- an expander generated body that did not do the usual freeze
3663 -- all operation. In this case we usually want to freeze
3664 -- outside this body, not inside it, and we skip past the
3665 -- subprogram body that we are inside.
70482933
RK
3666
3667 if In_Exp_Body (Parent_P) then
3668
3669 -- However, we *do* want to freeze at this point if we have
3670 -- an entity to freeze, and that entity is declared *inside*
3671 -- the body of the expander generated procedure. This case
3672 -- is recognized by the scope of the type, which is either
3673 -- the spec for some enclosing body, or (in the case of
3674 -- init_procs, for which there are no separate specs) the
3675 -- current scope.
3676
3677 declare
3678 Subp : constant Node_Id := Parent (Parent_P);
3679 Cspc : Entity_Id;
3680
3681 begin
3682 if Nkind (Subp) = N_Subprogram_Body then
3683 Cspc := Corresponding_Spec (Subp);
3684
3685 if (Present (Typ) and then Scope (Typ) = Cspc)
3686 or else
3687 (Present (Nam) and then Scope (Nam) = Cspc)
3688 then
3689 exit;
3690
3691 elsif Present (Typ)
3692 and then Scope (Typ) = Current_Scope
3693 and then Current_Scope = Defining_Entity (Subp)
3694 then
3695 exit;
3696 end if;
3697 end if;
3698 end;
3699
3700 -- If not that exception to the exception, then this is
3701 -- where we delay the freeze till outside the body.
3702
3703 Parent_P := Parent (Parent_P);
3704 Freeze_Outside := True;
3705
3706 -- Here if normal case where we are in handled statement
3707 -- sequence and want to do the insertion right there.
3708
3709 else
3710 exit;
3711 end if;
3712
3713 -- If parent is a body or a spec or a block, then the current
3714 -- node is a statement or declaration and we can insert the
3715 -- freeze node before it.
3716
3717 when N_Package_Specification |
3718 N_Package_Body |
3719 N_Subprogram_Body |
3720 N_Task_Body |
3721 N_Protected_Body |
3722 N_Entry_Body |
3723 N_Block_Statement => exit;
3724
3725 -- The expander is allowed to define types in any statements list,
3726 -- so any of the following parent nodes also mark a freezing point
3727 -- if the actual node is in a list of statements or declarations.
3728
3729 when N_Exception_Handler |
3730 N_If_Statement |
3731 N_Elsif_Part |
3732 N_Case_Statement_Alternative |
3733 N_Compilation_Unit_Aux |
3734 N_Selective_Accept |
3735 N_Accept_Alternative |
3736 N_Delay_Alternative |
3737 N_Conditional_Entry_Call |
3738 N_Entry_Call_Alternative |
3739 N_Triggering_Alternative |
3740 N_Abortable_Part |
3741 N_Freeze_Entity =>
3742
3743 exit when Is_List_Member (P);
3744
3745 -- Note: The N_Loop_Statement is a special case. A type that
3746 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
3747 -- occurs only because of a loop expanded by the expander), so we
3748 -- keep on going. Otherwise we terminate the search. Same is true
3749 -- of any entity which comes from source. (if they have a
3750 -- predefined type, that type does not appear to come from source,
3751 -- but the entity should not be frozen here).
70482933
RK
3752
3753 when N_Loop_Statement =>
3754 exit when not Comes_From_Source (Etype (N))
3755 and then (No (Nam) or else not Comes_From_Source (Nam));
3756
3757 -- For all other cases, keep looking at parents
3758
3759 when others =>
3760 null;
3761 end case;
3762
3763 -- We fall through the case if we did not yet find the proper
3764 -- place in the free for inserting the freeze node, so climb!
3765
3766 P := Parent_P;
3767 end loop;
3768
edd63e9b
ES
3769 -- If the expression appears in a record or an initialization procedure,
3770 -- the freeze nodes are collected and attached to the current scope, to
3771 -- be inserted and analyzed on exit from the scope, to insure that
3772 -- generated entities appear in the correct scope. If the expression is
3773 -- a default for a discriminant specification, the scope is still void.
3774 -- The expression can also appear in the discriminant part of a private
3775 -- or concurrent type.
70482933 3776
c6823a20 3777 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
3778 -- enclosing record declaration, the freeze nodes must be attached to
3779 -- the outer record type so they can eventually be placed in the
c6823a20
EB
3780 -- enclosing declaration list.
3781
70482933
RK
3782 -- The other case requiring this special handling is if we are in
3783 -- a default expression, since in that case we are about to freeze
3784 -- a static type, and the freeze scope needs to be the outer scope,
3785 -- not the scope of the subprogram with the default parameter.
3786
3787 -- For default expressions in generic units, the Move_Freeze_Nodes
3788 -- mechanism (see sem_ch12.adb) takes care of placing them at the
3789 -- proper place, after the generic unit.
3790
3791 if (In_Def_Exp and not Inside_A_Generic)
3792 or else Freeze_Outside
3793 or else (Is_Type (Current_Scope)
3794 and then (not Is_Concurrent_Type (Current_Scope)
3795 or else not Has_Completion (Current_Scope)))
3796 or else Ekind (Current_Scope) = E_Void
3797 then
3798 declare
3799 Loc : constant Source_Ptr := Sloc (Current_Scope);
3800 Freeze_Nodes : List_Id := No_List;
c6823a20 3801 Pos : Int := Scope_Stack.Last;
70482933
RK
3802
3803 begin
3804 if Present (Desig_Typ) then
3805 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
3806 end if;
3807
3808 if Present (Typ) then
3809 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
3810 end if;
3811
3812 if Present (Nam) then
3813 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
3814 end if;
3815
c6823a20
EB
3816 -- The current scope may be that of a constrained component of
3817 -- an enclosing record declaration, which is above the current
3818 -- scope in the scope stack.
3819
3820 if Is_Record_Type (Scope (Current_Scope)) then
3821 Pos := Pos - 1;
3822 end if;
3823
70482933 3824 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
3825 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
3826 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
3827 Freeze_Nodes;
3828 else
3829 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 3830 (Pos).Pending_Freeze_Actions);
70482933
RK
3831 end if;
3832 end if;
3833 end;
3834
3835 return;
3836 end if;
3837
3838 -- Now we have the right place to do the freezing. First, a special
3839 -- adjustment, if we are in default expression analysis mode, these
3840 -- freeze actions must not be thrown away (normally all inserted
3841 -- actions are thrown away in this mode. However, the freeze actions
3842 -- are from static expressions and one of the important reasons we
3843 -- are doing this special analysis is to get these freeze actions.
3844 -- Therefore we turn off the In_Default_Expression mode to propagate
3845 -- these freeze actions. This also means they get properly analyzed
3846 -- and expanded.
3847
3848 In_Default_Expression := False;
3849
fbf5a39b 3850 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
3851
3852 if Present (Desig_Typ) then
3853 Freeze_Before (P, Desig_Typ);
3854 end if;
3855
fbf5a39b 3856 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
3857 -- the enumeration representation clause exception in the loop above.
3858
3859 if Present (Typ) then
3860 Freeze_Before (P, Typ);
3861 end if;
3862
fbf5a39b 3863 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
3864
3865 if Present (Nam) then
3866 Freeze_Before (P, Nam);
3867 end if;
3868
3869 In_Default_Expression := In_Def_Exp;
3870 end Freeze_Expression;
3871
3872 -----------------------------
3873 -- Freeze_Fixed_Point_Type --
3874 -----------------------------
3875
edd63e9b
ES
3876 -- Certain fixed-point types and subtypes, including implicit base types
3877 -- and declared first subtypes, have not yet set up a range. This is
3878 -- because the range cannot be set until the Small and Size values are
3879 -- known, and these are not known till the type is frozen.
70482933 3880
edd63e9b
ES
3881 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
3882 -- whose bounds are unanalyzed real literals. This routine will recognize
3883 -- this case, and transform this range node into a properly typed range
3884 -- with properly analyzed and resolved values.
70482933
RK
3885
3886 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
3887 Rng : constant Node_Id := Scalar_Range (Typ);
3888 Lo : constant Node_Id := Low_Bound (Rng);
3889 Hi : constant Node_Id := High_Bound (Rng);
3890 Btyp : constant Entity_Id := Base_Type (Typ);
3891 Brng : constant Node_Id := Scalar_Range (Btyp);
3892 BLo : constant Node_Id := Low_Bound (Brng);
3893 BHi : constant Node_Id := High_Bound (Brng);
3894 Small : constant Ureal := Small_Value (Typ);
3895 Loval : Ureal;
3896 Hival : Ureal;
3897 Atype : Entity_Id;
3898
3899 Actual_Size : Nat;
3900
3901 function Fsize (Lov, Hiv : Ureal) return Nat;
3902 -- Returns size of type with given bounds. Also leaves these
3903 -- bounds set as the current bounds of the Typ.
3904
0da2c8ac
AC
3905 -----------
3906 -- Fsize --
3907 -----------
3908
70482933
RK
3909 function Fsize (Lov, Hiv : Ureal) return Nat is
3910 begin
3911 Set_Realval (Lo, Lov);
3912 Set_Realval (Hi, Hiv);
3913 return Minimum_Size (Typ);
3914 end Fsize;
3915
0da2c8ac 3916 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
3917
3918 begin
3919 -- If Esize of a subtype has not previously been set, set it now
3920
3921 if Unknown_Esize (Typ) then
3922 Atype := Ancestor_Subtype (Typ);
3923
3924 if Present (Atype) then
fbf5a39b 3925 Set_Esize (Typ, Esize (Atype));
70482933 3926 else
fbf5a39b 3927 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
3928 end if;
3929 end if;
3930
3931 -- Immediate return if the range is already analyzed. This means
3932 -- that the range is already set, and does not need to be computed
3933 -- by this routine.
3934
3935 if Analyzed (Rng) then
3936 return;
3937 end if;
3938
3939 -- Immediate return if either of the bounds raises Constraint_Error
3940
3941 if Raises_Constraint_Error (Lo)
3942 or else Raises_Constraint_Error (Hi)
3943 then
3944 return;
3945 end if;
3946
3947 Loval := Realval (Lo);
3948 Hival := Realval (Hi);
3949
3950 -- Ordinary fixed-point case
3951
3952 if Is_Ordinary_Fixed_Point_Type (Typ) then
3953
3954 -- For the ordinary fixed-point case, we are allowed to fudge the
3955 -- end-points up or down by small. Generally we prefer to fudge
3956 -- up, i.e. widen the bounds for non-model numbers so that the
3957 -- end points are included. However there are cases in which this
3958 -- cannot be done, and indeed cases in which we may need to narrow
3959 -- the bounds. The following circuit makes the decision.
3960
3961 -- Note: our terminology here is that Incl_EP means that the
3962 -- bounds are widened by Small if necessary to include the end
3963 -- points, and Excl_EP means that the bounds are narrowed by
3964 -- Small to exclude the end-points if this reduces the size.
3965
3966 -- Note that in the Incl case, all we care about is including the
3967 -- end-points. In the Excl case, we want to narrow the bounds as
3968 -- much as permitted by the RM, to give the smallest possible size.
3969
3970 Fudge : declare
3971 Loval_Incl_EP : Ureal;
3972 Hival_Incl_EP : Ureal;
3973
3974 Loval_Excl_EP : Ureal;
3975 Hival_Excl_EP : Ureal;
3976
3977 Size_Incl_EP : Nat;
3978 Size_Excl_EP : Nat;
3979
3980 Model_Num : Ureal;
3981 First_Subt : Entity_Id;
3982 Actual_Lo : Ureal;
3983 Actual_Hi : Ureal;
3984
3985 begin
3986 -- First step. Base types are required to be symmetrical. Right
3987 -- now, the base type range is a copy of the first subtype range.
3988 -- This will be corrected before we are done, but right away we
3989 -- need to deal with the case where both bounds are non-negative.
3990 -- In this case, we set the low bound to the negative of the high
3991 -- bound, to make sure that the size is computed to include the
3992 -- required sign. Note that we do not need to worry about the
3993 -- case of both bounds negative, because the sign will be dealt
3994 -- with anyway. Furthermore we can't just go making such a bound
3995 -- symmetrical, since in a twos-complement system, there is an
3996 -- extra negative value which could not be accomodated on the
3997 -- positive side.
3998
3999 if Typ = Btyp
4000 and then not UR_Is_Negative (Loval)
4001 and then Hival > Loval
4002 then
4003 Loval := -Hival;
4004 Set_Realval (Lo, Loval);
4005 end if;
4006
4007 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4008 -- then we do nothing to include it, but we are allowed to backoff
4009 -- to the next adjacent model number when we exclude it. If it is
4010 -- not a model number then we straddle the two values with the
4011 -- model numbers on either side.
70482933
RK
4012
4013 Model_Num := UR_Trunc (Loval / Small) * Small;
4014
4015 if Loval = Model_Num then
4016 Loval_Incl_EP := Model_Num;
4017 else
4018 Loval_Incl_EP := Model_Num - Small;
4019 end if;
4020
4021 -- The low value excluding the end point is Small greater, but
4022 -- we do not do this exclusion if the low value is positive,
4023 -- since it can't help the size and could actually hurt by
4024 -- crossing the high bound.
4025
4026 if UR_Is_Negative (Loval_Incl_EP) then
4027 Loval_Excl_EP := Loval_Incl_EP + Small;
4028 else
4029 Loval_Excl_EP := Loval_Incl_EP;
4030 end if;
4031
4032 -- Similar processing for upper bound and high value
4033
4034 Model_Num := UR_Trunc (Hival / Small) * Small;
4035
4036 if Hival = Model_Num then
4037 Hival_Incl_EP := Model_Num;
4038 else
4039 Hival_Incl_EP := Model_Num + Small;
4040 end if;
4041
4042 if UR_Is_Positive (Hival_Incl_EP) then
4043 Hival_Excl_EP := Hival_Incl_EP - Small;
4044 else
4045 Hival_Excl_EP := Hival_Incl_EP;
4046 end if;
4047
4048 -- One further adjustment is needed. In the case of subtypes,
4049 -- we cannot go outside the range of the base type, or we get
4050 -- peculiarities, and the base type range is already set. This
4051 -- only applies to the Incl values, since clearly the Excl
4052 -- values are already as restricted as they are allowed to be.
4053
4054 if Typ /= Btyp then
4055 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4056 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4057 end if;
4058
4059 -- Get size including and excluding end points
4060
4061 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4062 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4063
4064 -- No need to exclude end-points if it does not reduce size
4065
4066 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4067 Loval_Excl_EP := Loval_Incl_EP;
4068 end if;
4069
4070 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4071 Hival_Excl_EP := Hival_Incl_EP;
4072 end if;
4073
4074 -- Now we set the actual size to be used. We want to use the
4075 -- bounds fudged up to include the end-points but only if this
4076 -- can be done without violating a specifically given size
4077 -- size clause or causing an unacceptable increase in size.
4078
4079 -- Case of size clause given
4080
4081 if Has_Size_Clause (Typ) then
4082
4083 -- Use the inclusive size only if it is consistent with
4084 -- the explicitly specified size.
4085
4086 if Size_Incl_EP <= RM_Size (Typ) then
4087 Actual_Lo := Loval_Incl_EP;
4088 Actual_Hi := Hival_Incl_EP;
4089 Actual_Size := Size_Incl_EP;
4090
4091 -- If the inclusive size is too large, we try excluding
4092 -- the end-points (will be caught later if does not work).
4093
4094 else
4095 Actual_Lo := Loval_Excl_EP;
4096 Actual_Hi := Hival_Excl_EP;
4097 Actual_Size := Size_Excl_EP;
4098 end if;
4099
4100 -- Case of size clause not given
4101
4102 else
4103 -- If we have a base type whose corresponding first subtype
4104 -- has an explicit size that is large enough to include our
4105 -- end-points, then do so. There is no point in working hard
4106 -- to get a base type whose size is smaller than the specified
4107 -- size of the first subtype.
4108
4109 First_Subt := First_Subtype (Typ);
4110
4111 if Has_Size_Clause (First_Subt)
4112 and then Size_Incl_EP <= Esize (First_Subt)
4113 then
4114 Actual_Size := Size_Incl_EP;
4115 Actual_Lo := Loval_Incl_EP;
4116 Actual_Hi := Hival_Incl_EP;
4117
4118 -- If excluding the end-points makes the size smaller and
4119 -- results in a size of 8,16,32,64, then we take the smaller
4120 -- size. For the 64 case, this is compulsory. For the other
4121 -- cases, it seems reasonable. We like to include end points
4122 -- if we can, but not at the expense of moving to the next
4123 -- natural boundary of size.
4124
4125 elsif Size_Incl_EP /= Size_Excl_EP
4126 and then
4127 (Size_Excl_EP = 8 or else
4128 Size_Excl_EP = 16 or else
4129 Size_Excl_EP = 32 or else
4130 Size_Excl_EP = 64)
4131 then
4132 Actual_Size := Size_Excl_EP;
4133 Actual_Lo := Loval_Excl_EP;
4134 Actual_Hi := Hival_Excl_EP;
4135
4136 -- Otherwise we can definitely include the end points
4137
4138 else
4139 Actual_Size := Size_Incl_EP;
4140 Actual_Lo := Loval_Incl_EP;
4141 Actual_Hi := Hival_Incl_EP;
4142 end if;
4143
edd63e9b
ES
4144 -- One pathological case: normally we never fudge a low bound
4145 -- down, since it would seem to increase the size (if it has
4146 -- any effect), but for ranges containing single value, or no
4147 -- values, the high bound can be small too large. Consider:
70482933
RK
4148
4149 -- type t is delta 2.0**(-14)
4150 -- range 131072.0 .. 0;
4151
edd63e9b
ES
4152 -- That lower bound is *just* outside the range of 32 bits, and
4153 -- does need fudging down in this case. Note that the bounds
4154 -- will always have crossed here, since the high bound will be
4155 -- fudged down if necessary, as in the case of:
70482933
RK
4156
4157 -- type t is delta 2.0**(-14)
4158 -- range 131072.0 .. 131072.0;
4159
edd63e9b
ES
4160 -- So we detect the situation by looking for crossed bounds,
4161 -- and if the bounds are crossed, and the low bound is greater
4162 -- than zero, we will always back it off by small, since this
4163 -- is completely harmless.
70482933
RK
4164
4165 if Actual_Lo > Actual_Hi then
4166 if UR_Is_Positive (Actual_Lo) then
4167 Actual_Lo := Loval_Incl_EP - Small;
4168 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4169
4170 -- And of course, we need to do exactly the same parallel
4171 -- fudge for flat ranges in the negative region.
4172
4173 elsif UR_Is_Negative (Actual_Hi) then
4174 Actual_Hi := Hival_Incl_EP + Small;
4175 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4176 end if;
4177 end if;
4178 end if;
4179
4180 Set_Realval (Lo, Actual_Lo);
4181 Set_Realval (Hi, Actual_Hi);
4182 end Fudge;
4183
4184 -- For the decimal case, none of this fudging is required, since there
4185 -- are no end-point problems in the decimal case (the end-points are
4186 -- always included).
4187
4188 else
4189 Actual_Size := Fsize (Loval, Hival);
4190 end if;
4191
4192 -- At this stage, the actual size has been calculated and the proper
4193 -- required bounds are stored in the low and high bounds.
4194
4195 if Actual_Size > 64 then
4196 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4197 Error_Msg_N
4198 ("size required (^) for type& too large, maximum is 64", Typ);
4199 Actual_Size := 64;
4200 end if;
4201
4202 -- Check size against explicit given size
4203
4204 if Has_Size_Clause (Typ) then
4205 if Actual_Size > RM_Size (Typ) then
4206 Error_Msg_Uint_1 := RM_Size (Typ);
4207 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4208 Error_Msg_NE
4209 ("size given (^) for type& too small, minimum is ^",
4210 Size_Clause (Typ), Typ);
4211
4212 else
4213 Actual_Size := UI_To_Int (Esize (Typ));
4214 end if;
4215
4216 -- Increase size to next natural boundary if no size clause given
4217
4218 else
4219 if Actual_Size <= 8 then
4220 Actual_Size := 8;
4221 elsif Actual_Size <= 16 then
4222 Actual_Size := 16;
4223 elsif Actual_Size <= 32 then
4224 Actual_Size := 32;
4225 else
4226 Actual_Size := 64;
4227 end if;
4228
4229 Init_Esize (Typ, Actual_Size);
4230 Adjust_Esize_For_Alignment (Typ);
4231 end if;
4232
edd63e9b
ES
4233 -- If we have a base type, then expand the bounds so that they extend to
4234 -- the full width of the allocated size in bits, to avoid junk range
4235 -- checks on intermediate computations.
70482933
RK
4236
4237 if Base_Type (Typ) = Typ then
4238 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4239 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4240 end if;
4241
4242 -- Final step is to reanalyze the bounds using the proper type
4243 -- and set the Corresponding_Integer_Value fields of the literals.
4244
4245 Set_Etype (Lo, Empty);
4246 Set_Analyzed (Lo, False);
4247 Analyze (Lo);
4248
edd63e9b
ES
4249 -- Resolve with universal fixed if the base type, and the base type if
4250 -- it is a subtype. Note we can't resolve the base type with itself,
4251 -- that would be a reference before definition.
70482933
RK
4252
4253 if Typ = Btyp then
4254 Resolve (Lo, Universal_Fixed);
4255 else
4256 Resolve (Lo, Btyp);
4257 end if;
4258
4259 -- Set corresponding integer value for bound
4260
4261 Set_Corresponding_Integer_Value
4262 (Lo, UR_To_Uint (Realval (Lo) / Small));
4263
4264 -- Similar processing for high bound
4265
4266 Set_Etype (Hi, Empty);
4267 Set_Analyzed (Hi, False);
4268 Analyze (Hi);
4269
4270 if Typ = Btyp then
4271 Resolve (Hi, Universal_Fixed);
4272 else
4273 Resolve (Hi, Btyp);
4274 end if;
4275
4276 Set_Corresponding_Integer_Value
4277 (Hi, UR_To_Uint (Realval (Hi) / Small));
4278
4279 -- Set type of range to correspond to bounds
4280
4281 Set_Etype (Rng, Etype (Lo));
4282
fbf5a39b 4283 -- Set Esize to calculated size if not set already
70482933 4284
fbf5a39b
AC
4285 if Unknown_Esize (Typ) then
4286 Init_Esize (Typ, Actual_Size);
4287 end if;
70482933
RK
4288
4289 -- Set RM_Size if not already set. If already set, check value
4290
4291 declare
4292 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4293
4294 begin
4295 if RM_Size (Typ) /= Uint_0 then
4296 if RM_Size (Typ) < Minsiz then
4297 Error_Msg_Uint_1 := RM_Size (Typ);
4298 Error_Msg_Uint_2 := Minsiz;
4299 Error_Msg_NE
4300 ("size given (^) for type& too small, minimum is ^",
4301 Size_Clause (Typ), Typ);
4302 end if;
4303
4304 else
4305 Set_RM_Size (Typ, Minsiz);
4306 end if;
4307 end;
70482933
RK
4308 end Freeze_Fixed_Point_Type;
4309
4310 ------------------
4311 -- Freeze_Itype --
4312 ------------------
4313
4314 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4315 L : List_Id;
4316
4317 begin
4318 Set_Has_Delayed_Freeze (T);
4319 L := Freeze_Entity (T, Sloc (N));
4320
4321 if Is_Non_Empty_List (L) then
4322 Insert_Actions (N, L);
4323 end if;
4324 end Freeze_Itype;
4325
4326 --------------------------
4327 -- Freeze_Static_Object --
4328 --------------------------
4329
4330 procedure Freeze_Static_Object (E : Entity_Id) is
4331
4332 Cannot_Be_Static : exception;
4333 -- Exception raised if the type of a static object cannot be made
4334 -- static. This happens if the type depends on non-global objects.
4335
4336 procedure Ensure_Expression_Is_SA (N : Node_Id);
4337 -- Called to ensure that an expression used as part of a type
4338 -- definition is statically allocatable, which means that the type
4339 -- of the expression is statically allocatable, and the expression
4340 -- is either static, or a reference to a library level constant.
4341
4342 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4343 -- Called to mark a type as static, checking that it is possible
4344 -- to set the type as static. If it is not possible, then the
4345 -- exception Cannot_Be_Static is raised.
4346
4347 -----------------------------
4348 -- Ensure_Expression_Is_SA --
4349 -----------------------------
4350
4351 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4352 Ent : Entity_Id;
4353
4354 begin
4355 Ensure_Type_Is_SA (Etype (N));
4356
4357 if Is_Static_Expression (N) then
4358 return;
4359
4360 elsif Nkind (N) = N_Identifier then
4361 Ent := Entity (N);
4362
4363 if Present (Ent)
4364 and then Ekind (Ent) = E_Constant
4365 and then Is_Library_Level_Entity (Ent)
4366 then
4367 return;
4368 end if;
4369 end if;
4370
4371 raise Cannot_Be_Static;
4372 end Ensure_Expression_Is_SA;
4373
4374 -----------------------
4375 -- Ensure_Type_Is_SA --
4376 -----------------------
4377
4378 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4379 N : Node_Id;
4380 C : Entity_Id;
4381
4382 begin
4383 -- If type is library level, we are all set
4384
4385 if Is_Library_Level_Entity (Typ) then
4386 return;
4387 end if;
4388
4389 -- We are also OK if the type is already marked as statically
4390 -- allocated, which means we processed it before.
4391
4392 if Is_Statically_Allocated (Typ) then
4393 return;
4394 end if;
4395
4396 -- Mark type as statically allocated
4397
4398 Set_Is_Statically_Allocated (Typ);
4399
4400 -- Check that it is safe to statically allocate this type
4401
4402 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4403 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4404 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4405
4406 elsif Is_Array_Type (Typ) then
4407 N := First_Index (Typ);
4408 while Present (N) loop
4409 Ensure_Type_Is_SA (Etype (N));
4410 Next_Index (N);
4411 end loop;
4412
4413 Ensure_Type_Is_SA (Component_Type (Typ));
4414
4415 elsif Is_Access_Type (Typ) then
4416 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4417
4418 declare
4419 F : Entity_Id;
4420 T : constant Entity_Id := Etype (Designated_Type (Typ));
4421
4422 begin
4423 if T /= Standard_Void_Type then
4424 Ensure_Type_Is_SA (T);
4425 end if;
4426
4427 F := First_Formal (Designated_Type (Typ));
4428
4429 while Present (F) loop
4430 Ensure_Type_Is_SA (Etype (F));
4431 Next_Formal (F);
4432 end loop;
4433 end;
4434
4435 else
4436 Ensure_Type_Is_SA (Designated_Type (Typ));
4437 end if;
4438
4439 elsif Is_Record_Type (Typ) then
4440 C := First_Entity (Typ);
4441
4442 while Present (C) loop
4443 if Ekind (C) = E_Discriminant
4444 or else Ekind (C) = E_Component
4445 then
4446 Ensure_Type_Is_SA (Etype (C));
4447
4448 elsif Is_Type (C) then
4449 Ensure_Type_Is_SA (C);
4450 end if;
4451
4452 Next_Entity (C);
4453 end loop;
4454
4455 elsif Ekind (Typ) = E_Subprogram_Type then
4456 Ensure_Type_Is_SA (Etype (Typ));
4457
4458 C := First_Formal (Typ);
4459 while Present (C) loop
4460 Ensure_Type_Is_SA (Etype (C));
4461 Next_Formal (C);
4462 end loop;
4463
4464 else
4465 raise Cannot_Be_Static;
4466 end if;
4467 end Ensure_Type_Is_SA;
4468
4469 -- Start of processing for Freeze_Static_Object
4470
4471 begin
4472 Ensure_Type_Is_SA (Etype (E));
4473
edd63e9b
ES
4474 -- Reset True_Constant flag, since something strange is going on with
4475 -- the scoping here, and our simple value tracing may not be sufficient
4476 -- for this indication to be reliable. We kill the Constant_Value
4477 -- indication for the same reason.
fbf5a39b
AC
4478
4479 Set_Is_True_Constant (E, False);
4480 Set_Current_Value (E, Empty);
4481
70482933
RK
4482 exception
4483 when Cannot_Be_Static =>
4484
4485 -- If the object that cannot be static is imported or exported,
4486 -- then we give an error message saying that this object cannot
4487 -- be imported or exported.
4488
4489 if Is_Imported (E) then
4490 Error_Msg_N
4491 ("& cannot be imported (local type is not constant)", E);
4492
4493 -- Otherwise must be exported, something is wrong if compiler
4494 -- is marking something as statically allocated which cannot be).
4495
4496 else pragma Assert (Is_Exported (E));
4497 Error_Msg_N
4498 ("& cannot be exported (local type is not constant)", E);
4499 end if;
4500 end Freeze_Static_Object;
4501
4502 -----------------------
4503 -- Freeze_Subprogram --
4504 -----------------------
4505
4506 procedure Freeze_Subprogram (E : Entity_Id) is
4507 Retype : Entity_Id;
4508 F : Entity_Id;
4509
4510 begin
4511 -- Subprogram may not have an address clause unless it is imported
4512
4513 if Present (Address_Clause (E)) then
4514 if not Is_Imported (E) then
4515 Error_Msg_N
4516 ("address clause can only be given " &
4517 "for imported subprogram",
4518 Name (Address_Clause (E)));
4519 end if;
4520 end if;
4521
91b1417d
AC
4522 -- Reset the Pure indication on an imported subprogram unless an
4523 -- explicit Pure_Function pragma was present. We do this because
4524 -- otherwise it is an insidious error to call a non-pure function
edd63e9b
ES
4525 -- from pure unit and have calls mysteriously optimized away. What
4526 -- happens here is that the Import can bypass the normal check to
4527 -- ensure that pure units call only pure subprograms.
91b1417d
AC
4528
4529 if Is_Imported (E)
4530 and then Is_Pure (E)
4531 and then not Has_Pragma_Pure_Function (E)
4532 then
4533 Set_Is_Pure (E, False);
4534 end if;
4535
70482933
RK
4536 -- For non-foreign convention subprograms, this is where we create
4537 -- the extra formals (for accessibility level and constrained bit
4538 -- information). We delay this till the freeze point precisely so
4539 -- that we know the convention!
4540
4541 if not Has_Foreign_Convention (E) then
4542 Create_Extra_Formals (E);
4543 Set_Mechanisms (E);
4544
4545 -- If this is convention Ada and a Valued_Procedure, that's odd
4546
4547 if Ekind (E) = E_Procedure
4548 and then Is_Valued_Procedure (E)
4549 and then Convention (E) = Convention_Ada
fbf5a39b 4550 and then Warn_On_Export_Import
70482933
RK
4551 then
4552 Error_Msg_N
4553 ("?Valued_Procedure has no effect for convention Ada", E);
4554 Set_Is_Valued_Procedure (E, False);
4555 end if;
4556
4557 -- Case of foreign convention
4558
4559 else
4560 Set_Mechanisms (E);
4561
fbf5a39b 4562 -- For foreign conventions, warn about return of an
70482933
RK
4563 -- unconstrained array.
4564
4565 -- Note: we *do* allow a return by descriptor for the VMS case,
4566 -- though here there is probably more to be done ???
4567
4568 if Ekind (E) = E_Function then
4569 Retype := Underlying_Type (Etype (E));
4570
4571 -- If no return type, probably some other error, e.g. a
4572 -- missing full declaration, so ignore.
4573
4574 if No (Retype) then
4575 null;
4576
4577 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
4578 -- earlier on, and there is nothing else to check here. Specific
4579 -- instantiations may lead to erroneous behavior.
70482933
RK
4580
4581 elsif Is_Generic_Type (Etype (E)) then
4582 null;
4583
4584 elsif Is_Array_Type (Retype)
4585 and then not Is_Constrained (Retype)
4586 and then Mechanism (E) not in Descriptor_Codes
fbf5a39b 4587 and then Warn_On_Export_Import
70482933 4588 then
fbf5a39b
AC
4589 Error_Msg_N
4590 ("?foreign convention function& should not return " &
4591 "unconstrained array", E);
70482933
RK
4592 return;
4593 end if;
4594 end if;
4595
4596 -- If any of the formals for an exported foreign convention
edd63e9b
ES
4597 -- subprogram have defaults, then emit an appropriate warning since
4598 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
4599
4600 if Is_Exported (E) then
4601 F := First_Formal (E);
4602 while Present (F) loop
fbf5a39b
AC
4603 if Warn_On_Export_Import
4604 and then Present (Default_Value (F))
4605 then
70482933
RK
4606 Error_Msg_N
4607 ("?parameter cannot be defaulted in non-Ada call",
4608 Default_Value (F));
4609 end if;
4610
4611 Next_Formal (F);
4612 end loop;
4613 end if;
4614 end if;
4615
4616 -- For VMS, descriptor mechanisms for parameters are allowed only
4617 -- for imported subprograms.
4618
4619 if OpenVMS_On_Target then
4620 if not Is_Imported (E) then
4621 F := First_Formal (E);
4622 while Present (F) loop
4623 if Mechanism (F) in Descriptor_Codes then
4624 Error_Msg_N
4625 ("descriptor mechanism for parameter not permitted", F);
4626 Error_Msg_N
4627 ("\can only be used for imported subprogram", F);
4628 end if;
4629
4630 Next_Formal (F);
4631 end loop;
4632 end if;
4633 end if;
edd63e9b
ES
4634
4635 -- Pragma Inline_Always is disallowed for dispatching subprograms
4636 -- because the address of such subprograms is saved in the dispatch
4637 -- table to support dispatching calls, and dispatching calls cannot
4638 -- be inlined. This is consistent with the restriction against using
4639 -- 'Access or 'Address on an Inline_Always subprogram.
4640
4641 if Is_Dispatching_Operation (E) and then Is_Always_Inlined (E) then
4642 Error_Msg_N
4643 ("pragma Inline_Always not allowed for dispatching subprograms", E);
4644 end if;
70482933
RK
4645 end Freeze_Subprogram;
4646
15ce9ca2
AC
4647 ----------------------
4648 -- Is_Fully_Defined --
4649 ----------------------
70482933 4650
70482933
RK
4651 function Is_Fully_Defined (T : Entity_Id) return Boolean is
4652 begin
4653 if Ekind (T) = E_Class_Wide_Type then
4654 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
4655
4656 elsif Is_Array_Type (T) then
4657 return Is_Fully_Defined (Component_Type (T));
4658
4659 elsif Is_Record_Type (T)
4660 and not Is_Private_Type (T)
4661 then
657a9dd9
AC
4662 -- Verify that the record type has no components with
4663 -- private types without completion.
4664
4665 declare
4666 Comp : Entity_Id;
bde58e32 4667
657a9dd9
AC
4668 begin
4669 Comp := First_Component (T);
4670
4671 while Present (Comp) loop
4672 if not Is_Fully_Defined (Etype (Comp)) then
4673 return False;
4674 end if;
4675
4676 Next_Component (Comp);
4677 end loop;
4678 return True;
4679 end;
4680
4681 else return not Is_Private_Type (T)
4682 or else Present (Full_View (Base_Type (T)));
70482933
RK
4683 end if;
4684 end Is_Fully_Defined;
4685
4686 ---------------------------------
4687 -- Process_Default_Expressions --
4688 ---------------------------------
4689
4690 procedure Process_Default_Expressions
4691 (E : Entity_Id;
4692 After : in out Node_Id)
4693 is
4694 Loc : constant Source_Ptr := Sloc (E);
4695 Dbody : Node_Id;
4696 Formal : Node_Id;
4697 Dcopy : Node_Id;
4698 Dnam : Entity_Id;
4699
4700 begin
4701 Set_Default_Expressions_Processed (E);
4702
4703 -- A subprogram instance and its associated anonymous subprogram
4704 -- share their signature. The default expression functions are defined
4705 -- in the wrapper packages for the anonymous subprogram, and should
4706 -- not be generated again for the instance.
4707
4708 if Is_Generic_Instance (E)
4709 and then Present (Alias (E))
4710 and then Default_Expressions_Processed (Alias (E))
4711 then
4712 return;
4713 end if;
4714
4715 Formal := First_Formal (E);
4716
4717 while Present (Formal) loop
4718 if Present (Default_Value (Formal)) then
4719
4720 -- We work with a copy of the default expression because we
4721 -- do not want to disturb the original, since this would mess
4722 -- up the conformance checking.
4723
4724 Dcopy := New_Copy_Tree (Default_Value (Formal));
4725
4726 -- The analysis of the expression may generate insert actions,
4727 -- which of course must not be executed. We wrap those actions
4728 -- in a procedure that is not called, and later on eliminated.
4729 -- The following cases have no side-effects, and are analyzed
4730 -- directly.
4731
4732 if Nkind (Dcopy) = N_Identifier
4733 or else Nkind (Dcopy) = N_Expanded_Name
4734 or else Nkind (Dcopy) = N_Integer_Literal
4735 or else (Nkind (Dcopy) = N_Real_Literal
4736 and then not Vax_Float (Etype (Dcopy)))
4737 or else Nkind (Dcopy) = N_Character_Literal
4738 or else Nkind (Dcopy) = N_String_Literal
4739 or else Nkind (Dcopy) = N_Null
4740 or else (Nkind (Dcopy) = N_Attribute_Reference
4741 and then
4742 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
4743 then
4744
4745 -- If there is no default function, we must still do a full
4746 -- analyze call on the default value, to ensure that all
4747 -- error checks are performed, e.g. those associated with
4748 -- static evaluation. Note that this branch will always be
4749 -- taken if the analyzer is turned off (but we still need the
4750 -- error checks).
4751
4752 -- Note: the setting of parent here is to meet the requirement
4753 -- that we can only analyze the expression while attached to
4754 -- the tree. Really the requirement is that the parent chain
4755 -- be set, we don't actually need to be in the tree.
4756
4757 Set_Parent (Dcopy, Declaration_Node (Formal));
4758 Analyze (Dcopy);
4759
4760 -- Default expressions are resolved with their own type if the
4761 -- context is generic, to avoid anomalies with private types.
4762
4763 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 4764 Resolve (Dcopy);
70482933
RK
4765 else
4766 Resolve (Dcopy, Etype (Formal));
4767 end if;
4768
4769 -- If that resolved expression will raise constraint error,
4770 -- then flag the default value as raising constraint error.
4771 -- This allows a proper error message on the calls.
4772
4773 if Raises_Constraint_Error (Dcopy) then
4774 Set_Raises_Constraint_Error (Default_Value (Formal));
4775 end if;
4776
4777 -- If the default is a parameterless call, we use the name of
4778 -- the called function directly, and there is no body to build.
4779
4780 elsif Nkind (Dcopy) = N_Function_Call
4781 and then No (Parameter_Associations (Dcopy))
4782 then
4783 null;
4784
4785 -- Else construct and analyze the body of a wrapper procedure
4786 -- that contains an object declaration to hold the expression.
4787 -- Given that this is done only to complete the analysis, it
4788 -- simpler to build a procedure than a function which might
4789 -- involve secondary stack expansion.
4790
4791 else
4792 Dnam :=
4793 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
4794
4795 Dbody :=
4796 Make_Subprogram_Body (Loc,
4797 Specification =>
4798 Make_Procedure_Specification (Loc,
4799 Defining_Unit_Name => Dnam),
4800
4801 Declarations => New_List (
4802 Make_Object_Declaration (Loc,
4803 Defining_Identifier =>
4804 Make_Defining_Identifier (Loc,
4805 New_Internal_Name ('T')),
4806 Object_Definition =>
4807 New_Occurrence_Of (Etype (Formal), Loc),
4808 Expression => New_Copy_Tree (Dcopy))),
4809
4810 Handled_Statement_Sequence =>
4811 Make_Handled_Sequence_Of_Statements (Loc,
4812 Statements => New_List));
4813
4814 Set_Scope (Dnam, Scope (E));
4815 Set_Assignment_OK (First (Declarations (Dbody)));
4816 Set_Is_Eliminated (Dnam);
4817 Insert_After (After, Dbody);
4818 Analyze (Dbody);
4819 After := Dbody;
4820 end if;
4821 end if;
4822
4823 Next_Formal (Formal);
4824 end loop;
4825
4826 end Process_Default_Expressions;
4827
4828 ----------------------------------------
4829 -- Set_Component_Alignment_If_Not_Set --
4830 ----------------------------------------
4831
4832 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
4833 begin
4834 -- Ignore if not base type, subtypes don't need anything
4835
4836 if Typ /= Base_Type (Typ) then
4837 return;
4838 end if;
4839
4840 -- Do not override existing representation
4841
4842 if Is_Packed (Typ) then
4843 return;
4844
4845 elsif Has_Specified_Layout (Typ) then
4846 return;
4847
4848 elsif Component_Alignment (Typ) /= Calign_Default then
4849 return;
4850
4851 else
4852 Set_Component_Alignment
4853 (Typ, Scope_Stack.Table
4854 (Scope_Stack.Last).Component_Alignment_Default);
4855 end if;
4856 end Set_Component_Alignment_If_Not_Set;
4857
4858 ---------------------------
4859 -- Set_Debug_Info_Needed --
4860 ---------------------------
4861
4862 procedure Set_Debug_Info_Needed (T : Entity_Id) is
4863 begin
4864 if No (T)
4865 or else Needs_Debug_Info (T)
4866 or else Debug_Info_Off (T)
4867 then
4868 return;
4869 else
4870 Set_Needs_Debug_Info (T);
4871 end if;
4872
4873 if Is_Object (T) then
4874 Set_Debug_Info_Needed (Etype (T));
4875
4876 elsif Is_Type (T) then
4877 Set_Debug_Info_Needed (Etype (T));
4878
4879 if Is_Record_Type (T) then
4880 declare
4881 Ent : Entity_Id := First_Entity (T);
4882 begin
4883 while Present (Ent) loop
4884 Set_Debug_Info_Needed (Ent);
4885 Next_Entity (Ent);
4886 end loop;
4887 end;
4888
4889 elsif Is_Array_Type (T) then
4890 Set_Debug_Info_Needed (Component_Type (T));
4891
4892 declare
4893 Indx : Node_Id := First_Index (T);
4894 begin
4895 while Present (Indx) loop
4896 Set_Debug_Info_Needed (Etype (Indx));
4897 Indx := Next_Index (Indx);
4898 end loop;
4899 end;
4900
4901 if Is_Packed (T) then
4902 Set_Debug_Info_Needed (Packed_Array_Type (T));
4903 end if;
4904
4905 elsif Is_Access_Type (T) then
4906 Set_Debug_Info_Needed (Directly_Designated_Type (T));
4907
4908 elsif Is_Private_Type (T) then
4909 Set_Debug_Info_Needed (Full_View (T));
4910
4911 elsif Is_Protected_Type (T) then
4912 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
4913 end if;
4914 end if;
70482933
RK
4915 end Set_Debug_Info_Needed;
4916
c6823a20
EB
4917 ------------------
4918 -- Undelay_Type --
4919 ------------------
4920
4921 procedure Undelay_Type (T : Entity_Id) is
4922 begin
4923 Set_Has_Delayed_Freeze (T, False);
4924 Set_Freeze_Node (T, Empty);
4925
4926 -- Since we don't want T to have a Freeze_Node, we don't want its
4927 -- Full_View or Corresponding_Record_Type to have one either.
4928
4929 -- ??? Fundamentally, this whole handling is a kludge. What we really
4930 -- want is to be sure that for an Itype that's part of record R and is
4931 -- a subtype of type T, that it's frozen after the later of the freeze
4932 -- points of R and T. We have no way of doing that directly, so what we
4933 -- do is force most such Itypes to be frozen as part of freezing R via
4934 -- this procedure and only delay the ones that need to be delayed
4935 -- (mostly the designated types of access types that are defined as
4936 -- part of the record).
4937
4938 if Is_Private_Type (T)
4939 and then Present (Full_View (T))
4940 and then Is_Itype (Full_View (T))
4941 and then Is_Record_Type (Scope (Full_View (T)))
4942 then
4943 Undelay_Type (Full_View (T));
4944 end if;
4945
4946 if Is_Concurrent_Type (T)
4947 and then Present (Corresponding_Record_Type (T))
4948 and then Is_Itype (Corresponding_Record_Type (T))
4949 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
4950 then
4951 Undelay_Type (Corresponding_Record_Type (T));
4952 end if;
4953 end Undelay_Type;
4954
fbf5a39b
AC
4955 ------------------
4956 -- Warn_Overlay --
4957 ------------------
4958
4959 procedure Warn_Overlay
4960 (Expr : Node_Id;
4961 Typ : Entity_Id;
4962 Nam : Entity_Id)
4963 is
4964 Ent : constant Entity_Id := Entity (Nam);
49e90211 4965 -- The object to which the address clause applies
fbf5a39b
AC
4966
4967 Init : Node_Id;
4968 Old : Entity_Id := Empty;
4969 Decl : Node_Id;
4970
4971 begin
4972 -- No warning if address clause overlay warnings are off
4973
4974 if not Address_Clause_Overlay_Warnings then
4975 return;
4976 end if;
4977
4978 -- No warning if there is an explicit initialization
4979
4980 Init := Original_Node (Expression (Declaration_Node (Ent)));
4981
4982 if Present (Init) and then Comes_From_Source (Init) then
4983 return;
4984 end if;
4985
edd63e9b
ES
4986 -- We only give the warning for non-imported entities of a type for
4987 -- which a non-null base init proc is defined (or for access types which
4988 -- have implicit null initialization).
fbf5a39b
AC
4989
4990 if Present (Expr)
4991 and then (Has_Non_Null_Base_Init_Proc (Typ)
4992 or else Is_Access_Type (Typ))
4993 and then not Is_Imported (Ent)
4994 then
4995 if Nkind (Expr) = N_Attribute_Reference
4996 and then Is_Entity_Name (Prefix (Expr))
4997 then
4998 Old := Entity (Prefix (Expr));
4999
5000 elsif Is_Entity_Name (Expr)
5001 and then Ekind (Entity (Expr)) = E_Constant
5002 then
5003 Decl := Declaration_Node (Entity (Expr));
5004
5005 if Nkind (Decl) = N_Object_Declaration
5006 and then Present (Expression (Decl))
5007 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5008 and then Is_Entity_Name (Prefix (Expression (Decl)))
5009 then
5010 Old := Entity (Prefix (Expression (Decl)));
5011
5012 elsif Nkind (Expr) = N_Function_Call then
5013 return;
5014 end if;
5015
5016 -- A function call (most likely to To_Address) is probably not
5017 -- an overlay, so skip warning. Ditto if the function call was
5018 -- inlined and transformed into an entity.
5019
5020 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5021 return;
5022 end if;
5023
5024 Decl := Next (Parent (Expr));
5025
5026 -- If a pragma Import follows, we assume that it is for the current
5027 -- target of the address clause, and skip the warning.
5028
5029 if Present (Decl)
5030 and then Nkind (Decl) = N_Pragma
5031 and then Chars (Decl) = Name_Import
5032 then
5033 return;
5034 end if;
5035
5036 if Present (Old) then
5037 Error_Msg_Node_2 := Old;
5038 Error_Msg_N
5039 ("default initialization of & may modify &?",
5040 Nam);
5041 else
5042 Error_Msg_N
5043 ("default initialization of & may modify overlaid storage?",
5044 Nam);
5045 end if;
5046
5047 -- Add friendly warning if initialization comes from a packed array
5048 -- component.
5049
5050 if Is_Record_Type (Typ) then
5051 declare
5052 Comp : Entity_Id;
5053
5054 begin
5055 Comp := First_Component (Typ);
5056
5057 while Present (Comp) loop
5058 if Nkind (Parent (Comp)) = N_Component_Declaration
5059 and then Present (Expression (Parent (Comp)))
5060 then
5061 exit;
5062 elsif Is_Array_Type (Etype (Comp))
5063 and then Present (Packed_Array_Type (Etype (Comp)))
5064 then
5065 Error_Msg_NE
5066 ("packed array component& will be initialized to zero?",
5067 Nam, Comp);
5068 exit;
5069 else
5070 Next_Component (Comp);
5071 end if;
5072 end loop;
5073 end;
5074 end if;
5075
5076 Error_Msg_N
5077 ("use pragma Import for & to " &
5078 "suppress initialization ('R'M B.1(24))?",
5079 Nam);
5080 end if;
5081 end Warn_Overlay;
5082
70482933 5083end Freeze;