]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
ed2233dc 9-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
748086b7
JJ
16-- or FITNESS FOR A PARTICULAR PURPOSE. --
17-- --
18-- You should have received a copy of the GNU General Public License along --
19-- with this program; see file COPYING3. If not see --
20-- <http://www.gnu.org/licenses/>. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
ca0cb93e 39with Lib; use Lib;
7d8b9c99 40with Namet; use Namet;
70482933
RK
41with Nlists; use Nlists;
42with Nmake; use Nmake;
43with Opt; use Opt;
44with Restrict; use Restrict;
6e937c1c 45with Rident; use Rident;
70482933 46with Sem; use Sem;
a4100e55 47with Sem_Aux; use Sem_Aux;
70482933
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch6; use Sem_Ch6;
50with Sem_Ch7; use Sem_Ch7;
51with Sem_Ch8; use Sem_Ch8;
52with Sem_Ch13; use Sem_Ch13;
53with Sem_Eval; use Sem_Eval;
54with Sem_Mech; use Sem_Mech;
55with Sem_Prag; use Sem_Prag;
56with Sem_Res; use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Sinfo; use Sinfo;
59with Snames; use Snames;
60with Stand; use Stand;
61with Targparm; use Targparm;
62with Tbuild; use Tbuild;
63with Ttypes; use Ttypes;
64with Uintp; use Uintp;
65with Urealp; use Urealp;
66
67package body Freeze is
68
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
72
73 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
74 -- Typ is a type that is being frozen. If no size clause is given,
75 -- but a default Esize has been computed, then this default Esize is
76 -- adjusted up if necessary to be consistent with a given alignment,
77 -- but never to a value greater than Long_Long_Integer'Size. This
78 -- is used for all discrete types and for fixed-point types.
79
80 procedure Build_And_Analyze_Renamed_Body
81 (Decl : Node_Id;
82 New_S : Entity_Id;
83 After : in out Node_Id);
49e90211 84 -- Build body for a renaming declaration, insert in tree and analyze
70482933 85
fbf5a39b
AC
86 procedure Check_Address_Clause (E : Entity_Id);
87 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 88 -- at the point the object is frozen.
fbf5a39b 89
70482933
RK
90 procedure Check_Strict_Alignment (E : Entity_Id);
91 -- E is a base type. If E is tagged or has a component that is aliased
92 -- or tagged or contains something this is aliased or tagged, set
93 -- Strict_Alignment.
94
95 procedure Check_Unsigned_Type (E : Entity_Id);
96 pragma Inline (Check_Unsigned_Type);
97 -- If E is a fixed-point or discrete type, then all the necessary work
98 -- to freeze it is completed except for possible setting of the flag
99 -- Is_Unsigned_Type, which is done by this procedure. The call has no
100 -- effect if the entity E is not a discrete or fixed-point type.
101
102 procedure Freeze_And_Append
103 (Ent : Entity_Id;
104 Loc : Source_Ptr;
105 Result : in out List_Id);
106 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
107 -- nodes to Result, modifying Result from No_List if necessary.
108
109 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
110 -- Freeze enumeration type. The Esize field is set as processing
111 -- proceeds (i.e. set by default when the type is declared and then
112 -- adjusted by rep clauses. What this procedure does is to make sure
113 -- that if a foreign convention is specified, and no specific size
114 -- is given, then the size must be at least Integer'Size.
115
70482933
RK
116 procedure Freeze_Static_Object (E : Entity_Id);
117 -- If an object is frozen which has Is_Statically_Allocated set, then
118 -- all referenced types must also be marked with this flag. This routine
119 -- is in charge of meeting this requirement for the object entity E.
120
121 procedure Freeze_Subprogram (E : Entity_Id);
122 -- Perform freezing actions for a subprogram (create extra formals,
123 -- and set proper default mechanism values). Note that this routine
124 -- is not called for internal subprograms, for which neither of these
125 -- actions is needed (or desirable, we do not want for example to have
126 -- these extra formals present in initialization procedures, where they
127 -- would serve no purpose). In this call E is either a subprogram or
128 -- a subprogram type (i.e. an access to a subprogram).
129
130 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 131 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
132 -- view. Used to determine whether the designated type of an access type
133 -- should be frozen when the access type is frozen. This is done when an
134 -- allocator is frozen, or an expression that may involve attributes of
135 -- the designated type. Otherwise freezing the access type does not freeze
136 -- the designated type.
70482933
RK
137
138 procedure Process_Default_Expressions
139 (E : Entity_Id;
140 After : in out Node_Id);
141 -- This procedure is called for each subprogram to complete processing
142 -- of default expressions at the point where all types are known to be
143 -- frozen. The expressions must be analyzed in full, to make sure that
144 -- all error processing is done (they have only been pre-analyzed). If
145 -- the expression is not an entity or literal, its analysis may generate
146 -- code which must not be executed. In that case we build a function
147 -- body to hold that code. This wrapper function serves no other purpose
148 -- (it used to be called to evaluate the default, but now the default is
149 -- inlined at each point of call).
150
151 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
152 -- Typ is a record or array type that is being frozen. This routine
153 -- sets the default component alignment from the scope stack values
154 -- if the alignment is otherwise not specified.
155
156 procedure Check_Debug_Info_Needed (T : Entity_Id);
157 -- As each entity is frozen, this routine is called to deal with the
158 -- setting of Debug_Info_Needed for the entity. This flag is set if
159 -- the entity comes from source, or if we are in Debug_Generated_Code
160 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
161 -- the flag if Debug_Info_Off is set. This procedure also ensures that
162 -- subsidiary entities have the flag set as required.
70482933 163
c6823a20
EB
164 procedure Undelay_Type (T : Entity_Id);
165 -- T is a type of a component that we know to be an Itype.
166 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
167 -- Do the same for any Full_View or Corresponding_Record_Type.
168
fbf5a39b
AC
169 procedure Warn_Overlay
170 (Expr : Node_Id;
171 Typ : Entity_Id;
172 Nam : Node_Id);
173 -- Expr is the expression for an address clause for entity Nam whose type
174 -- is Typ. If Typ has a default initialization, and there is no explicit
175 -- initialization in the source declaration, check whether the address
176 -- clause might cause overlaying of an entity, and emit a warning on the
177 -- side effect that the initialization will cause.
178
70482933
RK
179 -------------------------------
180 -- Adjust_Esize_For_Alignment --
181 -------------------------------
182
183 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
184 Align : Uint;
185
186 begin
187 if Known_Esize (Typ) and then Known_Alignment (Typ) then
188 Align := Alignment_In_Bits (Typ);
189
190 if Align > Esize (Typ)
191 and then Align <= Standard_Long_Long_Integer_Size
192 then
193 Set_Esize (Typ, Align);
194 end if;
195 end if;
196 end Adjust_Esize_For_Alignment;
197
198 ------------------------------------
199 -- Build_And_Analyze_Renamed_Body --
200 ------------------------------------
201
202 procedure Build_And_Analyze_Renamed_Body
203 (Decl : Node_Id;
204 New_S : Entity_Id;
205 After : in out Node_Id)
206 is
ca0cb93e
AC
207 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
208 Ent : constant Entity_Id := Defining_Entity (Decl);
209 Body_Node : Node_Id;
210 Renamed_Subp : Entity_Id;
d4fc0fb4 211
70482933 212 begin
1c612f29
RD
213 -- If the renamed subprogram is intrinsic, there is no need for a
214 -- wrapper body: we set the alias that will be called and expanded which
215 -- completes the declaration. This transformation is only legal if the
216 -- renamed entity has already been elaborated.
ca0cb93e 217
d4fc0fb4
AC
218 -- Note that it is legal for a renaming_as_body to rename an intrinsic
219 -- subprogram, as long as the renaming occurs before the new entity
220 -- is frozen. See RM 8.5.4 (5).
221
222 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
545cb5be 223 and then Is_Entity_Name (Name (Body_Decl))
d4fc0fb4 224 then
ca0cb93e
AC
225 Renamed_Subp := Entity (Name (Body_Decl));
226 else
227 Renamed_Subp := Empty;
228 end if;
229
230 if Present (Renamed_Subp)
231 and then Is_Intrinsic_Subprogram (Renamed_Subp)
ca0cb93e
AC
232 and then
233 (not In_Same_Source_Unit (Renamed_Subp, Ent)
234 or else Sloc (Renamed_Subp) < Sloc (Ent))
879e23f0 235
545cb5be
AC
236 -- We can make the renaming entity intrisic if the renamed function
237 -- has an interface name, or if it is one of the shift/rotate
238 -- operations known to the compiler.
879e23f0 239
545cb5be
AC
240 and then (Present (Interface_Name (Renamed_Subp))
241 or else Chars (Renamed_Subp) = Name_Rotate_Left
242 or else Chars (Renamed_Subp) = Name_Rotate_Right
243 or else Chars (Renamed_Subp) = Name_Shift_Left
244 or else Chars (Renamed_Subp) = Name_Shift_Right
245 or else Chars (Renamed_Subp) = Name_Shift_Right_Arithmetic)
ca0cb93e
AC
246 then
247 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
545cb5be 248
ca0cb93e
AC
249 if Present (Alias (Renamed_Subp)) then
250 Set_Alias (Ent, Alias (Renamed_Subp));
d4fc0fb4 251 else
ca0cb93e 252 Set_Alias (Ent, Renamed_Subp);
d4fc0fb4
AC
253 end if;
254
255 Set_Is_Intrinsic_Subprogram (Ent);
256 Set_Has_Completion (Ent);
257
258 else
259 Body_Node := Build_Renamed_Body (Decl, New_S);
260 Insert_After (After, Body_Node);
261 Mark_Rewrite_Insertion (Body_Node);
262 Analyze (Body_Node);
263 After := Body_Node;
264 end if;
70482933
RK
265 end Build_And_Analyze_Renamed_Body;
266
267 ------------------------
268 -- Build_Renamed_Body --
269 ------------------------
270
271 function Build_Renamed_Body
272 (Decl : Node_Id;
fbf5a39b 273 New_S : Entity_Id) return Node_Id
70482933
RK
274 is
275 Loc : constant Source_Ptr := Sloc (New_S);
545cb5be
AC
276 -- We use for the source location of the renamed body, the location of
277 -- the spec entity. It might seem more natural to use the location of
278 -- the renaming declaration itself, but that would be wrong, since then
279 -- the body we create would look as though it was created far too late,
280 -- and this could cause problems with elaboration order analysis,
281 -- particularly in connection with instantiations.
70482933
RK
282
283 N : constant Node_Id := Unit_Declaration_Node (New_S);
284 Nam : constant Node_Id := Name (N);
285 Old_S : Entity_Id;
286 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
287 Actuals : List_Id := No_List;
288 Call_Node : Node_Id;
289 Call_Name : Node_Id;
290 Body_Node : Node_Id;
291 Formal : Entity_Id;
292 O_Formal : Entity_Id;
293 Param_Spec : Node_Id;
294
def46b54
RD
295 Pref : Node_Id := Empty;
296 -- If the renamed entity is a primitive operation given in prefix form,
297 -- the prefix is the target object and it has to be added as the first
298 -- actual in the generated call.
299
70482933 300 begin
def46b54
RD
301 -- Determine the entity being renamed, which is the target of the call
302 -- statement. If the name is an explicit dereference, this is a renaming
303 -- of a subprogram type rather than a subprogram. The name itself is
304 -- fully analyzed.
70482933
RK
305
306 if Nkind (Nam) = N_Selected_Component then
307 Old_S := Entity (Selector_Name (Nam));
308
309 elsif Nkind (Nam) = N_Explicit_Dereference then
310 Old_S := Etype (Nam);
311
312 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
313 if Is_Entity_Name (Prefix (Nam)) then
314 Old_S := Entity (Prefix (Nam));
315 else
316 Old_S := Entity (Selector_Name (Prefix (Nam)));
317 end if;
318
319 elsif Nkind (Nam) = N_Character_Literal then
320 Old_S := Etype (New_S);
321
322 else
323 Old_S := Entity (Nam);
324 end if;
325
326 if Is_Entity_Name (Nam) then
07fc65c4 327
def46b54
RD
328 -- If the renamed entity is a predefined operator, retain full name
329 -- to ensure its visibility.
07fc65c4
GB
330
331 if Ekind (Old_S) = E_Operator
332 and then Nkind (Nam) = N_Expanded_Name
333 then
334 Call_Name := New_Copy (Name (N));
335 else
336 Call_Name := New_Reference_To (Old_S, Loc);
337 end if;
338
70482933 339 else
def46b54
RD
340 if Nkind (Nam) = N_Selected_Component
341 and then Present (First_Formal (Old_S))
342 and then
343 (Is_Controlling_Formal (First_Formal (Old_S))
344 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
345 then
346
347 -- Retrieve the target object, to be added as a first actual
348 -- in the call.
349
350 Call_Name := New_Occurrence_Of (Old_S, Loc);
351 Pref := Prefix (Nam);
352
353 else
354 Call_Name := New_Copy (Name (N));
355 end if;
70482933 356
545cb5be 357 -- Original name may have been overloaded, but is fully resolved now
70482933
RK
358
359 Set_Is_Overloaded (Call_Name, False);
360 end if;
361
def46b54 362 -- For simple renamings, subsequent calls can be expanded directly as
d4fc0fb4
AC
363 -- calls to the renamed entity. The body must be generated in any case
364 -- for calls that may appear elsewhere.
70482933 365
545cb5be 366 if Ekind_In (Old_S, E_Function, E_Procedure)
70482933
RK
367 and then Nkind (Decl) = N_Subprogram_Declaration
368 then
369 Set_Body_To_Inline (Decl, Old_S);
370 end if;
371
372 -- The body generated for this renaming is an internal artifact, and
373 -- does not constitute a freeze point for the called entity.
374
375 Set_Must_Not_Freeze (Call_Name);
376
377 Formal := First_Formal (Defining_Entity (Decl));
378
def46b54
RD
379 if Present (Pref) then
380 declare
381 Pref_Type : constant Entity_Id := Etype (Pref);
382 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
383
384 begin
def46b54 385 -- The controlling formal may be an access parameter, or the
e14c931f 386 -- actual may be an access value, so adjust accordingly.
def46b54
RD
387
388 if Is_Access_Type (Pref_Type)
389 and then not Is_Access_Type (Form_Type)
390 then
391 Actuals := New_List
392 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
393
394 elsif Is_Access_Type (Form_Type)
395 and then not Is_Access_Type (Pref)
396 then
397 Actuals := New_List
398 (Make_Attribute_Reference (Loc,
399 Attribute_Name => Name_Access,
400 Prefix => Relocate_Node (Pref)));
401 else
402 Actuals := New_List (Pref);
403 end if;
404 end;
405
406 elsif Present (Formal) then
70482933
RK
407 Actuals := New_List;
408
def46b54
RD
409 else
410 Actuals := No_List;
411 end if;
412
413 if Present (Formal) then
70482933
RK
414 while Present (Formal) loop
415 Append (New_Reference_To (Formal, Loc), Actuals);
416 Next_Formal (Formal);
417 end loop;
418 end if;
419
def46b54
RD
420 -- If the renamed entity is an entry, inherit its profile. For other
421 -- renamings as bodies, both profiles must be subtype conformant, so it
422 -- is not necessary to replace the profile given in the declaration.
423 -- However, default values that are aggregates are rewritten when
424 -- partially analyzed, so we recover the original aggregate to insure
425 -- that subsequent conformity checking works. Similarly, if the default
426 -- expression was constant-folded, recover the original expression.
70482933
RK
427
428 Formal := First_Formal (Defining_Entity (Decl));
429
430 if Present (Formal) then
431 O_Formal := First_Formal (Old_S);
432 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
433 while Present (Formal) loop
434 if Is_Entry (Old_S) then
70482933
RK
435 if Nkind (Parameter_Type (Param_Spec)) /=
436 N_Access_Definition
437 then
438 Set_Etype (Formal, Etype (O_Formal));
439 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
440 end if;
441
07fc65c4
GB
442 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
443 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
444 Nkind (Default_Value (O_Formal))
445 then
70482933
RK
446 Set_Expression (Param_Spec,
447 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
448 end if;
449
450 Next_Formal (Formal);
451 Next_Formal (O_Formal);
452 Next (Param_Spec);
453 end loop;
454 end if;
455
456 -- If the renamed entity is a function, the generated body contains a
457 -- return statement. Otherwise, build a procedure call. If the entity is
458 -- an entry, subsequent analysis of the call will transform it into the
459 -- proper entry or protected operation call. If the renamed entity is
460 -- a character literal, return it directly.
461
462 if Ekind (Old_S) = E_Function
463 or else Ekind (Old_S) = E_Operator
464 or else (Ekind (Old_S) = E_Subprogram_Type
465 and then Etype (Old_S) /= Standard_Void_Type)
466 then
467 Call_Node :=
86cde7b1 468 Make_Simple_Return_Statement (Loc,
70482933
RK
469 Expression =>
470 Make_Function_Call (Loc,
471 Name => Call_Name,
472 Parameter_Associations => Actuals));
473
474 elsif Ekind (Old_S) = E_Enumeration_Literal then
475 Call_Node :=
86cde7b1 476 Make_Simple_Return_Statement (Loc,
70482933
RK
477 Expression => New_Occurrence_Of (Old_S, Loc));
478
479 elsif Nkind (Nam) = N_Character_Literal then
480 Call_Node :=
86cde7b1 481 Make_Simple_Return_Statement (Loc,
70482933
RK
482 Expression => Call_Name);
483
484 else
485 Call_Node :=
486 Make_Procedure_Call_Statement (Loc,
487 Name => Call_Name,
488 Parameter_Associations => Actuals);
489 end if;
490
49e90211 491 -- Create entities for subprogram body and formals
70482933
RK
492
493 Set_Defining_Unit_Name (Spec,
494 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
495
496 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
497 while Present (Param_Spec) loop
498 Set_Defining_Identifier (Param_Spec,
499 Make_Defining_Identifier (Loc,
500 Chars => Chars (Defining_Identifier (Param_Spec))));
501 Next (Param_Spec);
502 end loop;
503
504 Body_Node :=
505 Make_Subprogram_Body (Loc,
506 Specification => Spec,
507 Declarations => New_List,
508 Handled_Statement_Sequence =>
509 Make_Handled_Sequence_Of_Statements (Loc,
510 Statements => New_List (Call_Node)));
511
512 if Nkind (Decl) /= N_Subprogram_Declaration then
513 Rewrite (N,
514 Make_Subprogram_Declaration (Loc,
515 Specification => Specification (N)));
516 end if;
517
518 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
519 -- the body is analyzed when the renamed entity is frozen, it may
520 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
521
522 if Nkind (N) = N_Subprogram_Renaming_Declaration
523 and then Present (Corresponding_Spec (N))
524 then
525 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
526 else
527 Set_Corresponding_Spec (Body_Node, New_S);
528 end if;
529
530 return Body_Node;
531 end Build_Renamed_Body;
532
fbf5a39b
AC
533 --------------------------
534 -- Check_Address_Clause --
535 --------------------------
536
537 procedure Check_Address_Clause (E : Entity_Id) is
538 Addr : constant Node_Id := Address_Clause (E);
539 Expr : Node_Id;
540 Decl : constant Node_Id := Declaration_Node (E);
541 Typ : constant Entity_Id := Etype (E);
542
543 begin
544 if Present (Addr) then
545 Expr := Expression (Addr);
546
0d901290 547 if Needs_Constant_Address (Decl, Typ) then
fbf5a39b 548 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
549
550 -- Has_Delayed_Freeze was set on E when the address clause was
551 -- analyzed. Reset the flag now unless freeze actions were
552 -- attached to it in the mean time.
553
554 if No (Freeze_Node (E)) then
555 Set_Has_Delayed_Freeze (E, False);
556 end if;
fbf5a39b
AC
557 end if;
558
1d57c04f
AC
559 -- If Rep_Clauses are to be ignored, remove address clause from
560 -- list attached to entity, because it may be illegal for gigi,
561 -- for example by breaking order of elaboration..
562
563 if Ignore_Rep_Clauses then
564 declare
565 Rep : Node_Id;
566
567 begin
568 Rep := First_Rep_Item (E);
569
570 if Rep = Addr then
571 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
572
573 else
574 while Present (Rep)
575 and then Next_Rep_Item (Rep) /= Addr
576 loop
577 Rep := Next_Rep_Item (Rep);
578 end loop;
579 end if;
580
581 if Present (Rep) then
582 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
583 end if;
584 end;
585
586 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
587
588 elsif not Error_Posted (Expr)
048e5cef 589 and then not Needs_Finalization (Typ)
fbf5a39b
AC
590 then
591 Warn_Overlay (Expr, Typ, Name (Addr));
592 end if;
593 end if;
594 end Check_Address_Clause;
595
70482933
RK
596 -----------------------------
597 -- Check_Compile_Time_Size --
598 -----------------------------
599
600 procedure Check_Compile_Time_Size (T : Entity_Id) is
601
c6823a20 602 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 603 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 604 -- field, of T checking for a size clause that was given which attempts
2593c3e1 605 -- to give a smaller size, and also checking for an alignment clause.
70482933
RK
606
607 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 608 -- Recursive function that does all the work
70482933
RK
609
610 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
611 -- If T is a constrained subtype, its size is not known if any of its
612 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 613 -- The test is conservative and doesn't check that the components are
70482933
RK
614 -- in fact constrained by non-static discriminant values. Could be made
615 -- more precise ???
616
617 --------------------
618 -- Set_Small_Size --
619 --------------------
620
c6823a20 621 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
622 begin
623 if S > 32 then
624 return;
625
2593c3e1
AC
626 -- Don't bother if alignment clause with a value other than 1 is
627 -- present, because size may be padded up to meet back end alignment
628 -- requirements, and only the back end knows the rules!
629
630 elsif Known_Alignment (T) and then Alignment (T) /= 1 then
631 return;
632
633 -- Check for bad size clause given
634
70482933
RK
635 elsif Has_Size_Clause (T) then
636 if RM_Size (T) < S then
637 Error_Msg_Uint_1 := S;
638 Error_Msg_NE
d58b9515 639 ("size for& too small, minimum allowed is ^",
70482933
RK
640 Size_Clause (T), T);
641
642 elsif Unknown_Esize (T) then
643 Set_Esize (T, S);
644 end if;
645
646 -- Set sizes if not set already
647
648 else
649 if Unknown_Esize (T) then
650 Set_Esize (T, S);
651 end if;
652
653 if Unknown_RM_Size (T) then
654 Set_RM_Size (T, S);
655 end if;
656 end if;
657 end Set_Small_Size;
658
659 ----------------
660 -- Size_Known --
661 ----------------
662
663 function Size_Known (T : Entity_Id) return Boolean is
664 Index : Entity_Id;
665 Comp : Entity_Id;
666 Ctyp : Entity_Id;
667 Low : Node_Id;
668 High : Node_Id;
669
670 begin
671 if Size_Known_At_Compile_Time (T) then
672 return True;
673
c6a9797e
RD
674 -- Always True for scalar types. This is true even for generic formal
675 -- scalar types. We used to return False in the latter case, but the
676 -- size is known at compile time, even in the template, we just do
677 -- not know the exact size but that's not the point of this routine.
678
70482933
RK
679 elsif Is_Scalar_Type (T)
680 or else Is_Task_Type (T)
681 then
c6a9797e
RD
682 return True;
683
684 -- Array types
70482933
RK
685
686 elsif Is_Array_Type (T) then
c6a9797e
RD
687
688 -- String literals always have known size, and we can set it
689
70482933 690 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
691 Set_Small_Size (T, Component_Size (T)
692 * String_Literal_Length (T));
70482933
RK
693 return True;
694
c6a9797e
RD
695 -- Unconstrained types never have known at compile time size
696
70482933
RK
697 elsif not Is_Constrained (T) then
698 return False;
699
def46b54
RD
700 -- Don't do any recursion on type with error posted, since we may
701 -- have a malformed type that leads us into a loop.
07fc65c4
GB
702
703 elsif Error_Posted (T) then
704 return False;
705
c6a9797e
RD
706 -- Otherwise if component size unknown, then array size unknown
707
70482933
RK
708 elsif not Size_Known (Component_Type (T)) then
709 return False;
710 end if;
711
def46b54
RD
712 -- Check for all indexes static, and also compute possible size
713 -- (in case it is less than 32 and may be packable).
70482933
RK
714
715 declare
716 Esiz : Uint := Component_Size (T);
717 Dim : Uint;
718
719 begin
720 Index := First_Index (T);
70482933
RK
721 while Present (Index) loop
722 if Nkind (Index) = N_Range then
723 Get_Index_Bounds (Index, Low, High);
724
725 elsif Error_Posted (Scalar_Range (Etype (Index))) then
726 return False;
727
728 else
729 Low := Type_Low_Bound (Etype (Index));
730 High := Type_High_Bound (Etype (Index));
731 end if;
732
733 if not Compile_Time_Known_Value (Low)
734 or else not Compile_Time_Known_Value (High)
735 or else Etype (Index) = Any_Type
736 then
737 return False;
738
739 else
740 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
741
742 if Dim >= 0 then
743 Esiz := Esiz * Dim;
744 else
745 Esiz := Uint_0;
746 end if;
747 end if;
748
749 Next_Index (Index);
750 end loop;
751
c6823a20 752 Set_Small_Size (T, Esiz);
70482933
RK
753 return True;
754 end;
755
c6a9797e
RD
756 -- Access types always have known at compile time sizes
757
70482933
RK
758 elsif Is_Access_Type (T) then
759 return True;
760
c6a9797e
RD
761 -- For non-generic private types, go to underlying type if present
762
70482933
RK
763 elsif Is_Private_Type (T)
764 and then not Is_Generic_Type (T)
765 and then Present (Underlying_Type (T))
766 then
def46b54
RD
767 -- Don't do any recursion on type with error posted, since we may
768 -- have a malformed type that leads us into a loop.
07fc65c4
GB
769
770 if Error_Posted (T) then
771 return False;
772 else
773 return Size_Known (Underlying_Type (T));
774 end if;
70482933 775
c6a9797e
RD
776 -- Record types
777
70482933 778 elsif Is_Record_Type (T) then
fbf5a39b
AC
779
780 -- A class-wide type is never considered to have a known size
781
70482933
RK
782 if Is_Class_Wide_Type (T) then
783 return False;
784
fbf5a39b
AC
785 -- A subtype of a variant record must not have non-static
786 -- discriminanted components.
787
788 elsif T /= Base_Type (T)
789 and then not Static_Discriminated_Components (T)
790 then
791 return False;
70482933 792
def46b54
RD
793 -- Don't do any recursion on type with error posted, since we may
794 -- have a malformed type that leads us into a loop.
07fc65c4
GB
795
796 elsif Error_Posted (T) then
797 return False;
fbf5a39b 798 end if;
07fc65c4 799
fbf5a39b 800 -- Now look at the components of the record
70482933 801
fbf5a39b 802 declare
def46b54
RD
803 -- The following two variables are used to keep track of the
804 -- size of packed records if we can tell the size of the packed
805 -- record in the front end. Packed_Size_Known is True if so far
806 -- we can figure out the size. It is initialized to True for a
807 -- packed record, unless the record has discriminants. The
808 -- reason we eliminate the discriminated case is that we don't
809 -- know the way the back end lays out discriminated packed
810 -- records. If Packed_Size_Known is True, then Packed_Size is
811 -- the size in bits so far.
fbf5a39b
AC
812
813 Packed_Size_Known : Boolean :=
814 Is_Packed (T)
815 and then not Has_Discriminants (T);
816
817 Packed_Size : Uint := Uint_0;
818
819 begin
820 -- Test for variant part present
821
822 if Has_Discriminants (T)
823 and then Present (Parent (T))
824 and then Nkind (Parent (T)) = N_Full_Type_Declaration
825 and then Nkind (Type_Definition (Parent (T))) =
545cb5be 826 N_Record_Definition
fbf5a39b
AC
827 and then not Null_Present (Type_Definition (Parent (T)))
828 and then Present (Variant_Part
829 (Component_List (Type_Definition (Parent (T)))))
830 then
831 -- If variant part is present, and type is unconstrained,
832 -- then we must have defaulted discriminants, or a size
833 -- clause must be present for the type, or else the size
834 -- is definitely not known at compile time.
835
836 if not Is_Constrained (T)
837 and then
545cb5be 838 No (Discriminant_Default_Value (First_Discriminant (T)))
fbf5a39b 839 and then Unknown_Esize (T)
70482933 840 then
fbf5a39b
AC
841 return False;
842 end if;
843 end if;
70482933 844
fbf5a39b
AC
845 -- Loop through components
846
fea9e956 847 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 848 while Present (Comp) loop
fea9e956 849 Ctyp := Etype (Comp);
fbf5a39b 850
fea9e956
ES
851 -- We do not know the packed size if there is a component
852 -- clause present (we possibly could, but this would only
853 -- help in the case of a record with partial rep clauses.
854 -- That's because in the case of full rep clauses, the
855 -- size gets figured out anyway by a different circuit).
fbf5a39b 856
fea9e956
ES
857 if Present (Component_Clause (Comp)) then
858 Packed_Size_Known := False;
859 end if;
70482933 860
fea9e956
ES
861 -- We need to identify a component that is an array where
862 -- the index type is an enumeration type with non-standard
863 -- representation, and some bound of the type depends on a
864 -- discriminant.
70482933 865
fea9e956 866 -- This is because gigi computes the size by doing a
e14c931f 867 -- substitution of the appropriate discriminant value in
fea9e956
ES
868 -- the size expression for the base type, and gigi is not
869 -- clever enough to evaluate the resulting expression (which
870 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 871
fea9e956
ES
872 -- It would be nice if gigi would either recognize that
873 -- this expression can be computed at compile time, or
874 -- alternatively figured out the size from the subtype
875 -- directly, where all the information is at hand ???
fbf5a39b 876
fea9e956
ES
877 if Is_Array_Type (Etype (Comp))
878 and then Present (Packed_Array_Type (Etype (Comp)))
879 then
880 declare
881 Ocomp : constant Entity_Id :=
882 Original_Record_Component (Comp);
883 OCtyp : constant Entity_Id := Etype (Ocomp);
884 Ind : Node_Id;
885 Indtyp : Entity_Id;
886 Lo, Hi : Node_Id;
70482933 887
fea9e956
ES
888 begin
889 Ind := First_Index (OCtyp);
890 while Present (Ind) loop
891 Indtyp := Etype (Ind);
70482933 892
fea9e956
ES
893 if Is_Enumeration_Type (Indtyp)
894 and then Has_Non_Standard_Rep (Indtyp)
895 then
896 Lo := Type_Low_Bound (Indtyp);
897 Hi := Type_High_Bound (Indtyp);
fbf5a39b 898
fea9e956
ES
899 if Is_Entity_Name (Lo)
900 and then Ekind (Entity (Lo)) = E_Discriminant
901 then
902 return False;
fbf5a39b 903
fea9e956
ES
904 elsif Is_Entity_Name (Hi)
905 and then Ekind (Entity (Hi)) = E_Discriminant
906 then
907 return False;
908 end if;
909 end if;
fbf5a39b 910
fea9e956
ES
911 Next_Index (Ind);
912 end loop;
913 end;
914 end if;
70482933 915
def46b54
RD
916 -- Clearly size of record is not known if the size of one of
917 -- the components is not known.
70482933 918
fea9e956
ES
919 if not Size_Known (Ctyp) then
920 return False;
921 end if;
70482933 922
fea9e956 923 -- Accumulate packed size if possible
70482933 924
fea9e956 925 if Packed_Size_Known then
70482933 926
fea9e956
ES
927 -- We can only deal with elementary types, since for
928 -- non-elementary components, alignment enters into the
929 -- picture, and we don't know enough to handle proper
930 -- alignment in this context. Packed arrays count as
931 -- elementary if the representation is a modular type.
fbf5a39b 932
fea9e956
ES
933 if Is_Elementary_Type (Ctyp)
934 or else (Is_Array_Type (Ctyp)
2593c3e1
AC
935 and then Present (Packed_Array_Type (Ctyp))
936 and then Is_Modular_Integer_Type
937 (Packed_Array_Type (Ctyp)))
fea9e956 938 then
2593c3e1
AC
939 -- If RM_Size is known and static, then we can keep
940 -- accumulating the packed size.
70482933 941
fea9e956 942 if Known_Static_RM_Size (Ctyp) then
70482933 943
fea9e956
ES
944 -- A little glitch, to be removed sometime ???
945 -- gigi does not understand zero sizes yet.
946
947 if RM_Size (Ctyp) = Uint_0 then
70482933 948 Packed_Size_Known := False;
fea9e956
ES
949
950 -- Normal case where we can keep accumulating the
951 -- packed array size.
952
953 else
954 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 955 end if;
fbf5a39b 956
fea9e956
ES
957 -- If we have a field whose RM_Size is not known then
958 -- we can't figure out the packed size here.
fbf5a39b
AC
959
960 else
961 Packed_Size_Known := False;
70482933 962 end if;
fea9e956
ES
963
964 -- If we have a non-elementary type we can't figure out
965 -- the packed array size (alignment issues).
966
967 else
968 Packed_Size_Known := False;
70482933 969 end if;
fbf5a39b 970 end if;
70482933 971
fea9e956 972 Next_Component_Or_Discriminant (Comp);
fbf5a39b 973 end loop;
70482933 974
fbf5a39b 975 if Packed_Size_Known then
c6823a20 976 Set_Small_Size (T, Packed_Size);
fbf5a39b 977 end if;
70482933 978
fbf5a39b
AC
979 return True;
980 end;
70482933 981
c6a9797e
RD
982 -- All other cases, size not known at compile time
983
70482933
RK
984 else
985 return False;
986 end if;
987 end Size_Known;
988
989 -------------------------------------
990 -- Static_Discriminated_Components --
991 -------------------------------------
992
993 function Static_Discriminated_Components
0da2c8ac 994 (T : Entity_Id) return Boolean
70482933
RK
995 is
996 Constraint : Elmt_Id;
997
998 begin
999 if Has_Discriminants (T)
1000 and then Present (Discriminant_Constraint (T))
1001 and then Present (First_Component (T))
1002 then
1003 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
1004 while Present (Constraint) loop
1005 if not Compile_Time_Known_Value (Node (Constraint)) then
1006 return False;
1007 end if;
1008
1009 Next_Elmt (Constraint);
1010 end loop;
1011 end if;
1012
1013 return True;
1014 end Static_Discriminated_Components;
1015
1016 -- Start of processing for Check_Compile_Time_Size
1017
1018 begin
1019 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1020 end Check_Compile_Time_Size;
1021
1022 -----------------------------
1023 -- Check_Debug_Info_Needed --
1024 -----------------------------
1025
1026 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1027 begin
1b24ada5 1028 if Debug_Info_Off (T) then
70482933
RK
1029 return;
1030
1031 elsif Comes_From_Source (T)
1032 or else Debug_Generated_Code
1033 or else Debug_Flag_VV
1b24ada5 1034 or else Needs_Debug_Info (T)
70482933
RK
1035 then
1036 Set_Debug_Info_Needed (T);
1037 end if;
1038 end Check_Debug_Info_Needed;
1039
1040 ----------------------------
1041 -- Check_Strict_Alignment --
1042 ----------------------------
1043
1044 procedure Check_Strict_Alignment (E : Entity_Id) is
1045 Comp : Entity_Id;
1046
1047 begin
1048 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1049 Set_Strict_Alignment (E);
1050
1051 elsif Is_Array_Type (E) then
1052 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1053
1054 elsif Is_Record_Type (E) then
1055 if Is_Limited_Record (E) then
1056 Set_Strict_Alignment (E);
1057 return;
1058 end if;
1059
1060 Comp := First_Component (E);
1061
1062 while Present (Comp) loop
1063 if not Is_Type (Comp)
1064 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1065 or else Is_Aliased (Comp))
70482933
RK
1066 then
1067 Set_Strict_Alignment (E);
1068 return;
1069 end if;
1070
1071 Next_Component (Comp);
1072 end loop;
1073 end if;
1074 end Check_Strict_Alignment;
1075
1076 -------------------------
1077 -- Check_Unsigned_Type --
1078 -------------------------
1079
1080 procedure Check_Unsigned_Type (E : Entity_Id) is
1081 Ancestor : Entity_Id;
1082 Lo_Bound : Node_Id;
1083 Btyp : Entity_Id;
1084
1085 begin
1086 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1087 return;
1088 end if;
1089
1090 -- Do not attempt to analyze case where range was in error
1091
199c6a10
AC
1092 if No (Scalar_Range (E))
1093 or else Error_Posted (Scalar_Range (E))
1094 then
70482933
RK
1095 return;
1096 end if;
1097
1098 -- The situation that is non trivial is something like
1099
1100 -- subtype x1 is integer range -10 .. +10;
1101 -- subtype x2 is x1 range 0 .. V1;
1102 -- subtype x3 is x2 range V2 .. V3;
1103 -- subtype x4 is x3 range V4 .. V5;
1104
1105 -- where Vn are variables. Here the base type is signed, but we still
1106 -- know that x4 is unsigned because of the lower bound of x2.
1107
1108 -- The only way to deal with this is to look up the ancestor chain
1109
1110 Ancestor := E;
1111 loop
1112 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1113 return;
1114 end if;
1115
1116 Lo_Bound := Type_Low_Bound (Ancestor);
1117
1118 if Compile_Time_Known_Value (Lo_Bound) then
1119
1120 if Expr_Rep_Value (Lo_Bound) >= 0 then
1121 Set_Is_Unsigned_Type (E, True);
1122 end if;
1123
1124 return;
1125
1126 else
1127 Ancestor := Ancestor_Subtype (Ancestor);
1128
1129 -- If no ancestor had a static lower bound, go to base type
1130
1131 if No (Ancestor) then
1132
1133 -- Note: the reason we still check for a compile time known
1134 -- value for the base type is that at least in the case of
1135 -- generic formals, we can have bounds that fail this test,
1136 -- and there may be other cases in error situations.
1137
1138 Btyp := Base_Type (E);
1139
1140 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1141 return;
1142 end if;
1143
1144 Lo_Bound := Type_Low_Bound (Base_Type (E));
1145
1146 if Compile_Time_Known_Value (Lo_Bound)
1147 and then Expr_Rep_Value (Lo_Bound) >= 0
1148 then
1149 Set_Is_Unsigned_Type (E, True);
1150 end if;
1151
1152 return;
70482933
RK
1153 end if;
1154 end if;
1155 end loop;
1156 end Check_Unsigned_Type;
1157
cfb120b5
AC
1158 -------------------------
1159 -- Is_Atomic_Aggregate --
1160 -------------------------
fbf5a39b 1161
cfb120b5 1162 function Is_Atomic_Aggregate
b0159fbe
AC
1163 (E : Entity_Id;
1164 Typ : Entity_Id) return Boolean
1165 is
fbf5a39b
AC
1166 Loc : constant Source_Ptr := Sloc (E);
1167 New_N : Node_Id;
b0159fbe 1168 Par : Node_Id;
fbf5a39b
AC
1169 Temp : Entity_Id;
1170
1171 begin
b0159fbe
AC
1172 Par := Parent (E);
1173
01957849 1174 -- Array may be qualified, so find outer context
b0159fbe
AC
1175
1176 if Nkind (Par) = N_Qualified_Expression then
1177 Par := Parent (Par);
1178 end if;
1179
fb2e11ee 1180 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1181 and then Comes_From_Source (Par)
fbf5a39b 1182 then
b29def53 1183 Temp := Make_Temporary (Loc, 'T', E);
fbf5a39b
AC
1184 New_N :=
1185 Make_Object_Declaration (Loc,
1186 Defining_Identifier => Temp,
c6a9797e
RD
1187 Object_Definition => New_Occurrence_Of (Typ, Loc),
1188 Expression => Relocate_Node (E));
b0159fbe 1189 Insert_Before (Par, New_N);
fbf5a39b
AC
1190 Analyze (New_N);
1191
b0159fbe
AC
1192 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1193 return True;
fbf5a39b 1194
b0159fbe
AC
1195 else
1196 return False;
fbf5a39b 1197 end if;
cfb120b5 1198 end Is_Atomic_Aggregate;
fbf5a39b 1199
70482933
RK
1200 ----------------
1201 -- Freeze_All --
1202 ----------------
1203
1204 -- Note: the easy coding for this procedure would be to just build a
1205 -- single list of freeze nodes and then insert them and analyze them
1206 -- all at once. This won't work, because the analysis of earlier freeze
1207 -- nodes may recursively freeze types which would otherwise appear later
1208 -- on in the freeze list. So we must analyze and expand the freeze nodes
1209 -- as they are generated.
1210
1211 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1212 Loc : constant Source_Ptr := Sloc (After);
1213 E : Entity_Id;
1214 Decl : Node_Id;
1215
1216 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1217 -- This is the internal recursive routine that does freezing of entities
1218 -- (but NOT the analysis of default expressions, which should not be
1219 -- recursive, we don't want to analyze those till we are sure that ALL
1220 -- the types are frozen).
70482933 1221
fbf5a39b
AC
1222 --------------------
1223 -- Freeze_All_Ent --
1224 --------------------
1225
545cb5be 1226 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1227 E : Entity_Id;
1228 Flist : List_Id;
1229 Lastn : Node_Id;
1230
1231 procedure Process_Flist;
def46b54
RD
1232 -- If freeze nodes are present, insert and analyze, and reset cursor
1233 -- for next insertion.
70482933 1234
fbf5a39b
AC
1235 -------------------
1236 -- Process_Flist --
1237 -------------------
1238
70482933
RK
1239 procedure Process_Flist is
1240 begin
1241 if Is_Non_Empty_List (Flist) then
1242 Lastn := Next (After);
1243 Insert_List_After_And_Analyze (After, Flist);
1244
1245 if Present (Lastn) then
1246 After := Prev (Lastn);
1247 else
1248 After := Last (List_Containing (After));
1249 end if;
1250 end if;
1251 end Process_Flist;
1252
fbf5a39b
AC
1253 -- Start or processing for Freeze_All_Ent
1254
70482933
RK
1255 begin
1256 E := From;
1257 while Present (E) loop
1258
1259 -- If the entity is an inner package which is not a package
def46b54
RD
1260 -- renaming, then its entities must be frozen at this point. Note
1261 -- that such entities do NOT get frozen at the end of the nested
1262 -- package itself (only library packages freeze).
70482933
RK
1263
1264 -- Same is true for task declarations, where anonymous records
1265 -- created for entry parameters must be frozen.
1266
1267 if Ekind (E) = E_Package
1268 and then No (Renamed_Object (E))
1269 and then not Is_Child_Unit (E)
1270 and then not Is_Frozen (E)
1271 then
7d8b9c99 1272 Push_Scope (E);
70482933
RK
1273 Install_Visible_Declarations (E);
1274 Install_Private_Declarations (E);
1275
1276 Freeze_All (First_Entity (E), After);
1277
1278 End_Package_Scope (E);
1279
1280 elsif Ekind (E) in Task_Kind
1281 and then
1282 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1283 or else
70482933
RK
1284 Nkind (Parent (E)) = N_Single_Task_Declaration)
1285 then
7d8b9c99 1286 Push_Scope (E);
70482933
RK
1287 Freeze_All (First_Entity (E), After);
1288 End_Scope;
1289
1290 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1291 -- primitive operations of the parent have been frozen, so that
1292 -- their addresses will be in the parent's dispatch table at the
1293 -- point it is inherited.
70482933
RK
1294
1295 elsif Ekind (E) = E_Record_Type
1296 and then Is_Tagged_Type (E)
1297 and then Is_Tagged_Type (Etype (E))
1298 and then Is_Derived_Type (E)
1299 then
1300 declare
1301 Prim_List : constant Elist_Id :=
1302 Primitive_Operations (Etype (E));
fbf5a39b
AC
1303
1304 Prim : Elmt_Id;
1305 Subp : Entity_Id;
70482933
RK
1306
1307 begin
1308 Prim := First_Elmt (Prim_List);
70482933
RK
1309 while Present (Prim) loop
1310 Subp := Node (Prim);
1311
1312 if Comes_From_Source (Subp)
1313 and then not Is_Frozen (Subp)
1314 then
1315 Flist := Freeze_Entity (Subp, Loc);
1316 Process_Flist;
1317 end if;
1318
1319 Next_Elmt (Prim);
1320 end loop;
1321 end;
1322 end if;
1323
1324 if not Is_Frozen (E) then
1325 Flist := Freeze_Entity (E, Loc);
1326 Process_Flist;
1327 end if;
1328
def46b54
RD
1329 -- If an incomplete type is still not frozen, this may be a
1330 -- premature freezing because of a body declaration that follows.
1331 -- Indicate where the freezing took place.
fbf5a39b 1332
def46b54
RD
1333 -- If the freezing is caused by the end of the current declarative
1334 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1335
1336 if not Is_Frozen (E)
1337 and then Ekind (E) = E_Incomplete_Type
1338 then
1339 declare
1340 Bod : constant Node_Id := Next (After);
1341
1342 begin
545cb5be
AC
1343 if (Nkind_In (Bod, N_Subprogram_Body,
1344 N_Entry_Body,
1345 N_Package_Body,
1346 N_Protected_Body,
1347 N_Task_Body)
fbf5a39b
AC
1348 or else Nkind (Bod) in N_Body_Stub)
1349 and then
1350 List_Containing (After) = List_Containing (Parent (E))
1351 then
1352 Error_Msg_Sloc := Sloc (Next (After));
1353 Error_Msg_NE
1354 ("type& is frozen# before its full declaration",
1355 Parent (E), E);
1356 end if;
1357 end;
1358 end if;
1359
70482933
RK
1360 Next_Entity (E);
1361 end loop;
1362 end Freeze_All_Ent;
1363
1364 -- Start of processing for Freeze_All
1365
1366 begin
1367 Freeze_All_Ent (From, After);
1368
1369 -- Now that all types are frozen, we can deal with default expressions
1370 -- that require us to build a default expression functions. This is the
1371 -- point at which such functions are constructed (after all types that
1372 -- might be used in such expressions have been frozen).
fbf5a39b 1373
d4fc0fb4
AC
1374 -- For subprograms that are renaming_as_body, we create the wrapper
1375 -- bodies as needed.
1376
70482933
RK
1377 -- We also add finalization chains to access types whose designated
1378 -- types are controlled. This is normally done when freezing the type,
1379 -- but this misses recursive type definitions where the later members
c6a9797e 1380 -- of the recursion introduce controlled components.
70482933
RK
1381
1382 -- Loop through entities
1383
1384 E := From;
1385 while Present (E) loop
70482933
RK
1386 if Is_Subprogram (E) then
1387
1388 if not Default_Expressions_Processed (E) then
1389 Process_Default_Expressions (E, After);
1390 end if;
1391
1392 if not Has_Completion (E) then
1393 Decl := Unit_Declaration_Node (E);
1394
1395 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1396 Build_And_Analyze_Renamed_Body (Decl, E, After);
1397
1398 elsif Nkind (Decl) = N_Subprogram_Declaration
1399 and then Present (Corresponding_Body (Decl))
1400 and then
1401 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1402 = N_Subprogram_Renaming_Declaration
70482933
RK
1403 then
1404 Build_And_Analyze_Renamed_Body
1405 (Decl, Corresponding_Body (Decl), After);
1406 end if;
1407 end if;
1408
1409 elsif Ekind (E) in Task_Kind
1410 and then
1411 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1412 or else
70482933
RK
1413 Nkind (Parent (E)) = N_Single_Task_Declaration)
1414 then
1415 declare
1416 Ent : Entity_Id;
545cb5be 1417
70482933
RK
1418 begin
1419 Ent := First_Entity (E);
70482933 1420 while Present (Ent) loop
70482933
RK
1421 if Is_Entry (Ent)
1422 and then not Default_Expressions_Processed (Ent)
1423 then
1424 Process_Default_Expressions (Ent, After);
1425 end if;
1426
1427 Next_Entity (Ent);
1428 end loop;
1429 end;
1430
1431 elsif Is_Access_Type (E)
1432 and then Comes_From_Source (E)
1433 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
048e5cef 1434 and then Needs_Finalization (Designated_Type (E))
70482933
RK
1435 and then No (Associated_Final_Chain (E))
1436 then
1437 Build_Final_List (Parent (E), E);
1438 end if;
1439
1440 Next_Entity (E);
1441 end loop;
70482933
RK
1442 end Freeze_All;
1443
1444 -----------------------
1445 -- Freeze_And_Append --
1446 -----------------------
1447
1448 procedure Freeze_And_Append
1449 (Ent : Entity_Id;
1450 Loc : Source_Ptr;
1451 Result : in out List_Id)
1452 is
1453 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1454 begin
1455 if Is_Non_Empty_List (L) then
1456 if Result = No_List then
1457 Result := L;
1458 else
1459 Append_List (L, Result);
1460 end if;
1461 end if;
1462 end Freeze_And_Append;
1463
1464 -------------------
1465 -- Freeze_Before --
1466 -------------------
1467
1468 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1469 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1470 begin
1471 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1472 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1473 end if;
1474 end Freeze_Before;
1475
1476 -------------------
1477 -- Freeze_Entity --
1478 -------------------
1479
1480 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1481 Test_E : Entity_Id := E;
70482933
RK
1482 Comp : Entity_Id;
1483 F_Node : Node_Id;
1484 Result : List_Id;
1485 Indx : Node_Id;
1486 Formal : Entity_Id;
1487 Atype : Entity_Id;
1488
4c8a5bb8
AC
1489 Has_Default_Initialization : Boolean := False;
1490 -- This flag gets set to true for a variable with default initialization
1491
70482933 1492 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1493 -- Check that an Access or Unchecked_Access attribute with a prefix
1494 -- which is the current instance type can only be applied when the type
1495 -- is limited.
70482933 1496
67b3acf8
RD
1497 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1498 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1499 -- integer literal without an explicit corresponding size clause. The
1500 -- caller has checked that Utype is a modular integer type.
1501
70482933
RK
1502 function After_Last_Declaration return Boolean;
1503 -- If Loc is a freeze_entity that appears after the last declaration
1504 -- in the scope, inhibit error messages on late completion.
1505
1506 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1507 -- Freeze each component, handle some representation clauses, and freeze
1508 -- primitive operations if this is a tagged type.
70482933
RK
1509
1510 ----------------------------
1511 -- After_Last_Declaration --
1512 ----------------------------
1513
1514 function After_Last_Declaration return Boolean is
fb2e11ee 1515 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1516 begin
1517 if Nkind (Spec) = N_Package_Specification then
1518 if Present (Private_Declarations (Spec)) then
1519 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1520 elsif Present (Visible_Declarations (Spec)) then
1521 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1522 else
1523 return False;
1524 end if;
70482933
RK
1525 else
1526 return False;
1527 end if;
1528 end After_Last_Declaration;
1529
1530 ----------------------------
1531 -- Check_Current_Instance --
1532 ----------------------------
1533
1534 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1535
32c760e6
ES
1536 Rec_Type : constant Entity_Id :=
1537 Scope (Defining_Identifier (Comp_Decl));
1538
1539 Decl : constant Node_Id := Parent (Rec_Type);
1540
70482933 1541 function Process (N : Node_Id) return Traverse_Result;
49e90211 1542 -- Process routine to apply check to given node
70482933 1543
fbf5a39b
AC
1544 -------------
1545 -- Process --
1546 -------------
1547
70482933
RK
1548 function Process (N : Node_Id) return Traverse_Result is
1549 begin
1550 case Nkind (N) is
1551 when N_Attribute_Reference =>
def46b54 1552 if (Attribute_Name (N) = Name_Access
70482933
RK
1553 or else
1554 Attribute_Name (N) = Name_Unchecked_Access)
1555 and then Is_Entity_Name (Prefix (N))
1556 and then Is_Type (Entity (Prefix (N)))
1557 and then Entity (Prefix (N)) = E
1558 then
1559 Error_Msg_N
1560 ("current instance must be a limited type", Prefix (N));
1561 return Abandon;
1562 else
1563 return OK;
1564 end if;
1565
1566 when others => return OK;
1567 end case;
1568 end Process;
1569
1570 procedure Traverse is new Traverse_Proc (Process);
1571
1572 -- Start of processing for Check_Current_Instance
1573
1574 begin
32c760e6
ES
1575 -- In Ada95, the (imprecise) rule is that the current instance of a
1576 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1577 -- either a tagged type, or a limited record.
1578
1579 if Is_Limited_Type (Rec_Type)
0791fbe9 1580 and then (Ada_Version < Ada_2005 or else Is_Tagged_Type (Rec_Type))
32c760e6
ES
1581 then
1582 return;
1583
1584 elsif Nkind (Decl) = N_Full_Type_Declaration
1585 and then Limited_Present (Type_Definition (Decl))
1586 then
1587 return;
1588
1589 else
1590 Traverse (Comp_Decl);
1591 end if;
70482933
RK
1592 end Check_Current_Instance;
1593
67b3acf8
RD
1594 ------------------------------
1595 -- Check_Suspicious_Modulus --
1596 ------------------------------
1597
1598 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1599 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1600
1601 begin
1602 if Nkind (Decl) = N_Full_Type_Declaration then
1603 declare
1604 Tdef : constant Node_Id := Type_Definition (Decl);
1605 begin
1606 if Nkind (Tdef) = N_Modular_Type_Definition then
1607 declare
1608 Modulus : constant Node_Id :=
1609 Original_Node (Expression (Tdef));
1610 begin
1611 if Nkind (Modulus) = N_Integer_Literal then
1612 declare
1613 Modv : constant Uint := Intval (Modulus);
1614 Sizv : constant Uint := RM_Size (Utype);
1615
1616 begin
1617 -- First case, modulus and size are the same. This
1618 -- happens if you have something like mod 32, with
1619 -- an explicit size of 32, this is for sure a case
1620 -- where the warning is given, since it is seems
1621 -- very unlikely that someone would want e.g. a
1622 -- five bit type stored in 32 bits. It is much
1623 -- more likely they wanted a 32-bit type.
1624
1625 if Modv = Sizv then
1626 null;
1627
1628 -- Second case, the modulus is 32 or 64 and no
1629 -- size clause is present. This is a less clear
1630 -- case for giving the warning, but in the case
1631 -- of 32/64 (5-bit or 6-bit types) these seem rare
1632 -- enough that it is a likely error (and in any
1633 -- case using 2**5 or 2**6 in these cases seems
1634 -- clearer. We don't include 8 or 16 here, simply
1635 -- because in practice 3-bit and 4-bit types are
1636 -- more common and too many false positives if
1637 -- we warn in these cases.
1638
1639 elsif not Has_Size_Clause (Utype)
1640 and then (Modv = Uint_32 or else Modv = Uint_64)
1641 then
1642 null;
1643
1644 -- No warning needed
1645
1646 else
1647 return;
1648 end if;
1649
1650 -- If we fall through, give warning
1651
1652 Error_Msg_Uint_1 := Modv;
1653 Error_Msg_N
1654 ("?2 '*'*^' may have been intended here",
1655 Modulus);
1656 end;
1657 end if;
1658 end;
1659 end if;
1660 end;
1661 end if;
1662 end Check_Suspicious_Modulus;
1663
70482933
RK
1664 ------------------------
1665 -- Freeze_Record_Type --
1666 ------------------------
1667
1668 procedure Freeze_Record_Type (Rec : Entity_Id) is
1669 Comp : Entity_Id;
fbf5a39b 1670 IR : Node_Id;
70482933 1671 ADC : Node_Id;
c6823a20 1672 Prev : Entity_Id;
70482933 1673
67ce0d7e
RD
1674 Junk : Boolean;
1675 pragma Warnings (Off, Junk);
1676
70482933
RK
1677 Unplaced_Component : Boolean := False;
1678 -- Set True if we find at least one component with no component
1679 -- clause (used to warn about useless Pack pragmas).
1680
1681 Placed_Component : Boolean := False;
1682 -- Set True if we find at least one component with a component
8dc10d38
AC
1683 -- clause (used to warn about useless Bit_Order pragmas, and also
1684 -- to detect cases where Implicit_Packing may have an effect).
1685
1686 All_Scalar_Components : Boolean := True;
1687 -- Set False if we encounter a component of a non-scalar type
1688
1689 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1690 Scalar_Component_Total_Esize : Uint := Uint_0;
1691 -- Accumulates total RM_Size values and total Esize values of all
1692 -- scalar components. Used for processing of Implicit_Packing.
70482933 1693
e18d6a15
JM
1694 function Check_Allocator (N : Node_Id) return Node_Id;
1695 -- If N is an allocator, possibly wrapped in one or more level of
1696 -- qualified expression(s), return the inner allocator node, else
1697 -- return Empty.
19590d70 1698
7d8b9c99
RD
1699 procedure Check_Itype (Typ : Entity_Id);
1700 -- If the component subtype is an access to a constrained subtype of
1701 -- an already frozen type, make the subtype frozen as well. It might
1702 -- otherwise be frozen in the wrong scope, and a freeze node on
1703 -- subtype has no effect. Similarly, if the component subtype is a
1704 -- regular (not protected) access to subprogram, set the anonymous
1705 -- subprogram type to frozen as well, to prevent an out-of-scope
1706 -- freeze node at some eventual point of call. Protected operations
1707 -- are handled elsewhere.
6e059adb 1708
19590d70
GD
1709 ---------------------
1710 -- Check_Allocator --
1711 ---------------------
1712
e18d6a15
JM
1713 function Check_Allocator (N : Node_Id) return Node_Id is
1714 Inner : Node_Id;
19590d70 1715 begin
e18d6a15 1716 Inner := N;
e18d6a15
JM
1717 loop
1718 if Nkind (Inner) = N_Allocator then
1719 return Inner;
e18d6a15
JM
1720 elsif Nkind (Inner) = N_Qualified_Expression then
1721 Inner := Expression (Inner);
e18d6a15
JM
1722 else
1723 return Empty;
1724 end if;
1725 end loop;
19590d70
GD
1726 end Check_Allocator;
1727
6871ba5f
AC
1728 -----------------
1729 -- Check_Itype --
1730 -----------------
1731
7d8b9c99
RD
1732 procedure Check_Itype (Typ : Entity_Id) is
1733 Desig : constant Entity_Id := Designated_Type (Typ);
1734
6e059adb
AC
1735 begin
1736 if not Is_Frozen (Desig)
1737 and then Is_Frozen (Base_Type (Desig))
1738 then
1739 Set_Is_Frozen (Desig);
1740
1741 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1742 -- access subtype is elaborated early enough. This cannot be
1743 -- done if the subtype may depend on discriminants.
6e059adb
AC
1744
1745 if Ekind (Comp) = E_Component
1746 and then Is_Itype (Etype (Comp))
1747 and then not Has_Discriminants (Rec)
1748 then
1749 IR := Make_Itype_Reference (Sloc (Comp));
1750 Set_Itype (IR, Desig);
1751
1752 if No (Result) then
1753 Result := New_List (IR);
1754 else
1755 Append (IR, Result);
1756 end if;
1757 end if;
7d8b9c99
RD
1758
1759 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1760 and then Convention (Desig) /= Convention_Protected
1761 then
1762 Set_Is_Frozen (Desig);
6e059adb
AC
1763 end if;
1764 end Check_Itype;
1765
1766 -- Start of processing for Freeze_Record_Type
1767
70482933 1768 begin
7d8b9c99
RD
1769 -- If this is a subtype of a controlled type, declared without a
1770 -- constraint, the _controller may not appear in the component list
1771 -- if the parent was not frozen at the point of subtype declaration.
1772 -- Inherit the _controller component now.
fbf5a39b
AC
1773
1774 if Rec /= Base_Type (Rec)
1775 and then Has_Controlled_Component (Rec)
1776 then
1777 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1778 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1779 then
1780 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1781
49e90211 1782 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1783 -- record component, the base type may not yet be frozen, and its
1784 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1785 -- for the itype, so it will be frozen after the base type. This
1786 -- freeze node is used to communicate with the expander, in order
1787 -- to create the controller for the enclosing record, and it is
1788 -- deleted afterwards (see exp_ch3). It must not be created when
1789 -- expansion is off, because it might appear in the wrong context
1790 -- for the back end.
fbf5a39b
AC
1791
1792 elsif Is_Itype (Rec)
1793 and then Has_Delayed_Freeze (Base_Type (Rec))
1794 and then
1795 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1796 N_Component_Declaration
1797 and then Expander_Active
fbf5a39b
AC
1798 then
1799 Ensure_Freeze_Node (Rec);
1800 end if;
1801 end if;
1802
49e90211 1803 -- Freeze components and embedded subtypes
70482933
RK
1804
1805 Comp := First_Entity (Rec);
c6823a20 1806 Prev := Empty;
c6823a20 1807 while Present (Comp) loop
70482933 1808
8a95f4e8 1809 -- First handle the component case
70482933
RK
1810
1811 if Ekind (Comp) = E_Component
1812 or else Ekind (Comp) = E_Discriminant
1813 then
70482933
RK
1814 declare
1815 CC : constant Node_Id := Component_Clause (Comp);
1816
1817 begin
c6823a20
EB
1818 -- Freezing a record type freezes the type of each of its
1819 -- components. However, if the type of the component is
1820 -- part of this record, we do not want or need a separate
1821 -- Freeze_Node. Note that Is_Itype is wrong because that's
1822 -- also set in private type cases. We also can't check for
1823 -- the Scope being exactly Rec because of private types and
1824 -- record extensions.
1825
1826 if Is_Itype (Etype (Comp))
1827 and then Is_Record_Type (Underlying_Type
1828 (Scope (Etype (Comp))))
1829 then
1830 Undelay_Type (Etype (Comp));
1831 end if;
1832
1833 Freeze_And_Append (Etype (Comp), Loc, Result);
1834
0da2c8ac
AC
1835 -- Check for error of component clause given for variable
1836 -- sized type. We have to delay this test till this point,
1837 -- since the component type has to be frozen for us to know
1838 -- if it is variable length. We omit this test in a generic
1839 -- context, it will be applied at instantiation time.
1840
70482933
RK
1841 if Present (CC) then
1842 Placed_Component := True;
1843
07fc65c4
GB
1844 if Inside_A_Generic then
1845 null;
1846
7d8b9c99
RD
1847 elsif not
1848 Size_Known_At_Compile_Time
1849 (Underlying_Type (Etype (Comp)))
70482933
RK
1850 then
1851 Error_Msg_N
1852 ("component clause not allowed for variable " &
1853 "length component", CC);
1854 end if;
1855
1856 else
1857 Unplaced_Component := True;
1858 end if;
70482933 1859
0da2c8ac 1860 -- Case of component requires byte alignment
70482933 1861
0da2c8ac 1862 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1863
0da2c8ac 1864 -- Set the enclosing record to also require byte align
70482933 1865
0da2c8ac 1866 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1867
7d8b9c99
RD
1868 -- Check for component clause that is inconsistent with
1869 -- the required byte boundary alignment.
70482933 1870
0da2c8ac
AC
1871 if Present (CC)
1872 and then Normalized_First_Bit (Comp) mod
1873 System_Storage_Unit /= 0
1874 then
1875 Error_Msg_N
1876 ("component & must be byte aligned",
1877 Component_Name (Component_Clause (Comp)));
1878 end if;
1879 end if;
0da2c8ac 1880 end;
70482933
RK
1881 end if;
1882
8a95f4e8
RD
1883 -- Gather data for possible Implicit_Packing later. Note that at
1884 -- this stage we might be dealing with a real component, or with
1885 -- an implicit subtype declaration.
8dc10d38 1886
426d2717
AC
1887 if not Is_Scalar_Type (Etype (Comp)) then
1888 All_Scalar_Components := False;
1889 else
1890 Scalar_Component_Total_RM_Size :=
1891 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1892 Scalar_Component_Total_Esize :=
1893 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
1894 end if;
1895
c6823a20
EB
1896 -- If the component is an Itype with Delayed_Freeze and is either
1897 -- a record or array subtype and its base type has not yet been
545cb5be
AC
1898 -- frozen, we must remove this from the entity list of this record
1899 -- and put it on the entity list of the scope of its base type.
1900 -- Note that we know that this is not the type of a component
1901 -- since we cleared Has_Delayed_Freeze for it in the previous
1902 -- loop. Thus this must be the Designated_Type of an access type,
1903 -- which is the type of a component.
c6823a20
EB
1904
1905 if Is_Itype (Comp)
1906 and then Is_Type (Scope (Comp))
1907 and then Is_Composite_Type (Comp)
1908 and then Base_Type (Comp) /= Comp
1909 and then Has_Delayed_Freeze (Comp)
1910 and then not Is_Frozen (Base_Type (Comp))
1911 then
1912 declare
1913 Will_Be_Frozen : Boolean := False;
1b24ada5 1914 S : Entity_Id;
c6823a20
EB
1915
1916 begin
fea9e956
ES
1917 -- We have a pretty bad kludge here. Suppose Rec is subtype
1918 -- being defined in a subprogram that's created as part of
1919 -- the freezing of Rec'Base. In that case, we know that
1920 -- Comp'Base must have already been frozen by the time we
1921 -- get to elaborate this because Gigi doesn't elaborate any
1922 -- bodies until it has elaborated all of the declarative
1923 -- part. But Is_Frozen will not be set at this point because
1924 -- we are processing code in lexical order.
1925
1926 -- We detect this case by going up the Scope chain of Rec
1927 -- and seeing if we have a subprogram scope before reaching
1928 -- the top of the scope chain or that of Comp'Base. If we
1929 -- do, then mark that Comp'Base will actually be frozen. If
1930 -- so, we merely undelay it.
c6823a20 1931
1b24ada5 1932 S := Scope (Rec);
c6823a20
EB
1933 while Present (S) loop
1934 if Is_Subprogram (S) then
1935 Will_Be_Frozen := True;
1936 exit;
1937 elsif S = Scope (Base_Type (Comp)) then
1938 exit;
1939 end if;
1940
1941 S := Scope (S);
1942 end loop;
1943
1944 if Will_Be_Frozen then
1945 Undelay_Type (Comp);
1946 else
1947 if Present (Prev) then
1948 Set_Next_Entity (Prev, Next_Entity (Comp));
1949 else
1950 Set_First_Entity (Rec, Next_Entity (Comp));
1951 end if;
1952
1953 -- Insert in entity list of scope of base type (which
1954 -- must be an enclosing scope, because still unfrozen).
1955
1956 Append_Entity (Comp, Scope (Base_Type (Comp)));
1957 end if;
1958 end;
1959
def46b54
RD
1960 -- If the component is an access type with an allocator as default
1961 -- value, the designated type will be frozen by the corresponding
1962 -- expression in init_proc. In order to place the freeze node for
1963 -- the designated type before that for the current record type,
1964 -- freeze it now.
c6823a20
EB
1965
1966 -- Same process if the component is an array of access types,
1967 -- initialized with an aggregate. If the designated type is
def46b54
RD
1968 -- private, it cannot contain allocators, and it is premature
1969 -- to freeze the type, so we check for this as well.
c6823a20
EB
1970
1971 elsif Is_Access_Type (Etype (Comp))
1972 and then Present (Parent (Comp))
1973 and then Present (Expression (Parent (Comp)))
c6823a20
EB
1974 then
1975 declare
e18d6a15
JM
1976 Alloc : constant Node_Id :=
1977 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
1978
1979 begin
e18d6a15 1980 if Present (Alloc) then
19590d70 1981
e18d6a15
JM
1982 -- If component is pointer to a classwide type, freeze
1983 -- the specific type in the expression being allocated.
1984 -- The expression may be a subtype indication, in which
1985 -- case freeze the subtype mark.
c6823a20 1986
e18d6a15
JM
1987 if Is_Class_Wide_Type
1988 (Designated_Type (Etype (Comp)))
0f4cb75c 1989 then
e18d6a15
JM
1990 if Is_Entity_Name (Expression (Alloc)) then
1991 Freeze_And_Append
1992 (Entity (Expression (Alloc)), Loc, Result);
1993 elsif
1994 Nkind (Expression (Alloc)) = N_Subtype_Indication
1995 then
1996 Freeze_And_Append
1997 (Entity (Subtype_Mark (Expression (Alloc))),
1998 Loc, Result);
1999 end if;
0f4cb75c 2000
e18d6a15
JM
2001 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2002 Check_Itype (Etype (Comp));
0f4cb75c 2003
e18d6a15
JM
2004 else
2005 Freeze_And_Append
2006 (Designated_Type (Etype (Comp)), Loc, Result);
2007 end if;
c6823a20
EB
2008 end if;
2009 end;
2010
2011 elsif Is_Access_Type (Etype (Comp))
2012 and then Is_Itype (Designated_Type (Etype (Comp)))
2013 then
7d8b9c99 2014 Check_Itype (Etype (Comp));
c6823a20
EB
2015
2016 elsif Is_Array_Type (Etype (Comp))
2017 and then Is_Access_Type (Component_Type (Etype (Comp)))
2018 and then Present (Parent (Comp))
2019 and then Nkind (Parent (Comp)) = N_Component_Declaration
2020 and then Present (Expression (Parent (Comp)))
2021 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2022 and then Is_Fully_Defined
2023 (Designated_Type (Component_Type (Etype (Comp))))
2024 then
2025 Freeze_And_Append
2026 (Designated_Type
2027 (Component_Type (Etype (Comp))), Loc, Result);
2028 end if;
2029
2030 Prev := Comp;
70482933
RK
2031 Next_Entity (Comp);
2032 end loop;
2033
8a95f4e8 2034 -- Deal with pragma Bit_Order setting non-standard bit order
fea9e956
ES
2035
2036 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2037 if not Placed_Component then
2038 ADC :=
2039 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
ed2233dc 2040 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
fea9e956
ES
2041 Error_Msg_N
2042 ("\?since no component clauses were specified", ADC);
2043
8a95f4e8 2044 -- Here is where we do the processing for reversed bit order
70482933 2045
8a95f4e8 2046 else
fea9e956
ES
2047 Adjust_Record_For_Reverse_Bit_Order (Rec);
2048 end if;
70482933
RK
2049 end if;
2050
8a95f4e8
RD
2051 -- Complete error checking on record representation clause (e.g.
2052 -- overlap of components). This is called after adjusting the
2053 -- record for reverse bit order.
2054
2055 declare
2056 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
2057 begin
2058 if Present (RRC) then
2059 Check_Record_Representation_Clause (RRC);
2060 end if;
2061 end;
2062
1b24ada5
RD
2063 -- Set OK_To_Reorder_Components depending on debug flags
2064
2065 if Rec = Base_Type (Rec)
2066 and then Convention (Rec) = Convention_Ada
2067 then
2068 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2069 or else
2070 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2071 then
2072 Set_OK_To_Reorder_Components (Rec);
2073 end if;
2074 end if;
2075
ee094616
RD
2076 -- Check for useless pragma Pack when all components placed. We only
2077 -- do this check for record types, not subtypes, since a subtype may
2078 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2079 -- sense to pack other subtypes or the parent type. We do not give
2080 -- this warning if Optimize_Alignment is set to Space, since the
2081 -- pragma Pack does have an effect in this case (it always resets
2082 -- the alignment to one).
70482933 2083
ee094616
RD
2084 if Ekind (Rec) = E_Record_Type
2085 and then Is_Packed (Rec)
70482933 2086 and then not Unplaced_Component
1b24ada5 2087 and then Optimize_Alignment /= 'S'
70482933 2088 then
def46b54
RD
2089 -- Reset packed status. Probably not necessary, but we do it so
2090 -- that there is no chance of the back end doing something strange
2091 -- with this redundant indication of packing.
ee094616 2092
70482933 2093 Set_Is_Packed (Rec, False);
ee094616
RD
2094
2095 -- Give warning if redundant constructs warnings on
2096
2097 if Warn_On_Redundant_Constructs then
ed2233dc 2098 Error_Msg_N -- CODEFIX
ee094616
RD
2099 ("?pragma Pack has no effect, no unplaced components",
2100 Get_Rep_Pragma (Rec, Name_Pack));
2101 end if;
70482933
RK
2102 end if;
2103
ee094616
RD
2104 -- If this is the record corresponding to a remote type, freeze the
2105 -- remote type here since that is what we are semantically freezing.
2106 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2107
2108 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2109 -- Finally, enforce the restriction that access attributes with a
2110 -- current instance prefix can only apply to limited types.
70482933 2111
8dc10d38 2112 if Ekind (Rec) = E_Record_Type then
70482933
RK
2113 if Present (Corresponding_Remote_Type (Rec)) then
2114 Freeze_And_Append
2115 (Corresponding_Remote_Type (Rec), Loc, Result);
2116 end if;
2117
2118 Comp := First_Component (Rec);
70482933 2119 while Present (Comp) loop
80fa4617
EB
2120
2121 -- Do not set Has_Controlled_Component on a class-wide
2122 -- equivalent type. See Make_CW_Equivalent_Type.
2123
2124 if not Is_Class_Wide_Equivalent_Type (Rec)
2125 and then (Has_Controlled_Component (Etype (Comp))
2126 or else (Chars (Comp) /= Name_uParent
2127 and then Is_Controlled (Etype (Comp)))
2128 or else (Is_Protected_Type (Etype (Comp))
2129 and then Present
2130 (Corresponding_Record_Type
2131 (Etype (Comp)))
2132 and then Has_Controlled_Component
2133 (Corresponding_Record_Type
2134 (Etype (Comp)))))
70482933
RK
2135 then
2136 Set_Has_Controlled_Component (Rec);
2137 exit;
2138 end if;
2139
2140 if Has_Unchecked_Union (Etype (Comp)) then
2141 Set_Has_Unchecked_Union (Rec);
2142 end if;
2143
32c760e6
ES
2144 if Has_Per_Object_Constraint (Comp) then
2145
ee094616
RD
2146 -- Scan component declaration for likely misuses of current
2147 -- instance, either in a constraint or a default expression.
70482933
RK
2148
2149 Check_Current_Instance (Parent (Comp));
2150 end if;
2151
2152 Next_Component (Comp);
2153 end loop;
2154 end if;
2155
2156 Set_Component_Alignment_If_Not_Set (Rec);
2157
ee094616
RD
2158 -- For first subtypes, check if there are any fixed-point fields with
2159 -- component clauses, where we must check the size. This is not done
2160 -- till the freeze point, since for fixed-point types, we do not know
2161 -- the size until the type is frozen. Similar processing applies to
2162 -- bit packed arrays.
70482933
RK
2163
2164 if Is_First_Subtype (Rec) then
2165 Comp := First_Component (Rec);
2166
2167 while Present (Comp) loop
2168 if Present (Component_Clause (Comp))
d05ef0ab
AC
2169 and then (Is_Fixed_Point_Type (Etype (Comp))
2170 or else
2171 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2172 then
2173 Check_Size
d05ef0ab 2174 (Component_Name (Component_Clause (Comp)),
70482933
RK
2175 Etype (Comp),
2176 Esize (Comp),
2177 Junk);
2178 end if;
2179
2180 Next_Component (Comp);
2181 end loop;
2182 end if;
7d8b9c99
RD
2183
2184 -- Generate warning for applying C or C++ convention to a record
2185 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2186 -- case, since the whole point in this case is interface C. We also
2187 -- do not generate this within instantiations, since we will have
2188 -- generated a message on the template.
7d8b9c99
RD
2189
2190 if Has_Discriminants (E)
2191 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2192 and then (Convention (E) = Convention_C
2193 or else
2194 Convention (E) = Convention_CPP)
2195 and then Comes_From_Source (E)
1b24ada5
RD
2196 and then not In_Instance
2197 and then not Has_Warnings_Off (E)
2198 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2199 then
2200 declare
2201 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2202 A2 : Node_Id;
2203
2204 begin
2205 if Present (Cprag) then
2206 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2207
2208 if Convention (E) = Convention_C then
2209 Error_Msg_N
2210 ("?variant record has no direct equivalent in C", A2);
2211 else
2212 Error_Msg_N
2213 ("?variant record has no direct equivalent in C++", A2);
2214 end if;
2215
2216 Error_Msg_NE
2217 ("\?use of convention for type& is dubious", A2, E);
2218 end if;
2219 end;
2220 end if;
8dc10d38 2221
ce14c577 2222 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 2223
426d2717 2224 if not Is_Packed (Rec)
ce14c577
AC
2225
2226 -- No implicit packing if even one component is explicitly placed
2227
426d2717 2228 and then not Placed_Component
ce14c577
AC
2229
2230 -- Must have size clause and all scalar components
2231
8dc10d38
AC
2232 and then Has_Size_Clause (Rec)
2233 and then All_Scalar_Components
ce14c577
AC
2234
2235 -- Do not try implicit packing on records with discriminants, too
2236 -- complicated, especially in the variant record case.
2237
8dc10d38 2238 and then not Has_Discriminants (Rec)
ce14c577
AC
2239
2240 -- We can implicitly pack if the specified size of the record is
2241 -- less than the sum of the object sizes (no point in packing if
2242 -- this is not the case).
2243
8dc10d38 2244 and then Esize (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
2245
2246 -- And the total RM size cannot be greater than the specified size
2247 -- since otherwise packing will not get us where we have to be!
2248
8dc10d38 2249 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
ce14c577
AC
2250
2251 -- Never do implicit packing in CodePeer mode since we don't do
0eb4c1a7
AC
2252 -- any packing in this mode, since this generates over-complex
2253 -- code that confuses CodePeer, and in general, CodePeer does not
2254 -- care about the internal representation of objects.
ce14c577 2255
d58b9515 2256 and then not CodePeer_Mode
8dc10d38 2257 then
426d2717
AC
2258 -- If implicit packing enabled, do it
2259
2260 if Implicit_Packing then
2261 Set_Is_Packed (Rec);
2262
2263 -- Otherwise flag the size clause
2264
2265 else
2266 declare
2267 Sz : constant Node_Id := Size_Clause (Rec);
2268 begin
ed2233dc 2269 Error_Msg_NE -- CODEFIX
426d2717 2270 ("size given for& too small", Sz, Rec);
ed2233dc 2271 Error_Msg_N -- CODEFIX
426d2717
AC
2272 ("\use explicit pragma Pack "
2273 & "or use pragma Implicit_Packing", Sz);
2274 end;
2275 end if;
8dc10d38 2276 end if;
70482933
RK
2277 end Freeze_Record_Type;
2278
2279 -- Start of processing for Freeze_Entity
2280
2281 begin
c6823a20
EB
2282 -- We are going to test for various reasons why this entity need not be
2283 -- frozen here, but in the case of an Itype that's defined within a
2284 -- record, that test actually applies to the record.
2285
2286 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2287 Test_E := Scope (E);
2288 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2289 and then Is_Record_Type (Underlying_Type (Scope (E)))
2290 then
2291 Test_E := Underlying_Type (Scope (E));
2292 end if;
2293
fbf5a39b 2294 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2295
2296 if Is_Frozen (E) then
2297 return No_List;
2298
c6823a20
EB
2299 -- It is improper to freeze an external entity within a generic because
2300 -- its freeze node will appear in a non-valid context. The entity will
2301 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2302
c6823a20 2303 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2304 return No_List;
2305
2306 -- Do not freeze a global entity within an inner scope created during
2307 -- expansion. A call to subprogram E within some internal procedure
2308 -- (a stream attribute for example) might require freezing E, but the
2309 -- freeze node must appear in the same declarative part as E itself.
2310 -- The two-pass elaboration mechanism in gigi guarantees that E will
2311 -- be frozen before the inner call is elaborated. We exclude constants
2312 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2313 -- must be diagnosed (e.g. in the case of a deferred constant being used
2314 -- in a default expression). If the enclosing subprogram comes from
2315 -- source, or is a generic instance, then the freeze point is the one
2316 -- mandated by the language, and we freeze the entity. A subprogram that
2317 -- is a child unit body that acts as a spec does not have a spec that
2318 -- comes from source, but can only come from source.
70482933 2319
c6823a20
EB
2320 elsif In_Open_Scopes (Scope (Test_E))
2321 and then Scope (Test_E) /= Current_Scope
2322 and then Ekind (Test_E) /= E_Constant
70482933
RK
2323 then
2324 declare
2325 S : Entity_Id := Current_Scope;
2326
2327 begin
545cb5be 2328
70482933
RK
2329 while Present (S) loop
2330 if Is_Overloadable (S) then
2331 if Comes_From_Source (S)
2332 or else Is_Generic_Instance (S)
fea9e956 2333 or else Is_Child_Unit (S)
70482933
RK
2334 then
2335 exit;
2336 else
2337 return No_List;
2338 end if;
2339 end if;
2340
2341 S := Scope (S);
2342 end loop;
2343 end;
555360a5
AC
2344
2345 -- Similarly, an inlined instance body may make reference to global
2346 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2347 -- for them, and in the absence of inlining freezing will take place in
2348 -- their own scope. Normally instance bodies are analyzed after the
2349 -- enclosing compilation, and everything has been frozen at the proper
2350 -- place, but with front-end inlining an instance body is compiled
2351 -- before the end of the enclosing scope, and as a result out-of-order
2352 -- freezing must be prevented.
555360a5
AC
2353
2354 elsif Front_End_Inlining
7d8b9c99 2355 and then In_Instance_Body
c6823a20 2356 and then Present (Scope (Test_E))
555360a5
AC
2357 then
2358 declare
c6823a20
EB
2359 S : Entity_Id := Scope (Test_E);
2360
555360a5
AC
2361 begin
2362 while Present (S) loop
2363 if Is_Generic_Instance (S) then
2364 exit;
2365 else
2366 S := Scope (S);
2367 end if;
2368 end loop;
2369
2370 if No (S) then
2371 return No_List;
2372 end if;
2373 end;
70482933
RK
2374 end if;
2375
2376 -- Here to freeze the entity
2377
2378 Result := No_List;
2379 Set_Is_Frozen (E);
2380
2381 -- Case of entity being frozen is other than a type
2382
2383 if not Is_Type (E) then
2384
2385 -- If entity is exported or imported and does not have an external
2386 -- name, now is the time to provide the appropriate default name.
2387 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
2388 -- for any stubbed routine. For the case on intrinsics, if no
2389 -- external name is specified, then calls will be handled in
545cb5be
AC
2390 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
2391 -- external name is provided, then Expand_Intrinsic_Call leaves
75a64833 2392 -- calls in place for expansion by GIGI.
70482933
RK
2393
2394 if (Is_Imported (E) or else Is_Exported (E))
2395 and then No (Interface_Name (E))
2396 and then Convention (E) /= Convention_Stubbed
75a64833 2397 and then Convention (E) /= Convention_Intrinsic
70482933
RK
2398 then
2399 Set_Encoded_Interface_Name
2400 (E, Get_Default_External_Name (E));
fbf5a39b 2401
bbaba73f
EB
2402 -- If entity is an atomic object appearing in a declaration and
2403 -- the expression is an aggregate, assign it to a temporary to
2404 -- ensure that the actual assignment is done atomically rather
2405 -- than component-wise (the assignment to the temp may be done
2406 -- component-wise, but that is harmless).
fbf5a39b
AC
2407
2408 elsif Is_Atomic (E)
2409 and then Nkind (Parent (E)) = N_Object_Declaration
2410 and then Present (Expression (Parent (E)))
bbaba73f 2411 and then Nkind (Expression (Parent (E))) = N_Aggregate
b0159fbe 2412 and then
cfb120b5 2413 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 2414 then
b0159fbe 2415 null;
70482933
RK
2416 end if;
2417
2418 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2419 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 2420 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
2421 -- created since we now know whether the subprogram will use a
2422 -- foreign convention.
70482933
RK
2423
2424 if Is_Subprogram (E) then
70482933 2425 if not Is_Internal (E) then
70482933 2426 declare
6d11af89 2427 F_Type : Entity_Id;
def46b54 2428 R_Type : Entity_Id;
6d11af89 2429 Warn_Node : Node_Id;
70482933 2430
70482933
RK
2431 begin
2432 -- Loop through formals
2433
2434 Formal := First_Formal (E);
70482933 2435 while Present (Formal) loop
70482933
RK
2436 F_Type := Etype (Formal);
2437 Freeze_And_Append (F_Type, Loc, Result);
2438
2439 if Is_Private_Type (F_Type)
2440 and then Is_Private_Type (Base_Type (F_Type))
2441 and then No (Full_View (Base_Type (F_Type)))
2442 and then not Is_Generic_Type (F_Type)
2443 and then not Is_Derived_Type (F_Type)
2444 then
2445 -- If the type of a formal is incomplete, subprogram
2446 -- is being frozen prematurely. Within an instance
2447 -- (but not within a wrapper package) this is an
fb2e11ee 2448 -- artifact of our need to regard the end of an
70482933
RK
2449 -- instantiation as a freeze point. Otherwise it is
2450 -- a definite error.
fbf5a39b 2451
70482933
RK
2452 if In_Instance then
2453 Set_Is_Frozen (E, False);
2454 return No_List;
2455
86cde7b1
RD
2456 elsif not After_Last_Declaration
2457 and then not Freezing_Library_Level_Tagged_Type
2458 then
70482933
RK
2459 Error_Msg_Node_1 := F_Type;
2460 Error_Msg
2461 ("type& must be fully defined before this point",
2462 Loc);
2463 end if;
2464 end if;
2465
def46b54 2466 -- Check suspicious parameter for C function. These tests
1b24ada5 2467 -- apply only to exported/imported subprograms.
70482933 2468
def46b54 2469 if Warn_On_Export_Import
1b24ada5 2470 and then Comes_From_Source (E)
def46b54
RD
2471 and then (Convention (E) = Convention_C
2472 or else
2473 Convention (E) = Convention_CPP)
def46b54 2474 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2475 and then Convention (E) /= Convention (Formal)
2476 and then not Has_Warnings_Off (E)
2477 and then not Has_Warnings_Off (F_Type)
2478 and then not Has_Warnings_Off (Formal)
fbf5a39b 2479 then
b3afa59b
AC
2480 -- Qualify mention of formals with subprogram name
2481
70482933 2482 Error_Msg_Qual_Level := 1;
def46b54
RD
2483
2484 -- Check suspicious use of fat C pointer
2485
2486 if Is_Access_Type (F_Type)
2487 and then Esize (F_Type) > Ttypes.System_Address_Size
2488 then
2489 Error_Msg_N
b3afa59b
AC
2490 ("?type of & does not correspond to C pointer!",
2491 Formal);
def46b54
RD
2492
2493 -- Check suspicious return of boolean
2494
2495 elsif Root_Type (F_Type) = Standard_Boolean
2496 and then Convention (F_Type) = Convention_Ada
67198556
RD
2497 and then not Has_Warnings_Off (F_Type)
2498 and then not Has_Size_Clause (F_Type)
6a2afd13 2499 and then VM_Target = No_VM
def46b54 2500 then
ed2233dc 2501 Error_Msg_N ("& is an 8-bit Ada Boolean?", Formal);
b3afa59b
AC
2502 Error_Msg_N
2503 ("\use appropriate corresponding type in C "
2504 & "(e.g. char)?", Formal);
def46b54
RD
2505
2506 -- Check suspicious tagged type
2507
2508 elsif (Is_Tagged_Type (F_Type)
2509 or else (Is_Access_Type (F_Type)
2510 and then
2511 Is_Tagged_Type
2512 (Designated_Type (F_Type))))
2513 and then Convention (E) = Convention_C
2514 then
2515 Error_Msg_N
e7d72fb9 2516 ("?& involves a tagged type which does not "
def46b54
RD
2517 & "correspond to any C type!", Formal);
2518
2519 -- Check wrong convention subprogram pointer
2520
2521 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2522 and then not Has_Foreign_Convention (F_Type)
2523 then
2524 Error_Msg_N
2525 ("?subprogram pointer & should "
2526 & "have foreign convention!", Formal);
2527 Error_Msg_Sloc := Sloc (F_Type);
2528 Error_Msg_NE
2529 ("\?add Convention pragma to declaration of &#",
2530 Formal, F_Type);
2531 end if;
2532
b3afa59b
AC
2533 -- Turn off name qualification after message output
2534
70482933
RK
2535 Error_Msg_Qual_Level := 0;
2536 end if;
2537
2538 -- Check for unconstrained array in exported foreign
2539 -- convention case.
2540
def46b54 2541 if Has_Foreign_Convention (E)
70482933
RK
2542 and then not Is_Imported (E)
2543 and then Is_Array_Type (F_Type)
2544 and then not Is_Constrained (F_Type)
fbf5a39b 2545 and then Warn_On_Export_Import
3acdda2d
AC
2546
2547 -- Exclude VM case, since both .NET and JVM can handle
2548 -- unconstrained arrays without a problem.
2549
2550 and then VM_Target = No_VM
70482933
RK
2551 then
2552 Error_Msg_Qual_Level := 1;
6d11af89
AC
2553
2554 -- If this is an inherited operation, place the
2555 -- warning on the derived type declaration, rather
2556 -- than on the original subprogram.
2557
2558 if Nkind (Original_Node (Parent (E))) =
2559 N_Full_Type_Declaration
2560 then
2561 Warn_Node := Parent (E);
2562
2563 if Formal = First_Formal (E) then
2564 Error_Msg_NE
add9f797 2565 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2566 end if;
2567 else
2568 Warn_Node := Formal;
2569 end if;
2570
2571 Error_Msg_NE
70482933 2572 ("?type of argument& is unconstrained array",
6d11af89
AC
2573 Warn_Node, Formal);
2574 Error_Msg_NE
70482933 2575 ("?foreign caller must pass bounds explicitly",
6d11af89 2576 Warn_Node, Formal);
70482933
RK
2577 Error_Msg_Qual_Level := 0;
2578 end if;
2579
d8db0bca
JM
2580 if not From_With_Type (F_Type) then
2581 if Is_Access_Type (F_Type) then
2582 F_Type := Designated_Type (F_Type);
2583 end if;
2584
7d8b9c99
RD
2585 -- If the formal is an anonymous_access_to_subprogram
2586 -- freeze the subprogram type as well, to prevent
2587 -- scope anomalies in gigi, because there is no other
2588 -- clear point at which it could be frozen.
2589
93bcda23 2590 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2591 and then Ekind (F_Type) = E_Subprogram_Type
2592 then
57747aec 2593 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2594 end if;
2595 end if;
2596
70482933
RK
2597 Next_Formal (Formal);
2598 end loop;
2599
5e39baa6 2600 -- Case of function: similar checks on return type
70482933
RK
2601
2602 if Ekind (E) = E_Function then
def46b54
RD
2603
2604 -- Freeze return type
2605
2606 R_Type := Etype (E);
2607 Freeze_And_Append (R_Type, Loc, Result);
2608
2609 -- Check suspicious return type for C function
70482933 2610
fbf5a39b 2611 if Warn_On_Export_Import
def46b54
RD
2612 and then (Convention (E) = Convention_C
2613 or else
2614 Convention (E) = Convention_CPP)
def46b54 2615 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2616 then
def46b54
RD
2617 -- Check suspicious return of fat C pointer
2618
2619 if Is_Access_Type (R_Type)
2620 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2621 and then not Has_Warnings_Off (E)
2622 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2623 then
2624 Error_Msg_N
2625 ("?return type of& does not "
2626 & "correspond to C pointer!", E);
2627
2628 -- Check suspicious return of boolean
2629
2630 elsif Root_Type (R_Type) = Standard_Boolean
2631 and then Convention (R_Type) = Convention_Ada
6a2afd13 2632 and then VM_Target = No_VM
1b24ada5
RD
2633 and then not Has_Warnings_Off (E)
2634 and then not Has_Warnings_Off (R_Type)
67198556 2635 and then not Has_Size_Clause (R_Type)
def46b54 2636 then
b3afa59b
AC
2637 declare
2638 N : constant Node_Id :=
2639 Result_Definition (Declaration_Node (E));
2640 begin
2641 Error_Msg_NE
2642 ("return type of & is an 8-bit Ada Boolean?",
2643 N, E);
2644 Error_Msg_NE
2645 ("\use appropriate corresponding type in C "
2646 & "(e.g. char)?", N, E);
2647 end;
70482933 2648
def46b54
RD
2649 -- Check suspicious return tagged type
2650
2651 elsif (Is_Tagged_Type (R_Type)
2652 or else (Is_Access_Type (R_Type)
2653 and then
2654 Is_Tagged_Type
2655 (Designated_Type (R_Type))))
2656 and then Convention (E) = Convention_C
1b24ada5
RD
2657 and then not Has_Warnings_Off (E)
2658 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2659 then
2660 Error_Msg_N
2661 ("?return type of & does not "
2662 & "correspond to C type!", E);
2663
2664 -- Check return of wrong convention subprogram pointer
2665
2666 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2667 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2668 and then not Has_Warnings_Off (E)
2669 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2670 then
2671 Error_Msg_N
2672 ("?& should return a foreign "
2673 & "convention subprogram pointer", E);
2674 Error_Msg_Sloc := Sloc (R_Type);
2675 Error_Msg_NE
2676 ("\?add Convention pragma to declaration of& #",
2677 E, R_Type);
2678 end if;
2679 end if;
2680
e7d72fb9
AC
2681 -- Give warning for suspicous return of a result of an
2682 -- unconstrained array type in a foreign convention
2683 -- function.
59366db6 2684
e7d72fb9
AC
2685 if Has_Foreign_Convention (E)
2686
2687 -- We are looking for a return of unconstrained array
2688
2689 and then Is_Array_Type (R_Type)
93bcda23 2690 and then not Is_Constrained (R_Type)
e7d72fb9
AC
2691
2692 -- Exclude imported routines, the warning does not
2693 -- belong on the import, but on the routine definition.
2694
70482933 2695 and then not Is_Imported (E)
e7d72fb9
AC
2696
2697 -- Exclude VM case, since both .NET and JVM can handle
2698 -- return of unconstrained arrays without a problem.
2699
f3b57ab0 2700 and then VM_Target = No_VM
e7d72fb9
AC
2701
2702 -- Check that general warning is enabled, and that it
2703 -- is not suppressed for this particular case.
2704
fbf5a39b 2705 and then Warn_On_Export_Import
1b24ada5 2706 and then not Has_Warnings_Off (E)
93bcda23 2707 and then not Has_Warnings_Off (R_Type)
70482933
RK
2708 then
2709 Error_Msg_N
fbf5a39b 2710 ("?foreign convention function& should not " &
1b24ada5 2711 "return unconstrained array!", E);
70482933
RK
2712 end if;
2713 end if;
2714 end;
2715 end if;
2716
2717 -- Must freeze its parent first if it is a derived subprogram
2718
2719 if Present (Alias (E)) then
2720 Freeze_And_Append (Alias (E), Loc, Result);
2721 end if;
2722
19590d70
GD
2723 -- We don't freeze internal subprograms, because we don't normally
2724 -- want addition of extra formals or mechanism setting to happen
2725 -- for those. However we do pass through predefined dispatching
2726 -- cases, since extra formals may be needed in some cases, such as
2727 -- for the stream 'Input function (build-in-place formals).
2728
2729 if not Is_Internal (E)
2730 or else Is_Predefined_Dispatching_Operation (E)
2731 then
70482933
RK
2732 Freeze_Subprogram (E);
2733 end if;
2734
2735 -- Here for other than a subprogram or type
2736
2737 else
2738 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2739 -- freeze it first (RM 13.14(10)).
70482933 2740
ac72c9c5 2741 if Present (Etype (E))
70482933
RK
2742 and then Ekind (E) /= E_Generic_Function
2743 then
2744 Freeze_And_Append (Etype (E), Loc, Result);
2745 end if;
2746
2c9beb8a 2747 -- Special processing for objects created by object declaration
70482933
RK
2748
2749 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 2750
6823270c
AC
2751 -- Abstract type allowed only for C++ imported variables or
2752 -- constants.
2753
2754 -- Note: we inhibit this check for objects that do not come
2755 -- from source because there is at least one case (the
2756 -- expansion of x'class'input where x is abstract) where we
2757 -- legitimately generate an abstract object.
2758
2759 if Is_Abstract_Type (Etype (E))
2760 and then Comes_From_Source (Parent (E))
2761 and then not (Is_Imported (E)
2762 and then Is_CPP_Class (Etype (E)))
2763 then
2764 Error_Msg_N ("type of object cannot be abstract",
2765 Object_Definition (Parent (E)));
2766
2767 if Is_CPP_Class (Etype (E)) then
ed2233dc
AC
2768 Error_Msg_NE
2769 ("\} may need a cpp_constructor",
6823270c
AC
2770 Object_Definition (Parent (E)), Etype (E));
2771 end if;
2772 end if;
2773
2c9beb8a
RD
2774 -- For object created by object declaration, perform required
2775 -- categorization (preelaborate and pure) checks. Defer these
2776 -- checks to freeze time since pragma Import inhibits default
2777 -- initialization and thus pragma Import affects these checks.
2778
70482933 2779 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2780
1ce1f005 2781 -- If there is an address clause, check that it is valid
2c9beb8a 2782
fbf5a39b 2783 Check_Address_Clause (E);
2c9beb8a 2784
1ce1f005
GD
2785 -- If the object needs any kind of default initialization, an
2786 -- error must be issued if No_Default_Initialization applies.
2787 -- The check doesn't apply to imported objects, which are not
2788 -- ever default initialized, and is why the check is deferred
2789 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2790 -- Deferred constants are also exempted from this test because
2791 -- their completion is explicit, or through an import pragma.
1ce1f005 2792
4fec4e7a
ES
2793 if Ekind (E) = E_Constant
2794 and then Present (Full_View (E))
2795 then
2796 null;
2797
2798 elsif Comes_From_Source (E)
b6e209b5 2799 and then not Is_Imported (E)
1ce1f005
GD
2800 and then not Has_Init_Expression (Declaration_Node (E))
2801 and then
2802 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2803 and then not No_Initialization (Declaration_Node (E))
2804 and then not Is_Value_Type (Etype (E))
2805 and then not Suppress_Init_Proc (Etype (E)))
2806 or else
2807 (Needs_Simple_Initialization (Etype (E))
2808 and then not Is_Internal (E)))
2809 then
4c8a5bb8 2810 Has_Default_Initialization := True;
1ce1f005
GD
2811 Check_Restriction
2812 (No_Default_Initialization, Declaration_Node (E));
2813 end if;
2814
4c8a5bb8
AC
2815 -- Check that a Thread_Local_Storage variable does not have
2816 -- default initialization, and any explicit initialization must
2817 -- either be the null constant or a static constant.
2818
2819 if Has_Pragma_Thread_Local_Storage (E) then
2820 declare
2821 Decl : constant Node_Id := Declaration_Node (E);
2822 begin
2823 if Has_Default_Initialization
2824 or else
2825 (Has_Init_Expression (Decl)
2826 and then
2827 (No (Expression (Decl))
2828 or else not
2829 (Is_Static_Expression (Expression (Decl))
2830 or else
2831 Nkind (Expression (Decl)) = N_Null)))
2832 then
2833 Error_Msg_NE
2834 ("Thread_Local_Storage variable& is "
2835 & "improperly initialized", Decl, E);
2836 Error_Msg_NE
2837 ("\only allowed initialization is explicit "
2838 & "NULL or static expression", Decl, E);
2839 end if;
2840 end;
2841 end if;
2842
def46b54
RD
2843 -- For imported objects, set Is_Public unless there is also an
2844 -- address clause, which means that there is no external symbol
2845 -- needed for the Import (Is_Public may still be set for other
2846 -- unrelated reasons). Note that we delayed this processing
2847 -- till freeze time so that we can be sure not to set the flag
2848 -- if there is an address clause. If there is such a clause,
2849 -- then the only purpose of the Import pragma is to suppress
2850 -- implicit initialization.
2c9beb8a
RD
2851
2852 if Is_Imported (E)
add9f797 2853 and then No (Address_Clause (E))
2c9beb8a
RD
2854 then
2855 Set_Is_Public (E);
2856 end if;
7d8b9c99
RD
2857
2858 -- For convention C objects of an enumeration type, warn if
2859 -- the size is not integer size and no explicit size given.
2860 -- Skip warning for Boolean, and Character, assume programmer
2861 -- expects 8-bit sizes for these cases.
2862
2863 if (Convention (E) = Convention_C
2864 or else
2865 Convention (E) = Convention_CPP)
2866 and then Is_Enumeration_Type (Etype (E))
2867 and then not Is_Character_Type (Etype (E))
2868 and then not Is_Boolean_Type (Etype (E))
2869 and then Esize (Etype (E)) < Standard_Integer_Size
2870 and then not Has_Size_Clause (E)
2871 then
2872 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2873 Error_Msg_N
2874 ("?convention C enumeration object has size less than ^",
2875 E);
2876 Error_Msg_N ("\?use explicit size clause to set size", E);
2877 end if;
70482933
RK
2878 end if;
2879
2880 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2881 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2882
2883 -- Note: Atomic[_Components] also sets Volatile[_Components]
2884
2885 if Ekind (E) = E_Constant
2886 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2887 and then not Is_Imported (E)
2888 then
2889 -- Make sure we actually have a pragma, and have not merely
2890 -- inherited the indication from elsewhere (e.g. an address
2891 -- clause, which is not good enough in RM terms!)
2892
1d571f3b 2893 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2894 or else
1d571f3b 2895 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2896 then
2897 Error_Msg_N
91b1417d 2898 ("stand alone atomic constant must be " &
def46b54 2899 "imported (RM C.6(13))", E);
91b1417d 2900
1d571f3b 2901 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2902 or else
1d571f3b 2903 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2904 then
2905 Error_Msg_N
2906 ("stand alone volatile constant must be " &
86cde7b1 2907 "imported (RM C.6(13))", E);
70482933
RK
2908 end if;
2909 end if;
2910
2911 -- Static objects require special handling
2912
2913 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2914 and then Is_Statically_Allocated (E)
2915 then
2916 Freeze_Static_Object (E);
2917 end if;
2918
2919 -- Remaining step is to layout objects
2920
2921 if Ekind (E) = E_Variable
2922 or else
2923 Ekind (E) = E_Constant
2924 or else
2925 Ekind (E) = E_Loop_Parameter
2926 or else
2927 Is_Formal (E)
2928 then
2929 Layout_Object (E);
2930 end if;
2931 end if;
2932
2933 -- Case of a type or subtype being frozen
2934
2935 else
31b5873d
GD
2936 -- We used to check here that a full type must have preelaborable
2937 -- initialization if it completes a private type specified with
2938 -- pragma Preelaborable_Intialization, but that missed cases where
2939 -- the types occur within a generic package, since the freezing
2940 -- that occurs within a containing scope generally skips traversal
2941 -- of a generic unit's declarations (those will be frozen within
2942 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2943
70482933
RK
2944 -- The type may be defined in a generic unit. This can occur when
2945 -- freezing a generic function that returns the type (which is
2946 -- defined in a parent unit). It is clearly meaningless to freeze
2947 -- this type. However, if it is a subtype, its size may be determi-
2948 -- nable and used in subsequent checks, so might as well try to
2949 -- compute it.
2950
2951 if Present (Scope (E))
2952 and then Is_Generic_Unit (Scope (E))
2953 then
2954 Check_Compile_Time_Size (E);
2955 return No_List;
2956 end if;
2957
2958 -- Deal with special cases of freezing for subtype
2959
2960 if E /= Base_Type (E) then
2961
86cde7b1
RD
2962 -- Before we do anything else, a specialized test for the case of
2963 -- a size given for an array where the array needs to be packed,
2964 -- but was not so the size cannot be honored. This would of course
2965 -- be caught by the backend, and indeed we don't catch all cases.
2966 -- The point is that we can give a better error message in those
2967 -- cases that we do catch with the circuitry here. Also if pragma
2968 -- Implicit_Packing is set, this is where the packing occurs.
2969
2970 -- The reason we do this so early is that the processing in the
2971 -- automatic packing case affects the layout of the base type, so
2972 -- it must be done before we freeze the base type.
2973
2974 if Is_Array_Type (E) then
2975 declare
2976 Lo, Hi : Node_Id;
2977 Ctyp : constant Entity_Id := Component_Type (E);
2978
2979 begin
2980 -- Check enabling conditions. These are straightforward
2981 -- except for the test for a limited composite type. This
2982 -- eliminates the rare case of a array of limited components
2983 -- where there are issues of whether or not we can go ahead
2984 -- and pack the array (since we can't freely pack and unpack
2985 -- arrays if they are limited).
2986
2987 -- Note that we check the root type explicitly because the
2988 -- whole point is we are doing this test before we have had
2989 -- a chance to freeze the base type (and it is that freeze
2990 -- action that causes stuff to be inherited).
2991
2992 if Present (Size_Clause (E))
2993 and then Known_Static_Esize (E)
2994 and then not Is_Packed (E)
2995 and then not Has_Pragma_Pack (E)
2996 and then Number_Dimensions (E) = 1
2997 and then not Has_Component_Size_Clause (E)
2998 and then Known_Static_Esize (Ctyp)
2999 and then not Is_Limited_Composite (E)
3000 and then not Is_Packed (Root_Type (E))
3001 and then not Has_Component_Size_Clause (Root_Type (E))
d58b9515 3002 and then not CodePeer_Mode
86cde7b1
RD
3003 then
3004 Get_Index_Bounds (First_Index (E), Lo, Hi);
3005
3006 if Compile_Time_Known_Value (Lo)
3007 and then Compile_Time_Known_Value (Hi)
3008 and then Known_Static_RM_Size (Ctyp)
3009 and then RM_Size (Ctyp) < 64
3010 then
3011 declare
3012 Lov : constant Uint := Expr_Value (Lo);
3013 Hiv : constant Uint := Expr_Value (Hi);
3014 Len : constant Uint := UI_Max
3015 (Uint_0,
3016 Hiv - Lov + 1);
3017 Rsiz : constant Uint := RM_Size (Ctyp);
3018 SZ : constant Node_Id := Size_Clause (E);
3019 Btyp : constant Entity_Id := Base_Type (E);
3020
3021 -- What we are looking for here is the situation where
3022 -- the RM_Size given would be exactly right if there
3023 -- was a pragma Pack (resulting in the component size
3024 -- being the same as the RM_Size). Furthermore, the
3025 -- component type size must be an odd size (not a
5a989c6b
AC
3026 -- multiple of storage unit). If the component RM size
3027 -- is an exact number of storage units that is a power
3028 -- of two, the array is not packed and has a standard
3029 -- representation.
86cde7b1
RD
3030
3031 begin
3032 if RM_Size (E) = Len * Rsiz
3033 and then Rsiz mod System_Storage_Unit /= 0
3034 then
3035 -- For implicit packing mode, just set the
fd366a46 3036 -- component size silently.
86cde7b1
RD
3037
3038 if Implicit_Packing then
3039 Set_Component_Size (Btyp, Rsiz);
3040 Set_Is_Bit_Packed_Array (Btyp);
3041 Set_Is_Packed (Btyp);
3042 Set_Has_Non_Standard_Rep (Btyp);
3043
3044 -- Otherwise give an error message
3045
3046 else
3047 Error_Msg_NE
3048 ("size given for& too small", SZ, E);
ed2233dc 3049 Error_Msg_N -- CODEFIX
86cde7b1
RD
3050 ("\use explicit pragma Pack "
3051 & "or use pragma Implicit_Packing", SZ);
3052 end if;
5a989c6b
AC
3053
3054 elsif RM_Size (E) = Len * Rsiz
3055 and then Implicit_Packing
3056 and then
3057 (Rsiz / System_Storage_Unit = 1
3058 or else Rsiz / System_Storage_Unit = 2
3059 or else Rsiz / System_Storage_Unit = 4)
3060 then
3061
3062 -- Not a packed array, but indicate the desired
3063 -- component size, for the back-end.
3064
3065 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
3066 end if;
3067 end;
3068 end if;
3069 end if;
3070 end;
3071 end if;
3072
def46b54
RD
3073 -- If ancestor subtype present, freeze that first. Note that this
3074 -- will also get the base type frozen.
70482933
RK
3075
3076 Atype := Ancestor_Subtype (E);
3077
3078 if Present (Atype) then
3079 Freeze_And_Append (Atype, Loc, Result);
3080
def46b54
RD
3081 -- Otherwise freeze the base type of the entity before freezing
3082 -- the entity itself (RM 13.14(15)).
70482933
RK
3083
3084 elsif E /= Base_Type (E) then
3085 Freeze_And_Append (Base_Type (E), Loc, Result);
3086 end if;
3087
fbf5a39b 3088 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
3089
3090 elsif Is_Derived_Type (E) then
3091 Freeze_And_Append (Etype (E), Loc, Result);
3092 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
3093 end if;
3094
3095 -- For array type, freeze index types and component type first
fbf5a39b 3096 -- before freezing the array (RM 13.14(15)).
70482933
RK
3097
3098 if Is_Array_Type (E) then
3099 declare
094cefda
AC
3100 FS : constant Entity_Id := First_Subtype (E);
3101 Ctyp : constant Entity_Id := Component_Type (E);
3102 Clause : Entity_Id;
70482933
RK
3103
3104 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
3105 -- Set true if any of the index types is an enumeration type
3106 -- with a non-standard representation.
70482933
RK
3107
3108 begin
3109 Freeze_And_Append (Ctyp, Loc, Result);
3110
3111 Indx := First_Index (E);
3112 while Present (Indx) loop
3113 Freeze_And_Append (Etype (Indx), Loc, Result);
3114
3115 if Is_Enumeration_Type (Etype (Indx))
3116 and then Has_Non_Standard_Rep (Etype (Indx))
3117 then
3118 Non_Standard_Enum := True;
3119 end if;
3120
3121 Next_Index (Indx);
3122 end loop;
3123
07fc65c4 3124 -- Processing that is done only for base types
70482933
RK
3125
3126 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3127
3128 -- Propagate flags for component type
3129
70482933
RK
3130 if Is_Controlled (Component_Type (E))
3131 or else Has_Controlled_Component (Ctyp)
3132 then
3133 Set_Has_Controlled_Component (E);
3134 end if;
3135
3136 if Has_Unchecked_Union (Component_Type (E)) then
3137 Set_Has_Unchecked_Union (E);
3138 end if;
70482933 3139
07fc65c4
GB
3140 -- If packing was requested or if the component size was set
3141 -- explicitly, then see if bit packing is required. This
3142 -- processing is only done for base types, since all the
3143 -- representation aspects involved are type-related. This
3144 -- is not just an optimization, if we start processing the
e14c931f 3145 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3146 -- type (this is because Is_Packed has a slightly different
3147 -- meaning before and after freezing).
70482933 3148
70482933
RK
3149 declare
3150 Csiz : Uint;
3151 Esiz : Uint;
3152
3153 begin
3154 if (Is_Packed (E) or else Has_Pragma_Pack (E))
70482933 3155 and then Known_Static_RM_Size (Ctyp)
094cefda 3156 and then not Has_Component_Size_Clause (E)
70482933
RK
3157 then
3158 Csiz := UI_Max (RM_Size (Ctyp), 1);
3159
3160 elsif Known_Component_Size (E) then
3161 Csiz := Component_Size (E);
3162
3163 elsif not Known_Static_Esize (Ctyp) then
3164 Csiz := Uint_0;
3165
3166 else
3167 Esiz := Esize (Ctyp);
3168
3169 -- We can set the component size if it is less than
3170 -- 16, rounding it up to the next storage unit size.
3171
3172 if Esiz <= 8 then
3173 Csiz := Uint_8;
3174 elsif Esiz <= 16 then
3175 Csiz := Uint_16;
3176 else
3177 Csiz := Uint_0;
3178 end if;
3179
7d8b9c99
RD
3180 -- Set component size up to match alignment if it
3181 -- would otherwise be less than the alignment. This
3182 -- deals with cases of types whose alignment exceeds
3183 -- their size (padded types).
70482933
RK
3184
3185 if Csiz /= 0 then
3186 declare
3187 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3188 begin
3189 if Csiz < A then
3190 Csiz := A;
3191 end if;
3192 end;
3193 end if;
70482933
RK
3194 end if;
3195
86cde7b1
RD
3196 -- Case of component size that may result in packing
3197
70482933 3198 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3199 declare
3200 Ent : constant Entity_Id :=
3201 First_Subtype (E);
3202 Pack_Pragma : constant Node_Id :=
3203 Get_Rep_Pragma (Ent, Name_Pack);
3204 Comp_Size_C : constant Node_Id :=
3205 Get_Attribute_Definition_Clause
3206 (Ent, Attribute_Component_Size);
3207 begin
3208 -- Warn if we have pack and component size so that
3209 -- the pack is ignored.
70482933 3210
86cde7b1
RD
3211 -- Note: here we must check for the presence of a
3212 -- component size before checking for a Pack pragma
3213 -- to deal with the case where the array type is a
3214 -- derived type whose parent is currently private.
3215
3216 if Present (Comp_Size_C)
3217 and then Has_Pragma_Pack (Ent)
094cefda 3218 and then Warn_On_Redundant_Constructs
86cde7b1
RD
3219 then
3220 Error_Msg_Sloc := Sloc (Comp_Size_C);
3221 Error_Msg_NE
3222 ("?pragma Pack for& ignored!",
3223 Pack_Pragma, Ent);
3224 Error_Msg_N
3225 ("\?explicit component size given#!",
3226 Pack_Pragma);
094cefda
AC
3227 Set_Is_Packed (Base_Type (Ent), False);
3228 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
86cde7b1 3229 end if;
70482933 3230
86cde7b1
RD
3231 -- Set component size if not already set by a
3232 -- component size clause.
70482933 3233
86cde7b1
RD
3234 if not Present (Comp_Size_C) then
3235 Set_Component_Size (E, Csiz);
3236 end if;
fbf5a39b 3237
86cde7b1
RD
3238 -- Check for base type of 8, 16, 32 bits, where an
3239 -- unsigned subtype has a length one less than the
3240 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3241
86cde7b1
RD
3242 -- In such cases, if a component size was not set
3243 -- explicitly, then generate a warning.
fbf5a39b 3244
86cde7b1
RD
3245 if Has_Pragma_Pack (E)
3246 and then not Present (Comp_Size_C)
3247 and then
3248 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3249 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3250 then
3251 Error_Msg_Uint_1 := Csiz;
3252
3253 if Present (Pack_Pragma) then
3254 Error_Msg_N
3255 ("?pragma Pack causes component size "
3256 & "to be ^!", Pack_Pragma);
3257 Error_Msg_N
3258 ("\?use Component_Size to set "
3259 & "desired value!", Pack_Pragma);
3260 end if;
fbf5a39b 3261 end if;
fbf5a39b 3262
86cde7b1
RD
3263 -- Actual packing is not needed for 8, 16, 32, 64.
3264 -- Also not needed for 24 if alignment is 1.
70482933 3265
86cde7b1
RD
3266 if Csiz = 8
3267 or else Csiz = 16
3268 or else Csiz = 32
3269 or else Csiz = 64
3270 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3271 then
3272 -- Here the array was requested to be packed,
3273 -- but the packing request had no effect, so
3274 -- Is_Packed is reset.
70482933 3275
86cde7b1
RD
3276 -- Note: semantically this means that we lose
3277 -- track of the fact that a derived type
3278 -- inherited a pragma Pack that was non-
3279 -- effective, but that seems fine.
70482933 3280
86cde7b1
RD
3281 -- We regard a Pack pragma as a request to set
3282 -- a representation characteristic, and this
3283 -- request may be ignored.
70482933 3284
094cefda
AC
3285 Set_Is_Packed (Base_Type (E), False);
3286 Set_Is_Bit_Packed_Array (Base_Type (E), False);
70482933 3287
094cefda
AC
3288 if Known_Static_Esize (Component_Type (E))
3289 and then Esize (Component_Type (E)) = Csiz
3290 then
3291 Set_Has_Non_Standard_Rep
3292 (Base_Type (E), False);
3293 end if;
3294
3295 -- In all other cases, packing is indeed needed
70482933 3296
86cde7b1 3297 else
094cefda
AC
3298 Set_Has_Non_Standard_Rep (Base_Type (E), True);
3299 Set_Is_Bit_Packed_Array (Base_Type (E), True);
3300 Set_Is_Packed (Base_Type (E), True);
86cde7b1
RD
3301 end if;
3302 end;
70482933
RK
3303 end if;
3304 end;
07fc65c4 3305
094cefda
AC
3306 -- Check for Atomic_Components or Aliased with unsuitable
3307 -- packing or explicit component size clause given.
3308
3309 if (Has_Atomic_Components (E)
3310 or else Has_Aliased_Components (E))
3311 and then (Has_Component_Size_Clause (E)
3312 or else Is_Packed (E))
3313 then
3314 Alias_Atomic_Check : declare
3315
3316 procedure Complain_CS (T : String);
3317 -- Outputs error messages for incorrect CS clause or
3318 -- pragma Pack for aliased or atomic components (T is
3319 -- "aliased" or "atomic");
3320
3321 -----------------
3322 -- Complain_CS --
3323 -----------------
3324
3325 procedure Complain_CS (T : String) is
3326 begin
3327 if Has_Component_Size_Clause (E) then
3328 Clause :=
3329 Get_Attribute_Definition_Clause
3330 (FS, Attribute_Component_Size);
3331
3332 if Known_Static_Esize (Ctyp) then
3333 Error_Msg_N
3334 ("incorrect component size for "
3335 & T & " components", Clause);
3336 Error_Msg_Uint_1 := Esize (Ctyp);
3337 Error_Msg_N
3338 ("\only allowed value is^", Clause);
3339
3340 else
3341 Error_Msg_N
3342 ("component size cannot be given for "
3343 & T & " components", Clause);
3344 end if;
3345
3346 else
3347 Error_Msg_N
3348 ("cannot pack " & T & " components",
3349 Get_Rep_Pragma (FS, Name_Pack));
3350 end if;
3351
3352 return;
3353 end Complain_CS;
3354
3355 -- Start of processing for Alias_Atomic_Check
3356
3357 begin
3358 -- Case where component size has no effect
3359
3360 if Known_Static_Esize (Ctyp)
3361 and then Known_Static_RM_Size (Ctyp)
3362 and then Esize (Ctyp) = RM_Size (Ctyp)
3363 and then Esize (Ctyp) mod 8 = 0
3364 then
3365 null;
3366
3367 elsif Has_Aliased_Components (E)
3368 or else Is_Aliased (Ctyp)
3369 then
3370 Complain_CS ("aliased");
3371
3372 elsif Has_Atomic_Components (E)
3373 or else Is_Atomic (Ctyp)
3374 then
3375 Complain_CS ("atomic");
3376 end if;
3377 end Alias_Atomic_Check;
3378 end if;
3379
3380 -- Warn for case of atomic type
3381
3382 Clause := Get_Rep_Pragma (FS, Name_Atomic);
3383
3384 if Present (Clause)
3385 and then not Addressable (Component_Size (FS))
3386 then
3387 Error_Msg_NE
3388 ("non-atomic components of type& may not be "
3389 & "accessible by separate tasks?", Clause, E);
3390
3391 if Has_Component_Size_Clause (E) then
3392 Error_Msg_Sloc :=
3393 Sloc
3394 (Get_Attribute_Definition_Clause
3395 (FS, Attribute_Component_Size));
3396 Error_Msg_N
3397 ("\because of component size clause#?",
3398 Clause);
3399
3400 elsif Has_Pragma_Pack (E) then
3401 Error_Msg_Sloc :=
3402 Sloc (Get_Rep_Pragma (FS, Name_Pack));
3403 Error_Msg_N
3404 ("\because of pragma Pack#?", Clause);
3405 end if;
3406 end if;
3407
07fc65c4
GB
3408 -- Processing that is done only for subtypes
3409
3410 else
3411 -- Acquire alignment from base type
3412
3413 if Unknown_Alignment (E) then
3414 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3415 Adjust_Esize_Alignment (E);
07fc65c4
GB
3416 end if;
3417 end if;
3418
d05ef0ab
AC
3419 -- For bit-packed arrays, check the size
3420
75a64833 3421 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
d05ef0ab 3422 declare
67ce0d7e
RD
3423 SizC : constant Node_Id := Size_Clause (E);
3424
d05ef0ab 3425 Discard : Boolean;
67ce0d7e 3426 pragma Warnings (Off, Discard);
d05ef0ab
AC
3427
3428 begin
3429 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3430 -- clause at this stage, but it is not worth worrying
3431 -- about. Post error on the entity name in the size
d05ef0ab
AC
3432 -- clause if present, else on the type entity itself.
3433
3434 if Present (SizC) then
7d8b9c99 3435 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3436 else
7d8b9c99 3437 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3438 end if;
3439 end;
3440 end if;
3441
70482933
RK
3442 -- If any of the index types was an enumeration type with
3443 -- a non-standard rep clause, then we indicate that the
3444 -- array type is always packed (even if it is not bit packed).
3445
3446 if Non_Standard_Enum then
3447 Set_Has_Non_Standard_Rep (Base_Type (E));
3448 Set_Is_Packed (Base_Type (E));
3449 end if;
70482933 3450
0da2c8ac 3451 Set_Component_Alignment_If_Not_Set (E);
70482933 3452
0da2c8ac
AC
3453 -- If the array is packed, we must create the packed array
3454 -- type to be used to actually implement the type. This is
3455 -- only needed for real array types (not for string literal
3456 -- types, since they are present only for the front end).
70482933 3457
0da2c8ac
AC
3458 if Is_Packed (E)
3459 and then Ekind (E) /= E_String_Literal_Subtype
3460 then
3461 Create_Packed_Array_Type (E);
3462 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 3463
0da2c8ac 3464 -- Size information of packed array type is copied to the
fea9e956 3465 -- array type, since this is really the representation. But
def46b54
RD
3466 -- do not override explicit existing size values. If the
3467 -- ancestor subtype is constrained the packed_array_type
3468 -- will be inherited from it, but the size may have been
3469 -- provided already, and must not be overridden either.
fea9e956 3470
def46b54
RD
3471 if not Has_Size_Clause (E)
3472 and then
3473 (No (Ancestor_Subtype (E))
3474 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3475 then
fea9e956
ES
3476 Set_Esize (E, Esize (Packed_Array_Type (E)));
3477 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3478 end if;
70482933 3479
fea9e956
ES
3480 if not Has_Alignment_Clause (E) then
3481 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3482 end if;
0da2c8ac
AC
3483 end if;
3484
def46b54
RD
3485 -- For non-packed arrays set the alignment of the array to the
3486 -- alignment of the component type if it is unknown. Skip this
3487 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3488
3489 if not Is_Packed (E)
3490 and then Unknown_Alignment (E)
3491 and then Known_Alignment (Ctyp)
3492 and then Known_Static_Component_Size (E)
3493 and then Known_Static_Esize (Ctyp)
3494 and then Esize (Ctyp) = Component_Size (E)
3495 and then not Is_Atomic (E)
3496 then
3497 Set_Alignment (E, Alignment (Component_Type (E)));
3498 end if;
3499 end;
70482933 3500
fbf5a39b
AC
3501 -- For a class-wide type, the corresponding specific type is
3502 -- frozen as well (RM 13.14(15))
70482933
RK
3503
3504 elsif Is_Class_Wide_Type (E) then
3505 Freeze_And_Append (Root_Type (E), Loc, Result);
3506
86cde7b1
RD
3507 -- If the base type of the class-wide type is still incomplete,
3508 -- the class-wide remains unfrozen as well. This is legal when
3509 -- E is the formal of a primitive operation of some other type
3510 -- which is being frozen.
3511
3512 if not Is_Frozen (Root_Type (E)) then
3513 Set_Is_Frozen (E, False);
3514 return Result;
3515 end if;
3516
70482933
RK
3517 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3518 -- parent of a derived type) and it is a library-level entity,
3519 -- generate an itype reference for it. Otherwise, its first
3520 -- explicit reference may be in an inner scope, which will be
3521 -- rejected by the back-end.
3522
3523 if Is_Itype (E)
3524 and then Is_Compilation_Unit (Scope (E))
3525 then
70482933 3526 declare
fbf5a39b 3527 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3528
3529 begin
3530 Set_Itype (Ref, E);
3531 if No (Result) then
3532 Result := New_List (Ref);
3533 else
3534 Append (Ref, Result);
3535 end if;
3536 end;
3537 end if;
3538
def46b54 3539 -- The equivalent type associated with a class-wide subtype needs
cbae498b 3540 -- to be frozen to ensure that its layout is done.
fbf5a39b
AC
3541
3542 if Ekind (E) = E_Class_Wide_Subtype
3543 and then Present (Equivalent_Type (E))
3544 then
3545 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3546 end if;
3547
3548 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3549 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3550 -- Is_Record_Type, because we don't want to attempt the freeze for
3551 -- the case of a private type with record extension (we will do that
3552 -- later when the full type is frozen).
70482933
RK
3553
3554 elsif Ekind (E) = E_Record_Type
fd366a46 3555 or else Ekind (E) = E_Record_Subtype
70482933
RK
3556 then
3557 Freeze_Record_Type (E);
3558
3559 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3560 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3561 -- record type is essentially part of the concurrent type.
3562 -- Freeze as well all local entities. This includes record types
3563 -- created for entry parameter blocks, and whatever local entities
3564 -- may appear in the private part.
3565
3566 elsif Is_Concurrent_Type (E) then
3567 if Present (Corresponding_Record_Type (E)) then
3568 Freeze_And_Append
3569 (Corresponding_Record_Type (E), Loc, Result);
3570 end if;
3571
3572 Comp := First_Entity (E);
70482933
RK
3573 while Present (Comp) loop
3574 if Is_Type (Comp) then
3575 Freeze_And_Append (Comp, Loc, Result);
3576
3577 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3578 if Is_Itype (Etype (Comp))
3579 and then Underlying_Type (Scope (Etype (Comp))) = E
3580 then
3581 Undelay_Type (Etype (Comp));
3582 end if;
3583
70482933
RK
3584 Freeze_And_Append (Etype (Comp), Loc, Result);
3585 end if;
3586
3587 Next_Entity (Comp);
3588 end loop;
3589
ee094616
RD
3590 -- Private types are required to point to the same freeze node as
3591 -- their corresponding full views. The freeze node itself has to
3592 -- point to the partial view of the entity (because from the partial
3593 -- view, we can retrieve the full view, but not the reverse).
3594 -- However, in order to freeze correctly, we need to freeze the full
3595 -- view. If we are freezing at the end of a scope (or within the
3596 -- scope of the private type), the partial and full views will have
3597 -- been swapped, the full view appears first in the entity chain and
3598 -- the swapping mechanism ensures that the pointers are properly set
3599 -- (on scope exit).
3600
3601 -- If we encounter the partial view before the full view (e.g. when
3602 -- freezing from another scope), we freeze the full view, and then
3603 -- set the pointers appropriately since we cannot rely on swapping to
3604 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3605
3606 elsif Is_Incomplete_Or_Private_Type (E)
3607 and then not Is_Generic_Type (E)
3608 then
86cde7b1
RD
3609 -- The construction of the dispatch table associated with library
3610 -- level tagged types forces freezing of all the primitives of the
3611 -- type, which may cause premature freezing of the partial view.
3612 -- For example:
3613
3614 -- package Pkg is
3615 -- type T is tagged private;
3616 -- type DT is new T with private;
3617 -- procedure Prim (X : in out T; Y : in out DT'class);
3618 -- private
3619 -- type T is tagged null record;
3620 -- Obj : T;
3621 -- type DT is new T with null record;
3622 -- end;
3623
3624 -- In this case the type will be frozen later by the usual
3625 -- mechanism: an object declaration, an instantiation, or the
3626 -- end of a declarative part.
3627
3628 if Is_Library_Level_Tagged_Type (E)
3629 and then not Present (Full_View (E))
3630 then
3631 Set_Is_Frozen (E, False);
3632 return Result;
3633
70482933
RK
3634 -- Case of full view present
3635
86cde7b1 3636 elsif Present (Full_View (E)) then
70482933 3637
ee094616
RD
3638 -- If full view has already been frozen, then no further
3639 -- processing is required
70482933
RK
3640
3641 if Is_Frozen (Full_View (E)) then
3642
3643 Set_Has_Delayed_Freeze (E, False);
3644 Set_Freeze_Node (E, Empty);
3645 Check_Debug_Info_Needed (E);
3646
ee094616
RD
3647 -- Otherwise freeze full view and patch the pointers so that
3648 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3649
3650 else
fbf5a39b
AC
3651 declare
3652 Full : constant Entity_Id := Full_View (E);
70482933 3653
fbf5a39b
AC
3654 begin
3655 if Is_Private_Type (Full)
3656 and then Present (Underlying_Full_View (Full))
3657 then
3658 Freeze_And_Append
3659 (Underlying_Full_View (Full), Loc, Result);
3660 end if;
70482933 3661
fbf5a39b 3662 Freeze_And_Append (Full, Loc, Result);
70482933 3663
fbf5a39b
AC
3664 if Has_Delayed_Freeze (E) then
3665 F_Node := Freeze_Node (Full);
70482933 3666
fbf5a39b
AC
3667 if Present (F_Node) then
3668 Set_Freeze_Node (E, F_Node);
3669 Set_Entity (F_Node, E);
3670
3671 else
def46b54
RD
3672 -- {Incomplete,Private}_Subtypes with Full_Views
3673 -- constrained by discriminants.
fbf5a39b
AC
3674
3675 Set_Has_Delayed_Freeze (E, False);
3676 Set_Freeze_Node (E, Empty);
3677 end if;
70482933 3678 end if;
fbf5a39b 3679 end;
70482933
RK
3680
3681 Check_Debug_Info_Needed (E);
3682 end if;
3683
ee094616
RD
3684 -- AI-117 requires that the convention of a partial view be the
3685 -- same as the convention of the full view. Note that this is a
3686 -- recognized breach of privacy, but it's essential for logical
3687 -- consistency of representation, and the lack of a rule in
3688 -- RM95 was an oversight.
70482933
RK
3689
3690 Set_Convention (E, Convention (Full_View (E)));
3691
3692 Set_Size_Known_At_Compile_Time (E,
3693 Size_Known_At_Compile_Time (Full_View (E)));
3694
3695 -- Size information is copied from the full view to the
def46b54 3696 -- incomplete or private view for consistency.
70482933 3697
ee094616
RD
3698 -- We skip this is the full view is not a type. This is very
3699 -- strange of course, and can only happen as a result of
3700 -- certain illegalities, such as a premature attempt to derive
3701 -- from an incomplete type.
70482933
RK
3702
3703 if Is_Type (Full_View (E)) then
3704 Set_Size_Info (E, Full_View (E));
3705 Set_RM_Size (E, RM_Size (Full_View (E)));
3706 end if;
3707
3708 return Result;
3709
3710 -- Case of no full view present. If entity is derived or subtype,
3711 -- it is safe to freeze, correctness depends on the frozen status
3712 -- of parent. Otherwise it is either premature usage, or a Taft
3713 -- amendment type, so diagnosis is at the point of use and the
3714 -- type might be frozen later.
3715
3716 elsif E /= Base_Type (E)
3717 or else Is_Derived_Type (E)
3718 then
3719 null;
3720
3721 else
3722 Set_Is_Frozen (E, False);
3723 return No_List;
3724 end if;
3725
3726 -- For access subprogram, freeze types of all formals, the return
3727 -- type was already frozen, since it is the Etype of the function.
8aec446b 3728 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3729 -- they cannot be incomplete.
70482933
RK
3730
3731 elsif Ekind (E) = E_Subprogram_Type then
3732 Formal := First_Formal (E);
8aec446b 3733
70482933 3734 while Present (Formal) loop
8aec446b
AC
3735 if Ekind (Etype (Formal)) = E_Incomplete_Type
3736 and then No (Full_View (Etype (Formal)))
3737 and then not Is_Value_Type (Etype (Formal))
3738 then
3739 if Is_Tagged_Type (Etype (Formal)) then
3740 null;
dd386db0
AC
3741
3742 -- AI05-151 : incomplete types are allowed in access to
3743 -- subprogram specifications.
3744
3745 elsif Ada_Version < Ada_2012 then
8aec446b
AC
3746 Error_Msg_NE
3747 ("invalid use of incomplete type&", E, Etype (Formal));
3748 end if;
3749 end if;
3750
70482933
RK
3751 Freeze_And_Append (Etype (Formal), Loc, Result);
3752 Next_Formal (Formal);
3753 end loop;
3754
70482933
RK
3755 Freeze_Subprogram (E);
3756
ee094616
RD
3757 -- For access to a protected subprogram, freeze the equivalent type
3758 -- (however this is not set if we are not generating code or if this
3759 -- is an anonymous type used just for resolution).
70482933 3760
fea9e956 3761 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3762 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3763 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3764 end if;
70482933
RK
3765 end if;
3766
3767 -- Generic types are never seen by the back-end, and are also not
3768 -- processed by the expander (since the expander is turned off for
3769 -- generic processing), so we never need freeze nodes for them.
3770
3771 if Is_Generic_Type (E) then
3772 return Result;
3773 end if;
3774
3775 -- Some special processing for non-generic types to complete
3776 -- representation details not known till the freeze point.
3777
3778 if Is_Fixed_Point_Type (E) then
3779 Freeze_Fixed_Point_Type (E);
3780
ee094616
RD
3781 -- Some error checks required for ordinary fixed-point type. Defer
3782 -- these till the freeze-point since we need the small and range
3783 -- values. We only do these checks for base types
fbf5a39b
AC
3784
3785 if Is_Ordinary_Fixed_Point_Type (E)
3786 and then E = Base_Type (E)
3787 then
3788 if Small_Value (E) < Ureal_2_M_80 then
3789 Error_Msg_Name_1 := Name_Small;
3790 Error_Msg_N
7d8b9c99 3791 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3792
3793 elsif Small_Value (E) > Ureal_2_80 then
3794 Error_Msg_Name_1 := Name_Small;
3795 Error_Msg_N
7d8b9c99 3796 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3797 end if;
3798
3799 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3800 Error_Msg_Name_1 := Name_First;
3801 Error_Msg_N
7d8b9c99 3802 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3803 end if;
3804
3805 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3806 Error_Msg_Name_1 := Name_Last;
3807 Error_Msg_N
7d8b9c99 3808 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3809 end if;
3810 end if;
3811
70482933
RK
3812 elsif Is_Enumeration_Type (E) then
3813 Freeze_Enumeration_Type (E);
3814
3815 elsif Is_Integer_Type (E) then
3816 Adjust_Esize_For_Alignment (E);
3817
79afa047
AC
3818 if Is_Modular_Integer_Type (E)
3819 and then Warn_On_Suspicious_Modulus_Value
3820 then
67b3acf8
RD
3821 Check_Suspicious_Modulus (E);
3822 end if;
3823
edd63e9b
ES
3824 elsif Is_Access_Type (E) then
3825
3826 -- Check restriction for standard storage pool
3827
3828 if No (Associated_Storage_Pool (E)) then
3829 Check_Restriction (No_Standard_Storage_Pools, E);
3830 end if;
3831
3832 -- Deal with error message for pure access type. This is not an
3833 -- error in Ada 2005 if there is no pool (see AI-366).
3834
3835 if Is_Pure_Unit_Access_Type (E)
0791fbe9 3836 and then (Ada_Version < Ada_2005
c6a9797e 3837 or else not No_Pool_Assigned (E))
edd63e9b
ES
3838 then
3839 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e 3840
0791fbe9 3841 if Ada_Version >= Ada_2005 then
c6a9797e
RD
3842 Error_Msg_N
3843 ("\would be legal if Storage_Size of 0 given?", E);
3844
3845 elsif No_Pool_Assigned (E) then
3846 Error_Msg_N
3847 ("\would be legal in Ada 2005?", E);
3848
3849 else
3850 Error_Msg_N
3851 ("\would be legal in Ada 2005 if "
3852 & "Storage_Size of 0 given?", E);
3853 end if;
edd63e9b 3854 end if;
70482933
RK
3855 end if;
3856
edd63e9b
ES
3857 -- Case of composite types
3858
70482933
RK
3859 if Is_Composite_Type (E) then
3860
edd63e9b
ES
3861 -- AI-117 requires that all new primitives of a tagged type must
3862 -- inherit the convention of the full view of the type. Inherited
3863 -- and overriding operations are defined to inherit the convention
3864 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3865 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3866 -- and New_Overloaded_Entity). Here we set the convention of
3867 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3868 -- that any new primitives inherit the type's convention. Class-
3869 -- wide types can have a foreign convention inherited from their
3870 -- specific type, but are excluded from this since they don't have
3871 -- any associated primitives.
70482933
RK
3872
3873 if Is_Tagged_Type (E)
3874 and then not Is_Class_Wide_Type (E)
3875 and then Convention (E) /= Convention_Ada
3876 then
3877 declare
3878 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3879 Prim : Elmt_Id;
70482933 3880 begin
07fc65c4 3881 Prim := First_Elmt (Prim_List);
70482933
RK
3882 while Present (Prim) loop
3883 if Convention (Node (Prim)) = Convention_Ada then
3884 Set_Convention (Node (Prim), Convention (E));
3885 end if;
3886
3887 Next_Elmt (Prim);
3888 end loop;
3889 end;
3890 end if;
3891 end if;
3892
ee094616
RD
3893 -- Now that all types from which E may depend are frozen, see if the
3894 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3895 -- strict alignment is required
70482933
RK
3896
3897 Check_Compile_Time_Size (E);
3898 Check_Unsigned_Type (E);
3899
3900 if Base_Type (E) = E then
3901 Check_Strict_Alignment (E);
3902 end if;
3903
3904 -- Do not allow a size clause for a type which does not have a size
3905 -- that is known at compile time
3906
3907 if Has_Size_Clause (E)
3908 and then not Size_Known_At_Compile_Time (E)
3909 then
e14c931f 3910 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
3911 -- in all errors mode, since this is often a junk message
3912
3913 if not Error_Posted (E) then
3914 Error_Msg_N
3915 ("size clause not allowed for variable length type",
3916 Size_Clause (E));
3917 end if;
70482933
RK
3918 end if;
3919
3920 -- Remaining process is to set/verify the representation information,
3921 -- in particular the size and alignment values. This processing is
3922 -- not required for generic types, since generic types do not play
3923 -- any part in code generation, and so the size and alignment values
c6823a20 3924 -- for such types are irrelevant.
70482933
RK
3925
3926 if Is_Generic_Type (E) then
3927 return Result;
3928
3929 -- Otherwise we call the layout procedure
3930
3931 else
3932 Layout_Type (E);
3933 end if;
3934
3935 -- End of freeze processing for type entities
3936 end if;
3937
3938 -- Here is where we logically freeze the current entity. If it has a
3939 -- freeze node, then this is the point at which the freeze node is
3940 -- linked into the result list.
3941
3942 if Has_Delayed_Freeze (E) then
3943
3944 -- If a freeze node is already allocated, use it, otherwise allocate
3945 -- a new one. The preallocation happens in the case of anonymous base
3946 -- types, where we preallocate so that we can set First_Subtype_Link.
3947 -- Note that we reset the Sloc to the current freeze location.
3948
3949 if Present (Freeze_Node (E)) then
3950 F_Node := Freeze_Node (E);
3951 Set_Sloc (F_Node, Loc);
3952
3953 else
3954 F_Node := New_Node (N_Freeze_Entity, Loc);
3955 Set_Freeze_Node (E, F_Node);
3956 Set_Access_Types_To_Process (F_Node, No_Elist);
3957 Set_TSS_Elist (F_Node, No_Elist);
3958 Set_Actions (F_Node, No_List);
3959 end if;
3960
3961 Set_Entity (F_Node, E);
3962
3963 if Result = No_List then
3964 Result := New_List (F_Node);
3965 else
3966 Append (F_Node, Result);
3967 end if;
35ae2ed8
AC
3968
3969 -- A final pass over record types with discriminants. If the type
3970 -- has an incomplete declaration, there may be constrained access
3971 -- subtypes declared elsewhere, which do not depend on the discrimi-
3972 -- nants of the type, and which are used as component types (i.e.
3973 -- the full view is a recursive type). The designated types of these
3974 -- subtypes can only be elaborated after the type itself, and they
3975 -- need an itype reference.
3976
3977 if Ekind (E) = E_Record_Type
3978 and then Has_Discriminants (E)
3979 then
3980 declare
3981 Comp : Entity_Id;
3982 IR : Node_Id;
3983 Typ : Entity_Id;
3984
3985 begin
3986 Comp := First_Component (E);
3987
3988 while Present (Comp) loop
3989 Typ := Etype (Comp);
3990
3991 if Ekind (Comp) = E_Component
3992 and then Is_Access_Type (Typ)
3993 and then Scope (Typ) /= E
3994 and then Base_Type (Designated_Type (Typ)) = E
3995 and then Is_Itype (Designated_Type (Typ))
3996 then
3997 IR := Make_Itype_Reference (Sloc (Comp));
3998 Set_Itype (IR, Designated_Type (Typ));
3999 Append (IR, Result);
4000 end if;
4001
4002 Next_Component (Comp);
4003 end loop;
4004 end;
4005 end if;
70482933
RK
4006 end if;
4007
4008 -- When a type is frozen, the first subtype of the type is frozen as
4009 -- well (RM 13.14(15)). This has to be done after freezing the type,
4010 -- since obviously the first subtype depends on its own base type.
4011
4012 if Is_Type (E) then
4013 Freeze_And_Append (First_Subtype (E), Loc, Result);
4014
4015 -- If we just froze a tagged non-class wide record, then freeze the
4016 -- corresponding class-wide type. This must be done after the tagged
4017 -- type itself is frozen, because the class-wide type refers to the
4018 -- tagged type which generates the class.
4019
4020 if Is_Tagged_Type (E)
4021 and then not Is_Class_Wide_Type (E)
4022 and then Present (Class_Wide_Type (E))
4023 then
4024 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
4025 end if;
4026 end if;
4027
4028 Check_Debug_Info_Needed (E);
4029
4030 -- Special handling for subprograms
4031
4032 if Is_Subprogram (E) then
4033
4034 -- If subprogram has address clause then reset Is_Public flag, since
4035 -- we do not want the backend to generate external references.
4036
4037 if Present (Address_Clause (E))
4038 and then not Is_Library_Level_Entity (E)
4039 then
4040 Set_Is_Public (E, False);
4041
4042 -- If no address clause and not intrinsic, then for imported
4043 -- subprogram in main unit, generate descriptor if we are in
4044 -- Propagate_Exceptions mode.
4045
4046 elsif Propagate_Exceptions
4047 and then Is_Imported (E)
4048 and then not Is_Intrinsic_Subprogram (E)
4049 and then Convention (E) /= Convention_Stubbed
4050 then
4051 if Result = No_List then
4052 Result := Empty_List;
4053 end if;
70482933 4054 end if;
70482933
RK
4055 end if;
4056
4057 return Result;
4058 end Freeze_Entity;
4059
4060 -----------------------------
4061 -- Freeze_Enumeration_Type --
4062 -----------------------------
4063
4064 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4065 begin
d677afa9
ES
4066 -- By default, if no size clause is present, an enumeration type with
4067 -- Convention C is assumed to interface to a C enum, and has integer
4068 -- size. This applies to types. For subtypes, verify that its base
4069 -- type has no size clause either.
4070
70482933
RK
4071 if Has_Foreign_Convention (Typ)
4072 and then not Has_Size_Clause (Typ)
d677afa9 4073 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
4074 and then Esize (Typ) < Standard_Integer_Size
4075 then
4076 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 4077
70482933 4078 else
d677afa9
ES
4079 -- If the enumeration type interfaces to C, and it has a size clause
4080 -- that specifies less than int size, it warrants a warning. The
4081 -- user may intend the C type to be an enum or a char, so this is
4082 -- not by itself an error that the Ada compiler can detect, but it
4083 -- it is a worth a heads-up. For Boolean and Character types we
4084 -- assume that the programmer has the proper C type in mind.
4085
4086 if Convention (Typ) = Convention_C
4087 and then Has_Size_Clause (Typ)
4088 and then Esize (Typ) /= Esize (Standard_Integer)
4089 and then not Is_Boolean_Type (Typ)
4090 and then not Is_Character_Type (Typ)
4091 then
4092 Error_Msg_N
4093 ("C enum types have the size of a C int?", Size_Clause (Typ));
4094 end if;
4095
70482933
RK
4096 Adjust_Esize_For_Alignment (Typ);
4097 end if;
4098 end Freeze_Enumeration_Type;
4099
4100 -----------------------
4101 -- Freeze_Expression --
4102 -----------------------
4103
4104 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
4105 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4106 Typ : Entity_Id;
4107 Nam : Entity_Id;
4108 Desig_Typ : Entity_Id;
4109 P : Node_Id;
4110 Parent_P : Node_Id;
70482933
RK
4111
4112 Freeze_Outside : Boolean := False;
4113 -- This flag is set true if the entity must be frozen outside the
4114 -- current subprogram. This happens in the case of expander generated
4115 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4116 -- not freeze all entities like other bodies, but which nevertheless
4117 -- may reference entities that have to be frozen before the body and
4118 -- obviously cannot be frozen inside the body.
4119
4120 function In_Exp_Body (N : Node_Id) return Boolean;
4121 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 4122 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
4123 -- subprogram (init proc, stream subprogram, or renaming as body).
4124 -- If so, this is not a freezing context.
70482933 4125
fbf5a39b
AC
4126 -----------------
4127 -- In_Exp_Body --
4128 -----------------
4129
70482933 4130 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
4131 P : Node_Id;
4132 Id : Entity_Id;
70482933
RK
4133
4134 begin
4135 if Nkind (N) = N_Subprogram_Body then
4136 P := N;
4137 else
4138 P := Parent (N);
4139 end if;
4140
4141 if Nkind (P) /= N_Subprogram_Body then
4142 return False;
4143
4144 else
7d8b9c99
RD
4145 Id := Defining_Unit_Name (Specification (P));
4146
4147 if Nkind (Id) = N_Defining_Identifier
4148 and then (Is_Init_Proc (Id) or else
4149 Is_TSS (Id, TSS_Stream_Input) or else
4150 Is_TSS (Id, TSS_Stream_Output) or else
4151 Is_TSS (Id, TSS_Stream_Read) or else
4152 Is_TSS (Id, TSS_Stream_Write) or else
4153 Nkind (Original_Node (P)) =
4154 N_Subprogram_Renaming_Declaration)
70482933
RK
4155 then
4156 return True;
4157 else
4158 return False;
4159 end if;
4160 end if;
70482933
RK
4161 end In_Exp_Body;
4162
4163 -- Start of processing for Freeze_Expression
4164
4165 begin
edd63e9b
ES
4166 -- Immediate return if freezing is inhibited. This flag is set by the
4167 -- analyzer to stop freezing on generated expressions that would cause
4168 -- freezing if they were in the source program, but which are not
4169 -- supposed to freeze, since they are created.
70482933
RK
4170
4171 if Must_Not_Freeze (N) then
4172 return;
4173 end if;
4174
4175 -- If expression is non-static, then it does not freeze in a default
4176 -- expression, see section "Handling of Default Expressions" in the
4177 -- spec of package Sem for further details. Note that we have to
4178 -- make sure that we actually have a real expression (if we have
4179 -- a subtype indication, we can't test Is_Static_Expression!)
4180
c6a9797e 4181 if In_Spec_Exp
70482933
RK
4182 and then Nkind (N) in N_Subexpr
4183 and then not Is_Static_Expression (N)
4184 then
4185 return;
4186 end if;
4187
4188 -- Freeze type of expression if not frozen already
4189
fbf5a39b
AC
4190 Typ := Empty;
4191
4192 if Nkind (N) in N_Has_Etype then
4193 if not Is_Frozen (Etype (N)) then
4194 Typ := Etype (N);
4195
4196 -- Base type may be an derived numeric type that is frozen at
4197 -- the point of declaration, but first_subtype is still unfrozen.
4198
4199 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4200 Typ := First_Subtype (Etype (N));
4201 end if;
70482933
RK
4202 end if;
4203
4204 -- For entity name, freeze entity if not frozen already. A special
4205 -- exception occurs for an identifier that did not come from source.
4206 -- We don't let such identifiers freeze a non-internal entity, i.e.
4207 -- an entity that did come from source, since such an identifier was
4208 -- generated by the expander, and cannot have any semantic effect on
4209 -- the freezing semantics. For example, this stops the parameter of
4210 -- an initialization procedure from freezing the variable.
4211
4212 if Is_Entity_Name (N)
4213 and then not Is_Frozen (Entity (N))
4214 and then (Nkind (N) /= N_Identifier
4215 or else Comes_From_Source (N)
4216 or else not Comes_From_Source (Entity (N)))
4217 then
4218 Nam := Entity (N);
70482933
RK
4219 else
4220 Nam := Empty;
4221 end if;
4222
49e90211 4223 -- For an allocator freeze designated type if not frozen already
70482933 4224
ee094616
RD
4225 -- For an aggregate whose component type is an access type, freeze the
4226 -- designated type now, so that its freeze does not appear within the
4227 -- loop that might be created in the expansion of the aggregate. If the
4228 -- designated type is a private type without full view, the expression
4229 -- cannot contain an allocator, so the type is not frozen.
70482933 4230
7aedb36a
AC
4231 -- For a function, we freeze the entity when the subprogram declaration
4232 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 4233 -- before the declaration is frozen. We need to generate the extra
7aedb36a 4234 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
4235 -- the proper actuals. This only applies to Ada subprograms, not to
4236 -- imported ones.
7aedb36a 4237
70482933 4238 Desig_Typ := Empty;
70482933 4239
fbf5a39b 4240 case Nkind (N) is
70482933
RK
4241 when N_Allocator =>
4242 Desig_Typ := Designated_Type (Etype (N));
4243
4244 when N_Aggregate =>
4245 if Is_Array_Type (Etype (N))
4246 and then Is_Access_Type (Component_Type (Etype (N)))
4247 then
4248 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4249 end if;
4250
4251 when N_Selected_Component |
4252 N_Indexed_Component |
4253 N_Slice =>
4254
4255 if Is_Access_Type (Etype (Prefix (N))) then
4256 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4257 end if;
4258
7aedb36a
AC
4259 when N_Identifier =>
4260 if Present (Nam)
4261 and then Ekind (Nam) = E_Function
4262 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 4263 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
4264 then
4265 Create_Extra_Formals (Nam);
4266 end if;
4267
70482933
RK
4268 when others =>
4269 null;
70482933
RK
4270 end case;
4271
4272 if Desig_Typ /= Empty
4273 and then (Is_Frozen (Desig_Typ)
4274 or else (not Is_Fully_Defined (Desig_Typ)))
4275 then
4276 Desig_Typ := Empty;
4277 end if;
4278
4279 -- All done if nothing needs freezing
4280
4281 if No (Typ)
4282 and then No (Nam)
4283 and then No (Desig_Typ)
4284 then
4285 return;
4286 end if;
4287
f6cf5b85 4288 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
4289 -- exiting from the loop when it is appropriate to insert the freeze
4290 -- node before the current node P.
4291
bce79204
AC
4292 -- Also checks some special exceptions to the freezing rules. These
4293 -- cases result in a direct return, bypassing the freeze action.
70482933
RK
4294
4295 P := N;
4296 loop
4297 Parent_P := Parent (P);
4298
ee094616
RD
4299 -- If we don't have a parent, then we are not in a well-formed tree.
4300 -- This is an unusual case, but there are some legitimate situations
4301 -- in which this occurs, notably when the expressions in the range of
4302 -- a type declaration are resolved. We simply ignore the freeze
4303 -- request in this case. Is this right ???
70482933
RK
4304
4305 if No (Parent_P) then
4306 return;
4307 end if;
4308
4309 -- See if we have got to an appropriate point in the tree
4310
4311 case Nkind (Parent_P) is
4312
edd63e9b
ES
4313 -- A special test for the exception of (RM 13.14(8)) for the case
4314 -- of per-object expressions (RM 3.8(18)) occurring in component
4315 -- definition or a discrete subtype definition. Note that we test
4316 -- for a component declaration which includes both cases we are
4317 -- interested in, and furthermore the tree does not have explicit
4318 -- nodes for either of these two constructs.
70482933
RK
4319
4320 when N_Component_Declaration =>
4321
4322 -- The case we want to test for here is an identifier that is
4323 -- a per-object expression, this is either a discriminant that
4324 -- appears in a context other than the component declaration
4325 -- or it is a reference to the type of the enclosing construct.
4326
4327 -- For either of these cases, we skip the freezing
4328
c6a9797e 4329 if not In_Spec_Expression
70482933
RK
4330 and then Nkind (N) = N_Identifier
4331 and then (Present (Entity (N)))
4332 then
4333 -- We recognize the discriminant case by just looking for
4334 -- a reference to a discriminant. It can only be one for
4335 -- the enclosing construct. Skip freezing in this case.
4336
4337 if Ekind (Entity (N)) = E_Discriminant then
4338 return;
4339
4340 -- For the case of a reference to the enclosing record,
4341 -- (or task or protected type), we look for a type that
4342 -- matches the current scope.
4343
4344 elsif Entity (N) = Current_Scope then
4345 return;
4346 end if;
4347 end if;
4348
edd63e9b
ES
4349 -- If we have an enumeration literal that appears as the choice in
4350 -- the aggregate of an enumeration representation clause, then
4351 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4352
4353 when N_Enumeration_Representation_Clause =>
4354
4355 -- The case we are looking for is an enumeration literal
4356
4357 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4358 and then Is_Enumeration_Type (Etype (N))
4359 then
4360 -- If enumeration literal appears directly as the choice,
e14c931f 4361 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4362
4363 if Nkind (Parent (N)) = N_Component_Association
4364 and then First (Choices (Parent (N))) = N
4365 then
4366 return;
4367
ee094616
RD
4368 -- If enumeration literal appears as the name of function
4369 -- which is the choice, then also do not freeze. This
4370 -- happens in the overloaded literal case, where the
70482933
RK
4371 -- enumeration literal is temporarily changed to a function
4372 -- call for overloading analysis purposes.
4373
4374 elsif Nkind (Parent (N)) = N_Function_Call
4375 and then
4376 Nkind (Parent (Parent (N))) = N_Component_Association
4377 and then
4378 First (Choices (Parent (Parent (N)))) = Parent (N)
4379 then
4380 return;
4381 end if;
4382 end if;
4383
4384 -- Normally if the parent is a handled sequence of statements,
4385 -- then the current node must be a statement, and that is an
4386 -- appropriate place to insert a freeze node.
4387
4388 when N_Handled_Sequence_Of_Statements =>
4389
edd63e9b
ES
4390 -- An exception occurs when the sequence of statements is for
4391 -- an expander generated body that did not do the usual freeze
4392 -- all operation. In this case we usually want to freeze
4393 -- outside this body, not inside it, and we skip past the
4394 -- subprogram body that we are inside.
70482933
RK
4395
4396 if In_Exp_Body (Parent_P) then
4397
4398 -- However, we *do* want to freeze at this point if we have
4399 -- an entity to freeze, and that entity is declared *inside*
4400 -- the body of the expander generated procedure. This case
4401 -- is recognized by the scope of the type, which is either
4402 -- the spec for some enclosing body, or (in the case of
4403 -- init_procs, for which there are no separate specs) the
4404 -- current scope.
4405
4406 declare
4407 Subp : constant Node_Id := Parent (Parent_P);
4408 Cspc : Entity_Id;
4409
4410 begin
4411 if Nkind (Subp) = N_Subprogram_Body then
4412 Cspc := Corresponding_Spec (Subp);
4413
4414 if (Present (Typ) and then Scope (Typ) = Cspc)
4415 or else
4416 (Present (Nam) and then Scope (Nam) = Cspc)
4417 then
4418 exit;
4419
4420 elsif Present (Typ)
4421 and then Scope (Typ) = Current_Scope
4422 and then Current_Scope = Defining_Entity (Subp)
4423 then
4424 exit;
4425 end if;
4426 end if;
4427 end;
4428
4429 -- If not that exception to the exception, then this is
4430 -- where we delay the freeze till outside the body.
4431
4432 Parent_P := Parent (Parent_P);
4433 Freeze_Outside := True;
4434
4435 -- Here if normal case where we are in handled statement
4436 -- sequence and want to do the insertion right there.
4437
4438 else
4439 exit;
4440 end if;
4441
ee094616
RD
4442 -- If parent is a body or a spec or a block, then the current node
4443 -- is a statement or declaration and we can insert the freeze node
4444 -- before it.
70482933
RK
4445
4446 when N_Package_Specification |
4447 N_Package_Body |
4448 N_Subprogram_Body |
4449 N_Task_Body |
4450 N_Protected_Body |
4451 N_Entry_Body |
4452 N_Block_Statement => exit;
4453
4454 -- The expander is allowed to define types in any statements list,
4455 -- so any of the following parent nodes also mark a freezing point
4456 -- if the actual node is in a list of statements or declarations.
4457
4458 when N_Exception_Handler |
4459 N_If_Statement |
4460 N_Elsif_Part |
4461 N_Case_Statement_Alternative |
4462 N_Compilation_Unit_Aux |
4463 N_Selective_Accept |
4464 N_Accept_Alternative |
4465 N_Delay_Alternative |
4466 N_Conditional_Entry_Call |
4467 N_Entry_Call_Alternative |
4468 N_Triggering_Alternative |
4469 N_Abortable_Part |
bce79204
AC
4470 N_And_Then |
4471 N_Or_Else |
70482933
RK
4472 N_Freeze_Entity =>
4473
4474 exit when Is_List_Member (P);
4475
4476 -- Note: The N_Loop_Statement is a special case. A type that
4477 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4478 -- occurs only because of a loop expanded by the expander), so we
4479 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4480 -- of any entity which comes from source. (if they have predefined
4481 -- type, that type does not appear to come from source, but the
4482 -- entity should not be frozen here).
70482933
RK
4483
4484 when N_Loop_Statement =>
4485 exit when not Comes_From_Source (Etype (N))
4486 and then (No (Nam) or else not Comes_From_Source (Nam));
4487
4488 -- For all other cases, keep looking at parents
4489
4490 when others =>
4491 null;
4492 end case;
4493
4494 -- We fall through the case if we did not yet find the proper
4495 -- place in the free for inserting the freeze node, so climb!
4496
4497 P := Parent_P;
4498 end loop;
4499
edd63e9b
ES
4500 -- If the expression appears in a record or an initialization procedure,
4501 -- the freeze nodes are collected and attached to the current scope, to
4502 -- be inserted and analyzed on exit from the scope, to insure that
4503 -- generated entities appear in the correct scope. If the expression is
4504 -- a default for a discriminant specification, the scope is still void.
4505 -- The expression can also appear in the discriminant part of a private
4506 -- or concurrent type.
70482933 4507
c6823a20 4508 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4509 -- enclosing record declaration, the freeze nodes must be attached to
4510 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4511 -- enclosing declaration list.
4512
ee094616
RD
4513 -- The other case requiring this special handling is if we are in a
4514 -- default expression, since in that case we are about to freeze a
4515 -- static type, and the freeze scope needs to be the outer scope, not
4516 -- the scope of the subprogram with the default parameter.
70482933 4517
c6a9797e
RD
4518 -- For default expressions and other spec expressions in generic units,
4519 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4520 -- placing them at the proper place, after the generic unit.
70482933 4521
c6a9797e 4522 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4523 or else Freeze_Outside
4524 or else (Is_Type (Current_Scope)
4525 and then (not Is_Concurrent_Type (Current_Scope)
4526 or else not Has_Completion (Current_Scope)))
4527 or else Ekind (Current_Scope) = E_Void
4528 then
4529 declare
4530 Loc : constant Source_Ptr := Sloc (Current_Scope);
4531 Freeze_Nodes : List_Id := No_List;
c6823a20 4532 Pos : Int := Scope_Stack.Last;
70482933
RK
4533
4534 begin
4535 if Present (Desig_Typ) then
4536 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4537 end if;
4538
4539 if Present (Typ) then
4540 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4541 end if;
4542
4543 if Present (Nam) then
4544 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4545 end if;
4546
c6823a20
EB
4547 -- The current scope may be that of a constrained component of
4548 -- an enclosing record declaration, which is above the current
4549 -- scope in the scope stack.
4550
4551 if Is_Record_Type (Scope (Current_Scope)) then
4552 Pos := Pos - 1;
4553 end if;
4554
70482933 4555 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4556 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4557 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4558 Freeze_Nodes;
4559 else
cd5a9750
AC
4560 Append_List (Freeze_Nodes,
4561 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
70482933
RK
4562 end if;
4563 end if;
4564 end;
4565
4566 return;
4567 end if;
4568
4569 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4570 -- adjustment, if we are in spec-expression analysis mode, these freeze
4571 -- actions must not be thrown away (normally all inserted actions are
4572 -- thrown away in this mode. However, the freeze actions are from static
4573 -- expressions and one of the important reasons we are doing this
ee094616 4574 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4575 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4576 -- This also means they get properly analyzed and expanded.
70482933 4577
c6a9797e 4578 In_Spec_Expression := False;
70482933 4579
fbf5a39b 4580 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4581
4582 if Present (Desig_Typ) then
4583 Freeze_Before (P, Desig_Typ);
4584 end if;
4585
fbf5a39b 4586 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4587 -- the enumeration representation clause exception in the loop above.
4588
4589 if Present (Typ) then
4590 Freeze_Before (P, Typ);
4591 end if;
4592
fbf5a39b 4593 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4594
4595 if Present (Nam) then
4596 Freeze_Before (P, Nam);
4597 end if;
4598
c6a9797e
RD
4599 -- Restore In_Spec_Expression flag
4600
4601 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4602 end Freeze_Expression;
4603
4604 -----------------------------
4605 -- Freeze_Fixed_Point_Type --
4606 -----------------------------
4607
edd63e9b
ES
4608 -- Certain fixed-point types and subtypes, including implicit base types
4609 -- and declared first subtypes, have not yet set up a range. This is
4610 -- because the range cannot be set until the Small and Size values are
4611 -- known, and these are not known till the type is frozen.
70482933 4612
edd63e9b
ES
4613 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4614 -- whose bounds are unanalyzed real literals. This routine will recognize
4615 -- this case, and transform this range node into a properly typed range
4616 -- with properly analyzed and resolved values.
70482933
RK
4617
4618 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4619 Rng : constant Node_Id := Scalar_Range (Typ);
4620 Lo : constant Node_Id := Low_Bound (Rng);
4621 Hi : constant Node_Id := High_Bound (Rng);
4622 Btyp : constant Entity_Id := Base_Type (Typ);
4623 Brng : constant Node_Id := Scalar_Range (Btyp);
4624 BLo : constant Node_Id := Low_Bound (Brng);
4625 BHi : constant Node_Id := High_Bound (Brng);
4626 Small : constant Ureal := Small_Value (Typ);
4627 Loval : Ureal;
4628 Hival : Ureal;
4629 Atype : Entity_Id;
4630
4631 Actual_Size : Nat;
4632
4633 function Fsize (Lov, Hiv : Ureal) return Nat;
4634 -- Returns size of type with given bounds. Also leaves these
4635 -- bounds set as the current bounds of the Typ.
4636
0da2c8ac
AC
4637 -----------
4638 -- Fsize --
4639 -----------
4640
70482933
RK
4641 function Fsize (Lov, Hiv : Ureal) return Nat is
4642 begin
4643 Set_Realval (Lo, Lov);
4644 Set_Realval (Hi, Hiv);
4645 return Minimum_Size (Typ);
4646 end Fsize;
4647
0da2c8ac 4648 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4649
4650 begin
4651 -- If Esize of a subtype has not previously been set, set it now
4652
4653 if Unknown_Esize (Typ) then
4654 Atype := Ancestor_Subtype (Typ);
4655
4656 if Present (Atype) then
fbf5a39b 4657 Set_Esize (Typ, Esize (Atype));
70482933 4658 else
fbf5a39b 4659 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4660 end if;
4661 end if;
4662
ee094616
RD
4663 -- Immediate return if the range is already analyzed. This means that
4664 -- the range is already set, and does not need to be computed by this
4665 -- routine.
70482933
RK
4666
4667 if Analyzed (Rng) then
4668 return;
4669 end if;
4670
4671 -- Immediate return if either of the bounds raises Constraint_Error
4672
4673 if Raises_Constraint_Error (Lo)
4674 or else Raises_Constraint_Error (Hi)
4675 then
4676 return;
4677 end if;
4678
4679 Loval := Realval (Lo);
4680 Hival := Realval (Hi);
4681
4682 -- Ordinary fixed-point case
4683
4684 if Is_Ordinary_Fixed_Point_Type (Typ) then
4685
4686 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4687 -- end-points up or down by small. Generally we prefer to fudge up,
4688 -- i.e. widen the bounds for non-model numbers so that the end points
4689 -- are included. However there are cases in which this cannot be
4690 -- done, and indeed cases in which we may need to narrow the bounds.
4691 -- The following circuit makes the decision.
70482933 4692
ee094616
RD
4693 -- Note: our terminology here is that Incl_EP means that the bounds
4694 -- are widened by Small if necessary to include the end points, and
4695 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4696 -- end-points if this reduces the size.
70482933
RK
4697
4698 -- Note that in the Incl case, all we care about is including the
4699 -- end-points. In the Excl case, we want to narrow the bounds as
4700 -- much as permitted by the RM, to give the smallest possible size.
4701
4702 Fudge : declare
4703 Loval_Incl_EP : Ureal;
4704 Hival_Incl_EP : Ureal;
4705
4706 Loval_Excl_EP : Ureal;
4707 Hival_Excl_EP : Ureal;
4708
4709 Size_Incl_EP : Nat;
4710 Size_Excl_EP : Nat;
4711
4712 Model_Num : Ureal;
4713 First_Subt : Entity_Id;
4714 Actual_Lo : Ureal;
4715 Actual_Hi : Ureal;
4716
4717 begin
4718 -- First step. Base types are required to be symmetrical. Right
4719 -- now, the base type range is a copy of the first subtype range.
4720 -- This will be corrected before we are done, but right away we
4721 -- need to deal with the case where both bounds are non-negative.
4722 -- In this case, we set the low bound to the negative of the high
4723 -- bound, to make sure that the size is computed to include the
4724 -- required sign. Note that we do not need to worry about the
4725 -- case of both bounds negative, because the sign will be dealt
4726 -- with anyway. Furthermore we can't just go making such a bound
4727 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4728 -- extra negative value which could not be accommodated on the
70482933
RK
4729 -- positive side.
4730
4731 if Typ = Btyp
4732 and then not UR_Is_Negative (Loval)
4733 and then Hival > Loval
4734 then
4735 Loval := -Hival;
4736 Set_Realval (Lo, Loval);
4737 end if;
4738
4739 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4740 -- then we do nothing to include it, but we are allowed to backoff
4741 -- to the next adjacent model number when we exclude it. If it is
4742 -- not a model number then we straddle the two values with the
4743 -- model numbers on either side.
70482933
RK
4744
4745 Model_Num := UR_Trunc (Loval / Small) * Small;
4746
4747 if Loval = Model_Num then
4748 Loval_Incl_EP := Model_Num;
4749 else
4750 Loval_Incl_EP := Model_Num - Small;
4751 end if;
4752
4753 -- The low value excluding the end point is Small greater, but
4754 -- we do not do this exclusion if the low value is positive,
4755 -- since it can't help the size and could actually hurt by
4756 -- crossing the high bound.
4757
4758 if UR_Is_Negative (Loval_Incl_EP) then
4759 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4760
4761 -- If the value went from negative to zero, then we have the
4762 -- case where Loval_Incl_EP is the model number just below
4763 -- zero, so we want to stick to the negative value for the
4764 -- base type to maintain the condition that the size will
4765 -- include signed values.
4766
4767 if Typ = Btyp
4768 and then UR_Is_Zero (Loval_Excl_EP)
4769 then
4770 Loval_Excl_EP := Loval_Incl_EP;
4771 end if;
4772
70482933
RK
4773 else
4774 Loval_Excl_EP := Loval_Incl_EP;
4775 end if;
4776
4777 -- Similar processing for upper bound and high value
4778
4779 Model_Num := UR_Trunc (Hival / Small) * Small;
4780
4781 if Hival = Model_Num then
4782 Hival_Incl_EP := Model_Num;
4783 else
4784 Hival_Incl_EP := Model_Num + Small;
4785 end if;
4786
4787 if UR_Is_Positive (Hival_Incl_EP) then
4788 Hival_Excl_EP := Hival_Incl_EP - Small;
4789 else
4790 Hival_Excl_EP := Hival_Incl_EP;
4791 end if;
4792
ee094616
RD
4793 -- One further adjustment is needed. In the case of subtypes, we
4794 -- cannot go outside the range of the base type, or we get
70482933 4795 -- peculiarities, and the base type range is already set. This
ee094616
RD
4796 -- only applies to the Incl values, since clearly the Excl values
4797 -- are already as restricted as they are allowed to be.
70482933
RK
4798
4799 if Typ /= Btyp then
4800 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4801 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4802 end if;
4803
4804 -- Get size including and excluding end points
4805
4806 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4807 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4808
4809 -- No need to exclude end-points if it does not reduce size
4810
4811 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4812 Loval_Excl_EP := Loval_Incl_EP;
4813 end if;
4814
4815 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4816 Hival_Excl_EP := Hival_Incl_EP;
4817 end if;
4818
4819 -- Now we set the actual size to be used. We want to use the
4820 -- bounds fudged up to include the end-points but only if this
4821 -- can be done without violating a specifically given size
4822 -- size clause or causing an unacceptable increase in size.
4823
4824 -- Case of size clause given
4825
4826 if Has_Size_Clause (Typ) then
4827
4828 -- Use the inclusive size only if it is consistent with
4829 -- the explicitly specified size.
4830
4831 if Size_Incl_EP <= RM_Size (Typ) then
4832 Actual_Lo := Loval_Incl_EP;
4833 Actual_Hi := Hival_Incl_EP;
4834 Actual_Size := Size_Incl_EP;
4835
4836 -- If the inclusive size is too large, we try excluding
4837 -- the end-points (will be caught later if does not work).
4838
4839 else
4840 Actual_Lo := Loval_Excl_EP;
4841 Actual_Hi := Hival_Excl_EP;
4842 Actual_Size := Size_Excl_EP;
4843 end if;
4844
4845 -- Case of size clause not given
4846
4847 else
4848 -- If we have a base type whose corresponding first subtype
4849 -- has an explicit size that is large enough to include our
4850 -- end-points, then do so. There is no point in working hard
4851 -- to get a base type whose size is smaller than the specified
4852 -- size of the first subtype.
4853
4854 First_Subt := First_Subtype (Typ);
4855
4856 if Has_Size_Clause (First_Subt)
4857 and then Size_Incl_EP <= Esize (First_Subt)
4858 then
4859 Actual_Size := Size_Incl_EP;
4860 Actual_Lo := Loval_Incl_EP;
4861 Actual_Hi := Hival_Incl_EP;
4862
4863 -- If excluding the end-points makes the size smaller and
4864 -- results in a size of 8,16,32,64, then we take the smaller
4865 -- size. For the 64 case, this is compulsory. For the other
4866 -- cases, it seems reasonable. We like to include end points
4867 -- if we can, but not at the expense of moving to the next
4868 -- natural boundary of size.
4869
4870 elsif Size_Incl_EP /= Size_Excl_EP
094cefda 4871 and then Addressable (Size_Excl_EP)
70482933
RK
4872 then
4873 Actual_Size := Size_Excl_EP;
4874 Actual_Lo := Loval_Excl_EP;
4875 Actual_Hi := Hival_Excl_EP;
4876
4877 -- Otherwise we can definitely include the end points
4878
4879 else
4880 Actual_Size := Size_Incl_EP;
4881 Actual_Lo := Loval_Incl_EP;
4882 Actual_Hi := Hival_Incl_EP;
4883 end if;
4884
edd63e9b
ES
4885 -- One pathological case: normally we never fudge a low bound
4886 -- down, since it would seem to increase the size (if it has
4887 -- any effect), but for ranges containing single value, or no
4888 -- values, the high bound can be small too large. Consider:
70482933
RK
4889
4890 -- type t is delta 2.0**(-14)
4891 -- range 131072.0 .. 0;
4892
edd63e9b
ES
4893 -- That lower bound is *just* outside the range of 32 bits, and
4894 -- does need fudging down in this case. Note that the bounds
4895 -- will always have crossed here, since the high bound will be
4896 -- fudged down if necessary, as in the case of:
70482933
RK
4897
4898 -- type t is delta 2.0**(-14)
4899 -- range 131072.0 .. 131072.0;
4900
edd63e9b
ES
4901 -- So we detect the situation by looking for crossed bounds,
4902 -- and if the bounds are crossed, and the low bound is greater
4903 -- than zero, we will always back it off by small, since this
4904 -- is completely harmless.
70482933
RK
4905
4906 if Actual_Lo > Actual_Hi then
4907 if UR_Is_Positive (Actual_Lo) then
4908 Actual_Lo := Loval_Incl_EP - Small;
4909 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4910
4911 -- And of course, we need to do exactly the same parallel
4912 -- fudge for flat ranges in the negative region.
4913
4914 elsif UR_Is_Negative (Actual_Hi) then
4915 Actual_Hi := Hival_Incl_EP + Small;
4916 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4917 end if;
4918 end if;
4919 end if;
4920
4921 Set_Realval (Lo, Actual_Lo);
4922 Set_Realval (Hi, Actual_Hi);
4923 end Fudge;
4924
4925 -- For the decimal case, none of this fudging is required, since there
4926 -- are no end-point problems in the decimal case (the end-points are
4927 -- always included).
4928
4929 else
4930 Actual_Size := Fsize (Loval, Hival);
4931 end if;
4932
4933 -- At this stage, the actual size has been calculated and the proper
4934 -- required bounds are stored in the low and high bounds.
4935
4936 if Actual_Size > 64 then
4937 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4938 Error_Msg_N
7d8b9c99
RD
4939 ("size required (^) for type& too large, maximum allowed is 64",
4940 Typ);
70482933
RK
4941 Actual_Size := 64;
4942 end if;
4943
4944 -- Check size against explicit given size
4945
4946 if Has_Size_Clause (Typ) then
4947 if Actual_Size > RM_Size (Typ) then
4948 Error_Msg_Uint_1 := RM_Size (Typ);
4949 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4950 Error_Msg_NE
7d8b9c99 4951 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4952 Size_Clause (Typ), Typ);
4953
4954 else
4955 Actual_Size := UI_To_Int (Esize (Typ));
4956 end if;
4957
4958 -- Increase size to next natural boundary if no size clause given
4959
4960 else
4961 if Actual_Size <= 8 then
4962 Actual_Size := 8;
4963 elsif Actual_Size <= 16 then
4964 Actual_Size := 16;
4965 elsif Actual_Size <= 32 then
4966 Actual_Size := 32;
4967 else
4968 Actual_Size := 64;
4969 end if;
4970
4971 Init_Esize (Typ, Actual_Size);
4972 Adjust_Esize_For_Alignment (Typ);
4973 end if;
4974
edd63e9b
ES
4975 -- If we have a base type, then expand the bounds so that they extend to
4976 -- the full width of the allocated size in bits, to avoid junk range
4977 -- checks on intermediate computations.
70482933
RK
4978
4979 if Base_Type (Typ) = Typ then
4980 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4981 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4982 end if;
4983
4984 -- Final step is to reanalyze the bounds using the proper type
4985 -- and set the Corresponding_Integer_Value fields of the literals.
4986
4987 Set_Etype (Lo, Empty);
4988 Set_Analyzed (Lo, False);
4989 Analyze (Lo);
4990
edd63e9b
ES
4991 -- Resolve with universal fixed if the base type, and the base type if
4992 -- it is a subtype. Note we can't resolve the base type with itself,
4993 -- that would be a reference before definition.
70482933
RK
4994
4995 if Typ = Btyp then
4996 Resolve (Lo, Universal_Fixed);
4997 else
4998 Resolve (Lo, Btyp);
4999 end if;
5000
5001 -- Set corresponding integer value for bound
5002
5003 Set_Corresponding_Integer_Value
5004 (Lo, UR_To_Uint (Realval (Lo) / Small));
5005
5006 -- Similar processing for high bound
5007
5008 Set_Etype (Hi, Empty);
5009 Set_Analyzed (Hi, False);
5010 Analyze (Hi);
5011
5012 if Typ = Btyp then
5013 Resolve (Hi, Universal_Fixed);
5014 else
5015 Resolve (Hi, Btyp);
5016 end if;
5017
5018 Set_Corresponding_Integer_Value
5019 (Hi, UR_To_Uint (Realval (Hi) / Small));
5020
5021 -- Set type of range to correspond to bounds
5022
5023 Set_Etype (Rng, Etype (Lo));
5024
fbf5a39b 5025 -- Set Esize to calculated size if not set already
70482933 5026
fbf5a39b
AC
5027 if Unknown_Esize (Typ) then
5028 Init_Esize (Typ, Actual_Size);
5029 end if;
70482933
RK
5030
5031 -- Set RM_Size if not already set. If already set, check value
5032
5033 declare
5034 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
5035
5036 begin
5037 if RM_Size (Typ) /= Uint_0 then
5038 if RM_Size (Typ) < Minsiz then
5039 Error_Msg_Uint_1 := RM_Size (Typ);
5040 Error_Msg_Uint_2 := Minsiz;
5041 Error_Msg_NE
7d8b9c99 5042 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
5043 Size_Clause (Typ), Typ);
5044 end if;
5045
5046 else
5047 Set_RM_Size (Typ, Minsiz);
5048 end if;
5049 end;
70482933
RK
5050 end Freeze_Fixed_Point_Type;
5051
5052 ------------------
5053 -- Freeze_Itype --
5054 ------------------
5055
5056 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5057 L : List_Id;
5058
5059 begin
5060 Set_Has_Delayed_Freeze (T);
5061 L := Freeze_Entity (T, Sloc (N));
5062
5063 if Is_Non_Empty_List (L) then
5064 Insert_Actions (N, L);
5065 end if;
5066 end Freeze_Itype;
5067
5068 --------------------------
5069 -- Freeze_Static_Object --
5070 --------------------------
5071
5072 procedure Freeze_Static_Object (E : Entity_Id) is
5073
5074 Cannot_Be_Static : exception;
5075 -- Exception raised if the type of a static object cannot be made
5076 -- static. This happens if the type depends on non-global objects.
5077
5078 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
5079 -- Called to ensure that an expression used as part of a type definition
5080 -- is statically allocatable, which means that the expression type is
5081 -- statically allocatable, and the expression is either static, or a
5082 -- reference to a library level constant.
70482933
RK
5083
5084 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5085 -- Called to mark a type as static, checking that it is possible
5086 -- to set the type as static. If it is not possible, then the
5087 -- exception Cannot_Be_Static is raised.
5088
5089 -----------------------------
5090 -- Ensure_Expression_Is_SA --
5091 -----------------------------
5092
5093 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5094 Ent : Entity_Id;
5095
5096 begin
5097 Ensure_Type_Is_SA (Etype (N));
5098
5099 if Is_Static_Expression (N) then
5100 return;
5101
5102 elsif Nkind (N) = N_Identifier then
5103 Ent := Entity (N);
5104
5105 if Present (Ent)
5106 and then Ekind (Ent) = E_Constant
5107 and then Is_Library_Level_Entity (Ent)
5108 then
5109 return;
5110 end if;
5111 end if;
5112
5113 raise Cannot_Be_Static;
5114 end Ensure_Expression_Is_SA;
5115
5116 -----------------------
5117 -- Ensure_Type_Is_SA --
5118 -----------------------
5119
5120 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5121 N : Node_Id;
5122 C : Entity_Id;
5123
5124 begin
5125 -- If type is library level, we are all set
5126
5127 if Is_Library_Level_Entity (Typ) then
5128 return;
5129 end if;
5130
ee094616
RD
5131 -- We are also OK if the type already marked as statically allocated,
5132 -- which means we processed it before.
70482933
RK
5133
5134 if Is_Statically_Allocated (Typ) then
5135 return;
5136 end if;
5137
5138 -- Mark type as statically allocated
5139
5140 Set_Is_Statically_Allocated (Typ);
5141
5142 -- Check that it is safe to statically allocate this type
5143
5144 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5145 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5146 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5147
5148 elsif Is_Array_Type (Typ) then
5149 N := First_Index (Typ);
5150 while Present (N) loop
5151 Ensure_Type_Is_SA (Etype (N));
5152 Next_Index (N);
5153 end loop;
5154
5155 Ensure_Type_Is_SA (Component_Type (Typ));
5156
5157 elsif Is_Access_Type (Typ) then
5158 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5159
5160 declare
5161 F : Entity_Id;
5162 T : constant Entity_Id := Etype (Designated_Type (Typ));
5163
5164 begin
5165 if T /= Standard_Void_Type then
5166 Ensure_Type_Is_SA (T);
5167 end if;
5168
5169 F := First_Formal (Designated_Type (Typ));
5170
5171 while Present (F) loop
5172 Ensure_Type_Is_SA (Etype (F));
5173 Next_Formal (F);
5174 end loop;
5175 end;
5176
5177 else
5178 Ensure_Type_Is_SA (Designated_Type (Typ));
5179 end if;
5180
5181 elsif Is_Record_Type (Typ) then
5182 C := First_Entity (Typ);
70482933
RK
5183 while Present (C) loop
5184 if Ekind (C) = E_Discriminant
5185 or else Ekind (C) = E_Component
5186 then
5187 Ensure_Type_Is_SA (Etype (C));
5188
5189 elsif Is_Type (C) then
5190 Ensure_Type_Is_SA (C);
5191 end if;
5192
5193 Next_Entity (C);
5194 end loop;
5195
5196 elsif Ekind (Typ) = E_Subprogram_Type then
5197 Ensure_Type_Is_SA (Etype (Typ));
5198
5199 C := First_Formal (Typ);
5200 while Present (C) loop
5201 Ensure_Type_Is_SA (Etype (C));
5202 Next_Formal (C);
5203 end loop;
5204
5205 else
5206 raise Cannot_Be_Static;
5207 end if;
5208 end Ensure_Type_Is_SA;
5209
5210 -- Start of processing for Freeze_Static_Object
5211
5212 begin
5213 Ensure_Type_Is_SA (Etype (E));
5214
5215 exception
5216 when Cannot_Be_Static =>
5217
09494c32
AC
5218 -- If the object that cannot be static is imported or exported, then
5219 -- issue an error message saying that this object cannot be imported
5220 -- or exported. If it has an address clause it is an overlay in the
5221 -- current partition and the static requirement is not relevant.
d606f1df 5222 -- Do not issue any error message when ignoring rep clauses.
09494c32 5223
d606f1df
AC
5224 if Ignore_Rep_Clauses then
5225 null;
5226
5227 elsif Is_Imported (E) then
5228 if No (Address_Clause (E)) then
5229 Error_Msg_N
5230 ("& cannot be imported (local type is not constant)", E);
5231 end if;
70482933
RK
5232
5233 -- Otherwise must be exported, something is wrong if compiler
5234 -- is marking something as statically allocated which cannot be).
5235
5236 else pragma Assert (Is_Exported (E));
5237 Error_Msg_N
5238 ("& cannot be exported (local type is not constant)", E);
5239 end if;
5240 end Freeze_Static_Object;
5241
5242 -----------------------
5243 -- Freeze_Subprogram --
5244 -----------------------
5245
5246 procedure Freeze_Subprogram (E : Entity_Id) is
5247 Retype : Entity_Id;
5248 F : Entity_Id;
5249
5250 begin
5251 -- Subprogram may not have an address clause unless it is imported
5252
5253 if Present (Address_Clause (E)) then
5254 if not Is_Imported (E) then
5255 Error_Msg_N
5256 ("address clause can only be given " &
5257 "for imported subprogram",
5258 Name (Address_Clause (E)));
5259 end if;
5260 end if;
5261
91b1417d
AC
5262 -- Reset the Pure indication on an imported subprogram unless an
5263 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5264 -- otherwise it is an insidious error to call a non-pure function from
5265 -- pure unit and have calls mysteriously optimized away. What happens
5266 -- here is that the Import can bypass the normal check to ensure that
5267 -- pure units call only pure subprograms.
91b1417d
AC
5268
5269 if Is_Imported (E)
5270 and then Is_Pure (E)
5271 and then not Has_Pragma_Pure_Function (E)
5272 then
5273 Set_Is_Pure (E, False);
5274 end if;
5275
70482933
RK
5276 -- For non-foreign convention subprograms, this is where we create
5277 -- the extra formals (for accessibility level and constrained bit
5278 -- information). We delay this till the freeze point precisely so
5279 -- that we know the convention!
5280
5281 if not Has_Foreign_Convention (E) then
5282 Create_Extra_Formals (E);
5283 Set_Mechanisms (E);
5284
5285 -- If this is convention Ada and a Valued_Procedure, that's odd
5286
5287 if Ekind (E) = E_Procedure
5288 and then Is_Valued_Procedure (E)
5289 and then Convention (E) = Convention_Ada
fbf5a39b 5290 and then Warn_On_Export_Import
70482933
RK
5291 then
5292 Error_Msg_N
5293 ("?Valued_Procedure has no effect for convention Ada", E);
5294 Set_Is_Valued_Procedure (E, False);
5295 end if;
5296
5297 -- Case of foreign convention
5298
5299 else
5300 Set_Mechanisms (E);
5301
fbf5a39b 5302 -- For foreign conventions, warn about return of an
70482933
RK
5303 -- unconstrained array.
5304
5305 -- Note: we *do* allow a return by descriptor for the VMS case,
5306 -- though here there is probably more to be done ???
5307
5308 if Ekind (E) = E_Function then
5309 Retype := Underlying_Type (Etype (E));
5310
5311 -- If no return type, probably some other error, e.g. a
5312 -- missing full declaration, so ignore.
5313
5314 if No (Retype) then
5315 null;
5316
5317 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5318 -- earlier on, and there is nothing else to check here. Specific
5319 -- instantiations may lead to erroneous behavior.
70482933
RK
5320
5321 elsif Is_Generic_Type (Etype (E)) then
5322 null;
5323
e7d72fb9 5324 -- Display warning if returning unconstrained array
59366db6 5325
70482933
RK
5326 elsif Is_Array_Type (Retype)
5327 and then not Is_Constrained (Retype)
e7d72fb9
AC
5328
5329 -- Exclude cases where descriptor mechanism is set, since the
5330 -- VMS descriptor mechanisms allow such unconstrained returns.
5331
70482933 5332 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9
AC
5333
5334 -- Check appropriate warning is enabled (should we check for
5335 -- Warnings (Off) on specific entities here, probably so???)
5336
fbf5a39b 5337 and then Warn_On_Export_Import
e7d72fb9
AC
5338
5339 -- Exclude the VM case, since return of unconstrained arrays
5340 -- is properly handled in both the JVM and .NET cases.
5341
f3b57ab0 5342 and then VM_Target = No_VM
70482933 5343 then
fbf5a39b
AC
5344 Error_Msg_N
5345 ("?foreign convention function& should not return " &
5346 "unconstrained array", E);
70482933
RK
5347 return;
5348 end if;
5349 end if;
5350
5351 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5352 -- subprogram have defaults, then emit an appropriate warning since
5353 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5354
5355 if Is_Exported (E) then
5356 F := First_Formal (E);
5357 while Present (F) loop
fbf5a39b
AC
5358 if Warn_On_Export_Import
5359 and then Present (Default_Value (F))
5360 then
70482933
RK
5361 Error_Msg_N
5362 ("?parameter cannot be defaulted in non-Ada call",
5363 Default_Value (F));
5364 end if;
5365
5366 Next_Formal (F);
5367 end loop;
5368 end if;
5369 end if;
5370
e7d72fb9
AC
5371 -- For VMS, descriptor mechanisms for parameters are allowed only for
5372 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5373 -- allowed for parameters of exported subprograms.
70482933
RK
5374
5375 if OpenVMS_On_Target then
7d8b9c99
RD
5376 if Is_Exported (E) then
5377 F := First_Formal (E);
5378 while Present (F) loop
5379 if Mechanism (F) = By_Descriptor_NCA then
5380 Error_Msg_N
5381 ("'N'C'A' descriptor for parameter not permitted", F);
5382 Error_Msg_N
5383 ("\can only be used for imported subprogram", F);
5384 end if;
5385
5386 Next_Formal (F);
5387 end loop;
5388
5389 elsif not Is_Imported (E) then
70482933
RK
5390 F := First_Formal (E);
5391 while Present (F) loop
5392 if Mechanism (F) in Descriptor_Codes then
5393 Error_Msg_N
5394 ("descriptor mechanism for parameter not permitted", F);
5395 Error_Msg_N
7d8b9c99 5396 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5397 end if;
5398
5399 Next_Formal (F);
5400 end loop;
5401 end if;
5402 end if;
edd63e9b
ES
5403
5404 -- Pragma Inline_Always is disallowed for dispatching subprograms
5405 -- because the address of such subprograms is saved in the dispatch
5406 -- table to support dispatching calls, and dispatching calls cannot
5407 -- be inlined. This is consistent with the restriction against using
5408 -- 'Access or 'Address on an Inline_Always subprogram.
5409
def46b54
RD
5410 if Is_Dispatching_Operation (E)
5411 and then Has_Pragma_Inline_Always (E)
5412 then
edd63e9b
ES
5413 Error_Msg_N
5414 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5415 end if;
c6a9797e
RD
5416
5417 -- Because of the implicit representation of inherited predefined
5418 -- operators in the front-end, the overriding status of the operation
5419 -- may be affected when a full view of a type is analyzed, and this is
5420 -- not captured by the analysis of the corresponding type declaration.
5421 -- Therefore the correctness of a not-overriding indicator must be
5422 -- rechecked when the subprogram is frozen.
5423
5424 if Nkind (E) = N_Defining_Operator_Symbol
5425 and then not Error_Posted (Parent (E))
5426 then
5427 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5428 end if;
70482933
RK
5429 end Freeze_Subprogram;
5430
15ce9ca2
AC
5431 ----------------------
5432 -- Is_Fully_Defined --
5433 ----------------------
70482933 5434
70482933
RK
5435 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5436 begin
5437 if Ekind (T) = E_Class_Wide_Type then
5438 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5439
5440 elsif Is_Array_Type (T) then
5441 return Is_Fully_Defined (Component_Type (T));
5442
5443 elsif Is_Record_Type (T)
5444 and not Is_Private_Type (T)
5445 then
ee094616
RD
5446 -- Verify that the record type has no components with private types
5447 -- without completion.
657a9dd9
AC
5448
5449 declare
5450 Comp : Entity_Id;
bde58e32 5451
657a9dd9
AC
5452 begin
5453 Comp := First_Component (T);
5454
5455 while Present (Comp) loop
5456 if not Is_Fully_Defined (Etype (Comp)) then
5457 return False;
5458 end if;
5459
5460 Next_Component (Comp);
5461 end loop;
5462 return True;
5463 end;
5464
30537990 5465 -- For the designated type of an access to subprogram, all types in
4519314c
AC
5466 -- the profile must be fully defined.
5467
5468 elsif Ekind (T) = E_Subprogram_Type then
5469 declare
5470 F : Entity_Id;
5471
5472 begin
5473 F := First_Formal (T);
5474 while Present (F) loop
5475 if not Is_Fully_Defined (Etype (F)) then
5476 return False;
5477 end if;
5478
5479 Next_Formal (F);
5480 end loop;
5481
5482 return Is_Fully_Defined (Etype (T));
5483 end;
5484
86cde7b1
RD
5485 else
5486 return not Is_Private_Type (T)
5487 or else Present (Full_View (Base_Type (T)));
70482933
RK
5488 end if;
5489 end Is_Fully_Defined;
5490
70d904ca 5491 ---------------------------------
70482933
RK
5492 -- Process_Default_Expressions --
5493 ---------------------------------
5494
5495 procedure Process_Default_Expressions
5496 (E : Entity_Id;
5497 After : in out Node_Id)
5498 is
5499 Loc : constant Source_Ptr := Sloc (E);
5500 Dbody : Node_Id;
5501 Formal : Node_Id;
5502 Dcopy : Node_Id;
5503 Dnam : Entity_Id;
5504
5505 begin
5506 Set_Default_Expressions_Processed (E);
5507
ee094616
RD
5508 -- A subprogram instance and its associated anonymous subprogram share
5509 -- their signature. The default expression functions are defined in the
5510 -- wrapper packages for the anonymous subprogram, and should not be
5511 -- generated again for the instance.
70482933
RK
5512
5513 if Is_Generic_Instance (E)
5514 and then Present (Alias (E))
5515 and then Default_Expressions_Processed (Alias (E))
5516 then
5517 return;
5518 end if;
5519
5520 Formal := First_Formal (E);
70482933
RK
5521 while Present (Formal) loop
5522 if Present (Default_Value (Formal)) then
5523
5524 -- We work with a copy of the default expression because we
5525 -- do not want to disturb the original, since this would mess
5526 -- up the conformance checking.
5527
5528 Dcopy := New_Copy_Tree (Default_Value (Formal));
5529
5530 -- The analysis of the expression may generate insert actions,
5531 -- which of course must not be executed. We wrap those actions
5532 -- in a procedure that is not called, and later on eliminated.
5533 -- The following cases have no side-effects, and are analyzed
5534 -- directly.
5535
5536 if Nkind (Dcopy) = N_Identifier
5537 or else Nkind (Dcopy) = N_Expanded_Name
5538 or else Nkind (Dcopy) = N_Integer_Literal
5539 or else (Nkind (Dcopy) = N_Real_Literal
5540 and then not Vax_Float (Etype (Dcopy)))
5541 or else Nkind (Dcopy) = N_Character_Literal
5542 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5543 or else Known_Null (Dcopy)
70482933
RK
5544 or else (Nkind (Dcopy) = N_Attribute_Reference
5545 and then
5546 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5547 then
5548
5549 -- If there is no default function, we must still do a full
ee094616
RD
5550 -- analyze call on the default value, to ensure that all error
5551 -- checks are performed, e.g. those associated with static
5552 -- evaluation. Note: this branch will always be taken if the
5553 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5554
5555 -- Note: the setting of parent here is to meet the requirement
5556 -- that we can only analyze the expression while attached to
5557 -- the tree. Really the requirement is that the parent chain
5558 -- be set, we don't actually need to be in the tree.
5559
5560 Set_Parent (Dcopy, Declaration_Node (Formal));
5561 Analyze (Dcopy);
5562
5563 -- Default expressions are resolved with their own type if the
5564 -- context is generic, to avoid anomalies with private types.
5565
5566 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5567 Resolve (Dcopy);
70482933
RK
5568 else
5569 Resolve (Dcopy, Etype (Formal));
5570 end if;
5571
5572 -- If that resolved expression will raise constraint error,
5573 -- then flag the default value as raising constraint error.
5574 -- This allows a proper error message on the calls.
5575
5576 if Raises_Constraint_Error (Dcopy) then
5577 Set_Raises_Constraint_Error (Default_Value (Formal));
5578 end if;
5579
5580 -- If the default is a parameterless call, we use the name of
5581 -- the called function directly, and there is no body to build.
5582
5583 elsif Nkind (Dcopy) = N_Function_Call
5584 and then No (Parameter_Associations (Dcopy))
5585 then
5586 null;
5587
5588 -- Else construct and analyze the body of a wrapper procedure
5589 -- that contains an object declaration to hold the expression.
5590 -- Given that this is done only to complete the analysis, it
5591 -- simpler to build a procedure than a function which might
5592 -- involve secondary stack expansion.
5593
5594 else
b29def53 5595 Dnam := Make_Temporary (Loc, 'D');
70482933
RK
5596
5597 Dbody :=
5598 Make_Subprogram_Body (Loc,
5599 Specification =>
5600 Make_Procedure_Specification (Loc,
5601 Defining_Unit_Name => Dnam),
5602
5603 Declarations => New_List (
5604 Make_Object_Declaration (Loc,
5605 Defining_Identifier =>
5606 Make_Defining_Identifier (Loc,
5607 New_Internal_Name ('T')),
5608 Object_Definition =>
5609 New_Occurrence_Of (Etype (Formal), Loc),
5610 Expression => New_Copy_Tree (Dcopy))),
5611
5612 Handled_Statement_Sequence =>
5613 Make_Handled_Sequence_Of_Statements (Loc,
5614 Statements => New_List));
5615
5616 Set_Scope (Dnam, Scope (E));
5617 Set_Assignment_OK (First (Declarations (Dbody)));
5618 Set_Is_Eliminated (Dnam);
5619 Insert_After (After, Dbody);
5620 Analyze (Dbody);
5621 After := Dbody;
5622 end if;
5623 end if;
5624
5625 Next_Formal (Formal);
5626 end loop;
70482933
RK
5627 end Process_Default_Expressions;
5628
5629 ----------------------------------------
5630 -- Set_Component_Alignment_If_Not_Set --
5631 ----------------------------------------
5632
5633 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5634 begin
5635 -- Ignore if not base type, subtypes don't need anything
5636
5637 if Typ /= Base_Type (Typ) then
5638 return;
5639 end if;
5640
5641 -- Do not override existing representation
5642
5643 if Is_Packed (Typ) then
5644 return;
5645
5646 elsif Has_Specified_Layout (Typ) then
5647 return;
5648
5649 elsif Component_Alignment (Typ) /= Calign_Default then
5650 return;
5651
5652 else
5653 Set_Component_Alignment
5654 (Typ, Scope_Stack.Table
5655 (Scope_Stack.Last).Component_Alignment_Default);
5656 end if;
5657 end Set_Component_Alignment_If_Not_Set;
5658
c6823a20
EB
5659 ------------------
5660 -- Undelay_Type --
5661 ------------------
5662
5663 procedure Undelay_Type (T : Entity_Id) is
5664 begin
5665 Set_Has_Delayed_Freeze (T, False);
5666 Set_Freeze_Node (T, Empty);
5667
5668 -- Since we don't want T to have a Freeze_Node, we don't want its
5669 -- Full_View or Corresponding_Record_Type to have one either.
5670
5671 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5672 -- want is to be sure that for an Itype that's part of record R and is a
5673 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5674 -- points of R and T. We have no way of doing that directly, so what we
5675 -- do is force most such Itypes to be frozen as part of freezing R via
5676 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5677 -- (mostly the designated types of access types that are defined as part
5678 -- of the record).
c6823a20
EB
5679
5680 if Is_Private_Type (T)
5681 and then Present (Full_View (T))
5682 and then Is_Itype (Full_View (T))
5683 and then Is_Record_Type (Scope (Full_View (T)))
5684 then
5685 Undelay_Type (Full_View (T));
5686 end if;
5687
5688 if Is_Concurrent_Type (T)
5689 and then Present (Corresponding_Record_Type (T))
5690 and then Is_Itype (Corresponding_Record_Type (T))
5691 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5692 then
5693 Undelay_Type (Corresponding_Record_Type (T));
5694 end if;
5695 end Undelay_Type;
5696
fbf5a39b
AC
5697 ------------------
5698 -- Warn_Overlay --
5699 ------------------
5700
5701 procedure Warn_Overlay
5702 (Expr : Node_Id;
5703 Typ : Entity_Id;
5704 Nam : Entity_Id)
5705 is
5706 Ent : constant Entity_Id := Entity (Nam);
49e90211 5707 -- The object to which the address clause applies
fbf5a39b
AC
5708
5709 Init : Node_Id;
5710 Old : Entity_Id := Empty;
5711 Decl : Node_Id;
5712
5713 begin
5714 -- No warning if address clause overlay warnings are off
5715
5716 if not Address_Clause_Overlay_Warnings then
5717 return;
5718 end if;
5719
5720 -- No warning if there is an explicit initialization
5721
5722 Init := Original_Node (Expression (Declaration_Node (Ent)));
5723
5724 if Present (Init) and then Comes_From_Source (Init) then
5725 return;
5726 end if;
5727
edd63e9b 5728 -- We only give the warning for non-imported entities of a type for
0ac73189 5729 -- which a non-null base init proc is defined, or for objects of access
a5d83d61 5730 -- types with implicit null initialization, or when Normalize_Scalars
0ac73189
AC
5731 -- applies and the type is scalar or a string type (the latter being
5732 -- tested for because predefined String types are initialized by inline
a5d83d61
AC
5733 -- code rather than by an init_proc). Note that we do not give the
5734 -- warning for Initialize_Scalars, since we suppressed initialization
5735 -- in this case.
fbf5a39b
AC
5736
5737 if Present (Expr)
fbf5a39b 5738 and then not Is_Imported (Ent)
0ac73189
AC
5739 and then (Has_Non_Null_Base_Init_Proc (Typ)
5740 or else Is_Access_Type (Typ)
a5d83d61 5741 or else (Normalize_Scalars
0ac73189
AC
5742 and then (Is_Scalar_Type (Typ)
5743 or else Is_String_Type (Typ))))
fbf5a39b
AC
5744 then
5745 if Nkind (Expr) = N_Attribute_Reference
5746 and then Is_Entity_Name (Prefix (Expr))
5747 then
5748 Old := Entity (Prefix (Expr));
5749
5750 elsif Is_Entity_Name (Expr)
5751 and then Ekind (Entity (Expr)) = E_Constant
5752 then
5753 Decl := Declaration_Node (Entity (Expr));
5754
5755 if Nkind (Decl) = N_Object_Declaration
5756 and then Present (Expression (Decl))
5757 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5758 and then Is_Entity_Name (Prefix (Expression (Decl)))
5759 then
5760 Old := Entity (Prefix (Expression (Decl)));
5761
5762 elsif Nkind (Expr) = N_Function_Call then
5763 return;
5764 end if;
5765
ee094616
RD
5766 -- A function call (most likely to To_Address) is probably not an
5767 -- overlay, so skip warning. Ditto if the function call was inlined
5768 -- and transformed into an entity.
fbf5a39b
AC
5769
5770 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5771 return;
5772 end if;
5773
5774 Decl := Next (Parent (Expr));
5775
5776 -- If a pragma Import follows, we assume that it is for the current
5777 -- target of the address clause, and skip the warning.
5778
5779 if Present (Decl)
5780 and then Nkind (Decl) = N_Pragma
1b24ada5 5781 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5782 then
5783 return;
5784 end if;
5785
5786 if Present (Old) then
5787 Error_Msg_Node_2 := Old;
5788 Error_Msg_N
5789 ("default initialization of & may modify &?",
5790 Nam);
5791 else
5792 Error_Msg_N
5793 ("default initialization of & may modify overlaid storage?",
5794 Nam);
5795 end if;
5796
5797 -- Add friendly warning if initialization comes from a packed array
5798 -- component.
5799
5800 if Is_Record_Type (Typ) then
5801 declare
5802 Comp : Entity_Id;
5803
5804 begin
5805 Comp := First_Component (Typ);
5806
5807 while Present (Comp) loop
5808 if Nkind (Parent (Comp)) = N_Component_Declaration
5809 and then Present (Expression (Parent (Comp)))
5810 then
5811 exit;
5812 elsif Is_Array_Type (Etype (Comp))
5813 and then Present (Packed_Array_Type (Etype (Comp)))
5814 then
5815 Error_Msg_NE
3f1ede06
RD
5816 ("\packed array component& " &
5817 "will be initialized to zero?",
5818 Nam, Comp);
fbf5a39b
AC
5819 exit;
5820 else
5821 Next_Component (Comp);
5822 end if;
5823 end loop;
5824 end;
5825 end if;
5826
5827 Error_Msg_N
3f1ede06 5828 ("\use pragma Import for & to " &
86cde7b1 5829 "suppress initialization (RM B.1(24))?",
3f1ede06 5830 Nam);
fbf5a39b
AC
5831 end if;
5832 end Warn_Overlay;
5833
70482933 5834end Freeze;