]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
sem_ch3.adb: Minor fix to error message.
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
ce532f42 9-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
2010d078
AC
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
0ea55619 27with Checks; use Checks;
70482933
RK
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
ca0cb93e 39with Lib; use Lib;
7d8b9c99 40with Namet; use Namet;
70482933
RK
41with Nlists; use Nlists;
42with Nmake; use Nmake;
43with Opt; use Opt;
44with Restrict; use Restrict;
6e937c1c 45with Rident; use Rident;
b7f7dab2 46with Rtsfind; use Rtsfind;
70482933 47with Sem; use Sem;
a4100e55 48with Sem_Aux; use Sem_Aux;
70482933
RK
49with Sem_Cat; use Sem_Cat;
50with Sem_Ch6; use Sem_Ch6;
51with Sem_Ch7; use Sem_Ch7;
52with Sem_Ch8; use Sem_Ch8;
b98e2969 53with Sem_Ch9; use Sem_Ch9;
70482933
RK
54with Sem_Ch13; use Sem_Ch13;
55with Sem_Eval; use Sem_Eval;
56with Sem_Mech; use Sem_Mech;
57with Sem_Prag; use Sem_Prag;
58with Sem_Res; use Sem_Res;
59with Sem_Util; use Sem_Util;
60with Sinfo; use Sinfo;
61with Snames; use Snames;
62with Stand; use Stand;
63with Targparm; use Targparm;
64with Tbuild; use Tbuild;
65with Ttypes; use Ttypes;
66with Uintp; use Uintp;
67with Urealp; use Urealp;
68
69package body Freeze is
70
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
74
75 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
76 -- Typ is a type that is being frozen. If no size clause is given,
77 -- but a default Esize has been computed, then this default Esize is
78 -- adjusted up if necessary to be consistent with a given alignment,
79 -- but never to a value greater than Long_Long_Integer'Size. This
80 -- is used for all discrete types and for fixed-point types.
81
82 procedure Build_And_Analyze_Renamed_Body
83 (Decl : Node_Id;
84 New_S : Entity_Id;
85 After : in out Node_Id);
49e90211 86 -- Build body for a renaming declaration, insert in tree and analyze
70482933 87
fbf5a39b
AC
88 procedure Check_Address_Clause (E : Entity_Id);
89 -- Apply legality checks to address clauses for object declarations,
cf6956bb
AC
90 -- at the point the object is frozen. Also ensure any initialization is
91 -- performed only after the object has been frozen.
fbf5a39b 92
75965852
AC
93 procedure Check_Component_Storage_Order
94 (Encl_Type : Entity_Id;
95 Comp : Entity_Id);
96 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
97 -- clause, verify that the component type is compatible. For arrays,
98 -- Comp is Empty; for records, it is the entity of the component under
99 -- consideration.
100
70482933
RK
101 procedure Check_Strict_Alignment (E : Entity_Id);
102 -- E is a base type. If E is tagged or has a component that is aliased
103 -- or tagged or contains something this is aliased or tagged, set
104 -- Strict_Alignment.
105
106 procedure Check_Unsigned_Type (E : Entity_Id);
107 pragma Inline (Check_Unsigned_Type);
108 -- If E is a fixed-point or discrete type, then all the necessary work
109 -- to freeze it is completed except for possible setting of the flag
110 -- Is_Unsigned_Type, which is done by this procedure. The call has no
111 -- effect if the entity E is not a discrete or fixed-point type.
112
113 procedure Freeze_And_Append
114 (Ent : Entity_Id;
c159409f 115 N : Node_Id;
70482933
RK
116 Result : in out List_Id);
117 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
c159409f
AC
118 -- nodes to Result, modifying Result from No_List if necessary. N has
119 -- the same usage as in Freeze_Entity.
70482933
RK
120
121 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
122 -- Freeze enumeration type. The Esize field is set as processing
123 -- proceeds (i.e. set by default when the type is declared and then
124 -- adjusted by rep clauses. What this procedure does is to make sure
125 -- that if a foreign convention is specified, and no specific size
126 -- is given, then the size must be at least Integer'Size.
127
70482933
RK
128 procedure Freeze_Static_Object (E : Entity_Id);
129 -- If an object is frozen which has Is_Statically_Allocated set, then
130 -- all referenced types must also be marked with this flag. This routine
131 -- is in charge of meeting this requirement for the object entity E.
132
133 procedure Freeze_Subprogram (E : Entity_Id);
134 -- Perform freezing actions for a subprogram (create extra formals,
135 -- and set proper default mechanism values). Note that this routine
136 -- is not called for internal subprograms, for which neither of these
137 -- actions is needed (or desirable, we do not want for example to have
138 -- these extra formals present in initialization procedures, where they
139 -- would serve no purpose). In this call E is either a subprogram or
140 -- a subprogram type (i.e. an access to a subprogram).
141
142 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 143 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
144 -- view. Used to determine whether the designated type of an access type
145 -- should be frozen when the access type is frozen. This is done when an
146 -- allocator is frozen, or an expression that may involve attributes of
147 -- the designated type. Otherwise freezing the access type does not freeze
148 -- the designated type.
70482933
RK
149
150 procedure Process_Default_Expressions
151 (E : Entity_Id;
152 After : in out Node_Id);
c159409f
AC
153 -- This procedure is called for each subprogram to complete processing of
154 -- default expressions at the point where all types are known to be frozen.
155 -- The expressions must be analyzed in full, to make sure that all error
156 -- processing is done (they have only been pre-analyzed). If the expression
157 -- is not an entity or literal, its analysis may generate code which must
158 -- not be executed. In that case we build a function body to hold that
159 -- code. This wrapper function serves no other purpose (it used to be
160 -- called to evaluate the default, but now the default is inlined at each
161 -- point of call).
70482933
RK
162
163 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
c159409f
AC
164 -- Typ is a record or array type that is being frozen. This routine sets
165 -- the default component alignment from the scope stack values if the
166 -- alignment is otherwise not specified.
70482933
RK
167
168 procedure Check_Debug_Info_Needed (T : Entity_Id);
169 -- As each entity is frozen, this routine is called to deal with the
170 -- setting of Debug_Info_Needed for the entity. This flag is set if
171 -- the entity comes from source, or if we are in Debug_Generated_Code
172 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
173 -- the flag if Debug_Info_Off is set. This procedure also ensures that
174 -- subsidiary entities have the flag set as required.
70482933 175
c6823a20 176 procedure Undelay_Type (T : Entity_Id);
c159409f
AC
177 -- T is a type of a component that we know to be an Itype. We don't want
178 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
179 -- Full_View or Corresponding_Record_Type.
c6823a20 180
fbf5a39b
AC
181 procedure Warn_Overlay
182 (Expr : Node_Id;
183 Typ : Entity_Id;
184 Nam : Node_Id);
185 -- Expr is the expression for an address clause for entity Nam whose type
186 -- is Typ. If Typ has a default initialization, and there is no explicit
187 -- initialization in the source declaration, check whether the address
188 -- clause might cause overlaying of an entity, and emit a warning on the
189 -- side effect that the initialization will cause.
190
70482933
RK
191 -------------------------------
192 -- Adjust_Esize_For_Alignment --
193 -------------------------------
194
195 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
196 Align : Uint;
197
198 begin
199 if Known_Esize (Typ) and then Known_Alignment (Typ) then
200 Align := Alignment_In_Bits (Typ);
201
202 if Align > Esize (Typ)
203 and then Align <= Standard_Long_Long_Integer_Size
204 then
205 Set_Esize (Typ, Align);
206 end if;
207 end if;
208 end Adjust_Esize_For_Alignment;
209
210 ------------------------------------
211 -- Build_And_Analyze_Renamed_Body --
212 ------------------------------------
213
214 procedure Build_And_Analyze_Renamed_Body
215 (Decl : Node_Id;
216 New_S : Entity_Id;
217 After : in out Node_Id)
218 is
ca0cb93e
AC
219 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
220 Ent : constant Entity_Id := Defining_Entity (Decl);
221 Body_Node : Node_Id;
222 Renamed_Subp : Entity_Id;
d4fc0fb4 223
70482933 224 begin
1c612f29
RD
225 -- If the renamed subprogram is intrinsic, there is no need for a
226 -- wrapper body: we set the alias that will be called and expanded which
227 -- completes the declaration. This transformation is only legal if the
228 -- renamed entity has already been elaborated.
ca0cb93e 229
d4fc0fb4
AC
230 -- Note that it is legal for a renaming_as_body to rename an intrinsic
231 -- subprogram, as long as the renaming occurs before the new entity
232 -- is frozen. See RM 8.5.4 (5).
233
234 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
545cb5be 235 and then Is_Entity_Name (Name (Body_Decl))
d4fc0fb4 236 then
ca0cb93e
AC
237 Renamed_Subp := Entity (Name (Body_Decl));
238 else
239 Renamed_Subp := Empty;
240 end if;
241
242 if Present (Renamed_Subp)
243 and then Is_Intrinsic_Subprogram (Renamed_Subp)
ca0cb93e
AC
244 and then
245 (not In_Same_Source_Unit (Renamed_Subp, Ent)
246 or else Sloc (Renamed_Subp) < Sloc (Ent))
879e23f0 247
308e6f3a 248 -- We can make the renaming entity intrinsic if the renamed function
545cb5be
AC
249 -- has an interface name, or if it is one of the shift/rotate
250 -- operations known to the compiler.
879e23f0 251
b69cd36a
AC
252 and then
253 (Present (Interface_Name (Renamed_Subp))
254 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
255 Name_Rotate_Right,
256 Name_Shift_Left,
257 Name_Shift_Right,
258 Name_Shift_Right_Arithmetic))
ca0cb93e
AC
259 then
260 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
545cb5be 261
ca0cb93e
AC
262 if Present (Alias (Renamed_Subp)) then
263 Set_Alias (Ent, Alias (Renamed_Subp));
d4fc0fb4 264 else
ca0cb93e 265 Set_Alias (Ent, Renamed_Subp);
d4fc0fb4
AC
266 end if;
267
268 Set_Is_Intrinsic_Subprogram (Ent);
269 Set_Has_Completion (Ent);
270
271 else
272 Body_Node := Build_Renamed_Body (Decl, New_S);
273 Insert_After (After, Body_Node);
274 Mark_Rewrite_Insertion (Body_Node);
275 Analyze (Body_Node);
276 After := Body_Node;
277 end if;
70482933
RK
278 end Build_And_Analyze_Renamed_Body;
279
280 ------------------------
281 -- Build_Renamed_Body --
282 ------------------------
283
284 function Build_Renamed_Body
285 (Decl : Node_Id;
fbf5a39b 286 New_S : Entity_Id) return Node_Id
70482933
RK
287 is
288 Loc : constant Source_Ptr := Sloc (New_S);
545cb5be
AC
289 -- We use for the source location of the renamed body, the location of
290 -- the spec entity. It might seem more natural to use the location of
291 -- the renaming declaration itself, but that would be wrong, since then
292 -- the body we create would look as though it was created far too late,
293 -- and this could cause problems with elaboration order analysis,
294 -- particularly in connection with instantiations.
70482933
RK
295
296 N : constant Node_Id := Unit_Declaration_Node (New_S);
297 Nam : constant Node_Id := Name (N);
298 Old_S : Entity_Id;
299 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
300 Actuals : List_Id := No_List;
301 Call_Node : Node_Id;
302 Call_Name : Node_Id;
303 Body_Node : Node_Id;
304 Formal : Entity_Id;
305 O_Formal : Entity_Id;
306 Param_Spec : Node_Id;
307
def46b54
RD
308 Pref : Node_Id := Empty;
309 -- If the renamed entity is a primitive operation given in prefix form,
310 -- the prefix is the target object and it has to be added as the first
311 -- actual in the generated call.
312
70482933 313 begin
def46b54
RD
314 -- Determine the entity being renamed, which is the target of the call
315 -- statement. If the name is an explicit dereference, this is a renaming
316 -- of a subprogram type rather than a subprogram. The name itself is
317 -- fully analyzed.
70482933
RK
318
319 if Nkind (Nam) = N_Selected_Component then
320 Old_S := Entity (Selector_Name (Nam));
321
322 elsif Nkind (Nam) = N_Explicit_Dereference then
323 Old_S := Etype (Nam);
324
325 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
326 if Is_Entity_Name (Prefix (Nam)) then
327 Old_S := Entity (Prefix (Nam));
328 else
329 Old_S := Entity (Selector_Name (Prefix (Nam)));
330 end if;
331
332 elsif Nkind (Nam) = N_Character_Literal then
333 Old_S := Etype (New_S);
334
335 else
336 Old_S := Entity (Nam);
337 end if;
338
339 if Is_Entity_Name (Nam) then
07fc65c4 340
def46b54
RD
341 -- If the renamed entity is a predefined operator, retain full name
342 -- to ensure its visibility.
07fc65c4
GB
343
344 if Ekind (Old_S) = E_Operator
345 and then Nkind (Nam) = N_Expanded_Name
346 then
347 Call_Name := New_Copy (Name (N));
348 else
349 Call_Name := New_Reference_To (Old_S, Loc);
350 end if;
351
70482933 352 else
def46b54
RD
353 if Nkind (Nam) = N_Selected_Component
354 and then Present (First_Formal (Old_S))
355 and then
356 (Is_Controlling_Formal (First_Formal (Old_S))
357 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
358 then
359
360 -- Retrieve the target object, to be added as a first actual
361 -- in the call.
362
363 Call_Name := New_Occurrence_Of (Old_S, Loc);
364 Pref := Prefix (Nam);
365
366 else
367 Call_Name := New_Copy (Name (N));
368 end if;
70482933 369
545cb5be 370 -- Original name may have been overloaded, but is fully resolved now
70482933
RK
371
372 Set_Is_Overloaded (Call_Name, False);
373 end if;
374
def46b54 375 -- For simple renamings, subsequent calls can be expanded directly as
d4fc0fb4 376 -- calls to the renamed entity. The body must be generated in any case
a3068ca6
AC
377 -- for calls that may appear elsewhere. This is not done in the case
378 -- where the subprogram is an instantiation because the actual proper
379 -- body has not been built yet.
70482933 380
545cb5be 381 if Ekind_In (Old_S, E_Function, E_Procedure)
70482933 382 and then Nkind (Decl) = N_Subprogram_Declaration
a3068ca6 383 and then not Is_Generic_Instance (Old_S)
70482933
RK
384 then
385 Set_Body_To_Inline (Decl, Old_S);
386 end if;
387
388 -- The body generated for this renaming is an internal artifact, and
389 -- does not constitute a freeze point for the called entity.
390
391 Set_Must_Not_Freeze (Call_Name);
392
393 Formal := First_Formal (Defining_Entity (Decl));
394
def46b54
RD
395 if Present (Pref) then
396 declare
397 Pref_Type : constant Entity_Id := Etype (Pref);
398 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
399
400 begin
def46b54 401 -- The controlling formal may be an access parameter, or the
e14c931f 402 -- actual may be an access value, so adjust accordingly.
def46b54
RD
403
404 if Is_Access_Type (Pref_Type)
405 and then not Is_Access_Type (Form_Type)
406 then
407 Actuals := New_List
408 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
409
410 elsif Is_Access_Type (Form_Type)
411 and then not Is_Access_Type (Pref)
412 then
413 Actuals := New_List
414 (Make_Attribute_Reference (Loc,
415 Attribute_Name => Name_Access,
416 Prefix => Relocate_Node (Pref)));
417 else
418 Actuals := New_List (Pref);
419 end if;
420 end;
421
422 elsif Present (Formal) then
70482933
RK
423 Actuals := New_List;
424
def46b54
RD
425 else
426 Actuals := No_List;
427 end if;
428
429 if Present (Formal) then
70482933
RK
430 while Present (Formal) loop
431 Append (New_Reference_To (Formal, Loc), Actuals);
432 Next_Formal (Formal);
433 end loop;
434 end if;
435
def46b54
RD
436 -- If the renamed entity is an entry, inherit its profile. For other
437 -- renamings as bodies, both profiles must be subtype conformant, so it
438 -- is not necessary to replace the profile given in the declaration.
439 -- However, default values that are aggregates are rewritten when
440 -- partially analyzed, so we recover the original aggregate to insure
441 -- that subsequent conformity checking works. Similarly, if the default
442 -- expression was constant-folded, recover the original expression.
70482933
RK
443
444 Formal := First_Formal (Defining_Entity (Decl));
445
446 if Present (Formal) then
447 O_Formal := First_Formal (Old_S);
448 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
449 while Present (Formal) loop
450 if Is_Entry (Old_S) then
70482933
RK
451 if Nkind (Parameter_Type (Param_Spec)) /=
452 N_Access_Definition
453 then
454 Set_Etype (Formal, Etype (O_Formal));
455 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
456 end if;
457
07fc65c4
GB
458 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
459 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
460 Nkind (Default_Value (O_Formal))
461 then
70482933
RK
462 Set_Expression (Param_Spec,
463 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
464 end if;
465
466 Next_Formal (Formal);
467 Next_Formal (O_Formal);
468 Next (Param_Spec);
469 end loop;
470 end if;
471
472 -- If the renamed entity is a function, the generated body contains a
473 -- return statement. Otherwise, build a procedure call. If the entity is
474 -- an entry, subsequent analysis of the call will transform it into the
475 -- proper entry or protected operation call. If the renamed entity is
476 -- a character literal, return it directly.
477
478 if Ekind (Old_S) = E_Function
479 or else Ekind (Old_S) = E_Operator
480 or else (Ekind (Old_S) = E_Subprogram_Type
481 and then Etype (Old_S) /= Standard_Void_Type)
482 then
483 Call_Node :=
86cde7b1 484 Make_Simple_Return_Statement (Loc,
70482933
RK
485 Expression =>
486 Make_Function_Call (Loc,
487 Name => Call_Name,
488 Parameter_Associations => Actuals));
489
490 elsif Ekind (Old_S) = E_Enumeration_Literal then
491 Call_Node :=
86cde7b1 492 Make_Simple_Return_Statement (Loc,
70482933
RK
493 Expression => New_Occurrence_Of (Old_S, Loc));
494
495 elsif Nkind (Nam) = N_Character_Literal then
496 Call_Node :=
86cde7b1 497 Make_Simple_Return_Statement (Loc,
70482933
RK
498 Expression => Call_Name);
499
500 else
501 Call_Node :=
502 Make_Procedure_Call_Statement (Loc,
503 Name => Call_Name,
504 Parameter_Associations => Actuals);
505 end if;
506
49e90211 507 -- Create entities for subprogram body and formals
70482933
RK
508
509 Set_Defining_Unit_Name (Spec,
510 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
511
512 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
513 while Present (Param_Spec) loop
514 Set_Defining_Identifier (Param_Spec,
515 Make_Defining_Identifier (Loc,
516 Chars => Chars (Defining_Identifier (Param_Spec))));
517 Next (Param_Spec);
518 end loop;
519
520 Body_Node :=
521 Make_Subprogram_Body (Loc,
522 Specification => Spec,
523 Declarations => New_List,
524 Handled_Statement_Sequence =>
525 Make_Handled_Sequence_Of_Statements (Loc,
526 Statements => New_List (Call_Node)));
527
528 if Nkind (Decl) /= N_Subprogram_Declaration then
529 Rewrite (N,
530 Make_Subprogram_Declaration (Loc,
531 Specification => Specification (N)));
532 end if;
533
534 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
535 -- the body is analyzed when the renamed entity is frozen, it may
536 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
537
538 if Nkind (N) = N_Subprogram_Renaming_Declaration
539 and then Present (Corresponding_Spec (N))
540 then
541 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
542 else
543 Set_Corresponding_Spec (Body_Node, New_S);
544 end if;
545
546 return Body_Node;
547 end Build_Renamed_Body;
548
fbf5a39b
AC
549 --------------------------
550 -- Check_Address_Clause --
551 --------------------------
552
553 procedure Check_Address_Clause (E : Entity_Id) is
cf6956bb 554 Addr : constant Node_Id := Address_Clause (E);
fbf5a39b 555 Expr : Node_Id;
cf6956bb
AC
556 Decl : constant Node_Id := Declaration_Node (E);
557 Loc : constant Source_Ptr := Sloc (Decl);
558 Typ : constant Entity_Id := Etype (E);
fbf5a39b
AC
559
560 begin
561 if Present (Addr) then
562 Expr := Expression (Addr);
563
0d901290 564 if Needs_Constant_Address (Decl, Typ) then
fbf5a39b 565 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
566
567 -- Has_Delayed_Freeze was set on E when the address clause was
02217452
AC
568 -- analyzed, and must remain set because we want the address
569 -- clause to be elaborated only after any entity it references
570 -- has been elaborated.
fbf5a39b
AC
571 end if;
572
1d57c04f
AC
573 -- If Rep_Clauses are to be ignored, remove address clause from
574 -- list attached to entity, because it may be illegal for gigi,
575 -- for example by breaking order of elaboration..
576
577 if Ignore_Rep_Clauses then
578 declare
579 Rep : Node_Id;
580
581 begin
582 Rep := First_Rep_Item (E);
583
584 if Rep = Addr then
585 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
586
587 else
588 while Present (Rep)
589 and then Next_Rep_Item (Rep) /= Addr
590 loop
591 Rep := Next_Rep_Item (Rep);
592 end loop;
593 end if;
594
595 if Present (Rep) then
596 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
597 end if;
598 end;
599
600 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
601
602 elsif not Error_Posted (Expr)
048e5cef 603 and then not Needs_Finalization (Typ)
fbf5a39b
AC
604 then
605 Warn_Overlay (Expr, Typ, Name (Addr));
606 end if;
cf6956bb
AC
607
608 if Present (Expression (Decl)) then
609
610 -- Capture initialization value at point of declaration
611
612 Remove_Side_Effects (Expression (Decl));
613
614 -- Move initialization to freeze actions (once the object has
615 -- been frozen, and the address clause alignment check has been
616 -- performed.
617
618 Append_Freeze_Action (E,
619 Make_Assignment_Statement (Loc,
620 Name => New_Occurrence_Of (E, Loc),
621 Expression => Expression (Decl)));
622
623 Set_No_Initialization (Decl);
624 end if;
fbf5a39b
AC
625 end if;
626 end Check_Address_Clause;
627
70482933
RK
628 -----------------------------
629 -- Check_Compile_Time_Size --
630 -----------------------------
631
632 procedure Check_Compile_Time_Size (T : Entity_Id) is
633
c6823a20 634 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 635 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 636 -- field, of T checking for a size clause that was given which attempts
2593c3e1 637 -- to give a smaller size, and also checking for an alignment clause.
70482933
RK
638
639 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 640 -- Recursive function that does all the work
70482933
RK
641
642 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
643 -- If T is a constrained subtype, its size is not known if any of its
644 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 645 -- The test is conservative and doesn't check that the components are
70482933
RK
646 -- in fact constrained by non-static discriminant values. Could be made
647 -- more precise ???
648
649 --------------------
650 -- Set_Small_Size --
651 --------------------
652
c6823a20 653 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
654 begin
655 if S > 32 then
656 return;
657
2593c3e1
AC
658 -- Check for bad size clause given
659
70482933
RK
660 elsif Has_Size_Clause (T) then
661 if RM_Size (T) < S then
662 Error_Msg_Uint_1 := S;
663 Error_Msg_NE
d58b9515 664 ("size for& too small, minimum allowed is ^",
70482933 665 Size_Clause (T), T);
70482933
RK
666 end if;
667
fc893455 668 -- Set size if not set already
70482933 669
fc893455
AC
670 elsif Unknown_RM_Size (T) then
671 Set_RM_Size (T, S);
70482933
RK
672 end if;
673 end Set_Small_Size;
674
675 ----------------
676 -- Size_Known --
677 ----------------
678
679 function Size_Known (T : Entity_Id) return Boolean is
680 Index : Entity_Id;
681 Comp : Entity_Id;
682 Ctyp : Entity_Id;
683 Low : Node_Id;
684 High : Node_Id;
685
686 begin
687 if Size_Known_At_Compile_Time (T) then
688 return True;
689
c6a9797e
RD
690 -- Always True for scalar types. This is true even for generic formal
691 -- scalar types. We used to return False in the latter case, but the
692 -- size is known at compile time, even in the template, we just do
693 -- not know the exact size but that's not the point of this routine.
694
70482933
RK
695 elsif Is_Scalar_Type (T)
696 or else Is_Task_Type (T)
697 then
c6a9797e
RD
698 return True;
699
700 -- Array types
70482933
RK
701
702 elsif Is_Array_Type (T) then
c6a9797e
RD
703
704 -- String literals always have known size, and we can set it
705
70482933 706 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
707 Set_Small_Size (T, Component_Size (T)
708 * String_Literal_Length (T));
70482933
RK
709 return True;
710
c6a9797e
RD
711 -- Unconstrained types never have known at compile time size
712
70482933
RK
713 elsif not Is_Constrained (T) then
714 return False;
715
def46b54
RD
716 -- Don't do any recursion on type with error posted, since we may
717 -- have a malformed type that leads us into a loop.
07fc65c4
GB
718
719 elsif Error_Posted (T) then
720 return False;
721
c6a9797e
RD
722 -- Otherwise if component size unknown, then array size unknown
723
70482933
RK
724 elsif not Size_Known (Component_Type (T)) then
725 return False;
726 end if;
727
def46b54
RD
728 -- Check for all indexes static, and also compute possible size
729 -- (in case it is less than 32 and may be packable).
70482933
RK
730
731 declare
732 Esiz : Uint := Component_Size (T);
733 Dim : Uint;
734
735 begin
736 Index := First_Index (T);
70482933
RK
737 while Present (Index) loop
738 if Nkind (Index) = N_Range then
739 Get_Index_Bounds (Index, Low, High);
740
741 elsif Error_Posted (Scalar_Range (Etype (Index))) then
742 return False;
743
744 else
745 Low := Type_Low_Bound (Etype (Index));
746 High := Type_High_Bound (Etype (Index));
747 end if;
748
749 if not Compile_Time_Known_Value (Low)
750 or else not Compile_Time_Known_Value (High)
751 or else Etype (Index) = Any_Type
752 then
753 return False;
754
755 else
756 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
757
758 if Dim >= 0 then
759 Esiz := Esiz * Dim;
760 else
761 Esiz := Uint_0;
762 end if;
763 end if;
764
765 Next_Index (Index);
766 end loop;
767
c6823a20 768 Set_Small_Size (T, Esiz);
70482933
RK
769 return True;
770 end;
771
c6a9797e
RD
772 -- Access types always have known at compile time sizes
773
70482933
RK
774 elsif Is_Access_Type (T) then
775 return True;
776
c6a9797e
RD
777 -- For non-generic private types, go to underlying type if present
778
70482933
RK
779 elsif Is_Private_Type (T)
780 and then not Is_Generic_Type (T)
781 and then Present (Underlying_Type (T))
782 then
def46b54
RD
783 -- Don't do any recursion on type with error posted, since we may
784 -- have a malformed type that leads us into a loop.
07fc65c4
GB
785
786 if Error_Posted (T) then
787 return False;
788 else
789 return Size_Known (Underlying_Type (T));
790 end if;
70482933 791
c6a9797e
RD
792 -- Record types
793
70482933 794 elsif Is_Record_Type (T) then
fbf5a39b
AC
795
796 -- A class-wide type is never considered to have a known size
797
70482933
RK
798 if Is_Class_Wide_Type (T) then
799 return False;
800
fbf5a39b 801 -- A subtype of a variant record must not have non-static
308e6f3a 802 -- discriminated components.
fbf5a39b
AC
803
804 elsif T /= Base_Type (T)
805 and then not Static_Discriminated_Components (T)
806 then
807 return False;
70482933 808
def46b54
RD
809 -- Don't do any recursion on type with error posted, since we may
810 -- have a malformed type that leads us into a loop.
07fc65c4
GB
811
812 elsif Error_Posted (T) then
813 return False;
fbf5a39b 814 end if;
07fc65c4 815
fbf5a39b 816 -- Now look at the components of the record
70482933 817
fbf5a39b 818 declare
def46b54
RD
819 -- The following two variables are used to keep track of the
820 -- size of packed records if we can tell the size of the packed
821 -- record in the front end. Packed_Size_Known is True if so far
822 -- we can figure out the size. It is initialized to True for a
ca1ffed0
AC
823 -- packed record, unless the record has discriminants or atomic
824 -- components or independent components.
825
826 -- The reason we eliminate the discriminated case is that
827 -- we don't know the way the back end lays out discriminated
828 -- packed records. If Packed_Size_Known is True, then
829 -- Packed_Size is the size in bits so far.
fbf5a39b
AC
830
831 Packed_Size_Known : Boolean :=
ca1ffed0
AC
832 Is_Packed (T)
833 and then not Has_Discriminants (T)
834 and then not Has_Atomic_Components (T)
835 and then not Has_Independent_Components (T);
fbf5a39b
AC
836
837 Packed_Size : Uint := Uint_0;
ca1ffed0 838 -- SIze in bis so far
fbf5a39b
AC
839
840 begin
841 -- Test for variant part present
842
843 if Has_Discriminants (T)
844 and then Present (Parent (T))
845 and then Nkind (Parent (T)) = N_Full_Type_Declaration
846 and then Nkind (Type_Definition (Parent (T))) =
545cb5be 847 N_Record_Definition
fbf5a39b 848 and then not Null_Present (Type_Definition (Parent (T)))
15918371
AC
849 and then
850 Present (Variant_Part
851 (Component_List (Type_Definition (Parent (T)))))
fbf5a39b
AC
852 then
853 -- If variant part is present, and type is unconstrained,
854 -- then we must have defaulted discriminants, or a size
855 -- clause must be present for the type, or else the size
856 -- is definitely not known at compile time.
857
858 if not Is_Constrained (T)
859 and then
545cb5be 860 No (Discriminant_Default_Value (First_Discriminant (T)))
fc893455 861 and then Unknown_RM_Size (T)
70482933 862 then
fbf5a39b
AC
863 return False;
864 end if;
865 end if;
70482933 866
fbf5a39b
AC
867 -- Loop through components
868
fea9e956 869 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 870 while Present (Comp) loop
fea9e956 871 Ctyp := Etype (Comp);
fbf5a39b 872
fea9e956
ES
873 -- We do not know the packed size if there is a component
874 -- clause present (we possibly could, but this would only
875 -- help in the case of a record with partial rep clauses.
876 -- That's because in the case of full rep clauses, the
877 -- size gets figured out anyway by a different circuit).
fbf5a39b 878
fea9e956
ES
879 if Present (Component_Clause (Comp)) then
880 Packed_Size_Known := False;
881 end if;
70482933 882
ca1ffed0
AC
883 -- We do not know the packed size if we have a by reference
884 -- type, or an atomic type or an atomic component.
885
886 if Is_Atomic (Ctyp)
887 or else Is_Atomic (Comp)
888 or else Is_By_Reference_Type (Ctyp)
889 then
890 Packed_Size_Known := False;
891 end if;
892
fea9e956
ES
893 -- We need to identify a component that is an array where
894 -- the index type is an enumeration type with non-standard
895 -- representation, and some bound of the type depends on a
896 -- discriminant.
70482933 897
fea9e956 898 -- This is because gigi computes the size by doing a
e14c931f 899 -- substitution of the appropriate discriminant value in
fea9e956
ES
900 -- the size expression for the base type, and gigi is not
901 -- clever enough to evaluate the resulting expression (which
902 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 903
fea9e956
ES
904 -- It would be nice if gigi would either recognize that
905 -- this expression can be computed at compile time, or
906 -- alternatively figured out the size from the subtype
907 -- directly, where all the information is at hand ???
fbf5a39b 908
fea9e956
ES
909 if Is_Array_Type (Etype (Comp))
910 and then Present (Packed_Array_Type (Etype (Comp)))
911 then
912 declare
913 Ocomp : constant Entity_Id :=
914 Original_Record_Component (Comp);
915 OCtyp : constant Entity_Id := Etype (Ocomp);
916 Ind : Node_Id;
917 Indtyp : Entity_Id;
918 Lo, Hi : Node_Id;
70482933 919
fea9e956
ES
920 begin
921 Ind := First_Index (OCtyp);
922 while Present (Ind) loop
923 Indtyp := Etype (Ind);
70482933 924
fea9e956
ES
925 if Is_Enumeration_Type (Indtyp)
926 and then Has_Non_Standard_Rep (Indtyp)
927 then
928 Lo := Type_Low_Bound (Indtyp);
929 Hi := Type_High_Bound (Indtyp);
fbf5a39b 930
fea9e956
ES
931 if Is_Entity_Name (Lo)
932 and then Ekind (Entity (Lo)) = E_Discriminant
933 then
934 return False;
fbf5a39b 935
fea9e956
ES
936 elsif Is_Entity_Name (Hi)
937 and then Ekind (Entity (Hi)) = E_Discriminant
938 then
939 return False;
940 end if;
941 end if;
fbf5a39b 942
fea9e956
ES
943 Next_Index (Ind);
944 end loop;
945 end;
946 end if;
70482933 947
def46b54
RD
948 -- Clearly size of record is not known if the size of one of
949 -- the components is not known.
70482933 950
fea9e956
ES
951 if not Size_Known (Ctyp) then
952 return False;
953 end if;
70482933 954
fea9e956 955 -- Accumulate packed size if possible
70482933 956
fea9e956 957 if Packed_Size_Known then
70482933 958
fea9e956
ES
959 -- We can only deal with elementary types, since for
960 -- non-elementary components, alignment enters into the
961 -- picture, and we don't know enough to handle proper
962 -- alignment in this context. Packed arrays count as
963 -- elementary if the representation is a modular type.
fbf5a39b 964
fea9e956
ES
965 if Is_Elementary_Type (Ctyp)
966 or else (Is_Array_Type (Ctyp)
2593c3e1
AC
967 and then Present (Packed_Array_Type (Ctyp))
968 and then Is_Modular_Integer_Type
969 (Packed_Array_Type (Ctyp)))
fea9e956 970 then
ca1ffed0
AC
971 -- Packed size unknown if we have an atomic type
972 -- or a by reference type, since the back end
973 -- knows how these are layed out.
974
975 if Is_Atomic (Ctyp)
976 or else Is_By_Reference_Type (Ctyp)
977 then
978 Packed_Size_Known := False;
979
2593c3e1 980 -- If RM_Size is known and static, then we can keep
ca1ffed0 981 -- accumulating the packed size
70482933 982
ca1ffed0 983 elsif Known_Static_RM_Size (Ctyp) then
70482933 984
fea9e956
ES
985 -- A little glitch, to be removed sometime ???
986 -- gigi does not understand zero sizes yet.
987
988 if RM_Size (Ctyp) = Uint_0 then
70482933 989 Packed_Size_Known := False;
fea9e956
ES
990
991 -- Normal case where we can keep accumulating the
992 -- packed array size.
993
994 else
995 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 996 end if;
fbf5a39b 997
fea9e956
ES
998 -- If we have a field whose RM_Size is not known then
999 -- we can't figure out the packed size here.
fbf5a39b
AC
1000
1001 else
1002 Packed_Size_Known := False;
70482933 1003 end if;
fea9e956
ES
1004
1005 -- If we have a non-elementary type we can't figure out
1006 -- the packed array size (alignment issues).
1007
1008 else
1009 Packed_Size_Known := False;
70482933 1010 end if;
fbf5a39b 1011 end if;
70482933 1012
fea9e956 1013 Next_Component_Or_Discriminant (Comp);
fbf5a39b 1014 end loop;
70482933 1015
fbf5a39b 1016 if Packed_Size_Known then
c6823a20 1017 Set_Small_Size (T, Packed_Size);
fbf5a39b 1018 end if;
70482933 1019
fbf5a39b
AC
1020 return True;
1021 end;
70482933 1022
c6a9797e
RD
1023 -- All other cases, size not known at compile time
1024
70482933
RK
1025 else
1026 return False;
1027 end if;
1028 end Size_Known;
1029
1030 -------------------------------------
1031 -- Static_Discriminated_Components --
1032 -------------------------------------
1033
1034 function Static_Discriminated_Components
0da2c8ac 1035 (T : Entity_Id) return Boolean
70482933
RK
1036 is
1037 Constraint : Elmt_Id;
1038
1039 begin
1040 if Has_Discriminants (T)
1041 and then Present (Discriminant_Constraint (T))
1042 and then Present (First_Component (T))
1043 then
1044 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
1045 while Present (Constraint) loop
1046 if not Compile_Time_Known_Value (Node (Constraint)) then
1047 return False;
1048 end if;
1049
1050 Next_Elmt (Constraint);
1051 end loop;
1052 end if;
1053
1054 return True;
1055 end Static_Discriminated_Components;
1056
1057 -- Start of processing for Check_Compile_Time_Size
1058
1059 begin
1060 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1061 end Check_Compile_Time_Size;
1062
75965852
AC
1063 -----------------------------------
1064 -- Check_Component_Storage_Order --
1065 -----------------------------------
1066
1067 procedure Check_Component_Storage_Order
1068 (Encl_Type : Entity_Id;
1069 Comp : Entity_Id)
1070 is
1071 Comp_Type : Entity_Id;
75965852
AC
1072 Err_Node : Node_Id;
1073 ADC : Node_Id;
1074
5df1266a
AC
1075 Comp_Byte_Aligned : Boolean;
1076 -- Set True for the record case, when Comp starts on a byte boundary
1077 -- (in which case it is allowed to have different storage order).
1078
11d59a86
AC
1079 Component_Aliased : Boolean;
1080
75965852
AC
1081 begin
1082 -- Record case
1083
1084 if Present (Comp) then
1085 Err_Node := Comp;
1086 Comp_Type := Etype (Comp);
75965852 1087
4ff4293f 1088 if Is_Tag (Comp) then
4ff4293f 1089 Comp_Byte_Aligned := True;
11d59a86 1090 Component_Aliased := False;
4ff4293f
AC
1091
1092 else
4ff4293f
AC
1093 Comp_Byte_Aligned :=
1094 Present (Component_Clause (Comp))
1095 and then
ca1ffed0 1096 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
11d59a86 1097 Component_Aliased := Is_Aliased (Comp);
4ff4293f 1098 end if;
5df1266a 1099
75965852
AC
1100 -- Array case
1101
1102 else
1103 Err_Node := Encl_Type;
1104 Comp_Type := Component_Type (Encl_Type);
5df1266a
AC
1105
1106 Comp_Byte_Aligned := False;
11d59a86 1107 Component_Aliased := Has_Aliased_Components (Encl_Type);
75965852
AC
1108 end if;
1109
b3408631
RD
1110 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1111 -- the attribute definition clause is attached to the first subtype.
75965852
AC
1112
1113 Comp_Type := Base_Type (Comp_Type);
1114 ADC := Get_Attribute_Definition_Clause
1115 (First_Subtype (Comp_Type),
1116 Attribute_Scalar_Storage_Order);
1117
5df1266a 1118 if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
ae05cdd6 1119 if Present (Comp) and then Chars (Comp) = Name_uParent then
8190087e
AC
1120 if Reverse_Storage_Order (Encl_Type)
1121 /=
1122 Reverse_Storage_Order (Comp_Type)
1123 then
1124 Error_Msg_N
1125 ("record extension must have same scalar storage order as "
1126 & "parent", Err_Node);
1127 end if;
1128
1129 elsif No (ADC) then
5df1266a
AC
1130 Error_Msg_N ("nested composite must have explicit scalar "
1131 & "storage order", Err_Node);
1132
1133 elsif (Reverse_Storage_Order (Encl_Type)
1134 /=
8190087e 1135 Reverse_Storage_Order (Comp_Type))
5df1266a
AC
1136 and then not Comp_Byte_Aligned
1137 then
1138 Error_Msg_N
1139 ("type of non-byte-aligned component must have same scalar "
1140 & "storage order as enclosing composite", Err_Node);
1141 end if;
75965852 1142
11d59a86 1143 elsif Component_Aliased then
b3408631
RD
1144 Error_Msg_N
1145 ("aliased component not permitted for type with "
1146 & "explicit Scalar_Storage_Order", Err_Node);
75965852
AC
1147 end if;
1148 end Check_Component_Storage_Order;
1149
70482933
RK
1150 -----------------------------
1151 -- Check_Debug_Info_Needed --
1152 -----------------------------
1153
1154 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1155 begin
1b24ada5 1156 if Debug_Info_Off (T) then
70482933
RK
1157 return;
1158
1159 elsif Comes_From_Source (T)
1160 or else Debug_Generated_Code
1161 or else Debug_Flag_VV
1b24ada5 1162 or else Needs_Debug_Info (T)
70482933
RK
1163 then
1164 Set_Debug_Info_Needed (T);
1165 end if;
1166 end Check_Debug_Info_Needed;
1167
1168 ----------------------------
1169 -- Check_Strict_Alignment --
1170 ----------------------------
1171
1172 procedure Check_Strict_Alignment (E : Entity_Id) is
1173 Comp : Entity_Id;
1174
1175 begin
1176 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1177 Set_Strict_Alignment (E);
1178
1179 elsif Is_Array_Type (E) then
1180 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1181
1182 elsif Is_Record_Type (E) then
1183 if Is_Limited_Record (E) then
1184 Set_Strict_Alignment (E);
1185 return;
1186 end if;
1187
1188 Comp := First_Component (E);
70482933
RK
1189 while Present (Comp) loop
1190 if not Is_Type (Comp)
1191 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1192 or else Is_Aliased (Comp))
70482933
RK
1193 then
1194 Set_Strict_Alignment (E);
1195 return;
1196 end if;
1197
1198 Next_Component (Comp);
1199 end loop;
1200 end if;
1201 end Check_Strict_Alignment;
1202
1203 -------------------------
1204 -- Check_Unsigned_Type --
1205 -------------------------
1206
1207 procedure Check_Unsigned_Type (E : Entity_Id) is
1208 Ancestor : Entity_Id;
1209 Lo_Bound : Node_Id;
1210 Btyp : Entity_Id;
1211
1212 begin
1213 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1214 return;
1215 end if;
1216
1217 -- Do not attempt to analyze case where range was in error
1218
199c6a10
AC
1219 if No (Scalar_Range (E))
1220 or else Error_Posted (Scalar_Range (E))
1221 then
70482933
RK
1222 return;
1223 end if;
1224
1225 -- The situation that is non trivial is something like
1226
1227 -- subtype x1 is integer range -10 .. +10;
1228 -- subtype x2 is x1 range 0 .. V1;
1229 -- subtype x3 is x2 range V2 .. V3;
1230 -- subtype x4 is x3 range V4 .. V5;
1231
1232 -- where Vn are variables. Here the base type is signed, but we still
1233 -- know that x4 is unsigned because of the lower bound of x2.
1234
1235 -- The only way to deal with this is to look up the ancestor chain
1236
1237 Ancestor := E;
1238 loop
1239 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1240 return;
1241 end if;
1242
1243 Lo_Bound := Type_Low_Bound (Ancestor);
1244
1245 if Compile_Time_Known_Value (Lo_Bound) then
1246
1247 if Expr_Rep_Value (Lo_Bound) >= 0 then
1248 Set_Is_Unsigned_Type (E, True);
1249 end if;
1250
1251 return;
1252
1253 else
1254 Ancestor := Ancestor_Subtype (Ancestor);
1255
1256 -- If no ancestor had a static lower bound, go to base type
1257
1258 if No (Ancestor) then
1259
1260 -- Note: the reason we still check for a compile time known
1261 -- value for the base type is that at least in the case of
1262 -- generic formals, we can have bounds that fail this test,
1263 -- and there may be other cases in error situations.
1264
1265 Btyp := Base_Type (E);
1266
1267 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1268 return;
1269 end if;
1270
1271 Lo_Bound := Type_Low_Bound (Base_Type (E));
1272
1273 if Compile_Time_Known_Value (Lo_Bound)
1274 and then Expr_Rep_Value (Lo_Bound) >= 0
1275 then
1276 Set_Is_Unsigned_Type (E, True);
1277 end if;
1278
1279 return;
70482933
RK
1280 end if;
1281 end if;
1282 end loop;
1283 end Check_Unsigned_Type;
1284
cfb120b5
AC
1285 -------------------------
1286 -- Is_Atomic_Aggregate --
1287 -------------------------
fbf5a39b 1288
cfb120b5 1289 function Is_Atomic_Aggregate
b0159fbe
AC
1290 (E : Entity_Id;
1291 Typ : Entity_Id) return Boolean
1292 is
fbf5a39b
AC
1293 Loc : constant Source_Ptr := Sloc (E);
1294 New_N : Node_Id;
b0159fbe 1295 Par : Node_Id;
fbf5a39b
AC
1296 Temp : Entity_Id;
1297
1298 begin
b0159fbe
AC
1299 Par := Parent (E);
1300
01957849 1301 -- Array may be qualified, so find outer context
b0159fbe
AC
1302
1303 if Nkind (Par) = N_Qualified_Expression then
1304 Par := Parent (Par);
1305 end if;
1306
fb2e11ee 1307 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1308 and then Comes_From_Source (Par)
fbf5a39b 1309 then
b29def53 1310 Temp := Make_Temporary (Loc, 'T', E);
fbf5a39b
AC
1311 New_N :=
1312 Make_Object_Declaration (Loc,
1313 Defining_Identifier => Temp,
c6a9797e
RD
1314 Object_Definition => New_Occurrence_Of (Typ, Loc),
1315 Expression => Relocate_Node (E));
b0159fbe 1316 Insert_Before (Par, New_N);
fbf5a39b
AC
1317 Analyze (New_N);
1318
b0159fbe
AC
1319 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1320 return True;
2c1b72d7 1321
b0159fbe
AC
1322 else
1323 return False;
fbf5a39b 1324 end if;
cfb120b5 1325 end Is_Atomic_Aggregate;
fbf5a39b 1326
70482933
RK
1327 ----------------
1328 -- Freeze_All --
1329 ----------------
1330
1331 -- Note: the easy coding for this procedure would be to just build a
1332 -- single list of freeze nodes and then insert them and analyze them
1333 -- all at once. This won't work, because the analysis of earlier freeze
1334 -- nodes may recursively freeze types which would otherwise appear later
1335 -- on in the freeze list. So we must analyze and expand the freeze nodes
1336 -- as they are generated.
1337
1338 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1339 E : Entity_Id;
1340 Decl : Node_Id;
1341
1342 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1343 -- This is the internal recursive routine that does freezing of entities
1344 -- (but NOT the analysis of default expressions, which should not be
1345 -- recursive, we don't want to analyze those till we are sure that ALL
1346 -- the types are frozen).
70482933 1347
fbf5a39b
AC
1348 --------------------
1349 -- Freeze_All_Ent --
1350 --------------------
1351
545cb5be 1352 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1353 E : Entity_Id;
1354 Flist : List_Id;
1355 Lastn : Node_Id;
1356
1357 procedure Process_Flist;
def46b54
RD
1358 -- If freeze nodes are present, insert and analyze, and reset cursor
1359 -- for next insertion.
70482933 1360
fbf5a39b
AC
1361 -------------------
1362 -- Process_Flist --
1363 -------------------
1364
70482933
RK
1365 procedure Process_Flist is
1366 begin
1367 if Is_Non_Empty_List (Flist) then
1368 Lastn := Next (After);
1369 Insert_List_After_And_Analyze (After, Flist);
1370
1371 if Present (Lastn) then
1372 After := Prev (Lastn);
1373 else
1374 After := Last (List_Containing (After));
1375 end if;
1376 end if;
1377 end Process_Flist;
1378
fbf5a39b
AC
1379 -- Start or processing for Freeze_All_Ent
1380
70482933
RK
1381 begin
1382 E := From;
1383 while Present (E) loop
1384
1385 -- If the entity is an inner package which is not a package
def46b54
RD
1386 -- renaming, then its entities must be frozen at this point. Note
1387 -- that such entities do NOT get frozen at the end of the nested
1388 -- package itself (only library packages freeze).
70482933
RK
1389
1390 -- Same is true for task declarations, where anonymous records
1391 -- created for entry parameters must be frozen.
1392
1393 if Ekind (E) = E_Package
1394 and then No (Renamed_Object (E))
1395 and then not Is_Child_Unit (E)
1396 and then not Is_Frozen (E)
1397 then
7d8b9c99 1398 Push_Scope (E);
70482933
RK
1399 Install_Visible_Declarations (E);
1400 Install_Private_Declarations (E);
1401
1402 Freeze_All (First_Entity (E), After);
1403
1404 End_Package_Scope (E);
1405
d3cb4cc0
AC
1406 if Is_Generic_Instance (E)
1407 and then Has_Delayed_Freeze (E)
1408 then
1409 Set_Has_Delayed_Freeze (E, False);
1410 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1411 end if;
1412
70482933
RK
1413 elsif Ekind (E) in Task_Kind
1414 and then
1415 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1416 or else
70482933
RK
1417 Nkind (Parent (E)) = N_Single_Task_Declaration)
1418 then
7d8b9c99 1419 Push_Scope (E);
70482933
RK
1420 Freeze_All (First_Entity (E), After);
1421 End_Scope;
1422
1423 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1424 -- primitive operations of the parent have been frozen, so that
1425 -- their addresses will be in the parent's dispatch table at the
1426 -- point it is inherited.
70482933
RK
1427
1428 elsif Ekind (E) = E_Record_Type
1429 and then Is_Tagged_Type (E)
1430 and then Is_Tagged_Type (Etype (E))
1431 and then Is_Derived_Type (E)
1432 then
1433 declare
1434 Prim_List : constant Elist_Id :=
1435 Primitive_Operations (Etype (E));
fbf5a39b
AC
1436
1437 Prim : Elmt_Id;
1438 Subp : Entity_Id;
70482933
RK
1439
1440 begin
df3e68b1 1441 Prim := First_Elmt (Prim_List);
70482933
RK
1442 while Present (Prim) loop
1443 Subp := Node (Prim);
1444
1445 if Comes_From_Source (Subp)
1446 and then not Is_Frozen (Subp)
1447 then
c159409f 1448 Flist := Freeze_Entity (Subp, After);
70482933
RK
1449 Process_Flist;
1450 end if;
1451
1452 Next_Elmt (Prim);
1453 end loop;
1454 end;
1455 end if;
1456
1457 if not Is_Frozen (E) then
c159409f 1458 Flist := Freeze_Entity (E, After);
70482933 1459 Process_Flist;
47e11d08
AC
1460
1461 -- If already frozen, and there are delayed aspects, this is where
1462 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1463 -- for a description of how we handle aspect visibility).
1464
1465 elsif Has_Delayed_Aspects (E) then
02e4edea 1466
b98e2969
AC
1467 -- Retrieve the visibility to the discriminants in order to
1468 -- analyze properly the aspects.
1469
1470 Push_Scope_And_Install_Discriminants (E);
1471
47e11d08
AC
1472 declare
1473 Ritem : Node_Id;
1474
1475 begin
1476 Ritem := First_Rep_Item (E);
1477 while Present (Ritem) loop
1478 if Nkind (Ritem) = N_Aspect_Specification
bd949ee2 1479 and then Entity (Ritem) = E
47e11d08
AC
1480 and then Is_Delayed_Aspect (Ritem)
1481 then
1482 Check_Aspect_At_End_Of_Declarations (Ritem);
1483 end if;
1484
1485 Ritem := Next_Rep_Item (Ritem);
1486 end loop;
1487 end;
b98e2969
AC
1488
1489 Uninstall_Discriminants_And_Pop_Scope (E);
70482933
RK
1490 end if;
1491
def46b54
RD
1492 -- If an incomplete type is still not frozen, this may be a
1493 -- premature freezing because of a body declaration that follows.
ef992452
AC
1494 -- Indicate where the freezing took place. Freezing will happen
1495 -- if the body comes from source, but not if it is internally
1496 -- generated, for example as the body of a type invariant.
fbf5a39b 1497
def46b54
RD
1498 -- If the freezing is caused by the end of the current declarative
1499 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1500
1501 if not Is_Frozen (E)
1502 and then Ekind (E) = E_Incomplete_Type
1503 then
1504 declare
1505 Bod : constant Node_Id := Next (After);
1506
1507 begin
35fae080
RD
1508 -- The presence of a body freezes all entities previously
1509 -- declared in the current list of declarations, but this
1510 -- does not apply if the body does not come from source.
1511 -- A type invariant is transformed into a subprogram body
1512 -- which is placed at the end of the private part of the
1513 -- current package, but this body does not freeze incomplete
1514 -- types that may be declared in this private part.
1515
545cb5be
AC
1516 if (Nkind_In (Bod, N_Subprogram_Body,
1517 N_Entry_Body,
1518 N_Package_Body,
1519 N_Protected_Body,
1520 N_Task_Body)
fbf5a39b 1521 or else Nkind (Bod) in N_Body_Stub)
ef992452 1522 and then
35fae080 1523 List_Containing (After) = List_Containing (Parent (E))
ef992452 1524 and then Comes_From_Source (Bod)
fbf5a39b
AC
1525 then
1526 Error_Msg_Sloc := Sloc (Next (After));
1527 Error_Msg_NE
1528 ("type& is frozen# before its full declaration",
1529 Parent (E), E);
1530 end if;
1531 end;
1532 end if;
1533
70482933
RK
1534 Next_Entity (E);
1535 end loop;
1536 end Freeze_All_Ent;
1537
1538 -- Start of processing for Freeze_All
1539
1540 begin
1541 Freeze_All_Ent (From, After);
1542
1543 -- Now that all types are frozen, we can deal with default expressions
1544 -- that require us to build a default expression functions. This is the
1545 -- point at which such functions are constructed (after all types that
1546 -- might be used in such expressions have been frozen).
fbf5a39b 1547
d4fc0fb4
AC
1548 -- For subprograms that are renaming_as_body, we create the wrapper
1549 -- bodies as needed.
1550
70482933
RK
1551 -- We also add finalization chains to access types whose designated
1552 -- types are controlled. This is normally done when freezing the type,
1553 -- but this misses recursive type definitions where the later members
c6a9797e 1554 -- of the recursion introduce controlled components.
70482933
RK
1555
1556 -- Loop through entities
1557
1558 E := From;
1559 while Present (E) loop
70482933
RK
1560 if Is_Subprogram (E) then
1561
1562 if not Default_Expressions_Processed (E) then
1563 Process_Default_Expressions (E, After);
1564 end if;
1565
1566 if not Has_Completion (E) then
1567 Decl := Unit_Declaration_Node (E);
1568
1569 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
8417f4b2
AC
1570 if Error_Posted (Decl) then
1571 Set_Has_Completion (E);
8417f4b2
AC
1572 else
1573 Build_And_Analyze_Renamed_Body (Decl, E, After);
1574 end if;
70482933
RK
1575
1576 elsif Nkind (Decl) = N_Subprogram_Declaration
1577 and then Present (Corresponding_Body (Decl))
1578 and then
1579 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1580 = N_Subprogram_Renaming_Declaration
70482933
RK
1581 then
1582 Build_And_Analyze_Renamed_Body
1583 (Decl, Corresponding_Body (Decl), After);
1584 end if;
1585 end if;
1586
1587 elsif Ekind (E) in Task_Kind
1588 and then
1589 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1590 or else
70482933
RK
1591 Nkind (Parent (E)) = N_Single_Task_Declaration)
1592 then
1593 declare
1594 Ent : Entity_Id;
545cb5be 1595
70482933
RK
1596 begin
1597 Ent := First_Entity (E);
70482933 1598 while Present (Ent) loop
70482933
RK
1599 if Is_Entry (Ent)
1600 and then not Default_Expressions_Processed (Ent)
1601 then
1602 Process_Default_Expressions (Ent, After);
1603 end if;
1604
1605 Next_Entity (Ent);
1606 end loop;
1607 end;
1608
ca5af305
AC
1609 -- We add finalization masters to access types whose designated types
1610 -- require finalization. This is normally done when freezing the
1611 -- type, but this misses recursive type definitions where the later
1612 -- members of the recursion introduce controlled components (such as
1613 -- can happen when incomplete types are involved), as well cases
1614 -- where a component type is private and the controlled full type
1615 -- occurs after the access type is frozen. Cases that don't need a
1616 -- finalization master are generic formal types (the actual type will
1617 -- have it) and types with Java and CIL conventions, since those are
1618 -- used for API bindings. (Are there any other cases that should be
1619 -- excluded here???)
df3e68b1 1620
70482933
RK
1621 elsif Is_Access_Type (E)
1622 and then Comes_From_Source (E)
df3e68b1 1623 and then not Is_Generic_Type (E)
048e5cef 1624 and then Needs_Finalization (Designated_Type (E))
70482933 1625 then
ca5af305 1626 Build_Finalization_Master (E);
70482933
RK
1627 end if;
1628
1629 Next_Entity (E);
1630 end loop;
70482933
RK
1631 end Freeze_All;
1632
1633 -----------------------
1634 -- Freeze_And_Append --
1635 -----------------------
1636
1637 procedure Freeze_And_Append
1638 (Ent : Entity_Id;
c159409f 1639 N : Node_Id;
70482933
RK
1640 Result : in out List_Id)
1641 is
c159409f 1642 L : constant List_Id := Freeze_Entity (Ent, N);
70482933
RK
1643 begin
1644 if Is_Non_Empty_List (L) then
1645 if Result = No_List then
1646 Result := L;
1647 else
1648 Append_List (L, Result);
1649 end if;
1650 end if;
1651 end Freeze_And_Append;
1652
1653 -------------------
1654 -- Freeze_Before --
1655 -------------------
1656
1657 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
c159409f 1658 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
70482933
RK
1659 begin
1660 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1661 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1662 end if;
1663 end Freeze_Before;
1664
1665 -------------------
1666 -- Freeze_Entity --
1667 -------------------
1668
c159409f
AC
1669 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1670 Loc : constant Source_Ptr := Sloc (N);
c6823a20 1671 Test_E : Entity_Id := E;
70482933
RK
1672 Comp : Entity_Id;
1673 F_Node : Node_Id;
70482933
RK
1674 Indx : Node_Id;
1675 Formal : Entity_Id;
1676 Atype : Entity_Id;
1677
90878b12
AC
1678 Result : List_Id := No_List;
1679 -- List of freezing actions, left at No_List if none
1680
4c8a5bb8
AC
1681 Has_Default_Initialization : Boolean := False;
1682 -- This flag gets set to true for a variable with default initialization
1683
90878b12
AC
1684 procedure Add_To_Result (N : Node_Id);
1685 -- N is a freezing action to be appended to the Result
1686
b98e2969
AC
1687 function After_Last_Declaration return Boolean;
1688 -- If Loc is a freeze_entity that appears after the last declaration
1689 -- in the scope, inhibit error messages on late completion.
1690
70482933 1691 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1692 -- Check that an Access or Unchecked_Access attribute with a prefix
1693 -- which is the current instance type can only be applied when the type
1694 -- is limited.
70482933 1695
67b3acf8
RD
1696 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1697 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1698 -- integer literal without an explicit corresponding size clause. The
1699 -- caller has checked that Utype is a modular integer type.
1700
63bb4268
AC
1701 procedure Freeze_Array_Type (Arr : Entity_Id);
1702 -- Freeze array type, including freezing index and component types
1703
3cd4a210
AC
1704 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1705 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1706 -- package. Recurse on inner generic packages.
1707
70482933 1708 procedure Freeze_Record_Type (Rec : Entity_Id);
63bb4268 1709 -- Freeze record type, including freezing component types, and freezing
edd63e9b 1710 -- primitive operations if this is a tagged type.
70482933 1711
90878b12
AC
1712 -------------------
1713 -- Add_To_Result --
1714 -------------------
1715
1716 procedure Add_To_Result (N : Node_Id) is
1717 begin
1718 if No (Result) then
1719 Result := New_List (N);
1720 else
1721 Append (N, Result);
1722 end if;
1723 end Add_To_Result;
1724
70482933
RK
1725 ----------------------------
1726 -- After_Last_Declaration --
1727 ----------------------------
1728
1729 function After_Last_Declaration return Boolean is
fb2e11ee 1730 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1731 begin
1732 if Nkind (Spec) = N_Package_Specification then
1733 if Present (Private_Declarations (Spec)) then
1734 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1735 elsif Present (Visible_Declarations (Spec)) then
1736 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1737 else
1738 return False;
1739 end if;
70482933
RK
1740 else
1741 return False;
1742 end if;
1743 end After_Last_Declaration;
1744
1745 ----------------------------
1746 -- Check_Current_Instance --
1747 ----------------------------
1748
1749 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1750
e1308fa8
AC
1751 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1752 -- Determine whether Typ is compatible with the rules for aliased
1753 -- views of types as defined in RM 3.10 in the various dialects.
32c760e6 1754
70482933 1755 function Process (N : Node_Id) return Traverse_Result;
49e90211 1756 -- Process routine to apply check to given node
70482933 1757
e1308fa8
AC
1758 -----------------------------
1759 -- Is_Aliased_View_Of_Type --
1760 -----------------------------
1761
1762 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1763 Typ_Decl : constant Node_Id := Parent (Typ);
1764
1765 begin
1766 -- Common case
1767
1768 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1769 and then Limited_Present (Type_Definition (Typ_Decl))
1770 then
1771 return True;
1772
1773 -- The following paragraphs describe what a legal aliased view of
1774 -- a type is in the various dialects of Ada.
1775
1776 -- Ada 95
1777
1778 -- The current instance of a limited type, and a formal parameter
1779 -- or generic formal object of a tagged type.
1780
1781 -- Ada 95 limited type
1782 -- * Type with reserved word "limited"
1783 -- * A protected or task type
1784 -- * A composite type with limited component
1785
1786 elsif Ada_Version <= Ada_95 then
1787 return Is_Limited_Type (Typ);
1788
1789 -- Ada 2005
1790
1791 -- The current instance of a limited tagged type, a protected
1792 -- type, a task type, or a type that has the reserved word
1793 -- "limited" in its full definition ... a formal parameter or
1794 -- generic formal object of a tagged type.
1795
1796 -- Ada 2005 limited type
1797 -- * Type with reserved word "limited", "synchronized", "task"
1798 -- or "protected"
1799 -- * A composite type with limited component
1800 -- * A derived type whose parent is a non-interface limited type
1801
1802 elsif Ada_Version = Ada_2005 then
1803 return
1804 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
1805 or else
1806 (Is_Derived_Type (Typ)
1807 and then not Is_Interface (Etype (Typ))
1808 and then Is_Limited_Type (Etype (Typ)));
1809
1810 -- Ada 2012 and beyond
1811
1812 -- The current instance of an immutably limited type ... a formal
1813 -- parameter or generic formal object of a tagged type.
1814
1815 -- Ada 2012 limited type
1816 -- * Type with reserved word "limited", "synchronized", "task"
1817 -- or "protected"
1818 -- * A composite type with limited component
1819 -- * A derived type whose parent is a non-interface limited type
1820 -- * An incomplete view
1821
1822 -- Ada 2012 immutably limited type
1823 -- * Explicitly limited record type
1824 -- * Record extension with "limited" present
1825 -- * Non-formal limited private type that is either tagged
1826 -- or has at least one access discriminant with a default
1827 -- expression
1828 -- * Task type, protected type or synchronized interface
1829 -- * Type derived from immutably limited type
1830
1831 else
1832 return
1833 Is_Immutably_Limited_Type (Typ)
1834 or else Is_Incomplete_Type (Typ);
1835 end if;
1836 end Is_Aliased_View_Of_Type;
1837
fbf5a39b
AC
1838 -------------
1839 -- Process --
1840 -------------
1841
70482933
RK
1842 function Process (N : Node_Id) return Traverse_Result is
1843 begin
1844 case Nkind (N) is
1845 when N_Attribute_Reference =>
b69cd36a
AC
1846 if Nam_In (Attribute_Name (N), Name_Access,
1847 Name_Unchecked_Access)
70482933
RK
1848 and then Is_Entity_Name (Prefix (N))
1849 and then Is_Type (Entity (Prefix (N)))
1850 and then Entity (Prefix (N)) = E
1851 then
1852 Error_Msg_N
1853 ("current instance must be a limited type", Prefix (N));
1854 return Abandon;
1855 else
1856 return OK;
1857 end if;
1858
1859 when others => return OK;
1860 end case;
1861 end Process;
1862
1863 procedure Traverse is new Traverse_Proc (Process);
1864
e1308fa8 1865 -- Local variables
32c760e6 1866
e1308fa8
AC
1867 Rec_Type : constant Entity_Id :=
1868 Scope (Defining_Identifier (Comp_Decl));
32c760e6 1869
e1308fa8 1870 -- Start of processing for Check_Current_Instance
32c760e6 1871
e1308fa8
AC
1872 begin
1873 if not Is_Aliased_View_Of_Type (Rec_Type) then
32c760e6
ES
1874 Traverse (Comp_Decl);
1875 end if;
70482933
RK
1876 end Check_Current_Instance;
1877
67b3acf8
RD
1878 ------------------------------
1879 -- Check_Suspicious_Modulus --
1880 ------------------------------
1881
1882 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1883 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1884
1885 begin
685bc70f
AC
1886 if not Warn_On_Suspicious_Modulus_Value then
1887 return;
1888 end if;
1889
67b3acf8
RD
1890 if Nkind (Decl) = N_Full_Type_Declaration then
1891 declare
1892 Tdef : constant Node_Id := Type_Definition (Decl);
3e7302c3 1893
67b3acf8
RD
1894 begin
1895 if Nkind (Tdef) = N_Modular_Type_Definition then
1896 declare
1897 Modulus : constant Node_Id :=
1898 Original_Node (Expression (Tdef));
685bc70f 1899
67b3acf8
RD
1900 begin
1901 if Nkind (Modulus) = N_Integer_Literal then
1902 declare
1903 Modv : constant Uint := Intval (Modulus);
1904 Sizv : constant Uint := RM_Size (Utype);
1905
1906 begin
1907 -- First case, modulus and size are the same. This
1908 -- happens if you have something like mod 32, with
1909 -- an explicit size of 32, this is for sure a case
1910 -- where the warning is given, since it is seems
1911 -- very unlikely that someone would want e.g. a
1912 -- five bit type stored in 32 bits. It is much
1913 -- more likely they wanted a 32-bit type.
1914
1915 if Modv = Sizv then
1916 null;
1917
1918 -- Second case, the modulus is 32 or 64 and no
1919 -- size clause is present. This is a less clear
1920 -- case for giving the warning, but in the case
1921 -- of 32/64 (5-bit or 6-bit types) these seem rare
1922 -- enough that it is a likely error (and in any
1923 -- case using 2**5 or 2**6 in these cases seems
1924 -- clearer. We don't include 8 or 16 here, simply
1925 -- because in practice 3-bit and 4-bit types are
1926 -- more common and too many false positives if
1927 -- we warn in these cases.
1928
1929 elsif not Has_Size_Clause (Utype)
1930 and then (Modv = Uint_32 or else Modv = Uint_64)
1931 then
1932 null;
1933
1934 -- No warning needed
1935
1936 else
1937 return;
1938 end if;
1939
1940 -- If we fall through, give warning
1941
1942 Error_Msg_Uint_1 := Modv;
1943 Error_Msg_N
685bc70f 1944 ("?M?2 '*'*^' may have been intended here",
67b3acf8
RD
1945 Modulus);
1946 end;
1947 end if;
1948 end;
1949 end if;
1950 end;
1951 end if;
1952 end Check_Suspicious_Modulus;
1953
63bb4268
AC
1954 -----------------------
1955 -- Freeze_Array_Type --
1956 -----------------------
1957
1958 procedure Freeze_Array_Type (Arr : Entity_Id) is
1959 FS : constant Entity_Id := First_Subtype (Arr);
1960 Ctyp : constant Entity_Id := Component_Type (Arr);
1961 Clause : Entity_Id;
1962
1963 Non_Standard_Enum : Boolean := False;
1964 -- Set true if any of the index types is an enumeration type with a
1965 -- non-standard representation.
1966
1967 begin
1968 Freeze_And_Append (Ctyp, N, Result);
1969
1970 Indx := First_Index (Arr);
1971 while Present (Indx) loop
1972 Freeze_And_Append (Etype (Indx), N, Result);
1973
1974 if Is_Enumeration_Type (Etype (Indx))
1975 and then Has_Non_Standard_Rep (Etype (Indx))
1976 then
1977 Non_Standard_Enum := True;
1978 end if;
1979
1980 Next_Index (Indx);
1981 end loop;
1982
1983 -- Processing that is done only for base types
1984
1985 if Ekind (Arr) = E_Array_Type then
1986
1987 -- Propagate flags for component type
1988
1989 if Is_Controlled (Component_Type (Arr))
1990 or else Has_Controlled_Component (Ctyp)
1991 then
1992 Set_Has_Controlled_Component (Arr);
1993 end if;
1994
1995 if Has_Unchecked_Union (Component_Type (Arr)) then
1996 Set_Has_Unchecked_Union (Arr);
1997 end if;
1998
1999 -- Warn for pragma Pack overriding foreign convention
2000
2001 if Has_Foreign_Convention (Ctyp)
2002 and then Has_Pragma_Pack (Arr)
2003 then
2004 declare
2005 CN : constant Name_Id :=
2006 Get_Convention_Name (Convention (Ctyp));
2007 PP : constant Node_Id :=
2008 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2009 begin
2010 if Present (PP) then
2011 Error_Msg_Name_1 := CN;
2012 Error_Msg_Sloc := Sloc (Arr);
2013 Error_Msg_N
2014 ("pragma Pack affects convention % components #??",
2015 PP);
2016 Error_Msg_Name_1 := CN;
2017 Error_Msg_N
2018 ("\array components may not have % compatible "
2019 & "representation??", PP);
2020 end if;
2021 end;
2022 end if;
2023
2024 -- If packing was requested or if the component size was
2025 -- set explicitly, then see if bit packing is required. This
2026 -- processing is only done for base types, since all of the
2027 -- representation aspects involved are type-related. This is not
2028 -- just an optimization, if we start processing the subtypes, they
2029 -- interfere with the settings on the base type (this is because
2030 -- Is_Packed has a slightly different meaning before and after
2031 -- freezing).
2032
2033 declare
2034 Csiz : Uint;
2035 Esiz : Uint;
2036
2037 begin
2038 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2039 and then Known_Static_RM_Size (Ctyp)
2040 and then not Has_Component_Size_Clause (Arr)
2041 then
2042 Csiz := UI_Max (RM_Size (Ctyp), 1);
2043
2044 elsif Known_Component_Size (Arr) then
2045 Csiz := Component_Size (Arr);
2046
2047 elsif not Known_Static_Esize (Ctyp) then
2048 Csiz := Uint_0;
2049
2050 else
2051 Esiz := Esize (Ctyp);
2052
2053 -- We can set the component size if it is less than 16,
2054 -- rounding it up to the next storage unit size.
2055
2056 if Esiz <= 8 then
2057 Csiz := Uint_8;
2058 elsif Esiz <= 16 then
2059 Csiz := Uint_16;
2060 else
2061 Csiz := Uint_0;
2062 end if;
2063
2064 -- Set component size up to match alignment if it would
2065 -- otherwise be less than the alignment. This deals with
2066 -- cases of types whose alignment exceeds their size (the
2067 -- padded type cases).
2068
2069 if Csiz /= 0 then
2070 declare
2071 A : constant Uint := Alignment_In_Bits (Ctyp);
2072 begin
2073 if Csiz < A then
2074 Csiz := A;
2075 end if;
2076 end;
2077 end if;
2078 end if;
2079
2080 -- Case of component size that may result in packing
2081
2082 if 1 <= Csiz and then Csiz <= 64 then
2083 declare
2084 Ent : constant Entity_Id :=
2085 First_Subtype (Arr);
2086 Pack_Pragma : constant Node_Id :=
2087 Get_Rep_Pragma (Ent, Name_Pack);
2088 Comp_Size_C : constant Node_Id :=
2089 Get_Attribute_Definition_Clause
2090 (Ent, Attribute_Component_Size);
2091 begin
2092 -- Warn if we have pack and component size so that the
2093 -- pack is ignored.
2094
2095 -- Note: here we must check for the presence of a
2096 -- component size before checking for a Pack pragma to
2097 -- deal with the case where the array type is a derived
2098 -- type whose parent is currently private.
2099
2100 if Present (Comp_Size_C)
2101 and then Has_Pragma_Pack (Ent)
2102 and then Warn_On_Redundant_Constructs
2103 then
2104 Error_Msg_Sloc := Sloc (Comp_Size_C);
2105 Error_Msg_NE
2106 ("?r?pragma Pack for& ignored!",
2107 Pack_Pragma, Ent);
2108 Error_Msg_N
2109 ("\?r?explicit component size given#!",
2110 Pack_Pragma);
2111 Set_Is_Packed (Base_Type (Ent), False);
2112 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2113 end if;
2114
2115 -- Set component size if not already set by a component
2116 -- size clause.
2117
2118 if not Present (Comp_Size_C) then
2119 Set_Component_Size (Arr, Csiz);
2120 end if;
2121
2122 -- Check for base type of 8, 16, 32 bits, where an
2123 -- unsigned subtype has a length one less than the
2124 -- base type (e.g. Natural subtype of Integer).
2125
2126 -- In such cases, if a component size was not set
2127 -- explicitly, then generate a warning.
2128
2129 if Has_Pragma_Pack (Arr)
2130 and then not Present (Comp_Size_C)
2131 and then
2132 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2133 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2134 then
2135 Error_Msg_Uint_1 := Csiz;
2136
2137 if Present (Pack_Pragma) then
2138 Error_Msg_N
2139 ("??pragma Pack causes component size "
2140 & "to be ^!", Pack_Pragma);
2141 Error_Msg_N
2142 ("\??use Component_Size to set "
2143 & "desired value!", Pack_Pragma);
2144 end if;
2145 end if;
2146
2147 -- Actual packing is not needed for 8, 16, 32, 64. Also
2148 -- not needed for 24 if alignment is 1.
2149
2150 if Csiz = 8
2151 or else Csiz = 16
2152 or else Csiz = 32
2153 or else Csiz = 64
2154 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2155 then
2156 -- Here the array was requested to be packed, but
2157 -- the packing request had no effect, so Is_Packed
2158 -- is reset.
2159
2160 -- Note: semantically this means that we lose track
2161 -- of the fact that a derived type inherited a pragma
2162 -- Pack that was non- effective, but that seems fine.
2163
2164 -- We regard a Pack pragma as a request to set a
2165 -- representation characteristic, and this request
2166 -- may be ignored.
2167
2168 Set_Is_Packed (Base_Type (Arr), False);
2169 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2170
2171 if Known_Static_Esize (Component_Type (Arr))
2172 and then Esize (Component_Type (Arr)) = Csiz
2173 then
2174 Set_Has_Non_Standard_Rep
2175 (Base_Type (Arr), False);
2176 end if;
2177
2178 -- In all other cases, packing is indeed needed
2179
2180 else
2181 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2182 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2183 Set_Is_Packed (Base_Type (Arr), True);
2184 end if;
2185 end;
2186 end if;
2187 end;
2188
2189 -- Check for Atomic_Components or Aliased with unsuitable packing
2190 -- or explicit component size clause given.
2191
2192 if (Has_Atomic_Components (Arr)
2193 or else Has_Aliased_Components (Arr))
2194 and then (Has_Component_Size_Clause (Arr)
2195 or else Is_Packed (Arr))
2196 then
2197 Alias_Atomic_Check : declare
2198
2199 procedure Complain_CS (T : String);
2200 -- Outputs error messages for incorrect CS clause or pragma
2201 -- Pack for aliased or atomic components (T is "aliased" or
2202 -- "atomic");
2203
2204 -----------------
2205 -- Complain_CS --
2206 -----------------
2207
2208 procedure Complain_CS (T : String) is
2209 begin
2210 if Has_Component_Size_Clause (Arr) then
2211 Clause :=
2212 Get_Attribute_Definition_Clause
2213 (FS, Attribute_Component_Size);
2214
2215 if Known_Static_Esize (Ctyp) then
2216 Error_Msg_N
2217 ("incorrect component size for "
2218 & T & " components", Clause);
2219 Error_Msg_Uint_1 := Esize (Ctyp);
2220 Error_Msg_N
2221 ("\only allowed value is^", Clause);
2222
2223 else
2224 Error_Msg_N
2225 ("component size cannot be given for "
2226 & T & " components", Clause);
2227 end if;
2228
2229 else
2230 Error_Msg_N
2231 ("cannot pack " & T & " components",
2232 Get_Rep_Pragma (FS, Name_Pack));
2233 end if;
2234
2235 return;
2236 end Complain_CS;
2237
2238 -- Start of processing for Alias_Atomic_Check
2239
2240 begin
2241
2242 -- If object size of component type isn't known, we cannot
2243 -- be sure so we defer to the back end.
2244
2245 if not Known_Static_Esize (Ctyp) then
2246 null;
2247
2248 -- Case where component size has no effect. First check for
2249 -- object size of component type multiple of the storage
2250 -- unit size.
2251
2252 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2253
2254 -- OK in both packing case and component size case if RM
2255 -- size is known and static and same as the object size.
2256
2257 and then
2258 ((Known_Static_RM_Size (Ctyp)
2259 and then Esize (Ctyp) = RM_Size (Ctyp))
2260
2261 -- Or if we have an explicit component size clause and
2262 -- the component size and object size are equal.
2263
2264 or else
2265 (Has_Component_Size_Clause (Arr)
2266 and then Component_Size (Arr) = Esize (Ctyp)))
2267 then
2268 null;
2269
2270 elsif Has_Aliased_Components (Arr)
2271 or else Is_Aliased (Ctyp)
2272 then
2273 Complain_CS ("aliased");
2274
2275 elsif Has_Atomic_Components (Arr)
2276 or else Is_Atomic (Ctyp)
2277 then
2278 Complain_CS ("atomic");
2279 end if;
2280 end Alias_Atomic_Check;
2281 end if;
2282
2283 -- Warn for case of atomic type
2284
2285 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2286
2287 if Present (Clause)
2288 and then not Addressable (Component_Size (FS))
2289 then
2290 Error_Msg_NE
2291 ("non-atomic components of type& may not be "
2292 & "accessible by separate tasks??", Clause, Arr);
2293
2294 if Has_Component_Size_Clause (Arr) then
2295 Error_Msg_Sloc :=
2296 Sloc
2297 (Get_Attribute_Definition_Clause
2298 (FS, Attribute_Component_Size));
2299 Error_Msg_N
2300 ("\because of component size clause#??",
2301 Clause);
2302
2303 elsif Has_Pragma_Pack (Arr) then
2304 Error_Msg_Sloc :=
2305 Sloc (Get_Rep_Pragma (FS, Name_Pack));
2306 Error_Msg_N
2307 ("\because of pragma Pack#??", Clause);
2308 end if;
2309 end if;
2310
2311 -- Check for scalar storage order
2312
2313 if Present (Get_Attribute_Definition_Clause
2314 (Arr, Attribute_Scalar_Storage_Order))
2315 then
2316 Check_Component_Storage_Order (Arr, Empty);
2317 end if;
2318
2319 -- Processing that is done only for subtypes
2320
2321 else
2322 -- Acquire alignment from base type
2323
2324 if Unknown_Alignment (Arr) then
2325 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2326 Adjust_Esize_Alignment (Arr);
2327 end if;
2328 end if;
2329
2330 -- Specific checks for bit-packed arrays
2331
2332 if Is_Bit_Packed_Array (Arr) then
2333
2334 -- Check number of elements for bit packed arrays that come from
2335 -- source and have compile time known ranges. The bit-packed
2336 -- arrays circuitry does not support arrays with more than
2337 -- Integer'Last + 1 elements, and when this restriction is
2338 -- violated, causes incorrect data access.
2339
2340 -- For the case where this is not compile time known, a run-time
2341 -- check should be generated???
2342
2343 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2344 declare
2345 Elmts : Uint;
2346 Index : Node_Id;
2347 Ilen : Node_Id;
2348 Ityp : Entity_Id;
2349
2350 begin
2351 Elmts := Uint_1;
2352 Index := First_Index (Arr);
2353 while Present (Index) loop
2354 Ityp := Etype (Index);
2355
2356 -- Never generate an error if any index is of a generic
2357 -- type. We will check this in instances.
2358
2359 if Is_Generic_Type (Ityp) then
2360 Elmts := Uint_0;
2361 exit;
2362 end if;
2363
2364 Ilen :=
2365 Make_Attribute_Reference (Loc,
2366 Prefix =>
2367 New_Occurrence_Of (Ityp, Loc),
2368 Attribute_Name => Name_Range_Length);
2369 Analyze_And_Resolve (Ilen);
2370
2371 -- No attempt is made to check number of elements
2372 -- if not compile time known.
2373
2374 if Nkind (Ilen) /= N_Integer_Literal then
2375 Elmts := Uint_0;
2376 exit;
2377 end if;
2378
2379 Elmts := Elmts * Intval (Ilen);
2380 Next_Index (Index);
2381 end loop;
2382
2383 if Elmts > Intval (High_Bound
2384 (Scalar_Range
2385 (Standard_Integer))) + 1
2386 then
2387 Error_Msg_N
2388 ("bit packed array type may not have "
2389 & "more than Integer''Last+1 elements", Arr);
2390 end if;
2391 end;
2392 end if;
2393
2394 -- Check size
2395
2396 if Known_RM_Size (Arr) then
2397 declare
2398 SizC : constant Node_Id := Size_Clause (Arr);
2399
2400 Discard : Boolean;
2401 pragma Warnings (Off, Discard);
2402
2403 begin
2404 -- It is not clear if it is possible to have no size clause
2405 -- at this stage, but it is not worth worrying about. Post
2406 -- error on the entity name in the size clause if present,
2407 -- else on the type entity itself.
2408
2409 if Present (SizC) then
2410 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2411 else
2412 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2413 end if;
2414 end;
2415 end if;
2416 end if;
2417
2418 -- If any of the index types was an enumeration type with a
2419 -- non-standard rep clause, then we indicate that the array type
2420 -- is always packed (even if it is not bit packed).
2421
2422 if Non_Standard_Enum then
2423 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2424 Set_Is_Packed (Base_Type (Arr));
2425 end if;
2426
2427 Set_Component_Alignment_If_Not_Set (Arr);
2428
2429 -- If the array is packed, we must create the packed array type to be
2430 -- used to actually implement the type. This is only needed for real
2431 -- array types (not for string literal types, since they are present
2432 -- only for the front end).
2433
2434 if Is_Packed (Arr)
2435 and then Ekind (Arr) /= E_String_Literal_Subtype
2436 then
2437 Create_Packed_Array_Type (Arr);
2438 Freeze_And_Append (Packed_Array_Type (Arr), N, Result);
2439
2440 -- Size information of packed array type is copied to the array
2441 -- type, since this is really the representation. But do not
2442 -- override explicit existing size values. If the ancestor subtype
2443 -- is constrained the packed_array_type will be inherited from it,
2444 -- but the size may have been provided already, and must not be
2445 -- overridden either.
2446
2447 if not Has_Size_Clause (Arr)
2448 and then
2449 (No (Ancestor_Subtype (Arr))
2450 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2451 then
2452 Set_Esize (Arr, Esize (Packed_Array_Type (Arr)));
2453 Set_RM_Size (Arr, RM_Size (Packed_Array_Type (Arr)));
2454 end if;
2455
2456 if not Has_Alignment_Clause (Arr) then
2457 Set_Alignment (Arr, Alignment (Packed_Array_Type (Arr)));
2458 end if;
2459 end if;
2460
2461 -- For non-packed arrays set the alignment of the array to the
2462 -- alignment of the component type if it is unknown. Skip this
2463 -- in atomic case (atomic arrays may need larger alignments).
2464
2465 if not Is_Packed (Arr)
2466 and then Unknown_Alignment (Arr)
2467 and then Known_Alignment (Ctyp)
2468 and then Known_Static_Component_Size (Arr)
2469 and then Known_Static_Esize (Ctyp)
2470 and then Esize (Ctyp) = Component_Size (Arr)
2471 and then not Is_Atomic (Arr)
2472 then
2473 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2474 end if;
2475 end Freeze_Array_Type;
2476
3cd4a210
AC
2477 -----------------------------
2478 -- Freeze_Generic_Entities --
2479 -----------------------------
2480
2481 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
5a8a6763
RD
2482 E : Entity_Id;
2483 F : Node_Id;
3cd4a210
AC
2484 Flist : List_Id;
2485
2486 begin
2487 Flist := New_List;
2488 E := First_Entity (Pack);
2489 while Present (E) loop
2490 if Is_Type (E) and then not Is_Generic_Type (E) then
2491 F := Make_Freeze_Generic_Entity (Sloc (Pack));
2492 Set_Entity (F, E);
2493 Append_To (Flist, F);
2494
2495 elsif Ekind (E) = E_Generic_Package then
2496 Append_List_To (Flist, Freeze_Generic_Entities (E));
2497 end if;
2498
2499 Next_Entity (E);
2500 end loop;
2501
2502 return Flist;
2503 end Freeze_Generic_Entities;
2504
70482933
RK
2505 ------------------------
2506 -- Freeze_Record_Type --
2507 ------------------------
2508
2509 procedure Freeze_Record_Type (Rec : Entity_Id) is
2510 Comp : Entity_Id;
fbf5a39b 2511 IR : Node_Id;
70482933 2512 ADC : Node_Id;
c6823a20 2513 Prev : Entity_Id;
70482933 2514
67ce0d7e
RD
2515 Junk : Boolean;
2516 pragma Warnings (Off, Junk);
2517
22a83cea
AC
2518 Rec_Pushed : Boolean := False;
2519 -- Set True if the record type scope Rec has been pushed on the scope
2520 -- stack. Needed for the analysis of delayed aspects specified to the
2521 -- components of Rec.
2522
70482933
RK
2523 Unplaced_Component : Boolean := False;
2524 -- Set True if we find at least one component with no component
2525 -- clause (used to warn about useless Pack pragmas).
2526
2527 Placed_Component : Boolean := False;
2528 -- Set True if we find at least one component with a component
8dc10d38
AC
2529 -- clause (used to warn about useless Bit_Order pragmas, and also
2530 -- to detect cases where Implicit_Packing may have an effect).
2531
2532 All_Scalar_Components : Boolean := True;
2533 -- Set False if we encounter a component of a non-scalar type
2534
2535 Scalar_Component_Total_RM_Size : Uint := Uint_0;
2536 Scalar_Component_Total_Esize : Uint := Uint_0;
2537 -- Accumulates total RM_Size values and total Esize values of all
2538 -- scalar components. Used for processing of Implicit_Packing.
70482933 2539
e18d6a15
JM
2540 function Check_Allocator (N : Node_Id) return Node_Id;
2541 -- If N is an allocator, possibly wrapped in one or more level of
2542 -- qualified expression(s), return the inner allocator node, else
2543 -- return Empty.
19590d70 2544
7d8b9c99
RD
2545 procedure Check_Itype (Typ : Entity_Id);
2546 -- If the component subtype is an access to a constrained subtype of
2547 -- an already frozen type, make the subtype frozen as well. It might
2548 -- otherwise be frozen in the wrong scope, and a freeze node on
2549 -- subtype has no effect. Similarly, if the component subtype is a
2550 -- regular (not protected) access to subprogram, set the anonymous
2551 -- subprogram type to frozen as well, to prevent an out-of-scope
2552 -- freeze node at some eventual point of call. Protected operations
2553 -- are handled elsewhere.
6e059adb 2554
c76bf0bf
AC
2555 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
2556 -- Make sure that all types mentioned in Discrete_Choices of the
2557 -- variants referenceed by the Variant_Part VP are frozen. This is
2558 -- a recursive routine to deal with nested variants.
2559
19590d70
GD
2560 ---------------------
2561 -- Check_Allocator --
2562 ---------------------
2563
e18d6a15
JM
2564 function Check_Allocator (N : Node_Id) return Node_Id is
2565 Inner : Node_Id;
19590d70 2566 begin
e18d6a15 2567 Inner := N;
e18d6a15
JM
2568 loop
2569 if Nkind (Inner) = N_Allocator then
2570 return Inner;
e18d6a15
JM
2571 elsif Nkind (Inner) = N_Qualified_Expression then
2572 Inner := Expression (Inner);
e18d6a15
JM
2573 else
2574 return Empty;
2575 end if;
2576 end loop;
19590d70
GD
2577 end Check_Allocator;
2578
6871ba5f
AC
2579 -----------------
2580 -- Check_Itype --
2581 -----------------
2582
7d8b9c99
RD
2583 procedure Check_Itype (Typ : Entity_Id) is
2584 Desig : constant Entity_Id := Designated_Type (Typ);
2585
6e059adb
AC
2586 begin
2587 if not Is_Frozen (Desig)
2588 and then Is_Frozen (Base_Type (Desig))
2589 then
2590 Set_Is_Frozen (Desig);
2591
2592 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
2593 -- access subtype is elaborated early enough. This cannot be
2594 -- done if the subtype may depend on discriminants.
6e059adb
AC
2595
2596 if Ekind (Comp) = E_Component
2597 and then Is_Itype (Etype (Comp))
2598 and then not Has_Discriminants (Rec)
2599 then
2600 IR := Make_Itype_Reference (Sloc (Comp));
2601 Set_Itype (IR, Desig);
90878b12 2602 Add_To_Result (IR);
6e059adb 2603 end if;
7d8b9c99
RD
2604
2605 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
2606 and then Convention (Desig) /= Convention_Protected
2607 then
2608 Set_Is_Frozen (Desig);
6e059adb
AC
2609 end if;
2610 end Check_Itype;
2611
c76bf0bf
AC
2612 ------------------------------------
2613 -- Freeze_Choices_In_Variant_Part --
2614 ------------------------------------
2615
2616 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
2617 pragma Assert (Nkind (VP) = N_Variant_Part);
2618
2619 Variant : Node_Id;
2620 Choice : Node_Id;
2621 CL : Node_Id;
2622
2623 begin
2624 -- Loop through variants
2625
2626 Variant := First_Non_Pragma (Variants (VP));
2627 while Present (Variant) loop
2628
2629 -- Loop through choices, checking that all types are frozen
2630
2631 Choice := First_Non_Pragma (Discrete_Choices (Variant));
2632 while Present (Choice) loop
2633 if Nkind (Choice) in N_Has_Etype
2634 and then Present (Etype (Choice))
2635 then
2636 Freeze_And_Append (Etype (Choice), N, Result);
2637 end if;
2638
2639 Next_Non_Pragma (Choice);
2640 end loop;
2641
2642 -- Check for nested variant part to process
2643
2644 CL := Component_List (Variant);
2645
2646 if not Null_Present (CL) then
2647 if Present (Variant_Part (CL)) then
2648 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
2649 end if;
2650 end if;
2651
2652 Next_Non_Pragma (Variant);
2653 end loop;
2654 end Freeze_Choices_In_Variant_Part;
2655
6e059adb
AC
2656 -- Start of processing for Freeze_Record_Type
2657
70482933 2658 begin
22a83cea
AC
2659 -- Deal with delayed aspect specifications for components. The
2660 -- analysis of the aspect is required to be delayed to the freeze
d27f3ff4
AC
2661 -- point, thus we analyze the pragma or attribute definition
2662 -- clause in the tree at this point. We also analyze the aspect
22a83cea
AC
2663 -- specification node at the freeze point when the aspect doesn't
2664 -- correspond to pragma/attribute definition clause.
70482933
RK
2665
2666 Comp := First_Entity (Rec);
c6823a20 2667 while Present (Comp) loop
b3f532ce 2668 if Ekind (Comp) = E_Component
b7f7dab2 2669 and then Has_Delayed_Aspects (Comp)
b3f532ce 2670 then
22a83cea
AC
2671 if not Rec_Pushed then
2672 Push_Scope (Rec);
2673 Rec_Pushed := True;
b3f532ce 2674
22a83cea
AC
2675 -- The visibility to the discriminants must be restored in
2676 -- order to properly analyze the aspects.
b3f532ce 2677
22a83cea
AC
2678 if Has_Discriminants (Rec) then
2679 Install_Discriminants (Rec);
2680 end if;
b3f532ce
AC
2681 end if;
2682
22a83cea 2683 Analyze_Aspects_At_Freeze_Point (Comp);
b3f532ce
AC
2684 end if;
2685
22a83cea
AC
2686 Next_Entity (Comp);
2687 end loop;
2688
2689 -- Pop the scope if Rec scope has been pushed on the scope stack
2690 -- during the delayed aspect analysis process.
2691
2692 if Rec_Pushed then
2693 if Has_Discriminants (Rec) then
2694 Uninstall_Discriminants (Rec);
2695 end if;
2696
2697 Pop_Scope;
2698 end if;
2699
2700 -- Freeze components and embedded subtypes
2701
2702 Comp := First_Entity (Rec);
2703 Prev := Empty;
2704 while Present (Comp) loop
2705
b3f532ce 2706 -- Handle the component and discriminant case
70482933 2707
d27f3ff4 2708 if Ekind_In (Comp, E_Component, E_Discriminant) then
70482933
RK
2709 declare
2710 CC : constant Node_Id := Component_Clause (Comp);
2711
2712 begin
c6823a20
EB
2713 -- Freezing a record type freezes the type of each of its
2714 -- components. However, if the type of the component is
2715 -- part of this record, we do not want or need a separate
2716 -- Freeze_Node. Note that Is_Itype is wrong because that's
2717 -- also set in private type cases. We also can't check for
2718 -- the Scope being exactly Rec because of private types and
2719 -- record extensions.
2720
2721 if Is_Itype (Etype (Comp))
2722 and then Is_Record_Type (Underlying_Type
2723 (Scope (Etype (Comp))))
2724 then
2725 Undelay_Type (Etype (Comp));
2726 end if;
2727
c159409f 2728 Freeze_And_Append (Etype (Comp), N, Result);
c6823a20 2729
63bb4268
AC
2730 -- Warn for pragma Pack overriding foreign convention
2731
2732 if Has_Foreign_Convention (Etype (Comp))
2733 and then Has_Pragma_Pack (Rec)
2734 then
2735 declare
2736 CN : constant Name_Id :=
2737 Get_Convention_Name (Convention (Etype (Comp)));
2738 PP : constant Node_Id :=
2739 Get_Pragma (Rec, Pragma_Pack);
2740 begin
2741 if Present (PP) then
2742 Error_Msg_Name_1 := CN;
2743 Error_Msg_Sloc := Sloc (Comp);
2744 Error_Msg_N
2745 ("pragma Pack affects convention % component#??",
2746 PP);
2747 Error_Msg_Name_1 := CN;
2748 Error_Msg_NE
2749 ("\component & may not have % compatible "
2750 & "representation??", PP, Comp);
2751 end if;
2752 end;
2753 end if;
2754
0da2c8ac
AC
2755 -- Check for error of component clause given for variable
2756 -- sized type. We have to delay this test till this point,
2757 -- since the component type has to be frozen for us to know
2758 -- if it is variable length. We omit this test in a generic
2759 -- context, it will be applied at instantiation time.
579fda56 2760
24c34107
AC
2761 -- We also omit this test in CodePeer mode, since we do not
2762 -- have sufficient info on size and representation clauses.
0da2c8ac 2763
70482933
RK
2764 if Present (CC) then
2765 Placed_Component := True;
2766
07fc65c4
GB
2767 if Inside_A_Generic then
2768 null;
2769
24c34107
AC
2770 elsif CodePeer_Mode then
2771 null;
2772
7d8b9c99
RD
2773 elsif not
2774 Size_Known_At_Compile_Time
2775 (Underlying_Type (Etype (Comp)))
70482933
RK
2776 then
2777 Error_Msg_N
2778 ("component clause not allowed for variable " &
2779 "length component", CC);
2780 end if;
2781
2782 else
2783 Unplaced_Component := True;
2784 end if;
70482933 2785
0da2c8ac 2786 -- Case of component requires byte alignment
70482933 2787
0da2c8ac 2788 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 2789
0da2c8ac 2790 -- Set the enclosing record to also require byte align
70482933 2791
0da2c8ac 2792 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 2793
7d8b9c99
RD
2794 -- Check for component clause that is inconsistent with
2795 -- the required byte boundary alignment.
70482933 2796
0da2c8ac
AC
2797 if Present (CC)
2798 and then Normalized_First_Bit (Comp) mod
2799 System_Storage_Unit /= 0
2800 then
2801 Error_Msg_N
2802 ("component & must be byte aligned",
2803 Component_Name (Component_Clause (Comp)));
2804 end if;
2805 end if;
0da2c8ac 2806 end;
70482933
RK
2807 end if;
2808
8a95f4e8
RD
2809 -- Gather data for possible Implicit_Packing later. Note that at
2810 -- this stage we might be dealing with a real component, or with
2811 -- an implicit subtype declaration.
8dc10d38 2812
426d2717
AC
2813 if not Is_Scalar_Type (Etype (Comp)) then
2814 All_Scalar_Components := False;
2815 else
2816 Scalar_Component_Total_RM_Size :=
2817 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
2818 Scalar_Component_Total_Esize :=
2819 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
2820 end if;
2821
c6823a20
EB
2822 -- If the component is an Itype with Delayed_Freeze and is either
2823 -- a record or array subtype and its base type has not yet been
545cb5be
AC
2824 -- frozen, we must remove this from the entity list of this record
2825 -- and put it on the entity list of the scope of its base type.
2826 -- Note that we know that this is not the type of a component
2827 -- since we cleared Has_Delayed_Freeze for it in the previous
2828 -- loop. Thus this must be the Designated_Type of an access type,
2829 -- which is the type of a component.
c6823a20
EB
2830
2831 if Is_Itype (Comp)
2832 and then Is_Type (Scope (Comp))
2833 and then Is_Composite_Type (Comp)
2834 and then Base_Type (Comp) /= Comp
2835 and then Has_Delayed_Freeze (Comp)
2836 and then not Is_Frozen (Base_Type (Comp))
2837 then
2838 declare
2839 Will_Be_Frozen : Boolean := False;
1b24ada5 2840 S : Entity_Id;
c6823a20
EB
2841
2842 begin
fea9e956
ES
2843 -- We have a pretty bad kludge here. Suppose Rec is subtype
2844 -- being defined in a subprogram that's created as part of
2845 -- the freezing of Rec'Base. In that case, we know that
2846 -- Comp'Base must have already been frozen by the time we
2847 -- get to elaborate this because Gigi doesn't elaborate any
2848 -- bodies until it has elaborated all of the declarative
2849 -- part. But Is_Frozen will not be set at this point because
2850 -- we are processing code in lexical order.
2851
2852 -- We detect this case by going up the Scope chain of Rec
2853 -- and seeing if we have a subprogram scope before reaching
2854 -- the top of the scope chain or that of Comp'Base. If we
2855 -- do, then mark that Comp'Base will actually be frozen. If
2856 -- so, we merely undelay it.
c6823a20 2857
1b24ada5 2858 S := Scope (Rec);
c6823a20
EB
2859 while Present (S) loop
2860 if Is_Subprogram (S) then
2861 Will_Be_Frozen := True;
2862 exit;
2863 elsif S = Scope (Base_Type (Comp)) then
2864 exit;
2865 end if;
2866
2867 S := Scope (S);
2868 end loop;
2869
2870 if Will_Be_Frozen then
2871 Undelay_Type (Comp);
2872 else
2873 if Present (Prev) then
2874 Set_Next_Entity (Prev, Next_Entity (Comp));
2875 else
2876 Set_First_Entity (Rec, Next_Entity (Comp));
2877 end if;
2878
2879 -- Insert in entity list of scope of base type (which
2880 -- must be an enclosing scope, because still unfrozen).
2881
2882 Append_Entity (Comp, Scope (Base_Type (Comp)));
2883 end if;
2884 end;
2885
def46b54
RD
2886 -- If the component is an access type with an allocator as default
2887 -- value, the designated type will be frozen by the corresponding
2888 -- expression in init_proc. In order to place the freeze node for
2889 -- the designated type before that for the current record type,
2890 -- freeze it now.
c6823a20
EB
2891
2892 -- Same process if the component is an array of access types,
2893 -- initialized with an aggregate. If the designated type is
def46b54
RD
2894 -- private, it cannot contain allocators, and it is premature
2895 -- to freeze the type, so we check for this as well.
c6823a20
EB
2896
2897 elsif Is_Access_Type (Etype (Comp))
2898 and then Present (Parent (Comp))
2899 and then Present (Expression (Parent (Comp)))
c6823a20
EB
2900 then
2901 declare
e18d6a15
JM
2902 Alloc : constant Node_Id :=
2903 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
2904
2905 begin
e18d6a15 2906 if Present (Alloc) then
19590d70 2907
15918371 2908 -- If component is pointer to a class-wide type, freeze
e18d6a15
JM
2909 -- the specific type in the expression being allocated.
2910 -- The expression may be a subtype indication, in which
2911 -- case freeze the subtype mark.
c6823a20 2912
e18d6a15
JM
2913 if Is_Class_Wide_Type
2914 (Designated_Type (Etype (Comp)))
0f4cb75c 2915 then
e18d6a15
JM
2916 if Is_Entity_Name (Expression (Alloc)) then
2917 Freeze_And_Append
c159409f 2918 (Entity (Expression (Alloc)), N, Result);
e18d6a15
JM
2919 elsif
2920 Nkind (Expression (Alloc)) = N_Subtype_Indication
2921 then
2922 Freeze_And_Append
2923 (Entity (Subtype_Mark (Expression (Alloc))),
c159409f 2924 N, Result);
e18d6a15 2925 end if;
0f4cb75c 2926
e18d6a15
JM
2927 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2928 Check_Itype (Etype (Comp));
0f4cb75c 2929
e18d6a15
JM
2930 else
2931 Freeze_And_Append
c159409f 2932 (Designated_Type (Etype (Comp)), N, Result);
e18d6a15 2933 end if;
c6823a20
EB
2934 end if;
2935 end;
2936
2937 elsif Is_Access_Type (Etype (Comp))
2938 and then Is_Itype (Designated_Type (Etype (Comp)))
2939 then
7d8b9c99 2940 Check_Itype (Etype (Comp));
c6823a20
EB
2941
2942 elsif Is_Array_Type (Etype (Comp))
2943 and then Is_Access_Type (Component_Type (Etype (Comp)))
2944 and then Present (Parent (Comp))
2945 and then Nkind (Parent (Comp)) = N_Component_Declaration
2946 and then Present (Expression (Parent (Comp)))
2947 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2948 and then Is_Fully_Defined
2949 (Designated_Type (Component_Type (Etype (Comp))))
2950 then
2951 Freeze_And_Append
2952 (Designated_Type
c159409f 2953 (Component_Type (Etype (Comp))), N, Result);
c6823a20
EB
2954 end if;
2955
2956 Prev := Comp;
70482933
RK
2957 Next_Entity (Comp);
2958 end loop;
2959
f91510fc
AC
2960 ADC := Get_Attribute_Definition_Clause
2961 (Rec, Attribute_Scalar_Storage_Order);
2962
d3b00ce3
AC
2963 if Present (ADC) then
2964
2965 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
2966 -- the former is specified.
2967
2968 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
2969
2970 -- Note: report error on Rec, not on ADC, as ADC may apply to
2971 -- an ancestor type.
2972
2973 Error_Msg_Sloc := Sloc (ADC);
2974 Error_Msg_N
2975 ("scalar storage order for& specified# inconsistent with "
2976 & "bit order", Rec);
2977 end if;
2978
2979 -- Warn if there is a Scalar_Storage_Order but no component clause
75965852 2980 -- (or pragma Pack).
50cd5b4d 2981
75965852 2982 if not (Placed_Component or else Is_Packed (Rec)) then
d3b00ce3 2983 Error_Msg_N
685bc70f 2984 ("??scalar storage order specified but no component clause",
d3b00ce3
AC
2985 ADC);
2986 end if;
75965852
AC
2987
2988 -- Check attribute on component types
2989
2990 Comp := First_Component (Rec);
2991 while Present (Comp) loop
2992 Check_Component_Storage_Order (Rec, Comp);
2993 Next_Component (Comp);
2994 end loop;
f91510fc
AC
2995 end if;
2996
164e06c6 2997 -- Deal with Bit_Order aspect specifying a non-default bit order
fea9e956 2998
2a290fec 2999 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
758ad973
AC
3000
3001 if Present (ADC) and then Base_Type (Rec) = Rec then
75965852 3002 if not (Placed_Component or else Is_Packed (Rec)) then
15918371
AC
3003 Error_Msg_N
3004 ("??bit order specification has no effect", ADC);
fea9e956 3005 Error_Msg_N
685bc70f 3006 ("\??since no component clauses were specified", ADC);
fea9e956 3007
8a95f4e8 3008 -- Here is where we do the processing for reversed bit order
70482933 3009
758ad973 3010 elsif Reverse_Bit_Order (Rec)
2a290fec 3011 and then not Reverse_Storage_Order (Rec)
758ad973 3012 then
fea9e956 3013 Adjust_Record_For_Reverse_Bit_Order (Rec);
702d139e 3014
758ad973 3015 -- Case where we have both an explicit Bit_Order and the same
702d139e
TQ
3016 -- Scalar_Storage_Order: leave record untouched, the back-end
3017 -- will take care of required layout conversions.
3018
3019 else
3020 null;
3021
fea9e956 3022 end if;
70482933
RK
3023 end if;
3024
8a95f4e8
RD
3025 -- Complete error checking on record representation clause (e.g.
3026 -- overlap of components). This is called after adjusting the
3027 -- record for reverse bit order.
3028
3029 declare
3030 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
3031 begin
3032 if Present (RRC) then
3033 Check_Record_Representation_Clause (RRC);
3034 end if;
3035 end;
3036
1b24ada5
RD
3037 -- Set OK_To_Reorder_Components depending on debug flags
3038
d347f572 3039 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
1b24ada5 3040 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
d3b00ce3
AC
3041 or else
3042 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
1b24ada5
RD
3043 then
3044 Set_OK_To_Reorder_Components (Rec);
3045 end if;
3046 end if;
3047
ee094616
RD
3048 -- Check for useless pragma Pack when all components placed. We only
3049 -- do this check for record types, not subtypes, since a subtype may
3050 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
3051 -- sense to pack other subtypes or the parent type. We do not give
3052 -- this warning if Optimize_Alignment is set to Space, since the
3053 -- pragma Pack does have an effect in this case (it always resets
3054 -- the alignment to one).
70482933 3055
ee094616
RD
3056 if Ekind (Rec) = E_Record_Type
3057 and then Is_Packed (Rec)
70482933 3058 and then not Unplaced_Component
1b24ada5 3059 and then Optimize_Alignment /= 'S'
70482933 3060 then
def46b54
RD
3061 -- Reset packed status. Probably not necessary, but we do it so
3062 -- that there is no chance of the back end doing something strange
3063 -- with this redundant indication of packing.
ee094616 3064
70482933 3065 Set_Is_Packed (Rec, False);
ee094616
RD
3066
3067 -- Give warning if redundant constructs warnings on
3068
3069 if Warn_On_Redundant_Constructs then
ed2233dc 3070 Error_Msg_N -- CODEFIX
685bc70f 3071 ("??pragma Pack has no effect, no unplaced components",
ee094616
RD
3072 Get_Rep_Pragma (Rec, Name_Pack));
3073 end if;
70482933
RK
3074 end if;
3075
ee094616
RD
3076 -- If this is the record corresponding to a remote type, freeze the
3077 -- remote type here since that is what we are semantically freezing.
3078 -- This prevents the freeze node for that type in an inner scope.
70482933 3079
8dc10d38 3080 if Ekind (Rec) = E_Record_Type then
70482933 3081 if Present (Corresponding_Remote_Type (Rec)) then
c159409f 3082 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
70482933
RK
3083 end if;
3084
15918371
AC
3085 -- Check for controlled components and unchecked unions.
3086
70482933 3087 Comp := First_Component (Rec);
70482933 3088 while Present (Comp) loop
80fa4617
EB
3089
3090 -- Do not set Has_Controlled_Component on a class-wide
3091 -- equivalent type. See Make_CW_Equivalent_Type.
3092
3093 if not Is_Class_Wide_Equivalent_Type (Rec)
15918371
AC
3094 and then
3095 (Has_Controlled_Component (Etype (Comp))
3096 or else
3097 (Chars (Comp) /= Name_uParent
3098 and then Is_Controlled (Etype (Comp)))
3099 or else
3100 (Is_Protected_Type (Etype (Comp))
3101 and then
3102 Present (Corresponding_Record_Type (Etype (Comp)))
3103 and then
3104 Has_Controlled_Component
3105 (Corresponding_Record_Type (Etype (Comp)))))
70482933
RK
3106 then
3107 Set_Has_Controlled_Component (Rec);
70482933
RK
3108 end if;
3109
3110 if Has_Unchecked_Union (Etype (Comp)) then
3111 Set_Has_Unchecked_Union (Rec);
3112 end if;
3113
e1308fa8
AC
3114 -- Scan component declaration for likely misuses of current
3115 -- instance, either in a constraint or a default expression.
70482933 3116
e1308fa8 3117 if Has_Per_Object_Constraint (Comp) then
70482933
RK
3118 Check_Current_Instance (Parent (Comp));
3119 end if;
3120
3121 Next_Component (Comp);
3122 end loop;
3123 end if;
3124
15918371
AC
3125 -- Enforce the restriction that access attributes with a current
3126 -- instance prefix can only apply to limited types. This comment
3127 -- is floating here, but does not seem to belong here???
3128
3129 -- Set component alignment if not otherwise already set
3130
70482933
RK
3131 Set_Component_Alignment_If_Not_Set (Rec);
3132
ee094616
RD
3133 -- For first subtypes, check if there are any fixed-point fields with
3134 -- component clauses, where we must check the size. This is not done
15918371 3135 -- till the freeze point since for fixed-point types, we do not know
ee094616
RD
3136 -- the size until the type is frozen. Similar processing applies to
3137 -- bit packed arrays.
70482933
RK
3138
3139 if Is_First_Subtype (Rec) then
3140 Comp := First_Component (Rec);
70482933
RK
3141 while Present (Comp) loop
3142 if Present (Component_Clause (Comp))
d05ef0ab
AC
3143 and then (Is_Fixed_Point_Type (Etype (Comp))
3144 or else
3145 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
3146 then
3147 Check_Size
d05ef0ab 3148 (Component_Name (Component_Clause (Comp)),
70482933
RK
3149 Etype (Comp),
3150 Esize (Comp),
3151 Junk);
3152 end if;
3153
3154 Next_Component (Comp);
3155 end loop;
3156 end if;
7d8b9c99
RD
3157
3158 -- Generate warning for applying C or C++ convention to a record
3159 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
3160 -- case, since the whole point in this case is interface C. We also
3161 -- do not generate this within instantiations, since we will have
3162 -- generated a message on the template.
7d8b9c99
RD
3163
3164 if Has_Discriminants (E)
3165 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
3166 and then (Convention (E) = Convention_C
3167 or else
3168 Convention (E) = Convention_CPP)
3169 and then Comes_From_Source (E)
1b24ada5
RD
3170 and then not In_Instance
3171 and then not Has_Warnings_Off (E)
3172 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
3173 then
3174 declare
3175 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
3176 A2 : Node_Id;
3177
3178 begin
3179 if Present (Cprag) then
3180 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3181
3182 if Convention (E) = Convention_C then
3183 Error_Msg_N
685bc70f
AC
3184 ("?x?variant record has no direct equivalent in C",
3185 A2);
7d8b9c99
RD
3186 else
3187 Error_Msg_N
685bc70f
AC
3188 ("?x?variant record has no direct equivalent in C++",
3189 A2);
7d8b9c99
RD
3190 end if;
3191
3192 Error_Msg_NE
685bc70f 3193 ("\?x?use of convention for type& is dubious", A2, E);
7d8b9c99
RD
3194 end if;
3195 end;
3196 end if;
8dc10d38 3197
ce14c577 3198 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 3199
426d2717 3200 if not Is_Packed (Rec)
ce14c577
AC
3201
3202 -- No implicit packing if even one component is explicitly placed
3203
426d2717 3204 and then not Placed_Component
ce14c577
AC
3205
3206 -- Must have size clause and all scalar components
3207
8dc10d38
AC
3208 and then Has_Size_Clause (Rec)
3209 and then All_Scalar_Components
ce14c577
AC
3210
3211 -- Do not try implicit packing on records with discriminants, too
3212 -- complicated, especially in the variant record case.
3213
8dc10d38 3214 and then not Has_Discriminants (Rec)
ce14c577
AC
3215
3216 -- We can implicitly pack if the specified size of the record is
3217 -- less than the sum of the object sizes (no point in packing if
3218 -- this is not the case).
3219
fc893455 3220 and then RM_Size (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
3221
3222 -- And the total RM size cannot be greater than the specified size
3223 -- since otherwise packing will not get us where we have to be!
3224
fc893455 3225 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
ce14c577 3226
06b599fd 3227 -- Never do implicit packing in CodePeer or SPARK modes since
59e6b23c 3228 -- we don't do any packing in these modes, since this generates
25ebc085
AC
3229 -- over-complex code that confuses static analysis, and in
3230 -- general, neither CodePeer not GNATprove care about the
3231 -- internal representation of objects.
ce14c577 3232
06b599fd 3233 and then not (CodePeer_Mode or SPARK_Mode)
8dc10d38 3234 then
426d2717
AC
3235 -- If implicit packing enabled, do it
3236
3237 if Implicit_Packing then
3238 Set_Is_Packed (Rec);
3239
3240 -- Otherwise flag the size clause
3241
3242 else
3243 declare
3244 Sz : constant Node_Id := Size_Clause (Rec);
3245 begin
ed2233dc 3246 Error_Msg_NE -- CODEFIX
426d2717 3247 ("size given for& too small", Sz, Rec);
ed2233dc 3248 Error_Msg_N -- CODEFIX
426d2717
AC
3249 ("\use explicit pragma Pack "
3250 & "or use pragma Implicit_Packing", Sz);
3251 end;
3252 end if;
8dc10d38 3253 end if;
15918371
AC
3254
3255 -- All done if not a full record definition
3256
3257 if Ekind (Rec) /= E_Record_Type then
3258 return;
3259 end if;
3260
c76bf0bf
AC
3261 -- Finally we need to check the variant part to make sure that
3262 -- all types within choices are properly frozen as part of the
3263 -- freezing of the record type.
15918371
AC
3264
3265 Check_Variant_Part : declare
3266 D : constant Node_Id := Declaration_Node (Rec);
3267 T : Node_Id;
3268 C : Node_Id;
15918371
AC
3269
3270 begin
3271 -- Find component list
3272
3273 C := Empty;
3274
3275 if Nkind (D) = N_Full_Type_Declaration then
3276 T := Type_Definition (D);
3277
3278 if Nkind (T) = N_Record_Definition then
3279 C := Component_List (T);
3280
3281 elsif Nkind (T) = N_Derived_Type_Definition
3282 and then Present (Record_Extension_Part (T))
3283 then
3284 C := Component_List (Record_Extension_Part (T));
3285 end if;
3286 end if;
3287
e7f23f06 3288 -- Case of variant part present
15918371
AC
3289
3290 if Present (C) and then Present (Variant_Part (C)) then
c76bf0bf
AC
3291 Freeze_Choices_In_Variant_Part (Variant_Part (C));
3292 end if;
4530b919 3293
c76bf0bf
AC
3294 -- Note: we used to call Check_Choices here, but it is too early,
3295 -- since predicated subtypes are frozen here, but their freezing
3296 -- actions are in Analyze_Freeze_Entity, which has not been called
3297 -- yet for entities frozen within this procedure, so we moved that
3298 -- call to the Analyze_Freeze_Entity for the record type.
4530b919 3299
15918371 3300 end Check_Variant_Part;
70482933
RK
3301 end Freeze_Record_Type;
3302
3303 -- Start of processing for Freeze_Entity
3304
3305 begin
c6823a20
EB
3306 -- We are going to test for various reasons why this entity need not be
3307 -- frozen here, but in the case of an Itype that's defined within a
3308 -- record, that test actually applies to the record.
3309
3310 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
3311 Test_E := Scope (E);
3312 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
3313 and then Is_Record_Type (Underlying_Type (Scope (E)))
3314 then
3315 Test_E := Underlying_Type (Scope (E));
3316 end if;
3317
fbf5a39b 3318 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
3319
3320 if Is_Frozen (E) then
3321 return No_List;
3322
c6823a20
EB
3323 -- It is improper to freeze an external entity within a generic because
3324 -- its freeze node will appear in a non-valid context. The entity will
3325 -- be frozen in the proper scope after the current generic is analyzed.
7640ef8a
AC
3326 -- However, aspects must be analyzed because they may be queried later
3327 -- within the generic itself, and the corresponding pragma or attribute
3328 -- definition has not been analyzed yet.
70482933 3329
c6823a20 3330 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
7640ef8a
AC
3331 if Has_Delayed_Aspects (E) then
3332 Analyze_Aspects_At_Freeze_Point (E);
3333 end if;
3334
70482933
RK
3335 return No_List;
3336
164e06c6
AC
3337 -- AI05-0213: A formal incomplete type does not freeze the actual. In
3338 -- the instance, the same applies to the subtype renaming the actual.
d3cb4cc0
AC
3339
3340 elsif Is_Private_Type (E)
3341 and then Is_Generic_Actual_Type (E)
3342 and then No (Full_View (Base_Type (E)))
3343 and then Ada_Version >= Ada_2012
3344 then
3345 return No_List;
3346
5a8a6763
RD
3347 -- Generic types need no freeze node and have no delayed semantic
3348 -- checks.
3349
3350 elsif Is_Generic_Type (E) then
3351 return No_List;
3352
70482933
RK
3353 -- Do not freeze a global entity within an inner scope created during
3354 -- expansion. A call to subprogram E within some internal procedure
3355 -- (a stream attribute for example) might require freezing E, but the
3356 -- freeze node must appear in the same declarative part as E itself.
3357 -- The two-pass elaboration mechanism in gigi guarantees that E will
3358 -- be frozen before the inner call is elaborated. We exclude constants
3359 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
3360 -- must be diagnosed (e.g. in the case of a deferred constant being used
3361 -- in a default expression). If the enclosing subprogram comes from
3362 -- source, or is a generic instance, then the freeze point is the one
3363 -- mandated by the language, and we freeze the entity. A subprogram that
3364 -- is a child unit body that acts as a spec does not have a spec that
3365 -- comes from source, but can only come from source.
70482933 3366
c6823a20
EB
3367 elsif In_Open_Scopes (Scope (Test_E))
3368 and then Scope (Test_E) /= Current_Scope
3369 and then Ekind (Test_E) /= E_Constant
70482933
RK
3370 then
3371 declare
3cae7f14 3372 S : Entity_Id;
70482933
RK
3373
3374 begin
3cae7f14 3375 S := Current_Scope;
70482933
RK
3376 while Present (S) loop
3377 if Is_Overloadable (S) then
3378 if Comes_From_Source (S)
3379 or else Is_Generic_Instance (S)
fea9e956 3380 or else Is_Child_Unit (S)
70482933
RK
3381 then
3382 exit;
3383 else
3384 return No_List;
3385 end if;
3386 end if;
3387
3388 S := Scope (S);
3389 end loop;
3390 end;
555360a5
AC
3391
3392 -- Similarly, an inlined instance body may make reference to global
3393 -- entities, but these references cannot be the proper freezing point
def46b54
RD
3394 -- for them, and in the absence of inlining freezing will take place in
3395 -- their own scope. Normally instance bodies are analyzed after the
3396 -- enclosing compilation, and everything has been frozen at the proper
3397 -- place, but with front-end inlining an instance body is compiled
3398 -- before the end of the enclosing scope, and as a result out-of-order
3399 -- freezing must be prevented.
555360a5
AC
3400
3401 elsif Front_End_Inlining
7d8b9c99 3402 and then In_Instance_Body
c6823a20 3403 and then Present (Scope (Test_E))
555360a5
AC
3404 then
3405 declare
3cae7f14 3406 S : Entity_Id;
c6823a20 3407
555360a5 3408 begin
3cae7f14 3409 S := Scope (Test_E);
555360a5
AC
3410 while Present (S) loop
3411 if Is_Generic_Instance (S) then
3412 exit;
3413 else
3414 S := Scope (S);
3415 end if;
3416 end loop;
3417
3418 if No (S) then
3419 return No_List;
3420 end if;
3421 end;
3cd4a210
AC
3422
3423 elsif Ekind (E) = E_Generic_Package then
3424 return Freeze_Generic_Entities (E);
70482933
RK
3425 end if;
3426
5f49133f
AC
3427 -- Add checks to detect proper initialization of scalars that may appear
3428 -- as subprogram parameters.
0ea55619 3429
15e934bf 3430 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5f49133f 3431 Apply_Parameter_Validity_Checks (E);
0ea55619
AC
3432 end if;
3433
9a6dc470
RD
3434 -- Deal with delayed aspect specifications. The analysis of the aspect
3435 -- is required to be delayed to the freeze point, thus we analyze the
3436 -- pragma or attribute definition clause in the tree at this point. We
3437 -- also analyze the aspect specification node at the freeze point when
3438 -- the aspect doesn't correspond to pragma/attribute definition clause.
c159409f
AC
3439
3440 if Has_Delayed_Aspects (E) then
8a0320ad 3441 Analyze_Aspects_At_Freeze_Point (E);
c159409f
AC
3442 end if;
3443
70482933
RK
3444 -- Here to freeze the entity
3445
70482933
RK
3446 Set_Is_Frozen (E);
3447
3448 -- Case of entity being frozen is other than a type
3449
3450 if not Is_Type (E) then
685bc70f 3451
70482933
RK
3452 -- If entity is exported or imported and does not have an external
3453 -- name, now is the time to provide the appropriate default name.
3454 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
3455 -- for any stubbed routine. For the case on intrinsics, if no
3456 -- external name is specified, then calls will be handled in
545cb5be
AC
3457 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
3458 -- external name is provided, then Expand_Intrinsic_Call leaves
75a64833 3459 -- calls in place for expansion by GIGI.
70482933
RK
3460
3461 if (Is_Imported (E) or else Is_Exported (E))
3462 and then No (Interface_Name (E))
3463 and then Convention (E) /= Convention_Stubbed
75a64833 3464 and then Convention (E) /= Convention_Intrinsic
70482933
RK
3465 then
3466 Set_Encoded_Interface_Name
3467 (E, Get_Default_External_Name (E));
fbf5a39b 3468
bbaba73f
EB
3469 -- If entity is an atomic object appearing in a declaration and
3470 -- the expression is an aggregate, assign it to a temporary to
3471 -- ensure that the actual assignment is done atomically rather
3472 -- than component-wise (the assignment to the temp may be done
3473 -- component-wise, but that is harmless).
fbf5a39b
AC
3474
3475 elsif Is_Atomic (E)
3476 and then Nkind (Parent (E)) = N_Object_Declaration
3477 and then Present (Expression (Parent (E)))
bbaba73f 3478 and then Nkind (Expression (Parent (E))) = N_Aggregate
f96b2d85 3479 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 3480 then
b0159fbe 3481 null;
70482933
RK
3482 end if;
3483
3484 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 3485 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 3486 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
3487 -- created since we now know whether the subprogram will use a
3488 -- foreign convention.
70482933
RK
3489
3490 if Is_Subprogram (E) then
70482933 3491 if not Is_Internal (E) then
70482933 3492 declare
6d11af89 3493 F_Type : Entity_Id;
def46b54 3494 R_Type : Entity_Id;
6d11af89 3495 Warn_Node : Node_Id;
70482933 3496
70482933
RK
3497 begin
3498 -- Loop through formals
3499
3500 Formal := First_Formal (E);
70482933 3501 while Present (Formal) loop
70482933 3502 F_Type := Etype (Formal);
406935b6
AC
3503
3504 -- AI05-0151 : incomplete types can appear in a profile.
3505 -- By the time the entity is frozen, the full view must
3506 -- be available, unless it is a limited view.
3507
3508 if Is_Incomplete_Type (F_Type)
3509 and then Present (Full_View (F_Type))
ad0d71b5 3510 and then not From_With_Type (F_Type)
406935b6
AC
3511 then
3512 F_Type := Full_View (F_Type);
3513 Set_Etype (Formal, F_Type);
3514 end if;
3515
c159409f 3516 Freeze_And_Append (F_Type, N, Result);
70482933
RK
3517
3518 if Is_Private_Type (F_Type)
3519 and then Is_Private_Type (Base_Type (F_Type))
3520 and then No (Full_View (Base_Type (F_Type)))
3521 and then not Is_Generic_Type (F_Type)
3522 and then not Is_Derived_Type (F_Type)
3523 then
3524 -- If the type of a formal is incomplete, subprogram
3525 -- is being frozen prematurely. Within an instance
3526 -- (but not within a wrapper package) this is an
fb2e11ee 3527 -- artifact of our need to regard the end of an
70482933
RK
3528 -- instantiation as a freeze point. Otherwise it is
3529 -- a definite error.
fbf5a39b 3530
70482933
RK
3531 if In_Instance then
3532 Set_Is_Frozen (E, False);
3533 return No_List;
3534
86cde7b1
RD
3535 elsif not After_Last_Declaration
3536 and then not Freezing_Library_Level_Tagged_Type
3537 then
70482933
RK
3538 Error_Msg_Node_1 := F_Type;
3539 Error_Msg
3540 ("type& must be fully defined before this point",
3541 Loc);
3542 end if;
3543 end if;
3544
def46b54 3545 -- Check suspicious parameter for C function. These tests
1b24ada5 3546 -- apply only to exported/imported subprograms.
70482933 3547
def46b54 3548 if Warn_On_Export_Import
1b24ada5 3549 and then Comes_From_Source (E)
def46b54
RD
3550 and then (Convention (E) = Convention_C
3551 or else
3552 Convention (E) = Convention_CPP)
def46b54 3553 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
3554 and then Convention (E) /= Convention (Formal)
3555 and then not Has_Warnings_Off (E)
3556 and then not Has_Warnings_Off (F_Type)
3557 and then not Has_Warnings_Off (Formal)
fbf5a39b 3558 then
b3afa59b
AC
3559 -- Qualify mention of formals with subprogram name
3560
70482933 3561 Error_Msg_Qual_Level := 1;
def46b54
RD
3562
3563 -- Check suspicious use of fat C pointer
3564
3565 if Is_Access_Type (F_Type)
3566 and then Esize (F_Type) > Ttypes.System_Address_Size
3567 then
3568 Error_Msg_N
685bc70f 3569 ("?x?type of & does not correspond to C pointer!",
b3afa59b 3570 Formal);
def46b54
RD
3571
3572 -- Check suspicious return of boolean
3573
3574 elsif Root_Type (F_Type) = Standard_Boolean
3575 and then Convention (F_Type) = Convention_Ada
67198556
RD
3576 and then not Has_Warnings_Off (F_Type)
3577 and then not Has_Size_Clause (F_Type)
6a2afd13 3578 and then VM_Target = No_VM
def46b54 3579 then
685bc70f
AC
3580 Error_Msg_N
3581 ("& is an 8-bit Ada Boolean?x?", Formal);
b3afa59b
AC
3582 Error_Msg_N
3583 ("\use appropriate corresponding type in C "
685bc70f 3584 & "(e.g. char)?x?", Formal);
def46b54
RD
3585
3586 -- Check suspicious tagged type
3587
3588 elsif (Is_Tagged_Type (F_Type)
3589 or else (Is_Access_Type (F_Type)
3590 and then
3591 Is_Tagged_Type
3592 (Designated_Type (F_Type))))
3593 and then Convention (E) = Convention_C
3594 then
3595 Error_Msg_N
685bc70f 3596 ("?x?& involves a tagged type which does not "
def46b54
RD
3597 & "correspond to any C type!", Formal);
3598
3599 -- Check wrong convention subprogram pointer
3600
3601 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3602 and then not Has_Foreign_Convention (F_Type)
3603 then
3604 Error_Msg_N
685bc70f 3605 ("?x?subprogram pointer & should "
def46b54
RD
3606 & "have foreign convention!", Formal);
3607 Error_Msg_Sloc := Sloc (F_Type);
3608 Error_Msg_NE
685bc70f 3609 ("\?x?add Convention pragma to declaration of &#",
def46b54
RD
3610 Formal, F_Type);
3611 end if;
3612
b3afa59b
AC
3613 -- Turn off name qualification after message output
3614
70482933
RK
3615 Error_Msg_Qual_Level := 0;
3616 end if;
3617
3618 -- Check for unconstrained array in exported foreign
3619 -- convention case.
3620
def46b54 3621 if Has_Foreign_Convention (E)
70482933
RK
3622 and then not Is_Imported (E)
3623 and then Is_Array_Type (F_Type)
3624 and then not Is_Constrained (F_Type)
fbf5a39b 3625 and then Warn_On_Export_Import
3acdda2d
AC
3626
3627 -- Exclude VM case, since both .NET and JVM can handle
3628 -- unconstrained arrays without a problem.
3629
3630 and then VM_Target = No_VM
70482933
RK
3631 then
3632 Error_Msg_Qual_Level := 1;
6d11af89
AC
3633
3634 -- If this is an inherited operation, place the
3635 -- warning on the derived type declaration, rather
3636 -- than on the original subprogram.
3637
3638 if Nkind (Original_Node (Parent (E))) =
3639 N_Full_Type_Declaration
3640 then
3641 Warn_Node := Parent (E);
3642
3643 if Formal = First_Formal (E) then
3644 Error_Msg_NE
685bc70f 3645 ("??in inherited operation&", Warn_Node, E);
6d11af89
AC
3646 end if;
3647 else
3648 Warn_Node := Formal;
3649 end if;
3650
3651 Error_Msg_NE
685bc70f 3652 ("?x?type of argument& is unconstrained array",
6d11af89
AC
3653 Warn_Node, Formal);
3654 Error_Msg_NE
685bc70f 3655 ("?x?foreign caller must pass bounds explicitly",
6d11af89 3656 Warn_Node, Formal);
70482933
RK
3657 Error_Msg_Qual_Level := 0;
3658 end if;
3659
d8db0bca
JM
3660 if not From_With_Type (F_Type) then
3661 if Is_Access_Type (F_Type) then
3662 F_Type := Designated_Type (F_Type);
3663 end if;
3664
7d8b9c99
RD
3665 -- If the formal is an anonymous_access_to_subprogram
3666 -- freeze the subprogram type as well, to prevent
3667 -- scope anomalies in gigi, because there is no other
3668 -- clear point at which it could be frozen.
3669
93bcda23 3670 if Is_Itype (Etype (Formal))
7d8b9c99
RD
3671 and then Ekind (F_Type) = E_Subprogram_Type
3672 then
c159409f 3673 Freeze_And_Append (F_Type, N, Result);
d8db0bca
JM
3674 end if;
3675 end if;
3676
70482933
RK
3677 Next_Formal (Formal);
3678 end loop;
3679
5e39baa6 3680 -- Case of function: similar checks on return type
70482933
RK
3681
3682 if Ekind (E) = E_Function then
def46b54
RD
3683
3684 -- Freeze return type
3685
3686 R_Type := Etype (E);
406935b6
AC
3687
3688 -- AI05-0151: the return type may have been incomplete
ad0d71b5
AC
3689 -- at the point of declaration. Replace it with the full
3690 -- view, unless the current type is a limited view. In
3691 -- that case the full view is in a different unit, and
3692 -- gigi finds the non-limited view after the other unit
3693 -- is elaborated.
406935b6
AC
3694
3695 if Ekind (R_Type) = E_Incomplete_Type
3696 and then Present (Full_View (R_Type))
ad0d71b5 3697 and then not From_With_Type (R_Type)
406935b6
AC
3698 then
3699 R_Type := Full_View (R_Type);
3700 Set_Etype (E, R_Type);
3701 end if;
3702
c159409f 3703 Freeze_And_Append (R_Type, N, Result);
def46b54
RD
3704
3705 -- Check suspicious return type for C function
70482933 3706
fbf5a39b 3707 if Warn_On_Export_Import
def46b54
RD
3708 and then (Convention (E) = Convention_C
3709 or else
3710 Convention (E) = Convention_CPP)
def46b54 3711 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 3712 then
def46b54
RD
3713 -- Check suspicious return of fat C pointer
3714
3715 if Is_Access_Type (R_Type)
3716 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
3717 and then not Has_Warnings_Off (E)
3718 and then not Has_Warnings_Off (R_Type)
def46b54
RD
3719 then
3720 Error_Msg_N
685bc70f 3721 ("?x?return type of& does not "
def46b54
RD
3722 & "correspond to C pointer!", E);
3723
3724 -- Check suspicious return of boolean
3725
3726 elsif Root_Type (R_Type) = Standard_Boolean
3727 and then Convention (R_Type) = Convention_Ada
6a2afd13 3728 and then VM_Target = No_VM
1b24ada5
RD
3729 and then not Has_Warnings_Off (E)
3730 and then not Has_Warnings_Off (R_Type)
67198556 3731 and then not Has_Size_Clause (R_Type)
def46b54 3732 then
b3afa59b
AC
3733 declare
3734 N : constant Node_Id :=
3735 Result_Definition (Declaration_Node (E));
3736 begin
3737 Error_Msg_NE
685bc70f 3738 ("return type of & is an 8-bit Ada Boolean?x?",
b3afa59b
AC
3739 N, E);
3740 Error_Msg_NE
3741 ("\use appropriate corresponding type in C "
685bc70f 3742 & "(e.g. char)?x?", N, E);
b3afa59b 3743 end;
70482933 3744
def46b54
RD
3745 -- Check suspicious return tagged type
3746
3747 elsif (Is_Tagged_Type (R_Type)
3748 or else (Is_Access_Type (R_Type)
3749 and then
3750 Is_Tagged_Type
3751 (Designated_Type (R_Type))))
3752 and then Convention (E) = Convention_C
1b24ada5
RD
3753 and then not Has_Warnings_Off (E)
3754 and then not Has_Warnings_Off (R_Type)
def46b54
RD
3755 then
3756 Error_Msg_N
685bc70f 3757 ("?x?return type of & does not "
def46b54
RD
3758 & "correspond to C type!", E);
3759
3760 -- Check return of wrong convention subprogram pointer
3761
3762 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3763 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
3764 and then not Has_Warnings_Off (E)
3765 and then not Has_Warnings_Off (R_Type)
def46b54
RD
3766 then
3767 Error_Msg_N
685bc70f 3768 ("?x?& should return a foreign "
def46b54
RD
3769 & "convention subprogram pointer", E);
3770 Error_Msg_Sloc := Sloc (R_Type);
3771 Error_Msg_NE
685bc70f 3772 ("\?x?add Convention pragma to declaration of& #",
def46b54
RD
3773 E, R_Type);
3774 end if;
3775 end if;
3776
308e6f3a 3777 -- Give warning for suspicious return of a result of an
e7d72fb9
AC
3778 -- unconstrained array type in a foreign convention
3779 -- function.
59366db6 3780
e7d72fb9
AC
3781 if Has_Foreign_Convention (E)
3782
2c1b72d7 3783 -- We are looking for a return of unconstrained array
e7d72fb9
AC
3784
3785 and then Is_Array_Type (R_Type)
93bcda23 3786 and then not Is_Constrained (R_Type)
e7d72fb9 3787
2c1b72d7
AC
3788 -- Exclude imported routines, the warning does not
3789 -- belong on the import, but rather on the routine
3790 -- definition.
e7d72fb9 3791
70482933 3792 and then not Is_Imported (E)
e7d72fb9 3793
2c1b72d7
AC
3794 -- Exclude VM case, since both .NET and JVM can handle
3795 -- return of unconstrained arrays without a problem.
e7d72fb9 3796
f3b57ab0 3797 and then VM_Target = No_VM
e7d72fb9 3798
2c1b72d7
AC
3799 -- Check that general warning is enabled, and that it
3800 -- is not suppressed for this particular case.
e7d72fb9 3801
fbf5a39b 3802 and then Warn_On_Export_Import
1b24ada5 3803 and then not Has_Warnings_Off (E)
93bcda23 3804 and then not Has_Warnings_Off (R_Type)
70482933
RK
3805 then
3806 Error_Msg_N
685bc70f 3807 ("?x?foreign convention function& should not " &
1b24ada5 3808 "return unconstrained array!", E);
70482933
RK
3809 end if;
3810 end if;
3811 end;
79ee6ab3 3812
c4250ab1 3813 -- Pre/post conditions are implemented through a subprogram in
79ee6ab3 3814 -- the corresponding body, and therefore are not checked on an
29ba9f52 3815 -- imported subprogram for which the body is not available.
79ee6ab3 3816
2557e054
RD
3817 -- Could consider generating a wrapper to take care of this???
3818
79ee6ab3
AC
3819 if Is_Subprogram (E)
3820 and then Is_Imported (E)
3821 and then Present (Contract (E))
d6095153 3822 and then Present (Pre_Post_Conditions (Contract (E)))
79ee6ab3 3823 then
685bc70f 3824 Error_Msg_NE
d6095153
AC
3825 ("pre/post conditions on imported subprogram are not "
3826 & "enforced??", E, Pre_Post_Conditions (Contract (E)));
79ee6ab3
AC
3827 end if;
3828
70482933
RK
3829 end if;
3830
3831 -- Must freeze its parent first if it is a derived subprogram
3832
3833 if Present (Alias (E)) then
c159409f 3834 Freeze_And_Append (Alias (E), N, Result);
70482933
RK
3835 end if;
3836
19590d70
GD
3837 -- We don't freeze internal subprograms, because we don't normally
3838 -- want addition of extra formals or mechanism setting to happen
3839 -- for those. However we do pass through predefined dispatching
3840 -- cases, since extra formals may be needed in some cases, such as
3841 -- for the stream 'Input function (build-in-place formals).
3842
3843 if not Is_Internal (E)
3844 or else Is_Predefined_Dispatching_Operation (E)
3845 then
70482933
RK
3846 Freeze_Subprogram (E);
3847 end if;
3848
3849 -- Here for other than a subprogram or type
3850
3851 else
3852 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 3853 -- freeze it first (RM 13.14(10)).
70482933 3854
ac72c9c5 3855 if Present (Etype (E))
70482933
RK
3856 and then Ekind (E) /= E_Generic_Function
3857 then
c159409f 3858 Freeze_And_Append (Etype (E), N, Result);
70482933
RK
3859 end if;
3860
2c9beb8a 3861 -- Special processing for objects created by object declaration
70482933
RK
3862
3863 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 3864
6823270c
AC
3865 -- Abstract type allowed only for C++ imported variables or
3866 -- constants.
3867
3868 -- Note: we inhibit this check for objects that do not come
3869 -- from source because there is at least one case (the
3e24afaa 3870 -- expansion of x'Class'Input where x is abstract) where we
6823270c
AC
3871 -- legitimately generate an abstract object.
3872
3873 if Is_Abstract_Type (Etype (E))
3874 and then Comes_From_Source (Parent (E))
3875 and then not (Is_Imported (E)
3876 and then Is_CPP_Class (Etype (E)))
3877 then
3878 Error_Msg_N ("type of object cannot be abstract",
3879 Object_Definition (Parent (E)));
3880
3881 if Is_CPP_Class (Etype (E)) then
ed2233dc
AC
3882 Error_Msg_NE
3883 ("\} may need a cpp_constructor",
6823270c
AC
3884 Object_Definition (Parent (E)), Etype (E));
3885 end if;
3886 end if;
3887
2c9beb8a
RD
3888 -- For object created by object declaration, perform required
3889 -- categorization (preelaborate and pure) checks. Defer these
3890 -- checks to freeze time since pragma Import inhibits default
3891 -- initialization and thus pragma Import affects these checks.
3892
70482933 3893 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 3894
1ce1f005 3895 -- If there is an address clause, check that it is valid
2c9beb8a 3896
fbf5a39b 3897 Check_Address_Clause (E);
2c9beb8a 3898
124092ee
AC
3899 -- Reset Is_True_Constant for aliased object. We consider that
3900 -- the fact that something is aliased may indicate that some
3901 -- funny business is going on, e.g. an aliased object is passed
3902 -- by reference to a procedure which captures the address of
3903 -- the object, which is later used to assign a new value. Such
3904 -- code is highly dubious, but we choose to make it "work" for
3905 -- aliased objects.
3906
3907 -- However, we don't do that for internal entities. We figure
3908 -- that if we deliberately set Is_True_Constant for an internal
3909 -- entity, e.g. a dispatch table entry, then we mean it!
3910
3911 if (Is_Aliased (E) or else Is_Aliased (Etype (E)))
3912 and then not Is_Internal_Name (Chars (E))
3913 then
3914 Set_Is_True_Constant (E, False);
3915 end if;
3916
1ce1f005
GD
3917 -- If the object needs any kind of default initialization, an
3918 -- error must be issued if No_Default_Initialization applies.
3919 -- The check doesn't apply to imported objects, which are not
3920 -- ever default initialized, and is why the check is deferred
3921 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
3922 -- Deferred constants are also exempted from this test because
3923 -- their completion is explicit, or through an import pragma.
1ce1f005 3924
4fec4e7a
ES
3925 if Ekind (E) = E_Constant
3926 and then Present (Full_View (E))
3927 then
3928 null;
3929
3930 elsif Comes_From_Source (E)
b6e209b5 3931 and then not Is_Imported (E)
1ce1f005
GD
3932 and then not Has_Init_Expression (Declaration_Node (E))
3933 and then
3934 ((Has_Non_Null_Base_Init_Proc (Etype (E))
3935 and then not No_Initialization (Declaration_Node (E))
3936 and then not Is_Value_Type (Etype (E))
5b1e6aca 3937 and then not Initialization_Suppressed (Etype (E)))
1ce1f005
GD
3938 or else
3939 (Needs_Simple_Initialization (Etype (E))
3940 and then not Is_Internal (E)))
3941 then
4c8a5bb8 3942 Has_Default_Initialization := True;
1ce1f005
GD
3943 Check_Restriction
3944 (No_Default_Initialization, Declaration_Node (E));
3945 end if;
3946
4c8a5bb8
AC
3947 -- Check that a Thread_Local_Storage variable does not have
3948 -- default initialization, and any explicit initialization must
3949 -- either be the null constant or a static constant.
3950
3951 if Has_Pragma_Thread_Local_Storage (E) then
3952 declare
3953 Decl : constant Node_Id := Declaration_Node (E);
3954 begin
3955 if Has_Default_Initialization
3956 or else
3957 (Has_Init_Expression (Decl)
3958 and then
3959 (No (Expression (Decl))
3960 or else not
3961 (Is_Static_Expression (Expression (Decl))
3962 or else
3963 Nkind (Expression (Decl)) = N_Null)))
3964 then
3965 Error_Msg_NE
3966 ("Thread_Local_Storage variable& is "
3967 & "improperly initialized", Decl, E);
3968 Error_Msg_NE
3969 ("\only allowed initialization is explicit "
3970 & "NULL or static expression", Decl, E);
3971 end if;
3972 end;
3973 end if;
3974
def46b54
RD
3975 -- For imported objects, set Is_Public unless there is also an
3976 -- address clause, which means that there is no external symbol
3977 -- needed for the Import (Is_Public may still be set for other
3978 -- unrelated reasons). Note that we delayed this processing
3979 -- till freeze time so that we can be sure not to set the flag
3980 -- if there is an address clause. If there is such a clause,
3981 -- then the only purpose of the Import pragma is to suppress
3982 -- implicit initialization.
2c9beb8a 3983
15e934bf 3984 if Is_Imported (E) and then No (Address_Clause (E)) then
2c9beb8a
RD
3985 Set_Is_Public (E);
3986 end if;
7d8b9c99
RD
3987
3988 -- For convention C objects of an enumeration type, warn if
3989 -- the size is not integer size and no explicit size given.
3990 -- Skip warning for Boolean, and Character, assume programmer
3991 -- expects 8-bit sizes for these cases.
3992
3993 if (Convention (E) = Convention_C
15e934bf 3994 or else
7d8b9c99
RD
3995 Convention (E) = Convention_CPP)
3996 and then Is_Enumeration_Type (Etype (E))
3997 and then not Is_Character_Type (Etype (E))
3998 and then not Is_Boolean_Type (Etype (E))
3999 and then Esize (Etype (E)) < Standard_Integer_Size
4000 and then not Has_Size_Clause (E)
4001 then
4002 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4003 Error_Msg_N
685bc70f 4004 ("??convention C enumeration object has size less than ^",
7d8b9c99
RD
4005 E);
4006 Error_Msg_N ("\?use explicit size clause to set size", E);
4007 end if;
70482933
RK
4008 end if;
4009
4010 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 4011 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
4012
4013 -- Note: Atomic[_Components] also sets Volatile[_Components]
4014
4015 if Ekind (E) = E_Constant
4016 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4017 and then not Is_Imported (E)
4018 then
4019 -- Make sure we actually have a pragma, and have not merely
4020 -- inherited the indication from elsewhere (e.g. an address
4021 -- clause, which is not good enough in RM terms!)
4022
1d571f3b 4023 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 4024 or else
1d571f3b 4025 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
4026 then
4027 Error_Msg_N
91b1417d 4028 ("stand alone atomic constant must be " &
def46b54 4029 "imported (RM C.6(13))", E);
91b1417d 4030
1d571f3b 4031 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 4032 or else
1d571f3b 4033 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
4034 then
4035 Error_Msg_N
4036 ("stand alone volatile constant must be " &
86cde7b1 4037 "imported (RM C.6(13))", E);
70482933
RK
4038 end if;
4039 end if;
4040
4041 -- Static objects require special handling
4042
4043 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4044 and then Is_Statically_Allocated (E)
4045 then
4046 Freeze_Static_Object (E);
4047 end if;
4048
4049 -- Remaining step is to layout objects
4050
4051 if Ekind (E) = E_Variable
4052 or else
4053 Ekind (E) = E_Constant
4054 or else
4055 Ekind (E) = E_Loop_Parameter
4056 or else
4057 Is_Formal (E)
4058 then
4059 Layout_Object (E);
4060 end if;
3a3af4c3
AC
4061
4062 -- If initialization statements were captured in an expression
4063 -- with actions with null expression, and the object does not
4064 -- have delayed freezing, move them back now directly within the
4065 -- enclosing statement sequence.
4066
4067 if Ekind_In (E, E_Constant, E_Variable)
15e934bf 4068 and then not Has_Delayed_Freeze (E)
3a3af4c3
AC
4069 then
4070 declare
4071 Init_Stmts : constant Node_Id :=
4072 Initialization_Statements (E);
4073 begin
4074 if Present (Init_Stmts)
ae05cdd6
RD
4075 and then Nkind (Init_Stmts) = N_Expression_With_Actions
4076 and then Nkind (Expression (Init_Stmts)) = N_Null_Statement
3a3af4c3
AC
4077 then
4078 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
a33f291d
AC
4079
4080 -- Note that we rewrite Init_Stmts into a NULL statement,
4081 -- rather than just removing it, because Freeze_All may
4082 -- depend on this particular Node_Id still being present
4083 -- in the enclosing list to signal where to stop
4084 -- freezing.
4085
4086 Rewrite (Init_Stmts,
4087 Make_Null_Statement (Sloc (Init_Stmts)));
4088
3a3af4c3
AC
4089 Set_Initialization_Statements (E, Empty);
4090 end if;
4091 end;
4092 end if;
70482933
RK
4093 end if;
4094
4095 -- Case of a type or subtype being frozen
4096
4097 else
31b5873d
GD
4098 -- We used to check here that a full type must have preelaborable
4099 -- initialization if it completes a private type specified with
308e6f3a 4100 -- pragma Preelaborable_Initialization, but that missed cases where
31b5873d
GD
4101 -- the types occur within a generic package, since the freezing
4102 -- that occurs within a containing scope generally skips traversal
4103 -- of a generic unit's declarations (those will be frozen within
4104 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 4105
70482933
RK
4106 -- The type may be defined in a generic unit. This can occur when
4107 -- freezing a generic function that returns the type (which is
4108 -- defined in a parent unit). It is clearly meaningless to freeze
4109 -- this type. However, if it is a subtype, its size may be determi-
4110 -- nable and used in subsequent checks, so might as well try to
4111 -- compute it.
4112
cf7bb903 4113 -- In Ada 2012, Freeze_Entities is also used in the front end to
e876c43a
AC
4114 -- trigger the analysis of aspect expressions, so in this case we
4115 -- want to continue the freezing process.
4116
70482933
RK
4117 if Present (Scope (E))
4118 and then Is_Generic_Unit (Scope (E))
3cd4a210
AC
4119 and then
4120 (not Has_Predicates (E)
4121 and then not Has_Delayed_Freeze (E))
70482933
RK
4122 then
4123 Check_Compile_Time_Size (E);
4124 return No_List;
4125 end if;
4126
4127 -- Deal with special cases of freezing for subtype
4128
4129 if E /= Base_Type (E) then
4130
86cde7b1
RD
4131 -- Before we do anything else, a specialized test for the case of
4132 -- a size given for an array where the array needs to be packed,
3d529af4
RD
4133 -- but was not so the size cannot be honored. This is the case
4134 -- where implicit packing may apply. The reason we do this so
aa0dfa7e 4135 -- early is that if we have implicit packing, the layout of the
3d529af4
RD
4136 -- base type is affected, so we must do this before we freeze
4137 -- the base type.
4138
4139 -- We could do this processing only if implicit packing is enabled
4140 -- since in all other cases, the error would be caught by the back
4141 -- end. However, we choose to do the check even if we do not have
aa0dfa7e
AC
4142 -- implicit packing enabled, since this allows us to give a more
4143 -- useful error message (advising use of pragmas Implicit_Packing
4144 -- or Pack).
86cde7b1
RD
4145
4146 if Is_Array_Type (E) then
4147 declare
3d529af4
RD
4148 Ctyp : constant Entity_Id := Component_Type (E);
4149 Rsiz : constant Uint := RM_Size (Ctyp);
4150 SZ : constant Node_Id := Size_Clause (E);
4151 Btyp : constant Entity_Id := Base_Type (E);
4152
4153 Lo : Node_Id;
4154 Hi : Node_Id;
4155 Indx : Node_Id;
4156
4157 Num_Elmts : Uint;
4158 -- Number of elements in array
86cde7b1
RD
4159
4160 begin
4161 -- Check enabling conditions. These are straightforward
4162 -- except for the test for a limited composite type. This
4163 -- eliminates the rare case of a array of limited components
4164 -- where there are issues of whether or not we can go ahead
4165 -- and pack the array (since we can't freely pack and unpack
4166 -- arrays if they are limited).
4167
4168 -- Note that we check the root type explicitly because the
4169 -- whole point is we are doing this test before we have had
4170 -- a chance to freeze the base type (and it is that freeze
4171 -- action that causes stuff to be inherited).
4172
3d529af4 4173 if Has_Size_Clause (E)
fc893455 4174 and then Known_Static_RM_Size (E)
86cde7b1
RD
4175 and then not Is_Packed (E)
4176 and then not Has_Pragma_Pack (E)
86cde7b1 4177 and then not Has_Component_Size_Clause (E)
fc893455 4178 and then Known_Static_RM_Size (Ctyp)
3d529af4 4179 and then RM_Size (Ctyp) < 64
86cde7b1
RD
4180 and then not Is_Limited_Composite (E)
4181 and then not Is_Packed (Root_Type (E))
4182 and then not Has_Component_Size_Clause (Root_Type (E))
06b599fd 4183 and then not (CodePeer_Mode or SPARK_Mode)
86cde7b1 4184 then
3d529af4
RD
4185 -- Compute number of elements in array
4186
4187 Num_Elmts := Uint_1;
4188 Indx := First_Index (E);
4189 while Present (Indx) loop
4190 Get_Index_Bounds (Indx, Lo, Hi);
4191
4192 if not (Compile_Time_Known_Value (Lo)
4193 and then
4194 Compile_Time_Known_Value (Hi))
4195 then
4196 goto No_Implicit_Packing;
4197 end if;
86cde7b1 4198
3d529af4
RD
4199 Num_Elmts :=
4200 Num_Elmts *
4201 UI_Max (Uint_0,
4202 Expr_Value (Hi) - Expr_Value (Lo) + 1);
4203 Next_Index (Indx);
4204 end loop;
4205
4206 -- What we are looking for here is the situation where
4207 -- the RM_Size given would be exactly right if there was
4208 -- a pragma Pack (resulting in the component size being
4209 -- the same as the RM_Size). Furthermore, the component
4210 -- type size must be an odd size (not a multiple of
4211 -- storage unit). If the component RM size is an exact
4212 -- number of storage units that is a power of two, the
4213 -- array is not packed and has a standard representation.
4214
4215 if RM_Size (E) = Num_Elmts * Rsiz
4216 and then Rsiz mod System_Storage_Unit /= 0
86cde7b1 4217 then
3d529af4
RD
4218 -- For implicit packing mode, just set the component
4219 -- size silently.
86cde7b1 4220
3d529af4
RD
4221 if Implicit_Packing then
4222 Set_Component_Size (Btyp, Rsiz);
4223 Set_Is_Bit_Packed_Array (Btyp);
4224 Set_Is_Packed (Btyp);
4225 Set_Has_Non_Standard_Rep (Btyp);
5a989c6b 4226
3d529af4
RD
4227 -- Otherwise give an error message
4228
4229 else
4230 Error_Msg_NE
4231 ("size given for& too small", SZ, E);
4232 Error_Msg_N -- CODEFIX
4233 ("\use explicit pragma Pack "
4234 & "or use pragma Implicit_Packing", SZ);
4235 end if;
5a989c6b 4236
3d529af4
RD
4237 elsif RM_Size (E) = Num_Elmts * Rsiz
4238 and then Implicit_Packing
4239 and then
4240 (Rsiz / System_Storage_Unit = 1
4241 or else
4242 Rsiz / System_Storage_Unit = 2
4243 or else
4244 Rsiz / System_Storage_Unit = 4)
4245 then
4246 -- Not a packed array, but indicate the desired
4247 -- component size, for the back-end.
5a989c6b 4248
3d529af4 4249 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
4250 end if;
4251 end if;
4252 end;
4253 end if;
4254
3d529af4
RD
4255 <<No_Implicit_Packing>>
4256
def46b54 4257 -- If ancestor subtype present, freeze that first. Note that this
8110ee3b 4258 -- will also get the base type frozen. Need RM reference ???
70482933
RK
4259
4260 Atype := Ancestor_Subtype (E);
4261
4262 if Present (Atype) then
c159409f 4263 Freeze_And_Append (Atype, N, Result);
70482933 4264
8110ee3b 4265 -- No ancestor subtype present
70482933 4266
8110ee3b
RD
4267 else
4268 -- See if we have a nearest ancestor that has a predicate.
4269 -- That catches the case of derived type with a predicate.
4270 -- Need RM reference here ???
4271
4272 Atype := Nearest_Ancestor (E);
4273
4274 if Present (Atype) and then Has_Predicates (Atype) then
4275 Freeze_And_Append (Atype, N, Result);
4276 end if;
4277
4278 -- Freeze base type before freezing the entity (RM 13.14(15))
4279
4280 if E /= Base_Type (E) then
4281 Freeze_And_Append (Base_Type (E), N, Result);
4282 end if;
70482933
RK
4283 end if;
4284
dc3af7e2
AC
4285 -- A subtype inherits all the type-related representation aspects
4286 -- from its parents (RM 13.1(8)).
4287
4288 Inherit_Aspects_At_Freeze_Point (E);
4289
fbf5a39b 4290 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
4291
4292 elsif Is_Derived_Type (E) then
c159409f
AC
4293 Freeze_And_Append (Etype (E), N, Result);
4294 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
dc3af7e2
AC
4295
4296 -- A derived type inherits each type-related representation aspect
4297 -- of its parent type that was directly specified before the
4298 -- declaration of the derived type (RM 13.1(15)).
4299
4300 Inherit_Aspects_At_Freeze_Point (E);
70482933
RK
4301 end if;
4302
63bb4268 4303 -- Array type
70482933
RK
4304
4305 if Is_Array_Type (E) then
63bb4268 4306 Freeze_Array_Type (E);
70482933 4307
fbf5a39b
AC
4308 -- For a class-wide type, the corresponding specific type is
4309 -- frozen as well (RM 13.14(15))
70482933
RK
4310
4311 elsif Is_Class_Wide_Type (E) then
c159409f 4312 Freeze_And_Append (Root_Type (E), N, Result);
70482933 4313
86cde7b1
RD
4314 -- If the base type of the class-wide type is still incomplete,
4315 -- the class-wide remains unfrozen as well. This is legal when
4316 -- E is the formal of a primitive operation of some other type
4317 -- which is being frozen.
4318
4319 if not Is_Frozen (Root_Type (E)) then
4320 Set_Is_Frozen (E, False);
4321 return Result;
4322 end if;
4323
67336960
AC
4324 -- The equivalent type associated with a class-wide subtype needs
4325 -- to be frozen to ensure that its layout is done.
4326
4327 if Ekind (E) = E_Class_Wide_Subtype
4328 and then Present (Equivalent_Type (E))
4329 then
4330 Freeze_And_Append (Equivalent_Type (E), N, Result);
4331 end if;
4332
4333 -- Generate an itype reference for a library-level class-wide type
4334 -- at the freeze point. Otherwise the first explicit reference to
4335 -- the type may appear in an inner scope which will be rejected by
4336 -- the back-end.
70482933
RK
4337
4338 if Is_Itype (E)
4339 and then Is_Compilation_Unit (Scope (E))
4340 then
70482933 4341 declare
fbf5a39b 4342 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
4343
4344 begin
4345 Set_Itype (Ref, E);
70482933 4346
67336960
AC
4347 -- From a gigi point of view, a class-wide subtype derives
4348 -- from its record equivalent type. As a result, the itype
4349 -- reference must appear after the freeze node of the
4350 -- equivalent type or gigi will reject the reference.
fbf5a39b 4351
67336960
AC
4352 if Ekind (E) = E_Class_Wide_Subtype
4353 and then Present (Equivalent_Type (E))
4354 then
4355 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
4356 else
4357 Add_To_Result (Ref);
4358 end if;
4359 end;
fbf5a39b
AC
4360 end if;
4361
e187fa72
AC
4362 -- For a record type or record subtype, freeze all component types
4363 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
4364 -- using Is_Record_Type, because we don't want to attempt the freeze
4365 -- for the case of a private type with record extension (we will do
4366 -- that later when the full type is frozen).
4367
3cd4a210
AC
4368 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
4369 and then not Is_Generic_Unit (Scope (E))
4370 then
70482933
RK
4371 Freeze_Record_Type (E);
4372
4373 -- For a concurrent type, freeze corresponding record type. This
e14c931f 4374 -- does not correspond to any specific rule in the RM, but the
70482933
RK
4375 -- record type is essentially part of the concurrent type.
4376 -- Freeze as well all local entities. This includes record types
4377 -- created for entry parameter blocks, and whatever local entities
4378 -- may appear in the private part.
4379
4380 elsif Is_Concurrent_Type (E) then
4381 if Present (Corresponding_Record_Type (E)) then
4382 Freeze_And_Append
c159409f 4383 (Corresponding_Record_Type (E), N, Result);
70482933
RK
4384 end if;
4385
4386 Comp := First_Entity (E);
70482933
RK
4387 while Present (Comp) loop
4388 if Is_Type (Comp) then
c159409f 4389 Freeze_And_Append (Comp, N, Result);
70482933
RK
4390
4391 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
4392 if Is_Itype (Etype (Comp))
4393 and then Underlying_Type (Scope (Etype (Comp))) = E
4394 then
4395 Undelay_Type (Etype (Comp));
4396 end if;
4397
c159409f 4398 Freeze_And_Append (Etype (Comp), N, Result);
70482933
RK
4399 end if;
4400
4401 Next_Entity (Comp);
4402 end loop;
4403
ee094616
RD
4404 -- Private types are required to point to the same freeze node as
4405 -- their corresponding full views. The freeze node itself has to
4406 -- point to the partial view of the entity (because from the partial
4407 -- view, we can retrieve the full view, but not the reverse).
4408 -- However, in order to freeze correctly, we need to freeze the full
4409 -- view. If we are freezing at the end of a scope (or within the
4410 -- scope of the private type), the partial and full views will have
4411 -- been swapped, the full view appears first in the entity chain and
4412 -- the swapping mechanism ensures that the pointers are properly set
4413 -- (on scope exit).
4414
4415 -- If we encounter the partial view before the full view (e.g. when
4416 -- freezing from another scope), we freeze the full view, and then
4417 -- set the pointers appropriately since we cannot rely on swapping to
4418 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
4419
4420 elsif Is_Incomplete_Or_Private_Type (E)
4421 and then not Is_Generic_Type (E)
4422 then
86cde7b1
RD
4423 -- The construction of the dispatch table associated with library
4424 -- level tagged types forces freezing of all the primitives of the
4425 -- type, which may cause premature freezing of the partial view.
4426 -- For example:
4427
4428 -- package Pkg is
4429 -- type T is tagged private;
4430 -- type DT is new T with private;
3e24afaa 4431 -- procedure Prim (X : in out T; Y : in out DT'Class);
86cde7b1
RD
4432 -- private
4433 -- type T is tagged null record;
4434 -- Obj : T;
4435 -- type DT is new T with null record;
4436 -- end;
4437
4438 -- In this case the type will be frozen later by the usual
4439 -- mechanism: an object declaration, an instantiation, or the
4440 -- end of a declarative part.
4441
4442 if Is_Library_Level_Tagged_Type (E)
4443 and then not Present (Full_View (E))
4444 then
4445 Set_Is_Frozen (E, False);
4446 return Result;
4447
70482933
RK
4448 -- Case of full view present
4449
86cde7b1 4450 elsif Present (Full_View (E)) then
70482933 4451
ee094616
RD
4452 -- If full view has already been frozen, then no further
4453 -- processing is required
70482933
RK
4454
4455 if Is_Frozen (Full_View (E)) then
70482933
RK
4456 Set_Has_Delayed_Freeze (E, False);
4457 Set_Freeze_Node (E, Empty);
4458 Check_Debug_Info_Needed (E);
4459
ee094616
RD
4460 -- Otherwise freeze full view and patch the pointers so that
4461 -- the freeze node will elaborate both views in the back-end.
70482933
RK
4462
4463 else
fbf5a39b
AC
4464 declare
4465 Full : constant Entity_Id := Full_View (E);
70482933 4466
fbf5a39b
AC
4467 begin
4468 if Is_Private_Type (Full)
4469 and then Present (Underlying_Full_View (Full))
4470 then
4471 Freeze_And_Append
c159409f 4472 (Underlying_Full_View (Full), N, Result);
fbf5a39b 4473 end if;
70482933 4474
c159409f 4475 Freeze_And_Append (Full, N, Result);
70482933 4476
fbf5a39b
AC
4477 if Has_Delayed_Freeze (E) then
4478 F_Node := Freeze_Node (Full);
70482933 4479
fbf5a39b
AC
4480 if Present (F_Node) then
4481 Set_Freeze_Node (E, F_Node);
4482 Set_Entity (F_Node, E);
4483
4484 else
def46b54
RD
4485 -- {Incomplete,Private}_Subtypes with Full_Views
4486 -- constrained by discriminants.
fbf5a39b
AC
4487
4488 Set_Has_Delayed_Freeze (E, False);
4489 Set_Freeze_Node (E, Empty);
4490 end if;
70482933 4491 end if;
fbf5a39b 4492 end;
70482933
RK
4493
4494 Check_Debug_Info_Needed (E);
4495 end if;
4496
ee094616
RD
4497 -- AI-117 requires that the convention of a partial view be the
4498 -- same as the convention of the full view. Note that this is a
4499 -- recognized breach of privacy, but it's essential for logical
4500 -- consistency of representation, and the lack of a rule in
4501 -- RM95 was an oversight.
70482933
RK
4502
4503 Set_Convention (E, Convention (Full_View (E)));
4504
4505 Set_Size_Known_At_Compile_Time (E,
4506 Size_Known_At_Compile_Time (Full_View (E)));
4507
4508 -- Size information is copied from the full view to the
def46b54 4509 -- incomplete or private view for consistency.
70482933 4510
ee094616
RD
4511 -- We skip this is the full view is not a type. This is very
4512 -- strange of course, and can only happen as a result of
4513 -- certain illegalities, such as a premature attempt to derive
4514 -- from an incomplete type.
70482933
RK
4515
4516 if Is_Type (Full_View (E)) then
4517 Set_Size_Info (E, Full_View (E));
4518 Set_RM_Size (E, RM_Size (Full_View (E)));
4519 end if;
4520
4521 return Result;
4522
4523 -- Case of no full view present. If entity is derived or subtype,
4524 -- it is safe to freeze, correctness depends on the frozen status
4525 -- of parent. Otherwise it is either premature usage, or a Taft
4526 -- amendment type, so diagnosis is at the point of use and the
4527 -- type might be frozen later.
4528
4529 elsif E /= Base_Type (E)
4530 or else Is_Derived_Type (E)
4531 then
4532 null;
4533
4534 else
4535 Set_Is_Frozen (E, False);
4536 return No_List;
4537 end if;
4538
4539 -- For access subprogram, freeze types of all formals, the return
4540 -- type was already frozen, since it is the Etype of the function.
8aec446b 4541 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 4542 -- they cannot be incomplete.
70482933
RK
4543
4544 elsif Ekind (E) = E_Subprogram_Type then
4545 Formal := First_Formal (E);
4546 while Present (Formal) loop
8aec446b
AC
4547 if Ekind (Etype (Formal)) = E_Incomplete_Type
4548 and then No (Full_View (Etype (Formal)))
4549 and then not Is_Value_Type (Etype (Formal))
4550 then
4551 if Is_Tagged_Type (Etype (Formal)) then
4552 null;
dd386db0 4553
3cae7f14 4554 -- AI05-151: Incomplete types are allowed in access to
dd386db0
AC
4555 -- subprogram specifications.
4556
4557 elsif Ada_Version < Ada_2012 then
8aec446b
AC
4558 Error_Msg_NE
4559 ("invalid use of incomplete type&", E, Etype (Formal));
4560 end if;
4561 end if;
4562
c159409f 4563 Freeze_And_Append (Etype (Formal), N, Result);
70482933
RK
4564 Next_Formal (Formal);
4565 end loop;
4566
70482933
RK
4567 Freeze_Subprogram (E);
4568
ee094616
RD
4569 -- For access to a protected subprogram, freeze the equivalent type
4570 -- (however this is not set if we are not generating code or if this
4571 -- is an anonymous type used just for resolution).
70482933 4572
fea9e956 4573 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 4574 if Present (Equivalent_Type (E)) then
c159409f 4575 Freeze_And_Append (Equivalent_Type (E), N, Result);
d8db0bca 4576 end if;
70482933
RK
4577 end if;
4578
4579 -- Generic types are never seen by the back-end, and are also not
4580 -- processed by the expander (since the expander is turned off for
4581 -- generic processing), so we never need freeze nodes for them.
4582
4583 if Is_Generic_Type (E) then
4584 return Result;
4585 end if;
4586
4587 -- Some special processing for non-generic types to complete
4588 -- representation details not known till the freeze point.
4589
4590 if Is_Fixed_Point_Type (E) then
4591 Freeze_Fixed_Point_Type (E);
4592
ee094616
RD
4593 -- Some error checks required for ordinary fixed-point type. Defer
4594 -- these till the freeze-point since we need the small and range
4595 -- values. We only do these checks for base types
fbf5a39b 4596
d347f572 4597 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
fbf5a39b
AC
4598 if Small_Value (E) < Ureal_2_M_80 then
4599 Error_Msg_Name_1 := Name_Small;
4600 Error_Msg_N
7d8b9c99 4601 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
4602
4603 elsif Small_Value (E) > Ureal_2_80 then
4604 Error_Msg_Name_1 := Name_Small;
4605 Error_Msg_N
7d8b9c99 4606 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
4607 end if;
4608
4609 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
4610 Error_Msg_Name_1 := Name_First;
4611 Error_Msg_N
7d8b9c99 4612 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
4613 end if;
4614
4615 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
4616 Error_Msg_Name_1 := Name_Last;
4617 Error_Msg_N
7d8b9c99 4618 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
4619 end if;
4620 end if;
4621
70482933
RK
4622 elsif Is_Enumeration_Type (E) then
4623 Freeze_Enumeration_Type (E);
4624
4625 elsif Is_Integer_Type (E) then
4626 Adjust_Esize_For_Alignment (E);
4627
79afa047
AC
4628 if Is_Modular_Integer_Type (E)
4629 and then Warn_On_Suspicious_Modulus_Value
4630 then
67b3acf8
RD
4631 Check_Suspicious_Modulus (E);
4632 end if;
4633
ea2af26a
AC
4634 elsif Is_Access_Type (E)
4635 and then not Is_Access_Subprogram_Type (E)
4636 then
fab2daeb
AC
4637 -- If a pragma Default_Storage_Pool applies, and this type has no
4638 -- Storage_Pool or Storage_Size clause (which must have occurred
4639 -- before the freezing point), then use the default. This applies
4640 -- only to base types.
a5fe079c
AC
4641
4642 -- None of this applies to access to subprograms, for which there
ea2af26a 4643 -- are clearly no pools.
fab2daeb
AC
4644
4645 if Present (Default_Pool)
d347f572 4646 and then Is_Base_Type (E)
fab2daeb
AC
4647 and then not Has_Storage_Size_Clause (E)
4648 and then No (Associated_Storage_Pool (E))
4649 then
4650 -- Case of pragma Default_Storage_Pool (null)
4651
4652 if Nkind (Default_Pool) = N_Null then
4653 Set_No_Pool_Assigned (E);
4654
4655 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
4656
4657 else
4658 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
4659 end if;
4660 end if;
4661
edd63e9b
ES
4662 -- Check restriction for standard storage pool
4663
4664 if No (Associated_Storage_Pool (E)) then
4665 Check_Restriction (No_Standard_Storage_Pools, E);
4666 end if;
4667
4668 -- Deal with error message for pure access type. This is not an
4669 -- error in Ada 2005 if there is no pool (see AI-366).
4670
4671 if Is_Pure_Unit_Access_Type (E)
0791fbe9 4672 and then (Ada_Version < Ada_2005
2c1b72d7 4673 or else not No_Pool_Assigned (E))
3cd4a210 4674 and then not Is_Generic_Unit (Scope (E))
edd63e9b
ES
4675 then
4676 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e 4677
0791fbe9 4678 if Ada_Version >= Ada_2005 then
c6a9797e 4679 Error_Msg_N
685bc70f 4680 ("\would be legal if Storage_Size of 0 given??", E);
c6a9797e
RD
4681
4682 elsif No_Pool_Assigned (E) then
4683 Error_Msg_N
685bc70f 4684 ("\would be legal in Ada 2005??", E);
c6a9797e
RD
4685
4686 else
4687 Error_Msg_N
4688 ("\would be legal in Ada 2005 if "
685bc70f 4689 & "Storage_Size of 0 given??", E);
c6a9797e 4690 end if;
edd63e9b 4691 end if;
70482933
RK
4692 end if;
4693
edd63e9b
ES
4694 -- Case of composite types
4695
70482933
RK
4696 if Is_Composite_Type (E) then
4697
edd63e9b
ES
4698 -- AI-117 requires that all new primitives of a tagged type must
4699 -- inherit the convention of the full view of the type. Inherited
4700 -- and overriding operations are defined to inherit the convention
4701 -- of their parent or overridden subprogram (also specified in
ee094616
RD
4702 -- AI-117), which will have occurred earlier (in Derive_Subprogram
4703 -- and New_Overloaded_Entity). Here we set the convention of
4704 -- primitives that are still convention Ada, which will ensure
def46b54
RD
4705 -- that any new primitives inherit the type's convention. Class-
4706 -- wide types can have a foreign convention inherited from their
4707 -- specific type, but are excluded from this since they don't have
4708 -- any associated primitives.
70482933
RK
4709
4710 if Is_Tagged_Type (E)
4711 and then not Is_Class_Wide_Type (E)
4712 and then Convention (E) /= Convention_Ada
4713 then
4714 declare
4715 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 4716 Prim : Elmt_Id;
3cae7f14 4717
70482933 4718 begin
07fc65c4 4719 Prim := First_Elmt (Prim_List);
70482933
RK
4720 while Present (Prim) loop
4721 if Convention (Node (Prim)) = Convention_Ada then
4722 Set_Convention (Node (Prim), Convention (E));
4723 end if;
4724
4725 Next_Elmt (Prim);
4726 end loop;
4727 end;
4728 end if;
a8551b5f
AC
4729
4730 -- If the type is a simple storage pool type, then this is where
4731 -- we attempt to locate and validate its Allocate, Deallocate, and
4732 -- Storage_Size operations (the first is required, and the latter
4733 -- two are optional). We also verify that the full type for a
4734 -- private type is allowed to be a simple storage pool type.
4735
f6205414 4736 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
a8551b5f
AC
4737 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
4738 then
a8551b5f
AC
4739 -- If the type is marked Has_Private_Declaration, then this is
4740 -- a full type for a private type that was specified with the
f6205414 4741 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
a8551b5f
AC
4742 -- pragma is allowed for the full type (for example, it can't
4743 -- be an array type, or a nonlimited record type).
4744
4745 if Has_Private_Declaration (E) then
4746 if (not Is_Record_Type (E)
4747 or else not Is_Immutably_Limited_Type (E))
4748 and then not Is_Private_Type (E)
4749 then
f6205414 4750 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
a8551b5f
AC
4751 Error_Msg_N
4752 ("pragma% can only apply to full type that is an " &
4753 "explicitly limited type", E);
4754 end if;
4755 end if;
4756
4757 Validate_Simple_Pool_Ops : declare
4758 Pool_Type : Entity_Id renames E;
4759 Address_Type : constant Entity_Id := RTE (RE_Address);
4760 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
4761
4762 procedure Validate_Simple_Pool_Op_Formal
4763 (Pool_Op : Entity_Id;
4764 Pool_Op_Formal : in out Entity_Id;
4765 Expected_Mode : Formal_Kind;
4766 Expected_Type : Entity_Id;
4767 Formal_Name : String;
4768 OK_Formal : in out Boolean);
4769 -- Validate one formal Pool_Op_Formal of the candidate pool
4770 -- operation Pool_Op. The formal must be of Expected_Type
4771 -- and have mode Expected_Mode. OK_Formal will be set to
4772 -- False if the formal doesn't match. If OK_Formal is False
4773 -- on entry, then the formal will effectively be ignored
4774 -- (because validation of the pool op has already failed).
4775 -- Upon return, Pool_Op_Formal will be updated to the next
4776 -- formal, if any.
4777
4778 procedure Validate_Simple_Pool_Operation (Op_Name : Name_Id);
4779 -- Search for and validate a simple pool operation with the
4780 -- name Op_Name. If the name is Allocate, then there must be
4781 -- exactly one such primitive operation for the simple pool
4782 -- type. If the name is Deallocate or Storage_Size, then
4783 -- there can be at most one such primitive operation. The
4784 -- profile of the located primitive must conform to what
4785 -- is expected for each operation.
4786
4787 ------------------------------------
4788 -- Validate_Simple_Pool_Op_Formal --
4789 ------------------------------------
4790
4791 procedure Validate_Simple_Pool_Op_Formal
4792 (Pool_Op : Entity_Id;
4793 Pool_Op_Formal : in out Entity_Id;
4794 Expected_Mode : Formal_Kind;
4795 Expected_Type : Entity_Id;
4796 Formal_Name : String;
4797 OK_Formal : in out Boolean)
4798 is
4799 begin
4800 -- If OK_Formal is False on entry, then simply ignore
4801 -- the formal, because an earlier formal has already
4802 -- been flagged.
4803
4804 if not OK_Formal then
4805 return;
4806
4807 -- If no formal is passed in, then issue an error for a
4808 -- missing formal.
4809
4810 elsif not Present (Pool_Op_Formal) then
4811 Error_Msg_NE
4812 ("simple storage pool op missing formal " &
4813 Formal_Name & " of type&", Pool_Op, Expected_Type);
4814 OK_Formal := False;
4815
4816 return;
4817 end if;
4818
4819 if Etype (Pool_Op_Formal) /= Expected_Type then
260359e3 4820
a8551b5f
AC
4821 -- If the pool type was expected for this formal, then
4822 -- this will not be considered a candidate operation
4823 -- for the simple pool, so we unset OK_Formal so that
4824 -- the op and any later formals will be ignored.
4825
4826 if Expected_Type = Pool_Type then
4827 OK_Formal := False;
4828
4829 return;
4830
4831 else
4832 Error_Msg_NE
4833 ("wrong type for formal " & Formal_Name &
4834 " of simple storage pool op; expected type&",
4835 Pool_Op_Formal, Expected_Type);
4836 end if;
4837 end if;
4838
4839 -- Issue error if formal's mode is not the expected one
4840
4841 if Ekind (Pool_Op_Formal) /= Expected_Mode then
4842 Error_Msg_N
4843 ("wrong mode for formal of simple storage pool op",
4844 Pool_Op_Formal);
4845 end if;
4846
4847 -- Advance to the next formal
4848
4849 Next_Formal (Pool_Op_Formal);
4850 end Validate_Simple_Pool_Op_Formal;
4851
4852 ------------------------------------
4853 -- Validate_Simple_Pool_Operation --
4854 ------------------------------------
4855
4856 procedure Validate_Simple_Pool_Operation
4857 (Op_Name : Name_Id)
4858 is
4859 Op : Entity_Id;
4860 Found_Op : Entity_Id := Empty;
4861 Formal : Entity_Id;
4862 Is_OK : Boolean;
4863
4864 begin
4865 pragma Assert
b69cd36a
AC
4866 (Nam_In (Op_Name, Name_Allocate,
4867 Name_Deallocate,
4868 Name_Storage_Size));
a8551b5f
AC
4869
4870 Error_Msg_Name_1 := Op_Name;
4871
4872 -- For each homonym declared immediately in the scope
4873 -- of the simple storage pool type, determine whether
4874 -- the homonym is an operation of the pool type, and,
4875 -- if so, check that its profile is as expected for
4876 -- a simple pool operation of that name.
4877
4878 Op := Get_Name_Entity_Id (Op_Name);
4879 while Present (Op) loop
4880 if Ekind_In (Op, E_Function, E_Procedure)
4881 and then Scope (Op) = Current_Scope
4882 then
4883 Formal := First_Entity (Op);
4884
4885 Is_OK := True;
4886
4887 -- The first parameter must be of the pool type
4888 -- in order for the operation to qualify.
4889
4890 if Op_Name = Name_Storage_Size then
4891 Validate_Simple_Pool_Op_Formal
4892 (Op, Formal, E_In_Parameter, Pool_Type,
4893 "Pool", Is_OK);
a8551b5f
AC
4894 else
4895 Validate_Simple_Pool_Op_Formal
4896 (Op, Formal, E_In_Out_Parameter, Pool_Type,
4897 "Pool", Is_OK);
4898 end if;
4899
4900 -- If another operation with this name has already
4901 -- been located for the type, then flag an error,
4902 -- since we only allow the type to have a single
4903 -- such primitive.
4904
4905 if Present (Found_Op) and then Is_OK then
4906 Error_Msg_NE
4907 ("only one % operation allowed for " &
4908 "simple storage pool type&", Op, Pool_Type);
4909 end if;
4910
4911 -- In the case of Allocate and Deallocate, a formal
4912 -- of type System.Address is required.
4913
4914 if Op_Name = Name_Allocate then
4915 Validate_Simple_Pool_Op_Formal
4916 (Op, Formal, E_Out_Parameter,
b69cd36a
AC
4917 Address_Type, "Storage_Address", Is_OK);
4918
a8551b5f
AC
4919 elsif Op_Name = Name_Deallocate then
4920 Validate_Simple_Pool_Op_Formal
4921 (Op, Formal, E_In_Parameter,
4922 Address_Type, "Storage_Address", Is_OK);
4923 end if;
4924
4925 -- In the case of Allocate and Deallocate, formals
4926 -- of type Storage_Count are required as the third
4927 -- and fourth parameters.
4928
4929 if Op_Name /= Name_Storage_Size then
4930 Validate_Simple_Pool_Op_Formal
4931 (Op, Formal, E_In_Parameter,
4932 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
a8551b5f
AC
4933 Validate_Simple_Pool_Op_Formal
4934 (Op, Formal, E_In_Parameter,
4935 Stg_Cnt_Type, "Alignment", Is_OK);
4936 end if;
4937
4938 -- If no mismatched formals have been found (Is_OK)
4939 -- and no excess formals are present, then this
4940 -- operation has been validated, so record it.
4941
4942 if not Present (Formal) and then Is_OK then
4943 Found_Op := Op;
4944 end if;
4945 end if;
4946
4947 Op := Homonym (Op);
4948 end loop;
4949
4950 -- There must be a valid Allocate operation for the type,
4951 -- so issue an error if none was found.
4952
4953 if Op_Name = Name_Allocate
4954 and then not Present (Found_Op)
4955 then
4956 Error_Msg_N ("missing % operation for simple " &
4957 "storage pool type", Pool_Type);
4958
4959 elsif Present (Found_Op) then
260359e3 4960
a8551b5f
AC
4961 -- Simple pool operations can't be abstract
4962
4963 if Is_Abstract_Subprogram (Found_Op) then
4964 Error_Msg_N
4965 ("simple storage pool operation must not be " &
4966 "abstract", Found_Op);
4967 end if;
4968
4969 -- The Storage_Size operation must be a function with
4970 -- Storage_Count as its result type.
4971
4972 if Op_Name = Name_Storage_Size then
4973 if Ekind (Found_Op) = E_Procedure then
4974 Error_Msg_N
4975 ("% operation must be a function", Found_Op);
4976
4977 elsif Etype (Found_Op) /= Stg_Cnt_Type then
4978 Error_Msg_NE
4979 ("wrong result type for%, expected type&",
4980 Found_Op, Stg_Cnt_Type);
4981 end if;
4982
4983 -- Allocate and Deallocate must be procedures
4984
4985 elsif Ekind (Found_Op) = E_Function then
4986 Error_Msg_N
4987 ("% operation must be a procedure", Found_Op);
4988 end if;
4989 end if;
4990 end Validate_Simple_Pool_Operation;
4991
4992 -- Start of processing for Validate_Simple_Pool_Ops
4993
4994 begin
4995 Validate_Simple_Pool_Operation (Name_Allocate);
a8551b5f 4996 Validate_Simple_Pool_Operation (Name_Deallocate);
a8551b5f
AC
4997 Validate_Simple_Pool_Operation (Name_Storage_Size);
4998 end Validate_Simple_Pool_Ops;
4999 end if;
70482933
RK
5000 end if;
5001
ee094616
RD
5002 -- Now that all types from which E may depend are frozen, see if the
5003 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 5004 -- strict alignment is required
70482933
RK
5005
5006 Check_Compile_Time_Size (E);
5007 Check_Unsigned_Type (E);
5008
5009 if Base_Type (E) = E then
5010 Check_Strict_Alignment (E);
5011 end if;
5012
5013 -- Do not allow a size clause for a type which does not have a size
5014 -- that is known at compile time
5015
5016 if Has_Size_Clause (E)
5017 and then not Size_Known_At_Compile_Time (E)
5018 then
e14c931f 5019 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
5020 -- in all errors mode, since this is often a junk message
5021
5022 if not Error_Posted (E) then
5023 Error_Msg_N
5024 ("size clause not allowed for variable length type",
5025 Size_Clause (E));
5026 end if;
70482933
RK
5027 end if;
5028
a01b9df6
AC
5029 -- Now we set/verify the representation information, in particular
5030 -- the size and alignment values. This processing is not required for
5031 -- generic types, since generic types do not play any part in code
5032 -- generation, and so the size and alignment values for such types
84c4181d
AC
5033 -- are irrelevant. Ditto for types declared within a generic unit,
5034 -- which may have components that depend on generic parameters, and
5035 -- that will be recreated in an instance.
70482933 5036
84c4181d
AC
5037 if Inside_A_Generic then
5038 null;
70482933
RK
5039
5040 -- Otherwise we call the layout procedure
5041
5042 else
5043 Layout_Type (E);
5044 end if;
a01b9df6 5045
cc570be6
AC
5046 -- If this is an access to subprogram whose designated type is itself
5047 -- a subprogram type, the return type of this anonymous subprogram
5048 -- type must be decorated as well.
5049
5050 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
5051 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
5052 then
5053 Layout_Type (Etype (Designated_Type (E)));
5054 end if;
5055
a01b9df6
AC
5056 -- If the type has a Defaut_Value/Default_Component_Value aspect,
5057 -- this is where we analye the expression (after the type is frozen,
5058 -- since in the case of Default_Value, we are analyzing with the
5059 -- type itself, and we treat Default_Component_Value similarly for
1b73408a 5060 -- the sake of uniformity).
a01b9df6
AC
5061
5062 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
5063 declare
37da997b
RD
5064 Nam : Name_Id;
5065 Exp : Node_Id;
5066 Typ : Entity_Id;
a01b9df6
AC
5067
5068 begin
5069 if Is_Scalar_Type (E) then
5070 Nam := Name_Default_Value;
5071 Typ := E;
6d9e03cb 5072 Exp := Default_Aspect_Value (Typ);
a01b9df6
AC
5073 else
5074 Nam := Name_Default_Component_Value;
5075 Typ := Component_Type (E);
37da997b 5076 Exp := Default_Aspect_Component_Value (E);
a01b9df6
AC
5077 end if;
5078
a01b9df6
AC
5079 Analyze_And_Resolve (Exp, Typ);
5080
5081 if Etype (Exp) /= Any_Type then
5082 if not Is_Static_Expression (Exp) then
5083 Error_Msg_Name_1 := Nam;
5084 Flag_Non_Static_Expr
5085 ("aspect% requires static expression", Exp);
5086 end if;
5087 end if;
5088 end;
5089 end if;
70482933
RK
5090
5091 -- End of freeze processing for type entities
5092 end if;
5093
5094 -- Here is where we logically freeze the current entity. If it has a
5095 -- freeze node, then this is the point at which the freeze node is
5096 -- linked into the result list.
5097
5098 if Has_Delayed_Freeze (E) then
5099
5100 -- If a freeze node is already allocated, use it, otherwise allocate
5101 -- a new one. The preallocation happens in the case of anonymous base
5102 -- types, where we preallocate so that we can set First_Subtype_Link.
5103 -- Note that we reset the Sloc to the current freeze location.
5104
5105 if Present (Freeze_Node (E)) then
5106 F_Node := Freeze_Node (E);
5107 Set_Sloc (F_Node, Loc);
5108
5109 else
5110 F_Node := New_Node (N_Freeze_Entity, Loc);
5111 Set_Freeze_Node (E, F_Node);
5112 Set_Access_Types_To_Process (F_Node, No_Elist);
5113 Set_TSS_Elist (F_Node, No_Elist);
5114 Set_Actions (F_Node, No_List);
5115 end if;
5116
5117 Set_Entity (F_Node, E);
90878b12 5118 Add_To_Result (F_Node);
35ae2ed8
AC
5119
5120 -- A final pass over record types with discriminants. If the type
5121 -- has an incomplete declaration, there may be constrained access
5122 -- subtypes declared elsewhere, which do not depend on the discrimi-
5123 -- nants of the type, and which are used as component types (i.e.
5124 -- the full view is a recursive type). The designated types of these
5125 -- subtypes can only be elaborated after the type itself, and they
5126 -- need an itype reference.
5127
5128 if Ekind (E) = E_Record_Type
5129 and then Has_Discriminants (E)
5130 then
5131 declare
5132 Comp : Entity_Id;
5133 IR : Node_Id;
5134 Typ : Entity_Id;
5135
5136 begin
5137 Comp := First_Component (E);
35ae2ed8
AC
5138 while Present (Comp) loop
5139 Typ := Etype (Comp);
5140
5141 if Ekind (Comp) = E_Component
5142 and then Is_Access_Type (Typ)
5143 and then Scope (Typ) /= E
5144 and then Base_Type (Designated_Type (Typ)) = E
5145 and then Is_Itype (Designated_Type (Typ))
5146 then
5147 IR := Make_Itype_Reference (Sloc (Comp));
5148 Set_Itype (IR, Designated_Type (Typ));
5149 Append (IR, Result);
5150 end if;
5151
5152 Next_Component (Comp);
5153 end loop;
5154 end;
5155 end if;
70482933
RK
5156 end if;
5157
5158 -- When a type is frozen, the first subtype of the type is frozen as
5159 -- well (RM 13.14(15)). This has to be done after freezing the type,
5160 -- since obviously the first subtype depends on its own base type.
5161
5162 if Is_Type (E) then
c159409f 5163 Freeze_And_Append (First_Subtype (E), N, Result);
70482933
RK
5164
5165 -- If we just froze a tagged non-class wide record, then freeze the
5166 -- corresponding class-wide type. This must be done after the tagged
5167 -- type itself is frozen, because the class-wide type refers to the
5168 -- tagged type which generates the class.
5169
5170 if Is_Tagged_Type (E)
5171 and then not Is_Class_Wide_Type (E)
5172 and then Present (Class_Wide_Type (E))
5173 then
c159409f 5174 Freeze_And_Append (Class_Wide_Type (E), N, Result);
70482933
RK
5175 end if;
5176 end if;
5177
5178 Check_Debug_Info_Needed (E);
5179
5180 -- Special handling for subprograms
5181
5182 if Is_Subprogram (E) then
5183
5184 -- If subprogram has address clause then reset Is_Public flag, since
5185 -- we do not want the backend to generate external references.
5186
5187 if Present (Address_Clause (E))
5188 and then not Is_Library_Level_Entity (E)
5189 then
5190 Set_Is_Public (E, False);
70482933 5191 end if;
70482933
RK
5192 end if;
5193
5194 return Result;
5195 end Freeze_Entity;
5196
5197 -----------------------------
5198 -- Freeze_Enumeration_Type --
5199 -----------------------------
5200
5201 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
5202 begin
d677afa9
ES
5203 -- By default, if no size clause is present, an enumeration type with
5204 -- Convention C is assumed to interface to a C enum, and has integer
5205 -- size. This applies to types. For subtypes, verify that its base
be482a8c
AC
5206 -- type has no size clause either. Treat other foreign conventions
5207 -- in the same way, and also make sure alignment is set right.
d677afa9 5208
70482933
RK
5209 if Has_Foreign_Convention (Typ)
5210 and then not Has_Size_Clause (Typ)
d677afa9 5211 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
5212 and then Esize (Typ) < Standard_Integer_Size
5213 then
5214 Init_Esize (Typ, Standard_Integer_Size);
be482a8c 5215 Set_Alignment (Typ, Alignment (Standard_Integer));
d677afa9 5216
70482933 5217 else
d677afa9
ES
5218 -- If the enumeration type interfaces to C, and it has a size clause
5219 -- that specifies less than int size, it warrants a warning. The
5220 -- user may intend the C type to be an enum or a char, so this is
5221 -- not by itself an error that the Ada compiler can detect, but it
5222 -- it is a worth a heads-up. For Boolean and Character types we
5223 -- assume that the programmer has the proper C type in mind.
5224
5225 if Convention (Typ) = Convention_C
5226 and then Has_Size_Clause (Typ)
5227 and then Esize (Typ) /= Esize (Standard_Integer)
5228 and then not Is_Boolean_Type (Typ)
5229 and then not Is_Character_Type (Typ)
5230 then
5231 Error_Msg_N
685bc70f 5232 ("C enum types have the size of a C int??", Size_Clause (Typ));
d677afa9
ES
5233 end if;
5234
70482933
RK
5235 Adjust_Esize_For_Alignment (Typ);
5236 end if;
5237 end Freeze_Enumeration_Type;
5238
5239 -----------------------
5240 -- Freeze_Expression --
5241 -----------------------
5242
5243 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
5244 In_Spec_Exp : constant Boolean := In_Spec_Expression;
5245 Typ : Entity_Id;
5246 Nam : Entity_Id;
5247 Desig_Typ : Entity_Id;
5248 P : Node_Id;
5249 Parent_P : Node_Id;
70482933
RK
5250
5251 Freeze_Outside : Boolean := False;
5252 -- This flag is set true if the entity must be frozen outside the
5253 -- current subprogram. This happens in the case of expander generated
5254 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
5255 -- not freeze all entities like other bodies, but which nevertheless
5256 -- may reference entities that have to be frozen before the body and
5257 -- obviously cannot be frozen inside the body.
5258
5259 function In_Exp_Body (N : Node_Id) return Boolean;
5260 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 5261 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
5262 -- subprogram (init proc, stream subprogram, or renaming as body).
5263 -- If so, this is not a freezing context.
70482933 5264
fbf5a39b
AC
5265 -----------------
5266 -- In_Exp_Body --
5267 -----------------
5268
70482933 5269 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
5270 P : Node_Id;
5271 Id : Entity_Id;
70482933
RK
5272
5273 begin
5274 if Nkind (N) = N_Subprogram_Body then
5275 P := N;
5276 else
5277 P := Parent (N);
5278 end if;
5279
5280 if Nkind (P) /= N_Subprogram_Body then
5281 return False;
5282
5283 else
7d8b9c99
RD
5284 Id := Defining_Unit_Name (Specification (P));
5285
21791d97
AC
5286 -- Following complex conditional could use comments ???
5287
7d8b9c99 5288 if Nkind (Id) = N_Defining_Identifier
21791d97
AC
5289 and then (Is_Init_Proc (Id)
5290 or else Is_TSS (Id, TSS_Stream_Input)
5291 or else Is_TSS (Id, TSS_Stream_Output)
5292 or else Is_TSS (Id, TSS_Stream_Read)
5293 or else Is_TSS (Id, TSS_Stream_Write)
5294 or else Nkind_In (Original_Node (P),
5295 N_Subprogram_Renaming_Declaration,
5296 N_Expression_Function))
70482933
RK
5297 then
5298 return True;
5299 else
5300 return False;
5301 end if;
5302 end if;
70482933
RK
5303 end In_Exp_Body;
5304
5305 -- Start of processing for Freeze_Expression
5306
5307 begin
edd63e9b
ES
5308 -- Immediate return if freezing is inhibited. This flag is set by the
5309 -- analyzer to stop freezing on generated expressions that would cause
5310 -- freezing if they were in the source program, but which are not
5311 -- supposed to freeze, since they are created.
70482933
RK
5312
5313 if Must_Not_Freeze (N) then
5314 return;
5315 end if;
5316
5317 -- If expression is non-static, then it does not freeze in a default
5318 -- expression, see section "Handling of Default Expressions" in the
fe58fea7
AC
5319 -- spec of package Sem for further details. Note that we have to make
5320 -- sure that we actually have a real expression (if we have a subtype
5321 -- indication, we can't test Is_Static_Expression!) However, we exclude
5322 -- the case of the prefix of an attribute of a static scalar subtype
5323 -- from this early return, because static subtype attributes should
5324 -- always cause freezing, even in default expressions, but the attribute
5325 -- may not have been marked as static yet (because in Resolve_Attribute,
5326 -- the call to Eval_Attribute follows the call of Freeze_Expression on
5327 -- the prefix).
70482933 5328
c6a9797e 5329 if In_Spec_Exp
70482933
RK
5330 and then Nkind (N) in N_Subexpr
5331 and then not Is_Static_Expression (N)
fe58fea7
AC
5332 and then (Nkind (Parent (N)) /= N_Attribute_Reference
5333 or else not (Is_Entity_Name (N)
5334 and then Is_Type (Entity (N))
5335 and then Is_Static_Subtype (Entity (N))))
70482933
RK
5336 then
5337 return;
5338 end if;
5339
5340 -- Freeze type of expression if not frozen already
5341
fbf5a39b
AC
5342 Typ := Empty;
5343
5344 if Nkind (N) in N_Has_Etype then
5345 if not Is_Frozen (Etype (N)) then
5346 Typ := Etype (N);
5347
5348 -- Base type may be an derived numeric type that is frozen at
5349 -- the point of declaration, but first_subtype is still unfrozen.
5350
5351 elsif not Is_Frozen (First_Subtype (Etype (N))) then
5352 Typ := First_Subtype (Etype (N));
5353 end if;
70482933
RK
5354 end if;
5355
5356 -- For entity name, freeze entity if not frozen already. A special
5357 -- exception occurs for an identifier that did not come from source.
5358 -- We don't let such identifiers freeze a non-internal entity, i.e.
5359 -- an entity that did come from source, since such an identifier was
5360 -- generated by the expander, and cannot have any semantic effect on
5361 -- the freezing semantics. For example, this stops the parameter of
5362 -- an initialization procedure from freezing the variable.
5363
5364 if Is_Entity_Name (N)
5365 and then not Is_Frozen (Entity (N))
5366 and then (Nkind (N) /= N_Identifier
5367 or else Comes_From_Source (N)
5368 or else not Comes_From_Source (Entity (N)))
5369 then
5370 Nam := Entity (N);
70482933
RK
5371 else
5372 Nam := Empty;
5373 end if;
5374
49e90211 5375 -- For an allocator freeze designated type if not frozen already
70482933 5376
ee094616
RD
5377 -- For an aggregate whose component type is an access type, freeze the
5378 -- designated type now, so that its freeze does not appear within the
5379 -- loop that might be created in the expansion of the aggregate. If the
5380 -- designated type is a private type without full view, the expression
5381 -- cannot contain an allocator, so the type is not frozen.
70482933 5382
7aedb36a
AC
5383 -- For a function, we freeze the entity when the subprogram declaration
5384 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 5385 -- before the declaration is frozen. We need to generate the extra
7aedb36a 5386 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
5387 -- the proper actuals. This only applies to Ada subprograms, not to
5388 -- imported ones.
7aedb36a 5389
70482933 5390 Desig_Typ := Empty;
70482933 5391
fbf5a39b 5392 case Nkind (N) is
70482933
RK
5393 when N_Allocator =>
5394 Desig_Typ := Designated_Type (Etype (N));
5395
5396 when N_Aggregate =>
5397 if Is_Array_Type (Etype (N))
5398 and then Is_Access_Type (Component_Type (Etype (N)))
5399 then
5400 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
5401 end if;
5402
5403 when N_Selected_Component |
5404 N_Indexed_Component |
5405 N_Slice =>
5406
5407 if Is_Access_Type (Etype (Prefix (N))) then
5408 Desig_Typ := Designated_Type (Etype (Prefix (N)));
5409 end if;
5410
7aedb36a
AC
5411 when N_Identifier =>
5412 if Present (Nam)
5413 and then Ekind (Nam) = E_Function
5414 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 5415 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
5416 then
5417 Create_Extra_Formals (Nam);
5418 end if;
5419
70482933
RK
5420 when others =>
5421 null;
70482933
RK
5422 end case;
5423
5424 if Desig_Typ /= Empty
5425 and then (Is_Frozen (Desig_Typ)
5426 or else (not Is_Fully_Defined (Desig_Typ)))
5427 then
5428 Desig_Typ := Empty;
5429 end if;
5430
5431 -- All done if nothing needs freezing
5432
5433 if No (Typ)
5434 and then No (Nam)
5435 and then No (Desig_Typ)
5436 then
5437 return;
5438 end if;
5439
f6cf5b85 5440 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
5441 -- exiting from the loop when it is appropriate to insert the freeze
5442 -- node before the current node P.
5443
bce79204
AC
5444 -- Also checks some special exceptions to the freezing rules. These
5445 -- cases result in a direct return, bypassing the freeze action.
70482933
RK
5446
5447 P := N;
5448 loop
5449 Parent_P := Parent (P);
5450
ee094616
RD
5451 -- If we don't have a parent, then we are not in a well-formed tree.
5452 -- This is an unusual case, but there are some legitimate situations
5453 -- in which this occurs, notably when the expressions in the range of
5454 -- a type declaration are resolved. We simply ignore the freeze
5455 -- request in this case. Is this right ???
70482933
RK
5456
5457 if No (Parent_P) then
5458 return;
5459 end if;
5460
5461 -- See if we have got to an appropriate point in the tree
5462
5463 case Nkind (Parent_P) is
5464
edd63e9b
ES
5465 -- A special test for the exception of (RM 13.14(8)) for the case
5466 -- of per-object expressions (RM 3.8(18)) occurring in component
5467 -- definition or a discrete subtype definition. Note that we test
5468 -- for a component declaration which includes both cases we are
5469 -- interested in, and furthermore the tree does not have explicit
5470 -- nodes for either of these two constructs.
70482933
RK
5471
5472 when N_Component_Declaration =>
5473
5474 -- The case we want to test for here is an identifier that is
5475 -- a per-object expression, this is either a discriminant that
5476 -- appears in a context other than the component declaration
5477 -- or it is a reference to the type of the enclosing construct.
5478
5479 -- For either of these cases, we skip the freezing
5480
c6a9797e 5481 if not In_Spec_Expression
70482933
RK
5482 and then Nkind (N) = N_Identifier
5483 and then (Present (Entity (N)))
5484 then
5485 -- We recognize the discriminant case by just looking for
5486 -- a reference to a discriminant. It can only be one for
5487 -- the enclosing construct. Skip freezing in this case.
5488
5489 if Ekind (Entity (N)) = E_Discriminant then
5490 return;
5491
5492 -- For the case of a reference to the enclosing record,
5493 -- (or task or protected type), we look for a type that
5494 -- matches the current scope.
5495
5496 elsif Entity (N) = Current_Scope then
5497 return;
5498 end if;
5499 end if;
5500
edd63e9b
ES
5501 -- If we have an enumeration literal that appears as the choice in
5502 -- the aggregate of an enumeration representation clause, then
5503 -- freezing does not occur (RM 13.14(10)).
70482933
RK
5504
5505 when N_Enumeration_Representation_Clause =>
5506
5507 -- The case we are looking for is an enumeration literal
5508
5509 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
5510 and then Is_Enumeration_Type (Etype (N))
5511 then
5512 -- If enumeration literal appears directly as the choice,
e14c931f 5513 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
5514
5515 if Nkind (Parent (N)) = N_Component_Association
5516 and then First (Choices (Parent (N))) = N
5517 then
5518 return;
5519
ee094616
RD
5520 -- If enumeration literal appears as the name of function
5521 -- which is the choice, then also do not freeze. This
5522 -- happens in the overloaded literal case, where the
70482933
RK
5523 -- enumeration literal is temporarily changed to a function
5524 -- call for overloading analysis purposes.
5525
5526 elsif Nkind (Parent (N)) = N_Function_Call
5527 and then
5528 Nkind (Parent (Parent (N))) = N_Component_Association
5529 and then
5530 First (Choices (Parent (Parent (N)))) = Parent (N)
5531 then
5532 return;
5533 end if;
5534 end if;
5535
5536 -- Normally if the parent is a handled sequence of statements,
5537 -- then the current node must be a statement, and that is an
5538 -- appropriate place to insert a freeze node.
5539
5540 when N_Handled_Sequence_Of_Statements =>
5541
edd63e9b
ES
5542 -- An exception occurs when the sequence of statements is for
5543 -- an expander generated body that did not do the usual freeze
5544 -- all operation. In this case we usually want to freeze
5545 -- outside this body, not inside it, and we skip past the
5546 -- subprogram body that we are inside.
70482933
RK
5547
5548 if In_Exp_Body (Parent_P) then
70482933
RK
5549 declare
5550 Subp : constant Node_Id := Parent (Parent_P);
95081e99 5551 Spec : Entity_Id;
70482933
RK
5552
5553 begin
95081e99
AC
5554 -- Freeze the entity only when it is declared inside the
5555 -- body of the expander generated procedure. This case
5556 -- is recognized by the scope of the entity or its type,
5557 -- which is either the spec for some enclosing body, or
5558 -- (in the case of init_procs, for which there are no
5559 -- separate specs) the current scope.
5560
70482933 5561 if Nkind (Subp) = N_Subprogram_Body then
95081e99 5562 Spec := Corresponding_Spec (Subp);
70482933 5563
95081e99 5564 if (Present (Typ) and then Scope (Typ) = Spec)
70482933 5565 or else
95081e99 5566 (Present (Nam) and then Scope (Nam) = Spec)
70482933
RK
5567 then
5568 exit;
5569
5570 elsif Present (Typ)
5571 and then Scope (Typ) = Current_Scope
95081e99 5572 and then Defining_Entity (Subp) = Current_Scope
70482933
RK
5573 then
5574 exit;
5575 end if;
5576 end if;
70482933 5577
95081e99
AC
5578 -- An expression function may act as a completion of
5579 -- a function declaration. As such, it can reference
5580 -- entities declared between the two views:
70482933 5581
95081e99
AC
5582 -- Hidden []; -- 1
5583 -- function F return ...;
5584 -- private
5585 -- function Hidden return ...;
5586 -- function F return ... is (Hidden); -- 2
5587
5588 -- Refering to the example above, freezing the expression
5589 -- of F (2) would place Hidden's freeze node (1) in the
5590 -- wrong place. Avoid explicit freezing and let the usual
5591 -- scenarios do the job - for example, reaching the end
5592 -- of the private declarations.
5593
5594 if Nkind (Original_Node (Subp)) =
5595 N_Expression_Function
5596 then
5597 null;
5598
5599 -- Freeze outside the body
5600
5601 else
5602 Parent_P := Parent (Parent_P);
5603 Freeze_Outside := True;
5604 end if;
5605 end;
70482933
RK
5606
5607 -- Here if normal case where we are in handled statement
5608 -- sequence and want to do the insertion right there.
5609
5610 else
5611 exit;
5612 end if;
5613
ee094616
RD
5614 -- If parent is a body or a spec or a block, then the current node
5615 -- is a statement or declaration and we can insert the freeze node
5616 -- before it.
70482933 5617
8b3c6430
AC
5618 when N_Block_Statement |
5619 N_Entry_Body |
70482933 5620 N_Package_Body |
8b3c6430 5621 N_Package_Specification |
70482933 5622 N_Protected_Body |
8b3c6430
AC
5623 N_Subprogram_Body |
5624 N_Task_Body => exit;
70482933
RK
5625
5626 -- The expander is allowed to define types in any statements list,
5627 -- so any of the following parent nodes also mark a freezing point
5628 -- if the actual node is in a list of statements or declarations.
5629
8b3c6430
AC
5630 when N_Abortable_Part |
5631 N_Accept_Alternative |
5632 N_And_Then |
70482933
RK
5633 N_Case_Statement_Alternative |
5634 N_Compilation_Unit_Aux |
70482933 5635 N_Conditional_Entry_Call |
8b3c6430
AC
5636 N_Delay_Alternative |
5637 N_Elsif_Part |
70482933 5638 N_Entry_Call_Alternative |
8b3c6430
AC
5639 N_Exception_Handler |
5640 N_Extended_Return_Statement |
5641 N_Freeze_Entity |
5642 N_If_Statement |
bce79204 5643 N_Or_Else |
8b3c6430
AC
5644 N_Selective_Accept |
5645 N_Triggering_Alternative =>
70482933
RK
5646
5647 exit when Is_List_Member (P);
5648
5649 -- Note: The N_Loop_Statement is a special case. A type that
5650 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
5651 -- occurs only because of a loop expanded by the expander), so we
5652 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
5653 -- of any entity which comes from source. (if they have predefined
5654 -- type, that type does not appear to come from source, but the
5655 -- entity should not be frozen here).
70482933
RK
5656
5657 when N_Loop_Statement =>
5658 exit when not Comes_From_Source (Etype (N))
5659 and then (No (Nam) or else not Comes_From_Source (Nam));
5660
5661 -- For all other cases, keep looking at parents
5662
5663 when others =>
5664 null;
5665 end case;
5666
5667 -- We fall through the case if we did not yet find the proper
5668 -- place in the free for inserting the freeze node, so climb!
5669
5670 P := Parent_P;
5671 end loop;
5672
edd63e9b
ES
5673 -- If the expression appears in a record or an initialization procedure,
5674 -- the freeze nodes are collected and attached to the current scope, to
5675 -- be inserted and analyzed on exit from the scope, to insure that
5676 -- generated entities appear in the correct scope. If the expression is
5677 -- a default for a discriminant specification, the scope is still void.
5678 -- The expression can also appear in the discriminant part of a private
5679 -- or concurrent type.
70482933 5680
c6823a20 5681 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
5682 -- enclosing record declaration, the freeze nodes must be attached to
5683 -- the outer record type so they can eventually be placed in the
c6823a20
EB
5684 -- enclosing declaration list.
5685
ee094616
RD
5686 -- The other case requiring this special handling is if we are in a
5687 -- default expression, since in that case we are about to freeze a
5688 -- static type, and the freeze scope needs to be the outer scope, not
5689 -- the scope of the subprogram with the default parameter.
70482933 5690
c6a9797e
RD
5691 -- For default expressions and other spec expressions in generic units,
5692 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
5693 -- placing them at the proper place, after the generic unit.
70482933 5694
c6a9797e 5695 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
5696 or else Freeze_Outside
5697 or else (Is_Type (Current_Scope)
5698 and then (not Is_Concurrent_Type (Current_Scope)
5699 or else not Has_Completion (Current_Scope)))
5700 or else Ekind (Current_Scope) = E_Void
5701 then
5702 declare
df378148
AC
5703 N : constant Node_Id := Current_Scope;
5704 Freeze_Nodes : List_Id := No_List;
5705 Pos : Int := Scope_Stack.Last;
70482933
RK
5706
5707 begin
5708 if Present (Desig_Typ) then
c159409f 5709 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
70482933
RK
5710 end if;
5711
5712 if Present (Typ) then
c159409f 5713 Freeze_And_Append (Typ, N, Freeze_Nodes);
70482933
RK
5714 end if;
5715
5716 if Present (Nam) then
c159409f 5717 Freeze_And_Append (Nam, N, Freeze_Nodes);
70482933
RK
5718 end if;
5719
c6823a20 5720 -- The current scope may be that of a constrained component of
df378148
AC
5721 -- an enclosing record declaration, or of a loop of an enclosing
5722 -- quantified expression, which is above the current scope in the
5723 -- scope stack. Indeed in the context of a quantified expression,
5724 -- a scope is created and pushed above the current scope in order
5725 -- to emulate the loop-like behavior of the quantified expression.
6191e212
AC
5726 -- If the expression is within a top-level pragma, as for a pre-
5727 -- condition on a library-level subprogram, nothing to do.
c6823a20 5728
6191e212 5729 if not Is_Compilation_Unit (Current_Scope)
df378148
AC
5730 and then (Is_Record_Type (Scope (Current_Scope))
5731 or else Nkind (Parent (Current_Scope)) =
21791d97 5732 N_Quantified_Expression)
6191e212 5733 then
c6823a20
EB
5734 Pos := Pos - 1;
5735 end if;
5736
70482933 5737 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
5738 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
5739 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
c159409f 5740 Freeze_Nodes;
70482933 5741 else
cd5a9750
AC
5742 Append_List (Freeze_Nodes,
5743 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
70482933
RK
5744 end if;
5745 end if;
5746 end;
5747
5748 return;
5749 end if;
5750
5751 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
5752 -- adjustment, if we are in spec-expression analysis mode, these freeze
5753 -- actions must not be thrown away (normally all inserted actions are
5754 -- thrown away in this mode. However, the freeze actions are from static
5755 -- expressions and one of the important reasons we are doing this
ee094616 5756 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 5757 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 5758 -- This also means they get properly analyzed and expanded.
70482933 5759
c6a9797e 5760 In_Spec_Expression := False;
70482933 5761
fbf5a39b 5762 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
5763
5764 if Present (Desig_Typ) then
5765 Freeze_Before (P, Desig_Typ);
5766 end if;
5767
fbf5a39b 5768 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
5769 -- the enumeration representation clause exception in the loop above.
5770
5771 if Present (Typ) then
5772 Freeze_Before (P, Typ);
5773 end if;
5774
fbf5a39b 5775 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
5776
5777 if Present (Nam) then
5778 Freeze_Before (P, Nam);
5779 end if;
5780
c6a9797e
RD
5781 -- Restore In_Spec_Expression flag
5782
5783 In_Spec_Expression := In_Spec_Exp;
70482933
RK
5784 end Freeze_Expression;
5785
5786 -----------------------------
5787 -- Freeze_Fixed_Point_Type --
5788 -----------------------------
5789
edd63e9b
ES
5790 -- Certain fixed-point types and subtypes, including implicit base types
5791 -- and declared first subtypes, have not yet set up a range. This is
5792 -- because the range cannot be set until the Small and Size values are
5793 -- known, and these are not known till the type is frozen.
70482933 5794
edd63e9b
ES
5795 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
5796 -- whose bounds are unanalyzed real literals. This routine will recognize
5797 -- this case, and transform this range node into a properly typed range
5798 -- with properly analyzed and resolved values.
70482933
RK
5799
5800 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
5801 Rng : constant Node_Id := Scalar_Range (Typ);
5802 Lo : constant Node_Id := Low_Bound (Rng);
5803 Hi : constant Node_Id := High_Bound (Rng);
5804 Btyp : constant Entity_Id := Base_Type (Typ);
5805 Brng : constant Node_Id := Scalar_Range (Btyp);
5806 BLo : constant Node_Id := Low_Bound (Brng);
5807 BHi : constant Node_Id := High_Bound (Brng);
5808 Small : constant Ureal := Small_Value (Typ);
5809 Loval : Ureal;
5810 Hival : Ureal;
5811 Atype : Entity_Id;
5812
5813 Actual_Size : Nat;
5814
5815 function Fsize (Lov, Hiv : Ureal) return Nat;
5816 -- Returns size of type with given bounds. Also leaves these
5817 -- bounds set as the current bounds of the Typ.
5818
0da2c8ac
AC
5819 -----------
5820 -- Fsize --
5821 -----------
5822
70482933
RK
5823 function Fsize (Lov, Hiv : Ureal) return Nat is
5824 begin
5825 Set_Realval (Lo, Lov);
5826 Set_Realval (Hi, Hiv);
5827 return Minimum_Size (Typ);
5828 end Fsize;
5829
0da2c8ac 5830 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
5831
5832 begin
5833 -- If Esize of a subtype has not previously been set, set it now
5834
5835 if Unknown_Esize (Typ) then
5836 Atype := Ancestor_Subtype (Typ);
5837
5838 if Present (Atype) then
fbf5a39b 5839 Set_Esize (Typ, Esize (Atype));
70482933 5840 else
fbf5a39b 5841 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
5842 end if;
5843 end if;
5844
ee094616
RD
5845 -- Immediate return if the range is already analyzed. This means that
5846 -- the range is already set, and does not need to be computed by this
5847 -- routine.
70482933
RK
5848
5849 if Analyzed (Rng) then
5850 return;
5851 end if;
5852
5853 -- Immediate return if either of the bounds raises Constraint_Error
5854
5855 if Raises_Constraint_Error (Lo)
5856 or else Raises_Constraint_Error (Hi)
5857 then
5858 return;
5859 end if;
5860
5861 Loval := Realval (Lo);
5862 Hival := Realval (Hi);
5863
5864 -- Ordinary fixed-point case
5865
5866 if Is_Ordinary_Fixed_Point_Type (Typ) then
5867
5868 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
5869 -- end-points up or down by small. Generally we prefer to fudge up,
5870 -- i.e. widen the bounds for non-model numbers so that the end points
5871 -- are included. However there are cases in which this cannot be
5872 -- done, and indeed cases in which we may need to narrow the bounds.
5873 -- The following circuit makes the decision.
70482933 5874
ee094616
RD
5875 -- Note: our terminology here is that Incl_EP means that the bounds
5876 -- are widened by Small if necessary to include the end points, and
5877 -- Excl_EP means that the bounds are narrowed by Small to exclude the
5878 -- end-points if this reduces the size.
70482933
RK
5879
5880 -- Note that in the Incl case, all we care about is including the
5881 -- end-points. In the Excl case, we want to narrow the bounds as
5882 -- much as permitted by the RM, to give the smallest possible size.
5883
5884 Fudge : declare
5885 Loval_Incl_EP : Ureal;
5886 Hival_Incl_EP : Ureal;
5887
5888 Loval_Excl_EP : Ureal;
5889 Hival_Excl_EP : Ureal;
5890
5891 Size_Incl_EP : Nat;
5892 Size_Excl_EP : Nat;
5893
5894 Model_Num : Ureal;
5895 First_Subt : Entity_Id;
5896 Actual_Lo : Ureal;
5897 Actual_Hi : Ureal;
5898
5899 begin
5900 -- First step. Base types are required to be symmetrical. Right
5901 -- now, the base type range is a copy of the first subtype range.
5902 -- This will be corrected before we are done, but right away we
5903 -- need to deal with the case where both bounds are non-negative.
5904 -- In this case, we set the low bound to the negative of the high
5905 -- bound, to make sure that the size is computed to include the
5906 -- required sign. Note that we do not need to worry about the
5907 -- case of both bounds negative, because the sign will be dealt
5908 -- with anyway. Furthermore we can't just go making such a bound
5909 -- symmetrical, since in a twos-complement system, there is an
e14c931f 5910 -- extra negative value which could not be accommodated on the
70482933
RK
5911 -- positive side.
5912
5913 if Typ = Btyp
5914 and then not UR_Is_Negative (Loval)
5915 and then Hival > Loval
5916 then
5917 Loval := -Hival;
5918 Set_Realval (Lo, Loval);
5919 end if;
5920
5921 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
5922 -- then we do nothing to include it, but we are allowed to backoff
5923 -- to the next adjacent model number when we exclude it. If it is
5924 -- not a model number then we straddle the two values with the
5925 -- model numbers on either side.
70482933
RK
5926
5927 Model_Num := UR_Trunc (Loval / Small) * Small;
5928
5929 if Loval = Model_Num then
5930 Loval_Incl_EP := Model_Num;
5931 else
5932 Loval_Incl_EP := Model_Num - Small;
5933 end if;
5934
5935 -- The low value excluding the end point is Small greater, but
5936 -- we do not do this exclusion if the low value is positive,
5937 -- since it can't help the size and could actually hurt by
5938 -- crossing the high bound.
5939
5940 if UR_Is_Negative (Loval_Incl_EP) then
5941 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
5942
5943 -- If the value went from negative to zero, then we have the
5944 -- case where Loval_Incl_EP is the model number just below
5945 -- zero, so we want to stick to the negative value for the
5946 -- base type to maintain the condition that the size will
5947 -- include signed values.
5948
5949 if Typ = Btyp
5950 and then UR_Is_Zero (Loval_Excl_EP)
5951 then
5952 Loval_Excl_EP := Loval_Incl_EP;
5953 end if;
5954
70482933
RK
5955 else
5956 Loval_Excl_EP := Loval_Incl_EP;
5957 end if;
5958
5959 -- Similar processing for upper bound and high value
5960
5961 Model_Num := UR_Trunc (Hival / Small) * Small;
5962
5963 if Hival = Model_Num then
5964 Hival_Incl_EP := Model_Num;
5965 else
5966 Hival_Incl_EP := Model_Num + Small;
5967 end if;
5968
5969 if UR_Is_Positive (Hival_Incl_EP) then
5970 Hival_Excl_EP := Hival_Incl_EP - Small;
5971 else
5972 Hival_Excl_EP := Hival_Incl_EP;
5973 end if;
5974
ee094616
RD
5975 -- One further adjustment is needed. In the case of subtypes, we
5976 -- cannot go outside the range of the base type, or we get
70482933 5977 -- peculiarities, and the base type range is already set. This
ee094616
RD
5978 -- only applies to the Incl values, since clearly the Excl values
5979 -- are already as restricted as they are allowed to be.
70482933
RK
5980
5981 if Typ /= Btyp then
5982 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
5983 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
5984 end if;
5985
5986 -- Get size including and excluding end points
5987
5988 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
5989 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
5990
5991 -- No need to exclude end-points if it does not reduce size
5992
5993 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
5994 Loval_Excl_EP := Loval_Incl_EP;
5995 end if;
5996
5997 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
5998 Hival_Excl_EP := Hival_Incl_EP;
5999 end if;
6000
6001 -- Now we set the actual size to be used. We want to use the
6002 -- bounds fudged up to include the end-points but only if this
6003 -- can be done without violating a specifically given size
6004 -- size clause or causing an unacceptable increase in size.
6005
6006 -- Case of size clause given
6007
6008 if Has_Size_Clause (Typ) then
6009
6010 -- Use the inclusive size only if it is consistent with
6011 -- the explicitly specified size.
6012
6013 if Size_Incl_EP <= RM_Size (Typ) then
6014 Actual_Lo := Loval_Incl_EP;
6015 Actual_Hi := Hival_Incl_EP;
6016 Actual_Size := Size_Incl_EP;
6017
6018 -- If the inclusive size is too large, we try excluding
6019 -- the end-points (will be caught later if does not work).
6020
6021 else
6022 Actual_Lo := Loval_Excl_EP;
6023 Actual_Hi := Hival_Excl_EP;
6024 Actual_Size := Size_Excl_EP;
6025 end if;
6026
6027 -- Case of size clause not given
6028
6029 else
6030 -- If we have a base type whose corresponding first subtype
6031 -- has an explicit size that is large enough to include our
6032 -- end-points, then do so. There is no point in working hard
6033 -- to get a base type whose size is smaller than the specified
6034 -- size of the first subtype.
6035
6036 First_Subt := First_Subtype (Typ);
6037
6038 if Has_Size_Clause (First_Subt)
6039 and then Size_Incl_EP <= Esize (First_Subt)
6040 then
6041 Actual_Size := Size_Incl_EP;
6042 Actual_Lo := Loval_Incl_EP;
6043 Actual_Hi := Hival_Incl_EP;
6044
6045 -- If excluding the end-points makes the size smaller and
6046 -- results in a size of 8,16,32,64, then we take the smaller
6047 -- size. For the 64 case, this is compulsory. For the other
6048 -- cases, it seems reasonable. We like to include end points
6049 -- if we can, but not at the expense of moving to the next
6050 -- natural boundary of size.
6051
6052 elsif Size_Incl_EP /= Size_Excl_EP
094cefda 6053 and then Addressable (Size_Excl_EP)
70482933
RK
6054 then
6055 Actual_Size := Size_Excl_EP;
6056 Actual_Lo := Loval_Excl_EP;
6057 Actual_Hi := Hival_Excl_EP;
6058
6059 -- Otherwise we can definitely include the end points
6060
6061 else
6062 Actual_Size := Size_Incl_EP;
6063 Actual_Lo := Loval_Incl_EP;
6064 Actual_Hi := Hival_Incl_EP;
6065 end if;
6066
edd63e9b
ES
6067 -- One pathological case: normally we never fudge a low bound
6068 -- down, since it would seem to increase the size (if it has
6069 -- any effect), but for ranges containing single value, or no
6070 -- values, the high bound can be small too large. Consider:
70482933
RK
6071
6072 -- type t is delta 2.0**(-14)
6073 -- range 131072.0 .. 0;
6074
edd63e9b
ES
6075 -- That lower bound is *just* outside the range of 32 bits, and
6076 -- does need fudging down in this case. Note that the bounds
6077 -- will always have crossed here, since the high bound will be
6078 -- fudged down if necessary, as in the case of:
70482933
RK
6079
6080 -- type t is delta 2.0**(-14)
6081 -- range 131072.0 .. 131072.0;
6082
edd63e9b
ES
6083 -- So we detect the situation by looking for crossed bounds,
6084 -- and if the bounds are crossed, and the low bound is greater
6085 -- than zero, we will always back it off by small, since this
6086 -- is completely harmless.
70482933
RK
6087
6088 if Actual_Lo > Actual_Hi then
6089 if UR_Is_Positive (Actual_Lo) then
6090 Actual_Lo := Loval_Incl_EP - Small;
6091 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6092
6093 -- And of course, we need to do exactly the same parallel
6094 -- fudge for flat ranges in the negative region.
6095
6096 elsif UR_Is_Negative (Actual_Hi) then
6097 Actual_Hi := Hival_Incl_EP + Small;
6098 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6099 end if;
6100 end if;
6101 end if;
6102
6103 Set_Realval (Lo, Actual_Lo);
6104 Set_Realval (Hi, Actual_Hi);
6105 end Fudge;
6106
6107 -- For the decimal case, none of this fudging is required, since there
6108 -- are no end-point problems in the decimal case (the end-points are
6109 -- always included).
6110
6111 else
6112 Actual_Size := Fsize (Loval, Hival);
6113 end if;
6114
6115 -- At this stage, the actual size has been calculated and the proper
6116 -- required bounds are stored in the low and high bounds.
6117
6118 if Actual_Size > 64 then
6119 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
6120 Error_Msg_N
7d8b9c99
RD
6121 ("size required (^) for type& too large, maximum allowed is 64",
6122 Typ);
70482933
RK
6123 Actual_Size := 64;
6124 end if;
6125
6126 -- Check size against explicit given size
6127
6128 if Has_Size_Clause (Typ) then
6129 if Actual_Size > RM_Size (Typ) then
6130 Error_Msg_Uint_1 := RM_Size (Typ);
6131 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
6132 Error_Msg_NE
7d8b9c99 6133 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
6134 Size_Clause (Typ), Typ);
6135
6136 else
6137 Actual_Size := UI_To_Int (Esize (Typ));
6138 end if;
6139
6140 -- Increase size to next natural boundary if no size clause given
6141
6142 else
6143 if Actual_Size <= 8 then
6144 Actual_Size := 8;
6145 elsif Actual_Size <= 16 then
6146 Actual_Size := 16;
6147 elsif Actual_Size <= 32 then
6148 Actual_Size := 32;
6149 else
6150 Actual_Size := 64;
6151 end if;
6152
6153 Init_Esize (Typ, Actual_Size);
6154 Adjust_Esize_For_Alignment (Typ);
6155 end if;
6156
edd63e9b
ES
6157 -- If we have a base type, then expand the bounds so that they extend to
6158 -- the full width of the allocated size in bits, to avoid junk range
6159 -- checks on intermediate computations.
70482933
RK
6160
6161 if Base_Type (Typ) = Typ then
6162 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
6163 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
6164 end if;
6165
6166 -- Final step is to reanalyze the bounds using the proper type
6167 -- and set the Corresponding_Integer_Value fields of the literals.
6168
6169 Set_Etype (Lo, Empty);
6170 Set_Analyzed (Lo, False);
6171 Analyze (Lo);
6172
edd63e9b
ES
6173 -- Resolve with universal fixed if the base type, and the base type if
6174 -- it is a subtype. Note we can't resolve the base type with itself,
6175 -- that would be a reference before definition.
70482933
RK
6176
6177 if Typ = Btyp then
6178 Resolve (Lo, Universal_Fixed);
6179 else
6180 Resolve (Lo, Btyp);
6181 end if;
6182
6183 -- Set corresponding integer value for bound
6184
6185 Set_Corresponding_Integer_Value
6186 (Lo, UR_To_Uint (Realval (Lo) / Small));
6187
6188 -- Similar processing for high bound
6189
6190 Set_Etype (Hi, Empty);
6191 Set_Analyzed (Hi, False);
6192 Analyze (Hi);
6193
6194 if Typ = Btyp then
6195 Resolve (Hi, Universal_Fixed);
6196 else
6197 Resolve (Hi, Btyp);
6198 end if;
6199
6200 Set_Corresponding_Integer_Value
6201 (Hi, UR_To_Uint (Realval (Hi) / Small));
6202
6203 -- Set type of range to correspond to bounds
6204
6205 Set_Etype (Rng, Etype (Lo));
6206
fbf5a39b 6207 -- Set Esize to calculated size if not set already
70482933 6208
fbf5a39b
AC
6209 if Unknown_Esize (Typ) then
6210 Init_Esize (Typ, Actual_Size);
6211 end if;
70482933
RK
6212
6213 -- Set RM_Size if not already set. If already set, check value
6214
6215 declare
6216 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
6217
6218 begin
6219 if RM_Size (Typ) /= Uint_0 then
6220 if RM_Size (Typ) < Minsiz then
6221 Error_Msg_Uint_1 := RM_Size (Typ);
6222 Error_Msg_Uint_2 := Minsiz;
6223 Error_Msg_NE
7d8b9c99 6224 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
6225 Size_Clause (Typ), Typ);
6226 end if;
6227
6228 else
6229 Set_RM_Size (Typ, Minsiz);
6230 end if;
6231 end;
70482933
RK
6232 end Freeze_Fixed_Point_Type;
6233
6234 ------------------
6235 -- Freeze_Itype --
6236 ------------------
6237
6238 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
6239 L : List_Id;
6240
6241 begin
6242 Set_Has_Delayed_Freeze (T);
c159409f 6243 L := Freeze_Entity (T, N);
70482933
RK
6244
6245 if Is_Non_Empty_List (L) then
6246 Insert_Actions (N, L);
6247 end if;
6248 end Freeze_Itype;
6249
6250 --------------------------
6251 -- Freeze_Static_Object --
6252 --------------------------
6253
6254 procedure Freeze_Static_Object (E : Entity_Id) is
6255
6256 Cannot_Be_Static : exception;
6257 -- Exception raised if the type of a static object cannot be made
6258 -- static. This happens if the type depends on non-global objects.
6259
6260 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
6261 -- Called to ensure that an expression used as part of a type definition
6262 -- is statically allocatable, which means that the expression type is
6263 -- statically allocatable, and the expression is either static, or a
6264 -- reference to a library level constant.
70482933
RK
6265
6266 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
6267 -- Called to mark a type as static, checking that it is possible
6268 -- to set the type as static. If it is not possible, then the
6269 -- exception Cannot_Be_Static is raised.
6270
6271 -----------------------------
6272 -- Ensure_Expression_Is_SA --
6273 -----------------------------
6274
6275 procedure Ensure_Expression_Is_SA (N : Node_Id) is
6276 Ent : Entity_Id;
6277
6278 begin
6279 Ensure_Type_Is_SA (Etype (N));
6280
6281 if Is_Static_Expression (N) then
6282 return;
6283
6284 elsif Nkind (N) = N_Identifier then
6285 Ent := Entity (N);
6286
6287 if Present (Ent)
6288 and then Ekind (Ent) = E_Constant
6289 and then Is_Library_Level_Entity (Ent)
6290 then
6291 return;
6292 end if;
6293 end if;
6294
6295 raise Cannot_Be_Static;
6296 end Ensure_Expression_Is_SA;
6297
6298 -----------------------
6299 -- Ensure_Type_Is_SA --
6300 -----------------------
6301
6302 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
6303 N : Node_Id;
6304 C : Entity_Id;
6305
6306 begin
6307 -- If type is library level, we are all set
6308
6309 if Is_Library_Level_Entity (Typ) then
6310 return;
6311 end if;
6312
ee094616
RD
6313 -- We are also OK if the type already marked as statically allocated,
6314 -- which means we processed it before.
70482933
RK
6315
6316 if Is_Statically_Allocated (Typ) then
6317 return;
6318 end if;
6319
6320 -- Mark type as statically allocated
6321
6322 Set_Is_Statically_Allocated (Typ);
6323
6324 -- Check that it is safe to statically allocate this type
6325
6326 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
6327 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
6328 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
6329
6330 elsif Is_Array_Type (Typ) then
6331 N := First_Index (Typ);
6332 while Present (N) loop
6333 Ensure_Type_Is_SA (Etype (N));
6334 Next_Index (N);
6335 end loop;
6336
6337 Ensure_Type_Is_SA (Component_Type (Typ));
6338
6339 elsif Is_Access_Type (Typ) then
6340 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
6341
6342 declare
6343 F : Entity_Id;
6344 T : constant Entity_Id := Etype (Designated_Type (Typ));
6345
6346 begin
6347 if T /= Standard_Void_Type then
6348 Ensure_Type_Is_SA (T);
6349 end if;
6350
6351 F := First_Formal (Designated_Type (Typ));
70482933
RK
6352 while Present (F) loop
6353 Ensure_Type_Is_SA (Etype (F));
6354 Next_Formal (F);
6355 end loop;
6356 end;
6357
6358 else
6359 Ensure_Type_Is_SA (Designated_Type (Typ));
6360 end if;
6361
6362 elsif Is_Record_Type (Typ) then
6363 C := First_Entity (Typ);
70482933
RK
6364 while Present (C) loop
6365 if Ekind (C) = E_Discriminant
6366 or else Ekind (C) = E_Component
6367 then
6368 Ensure_Type_Is_SA (Etype (C));
6369
6370 elsif Is_Type (C) then
6371 Ensure_Type_Is_SA (C);
6372 end if;
6373
6374 Next_Entity (C);
6375 end loop;
6376
6377 elsif Ekind (Typ) = E_Subprogram_Type then
6378 Ensure_Type_Is_SA (Etype (Typ));
6379
6380 C := First_Formal (Typ);
6381 while Present (C) loop
6382 Ensure_Type_Is_SA (Etype (C));
6383 Next_Formal (C);
6384 end loop;
6385
6386 else
6387 raise Cannot_Be_Static;
6388 end if;
6389 end Ensure_Type_Is_SA;
6390
6391 -- Start of processing for Freeze_Static_Object
6392
6393 begin
6394 Ensure_Type_Is_SA (Etype (E));
6395
6396 exception
6397 when Cannot_Be_Static =>
6398
09494c32
AC
6399 -- If the object that cannot be static is imported or exported, then
6400 -- issue an error message saying that this object cannot be imported
6401 -- or exported. If it has an address clause it is an overlay in the
6402 -- current partition and the static requirement is not relevant.
d606f1df 6403 -- Do not issue any error message when ignoring rep clauses.
09494c32 6404
d606f1df
AC
6405 if Ignore_Rep_Clauses then
6406 null;
6407
6408 elsif Is_Imported (E) then
6409 if No (Address_Clause (E)) then
6410 Error_Msg_N
6411 ("& cannot be imported (local type is not constant)", E);
6412 end if;
70482933
RK
6413
6414 -- Otherwise must be exported, something is wrong if compiler
6415 -- is marking something as statically allocated which cannot be).
6416
6417 else pragma Assert (Is_Exported (E));
6418 Error_Msg_N
6419 ("& cannot be exported (local type is not constant)", E);
6420 end if;
6421 end Freeze_Static_Object;
6422
6423 -----------------------
6424 -- Freeze_Subprogram --
6425 -----------------------
6426
6427 procedure Freeze_Subprogram (E : Entity_Id) is
6428 Retype : Entity_Id;
6429 F : Entity_Id;
6430
6431 begin
6432 -- Subprogram may not have an address clause unless it is imported
6433
6434 if Present (Address_Clause (E)) then
6435 if not Is_Imported (E) then
6436 Error_Msg_N
6437 ("address clause can only be given " &
6438 "for imported subprogram",
6439 Name (Address_Clause (E)));
6440 end if;
6441 end if;
6442
91b1417d
AC
6443 -- Reset the Pure indication on an imported subprogram unless an
6444 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
6445 -- otherwise it is an insidious error to call a non-pure function from
6446 -- pure unit and have calls mysteriously optimized away. What happens
6447 -- here is that the Import can bypass the normal check to ensure that
6448 -- pure units call only pure subprograms.
91b1417d
AC
6449
6450 if Is_Imported (E)
6451 and then Is_Pure (E)
6452 and then not Has_Pragma_Pure_Function (E)
6453 then
6454 Set_Is_Pure (E, False);
6455 end if;
6456
70482933
RK
6457 -- For non-foreign convention subprograms, this is where we create
6458 -- the extra formals (for accessibility level and constrained bit
6459 -- information). We delay this till the freeze point precisely so
6460 -- that we know the convention!
6461
6462 if not Has_Foreign_Convention (E) then
6463 Create_Extra_Formals (E);
6464 Set_Mechanisms (E);
6465
6466 -- If this is convention Ada and a Valued_Procedure, that's odd
6467
6468 if Ekind (E) = E_Procedure
6469 and then Is_Valued_Procedure (E)
6470 and then Convention (E) = Convention_Ada
fbf5a39b 6471 and then Warn_On_Export_Import
70482933
RK
6472 then
6473 Error_Msg_N
685bc70f 6474 ("??Valued_Procedure has no effect for convention Ada", E);
70482933
RK
6475 Set_Is_Valued_Procedure (E, False);
6476 end if;
6477
6478 -- Case of foreign convention
6479
6480 else
6481 Set_Mechanisms (E);
6482
fbf5a39b 6483 -- For foreign conventions, warn about return of an
70482933
RK
6484 -- unconstrained array.
6485
6486 -- Note: we *do* allow a return by descriptor for the VMS case,
6487 -- though here there is probably more to be done ???
6488
6489 if Ekind (E) = E_Function then
6490 Retype := Underlying_Type (Etype (E));
6491
6492 -- If no return type, probably some other error, e.g. a
6493 -- missing full declaration, so ignore.
6494
6495 if No (Retype) then
6496 null;
6497
6498 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
6499 -- earlier on, and there is nothing else to check here. Specific
6500 -- instantiations may lead to erroneous behavior.
70482933
RK
6501
6502 elsif Is_Generic_Type (Etype (E)) then
6503 null;
6504
e7d72fb9 6505 -- Display warning if returning unconstrained array
59366db6 6506
70482933
RK
6507 elsif Is_Array_Type (Retype)
6508 and then not Is_Constrained (Retype)
e7d72fb9 6509
2c1b72d7
AC
6510 -- Exclude cases where descriptor mechanism is set, since the
6511 -- VMS descriptor mechanisms allow such unconstrained returns.
e7d72fb9 6512
70482933 6513 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9 6514
df3e68b1
HK
6515 -- Check appropriate warning is enabled (should we check for
6516 -- Warnings (Off) on specific entities here, probably so???)
e7d72fb9 6517
fbf5a39b 6518 and then Warn_On_Export_Import
e7d72fb9 6519
2c1b72d7
AC
6520 -- Exclude the VM case, since return of unconstrained arrays
6521 -- is properly handled in both the JVM and .NET cases.
e7d72fb9 6522
f3b57ab0 6523 and then VM_Target = No_VM
70482933 6524 then
fbf5a39b 6525 Error_Msg_N
685bc70f 6526 ("?x?foreign convention function& should not return " &
fbf5a39b 6527 "unconstrained array", E);
70482933
RK
6528 return;
6529 end if;
6530 end if;
6531
6532 -- If any of the formals for an exported foreign convention
edd63e9b
ES
6533 -- subprogram have defaults, then emit an appropriate warning since
6534 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
6535
6536 if Is_Exported (E) then
6537 F := First_Formal (E);
6538 while Present (F) loop
fbf5a39b
AC
6539 if Warn_On_Export_Import
6540 and then Present (Default_Value (F))
6541 then
70482933 6542 Error_Msg_N
685bc70f 6543 ("?x?parameter cannot be defaulted in non-Ada call",
70482933
RK
6544 Default_Value (F));
6545 end if;
6546
6547 Next_Formal (F);
6548 end loop;
6549 end if;
6550 end if;
6551
e7d72fb9
AC
6552 -- For VMS, descriptor mechanisms for parameters are allowed only for
6553 -- imported/exported subprograms. Moreover, the NCA descriptor is not
6554 -- allowed for parameters of exported subprograms.
70482933
RK
6555
6556 if OpenVMS_On_Target then
7d8b9c99
RD
6557 if Is_Exported (E) then
6558 F := First_Formal (E);
6559 while Present (F) loop
6560 if Mechanism (F) = By_Descriptor_NCA then
6561 Error_Msg_N
6562 ("'N'C'A' descriptor for parameter not permitted", F);
6563 Error_Msg_N
6564 ("\can only be used for imported subprogram", F);
6565 end if;
6566
6567 Next_Formal (F);
6568 end loop;
6569
6570 elsif not Is_Imported (E) then
70482933
RK
6571 F := First_Formal (E);
6572 while Present (F) loop
6573 if Mechanism (F) in Descriptor_Codes then
6574 Error_Msg_N
6575 ("descriptor mechanism for parameter not permitted", F);
6576 Error_Msg_N
7d8b9c99 6577 ("\can only be used for imported/exported subprogram", F);
70482933
RK
6578 end if;
6579
6580 Next_Formal (F);
6581 end loop;
6582 end if;
6583 end if;
edd63e9b
ES
6584
6585 -- Pragma Inline_Always is disallowed for dispatching subprograms
6586 -- because the address of such subprograms is saved in the dispatch
6587 -- table to support dispatching calls, and dispatching calls cannot
6588 -- be inlined. This is consistent with the restriction against using
6589 -- 'Access or 'Address on an Inline_Always subprogram.
6590
def46b54
RD
6591 if Is_Dispatching_Operation (E)
6592 and then Has_Pragma_Inline_Always (E)
6593 then
edd63e9b
ES
6594 Error_Msg_N
6595 ("pragma Inline_Always not allowed for dispatching subprograms", E);
6596 end if;
c6a9797e
RD
6597
6598 -- Because of the implicit representation of inherited predefined
6599 -- operators in the front-end, the overriding status of the operation
6600 -- may be affected when a full view of a type is analyzed, and this is
6601 -- not captured by the analysis of the corresponding type declaration.
6602 -- Therefore the correctness of a not-overriding indicator must be
6603 -- rechecked when the subprogram is frozen.
6604
6605 if Nkind (E) = N_Defining_Operator_Symbol
6606 and then not Error_Posted (Parent (E))
6607 then
6608 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
6609 end if;
70482933
RK
6610 end Freeze_Subprogram;
6611
15ce9ca2
AC
6612 ----------------------
6613 -- Is_Fully_Defined --
6614 ----------------------
70482933 6615
70482933
RK
6616 function Is_Fully_Defined (T : Entity_Id) return Boolean is
6617 begin
6618 if Ekind (T) = E_Class_Wide_Type then
6619 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
6620
6621 elsif Is_Array_Type (T) then
6622 return Is_Fully_Defined (Component_Type (T));
6623
6624 elsif Is_Record_Type (T)
6625 and not Is_Private_Type (T)
6626 then
ee094616
RD
6627 -- Verify that the record type has no components with private types
6628 -- without completion.
657a9dd9
AC
6629
6630 declare
6631 Comp : Entity_Id;
bde58e32 6632
657a9dd9
AC
6633 begin
6634 Comp := First_Component (T);
657a9dd9
AC
6635 while Present (Comp) loop
6636 if not Is_Fully_Defined (Etype (Comp)) then
6637 return False;
6638 end if;
6639
6640 Next_Component (Comp);
6641 end loop;
6642 return True;
6643 end;
6644
30537990 6645 -- For the designated type of an access to subprogram, all types in
4519314c
AC
6646 -- the profile must be fully defined.
6647
6648 elsif Ekind (T) = E_Subprogram_Type then
6649 declare
6650 F : Entity_Id;
6651
6652 begin
6653 F := First_Formal (T);
6654 while Present (F) loop
6655 if not Is_Fully_Defined (Etype (F)) then
6656 return False;
6657 end if;
6658
6659 Next_Formal (F);
6660 end loop;
6661
6662 return Is_Fully_Defined (Etype (T));
6663 end;
6664
86cde7b1
RD
6665 else
6666 return not Is_Private_Type (T)
6667 or else Present (Full_View (Base_Type (T)));
70482933
RK
6668 end if;
6669 end Is_Fully_Defined;
6670
70d904ca 6671 ---------------------------------
70482933
RK
6672 -- Process_Default_Expressions --
6673 ---------------------------------
6674
6675 procedure Process_Default_Expressions
6676 (E : Entity_Id;
6677 After : in out Node_Id)
6678 is
6679 Loc : constant Source_Ptr := Sloc (E);
6680 Dbody : Node_Id;
6681 Formal : Node_Id;
6682 Dcopy : Node_Id;
6683 Dnam : Entity_Id;
6684
6685 begin
6686 Set_Default_Expressions_Processed (E);
6687
ee094616
RD
6688 -- A subprogram instance and its associated anonymous subprogram share
6689 -- their signature. The default expression functions are defined in the
6690 -- wrapper packages for the anonymous subprogram, and should not be
6691 -- generated again for the instance.
70482933
RK
6692
6693 if Is_Generic_Instance (E)
6694 and then Present (Alias (E))
6695 and then Default_Expressions_Processed (Alias (E))
6696 then
6697 return;
6698 end if;
6699
6700 Formal := First_Formal (E);
70482933
RK
6701 while Present (Formal) loop
6702 if Present (Default_Value (Formal)) then
6703
6704 -- We work with a copy of the default expression because we
6705 -- do not want to disturb the original, since this would mess
6706 -- up the conformance checking.
6707
6708 Dcopy := New_Copy_Tree (Default_Value (Formal));
6709
6710 -- The analysis of the expression may generate insert actions,
6711 -- which of course must not be executed. We wrap those actions
6712 -- in a procedure that is not called, and later on eliminated.
6713 -- The following cases have no side-effects, and are analyzed
6714 -- directly.
6715
6716 if Nkind (Dcopy) = N_Identifier
6717 or else Nkind (Dcopy) = N_Expanded_Name
6718 or else Nkind (Dcopy) = N_Integer_Literal
6719 or else (Nkind (Dcopy) = N_Real_Literal
6720 and then not Vax_Float (Etype (Dcopy)))
6721 or else Nkind (Dcopy) = N_Character_Literal
6722 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 6723 or else Known_Null (Dcopy)
70482933
RK
6724 or else (Nkind (Dcopy) = N_Attribute_Reference
6725 and then
6726 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
6727 then
6728
6729 -- If there is no default function, we must still do a full
ee094616
RD
6730 -- analyze call on the default value, to ensure that all error
6731 -- checks are performed, e.g. those associated with static
6732 -- evaluation. Note: this branch will always be taken if the
6733 -- analyzer is turned off (but we still need the error checks).
70482933
RK
6734
6735 -- Note: the setting of parent here is to meet the requirement
6736 -- that we can only analyze the expression while attached to
6737 -- the tree. Really the requirement is that the parent chain
6738 -- be set, we don't actually need to be in the tree.
6739
6740 Set_Parent (Dcopy, Declaration_Node (Formal));
6741 Analyze (Dcopy);
6742
6743 -- Default expressions are resolved with their own type if the
6744 -- context is generic, to avoid anomalies with private types.
6745
6746 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 6747 Resolve (Dcopy);
70482933
RK
6748 else
6749 Resolve (Dcopy, Etype (Formal));
6750 end if;
6751
6752 -- If that resolved expression will raise constraint error,
6753 -- then flag the default value as raising constraint error.
6754 -- This allows a proper error message on the calls.
6755
6756 if Raises_Constraint_Error (Dcopy) then
6757 Set_Raises_Constraint_Error (Default_Value (Formal));
6758 end if;
6759
6760 -- If the default is a parameterless call, we use the name of
6761 -- the called function directly, and there is no body to build.
6762
6763 elsif Nkind (Dcopy) = N_Function_Call
6764 and then No (Parameter_Associations (Dcopy))
6765 then
6766 null;
6767
6768 -- Else construct and analyze the body of a wrapper procedure
6769 -- that contains an object declaration to hold the expression.
6770 -- Given that this is done only to complete the analysis, it
6771 -- simpler to build a procedure than a function which might
6772 -- involve secondary stack expansion.
6773
6774 else
b29def53 6775 Dnam := Make_Temporary (Loc, 'D');
70482933
RK
6776
6777 Dbody :=
6778 Make_Subprogram_Body (Loc,
6779 Specification =>
6780 Make_Procedure_Specification (Loc,
6781 Defining_Unit_Name => Dnam),
6782
6783 Declarations => New_List (
6784 Make_Object_Declaration (Loc,
2c1b72d7
AC
6785 Defining_Identifier => Make_Temporary (Loc, 'T'),
6786 Object_Definition =>
df3e68b1 6787 New_Occurrence_Of (Etype (Formal), Loc),
2c1b72d7 6788 Expression => New_Copy_Tree (Dcopy))),
70482933
RK
6789
6790 Handled_Statement_Sequence =>
6791 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 6792 Statements => Empty_List));
70482933
RK
6793
6794 Set_Scope (Dnam, Scope (E));
6795 Set_Assignment_OK (First (Declarations (Dbody)));
6796 Set_Is_Eliminated (Dnam);
6797 Insert_After (After, Dbody);
6798 Analyze (Dbody);
6799 After := Dbody;
6800 end if;
6801 end if;
6802
6803 Next_Formal (Formal);
6804 end loop;
70482933
RK
6805 end Process_Default_Expressions;
6806
6807 ----------------------------------------
6808 -- Set_Component_Alignment_If_Not_Set --
6809 ----------------------------------------
6810
6811 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
6812 begin
6813 -- Ignore if not base type, subtypes don't need anything
6814
6815 if Typ /= Base_Type (Typ) then
6816 return;
6817 end if;
6818
6819 -- Do not override existing representation
6820
6821 if Is_Packed (Typ) then
6822 return;
6823
6824 elsif Has_Specified_Layout (Typ) then
6825 return;
6826
6827 elsif Component_Alignment (Typ) /= Calign_Default then
6828 return;
6829
6830 else
6831 Set_Component_Alignment
6832 (Typ, Scope_Stack.Table
6833 (Scope_Stack.Last).Component_Alignment_Default);
6834 end if;
6835 end Set_Component_Alignment_If_Not_Set;
6836
c6823a20
EB
6837 ------------------
6838 -- Undelay_Type --
6839 ------------------
6840
6841 procedure Undelay_Type (T : Entity_Id) is
6842 begin
6843 Set_Has_Delayed_Freeze (T, False);
6844 Set_Freeze_Node (T, Empty);
6845
6846 -- Since we don't want T to have a Freeze_Node, we don't want its
6847 -- Full_View or Corresponding_Record_Type to have one either.
6848
6849 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
6850 -- want is to be sure that for an Itype that's part of record R and is a
6851 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
6852 -- points of R and T. We have no way of doing that directly, so what we
6853 -- do is force most such Itypes to be frozen as part of freezing R via
6854 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
6855 -- (mostly the designated types of access types that are defined as part
6856 -- of the record).
c6823a20
EB
6857
6858 if Is_Private_Type (T)
6859 and then Present (Full_View (T))
6860 and then Is_Itype (Full_View (T))
6861 and then Is_Record_Type (Scope (Full_View (T)))
6862 then
6863 Undelay_Type (Full_View (T));
6864 end if;
6865
6866 if Is_Concurrent_Type (T)
6867 and then Present (Corresponding_Record_Type (T))
6868 and then Is_Itype (Corresponding_Record_Type (T))
6869 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
6870 then
6871 Undelay_Type (Corresponding_Record_Type (T));
6872 end if;
6873 end Undelay_Type;
6874
fbf5a39b
AC
6875 ------------------
6876 -- Warn_Overlay --
6877 ------------------
6878
6879 procedure Warn_Overlay
6880 (Expr : Node_Id;
6881 Typ : Entity_Id;
6882 Nam : Entity_Id)
6883 is
6884 Ent : constant Entity_Id := Entity (Nam);
49e90211 6885 -- The object to which the address clause applies
fbf5a39b
AC
6886
6887 Init : Node_Id;
6888 Old : Entity_Id := Empty;
6889 Decl : Node_Id;
6890
6891 begin
6892 -- No warning if address clause overlay warnings are off
6893
6894 if not Address_Clause_Overlay_Warnings then
6895 return;
6896 end if;
6897
6898 -- No warning if there is an explicit initialization
6899
6900 Init := Original_Node (Expression (Declaration_Node (Ent)));
6901
6902 if Present (Init) and then Comes_From_Source (Init) then
6903 return;
6904 end if;
6905
edd63e9b 6906 -- We only give the warning for non-imported entities of a type for
0ac73189 6907 -- which a non-null base init proc is defined, or for objects of access
a5d83d61 6908 -- types with implicit null initialization, or when Normalize_Scalars
0ac73189
AC
6909 -- applies and the type is scalar or a string type (the latter being
6910 -- tested for because predefined String types are initialized by inline
a5d83d61
AC
6911 -- code rather than by an init_proc). Note that we do not give the
6912 -- warning for Initialize_Scalars, since we suppressed initialization
e526d0c7 6913 -- in this case. Also, do not warn if Suppress_Initialization is set.
fbf5a39b
AC
6914
6915 if Present (Expr)
fbf5a39b 6916 and then not Is_Imported (Ent)
e526d0c7 6917 and then not Initialization_Suppressed (Typ)
0ac73189 6918 and then (Has_Non_Null_Base_Init_Proc (Typ)
e526d0c7
AC
6919 or else Is_Access_Type (Typ)
6920 or else (Normalize_Scalars
6921 and then (Is_Scalar_Type (Typ)
6922 or else Is_String_Type (Typ))))
fbf5a39b
AC
6923 then
6924 if Nkind (Expr) = N_Attribute_Reference
6925 and then Is_Entity_Name (Prefix (Expr))
6926 then
6927 Old := Entity (Prefix (Expr));
6928
6929 elsif Is_Entity_Name (Expr)
6930 and then Ekind (Entity (Expr)) = E_Constant
6931 then
6932 Decl := Declaration_Node (Entity (Expr));
6933
6934 if Nkind (Decl) = N_Object_Declaration
6935 and then Present (Expression (Decl))
6936 and then Nkind (Expression (Decl)) = N_Attribute_Reference
6937 and then Is_Entity_Name (Prefix (Expression (Decl)))
6938 then
6939 Old := Entity (Prefix (Expression (Decl)));
6940
6941 elsif Nkind (Expr) = N_Function_Call then
6942 return;
6943 end if;
6944
ee094616
RD
6945 -- A function call (most likely to To_Address) is probably not an
6946 -- overlay, so skip warning. Ditto if the function call was inlined
6947 -- and transformed into an entity.
fbf5a39b
AC
6948
6949 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
6950 return;
6951 end if;
6952
6953 Decl := Next (Parent (Expr));
6954
6955 -- If a pragma Import follows, we assume that it is for the current
6956 -- target of the address clause, and skip the warning.
6957
6958 if Present (Decl)
6959 and then Nkind (Decl) = N_Pragma
1b24ada5 6960 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
6961 then
6962 return;
6963 end if;
6964
6965 if Present (Old) then
6966 Error_Msg_Node_2 := Old;
6967 Error_Msg_N
685bc70f 6968 ("default initialization of & may modify &??",
fbf5a39b
AC
6969 Nam);
6970 else
6971 Error_Msg_N
685bc70f 6972 ("default initialization of & may modify overlaid storage??",
fbf5a39b
AC
6973 Nam);
6974 end if;
6975
6976 -- Add friendly warning if initialization comes from a packed array
6977 -- component.
6978
6979 if Is_Record_Type (Typ) then
6980 declare
6981 Comp : Entity_Id;
6982
6983 begin
6984 Comp := First_Component (Typ);
fbf5a39b
AC
6985 while Present (Comp) loop
6986 if Nkind (Parent (Comp)) = N_Component_Declaration
6987 and then Present (Expression (Parent (Comp)))
6988 then
6989 exit;
6990 elsif Is_Array_Type (Etype (Comp))
6991 and then Present (Packed_Array_Type (Etype (Comp)))
6992 then
6993 Error_Msg_NE
3f1ede06 6994 ("\packed array component& " &
685bc70f 6995 "will be initialized to zero??",
3f1ede06 6996 Nam, Comp);
fbf5a39b
AC
6997 exit;
6998 else
6999 Next_Component (Comp);
7000 end if;
7001 end loop;
7002 end;
7003 end if;
7004
7005 Error_Msg_N
3f1ede06 7006 ("\use pragma Import for & to " &
685bc70f 7007 "suppress initialization (RM B.1(24))??",
3f1ede06 7008 Nam);
fbf5a39b
AC
7009 end if;
7010 end Warn_Overlay;
7011
70482933 7012end Freeze;