]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
move-if-change: Remove.
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
91b1417d 9-- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
19-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20-- MA 02111-1307, USA. --
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Ch7; use Exp_Ch7;
33with Exp_Ch11; use Exp_Ch11;
34with Exp_Pakd; use Exp_Pakd;
35with Exp_Util; use Exp_Util;
fbf5a39b 36with Exp_Tss; use Exp_Tss;
70482933 37with Layout; use Layout;
07fc65c4 38with Lib.Xref; use Lib.Xref;
70482933
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Restrict; use Restrict;
6e937c1c 43with Rident; use Rident;
70482933
RK
44with Sem; use Sem;
45with Sem_Cat; use Sem_Cat;
46with Sem_Ch6; use Sem_Ch6;
47with Sem_Ch7; use Sem_Ch7;
48with Sem_Ch8; use Sem_Ch8;
49with Sem_Ch13; use Sem_Ch13;
50with Sem_Eval; use Sem_Eval;
51with Sem_Mech; use Sem_Mech;
52with Sem_Prag; use Sem_Prag;
53with Sem_Res; use Sem_Res;
54with Sem_Util; use Sem_Util;
55with Sinfo; use Sinfo;
56with Snames; use Snames;
57with Stand; use Stand;
58with Targparm; use Targparm;
59with Tbuild; use Tbuild;
60with Ttypes; use Ttypes;
61with Uintp; use Uintp;
62with Urealp; use Urealp;
63
64package body Freeze is
65
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
69
70 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
76
77 procedure Build_And_Analyze_Renamed_Body
78 (Decl : Node_Id;
79 New_S : Entity_Id;
80 After : in out Node_Id);
81 -- Build body for a renaming declaration, insert in tree and analyze.
82
fbf5a39b
AC
83 procedure Check_Address_Clause (E : Entity_Id);
84 -- Apply legality checks to address clauses for object declarations,
85 -- at the point the object is frozen.
86
70482933
RK
87 procedure Check_Strict_Alignment (E : Entity_Id);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
90 -- Strict_Alignment.
91
92 procedure Check_Unsigned_Type (E : Entity_Id);
93 pragma Inline (Check_Unsigned_Type);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
98
99 procedure Freeze_And_Append
100 (Ent : Entity_Id;
101 Loc : Source_Ptr;
102 Result : in out List_Id);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
105
106 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
112
70482933
RK
113 procedure Freeze_Static_Object (E : Entity_Id);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
117
118 procedure Freeze_Subprogram (E : Entity_Id);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
126
127 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 128 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
70482933
RK
134
135 procedure Process_Default_Expressions
136 (E : Entity_Id;
137 After : in out Node_Id);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
147
148 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
152
153 procedure Check_Debug_Info_Needed (T : Entity_Id);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
158 -- the flag if Debug_Info_Off is set.
159
160 procedure Set_Debug_Info_Needed (T : Entity_Id);
161 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
162 -- also on any entities that are needed by T (for an object, the type
163 -- of the object is needed, and for a type, the subsidiary types are
164 -- needed -- see body for details). Never has any effect on T if the
165 -- Debug_Info_Off flag is set.
166
fbf5a39b
AC
167 procedure Warn_Overlay
168 (Expr : Node_Id;
169 Typ : Entity_Id;
170 Nam : Node_Id);
171 -- Expr is the expression for an address clause for entity Nam whose type
172 -- is Typ. If Typ has a default initialization, and there is no explicit
173 -- initialization in the source declaration, check whether the address
174 -- clause might cause overlaying of an entity, and emit a warning on the
175 -- side effect that the initialization will cause.
176
70482933
RK
177 -------------------------------
178 -- Adjust_Esize_For_Alignment --
179 -------------------------------
180
181 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
182 Align : Uint;
183
184 begin
185 if Known_Esize (Typ) and then Known_Alignment (Typ) then
186 Align := Alignment_In_Bits (Typ);
187
188 if Align > Esize (Typ)
189 and then Align <= Standard_Long_Long_Integer_Size
190 then
191 Set_Esize (Typ, Align);
192 end if;
193 end if;
194 end Adjust_Esize_For_Alignment;
195
196 ------------------------------------
197 -- Build_And_Analyze_Renamed_Body --
198 ------------------------------------
199
200 procedure Build_And_Analyze_Renamed_Body
201 (Decl : Node_Id;
202 New_S : Entity_Id;
203 After : in out Node_Id)
204 is
205 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
206
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
213
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
217
218 function Build_Renamed_Body
219 (Decl : Node_Id;
fbf5a39b 220 New_S : Entity_Id) return Node_Id
70482933
RK
221 is
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
229
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
241
242 begin
243 -- Determine the entity being renamed, which is the target of the
244 -- call statement. If the name is an explicit dereference, this is
245 -- a renaming of a subprogram type rather than a subprogram. The
246 -- name itself is fully analyzed.
247
248 if Nkind (Nam) = N_Selected_Component then
249 Old_S := Entity (Selector_Name (Nam));
250
251 elsif Nkind (Nam) = N_Explicit_Dereference then
252 Old_S := Etype (Nam);
253
254 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
255 if Is_Entity_Name (Prefix (Nam)) then
256 Old_S := Entity (Prefix (Nam));
257 else
258 Old_S := Entity (Selector_Name (Prefix (Nam)));
259 end if;
260
261 elsif Nkind (Nam) = N_Character_Literal then
262 Old_S := Etype (New_S);
263
264 else
265 Old_S := Entity (Nam);
266 end if;
267
268 if Is_Entity_Name (Nam) then
07fc65c4
GB
269
270 -- If the renamed entity is a predefined operator, retain full
271 -- name to ensure its visibility.
272
273 if Ekind (Old_S) = E_Operator
274 and then Nkind (Nam) = N_Expanded_Name
275 then
276 Call_Name := New_Copy (Name (N));
277 else
278 Call_Name := New_Reference_To (Old_S, Loc);
279 end if;
280
70482933
RK
281 else
282 Call_Name := New_Copy (Name (N));
283
284 -- The original name may have been overloaded, but
285 -- is fully resolved now.
286
287 Set_Is_Overloaded (Call_Name, False);
288 end if;
289
290 -- For simple renamings, subsequent calls can be expanded directly
291 -- as called to the renamed entity. The body must be generated in
292 -- any case for calls they may appear elsewhere.
293
294 if (Ekind (Old_S) = E_Function
295 or else Ekind (Old_S) = E_Procedure)
296 and then Nkind (Decl) = N_Subprogram_Declaration
297 then
298 Set_Body_To_Inline (Decl, Old_S);
299 end if;
300
301 -- The body generated for this renaming is an internal artifact, and
302 -- does not constitute a freeze point for the called entity.
303
304 Set_Must_Not_Freeze (Call_Name);
305
306 Formal := First_Formal (Defining_Entity (Decl));
307
308 if Present (Formal) then
309 Actuals := New_List;
310
311 while Present (Formal) loop
312 Append (New_Reference_To (Formal, Loc), Actuals);
313 Next_Formal (Formal);
314 end loop;
315 end if;
316
317 -- If the renamed entity is an entry, inherit its profile. For
318 -- other renamings as bodies, both profiles must be subtype
319 -- conformant, so it is not necessary to replace the profile given
320 -- in the declaration. However, default values that are aggregates
321 -- are rewritten when partially analyzed, so we recover the original
322 -- aggregate to insure that subsequent conformity checking works.
07fc65c4
GB
323 -- Similarly, if the default expression was constant-folded, recover
324 -- the original expression.
70482933
RK
325
326 Formal := First_Formal (Defining_Entity (Decl));
327
328 if Present (Formal) then
329 O_Formal := First_Formal (Old_S);
330 Param_Spec := First (Parameter_Specifications (Spec));
331
332 while Present (Formal) loop
333 if Is_Entry (Old_S) then
334
335 if Nkind (Parameter_Type (Param_Spec)) /=
336 N_Access_Definition
337 then
338 Set_Etype (Formal, Etype (O_Formal));
339 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
340 end if;
341
07fc65c4
GB
342 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
343 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
344 Nkind (Default_Value (O_Formal))
345 then
70482933
RK
346 Set_Expression (Param_Spec,
347 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
348 end if;
349
350 Next_Formal (Formal);
351 Next_Formal (O_Formal);
352 Next (Param_Spec);
353 end loop;
354 end if;
355
356 -- If the renamed entity is a function, the generated body contains a
357 -- return statement. Otherwise, build a procedure call. If the entity is
358 -- an entry, subsequent analysis of the call will transform it into the
359 -- proper entry or protected operation call. If the renamed entity is
360 -- a character literal, return it directly.
361
362 if Ekind (Old_S) = E_Function
363 or else Ekind (Old_S) = E_Operator
364 or else (Ekind (Old_S) = E_Subprogram_Type
365 and then Etype (Old_S) /= Standard_Void_Type)
366 then
367 Call_Node :=
368 Make_Return_Statement (Loc,
369 Expression =>
370 Make_Function_Call (Loc,
371 Name => Call_Name,
372 Parameter_Associations => Actuals));
373
374 elsif Ekind (Old_S) = E_Enumeration_Literal then
375 Call_Node :=
376 Make_Return_Statement (Loc,
377 Expression => New_Occurrence_Of (Old_S, Loc));
378
379 elsif Nkind (Nam) = N_Character_Literal then
380 Call_Node :=
381 Make_Return_Statement (Loc,
382 Expression => Call_Name);
383
384 else
385 Call_Node :=
386 Make_Procedure_Call_Statement (Loc,
387 Name => Call_Name,
388 Parameter_Associations => Actuals);
389 end if;
390
391 -- Create entities for subprogram body and formals.
392
393 Set_Defining_Unit_Name (Spec,
394 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
395
396 Param_Spec := First (Parameter_Specifications (Spec));
397
398 while Present (Param_Spec) loop
399 Set_Defining_Identifier (Param_Spec,
400 Make_Defining_Identifier (Loc,
401 Chars => Chars (Defining_Identifier (Param_Spec))));
402 Next (Param_Spec);
403 end loop;
404
405 Body_Node :=
406 Make_Subprogram_Body (Loc,
407 Specification => Spec,
408 Declarations => New_List,
409 Handled_Statement_Sequence =>
410 Make_Handled_Sequence_Of_Statements (Loc,
411 Statements => New_List (Call_Node)));
412
413 if Nkind (Decl) /= N_Subprogram_Declaration then
414 Rewrite (N,
415 Make_Subprogram_Declaration (Loc,
416 Specification => Specification (N)));
417 end if;
418
419 -- Link the body to the entity whose declaration it completes. If
420 -- the body is analyzed when the renamed entity is frozen, it may be
421 -- necessary to restore the proper scope (see package Exp_Ch13).
422
423 if Nkind (N) = N_Subprogram_Renaming_Declaration
424 and then Present (Corresponding_Spec (N))
425 then
426 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
427 else
428 Set_Corresponding_Spec (Body_Node, New_S);
429 end if;
430
431 return Body_Node;
432 end Build_Renamed_Body;
433
fbf5a39b
AC
434 --------------------------
435 -- Check_Address_Clause --
436 --------------------------
437
438 procedure Check_Address_Clause (E : Entity_Id) is
439 Addr : constant Node_Id := Address_Clause (E);
440 Expr : Node_Id;
441 Decl : constant Node_Id := Declaration_Node (E);
442 Typ : constant Entity_Id := Etype (E);
443
444 begin
445 if Present (Addr) then
446 Expr := Expression (Addr);
447
448 -- If we have no initialization of any kind, then we don't
449 -- need to place any restrictions on the address clause, because
450 -- the object will be elaborated after the address clause is
451 -- evaluated. This happens if the declaration has no initial
452 -- expression, or the type has no implicit initialization, or
453 -- the object is imported.
454
455 -- The same holds for all initialized scalar types and all
456 -- access types. Packed bit arrays of size up to 64 are
457 -- represented using a modular type with an initialization
458 -- (to zero) and can be processed like other initialized
459 -- scalar types.
460
461 -- If the type is controlled, code to attach the object to a
462 -- finalization chain is generated at the point of declaration,
463 -- and therefore the elaboration of the object cannot be delayed:
464 -- the address expression must be a constant.
465
466 if (No (Expression (Decl))
467 and then not Controlled_Type (Typ)
468 and then
469 (not Has_Non_Null_Base_Init_Proc (Typ)
470 or else Is_Imported (E)))
471
472 or else
473 (Present (Expression (Decl))
474 and then Is_Scalar_Type (Typ))
475
476 or else
477 Is_Access_Type (Typ)
478
479 or else
480 (Is_Bit_Packed_Array (Typ)
481 and then
482 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
483 then
484 null;
485
486 -- Otherwise, we require the address clause to be constant
487 -- because the call to the initialization procedure (or the
488 -- attach code) has to happen at the point of the declaration.
489
490 else
491 Check_Constant_Address_Clause (Expr, E);
492 Set_Has_Delayed_Freeze (E, False);
493 end if;
494
495 if not Error_Posted (Expr)
496 and then not Controlled_Type (Typ)
497 then
498 Warn_Overlay (Expr, Typ, Name (Addr));
499 end if;
500 end if;
501 end Check_Address_Clause;
502
70482933
RK
503 -----------------------------
504 -- Check_Compile_Time_Size --
505 -----------------------------
506
507 procedure Check_Compile_Time_Size (T : Entity_Id) is
508
509 procedure Set_Small_Size (S : Uint);
510 -- Sets the compile time known size (32 bits or less) in the Esize
511 -- field, checking for a size clause that was given which attempts
512 -- to give a smaller size.
513
514 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 515 -- Recursive function that does all the work
70482933
RK
516
517 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
518 -- If T is a constrained subtype, its size is not known if any of its
519 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 520 -- The test is conservative and doesn't check that the components are
70482933
RK
521 -- in fact constrained by non-static discriminant values. Could be made
522 -- more precise ???
523
524 --------------------
525 -- Set_Small_Size --
526 --------------------
527
528 procedure Set_Small_Size (S : Uint) is
529 begin
530 if S > 32 then
531 return;
532
533 elsif Has_Size_Clause (T) then
534 if RM_Size (T) < S then
535 Error_Msg_Uint_1 := S;
536 Error_Msg_NE
537 ("size for & is too small, minimum is ^",
538 Size_Clause (T), T);
539
540 elsif Unknown_Esize (T) then
541 Set_Esize (T, S);
542 end if;
543
544 -- Set sizes if not set already
545
546 else
547 if Unknown_Esize (T) then
548 Set_Esize (T, S);
549 end if;
550
551 if Unknown_RM_Size (T) then
552 Set_RM_Size (T, S);
553 end if;
554 end if;
555 end Set_Small_Size;
556
557 ----------------
558 -- Size_Known --
559 ----------------
560
561 function Size_Known (T : Entity_Id) return Boolean is
562 Index : Entity_Id;
563 Comp : Entity_Id;
564 Ctyp : Entity_Id;
565 Low : Node_Id;
566 High : Node_Id;
567
568 begin
569 if Size_Known_At_Compile_Time (T) then
570 return True;
571
70482933
RK
572 elsif Is_Scalar_Type (T)
573 or else Is_Task_Type (T)
574 then
575 return not Is_Generic_Type (T);
576
577 elsif Is_Array_Type (T) then
70482933
RK
578 if Ekind (T) = E_String_Literal_Subtype then
579 Set_Small_Size (Component_Size (T) * String_Literal_Length (T));
580 return True;
581
582 elsif not Is_Constrained (T) then
583 return False;
584
07fc65c4
GB
585 -- Don't do any recursion on type with error posted, since
586 -- we may have a malformed type that leads us into a loop
587
588 elsif Error_Posted (T) then
589 return False;
590
70482933
RK
591 elsif not Size_Known (Component_Type (T)) then
592 return False;
593 end if;
594
595 -- Check for all indexes static, and also compute possible
596 -- size (in case it is less than 32 and may be packable).
597
598 declare
599 Esiz : Uint := Component_Size (T);
600 Dim : Uint;
601
602 begin
603 Index := First_Index (T);
604
605 while Present (Index) loop
606 if Nkind (Index) = N_Range then
607 Get_Index_Bounds (Index, Low, High);
608
609 elsif Error_Posted (Scalar_Range (Etype (Index))) then
610 return False;
611
612 else
613 Low := Type_Low_Bound (Etype (Index));
614 High := Type_High_Bound (Etype (Index));
615 end if;
616
617 if not Compile_Time_Known_Value (Low)
618 or else not Compile_Time_Known_Value (High)
619 or else Etype (Index) = Any_Type
620 then
621 return False;
622
623 else
624 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
625
626 if Dim >= 0 then
627 Esiz := Esiz * Dim;
628 else
629 Esiz := Uint_0;
630 end if;
631 end if;
632
633 Next_Index (Index);
634 end loop;
635
636 Set_Small_Size (Esiz);
637 return True;
638 end;
639
640 elsif Is_Access_Type (T) then
641 return True;
642
643 elsif Is_Private_Type (T)
644 and then not Is_Generic_Type (T)
645 and then Present (Underlying_Type (T))
646 then
07fc65c4
GB
647 -- Don't do any recursion on type with error posted, since
648 -- we may have a malformed type that leads us into a loop
649
650 if Error_Posted (T) then
651 return False;
652 else
653 return Size_Known (Underlying_Type (T));
654 end if;
70482933
RK
655
656 elsif Is_Record_Type (T) then
fbf5a39b
AC
657
658 -- A class-wide type is never considered to have a known size
659
70482933
RK
660 if Is_Class_Wide_Type (T) then
661 return False;
662
fbf5a39b
AC
663 -- A subtype of a variant record must not have non-static
664 -- discriminanted components.
665
666 elsif T /= Base_Type (T)
667 and then not Static_Discriminated_Components (T)
668 then
669 return False;
70482933 670
07fc65c4
GB
671 -- Don't do any recursion on type with error posted, since
672 -- we may have a malformed type that leads us into a loop
673
674 elsif Error_Posted (T) then
675 return False;
fbf5a39b 676 end if;
07fc65c4 677
fbf5a39b 678 -- Now look at the components of the record
70482933 679
fbf5a39b
AC
680 declare
681 -- The following two variables are used to keep track of
682 -- the size of packed records if we can tell the size of
683 -- the packed record in the front end. Packed_Size_Known
684 -- is True if so far we can figure out the size. It is
685 -- initialized to True for a packed record, unless the
686 -- record has discriminants. The reason we eliminate the
687 -- discriminated case is that we don't know the way the
688 -- back end lays out discriminated packed records. If
689 -- Packed_Size_Known is True, then Packed_Size is the
690 -- size in bits so far.
691
692 Packed_Size_Known : Boolean :=
693 Is_Packed (T)
694 and then not Has_Discriminants (T);
695
696 Packed_Size : Uint := Uint_0;
697
698 begin
699 -- Test for variant part present
700
701 if Has_Discriminants (T)
702 and then Present (Parent (T))
703 and then Nkind (Parent (T)) = N_Full_Type_Declaration
704 and then Nkind (Type_Definition (Parent (T))) =
705 N_Record_Definition
706 and then not Null_Present (Type_Definition (Parent (T)))
707 and then Present (Variant_Part
708 (Component_List (Type_Definition (Parent (T)))))
709 then
710 -- If variant part is present, and type is unconstrained,
711 -- then we must have defaulted discriminants, or a size
712 -- clause must be present for the type, or else the size
713 -- is definitely not known at compile time.
714
715 if not Is_Constrained (T)
716 and then
717 No (Discriminant_Default_Value
718 (First_Discriminant (T)))
719 and then Unknown_Esize (T)
70482933 720 then
fbf5a39b
AC
721 return False;
722 end if;
723 end if;
70482933 724
fbf5a39b
AC
725 -- Loop through components
726
727 Comp := First_Entity (T);
728 while Present (Comp) loop
729 if Ekind (Comp) = E_Component
730 or else
731 Ekind (Comp) = E_Discriminant
732 then
733 Ctyp := Etype (Comp);
734
735 -- We do not know the packed size if there is a
736 -- component clause present (we possibly could,
737 -- but this would only help in the case of a record
738 -- with partial rep clauses. That's because in the
739 -- case of full rep clauses, the size gets figured
740 -- out anyway by a different circuit).
741
742 if Present (Component_Clause (Comp)) then
70482933
RK
743 Packed_Size_Known := False;
744 end if;
70482933 745
fbf5a39b
AC
746 -- We need to identify a component that is an array
747 -- where the index type is an enumeration type with
748 -- non-standard representation, and some bound of the
749 -- type depends on a discriminant.
750
751 -- This is because gigi computes the size by doing a
752 -- substituation of the appropriate discriminant value
753 -- in the size expression for the base type, and gigi
754 -- is not clever enough to evaluate the resulting
755 -- expression (which involves a call to rep_to_pos)
756 -- at compile time.
757
758 -- It would be nice if gigi would either recognize that
759 -- this expression can be computed at compile time, or
760 -- alternatively figured out the size from the subtype
761 -- directly, where all the information is at hand ???
762
763 if Is_Array_Type (Etype (Comp))
764 and then Present (Packed_Array_Type (Etype (Comp)))
70482933 765 then
fbf5a39b
AC
766 declare
767 Ocomp : constant Entity_Id :=
768 Original_Record_Component (Comp);
769 OCtyp : constant Entity_Id := Etype (Ocomp);
770 Ind : Node_Id;
771 Indtyp : Entity_Id;
772 Lo, Hi : Node_Id;
70482933 773
fbf5a39b
AC
774 begin
775 Ind := First_Index (OCtyp);
776 while Present (Ind) loop
777 Indtyp := Etype (Ind);
778
779 if Is_Enumeration_Type (Indtyp)
780 and then Has_Non_Standard_Rep (Indtyp)
781 then
782 Lo := Type_Low_Bound (Indtyp);
783 Hi := Type_High_Bound (Indtyp);
784
785 if Is_Entity_Name (Lo)
786 and then
787 Ekind (Entity (Lo)) = E_Discriminant
788 then
789 return False;
790
791 elsif Is_Entity_Name (Hi)
792 and then
793 Ekind (Entity (Hi)) = E_Discriminant
794 then
795 return False;
796 end if;
797 end if;
798
799 Next_Index (Ind);
800 end loop;
801 end;
802 end if;
70482933 803
fbf5a39b
AC
804 -- Clearly size of record is not known if the size of
805 -- one of the components is not known.
70482933 806
fbf5a39b
AC
807 if not Size_Known (Ctyp) then
808 return False;
809 end if;
810
811 -- Accumulate packed size if possible
812
813 if Packed_Size_Known then
814
815 -- We can only deal with elementary types, since for
816 -- non-elementary components, alignment enters into
817 -- the picture, and we don't know enough to handle
818 -- proper alignment in this context. Packed arrays
819 -- count as elementary if the representation is a
820 -- modular type.
70482933 821
fbf5a39b
AC
822 if Is_Elementary_Type (Ctyp)
823 or else (Is_Array_Type (Ctyp)
824 and then
825 Present (Packed_Array_Type (Ctyp))
826 and then
827 Is_Modular_Integer_Type
828 (Packed_Array_Type (Ctyp)))
829 then
70482933
RK
830 -- If RM_Size is known and static, then we can
831 -- keep accumulating the packed size.
832
833 if Known_Static_RM_Size (Ctyp) then
834
835 -- A little glitch, to be removed sometime ???
836 -- gigi does not understand zero sizes yet.
837
838 if RM_Size (Ctyp) = Uint_0 then
839 Packed_Size_Known := False;
70482933 840
fbf5a39b
AC
841 -- Normal case where we can keep accumulating
842 -- the packed array size.
843
844 else
845 Packed_Size := Packed_Size + RM_Size (Ctyp);
846 end if;
70482933
RK
847
848 -- If we have a field whose RM_Size is not known
849 -- then we can't figure out the packed size here.
850
851 else
852 Packed_Size_Known := False;
853 end if;
fbf5a39b
AC
854
855 -- If we have a non-elementary type we can't figure
856 -- out the packed array size (alignment issues).
857
858 else
859 Packed_Size_Known := False;
70482933
RK
860 end if;
861 end if;
fbf5a39b 862 end if;
70482933 863
fbf5a39b
AC
864 Next_Entity (Comp);
865 end loop;
70482933 866
fbf5a39b
AC
867 if Packed_Size_Known then
868 Set_Small_Size (Packed_Size);
869 end if;
70482933 870
fbf5a39b
AC
871 return True;
872 end;
70482933
RK
873
874 else
875 return False;
876 end if;
877 end Size_Known;
878
879 -------------------------------------
880 -- Static_Discriminated_Components --
881 -------------------------------------
882
883 function Static_Discriminated_Components
884 (T : Entity_Id)
885 return Boolean
886 is
887 Constraint : Elmt_Id;
888
889 begin
890 if Has_Discriminants (T)
891 and then Present (Discriminant_Constraint (T))
892 and then Present (First_Component (T))
893 then
894 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
895 while Present (Constraint) loop
896 if not Compile_Time_Known_Value (Node (Constraint)) then
897 return False;
898 end if;
899
900 Next_Elmt (Constraint);
901 end loop;
902 end if;
903
904 return True;
905 end Static_Discriminated_Components;
906
907 -- Start of processing for Check_Compile_Time_Size
908
909 begin
910 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
911 end Check_Compile_Time_Size;
912
913 -----------------------------
914 -- Check_Debug_Info_Needed --
915 -----------------------------
916
917 procedure Check_Debug_Info_Needed (T : Entity_Id) is
918 begin
919 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
920 return;
921
922 elsif Comes_From_Source (T)
923 or else Debug_Generated_Code
924 or else Debug_Flag_VV
925 then
926 Set_Debug_Info_Needed (T);
927 end if;
928 end Check_Debug_Info_Needed;
929
930 ----------------------------
931 -- Check_Strict_Alignment --
932 ----------------------------
933
934 procedure Check_Strict_Alignment (E : Entity_Id) is
935 Comp : Entity_Id;
936
937 begin
938 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
939 Set_Strict_Alignment (E);
940
941 elsif Is_Array_Type (E) then
942 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
943
944 elsif Is_Record_Type (E) then
945 if Is_Limited_Record (E) then
946 Set_Strict_Alignment (E);
947 return;
948 end if;
949
950 Comp := First_Component (E);
951
952 while Present (Comp) loop
953 if not Is_Type (Comp)
954 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 955 or else Is_Aliased (Comp))
70482933
RK
956 then
957 Set_Strict_Alignment (E);
958 return;
959 end if;
960
961 Next_Component (Comp);
962 end loop;
963 end if;
964 end Check_Strict_Alignment;
965
966 -------------------------
967 -- Check_Unsigned_Type --
968 -------------------------
969
970 procedure Check_Unsigned_Type (E : Entity_Id) is
971 Ancestor : Entity_Id;
972 Lo_Bound : Node_Id;
973 Btyp : Entity_Id;
974
975 begin
976 if not Is_Discrete_Or_Fixed_Point_Type (E) then
977 return;
978 end if;
979
980 -- Do not attempt to analyze case where range was in error
981
982 if Error_Posted (Scalar_Range (E)) then
983 return;
984 end if;
985
986 -- The situation that is non trivial is something like
987
988 -- subtype x1 is integer range -10 .. +10;
989 -- subtype x2 is x1 range 0 .. V1;
990 -- subtype x3 is x2 range V2 .. V3;
991 -- subtype x4 is x3 range V4 .. V5;
992
993 -- where Vn are variables. Here the base type is signed, but we still
994 -- know that x4 is unsigned because of the lower bound of x2.
995
996 -- The only way to deal with this is to look up the ancestor chain
997
998 Ancestor := E;
999 loop
1000 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1001 return;
1002 end if;
1003
1004 Lo_Bound := Type_Low_Bound (Ancestor);
1005
1006 if Compile_Time_Known_Value (Lo_Bound) then
1007
1008 if Expr_Rep_Value (Lo_Bound) >= 0 then
1009 Set_Is_Unsigned_Type (E, True);
1010 end if;
1011
1012 return;
1013
1014 else
1015 Ancestor := Ancestor_Subtype (Ancestor);
1016
1017 -- If no ancestor had a static lower bound, go to base type
1018
1019 if No (Ancestor) then
1020
1021 -- Note: the reason we still check for a compile time known
1022 -- value for the base type is that at least in the case of
1023 -- generic formals, we can have bounds that fail this test,
1024 -- and there may be other cases in error situations.
1025
1026 Btyp := Base_Type (E);
1027
1028 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1029 return;
1030 end if;
1031
1032 Lo_Bound := Type_Low_Bound (Base_Type (E));
1033
1034 if Compile_Time_Known_Value (Lo_Bound)
1035 and then Expr_Rep_Value (Lo_Bound) >= 0
1036 then
1037 Set_Is_Unsigned_Type (E, True);
1038 end if;
1039
1040 return;
70482933
RK
1041 end if;
1042 end if;
1043 end loop;
1044 end Check_Unsigned_Type;
1045
fbf5a39b
AC
1046 -----------------------------
1047 -- Expand_Atomic_Aggregate --
1048 -----------------------------
1049
1050 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1051 Loc : constant Source_Ptr := Sloc (E);
1052 New_N : Node_Id;
1053 Temp : Entity_Id;
1054
1055 begin
1056 if (Nkind (Parent (E)) = N_Object_Declaration
1057 or else Nkind (Parent (E)) = N_Assignment_Statement)
1058 and then Comes_From_Source (Parent (E))
1059 and then Nkind (E) = N_Aggregate
1060 then
1061 Temp :=
1062 Make_Defining_Identifier (Loc,
1063 New_Internal_Name ('T'));
1064
1065 New_N :=
1066 Make_Object_Declaration (Loc,
1067 Defining_Identifier => Temp,
1068 Object_definition => New_Occurrence_Of (Typ, Loc),
1069 Expression => Relocate_Node (E));
1070 Insert_Before (Parent (E), New_N);
1071 Analyze (New_N);
1072
1073 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1074
1075 -- To prevent the temporary from being constant-folded (which
1076 -- would lead to the same piecemeal assignment on the original
1077 -- target) indicate to the back-end that the temporary is a
1078 -- variable with real storage. See description of this flag
1079 -- in Einfo, and the notes on N_Assignment_Statement and
1080 -- N_Object_Declaration in Sinfo.
1081
1082 Set_Is_True_Constant (Temp, False);
1083 end if;
1084 end Expand_Atomic_Aggregate;
1085
70482933
RK
1086 ----------------
1087 -- Freeze_All --
1088 ----------------
1089
1090 -- Note: the easy coding for this procedure would be to just build a
1091 -- single list of freeze nodes and then insert them and analyze them
1092 -- all at once. This won't work, because the analysis of earlier freeze
1093 -- nodes may recursively freeze types which would otherwise appear later
1094 -- on in the freeze list. So we must analyze and expand the freeze nodes
1095 -- as they are generated.
1096
1097 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1098 Loc : constant Source_Ptr := Sloc (After);
1099 E : Entity_Id;
1100 Decl : Node_Id;
1101
1102 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1103 -- This is the internal recursive routine that does freezing of
1104 -- entities (but NOT the analysis of default expressions, which
1105 -- should not be recursive, we don't want to analyze those till
1106 -- we are sure that ALL the types are frozen).
1107
fbf5a39b
AC
1108 --------------------
1109 -- Freeze_All_Ent --
1110 --------------------
1111
70482933
RK
1112 procedure Freeze_All_Ent
1113 (From : Entity_Id;
1114 After : in out Node_Id)
1115 is
1116 E : Entity_Id;
1117 Flist : List_Id;
1118 Lastn : Node_Id;
1119
1120 procedure Process_Flist;
1121 -- If freeze nodes are present, insert and analyze, and reset
1122 -- cursor for next insertion.
1123
fbf5a39b
AC
1124 -------------------
1125 -- Process_Flist --
1126 -------------------
1127
70482933
RK
1128 procedure Process_Flist is
1129 begin
1130 if Is_Non_Empty_List (Flist) then
1131 Lastn := Next (After);
1132 Insert_List_After_And_Analyze (After, Flist);
1133
1134 if Present (Lastn) then
1135 After := Prev (Lastn);
1136 else
1137 After := Last (List_Containing (After));
1138 end if;
1139 end if;
1140 end Process_Flist;
1141
fbf5a39b
AC
1142 -- Start or processing for Freeze_All_Ent
1143
70482933
RK
1144 begin
1145 E := From;
1146 while Present (E) loop
1147
1148 -- If the entity is an inner package which is not a package
1149 -- renaming, then its entities must be frozen at this point.
1150 -- Note that such entities do NOT get frozen at the end of
1151 -- the nested package itself (only library packages freeze).
1152
1153 -- Same is true for task declarations, where anonymous records
1154 -- created for entry parameters must be frozen.
1155
1156 if Ekind (E) = E_Package
1157 and then No (Renamed_Object (E))
1158 and then not Is_Child_Unit (E)
1159 and then not Is_Frozen (E)
1160 then
1161 New_Scope (E);
1162 Install_Visible_Declarations (E);
1163 Install_Private_Declarations (E);
1164
1165 Freeze_All (First_Entity (E), After);
1166
1167 End_Package_Scope (E);
1168
1169 elsif Ekind (E) in Task_Kind
1170 and then
1171 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1172 or else
70482933
RK
1173 Nkind (Parent (E)) = N_Single_Task_Declaration)
1174 then
1175 New_Scope (E);
1176 Freeze_All (First_Entity (E), After);
1177 End_Scope;
1178
1179 -- For a derived tagged type, we must ensure that all the
1180 -- primitive operations of the parent have been frozen, so
1181 -- that their addresses will be in the parent's dispatch table
1182 -- at the point it is inherited.
1183
1184 elsif Ekind (E) = E_Record_Type
1185 and then Is_Tagged_Type (E)
1186 and then Is_Tagged_Type (Etype (E))
1187 and then Is_Derived_Type (E)
1188 then
1189 declare
1190 Prim_List : constant Elist_Id :=
1191 Primitive_Operations (Etype (E));
fbf5a39b
AC
1192
1193 Prim : Elmt_Id;
1194 Subp : Entity_Id;
70482933
RK
1195
1196 begin
1197 Prim := First_Elmt (Prim_List);
1198
1199 while Present (Prim) loop
1200 Subp := Node (Prim);
1201
1202 if Comes_From_Source (Subp)
1203 and then not Is_Frozen (Subp)
1204 then
1205 Flist := Freeze_Entity (Subp, Loc);
1206 Process_Flist;
1207 end if;
1208
1209 Next_Elmt (Prim);
1210 end loop;
1211 end;
1212 end if;
1213
1214 if not Is_Frozen (E) then
1215 Flist := Freeze_Entity (E, Loc);
1216 Process_Flist;
1217 end if;
1218
fbf5a39b
AC
1219 -- If an incomplete type is still not frozen, this may be
1220 -- a premature freezing because of a body declaration that
1221 -- follows. Indicate where the freezing took place.
1222
1223 -- If the freezing is caused by the end of the current
1224 -- declarative part, it is a Taft Amendment type, and there
1225 -- is no error.
1226
1227 if not Is_Frozen (E)
1228 and then Ekind (E) = E_Incomplete_Type
1229 then
1230 declare
1231 Bod : constant Node_Id := Next (After);
1232
1233 begin
1234 if (Nkind (Bod) = N_Subprogram_Body
1235 or else Nkind (Bod) = N_Entry_Body
1236 or else Nkind (Bod) = N_Package_Body
1237 or else Nkind (Bod) = N_Protected_Body
1238 or else Nkind (Bod) = N_Task_Body
1239 or else Nkind (Bod) in N_Body_Stub)
1240 and then
1241 List_Containing (After) = List_Containing (Parent (E))
1242 then
1243 Error_Msg_Sloc := Sloc (Next (After));
1244 Error_Msg_NE
1245 ("type& is frozen# before its full declaration",
1246 Parent (E), E);
1247 end if;
1248 end;
1249 end if;
1250
70482933
RK
1251 Next_Entity (E);
1252 end loop;
1253 end Freeze_All_Ent;
1254
1255 -- Start of processing for Freeze_All
1256
1257 begin
1258 Freeze_All_Ent (From, After);
1259
1260 -- Now that all types are frozen, we can deal with default expressions
1261 -- that require us to build a default expression functions. This is the
1262 -- point at which such functions are constructed (after all types that
1263 -- might be used in such expressions have been frozen).
fbf5a39b 1264
70482933
RK
1265 -- We also add finalization chains to access types whose designated
1266 -- types are controlled. This is normally done when freezing the type,
1267 -- but this misses recursive type definitions where the later members
1268 -- of the recursion introduce controlled components (e.g. 5624-001).
1269
1270 -- Loop through entities
1271
1272 E := From;
1273 while Present (E) loop
70482933
RK
1274 if Is_Subprogram (E) then
1275
1276 if not Default_Expressions_Processed (E) then
1277 Process_Default_Expressions (E, After);
1278 end if;
1279
1280 if not Has_Completion (E) then
1281 Decl := Unit_Declaration_Node (E);
1282
1283 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1284 Build_And_Analyze_Renamed_Body (Decl, E, After);
1285
1286 elsif Nkind (Decl) = N_Subprogram_Declaration
1287 and then Present (Corresponding_Body (Decl))
1288 and then
1289 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1290 = N_Subprogram_Renaming_Declaration
70482933
RK
1291 then
1292 Build_And_Analyze_Renamed_Body
1293 (Decl, Corresponding_Body (Decl), After);
1294 end if;
1295 end if;
1296
1297 elsif Ekind (E) in Task_Kind
1298 and then
1299 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1300 or else
70482933
RK
1301 Nkind (Parent (E)) = N_Single_Task_Declaration)
1302 then
1303 declare
1304 Ent : Entity_Id;
70482933
RK
1305 begin
1306 Ent := First_Entity (E);
1307
1308 while Present (Ent) loop
1309
1310 if Is_Entry (Ent)
1311 and then not Default_Expressions_Processed (Ent)
1312 then
1313 Process_Default_Expressions (Ent, After);
1314 end if;
1315
1316 Next_Entity (Ent);
1317 end loop;
1318 end;
1319
1320 elsif Is_Access_Type (E)
1321 and then Comes_From_Source (E)
1322 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1323 and then Controlled_Type (Designated_Type (E))
1324 and then No (Associated_Final_Chain (E))
1325 then
1326 Build_Final_List (Parent (E), E);
1327 end if;
1328
1329 Next_Entity (E);
1330 end loop;
70482933
RK
1331 end Freeze_All;
1332
1333 -----------------------
1334 -- Freeze_And_Append --
1335 -----------------------
1336
1337 procedure Freeze_And_Append
1338 (Ent : Entity_Id;
1339 Loc : Source_Ptr;
1340 Result : in out List_Id)
1341 is
1342 L : constant List_Id := Freeze_Entity (Ent, Loc);
1343
1344 begin
1345 if Is_Non_Empty_List (L) then
1346 if Result = No_List then
1347 Result := L;
1348 else
1349 Append_List (L, Result);
1350 end if;
1351 end if;
1352 end Freeze_And_Append;
1353
1354 -------------------
1355 -- Freeze_Before --
1356 -------------------
1357
1358 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1359 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1360
1361 begin
1362 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1363 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1364 end if;
1365 end Freeze_Before;
1366
1367 -------------------
1368 -- Freeze_Entity --
1369 -------------------
1370
1371 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1372 Comp : Entity_Id;
1373 F_Node : Node_Id;
1374 Result : List_Id;
1375 Indx : Node_Id;
1376 Formal : Entity_Id;
1377 Atype : Entity_Id;
1378
1379 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1380 -- Check that an Access or Unchecked_Access attribute with
1381 -- a prefix which is the current instance type can only be
1382 -- applied when the type is limited.
1383
1384 function After_Last_Declaration return Boolean;
1385 -- If Loc is a freeze_entity that appears after the last declaration
1386 -- in the scope, inhibit error messages on late completion.
1387
1388 procedure Freeze_Record_Type (Rec : Entity_Id);
1389 -- Freeze each component, handle some representation clauses, and
1390 -- freeze primitive operations if this is a tagged type.
1391
1392 ----------------------------
1393 -- After_Last_Declaration --
1394 ----------------------------
1395
1396 function After_Last_Declaration return Boolean is
fbf5a39b 1397 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1398
1399 begin
1400 if Nkind (Spec) = N_Package_Specification then
1401 if Present (Private_Declarations (Spec)) then
1402 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1403
1404 elsif Present (Visible_Declarations (Spec)) then
1405 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1406 else
1407 return False;
1408 end if;
1409
1410 else
1411 return False;
1412 end if;
1413 end After_Last_Declaration;
1414
1415 ----------------------------
1416 -- Check_Current_Instance --
1417 ----------------------------
1418
1419 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1420
1421 function Process (N : Node_Id) return Traverse_Result;
1422 -- Process routine to apply check to given node.
1423
fbf5a39b
AC
1424 -------------
1425 -- Process --
1426 -------------
1427
70482933
RK
1428 function Process (N : Node_Id) return Traverse_Result is
1429 begin
1430 case Nkind (N) is
1431 when N_Attribute_Reference =>
1432 if (Attribute_Name (N) = Name_Access
1433 or else
1434 Attribute_Name (N) = Name_Unchecked_Access)
1435 and then Is_Entity_Name (Prefix (N))
1436 and then Is_Type (Entity (Prefix (N)))
1437 and then Entity (Prefix (N)) = E
1438 then
1439 Error_Msg_N
1440 ("current instance must be a limited type", Prefix (N));
1441 return Abandon;
1442 else
1443 return OK;
1444 end if;
1445
1446 when others => return OK;
1447 end case;
1448 end Process;
1449
1450 procedure Traverse is new Traverse_Proc (Process);
1451
1452 -- Start of processing for Check_Current_Instance
1453
1454 begin
1455 Traverse (Comp_Decl);
1456 end Check_Current_Instance;
1457
1458 ------------------------
1459 -- Freeze_Record_Type --
1460 ------------------------
1461
1462 procedure Freeze_Record_Type (Rec : Entity_Id) is
1463 Comp : Entity_Id;
fbf5a39b 1464 IR : Node_Id;
70482933
RK
1465 Junk : Boolean;
1466 ADC : Node_Id;
1467
1468 Unplaced_Component : Boolean := False;
1469 -- Set True if we find at least one component with no component
1470 -- clause (used to warn about useless Pack pragmas).
1471
1472 Placed_Component : Boolean := False;
1473 -- Set True if we find at least one component with a component
1474 -- clause (used to warn about useless Bit_Order pragmas).
1475
1476 begin
fbf5a39b
AC
1477 -- If this is a subtype of a controlled type, declared without
1478 -- a constraint, the _controller may not appear in the component
1479 -- list if the parent was not frozen at the point of subtype
1480 -- declaration. Inherit the _controller component now.
1481
1482 if Rec /= Base_Type (Rec)
1483 and then Has_Controlled_Component (Rec)
1484 then
1485 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1486 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1487 then
1488 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1489
1490 -- If this is an internal type without a declaration, as for
1491 -- a record component, the base type may not yet be frozen,
1492 -- and its controller has not been created. Add an explicit
1493 -- freeze node for the itype, so it will be frozen after the
1494 -- base type.
1495
1496 elsif Is_Itype (Rec)
1497 and then Has_Delayed_Freeze (Base_Type (Rec))
1498 and then
1499 Nkind (Associated_Node_For_Itype (Rec)) =
1500 N_Component_Declaration
1501 then
1502 Ensure_Freeze_Node (Rec);
1503 end if;
1504 end if;
1505
70482933
RK
1506 -- Freeze components and embedded subtypes
1507
1508 Comp := First_Entity (Rec);
70482933 1509 while Present (Comp) loop
70482933
RK
1510 if not Is_Type (Comp) then
1511 Freeze_And_Append (Etype (Comp), Loc, Result);
1512 end if;
1513
1514 -- If the component is an access type with an allocator
1515 -- as default value, the designated type will be frozen
1516 -- by the corresponding expression in init_proc. In order
1517 -- to place the freeze node for the designated type before
1518 -- that for the current record type, freeze it now.
1519
1520 -- Same process if the component is an array of access types,
1521 -- initialized with an aggregate. If the designated type is
1522 -- private, it cannot contain allocators, and it is premature
1523 -- to freeze the type, so we check for this as well.
1524
1525 if Is_Access_Type (Etype (Comp))
1526 and then Present (Parent (Comp))
1527 and then Present (Expression (Parent (Comp)))
1528 and then Nkind (Expression (Parent (Comp))) = N_Allocator
1529 then
1530 declare
1531 Alloc : constant Node_Id := Expression (Parent (Comp));
1532
1533 begin
1534 -- If component is pointer to a classwide type, freeze
1535 -- the specific type in the expression being allocated.
1536 -- The expression may be a subtype indication, in which
1537 -- case freeze the subtype mark.
1538
1539 if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then
70482933
RK
1540 if Is_Entity_Name (Expression (Alloc)) then
1541 Freeze_And_Append
1542 (Entity (Expression (Alloc)), Loc, Result);
1543 elsif
1544 Nkind (Expression (Alloc)) = N_Subtype_Indication
1545 then
1546 Freeze_And_Append
1547 (Entity (Subtype_Mark (Expression (Alloc))),
1548 Loc, Result);
1549 end if;
fbf5a39b 1550
70482933
RK
1551 else
1552 Freeze_And_Append
1553 (Designated_Type (Etype (Comp)), Loc, Result);
1554 end if;
1555 end;
1556
07fc65c4
GB
1557 -- If this is a constrained subtype of an already frozen type,
1558 -- make the subtype frozen as well. It might otherwise be frozen
1559 -- in the wrong scope, and a freeze node on subtype has no effect.
1560
1561 elsif Is_Access_Type (Etype (Comp))
1562 and then not Is_Frozen (Designated_Type (Etype (Comp)))
1563 and then Is_Itype (Designated_Type (Etype (Comp)))
1564 and then Is_Frozen (Base_Type (Designated_Type (Etype (Comp))))
1565 then
1566 Set_Is_Frozen (Designated_Type (Etype (Comp)));
1567
fbf5a39b
AC
1568 -- In addition, add an Itype_Reference to ensure that the
1569 -- access subtype is elaborated early enough. This cannot
1570 -- be done if the subtype may depend on discriminants.
1571
1572 if Ekind (Comp) = E_Component
1573 and then Is_Itype (Etype (Comp))
1574 and then not Has_Discriminants (Rec)
1575 then
1576 IR := Make_Itype_Reference (Sloc (Comp));
1577 Set_Itype (IR, Designated_Type (Etype (Comp)));
1578
1579 if No (Result) then
1580 Result := New_List (IR);
1581 else
1582 Append (IR, Result);
1583 end if;
1584 end if;
1585
70482933
RK
1586 elsif Is_Array_Type (Etype (Comp))
1587 and then Is_Access_Type (Component_Type (Etype (Comp)))
1588 and then Present (Parent (Comp))
1589 and then Nkind (Parent (Comp)) = N_Component_Declaration
1590 and then Present (Expression (Parent (Comp)))
1591 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1592 and then Is_Fully_Defined
1593 (Designated_Type (Component_Type (Etype (Comp))))
1594 then
1595 Freeze_And_Append
1596 (Designated_Type
1597 (Component_Type (Etype (Comp))), Loc, Result);
1598 end if;
1599
1600 -- Processing for real components (exclude anonymous subtypes)
1601
1602 if Ekind (Comp) = E_Component
1603 or else Ekind (Comp) = E_Discriminant
1604 then
1605 -- Check for error of component clause given for variable
1606 -- sized type. We have to delay this test till this point,
1607 -- since the component type has to be frozen for us to know
1608 -- if it is variable length. We omit this test in a generic
1609 -- context, it will be applied at instantiation time.
1610
1611 declare
1612 CC : constant Node_Id := Component_Clause (Comp);
1613
1614 begin
1615 if Present (CC) then
1616 Placed_Component := True;
1617
07fc65c4
GB
1618 if Inside_A_Generic then
1619 null;
1620
1621 elsif not Size_Known_At_Compile_Time
70482933 1622 (Underlying_Type (Etype (Comp)))
70482933
RK
1623 then
1624 Error_Msg_N
1625 ("component clause not allowed for variable " &
1626 "length component", CC);
1627 end if;
1628
1629 else
1630 Unplaced_Component := True;
1631 end if;
1632 end;
1633
1634 -- If component clause is present, then deal with the
1635 -- non-default bit order case. We cannot do this before
1636 -- the freeze point, because there is no required order
1637 -- for the component clause and the bit_order clause.
1638
1639 -- We only do this processing for the base type, and in
1640 -- fact that's important, since otherwise if there are
1641 -- record subtypes, we could reverse the bits once for
1642 -- each subtype, which would be incorrect.
1643
1644 if Present (Component_Clause (Comp))
1645 and then Reverse_Bit_Order (Rec)
1646 and then Ekind (E) = E_Record_Type
1647 then
1648 declare
1649 CFB : constant Uint := Component_Bit_Offset (Comp);
1650 CSZ : constant Uint := Esize (Comp);
1651 CLC : constant Node_Id := Component_Clause (Comp);
1652 Pos : constant Node_Id := Position (CLC);
1653 FB : constant Node_Id := First_Bit (CLC);
1654
1655 Storage_Unit_Offset : constant Uint :=
1656 CFB / System_Storage_Unit;
1657
1658 Start_Bit : constant Uint :=
1659 CFB mod System_Storage_Unit;
1660
1661 begin
1662 -- Cases where field goes over storage unit boundary
1663
1664 if Start_Bit + CSZ > System_Storage_Unit then
1665
1666 -- Allow multi-byte field but generate warning
1667
1668 if Start_Bit mod System_Storage_Unit = 0
1669 and then CSZ mod System_Storage_Unit = 0
1670 then
1671 Error_Msg_N
1672 ("multi-byte field specified with non-standard"
1673 & " Bit_Order?", CLC);
1674
1675 if Bytes_Big_Endian then
1676 Error_Msg_N
1677 ("bytes are not reversed "
1678 & "(component is big-endian)?", CLC);
1679 else
1680 Error_Msg_N
1681 ("bytes are not reversed "
1682 & "(component is little-endian)?", CLC);
1683 end if;
1684
1685 -- Do not allow non-contiguous field
1686
1687 else
1688 Error_Msg_N
1689 ("attempt to specify non-contiguous field"
1690 & " not permitted", CLC);
1691 Error_Msg_N
1692 ("\(caused by non-standard Bit_Order "
1693 & "specified)", CLC);
1694 end if;
1695
1696 -- Case where field fits in one storage unit
1697
1698 else
1699 -- Give warning if suspicious component clause
1700
1701 if Intval (FB) >= System_Storage_Unit then
1702 Error_Msg_N
1703 ("?Bit_Order clause does not affect " &
1704 "byte ordering", Pos);
1705 Error_Msg_Uint_1 :=
1706 Intval (Pos) + Intval (FB) / System_Storage_Unit;
1707 Error_Msg_N
1708 ("?position normalized to ^ before bit " &
1709 "order interpreted", Pos);
1710 end if;
1711
1712 -- Here is where we fix up the Component_Bit_Offset
1713 -- value to account for the reverse bit order.
1714 -- Some examples of what needs to be done are:
1715
1716 -- First_Bit .. Last_Bit Component_Bit_Offset
1717 -- old new old new
1718
1719 -- 0 .. 0 7 .. 7 0 7
1720 -- 0 .. 1 6 .. 7 0 6
1721 -- 0 .. 2 5 .. 7 0 5
1722 -- 0 .. 7 0 .. 7 0 4
1723
1724 -- 1 .. 1 6 .. 6 1 6
1725 -- 1 .. 4 3 .. 6 1 3
1726 -- 4 .. 7 0 .. 3 4 0
1727
1728 -- The general rule is that the first bit is
1729 -- is obtained by subtracting the old ending bit
1730 -- from storage_unit - 1.
1731
1732 Set_Component_Bit_Offset (Comp,
1733 (Storage_Unit_Offset * System_Storage_Unit)
1734 + (System_Storage_Unit - 1)
1735 - (Start_Bit + CSZ - 1));
1736
1737 Set_Normalized_First_Bit (Comp,
1738 Component_Bit_Offset (Comp) mod System_Storage_Unit);
1739 end if;
1740 end;
1741 end if;
1742 end if;
1743
1744 Next_Entity (Comp);
1745 end loop;
1746
1747 -- Check for useless pragma Bit_Order
1748
1749 if not Placed_Component and then Reverse_Bit_Order (Rec) then
1750 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1751 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
1752 Error_Msg_N ("\?since no component clauses were specified", ADC);
1753 end if;
1754
1755 -- Check for useless pragma Pack when all components placed
1756
1757 if Is_Packed (Rec)
1758 and then not Unplaced_Component
1759 and then Warn_On_Redundant_Constructs
1760 then
1761 Error_Msg_N
1762 ("?pragma Pack has no effect, no unplaced components",
1763 Get_Rep_Pragma (Rec, Name_Pack));
1764 Set_Is_Packed (Rec, False);
1765 end if;
1766
1767 -- If this is the record corresponding to a remote type,
1768 -- freeze the remote type here since that is what we are
fbf5a39b
AC
1769 -- semantically freezing. This prevents having the freeze
1770 -- node for that type in an inner scope.
70482933
RK
1771
1772 -- Also, Check for controlled components and unchecked unions.
1773 -- Finally, enforce the restriction that access attributes with
1774 -- a current instance prefix can only apply to limited types.
1775
1776 if Ekind (Rec) = E_Record_Type then
70482933
RK
1777 if Present (Corresponding_Remote_Type (Rec)) then
1778 Freeze_And_Append
1779 (Corresponding_Remote_Type (Rec), Loc, Result);
1780 end if;
1781
1782 Comp := First_Component (Rec);
70482933
RK
1783 while Present (Comp) loop
1784 if Has_Controlled_Component (Etype (Comp))
1785 or else (Chars (Comp) /= Name_uParent
1786 and then Is_Controlled (Etype (Comp)))
1787 or else (Is_Protected_Type (Etype (Comp))
1788 and then Present
1789 (Corresponding_Record_Type (Etype (Comp)))
1790 and then Has_Controlled_Component
1791 (Corresponding_Record_Type (Etype (Comp))))
1792 then
1793 Set_Has_Controlled_Component (Rec);
1794 exit;
1795 end if;
1796
1797 if Has_Unchecked_Union (Etype (Comp)) then
1798 Set_Has_Unchecked_Union (Rec);
1799 end if;
1800
1801 if Has_Per_Object_Constraint (Comp)
1802 and then not Is_Limited_Type (Rec)
1803 then
1804 -- Scan component declaration for likely misuses of
1805 -- current instance, either in a constraint or in a
1806 -- default expression.
1807
1808 Check_Current_Instance (Parent (Comp));
1809 end if;
1810
1811 Next_Component (Comp);
1812 end loop;
1813 end if;
1814
1815 Set_Component_Alignment_If_Not_Set (Rec);
1816
1817 -- For first subtypes, check if there are any fixed-point
1818 -- fields with component clauses, where we must check the size.
1819 -- This is not done till the freeze point, since for fixed-point
1820 -- types, we do not know the size until the type is frozen.
d05ef0ab 1821 -- Similar processing applies to bit packed arrays.
70482933
RK
1822
1823 if Is_First_Subtype (Rec) then
1824 Comp := First_Component (Rec);
1825
1826 while Present (Comp) loop
1827 if Present (Component_Clause (Comp))
d05ef0ab
AC
1828 and then (Is_Fixed_Point_Type (Etype (Comp))
1829 or else
1830 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
1831 then
1832 Check_Size
d05ef0ab 1833 (Component_Name (Component_Clause (Comp)),
70482933
RK
1834 Etype (Comp),
1835 Esize (Comp),
1836 Junk);
1837 end if;
1838
1839 Next_Component (Comp);
1840 end loop;
1841 end if;
1842 end Freeze_Record_Type;
1843
1844 -- Start of processing for Freeze_Entity
1845
1846 begin
fbf5a39b 1847 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
1848
1849 if Is_Frozen (E) then
1850 return No_List;
1851
1852 -- It is improper to freeze an external entity within a generic
1853 -- because its freeze node will appear in a non-valid context.
1854 -- ??? We should probably freeze the entity at that point and insert
1855 -- the freeze node in a proper place but this proper place is not
1856 -- easy to find, and the proper scope is not easy to restore. For
1857 -- now, just wait to get out of the generic to freeze ???
1858
1859 elsif Inside_A_Generic and then External_Ref_In_Generic (E) then
1860 return No_List;
1861
1862 -- Do not freeze a global entity within an inner scope created during
1863 -- expansion. A call to subprogram E within some internal procedure
1864 -- (a stream attribute for example) might require freezing E, but the
1865 -- freeze node must appear in the same declarative part as E itself.
1866 -- The two-pass elaboration mechanism in gigi guarantees that E will
1867 -- be frozen before the inner call is elaborated. We exclude constants
1868 -- from this test, because deferred constants may be frozen early, and
1869 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
1870 -- comes from source, or is a generic instance, then the freeze point
1871 -- is the one mandated by the language. and we freze the entity.
1872
1873 elsif In_Open_Scopes (Scope (E))
1874 and then Scope (E) /= Current_Scope
1875 and then Ekind (E) /= E_Constant
1876 then
1877 declare
1878 S : Entity_Id := Current_Scope;
1879
1880 begin
1881 while Present (S) loop
1882 if Is_Overloadable (S) then
1883 if Comes_From_Source (S)
1884 or else Is_Generic_Instance (S)
1885 then
1886 exit;
1887 else
1888 return No_List;
1889 end if;
1890 end if;
1891
1892 S := Scope (S);
1893 end loop;
1894 end;
1895 end if;
1896
1897 -- Here to freeze the entity
1898
1899 Result := No_List;
1900 Set_Is_Frozen (E);
1901
1902 -- Case of entity being frozen is other than a type
1903
1904 if not Is_Type (E) then
1905
1906 -- If entity is exported or imported and does not have an external
1907 -- name, now is the time to provide the appropriate default name.
1908 -- Skip this if the entity is stubbed, since we don't need a name
1909 -- for any stubbed routine.
1910
1911 if (Is_Imported (E) or else Is_Exported (E))
1912 and then No (Interface_Name (E))
1913 and then Convention (E) /= Convention_Stubbed
1914 then
1915 Set_Encoded_Interface_Name
1916 (E, Get_Default_External_Name (E));
fbf5a39b
AC
1917
1918 -- Special processing for atomic objects appearing in object decls
1919
1920 elsif Is_Atomic (E)
1921 and then Nkind (Parent (E)) = N_Object_Declaration
1922 and then Present (Expression (Parent (E)))
1923 then
1924 declare
1925 Expr : constant Node_Id := Expression (Parent (E));
1926
1927 begin
1928 -- If expression is an aggregate, assign to a temporary to
1929 -- ensure that the actual assignment is done atomically rather
1930 -- than component-wise (the assignment to the temp may be done
1931 -- component-wise, but that is harmless.
1932
1933 if Nkind (Expr) = N_Aggregate then
1934 Expand_Atomic_Aggregate (Expr, Etype (E));
1935
1936 -- If the expression is a reference to a record or array
1937 -- object entity, then reset Is_True_Constant to False so
1938 -- that the compiler will not optimize away the intermediate
1939 -- object, which we need in this case for the same reason
1940 -- (to ensure that the actual assignment is atomic, rather
1941 -- than component-wise).
1942
1943 elsif Is_Entity_Name (Expr)
1944 and then (Is_Record_Type (Etype (Expr))
1945 or else
1946 Is_Array_Type (Etype (Expr)))
1947 then
1948 Set_Is_True_Constant (Entity (Expr), False);
1949 end if;
1950 end;
70482933
RK
1951 end if;
1952
1953 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 1954 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
1955 -- This is also the point where any extra formal parameters are
1956 -- created since we now know whether the subprogram will use
1957 -- a foreign convention.
1958
1959 if Is_Subprogram (E) then
70482933 1960 if not Is_Internal (E) then
70482933
RK
1961 declare
1962 F_Type : Entity_Id;
1963
1964 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
1965 -- Determines if given type entity is a fat pointer type
1966 -- used as an argument type or return type to a subprogram
1967 -- with C or C++ convention set.
1968
1969 --------------------------
1970 -- Is_Fat_C_Access_Type --
1971 --------------------------
1972
1973 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
1974 begin
1975 return (Convention (E) = Convention_C
1976 or else
1977 Convention (E) = Convention_CPP)
1978 and then Is_Access_Type (T)
1979 and then Esize (T) > Ttypes.System_Address_Size;
1980 end Is_Fat_C_Ptr_Type;
1981
1982 begin
1983 -- Loop through formals
1984
1985 Formal := First_Formal (E);
1986
1987 while Present (Formal) loop
70482933
RK
1988 F_Type := Etype (Formal);
1989 Freeze_And_Append (F_Type, Loc, Result);
1990
1991 if Is_Private_Type (F_Type)
1992 and then Is_Private_Type (Base_Type (F_Type))
1993 and then No (Full_View (Base_Type (F_Type)))
1994 and then not Is_Generic_Type (F_Type)
1995 and then not Is_Derived_Type (F_Type)
1996 then
1997 -- If the type of a formal is incomplete, subprogram
1998 -- is being frozen prematurely. Within an instance
1999 -- (but not within a wrapper package) this is an
2000 -- an artifact of our need to regard the end of an
2001 -- instantiation as a freeze point. Otherwise it is
2002 -- a definite error.
fbf5a39b 2003
70482933
RK
2004 -- and then not Is_Wrapper_Package (Current_Scope) ???
2005
2006 if In_Instance then
2007 Set_Is_Frozen (E, False);
2008 return No_List;
2009
2010 elsif not After_Last_Declaration then
2011 Error_Msg_Node_1 := F_Type;
2012 Error_Msg
2013 ("type& must be fully defined before this point",
2014 Loc);
2015 end if;
2016 end if;
2017
2018 -- Check bad use of fat C pointer
2019
fbf5a39b
AC
2020 if Warn_On_Export_Import and then
2021 Is_Fat_C_Ptr_Type (F_Type)
2022 then
70482933
RK
2023 Error_Msg_Qual_Level := 1;
2024 Error_Msg_N
2025 ("?type of & does not correspond to C pointer",
2026 Formal);
2027 Error_Msg_Qual_Level := 0;
2028 end if;
2029
2030 -- Check for unconstrained array in exported foreign
2031 -- convention case.
2032
2033 if Convention (E) in Foreign_Convention
2034 and then not Is_Imported (E)
2035 and then Is_Array_Type (F_Type)
2036 and then not Is_Constrained (F_Type)
fbf5a39b 2037 and then Warn_On_Export_Import
70482933
RK
2038 then
2039 Error_Msg_Qual_Level := 1;
2040 Error_Msg_N
2041 ("?type of argument& is unconstrained array",
2042 Formal);
2043 Error_Msg_N
2044 ("?foreign caller must pass bounds explicitly",
2045 Formal);
2046 Error_Msg_Qual_Level := 0;
2047 end if;
2048
2049 Next_Formal (Formal);
2050 end loop;
2051
2052 -- Check return type
2053
2054 if Ekind (E) = E_Function then
2055 Freeze_And_Append (Etype (E), Loc, Result);
2056
fbf5a39b
AC
2057 if Warn_On_Export_Import
2058 and then Is_Fat_C_Ptr_Type (Etype (E))
2059 then
70482933
RK
2060 Error_Msg_N
2061 ("?return type of& does not correspond to C pointer",
2062 E);
2063
2064 elsif Is_Array_Type (Etype (E))
2065 and then not Is_Constrained (Etype (E))
2066 and then not Is_Imported (E)
2067 and then Convention (E) in Foreign_Convention
fbf5a39b 2068 and then Warn_On_Export_Import
70482933
RK
2069 then
2070 Error_Msg_N
fbf5a39b 2071 ("?foreign convention function& should not " &
70482933
RK
2072 "return unconstrained array", E);
2073 end if;
2074 end if;
2075 end;
2076 end if;
2077
2078 -- Must freeze its parent first if it is a derived subprogram
2079
2080 if Present (Alias (E)) then
2081 Freeze_And_Append (Alias (E), Loc, Result);
2082 end if;
2083
2084 -- If the return type requires a transient scope, and we are on
2085 -- a target allowing functions to return with a depressed stack
2086 -- pointer, then we mark the function as requiring this treatment.
2087
2088 if Ekind (E) = E_Function
2089 and then Functions_Return_By_DSP_On_Target
2090 and then Requires_Transient_Scope (Etype (E))
2091 then
2092 Set_Function_Returns_With_DSP (E);
2093 end if;
2094
2095 if not Is_Internal (E) then
2096 Freeze_Subprogram (E);
2097 end if;
2098
2099 -- Here for other than a subprogram or type
2100
2101 else
2102 -- If entity has a type, and it is not a generic unit, then
2103 -- freeze it first (RM 13.14(10))
2104
2105 if Present (Etype (E))
2106 and then Ekind (E) /= E_Generic_Function
2107 then
2108 Freeze_And_Append (Etype (E), Loc, Result);
2109 end if;
2110
2111 -- For object created by object declaration, perform required
2112 -- categorization (preelaborate and pure) checks. Defer these
2113 -- checks to freeze time since pragma Import inhibits default
2114 -- initialization and thus pragma Import affects these checks.
2115
2116 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2117 Validate_Object_Declaration (Declaration_Node (E));
fbf5a39b 2118 Check_Address_Clause (E);
70482933
RK
2119 end if;
2120
2121 -- Check that a constant which has a pragma Volatile[_Components]
2122 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
2123
2124 -- Note: Atomic[_Components] also sets Volatile[_Components]
2125
2126 if Ekind (E) = E_Constant
2127 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2128 and then not Is_Imported (E)
2129 then
2130 -- Make sure we actually have a pragma, and have not merely
2131 -- inherited the indication from elsewhere (e.g. an address
2132 -- clause, which is not good enough in RM terms!)
2133
91b1417d
AC
2134 if Present (Get_Rep_Pragma (E, Name_Atomic))
2135 or else
2136 Present (Get_Rep_Pragma (E, Name_Atomic_Components))
70482933
RK
2137 then
2138 Error_Msg_N
91b1417d
AC
2139 ("stand alone atomic constant must be " &
2140 "imported ('R'M 'C.6(13))", E);
2141
2142 elsif Present (Get_Rep_Pragma (E, Name_Volatile))
2143 or else
2144 Present (Get_Rep_Pragma (E, Name_Volatile_Components))
2145 then
2146 Error_Msg_N
2147 ("stand alone volatile constant must be " &
2148 "imported ('R'M 'C.6(13))", E);
70482933
RK
2149 end if;
2150 end if;
2151
2152 -- Static objects require special handling
2153
2154 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2155 and then Is_Statically_Allocated (E)
2156 then
2157 Freeze_Static_Object (E);
2158 end if;
2159
2160 -- Remaining step is to layout objects
2161
2162 if Ekind (E) = E_Variable
2163 or else
2164 Ekind (E) = E_Constant
2165 or else
2166 Ekind (E) = E_Loop_Parameter
2167 or else
2168 Is_Formal (E)
2169 then
2170 Layout_Object (E);
2171 end if;
2172 end if;
2173
2174 -- Case of a type or subtype being frozen
2175
2176 else
2177 -- The type may be defined in a generic unit. This can occur when
2178 -- freezing a generic function that returns the type (which is
2179 -- defined in a parent unit). It is clearly meaningless to freeze
2180 -- this type. However, if it is a subtype, its size may be determi-
2181 -- nable and used in subsequent checks, so might as well try to
2182 -- compute it.
2183
2184 if Present (Scope (E))
2185 and then Is_Generic_Unit (Scope (E))
2186 then
2187 Check_Compile_Time_Size (E);
2188 return No_List;
2189 end if;
2190
2191 -- Deal with special cases of freezing for subtype
2192
2193 if E /= Base_Type (E) then
2194
2195 -- If ancestor subtype present, freeze that first.
2196 -- Note that this will also get the base type frozen.
2197
2198 Atype := Ancestor_Subtype (E);
2199
2200 if Present (Atype) then
2201 Freeze_And_Append (Atype, Loc, Result);
2202
2203 -- Otherwise freeze the base type of the entity before
fbf5a39b 2204 -- freezing the entity itself, (RM 13.14(15)).
70482933
RK
2205
2206 elsif E /= Base_Type (E) then
2207 Freeze_And_Append (Base_Type (E), Loc, Result);
2208 end if;
2209
fbf5a39b 2210 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2211
2212 elsif Is_Derived_Type (E) then
2213 Freeze_And_Append (Etype (E), Loc, Result);
2214 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2215 end if;
2216
2217 -- For array type, freeze index types and component type first
fbf5a39b 2218 -- before freezing the array (RM 13.14(15)).
70482933
RK
2219
2220 if Is_Array_Type (E) then
2221 declare
fbf5a39b
AC
2222 Ctyp : constant Entity_Id := Component_Type (E);
2223 Pnod : Node_Id;
70482933
RK
2224
2225 Non_Standard_Enum : Boolean := False;
2226 -- Set true if any of the index types is an enumeration
2227 -- type with a non-standard representation.
2228
2229 begin
2230 Freeze_And_Append (Ctyp, Loc, Result);
2231
2232 Indx := First_Index (E);
2233 while Present (Indx) loop
2234 Freeze_And_Append (Etype (Indx), Loc, Result);
2235
2236 if Is_Enumeration_Type (Etype (Indx))
2237 and then Has_Non_Standard_Rep (Etype (Indx))
2238 then
2239 Non_Standard_Enum := True;
2240 end if;
2241
2242 Next_Index (Indx);
2243 end loop;
2244
07fc65c4 2245 -- Processing that is done only for base types
70482933
RK
2246
2247 if Ekind (E) = E_Array_Type then
07fc65c4
GB
2248
2249 -- Propagate flags for component type
2250
70482933
RK
2251 if Is_Controlled (Component_Type (E))
2252 or else Has_Controlled_Component (Ctyp)
2253 then
2254 Set_Has_Controlled_Component (E);
2255 end if;
2256
2257 if Has_Unchecked_Union (Component_Type (E)) then
2258 Set_Has_Unchecked_Union (E);
2259 end if;
70482933 2260
07fc65c4
GB
2261 -- If packing was requested or if the component size was set
2262 -- explicitly, then see if bit packing is required. This
2263 -- processing is only done for base types, since all the
2264 -- representation aspects involved are type-related. This
2265 -- is not just an optimization, if we start processing the
2266 -- subtypes, they intefere with the settings on the base
2267 -- type (this is because Is_Packed has a slightly different
2268 -- meaning before and after freezing).
70482933 2269
70482933
RK
2270 declare
2271 Csiz : Uint;
2272 Esiz : Uint;
2273
2274 begin
2275 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2276 and then not Has_Atomic_Components (E)
2277 and then Known_Static_RM_Size (Ctyp)
2278 then
2279 Csiz := UI_Max (RM_Size (Ctyp), 1);
2280
2281 elsif Known_Component_Size (E) then
2282 Csiz := Component_Size (E);
2283
2284 elsif not Known_Static_Esize (Ctyp) then
2285 Csiz := Uint_0;
2286
2287 else
2288 Esiz := Esize (Ctyp);
2289
2290 -- We can set the component size if it is less than
2291 -- 16, rounding it up to the next storage unit size.
2292
2293 if Esiz <= 8 then
2294 Csiz := Uint_8;
2295 elsif Esiz <= 16 then
2296 Csiz := Uint_16;
2297 else
2298 Csiz := Uint_0;
2299 end if;
2300
2301 -- Set component size up to match alignment if
2302 -- it would otherwise be less than the alignment.
2303 -- This deals with cases of types whose alignment
2304 -- exceeds their sizes (padded types).
2305
2306 if Csiz /= 0 then
2307 declare
2308 A : constant Uint := Alignment_In_Bits (Ctyp);
2309
2310 begin
2311 if Csiz < A then
2312 Csiz := A;
2313 end if;
2314 end;
2315 end if;
2316
2317 end if;
2318
2319 if 1 <= Csiz and then Csiz <= 64 then
2320
2321 -- We set the component size for all cases 1-64
2322
2323 Set_Component_Size (Base_Type (E), Csiz);
2324
fbf5a39b
AC
2325 -- Check for base type of 8,16,32 bits, where the
2326 -- subtype has a length one less than the base type
2327 -- and is unsigned (e.g. Natural subtype of Integer)
2328
2329 -- In such cases, if a component size was not set
2330 -- explicitly, then generate a warning.
2331
2332 if Has_Pragma_Pack (E)
2333 and then not Has_Component_Size_Clause (E)
2334 and then
2335 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2336 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2337 then
2338 Error_Msg_Uint_1 := Csiz;
2339 Pnod :=
2340 Get_Rep_Pragma (First_Subtype (E), Name_Pack);
2341
2342 if Present (Pnod) then
2343 Error_Msg_N
2344 ("pragma Pack causes component size to be ^?",
2345 Pnod);
2346 Error_Msg_N
2347 ("\use Component_Size to set desired value",
2348 Pnod);
2349 end if;
2350 end if;
2351
70482933
RK
2352 -- Actual packing is not needed for 8,16,32,64
2353 -- Also not needed for 24 if alignment is 1
2354
2355 if Csiz = 8
2356 or else Csiz = 16
2357 or else Csiz = 32
2358 or else Csiz = 64
2359 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2360 then
2361 -- Here the array was requested to be packed, but
2362 -- the packing request had no effect, so Is_Packed
2363 -- is reset.
2364
2365 -- Note: semantically this means that we lose
2366 -- track of the fact that a derived type inherited
2367 -- a pack pragma that was non-effective, but that
2368 -- seems fine.
2369
2370 -- We regard a Pack pragma as a request to set a
2371 -- representation characteristic, and this request
2372 -- may be ignored.
2373
2374 Set_Is_Packed (Base_Type (E), False);
2375
2376 -- In all other cases, packing is indeed needed
2377
2378 else
2379 Set_Has_Non_Standard_Rep (Base_Type (E));
2380 Set_Is_Bit_Packed_Array (Base_Type (E));
2381 Set_Is_Packed (Base_Type (E));
2382 end if;
2383 end if;
2384 end;
07fc65c4
GB
2385
2386 -- Processing that is done only for subtypes
2387
2388 else
2389 -- Acquire alignment from base type
2390
2391 if Unknown_Alignment (E) then
2392 Set_Alignment (E, Alignment (Base_Type (E)));
2393 end if;
2394 end if;
2395
d05ef0ab
AC
2396 -- For bit-packed arrays, check the size
2397
2398 if Is_Bit_Packed_Array (E)
2399 and then Known_Esize (E)
2400 then
2401 declare
2402 Discard : Boolean;
2403 SizC : constant Node_Id := Size_Clause (E);
2404
2405 begin
2406 -- It is not clear if it is possible to have no size
2407 -- clause at this stage, but this is not worth worrying
2408 -- about. Post the error on the entity name in the size
2409 -- clause if present, else on the type entity itself.
2410
2411 if Present (SizC) then
2412 Check_Size (Name (SizC), E, Esize (E), Discard);
2413 else
2414 Check_Size (E, E, Esize (E), Discard);
2415 end if;
2416 end;
2417 end if;
2418
07fc65c4
GB
2419 -- Check one common case of a size given where the array
2420 -- needs to be packed, but was not so the size cannot be
2421 -- honored. This would of course be caught by the backend,
2422 -- and indeed we don't catch all cases. The point is that
2423 -- we can give a better error message in those cases that
2424 -- we do catch with the circuitry here.
2425
fbf5a39b
AC
2426 declare
2427 Lo, Hi : Node_Id;
2428 Ctyp : constant Entity_Id := Component_Type (E);
07fc65c4 2429
fbf5a39b
AC
2430 begin
2431 if Present (Size_Clause (E))
2432 and then Known_Static_Esize (E)
2433 and then not Is_Bit_Packed_Array (E)
2434 and then not Has_Pragma_Pack (E)
2435 and then Number_Dimensions (E) = 1
2436 and then not Has_Component_Size_Clause (E)
2437 and then Known_Static_Esize (Ctyp)
2438 then
07fc65c4
GB
2439 Get_Index_Bounds (First_Index (E), Lo, Hi);
2440
2441 if Compile_Time_Known_Value (Lo)
2442 and then Compile_Time_Known_Value (Hi)
2443 and then Known_Static_RM_Size (Ctyp)
2444 and then RM_Size (Ctyp) < 64
2445 then
2446 declare
fbf5a39b
AC
2447 Lov : constant Uint := Expr_Value (Lo);
2448 Hiv : constant Uint := Expr_Value (Hi);
2449 Len : constant Uint :=
2450 UI_Max (Uint_0, Hiv - Lov + 1);
2451 Rsiz : constant Uint := RM_Size (Ctyp);
2452
2453 -- What we are looking for here is the situation
2454 -- where the Esize given would be exactly right
2455 -- if there was a pragma Pack (resulting in the
2456 -- component size being the same as the RM_Size).
2457 -- Furthermore, the component type size must be
2458 -- an odd size (not a multiple of storage unit)
07fc65c4
GB
2459
2460 begin
fbf5a39b
AC
2461 if Esize (E) = Len * Rsiz
2462 and then Rsiz mod System_Storage_Unit /= 0
07fc65c4
GB
2463 then
2464 Error_Msg_NE
2465 ("size given for& too small",
2466 Size_Clause (E), E);
2467 Error_Msg_N
2468 ("\explicit pragma Pack is required",
2469 Size_Clause (E));
2470 end if;
2471 end;
2472 end if;
fbf5a39b
AC
2473 end if;
2474 end;
70482933
RK
2475
2476 -- If any of the index types was an enumeration type with
2477 -- a non-standard rep clause, then we indicate that the
2478 -- array type is always packed (even if it is not bit packed).
2479
2480 if Non_Standard_Enum then
2481 Set_Has_Non_Standard_Rep (Base_Type (E));
2482 Set_Is_Packed (Base_Type (E));
2483 end if;
2484 end;
2485
2486 Set_Component_Alignment_If_Not_Set (E);
2487
2488 -- If the array is packed, we must create the packed array
2489 -- type to be used to actually implement the type. This is
2490 -- only needed for real array types (not for string literal
2491 -- types, since they are present only for the front end).
2492
2493 if Is_Packed (E)
2494 and then Ekind (E) /= E_String_Literal_Subtype
2495 then
2496 Create_Packed_Array_Type (E);
2497 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
2498
2499 -- Size information of packed array type is copied to the
2500 -- array type, since this is really the representation.
2501
2502 Set_Size_Info (E, Packed_Array_Type (E));
2503 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
2504 end if;
2505
fbf5a39b
AC
2506 -- For a class-wide type, the corresponding specific type is
2507 -- frozen as well (RM 13.14(15))
70482933
RK
2508
2509 elsif Is_Class_Wide_Type (E) then
2510 Freeze_And_Append (Root_Type (E), Loc, Result);
2511
2512 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2513 -- parent of a derived type) and it is a library-level entity,
2514 -- generate an itype reference for it. Otherwise, its first
2515 -- explicit reference may be in an inner scope, which will be
2516 -- rejected by the back-end.
2517
2518 if Is_Itype (E)
2519 and then Is_Compilation_Unit (Scope (E))
2520 then
70482933 2521 declare
fbf5a39b 2522 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
2523
2524 begin
2525 Set_Itype (Ref, E);
2526 if No (Result) then
2527 Result := New_List (Ref);
2528 else
2529 Append (Ref, Result);
2530 end if;
2531 end;
2532 end if;
2533
fbf5a39b
AC
2534 -- The equivalent type associated with a class-wide subtype
2535 -- needs to be frozen to ensure that its layout is done.
2536 -- Class-wide subtypes are currently only frozen on targets
2537 -- requiring front-end layout (see New_Class_Wide_Subtype
2538 -- and Make_CW_Equivalent_Type in exp_util.adb).
2539
2540 if Ekind (E) = E_Class_Wide_Subtype
2541 and then Present (Equivalent_Type (E))
2542 then
2543 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2544 end if;
2545
2546 -- For a record (sub)type, freeze all the component types (RM
2547 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
70482933
RK
2548 -- using Is_Record_Type, because we don't want to attempt the
2549 -- freeze for the case of a private type with record extension
2550 -- (we will do that later when the full type is frozen).
2551
2552 elsif Ekind (E) = E_Record_Type
2553 or else Ekind (E) = E_Record_Subtype
2554 then
2555 Freeze_Record_Type (E);
2556
2557 -- For a concurrent type, freeze corresponding record type. This
2558 -- does not correpond to any specific rule in the RM, but the
2559 -- record type is essentially part of the concurrent type.
2560 -- Freeze as well all local entities. This includes record types
2561 -- created for entry parameter blocks, and whatever local entities
2562 -- may appear in the private part.
2563
2564 elsif Is_Concurrent_Type (E) then
2565 if Present (Corresponding_Record_Type (E)) then
2566 Freeze_And_Append
2567 (Corresponding_Record_Type (E), Loc, Result);
2568 end if;
2569
2570 Comp := First_Entity (E);
2571
2572 while Present (Comp) loop
2573 if Is_Type (Comp) then
2574 Freeze_And_Append (Comp, Loc, Result);
2575
2576 elsif (Ekind (Comp)) /= E_Function then
2577 Freeze_And_Append (Etype (Comp), Loc, Result);
2578 end if;
2579
2580 Next_Entity (Comp);
2581 end loop;
2582
2583 -- Private types are required to point to the same freeze node
2584 -- as their corresponding full views. The freeze node itself
2585 -- has to point to the partial view of the entity (because
2586 -- from the partial view, we can retrieve the full view, but
2587 -- not the reverse). However, in order to freeze correctly,
2588 -- we need to freeze the full view. If we are freezing at the
2589 -- end of a scope (or within the scope of the private type),
2590 -- the partial and full views will have been swapped, the
2591 -- full view appears first in the entity chain and the swapping
fbf5a39b 2592 -- mechanism ensures that the pointers are properly set (on
70482933
RK
2593 -- scope exit).
2594
2595 -- If we encounter the partial view before the full view
2596 -- (e.g. when freezing from another scope), we freeze the
2597 -- full view, and then set the pointers appropriately since
2598 -- we cannot rely on swapping to fix things up (subtypes in an
2599 -- outer scope might not get swapped).
2600
2601 elsif Is_Incomplete_Or_Private_Type (E)
2602 and then not Is_Generic_Type (E)
2603 then
2604 -- Case of full view present
2605
2606 if Present (Full_View (E)) then
2607
2608 -- If full view has already been frozen, then no
2609 -- further processing is required
2610
2611 if Is_Frozen (Full_View (E)) then
2612
2613 Set_Has_Delayed_Freeze (E, False);
2614 Set_Freeze_Node (E, Empty);
2615 Check_Debug_Info_Needed (E);
2616
2617 -- Otherwise freeze full view and patch the pointers
fbf5a39b
AC
2618 -- so that the freeze node will elaborate both views
2619 -- in the back-end.
70482933
RK
2620
2621 else
fbf5a39b
AC
2622 declare
2623 Full : constant Entity_Id := Full_View (E);
70482933 2624
fbf5a39b
AC
2625 begin
2626 if Is_Private_Type (Full)
2627 and then Present (Underlying_Full_View (Full))
2628 then
2629 Freeze_And_Append
2630 (Underlying_Full_View (Full), Loc, Result);
2631 end if;
70482933 2632
fbf5a39b 2633 Freeze_And_Append (Full, Loc, Result);
70482933 2634
fbf5a39b
AC
2635 if Has_Delayed_Freeze (E) then
2636 F_Node := Freeze_Node (Full);
70482933 2637
fbf5a39b
AC
2638 if Present (F_Node) then
2639 Set_Freeze_Node (E, F_Node);
2640 Set_Entity (F_Node, E);
2641
2642 else
2643 -- {Incomplete,Private}_Subtypes
2644 -- with Full_Views constrained by discriminants
2645
2646 Set_Has_Delayed_Freeze (E, False);
2647 Set_Freeze_Node (E, Empty);
2648 end if;
70482933 2649 end if;
fbf5a39b 2650 end;
70482933
RK
2651
2652 Check_Debug_Info_Needed (E);
2653 end if;
2654
2655 -- AI-117 requires that the convention of a partial view
2656 -- be the same as the convention of the full view. Note
2657 -- that this is a recognized breach of privacy, but it's
2658 -- essential for logical consistency of representation,
2659 -- and the lack of a rule in RM95 was an oversight.
2660
2661 Set_Convention (E, Convention (Full_View (E)));
2662
2663 Set_Size_Known_At_Compile_Time (E,
2664 Size_Known_At_Compile_Time (Full_View (E)));
2665
2666 -- Size information is copied from the full view to the
2667 -- incomplete or private view for consistency
2668
2669 -- We skip this is the full view is not a type. This is
2670 -- very strange of course, and can only happen as a result
2671 -- of certain illegalities, such as a premature attempt to
2672 -- derive from an incomplete type.
2673
2674 if Is_Type (Full_View (E)) then
2675 Set_Size_Info (E, Full_View (E));
2676 Set_RM_Size (E, RM_Size (Full_View (E)));
2677 end if;
2678
2679 return Result;
2680
2681 -- Case of no full view present. If entity is derived or subtype,
2682 -- it is safe to freeze, correctness depends on the frozen status
2683 -- of parent. Otherwise it is either premature usage, or a Taft
2684 -- amendment type, so diagnosis is at the point of use and the
2685 -- type might be frozen later.
2686
2687 elsif E /= Base_Type (E)
2688 or else Is_Derived_Type (E)
2689 then
2690 null;
2691
2692 else
2693 Set_Is_Frozen (E, False);
2694 return No_List;
2695 end if;
2696
2697 -- For access subprogram, freeze types of all formals, the return
2698 -- type was already frozen, since it is the Etype of the function.
2699
2700 elsif Ekind (E) = E_Subprogram_Type then
2701 Formal := First_Formal (E);
2702 while Present (Formal) loop
2703 Freeze_And_Append (Etype (Formal), Loc, Result);
2704 Next_Formal (Formal);
2705 end loop;
2706
2707 -- If the return type requires a transient scope, and we are on
2708 -- a target allowing functions to return with a depressed stack
2709 -- pointer, then we mark the function as requiring this treatment.
2710
2711 if Functions_Return_By_DSP_On_Target
2712 and then Requires_Transient_Scope (Etype (E))
2713 then
2714 Set_Function_Returns_With_DSP (E);
2715 end if;
2716
2717 Freeze_Subprogram (E);
2718
2719 -- For access to a protected subprogram, freeze the equivalent
2720 -- type (however this is not set if we are not generating code)
2721 -- or if this is an anonymous type used just for resolution).
2722
2723 elsif Ekind (E) = E_Access_Protected_Subprogram_Type
2724 and then Operating_Mode = Generate_Code
2725 and then Present (Equivalent_Type (E))
2726 then
2727 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2728 end if;
2729
2730 -- Generic types are never seen by the back-end, and are also not
2731 -- processed by the expander (since the expander is turned off for
2732 -- generic processing), so we never need freeze nodes for them.
2733
2734 if Is_Generic_Type (E) then
2735 return Result;
2736 end if;
2737
2738 -- Some special processing for non-generic types to complete
2739 -- representation details not known till the freeze point.
2740
2741 if Is_Fixed_Point_Type (E) then
2742 Freeze_Fixed_Point_Type (E);
2743
fbf5a39b
AC
2744 -- Some error checks required for ordinary fixed-point type.
2745 -- Defer these till the freeze-point since we need the small
2746 -- and range values. We only do these checks for base types
2747
2748 if Is_Ordinary_Fixed_Point_Type (E)
2749 and then E = Base_Type (E)
2750 then
2751 if Small_Value (E) < Ureal_2_M_80 then
2752 Error_Msg_Name_1 := Name_Small;
2753 Error_Msg_N
2754 ("`&''%` is too small, minimum is 2.0'*'*(-80)", E);
2755
2756 elsif Small_Value (E) > Ureal_2_80 then
2757 Error_Msg_Name_1 := Name_Small;
2758 Error_Msg_N
2759 ("`&''%` is too large, maximum is 2.0'*'*80", E);
2760 end if;
2761
2762 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
2763 Error_Msg_Name_1 := Name_First;
2764 Error_Msg_N
2765 ("`&''%` is too small, minimum is -10.0'*'*36", E);
2766 end if;
2767
2768 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
2769 Error_Msg_Name_1 := Name_Last;
2770 Error_Msg_N
2771 ("`&''%` is too large, maximum is 10.0'*'*36", E);
2772 end if;
2773 end if;
2774
70482933
RK
2775 elsif Is_Enumeration_Type (E) then
2776 Freeze_Enumeration_Type (E);
2777
2778 elsif Is_Integer_Type (E) then
2779 Adjust_Esize_For_Alignment (E);
2780
2781 elsif Is_Access_Type (E)
2782 and then No (Associated_Storage_Pool (E))
2783 then
2784 Check_Restriction (No_Standard_Storage_Pools, E);
2785 end if;
2786
2787 -- If the current entity is an array or record subtype and has
2788 -- discriminants used to constrain it, it must not freeze, because
2789 -- Freeze_Entity nodes force Gigi to process the frozen type.
2790
2791 if Is_Composite_Type (E) then
2792
2793 if Is_Array_Type (E) then
70482933
RK
2794 declare
2795 Index : Node_Id := First_Index (E);
2796 Expr1 : Node_Id;
2797 Expr2 : Node_Id;
2798
2799 begin
2800 while Present (Index) loop
2801 if Etype (Index) /= Any_Type then
2802 Get_Index_Bounds (Index, Expr1, Expr2);
2803
2804 for J in 1 .. 2 loop
2805 if Nkind (Expr1) = N_Identifier
2806 and then Ekind (Entity (Expr1)) = E_Discriminant
2807 then
2808 Set_Has_Delayed_Freeze (E, False);
2809 Set_Freeze_Node (E, Empty);
2810 Check_Debug_Info_Needed (E);
2811 return Result;
2812 end if;
2813
2814 Expr1 := Expr2;
2815 end loop;
2816 end if;
2817
2818 Next_Index (Index);
2819 end loop;
2820 end;
2821
2822 elsif Has_Discriminants (E)
2823 and Is_Constrained (E)
2824 then
70482933
RK
2825 declare
2826 Constraint : Elmt_Id;
2827 Expr : Node_Id;
07fc65c4 2828
70482933
RK
2829 begin
2830 Constraint := First_Elmt (Discriminant_Constraint (E));
70482933 2831 while Present (Constraint) loop
70482933
RK
2832 Expr := Node (Constraint);
2833 if Nkind (Expr) = N_Identifier
2834 and then Ekind (Entity (Expr)) = E_Discriminant
2835 then
2836 Set_Has_Delayed_Freeze (E, False);
2837 Set_Freeze_Node (E, Empty);
2838 Check_Debug_Info_Needed (E);
2839 return Result;
2840 end if;
2841
2842 Next_Elmt (Constraint);
2843 end loop;
2844 end;
70482933
RK
2845 end if;
2846
2847 -- AI-117 requires that all new primitives of a tagged type
2848 -- must inherit the convention of the full view of the type.
2849 -- Inherited and overriding operations are defined to inherit
2850 -- the convention of their parent or overridden subprogram
2851 -- (also specified in AI-117), and that will have occurred
2852 -- earlier (in Derive_Subprogram and New_Overloaded_Entity).
2853 -- Here we set the convention of primitives that are still
2854 -- convention Ada, which will ensure that any new primitives
2855 -- inherit the type's convention. Class-wide types can have
2856 -- a foreign convention inherited from their specific type,
2857 -- but are excluded from this since they don't have any
2858 -- associated primitives.
2859
2860 if Is_Tagged_Type (E)
2861 and then not Is_Class_Wide_Type (E)
2862 and then Convention (E) /= Convention_Ada
2863 then
2864 declare
2865 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 2866 Prim : Elmt_Id;
70482933 2867 begin
07fc65c4 2868 Prim := First_Elmt (Prim_List);
70482933
RK
2869 while Present (Prim) loop
2870 if Convention (Node (Prim)) = Convention_Ada then
2871 Set_Convention (Node (Prim), Convention (E));
2872 end if;
2873
2874 Next_Elmt (Prim);
2875 end loop;
2876 end;
2877 end if;
2878 end if;
2879
07fc65c4
GB
2880 -- Generate primitive operation references for a tagged type
2881
2882 if Is_Tagged_Type (E)
2883 and then not Is_Class_Wide_Type (E)
2884 then
2885 declare
2886 Prim_List : constant Elist_Id := Primitive_Operations (E);
2887 Prim : Elmt_Id;
2888 Ent : Entity_Id;
2889
2890 begin
2891 Prim := First_Elmt (Prim_List);
2892 while Present (Prim) loop
2893 Ent := Node (Prim);
2894
2895 -- If the operation is derived, get the original for
2896 -- cross-reference purposes (it is the original for
2897 -- which we want the xref, and for which the comes
2898 -- from source test needs to be performed).
2899
2900 while Present (Alias (Ent)) loop
2901 Ent := Alias (Ent);
2902 end loop;
2903
2904 Generate_Reference (E, Ent, 'p', Set_Ref => False);
2905 Next_Elmt (Prim);
2906 end loop;
2907
2908 -- If we get an exception, then something peculiar has happened
2909 -- probably as a result of a previous error. Since this is only
2910 -- for non-critical cross-references, ignore the error.
2911
2912 exception
2913 when others => null;
2914 end;
2915 end if;
2916
70482933
RK
2917 -- Now that all types from which E may depend are frozen, see
2918 -- if the size is known at compile time, if it must be unsigned,
2919 -- or if strict alignent is required
2920
2921 Check_Compile_Time_Size (E);
2922 Check_Unsigned_Type (E);
2923
2924 if Base_Type (E) = E then
2925 Check_Strict_Alignment (E);
2926 end if;
2927
2928 -- Do not allow a size clause for a type which does not have a size
2929 -- that is known at compile time
2930
2931 if Has_Size_Clause (E)
2932 and then not Size_Known_At_Compile_Time (E)
2933 then
07fc65c4
GB
2934 -- Supress this message if errors posted on E, even if we are
2935 -- in all errors mode, since this is often a junk message
2936
2937 if not Error_Posted (E) then
2938 Error_Msg_N
2939 ("size clause not allowed for variable length type",
2940 Size_Clause (E));
2941 end if;
70482933
RK
2942 end if;
2943
2944 -- Remaining process is to set/verify the representation information,
2945 -- in particular the size and alignment values. This processing is
2946 -- not required for generic types, since generic types do not play
2947 -- any part in code generation, and so the size and alignment values
2948 -- for suhc types are irrelevant.
2949
2950 if Is_Generic_Type (E) then
2951 return Result;
2952
2953 -- Otherwise we call the layout procedure
2954
2955 else
2956 Layout_Type (E);
2957 end if;
2958
2959 -- End of freeze processing for type entities
2960 end if;
2961
2962 -- Here is where we logically freeze the current entity. If it has a
2963 -- freeze node, then this is the point at which the freeze node is
2964 -- linked into the result list.
2965
2966 if Has_Delayed_Freeze (E) then
2967
2968 -- If a freeze node is already allocated, use it, otherwise allocate
2969 -- a new one. The preallocation happens in the case of anonymous base
2970 -- types, where we preallocate so that we can set First_Subtype_Link.
2971 -- Note that we reset the Sloc to the current freeze location.
2972
2973 if Present (Freeze_Node (E)) then
2974 F_Node := Freeze_Node (E);
2975 Set_Sloc (F_Node, Loc);
2976
2977 else
2978 F_Node := New_Node (N_Freeze_Entity, Loc);
2979 Set_Freeze_Node (E, F_Node);
2980 Set_Access_Types_To_Process (F_Node, No_Elist);
2981 Set_TSS_Elist (F_Node, No_Elist);
2982 Set_Actions (F_Node, No_List);
2983 end if;
2984
2985 Set_Entity (F_Node, E);
2986
2987 if Result = No_List then
2988 Result := New_List (F_Node);
2989 else
2990 Append (F_Node, Result);
2991 end if;
70482933
RK
2992 end if;
2993
2994 -- When a type is frozen, the first subtype of the type is frozen as
2995 -- well (RM 13.14(15)). This has to be done after freezing the type,
2996 -- since obviously the first subtype depends on its own base type.
2997
2998 if Is_Type (E) then
2999 Freeze_And_Append (First_Subtype (E), Loc, Result);
3000
3001 -- If we just froze a tagged non-class wide record, then freeze the
3002 -- corresponding class-wide type. This must be done after the tagged
3003 -- type itself is frozen, because the class-wide type refers to the
3004 -- tagged type which generates the class.
3005
3006 if Is_Tagged_Type (E)
3007 and then not Is_Class_Wide_Type (E)
3008 and then Present (Class_Wide_Type (E))
3009 then
3010 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3011 end if;
3012 end if;
3013
3014 Check_Debug_Info_Needed (E);
3015
3016 -- Special handling for subprograms
3017
3018 if Is_Subprogram (E) then
3019
3020 -- If subprogram has address clause then reset Is_Public flag, since
3021 -- we do not want the backend to generate external references.
3022
3023 if Present (Address_Clause (E))
3024 and then not Is_Library_Level_Entity (E)
3025 then
3026 Set_Is_Public (E, False);
3027
3028 -- If no address clause and not intrinsic, then for imported
3029 -- subprogram in main unit, generate descriptor if we are in
3030 -- Propagate_Exceptions mode.
3031
3032 elsif Propagate_Exceptions
3033 and then Is_Imported (E)
3034 and then not Is_Intrinsic_Subprogram (E)
3035 and then Convention (E) /= Convention_Stubbed
3036 then
3037 if Result = No_List then
3038 Result := Empty_List;
3039 end if;
3040
3041 Generate_Subprogram_Descriptor_For_Imported_Subprogram
3042 (E, Result);
3043 end if;
70482933
RK
3044 end if;
3045
3046 return Result;
3047 end Freeze_Entity;
3048
3049 -----------------------------
3050 -- Freeze_Enumeration_Type --
3051 -----------------------------
3052
3053 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3054 begin
3055 if Has_Foreign_Convention (Typ)
3056 and then not Has_Size_Clause (Typ)
3057 and then Esize (Typ) < Standard_Integer_Size
3058 then
3059 Init_Esize (Typ, Standard_Integer_Size);
70482933
RK
3060 else
3061 Adjust_Esize_For_Alignment (Typ);
3062 end if;
3063 end Freeze_Enumeration_Type;
3064
3065 -----------------------
3066 -- Freeze_Expression --
3067 -----------------------
3068
3069 procedure Freeze_Expression (N : Node_Id) is
3070 In_Def_Exp : constant Boolean := In_Default_Expression;
3071 Typ : Entity_Id;
3072 Nam : Entity_Id;
3073 Desig_Typ : Entity_Id;
3074 P : Node_Id;
3075 Parent_P : Node_Id;
3076
3077 Freeze_Outside : Boolean := False;
3078 -- This flag is set true if the entity must be frozen outside the
3079 -- current subprogram. This happens in the case of expander generated
3080 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3081 -- not freeze all entities like other bodies, but which nevertheless
3082 -- may reference entities that have to be frozen before the body and
3083 -- obviously cannot be frozen inside the body.
3084
3085 function In_Exp_Body (N : Node_Id) return Boolean;
3086 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3087 -- it is the handled statement sequence of an expander generated
3088 -- subprogram (init proc, or stream subprogram). If so, it returns
3089 -- True, otherwise False.
3090
fbf5a39b
AC
3091 -----------------
3092 -- In_Exp_Body --
3093 -----------------
3094
70482933
RK
3095 function In_Exp_Body (N : Node_Id) return Boolean is
3096 P : Node_Id;
3097
3098 begin
3099 if Nkind (N) = N_Subprogram_Body then
3100 P := N;
3101 else
3102 P := Parent (N);
3103 end if;
3104
3105 if Nkind (P) /= N_Subprogram_Body then
3106 return False;
3107
3108 else
3109 P := Defining_Unit_Name (Specification (P));
3110
3111 if Nkind (P) = N_Defining_Identifier
fbf5a39b
AC
3112 and then (Is_Init_Proc (P) or else
3113 Is_TSS (P, TSS_Stream_Input) or else
3114 Is_TSS (P, TSS_Stream_Output) or else
3115 Is_TSS (P, TSS_Stream_Read) or else
3116 Is_TSS (P, TSS_Stream_Write))
70482933
RK
3117 then
3118 return True;
3119 else
3120 return False;
3121 end if;
3122 end if;
70482933
RK
3123 end In_Exp_Body;
3124
3125 -- Start of processing for Freeze_Expression
3126
3127 begin
3128 -- Immediate return if freezing is inhibited. This flag is set by
3129 -- the analyzer to stop freezing on generated expressions that would
3130 -- cause freezing if they were in the source program, but which are
3131 -- not supposed to freeze, since they are created.
3132
3133 if Must_Not_Freeze (N) then
3134 return;
3135 end if;
3136
3137 -- If expression is non-static, then it does not freeze in a default
3138 -- expression, see section "Handling of Default Expressions" in the
3139 -- spec of package Sem for further details. Note that we have to
3140 -- make sure that we actually have a real expression (if we have
3141 -- a subtype indication, we can't test Is_Static_Expression!)
3142
3143 if In_Def_Exp
3144 and then Nkind (N) in N_Subexpr
3145 and then not Is_Static_Expression (N)
3146 then
3147 return;
3148 end if;
3149
3150 -- Freeze type of expression if not frozen already
3151
fbf5a39b
AC
3152 Typ := Empty;
3153
3154 if Nkind (N) in N_Has_Etype then
3155 if not Is_Frozen (Etype (N)) then
3156 Typ := Etype (N);
3157
3158 -- Base type may be an derived numeric type that is frozen at
3159 -- the point of declaration, but first_subtype is still unfrozen.
3160
3161 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3162 Typ := First_Subtype (Etype (N));
3163 end if;
70482933
RK
3164 end if;
3165
3166 -- For entity name, freeze entity if not frozen already. A special
3167 -- exception occurs for an identifier that did not come from source.
3168 -- We don't let such identifiers freeze a non-internal entity, i.e.
3169 -- an entity that did come from source, since such an identifier was
3170 -- generated by the expander, and cannot have any semantic effect on
3171 -- the freezing semantics. For example, this stops the parameter of
3172 -- an initialization procedure from freezing the variable.
3173
3174 if Is_Entity_Name (N)
3175 and then not Is_Frozen (Entity (N))
3176 and then (Nkind (N) /= N_Identifier
3177 or else Comes_From_Source (N)
3178 or else not Comes_From_Source (Entity (N)))
3179 then
3180 Nam := Entity (N);
70482933
RK
3181 else
3182 Nam := Empty;
3183 end if;
3184
3185 -- For an allocator freeze designated type if not frozen already.
3186
3187 -- For an aggregate whose component type is an access type, freeze
3188 -- the designated type now, so that its freeze does not appear within
3189 -- the loop that might be created in the expansion of the aggregate.
3190 -- If the designated type is a private type without full view, the
3191 -- expression cannot contain an allocator, so the type is not frozen.
3192
3193 Desig_Typ := Empty;
70482933 3194
fbf5a39b 3195 case Nkind (N) is
70482933
RK
3196 when N_Allocator =>
3197 Desig_Typ := Designated_Type (Etype (N));
3198
3199 when N_Aggregate =>
3200 if Is_Array_Type (Etype (N))
3201 and then Is_Access_Type (Component_Type (Etype (N)))
3202 then
3203 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3204 end if;
3205
3206 when N_Selected_Component |
3207 N_Indexed_Component |
3208 N_Slice =>
3209
3210 if Is_Access_Type (Etype (Prefix (N))) then
3211 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3212 end if;
3213
3214 when others =>
3215 null;
70482933
RK
3216 end case;
3217
3218 if Desig_Typ /= Empty
3219 and then (Is_Frozen (Desig_Typ)
3220 or else (not Is_Fully_Defined (Desig_Typ)))
3221 then
3222 Desig_Typ := Empty;
3223 end if;
3224
3225 -- All done if nothing needs freezing
3226
3227 if No (Typ)
3228 and then No (Nam)
3229 and then No (Desig_Typ)
3230 then
3231 return;
3232 end if;
3233
3234 -- Loop for looking at the right place to insert the freeze nodes
3235 -- exiting from the loop when it is appropriate to insert the freeze
3236 -- node before the current node P.
3237
3238 -- Also checks some special exceptions to the freezing rules. These
3239 -- cases result in a direct return, bypassing the freeze action.
3240
3241 P := N;
3242 loop
3243 Parent_P := Parent (P);
3244
3245 -- If we don't have a parent, then we are not in a well-formed
3246 -- tree. This is an unusual case, but there are some legitimate
3247 -- situations in which this occurs, notably when the expressions
3248 -- in the range of a type declaration are resolved. We simply
3249 -- ignore the freeze request in this case. Is this right ???
3250
3251 if No (Parent_P) then
3252 return;
3253 end if;
3254
3255 -- See if we have got to an appropriate point in the tree
3256
3257 case Nkind (Parent_P) is
3258
3259 -- A special test for the exception of (RM 13.14(8)) for the
3260 -- case of per-object expressions (RM 3.8(18)) occurring in a
3261 -- component definition or a discrete subtype definition. Note
3262 -- that we test for a component declaration which includes both
3263 -- cases we are interested in, and furthermore the tree does not
3264 -- have explicit nodes for either of these two constructs.
3265
3266 when N_Component_Declaration =>
3267
3268 -- The case we want to test for here is an identifier that is
3269 -- a per-object expression, this is either a discriminant that
3270 -- appears in a context other than the component declaration
3271 -- or it is a reference to the type of the enclosing construct.
3272
3273 -- For either of these cases, we skip the freezing
3274
3275 if not In_Default_Expression
3276 and then Nkind (N) = N_Identifier
3277 and then (Present (Entity (N)))
3278 then
3279 -- We recognize the discriminant case by just looking for
3280 -- a reference to a discriminant. It can only be one for
3281 -- the enclosing construct. Skip freezing in this case.
3282
3283 if Ekind (Entity (N)) = E_Discriminant then
3284 return;
3285
3286 -- For the case of a reference to the enclosing record,
3287 -- (or task or protected type), we look for a type that
3288 -- matches the current scope.
3289
3290 elsif Entity (N) = Current_Scope then
3291 return;
3292 end if;
3293 end if;
3294
3295 -- If we have an enumeration literal that appears as the
3296 -- choice in the aggregate of an enumeration representation
fbf5a39b 3297 -- clause, then freezing does not occur (RM 13.14(10)).
70482933
RK
3298
3299 when N_Enumeration_Representation_Clause =>
3300
3301 -- The case we are looking for is an enumeration literal
3302
3303 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
3304 and then Is_Enumeration_Type (Etype (N))
3305 then
3306 -- If enumeration literal appears directly as the choice,
3307 -- do not freeze (this is the normal non-overloade case)
3308
3309 if Nkind (Parent (N)) = N_Component_Association
3310 and then First (Choices (Parent (N))) = N
3311 then
3312 return;
3313
3314 -- If enumeration literal appears as the name of a
3315 -- function which is the choice, then also do not freeze.
3316 -- This happens in the overloaded literal case, where the
3317 -- enumeration literal is temporarily changed to a function
3318 -- call for overloading analysis purposes.
3319
3320 elsif Nkind (Parent (N)) = N_Function_Call
3321 and then
3322 Nkind (Parent (Parent (N))) = N_Component_Association
3323 and then
3324 First (Choices (Parent (Parent (N)))) = Parent (N)
3325 then
3326 return;
3327 end if;
3328 end if;
3329
3330 -- Normally if the parent is a handled sequence of statements,
3331 -- then the current node must be a statement, and that is an
3332 -- appropriate place to insert a freeze node.
3333
3334 when N_Handled_Sequence_Of_Statements =>
3335
3336 -- An exception occurs when the sequence of statements is
3337 -- for an expander generated body that did not do the usual
3338 -- freeze all operation. In this case we usually want to
3339 -- freeze outside this body, not inside it, and we skip
3340 -- past the subprogram body that we are inside.
3341
3342 if In_Exp_Body (Parent_P) then
3343
3344 -- However, we *do* want to freeze at this point if we have
3345 -- an entity to freeze, and that entity is declared *inside*
3346 -- the body of the expander generated procedure. This case
3347 -- is recognized by the scope of the type, which is either
3348 -- the spec for some enclosing body, or (in the case of
3349 -- init_procs, for which there are no separate specs) the
3350 -- current scope.
3351
3352 declare
3353 Subp : constant Node_Id := Parent (Parent_P);
3354 Cspc : Entity_Id;
3355
3356 begin
3357 if Nkind (Subp) = N_Subprogram_Body then
3358 Cspc := Corresponding_Spec (Subp);
3359
3360 if (Present (Typ) and then Scope (Typ) = Cspc)
3361 or else
3362 (Present (Nam) and then Scope (Nam) = Cspc)
3363 then
3364 exit;
3365
3366 elsif Present (Typ)
3367 and then Scope (Typ) = Current_Scope
3368 and then Current_Scope = Defining_Entity (Subp)
3369 then
3370 exit;
3371 end if;
3372 end if;
3373 end;
3374
3375 -- If not that exception to the exception, then this is
3376 -- where we delay the freeze till outside the body.
3377
3378 Parent_P := Parent (Parent_P);
3379 Freeze_Outside := True;
3380
3381 -- Here if normal case where we are in handled statement
3382 -- sequence and want to do the insertion right there.
3383
3384 else
3385 exit;
3386 end if;
3387
3388 -- If parent is a body or a spec or a block, then the current
3389 -- node is a statement or declaration and we can insert the
3390 -- freeze node before it.
3391
3392 when N_Package_Specification |
3393 N_Package_Body |
3394 N_Subprogram_Body |
3395 N_Task_Body |
3396 N_Protected_Body |
3397 N_Entry_Body |
3398 N_Block_Statement => exit;
3399
3400 -- The expander is allowed to define types in any statements list,
3401 -- so any of the following parent nodes also mark a freezing point
3402 -- if the actual node is in a list of statements or declarations.
3403
3404 when N_Exception_Handler |
3405 N_If_Statement |
3406 N_Elsif_Part |
3407 N_Case_Statement_Alternative |
3408 N_Compilation_Unit_Aux |
3409 N_Selective_Accept |
3410 N_Accept_Alternative |
3411 N_Delay_Alternative |
3412 N_Conditional_Entry_Call |
3413 N_Entry_Call_Alternative |
3414 N_Triggering_Alternative |
3415 N_Abortable_Part |
3416 N_Freeze_Entity =>
3417
3418 exit when Is_List_Member (P);
3419
3420 -- Note: The N_Loop_Statement is a special case. A type that
3421 -- appears in the source can never be frozen in a loop (this
3422 -- occurs only because of a loop expanded by the expander),
3423 -- so we keep on going. Otherwise we terminate the search.
3424 -- Same is true of any entity which comes from source. (if they
3425 -- have a predefined type, that type does not appear to come
3426 -- from source, but the entity should not be frozen here).
3427
3428 when N_Loop_Statement =>
3429 exit when not Comes_From_Source (Etype (N))
3430 and then (No (Nam) or else not Comes_From_Source (Nam));
3431
3432 -- For all other cases, keep looking at parents
3433
3434 when others =>
3435 null;
3436 end case;
3437
3438 -- We fall through the case if we did not yet find the proper
3439 -- place in the free for inserting the freeze node, so climb!
3440
3441 P := Parent_P;
3442 end loop;
3443
3444 -- If the expression appears in a record or an initialization
3445 -- procedure, the freeze nodes are collected and attached to
3446 -- the current scope, to be inserted and analyzed on exit from
3447 -- the scope, to insure that generated entities appear in the
3448 -- correct scope. If the expression is a default for a discriminant
3449 -- specification, the scope is still void. The expression can also
3450 -- appear in the discriminant part of a private or concurrent type.
3451
3452 -- The other case requiring this special handling is if we are in
3453 -- a default expression, since in that case we are about to freeze
3454 -- a static type, and the freeze scope needs to be the outer scope,
3455 -- not the scope of the subprogram with the default parameter.
3456
3457 -- For default expressions in generic units, the Move_Freeze_Nodes
3458 -- mechanism (see sem_ch12.adb) takes care of placing them at the
3459 -- proper place, after the generic unit.
3460
3461 if (In_Def_Exp and not Inside_A_Generic)
3462 or else Freeze_Outside
3463 or else (Is_Type (Current_Scope)
3464 and then (not Is_Concurrent_Type (Current_Scope)
3465 or else not Has_Completion (Current_Scope)))
3466 or else Ekind (Current_Scope) = E_Void
3467 then
3468 declare
3469 Loc : constant Source_Ptr := Sloc (Current_Scope);
3470 Freeze_Nodes : List_Id := No_List;
3471
3472 begin
3473 if Present (Desig_Typ) then
3474 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
3475 end if;
3476
3477 if Present (Typ) then
3478 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
3479 end if;
3480
3481 if Present (Nam) then
3482 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
3483 end if;
3484
3485 if Is_Non_Empty_List (Freeze_Nodes) then
70482933
RK
3486 if No (Scope_Stack.Table
3487 (Scope_Stack.Last).Pending_Freeze_Actions)
3488 then
3489 Scope_Stack.Table
3490 (Scope_Stack.Last).Pending_Freeze_Actions :=
3491 Freeze_Nodes;
3492 else
3493 Append_List (Freeze_Nodes, Scope_Stack.Table
3494 (Scope_Stack.Last).Pending_Freeze_Actions);
3495 end if;
3496 end if;
3497 end;
3498
3499 return;
3500 end if;
3501
3502 -- Now we have the right place to do the freezing. First, a special
3503 -- adjustment, if we are in default expression analysis mode, these
3504 -- freeze actions must not be thrown away (normally all inserted
3505 -- actions are thrown away in this mode. However, the freeze actions
3506 -- are from static expressions and one of the important reasons we
3507 -- are doing this special analysis is to get these freeze actions.
3508 -- Therefore we turn off the In_Default_Expression mode to propagate
3509 -- these freeze actions. This also means they get properly analyzed
3510 -- and expanded.
3511
3512 In_Default_Expression := False;
3513
fbf5a39b 3514 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
3515
3516 if Present (Desig_Typ) then
3517 Freeze_Before (P, Desig_Typ);
3518 end if;
3519
fbf5a39b 3520 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
3521 -- the enumeration representation clause exception in the loop above.
3522
3523 if Present (Typ) then
3524 Freeze_Before (P, Typ);
3525 end if;
3526
fbf5a39b 3527 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
3528
3529 if Present (Nam) then
3530 Freeze_Before (P, Nam);
3531 end if;
3532
3533 In_Default_Expression := In_Def_Exp;
3534 end Freeze_Expression;
3535
3536 -----------------------------
3537 -- Freeze_Fixed_Point_Type --
3538 -----------------------------
3539
3540 -- Certain fixed-point types and subtypes, including implicit base
3541 -- types and declared first subtypes, have not yet set up a range.
3542 -- This is because the range cannot be set until the Small and Size
3543 -- values are known, and these are not known till the type is frozen.
3544
3545 -- To signal this case, Scalar_Range contains an unanalyzed syntactic
3546 -- range whose bounds are unanalyzed real literals. This routine will
3547 -- recognize this case, and transform this range node into a properly
3548 -- typed range with properly analyzed and resolved values.
3549
3550 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
3551 Rng : constant Node_Id := Scalar_Range (Typ);
3552 Lo : constant Node_Id := Low_Bound (Rng);
3553 Hi : constant Node_Id := High_Bound (Rng);
3554 Btyp : constant Entity_Id := Base_Type (Typ);
3555 Brng : constant Node_Id := Scalar_Range (Btyp);
3556 BLo : constant Node_Id := Low_Bound (Brng);
3557 BHi : constant Node_Id := High_Bound (Brng);
3558 Small : constant Ureal := Small_Value (Typ);
3559 Loval : Ureal;
3560 Hival : Ureal;
3561 Atype : Entity_Id;
3562
3563 Actual_Size : Nat;
3564
3565 function Fsize (Lov, Hiv : Ureal) return Nat;
3566 -- Returns size of type with given bounds. Also leaves these
3567 -- bounds set as the current bounds of the Typ.
3568
3569 function Fsize (Lov, Hiv : Ureal) return Nat is
3570 begin
3571 Set_Realval (Lo, Lov);
3572 Set_Realval (Hi, Hiv);
3573 return Minimum_Size (Typ);
3574 end Fsize;
3575
3576 -- Start of processing for Freeze_Fixed_Point_Type;
3577
3578 begin
3579 -- If Esize of a subtype has not previously been set, set it now
3580
3581 if Unknown_Esize (Typ) then
3582 Atype := Ancestor_Subtype (Typ);
3583
3584 if Present (Atype) then
fbf5a39b 3585 Set_Esize (Typ, Esize (Atype));
70482933 3586 else
fbf5a39b 3587 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
3588 end if;
3589 end if;
3590
3591 -- Immediate return if the range is already analyzed. This means
3592 -- that the range is already set, and does not need to be computed
3593 -- by this routine.
3594
3595 if Analyzed (Rng) then
3596 return;
3597 end if;
3598
3599 -- Immediate return if either of the bounds raises Constraint_Error
3600
3601 if Raises_Constraint_Error (Lo)
3602 or else Raises_Constraint_Error (Hi)
3603 then
3604 return;
3605 end if;
3606
3607 Loval := Realval (Lo);
3608 Hival := Realval (Hi);
3609
3610 -- Ordinary fixed-point case
3611
3612 if Is_Ordinary_Fixed_Point_Type (Typ) then
3613
3614 -- For the ordinary fixed-point case, we are allowed to fudge the
3615 -- end-points up or down by small. Generally we prefer to fudge
3616 -- up, i.e. widen the bounds for non-model numbers so that the
3617 -- end points are included. However there are cases in which this
3618 -- cannot be done, and indeed cases in which we may need to narrow
3619 -- the bounds. The following circuit makes the decision.
3620
3621 -- Note: our terminology here is that Incl_EP means that the
3622 -- bounds are widened by Small if necessary to include the end
3623 -- points, and Excl_EP means that the bounds are narrowed by
3624 -- Small to exclude the end-points if this reduces the size.
3625
3626 -- Note that in the Incl case, all we care about is including the
3627 -- end-points. In the Excl case, we want to narrow the bounds as
3628 -- much as permitted by the RM, to give the smallest possible size.
3629
3630 Fudge : declare
3631 Loval_Incl_EP : Ureal;
3632 Hival_Incl_EP : Ureal;
3633
3634 Loval_Excl_EP : Ureal;
3635 Hival_Excl_EP : Ureal;
3636
3637 Size_Incl_EP : Nat;
3638 Size_Excl_EP : Nat;
3639
3640 Model_Num : Ureal;
3641 First_Subt : Entity_Id;
3642 Actual_Lo : Ureal;
3643 Actual_Hi : Ureal;
3644
3645 begin
3646 -- First step. Base types are required to be symmetrical. Right
3647 -- now, the base type range is a copy of the first subtype range.
3648 -- This will be corrected before we are done, but right away we
3649 -- need to deal with the case where both bounds are non-negative.
3650 -- In this case, we set the low bound to the negative of the high
3651 -- bound, to make sure that the size is computed to include the
3652 -- required sign. Note that we do not need to worry about the
3653 -- case of both bounds negative, because the sign will be dealt
3654 -- with anyway. Furthermore we can't just go making such a bound
3655 -- symmetrical, since in a twos-complement system, there is an
3656 -- extra negative value which could not be accomodated on the
3657 -- positive side.
3658
3659 if Typ = Btyp
3660 and then not UR_Is_Negative (Loval)
3661 and then Hival > Loval
3662 then
3663 Loval := -Hival;
3664 Set_Realval (Lo, Loval);
3665 end if;
3666
3667 -- Compute the fudged bounds. If the number is a model number,
3668 -- then we do nothing to include it, but we are allowed to
3669 -- backoff to the next adjacent model number when we exclude
3670 -- it. If it is not a model number then we straddle the two
3671 -- values with the model numbers on either side.
3672
3673 Model_Num := UR_Trunc (Loval / Small) * Small;
3674
3675 if Loval = Model_Num then
3676 Loval_Incl_EP := Model_Num;
3677 else
3678 Loval_Incl_EP := Model_Num - Small;
3679 end if;
3680
3681 -- The low value excluding the end point is Small greater, but
3682 -- we do not do this exclusion if the low value is positive,
3683 -- since it can't help the size and could actually hurt by
3684 -- crossing the high bound.
3685
3686 if UR_Is_Negative (Loval_Incl_EP) then
3687 Loval_Excl_EP := Loval_Incl_EP + Small;
3688 else
3689 Loval_Excl_EP := Loval_Incl_EP;
3690 end if;
3691
3692 -- Similar processing for upper bound and high value
3693
3694 Model_Num := UR_Trunc (Hival / Small) * Small;
3695
3696 if Hival = Model_Num then
3697 Hival_Incl_EP := Model_Num;
3698 else
3699 Hival_Incl_EP := Model_Num + Small;
3700 end if;
3701
3702 if UR_Is_Positive (Hival_Incl_EP) then
3703 Hival_Excl_EP := Hival_Incl_EP - Small;
3704 else
3705 Hival_Excl_EP := Hival_Incl_EP;
3706 end if;
3707
3708 -- One further adjustment is needed. In the case of subtypes,
3709 -- we cannot go outside the range of the base type, or we get
3710 -- peculiarities, and the base type range is already set. This
3711 -- only applies to the Incl values, since clearly the Excl
3712 -- values are already as restricted as they are allowed to be.
3713
3714 if Typ /= Btyp then
3715 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
3716 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
3717 end if;
3718
3719 -- Get size including and excluding end points
3720
3721 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
3722 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
3723
3724 -- No need to exclude end-points if it does not reduce size
3725
3726 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
3727 Loval_Excl_EP := Loval_Incl_EP;
3728 end if;
3729
3730 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
3731 Hival_Excl_EP := Hival_Incl_EP;
3732 end if;
3733
3734 -- Now we set the actual size to be used. We want to use the
3735 -- bounds fudged up to include the end-points but only if this
3736 -- can be done without violating a specifically given size
3737 -- size clause or causing an unacceptable increase in size.
3738
3739 -- Case of size clause given
3740
3741 if Has_Size_Clause (Typ) then
3742
3743 -- Use the inclusive size only if it is consistent with
3744 -- the explicitly specified size.
3745
3746 if Size_Incl_EP <= RM_Size (Typ) then
3747 Actual_Lo := Loval_Incl_EP;
3748 Actual_Hi := Hival_Incl_EP;
3749 Actual_Size := Size_Incl_EP;
3750
3751 -- If the inclusive size is too large, we try excluding
3752 -- the end-points (will be caught later if does not work).
3753
3754 else
3755 Actual_Lo := Loval_Excl_EP;
3756 Actual_Hi := Hival_Excl_EP;
3757 Actual_Size := Size_Excl_EP;
3758 end if;
3759
3760 -- Case of size clause not given
3761
3762 else
3763 -- If we have a base type whose corresponding first subtype
3764 -- has an explicit size that is large enough to include our
3765 -- end-points, then do so. There is no point in working hard
3766 -- to get a base type whose size is smaller than the specified
3767 -- size of the first subtype.
3768
3769 First_Subt := First_Subtype (Typ);
3770
3771 if Has_Size_Clause (First_Subt)
3772 and then Size_Incl_EP <= Esize (First_Subt)
3773 then
3774 Actual_Size := Size_Incl_EP;
3775 Actual_Lo := Loval_Incl_EP;
3776 Actual_Hi := Hival_Incl_EP;
3777
3778 -- If excluding the end-points makes the size smaller and
3779 -- results in a size of 8,16,32,64, then we take the smaller
3780 -- size. For the 64 case, this is compulsory. For the other
3781 -- cases, it seems reasonable. We like to include end points
3782 -- if we can, but not at the expense of moving to the next
3783 -- natural boundary of size.
3784
3785 elsif Size_Incl_EP /= Size_Excl_EP
3786 and then
3787 (Size_Excl_EP = 8 or else
3788 Size_Excl_EP = 16 or else
3789 Size_Excl_EP = 32 or else
3790 Size_Excl_EP = 64)
3791 then
3792 Actual_Size := Size_Excl_EP;
3793 Actual_Lo := Loval_Excl_EP;
3794 Actual_Hi := Hival_Excl_EP;
3795
3796 -- Otherwise we can definitely include the end points
3797
3798 else
3799 Actual_Size := Size_Incl_EP;
3800 Actual_Lo := Loval_Incl_EP;
3801 Actual_Hi := Hival_Incl_EP;
3802 end if;
3803
3804 -- One pathological case: normally we never fudge a low
3805 -- bound down, since it would seem to increase the size
3806 -- (if it has any effect), but for ranges containing a
3807 -- single value, or no values, the high bound can be
3808 -- small too large. Consider:
3809
3810 -- type t is delta 2.0**(-14)
3811 -- range 131072.0 .. 0;
3812
3813 -- That lower bound is *just* outside the range of 32
3814 -- bits, and does need fudging down in this case. Note
3815 -- that the bounds will always have crossed here, since
3816 -- the high bound will be fudged down if necessary, as
3817 -- in the case of:
3818
3819 -- type t is delta 2.0**(-14)
3820 -- range 131072.0 .. 131072.0;
3821
3822 -- So we can detect the situation by looking for crossed
3823 -- bounds, and if the bounds are crossed, and the low
3824 -- bound is greater than zero, we will always back it
3825 -- off by small, since this is completely harmless.
3826
3827 if Actual_Lo > Actual_Hi then
3828 if UR_Is_Positive (Actual_Lo) then
3829 Actual_Lo := Loval_Incl_EP - Small;
3830 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
3831
3832 -- And of course, we need to do exactly the same parallel
3833 -- fudge for flat ranges in the negative region.
3834
3835 elsif UR_Is_Negative (Actual_Hi) then
3836 Actual_Hi := Hival_Incl_EP + Small;
3837 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
3838 end if;
3839 end if;
3840 end if;
3841
3842 Set_Realval (Lo, Actual_Lo);
3843 Set_Realval (Hi, Actual_Hi);
3844 end Fudge;
3845
3846 -- For the decimal case, none of this fudging is required, since there
3847 -- are no end-point problems in the decimal case (the end-points are
3848 -- always included).
3849
3850 else
3851 Actual_Size := Fsize (Loval, Hival);
3852 end if;
3853
3854 -- At this stage, the actual size has been calculated and the proper
3855 -- required bounds are stored in the low and high bounds.
3856
3857 if Actual_Size > 64 then
3858 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
3859 Error_Msg_N
3860 ("size required (^) for type& too large, maximum is 64", Typ);
3861 Actual_Size := 64;
3862 end if;
3863
3864 -- Check size against explicit given size
3865
3866 if Has_Size_Clause (Typ) then
3867 if Actual_Size > RM_Size (Typ) then
3868 Error_Msg_Uint_1 := RM_Size (Typ);
3869 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
3870 Error_Msg_NE
3871 ("size given (^) for type& too small, minimum is ^",
3872 Size_Clause (Typ), Typ);
3873
3874 else
3875 Actual_Size := UI_To_Int (Esize (Typ));
3876 end if;
3877
3878 -- Increase size to next natural boundary if no size clause given
3879
3880 else
3881 if Actual_Size <= 8 then
3882 Actual_Size := 8;
3883 elsif Actual_Size <= 16 then
3884 Actual_Size := 16;
3885 elsif Actual_Size <= 32 then
3886 Actual_Size := 32;
3887 else
3888 Actual_Size := 64;
3889 end if;
3890
3891 Init_Esize (Typ, Actual_Size);
3892 Adjust_Esize_For_Alignment (Typ);
3893 end if;
3894
3895 -- If we have a base type, then expand the bounds so that they
3896 -- extend to the full width of the allocated size in bits, to
3897 -- avoid junk range checks on intermediate computations.
3898
3899 if Base_Type (Typ) = Typ then
3900 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
3901 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
3902 end if;
3903
3904 -- Final step is to reanalyze the bounds using the proper type
3905 -- and set the Corresponding_Integer_Value fields of the literals.
3906
3907 Set_Etype (Lo, Empty);
3908 Set_Analyzed (Lo, False);
3909 Analyze (Lo);
3910
3911 -- Resolve with universal fixed if the base type, and the base
3912 -- type if it is a subtype. Note we can't resolve the base type
3913 -- with itself, that would be a reference before definition.
3914
3915 if Typ = Btyp then
3916 Resolve (Lo, Universal_Fixed);
3917 else
3918 Resolve (Lo, Btyp);
3919 end if;
3920
3921 -- Set corresponding integer value for bound
3922
3923 Set_Corresponding_Integer_Value
3924 (Lo, UR_To_Uint (Realval (Lo) / Small));
3925
3926 -- Similar processing for high bound
3927
3928 Set_Etype (Hi, Empty);
3929 Set_Analyzed (Hi, False);
3930 Analyze (Hi);
3931
3932 if Typ = Btyp then
3933 Resolve (Hi, Universal_Fixed);
3934 else
3935 Resolve (Hi, Btyp);
3936 end if;
3937
3938 Set_Corresponding_Integer_Value
3939 (Hi, UR_To_Uint (Realval (Hi) / Small));
3940
3941 -- Set type of range to correspond to bounds
3942
3943 Set_Etype (Rng, Etype (Lo));
3944
fbf5a39b 3945 -- Set Esize to calculated size if not set already
70482933 3946
fbf5a39b
AC
3947 if Unknown_Esize (Typ) then
3948 Init_Esize (Typ, Actual_Size);
3949 end if;
70482933
RK
3950
3951 -- Set RM_Size if not already set. If already set, check value
3952
3953 declare
3954 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
3955
3956 begin
3957 if RM_Size (Typ) /= Uint_0 then
3958 if RM_Size (Typ) < Minsiz then
3959 Error_Msg_Uint_1 := RM_Size (Typ);
3960 Error_Msg_Uint_2 := Minsiz;
3961 Error_Msg_NE
3962 ("size given (^) for type& too small, minimum is ^",
3963 Size_Clause (Typ), Typ);
3964 end if;
3965
3966 else
3967 Set_RM_Size (Typ, Minsiz);
3968 end if;
3969 end;
70482933
RK
3970 end Freeze_Fixed_Point_Type;
3971
3972 ------------------
3973 -- Freeze_Itype --
3974 ------------------
3975
3976 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
3977 L : List_Id;
3978
3979 begin
3980 Set_Has_Delayed_Freeze (T);
3981 L := Freeze_Entity (T, Sloc (N));
3982
3983 if Is_Non_Empty_List (L) then
3984 Insert_Actions (N, L);
3985 end if;
3986 end Freeze_Itype;
3987
3988 --------------------------
3989 -- Freeze_Static_Object --
3990 --------------------------
3991
3992 procedure Freeze_Static_Object (E : Entity_Id) is
3993
3994 Cannot_Be_Static : exception;
3995 -- Exception raised if the type of a static object cannot be made
3996 -- static. This happens if the type depends on non-global objects.
3997
3998 procedure Ensure_Expression_Is_SA (N : Node_Id);
3999 -- Called to ensure that an expression used as part of a type
4000 -- definition is statically allocatable, which means that the type
4001 -- of the expression is statically allocatable, and the expression
4002 -- is either static, or a reference to a library level constant.
4003
4004 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4005 -- Called to mark a type as static, checking that it is possible
4006 -- to set the type as static. If it is not possible, then the
4007 -- exception Cannot_Be_Static is raised.
4008
4009 -----------------------------
4010 -- Ensure_Expression_Is_SA --
4011 -----------------------------
4012
4013 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4014 Ent : Entity_Id;
4015
4016 begin
4017 Ensure_Type_Is_SA (Etype (N));
4018
4019 if Is_Static_Expression (N) then
4020 return;
4021
4022 elsif Nkind (N) = N_Identifier then
4023 Ent := Entity (N);
4024
4025 if Present (Ent)
4026 and then Ekind (Ent) = E_Constant
4027 and then Is_Library_Level_Entity (Ent)
4028 then
4029 return;
4030 end if;
4031 end if;
4032
4033 raise Cannot_Be_Static;
4034 end Ensure_Expression_Is_SA;
4035
4036 -----------------------
4037 -- Ensure_Type_Is_SA --
4038 -----------------------
4039
4040 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4041 N : Node_Id;
4042 C : Entity_Id;
4043
4044 begin
4045 -- If type is library level, we are all set
4046
4047 if Is_Library_Level_Entity (Typ) then
4048 return;
4049 end if;
4050
4051 -- We are also OK if the type is already marked as statically
4052 -- allocated, which means we processed it before.
4053
4054 if Is_Statically_Allocated (Typ) then
4055 return;
4056 end if;
4057
4058 -- Mark type as statically allocated
4059
4060 Set_Is_Statically_Allocated (Typ);
4061
4062 -- Check that it is safe to statically allocate this type
4063
4064 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4065 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4066 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4067
4068 elsif Is_Array_Type (Typ) then
4069 N := First_Index (Typ);
4070 while Present (N) loop
4071 Ensure_Type_Is_SA (Etype (N));
4072 Next_Index (N);
4073 end loop;
4074
4075 Ensure_Type_Is_SA (Component_Type (Typ));
4076
4077 elsif Is_Access_Type (Typ) then
4078 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4079
4080 declare
4081 F : Entity_Id;
4082 T : constant Entity_Id := Etype (Designated_Type (Typ));
4083
4084 begin
4085 if T /= Standard_Void_Type then
4086 Ensure_Type_Is_SA (T);
4087 end if;
4088
4089 F := First_Formal (Designated_Type (Typ));
4090
4091 while Present (F) loop
4092 Ensure_Type_Is_SA (Etype (F));
4093 Next_Formal (F);
4094 end loop;
4095 end;
4096
4097 else
4098 Ensure_Type_Is_SA (Designated_Type (Typ));
4099 end if;
4100
4101 elsif Is_Record_Type (Typ) then
4102 C := First_Entity (Typ);
4103
4104 while Present (C) loop
4105 if Ekind (C) = E_Discriminant
4106 or else Ekind (C) = E_Component
4107 then
4108 Ensure_Type_Is_SA (Etype (C));
4109
4110 elsif Is_Type (C) then
4111 Ensure_Type_Is_SA (C);
4112 end if;
4113
4114 Next_Entity (C);
4115 end loop;
4116
4117 elsif Ekind (Typ) = E_Subprogram_Type then
4118 Ensure_Type_Is_SA (Etype (Typ));
4119
4120 C := First_Formal (Typ);
4121 while Present (C) loop
4122 Ensure_Type_Is_SA (Etype (C));
4123 Next_Formal (C);
4124 end loop;
4125
4126 else
4127 raise Cannot_Be_Static;
4128 end if;
4129 end Ensure_Type_Is_SA;
4130
4131 -- Start of processing for Freeze_Static_Object
4132
4133 begin
4134 Ensure_Type_Is_SA (Etype (E));
4135
fbf5a39b
AC
4136 -- Reset True_Constant flag, since something strange is going on
4137 -- with the scoping here, and our simple value traceing may not
4138 -- be sufficient for this indication to be reliable. We kill the
4139 -- Constant_Value indication for the same reason.
4140
4141 Set_Is_True_Constant (E, False);
4142 Set_Current_Value (E, Empty);
4143
70482933
RK
4144 exception
4145 when Cannot_Be_Static =>
4146
4147 -- If the object that cannot be static is imported or exported,
4148 -- then we give an error message saying that this object cannot
4149 -- be imported or exported.
4150
4151 if Is_Imported (E) then
4152 Error_Msg_N
4153 ("& cannot be imported (local type is not constant)", E);
4154
4155 -- Otherwise must be exported, something is wrong if compiler
4156 -- is marking something as statically allocated which cannot be).
4157
4158 else pragma Assert (Is_Exported (E));
4159 Error_Msg_N
4160 ("& cannot be exported (local type is not constant)", E);
4161 end if;
4162 end Freeze_Static_Object;
4163
4164 -----------------------
4165 -- Freeze_Subprogram --
4166 -----------------------
4167
4168 procedure Freeze_Subprogram (E : Entity_Id) is
4169 Retype : Entity_Id;
4170 F : Entity_Id;
4171
4172 begin
4173 -- Subprogram may not have an address clause unless it is imported
4174
4175 if Present (Address_Clause (E)) then
4176 if not Is_Imported (E) then
4177 Error_Msg_N
4178 ("address clause can only be given " &
4179 "for imported subprogram",
4180 Name (Address_Clause (E)));
4181 end if;
4182 end if;
4183
91b1417d
AC
4184 -- Reset the Pure indication on an imported subprogram unless an
4185 -- explicit Pure_Function pragma was present. We do this because
4186 -- otherwise it is an insidious error to call a non-pure function
4187 -- from a pure unit and have calls mysteriously optimized away.
4188 -- What happens here is that the Import can bypass the normal
4189 -- check to ensure that pure units call only pure subprograms.
4190
4191 if Is_Imported (E)
4192 and then Is_Pure (E)
4193 and then not Has_Pragma_Pure_Function (E)
4194 then
4195 Set_Is_Pure (E, False);
4196 end if;
4197
70482933
RK
4198 -- For non-foreign convention subprograms, this is where we create
4199 -- the extra formals (for accessibility level and constrained bit
4200 -- information). We delay this till the freeze point precisely so
4201 -- that we know the convention!
4202
4203 if not Has_Foreign_Convention (E) then
4204 Create_Extra_Formals (E);
4205 Set_Mechanisms (E);
4206
4207 -- If this is convention Ada and a Valued_Procedure, that's odd
4208
4209 if Ekind (E) = E_Procedure
4210 and then Is_Valued_Procedure (E)
4211 and then Convention (E) = Convention_Ada
fbf5a39b 4212 and then Warn_On_Export_Import
70482933
RK
4213 then
4214 Error_Msg_N
4215 ("?Valued_Procedure has no effect for convention Ada", E);
4216 Set_Is_Valued_Procedure (E, False);
4217 end if;
4218
4219 -- Case of foreign convention
4220
4221 else
4222 Set_Mechanisms (E);
4223
fbf5a39b 4224 -- For foreign conventions, warn about return of an
70482933
RK
4225 -- unconstrained array.
4226
4227 -- Note: we *do* allow a return by descriptor for the VMS case,
4228 -- though here there is probably more to be done ???
4229
4230 if Ekind (E) = E_Function then
4231 Retype := Underlying_Type (Etype (E));
4232
4233 -- If no return type, probably some other error, e.g. a
4234 -- missing full declaration, so ignore.
4235
4236 if No (Retype) then
4237 null;
4238
4239 -- If the return type is generic, we have emitted a warning
4240 -- earlier on, and there is nothing else to check here.
4241 -- Specific instantiations may lead to erroneous behavior.
4242
4243 elsif Is_Generic_Type (Etype (E)) then
4244 null;
4245
4246 elsif Is_Array_Type (Retype)
4247 and then not Is_Constrained (Retype)
4248 and then Mechanism (E) not in Descriptor_Codes
fbf5a39b 4249 and then Warn_On_Export_Import
70482933 4250 then
fbf5a39b
AC
4251 Error_Msg_N
4252 ("?foreign convention function& should not return " &
4253 "unconstrained array", E);
70482933
RK
4254 return;
4255 end if;
4256 end if;
4257
4258 -- If any of the formals for an exported foreign convention
4259 -- subprogram have defaults, then emit an appropriate warning
4260 -- since this is odd (default cannot be used from non-Ada code)
4261
4262 if Is_Exported (E) then
4263 F := First_Formal (E);
4264 while Present (F) loop
fbf5a39b
AC
4265 if Warn_On_Export_Import
4266 and then Present (Default_Value (F))
4267 then
70482933
RK
4268 Error_Msg_N
4269 ("?parameter cannot be defaulted in non-Ada call",
4270 Default_Value (F));
4271 end if;
4272
4273 Next_Formal (F);
4274 end loop;
4275 end if;
4276 end if;
4277
4278 -- For VMS, descriptor mechanisms for parameters are allowed only
4279 -- for imported subprograms.
4280
4281 if OpenVMS_On_Target then
4282 if not Is_Imported (E) then
4283 F := First_Formal (E);
4284 while Present (F) loop
4285 if Mechanism (F) in Descriptor_Codes then
4286 Error_Msg_N
4287 ("descriptor mechanism for parameter not permitted", F);
4288 Error_Msg_N
4289 ("\can only be used for imported subprogram", F);
4290 end if;
4291
4292 Next_Formal (F);
4293 end loop;
4294 end if;
4295 end if;
70482933
RK
4296 end Freeze_Subprogram;
4297
4298 -----------------------
4299 -- Is_Fully_Defined --
4300 -----------------------
4301
70482933
RK
4302 function Is_Fully_Defined (T : Entity_Id) return Boolean is
4303 begin
4304 if Ekind (T) = E_Class_Wide_Type then
4305 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
4306
4307 elsif Is_Array_Type (T) then
4308 return Is_Fully_Defined (Component_Type (T));
4309
4310 elsif Is_Record_Type (T)
4311 and not Is_Private_Type (T)
4312 then
657a9dd9
AC
4313 -- Verify that the record type has no components with
4314 -- private types without completion.
4315
4316 declare
4317 Comp : Entity_Id;
bde58e32 4318
657a9dd9
AC
4319 begin
4320 Comp := First_Component (T);
4321
4322 while Present (Comp) loop
4323 if not Is_Fully_Defined (Etype (Comp)) then
4324 return False;
4325 end if;
4326
4327 Next_Component (Comp);
4328 end loop;
4329 return True;
4330 end;
4331
4332 else return not Is_Private_Type (T)
4333 or else Present (Full_View (Base_Type (T)));
70482933
RK
4334 end if;
4335 end Is_Fully_Defined;
4336
4337 ---------------------------------
4338 -- Process_Default_Expressions --
4339 ---------------------------------
4340
4341 procedure Process_Default_Expressions
4342 (E : Entity_Id;
4343 After : in out Node_Id)
4344 is
4345 Loc : constant Source_Ptr := Sloc (E);
4346 Dbody : Node_Id;
4347 Formal : Node_Id;
4348 Dcopy : Node_Id;
4349 Dnam : Entity_Id;
4350
4351 begin
4352 Set_Default_Expressions_Processed (E);
4353
4354 -- A subprogram instance and its associated anonymous subprogram
4355 -- share their signature. The default expression functions are defined
4356 -- in the wrapper packages for the anonymous subprogram, and should
4357 -- not be generated again for the instance.
4358
4359 if Is_Generic_Instance (E)
4360 and then Present (Alias (E))
4361 and then Default_Expressions_Processed (Alias (E))
4362 then
4363 return;
4364 end if;
4365
4366 Formal := First_Formal (E);
4367
4368 while Present (Formal) loop
4369 if Present (Default_Value (Formal)) then
4370
4371 -- We work with a copy of the default expression because we
4372 -- do not want to disturb the original, since this would mess
4373 -- up the conformance checking.
4374
4375 Dcopy := New_Copy_Tree (Default_Value (Formal));
4376
4377 -- The analysis of the expression may generate insert actions,
4378 -- which of course must not be executed. We wrap those actions
4379 -- in a procedure that is not called, and later on eliminated.
4380 -- The following cases have no side-effects, and are analyzed
4381 -- directly.
4382
4383 if Nkind (Dcopy) = N_Identifier
4384 or else Nkind (Dcopy) = N_Expanded_Name
4385 or else Nkind (Dcopy) = N_Integer_Literal
4386 or else (Nkind (Dcopy) = N_Real_Literal
4387 and then not Vax_Float (Etype (Dcopy)))
4388 or else Nkind (Dcopy) = N_Character_Literal
4389 or else Nkind (Dcopy) = N_String_Literal
4390 or else Nkind (Dcopy) = N_Null
4391 or else (Nkind (Dcopy) = N_Attribute_Reference
4392 and then
4393 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
4394 then
4395
4396 -- If there is no default function, we must still do a full
4397 -- analyze call on the default value, to ensure that all
4398 -- error checks are performed, e.g. those associated with
4399 -- static evaluation. Note that this branch will always be
4400 -- taken if the analyzer is turned off (but we still need the
4401 -- error checks).
4402
4403 -- Note: the setting of parent here is to meet the requirement
4404 -- that we can only analyze the expression while attached to
4405 -- the tree. Really the requirement is that the parent chain
4406 -- be set, we don't actually need to be in the tree.
4407
4408 Set_Parent (Dcopy, Declaration_Node (Formal));
4409 Analyze (Dcopy);
4410
4411 -- Default expressions are resolved with their own type if the
4412 -- context is generic, to avoid anomalies with private types.
4413
4414 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 4415 Resolve (Dcopy);
70482933
RK
4416 else
4417 Resolve (Dcopy, Etype (Formal));
4418 end if;
4419
4420 -- If that resolved expression will raise constraint error,
4421 -- then flag the default value as raising constraint error.
4422 -- This allows a proper error message on the calls.
4423
4424 if Raises_Constraint_Error (Dcopy) then
4425 Set_Raises_Constraint_Error (Default_Value (Formal));
4426 end if;
4427
4428 -- If the default is a parameterless call, we use the name of
4429 -- the called function directly, and there is no body to build.
4430
4431 elsif Nkind (Dcopy) = N_Function_Call
4432 and then No (Parameter_Associations (Dcopy))
4433 then
4434 null;
4435
4436 -- Else construct and analyze the body of a wrapper procedure
4437 -- that contains an object declaration to hold the expression.
4438 -- Given that this is done only to complete the analysis, it
4439 -- simpler to build a procedure than a function which might
4440 -- involve secondary stack expansion.
4441
4442 else
4443 Dnam :=
4444 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
4445
4446 Dbody :=
4447 Make_Subprogram_Body (Loc,
4448 Specification =>
4449 Make_Procedure_Specification (Loc,
4450 Defining_Unit_Name => Dnam),
4451
4452 Declarations => New_List (
4453 Make_Object_Declaration (Loc,
4454 Defining_Identifier =>
4455 Make_Defining_Identifier (Loc,
4456 New_Internal_Name ('T')),
4457 Object_Definition =>
4458 New_Occurrence_Of (Etype (Formal), Loc),
4459 Expression => New_Copy_Tree (Dcopy))),
4460
4461 Handled_Statement_Sequence =>
4462 Make_Handled_Sequence_Of_Statements (Loc,
4463 Statements => New_List));
4464
4465 Set_Scope (Dnam, Scope (E));
4466 Set_Assignment_OK (First (Declarations (Dbody)));
4467 Set_Is_Eliminated (Dnam);
4468 Insert_After (After, Dbody);
4469 Analyze (Dbody);
4470 After := Dbody;
4471 end if;
4472 end if;
4473
4474 Next_Formal (Formal);
4475 end loop;
4476
4477 end Process_Default_Expressions;
4478
4479 ----------------------------------------
4480 -- Set_Component_Alignment_If_Not_Set --
4481 ----------------------------------------
4482
4483 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
4484 begin
4485 -- Ignore if not base type, subtypes don't need anything
4486
4487 if Typ /= Base_Type (Typ) then
4488 return;
4489 end if;
4490
4491 -- Do not override existing representation
4492
4493 if Is_Packed (Typ) then
4494 return;
4495
4496 elsif Has_Specified_Layout (Typ) then
4497 return;
4498
4499 elsif Component_Alignment (Typ) /= Calign_Default then
4500 return;
4501
4502 else
4503 Set_Component_Alignment
4504 (Typ, Scope_Stack.Table
4505 (Scope_Stack.Last).Component_Alignment_Default);
4506 end if;
4507 end Set_Component_Alignment_If_Not_Set;
4508
4509 ---------------------------
4510 -- Set_Debug_Info_Needed --
4511 ---------------------------
4512
4513 procedure Set_Debug_Info_Needed (T : Entity_Id) is
4514 begin
4515 if No (T)
4516 or else Needs_Debug_Info (T)
4517 or else Debug_Info_Off (T)
4518 then
4519 return;
4520 else
4521 Set_Needs_Debug_Info (T);
4522 end if;
4523
4524 if Is_Object (T) then
4525 Set_Debug_Info_Needed (Etype (T));
4526
4527 elsif Is_Type (T) then
4528 Set_Debug_Info_Needed (Etype (T));
4529
4530 if Is_Record_Type (T) then
4531 declare
4532 Ent : Entity_Id := First_Entity (T);
4533 begin
4534 while Present (Ent) loop
4535 Set_Debug_Info_Needed (Ent);
4536 Next_Entity (Ent);
4537 end loop;
4538 end;
4539
4540 elsif Is_Array_Type (T) then
4541 Set_Debug_Info_Needed (Component_Type (T));
4542
4543 declare
4544 Indx : Node_Id := First_Index (T);
4545 begin
4546 while Present (Indx) loop
4547 Set_Debug_Info_Needed (Etype (Indx));
4548 Indx := Next_Index (Indx);
4549 end loop;
4550 end;
4551
4552 if Is_Packed (T) then
4553 Set_Debug_Info_Needed (Packed_Array_Type (T));
4554 end if;
4555
4556 elsif Is_Access_Type (T) then
4557 Set_Debug_Info_Needed (Directly_Designated_Type (T));
4558
4559 elsif Is_Private_Type (T) then
4560 Set_Debug_Info_Needed (Full_View (T));
4561
4562 elsif Is_Protected_Type (T) then
4563 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
4564 end if;
4565 end if;
70482933
RK
4566 end Set_Debug_Info_Needed;
4567
fbf5a39b
AC
4568 ------------------
4569 -- Warn_Overlay --
4570 ------------------
4571
4572 procedure Warn_Overlay
4573 (Expr : Node_Id;
4574 Typ : Entity_Id;
4575 Nam : Entity_Id)
4576 is
4577 Ent : constant Entity_Id := Entity (Nam);
4578 -- The object to which the address clause applies.
4579
4580 Init : Node_Id;
4581 Old : Entity_Id := Empty;
4582 Decl : Node_Id;
4583
4584 begin
4585 -- No warning if address clause overlay warnings are off
4586
4587 if not Address_Clause_Overlay_Warnings then
4588 return;
4589 end if;
4590
4591 -- No warning if there is an explicit initialization
4592
4593 Init := Original_Node (Expression (Declaration_Node (Ent)));
4594
4595 if Present (Init) and then Comes_From_Source (Init) then
4596 return;
4597 end if;
4598
4599 -- We only give the warning for non-imported entities of a type
4600 -- for which a non-null base init proc is defined (or for access
4601 -- types which have implicit null initialization).
4602
4603 if Present (Expr)
4604 and then (Has_Non_Null_Base_Init_Proc (Typ)
4605 or else Is_Access_Type (Typ))
4606 and then not Is_Imported (Ent)
4607 then
4608 if Nkind (Expr) = N_Attribute_Reference
4609 and then Is_Entity_Name (Prefix (Expr))
4610 then
4611 Old := Entity (Prefix (Expr));
4612
4613 elsif Is_Entity_Name (Expr)
4614 and then Ekind (Entity (Expr)) = E_Constant
4615 then
4616 Decl := Declaration_Node (Entity (Expr));
4617
4618 if Nkind (Decl) = N_Object_Declaration
4619 and then Present (Expression (Decl))
4620 and then Nkind (Expression (Decl)) = N_Attribute_Reference
4621 and then Is_Entity_Name (Prefix (Expression (Decl)))
4622 then
4623 Old := Entity (Prefix (Expression (Decl)));
4624
4625 elsif Nkind (Expr) = N_Function_Call then
4626 return;
4627 end if;
4628
4629 -- A function call (most likely to To_Address) is probably not
4630 -- an overlay, so skip warning. Ditto if the function call was
4631 -- inlined and transformed into an entity.
4632
4633 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
4634 return;
4635 end if;
4636
4637 Decl := Next (Parent (Expr));
4638
4639 -- If a pragma Import follows, we assume that it is for the current
4640 -- target of the address clause, and skip the warning.
4641
4642 if Present (Decl)
4643 and then Nkind (Decl) = N_Pragma
4644 and then Chars (Decl) = Name_Import
4645 then
4646 return;
4647 end if;
4648
4649 if Present (Old) then
4650 Error_Msg_Node_2 := Old;
4651 Error_Msg_N
4652 ("default initialization of & may modify &?",
4653 Nam);
4654 else
4655 Error_Msg_N
4656 ("default initialization of & may modify overlaid storage?",
4657 Nam);
4658 end if;
4659
4660 -- Add friendly warning if initialization comes from a packed array
4661 -- component.
4662
4663 if Is_Record_Type (Typ) then
4664 declare
4665 Comp : Entity_Id;
4666
4667 begin
4668 Comp := First_Component (Typ);
4669
4670 while Present (Comp) loop
4671 if Nkind (Parent (Comp)) = N_Component_Declaration
4672 and then Present (Expression (Parent (Comp)))
4673 then
4674 exit;
4675 elsif Is_Array_Type (Etype (Comp))
4676 and then Present (Packed_Array_Type (Etype (Comp)))
4677 then
4678 Error_Msg_NE
4679 ("packed array component& will be initialized to zero?",
4680 Nam, Comp);
4681 exit;
4682 else
4683 Next_Component (Comp);
4684 end if;
4685 end loop;
4686 end;
4687 end if;
4688
4689 Error_Msg_N
4690 ("use pragma Import for & to " &
4691 "suppress initialization ('R'M B.1(24))?",
4692 Nam);
4693 end if;
4694 end Warn_Overlay;
4695
70482933 4696end Freeze;