]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
aspects.ads, [...]: Add Static_Predicate and Dynamic_Predicate.
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
ed2233dc 9-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
748086b7
JJ
16-- or FITNESS FOR A PARTICULAR PURPOSE. --
17-- --
18-- You should have received a copy of the GNU General Public License along --
19-- with this program; see file COPYING3. If not see --
20-- <http://www.gnu.org/licenses/>. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
ca0cb93e 39with Lib; use Lib;
7d8b9c99 40with Namet; use Namet;
70482933
RK
41with Nlists; use Nlists;
42with Nmake; use Nmake;
43with Opt; use Opt;
44with Restrict; use Restrict;
6e937c1c 45with Rident; use Rident;
70482933 46with Sem; use Sem;
a4100e55 47with Sem_Aux; use Sem_Aux;
70482933
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch6; use Sem_Ch6;
50with Sem_Ch7; use Sem_Ch7;
51with Sem_Ch8; use Sem_Ch8;
52with Sem_Ch13; use Sem_Ch13;
53with Sem_Eval; use Sem_Eval;
54with Sem_Mech; use Sem_Mech;
55with Sem_Prag; use Sem_Prag;
56with Sem_Res; use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Sinfo; use Sinfo;
59with Snames; use Snames;
60with Stand; use Stand;
61with Targparm; use Targparm;
62with Tbuild; use Tbuild;
63with Ttypes; use Ttypes;
64with Uintp; use Uintp;
65with Urealp; use Urealp;
66
67package body Freeze is
68
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
72
73 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
74 -- Typ is a type that is being frozen. If no size clause is given,
75 -- but a default Esize has been computed, then this default Esize is
76 -- adjusted up if necessary to be consistent with a given alignment,
77 -- but never to a value greater than Long_Long_Integer'Size. This
78 -- is used for all discrete types and for fixed-point types.
79
80 procedure Build_And_Analyze_Renamed_Body
81 (Decl : Node_Id;
82 New_S : Entity_Id;
83 After : in out Node_Id);
49e90211 84 -- Build body for a renaming declaration, insert in tree and analyze
70482933 85
fbf5a39b
AC
86 procedure Check_Address_Clause (E : Entity_Id);
87 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 88 -- at the point the object is frozen.
fbf5a39b 89
70482933
RK
90 procedure Check_Strict_Alignment (E : Entity_Id);
91 -- E is a base type. If E is tagged or has a component that is aliased
92 -- or tagged or contains something this is aliased or tagged, set
93 -- Strict_Alignment.
94
95 procedure Check_Unsigned_Type (E : Entity_Id);
96 pragma Inline (Check_Unsigned_Type);
97 -- If E is a fixed-point or discrete type, then all the necessary work
98 -- to freeze it is completed except for possible setting of the flag
99 -- Is_Unsigned_Type, which is done by this procedure. The call has no
100 -- effect if the entity E is not a discrete or fixed-point type.
101
102 procedure Freeze_And_Append
103 (Ent : Entity_Id;
c159409f 104 N : Node_Id;
70482933
RK
105 Result : in out List_Id);
106 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
c159409f
AC
107 -- nodes to Result, modifying Result from No_List if necessary. N has
108 -- the same usage as in Freeze_Entity.
70482933
RK
109
110 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
111 -- Freeze enumeration type. The Esize field is set as processing
112 -- proceeds (i.e. set by default when the type is declared and then
113 -- adjusted by rep clauses. What this procedure does is to make sure
114 -- that if a foreign convention is specified, and no specific size
115 -- is given, then the size must be at least Integer'Size.
116
70482933
RK
117 procedure Freeze_Static_Object (E : Entity_Id);
118 -- If an object is frozen which has Is_Statically_Allocated set, then
119 -- all referenced types must also be marked with this flag. This routine
120 -- is in charge of meeting this requirement for the object entity E.
121
122 procedure Freeze_Subprogram (E : Entity_Id);
123 -- Perform freezing actions for a subprogram (create extra formals,
124 -- and set proper default mechanism values). Note that this routine
125 -- is not called for internal subprograms, for which neither of these
126 -- actions is needed (or desirable, we do not want for example to have
127 -- these extra formals present in initialization procedures, where they
128 -- would serve no purpose). In this call E is either a subprogram or
129 -- a subprogram type (i.e. an access to a subprogram).
130
131 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 132 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
133 -- view. Used to determine whether the designated type of an access type
134 -- should be frozen when the access type is frozen. This is done when an
135 -- allocator is frozen, or an expression that may involve attributes of
136 -- the designated type. Otherwise freezing the access type does not freeze
137 -- the designated type.
70482933
RK
138
139 procedure Process_Default_Expressions
140 (E : Entity_Id;
141 After : in out Node_Id);
c159409f
AC
142 -- This procedure is called for each subprogram to complete processing of
143 -- default expressions at the point where all types are known to be frozen.
144 -- The expressions must be analyzed in full, to make sure that all error
145 -- processing is done (they have only been pre-analyzed). If the expression
146 -- is not an entity or literal, its analysis may generate code which must
147 -- not be executed. In that case we build a function body to hold that
148 -- code. This wrapper function serves no other purpose (it used to be
149 -- called to evaluate the default, but now the default is inlined at each
150 -- point of call).
70482933
RK
151
152 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
c159409f
AC
153 -- Typ is a record or array type that is being frozen. This routine sets
154 -- the default component alignment from the scope stack values if the
155 -- alignment is otherwise not specified.
70482933
RK
156
157 procedure Check_Debug_Info_Needed (T : Entity_Id);
158 -- As each entity is frozen, this routine is called to deal with the
159 -- setting of Debug_Info_Needed for the entity. This flag is set if
160 -- the entity comes from source, or if we are in Debug_Generated_Code
161 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
162 -- the flag if Debug_Info_Off is set. This procedure also ensures that
163 -- subsidiary entities have the flag set as required.
70482933 164
c6823a20 165 procedure Undelay_Type (T : Entity_Id);
c159409f
AC
166 -- T is a type of a component that we know to be an Itype. We don't want
167 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
168 -- Full_View or Corresponding_Record_Type.
c6823a20 169
fbf5a39b
AC
170 procedure Warn_Overlay
171 (Expr : Node_Id;
172 Typ : Entity_Id;
173 Nam : Node_Id);
174 -- Expr is the expression for an address clause for entity Nam whose type
175 -- is Typ. If Typ has a default initialization, and there is no explicit
176 -- initialization in the source declaration, check whether the address
177 -- clause might cause overlaying of an entity, and emit a warning on the
178 -- side effect that the initialization will cause.
179
70482933
RK
180 -------------------------------
181 -- Adjust_Esize_For_Alignment --
182 -------------------------------
183
184 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
185 Align : Uint;
186
187 begin
188 if Known_Esize (Typ) and then Known_Alignment (Typ) then
189 Align := Alignment_In_Bits (Typ);
190
191 if Align > Esize (Typ)
192 and then Align <= Standard_Long_Long_Integer_Size
193 then
194 Set_Esize (Typ, Align);
195 end if;
196 end if;
197 end Adjust_Esize_For_Alignment;
198
199 ------------------------------------
200 -- Build_And_Analyze_Renamed_Body --
201 ------------------------------------
202
203 procedure Build_And_Analyze_Renamed_Body
204 (Decl : Node_Id;
205 New_S : Entity_Id;
206 After : in out Node_Id)
207 is
ca0cb93e
AC
208 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
209 Ent : constant Entity_Id := Defining_Entity (Decl);
210 Body_Node : Node_Id;
211 Renamed_Subp : Entity_Id;
d4fc0fb4 212
70482933 213 begin
1c612f29
RD
214 -- If the renamed subprogram is intrinsic, there is no need for a
215 -- wrapper body: we set the alias that will be called and expanded which
216 -- completes the declaration. This transformation is only legal if the
217 -- renamed entity has already been elaborated.
ca0cb93e 218
d4fc0fb4
AC
219 -- Note that it is legal for a renaming_as_body to rename an intrinsic
220 -- subprogram, as long as the renaming occurs before the new entity
221 -- is frozen. See RM 8.5.4 (5).
222
223 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
545cb5be 224 and then Is_Entity_Name (Name (Body_Decl))
d4fc0fb4 225 then
ca0cb93e
AC
226 Renamed_Subp := Entity (Name (Body_Decl));
227 else
228 Renamed_Subp := Empty;
229 end if;
230
231 if Present (Renamed_Subp)
232 and then Is_Intrinsic_Subprogram (Renamed_Subp)
ca0cb93e
AC
233 and then
234 (not In_Same_Source_Unit (Renamed_Subp, Ent)
235 or else Sloc (Renamed_Subp) < Sloc (Ent))
879e23f0 236
308e6f3a 237 -- We can make the renaming entity intrinsic if the renamed function
545cb5be
AC
238 -- has an interface name, or if it is one of the shift/rotate
239 -- operations known to the compiler.
879e23f0 240
545cb5be
AC
241 and then (Present (Interface_Name (Renamed_Subp))
242 or else Chars (Renamed_Subp) = Name_Rotate_Left
243 or else Chars (Renamed_Subp) = Name_Rotate_Right
244 or else Chars (Renamed_Subp) = Name_Shift_Left
245 or else Chars (Renamed_Subp) = Name_Shift_Right
246 or else Chars (Renamed_Subp) = Name_Shift_Right_Arithmetic)
ca0cb93e
AC
247 then
248 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
545cb5be 249
ca0cb93e
AC
250 if Present (Alias (Renamed_Subp)) then
251 Set_Alias (Ent, Alias (Renamed_Subp));
d4fc0fb4 252 else
ca0cb93e 253 Set_Alias (Ent, Renamed_Subp);
d4fc0fb4
AC
254 end if;
255
256 Set_Is_Intrinsic_Subprogram (Ent);
257 Set_Has_Completion (Ent);
258
259 else
260 Body_Node := Build_Renamed_Body (Decl, New_S);
261 Insert_After (After, Body_Node);
262 Mark_Rewrite_Insertion (Body_Node);
263 Analyze (Body_Node);
264 After := Body_Node;
265 end if;
70482933
RK
266 end Build_And_Analyze_Renamed_Body;
267
268 ------------------------
269 -- Build_Renamed_Body --
270 ------------------------
271
272 function Build_Renamed_Body
273 (Decl : Node_Id;
fbf5a39b 274 New_S : Entity_Id) return Node_Id
70482933
RK
275 is
276 Loc : constant Source_Ptr := Sloc (New_S);
545cb5be
AC
277 -- We use for the source location of the renamed body, the location of
278 -- the spec entity. It might seem more natural to use the location of
279 -- the renaming declaration itself, but that would be wrong, since then
280 -- the body we create would look as though it was created far too late,
281 -- and this could cause problems with elaboration order analysis,
282 -- particularly in connection with instantiations.
70482933
RK
283
284 N : constant Node_Id := Unit_Declaration_Node (New_S);
285 Nam : constant Node_Id := Name (N);
286 Old_S : Entity_Id;
287 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
288 Actuals : List_Id := No_List;
289 Call_Node : Node_Id;
290 Call_Name : Node_Id;
291 Body_Node : Node_Id;
292 Formal : Entity_Id;
293 O_Formal : Entity_Id;
294 Param_Spec : Node_Id;
295
def46b54
RD
296 Pref : Node_Id := Empty;
297 -- If the renamed entity is a primitive operation given in prefix form,
298 -- the prefix is the target object and it has to be added as the first
299 -- actual in the generated call.
300
70482933 301 begin
def46b54
RD
302 -- Determine the entity being renamed, which is the target of the call
303 -- statement. If the name is an explicit dereference, this is a renaming
304 -- of a subprogram type rather than a subprogram. The name itself is
305 -- fully analyzed.
70482933
RK
306
307 if Nkind (Nam) = N_Selected_Component then
308 Old_S := Entity (Selector_Name (Nam));
309
310 elsif Nkind (Nam) = N_Explicit_Dereference then
311 Old_S := Etype (Nam);
312
313 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
314 if Is_Entity_Name (Prefix (Nam)) then
315 Old_S := Entity (Prefix (Nam));
316 else
317 Old_S := Entity (Selector_Name (Prefix (Nam)));
318 end if;
319
320 elsif Nkind (Nam) = N_Character_Literal then
321 Old_S := Etype (New_S);
322
323 else
324 Old_S := Entity (Nam);
325 end if;
326
327 if Is_Entity_Name (Nam) then
07fc65c4 328
def46b54
RD
329 -- If the renamed entity is a predefined operator, retain full name
330 -- to ensure its visibility.
07fc65c4
GB
331
332 if Ekind (Old_S) = E_Operator
333 and then Nkind (Nam) = N_Expanded_Name
334 then
335 Call_Name := New_Copy (Name (N));
336 else
337 Call_Name := New_Reference_To (Old_S, Loc);
338 end if;
339
70482933 340 else
def46b54
RD
341 if Nkind (Nam) = N_Selected_Component
342 and then Present (First_Formal (Old_S))
343 and then
344 (Is_Controlling_Formal (First_Formal (Old_S))
345 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
346 then
347
348 -- Retrieve the target object, to be added as a first actual
349 -- in the call.
350
351 Call_Name := New_Occurrence_Of (Old_S, Loc);
352 Pref := Prefix (Nam);
353
354 else
355 Call_Name := New_Copy (Name (N));
356 end if;
70482933 357
545cb5be 358 -- Original name may have been overloaded, but is fully resolved now
70482933
RK
359
360 Set_Is_Overloaded (Call_Name, False);
361 end if;
362
def46b54 363 -- For simple renamings, subsequent calls can be expanded directly as
d4fc0fb4
AC
364 -- calls to the renamed entity. The body must be generated in any case
365 -- for calls that may appear elsewhere.
70482933 366
545cb5be 367 if Ekind_In (Old_S, E_Function, E_Procedure)
70482933
RK
368 and then Nkind (Decl) = N_Subprogram_Declaration
369 then
370 Set_Body_To_Inline (Decl, Old_S);
371 end if;
372
373 -- The body generated for this renaming is an internal artifact, and
374 -- does not constitute a freeze point for the called entity.
375
376 Set_Must_Not_Freeze (Call_Name);
377
378 Formal := First_Formal (Defining_Entity (Decl));
379
def46b54
RD
380 if Present (Pref) then
381 declare
382 Pref_Type : constant Entity_Id := Etype (Pref);
383 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
384
385 begin
def46b54 386 -- The controlling formal may be an access parameter, or the
e14c931f 387 -- actual may be an access value, so adjust accordingly.
def46b54
RD
388
389 if Is_Access_Type (Pref_Type)
390 and then not Is_Access_Type (Form_Type)
391 then
392 Actuals := New_List
393 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
394
395 elsif Is_Access_Type (Form_Type)
396 and then not Is_Access_Type (Pref)
397 then
398 Actuals := New_List
399 (Make_Attribute_Reference (Loc,
400 Attribute_Name => Name_Access,
401 Prefix => Relocate_Node (Pref)));
402 else
403 Actuals := New_List (Pref);
404 end if;
405 end;
406
407 elsif Present (Formal) then
70482933
RK
408 Actuals := New_List;
409
def46b54
RD
410 else
411 Actuals := No_List;
412 end if;
413
414 if Present (Formal) then
70482933
RK
415 while Present (Formal) loop
416 Append (New_Reference_To (Formal, Loc), Actuals);
417 Next_Formal (Formal);
418 end loop;
419 end if;
420
def46b54
RD
421 -- If the renamed entity is an entry, inherit its profile. For other
422 -- renamings as bodies, both profiles must be subtype conformant, so it
423 -- is not necessary to replace the profile given in the declaration.
424 -- However, default values that are aggregates are rewritten when
425 -- partially analyzed, so we recover the original aggregate to insure
426 -- that subsequent conformity checking works. Similarly, if the default
427 -- expression was constant-folded, recover the original expression.
70482933
RK
428
429 Formal := First_Formal (Defining_Entity (Decl));
430
431 if Present (Formal) then
432 O_Formal := First_Formal (Old_S);
433 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
434 while Present (Formal) loop
435 if Is_Entry (Old_S) then
70482933
RK
436 if Nkind (Parameter_Type (Param_Spec)) /=
437 N_Access_Definition
438 then
439 Set_Etype (Formal, Etype (O_Formal));
440 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
441 end if;
442
07fc65c4
GB
443 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
444 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
445 Nkind (Default_Value (O_Formal))
446 then
70482933
RK
447 Set_Expression (Param_Spec,
448 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
449 end if;
450
451 Next_Formal (Formal);
452 Next_Formal (O_Formal);
453 Next (Param_Spec);
454 end loop;
455 end if;
456
457 -- If the renamed entity is a function, the generated body contains a
458 -- return statement. Otherwise, build a procedure call. If the entity is
459 -- an entry, subsequent analysis of the call will transform it into the
460 -- proper entry or protected operation call. If the renamed entity is
461 -- a character literal, return it directly.
462
463 if Ekind (Old_S) = E_Function
464 or else Ekind (Old_S) = E_Operator
465 or else (Ekind (Old_S) = E_Subprogram_Type
466 and then Etype (Old_S) /= Standard_Void_Type)
467 then
468 Call_Node :=
86cde7b1 469 Make_Simple_Return_Statement (Loc,
70482933
RK
470 Expression =>
471 Make_Function_Call (Loc,
472 Name => Call_Name,
473 Parameter_Associations => Actuals));
474
475 elsif Ekind (Old_S) = E_Enumeration_Literal then
476 Call_Node :=
86cde7b1 477 Make_Simple_Return_Statement (Loc,
70482933
RK
478 Expression => New_Occurrence_Of (Old_S, Loc));
479
480 elsif Nkind (Nam) = N_Character_Literal then
481 Call_Node :=
86cde7b1 482 Make_Simple_Return_Statement (Loc,
70482933
RK
483 Expression => Call_Name);
484
485 else
486 Call_Node :=
487 Make_Procedure_Call_Statement (Loc,
488 Name => Call_Name,
489 Parameter_Associations => Actuals);
490 end if;
491
49e90211 492 -- Create entities for subprogram body and formals
70482933
RK
493
494 Set_Defining_Unit_Name (Spec,
495 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
496
497 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
498 while Present (Param_Spec) loop
499 Set_Defining_Identifier (Param_Spec,
500 Make_Defining_Identifier (Loc,
501 Chars => Chars (Defining_Identifier (Param_Spec))));
502 Next (Param_Spec);
503 end loop;
504
505 Body_Node :=
506 Make_Subprogram_Body (Loc,
507 Specification => Spec,
508 Declarations => New_List,
509 Handled_Statement_Sequence =>
510 Make_Handled_Sequence_Of_Statements (Loc,
511 Statements => New_List (Call_Node)));
512
513 if Nkind (Decl) /= N_Subprogram_Declaration then
514 Rewrite (N,
515 Make_Subprogram_Declaration (Loc,
516 Specification => Specification (N)));
517 end if;
518
519 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
520 -- the body is analyzed when the renamed entity is frozen, it may
521 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
522
523 if Nkind (N) = N_Subprogram_Renaming_Declaration
524 and then Present (Corresponding_Spec (N))
525 then
526 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
527 else
528 Set_Corresponding_Spec (Body_Node, New_S);
529 end if;
530
531 return Body_Node;
532 end Build_Renamed_Body;
533
fbf5a39b
AC
534 --------------------------
535 -- Check_Address_Clause --
536 --------------------------
537
538 procedure Check_Address_Clause (E : Entity_Id) is
539 Addr : constant Node_Id := Address_Clause (E);
540 Expr : Node_Id;
541 Decl : constant Node_Id := Declaration_Node (E);
542 Typ : constant Entity_Id := Etype (E);
543
544 begin
545 if Present (Addr) then
546 Expr := Expression (Addr);
547
0d901290 548 if Needs_Constant_Address (Decl, Typ) then
fbf5a39b 549 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
550
551 -- Has_Delayed_Freeze was set on E when the address clause was
552 -- analyzed. Reset the flag now unless freeze actions were
553 -- attached to it in the mean time.
554
555 if No (Freeze_Node (E)) then
556 Set_Has_Delayed_Freeze (E, False);
557 end if;
fbf5a39b
AC
558 end if;
559
1d57c04f
AC
560 -- If Rep_Clauses are to be ignored, remove address clause from
561 -- list attached to entity, because it may be illegal for gigi,
562 -- for example by breaking order of elaboration..
563
564 if Ignore_Rep_Clauses then
565 declare
566 Rep : Node_Id;
567
568 begin
569 Rep := First_Rep_Item (E);
570
571 if Rep = Addr then
572 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
573
574 else
575 while Present (Rep)
576 and then Next_Rep_Item (Rep) /= Addr
577 loop
578 Rep := Next_Rep_Item (Rep);
579 end loop;
580 end if;
581
582 if Present (Rep) then
583 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
584 end if;
585 end;
586
587 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
588
589 elsif not Error_Posted (Expr)
048e5cef 590 and then not Needs_Finalization (Typ)
fbf5a39b
AC
591 then
592 Warn_Overlay (Expr, Typ, Name (Addr));
593 end if;
594 end if;
595 end Check_Address_Clause;
596
70482933
RK
597 -----------------------------
598 -- Check_Compile_Time_Size --
599 -----------------------------
600
601 procedure Check_Compile_Time_Size (T : Entity_Id) is
602
c6823a20 603 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 604 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 605 -- field, of T checking for a size clause that was given which attempts
2593c3e1 606 -- to give a smaller size, and also checking for an alignment clause.
70482933
RK
607
608 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 609 -- Recursive function that does all the work
70482933
RK
610
611 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
612 -- If T is a constrained subtype, its size is not known if any of its
613 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 614 -- The test is conservative and doesn't check that the components are
70482933
RK
615 -- in fact constrained by non-static discriminant values. Could be made
616 -- more precise ???
617
618 --------------------
619 -- Set_Small_Size --
620 --------------------
621
c6823a20 622 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
623 begin
624 if S > 32 then
625 return;
626
2593c3e1
AC
627 -- Don't bother if alignment clause with a value other than 1 is
628 -- present, because size may be padded up to meet back end alignment
629 -- requirements, and only the back end knows the rules!
630
631 elsif Known_Alignment (T) and then Alignment (T) /= 1 then
632 return;
633
634 -- Check for bad size clause given
635
70482933
RK
636 elsif Has_Size_Clause (T) then
637 if RM_Size (T) < S then
638 Error_Msg_Uint_1 := S;
639 Error_Msg_NE
d58b9515 640 ("size for& too small, minimum allowed is ^",
70482933
RK
641 Size_Clause (T), T);
642
643 elsif Unknown_Esize (T) then
644 Set_Esize (T, S);
645 end if;
646
647 -- Set sizes if not set already
648
649 else
650 if Unknown_Esize (T) then
651 Set_Esize (T, S);
652 end if;
653
654 if Unknown_RM_Size (T) then
655 Set_RM_Size (T, S);
656 end if;
657 end if;
658 end Set_Small_Size;
659
660 ----------------
661 -- Size_Known --
662 ----------------
663
664 function Size_Known (T : Entity_Id) return Boolean is
665 Index : Entity_Id;
666 Comp : Entity_Id;
667 Ctyp : Entity_Id;
668 Low : Node_Id;
669 High : Node_Id;
670
671 begin
672 if Size_Known_At_Compile_Time (T) then
673 return True;
674
c6a9797e
RD
675 -- Always True for scalar types. This is true even for generic formal
676 -- scalar types. We used to return False in the latter case, but the
677 -- size is known at compile time, even in the template, we just do
678 -- not know the exact size but that's not the point of this routine.
679
70482933
RK
680 elsif Is_Scalar_Type (T)
681 or else Is_Task_Type (T)
682 then
c6a9797e
RD
683 return True;
684
685 -- Array types
70482933
RK
686
687 elsif Is_Array_Type (T) then
c6a9797e
RD
688
689 -- String literals always have known size, and we can set it
690
70482933 691 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
692 Set_Small_Size (T, Component_Size (T)
693 * String_Literal_Length (T));
70482933
RK
694 return True;
695
c6a9797e
RD
696 -- Unconstrained types never have known at compile time size
697
70482933
RK
698 elsif not Is_Constrained (T) then
699 return False;
700
def46b54
RD
701 -- Don't do any recursion on type with error posted, since we may
702 -- have a malformed type that leads us into a loop.
07fc65c4
GB
703
704 elsif Error_Posted (T) then
705 return False;
706
c6a9797e
RD
707 -- Otherwise if component size unknown, then array size unknown
708
70482933
RK
709 elsif not Size_Known (Component_Type (T)) then
710 return False;
711 end if;
712
def46b54
RD
713 -- Check for all indexes static, and also compute possible size
714 -- (in case it is less than 32 and may be packable).
70482933
RK
715
716 declare
717 Esiz : Uint := Component_Size (T);
718 Dim : Uint;
719
720 begin
721 Index := First_Index (T);
70482933
RK
722 while Present (Index) loop
723 if Nkind (Index) = N_Range then
724 Get_Index_Bounds (Index, Low, High);
725
726 elsif Error_Posted (Scalar_Range (Etype (Index))) then
727 return False;
728
729 else
730 Low := Type_Low_Bound (Etype (Index));
731 High := Type_High_Bound (Etype (Index));
732 end if;
733
734 if not Compile_Time_Known_Value (Low)
735 or else not Compile_Time_Known_Value (High)
736 or else Etype (Index) = Any_Type
737 then
738 return False;
739
740 else
741 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
742
743 if Dim >= 0 then
744 Esiz := Esiz * Dim;
745 else
746 Esiz := Uint_0;
747 end if;
748 end if;
749
750 Next_Index (Index);
751 end loop;
752
c6823a20 753 Set_Small_Size (T, Esiz);
70482933
RK
754 return True;
755 end;
756
c6a9797e
RD
757 -- Access types always have known at compile time sizes
758
70482933
RK
759 elsif Is_Access_Type (T) then
760 return True;
761
c6a9797e
RD
762 -- For non-generic private types, go to underlying type if present
763
70482933
RK
764 elsif Is_Private_Type (T)
765 and then not Is_Generic_Type (T)
766 and then Present (Underlying_Type (T))
767 then
def46b54
RD
768 -- Don't do any recursion on type with error posted, since we may
769 -- have a malformed type that leads us into a loop.
07fc65c4
GB
770
771 if Error_Posted (T) then
772 return False;
773 else
774 return Size_Known (Underlying_Type (T));
775 end if;
70482933 776
c6a9797e
RD
777 -- Record types
778
70482933 779 elsif Is_Record_Type (T) then
fbf5a39b
AC
780
781 -- A class-wide type is never considered to have a known size
782
70482933
RK
783 if Is_Class_Wide_Type (T) then
784 return False;
785
fbf5a39b 786 -- A subtype of a variant record must not have non-static
308e6f3a 787 -- discriminated components.
fbf5a39b
AC
788
789 elsif T /= Base_Type (T)
790 and then not Static_Discriminated_Components (T)
791 then
792 return False;
70482933 793
def46b54
RD
794 -- Don't do any recursion on type with error posted, since we may
795 -- have a malformed type that leads us into a loop.
07fc65c4
GB
796
797 elsif Error_Posted (T) then
798 return False;
fbf5a39b 799 end if;
07fc65c4 800
fbf5a39b 801 -- Now look at the components of the record
70482933 802
fbf5a39b 803 declare
def46b54
RD
804 -- The following two variables are used to keep track of the
805 -- size of packed records if we can tell the size of the packed
806 -- record in the front end. Packed_Size_Known is True if so far
807 -- we can figure out the size. It is initialized to True for a
808 -- packed record, unless the record has discriminants. The
809 -- reason we eliminate the discriminated case is that we don't
810 -- know the way the back end lays out discriminated packed
811 -- records. If Packed_Size_Known is True, then Packed_Size is
812 -- the size in bits so far.
fbf5a39b
AC
813
814 Packed_Size_Known : Boolean :=
815 Is_Packed (T)
816 and then not Has_Discriminants (T);
817
818 Packed_Size : Uint := Uint_0;
819
820 begin
821 -- Test for variant part present
822
823 if Has_Discriminants (T)
824 and then Present (Parent (T))
825 and then Nkind (Parent (T)) = N_Full_Type_Declaration
826 and then Nkind (Type_Definition (Parent (T))) =
545cb5be 827 N_Record_Definition
fbf5a39b
AC
828 and then not Null_Present (Type_Definition (Parent (T)))
829 and then Present (Variant_Part
830 (Component_List (Type_Definition (Parent (T)))))
831 then
832 -- If variant part is present, and type is unconstrained,
833 -- then we must have defaulted discriminants, or a size
834 -- clause must be present for the type, or else the size
835 -- is definitely not known at compile time.
836
837 if not Is_Constrained (T)
838 and then
545cb5be 839 No (Discriminant_Default_Value (First_Discriminant (T)))
fbf5a39b 840 and then Unknown_Esize (T)
70482933 841 then
fbf5a39b
AC
842 return False;
843 end if;
844 end if;
70482933 845
fbf5a39b
AC
846 -- Loop through components
847
fea9e956 848 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 849 while Present (Comp) loop
fea9e956 850 Ctyp := Etype (Comp);
fbf5a39b 851
fea9e956
ES
852 -- We do not know the packed size if there is a component
853 -- clause present (we possibly could, but this would only
854 -- help in the case of a record with partial rep clauses.
855 -- That's because in the case of full rep clauses, the
856 -- size gets figured out anyway by a different circuit).
fbf5a39b 857
fea9e956
ES
858 if Present (Component_Clause (Comp)) then
859 Packed_Size_Known := False;
860 end if;
70482933 861
fea9e956
ES
862 -- We need to identify a component that is an array where
863 -- the index type is an enumeration type with non-standard
864 -- representation, and some bound of the type depends on a
865 -- discriminant.
70482933 866
fea9e956 867 -- This is because gigi computes the size by doing a
e14c931f 868 -- substitution of the appropriate discriminant value in
fea9e956
ES
869 -- the size expression for the base type, and gigi is not
870 -- clever enough to evaluate the resulting expression (which
871 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 872
fea9e956
ES
873 -- It would be nice if gigi would either recognize that
874 -- this expression can be computed at compile time, or
875 -- alternatively figured out the size from the subtype
876 -- directly, where all the information is at hand ???
fbf5a39b 877
fea9e956
ES
878 if Is_Array_Type (Etype (Comp))
879 and then Present (Packed_Array_Type (Etype (Comp)))
880 then
881 declare
882 Ocomp : constant Entity_Id :=
883 Original_Record_Component (Comp);
884 OCtyp : constant Entity_Id := Etype (Ocomp);
885 Ind : Node_Id;
886 Indtyp : Entity_Id;
887 Lo, Hi : Node_Id;
70482933 888
fea9e956
ES
889 begin
890 Ind := First_Index (OCtyp);
891 while Present (Ind) loop
892 Indtyp := Etype (Ind);
70482933 893
fea9e956
ES
894 if Is_Enumeration_Type (Indtyp)
895 and then Has_Non_Standard_Rep (Indtyp)
896 then
897 Lo := Type_Low_Bound (Indtyp);
898 Hi := Type_High_Bound (Indtyp);
fbf5a39b 899
fea9e956
ES
900 if Is_Entity_Name (Lo)
901 and then Ekind (Entity (Lo)) = E_Discriminant
902 then
903 return False;
fbf5a39b 904
fea9e956
ES
905 elsif Is_Entity_Name (Hi)
906 and then Ekind (Entity (Hi)) = E_Discriminant
907 then
908 return False;
909 end if;
910 end if;
fbf5a39b 911
fea9e956
ES
912 Next_Index (Ind);
913 end loop;
914 end;
915 end if;
70482933 916
def46b54
RD
917 -- Clearly size of record is not known if the size of one of
918 -- the components is not known.
70482933 919
fea9e956
ES
920 if not Size_Known (Ctyp) then
921 return False;
922 end if;
70482933 923
fea9e956 924 -- Accumulate packed size if possible
70482933 925
fea9e956 926 if Packed_Size_Known then
70482933 927
fea9e956
ES
928 -- We can only deal with elementary types, since for
929 -- non-elementary components, alignment enters into the
930 -- picture, and we don't know enough to handle proper
931 -- alignment in this context. Packed arrays count as
932 -- elementary if the representation is a modular type.
fbf5a39b 933
fea9e956
ES
934 if Is_Elementary_Type (Ctyp)
935 or else (Is_Array_Type (Ctyp)
2593c3e1
AC
936 and then Present (Packed_Array_Type (Ctyp))
937 and then Is_Modular_Integer_Type
938 (Packed_Array_Type (Ctyp)))
fea9e956 939 then
2593c3e1
AC
940 -- If RM_Size is known and static, then we can keep
941 -- accumulating the packed size.
70482933 942
fea9e956 943 if Known_Static_RM_Size (Ctyp) then
70482933 944
fea9e956
ES
945 -- A little glitch, to be removed sometime ???
946 -- gigi does not understand zero sizes yet.
947
948 if RM_Size (Ctyp) = Uint_0 then
70482933 949 Packed_Size_Known := False;
fea9e956
ES
950
951 -- Normal case where we can keep accumulating the
952 -- packed array size.
953
954 else
955 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 956 end if;
fbf5a39b 957
fea9e956
ES
958 -- If we have a field whose RM_Size is not known then
959 -- we can't figure out the packed size here.
fbf5a39b
AC
960
961 else
962 Packed_Size_Known := False;
70482933 963 end if;
fea9e956
ES
964
965 -- If we have a non-elementary type we can't figure out
966 -- the packed array size (alignment issues).
967
968 else
969 Packed_Size_Known := False;
70482933 970 end if;
fbf5a39b 971 end if;
70482933 972
fea9e956 973 Next_Component_Or_Discriminant (Comp);
fbf5a39b 974 end loop;
70482933 975
fbf5a39b 976 if Packed_Size_Known then
c6823a20 977 Set_Small_Size (T, Packed_Size);
fbf5a39b 978 end if;
70482933 979
fbf5a39b
AC
980 return True;
981 end;
70482933 982
c6a9797e
RD
983 -- All other cases, size not known at compile time
984
70482933
RK
985 else
986 return False;
987 end if;
988 end Size_Known;
989
990 -------------------------------------
991 -- Static_Discriminated_Components --
992 -------------------------------------
993
994 function Static_Discriminated_Components
0da2c8ac 995 (T : Entity_Id) return Boolean
70482933
RK
996 is
997 Constraint : Elmt_Id;
998
999 begin
1000 if Has_Discriminants (T)
1001 and then Present (Discriminant_Constraint (T))
1002 and then Present (First_Component (T))
1003 then
1004 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
1005 while Present (Constraint) loop
1006 if not Compile_Time_Known_Value (Node (Constraint)) then
1007 return False;
1008 end if;
1009
1010 Next_Elmt (Constraint);
1011 end loop;
1012 end if;
1013
1014 return True;
1015 end Static_Discriminated_Components;
1016
1017 -- Start of processing for Check_Compile_Time_Size
1018
1019 begin
1020 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1021 end Check_Compile_Time_Size;
1022
1023 -----------------------------
1024 -- Check_Debug_Info_Needed --
1025 -----------------------------
1026
1027 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1028 begin
1b24ada5 1029 if Debug_Info_Off (T) then
70482933
RK
1030 return;
1031
1032 elsif Comes_From_Source (T)
1033 or else Debug_Generated_Code
1034 or else Debug_Flag_VV
1b24ada5 1035 or else Needs_Debug_Info (T)
70482933
RK
1036 then
1037 Set_Debug_Info_Needed (T);
1038 end if;
1039 end Check_Debug_Info_Needed;
1040
1041 ----------------------------
1042 -- Check_Strict_Alignment --
1043 ----------------------------
1044
1045 procedure Check_Strict_Alignment (E : Entity_Id) is
1046 Comp : Entity_Id;
1047
1048 begin
1049 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1050 Set_Strict_Alignment (E);
1051
1052 elsif Is_Array_Type (E) then
1053 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1054
1055 elsif Is_Record_Type (E) then
1056 if Is_Limited_Record (E) then
1057 Set_Strict_Alignment (E);
1058 return;
1059 end if;
1060
1061 Comp := First_Component (E);
70482933
RK
1062 while Present (Comp) loop
1063 if not Is_Type (Comp)
1064 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1065 or else Is_Aliased (Comp))
70482933
RK
1066 then
1067 Set_Strict_Alignment (E);
1068 return;
1069 end if;
1070
1071 Next_Component (Comp);
1072 end loop;
1073 end if;
1074 end Check_Strict_Alignment;
1075
1076 -------------------------
1077 -- Check_Unsigned_Type --
1078 -------------------------
1079
1080 procedure Check_Unsigned_Type (E : Entity_Id) is
1081 Ancestor : Entity_Id;
1082 Lo_Bound : Node_Id;
1083 Btyp : Entity_Id;
1084
1085 begin
1086 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1087 return;
1088 end if;
1089
1090 -- Do not attempt to analyze case where range was in error
1091
199c6a10
AC
1092 if No (Scalar_Range (E))
1093 or else Error_Posted (Scalar_Range (E))
1094 then
70482933
RK
1095 return;
1096 end if;
1097
1098 -- The situation that is non trivial is something like
1099
1100 -- subtype x1 is integer range -10 .. +10;
1101 -- subtype x2 is x1 range 0 .. V1;
1102 -- subtype x3 is x2 range V2 .. V3;
1103 -- subtype x4 is x3 range V4 .. V5;
1104
1105 -- where Vn are variables. Here the base type is signed, but we still
1106 -- know that x4 is unsigned because of the lower bound of x2.
1107
1108 -- The only way to deal with this is to look up the ancestor chain
1109
1110 Ancestor := E;
1111 loop
1112 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1113 return;
1114 end if;
1115
1116 Lo_Bound := Type_Low_Bound (Ancestor);
1117
1118 if Compile_Time_Known_Value (Lo_Bound) then
1119
1120 if Expr_Rep_Value (Lo_Bound) >= 0 then
1121 Set_Is_Unsigned_Type (E, True);
1122 end if;
1123
1124 return;
1125
1126 else
1127 Ancestor := Ancestor_Subtype (Ancestor);
1128
1129 -- If no ancestor had a static lower bound, go to base type
1130
1131 if No (Ancestor) then
1132
1133 -- Note: the reason we still check for a compile time known
1134 -- value for the base type is that at least in the case of
1135 -- generic formals, we can have bounds that fail this test,
1136 -- and there may be other cases in error situations.
1137
1138 Btyp := Base_Type (E);
1139
1140 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1141 return;
1142 end if;
1143
1144 Lo_Bound := Type_Low_Bound (Base_Type (E));
1145
1146 if Compile_Time_Known_Value (Lo_Bound)
1147 and then Expr_Rep_Value (Lo_Bound) >= 0
1148 then
1149 Set_Is_Unsigned_Type (E, True);
1150 end if;
1151
1152 return;
70482933
RK
1153 end if;
1154 end if;
1155 end loop;
1156 end Check_Unsigned_Type;
1157
cfb120b5
AC
1158 -------------------------
1159 -- Is_Atomic_Aggregate --
1160 -------------------------
fbf5a39b 1161
cfb120b5 1162 function Is_Atomic_Aggregate
b0159fbe
AC
1163 (E : Entity_Id;
1164 Typ : Entity_Id) return Boolean
1165 is
fbf5a39b
AC
1166 Loc : constant Source_Ptr := Sloc (E);
1167 New_N : Node_Id;
b0159fbe 1168 Par : Node_Id;
fbf5a39b
AC
1169 Temp : Entity_Id;
1170
1171 begin
b0159fbe
AC
1172 Par := Parent (E);
1173
01957849 1174 -- Array may be qualified, so find outer context
b0159fbe
AC
1175
1176 if Nkind (Par) = N_Qualified_Expression then
1177 Par := Parent (Par);
1178 end if;
1179
fb2e11ee 1180 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1181 and then Comes_From_Source (Par)
fbf5a39b 1182 then
b29def53 1183 Temp := Make_Temporary (Loc, 'T', E);
fbf5a39b
AC
1184 New_N :=
1185 Make_Object_Declaration (Loc,
1186 Defining_Identifier => Temp,
c6a9797e
RD
1187 Object_Definition => New_Occurrence_Of (Typ, Loc),
1188 Expression => Relocate_Node (E));
b0159fbe 1189 Insert_Before (Par, New_N);
fbf5a39b
AC
1190 Analyze (New_N);
1191
b0159fbe
AC
1192 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1193 return True;
fbf5a39b 1194
b0159fbe
AC
1195 else
1196 return False;
fbf5a39b 1197 end if;
cfb120b5 1198 end Is_Atomic_Aggregate;
fbf5a39b 1199
70482933
RK
1200 ----------------
1201 -- Freeze_All --
1202 ----------------
1203
1204 -- Note: the easy coding for this procedure would be to just build a
1205 -- single list of freeze nodes and then insert them and analyze them
1206 -- all at once. This won't work, because the analysis of earlier freeze
1207 -- nodes may recursively freeze types which would otherwise appear later
1208 -- on in the freeze list. So we must analyze and expand the freeze nodes
1209 -- as they are generated.
1210
1211 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1212 E : Entity_Id;
1213 Decl : Node_Id;
1214
1215 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1216 -- This is the internal recursive routine that does freezing of entities
1217 -- (but NOT the analysis of default expressions, which should not be
1218 -- recursive, we don't want to analyze those till we are sure that ALL
1219 -- the types are frozen).
70482933 1220
fbf5a39b
AC
1221 --------------------
1222 -- Freeze_All_Ent --
1223 --------------------
1224
545cb5be 1225 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1226 E : Entity_Id;
1227 Flist : List_Id;
1228 Lastn : Node_Id;
1229
1230 procedure Process_Flist;
def46b54
RD
1231 -- If freeze nodes are present, insert and analyze, and reset cursor
1232 -- for next insertion.
70482933 1233
fbf5a39b
AC
1234 -------------------
1235 -- Process_Flist --
1236 -------------------
1237
70482933
RK
1238 procedure Process_Flist is
1239 begin
1240 if Is_Non_Empty_List (Flist) then
1241 Lastn := Next (After);
1242 Insert_List_After_And_Analyze (After, Flist);
1243
1244 if Present (Lastn) then
1245 After := Prev (Lastn);
1246 else
1247 After := Last (List_Containing (After));
1248 end if;
1249 end if;
1250 end Process_Flist;
1251
fbf5a39b
AC
1252 -- Start or processing for Freeze_All_Ent
1253
70482933
RK
1254 begin
1255 E := From;
1256 while Present (E) loop
1257
1258 -- If the entity is an inner package which is not a package
def46b54
RD
1259 -- renaming, then its entities must be frozen at this point. Note
1260 -- that such entities do NOT get frozen at the end of the nested
1261 -- package itself (only library packages freeze).
70482933
RK
1262
1263 -- Same is true for task declarations, where anonymous records
1264 -- created for entry parameters must be frozen.
1265
1266 if Ekind (E) = E_Package
1267 and then No (Renamed_Object (E))
1268 and then not Is_Child_Unit (E)
1269 and then not Is_Frozen (E)
1270 then
7d8b9c99 1271 Push_Scope (E);
70482933
RK
1272 Install_Visible_Declarations (E);
1273 Install_Private_Declarations (E);
1274
1275 Freeze_All (First_Entity (E), After);
1276
1277 End_Package_Scope (E);
1278
1279 elsif Ekind (E) in Task_Kind
1280 and then
1281 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1282 or else
70482933
RK
1283 Nkind (Parent (E)) = N_Single_Task_Declaration)
1284 then
7d8b9c99 1285 Push_Scope (E);
70482933
RK
1286 Freeze_All (First_Entity (E), After);
1287 End_Scope;
1288
1289 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1290 -- primitive operations of the parent have been frozen, so that
1291 -- their addresses will be in the parent's dispatch table at the
1292 -- point it is inherited.
70482933
RK
1293
1294 elsif Ekind (E) = E_Record_Type
1295 and then Is_Tagged_Type (E)
1296 and then Is_Tagged_Type (Etype (E))
1297 and then Is_Derived_Type (E)
1298 then
1299 declare
1300 Prim_List : constant Elist_Id :=
1301 Primitive_Operations (Etype (E));
fbf5a39b
AC
1302
1303 Prim : Elmt_Id;
1304 Subp : Entity_Id;
70482933
RK
1305
1306 begin
1307 Prim := First_Elmt (Prim_List);
70482933
RK
1308 while Present (Prim) loop
1309 Subp := Node (Prim);
1310
1311 if Comes_From_Source (Subp)
1312 and then not Is_Frozen (Subp)
1313 then
c159409f 1314 Flist := Freeze_Entity (Subp, After);
70482933
RK
1315 Process_Flist;
1316 end if;
1317
1318 Next_Elmt (Prim);
1319 end loop;
1320 end;
1321 end if;
1322
1323 if not Is_Frozen (E) then
c159409f 1324 Flist := Freeze_Entity (E, After);
70482933 1325 Process_Flist;
47e11d08
AC
1326
1327 -- If already frozen, and there are delayed aspects, this is where
1328 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1329 -- for a description of how we handle aspect visibility).
1330
1331 elsif Has_Delayed_Aspects (E) then
1332 declare
1333 Ritem : Node_Id;
1334
1335 begin
1336 Ritem := First_Rep_Item (E);
1337 while Present (Ritem) loop
1338 if Nkind (Ritem) = N_Aspect_Specification
1339 and then Is_Delayed_Aspect (Ritem)
1340 then
1341 Check_Aspect_At_End_Of_Declarations (Ritem);
1342 end if;
1343
1344 Ritem := Next_Rep_Item (Ritem);
1345 end loop;
1346 end;
70482933
RK
1347 end if;
1348
def46b54
RD
1349 -- If an incomplete type is still not frozen, this may be a
1350 -- premature freezing because of a body declaration that follows.
1351 -- Indicate where the freezing took place.
fbf5a39b 1352
def46b54
RD
1353 -- If the freezing is caused by the end of the current declarative
1354 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1355
1356 if not Is_Frozen (E)
1357 and then Ekind (E) = E_Incomplete_Type
1358 then
1359 declare
1360 Bod : constant Node_Id := Next (After);
1361
1362 begin
545cb5be
AC
1363 if (Nkind_In (Bod, N_Subprogram_Body,
1364 N_Entry_Body,
1365 N_Package_Body,
1366 N_Protected_Body,
1367 N_Task_Body)
fbf5a39b
AC
1368 or else Nkind (Bod) in N_Body_Stub)
1369 and then
1370 List_Containing (After) = List_Containing (Parent (E))
1371 then
1372 Error_Msg_Sloc := Sloc (Next (After));
1373 Error_Msg_NE
1374 ("type& is frozen# before its full declaration",
1375 Parent (E), E);
1376 end if;
1377 end;
1378 end if;
1379
70482933
RK
1380 Next_Entity (E);
1381 end loop;
1382 end Freeze_All_Ent;
1383
1384 -- Start of processing for Freeze_All
1385
1386 begin
1387 Freeze_All_Ent (From, After);
1388
1389 -- Now that all types are frozen, we can deal with default expressions
1390 -- that require us to build a default expression functions. This is the
1391 -- point at which such functions are constructed (after all types that
1392 -- might be used in such expressions have been frozen).
fbf5a39b 1393
d4fc0fb4
AC
1394 -- For subprograms that are renaming_as_body, we create the wrapper
1395 -- bodies as needed.
1396
70482933
RK
1397 -- We also add finalization chains to access types whose designated
1398 -- types are controlled. This is normally done when freezing the type,
1399 -- but this misses recursive type definitions where the later members
c6a9797e 1400 -- of the recursion introduce controlled components.
70482933
RK
1401
1402 -- Loop through entities
1403
1404 E := From;
1405 while Present (E) loop
70482933
RK
1406 if Is_Subprogram (E) then
1407
1408 if not Default_Expressions_Processed (E) then
1409 Process_Default_Expressions (E, After);
1410 end if;
1411
1412 if not Has_Completion (E) then
1413 Decl := Unit_Declaration_Node (E);
1414
1415 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1416 Build_And_Analyze_Renamed_Body (Decl, E, After);
1417
1418 elsif Nkind (Decl) = N_Subprogram_Declaration
1419 and then Present (Corresponding_Body (Decl))
1420 and then
1421 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1422 = N_Subprogram_Renaming_Declaration
70482933
RK
1423 then
1424 Build_And_Analyze_Renamed_Body
1425 (Decl, Corresponding_Body (Decl), After);
1426 end if;
1427 end if;
1428
1429 elsif Ekind (E) in Task_Kind
1430 and then
1431 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1432 or else
70482933
RK
1433 Nkind (Parent (E)) = N_Single_Task_Declaration)
1434 then
1435 declare
1436 Ent : Entity_Id;
545cb5be 1437
70482933
RK
1438 begin
1439 Ent := First_Entity (E);
70482933 1440 while Present (Ent) loop
70482933
RK
1441 if Is_Entry (Ent)
1442 and then not Default_Expressions_Processed (Ent)
1443 then
1444 Process_Default_Expressions (Ent, After);
1445 end if;
1446
1447 Next_Entity (Ent);
1448 end loop;
1449 end;
1450
1451 elsif Is_Access_Type (E)
1452 and then Comes_From_Source (E)
1453 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
048e5cef 1454 and then Needs_Finalization (Designated_Type (E))
70482933
RK
1455 and then No (Associated_Final_Chain (E))
1456 then
1457 Build_Final_List (Parent (E), E);
1458 end if;
1459
1460 Next_Entity (E);
1461 end loop;
70482933
RK
1462 end Freeze_All;
1463
1464 -----------------------
1465 -- Freeze_And_Append --
1466 -----------------------
1467
1468 procedure Freeze_And_Append
1469 (Ent : Entity_Id;
c159409f 1470 N : Node_Id;
70482933
RK
1471 Result : in out List_Id)
1472 is
c159409f 1473 L : constant List_Id := Freeze_Entity (Ent, N);
70482933
RK
1474 begin
1475 if Is_Non_Empty_List (L) then
1476 if Result = No_List then
1477 Result := L;
1478 else
1479 Append_List (L, Result);
1480 end if;
1481 end if;
1482 end Freeze_And_Append;
1483
1484 -------------------
1485 -- Freeze_Before --
1486 -------------------
1487
1488 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
c159409f 1489 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
70482933
RK
1490 begin
1491 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1492 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1493 end if;
1494 end Freeze_Before;
1495
1496 -------------------
1497 -- Freeze_Entity --
1498 -------------------
1499
c159409f
AC
1500 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1501 Loc : constant Source_Ptr := Sloc (N);
c6823a20 1502 Test_E : Entity_Id := E;
70482933
RK
1503 Comp : Entity_Id;
1504 F_Node : Node_Id;
1505 Result : List_Id;
1506 Indx : Node_Id;
1507 Formal : Entity_Id;
1508 Atype : Entity_Id;
1509
4c8a5bb8
AC
1510 Has_Default_Initialization : Boolean := False;
1511 -- This flag gets set to true for a variable with default initialization
1512
70482933 1513 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1514 -- Check that an Access or Unchecked_Access attribute with a prefix
1515 -- which is the current instance type can only be applied when the type
1516 -- is limited.
70482933 1517
67b3acf8
RD
1518 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1519 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1520 -- integer literal without an explicit corresponding size clause. The
1521 -- caller has checked that Utype is a modular integer type.
1522
70482933
RK
1523 function After_Last_Declaration return Boolean;
1524 -- If Loc is a freeze_entity that appears after the last declaration
1525 -- in the scope, inhibit error messages on late completion.
1526
1527 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1528 -- Freeze each component, handle some representation clauses, and freeze
1529 -- primitive operations if this is a tagged type.
70482933
RK
1530
1531 ----------------------------
1532 -- After_Last_Declaration --
1533 ----------------------------
1534
1535 function After_Last_Declaration return Boolean is
fb2e11ee 1536 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1537 begin
1538 if Nkind (Spec) = N_Package_Specification then
1539 if Present (Private_Declarations (Spec)) then
1540 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1541 elsif Present (Visible_Declarations (Spec)) then
1542 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1543 else
1544 return False;
1545 end if;
70482933
RK
1546 else
1547 return False;
1548 end if;
1549 end After_Last_Declaration;
1550
1551 ----------------------------
1552 -- Check_Current_Instance --
1553 ----------------------------
1554
1555 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1556
32c760e6
ES
1557 Rec_Type : constant Entity_Id :=
1558 Scope (Defining_Identifier (Comp_Decl));
1559
1560 Decl : constant Node_Id := Parent (Rec_Type);
1561
70482933 1562 function Process (N : Node_Id) return Traverse_Result;
49e90211 1563 -- Process routine to apply check to given node
70482933 1564
fbf5a39b
AC
1565 -------------
1566 -- Process --
1567 -------------
1568
70482933
RK
1569 function Process (N : Node_Id) return Traverse_Result is
1570 begin
1571 case Nkind (N) is
1572 when N_Attribute_Reference =>
def46b54 1573 if (Attribute_Name (N) = Name_Access
70482933
RK
1574 or else
1575 Attribute_Name (N) = Name_Unchecked_Access)
1576 and then Is_Entity_Name (Prefix (N))
1577 and then Is_Type (Entity (Prefix (N)))
1578 and then Entity (Prefix (N)) = E
1579 then
1580 Error_Msg_N
1581 ("current instance must be a limited type", Prefix (N));
1582 return Abandon;
1583 else
1584 return OK;
1585 end if;
1586
1587 when others => return OK;
1588 end case;
1589 end Process;
1590
1591 procedure Traverse is new Traverse_Proc (Process);
1592
1593 -- Start of processing for Check_Current_Instance
1594
1595 begin
32c760e6
ES
1596 -- In Ada95, the (imprecise) rule is that the current instance of a
1597 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1598 -- either a tagged type, or a limited record.
1599
1600 if Is_Limited_Type (Rec_Type)
0791fbe9 1601 and then (Ada_Version < Ada_2005 or else Is_Tagged_Type (Rec_Type))
32c760e6
ES
1602 then
1603 return;
1604
1605 elsif Nkind (Decl) = N_Full_Type_Declaration
1606 and then Limited_Present (Type_Definition (Decl))
1607 then
1608 return;
1609
1610 else
1611 Traverse (Comp_Decl);
1612 end if;
70482933
RK
1613 end Check_Current_Instance;
1614
67b3acf8
RD
1615 ------------------------------
1616 -- Check_Suspicious_Modulus --
1617 ------------------------------
1618
1619 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1620 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1621
1622 begin
1623 if Nkind (Decl) = N_Full_Type_Declaration then
1624 declare
1625 Tdef : constant Node_Id := Type_Definition (Decl);
1626 begin
1627 if Nkind (Tdef) = N_Modular_Type_Definition then
1628 declare
1629 Modulus : constant Node_Id :=
1630 Original_Node (Expression (Tdef));
1631 begin
1632 if Nkind (Modulus) = N_Integer_Literal then
1633 declare
1634 Modv : constant Uint := Intval (Modulus);
1635 Sizv : constant Uint := RM_Size (Utype);
1636
1637 begin
1638 -- First case, modulus and size are the same. This
1639 -- happens if you have something like mod 32, with
1640 -- an explicit size of 32, this is for sure a case
1641 -- where the warning is given, since it is seems
1642 -- very unlikely that someone would want e.g. a
1643 -- five bit type stored in 32 bits. It is much
1644 -- more likely they wanted a 32-bit type.
1645
1646 if Modv = Sizv then
1647 null;
1648
1649 -- Second case, the modulus is 32 or 64 and no
1650 -- size clause is present. This is a less clear
1651 -- case for giving the warning, but in the case
1652 -- of 32/64 (5-bit or 6-bit types) these seem rare
1653 -- enough that it is a likely error (and in any
1654 -- case using 2**5 or 2**6 in these cases seems
1655 -- clearer. We don't include 8 or 16 here, simply
1656 -- because in practice 3-bit and 4-bit types are
1657 -- more common and too many false positives if
1658 -- we warn in these cases.
1659
1660 elsif not Has_Size_Clause (Utype)
1661 and then (Modv = Uint_32 or else Modv = Uint_64)
1662 then
1663 null;
1664
1665 -- No warning needed
1666
1667 else
1668 return;
1669 end if;
1670
1671 -- If we fall through, give warning
1672
1673 Error_Msg_Uint_1 := Modv;
1674 Error_Msg_N
1675 ("?2 '*'*^' may have been intended here",
1676 Modulus);
1677 end;
1678 end if;
1679 end;
1680 end if;
1681 end;
1682 end if;
1683 end Check_Suspicious_Modulus;
1684
70482933
RK
1685 ------------------------
1686 -- Freeze_Record_Type --
1687 ------------------------
1688
1689 procedure Freeze_Record_Type (Rec : Entity_Id) is
1690 Comp : Entity_Id;
fbf5a39b 1691 IR : Node_Id;
70482933 1692 ADC : Node_Id;
c6823a20 1693 Prev : Entity_Id;
70482933 1694
67ce0d7e
RD
1695 Junk : Boolean;
1696 pragma Warnings (Off, Junk);
1697
70482933
RK
1698 Unplaced_Component : Boolean := False;
1699 -- Set True if we find at least one component with no component
1700 -- clause (used to warn about useless Pack pragmas).
1701
1702 Placed_Component : Boolean := False;
1703 -- Set True if we find at least one component with a component
8dc10d38
AC
1704 -- clause (used to warn about useless Bit_Order pragmas, and also
1705 -- to detect cases where Implicit_Packing may have an effect).
1706
1707 All_Scalar_Components : Boolean := True;
1708 -- Set False if we encounter a component of a non-scalar type
1709
1710 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1711 Scalar_Component_Total_Esize : Uint := Uint_0;
1712 -- Accumulates total RM_Size values and total Esize values of all
1713 -- scalar components. Used for processing of Implicit_Packing.
70482933 1714
e18d6a15
JM
1715 function Check_Allocator (N : Node_Id) return Node_Id;
1716 -- If N is an allocator, possibly wrapped in one or more level of
1717 -- qualified expression(s), return the inner allocator node, else
1718 -- return Empty.
19590d70 1719
7d8b9c99
RD
1720 procedure Check_Itype (Typ : Entity_Id);
1721 -- If the component subtype is an access to a constrained subtype of
1722 -- an already frozen type, make the subtype frozen as well. It might
1723 -- otherwise be frozen in the wrong scope, and a freeze node on
1724 -- subtype has no effect. Similarly, if the component subtype is a
1725 -- regular (not protected) access to subprogram, set the anonymous
1726 -- subprogram type to frozen as well, to prevent an out-of-scope
1727 -- freeze node at some eventual point of call. Protected operations
1728 -- are handled elsewhere.
6e059adb 1729
19590d70
GD
1730 ---------------------
1731 -- Check_Allocator --
1732 ---------------------
1733
e18d6a15
JM
1734 function Check_Allocator (N : Node_Id) return Node_Id is
1735 Inner : Node_Id;
19590d70 1736 begin
e18d6a15 1737 Inner := N;
e18d6a15
JM
1738 loop
1739 if Nkind (Inner) = N_Allocator then
1740 return Inner;
e18d6a15
JM
1741 elsif Nkind (Inner) = N_Qualified_Expression then
1742 Inner := Expression (Inner);
e18d6a15
JM
1743 else
1744 return Empty;
1745 end if;
1746 end loop;
19590d70
GD
1747 end Check_Allocator;
1748
6871ba5f
AC
1749 -----------------
1750 -- Check_Itype --
1751 -----------------
1752
7d8b9c99
RD
1753 procedure Check_Itype (Typ : Entity_Id) is
1754 Desig : constant Entity_Id := Designated_Type (Typ);
1755
6e059adb
AC
1756 begin
1757 if not Is_Frozen (Desig)
1758 and then Is_Frozen (Base_Type (Desig))
1759 then
1760 Set_Is_Frozen (Desig);
1761
1762 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1763 -- access subtype is elaborated early enough. This cannot be
1764 -- done if the subtype may depend on discriminants.
6e059adb
AC
1765
1766 if Ekind (Comp) = E_Component
1767 and then Is_Itype (Etype (Comp))
1768 and then not Has_Discriminants (Rec)
1769 then
1770 IR := Make_Itype_Reference (Sloc (Comp));
1771 Set_Itype (IR, Desig);
1772
1773 if No (Result) then
1774 Result := New_List (IR);
1775 else
1776 Append (IR, Result);
1777 end if;
1778 end if;
7d8b9c99
RD
1779
1780 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1781 and then Convention (Desig) /= Convention_Protected
1782 then
1783 Set_Is_Frozen (Desig);
6e059adb
AC
1784 end if;
1785 end Check_Itype;
1786
1787 -- Start of processing for Freeze_Record_Type
1788
70482933 1789 begin
7d8b9c99
RD
1790 -- If this is a subtype of a controlled type, declared without a
1791 -- constraint, the _controller may not appear in the component list
1792 -- if the parent was not frozen at the point of subtype declaration.
1793 -- Inherit the _controller component now.
fbf5a39b
AC
1794
1795 if Rec /= Base_Type (Rec)
1796 and then Has_Controlled_Component (Rec)
1797 then
1798 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1799 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1800 then
1801 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1802
49e90211 1803 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1804 -- record component, the base type may not yet be frozen, and its
1805 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1806 -- for the itype, so it will be frozen after the base type. This
1807 -- freeze node is used to communicate with the expander, in order
1808 -- to create the controller for the enclosing record, and it is
1809 -- deleted afterwards (see exp_ch3). It must not be created when
1810 -- expansion is off, because it might appear in the wrong context
1811 -- for the back end.
fbf5a39b
AC
1812
1813 elsif Is_Itype (Rec)
1814 and then Has_Delayed_Freeze (Base_Type (Rec))
1815 and then
1816 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1817 N_Component_Declaration
1818 and then Expander_Active
fbf5a39b
AC
1819 then
1820 Ensure_Freeze_Node (Rec);
1821 end if;
1822 end if;
1823
49e90211 1824 -- Freeze components and embedded subtypes
70482933
RK
1825
1826 Comp := First_Entity (Rec);
c6823a20 1827 Prev := Empty;
c6823a20 1828 while Present (Comp) loop
70482933 1829
8a95f4e8 1830 -- First handle the component case
70482933
RK
1831
1832 if Ekind (Comp) = E_Component
1833 or else Ekind (Comp) = E_Discriminant
1834 then
70482933
RK
1835 declare
1836 CC : constant Node_Id := Component_Clause (Comp);
1837
1838 begin
c6823a20
EB
1839 -- Freezing a record type freezes the type of each of its
1840 -- components. However, if the type of the component is
1841 -- part of this record, we do not want or need a separate
1842 -- Freeze_Node. Note that Is_Itype is wrong because that's
1843 -- also set in private type cases. We also can't check for
1844 -- the Scope being exactly Rec because of private types and
1845 -- record extensions.
1846
1847 if Is_Itype (Etype (Comp))
1848 and then Is_Record_Type (Underlying_Type
1849 (Scope (Etype (Comp))))
1850 then
1851 Undelay_Type (Etype (Comp));
1852 end if;
1853
c159409f 1854 Freeze_And_Append (Etype (Comp), N, Result);
c6823a20 1855
0da2c8ac
AC
1856 -- Check for error of component clause given for variable
1857 -- sized type. We have to delay this test till this point,
1858 -- since the component type has to be frozen for us to know
1859 -- if it is variable length. We omit this test in a generic
1860 -- context, it will be applied at instantiation time.
1861
70482933
RK
1862 if Present (CC) then
1863 Placed_Component := True;
1864
07fc65c4
GB
1865 if Inside_A_Generic then
1866 null;
1867
7d8b9c99
RD
1868 elsif not
1869 Size_Known_At_Compile_Time
1870 (Underlying_Type (Etype (Comp)))
70482933
RK
1871 then
1872 Error_Msg_N
1873 ("component clause not allowed for variable " &
1874 "length component", CC);
1875 end if;
1876
1877 else
1878 Unplaced_Component := True;
1879 end if;
70482933 1880
0da2c8ac 1881 -- Case of component requires byte alignment
70482933 1882
0da2c8ac 1883 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1884
0da2c8ac 1885 -- Set the enclosing record to also require byte align
70482933 1886
0da2c8ac 1887 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1888
7d8b9c99
RD
1889 -- Check for component clause that is inconsistent with
1890 -- the required byte boundary alignment.
70482933 1891
0da2c8ac
AC
1892 if Present (CC)
1893 and then Normalized_First_Bit (Comp) mod
1894 System_Storage_Unit /= 0
1895 then
1896 Error_Msg_N
1897 ("component & must be byte aligned",
1898 Component_Name (Component_Clause (Comp)));
1899 end if;
1900 end if;
0da2c8ac 1901 end;
70482933
RK
1902 end if;
1903
8a95f4e8
RD
1904 -- Gather data for possible Implicit_Packing later. Note that at
1905 -- this stage we might be dealing with a real component, or with
1906 -- an implicit subtype declaration.
8dc10d38 1907
426d2717
AC
1908 if not Is_Scalar_Type (Etype (Comp)) then
1909 All_Scalar_Components := False;
1910 else
1911 Scalar_Component_Total_RM_Size :=
1912 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1913 Scalar_Component_Total_Esize :=
1914 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
1915 end if;
1916
c6823a20
EB
1917 -- If the component is an Itype with Delayed_Freeze and is either
1918 -- a record or array subtype and its base type has not yet been
545cb5be
AC
1919 -- frozen, we must remove this from the entity list of this record
1920 -- and put it on the entity list of the scope of its base type.
1921 -- Note that we know that this is not the type of a component
1922 -- since we cleared Has_Delayed_Freeze for it in the previous
1923 -- loop. Thus this must be the Designated_Type of an access type,
1924 -- which is the type of a component.
c6823a20
EB
1925
1926 if Is_Itype (Comp)
1927 and then Is_Type (Scope (Comp))
1928 and then Is_Composite_Type (Comp)
1929 and then Base_Type (Comp) /= Comp
1930 and then Has_Delayed_Freeze (Comp)
1931 and then not Is_Frozen (Base_Type (Comp))
1932 then
1933 declare
1934 Will_Be_Frozen : Boolean := False;
1b24ada5 1935 S : Entity_Id;
c6823a20
EB
1936
1937 begin
fea9e956
ES
1938 -- We have a pretty bad kludge here. Suppose Rec is subtype
1939 -- being defined in a subprogram that's created as part of
1940 -- the freezing of Rec'Base. In that case, we know that
1941 -- Comp'Base must have already been frozen by the time we
1942 -- get to elaborate this because Gigi doesn't elaborate any
1943 -- bodies until it has elaborated all of the declarative
1944 -- part. But Is_Frozen will not be set at this point because
1945 -- we are processing code in lexical order.
1946
1947 -- We detect this case by going up the Scope chain of Rec
1948 -- and seeing if we have a subprogram scope before reaching
1949 -- the top of the scope chain or that of Comp'Base. If we
1950 -- do, then mark that Comp'Base will actually be frozen. If
1951 -- so, we merely undelay it.
c6823a20 1952
1b24ada5 1953 S := Scope (Rec);
c6823a20
EB
1954 while Present (S) loop
1955 if Is_Subprogram (S) then
1956 Will_Be_Frozen := True;
1957 exit;
1958 elsif S = Scope (Base_Type (Comp)) then
1959 exit;
1960 end if;
1961
1962 S := Scope (S);
1963 end loop;
1964
1965 if Will_Be_Frozen then
1966 Undelay_Type (Comp);
1967 else
1968 if Present (Prev) then
1969 Set_Next_Entity (Prev, Next_Entity (Comp));
1970 else
1971 Set_First_Entity (Rec, Next_Entity (Comp));
1972 end if;
1973
1974 -- Insert in entity list of scope of base type (which
1975 -- must be an enclosing scope, because still unfrozen).
1976
1977 Append_Entity (Comp, Scope (Base_Type (Comp)));
1978 end if;
1979 end;
1980
def46b54
RD
1981 -- If the component is an access type with an allocator as default
1982 -- value, the designated type will be frozen by the corresponding
1983 -- expression in init_proc. In order to place the freeze node for
1984 -- the designated type before that for the current record type,
1985 -- freeze it now.
c6823a20
EB
1986
1987 -- Same process if the component is an array of access types,
1988 -- initialized with an aggregate. If the designated type is
def46b54
RD
1989 -- private, it cannot contain allocators, and it is premature
1990 -- to freeze the type, so we check for this as well.
c6823a20
EB
1991
1992 elsif Is_Access_Type (Etype (Comp))
1993 and then Present (Parent (Comp))
1994 and then Present (Expression (Parent (Comp)))
c6823a20
EB
1995 then
1996 declare
e18d6a15
JM
1997 Alloc : constant Node_Id :=
1998 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
1999
2000 begin
e18d6a15 2001 if Present (Alloc) then
19590d70 2002
e18d6a15
JM
2003 -- If component is pointer to a classwide type, freeze
2004 -- the specific type in the expression being allocated.
2005 -- The expression may be a subtype indication, in which
2006 -- case freeze the subtype mark.
c6823a20 2007
e18d6a15
JM
2008 if Is_Class_Wide_Type
2009 (Designated_Type (Etype (Comp)))
0f4cb75c 2010 then
e18d6a15
JM
2011 if Is_Entity_Name (Expression (Alloc)) then
2012 Freeze_And_Append
c159409f 2013 (Entity (Expression (Alloc)), N, Result);
e18d6a15
JM
2014 elsif
2015 Nkind (Expression (Alloc)) = N_Subtype_Indication
2016 then
2017 Freeze_And_Append
2018 (Entity (Subtype_Mark (Expression (Alloc))),
c159409f 2019 N, Result);
e18d6a15 2020 end if;
0f4cb75c 2021
e18d6a15
JM
2022 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2023 Check_Itype (Etype (Comp));
0f4cb75c 2024
e18d6a15
JM
2025 else
2026 Freeze_And_Append
c159409f 2027 (Designated_Type (Etype (Comp)), N, Result);
e18d6a15 2028 end if;
c6823a20
EB
2029 end if;
2030 end;
2031
2032 elsif Is_Access_Type (Etype (Comp))
2033 and then Is_Itype (Designated_Type (Etype (Comp)))
2034 then
7d8b9c99 2035 Check_Itype (Etype (Comp));
c6823a20
EB
2036
2037 elsif Is_Array_Type (Etype (Comp))
2038 and then Is_Access_Type (Component_Type (Etype (Comp)))
2039 and then Present (Parent (Comp))
2040 and then Nkind (Parent (Comp)) = N_Component_Declaration
2041 and then Present (Expression (Parent (Comp)))
2042 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2043 and then Is_Fully_Defined
2044 (Designated_Type (Component_Type (Etype (Comp))))
2045 then
2046 Freeze_And_Append
2047 (Designated_Type
c159409f 2048 (Component_Type (Etype (Comp))), N, Result);
c6823a20
EB
2049 end if;
2050
2051 Prev := Comp;
70482933
RK
2052 Next_Entity (Comp);
2053 end loop;
2054
8a95f4e8 2055 -- Deal with pragma Bit_Order setting non-standard bit order
fea9e956
ES
2056
2057 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2058 if not Placed_Component then
2059 ADC :=
2060 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
ed2233dc 2061 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
fea9e956
ES
2062 Error_Msg_N
2063 ("\?since no component clauses were specified", ADC);
2064
8a95f4e8 2065 -- Here is where we do the processing for reversed bit order
70482933 2066
8a95f4e8 2067 else
fea9e956
ES
2068 Adjust_Record_For_Reverse_Bit_Order (Rec);
2069 end if;
70482933
RK
2070 end if;
2071
8a95f4e8
RD
2072 -- Complete error checking on record representation clause (e.g.
2073 -- overlap of components). This is called after adjusting the
2074 -- record for reverse bit order.
2075
2076 declare
2077 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
2078 begin
2079 if Present (RRC) then
2080 Check_Record_Representation_Clause (RRC);
2081 end if;
2082 end;
2083
1b24ada5
RD
2084 -- Set OK_To_Reorder_Components depending on debug flags
2085
d347f572 2086 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
1b24ada5
RD
2087 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2088 or else
2089 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2090 then
2091 Set_OK_To_Reorder_Components (Rec);
2092 end if;
2093 end if;
2094
ee094616
RD
2095 -- Check for useless pragma Pack when all components placed. We only
2096 -- do this check for record types, not subtypes, since a subtype may
2097 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2098 -- sense to pack other subtypes or the parent type. We do not give
2099 -- this warning if Optimize_Alignment is set to Space, since the
2100 -- pragma Pack does have an effect in this case (it always resets
2101 -- the alignment to one).
70482933 2102
ee094616
RD
2103 if Ekind (Rec) = E_Record_Type
2104 and then Is_Packed (Rec)
70482933 2105 and then not Unplaced_Component
1b24ada5 2106 and then Optimize_Alignment /= 'S'
70482933 2107 then
def46b54
RD
2108 -- Reset packed status. Probably not necessary, but we do it so
2109 -- that there is no chance of the back end doing something strange
2110 -- with this redundant indication of packing.
ee094616 2111
70482933 2112 Set_Is_Packed (Rec, False);
ee094616
RD
2113
2114 -- Give warning if redundant constructs warnings on
2115
2116 if Warn_On_Redundant_Constructs then
ed2233dc 2117 Error_Msg_N -- CODEFIX
ee094616
RD
2118 ("?pragma Pack has no effect, no unplaced components",
2119 Get_Rep_Pragma (Rec, Name_Pack));
2120 end if;
70482933
RK
2121 end if;
2122
ee094616
RD
2123 -- If this is the record corresponding to a remote type, freeze the
2124 -- remote type here since that is what we are semantically freezing.
2125 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2126
2127 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2128 -- Finally, enforce the restriction that access attributes with a
2129 -- current instance prefix can only apply to limited types.
70482933 2130
8dc10d38 2131 if Ekind (Rec) = E_Record_Type then
70482933 2132 if Present (Corresponding_Remote_Type (Rec)) then
c159409f 2133 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
70482933
RK
2134 end if;
2135
2136 Comp := First_Component (Rec);
70482933 2137 while Present (Comp) loop
80fa4617
EB
2138
2139 -- Do not set Has_Controlled_Component on a class-wide
2140 -- equivalent type. See Make_CW_Equivalent_Type.
2141
2142 if not Is_Class_Wide_Equivalent_Type (Rec)
2143 and then (Has_Controlled_Component (Etype (Comp))
2144 or else (Chars (Comp) /= Name_uParent
2145 and then Is_Controlled (Etype (Comp)))
2146 or else (Is_Protected_Type (Etype (Comp))
2147 and then Present
2148 (Corresponding_Record_Type
2149 (Etype (Comp)))
2150 and then Has_Controlled_Component
2151 (Corresponding_Record_Type
2152 (Etype (Comp)))))
70482933
RK
2153 then
2154 Set_Has_Controlled_Component (Rec);
2155 exit;
2156 end if;
2157
2158 if Has_Unchecked_Union (Etype (Comp)) then
2159 Set_Has_Unchecked_Union (Rec);
2160 end if;
2161
32c760e6
ES
2162 if Has_Per_Object_Constraint (Comp) then
2163
ee094616
RD
2164 -- Scan component declaration for likely misuses of current
2165 -- instance, either in a constraint or a default expression.
70482933
RK
2166
2167 Check_Current_Instance (Parent (Comp));
2168 end if;
2169
2170 Next_Component (Comp);
2171 end loop;
2172 end if;
2173
2174 Set_Component_Alignment_If_Not_Set (Rec);
2175
ee094616
RD
2176 -- For first subtypes, check if there are any fixed-point fields with
2177 -- component clauses, where we must check the size. This is not done
2178 -- till the freeze point, since for fixed-point types, we do not know
2179 -- the size until the type is frozen. Similar processing applies to
2180 -- bit packed arrays.
70482933
RK
2181
2182 if Is_First_Subtype (Rec) then
2183 Comp := First_Component (Rec);
70482933
RK
2184 while Present (Comp) loop
2185 if Present (Component_Clause (Comp))
d05ef0ab
AC
2186 and then (Is_Fixed_Point_Type (Etype (Comp))
2187 or else
2188 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2189 then
2190 Check_Size
d05ef0ab 2191 (Component_Name (Component_Clause (Comp)),
70482933
RK
2192 Etype (Comp),
2193 Esize (Comp),
2194 Junk);
2195 end if;
2196
2197 Next_Component (Comp);
2198 end loop;
2199 end if;
7d8b9c99
RD
2200
2201 -- Generate warning for applying C or C++ convention to a record
2202 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2203 -- case, since the whole point in this case is interface C. We also
2204 -- do not generate this within instantiations, since we will have
2205 -- generated a message on the template.
7d8b9c99
RD
2206
2207 if Has_Discriminants (E)
2208 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2209 and then (Convention (E) = Convention_C
2210 or else
2211 Convention (E) = Convention_CPP)
2212 and then Comes_From_Source (E)
1b24ada5
RD
2213 and then not In_Instance
2214 and then not Has_Warnings_Off (E)
2215 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2216 then
2217 declare
2218 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2219 A2 : Node_Id;
2220
2221 begin
2222 if Present (Cprag) then
2223 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2224
2225 if Convention (E) = Convention_C then
2226 Error_Msg_N
2227 ("?variant record has no direct equivalent in C", A2);
2228 else
2229 Error_Msg_N
2230 ("?variant record has no direct equivalent in C++", A2);
2231 end if;
2232
2233 Error_Msg_NE
2234 ("\?use of convention for type& is dubious", A2, E);
2235 end if;
2236 end;
2237 end if;
8dc10d38 2238
ce14c577 2239 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 2240
426d2717 2241 if not Is_Packed (Rec)
ce14c577
AC
2242
2243 -- No implicit packing if even one component is explicitly placed
2244
426d2717 2245 and then not Placed_Component
ce14c577
AC
2246
2247 -- Must have size clause and all scalar components
2248
8dc10d38
AC
2249 and then Has_Size_Clause (Rec)
2250 and then All_Scalar_Components
ce14c577
AC
2251
2252 -- Do not try implicit packing on records with discriminants, too
2253 -- complicated, especially in the variant record case.
2254
8dc10d38 2255 and then not Has_Discriminants (Rec)
ce14c577
AC
2256
2257 -- We can implicitly pack if the specified size of the record is
2258 -- less than the sum of the object sizes (no point in packing if
2259 -- this is not the case).
2260
8dc10d38 2261 and then Esize (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
2262
2263 -- And the total RM size cannot be greater than the specified size
2264 -- since otherwise packing will not get us where we have to be!
2265
8dc10d38 2266 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
ce14c577
AC
2267
2268 -- Never do implicit packing in CodePeer mode since we don't do
0eb4c1a7
AC
2269 -- any packing in this mode, since this generates over-complex
2270 -- code that confuses CodePeer, and in general, CodePeer does not
2271 -- care about the internal representation of objects.
ce14c577 2272
d58b9515 2273 and then not CodePeer_Mode
8dc10d38 2274 then
426d2717
AC
2275 -- If implicit packing enabled, do it
2276
2277 if Implicit_Packing then
2278 Set_Is_Packed (Rec);
2279
2280 -- Otherwise flag the size clause
2281
2282 else
2283 declare
2284 Sz : constant Node_Id := Size_Clause (Rec);
2285 begin
ed2233dc 2286 Error_Msg_NE -- CODEFIX
426d2717 2287 ("size given for& too small", Sz, Rec);
ed2233dc 2288 Error_Msg_N -- CODEFIX
426d2717
AC
2289 ("\use explicit pragma Pack "
2290 & "or use pragma Implicit_Packing", Sz);
2291 end;
2292 end if;
8dc10d38 2293 end if;
70482933
RK
2294 end Freeze_Record_Type;
2295
2296 -- Start of processing for Freeze_Entity
2297
2298 begin
c6823a20
EB
2299 -- We are going to test for various reasons why this entity need not be
2300 -- frozen here, but in the case of an Itype that's defined within a
2301 -- record, that test actually applies to the record.
2302
2303 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2304 Test_E := Scope (E);
2305 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2306 and then Is_Record_Type (Underlying_Type (Scope (E)))
2307 then
2308 Test_E := Underlying_Type (Scope (E));
2309 end if;
2310
fbf5a39b 2311 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2312
2313 if Is_Frozen (E) then
2314 return No_List;
2315
c6823a20
EB
2316 -- It is improper to freeze an external entity within a generic because
2317 -- its freeze node will appear in a non-valid context. The entity will
2318 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2319
c6823a20 2320 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2321 return No_List;
2322
2323 -- Do not freeze a global entity within an inner scope created during
2324 -- expansion. A call to subprogram E within some internal procedure
2325 -- (a stream attribute for example) might require freezing E, but the
2326 -- freeze node must appear in the same declarative part as E itself.
2327 -- The two-pass elaboration mechanism in gigi guarantees that E will
2328 -- be frozen before the inner call is elaborated. We exclude constants
2329 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2330 -- must be diagnosed (e.g. in the case of a deferred constant being used
2331 -- in a default expression). If the enclosing subprogram comes from
2332 -- source, or is a generic instance, then the freeze point is the one
2333 -- mandated by the language, and we freeze the entity. A subprogram that
2334 -- is a child unit body that acts as a spec does not have a spec that
2335 -- comes from source, but can only come from source.
70482933 2336
c6823a20
EB
2337 elsif In_Open_Scopes (Scope (Test_E))
2338 and then Scope (Test_E) /= Current_Scope
2339 and then Ekind (Test_E) /= E_Constant
70482933
RK
2340 then
2341 declare
3cae7f14 2342 S : Entity_Id;
70482933
RK
2343
2344 begin
3cae7f14 2345 S := Current_Scope;
70482933
RK
2346 while Present (S) loop
2347 if Is_Overloadable (S) then
2348 if Comes_From_Source (S)
2349 or else Is_Generic_Instance (S)
fea9e956 2350 or else Is_Child_Unit (S)
70482933
RK
2351 then
2352 exit;
2353 else
2354 return No_List;
2355 end if;
2356 end if;
2357
2358 S := Scope (S);
2359 end loop;
2360 end;
555360a5
AC
2361
2362 -- Similarly, an inlined instance body may make reference to global
2363 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2364 -- for them, and in the absence of inlining freezing will take place in
2365 -- their own scope. Normally instance bodies are analyzed after the
2366 -- enclosing compilation, and everything has been frozen at the proper
2367 -- place, but with front-end inlining an instance body is compiled
2368 -- before the end of the enclosing scope, and as a result out-of-order
2369 -- freezing must be prevented.
555360a5
AC
2370
2371 elsif Front_End_Inlining
7d8b9c99 2372 and then In_Instance_Body
c6823a20 2373 and then Present (Scope (Test_E))
555360a5
AC
2374 then
2375 declare
3cae7f14 2376 S : Entity_Id;
c6823a20 2377
555360a5 2378 begin
3cae7f14 2379 S := Scope (Test_E);
555360a5
AC
2380 while Present (S) loop
2381 if Is_Generic_Instance (S) then
2382 exit;
2383 else
2384 S := Scope (S);
2385 end if;
2386 end loop;
2387
2388 if No (S) then
2389 return No_List;
2390 end if;
2391 end;
70482933
RK
2392 end if;
2393
6bb88533 2394 -- Deal with delayed aspect specifications. The analysis of the aspect
308e6f3a 2395 -- is required to be delayed to the freeze point, so we evaluate the
c159409f
AC
2396 -- pragma or attribute definition clause in the tree at this point.
2397
6bb88533
AC
2398 -- We also have to deal with the case of Boolean aspects, where the
2399 -- value of the Boolean expression is represented by the setting of
2400 -- the Aspect_Cancel flag on the pragma.
2401
c159409f
AC
2402 if Has_Delayed_Aspects (E) then
2403 declare
2404 Ritem : Node_Id;
2405 Aitem : Node_Id;
2406
2407 begin
6bb88533
AC
2408 -- Look for aspect specification entries for this entity
2409
c159409f
AC
2410 Ritem := First_Rep_Item (E);
2411 while Present (Ritem) loop
6bb88533
AC
2412 if Nkind (Ritem) = N_Aspect_Specification
2413 and then Entity (Ritem) = E
47e11d08 2414 and then Is_Delayed_Aspect (Ritem)
6bb88533 2415 then
c159409f 2416 Aitem := Aspect_Rep_Item (Ritem);
c159409f 2417 Set_Parent (Aitem, Ritem);
6bb88533
AC
2418
2419 -- Deal with Boolean case, if no expression, True, otherwise
2420 -- analyze the expression, check it is static, and if its
2421 -- value is False, set Aspect_Cancel for the related pragma.
2422
2423 if Is_Boolean_Aspect (Ritem) then
2424 declare
2425 Expr : constant Node_Id := Expression (Ritem);
2426
2427 begin
2428 if Present (Expr) then
2429 Analyze_And_Resolve (Expr, Standard_Boolean);
2430
2431 if not Is_OK_Static_Expression (Expr) then
2432 Error_Msg_Name_1 := Chars (Identifier (Ritem));
2433 Error_Msg_N
2434 ("expression for % aspect must be static",
2435 Expr);
2436
2437 elsif Is_False (Expr_Value (Expr)) then
2438 Set_Aspect_Cancel (Aitem);
2439 end if;
2440 end if;
2441 end;
2442 end if;
2443
2444 -- Analyze the pragma after possibly setting Aspect_Cancel
2445
c159409f 2446 Analyze (Aitem);
47e11d08
AC
2447
2448 -- Do visibility analysis for aspect at freeze point
2449
2450 Check_Aspect_At_Freeze_Point (Ritem);
c159409f
AC
2451 end if;
2452
2453 Next_Rep_Item (Ritem);
2454 end loop;
2455 end;
2456 end if;
2457
70482933
RK
2458 -- Here to freeze the entity
2459
2460 Result := No_List;
2461 Set_Is_Frozen (E);
2462
2463 -- Case of entity being frozen is other than a type
2464
2465 if not Is_Type (E) then
2466
2467 -- If entity is exported or imported and does not have an external
2468 -- name, now is the time to provide the appropriate default name.
2469 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
2470 -- for any stubbed routine. For the case on intrinsics, if no
2471 -- external name is specified, then calls will be handled in
545cb5be
AC
2472 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
2473 -- external name is provided, then Expand_Intrinsic_Call leaves
75a64833 2474 -- calls in place for expansion by GIGI.
70482933
RK
2475
2476 if (Is_Imported (E) or else Is_Exported (E))
2477 and then No (Interface_Name (E))
2478 and then Convention (E) /= Convention_Stubbed
75a64833 2479 and then Convention (E) /= Convention_Intrinsic
70482933
RK
2480 then
2481 Set_Encoded_Interface_Name
2482 (E, Get_Default_External_Name (E));
fbf5a39b 2483
bbaba73f
EB
2484 -- If entity is an atomic object appearing in a declaration and
2485 -- the expression is an aggregate, assign it to a temporary to
2486 -- ensure that the actual assignment is done atomically rather
2487 -- than component-wise (the assignment to the temp may be done
2488 -- component-wise, but that is harmless).
fbf5a39b
AC
2489
2490 elsif Is_Atomic (E)
2491 and then Nkind (Parent (E)) = N_Object_Declaration
2492 and then Present (Expression (Parent (E)))
bbaba73f 2493 and then Nkind (Expression (Parent (E))) = N_Aggregate
b0159fbe 2494 and then
cfb120b5 2495 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 2496 then
b0159fbe 2497 null;
70482933
RK
2498 end if;
2499
2500 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2501 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 2502 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
2503 -- created since we now know whether the subprogram will use a
2504 -- foreign convention.
70482933
RK
2505
2506 if Is_Subprogram (E) then
70482933 2507 if not Is_Internal (E) then
70482933 2508 declare
6d11af89 2509 F_Type : Entity_Id;
def46b54 2510 R_Type : Entity_Id;
6d11af89 2511 Warn_Node : Node_Id;
70482933 2512
70482933
RK
2513 begin
2514 -- Loop through formals
2515
2516 Formal := First_Formal (E);
70482933 2517 while Present (Formal) loop
70482933 2518 F_Type := Etype (Formal);
c159409f 2519 Freeze_And_Append (F_Type, N, Result);
70482933
RK
2520
2521 if Is_Private_Type (F_Type)
2522 and then Is_Private_Type (Base_Type (F_Type))
2523 and then No (Full_View (Base_Type (F_Type)))
2524 and then not Is_Generic_Type (F_Type)
2525 and then not Is_Derived_Type (F_Type)
2526 then
2527 -- If the type of a formal is incomplete, subprogram
2528 -- is being frozen prematurely. Within an instance
2529 -- (but not within a wrapper package) this is an
fb2e11ee 2530 -- artifact of our need to regard the end of an
70482933
RK
2531 -- instantiation as a freeze point. Otherwise it is
2532 -- a definite error.
fbf5a39b 2533
70482933
RK
2534 if In_Instance then
2535 Set_Is_Frozen (E, False);
2536 return No_List;
2537
86cde7b1
RD
2538 elsif not After_Last_Declaration
2539 and then not Freezing_Library_Level_Tagged_Type
2540 then
70482933
RK
2541 Error_Msg_Node_1 := F_Type;
2542 Error_Msg
2543 ("type& must be fully defined before this point",
2544 Loc);
2545 end if;
2546 end if;
2547
def46b54 2548 -- Check suspicious parameter for C function. These tests
1b24ada5 2549 -- apply only to exported/imported subprograms.
70482933 2550
def46b54 2551 if Warn_On_Export_Import
1b24ada5 2552 and then Comes_From_Source (E)
def46b54
RD
2553 and then (Convention (E) = Convention_C
2554 or else
2555 Convention (E) = Convention_CPP)
def46b54 2556 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2557 and then Convention (E) /= Convention (Formal)
2558 and then not Has_Warnings_Off (E)
2559 and then not Has_Warnings_Off (F_Type)
2560 and then not Has_Warnings_Off (Formal)
fbf5a39b 2561 then
b3afa59b
AC
2562 -- Qualify mention of formals with subprogram name
2563
70482933 2564 Error_Msg_Qual_Level := 1;
def46b54
RD
2565
2566 -- Check suspicious use of fat C pointer
2567
2568 if Is_Access_Type (F_Type)
2569 and then Esize (F_Type) > Ttypes.System_Address_Size
2570 then
2571 Error_Msg_N
b3afa59b
AC
2572 ("?type of & does not correspond to C pointer!",
2573 Formal);
def46b54
RD
2574
2575 -- Check suspicious return of boolean
2576
2577 elsif Root_Type (F_Type) = Standard_Boolean
2578 and then Convention (F_Type) = Convention_Ada
67198556
RD
2579 and then not Has_Warnings_Off (F_Type)
2580 and then not Has_Size_Clause (F_Type)
6a2afd13 2581 and then VM_Target = No_VM
def46b54 2582 then
ed2233dc 2583 Error_Msg_N ("& is an 8-bit Ada Boolean?", Formal);
b3afa59b
AC
2584 Error_Msg_N
2585 ("\use appropriate corresponding type in C "
2586 & "(e.g. char)?", Formal);
def46b54
RD
2587
2588 -- Check suspicious tagged type
2589
2590 elsif (Is_Tagged_Type (F_Type)
2591 or else (Is_Access_Type (F_Type)
2592 and then
2593 Is_Tagged_Type
2594 (Designated_Type (F_Type))))
2595 and then Convention (E) = Convention_C
2596 then
2597 Error_Msg_N
e7d72fb9 2598 ("?& involves a tagged type which does not "
def46b54
RD
2599 & "correspond to any C type!", Formal);
2600
2601 -- Check wrong convention subprogram pointer
2602
2603 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2604 and then not Has_Foreign_Convention (F_Type)
2605 then
2606 Error_Msg_N
2607 ("?subprogram pointer & should "
2608 & "have foreign convention!", Formal);
2609 Error_Msg_Sloc := Sloc (F_Type);
2610 Error_Msg_NE
2611 ("\?add Convention pragma to declaration of &#",
2612 Formal, F_Type);
2613 end if;
2614
b3afa59b
AC
2615 -- Turn off name qualification after message output
2616
70482933
RK
2617 Error_Msg_Qual_Level := 0;
2618 end if;
2619
2620 -- Check for unconstrained array in exported foreign
2621 -- convention case.
2622
def46b54 2623 if Has_Foreign_Convention (E)
70482933
RK
2624 and then not Is_Imported (E)
2625 and then Is_Array_Type (F_Type)
2626 and then not Is_Constrained (F_Type)
fbf5a39b 2627 and then Warn_On_Export_Import
3acdda2d
AC
2628
2629 -- Exclude VM case, since both .NET and JVM can handle
2630 -- unconstrained arrays without a problem.
2631
2632 and then VM_Target = No_VM
70482933
RK
2633 then
2634 Error_Msg_Qual_Level := 1;
6d11af89
AC
2635
2636 -- If this is an inherited operation, place the
2637 -- warning on the derived type declaration, rather
2638 -- than on the original subprogram.
2639
2640 if Nkind (Original_Node (Parent (E))) =
2641 N_Full_Type_Declaration
2642 then
2643 Warn_Node := Parent (E);
2644
2645 if Formal = First_Formal (E) then
2646 Error_Msg_NE
add9f797 2647 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2648 end if;
2649 else
2650 Warn_Node := Formal;
2651 end if;
2652
2653 Error_Msg_NE
70482933 2654 ("?type of argument& is unconstrained array",
6d11af89
AC
2655 Warn_Node, Formal);
2656 Error_Msg_NE
70482933 2657 ("?foreign caller must pass bounds explicitly",
6d11af89 2658 Warn_Node, Formal);
70482933
RK
2659 Error_Msg_Qual_Level := 0;
2660 end if;
2661
d8db0bca
JM
2662 if not From_With_Type (F_Type) then
2663 if Is_Access_Type (F_Type) then
2664 F_Type := Designated_Type (F_Type);
2665 end if;
2666
7d8b9c99
RD
2667 -- If the formal is an anonymous_access_to_subprogram
2668 -- freeze the subprogram type as well, to prevent
2669 -- scope anomalies in gigi, because there is no other
2670 -- clear point at which it could be frozen.
2671
93bcda23 2672 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2673 and then Ekind (F_Type) = E_Subprogram_Type
2674 then
c159409f 2675 Freeze_And_Append (F_Type, N, Result);
d8db0bca
JM
2676 end if;
2677 end if;
2678
70482933
RK
2679 Next_Formal (Formal);
2680 end loop;
2681
5e39baa6 2682 -- Case of function: similar checks on return type
70482933
RK
2683
2684 if Ekind (E) = E_Function then
def46b54
RD
2685
2686 -- Freeze return type
2687
2688 R_Type := Etype (E);
c159409f 2689 Freeze_And_Append (R_Type, N, Result);
def46b54
RD
2690
2691 -- Check suspicious return type for C function
70482933 2692
fbf5a39b 2693 if Warn_On_Export_Import
def46b54
RD
2694 and then (Convention (E) = Convention_C
2695 or else
2696 Convention (E) = Convention_CPP)
def46b54 2697 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2698 then
def46b54
RD
2699 -- Check suspicious return of fat C pointer
2700
2701 if Is_Access_Type (R_Type)
2702 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2703 and then not Has_Warnings_Off (E)
2704 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2705 then
2706 Error_Msg_N
2707 ("?return type of& does not "
2708 & "correspond to C pointer!", E);
2709
2710 -- Check suspicious return of boolean
2711
2712 elsif Root_Type (R_Type) = Standard_Boolean
2713 and then Convention (R_Type) = Convention_Ada
6a2afd13 2714 and then VM_Target = No_VM
1b24ada5
RD
2715 and then not Has_Warnings_Off (E)
2716 and then not Has_Warnings_Off (R_Type)
67198556 2717 and then not Has_Size_Clause (R_Type)
def46b54 2718 then
b3afa59b
AC
2719 declare
2720 N : constant Node_Id :=
2721 Result_Definition (Declaration_Node (E));
2722 begin
2723 Error_Msg_NE
2724 ("return type of & is an 8-bit Ada Boolean?",
2725 N, E);
2726 Error_Msg_NE
2727 ("\use appropriate corresponding type in C "
2728 & "(e.g. char)?", N, E);
2729 end;
70482933 2730
def46b54
RD
2731 -- Check suspicious return tagged type
2732
2733 elsif (Is_Tagged_Type (R_Type)
2734 or else (Is_Access_Type (R_Type)
2735 and then
2736 Is_Tagged_Type
2737 (Designated_Type (R_Type))))
2738 and then Convention (E) = Convention_C
1b24ada5
RD
2739 and then not Has_Warnings_Off (E)
2740 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2741 then
2742 Error_Msg_N
2743 ("?return type of & does not "
2744 & "correspond to C type!", E);
2745
2746 -- Check return of wrong convention subprogram pointer
2747
2748 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2749 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2750 and then not Has_Warnings_Off (E)
2751 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2752 then
2753 Error_Msg_N
2754 ("?& should return a foreign "
2755 & "convention subprogram pointer", E);
2756 Error_Msg_Sloc := Sloc (R_Type);
2757 Error_Msg_NE
2758 ("\?add Convention pragma to declaration of& #",
2759 E, R_Type);
2760 end if;
2761 end if;
2762
308e6f3a 2763 -- Give warning for suspicious return of a result of an
e7d72fb9
AC
2764 -- unconstrained array type in a foreign convention
2765 -- function.
59366db6 2766
e7d72fb9
AC
2767 if Has_Foreign_Convention (E)
2768
2769 -- We are looking for a return of unconstrained array
2770
2771 and then Is_Array_Type (R_Type)
93bcda23 2772 and then not Is_Constrained (R_Type)
e7d72fb9
AC
2773
2774 -- Exclude imported routines, the warning does not
2775 -- belong on the import, but on the routine definition.
2776
70482933 2777 and then not Is_Imported (E)
e7d72fb9
AC
2778
2779 -- Exclude VM case, since both .NET and JVM can handle
2780 -- return of unconstrained arrays without a problem.
2781
f3b57ab0 2782 and then VM_Target = No_VM
e7d72fb9
AC
2783
2784 -- Check that general warning is enabled, and that it
2785 -- is not suppressed for this particular case.
2786
fbf5a39b 2787 and then Warn_On_Export_Import
1b24ada5 2788 and then not Has_Warnings_Off (E)
93bcda23 2789 and then not Has_Warnings_Off (R_Type)
70482933
RK
2790 then
2791 Error_Msg_N
fbf5a39b 2792 ("?foreign convention function& should not " &
1b24ada5 2793 "return unconstrained array!", E);
70482933
RK
2794 end if;
2795 end if;
2796 end;
2797 end if;
2798
2799 -- Must freeze its parent first if it is a derived subprogram
2800
2801 if Present (Alias (E)) then
c159409f 2802 Freeze_And_Append (Alias (E), N, Result);
70482933
RK
2803 end if;
2804
19590d70
GD
2805 -- We don't freeze internal subprograms, because we don't normally
2806 -- want addition of extra formals or mechanism setting to happen
2807 -- for those. However we do pass through predefined dispatching
2808 -- cases, since extra formals may be needed in some cases, such as
2809 -- for the stream 'Input function (build-in-place formals).
2810
2811 if not Is_Internal (E)
2812 or else Is_Predefined_Dispatching_Operation (E)
2813 then
70482933
RK
2814 Freeze_Subprogram (E);
2815 end if;
2816
2817 -- Here for other than a subprogram or type
2818
2819 else
2820 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2821 -- freeze it first (RM 13.14(10)).
70482933 2822
ac72c9c5 2823 if Present (Etype (E))
70482933
RK
2824 and then Ekind (E) /= E_Generic_Function
2825 then
c159409f 2826 Freeze_And_Append (Etype (E), N, Result);
70482933
RK
2827 end if;
2828
2c9beb8a 2829 -- Special processing for objects created by object declaration
70482933
RK
2830
2831 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 2832
6823270c
AC
2833 -- Abstract type allowed only for C++ imported variables or
2834 -- constants.
2835
2836 -- Note: we inhibit this check for objects that do not come
2837 -- from source because there is at least one case (the
2838 -- expansion of x'class'input where x is abstract) where we
2839 -- legitimately generate an abstract object.
2840
2841 if Is_Abstract_Type (Etype (E))
2842 and then Comes_From_Source (Parent (E))
2843 and then not (Is_Imported (E)
2844 and then Is_CPP_Class (Etype (E)))
2845 then
2846 Error_Msg_N ("type of object cannot be abstract",
2847 Object_Definition (Parent (E)));
2848
2849 if Is_CPP_Class (Etype (E)) then
ed2233dc
AC
2850 Error_Msg_NE
2851 ("\} may need a cpp_constructor",
6823270c
AC
2852 Object_Definition (Parent (E)), Etype (E));
2853 end if;
2854 end if;
2855
2c9beb8a
RD
2856 -- For object created by object declaration, perform required
2857 -- categorization (preelaborate and pure) checks. Defer these
2858 -- checks to freeze time since pragma Import inhibits default
2859 -- initialization and thus pragma Import affects these checks.
2860
70482933 2861 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2862
1ce1f005 2863 -- If there is an address clause, check that it is valid
2c9beb8a 2864
fbf5a39b 2865 Check_Address_Clause (E);
2c9beb8a 2866
1ce1f005
GD
2867 -- If the object needs any kind of default initialization, an
2868 -- error must be issued if No_Default_Initialization applies.
2869 -- The check doesn't apply to imported objects, which are not
2870 -- ever default initialized, and is why the check is deferred
2871 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2872 -- Deferred constants are also exempted from this test because
2873 -- their completion is explicit, or through an import pragma.
1ce1f005 2874
4fec4e7a
ES
2875 if Ekind (E) = E_Constant
2876 and then Present (Full_View (E))
2877 then
2878 null;
2879
2880 elsif Comes_From_Source (E)
b6e209b5 2881 and then not Is_Imported (E)
1ce1f005
GD
2882 and then not Has_Init_Expression (Declaration_Node (E))
2883 and then
2884 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2885 and then not No_Initialization (Declaration_Node (E))
2886 and then not Is_Value_Type (Etype (E))
2887 and then not Suppress_Init_Proc (Etype (E)))
2888 or else
2889 (Needs_Simple_Initialization (Etype (E))
2890 and then not Is_Internal (E)))
2891 then
4c8a5bb8 2892 Has_Default_Initialization := True;
1ce1f005
GD
2893 Check_Restriction
2894 (No_Default_Initialization, Declaration_Node (E));
2895 end if;
2896
4c8a5bb8
AC
2897 -- Check that a Thread_Local_Storage variable does not have
2898 -- default initialization, and any explicit initialization must
2899 -- either be the null constant or a static constant.
2900
2901 if Has_Pragma_Thread_Local_Storage (E) then
2902 declare
2903 Decl : constant Node_Id := Declaration_Node (E);
2904 begin
2905 if Has_Default_Initialization
2906 or else
2907 (Has_Init_Expression (Decl)
2908 and then
2909 (No (Expression (Decl))
2910 or else not
2911 (Is_Static_Expression (Expression (Decl))
2912 or else
2913 Nkind (Expression (Decl)) = N_Null)))
2914 then
2915 Error_Msg_NE
2916 ("Thread_Local_Storage variable& is "
2917 & "improperly initialized", Decl, E);
2918 Error_Msg_NE
2919 ("\only allowed initialization is explicit "
2920 & "NULL or static expression", Decl, E);
2921 end if;
2922 end;
2923 end if;
2924
def46b54
RD
2925 -- For imported objects, set Is_Public unless there is also an
2926 -- address clause, which means that there is no external symbol
2927 -- needed for the Import (Is_Public may still be set for other
2928 -- unrelated reasons). Note that we delayed this processing
2929 -- till freeze time so that we can be sure not to set the flag
2930 -- if there is an address clause. If there is such a clause,
2931 -- then the only purpose of the Import pragma is to suppress
2932 -- implicit initialization.
2c9beb8a
RD
2933
2934 if Is_Imported (E)
add9f797 2935 and then No (Address_Clause (E))
2c9beb8a
RD
2936 then
2937 Set_Is_Public (E);
2938 end if;
7d8b9c99
RD
2939
2940 -- For convention C objects of an enumeration type, warn if
2941 -- the size is not integer size and no explicit size given.
2942 -- Skip warning for Boolean, and Character, assume programmer
2943 -- expects 8-bit sizes for these cases.
2944
2945 if (Convention (E) = Convention_C
2946 or else
2947 Convention (E) = Convention_CPP)
2948 and then Is_Enumeration_Type (Etype (E))
2949 and then not Is_Character_Type (Etype (E))
2950 and then not Is_Boolean_Type (Etype (E))
2951 and then Esize (Etype (E)) < Standard_Integer_Size
2952 and then not Has_Size_Clause (E)
2953 then
2954 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2955 Error_Msg_N
2956 ("?convention C enumeration object has size less than ^",
2957 E);
2958 Error_Msg_N ("\?use explicit size clause to set size", E);
2959 end if;
70482933
RK
2960 end if;
2961
2962 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2963 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2964
2965 -- Note: Atomic[_Components] also sets Volatile[_Components]
2966
2967 if Ekind (E) = E_Constant
2968 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2969 and then not Is_Imported (E)
2970 then
2971 -- Make sure we actually have a pragma, and have not merely
2972 -- inherited the indication from elsewhere (e.g. an address
2973 -- clause, which is not good enough in RM terms!)
2974
1d571f3b 2975 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2976 or else
1d571f3b 2977 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2978 then
2979 Error_Msg_N
91b1417d 2980 ("stand alone atomic constant must be " &
def46b54 2981 "imported (RM C.6(13))", E);
91b1417d 2982
1d571f3b 2983 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2984 or else
1d571f3b 2985 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2986 then
2987 Error_Msg_N
2988 ("stand alone volatile constant must be " &
86cde7b1 2989 "imported (RM C.6(13))", E);
70482933
RK
2990 end if;
2991 end if;
2992
2993 -- Static objects require special handling
2994
2995 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2996 and then Is_Statically_Allocated (E)
2997 then
2998 Freeze_Static_Object (E);
2999 end if;
3000
3001 -- Remaining step is to layout objects
3002
3003 if Ekind (E) = E_Variable
3004 or else
3005 Ekind (E) = E_Constant
3006 or else
3007 Ekind (E) = E_Loop_Parameter
3008 or else
3009 Is_Formal (E)
3010 then
3011 Layout_Object (E);
3012 end if;
3013 end if;
3014
3015 -- Case of a type or subtype being frozen
3016
3017 else
31b5873d
GD
3018 -- We used to check here that a full type must have preelaborable
3019 -- initialization if it completes a private type specified with
308e6f3a 3020 -- pragma Preelaborable_Initialization, but that missed cases where
31b5873d
GD
3021 -- the types occur within a generic package, since the freezing
3022 -- that occurs within a containing scope generally skips traversal
3023 -- of a generic unit's declarations (those will be frozen within
3024 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 3025
70482933
RK
3026 -- The type may be defined in a generic unit. This can occur when
3027 -- freezing a generic function that returns the type (which is
3028 -- defined in a parent unit). It is clearly meaningless to freeze
3029 -- this type. However, if it is a subtype, its size may be determi-
3030 -- nable and used in subsequent checks, so might as well try to
3031 -- compute it.
3032
3033 if Present (Scope (E))
3034 and then Is_Generic_Unit (Scope (E))
3035 then
3036 Check_Compile_Time_Size (E);
3037 return No_List;
3038 end if;
3039
3040 -- Deal with special cases of freezing for subtype
3041
3042 if E /= Base_Type (E) then
3043
86cde7b1
RD
3044 -- Before we do anything else, a specialized test for the case of
3045 -- a size given for an array where the array needs to be packed,
3046 -- but was not so the size cannot be honored. This would of course
3047 -- be caught by the backend, and indeed we don't catch all cases.
3048 -- The point is that we can give a better error message in those
3049 -- cases that we do catch with the circuitry here. Also if pragma
3050 -- Implicit_Packing is set, this is where the packing occurs.
3051
3052 -- The reason we do this so early is that the processing in the
3053 -- automatic packing case affects the layout of the base type, so
3054 -- it must be done before we freeze the base type.
3055
3056 if Is_Array_Type (E) then
3057 declare
3058 Lo, Hi : Node_Id;
3059 Ctyp : constant Entity_Id := Component_Type (E);
3060
3061 begin
3062 -- Check enabling conditions. These are straightforward
3063 -- except for the test for a limited composite type. This
3064 -- eliminates the rare case of a array of limited components
3065 -- where there are issues of whether or not we can go ahead
3066 -- and pack the array (since we can't freely pack and unpack
3067 -- arrays if they are limited).
3068
3069 -- Note that we check the root type explicitly because the
3070 -- whole point is we are doing this test before we have had
3071 -- a chance to freeze the base type (and it is that freeze
3072 -- action that causes stuff to be inherited).
3073
3074 if Present (Size_Clause (E))
3075 and then Known_Static_Esize (E)
3076 and then not Is_Packed (E)
3077 and then not Has_Pragma_Pack (E)
3078 and then Number_Dimensions (E) = 1
3079 and then not Has_Component_Size_Clause (E)
3080 and then Known_Static_Esize (Ctyp)
3081 and then not Is_Limited_Composite (E)
3082 and then not Is_Packed (Root_Type (E))
3083 and then not Has_Component_Size_Clause (Root_Type (E))
d58b9515 3084 and then not CodePeer_Mode
86cde7b1
RD
3085 then
3086 Get_Index_Bounds (First_Index (E), Lo, Hi);
3087
3088 if Compile_Time_Known_Value (Lo)
3089 and then Compile_Time_Known_Value (Hi)
3090 and then Known_Static_RM_Size (Ctyp)
3091 and then RM_Size (Ctyp) < 64
3092 then
3093 declare
3094 Lov : constant Uint := Expr_Value (Lo);
3095 Hiv : constant Uint := Expr_Value (Hi);
3096 Len : constant Uint := UI_Max
3097 (Uint_0,
3098 Hiv - Lov + 1);
3099 Rsiz : constant Uint := RM_Size (Ctyp);
3100 SZ : constant Node_Id := Size_Clause (E);
3101 Btyp : constant Entity_Id := Base_Type (E);
3102
3103 -- What we are looking for here is the situation where
3104 -- the RM_Size given would be exactly right if there
3105 -- was a pragma Pack (resulting in the component size
3106 -- being the same as the RM_Size). Furthermore, the
3107 -- component type size must be an odd size (not a
5a989c6b
AC
3108 -- multiple of storage unit). If the component RM size
3109 -- is an exact number of storage units that is a power
3110 -- of two, the array is not packed and has a standard
3111 -- representation.
86cde7b1
RD
3112
3113 begin
3114 if RM_Size (E) = Len * Rsiz
3115 and then Rsiz mod System_Storage_Unit /= 0
3116 then
3117 -- For implicit packing mode, just set the
fd366a46 3118 -- component size silently.
86cde7b1
RD
3119
3120 if Implicit_Packing then
3121 Set_Component_Size (Btyp, Rsiz);
3122 Set_Is_Bit_Packed_Array (Btyp);
3123 Set_Is_Packed (Btyp);
3124 Set_Has_Non_Standard_Rep (Btyp);
3125
3126 -- Otherwise give an error message
3127
3128 else
3129 Error_Msg_NE
3130 ("size given for& too small", SZ, E);
ed2233dc 3131 Error_Msg_N -- CODEFIX
86cde7b1
RD
3132 ("\use explicit pragma Pack "
3133 & "or use pragma Implicit_Packing", SZ);
3134 end if;
5a989c6b
AC
3135
3136 elsif RM_Size (E) = Len * Rsiz
3137 and then Implicit_Packing
3138 and then
3139 (Rsiz / System_Storage_Unit = 1
3140 or else Rsiz / System_Storage_Unit = 2
3141 or else Rsiz / System_Storage_Unit = 4)
3142 then
3143
3144 -- Not a packed array, but indicate the desired
3145 -- component size, for the back-end.
3146
3147 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
3148 end if;
3149 end;
3150 end if;
3151 end if;
3152 end;
3153 end if;
3154
def46b54 3155 -- If ancestor subtype present, freeze that first. Note that this
8110ee3b 3156 -- will also get the base type frozen. Need RM reference ???
70482933
RK
3157
3158 Atype := Ancestor_Subtype (E);
3159
3160 if Present (Atype) then
c159409f 3161 Freeze_And_Append (Atype, N, Result);
70482933 3162
8110ee3b 3163 -- No ancestor subtype present
70482933 3164
8110ee3b
RD
3165 else
3166 -- See if we have a nearest ancestor that has a predicate.
3167 -- That catches the case of derived type with a predicate.
3168 -- Need RM reference here ???
3169
3170 Atype := Nearest_Ancestor (E);
3171
3172 if Present (Atype) and then Has_Predicates (Atype) then
3173 Freeze_And_Append (Atype, N, Result);
3174 end if;
3175
3176 -- Freeze base type before freezing the entity (RM 13.14(15))
3177
3178 if E /= Base_Type (E) then
3179 Freeze_And_Append (Base_Type (E), N, Result);
3180 end if;
70482933
RK
3181 end if;
3182
fbf5a39b 3183 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
3184
3185 elsif Is_Derived_Type (E) then
c159409f
AC
3186 Freeze_And_Append (Etype (E), N, Result);
3187 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
70482933
RK
3188 end if;
3189
3190 -- For array type, freeze index types and component type first
fbf5a39b 3191 -- before freezing the array (RM 13.14(15)).
70482933
RK
3192
3193 if Is_Array_Type (E) then
3194 declare
094cefda
AC
3195 FS : constant Entity_Id := First_Subtype (E);
3196 Ctyp : constant Entity_Id := Component_Type (E);
3197 Clause : Entity_Id;
70482933
RK
3198
3199 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
3200 -- Set true if any of the index types is an enumeration type
3201 -- with a non-standard representation.
70482933
RK
3202
3203 begin
c159409f 3204 Freeze_And_Append (Ctyp, N, Result);
70482933
RK
3205
3206 Indx := First_Index (E);
3207 while Present (Indx) loop
c159409f 3208 Freeze_And_Append (Etype (Indx), N, Result);
70482933
RK
3209
3210 if Is_Enumeration_Type (Etype (Indx))
3211 and then Has_Non_Standard_Rep (Etype (Indx))
3212 then
3213 Non_Standard_Enum := True;
3214 end if;
3215
3216 Next_Index (Indx);
3217 end loop;
3218
07fc65c4 3219 -- Processing that is done only for base types
70482933
RK
3220
3221 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3222
3223 -- Propagate flags for component type
3224
70482933
RK
3225 if Is_Controlled (Component_Type (E))
3226 or else Has_Controlled_Component (Ctyp)
3227 then
3228 Set_Has_Controlled_Component (E);
3229 end if;
3230
3231 if Has_Unchecked_Union (Component_Type (E)) then
3232 Set_Has_Unchecked_Union (E);
3233 end if;
70482933 3234
07fc65c4
GB
3235 -- If packing was requested or if the component size was set
3236 -- explicitly, then see if bit packing is required. This
3237 -- processing is only done for base types, since all the
3238 -- representation aspects involved are type-related. This
3239 -- is not just an optimization, if we start processing the
e14c931f 3240 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3241 -- type (this is because Is_Packed has a slightly different
3242 -- meaning before and after freezing).
70482933 3243
70482933
RK
3244 declare
3245 Csiz : Uint;
3246 Esiz : Uint;
3247
3248 begin
3249 if (Is_Packed (E) or else Has_Pragma_Pack (E))
70482933 3250 and then Known_Static_RM_Size (Ctyp)
094cefda 3251 and then not Has_Component_Size_Clause (E)
70482933
RK
3252 then
3253 Csiz := UI_Max (RM_Size (Ctyp), 1);
3254
3255 elsif Known_Component_Size (E) then
3256 Csiz := Component_Size (E);
3257
3258 elsif not Known_Static_Esize (Ctyp) then
3259 Csiz := Uint_0;
3260
3261 else
3262 Esiz := Esize (Ctyp);
3263
3264 -- We can set the component size if it is less than
3265 -- 16, rounding it up to the next storage unit size.
3266
3267 if Esiz <= 8 then
3268 Csiz := Uint_8;
3269 elsif Esiz <= 16 then
3270 Csiz := Uint_16;
3271 else
3272 Csiz := Uint_0;
3273 end if;
3274
7d8b9c99
RD
3275 -- Set component size up to match alignment if it
3276 -- would otherwise be less than the alignment. This
3277 -- deals with cases of types whose alignment exceeds
3278 -- their size (padded types).
70482933
RK
3279
3280 if Csiz /= 0 then
3281 declare
3282 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3283 begin
3284 if Csiz < A then
3285 Csiz := A;
3286 end if;
3287 end;
3288 end if;
70482933
RK
3289 end if;
3290
86cde7b1
RD
3291 -- Case of component size that may result in packing
3292
70482933 3293 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3294 declare
3295 Ent : constant Entity_Id :=
3296 First_Subtype (E);
3297 Pack_Pragma : constant Node_Id :=
3298 Get_Rep_Pragma (Ent, Name_Pack);
3299 Comp_Size_C : constant Node_Id :=
3300 Get_Attribute_Definition_Clause
3301 (Ent, Attribute_Component_Size);
3302 begin
3303 -- Warn if we have pack and component size so that
3304 -- the pack is ignored.
70482933 3305
86cde7b1
RD
3306 -- Note: here we must check for the presence of a
3307 -- component size before checking for a Pack pragma
3308 -- to deal with the case where the array type is a
3309 -- derived type whose parent is currently private.
3310
3311 if Present (Comp_Size_C)
3312 and then Has_Pragma_Pack (Ent)
094cefda 3313 and then Warn_On_Redundant_Constructs
86cde7b1
RD
3314 then
3315 Error_Msg_Sloc := Sloc (Comp_Size_C);
3316 Error_Msg_NE
3317 ("?pragma Pack for& ignored!",
3318 Pack_Pragma, Ent);
3319 Error_Msg_N
3320 ("\?explicit component size given#!",
3321 Pack_Pragma);
094cefda
AC
3322 Set_Is_Packed (Base_Type (Ent), False);
3323 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
86cde7b1 3324 end if;
70482933 3325
86cde7b1
RD
3326 -- Set component size if not already set by a
3327 -- component size clause.
70482933 3328
86cde7b1
RD
3329 if not Present (Comp_Size_C) then
3330 Set_Component_Size (E, Csiz);
3331 end if;
fbf5a39b 3332
86cde7b1
RD
3333 -- Check for base type of 8, 16, 32 bits, where an
3334 -- unsigned subtype has a length one less than the
3335 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3336
86cde7b1
RD
3337 -- In such cases, if a component size was not set
3338 -- explicitly, then generate a warning.
fbf5a39b 3339
86cde7b1
RD
3340 if Has_Pragma_Pack (E)
3341 and then not Present (Comp_Size_C)
3342 and then
3343 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3344 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3345 then
3346 Error_Msg_Uint_1 := Csiz;
3347
3348 if Present (Pack_Pragma) then
3349 Error_Msg_N
3350 ("?pragma Pack causes component size "
3351 & "to be ^!", Pack_Pragma);
3352 Error_Msg_N
3353 ("\?use Component_Size to set "
3354 & "desired value!", Pack_Pragma);
3355 end if;
fbf5a39b 3356 end if;
fbf5a39b 3357
86cde7b1
RD
3358 -- Actual packing is not needed for 8, 16, 32, 64.
3359 -- Also not needed for 24 if alignment is 1.
70482933 3360
86cde7b1
RD
3361 if Csiz = 8
3362 or else Csiz = 16
3363 or else Csiz = 32
3364 or else Csiz = 64
3365 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3366 then
3367 -- Here the array was requested to be packed,
3368 -- but the packing request had no effect, so
3369 -- Is_Packed is reset.
70482933 3370
86cde7b1
RD
3371 -- Note: semantically this means that we lose
3372 -- track of the fact that a derived type
3373 -- inherited a pragma Pack that was non-
3374 -- effective, but that seems fine.
70482933 3375
86cde7b1
RD
3376 -- We regard a Pack pragma as a request to set
3377 -- a representation characteristic, and this
3378 -- request may be ignored.
70482933 3379
094cefda
AC
3380 Set_Is_Packed (Base_Type (E), False);
3381 Set_Is_Bit_Packed_Array (Base_Type (E), False);
70482933 3382
094cefda
AC
3383 if Known_Static_Esize (Component_Type (E))
3384 and then Esize (Component_Type (E)) = Csiz
3385 then
3386 Set_Has_Non_Standard_Rep
3387 (Base_Type (E), False);
3388 end if;
3389
3390 -- In all other cases, packing is indeed needed
70482933 3391
86cde7b1 3392 else
094cefda
AC
3393 Set_Has_Non_Standard_Rep (Base_Type (E), True);
3394 Set_Is_Bit_Packed_Array (Base_Type (E), True);
3395 Set_Is_Packed (Base_Type (E), True);
86cde7b1
RD
3396 end if;
3397 end;
70482933
RK
3398 end if;
3399 end;
07fc65c4 3400
094cefda
AC
3401 -- Check for Atomic_Components or Aliased with unsuitable
3402 -- packing or explicit component size clause given.
3403
3404 if (Has_Atomic_Components (E)
3405 or else Has_Aliased_Components (E))
3406 and then (Has_Component_Size_Clause (E)
3407 or else Is_Packed (E))
3408 then
3409 Alias_Atomic_Check : declare
3410
3411 procedure Complain_CS (T : String);
3412 -- Outputs error messages for incorrect CS clause or
3413 -- pragma Pack for aliased or atomic components (T is
3414 -- "aliased" or "atomic");
3415
3416 -----------------
3417 -- Complain_CS --
3418 -----------------
3419
3420 procedure Complain_CS (T : String) is
3421 begin
3422 if Has_Component_Size_Clause (E) then
3423 Clause :=
3424 Get_Attribute_Definition_Clause
3425 (FS, Attribute_Component_Size);
3426
3427 if Known_Static_Esize (Ctyp) then
3428 Error_Msg_N
3429 ("incorrect component size for "
3430 & T & " components", Clause);
3431 Error_Msg_Uint_1 := Esize (Ctyp);
3432 Error_Msg_N
3433 ("\only allowed value is^", Clause);
3434
3435 else
3436 Error_Msg_N
3437 ("component size cannot be given for "
3438 & T & " components", Clause);
3439 end if;
3440
3441 else
3442 Error_Msg_N
3443 ("cannot pack " & T & " components",
3444 Get_Rep_Pragma (FS, Name_Pack));
3445 end if;
3446
3447 return;
3448 end Complain_CS;
3449
3450 -- Start of processing for Alias_Atomic_Check
3451
3452 begin
3453 -- Case where component size has no effect
3454
3455 if Known_Static_Esize (Ctyp)
3456 and then Known_Static_RM_Size (Ctyp)
3457 and then Esize (Ctyp) = RM_Size (Ctyp)
3458 and then Esize (Ctyp) mod 8 = 0
3459 then
3460 null;
3461
3462 elsif Has_Aliased_Components (E)
3463 or else Is_Aliased (Ctyp)
3464 then
3465 Complain_CS ("aliased");
3466
3467 elsif Has_Atomic_Components (E)
3468 or else Is_Atomic (Ctyp)
3469 then
3470 Complain_CS ("atomic");
3471 end if;
3472 end Alias_Atomic_Check;
3473 end if;
3474
3475 -- Warn for case of atomic type
3476
3477 Clause := Get_Rep_Pragma (FS, Name_Atomic);
3478
3479 if Present (Clause)
3480 and then not Addressable (Component_Size (FS))
3481 then
3482 Error_Msg_NE
3483 ("non-atomic components of type& may not be "
3484 & "accessible by separate tasks?", Clause, E);
3485
3486 if Has_Component_Size_Clause (E) then
3487 Error_Msg_Sloc :=
3488 Sloc
3489 (Get_Attribute_Definition_Clause
3490 (FS, Attribute_Component_Size));
3491 Error_Msg_N
3492 ("\because of component size clause#?",
3493 Clause);
3494
3495 elsif Has_Pragma_Pack (E) then
3496 Error_Msg_Sloc :=
3497 Sloc (Get_Rep_Pragma (FS, Name_Pack));
3498 Error_Msg_N
3499 ("\because of pragma Pack#?", Clause);
3500 end if;
3501 end if;
3502
07fc65c4
GB
3503 -- Processing that is done only for subtypes
3504
3505 else
3506 -- Acquire alignment from base type
3507
3508 if Unknown_Alignment (E) then
3509 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3510 Adjust_Esize_Alignment (E);
07fc65c4
GB
3511 end if;
3512 end if;
3513
d05ef0ab
AC
3514 -- For bit-packed arrays, check the size
3515
75a64833 3516 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
d05ef0ab 3517 declare
67ce0d7e
RD
3518 SizC : constant Node_Id := Size_Clause (E);
3519
d05ef0ab 3520 Discard : Boolean;
67ce0d7e 3521 pragma Warnings (Off, Discard);
d05ef0ab
AC
3522
3523 begin
3524 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3525 -- clause at this stage, but it is not worth worrying
3526 -- about. Post error on the entity name in the size
d05ef0ab
AC
3527 -- clause if present, else on the type entity itself.
3528
3529 if Present (SizC) then
7d8b9c99 3530 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3531 else
7d8b9c99 3532 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3533 end if;
3534 end;
3535 end if;
3536
2d4e0553
AC
3537 -- If any of the index types was an enumeration type with a
3538 -- non-standard rep clause, then we indicate that the array
3539 -- type is always packed (even if it is not bit packed).
70482933
RK
3540
3541 if Non_Standard_Enum then
3542 Set_Has_Non_Standard_Rep (Base_Type (E));
3543 Set_Is_Packed (Base_Type (E));
3544 end if;
70482933 3545
0da2c8ac 3546 Set_Component_Alignment_If_Not_Set (E);
70482933 3547
0da2c8ac
AC
3548 -- If the array is packed, we must create the packed array
3549 -- type to be used to actually implement the type. This is
3550 -- only needed for real array types (not for string literal
3551 -- types, since they are present only for the front end).
70482933 3552
0da2c8ac
AC
3553 if Is_Packed (E)
3554 and then Ekind (E) /= E_String_Literal_Subtype
3555 then
3556 Create_Packed_Array_Type (E);
c159409f 3557 Freeze_And_Append (Packed_Array_Type (E), N, Result);
70482933 3558
0da2c8ac 3559 -- Size information of packed array type is copied to the
fea9e956 3560 -- array type, since this is really the representation. But
def46b54
RD
3561 -- do not override explicit existing size values. If the
3562 -- ancestor subtype is constrained the packed_array_type
3563 -- will be inherited from it, but the size may have been
3564 -- provided already, and must not be overridden either.
fea9e956 3565
def46b54
RD
3566 if not Has_Size_Clause (E)
3567 and then
3568 (No (Ancestor_Subtype (E))
3569 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3570 then
fea9e956
ES
3571 Set_Esize (E, Esize (Packed_Array_Type (E)));
3572 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3573 end if;
70482933 3574
fea9e956
ES
3575 if not Has_Alignment_Clause (E) then
3576 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3577 end if;
0da2c8ac
AC
3578 end if;
3579
def46b54
RD
3580 -- For non-packed arrays set the alignment of the array to the
3581 -- alignment of the component type if it is unknown. Skip this
3582 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3583
3584 if not Is_Packed (E)
3585 and then Unknown_Alignment (E)
3586 and then Known_Alignment (Ctyp)
3587 and then Known_Static_Component_Size (E)
3588 and then Known_Static_Esize (Ctyp)
3589 and then Esize (Ctyp) = Component_Size (E)
3590 and then not Is_Atomic (E)
3591 then
3592 Set_Alignment (E, Alignment (Component_Type (E)));
3593 end if;
3594 end;
70482933 3595
fbf5a39b
AC
3596 -- For a class-wide type, the corresponding specific type is
3597 -- frozen as well (RM 13.14(15))
70482933
RK
3598
3599 elsif Is_Class_Wide_Type (E) then
c159409f 3600 Freeze_And_Append (Root_Type (E), N, Result);
70482933 3601
86cde7b1
RD
3602 -- If the base type of the class-wide type is still incomplete,
3603 -- the class-wide remains unfrozen as well. This is legal when
3604 -- E is the formal of a primitive operation of some other type
3605 -- which is being frozen.
3606
3607 if not Is_Frozen (Root_Type (E)) then
3608 Set_Is_Frozen (E, False);
3609 return Result;
3610 end if;
3611
70482933
RK
3612 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3613 -- parent of a derived type) and it is a library-level entity,
3614 -- generate an itype reference for it. Otherwise, its first
3615 -- explicit reference may be in an inner scope, which will be
3616 -- rejected by the back-end.
3617
3618 if Is_Itype (E)
3619 and then Is_Compilation_Unit (Scope (E))
3620 then
70482933 3621 declare
fbf5a39b 3622 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3623
3624 begin
3625 Set_Itype (Ref, E);
3626 if No (Result) then
3627 Result := New_List (Ref);
3628 else
3629 Append (Ref, Result);
3630 end if;
3631 end;
3632 end if;
3633
def46b54 3634 -- The equivalent type associated with a class-wide subtype needs
cbae498b 3635 -- to be frozen to ensure that its layout is done.
fbf5a39b
AC
3636
3637 if Ekind (E) = E_Class_Wide_Subtype
3638 and then Present (Equivalent_Type (E))
3639 then
c159409f 3640 Freeze_And_Append (Equivalent_Type (E), N, Result);
fbf5a39b
AC
3641 end if;
3642
3643 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3644 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3645 -- Is_Record_Type, because we don't want to attempt the freeze for
3646 -- the case of a private type with record extension (we will do that
3647 -- later when the full type is frozen).
70482933
RK
3648
3649 elsif Ekind (E) = E_Record_Type
fd366a46 3650 or else Ekind (E) = E_Record_Subtype
70482933
RK
3651 then
3652 Freeze_Record_Type (E);
3653
3654 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3655 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3656 -- record type is essentially part of the concurrent type.
3657 -- Freeze as well all local entities. This includes record types
3658 -- created for entry parameter blocks, and whatever local entities
3659 -- may appear in the private part.
3660
3661 elsif Is_Concurrent_Type (E) then
3662 if Present (Corresponding_Record_Type (E)) then
3663 Freeze_And_Append
c159409f 3664 (Corresponding_Record_Type (E), N, Result);
70482933
RK
3665 end if;
3666
3667 Comp := First_Entity (E);
70482933
RK
3668 while Present (Comp) loop
3669 if Is_Type (Comp) then
c159409f 3670 Freeze_And_Append (Comp, N, Result);
70482933
RK
3671
3672 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3673 if Is_Itype (Etype (Comp))
3674 and then Underlying_Type (Scope (Etype (Comp))) = E
3675 then
3676 Undelay_Type (Etype (Comp));
3677 end if;
3678
c159409f 3679 Freeze_And_Append (Etype (Comp), N, Result);
70482933
RK
3680 end if;
3681
3682 Next_Entity (Comp);
3683 end loop;
3684
ee094616
RD
3685 -- Private types are required to point to the same freeze node as
3686 -- their corresponding full views. The freeze node itself has to
3687 -- point to the partial view of the entity (because from the partial
3688 -- view, we can retrieve the full view, but not the reverse).
3689 -- However, in order to freeze correctly, we need to freeze the full
3690 -- view. If we are freezing at the end of a scope (or within the
3691 -- scope of the private type), the partial and full views will have
3692 -- been swapped, the full view appears first in the entity chain and
3693 -- the swapping mechanism ensures that the pointers are properly set
3694 -- (on scope exit).
3695
3696 -- If we encounter the partial view before the full view (e.g. when
3697 -- freezing from another scope), we freeze the full view, and then
3698 -- set the pointers appropriately since we cannot rely on swapping to
3699 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3700
3701 elsif Is_Incomplete_Or_Private_Type (E)
3702 and then not Is_Generic_Type (E)
3703 then
86cde7b1
RD
3704 -- The construction of the dispatch table associated with library
3705 -- level tagged types forces freezing of all the primitives of the
3706 -- type, which may cause premature freezing of the partial view.
3707 -- For example:
3708
3709 -- package Pkg is
3710 -- type T is tagged private;
3711 -- type DT is new T with private;
3712 -- procedure Prim (X : in out T; Y : in out DT'class);
3713 -- private
3714 -- type T is tagged null record;
3715 -- Obj : T;
3716 -- type DT is new T with null record;
3717 -- end;
3718
3719 -- In this case the type will be frozen later by the usual
3720 -- mechanism: an object declaration, an instantiation, or the
3721 -- end of a declarative part.
3722
3723 if Is_Library_Level_Tagged_Type (E)
3724 and then not Present (Full_View (E))
3725 then
3726 Set_Is_Frozen (E, False);
3727 return Result;
3728
70482933
RK
3729 -- Case of full view present
3730
86cde7b1 3731 elsif Present (Full_View (E)) then
70482933 3732
ee094616
RD
3733 -- If full view has already been frozen, then no further
3734 -- processing is required
70482933
RK
3735
3736 if Is_Frozen (Full_View (E)) then
70482933
RK
3737 Set_Has_Delayed_Freeze (E, False);
3738 Set_Freeze_Node (E, Empty);
3739 Check_Debug_Info_Needed (E);
3740
ee094616
RD
3741 -- Otherwise freeze full view and patch the pointers so that
3742 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3743
3744 else
fbf5a39b
AC
3745 declare
3746 Full : constant Entity_Id := Full_View (E);
70482933 3747
fbf5a39b
AC
3748 begin
3749 if Is_Private_Type (Full)
3750 and then Present (Underlying_Full_View (Full))
3751 then
3752 Freeze_And_Append
c159409f 3753 (Underlying_Full_View (Full), N, Result);
fbf5a39b 3754 end if;
70482933 3755
c159409f 3756 Freeze_And_Append (Full, N, Result);
70482933 3757
fbf5a39b
AC
3758 if Has_Delayed_Freeze (E) then
3759 F_Node := Freeze_Node (Full);
70482933 3760
fbf5a39b
AC
3761 if Present (F_Node) then
3762 Set_Freeze_Node (E, F_Node);
3763 Set_Entity (F_Node, E);
3764
3765 else
def46b54
RD
3766 -- {Incomplete,Private}_Subtypes with Full_Views
3767 -- constrained by discriminants.
fbf5a39b
AC
3768
3769 Set_Has_Delayed_Freeze (E, False);
3770 Set_Freeze_Node (E, Empty);
3771 end if;
70482933 3772 end if;
fbf5a39b 3773 end;
70482933
RK
3774
3775 Check_Debug_Info_Needed (E);
3776 end if;
3777
ee094616
RD
3778 -- AI-117 requires that the convention of a partial view be the
3779 -- same as the convention of the full view. Note that this is a
3780 -- recognized breach of privacy, but it's essential for logical
3781 -- consistency of representation, and the lack of a rule in
3782 -- RM95 was an oversight.
70482933
RK
3783
3784 Set_Convention (E, Convention (Full_View (E)));
3785
3786 Set_Size_Known_At_Compile_Time (E,
3787 Size_Known_At_Compile_Time (Full_View (E)));
3788
3789 -- Size information is copied from the full view to the
def46b54 3790 -- incomplete or private view for consistency.
70482933 3791
ee094616
RD
3792 -- We skip this is the full view is not a type. This is very
3793 -- strange of course, and can only happen as a result of
3794 -- certain illegalities, such as a premature attempt to derive
3795 -- from an incomplete type.
70482933
RK
3796
3797 if Is_Type (Full_View (E)) then
3798 Set_Size_Info (E, Full_View (E));
3799 Set_RM_Size (E, RM_Size (Full_View (E)));
3800 end if;
3801
3802 return Result;
3803
3804 -- Case of no full view present. If entity is derived or subtype,
3805 -- it is safe to freeze, correctness depends on the frozen status
3806 -- of parent. Otherwise it is either premature usage, or a Taft
3807 -- amendment type, so diagnosis is at the point of use and the
3808 -- type might be frozen later.
3809
3810 elsif E /= Base_Type (E)
3811 or else Is_Derived_Type (E)
3812 then
3813 null;
3814
3815 else
3816 Set_Is_Frozen (E, False);
3817 return No_List;
3818 end if;
3819
3820 -- For access subprogram, freeze types of all formals, the return
3821 -- type was already frozen, since it is the Etype of the function.
8aec446b 3822 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3823 -- they cannot be incomplete.
70482933
RK
3824
3825 elsif Ekind (E) = E_Subprogram_Type then
3826 Formal := First_Formal (E);
3827 while Present (Formal) loop
8aec446b
AC
3828 if Ekind (Etype (Formal)) = E_Incomplete_Type
3829 and then No (Full_View (Etype (Formal)))
3830 and then not Is_Value_Type (Etype (Formal))
3831 then
3832 if Is_Tagged_Type (Etype (Formal)) then
3833 null;
dd386db0 3834
3cae7f14 3835 -- AI05-151: Incomplete types are allowed in access to
dd386db0
AC
3836 -- subprogram specifications.
3837
3838 elsif Ada_Version < Ada_2012 then
8aec446b
AC
3839 Error_Msg_NE
3840 ("invalid use of incomplete type&", E, Etype (Formal));
3841 end if;
3842 end if;
3843
c159409f 3844 Freeze_And_Append (Etype (Formal), N, Result);
70482933
RK
3845 Next_Formal (Formal);
3846 end loop;
3847
70482933
RK
3848 Freeze_Subprogram (E);
3849
ee094616
RD
3850 -- For access to a protected subprogram, freeze the equivalent type
3851 -- (however this is not set if we are not generating code or if this
3852 -- is an anonymous type used just for resolution).
70482933 3853
fea9e956 3854 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3855 if Present (Equivalent_Type (E)) then
c159409f 3856 Freeze_And_Append (Equivalent_Type (E), N, Result);
d8db0bca 3857 end if;
70482933
RK
3858 end if;
3859
3860 -- Generic types are never seen by the back-end, and are also not
3861 -- processed by the expander (since the expander is turned off for
3862 -- generic processing), so we never need freeze nodes for them.
3863
3864 if Is_Generic_Type (E) then
3865 return Result;
3866 end if;
3867
3868 -- Some special processing for non-generic types to complete
3869 -- representation details not known till the freeze point.
3870
3871 if Is_Fixed_Point_Type (E) then
3872 Freeze_Fixed_Point_Type (E);
3873
ee094616
RD
3874 -- Some error checks required for ordinary fixed-point type. Defer
3875 -- these till the freeze-point since we need the small and range
3876 -- values. We only do these checks for base types
fbf5a39b 3877
d347f572 3878 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
fbf5a39b
AC
3879 if Small_Value (E) < Ureal_2_M_80 then
3880 Error_Msg_Name_1 := Name_Small;
3881 Error_Msg_N
7d8b9c99 3882 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3883
3884 elsif Small_Value (E) > Ureal_2_80 then
3885 Error_Msg_Name_1 := Name_Small;
3886 Error_Msg_N
7d8b9c99 3887 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3888 end if;
3889
3890 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3891 Error_Msg_Name_1 := Name_First;
3892 Error_Msg_N
7d8b9c99 3893 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3894 end if;
3895
3896 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3897 Error_Msg_Name_1 := Name_Last;
3898 Error_Msg_N
7d8b9c99 3899 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3900 end if;
3901 end if;
3902
70482933
RK
3903 elsif Is_Enumeration_Type (E) then
3904 Freeze_Enumeration_Type (E);
3905
3906 elsif Is_Integer_Type (E) then
3907 Adjust_Esize_For_Alignment (E);
3908
79afa047
AC
3909 if Is_Modular_Integer_Type (E)
3910 and then Warn_On_Suspicious_Modulus_Value
3911 then
67b3acf8
RD
3912 Check_Suspicious_Modulus (E);
3913 end if;
3914
edd63e9b
ES
3915 elsif Is_Access_Type (E) then
3916
fab2daeb
AC
3917 -- If a pragma Default_Storage_Pool applies, and this type has no
3918 -- Storage_Pool or Storage_Size clause (which must have occurred
3919 -- before the freezing point), then use the default. This applies
3920 -- only to base types.
3921
3922 if Present (Default_Pool)
d347f572 3923 and then Is_Base_Type (E)
fab2daeb
AC
3924 and then not Has_Storage_Size_Clause (E)
3925 and then No (Associated_Storage_Pool (E))
3926 then
3927 -- Case of pragma Default_Storage_Pool (null)
3928
3929 if Nkind (Default_Pool) = N_Null then
3930 Set_No_Pool_Assigned (E);
3931
3932 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
3933
3934 else
3935 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
3936 end if;
3937 end if;
3938
edd63e9b
ES
3939 -- Check restriction for standard storage pool
3940
3941 if No (Associated_Storage_Pool (E)) then
3942 Check_Restriction (No_Standard_Storage_Pools, E);
3943 end if;
3944
3945 -- Deal with error message for pure access type. This is not an
3946 -- error in Ada 2005 if there is no pool (see AI-366).
3947
3948 if Is_Pure_Unit_Access_Type (E)
0791fbe9 3949 and then (Ada_Version < Ada_2005
c6a9797e 3950 or else not No_Pool_Assigned (E))
edd63e9b
ES
3951 then
3952 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e 3953
0791fbe9 3954 if Ada_Version >= Ada_2005 then
c6a9797e
RD
3955 Error_Msg_N
3956 ("\would be legal if Storage_Size of 0 given?", E);
3957
3958 elsif No_Pool_Assigned (E) then
3959 Error_Msg_N
3960 ("\would be legal in Ada 2005?", E);
3961
3962 else
3963 Error_Msg_N
3964 ("\would be legal in Ada 2005 if "
3965 & "Storage_Size of 0 given?", E);
3966 end if;
edd63e9b 3967 end if;
70482933
RK
3968 end if;
3969
edd63e9b
ES
3970 -- Case of composite types
3971
70482933
RK
3972 if Is_Composite_Type (E) then
3973
edd63e9b
ES
3974 -- AI-117 requires that all new primitives of a tagged type must
3975 -- inherit the convention of the full view of the type. Inherited
3976 -- and overriding operations are defined to inherit the convention
3977 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3978 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3979 -- and New_Overloaded_Entity). Here we set the convention of
3980 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3981 -- that any new primitives inherit the type's convention. Class-
3982 -- wide types can have a foreign convention inherited from their
3983 -- specific type, but are excluded from this since they don't have
3984 -- any associated primitives.
70482933
RK
3985
3986 if Is_Tagged_Type (E)
3987 and then not Is_Class_Wide_Type (E)
3988 and then Convention (E) /= Convention_Ada
3989 then
3990 declare
3991 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3992 Prim : Elmt_Id;
3cae7f14 3993
70482933 3994 begin
07fc65c4 3995 Prim := First_Elmt (Prim_List);
70482933
RK
3996 while Present (Prim) loop
3997 if Convention (Node (Prim)) = Convention_Ada then
3998 Set_Convention (Node (Prim), Convention (E));
3999 end if;
4000
4001 Next_Elmt (Prim);
4002 end loop;
4003 end;
4004 end if;
4005 end if;
4006
ee094616
RD
4007 -- Now that all types from which E may depend are frozen, see if the
4008 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 4009 -- strict alignment is required
70482933
RK
4010
4011 Check_Compile_Time_Size (E);
4012 Check_Unsigned_Type (E);
4013
4014 if Base_Type (E) = E then
4015 Check_Strict_Alignment (E);
4016 end if;
4017
4018 -- Do not allow a size clause for a type which does not have a size
4019 -- that is known at compile time
4020
4021 if Has_Size_Clause (E)
4022 and then not Size_Known_At_Compile_Time (E)
4023 then
e14c931f 4024 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
4025 -- in all errors mode, since this is often a junk message
4026
4027 if not Error_Posted (E) then
4028 Error_Msg_N
4029 ("size clause not allowed for variable length type",
4030 Size_Clause (E));
4031 end if;
70482933
RK
4032 end if;
4033
4034 -- Remaining process is to set/verify the representation information,
4035 -- in particular the size and alignment values. This processing is
4036 -- not required for generic types, since generic types do not play
4037 -- any part in code generation, and so the size and alignment values
c6823a20 4038 -- for such types are irrelevant.
70482933
RK
4039
4040 if Is_Generic_Type (E) then
4041 return Result;
4042
4043 -- Otherwise we call the layout procedure
4044
4045 else
4046 Layout_Type (E);
4047 end if;
4048
4049 -- End of freeze processing for type entities
4050 end if;
4051
4052 -- Here is where we logically freeze the current entity. If it has a
4053 -- freeze node, then this is the point at which the freeze node is
4054 -- linked into the result list.
4055
4056 if Has_Delayed_Freeze (E) then
4057
4058 -- If a freeze node is already allocated, use it, otherwise allocate
4059 -- a new one. The preallocation happens in the case of anonymous base
4060 -- types, where we preallocate so that we can set First_Subtype_Link.
4061 -- Note that we reset the Sloc to the current freeze location.
4062
4063 if Present (Freeze_Node (E)) then
4064 F_Node := Freeze_Node (E);
4065 Set_Sloc (F_Node, Loc);
4066
4067 else
4068 F_Node := New_Node (N_Freeze_Entity, Loc);
4069 Set_Freeze_Node (E, F_Node);
4070 Set_Access_Types_To_Process (F_Node, No_Elist);
4071 Set_TSS_Elist (F_Node, No_Elist);
4072 Set_Actions (F_Node, No_List);
4073 end if;
4074
4075 Set_Entity (F_Node, E);
4076
4077 if Result = No_List then
4078 Result := New_List (F_Node);
4079 else
4080 Append (F_Node, Result);
4081 end if;
35ae2ed8
AC
4082
4083 -- A final pass over record types with discriminants. If the type
4084 -- has an incomplete declaration, there may be constrained access
4085 -- subtypes declared elsewhere, which do not depend on the discrimi-
4086 -- nants of the type, and which are used as component types (i.e.
4087 -- the full view is a recursive type). The designated types of these
4088 -- subtypes can only be elaborated after the type itself, and they
4089 -- need an itype reference.
4090
4091 if Ekind (E) = E_Record_Type
4092 and then Has_Discriminants (E)
4093 then
4094 declare
4095 Comp : Entity_Id;
4096 IR : Node_Id;
4097 Typ : Entity_Id;
4098
4099 begin
4100 Comp := First_Component (E);
35ae2ed8
AC
4101 while Present (Comp) loop
4102 Typ := Etype (Comp);
4103
4104 if Ekind (Comp) = E_Component
4105 and then Is_Access_Type (Typ)
4106 and then Scope (Typ) /= E
4107 and then Base_Type (Designated_Type (Typ)) = E
4108 and then Is_Itype (Designated_Type (Typ))
4109 then
4110 IR := Make_Itype_Reference (Sloc (Comp));
4111 Set_Itype (IR, Designated_Type (Typ));
4112 Append (IR, Result);
4113 end if;
4114
4115 Next_Component (Comp);
4116 end loop;
4117 end;
4118 end if;
70482933
RK
4119 end if;
4120
4121 -- When a type is frozen, the first subtype of the type is frozen as
4122 -- well (RM 13.14(15)). This has to be done after freezing the type,
4123 -- since obviously the first subtype depends on its own base type.
4124
4125 if Is_Type (E) then
c159409f 4126 Freeze_And_Append (First_Subtype (E), N, Result);
70482933
RK
4127
4128 -- If we just froze a tagged non-class wide record, then freeze the
4129 -- corresponding class-wide type. This must be done after the tagged
4130 -- type itself is frozen, because the class-wide type refers to the
4131 -- tagged type which generates the class.
4132
4133 if Is_Tagged_Type (E)
4134 and then not Is_Class_Wide_Type (E)
4135 and then Present (Class_Wide_Type (E))
4136 then
c159409f 4137 Freeze_And_Append (Class_Wide_Type (E), N, Result);
70482933
RK
4138 end if;
4139 end if;
4140
4141 Check_Debug_Info_Needed (E);
4142
4143 -- Special handling for subprograms
4144
4145 if Is_Subprogram (E) then
4146
4147 -- If subprogram has address clause then reset Is_Public flag, since
4148 -- we do not want the backend to generate external references.
4149
4150 if Present (Address_Clause (E))
4151 and then not Is_Library_Level_Entity (E)
4152 then
4153 Set_Is_Public (E, False);
4154
4155 -- If no address clause and not intrinsic, then for imported
4156 -- subprogram in main unit, generate descriptor if we are in
4157 -- Propagate_Exceptions mode.
4158
4159 elsif Propagate_Exceptions
4160 and then Is_Imported (E)
4161 and then not Is_Intrinsic_Subprogram (E)
4162 and then Convention (E) /= Convention_Stubbed
4163 then
4164 if Result = No_List then
4165 Result := Empty_List;
4166 end if;
70482933 4167 end if;
70482933
RK
4168 end if;
4169
4170 return Result;
4171 end Freeze_Entity;
4172
4173 -----------------------------
4174 -- Freeze_Enumeration_Type --
4175 -----------------------------
4176
4177 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4178 begin
d677afa9
ES
4179 -- By default, if no size clause is present, an enumeration type with
4180 -- Convention C is assumed to interface to a C enum, and has integer
4181 -- size. This applies to types. For subtypes, verify that its base
4182 -- type has no size clause either.
4183
70482933
RK
4184 if Has_Foreign_Convention (Typ)
4185 and then not Has_Size_Clause (Typ)
d677afa9 4186 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
4187 and then Esize (Typ) < Standard_Integer_Size
4188 then
4189 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 4190
70482933 4191 else
d677afa9
ES
4192 -- If the enumeration type interfaces to C, and it has a size clause
4193 -- that specifies less than int size, it warrants a warning. The
4194 -- user may intend the C type to be an enum or a char, so this is
4195 -- not by itself an error that the Ada compiler can detect, but it
4196 -- it is a worth a heads-up. For Boolean and Character types we
4197 -- assume that the programmer has the proper C type in mind.
4198
4199 if Convention (Typ) = Convention_C
4200 and then Has_Size_Clause (Typ)
4201 and then Esize (Typ) /= Esize (Standard_Integer)
4202 and then not Is_Boolean_Type (Typ)
4203 and then not Is_Character_Type (Typ)
4204 then
4205 Error_Msg_N
4206 ("C enum types have the size of a C int?", Size_Clause (Typ));
4207 end if;
4208
70482933
RK
4209 Adjust_Esize_For_Alignment (Typ);
4210 end if;
4211 end Freeze_Enumeration_Type;
4212
4213 -----------------------
4214 -- Freeze_Expression --
4215 -----------------------
4216
4217 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
4218 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4219 Typ : Entity_Id;
4220 Nam : Entity_Id;
4221 Desig_Typ : Entity_Id;
4222 P : Node_Id;
4223 Parent_P : Node_Id;
70482933
RK
4224
4225 Freeze_Outside : Boolean := False;
4226 -- This flag is set true if the entity must be frozen outside the
4227 -- current subprogram. This happens in the case of expander generated
4228 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4229 -- not freeze all entities like other bodies, but which nevertheless
4230 -- may reference entities that have to be frozen before the body and
4231 -- obviously cannot be frozen inside the body.
4232
4233 function In_Exp_Body (N : Node_Id) return Boolean;
4234 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 4235 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
4236 -- subprogram (init proc, stream subprogram, or renaming as body).
4237 -- If so, this is not a freezing context.
70482933 4238
fbf5a39b
AC
4239 -----------------
4240 -- In_Exp_Body --
4241 -----------------
4242
70482933 4243 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
4244 P : Node_Id;
4245 Id : Entity_Id;
70482933
RK
4246
4247 begin
4248 if Nkind (N) = N_Subprogram_Body then
4249 P := N;
4250 else
4251 P := Parent (N);
4252 end if;
4253
4254 if Nkind (P) /= N_Subprogram_Body then
4255 return False;
4256
4257 else
7d8b9c99
RD
4258 Id := Defining_Unit_Name (Specification (P));
4259
4260 if Nkind (Id) = N_Defining_Identifier
4261 and then (Is_Init_Proc (Id) or else
4262 Is_TSS (Id, TSS_Stream_Input) or else
4263 Is_TSS (Id, TSS_Stream_Output) or else
4264 Is_TSS (Id, TSS_Stream_Read) or else
4265 Is_TSS (Id, TSS_Stream_Write) or else
4266 Nkind (Original_Node (P)) =
4267 N_Subprogram_Renaming_Declaration)
70482933
RK
4268 then
4269 return True;
4270 else
4271 return False;
4272 end if;
4273 end if;
70482933
RK
4274 end In_Exp_Body;
4275
4276 -- Start of processing for Freeze_Expression
4277
4278 begin
edd63e9b
ES
4279 -- Immediate return if freezing is inhibited. This flag is set by the
4280 -- analyzer to stop freezing on generated expressions that would cause
4281 -- freezing if they were in the source program, but which are not
4282 -- supposed to freeze, since they are created.
70482933
RK
4283
4284 if Must_Not_Freeze (N) then
4285 return;
4286 end if;
4287
4288 -- If expression is non-static, then it does not freeze in a default
4289 -- expression, see section "Handling of Default Expressions" in the
4290 -- spec of package Sem for further details. Note that we have to
4291 -- make sure that we actually have a real expression (if we have
4292 -- a subtype indication, we can't test Is_Static_Expression!)
4293
c6a9797e 4294 if In_Spec_Exp
70482933
RK
4295 and then Nkind (N) in N_Subexpr
4296 and then not Is_Static_Expression (N)
4297 then
4298 return;
4299 end if;
4300
4301 -- Freeze type of expression if not frozen already
4302
fbf5a39b
AC
4303 Typ := Empty;
4304
4305 if Nkind (N) in N_Has_Etype then
4306 if not Is_Frozen (Etype (N)) then
4307 Typ := Etype (N);
4308
4309 -- Base type may be an derived numeric type that is frozen at
4310 -- the point of declaration, but first_subtype is still unfrozen.
4311
4312 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4313 Typ := First_Subtype (Etype (N));
4314 end if;
70482933
RK
4315 end if;
4316
4317 -- For entity name, freeze entity if not frozen already. A special
4318 -- exception occurs for an identifier that did not come from source.
4319 -- We don't let such identifiers freeze a non-internal entity, i.e.
4320 -- an entity that did come from source, since such an identifier was
4321 -- generated by the expander, and cannot have any semantic effect on
4322 -- the freezing semantics. For example, this stops the parameter of
4323 -- an initialization procedure from freezing the variable.
4324
4325 if Is_Entity_Name (N)
4326 and then not Is_Frozen (Entity (N))
4327 and then (Nkind (N) /= N_Identifier
4328 or else Comes_From_Source (N)
4329 or else not Comes_From_Source (Entity (N)))
4330 then
4331 Nam := Entity (N);
70482933
RK
4332 else
4333 Nam := Empty;
4334 end if;
4335
49e90211 4336 -- For an allocator freeze designated type if not frozen already
70482933 4337
ee094616
RD
4338 -- For an aggregate whose component type is an access type, freeze the
4339 -- designated type now, so that its freeze does not appear within the
4340 -- loop that might be created in the expansion of the aggregate. If the
4341 -- designated type is a private type without full view, the expression
4342 -- cannot contain an allocator, so the type is not frozen.
70482933 4343
7aedb36a
AC
4344 -- For a function, we freeze the entity when the subprogram declaration
4345 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 4346 -- before the declaration is frozen. We need to generate the extra
7aedb36a 4347 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
4348 -- the proper actuals. This only applies to Ada subprograms, not to
4349 -- imported ones.
7aedb36a 4350
70482933 4351 Desig_Typ := Empty;
70482933 4352
fbf5a39b 4353 case Nkind (N) is
70482933
RK
4354 when N_Allocator =>
4355 Desig_Typ := Designated_Type (Etype (N));
4356
4357 when N_Aggregate =>
4358 if Is_Array_Type (Etype (N))
4359 and then Is_Access_Type (Component_Type (Etype (N)))
4360 then
4361 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4362 end if;
4363
4364 when N_Selected_Component |
4365 N_Indexed_Component |
4366 N_Slice =>
4367
4368 if Is_Access_Type (Etype (Prefix (N))) then
4369 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4370 end if;
4371
7aedb36a
AC
4372 when N_Identifier =>
4373 if Present (Nam)
4374 and then Ekind (Nam) = E_Function
4375 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 4376 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
4377 then
4378 Create_Extra_Formals (Nam);
4379 end if;
4380
70482933
RK
4381 when others =>
4382 null;
70482933
RK
4383 end case;
4384
4385 if Desig_Typ /= Empty
4386 and then (Is_Frozen (Desig_Typ)
4387 or else (not Is_Fully_Defined (Desig_Typ)))
4388 then
4389 Desig_Typ := Empty;
4390 end if;
4391
4392 -- All done if nothing needs freezing
4393
4394 if No (Typ)
4395 and then No (Nam)
4396 and then No (Desig_Typ)
4397 then
4398 return;
4399 end if;
4400
f6cf5b85 4401 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
4402 -- exiting from the loop when it is appropriate to insert the freeze
4403 -- node before the current node P.
4404
bce79204
AC
4405 -- Also checks some special exceptions to the freezing rules. These
4406 -- cases result in a direct return, bypassing the freeze action.
70482933
RK
4407
4408 P := N;
4409 loop
4410 Parent_P := Parent (P);
4411
ee094616
RD
4412 -- If we don't have a parent, then we are not in a well-formed tree.
4413 -- This is an unusual case, but there are some legitimate situations
4414 -- in which this occurs, notably when the expressions in the range of
4415 -- a type declaration are resolved. We simply ignore the freeze
4416 -- request in this case. Is this right ???
70482933
RK
4417
4418 if No (Parent_P) then
4419 return;
4420 end if;
4421
4422 -- See if we have got to an appropriate point in the tree
4423
4424 case Nkind (Parent_P) is
4425
edd63e9b
ES
4426 -- A special test for the exception of (RM 13.14(8)) for the case
4427 -- of per-object expressions (RM 3.8(18)) occurring in component
4428 -- definition or a discrete subtype definition. Note that we test
4429 -- for a component declaration which includes both cases we are
4430 -- interested in, and furthermore the tree does not have explicit
4431 -- nodes for either of these two constructs.
70482933
RK
4432
4433 when N_Component_Declaration =>
4434
4435 -- The case we want to test for here is an identifier that is
4436 -- a per-object expression, this is either a discriminant that
4437 -- appears in a context other than the component declaration
4438 -- or it is a reference to the type of the enclosing construct.
4439
4440 -- For either of these cases, we skip the freezing
4441
c6a9797e 4442 if not In_Spec_Expression
70482933
RK
4443 and then Nkind (N) = N_Identifier
4444 and then (Present (Entity (N)))
4445 then
4446 -- We recognize the discriminant case by just looking for
4447 -- a reference to a discriminant. It can only be one for
4448 -- the enclosing construct. Skip freezing in this case.
4449
4450 if Ekind (Entity (N)) = E_Discriminant then
4451 return;
4452
4453 -- For the case of a reference to the enclosing record,
4454 -- (or task or protected type), we look for a type that
4455 -- matches the current scope.
4456
4457 elsif Entity (N) = Current_Scope then
4458 return;
4459 end if;
4460 end if;
4461
edd63e9b
ES
4462 -- If we have an enumeration literal that appears as the choice in
4463 -- the aggregate of an enumeration representation clause, then
4464 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4465
4466 when N_Enumeration_Representation_Clause =>
4467
4468 -- The case we are looking for is an enumeration literal
4469
4470 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4471 and then Is_Enumeration_Type (Etype (N))
4472 then
4473 -- If enumeration literal appears directly as the choice,
e14c931f 4474 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4475
4476 if Nkind (Parent (N)) = N_Component_Association
4477 and then First (Choices (Parent (N))) = N
4478 then
4479 return;
4480
ee094616
RD
4481 -- If enumeration literal appears as the name of function
4482 -- which is the choice, then also do not freeze. This
4483 -- happens in the overloaded literal case, where the
70482933
RK
4484 -- enumeration literal is temporarily changed to a function
4485 -- call for overloading analysis purposes.
4486
4487 elsif Nkind (Parent (N)) = N_Function_Call
4488 and then
4489 Nkind (Parent (Parent (N))) = N_Component_Association
4490 and then
4491 First (Choices (Parent (Parent (N)))) = Parent (N)
4492 then
4493 return;
4494 end if;
4495 end if;
4496
4497 -- Normally if the parent is a handled sequence of statements,
4498 -- then the current node must be a statement, and that is an
4499 -- appropriate place to insert a freeze node.
4500
4501 when N_Handled_Sequence_Of_Statements =>
4502
edd63e9b
ES
4503 -- An exception occurs when the sequence of statements is for
4504 -- an expander generated body that did not do the usual freeze
4505 -- all operation. In this case we usually want to freeze
4506 -- outside this body, not inside it, and we skip past the
4507 -- subprogram body that we are inside.
70482933
RK
4508
4509 if In_Exp_Body (Parent_P) then
4510
4511 -- However, we *do* want to freeze at this point if we have
4512 -- an entity to freeze, and that entity is declared *inside*
4513 -- the body of the expander generated procedure. This case
4514 -- is recognized by the scope of the type, which is either
4515 -- the spec for some enclosing body, or (in the case of
4516 -- init_procs, for which there are no separate specs) the
4517 -- current scope.
4518
4519 declare
4520 Subp : constant Node_Id := Parent (Parent_P);
4521 Cspc : Entity_Id;
4522
4523 begin
4524 if Nkind (Subp) = N_Subprogram_Body then
4525 Cspc := Corresponding_Spec (Subp);
4526
4527 if (Present (Typ) and then Scope (Typ) = Cspc)
4528 or else
4529 (Present (Nam) and then Scope (Nam) = Cspc)
4530 then
4531 exit;
4532
4533 elsif Present (Typ)
4534 and then Scope (Typ) = Current_Scope
4535 and then Current_Scope = Defining_Entity (Subp)
4536 then
4537 exit;
4538 end if;
4539 end if;
4540 end;
4541
4542 -- If not that exception to the exception, then this is
4543 -- where we delay the freeze till outside the body.
4544
4545 Parent_P := Parent (Parent_P);
4546 Freeze_Outside := True;
4547
4548 -- Here if normal case where we are in handled statement
4549 -- sequence and want to do the insertion right there.
4550
4551 else
4552 exit;
4553 end if;
4554
ee094616
RD
4555 -- If parent is a body or a spec or a block, then the current node
4556 -- is a statement or declaration and we can insert the freeze node
4557 -- before it.
70482933
RK
4558
4559 when N_Package_Specification |
4560 N_Package_Body |
4561 N_Subprogram_Body |
4562 N_Task_Body |
4563 N_Protected_Body |
4564 N_Entry_Body |
4565 N_Block_Statement => exit;
4566
4567 -- The expander is allowed to define types in any statements list,
4568 -- so any of the following parent nodes also mark a freezing point
4569 -- if the actual node is in a list of statements or declarations.
4570
4571 when N_Exception_Handler |
4572 N_If_Statement |
4573 N_Elsif_Part |
4574 N_Case_Statement_Alternative |
4575 N_Compilation_Unit_Aux |
4576 N_Selective_Accept |
4577 N_Accept_Alternative |
4578 N_Delay_Alternative |
4579 N_Conditional_Entry_Call |
4580 N_Entry_Call_Alternative |
4581 N_Triggering_Alternative |
4582 N_Abortable_Part |
bce79204
AC
4583 N_And_Then |
4584 N_Or_Else |
70482933
RK
4585 N_Freeze_Entity =>
4586
4587 exit when Is_List_Member (P);
4588
4589 -- Note: The N_Loop_Statement is a special case. A type that
4590 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4591 -- occurs only because of a loop expanded by the expander), so we
4592 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4593 -- of any entity which comes from source. (if they have predefined
4594 -- type, that type does not appear to come from source, but the
4595 -- entity should not be frozen here).
70482933
RK
4596
4597 when N_Loop_Statement =>
4598 exit when not Comes_From_Source (Etype (N))
4599 and then (No (Nam) or else not Comes_From_Source (Nam));
4600
4601 -- For all other cases, keep looking at parents
4602
4603 when others =>
4604 null;
4605 end case;
4606
4607 -- We fall through the case if we did not yet find the proper
4608 -- place in the free for inserting the freeze node, so climb!
4609
4610 P := Parent_P;
4611 end loop;
4612
edd63e9b
ES
4613 -- If the expression appears in a record or an initialization procedure,
4614 -- the freeze nodes are collected and attached to the current scope, to
4615 -- be inserted and analyzed on exit from the scope, to insure that
4616 -- generated entities appear in the correct scope. If the expression is
4617 -- a default for a discriminant specification, the scope is still void.
4618 -- The expression can also appear in the discriminant part of a private
4619 -- or concurrent type.
70482933 4620
c6823a20 4621 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4622 -- enclosing record declaration, the freeze nodes must be attached to
4623 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4624 -- enclosing declaration list.
4625
ee094616
RD
4626 -- The other case requiring this special handling is if we are in a
4627 -- default expression, since in that case we are about to freeze a
4628 -- static type, and the freeze scope needs to be the outer scope, not
4629 -- the scope of the subprogram with the default parameter.
70482933 4630
c6a9797e
RD
4631 -- For default expressions and other spec expressions in generic units,
4632 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4633 -- placing them at the proper place, after the generic unit.
70482933 4634
c6a9797e 4635 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4636 or else Freeze_Outside
4637 or else (Is_Type (Current_Scope)
4638 and then (not Is_Concurrent_Type (Current_Scope)
4639 or else not Has_Completion (Current_Scope)))
4640 or else Ekind (Current_Scope) = E_Void
4641 then
4642 declare
c159409f
AC
4643 N : constant Node_Id := Current_Scope;
4644 Freeze_Nodes : List_Id := No_List;
4645 Pos : Int := Scope_Stack.Last;
70482933
RK
4646
4647 begin
4648 if Present (Desig_Typ) then
c159409f 4649 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
70482933
RK
4650 end if;
4651
4652 if Present (Typ) then
c159409f 4653 Freeze_And_Append (Typ, N, Freeze_Nodes);
70482933
RK
4654 end if;
4655
4656 if Present (Nam) then
c159409f 4657 Freeze_And_Append (Nam, N, Freeze_Nodes);
70482933
RK
4658 end if;
4659
c6823a20
EB
4660 -- The current scope may be that of a constrained component of
4661 -- an enclosing record declaration, which is above the current
4662 -- scope in the scope stack.
6191e212
AC
4663 -- If the expression is within a top-level pragma, as for a pre-
4664 -- condition on a library-level subprogram, nothing to do.
c6823a20 4665
6191e212
AC
4666 if not Is_Compilation_Unit (Current_Scope)
4667 and then Is_Record_Type (Scope (Current_Scope))
4668 then
c6823a20
EB
4669 Pos := Pos - 1;
4670 end if;
4671
70482933 4672 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4673 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4674 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
c159409f 4675 Freeze_Nodes;
70482933 4676 else
cd5a9750
AC
4677 Append_List (Freeze_Nodes,
4678 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
70482933
RK
4679 end if;
4680 end if;
4681 end;
4682
4683 return;
4684 end if;
4685
4686 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4687 -- adjustment, if we are in spec-expression analysis mode, these freeze
4688 -- actions must not be thrown away (normally all inserted actions are
4689 -- thrown away in this mode. However, the freeze actions are from static
4690 -- expressions and one of the important reasons we are doing this
ee094616 4691 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4692 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4693 -- This also means they get properly analyzed and expanded.
70482933 4694
c6a9797e 4695 In_Spec_Expression := False;
70482933 4696
fbf5a39b 4697 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4698
4699 if Present (Desig_Typ) then
4700 Freeze_Before (P, Desig_Typ);
4701 end if;
4702
fbf5a39b 4703 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4704 -- the enumeration representation clause exception in the loop above.
4705
4706 if Present (Typ) then
4707 Freeze_Before (P, Typ);
4708 end if;
4709
fbf5a39b 4710 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4711
4712 if Present (Nam) then
4713 Freeze_Before (P, Nam);
4714 end if;
4715
c6a9797e
RD
4716 -- Restore In_Spec_Expression flag
4717
4718 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4719 end Freeze_Expression;
4720
4721 -----------------------------
4722 -- Freeze_Fixed_Point_Type --
4723 -----------------------------
4724
edd63e9b
ES
4725 -- Certain fixed-point types and subtypes, including implicit base types
4726 -- and declared first subtypes, have not yet set up a range. This is
4727 -- because the range cannot be set until the Small and Size values are
4728 -- known, and these are not known till the type is frozen.
70482933 4729
edd63e9b
ES
4730 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4731 -- whose bounds are unanalyzed real literals. This routine will recognize
4732 -- this case, and transform this range node into a properly typed range
4733 -- with properly analyzed and resolved values.
70482933
RK
4734
4735 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4736 Rng : constant Node_Id := Scalar_Range (Typ);
4737 Lo : constant Node_Id := Low_Bound (Rng);
4738 Hi : constant Node_Id := High_Bound (Rng);
4739 Btyp : constant Entity_Id := Base_Type (Typ);
4740 Brng : constant Node_Id := Scalar_Range (Btyp);
4741 BLo : constant Node_Id := Low_Bound (Brng);
4742 BHi : constant Node_Id := High_Bound (Brng);
4743 Small : constant Ureal := Small_Value (Typ);
4744 Loval : Ureal;
4745 Hival : Ureal;
4746 Atype : Entity_Id;
4747
4748 Actual_Size : Nat;
4749
4750 function Fsize (Lov, Hiv : Ureal) return Nat;
4751 -- Returns size of type with given bounds. Also leaves these
4752 -- bounds set as the current bounds of the Typ.
4753
0da2c8ac
AC
4754 -----------
4755 -- Fsize --
4756 -----------
4757
70482933
RK
4758 function Fsize (Lov, Hiv : Ureal) return Nat is
4759 begin
4760 Set_Realval (Lo, Lov);
4761 Set_Realval (Hi, Hiv);
4762 return Minimum_Size (Typ);
4763 end Fsize;
4764
0da2c8ac 4765 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4766
4767 begin
4768 -- If Esize of a subtype has not previously been set, set it now
4769
4770 if Unknown_Esize (Typ) then
4771 Atype := Ancestor_Subtype (Typ);
4772
4773 if Present (Atype) then
fbf5a39b 4774 Set_Esize (Typ, Esize (Atype));
70482933 4775 else
fbf5a39b 4776 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4777 end if;
4778 end if;
4779
ee094616
RD
4780 -- Immediate return if the range is already analyzed. This means that
4781 -- the range is already set, and does not need to be computed by this
4782 -- routine.
70482933
RK
4783
4784 if Analyzed (Rng) then
4785 return;
4786 end if;
4787
4788 -- Immediate return if either of the bounds raises Constraint_Error
4789
4790 if Raises_Constraint_Error (Lo)
4791 or else Raises_Constraint_Error (Hi)
4792 then
4793 return;
4794 end if;
4795
4796 Loval := Realval (Lo);
4797 Hival := Realval (Hi);
4798
4799 -- Ordinary fixed-point case
4800
4801 if Is_Ordinary_Fixed_Point_Type (Typ) then
4802
4803 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4804 -- end-points up or down by small. Generally we prefer to fudge up,
4805 -- i.e. widen the bounds for non-model numbers so that the end points
4806 -- are included. However there are cases in which this cannot be
4807 -- done, and indeed cases in which we may need to narrow the bounds.
4808 -- The following circuit makes the decision.
70482933 4809
ee094616
RD
4810 -- Note: our terminology here is that Incl_EP means that the bounds
4811 -- are widened by Small if necessary to include the end points, and
4812 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4813 -- end-points if this reduces the size.
70482933
RK
4814
4815 -- Note that in the Incl case, all we care about is including the
4816 -- end-points. In the Excl case, we want to narrow the bounds as
4817 -- much as permitted by the RM, to give the smallest possible size.
4818
4819 Fudge : declare
4820 Loval_Incl_EP : Ureal;
4821 Hival_Incl_EP : Ureal;
4822
4823 Loval_Excl_EP : Ureal;
4824 Hival_Excl_EP : Ureal;
4825
4826 Size_Incl_EP : Nat;
4827 Size_Excl_EP : Nat;
4828
4829 Model_Num : Ureal;
4830 First_Subt : Entity_Id;
4831 Actual_Lo : Ureal;
4832 Actual_Hi : Ureal;
4833
4834 begin
4835 -- First step. Base types are required to be symmetrical. Right
4836 -- now, the base type range is a copy of the first subtype range.
4837 -- This will be corrected before we are done, but right away we
4838 -- need to deal with the case where both bounds are non-negative.
4839 -- In this case, we set the low bound to the negative of the high
4840 -- bound, to make sure that the size is computed to include the
4841 -- required sign. Note that we do not need to worry about the
4842 -- case of both bounds negative, because the sign will be dealt
4843 -- with anyway. Furthermore we can't just go making such a bound
4844 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4845 -- extra negative value which could not be accommodated on the
70482933
RK
4846 -- positive side.
4847
4848 if Typ = Btyp
4849 and then not UR_Is_Negative (Loval)
4850 and then Hival > Loval
4851 then
4852 Loval := -Hival;
4853 Set_Realval (Lo, Loval);
4854 end if;
4855
4856 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4857 -- then we do nothing to include it, but we are allowed to backoff
4858 -- to the next adjacent model number when we exclude it. If it is
4859 -- not a model number then we straddle the two values with the
4860 -- model numbers on either side.
70482933
RK
4861
4862 Model_Num := UR_Trunc (Loval / Small) * Small;
4863
4864 if Loval = Model_Num then
4865 Loval_Incl_EP := Model_Num;
4866 else
4867 Loval_Incl_EP := Model_Num - Small;
4868 end if;
4869
4870 -- The low value excluding the end point is Small greater, but
4871 -- we do not do this exclusion if the low value is positive,
4872 -- since it can't help the size and could actually hurt by
4873 -- crossing the high bound.
4874
4875 if UR_Is_Negative (Loval_Incl_EP) then
4876 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4877
4878 -- If the value went from negative to zero, then we have the
4879 -- case where Loval_Incl_EP is the model number just below
4880 -- zero, so we want to stick to the negative value for the
4881 -- base type to maintain the condition that the size will
4882 -- include signed values.
4883
4884 if Typ = Btyp
4885 and then UR_Is_Zero (Loval_Excl_EP)
4886 then
4887 Loval_Excl_EP := Loval_Incl_EP;
4888 end if;
4889
70482933
RK
4890 else
4891 Loval_Excl_EP := Loval_Incl_EP;
4892 end if;
4893
4894 -- Similar processing for upper bound and high value
4895
4896 Model_Num := UR_Trunc (Hival / Small) * Small;
4897
4898 if Hival = Model_Num then
4899 Hival_Incl_EP := Model_Num;
4900 else
4901 Hival_Incl_EP := Model_Num + Small;
4902 end if;
4903
4904 if UR_Is_Positive (Hival_Incl_EP) then
4905 Hival_Excl_EP := Hival_Incl_EP - Small;
4906 else
4907 Hival_Excl_EP := Hival_Incl_EP;
4908 end if;
4909
ee094616
RD
4910 -- One further adjustment is needed. In the case of subtypes, we
4911 -- cannot go outside the range of the base type, or we get
70482933 4912 -- peculiarities, and the base type range is already set. This
ee094616
RD
4913 -- only applies to the Incl values, since clearly the Excl values
4914 -- are already as restricted as they are allowed to be.
70482933
RK
4915
4916 if Typ /= Btyp then
4917 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4918 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4919 end if;
4920
4921 -- Get size including and excluding end points
4922
4923 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4924 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4925
4926 -- No need to exclude end-points if it does not reduce size
4927
4928 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4929 Loval_Excl_EP := Loval_Incl_EP;
4930 end if;
4931
4932 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4933 Hival_Excl_EP := Hival_Incl_EP;
4934 end if;
4935
4936 -- Now we set the actual size to be used. We want to use the
4937 -- bounds fudged up to include the end-points but only if this
4938 -- can be done without violating a specifically given size
4939 -- size clause or causing an unacceptable increase in size.
4940
4941 -- Case of size clause given
4942
4943 if Has_Size_Clause (Typ) then
4944
4945 -- Use the inclusive size only if it is consistent with
4946 -- the explicitly specified size.
4947
4948 if Size_Incl_EP <= RM_Size (Typ) then
4949 Actual_Lo := Loval_Incl_EP;
4950 Actual_Hi := Hival_Incl_EP;
4951 Actual_Size := Size_Incl_EP;
4952
4953 -- If the inclusive size is too large, we try excluding
4954 -- the end-points (will be caught later if does not work).
4955
4956 else
4957 Actual_Lo := Loval_Excl_EP;
4958 Actual_Hi := Hival_Excl_EP;
4959 Actual_Size := Size_Excl_EP;
4960 end if;
4961
4962 -- Case of size clause not given
4963
4964 else
4965 -- If we have a base type whose corresponding first subtype
4966 -- has an explicit size that is large enough to include our
4967 -- end-points, then do so. There is no point in working hard
4968 -- to get a base type whose size is smaller than the specified
4969 -- size of the first subtype.
4970
4971 First_Subt := First_Subtype (Typ);
4972
4973 if Has_Size_Clause (First_Subt)
4974 and then Size_Incl_EP <= Esize (First_Subt)
4975 then
4976 Actual_Size := Size_Incl_EP;
4977 Actual_Lo := Loval_Incl_EP;
4978 Actual_Hi := Hival_Incl_EP;
4979
4980 -- If excluding the end-points makes the size smaller and
4981 -- results in a size of 8,16,32,64, then we take the smaller
4982 -- size. For the 64 case, this is compulsory. For the other
4983 -- cases, it seems reasonable. We like to include end points
4984 -- if we can, but not at the expense of moving to the next
4985 -- natural boundary of size.
4986
4987 elsif Size_Incl_EP /= Size_Excl_EP
094cefda 4988 and then Addressable (Size_Excl_EP)
70482933
RK
4989 then
4990 Actual_Size := Size_Excl_EP;
4991 Actual_Lo := Loval_Excl_EP;
4992 Actual_Hi := Hival_Excl_EP;
4993
4994 -- Otherwise we can definitely include the end points
4995
4996 else
4997 Actual_Size := Size_Incl_EP;
4998 Actual_Lo := Loval_Incl_EP;
4999 Actual_Hi := Hival_Incl_EP;
5000 end if;
5001
edd63e9b
ES
5002 -- One pathological case: normally we never fudge a low bound
5003 -- down, since it would seem to increase the size (if it has
5004 -- any effect), but for ranges containing single value, or no
5005 -- values, the high bound can be small too large. Consider:
70482933
RK
5006
5007 -- type t is delta 2.0**(-14)
5008 -- range 131072.0 .. 0;
5009
edd63e9b
ES
5010 -- That lower bound is *just* outside the range of 32 bits, and
5011 -- does need fudging down in this case. Note that the bounds
5012 -- will always have crossed here, since the high bound will be
5013 -- fudged down if necessary, as in the case of:
70482933
RK
5014
5015 -- type t is delta 2.0**(-14)
5016 -- range 131072.0 .. 131072.0;
5017
edd63e9b
ES
5018 -- So we detect the situation by looking for crossed bounds,
5019 -- and if the bounds are crossed, and the low bound is greater
5020 -- than zero, we will always back it off by small, since this
5021 -- is completely harmless.
70482933
RK
5022
5023 if Actual_Lo > Actual_Hi then
5024 if UR_Is_Positive (Actual_Lo) then
5025 Actual_Lo := Loval_Incl_EP - Small;
5026 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
5027
5028 -- And of course, we need to do exactly the same parallel
5029 -- fudge for flat ranges in the negative region.
5030
5031 elsif UR_Is_Negative (Actual_Hi) then
5032 Actual_Hi := Hival_Incl_EP + Small;
5033 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
5034 end if;
5035 end if;
5036 end if;
5037
5038 Set_Realval (Lo, Actual_Lo);
5039 Set_Realval (Hi, Actual_Hi);
5040 end Fudge;
5041
5042 -- For the decimal case, none of this fudging is required, since there
5043 -- are no end-point problems in the decimal case (the end-points are
5044 -- always included).
5045
5046 else
5047 Actual_Size := Fsize (Loval, Hival);
5048 end if;
5049
5050 -- At this stage, the actual size has been calculated and the proper
5051 -- required bounds are stored in the low and high bounds.
5052
5053 if Actual_Size > 64 then
5054 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
5055 Error_Msg_N
7d8b9c99
RD
5056 ("size required (^) for type& too large, maximum allowed is 64",
5057 Typ);
70482933
RK
5058 Actual_Size := 64;
5059 end if;
5060
5061 -- Check size against explicit given size
5062
5063 if Has_Size_Clause (Typ) then
5064 if Actual_Size > RM_Size (Typ) then
5065 Error_Msg_Uint_1 := RM_Size (Typ);
5066 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
5067 Error_Msg_NE
7d8b9c99 5068 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
5069 Size_Clause (Typ), Typ);
5070
5071 else
5072 Actual_Size := UI_To_Int (Esize (Typ));
5073 end if;
5074
5075 -- Increase size to next natural boundary if no size clause given
5076
5077 else
5078 if Actual_Size <= 8 then
5079 Actual_Size := 8;
5080 elsif Actual_Size <= 16 then
5081 Actual_Size := 16;
5082 elsif Actual_Size <= 32 then
5083 Actual_Size := 32;
5084 else
5085 Actual_Size := 64;
5086 end if;
5087
5088 Init_Esize (Typ, Actual_Size);
5089 Adjust_Esize_For_Alignment (Typ);
5090 end if;
5091
edd63e9b
ES
5092 -- If we have a base type, then expand the bounds so that they extend to
5093 -- the full width of the allocated size in bits, to avoid junk range
5094 -- checks on intermediate computations.
70482933
RK
5095
5096 if Base_Type (Typ) = Typ then
5097 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
5098 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
5099 end if;
5100
5101 -- Final step is to reanalyze the bounds using the proper type
5102 -- and set the Corresponding_Integer_Value fields of the literals.
5103
5104 Set_Etype (Lo, Empty);
5105 Set_Analyzed (Lo, False);
5106 Analyze (Lo);
5107
edd63e9b
ES
5108 -- Resolve with universal fixed if the base type, and the base type if
5109 -- it is a subtype. Note we can't resolve the base type with itself,
5110 -- that would be a reference before definition.
70482933
RK
5111
5112 if Typ = Btyp then
5113 Resolve (Lo, Universal_Fixed);
5114 else
5115 Resolve (Lo, Btyp);
5116 end if;
5117
5118 -- Set corresponding integer value for bound
5119
5120 Set_Corresponding_Integer_Value
5121 (Lo, UR_To_Uint (Realval (Lo) / Small));
5122
5123 -- Similar processing for high bound
5124
5125 Set_Etype (Hi, Empty);
5126 Set_Analyzed (Hi, False);
5127 Analyze (Hi);
5128
5129 if Typ = Btyp then
5130 Resolve (Hi, Universal_Fixed);
5131 else
5132 Resolve (Hi, Btyp);
5133 end if;
5134
5135 Set_Corresponding_Integer_Value
5136 (Hi, UR_To_Uint (Realval (Hi) / Small));
5137
5138 -- Set type of range to correspond to bounds
5139
5140 Set_Etype (Rng, Etype (Lo));
5141
fbf5a39b 5142 -- Set Esize to calculated size if not set already
70482933 5143
fbf5a39b
AC
5144 if Unknown_Esize (Typ) then
5145 Init_Esize (Typ, Actual_Size);
5146 end if;
70482933
RK
5147
5148 -- Set RM_Size if not already set. If already set, check value
5149
5150 declare
5151 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
5152
5153 begin
5154 if RM_Size (Typ) /= Uint_0 then
5155 if RM_Size (Typ) < Minsiz then
5156 Error_Msg_Uint_1 := RM_Size (Typ);
5157 Error_Msg_Uint_2 := Minsiz;
5158 Error_Msg_NE
7d8b9c99 5159 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
5160 Size_Clause (Typ), Typ);
5161 end if;
5162
5163 else
5164 Set_RM_Size (Typ, Minsiz);
5165 end if;
5166 end;
70482933
RK
5167 end Freeze_Fixed_Point_Type;
5168
5169 ------------------
5170 -- Freeze_Itype --
5171 ------------------
5172
5173 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5174 L : List_Id;
5175
5176 begin
5177 Set_Has_Delayed_Freeze (T);
c159409f 5178 L := Freeze_Entity (T, N);
70482933
RK
5179
5180 if Is_Non_Empty_List (L) then
5181 Insert_Actions (N, L);
5182 end if;
5183 end Freeze_Itype;
5184
5185 --------------------------
5186 -- Freeze_Static_Object --
5187 --------------------------
5188
5189 procedure Freeze_Static_Object (E : Entity_Id) is
5190
5191 Cannot_Be_Static : exception;
5192 -- Exception raised if the type of a static object cannot be made
5193 -- static. This happens if the type depends on non-global objects.
5194
5195 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
5196 -- Called to ensure that an expression used as part of a type definition
5197 -- is statically allocatable, which means that the expression type is
5198 -- statically allocatable, and the expression is either static, or a
5199 -- reference to a library level constant.
70482933
RK
5200
5201 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5202 -- Called to mark a type as static, checking that it is possible
5203 -- to set the type as static. If it is not possible, then the
5204 -- exception Cannot_Be_Static is raised.
5205
5206 -----------------------------
5207 -- Ensure_Expression_Is_SA --
5208 -----------------------------
5209
5210 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5211 Ent : Entity_Id;
5212
5213 begin
5214 Ensure_Type_Is_SA (Etype (N));
5215
5216 if Is_Static_Expression (N) then
5217 return;
5218
5219 elsif Nkind (N) = N_Identifier then
5220 Ent := Entity (N);
5221
5222 if Present (Ent)
5223 and then Ekind (Ent) = E_Constant
5224 and then Is_Library_Level_Entity (Ent)
5225 then
5226 return;
5227 end if;
5228 end if;
5229
5230 raise Cannot_Be_Static;
5231 end Ensure_Expression_Is_SA;
5232
5233 -----------------------
5234 -- Ensure_Type_Is_SA --
5235 -----------------------
5236
5237 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5238 N : Node_Id;
5239 C : Entity_Id;
5240
5241 begin
5242 -- If type is library level, we are all set
5243
5244 if Is_Library_Level_Entity (Typ) then
5245 return;
5246 end if;
5247
ee094616
RD
5248 -- We are also OK if the type already marked as statically allocated,
5249 -- which means we processed it before.
70482933
RK
5250
5251 if Is_Statically_Allocated (Typ) then
5252 return;
5253 end if;
5254
5255 -- Mark type as statically allocated
5256
5257 Set_Is_Statically_Allocated (Typ);
5258
5259 -- Check that it is safe to statically allocate this type
5260
5261 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5262 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5263 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5264
5265 elsif Is_Array_Type (Typ) then
5266 N := First_Index (Typ);
5267 while Present (N) loop
5268 Ensure_Type_Is_SA (Etype (N));
5269 Next_Index (N);
5270 end loop;
5271
5272 Ensure_Type_Is_SA (Component_Type (Typ));
5273
5274 elsif Is_Access_Type (Typ) then
5275 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5276
5277 declare
5278 F : Entity_Id;
5279 T : constant Entity_Id := Etype (Designated_Type (Typ));
5280
5281 begin
5282 if T /= Standard_Void_Type then
5283 Ensure_Type_Is_SA (T);
5284 end if;
5285
5286 F := First_Formal (Designated_Type (Typ));
70482933
RK
5287 while Present (F) loop
5288 Ensure_Type_Is_SA (Etype (F));
5289 Next_Formal (F);
5290 end loop;
5291 end;
5292
5293 else
5294 Ensure_Type_Is_SA (Designated_Type (Typ));
5295 end if;
5296
5297 elsif Is_Record_Type (Typ) then
5298 C := First_Entity (Typ);
70482933
RK
5299 while Present (C) loop
5300 if Ekind (C) = E_Discriminant
5301 or else Ekind (C) = E_Component
5302 then
5303 Ensure_Type_Is_SA (Etype (C));
5304
5305 elsif Is_Type (C) then
5306 Ensure_Type_Is_SA (C);
5307 end if;
5308
5309 Next_Entity (C);
5310 end loop;
5311
5312 elsif Ekind (Typ) = E_Subprogram_Type then
5313 Ensure_Type_Is_SA (Etype (Typ));
5314
5315 C := First_Formal (Typ);
5316 while Present (C) loop
5317 Ensure_Type_Is_SA (Etype (C));
5318 Next_Formal (C);
5319 end loop;
5320
5321 else
5322 raise Cannot_Be_Static;
5323 end if;
5324 end Ensure_Type_Is_SA;
5325
5326 -- Start of processing for Freeze_Static_Object
5327
5328 begin
5329 Ensure_Type_Is_SA (Etype (E));
5330
5331 exception
5332 when Cannot_Be_Static =>
5333
09494c32
AC
5334 -- If the object that cannot be static is imported or exported, then
5335 -- issue an error message saying that this object cannot be imported
5336 -- or exported. If it has an address clause it is an overlay in the
5337 -- current partition and the static requirement is not relevant.
d606f1df 5338 -- Do not issue any error message when ignoring rep clauses.
09494c32 5339
d606f1df
AC
5340 if Ignore_Rep_Clauses then
5341 null;
5342
5343 elsif Is_Imported (E) then
5344 if No (Address_Clause (E)) then
5345 Error_Msg_N
5346 ("& cannot be imported (local type is not constant)", E);
5347 end if;
70482933
RK
5348
5349 -- Otherwise must be exported, something is wrong if compiler
5350 -- is marking something as statically allocated which cannot be).
5351
5352 else pragma Assert (Is_Exported (E));
5353 Error_Msg_N
5354 ("& cannot be exported (local type is not constant)", E);
5355 end if;
5356 end Freeze_Static_Object;
5357
5358 -----------------------
5359 -- Freeze_Subprogram --
5360 -----------------------
5361
5362 procedure Freeze_Subprogram (E : Entity_Id) is
5363 Retype : Entity_Id;
5364 F : Entity_Id;
5365
5366 begin
5367 -- Subprogram may not have an address clause unless it is imported
5368
5369 if Present (Address_Clause (E)) then
5370 if not Is_Imported (E) then
5371 Error_Msg_N
5372 ("address clause can only be given " &
5373 "for imported subprogram",
5374 Name (Address_Clause (E)));
5375 end if;
5376 end if;
5377
91b1417d
AC
5378 -- Reset the Pure indication on an imported subprogram unless an
5379 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5380 -- otherwise it is an insidious error to call a non-pure function from
5381 -- pure unit and have calls mysteriously optimized away. What happens
5382 -- here is that the Import can bypass the normal check to ensure that
5383 -- pure units call only pure subprograms.
91b1417d
AC
5384
5385 if Is_Imported (E)
5386 and then Is_Pure (E)
5387 and then not Has_Pragma_Pure_Function (E)
5388 then
5389 Set_Is_Pure (E, False);
5390 end if;
5391
70482933
RK
5392 -- For non-foreign convention subprograms, this is where we create
5393 -- the extra formals (for accessibility level and constrained bit
5394 -- information). We delay this till the freeze point precisely so
5395 -- that we know the convention!
5396
5397 if not Has_Foreign_Convention (E) then
5398 Create_Extra_Formals (E);
5399 Set_Mechanisms (E);
5400
5401 -- If this is convention Ada and a Valued_Procedure, that's odd
5402
5403 if Ekind (E) = E_Procedure
5404 and then Is_Valued_Procedure (E)
5405 and then Convention (E) = Convention_Ada
fbf5a39b 5406 and then Warn_On_Export_Import
70482933
RK
5407 then
5408 Error_Msg_N
5409 ("?Valued_Procedure has no effect for convention Ada", E);
5410 Set_Is_Valued_Procedure (E, False);
5411 end if;
5412
5413 -- Case of foreign convention
5414
5415 else
5416 Set_Mechanisms (E);
5417
fbf5a39b 5418 -- For foreign conventions, warn about return of an
70482933
RK
5419 -- unconstrained array.
5420
5421 -- Note: we *do* allow a return by descriptor for the VMS case,
5422 -- though here there is probably more to be done ???
5423
5424 if Ekind (E) = E_Function then
5425 Retype := Underlying_Type (Etype (E));
5426
5427 -- If no return type, probably some other error, e.g. a
5428 -- missing full declaration, so ignore.
5429
5430 if No (Retype) then
5431 null;
5432
5433 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5434 -- earlier on, and there is nothing else to check here. Specific
5435 -- instantiations may lead to erroneous behavior.
70482933
RK
5436
5437 elsif Is_Generic_Type (Etype (E)) then
5438 null;
5439
e7d72fb9 5440 -- Display warning if returning unconstrained array
59366db6 5441
70482933
RK
5442 elsif Is_Array_Type (Retype)
5443 and then not Is_Constrained (Retype)
e7d72fb9
AC
5444
5445 -- Exclude cases where descriptor mechanism is set, since the
5446 -- VMS descriptor mechanisms allow such unconstrained returns.
5447
70482933 5448 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9
AC
5449
5450 -- Check appropriate warning is enabled (should we check for
5451 -- Warnings (Off) on specific entities here, probably so???)
5452
fbf5a39b 5453 and then Warn_On_Export_Import
e7d72fb9
AC
5454
5455 -- Exclude the VM case, since return of unconstrained arrays
5456 -- is properly handled in both the JVM and .NET cases.
5457
f3b57ab0 5458 and then VM_Target = No_VM
70482933 5459 then
fbf5a39b
AC
5460 Error_Msg_N
5461 ("?foreign convention function& should not return " &
5462 "unconstrained array", E);
70482933
RK
5463 return;
5464 end if;
5465 end if;
5466
5467 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5468 -- subprogram have defaults, then emit an appropriate warning since
5469 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5470
5471 if Is_Exported (E) then
5472 F := First_Formal (E);
5473 while Present (F) loop
fbf5a39b
AC
5474 if Warn_On_Export_Import
5475 and then Present (Default_Value (F))
5476 then
70482933
RK
5477 Error_Msg_N
5478 ("?parameter cannot be defaulted in non-Ada call",
5479 Default_Value (F));
5480 end if;
5481
5482 Next_Formal (F);
5483 end loop;
5484 end if;
5485 end if;
5486
e7d72fb9
AC
5487 -- For VMS, descriptor mechanisms for parameters are allowed only for
5488 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5489 -- allowed for parameters of exported subprograms.
70482933
RK
5490
5491 if OpenVMS_On_Target then
7d8b9c99
RD
5492 if Is_Exported (E) then
5493 F := First_Formal (E);
5494 while Present (F) loop
5495 if Mechanism (F) = By_Descriptor_NCA then
5496 Error_Msg_N
5497 ("'N'C'A' descriptor for parameter not permitted", F);
5498 Error_Msg_N
5499 ("\can only be used for imported subprogram", F);
5500 end if;
5501
5502 Next_Formal (F);
5503 end loop;
5504
5505 elsif not Is_Imported (E) then
70482933
RK
5506 F := First_Formal (E);
5507 while Present (F) loop
5508 if Mechanism (F) in Descriptor_Codes then
5509 Error_Msg_N
5510 ("descriptor mechanism for parameter not permitted", F);
5511 Error_Msg_N
7d8b9c99 5512 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5513 end if;
5514
5515 Next_Formal (F);
5516 end loop;
5517 end if;
5518 end if;
edd63e9b
ES
5519
5520 -- Pragma Inline_Always is disallowed for dispatching subprograms
5521 -- because the address of such subprograms is saved in the dispatch
5522 -- table to support dispatching calls, and dispatching calls cannot
5523 -- be inlined. This is consistent with the restriction against using
5524 -- 'Access or 'Address on an Inline_Always subprogram.
5525
def46b54
RD
5526 if Is_Dispatching_Operation (E)
5527 and then Has_Pragma_Inline_Always (E)
5528 then
edd63e9b
ES
5529 Error_Msg_N
5530 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5531 end if;
c6a9797e
RD
5532
5533 -- Because of the implicit representation of inherited predefined
5534 -- operators in the front-end, the overriding status of the operation
5535 -- may be affected when a full view of a type is analyzed, and this is
5536 -- not captured by the analysis of the corresponding type declaration.
5537 -- Therefore the correctness of a not-overriding indicator must be
5538 -- rechecked when the subprogram is frozen.
5539
5540 if Nkind (E) = N_Defining_Operator_Symbol
5541 and then not Error_Posted (Parent (E))
5542 then
5543 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5544 end if;
70482933
RK
5545 end Freeze_Subprogram;
5546
15ce9ca2
AC
5547 ----------------------
5548 -- Is_Fully_Defined --
5549 ----------------------
70482933 5550
70482933
RK
5551 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5552 begin
5553 if Ekind (T) = E_Class_Wide_Type then
5554 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5555
5556 elsif Is_Array_Type (T) then
5557 return Is_Fully_Defined (Component_Type (T));
5558
5559 elsif Is_Record_Type (T)
5560 and not Is_Private_Type (T)
5561 then
ee094616
RD
5562 -- Verify that the record type has no components with private types
5563 -- without completion.
657a9dd9
AC
5564
5565 declare
5566 Comp : Entity_Id;
bde58e32 5567
657a9dd9
AC
5568 begin
5569 Comp := First_Component (T);
657a9dd9
AC
5570 while Present (Comp) loop
5571 if not Is_Fully_Defined (Etype (Comp)) then
5572 return False;
5573 end if;
5574
5575 Next_Component (Comp);
5576 end loop;
5577 return True;
5578 end;
5579
30537990 5580 -- For the designated type of an access to subprogram, all types in
4519314c
AC
5581 -- the profile must be fully defined.
5582
5583 elsif Ekind (T) = E_Subprogram_Type then
5584 declare
5585 F : Entity_Id;
5586
5587 begin
5588 F := First_Formal (T);
5589 while Present (F) loop
5590 if not Is_Fully_Defined (Etype (F)) then
5591 return False;
5592 end if;
5593
5594 Next_Formal (F);
5595 end loop;
5596
5597 return Is_Fully_Defined (Etype (T));
5598 end;
5599
86cde7b1
RD
5600 else
5601 return not Is_Private_Type (T)
5602 or else Present (Full_View (Base_Type (T)));
70482933
RK
5603 end if;
5604 end Is_Fully_Defined;
5605
70d904ca 5606 ---------------------------------
70482933
RK
5607 -- Process_Default_Expressions --
5608 ---------------------------------
5609
5610 procedure Process_Default_Expressions
5611 (E : Entity_Id;
5612 After : in out Node_Id)
5613 is
5614 Loc : constant Source_Ptr := Sloc (E);
5615 Dbody : Node_Id;
5616 Formal : Node_Id;
5617 Dcopy : Node_Id;
5618 Dnam : Entity_Id;
5619
5620 begin
5621 Set_Default_Expressions_Processed (E);
5622
ee094616
RD
5623 -- A subprogram instance and its associated anonymous subprogram share
5624 -- their signature. The default expression functions are defined in the
5625 -- wrapper packages for the anonymous subprogram, and should not be
5626 -- generated again for the instance.
70482933
RK
5627
5628 if Is_Generic_Instance (E)
5629 and then Present (Alias (E))
5630 and then Default_Expressions_Processed (Alias (E))
5631 then
5632 return;
5633 end if;
5634
5635 Formal := First_Formal (E);
70482933
RK
5636 while Present (Formal) loop
5637 if Present (Default_Value (Formal)) then
5638
5639 -- We work with a copy of the default expression because we
5640 -- do not want to disturb the original, since this would mess
5641 -- up the conformance checking.
5642
5643 Dcopy := New_Copy_Tree (Default_Value (Formal));
5644
5645 -- The analysis of the expression may generate insert actions,
5646 -- which of course must not be executed. We wrap those actions
5647 -- in a procedure that is not called, and later on eliminated.
5648 -- The following cases have no side-effects, and are analyzed
5649 -- directly.
5650
5651 if Nkind (Dcopy) = N_Identifier
5652 or else Nkind (Dcopy) = N_Expanded_Name
5653 or else Nkind (Dcopy) = N_Integer_Literal
5654 or else (Nkind (Dcopy) = N_Real_Literal
5655 and then not Vax_Float (Etype (Dcopy)))
5656 or else Nkind (Dcopy) = N_Character_Literal
5657 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5658 or else Known_Null (Dcopy)
70482933
RK
5659 or else (Nkind (Dcopy) = N_Attribute_Reference
5660 and then
5661 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5662 then
5663
5664 -- If there is no default function, we must still do a full
ee094616
RD
5665 -- analyze call on the default value, to ensure that all error
5666 -- checks are performed, e.g. those associated with static
5667 -- evaluation. Note: this branch will always be taken if the
5668 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5669
5670 -- Note: the setting of parent here is to meet the requirement
5671 -- that we can only analyze the expression while attached to
5672 -- the tree. Really the requirement is that the parent chain
5673 -- be set, we don't actually need to be in the tree.
5674
5675 Set_Parent (Dcopy, Declaration_Node (Formal));
5676 Analyze (Dcopy);
5677
5678 -- Default expressions are resolved with their own type if the
5679 -- context is generic, to avoid anomalies with private types.
5680
5681 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5682 Resolve (Dcopy);
70482933
RK
5683 else
5684 Resolve (Dcopy, Etype (Formal));
5685 end if;
5686
5687 -- If that resolved expression will raise constraint error,
5688 -- then flag the default value as raising constraint error.
5689 -- This allows a proper error message on the calls.
5690
5691 if Raises_Constraint_Error (Dcopy) then
5692 Set_Raises_Constraint_Error (Default_Value (Formal));
5693 end if;
5694
5695 -- If the default is a parameterless call, we use the name of
5696 -- the called function directly, and there is no body to build.
5697
5698 elsif Nkind (Dcopy) = N_Function_Call
5699 and then No (Parameter_Associations (Dcopy))
5700 then
5701 null;
5702
5703 -- Else construct and analyze the body of a wrapper procedure
5704 -- that contains an object declaration to hold the expression.
5705 -- Given that this is done only to complete the analysis, it
5706 -- simpler to build a procedure than a function which might
5707 -- involve secondary stack expansion.
5708
5709 else
b29def53 5710 Dnam := Make_Temporary (Loc, 'D');
70482933
RK
5711
5712 Dbody :=
5713 Make_Subprogram_Body (Loc,
5714 Specification =>
5715 Make_Procedure_Specification (Loc,
5716 Defining_Unit_Name => Dnam),
5717
5718 Declarations => New_List (
5719 Make_Object_Declaration (Loc,
5720 Defining_Identifier =>
5721 Make_Defining_Identifier (Loc,
5722 New_Internal_Name ('T')),
5723 Object_Definition =>
5724 New_Occurrence_Of (Etype (Formal), Loc),
5725 Expression => New_Copy_Tree (Dcopy))),
5726
5727 Handled_Statement_Sequence =>
5728 Make_Handled_Sequence_Of_Statements (Loc,
5729 Statements => New_List));
5730
5731 Set_Scope (Dnam, Scope (E));
5732 Set_Assignment_OK (First (Declarations (Dbody)));
5733 Set_Is_Eliminated (Dnam);
5734 Insert_After (After, Dbody);
5735 Analyze (Dbody);
5736 After := Dbody;
5737 end if;
5738 end if;
5739
5740 Next_Formal (Formal);
5741 end loop;
70482933
RK
5742 end Process_Default_Expressions;
5743
5744 ----------------------------------------
5745 -- Set_Component_Alignment_If_Not_Set --
5746 ----------------------------------------
5747
5748 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5749 begin
5750 -- Ignore if not base type, subtypes don't need anything
5751
5752 if Typ /= Base_Type (Typ) then
5753 return;
5754 end if;
5755
5756 -- Do not override existing representation
5757
5758 if Is_Packed (Typ) then
5759 return;
5760
5761 elsif Has_Specified_Layout (Typ) then
5762 return;
5763
5764 elsif Component_Alignment (Typ) /= Calign_Default then
5765 return;
5766
5767 else
5768 Set_Component_Alignment
5769 (Typ, Scope_Stack.Table
5770 (Scope_Stack.Last).Component_Alignment_Default);
5771 end if;
5772 end Set_Component_Alignment_If_Not_Set;
5773
c6823a20
EB
5774 ------------------
5775 -- Undelay_Type --
5776 ------------------
5777
5778 procedure Undelay_Type (T : Entity_Id) is
5779 begin
5780 Set_Has_Delayed_Freeze (T, False);
5781 Set_Freeze_Node (T, Empty);
5782
5783 -- Since we don't want T to have a Freeze_Node, we don't want its
5784 -- Full_View or Corresponding_Record_Type to have one either.
5785
5786 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5787 -- want is to be sure that for an Itype that's part of record R and is a
5788 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5789 -- points of R and T. We have no way of doing that directly, so what we
5790 -- do is force most such Itypes to be frozen as part of freezing R via
5791 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5792 -- (mostly the designated types of access types that are defined as part
5793 -- of the record).
c6823a20
EB
5794
5795 if Is_Private_Type (T)
5796 and then Present (Full_View (T))
5797 and then Is_Itype (Full_View (T))
5798 and then Is_Record_Type (Scope (Full_View (T)))
5799 then
5800 Undelay_Type (Full_View (T));
5801 end if;
5802
5803 if Is_Concurrent_Type (T)
5804 and then Present (Corresponding_Record_Type (T))
5805 and then Is_Itype (Corresponding_Record_Type (T))
5806 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5807 then
5808 Undelay_Type (Corresponding_Record_Type (T));
5809 end if;
5810 end Undelay_Type;
5811
fbf5a39b
AC
5812 ------------------
5813 -- Warn_Overlay --
5814 ------------------
5815
5816 procedure Warn_Overlay
5817 (Expr : Node_Id;
5818 Typ : Entity_Id;
5819 Nam : Entity_Id)
5820 is
5821 Ent : constant Entity_Id := Entity (Nam);
49e90211 5822 -- The object to which the address clause applies
fbf5a39b
AC
5823
5824 Init : Node_Id;
5825 Old : Entity_Id := Empty;
5826 Decl : Node_Id;
5827
5828 begin
5829 -- No warning if address clause overlay warnings are off
5830
5831 if not Address_Clause_Overlay_Warnings then
5832 return;
5833 end if;
5834
5835 -- No warning if there is an explicit initialization
5836
5837 Init := Original_Node (Expression (Declaration_Node (Ent)));
5838
5839 if Present (Init) and then Comes_From_Source (Init) then
5840 return;
5841 end if;
5842
edd63e9b 5843 -- We only give the warning for non-imported entities of a type for
0ac73189 5844 -- which a non-null base init proc is defined, or for objects of access
a5d83d61 5845 -- types with implicit null initialization, or when Normalize_Scalars
0ac73189
AC
5846 -- applies and the type is scalar or a string type (the latter being
5847 -- tested for because predefined String types are initialized by inline
a5d83d61
AC
5848 -- code rather than by an init_proc). Note that we do not give the
5849 -- warning for Initialize_Scalars, since we suppressed initialization
5850 -- in this case.
fbf5a39b
AC
5851
5852 if Present (Expr)
fbf5a39b 5853 and then not Is_Imported (Ent)
0ac73189
AC
5854 and then (Has_Non_Null_Base_Init_Proc (Typ)
5855 or else Is_Access_Type (Typ)
a5d83d61 5856 or else (Normalize_Scalars
0ac73189
AC
5857 and then (Is_Scalar_Type (Typ)
5858 or else Is_String_Type (Typ))))
fbf5a39b
AC
5859 then
5860 if Nkind (Expr) = N_Attribute_Reference
5861 and then Is_Entity_Name (Prefix (Expr))
5862 then
5863 Old := Entity (Prefix (Expr));
5864
5865 elsif Is_Entity_Name (Expr)
5866 and then Ekind (Entity (Expr)) = E_Constant
5867 then
5868 Decl := Declaration_Node (Entity (Expr));
5869
5870 if Nkind (Decl) = N_Object_Declaration
5871 and then Present (Expression (Decl))
5872 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5873 and then Is_Entity_Name (Prefix (Expression (Decl)))
5874 then
5875 Old := Entity (Prefix (Expression (Decl)));
5876
5877 elsif Nkind (Expr) = N_Function_Call then
5878 return;
5879 end if;
5880
ee094616
RD
5881 -- A function call (most likely to To_Address) is probably not an
5882 -- overlay, so skip warning. Ditto if the function call was inlined
5883 -- and transformed into an entity.
fbf5a39b
AC
5884
5885 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5886 return;
5887 end if;
5888
5889 Decl := Next (Parent (Expr));
5890
5891 -- If a pragma Import follows, we assume that it is for the current
5892 -- target of the address clause, and skip the warning.
5893
5894 if Present (Decl)
5895 and then Nkind (Decl) = N_Pragma
1b24ada5 5896 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5897 then
5898 return;
5899 end if;
5900
5901 if Present (Old) then
5902 Error_Msg_Node_2 := Old;
5903 Error_Msg_N
5904 ("default initialization of & may modify &?",
5905 Nam);
5906 else
5907 Error_Msg_N
5908 ("default initialization of & may modify overlaid storage?",
5909 Nam);
5910 end if;
5911
5912 -- Add friendly warning if initialization comes from a packed array
5913 -- component.
5914
5915 if Is_Record_Type (Typ) then
5916 declare
5917 Comp : Entity_Id;
5918
5919 begin
5920 Comp := First_Component (Typ);
fbf5a39b
AC
5921 while Present (Comp) loop
5922 if Nkind (Parent (Comp)) = N_Component_Declaration
5923 and then Present (Expression (Parent (Comp)))
5924 then
5925 exit;
5926 elsif Is_Array_Type (Etype (Comp))
5927 and then Present (Packed_Array_Type (Etype (Comp)))
5928 then
5929 Error_Msg_NE
3f1ede06
RD
5930 ("\packed array component& " &
5931 "will be initialized to zero?",
5932 Nam, Comp);
fbf5a39b
AC
5933 exit;
5934 else
5935 Next_Component (Comp);
5936 end if;
5937 end loop;
5938 end;
5939 end if;
5940
5941 Error_Msg_N
3f1ede06 5942 ("\use pragma Import for & to " &
86cde7b1 5943 "suppress initialization (RM B.1(24))?",
3f1ede06 5944 Nam);
fbf5a39b
AC
5945 end if;
5946 end Warn_Overlay;
5947
70482933 5948end Freeze;