]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
Daily bump.
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
5624e564 2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9dcd6f09 9 the Free Software Foundation; either version 3, or (at your option)
f8032688
MM
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
9dcd6f09
NC
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
f8032688
MM
20
21/* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
29
a1f300c0 30 The algorithm computes this dominator tree implicitly by computing for
f8032688 31 each block its immediate dominator. We use tree balancing and path
f3b569ca 32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
f8032688
MM
33 slowly growing functional inverse of the Ackerman function. */
34
35#include "config.h"
36#include "system.h"
4977bab6
ZW
37#include "coretypes.h"
38#include "tm.h"
f8032688
MM
39#include "rtl.h"
40#include "hard-reg-set.h"
7932a3db 41#include "obstack.h"
60393bbc 42#include "predict.h"
60393bbc
AM
43#include "function.h"
44#include "dominance.h"
45#include "cfg.h"
46#include "cfganal.h"
f8032688 47#include "basic-block.h"
718f9c0f 48#include "diagnostic-core.h"
64afff5b 49#include "alloc-pool.h"
355be0dc 50#include "et-forest.h"
74c96e0c 51#include "timevar.h"
66f97d31 52#include "graphds.h"
7a8cba34 53#include "bitmap.h"
f8032688 54
f8032688
MM
55/* We name our nodes with integers, beginning with 1. Zero is reserved for
56 'undefined' or 'end of list'. The name of each node is given by the dfs
57 number of the corresponding basic block. Please note, that we include the
58 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
24bd1a0b 59 support multiple entry points. Its dfs number is of course 1. */
f8032688
MM
60
61/* Type of Basic Block aka. TBB */
62typedef unsigned int TBB;
63
64/* We work in a poor-mans object oriented fashion, and carry an instance of
65 this structure through all our 'methods'. It holds various arrays
66 reflecting the (sub)structure of the flowgraph. Most of them are of type
67 TBB and are also indexed by TBB. */
68
69struct dom_info
70{
71 /* The parent of a node in the DFS tree. */
72 TBB *dfs_parent;
73 /* For a node x key[x] is roughly the node nearest to the root from which
74 exists a way to x only over nodes behind x. Such a node is also called
75 semidominator. */
76 TBB *key;
77 /* The value in path_min[x] is the node y on the path from x to the root of
78 the tree x is in with the smallest key[y]. */
79 TBB *path_min;
80 /* bucket[x] points to the first node of the set of nodes having x as key. */
81 TBB *bucket;
82 /* And next_bucket[x] points to the next node. */
83 TBB *next_bucket;
84 /* After the algorithm is done, dom[x] contains the immediate dominator
85 of x. */
86 TBB *dom;
87
88 /* The following few fields implement the structures needed for disjoint
89 sets. */
fa10beec 90 /* set_chain[x] is the next node on the path from x to the representative
f8032688
MM
91 of the set containing x. If set_chain[x]==0 then x is a root. */
92 TBB *set_chain;
93 /* set_size[x] is the number of elements in the set named by x. */
94 unsigned int *set_size;
95 /* set_child[x] is used for balancing the tree representing a set. It can
96 be understood as the next sibling of x. */
97 TBB *set_child;
98
99 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
100 number of that node in DFS order counted from 1. This is an index
101 into most of the other arrays in this structure. */
102 TBB *dfs_order;
09da1532 103 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
104 dfs_to_bb[x] is that basic block. Note, that in our structure there are
105 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
106 is true for every basic block bb, but not the opposite. */
107 basic_block *dfs_to_bb;
108
26e0e410 109 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
110 unsigned int dfsnum;
111 /* The number of nodes in the DFS tree (==dfsnum-1). */
112 unsigned int nodes;
26e0e410
RH
113
114 /* Blocks with bits set here have a fake edge to EXIT. These are used
115 to turn a DFS forest into a proper tree. */
116 bitmap fake_exit_edge;
f8032688
MM
117};
118
26e0e410 119static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735 120static void free_dom_info (struct dom_info *);
2b28c07a
JC
121static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
122static void calc_dfs_tree (struct dom_info *, bool);
7080f735
AJ
123static void compress (struct dom_info *, TBB);
124static TBB eval (struct dom_info *, TBB);
125static void link_roots (struct dom_info *, TBB, TBB);
2b28c07a 126static void calc_idoms (struct dom_info *, bool);
d47cc544 127void debug_dominance_info (enum cdi_direction);
1fc3998d 128void debug_dominance_tree (enum cdi_direction, basic_block);
f8032688
MM
129
130/* Helper macro for allocating and initializing an array,
131 for aesthetic reasons. */
132#define init_ar(var, type, num, content) \
3a538a66
KH
133 do \
134 { \
135 unsigned int i = 1; /* Catch content == i. */ \
136 if (! (content)) \
5ed6ace5 137 (var) = XCNEWVEC (type, num); \
3a538a66
KH
138 else \
139 { \
5ed6ace5 140 (var) = XNEWVEC (type, (num)); \
3a538a66
KH
141 for (i = 0; i < num; i++) \
142 (var)[i] = (content); \
143 } \
144 } \
145 while (0)
f8032688
MM
146
147/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 148 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
149
150static void
26e0e410 151init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 152{
6fb5fa3c 153 /* We need memory for n_basic_blocks nodes. */
0cae8d31 154 unsigned int num = n_basic_blocks_for_fn (cfun);
f8032688
MM
155 init_ar (di->dfs_parent, TBB, num, 0);
156 init_ar (di->path_min, TBB, num, i);
157 init_ar (di->key, TBB, num, i);
158 init_ar (di->dom, TBB, num, 0);
159
160 init_ar (di->bucket, TBB, num, 0);
161 init_ar (di->next_bucket, TBB, num, 0);
162
163 init_ar (di->set_chain, TBB, num, 0);
164 init_ar (di->set_size, unsigned int, num, 1);
165 init_ar (di->set_child, TBB, num, 0);
166
8b1c6fd7
DM
167 init_ar (di->dfs_order, TBB,
168 (unsigned int) last_basic_block_for_fn (cfun) + 1, 0);
f8032688
MM
169 init_ar (di->dfs_to_bb, basic_block, num, 0);
170
171 di->dfsnum = 1;
172 di->nodes = 0;
26e0e410 173
2b28c07a
JC
174 switch (dir)
175 {
176 case CDI_DOMINATORS:
177 di->fake_exit_edge = NULL;
178 break;
179 case CDI_POST_DOMINATORS:
180 di->fake_exit_edge = BITMAP_ALLOC (NULL);
181 break;
182 default:
183 gcc_unreachable ();
184 break;
185 }
f8032688
MM
186}
187
188#undef init_ar
189
2b28c07a
JC
190/* Map dominance calculation type to array index used for various
191 dominance information arrays. This version is simple -- it will need
192 to be modified, obviously, if additional values are added to
193 cdi_direction. */
194
195static unsigned int
196dom_convert_dir_to_idx (enum cdi_direction dir)
197{
2ba31c05 198 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
2b28c07a
JC
199 return dir - 1;
200}
201
f8032688
MM
202/* Free all allocated memory in DI, but not DI itself. */
203
204static void
7080f735 205free_dom_info (struct dom_info *di)
f8032688
MM
206{
207 free (di->dfs_parent);
208 free (di->path_min);
209 free (di->key);
210 free (di->dom);
211 free (di->bucket);
212 free (di->next_bucket);
213 free (di->set_chain);
214 free (di->set_size);
215 free (di->set_child);
216 free (di->dfs_order);
217 free (di->dfs_to_bb);
8bdbfff5 218 BITMAP_FREE (di->fake_exit_edge);
f8032688
MM
219}
220
221/* The nonrecursive variant of creating a DFS tree. DI is our working
222 structure, BB the starting basic block for this tree and REVERSE
223 is true, if predecessors should be visited instead of successors of a
224 node. After this is done all nodes reachable from BB were visited, have
225 assigned their dfs number and are linked together to form a tree. */
226
227static void
2b28c07a 228calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
f8032688 229{
f8032688
MM
230 /* We call this _only_ if bb is not already visited. */
231 edge e;
232 TBB child_i, my_i = 0;
628f6a4e
BE
233 edge_iterator *stack;
234 edge_iterator ei, einext;
f8032688 235 int sp;
6626665f 236 /* Start block (the entry block for forward problem, exit block for backward
f8032688
MM
237 problem). */
238 basic_block en_block;
239 /* Ending block. */
240 basic_block ex_block;
241
0cae8d31 242 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
f8032688
MM
243 sp = 0;
244
245 /* Initialize our border blocks, and the first edge. */
246 if (reverse)
247 {
628f6a4e 248 ei = ei_start (bb->preds);
fefa31b5
DM
249 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
250 ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
f8032688
MM
251 }
252 else
253 {
628f6a4e 254 ei = ei_start (bb->succs);
fefa31b5
DM
255 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
256 ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
f8032688
MM
257 }
258
259 /* When the stack is empty we break out of this loop. */
260 while (1)
261 {
262 basic_block bn;
263
264 /* This loop traverses edges e in depth first manner, and fills the
265 stack. */
628f6a4e 266 while (!ei_end_p (ei))
f8032688 267 {
628f6a4e 268 e = ei_edge (ei);
f8032688
MM
269
270 /* Deduce from E the current and the next block (BB and BN), and the
271 next edge. */
272 if (reverse)
273 {
274 bn = e->src;
275
276 /* If the next node BN is either already visited or a border
277 block the current edge is useless, and simply overwritten
278 with the next edge out of the current node. */
0b17ab2f 279 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 280 {
628f6a4e 281 ei_next (&ei);
f8032688
MM
282 continue;
283 }
284 bb = e->dest;
628f6a4e 285 einext = ei_start (bn->preds);
f8032688
MM
286 }
287 else
288 {
289 bn = e->dest;
0b17ab2f 290 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 291 {
628f6a4e 292 ei_next (&ei);
f8032688
MM
293 continue;
294 }
295 bb = e->src;
628f6a4e 296 einext = ei_start (bn->succs);
f8032688
MM
297 }
298
ced3f397 299 gcc_assert (bn != en_block);
f8032688
MM
300
301 /* Fill the DFS tree info calculatable _before_ recursing. */
302 if (bb != en_block)
0b17ab2f 303 my_i = di->dfs_order[bb->index];
f8032688 304 else
8b1c6fd7 305 my_i = di->dfs_order[last_basic_block_for_fn (cfun)];
0b17ab2f 306 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
307 di->dfs_to_bb[child_i] = bn;
308 di->dfs_parent[child_i] = my_i;
309
310 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
311 stack[sp++] = ei;
312 ei = einext;
f8032688
MM
313 }
314
315 if (!sp)
316 break;
628f6a4e 317 ei = stack[--sp];
f8032688
MM
318
319 /* OK. The edge-list was exhausted, meaning normally we would
320 end the recursion. After returning from the recursive call,
321 there were (may be) other statements which were run after a
322 child node was completely considered by DFS. Here is the
323 point to do it in the non-recursive variant.
324 E.g. The block just completed is in e->dest for forward DFS,
325 the block not yet completed (the parent of the one above)
326 in e->src. This could be used e.g. for computing the number of
327 descendants or the tree depth. */
628f6a4e 328 ei_next (&ei);
f8032688
MM
329 }
330 free (stack);
331}
332
333/* The main entry for calculating the DFS tree or forest. DI is our working
334 structure and REVERSE is true, if we are interested in the reverse flow
335 graph. In that case the result is not necessarily a tree but a forest,
336 because there may be nodes from which the EXIT_BLOCK is unreachable. */
337
338static void
2b28c07a 339calc_dfs_tree (struct dom_info *di, bool reverse)
f8032688
MM
340{
341 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
fefa31b5
DM
342 basic_block begin = (reverse
343 ? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
8b1c6fd7 344 di->dfs_order[last_basic_block_for_fn (cfun)] = di->dfsnum;
f8032688
MM
345 di->dfs_to_bb[di->dfsnum] = begin;
346 di->dfsnum++;
347
348 calc_dfs_tree_nonrec (di, begin, reverse);
349
350 if (reverse)
351 {
352 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
353 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
354 nodes, but in post-dom we have to deal with them.
355
356 There are two situations in which this occurs. First, noreturn
357 functions. Second, infinite loops. In the first case we need to
358 pretend that there is an edge to the exit block. In the second
359 case, we wind up with a forest. We need to process all noreturn
360 blocks before we know if we've got any infinite loops. */
361
e0082a72 362 basic_block b;
26e0e410
RH
363 bool saw_unconnected = false;
364
4f42035e 365 FOR_EACH_BB_REVERSE_FN (b, cfun)
f8032688 366 {
628f6a4e 367 if (EDGE_COUNT (b->succs) > 0)
26e0e410
RH
368 {
369 if (di->dfs_order[b->index] == 0)
370 saw_unconnected = true;
371 continue;
372 }
373 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 374 di->dfs_order[b->index] = di->dfsnum;
f8032688 375 di->dfs_to_bb[di->dfsnum] = b;
8b1c6fd7
DM
376 di->dfs_parent[di->dfsnum] =
377 di->dfs_order[last_basic_block_for_fn (cfun)];
f8032688
MM
378 di->dfsnum++;
379 calc_dfs_tree_nonrec (di, b, reverse);
380 }
26e0e410
RH
381
382 if (saw_unconnected)
383 {
4f42035e 384 FOR_EACH_BB_REVERSE_FN (b, cfun)
26e0e410 385 {
03b06a83 386 basic_block b2;
26e0e410
RH
387 if (di->dfs_order[b->index])
388 continue;
03b06a83
SB
389 b2 = dfs_find_deadend (b);
390 gcc_checking_assert (di->dfs_order[b2->index] == 0);
391 bitmap_set_bit (di->fake_exit_edge, b2->index);
392 di->dfs_order[b2->index] = di->dfsnum;
393 di->dfs_to_bb[di->dfsnum] = b2;
8b1c6fd7
DM
394 di->dfs_parent[di->dfsnum] =
395 di->dfs_order[last_basic_block_for_fn (cfun)];
26e0e410 396 di->dfsnum++;
03b06a83
SB
397 calc_dfs_tree_nonrec (di, b2, reverse);
398 gcc_checking_assert (di->dfs_order[b->index]);
26e0e410
RH
399 }
400 }
f8032688
MM
401 }
402
403 di->nodes = di->dfsnum - 1;
404
24bd1a0b 405 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
0cae8d31 406 gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
f8032688
MM
407}
408
409/* Compress the path from V to the root of its set and update path_min at the
410 same time. After compress(di, V) set_chain[V] is the root of the set V is
411 in and path_min[V] is the node with the smallest key[] value on the path
412 from V to that root. */
413
414static void
7080f735 415compress (struct dom_info *di, TBB v)
f8032688
MM
416{
417 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
418 greater than 5 even for huge graphs (I've not seen call depth > 4).
419 Also performance wise compress() ranges _far_ behind eval(). */
420 TBB parent = di->set_chain[v];
421 if (di->set_chain[parent])
422 {
423 compress (di, parent);
424 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
425 di->path_min[v] = di->path_min[parent];
426 di->set_chain[v] = di->set_chain[parent];
427 }
428}
429
430/* Compress the path from V to the set root of V if needed (when the root has
431 changed since the last call). Returns the node with the smallest key[]
432 value on the path from V to the root. */
433
434static inline TBB
7080f735 435eval (struct dom_info *di, TBB v)
f8032688 436{
fa10beec 437 /* The representative of the set V is in, also called root (as the set
f8032688
MM
438 representation is a tree). */
439 TBB rep = di->set_chain[v];
440
441 /* V itself is the root. */
442 if (!rep)
443 return di->path_min[v];
444
445 /* Compress only if necessary. */
446 if (di->set_chain[rep])
447 {
448 compress (di, v);
449 rep = di->set_chain[v];
450 }
451
452 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
453 return di->path_min[v];
454 else
455 return di->path_min[rep];
456}
457
458/* This essentially merges the two sets of V and W, giving a single set with
459 the new root V. The internal representation of these disjoint sets is a
460 balanced tree. Currently link(V,W) is only used with V being the parent
461 of W. */
462
463static void
7080f735 464link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
465{
466 TBB s = w;
467
468 /* Rebalance the tree. */
469 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
470 {
471 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
472 >= 2 * di->set_size[di->set_child[s]])
473 {
474 di->set_chain[di->set_child[s]] = s;
475 di->set_child[s] = di->set_child[di->set_child[s]];
476 }
477 else
478 {
479 di->set_size[di->set_child[s]] = di->set_size[s];
480 s = di->set_chain[s] = di->set_child[s];
481 }
482 }
483
484 di->path_min[s] = di->path_min[w];
485 di->set_size[v] += di->set_size[w];
486 if (di->set_size[v] < 2 * di->set_size[w])
6b4db501 487 std::swap (di->set_child[v], s);
f8032688
MM
488
489 /* Merge all subtrees. */
490 while (s)
491 {
492 di->set_chain[s] = v;
493 s = di->set_child[s];
494 }
495}
496
497/* This calculates the immediate dominators (or post-dominators if REVERSE is
498 true). DI is our working structure and should hold the DFS forest.
499 On return the immediate dominator to node V is in di->dom[V]. */
500
501static void
2b28c07a 502calc_idoms (struct dom_info *di, bool reverse)
f8032688
MM
503{
504 TBB v, w, k, par;
505 basic_block en_block;
628f6a4e
BE
506 edge_iterator ei, einext;
507
f8032688 508 if (reverse)
fefa31b5 509 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
f8032688 510 else
fefa31b5 511 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
f8032688
MM
512
513 /* Go backwards in DFS order, to first look at the leafs. */
514 v = di->nodes;
515 while (v > 1)
516 {
517 basic_block bb = di->dfs_to_bb[v];
628f6a4e 518 edge e;
f8032688
MM
519
520 par = di->dfs_parent[v];
521 k = v;
628f6a4e
BE
522
523 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
524
f8032688 525 if (reverse)
26e0e410 526 {
26e0e410
RH
527 /* If this block has a fake edge to exit, process that first. */
528 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
529 {
628f6a4e
BE
530 einext = ei;
531 einext.index = 0;
26e0e410
RH
532 goto do_fake_exit_edge;
533 }
534 }
f8032688
MM
535
536 /* Search all direct predecessors for the smallest node with a path
537 to them. That way we have the smallest node with also a path to
538 us only over nodes behind us. In effect we search for our
539 semidominator. */
628f6a4e 540 while (!ei_end_p (ei))
f8032688
MM
541 {
542 TBB k1;
543 basic_block b;
544
628f6a4e
BE
545 e = ei_edge (ei);
546 b = (reverse) ? e->dest : e->src;
547 einext = ei;
548 ei_next (&einext);
549
f8032688 550 if (b == en_block)
26e0e410
RH
551 {
552 do_fake_exit_edge:
8b1c6fd7 553 k1 = di->dfs_order[last_basic_block_for_fn (cfun)];
26e0e410 554 }
f8032688 555 else
0b17ab2f 556 k1 = di->dfs_order[b->index];
f8032688
MM
557
558 /* Call eval() only if really needed. If k1 is above V in DFS tree,
559 then we know, that eval(k1) == k1 and key[k1] == k1. */
560 if (k1 > v)
561 k1 = di->key[eval (di, k1)];
562 if (k1 < k)
563 k = k1;
628f6a4e
BE
564
565 ei = einext;
f8032688
MM
566 }
567
568 di->key[v] = k;
569 link_roots (di, par, v);
570 di->next_bucket[v] = di->bucket[k];
571 di->bucket[k] = v;
572
573 /* Transform semidominators into dominators. */
574 for (w = di->bucket[par]; w; w = di->next_bucket[w])
575 {
576 k = eval (di, w);
577 if (di->key[k] < di->key[w])
578 di->dom[w] = k;
579 else
580 di->dom[w] = par;
581 }
582 /* We don't need to cleanup next_bucket[]. */
583 di->bucket[par] = 0;
584 v--;
585 }
586
a1f300c0 587 /* Explicitly define the dominators. */
f8032688
MM
588 di->dom[1] = 0;
589 for (v = 2; v <= di->nodes; v++)
590 if (di->dom[v] != di->key[v])
591 di->dom[v] = di->dom[di->dom[v]];
592}
593
d47cc544
SB
594/* Assign dfs numbers starting from NUM to NODE and its sons. */
595
596static void
597assign_dfs_numbers (struct et_node *node, int *num)
598{
599 struct et_node *son;
600
601 node->dfs_num_in = (*num)++;
602
603 if (node->son)
604 {
605 assign_dfs_numbers (node->son, num);
606 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 607 assign_dfs_numbers (son, num);
d47cc544 608 }
f8032688 609
d47cc544
SB
610 node->dfs_num_out = (*num)++;
611}
f8032688 612
5d3cc252 613/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 614 static dominator tree. */
f8032688 615
d47cc544
SB
616static void
617compute_dom_fast_query (enum cdi_direction dir)
618{
619 int num = 0;
620 basic_block bb;
2b28c07a 621 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 622
2ba31c05 623 gcc_checking_assert (dom_info_available_p (dir));
d47cc544 624
2b28c07a 625 if (dom_computed[dir_index] == DOM_OK)
d47cc544
SB
626 return;
627
04a90bec 628 FOR_ALL_BB_FN (bb, cfun)
d47cc544 629 {
2b28c07a
JC
630 if (!bb->dom[dir_index]->father)
631 assign_dfs_numbers (bb->dom[dir_index], &num);
d47cc544
SB
632 }
633
2b28c07a 634 dom_computed[dir_index] = DOM_OK;
d47cc544
SB
635}
636
637/* The main entry point into this module. DIR is set depending on whether
638 we want to compute dominators or postdominators. */
639
640void
641calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
642{
643 struct dom_info di;
355be0dc 644 basic_block b;
2b28c07a
JC
645 unsigned int dir_index = dom_convert_dir_to_idx (dir);
646 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
355be0dc 647
2b28c07a 648 if (dom_computed[dir_index] == DOM_OK)
f3c676e1
TV
649 {
650#if ENABLE_CHECKING
4081bdd2 651 verify_dominators (dir);
f3c676e1
TV
652#endif
653 return;
654 }
355be0dc 655
74c96e0c 656 timevar_push (TV_DOMINANCE);
fce22de5 657 if (!dom_info_available_p (dir))
d47cc544 658 {
2b28c07a 659 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
f8032688 660
04a90bec 661 FOR_ALL_BB_FN (b, cfun)
d47cc544 662 {
2b28c07a 663 b->dom[dir_index] = et_new_tree (b);
d47cc544 664 }
0cae8d31 665 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
f8032688 666
26e0e410 667 init_dom_info (&di, dir);
2b28c07a
JC
668 calc_dfs_tree (&di, reverse);
669 calc_idoms (&di, reverse);
355be0dc 670
11cd3bed 671 FOR_EACH_BB_FN (b, cfun)
d47cc544
SB
672 {
673 TBB d = di.dom[di.dfs_order[b->index]];
674
675 if (di.dfs_to_bb[d])
2b28c07a 676 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
d47cc544 677 }
e0082a72 678
d47cc544 679 free_dom_info (&di);
2b28c07a 680 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc 681 }
4081bdd2
TV
682 else
683 {
684#if ENABLE_CHECKING
685 verify_dominators (dir);
686#endif
687 }
355be0dc 688
d47cc544 689 compute_dom_fast_query (dir);
74c96e0c
ZD
690
691 timevar_pop (TV_DOMINANCE);
355be0dc
JH
692}
693
d47cc544 694/* Free dominance information for direction DIR. */
355be0dc 695void
e3f613cb 696free_dominance_info (function *fn, enum cdi_direction dir)
355be0dc
JH
697{
698 basic_block bb;
2b28c07a 699 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 700
e3f613cb 701 if (!dom_info_available_p (fn, dir))
d47cc544
SB
702 return;
703
e3f613cb 704 FOR_ALL_BB_FN (bb, fn)
d47cc544 705 {
2b28c07a
JC
706 et_free_tree_force (bb->dom[dir_index]);
707 bb->dom[dir_index] = NULL;
d47cc544 708 }
5a6ccafd 709 et_free_pools ();
d47cc544 710
e3f613cb
RB
711 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
712
713 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
714}
6de9cd9a 715
e3f613cb
RB
716void
717free_dominance_info (enum cdi_direction dir)
718{
719 free_dominance_info (cfun, dir);
355be0dc
JH
720}
721
722/* Return the immediate dominator of basic block BB. */
723basic_block
d47cc544 724get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 725{
2b28c07a
JC
726 unsigned int dir_index = dom_convert_dir_to_idx (dir);
727 struct et_node *node = bb->dom[dir_index];
d47cc544 728
2ba31c05 729 gcc_checking_assert (dom_computed[dir_index]);
d47cc544
SB
730
731 if (!node->father)
732 return NULL;
733
f883e0a7 734 return (basic_block) node->father->data;
355be0dc
JH
735}
736
737/* Set the immediate dominator of the block possibly removing
738 existing edge. NULL can be used to remove any edge. */
7031a8b9 739void
d47cc544
SB
740set_immediate_dominator (enum cdi_direction dir, basic_block bb,
741 basic_block dominated_by)
355be0dc 742{
2b28c07a
JC
743 unsigned int dir_index = dom_convert_dir_to_idx (dir);
744 struct et_node *node = bb->dom[dir_index];
b8698a0f 745
2ba31c05 746 gcc_checking_assert (dom_computed[dir_index]);
355be0dc 747
d47cc544 748 if (node->father)
355be0dc 749 {
d47cc544 750 if (node->father->data == dominated_by)
6de9cd9a 751 return;
d47cc544 752 et_split (node);
355be0dc 753 }
d47cc544
SB
754
755 if (dominated_by)
2b28c07a 756 et_set_father (node, dominated_by->dom[dir_index]);
d47cc544 757
2b28c07a
JC
758 if (dom_computed[dir_index] == DOM_OK)
759 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
760}
761
66f97d31
ZD
762/* Returns the list of basic blocks immediately dominated by BB, in the
763 direction DIR. */
9771b263 764vec<basic_block>
66f97d31 765get_dominated_by (enum cdi_direction dir, basic_block bb)
355be0dc 766{
66f97d31 767 unsigned int dir_index = dom_convert_dir_to_idx (dir);
2b28c07a 768 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
6e1aa848 769 vec<basic_block> bbs = vNULL;
66f97d31 770
2ba31c05 771 gcc_checking_assert (dom_computed[dir_index]);
d47cc544
SB
772
773 if (!son)
6e1aa848 774 return vNULL;
d47cc544 775
9771b263 776 bbs.safe_push ((basic_block) son->data);
2d888286 777 for (ason = son->right; ason != son; ason = ason->right)
9771b263 778 bbs.safe_push ((basic_block) ason->data);
355be0dc 779
66f97d31 780 return bbs;
355be0dc
JH
781}
782
66f97d31
ZD
783/* Returns the list of basic blocks that are immediately dominated (in
784 direction DIR) by some block between N_REGION ones stored in REGION,
785 except for blocks in the REGION itself. */
b8698a0f 786
9771b263 787vec<basic_block>
42759f1e 788get_dominated_by_region (enum cdi_direction dir, basic_block *region,
66f97d31 789 unsigned n_region)
42759f1e 790{
66f97d31 791 unsigned i;
42759f1e 792 basic_block dom;
6e1aa848 793 vec<basic_block> doms = vNULL;
42759f1e
ZD
794
795 for (i = 0; i < n_region; i++)
6580ee77 796 region[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
797 for (i = 0; i < n_region; i++)
798 for (dom = first_dom_son (dir, region[i]);
799 dom;
800 dom = next_dom_son (dir, dom))
6580ee77 801 if (!(dom->flags & BB_DUPLICATED))
9771b263 802 doms.safe_push (dom);
42759f1e 803 for (i = 0; i < n_region; i++)
6580ee77 804 region[i]->flags &= ~BB_DUPLICATED;
42759f1e 805
66f97d31 806 return doms;
42759f1e
ZD
807}
808
438c239d 809/* Returns the list of basic blocks including BB dominated by BB, in the
cad9aa15
MK
810 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
811 produce a vector containing all dominated blocks. The vector will be sorted
812 in preorder. */
438c239d 813
9771b263 814vec<basic_block>
cad9aa15 815get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
438c239d 816{
6e1aa848 817 vec<basic_block> bbs = vNULL;
438c239d 818 unsigned i;
cad9aa15 819 unsigned next_level_start;
438c239d
RG
820
821 i = 0;
9771b263
DN
822 bbs.safe_push (bb);
823 next_level_start = 1; /* = bbs.length (); */
438c239d
RG
824
825 do
826 {
827 basic_block son;
828
9771b263 829 bb = bbs[i++];
438c239d
RG
830 for (son = first_dom_son (dir, bb);
831 son;
832 son = next_dom_son (dir, son))
9771b263 833 bbs.safe_push (son);
cad9aa15
MK
834
835 if (i == next_level_start && --depth)
9771b263 836 next_level_start = bbs.length ();
438c239d 837 }
cad9aa15 838 while (i < next_level_start);
438c239d
RG
839
840 return bbs;
841}
842
cad9aa15
MK
843/* Returns the list of basic blocks including BB dominated by BB, in the
844 direction DIR. The vector will be sorted in preorder. */
845
9771b263 846vec<basic_block>
cad9aa15
MK
847get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
848{
849 return get_dominated_to_depth (dir, bb, 0);
850}
851
355be0dc
JH
852/* Redirect all edges pointing to BB to TO. */
853void
d47cc544
SB
854redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
855 basic_block to)
355be0dc 856{
2b28c07a
JC
857 unsigned int dir_index = dom_convert_dir_to_idx (dir);
858 struct et_node *bb_node, *to_node, *son;
b8698a0f 859
2b28c07a
JC
860 bb_node = bb->dom[dir_index];
861 to_node = to->dom[dir_index];
d47cc544 862
2ba31c05 863 gcc_checking_assert (dom_computed[dir_index]);
355be0dc 864
d47cc544
SB
865 if (!bb_node->son)
866 return;
867
868 while (bb_node->son)
355be0dc 869 {
d47cc544
SB
870 son = bb_node->son;
871
872 et_split (son);
873 et_set_father (son, to_node);
355be0dc 874 }
d47cc544 875
2b28c07a
JC
876 if (dom_computed[dir_index] == DOM_OK)
877 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
878}
879
880/* Find first basic block in the tree dominating both BB1 and BB2. */
881basic_block
d47cc544 882nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 883{
2b28c07a
JC
884 unsigned int dir_index = dom_convert_dir_to_idx (dir);
885
2ba31c05 886 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 887
355be0dc
JH
888 if (!bb1)
889 return bb2;
890 if (!bb2)
891 return bb1;
d47cc544 892
f883e0a7 893 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
355be0dc
JH
894}
895
0bca51f0
DN
896
897/* Find the nearest common dominator for the basic blocks in BLOCKS,
898 using dominance direction DIR. */
899
900basic_block
901nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
902{
903 unsigned i, first;
904 bitmap_iterator bi;
905 basic_block dom;
b8698a0f 906
0bca51f0 907 first = bitmap_first_set_bit (blocks);
06e28de2 908 dom = BASIC_BLOCK_FOR_FN (cfun, first);
0bca51f0 909 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
06e28de2
DM
910 if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
911 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
0bca51f0
DN
912
913 return dom;
914}
915
b629276a
DB
916/* Given a dominator tree, we can determine whether one thing
917 dominates another in constant time by using two DFS numbers:
918
919 1. The number for when we visit a node on the way down the tree
920 2. The number for when we visit a node on the way back up the tree
921
922 You can view these as bounds for the range of dfs numbers the
923 nodes in the subtree of the dominator tree rooted at that node
924 will contain.
b8698a0f 925
b629276a
DB
926 The dominator tree is always a simple acyclic tree, so there are
927 only three possible relations two nodes in the dominator tree have
928 to each other:
b8698a0f 929
b629276a
DB
930 1. Node A is above Node B (and thus, Node A dominates node B)
931
932 A
933 |
934 C
935 / \
936 B D
937
938
939 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
940 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
941 because we must hit A in the dominator tree *before* B on the walk
942 down, and we will hit A *after* B on the walk back up
b8698a0f 943
d8701f02 944 2. Node A is below node B (and thus, node B dominates node A)
b8698a0f
L
945
946
b629276a
DB
947 B
948 |
949 A
950 / \
951 C D
952
953 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
954 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
b8698a0f 955
b629276a
DB
956 This is because we must hit A in the dominator tree *after* B on
957 the walk down, and we will hit A *before* B on the walk back up
b8698a0f 958
b629276a
DB
959 3. Node A and B are siblings (and thus, neither dominates the other)
960
961 C
962 |
963 D
964 / \
965 A B
966
967 In the above case, DFS_Number_In of A will *always* be <=
968 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
969 DFS_Number_Out of B. This is because we will always finish the dfs
970 walk of one of the subtrees before the other, and thus, the dfs
971 numbers for one subtree can't intersect with the range of dfs
972 numbers for the other subtree. If you swap A and B's position in
973 the dominator tree, the comparison changes direction, but the point
974 is that both comparisons will always go the same way if there is no
975 dominance relationship.
976
977 Thus, it is sufficient to write
978
979 A_Dominates_B (node A, node B)
980 {
b8698a0f 981 return DFS_Number_In(A) <= DFS_Number_In(B)
b629276a
DB
982 && DFS_Number_Out (A) >= DFS_Number_Out(B);
983 }
984
985 A_Dominated_by_B (node A, node B)
986 {
048f1a9c 987 return DFS_Number_In(A) >= DFS_Number_In(B)
b629276a
DB
988 && DFS_Number_Out (A) <= DFS_Number_Out(B);
989 } */
0bca51f0 990
355be0dc
JH
991/* Return TRUE in case BB1 is dominated by BB2. */
992bool
ed7a4b4b 993dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
b8698a0f 994{
2b28c07a
JC
995 unsigned int dir_index = dom_convert_dir_to_idx (dir);
996 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
b8698a0f 997
2ba31c05 998 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 999
2b28c07a 1000 if (dom_computed[dir_index] == DOM_OK)
d47cc544 1001 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 1002 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
1003
1004 return et_below (n1, n2);
355be0dc
JH
1005}
1006
f074ff6c
ZD
1007/* Returns the entry dfs number for basic block BB, in the direction DIR. */
1008
1009unsigned
1010bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
1011{
2b28c07a
JC
1012 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1013 struct et_node *n = bb->dom[dir_index];
f074ff6c 1014
2ba31c05 1015 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
1016 return n->dfs_num_in;
1017}
1018
1019/* Returns the exit dfs number for basic block BB, in the direction DIR. */
1020
1021unsigned
1022bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1023{
2b28c07a
JC
1024 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1025 struct et_node *n = bb->dom[dir_index];
f074ff6c 1026
2ba31c05 1027 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
1028 return n->dfs_num_out;
1029}
1030
355be0dc 1031/* Verify invariants of dominator structure. */
24e47c76 1032DEBUG_FUNCTION void
d47cc544 1033verify_dominators (enum cdi_direction dir)
355be0dc
JH
1034{
1035 int err = 0;
1fc3998d
ZD
1036 basic_block bb, imm_bb, imm_bb_correct;
1037 struct dom_info di;
1038 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
355be0dc 1039
fce22de5 1040 gcc_assert (dom_info_available_p (dir));
d47cc544 1041
1fc3998d
ZD
1042 init_dom_info (&di, dir);
1043 calc_dfs_tree (&di, reverse);
1044 calc_idoms (&di, reverse);
1045
11cd3bed 1046 FOR_EACH_BB_FN (bb, cfun)
355be0dc 1047 {
1fc3998d
ZD
1048 imm_bb = get_immediate_dominator (dir, bb);
1049 if (!imm_bb)
f8032688 1050 {
66f97d31 1051 error ("dominator of %d status unknown", bb->index);
355be0dc
JH
1052 err = 1;
1053 }
66f97d31 1054
1fc3998d
ZD
1055 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1056 if (imm_bb != imm_bb_correct)
e7bd94cc 1057 {
66f97d31 1058 error ("dominator of %d should be %d, not %d",
1fc3998d 1059 bb->index, imm_bb_correct->index, imm_bb->index);
66f97d31 1060 err = 1;
e7bd94cc
ZD
1061 }
1062 }
1063
1fc3998d 1064 free_dom_info (&di);
ced3f397 1065 gcc_assert (!err);
355be0dc
JH
1066}
1067
738ed977
ZD
1068/* Determine immediate dominator (or postdominator, according to DIR) of BB,
1069 assuming that dominators of other blocks are correct. We also use it to
1070 recompute the dominators in a restricted area, by iterating it until it
71cc389b 1071 reaches a fixed point. */
738ed977 1072
355be0dc 1073basic_block
66f97d31 1074recompute_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 1075{
2b28c07a 1076 unsigned int dir_index = dom_convert_dir_to_idx (dir);
738ed977
ZD
1077 basic_block dom_bb = NULL;
1078 edge e;
628f6a4e 1079 edge_iterator ei;
355be0dc 1080
2ba31c05 1081 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 1082
738ed977
ZD
1083 if (dir == CDI_DOMINATORS)
1084 {
628f6a4e 1085 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977
ZD
1086 {
1087 if (!dominated_by_p (dir, e->src, bb))
1088 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1089 }
1090 }
1091 else
1092 {
628f6a4e 1093 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
1094 {
1095 if (!dominated_by_p (dir, e->dest, bb))
1096 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1097 }
1098 }
f8032688 1099
738ed977 1100 return dom_bb;
355be0dc
JH
1101}
1102
66f97d31
ZD
1103/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1104 of BBS. We assume that all the immediate dominators except for those of the
1105 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1106 currently recorded immediate dominators of blocks in BBS really dominate the
1107 blocks. The basic blocks for that we determine the dominator are removed
1108 from BBS. */
1109
1110static void
9771b263 1111prune_bbs_to_update_dominators (vec<basic_block> bbs,
66f97d31
ZD
1112 bool conservative)
1113{
1114 unsigned i;
1115 bool single;
1116 basic_block bb, dom = NULL;
1117 edge_iterator ei;
1118 edge e;
1119
9771b263 1120 for (i = 0; bbs.iterate (i, &bb);)
66f97d31 1121 {
fefa31b5 1122 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
66f97d31
ZD
1123 goto succeed;
1124
1125 if (single_pred_p (bb))
1126 {
1127 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1128 goto succeed;
1129 }
1130
1131 if (!conservative)
1132 goto fail;
1133
1134 single = true;
1135 dom = NULL;
1136 FOR_EACH_EDGE (e, ei, bb->preds)
1137 {
1138 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1139 continue;
1140
1141 if (!dom)
1142 dom = e->src;
1143 else
1144 {
1145 single = false;
1146 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1147 }
1148 }
1149
1150 gcc_assert (dom != NULL);
1151 if (single
1152 || find_edge (dom, bb))
1153 {
1154 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1155 goto succeed;
1156 }
1157
1158fail:
1159 i++;
1160 continue;
1161
1162succeed:
9771b263 1163 bbs.unordered_remove (i);
66f97d31
ZD
1164 }
1165}
1166
1167/* Returns root of the dominance tree in the direction DIR that contains
1168 BB. */
1169
1170static basic_block
1171root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1172{
f883e0a7 1173 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
66f97d31
ZD
1174}
1175
1176/* See the comment in iterate_fix_dominators. Finds the immediate dominators
1177 for the sons of Y, found using the SON and BROTHER arrays representing
1178 the dominance tree of graph G. BBS maps the vertices of G to the basic
1179 blocks. */
1180
1181static void
9771b263 1182determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
66f97d31
ZD
1183 int y, int *son, int *brother)
1184{
1185 bitmap gprime;
1186 int i, a, nc;
9771b263 1187 vec<int> *sccs;
66f97d31
ZD
1188 basic_block bb, dom, ybb;
1189 unsigned si;
1190 edge e;
1191 edge_iterator ei;
1192
1193 if (son[y] == -1)
1194 return;
9771b263 1195 if (y == (int) bbs.length ())
fefa31b5 1196 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
66f97d31 1197 else
9771b263 1198 ybb = bbs[y];
66f97d31
ZD
1199
1200 if (brother[son[y]] == -1)
1201 {
1202 /* Handle the common case Y has just one son specially. */
9771b263 1203 bb = bbs[son[y]];
66f97d31
ZD
1204 set_immediate_dominator (CDI_DOMINATORS, bb,
1205 recompute_dominator (CDI_DOMINATORS, bb));
1206 identify_vertices (g, y, son[y]);
1207 return;
1208 }
1209
1210 gprime = BITMAP_ALLOC (NULL);
1211 for (a = son[y]; a != -1; a = brother[a])
1212 bitmap_set_bit (gprime, a);
1213
1214 nc = graphds_scc (g, gprime);
1215 BITMAP_FREE (gprime);
1216
9771b263
DN
1217 /* ??? Needed to work around the pre-processor confusion with
1218 using a multi-argument template type as macro argument. */
1219 typedef vec<int> vec_int_heap;
1220 sccs = XCNEWVEC (vec_int_heap, nc);
66f97d31 1221 for (a = son[y]; a != -1; a = brother[a])
9771b263 1222 sccs[g->vertices[a].component].safe_push (a);
66f97d31
ZD
1223
1224 for (i = nc - 1; i >= 0; i--)
1225 {
1226 dom = NULL;
9771b263 1227 FOR_EACH_VEC_ELT (sccs[i], si, a)
66f97d31 1228 {
9771b263 1229 bb = bbs[a];
66f97d31
ZD
1230 FOR_EACH_EDGE (e, ei, bb->preds)
1231 {
1232 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1233 continue;
1234
1235 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1236 }
1237 }
1238
1239 gcc_assert (dom != NULL);
9771b263 1240 FOR_EACH_VEC_ELT (sccs[i], si, a)
66f97d31 1241 {
9771b263 1242 bb = bbs[a];
66f97d31
ZD
1243 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1244 }
1245 }
1246
1247 for (i = 0; i < nc; i++)
9771b263 1248 sccs[i].release ();
66f97d31
ZD
1249 free (sccs);
1250
1251 for (a = son[y]; a != -1; a = brother[a])
1252 identify_vertices (g, y, a);
1253}
1254
1255/* Recompute dominance information for basic blocks in the set BBS. The
1256 function assumes that the immediate dominators of all the other blocks
1257 in CFG are correct, and that there are no unreachable blocks.
1258
1259 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1260 a block of BBS in the current dominance tree dominate it. */
1261
355be0dc 1262void
9771b263 1263iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
66f97d31 1264 bool conservative)
355be0dc 1265{
66f97d31
ZD
1266 unsigned i;
1267 basic_block bb, dom;
1268 struct graph *g;
1269 int n, y;
1270 size_t dom_i;
1271 edge e;
1272 edge_iterator ei;
66f97d31 1273 int *parent, *son, *brother;
2b28c07a 1274 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 1275
66f97d31
ZD
1276 /* We only support updating dominators. There are some problems with
1277 updating postdominators (need to add fake edges from infinite loops
1278 and noreturn functions), and since we do not currently use
1279 iterate_fix_dominators for postdominators, any attempt to handle these
1280 problems would be unused, untested, and almost surely buggy. We keep
1281 the DIR argument for consistency with the rest of the dominator analysis
1282 interface. */
2ba31c05 1283 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
d47cc544 1284
66f97d31
ZD
1285 /* The algorithm we use takes inspiration from the following papers, although
1286 the details are quite different from any of them:
1287
1288 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1289 Dominator Tree of a Reducible Flowgraph
1290 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1291 dominator trees
1292 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1293 Algorithm
1294
1295 First, we use the following heuristics to decrease the size of the BBS
1296 set:
1297 a) if BB has a single predecessor, then its immediate dominator is this
1298 predecessor
1299 additionally, if CONSERVATIVE is true:
1300 b) if all the predecessors of BB except for one (X) are dominated by BB,
1301 then X is the immediate dominator of BB
1302 c) if the nearest common ancestor of the predecessors of BB is X and
1303 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1304
1305 Then, we need to establish the dominance relation among the basic blocks
1306 in BBS. We split the dominance tree by removing the immediate dominator
0d52bcc1 1307 edges from BBS, creating a forest F. We form a graph G whose vertices
66f97d31 1308 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
0d52bcc1 1309 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
66f97d31
ZD
1310 whose root is X. We then determine dominance tree of G. Note that
1311 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1312 In this step, we can use arbitrary algorithm to determine dominators.
1313 We decided to prefer the algorithm [3] to the algorithm of
1314 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1315 10 during gcc bootstrap), and [3] should perform better in this case.
1316
1317 Finally, we need to determine the immediate dominators for the basic
1318 blocks of BBS. If the immediate dominator of X in G is Y, then
1319 the immediate dominator of X in CFG belongs to the tree of F rooted in
1320 Y. We process the dominator tree T of G recursively, starting from leaves.
1321 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1322 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1323 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1324 the following observations:
1325 (i) the immediate dominator of all blocks in a strongly connected
1326 component of G' is the same
1327 (ii) if X has no predecessors in G', then the immediate dominator of X
1328 is the nearest common ancestor of the predecessors of X in the
1329 subtree of F rooted in Y
1330 Therefore, it suffices to find the topological ordering of G', and
1331 process the nodes X_i in this order using the rules (i) and (ii).
1332 Then, we contract all the nodes X_i with Y in G, so that the further
1333 steps work correctly. */
1334
1335 if (!conservative)
1336 {
1337 /* Split the tree now. If the idoms of blocks in BBS are not
1338 conservatively correct, setting the dominators using the
1339 heuristics in prune_bbs_to_update_dominators could
1340 create cycles in the dominance "tree", and cause ICE. */
9771b263 1341 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1342 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1343 }
1344
1345 prune_bbs_to_update_dominators (bbs, conservative);
9771b263 1346 n = bbs.length ();
66f97d31
ZD
1347
1348 if (n == 0)
1349 return;
e7bd94cc 1350
66f97d31 1351 if (n == 1)
355be0dc 1352 {
9771b263 1353 bb = bbs[0];
66f97d31
ZD
1354 set_immediate_dominator (CDI_DOMINATORS, bb,
1355 recompute_dominator (CDI_DOMINATORS, bb));
1356 return;
1357 }
1358
1359 /* Construct the graph G. */
1eb68d2d 1360 hash_map<basic_block, int> map (251);
9771b263 1361 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1362 {
1363 /* If the dominance tree is conservatively correct, split it now. */
1364 if (conservative)
1365 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1eb68d2d 1366 map.put (bb, i);
66f97d31 1367 }
1eb68d2d 1368 map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
66f97d31
ZD
1369
1370 g = new_graph (n + 1);
1371 for (y = 0; y < g->n_vertices; y++)
1372 g->vertices[y].data = BITMAP_ALLOC (NULL);
9771b263 1373 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1374 {
1375 FOR_EACH_EDGE (e, ei, bb->preds)
355be0dc 1376 {
66f97d31
ZD
1377 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1378 if (dom == bb)
1379 continue;
1380
1eb68d2d 1381 dom_i = *map.get (dom);
66f97d31
ZD
1382
1383 /* Do not include parallel edges to G. */
fcaa4ca4 1384 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
66f97d31
ZD
1385 continue;
1386
66f97d31 1387 add_edge (g, dom_i, i);
f8032688
MM
1388 }
1389 }
66f97d31
ZD
1390 for (y = 0; y < g->n_vertices; y++)
1391 BITMAP_FREE (g->vertices[y].data);
66f97d31
ZD
1392
1393 /* Find the dominator tree of G. */
1394 son = XNEWVEC (int, n + 1);
1395 brother = XNEWVEC (int, n + 1);
1396 parent = XNEWVEC (int, n + 1);
1397 graphds_domtree (g, n, parent, son, brother);
1398
1399 /* Finally, traverse the tree and find the immediate dominators. */
1400 for (y = n; son[y] != -1; y = son[y])
1401 continue;
1402 while (y != -1)
1403 {
1404 determine_dominators_for_sons (g, bbs, y, son, brother);
1405
1406 if (brother[y] != -1)
1407 {
1408 y = brother[y];
1409 while (son[y] != -1)
1410 y = son[y];
1411 }
1412 else
1413 y = parent[y];
1414 }
1415
1416 free (son);
1417 free (brother);
1418 free (parent);
e7bd94cc 1419
66f97d31 1420 free_graph (g);
355be0dc 1421}
f8032688 1422
355be0dc 1423void
d47cc544 1424add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 1425{
2b28c07a
JC
1426 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1427
2ba31c05 1428 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
d47cc544 1429
2b28c07a 1430 n_bbs_in_dom_tree[dir_index]++;
b8698a0f 1431
2b28c07a 1432 bb->dom[dir_index] = et_new_tree (bb);
d47cc544 1433
2b28c07a
JC
1434 if (dom_computed[dir_index] == DOM_OK)
1435 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
1436}
1437
1438void
d47cc544
SB
1439delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1440{
2b28c07a 1441 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 1442
2ba31c05 1443 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 1444
2b28c07a
JC
1445 et_free_tree (bb->dom[dir_index]);
1446 bb->dom[dir_index] = NULL;
1447 n_bbs_in_dom_tree[dir_index]--;
1448
1449 if (dom_computed[dir_index] == DOM_OK)
1450 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
d47cc544
SB
1451}
1452
1453/* Returns the first son of BB in the dominator or postdominator tree
1454 as determined by DIR. */
1455
1456basic_block
1457first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 1458{
2b28c07a
JC
1459 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1460 struct et_node *son = bb->dom[dir_index]->son;
d47cc544 1461
f883e0a7 1462 return (basic_block) (son ? son->data : NULL);
d47cc544
SB
1463}
1464
1465/* Returns the next dominance son after BB in the dominator or postdominator
1466 tree as determined by DIR, or NULL if it was the last one. */
1467
1468basic_block
1469next_dom_son (enum cdi_direction dir, basic_block bb)
1470{
2b28c07a
JC
1471 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1472 struct et_node *next = bb->dom[dir_index]->right;
d47cc544 1473
f883e0a7 1474 return (basic_block) (next->father->son == next ? NULL : next->data);
355be0dc
JH
1475}
1476
2b28c07a
JC
1477/* Return dominance availability for dominance info DIR. */
1478
1479enum dom_state
e3f613cb 1480dom_info_state (function *fn, enum cdi_direction dir)
2b28c07a 1481{
e3f613cb
RB
1482 if (!fn->cfg)
1483 return DOM_NONE;
1484
2b28c07a 1485 unsigned int dir_index = dom_convert_dir_to_idx (dir);
e3f613cb
RB
1486 return fn->cfg->x_dom_computed[dir_index];
1487}
2b28c07a 1488
e3f613cb
RB
1489enum dom_state
1490dom_info_state (enum cdi_direction dir)
1491{
1492 return dom_info_state (cfun, dir);
2b28c07a
JC
1493}
1494
1495/* Set the dominance availability for dominance info DIR to NEW_STATE. */
1496
1497void
1498set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1499{
1500 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1501
1502 dom_computed[dir_index] = new_state;
1503}
1504
fce22de5
ZD
1505/* Returns true if dominance information for direction DIR is available. */
1506
1507bool
e3f613cb 1508dom_info_available_p (function *fn, enum cdi_direction dir)
fce22de5 1509{
e3f613cb
RB
1510 return dom_info_state (fn, dir) != DOM_NONE;
1511}
2b28c07a 1512
e3f613cb
RB
1513bool
1514dom_info_available_p (enum cdi_direction dir)
1515{
1516 return dom_info_available_p (cfun, dir);
fce22de5
ZD
1517}
1518
24e47c76 1519DEBUG_FUNCTION void
d47cc544 1520debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
1521{
1522 basic_block bb, bb2;
11cd3bed 1523 FOR_EACH_BB_FN (bb, cfun)
d47cc544 1524 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 1525 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 1526}
1fc3998d
ZD
1527
1528/* Prints to stderr representation of the dominance tree (for direction DIR)
cea618ac 1529 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1fc3998d
ZD
1530 the first line of the output is not indented. */
1531
1532static void
1533debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1534 unsigned indent, bool indent_first)
1535{
1536 basic_block son;
1537 unsigned i;
1538 bool first = true;
1539
1540 if (indent_first)
1541 for (i = 0; i < indent; i++)
1542 fprintf (stderr, "\t");
1543 fprintf (stderr, "%d\t", root->index);
1544
1545 for (son = first_dom_son (dir, root);
1546 son;
1547 son = next_dom_son (dir, son))
1548 {
1549 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1550 first = false;
1551 }
1552
1553 if (first)
1554 fprintf (stderr, "\n");
1555}
1556
1557/* Prints to stderr representation of the dominance tree (for direction DIR)
1558 rooted in ROOT. */
1559
24e47c76 1560DEBUG_FUNCTION void
1fc3998d
ZD
1561debug_dominance_tree (enum cdi_direction dir, basic_block root)
1562{
1563 debug_dominance_tree_1 (dir, root, 0, false);
1564}