]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
t-rtems: Completely reworked.
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
d9221e01 2 Copyright (C) 2000, 2003, 2004 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
f8032688
MM
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688
MM
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
7932a3db 42#include "obstack.h"
f8032688 43#include "basic-block.h"
8a67e083 44#include "errors.h"
355be0dc 45#include "et-forest.h"
f8032688 46
d47cc544
SB
47/* Whether the dominators and the postdominators are available. */
48enum dom_state dom_computed[2];
f8032688
MM
49
50/* We name our nodes with integers, beginning with 1. Zero is reserved for
51 'undefined' or 'end of list'. The name of each node is given by the dfs
52 number of the corresponding basic block. Please note, that we include the
53 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
54 support multiple entry points. As it has no real basic block index we use
d55bc081 55 'last_basic_block' for that. Its dfs number is of course 1. */
f8032688
MM
56
57/* Type of Basic Block aka. TBB */
58typedef unsigned int TBB;
59
60/* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
64
65struct dom_info
66{
67 /* The parent of a node in the DFS tree. */
68 TBB *dfs_parent;
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
71 semidominator. */
72 TBB *key;
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
75 TBB *path_min;
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
77 TBB *bucket;
78 /* And next_bucket[x] points to the next node. */
79 TBB *next_bucket;
80 /* After the algorithm is done, dom[x] contains the immediate dominator
81 of x. */
82 TBB *dom;
83
84 /* The following few fields implement the structures needed for disjoint
85 sets. */
86 /* set_chain[x] is the next node on the path from x to the representant
87 of the set containing x. If set_chain[x]==0 then x is a root. */
88 TBB *set_chain;
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
93 TBB *set_child;
94
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
98 TBB *dfs_order;
09da1532 99 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block *dfs_to_bb;
104
26e0e410 105 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
106 unsigned int dfsnum;
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
108 unsigned int nodes;
26e0e410
RH
109
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge;
f8032688
MM
113};
114
26e0e410 115static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735
AJ
116static void free_dom_info (struct dom_info *);
117static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
118 enum cdi_direction);
119static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
120static void compress (struct dom_info *, TBB);
121static TBB eval (struct dom_info *, TBB);
122static void link_roots (struct dom_info *, TBB, TBB);
123static void calc_idoms (struct dom_info *, enum cdi_direction);
d47cc544 124void debug_dominance_info (enum cdi_direction);
f8032688 125
6de9cd9a
DN
126/* Keeps track of the*/
127static unsigned n_bbs_in_dom_tree[2];
128
f8032688
MM
129/* Helper macro for allocating and initializing an array,
130 for aesthetic reasons. */
131#define init_ar(var, type, num, content) \
3a538a66
KH
132 do \
133 { \
134 unsigned int i = 1; /* Catch content == i. */ \
135 if (! (content)) \
703ad42b 136 (var) = xcalloc ((num), sizeof (type)); \
3a538a66
KH
137 else \
138 { \
703ad42b 139 (var) = xmalloc ((num) * sizeof (type)); \
3a538a66
KH
140 for (i = 0; i < num; i++) \
141 (var)[i] = (content); \
142 } \
143 } \
144 while (0)
f8032688
MM
145
146/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 147 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
148
149static void
26e0e410 150init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 151{
0b17ab2f 152 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
f8032688 153 EXIT_BLOCK. */
0b17ab2f 154 unsigned int num = n_basic_blocks + 1 + 1;
f8032688
MM
155 init_ar (di->dfs_parent, TBB, num, 0);
156 init_ar (di->path_min, TBB, num, i);
157 init_ar (di->key, TBB, num, i);
158 init_ar (di->dom, TBB, num, 0);
159
160 init_ar (di->bucket, TBB, num, 0);
161 init_ar (di->next_bucket, TBB, num, 0);
162
163 init_ar (di->set_chain, TBB, num, 0);
164 init_ar (di->set_size, unsigned int, num, 1);
165 init_ar (di->set_child, TBB, num, 0);
166
d55bc081 167 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
168 init_ar (di->dfs_to_bb, basic_block, num, 0);
169
170 di->dfsnum = 1;
171 di->nodes = 0;
26e0e410
RH
172
173 di->fake_exit_edge = dir ? BITMAP_XMALLOC () : NULL;
f8032688
MM
174}
175
176#undef init_ar
177
178/* Free all allocated memory in DI, but not DI itself. */
179
180static void
7080f735 181free_dom_info (struct dom_info *di)
f8032688
MM
182{
183 free (di->dfs_parent);
184 free (di->path_min);
185 free (di->key);
186 free (di->dom);
187 free (di->bucket);
188 free (di->next_bucket);
189 free (di->set_chain);
190 free (di->set_size);
191 free (di->set_child);
192 free (di->dfs_order);
193 free (di->dfs_to_bb);
26e0e410 194 BITMAP_XFREE (di->fake_exit_edge);
f8032688
MM
195}
196
197/* The nonrecursive variant of creating a DFS tree. DI is our working
198 structure, BB the starting basic block for this tree and REVERSE
199 is true, if predecessors should be visited instead of successors of a
200 node. After this is done all nodes reachable from BB were visited, have
201 assigned their dfs number and are linked together to form a tree. */
202
203static void
26e0e410
RH
204calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
205 enum cdi_direction reverse)
f8032688 206{
f8032688
MM
207 /* We call this _only_ if bb is not already visited. */
208 edge e;
209 TBB child_i, my_i = 0;
628f6a4e
BE
210 edge_iterator *stack;
211 edge_iterator ei, einext;
f8032688
MM
212 int sp;
213 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
214 problem). */
215 basic_block en_block;
216 /* Ending block. */
217 basic_block ex_block;
218
628f6a4e 219 stack = xmalloc ((n_basic_blocks + 3) * sizeof (edge_iterator));
f8032688
MM
220 sp = 0;
221
222 /* Initialize our border blocks, and the first edge. */
223 if (reverse)
224 {
628f6a4e 225 ei = ei_start (bb->preds);
f8032688
MM
226 en_block = EXIT_BLOCK_PTR;
227 ex_block = ENTRY_BLOCK_PTR;
228 }
229 else
230 {
628f6a4e 231 ei = ei_start (bb->succs);
f8032688
MM
232 en_block = ENTRY_BLOCK_PTR;
233 ex_block = EXIT_BLOCK_PTR;
234 }
235
236 /* When the stack is empty we break out of this loop. */
237 while (1)
238 {
239 basic_block bn;
240
241 /* This loop traverses edges e in depth first manner, and fills the
242 stack. */
628f6a4e 243 while (!ei_end_p (ei))
f8032688 244 {
628f6a4e 245 e = ei_edge (ei);
f8032688
MM
246
247 /* Deduce from E the current and the next block (BB and BN), and the
248 next edge. */
249 if (reverse)
250 {
251 bn = e->src;
252
253 /* If the next node BN is either already visited or a border
254 block the current edge is useless, and simply overwritten
255 with the next edge out of the current node. */
0b17ab2f 256 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 257 {
628f6a4e 258 ei_next (&ei);
f8032688
MM
259 continue;
260 }
261 bb = e->dest;
628f6a4e 262 einext = ei_start (bn->preds);
f8032688
MM
263 }
264 else
265 {
266 bn = e->dest;
0b17ab2f 267 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 268 {
628f6a4e 269 ei_next (&ei);
f8032688
MM
270 continue;
271 }
272 bb = e->src;
628f6a4e 273 einext = ei_start (bn->succs);
f8032688
MM
274 }
275
ced3f397 276 gcc_assert (bn != en_block);
f8032688
MM
277
278 /* Fill the DFS tree info calculatable _before_ recursing. */
279 if (bb != en_block)
0b17ab2f 280 my_i = di->dfs_order[bb->index];
f8032688 281 else
d55bc081 282 my_i = di->dfs_order[last_basic_block];
0b17ab2f 283 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
284 di->dfs_to_bb[child_i] = bn;
285 di->dfs_parent[child_i] = my_i;
286
287 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
288 stack[sp++] = ei;
289 ei = einext;
f8032688
MM
290 }
291
292 if (!sp)
293 break;
628f6a4e 294 ei = stack[--sp];
f8032688
MM
295
296 /* OK. The edge-list was exhausted, meaning normally we would
297 end the recursion. After returning from the recursive call,
298 there were (may be) other statements which were run after a
299 child node was completely considered by DFS. Here is the
300 point to do it in the non-recursive variant.
301 E.g. The block just completed is in e->dest for forward DFS,
302 the block not yet completed (the parent of the one above)
303 in e->src. This could be used e.g. for computing the number of
304 descendants or the tree depth. */
628f6a4e 305 ei_next (&ei);
f8032688
MM
306 }
307 free (stack);
308}
309
310/* The main entry for calculating the DFS tree or forest. DI is our working
311 structure and REVERSE is true, if we are interested in the reverse flow
312 graph. In that case the result is not necessarily a tree but a forest,
313 because there may be nodes from which the EXIT_BLOCK is unreachable. */
314
315static void
7080f735 316calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
317{
318 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
319 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 320 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
321 di->dfs_to_bb[di->dfsnum] = begin;
322 di->dfsnum++;
323
324 calc_dfs_tree_nonrec (di, begin, reverse);
325
326 if (reverse)
327 {
328 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
329 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
330 nodes, but in post-dom we have to deal with them.
331
332 There are two situations in which this occurs. First, noreturn
333 functions. Second, infinite loops. In the first case we need to
334 pretend that there is an edge to the exit block. In the second
335 case, we wind up with a forest. We need to process all noreturn
336 blocks before we know if we've got any infinite loops. */
337
e0082a72 338 basic_block b;
26e0e410
RH
339 bool saw_unconnected = false;
340
e0082a72 341 FOR_EACH_BB_REVERSE (b)
f8032688 342 {
628f6a4e 343 if (EDGE_COUNT (b->succs) > 0)
26e0e410
RH
344 {
345 if (di->dfs_order[b->index] == 0)
346 saw_unconnected = true;
347 continue;
348 }
349 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 350 di->dfs_order[b->index] = di->dfsnum;
f8032688 351 di->dfs_to_bb[di->dfsnum] = b;
26e0e410 352 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
f8032688
MM
353 di->dfsnum++;
354 calc_dfs_tree_nonrec (di, b, reverse);
355 }
26e0e410
RH
356
357 if (saw_unconnected)
358 {
359 FOR_EACH_BB_REVERSE (b)
360 {
361 if (di->dfs_order[b->index])
362 continue;
363 bitmap_set_bit (di->fake_exit_edge, b->index);
364 di->dfs_order[b->index] = di->dfsnum;
365 di->dfs_to_bb[di->dfsnum] = b;
366 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
367 di->dfsnum++;
368 calc_dfs_tree_nonrec (di, b, reverse);
369 }
370 }
f8032688
MM
371 }
372
373 di->nodes = di->dfsnum - 1;
374
375 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
ced3f397 376 gcc_assert (di->nodes == (unsigned int) n_basic_blocks + 1);
f8032688
MM
377}
378
379/* Compress the path from V to the root of its set and update path_min at the
380 same time. After compress(di, V) set_chain[V] is the root of the set V is
381 in and path_min[V] is the node with the smallest key[] value on the path
382 from V to that root. */
383
384static void
7080f735 385compress (struct dom_info *di, TBB v)
f8032688
MM
386{
387 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
388 greater than 5 even for huge graphs (I've not seen call depth > 4).
389 Also performance wise compress() ranges _far_ behind eval(). */
390 TBB parent = di->set_chain[v];
391 if (di->set_chain[parent])
392 {
393 compress (di, parent);
394 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
395 di->path_min[v] = di->path_min[parent];
396 di->set_chain[v] = di->set_chain[parent];
397 }
398}
399
400/* Compress the path from V to the set root of V if needed (when the root has
401 changed since the last call). Returns the node with the smallest key[]
402 value on the path from V to the root. */
403
404static inline TBB
7080f735 405eval (struct dom_info *di, TBB v)
f8032688
MM
406{
407 /* The representant of the set V is in, also called root (as the set
408 representation is a tree). */
409 TBB rep = di->set_chain[v];
410
411 /* V itself is the root. */
412 if (!rep)
413 return di->path_min[v];
414
415 /* Compress only if necessary. */
416 if (di->set_chain[rep])
417 {
418 compress (di, v);
419 rep = di->set_chain[v];
420 }
421
422 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
423 return di->path_min[v];
424 else
425 return di->path_min[rep];
426}
427
428/* This essentially merges the two sets of V and W, giving a single set with
429 the new root V. The internal representation of these disjoint sets is a
430 balanced tree. Currently link(V,W) is only used with V being the parent
431 of W. */
432
433static void
7080f735 434link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
435{
436 TBB s = w;
437
438 /* Rebalance the tree. */
439 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
440 {
441 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
442 >= 2 * di->set_size[di->set_child[s]])
443 {
444 di->set_chain[di->set_child[s]] = s;
445 di->set_child[s] = di->set_child[di->set_child[s]];
446 }
447 else
448 {
449 di->set_size[di->set_child[s]] = di->set_size[s];
450 s = di->set_chain[s] = di->set_child[s];
451 }
452 }
453
454 di->path_min[s] = di->path_min[w];
455 di->set_size[v] += di->set_size[w];
456 if (di->set_size[v] < 2 * di->set_size[w])
457 {
458 TBB tmp = s;
459 s = di->set_child[v];
460 di->set_child[v] = tmp;
461 }
462
463 /* Merge all subtrees. */
464 while (s)
465 {
466 di->set_chain[s] = v;
467 s = di->set_child[s];
468 }
469}
470
471/* This calculates the immediate dominators (or post-dominators if REVERSE is
472 true). DI is our working structure and should hold the DFS forest.
473 On return the immediate dominator to node V is in di->dom[V]. */
474
475static void
7080f735 476calc_idoms (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
477{
478 TBB v, w, k, par;
479 basic_block en_block;
628f6a4e
BE
480 edge_iterator ei, einext;
481
f8032688
MM
482 if (reverse)
483 en_block = EXIT_BLOCK_PTR;
484 else
485 en_block = ENTRY_BLOCK_PTR;
486
487 /* Go backwards in DFS order, to first look at the leafs. */
488 v = di->nodes;
489 while (v > 1)
490 {
491 basic_block bb = di->dfs_to_bb[v];
628f6a4e 492 edge e;
f8032688
MM
493
494 par = di->dfs_parent[v];
495 k = v;
628f6a4e
BE
496
497 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
498
f8032688 499 if (reverse)
26e0e410 500 {
26e0e410
RH
501 /* If this block has a fake edge to exit, process that first. */
502 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
503 {
628f6a4e
BE
504 einext = ei;
505 einext.index = 0;
26e0e410
RH
506 goto do_fake_exit_edge;
507 }
508 }
f8032688
MM
509
510 /* Search all direct predecessors for the smallest node with a path
511 to them. That way we have the smallest node with also a path to
512 us only over nodes behind us. In effect we search for our
513 semidominator. */
628f6a4e 514 while (!ei_end_p (ei))
f8032688
MM
515 {
516 TBB k1;
517 basic_block b;
518
628f6a4e
BE
519 e = ei_edge (ei);
520 b = (reverse) ? e->dest : e->src;
521 einext = ei;
522 ei_next (&einext);
523
f8032688 524 if (b == en_block)
26e0e410
RH
525 {
526 do_fake_exit_edge:
527 k1 = di->dfs_order[last_basic_block];
528 }
f8032688 529 else
0b17ab2f 530 k1 = di->dfs_order[b->index];
f8032688
MM
531
532 /* Call eval() only if really needed. If k1 is above V in DFS tree,
533 then we know, that eval(k1) == k1 and key[k1] == k1. */
534 if (k1 > v)
535 k1 = di->key[eval (di, k1)];
536 if (k1 < k)
537 k = k1;
628f6a4e
BE
538
539 ei = einext;
f8032688
MM
540 }
541
542 di->key[v] = k;
543 link_roots (di, par, v);
544 di->next_bucket[v] = di->bucket[k];
545 di->bucket[k] = v;
546
547 /* Transform semidominators into dominators. */
548 for (w = di->bucket[par]; w; w = di->next_bucket[w])
549 {
550 k = eval (di, w);
551 if (di->key[k] < di->key[w])
552 di->dom[w] = k;
553 else
554 di->dom[w] = par;
555 }
556 /* We don't need to cleanup next_bucket[]. */
557 di->bucket[par] = 0;
558 v--;
559 }
560
a1f300c0 561 /* Explicitly define the dominators. */
f8032688
MM
562 di->dom[1] = 0;
563 for (v = 2; v <= di->nodes; v++)
564 if (di->dom[v] != di->key[v])
565 di->dom[v] = di->dom[di->dom[v]];
566}
567
d47cc544
SB
568/* Assign dfs numbers starting from NUM to NODE and its sons. */
569
570static void
571assign_dfs_numbers (struct et_node *node, int *num)
572{
573 struct et_node *son;
574
575 node->dfs_num_in = (*num)++;
576
577 if (node->son)
578 {
579 assign_dfs_numbers (node->son, num);
580 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 581 assign_dfs_numbers (son, num);
d47cc544 582 }
f8032688 583
d47cc544
SB
584 node->dfs_num_out = (*num)++;
585}
f8032688 586
5d3cc252 587/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 588 static dominator tree. */
f8032688 589
d47cc544
SB
590static void
591compute_dom_fast_query (enum cdi_direction dir)
592{
593 int num = 0;
594 basic_block bb;
595
fce22de5 596 gcc_assert (dom_info_available_p (dir));
d47cc544
SB
597
598 if (dom_computed[dir] == DOM_OK)
599 return;
600
601 FOR_ALL_BB (bb)
602 {
603 if (!bb->dom[dir]->father)
6de9cd9a 604 assign_dfs_numbers (bb->dom[dir], &num);
d47cc544
SB
605 }
606
607 dom_computed[dir] = DOM_OK;
608}
609
610/* The main entry point into this module. DIR is set depending on whether
611 we want to compute dominators or postdominators. */
612
613void
614calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
615{
616 struct dom_info di;
355be0dc
JH
617 basic_block b;
618
d47cc544
SB
619 if (dom_computed[dir] == DOM_OK)
620 return;
355be0dc 621
fce22de5 622 if (!dom_info_available_p (dir))
d47cc544 623 {
ced3f397 624 gcc_assert (!n_bbs_in_dom_tree[dir]);
f8032688 625
d47cc544
SB
626 FOR_ALL_BB (b)
627 {
628 b->dom[dir] = et_new_tree (b);
629 }
6de9cd9a 630 n_bbs_in_dom_tree[dir] = n_basic_blocks + 2;
f8032688 631
26e0e410 632 init_dom_info (&di, dir);
d47cc544
SB
633 calc_dfs_tree (&di, dir);
634 calc_idoms (&di, dir);
355be0dc 635
d47cc544
SB
636 FOR_EACH_BB (b)
637 {
638 TBB d = di.dom[di.dfs_order[b->index]];
639
640 if (di.dfs_to_bb[d])
641 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
642 }
e0082a72 643
d47cc544
SB
644 free_dom_info (&di);
645 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
646 }
647
d47cc544 648 compute_dom_fast_query (dir);
355be0dc
JH
649}
650
d47cc544 651/* Free dominance information for direction DIR. */
355be0dc 652void
d47cc544 653free_dominance_info (enum cdi_direction dir)
355be0dc
JH
654{
655 basic_block bb;
656
fce22de5 657 if (!dom_info_available_p (dir))
d47cc544
SB
658 return;
659
660 FOR_ALL_BB (bb)
661 {
662 delete_from_dominance_info (dir, bb);
663 }
664
6de9cd9a 665 /* If there are any nodes left, something is wrong. */
ced3f397 666 gcc_assert (!n_bbs_in_dom_tree[dir]);
6de9cd9a 667
d47cc544 668 dom_computed[dir] = DOM_NONE;
355be0dc
JH
669}
670
671/* Return the immediate dominator of basic block BB. */
672basic_block
d47cc544 673get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 674{
d47cc544
SB
675 struct et_node *node = bb->dom[dir];
676
ced3f397 677 gcc_assert (dom_computed[dir]);
d47cc544
SB
678
679 if (!node->father)
680 return NULL;
681
6de9cd9a 682 return node->father->data;
355be0dc
JH
683}
684
685/* Set the immediate dominator of the block possibly removing
686 existing edge. NULL can be used to remove any edge. */
687inline void
d47cc544
SB
688set_immediate_dominator (enum cdi_direction dir, basic_block bb,
689 basic_block dominated_by)
355be0dc 690{
d47cc544
SB
691 struct et_node *node = bb->dom[dir];
692
ced3f397 693 gcc_assert (dom_computed[dir]);
355be0dc 694
d47cc544 695 if (node->father)
355be0dc 696 {
d47cc544 697 if (node->father->data == dominated_by)
6de9cd9a 698 return;
d47cc544 699 et_split (node);
355be0dc 700 }
d47cc544
SB
701
702 if (dominated_by)
703 et_set_father (node, dominated_by->dom[dir]);
704
705 if (dom_computed[dir] == DOM_OK)
706 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
707}
708
5d3cc252 709/* Store all basic blocks immediately dominated by BB into BBS and return
d47cc544 710 their number. */
355be0dc 711int
d47cc544 712get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
355be0dc 713{
d47cc544
SB
714 int n;
715 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
716
ced3f397 717 gcc_assert (dom_computed[dir]);
d47cc544
SB
718
719 if (!son)
720 {
721 *bbs = NULL;
722 return 0;
723 }
724
725 for (ason = son->right, n = 1; ason != son; ason = ason->right)
726 n++;
727
728 *bbs = xmalloc (n * sizeof (basic_block));
729 (*bbs)[0] = son->data;
730 for (ason = son->right, n = 1; ason != son; ason = ason->right)
731 (*bbs)[n++] = ason->data;
355be0dc 732
355be0dc
JH
733 return n;
734}
735
42759f1e
ZD
736/* Find all basic blocks that are immediately dominated (in direction DIR)
737 by some block between N_REGION ones stored in REGION, except for blocks
738 in the REGION itself. The found blocks are stored to DOMS and their number
739 is returned. */
740
741unsigned
742get_dominated_by_region (enum cdi_direction dir, basic_block *region,
743 unsigned n_region, basic_block *doms)
744{
745 unsigned n_doms = 0, i;
746 basic_block dom;
747
748 for (i = 0; i < n_region; i++)
749 region[i]->rbi->duplicated = 1;
750 for (i = 0; i < n_region; i++)
751 for (dom = first_dom_son (dir, region[i]);
752 dom;
753 dom = next_dom_son (dir, dom))
754 if (!dom->rbi->duplicated)
755 doms[n_doms++] = dom;
756 for (i = 0; i < n_region; i++)
757 region[i]->rbi->duplicated = 0;
758
759 return n_doms;
760}
761
355be0dc
JH
762/* Redirect all edges pointing to BB to TO. */
763void
d47cc544
SB
764redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
765 basic_block to)
355be0dc 766{
d47cc544
SB
767 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
768
ced3f397 769 gcc_assert (dom_computed[dir]);
355be0dc 770
d47cc544
SB
771 if (!bb_node->son)
772 return;
773
774 while (bb_node->son)
355be0dc 775 {
d47cc544
SB
776 son = bb_node->son;
777
778 et_split (son);
779 et_set_father (son, to_node);
355be0dc 780 }
d47cc544
SB
781
782 if (dom_computed[dir] == DOM_OK)
783 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
784}
785
786/* Find first basic block in the tree dominating both BB1 and BB2. */
787basic_block
d47cc544 788nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 789{
ced3f397 790 gcc_assert (dom_computed[dir]);
d47cc544 791
355be0dc
JH
792 if (!bb1)
793 return bb2;
794 if (!bb2)
795 return bb1;
d47cc544
SB
796
797 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
355be0dc
JH
798}
799
800/* Return TRUE in case BB1 is dominated by BB2. */
801bool
d47cc544 802dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
6de9cd9a 803{
d47cc544
SB
804 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
805
ced3f397 806 gcc_assert (dom_computed[dir]);
d47cc544
SB
807
808 if (dom_computed[dir] == DOM_OK)
809 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 810 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
811
812 return et_below (n1, n2);
355be0dc
JH
813}
814
815/* Verify invariants of dominator structure. */
816void
d47cc544 817verify_dominators (enum cdi_direction dir)
355be0dc
JH
818{
819 int err = 0;
820 basic_block bb;
821
fce22de5 822 gcc_assert (dom_info_available_p (dir));
d47cc544 823
355be0dc
JH
824 FOR_EACH_BB (bb)
825 {
826 basic_block dom_bb;
df485d80 827 basic_block imm_bb;
355be0dc 828
d47cc544 829 dom_bb = recount_dominator (dir, bb);
df485d80
FCE
830 imm_bb = get_immediate_dominator (dir, bb);
831 if (dom_bb != imm_bb)
f8032688 832 {
df485d80
FCE
833 if ((dom_bb == NULL) || (imm_bb == NULL))
834 error ("dominator of %d status unknown", bb->index);
08fb229e
FCE
835 else
836 error ("dominator of %d should be %d, not %d",
df485d80 837 bb->index, dom_bb->index, imm_bb->index);
355be0dc
JH
838 err = 1;
839 }
840 }
e7bd94cc 841
fce22de5 842 if (dir == CDI_DOMINATORS)
e7bd94cc
ZD
843 {
844 FOR_EACH_BB (bb)
845 {
846 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
847 {
848 error ("ENTRY does not dominate bb %d", bb->index);
849 err = 1;
850 }
851 }
852 }
853
ced3f397 854 gcc_assert (!err);
355be0dc
JH
855}
856
738ed977
ZD
857/* Determine immediate dominator (or postdominator, according to DIR) of BB,
858 assuming that dominators of other blocks are correct. We also use it to
859 recompute the dominators in a restricted area, by iterating it until it
71cc389b 860 reaches a fixed point. */
738ed977 861
355be0dc 862basic_block
d47cc544 863recount_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 864{
738ed977
ZD
865 basic_block dom_bb = NULL;
866 edge e;
628f6a4e 867 edge_iterator ei;
355be0dc 868
ced3f397 869 gcc_assert (dom_computed[dir]);
d47cc544 870
738ed977
ZD
871 if (dir == CDI_DOMINATORS)
872 {
628f6a4e 873 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977 874 {
e7bd94cc
ZD
875 /* Ignore the predecessors that either are not reachable from
876 the entry block, or whose dominator was not determined yet. */
877 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
878 continue;
879
738ed977
ZD
880 if (!dominated_by_p (dir, e->src, bb))
881 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
882 }
883 }
884 else
885 {
628f6a4e 886 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
887 {
888 if (!dominated_by_p (dir, e->dest, bb))
889 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
890 }
891 }
f8032688 892
738ed977 893 return dom_bb;
355be0dc
JH
894}
895
896/* Iteratively recount dominators of BBS. The change is supposed to be local
897 and not to grow further. */
898void
d47cc544 899iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
355be0dc
JH
900{
901 int i, changed = 1;
902 basic_block old_dom, new_dom;
903
ced3f397 904 gcc_assert (dom_computed[dir]);
d47cc544 905
e7bd94cc
ZD
906 for (i = 0; i < n; i++)
907 set_immediate_dominator (dir, bbs[i], NULL);
908
355be0dc
JH
909 while (changed)
910 {
911 changed = 0;
912 for (i = 0; i < n; i++)
913 {
d47cc544
SB
914 old_dom = get_immediate_dominator (dir, bbs[i]);
915 new_dom = recount_dominator (dir, bbs[i]);
355be0dc
JH
916 if (old_dom != new_dom)
917 {
918 changed = 1;
d47cc544 919 set_immediate_dominator (dir, bbs[i], new_dom);
355be0dc 920 }
f8032688
MM
921 }
922 }
e7bd94cc
ZD
923
924 for (i = 0; i < n; i++)
ced3f397 925 gcc_assert (get_immediate_dominator (dir, bbs[i]));
355be0dc 926}
f8032688 927
355be0dc 928void
d47cc544 929add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 930{
ced3f397
NS
931 gcc_assert (dom_computed[dir]);
932 gcc_assert (!bb->dom[dir]);
d47cc544 933
6de9cd9a
DN
934 n_bbs_in_dom_tree[dir]++;
935
d47cc544
SB
936 bb->dom[dir] = et_new_tree (bb);
937
938 if (dom_computed[dir] == DOM_OK)
939 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
940}
941
942void
d47cc544
SB
943delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
944{
ced3f397 945 gcc_assert (dom_computed[dir]);
d47cc544
SB
946
947 et_free_tree (bb->dom[dir]);
948 bb->dom[dir] = NULL;
6de9cd9a 949 n_bbs_in_dom_tree[dir]--;
d47cc544
SB
950
951 if (dom_computed[dir] == DOM_OK)
952 dom_computed[dir] = DOM_NO_FAST_QUERY;
953}
954
955/* Returns the first son of BB in the dominator or postdominator tree
956 as determined by DIR. */
957
958basic_block
959first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 960{
d47cc544
SB
961 struct et_node *son = bb->dom[dir]->son;
962
963 return son ? son->data : NULL;
964}
965
966/* Returns the next dominance son after BB in the dominator or postdominator
967 tree as determined by DIR, or NULL if it was the last one. */
968
969basic_block
970next_dom_son (enum cdi_direction dir, basic_block bb)
971{
972 struct et_node *next = bb->dom[dir]->right;
973
974 return next->father->son == next ? NULL : next->data;
355be0dc
JH
975}
976
fce22de5
ZD
977/* Returns true if dominance information for direction DIR is available. */
978
979bool
980dom_info_available_p (enum cdi_direction dir)
981{
982 return dom_computed[dir] != DOM_NONE;
983}
984
355be0dc 985void
d47cc544 986debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
987{
988 basic_block bb, bb2;
989 FOR_EACH_BB (bb)
d47cc544 990 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 991 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 992}