]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
Daily bump.
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
5624e564 2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9dcd6f09 9 the Free Software Foundation; either version 3, or (at your option)
f8032688
MM
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
9dcd6f09
NC
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
f8032688
MM
20
21/* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
29
a1f300c0 30 The algorithm computes this dominator tree implicitly by computing for
f8032688 31 each block its immediate dominator. We use tree balancing and path
f3b569ca 32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
f8032688
MM
33 slowly growing functional inverse of the Ackerman function. */
34
35#include "config.h"
36#include "system.h"
4977bab6
ZW
37#include "coretypes.h"
38#include "tm.h"
f8032688
MM
39#include "rtl.h"
40#include "hard-reg-set.h"
7932a3db 41#include "obstack.h"
60393bbc 42#include "predict.h"
60393bbc
AM
43#include "function.h"
44#include "dominance.h"
45#include "cfg.h"
46#include "cfganal.h"
f8032688 47#include "basic-block.h"
718f9c0f 48#include "diagnostic-core.h"
64afff5b 49#include "alloc-pool.h"
355be0dc 50#include "et-forest.h"
74c96e0c 51#include "timevar.h"
66f97d31 52#include "graphds.h"
7a8cba34 53#include "bitmap.h"
f8032688 54
f8032688
MM
55/* We name our nodes with integers, beginning with 1. Zero is reserved for
56 'undefined' or 'end of list'. The name of each node is given by the dfs
57 number of the corresponding basic block. Please note, that we include the
58 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
24bd1a0b 59 support multiple entry points. Its dfs number is of course 1. */
f8032688
MM
60
61/* Type of Basic Block aka. TBB */
62typedef unsigned int TBB;
63
64/* We work in a poor-mans object oriented fashion, and carry an instance of
65 this structure through all our 'methods'. It holds various arrays
66 reflecting the (sub)structure of the flowgraph. Most of them are of type
67 TBB and are also indexed by TBB. */
68
69struct dom_info
70{
71 /* The parent of a node in the DFS tree. */
72 TBB *dfs_parent;
73 /* For a node x key[x] is roughly the node nearest to the root from which
74 exists a way to x only over nodes behind x. Such a node is also called
75 semidominator. */
76 TBB *key;
77 /* The value in path_min[x] is the node y on the path from x to the root of
78 the tree x is in with the smallest key[y]. */
79 TBB *path_min;
80 /* bucket[x] points to the first node of the set of nodes having x as key. */
81 TBB *bucket;
82 /* And next_bucket[x] points to the next node. */
83 TBB *next_bucket;
84 /* After the algorithm is done, dom[x] contains the immediate dominator
85 of x. */
86 TBB *dom;
87
88 /* The following few fields implement the structures needed for disjoint
89 sets. */
fa10beec 90 /* set_chain[x] is the next node on the path from x to the representative
f8032688
MM
91 of the set containing x. If set_chain[x]==0 then x is a root. */
92 TBB *set_chain;
93 /* set_size[x] is the number of elements in the set named by x. */
94 unsigned int *set_size;
95 /* set_child[x] is used for balancing the tree representing a set. It can
96 be understood as the next sibling of x. */
97 TBB *set_child;
98
99 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
100 number of that node in DFS order counted from 1. This is an index
101 into most of the other arrays in this structure. */
102 TBB *dfs_order;
09da1532 103 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
104 dfs_to_bb[x] is that basic block. Note, that in our structure there are
105 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
106 is true for every basic block bb, but not the opposite. */
107 basic_block *dfs_to_bb;
108
26e0e410 109 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
110 unsigned int dfsnum;
111 /* The number of nodes in the DFS tree (==dfsnum-1). */
112 unsigned int nodes;
26e0e410
RH
113
114 /* Blocks with bits set here have a fake edge to EXIT. These are used
115 to turn a DFS forest into a proper tree. */
116 bitmap fake_exit_edge;
f8032688
MM
117};
118
26e0e410 119static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735 120static void free_dom_info (struct dom_info *);
2b28c07a
JC
121static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
122static void calc_dfs_tree (struct dom_info *, bool);
7080f735
AJ
123static void compress (struct dom_info *, TBB);
124static TBB eval (struct dom_info *, TBB);
125static void link_roots (struct dom_info *, TBB, TBB);
2b28c07a 126static void calc_idoms (struct dom_info *, bool);
d47cc544 127void debug_dominance_info (enum cdi_direction);
1fc3998d 128void debug_dominance_tree (enum cdi_direction, basic_block);
f8032688
MM
129
130/* Helper macro for allocating and initializing an array,
131 for aesthetic reasons. */
132#define init_ar(var, type, num, content) \
3a538a66
KH
133 do \
134 { \
135 unsigned int i = 1; /* Catch content == i. */ \
136 if (! (content)) \
5ed6ace5 137 (var) = XCNEWVEC (type, num); \
3a538a66
KH
138 else \
139 { \
5ed6ace5 140 (var) = XNEWVEC (type, (num)); \
3a538a66
KH
141 for (i = 0; i < num; i++) \
142 (var)[i] = (content); \
143 } \
144 } \
145 while (0)
f8032688
MM
146
147/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 148 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
149
150static void
26e0e410 151init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 152{
6fb5fa3c 153 /* We need memory for n_basic_blocks nodes. */
0cae8d31 154 unsigned int num = n_basic_blocks_for_fn (cfun);
f8032688
MM
155 init_ar (di->dfs_parent, TBB, num, 0);
156 init_ar (di->path_min, TBB, num, i);
157 init_ar (di->key, TBB, num, i);
158 init_ar (di->dom, TBB, num, 0);
159
160 init_ar (di->bucket, TBB, num, 0);
161 init_ar (di->next_bucket, TBB, num, 0);
162
163 init_ar (di->set_chain, TBB, num, 0);
164 init_ar (di->set_size, unsigned int, num, 1);
165 init_ar (di->set_child, TBB, num, 0);
166
8b1c6fd7
DM
167 init_ar (di->dfs_order, TBB,
168 (unsigned int) last_basic_block_for_fn (cfun) + 1, 0);
f8032688
MM
169 init_ar (di->dfs_to_bb, basic_block, num, 0);
170
171 di->dfsnum = 1;
172 di->nodes = 0;
26e0e410 173
2b28c07a
JC
174 switch (dir)
175 {
176 case CDI_DOMINATORS:
177 di->fake_exit_edge = NULL;
178 break;
179 case CDI_POST_DOMINATORS:
180 di->fake_exit_edge = BITMAP_ALLOC (NULL);
181 break;
182 default:
183 gcc_unreachable ();
184 break;
185 }
f8032688
MM
186}
187
188#undef init_ar
189
2b28c07a
JC
190/* Map dominance calculation type to array index used for various
191 dominance information arrays. This version is simple -- it will need
192 to be modified, obviously, if additional values are added to
193 cdi_direction. */
194
195static unsigned int
196dom_convert_dir_to_idx (enum cdi_direction dir)
197{
2ba31c05 198 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
2b28c07a
JC
199 return dir - 1;
200}
201
f8032688
MM
202/* Free all allocated memory in DI, but not DI itself. */
203
204static void
7080f735 205free_dom_info (struct dom_info *di)
f8032688
MM
206{
207 free (di->dfs_parent);
208 free (di->path_min);
209 free (di->key);
210 free (di->dom);
211 free (di->bucket);
212 free (di->next_bucket);
213 free (di->set_chain);
214 free (di->set_size);
215 free (di->set_child);
216 free (di->dfs_order);
217 free (di->dfs_to_bb);
8bdbfff5 218 BITMAP_FREE (di->fake_exit_edge);
f8032688
MM
219}
220
221/* The nonrecursive variant of creating a DFS tree. DI is our working
222 structure, BB the starting basic block for this tree and REVERSE
223 is true, if predecessors should be visited instead of successors of a
224 node. After this is done all nodes reachable from BB were visited, have
225 assigned their dfs number and are linked together to form a tree. */
226
227static void
2b28c07a 228calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
f8032688 229{
f8032688
MM
230 /* We call this _only_ if bb is not already visited. */
231 edge e;
232 TBB child_i, my_i = 0;
628f6a4e
BE
233 edge_iterator *stack;
234 edge_iterator ei, einext;
f8032688 235 int sp;
6626665f 236 /* Start block (the entry block for forward problem, exit block for backward
f8032688
MM
237 problem). */
238 basic_block en_block;
239 /* Ending block. */
240 basic_block ex_block;
241
0cae8d31 242 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
f8032688
MM
243 sp = 0;
244
245 /* Initialize our border blocks, and the first edge. */
246 if (reverse)
247 {
628f6a4e 248 ei = ei_start (bb->preds);
fefa31b5
DM
249 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
250 ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
f8032688
MM
251 }
252 else
253 {
628f6a4e 254 ei = ei_start (bb->succs);
fefa31b5
DM
255 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
256 ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
f8032688
MM
257 }
258
259 /* When the stack is empty we break out of this loop. */
260 while (1)
261 {
262 basic_block bn;
263
264 /* This loop traverses edges e in depth first manner, and fills the
265 stack. */
628f6a4e 266 while (!ei_end_p (ei))
f8032688 267 {
628f6a4e 268 e = ei_edge (ei);
f8032688
MM
269
270 /* Deduce from E the current and the next block (BB and BN), and the
271 next edge. */
272 if (reverse)
273 {
274 bn = e->src;
275
276 /* If the next node BN is either already visited or a border
277 block the current edge is useless, and simply overwritten
278 with the next edge out of the current node. */
0b17ab2f 279 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 280 {
628f6a4e 281 ei_next (&ei);
f8032688
MM
282 continue;
283 }
284 bb = e->dest;
628f6a4e 285 einext = ei_start (bn->preds);
f8032688
MM
286 }
287 else
288 {
289 bn = e->dest;
0b17ab2f 290 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 291 {
628f6a4e 292 ei_next (&ei);
f8032688
MM
293 continue;
294 }
295 bb = e->src;
628f6a4e 296 einext = ei_start (bn->succs);
f8032688
MM
297 }
298
ced3f397 299 gcc_assert (bn != en_block);
f8032688
MM
300
301 /* Fill the DFS tree info calculatable _before_ recursing. */
302 if (bb != en_block)
0b17ab2f 303 my_i = di->dfs_order[bb->index];
f8032688 304 else
8b1c6fd7 305 my_i = di->dfs_order[last_basic_block_for_fn (cfun)];
0b17ab2f 306 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
307 di->dfs_to_bb[child_i] = bn;
308 di->dfs_parent[child_i] = my_i;
309
310 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
311 stack[sp++] = ei;
312 ei = einext;
f8032688
MM
313 }
314
315 if (!sp)
316 break;
628f6a4e 317 ei = stack[--sp];
f8032688
MM
318
319 /* OK. The edge-list was exhausted, meaning normally we would
320 end the recursion. After returning from the recursive call,
321 there were (may be) other statements which were run after a
322 child node was completely considered by DFS. Here is the
323 point to do it in the non-recursive variant.
324 E.g. The block just completed is in e->dest for forward DFS,
325 the block not yet completed (the parent of the one above)
326 in e->src. This could be used e.g. for computing the number of
327 descendants or the tree depth. */
628f6a4e 328 ei_next (&ei);
f8032688
MM
329 }
330 free (stack);
331}
332
333/* The main entry for calculating the DFS tree or forest. DI is our working
334 structure and REVERSE is true, if we are interested in the reverse flow
335 graph. In that case the result is not necessarily a tree but a forest,
336 because there may be nodes from which the EXIT_BLOCK is unreachable. */
337
338static void
2b28c07a 339calc_dfs_tree (struct dom_info *di, bool reverse)
f8032688
MM
340{
341 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
fefa31b5
DM
342 basic_block begin = (reverse
343 ? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
8b1c6fd7 344 di->dfs_order[last_basic_block_for_fn (cfun)] = di->dfsnum;
f8032688
MM
345 di->dfs_to_bb[di->dfsnum] = begin;
346 di->dfsnum++;
347
348 calc_dfs_tree_nonrec (di, begin, reverse);
349
350 if (reverse)
351 {
352 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
353 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
354 nodes, but in post-dom we have to deal with them.
355
356 There are two situations in which this occurs. First, noreturn
357 functions. Second, infinite loops. In the first case we need to
358 pretend that there is an edge to the exit block. In the second
359 case, we wind up with a forest. We need to process all noreturn
360 blocks before we know if we've got any infinite loops. */
361
e0082a72 362 basic_block b;
26e0e410
RH
363 bool saw_unconnected = false;
364
4f42035e 365 FOR_EACH_BB_REVERSE_FN (b, cfun)
f8032688 366 {
628f6a4e 367 if (EDGE_COUNT (b->succs) > 0)
26e0e410
RH
368 {
369 if (di->dfs_order[b->index] == 0)
370 saw_unconnected = true;
371 continue;
372 }
373 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 374 di->dfs_order[b->index] = di->dfsnum;
f8032688 375 di->dfs_to_bb[di->dfsnum] = b;
8b1c6fd7
DM
376 di->dfs_parent[di->dfsnum] =
377 di->dfs_order[last_basic_block_for_fn (cfun)];
f8032688
MM
378 di->dfsnum++;
379 calc_dfs_tree_nonrec (di, b, reverse);
380 }
26e0e410
RH
381
382 if (saw_unconnected)
383 {
4f42035e 384 FOR_EACH_BB_REVERSE_FN (b, cfun)
26e0e410 385 {
03b06a83 386 basic_block b2;
26e0e410
RH
387 if (di->dfs_order[b->index])
388 continue;
03b06a83
SB
389 b2 = dfs_find_deadend (b);
390 gcc_checking_assert (di->dfs_order[b2->index] == 0);
391 bitmap_set_bit (di->fake_exit_edge, b2->index);
392 di->dfs_order[b2->index] = di->dfsnum;
393 di->dfs_to_bb[di->dfsnum] = b2;
8b1c6fd7
DM
394 di->dfs_parent[di->dfsnum] =
395 di->dfs_order[last_basic_block_for_fn (cfun)];
26e0e410 396 di->dfsnum++;
03b06a83
SB
397 calc_dfs_tree_nonrec (di, b2, reverse);
398 gcc_checking_assert (di->dfs_order[b->index]);
26e0e410
RH
399 }
400 }
f8032688
MM
401 }
402
403 di->nodes = di->dfsnum - 1;
404
24bd1a0b 405 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
0cae8d31 406 gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
f8032688
MM
407}
408
409/* Compress the path from V to the root of its set and update path_min at the
410 same time. After compress(di, V) set_chain[V] is the root of the set V is
411 in and path_min[V] is the node with the smallest key[] value on the path
412 from V to that root. */
413
414static void
7080f735 415compress (struct dom_info *di, TBB v)
f8032688
MM
416{
417 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
418 greater than 5 even for huge graphs (I've not seen call depth > 4).
419 Also performance wise compress() ranges _far_ behind eval(). */
420 TBB parent = di->set_chain[v];
421 if (di->set_chain[parent])
422 {
423 compress (di, parent);
424 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
425 di->path_min[v] = di->path_min[parent];
426 di->set_chain[v] = di->set_chain[parent];
427 }
428}
429
430/* Compress the path from V to the set root of V if needed (when the root has
431 changed since the last call). Returns the node with the smallest key[]
432 value on the path from V to the root. */
433
434static inline TBB
7080f735 435eval (struct dom_info *di, TBB v)
f8032688 436{
fa10beec 437 /* The representative of the set V is in, also called root (as the set
f8032688
MM
438 representation is a tree). */
439 TBB rep = di->set_chain[v];
440
441 /* V itself is the root. */
442 if (!rep)
443 return di->path_min[v];
444
445 /* Compress only if necessary. */
446 if (di->set_chain[rep])
447 {
448 compress (di, v);
449 rep = di->set_chain[v];
450 }
451
452 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
453 return di->path_min[v];
454 else
455 return di->path_min[rep];
456}
457
458/* This essentially merges the two sets of V and W, giving a single set with
459 the new root V. The internal representation of these disjoint sets is a
460 balanced tree. Currently link(V,W) is only used with V being the parent
461 of W. */
462
463static void
7080f735 464link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
465{
466 TBB s = w;
467
468 /* Rebalance the tree. */
469 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
470 {
471 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
472 >= 2 * di->set_size[di->set_child[s]])
473 {
474 di->set_chain[di->set_child[s]] = s;
475 di->set_child[s] = di->set_child[di->set_child[s]];
476 }
477 else
478 {
479 di->set_size[di->set_child[s]] = di->set_size[s];
480 s = di->set_chain[s] = di->set_child[s];
481 }
482 }
483
484 di->path_min[s] = di->path_min[w];
485 di->set_size[v] += di->set_size[w];
486 if (di->set_size[v] < 2 * di->set_size[w])
6b4db501 487 std::swap (di->set_child[v], s);
f8032688
MM
488
489 /* Merge all subtrees. */
490 while (s)
491 {
492 di->set_chain[s] = v;
493 s = di->set_child[s];
494 }
495}
496
497/* This calculates the immediate dominators (or post-dominators if REVERSE is
498 true). DI is our working structure and should hold the DFS forest.
499 On return the immediate dominator to node V is in di->dom[V]. */
500
501static void
2b28c07a 502calc_idoms (struct dom_info *di, bool reverse)
f8032688
MM
503{
504 TBB v, w, k, par;
505 basic_block en_block;
628f6a4e
BE
506 edge_iterator ei, einext;
507
f8032688 508 if (reverse)
fefa31b5 509 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
f8032688 510 else
fefa31b5 511 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
f8032688
MM
512
513 /* Go backwards in DFS order, to first look at the leafs. */
514 v = di->nodes;
515 while (v > 1)
516 {
517 basic_block bb = di->dfs_to_bb[v];
628f6a4e 518 edge e;
f8032688
MM
519
520 par = di->dfs_parent[v];
521 k = v;
628f6a4e
BE
522
523 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
524
f8032688 525 if (reverse)
26e0e410 526 {
26e0e410
RH
527 /* If this block has a fake edge to exit, process that first. */
528 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
529 {
628f6a4e
BE
530 einext = ei;
531 einext.index = 0;
26e0e410
RH
532 goto do_fake_exit_edge;
533 }
534 }
f8032688
MM
535
536 /* Search all direct predecessors for the smallest node with a path
537 to them. That way we have the smallest node with also a path to
538 us only over nodes behind us. In effect we search for our
539 semidominator. */
628f6a4e 540 while (!ei_end_p (ei))
f8032688
MM
541 {
542 TBB k1;
543 basic_block b;
544
628f6a4e
BE
545 e = ei_edge (ei);
546 b = (reverse) ? e->dest : e->src;
547 einext = ei;
548 ei_next (&einext);
549
f8032688 550 if (b == en_block)
26e0e410
RH
551 {
552 do_fake_exit_edge:
8b1c6fd7 553 k1 = di->dfs_order[last_basic_block_for_fn (cfun)];
26e0e410 554 }
f8032688 555 else
0b17ab2f 556 k1 = di->dfs_order[b->index];
f8032688
MM
557
558 /* Call eval() only if really needed. If k1 is above V in DFS tree,
559 then we know, that eval(k1) == k1 and key[k1] == k1. */
560 if (k1 > v)
561 k1 = di->key[eval (di, k1)];
562 if (k1 < k)
563 k = k1;
628f6a4e
BE
564
565 ei = einext;
f8032688
MM
566 }
567
568 di->key[v] = k;
569 link_roots (di, par, v);
570 di->next_bucket[v] = di->bucket[k];
571 di->bucket[k] = v;
572
573 /* Transform semidominators into dominators. */
574 for (w = di->bucket[par]; w; w = di->next_bucket[w])
575 {
576 k = eval (di, w);
577 if (di->key[k] < di->key[w])
578 di->dom[w] = k;
579 else
580 di->dom[w] = par;
581 }
582 /* We don't need to cleanup next_bucket[]. */
583 di->bucket[par] = 0;
584 v--;
585 }
586
a1f300c0 587 /* Explicitly define the dominators. */
f8032688
MM
588 di->dom[1] = 0;
589 for (v = 2; v <= di->nodes; v++)
590 if (di->dom[v] != di->key[v])
591 di->dom[v] = di->dom[di->dom[v]];
592}
593
d47cc544
SB
594/* Assign dfs numbers starting from NUM to NODE and its sons. */
595
596static void
597assign_dfs_numbers (struct et_node *node, int *num)
598{
599 struct et_node *son;
600
601 node->dfs_num_in = (*num)++;
602
603 if (node->son)
604 {
605 assign_dfs_numbers (node->son, num);
606 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 607 assign_dfs_numbers (son, num);
d47cc544 608 }
f8032688 609
d47cc544
SB
610 node->dfs_num_out = (*num)++;
611}
f8032688 612
5d3cc252 613/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 614 static dominator tree. */
f8032688 615
d47cc544
SB
616static void
617compute_dom_fast_query (enum cdi_direction dir)
618{
619 int num = 0;
620 basic_block bb;
2b28c07a 621 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 622
2ba31c05 623 gcc_checking_assert (dom_info_available_p (dir));
d47cc544 624
2b28c07a 625 if (dom_computed[dir_index] == DOM_OK)
d47cc544
SB
626 return;
627
04a90bec 628 FOR_ALL_BB_FN (bb, cfun)
d47cc544 629 {
2b28c07a
JC
630 if (!bb->dom[dir_index]->father)
631 assign_dfs_numbers (bb->dom[dir_index], &num);
d47cc544
SB
632 }
633
2b28c07a 634 dom_computed[dir_index] = DOM_OK;
d47cc544
SB
635}
636
637/* The main entry point into this module. DIR is set depending on whether
638 we want to compute dominators or postdominators. */
639
640void
641calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
642{
643 struct dom_info di;
355be0dc 644 basic_block b;
2b28c07a
JC
645 unsigned int dir_index = dom_convert_dir_to_idx (dir);
646 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
355be0dc 647
2b28c07a 648 if (dom_computed[dir_index] == DOM_OK)
f3c676e1
TV
649 {
650#if ENABLE_CHECKING
651 verify_dominators (CDI_DOMINATORS);
652#endif
653 return;
654 }
355be0dc 655
74c96e0c 656 timevar_push (TV_DOMINANCE);
fce22de5 657 if (!dom_info_available_p (dir))
d47cc544 658 {
2b28c07a 659 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
f8032688 660
04a90bec 661 FOR_ALL_BB_FN (b, cfun)
d47cc544 662 {
2b28c07a 663 b->dom[dir_index] = et_new_tree (b);
d47cc544 664 }
0cae8d31 665 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
f8032688 666
26e0e410 667 init_dom_info (&di, dir);
2b28c07a
JC
668 calc_dfs_tree (&di, reverse);
669 calc_idoms (&di, reverse);
355be0dc 670
11cd3bed 671 FOR_EACH_BB_FN (b, cfun)
d47cc544
SB
672 {
673 TBB d = di.dom[di.dfs_order[b->index]];
674
675 if (di.dfs_to_bb[d])
2b28c07a 676 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
d47cc544 677 }
e0082a72 678
d47cc544 679 free_dom_info (&di);
2b28c07a 680 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
681 }
682
d47cc544 683 compute_dom_fast_query (dir);
74c96e0c
ZD
684
685 timevar_pop (TV_DOMINANCE);
355be0dc
JH
686}
687
d47cc544 688/* Free dominance information for direction DIR. */
355be0dc 689void
e3f613cb 690free_dominance_info (function *fn, enum cdi_direction dir)
355be0dc
JH
691{
692 basic_block bb;
2b28c07a 693 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 694
e3f613cb 695 if (!dom_info_available_p (fn, dir))
d47cc544
SB
696 return;
697
e3f613cb 698 FOR_ALL_BB_FN (bb, fn)
d47cc544 699 {
2b28c07a
JC
700 et_free_tree_force (bb->dom[dir_index]);
701 bb->dom[dir_index] = NULL;
d47cc544 702 }
5a6ccafd 703 et_free_pools ();
d47cc544 704
e3f613cb
RB
705 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
706
707 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
708}
6de9cd9a 709
e3f613cb
RB
710void
711free_dominance_info (enum cdi_direction dir)
712{
713 free_dominance_info (cfun, dir);
355be0dc
JH
714}
715
716/* Return the immediate dominator of basic block BB. */
717basic_block
d47cc544 718get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 719{
2b28c07a
JC
720 unsigned int dir_index = dom_convert_dir_to_idx (dir);
721 struct et_node *node = bb->dom[dir_index];
d47cc544 722
2ba31c05 723 gcc_checking_assert (dom_computed[dir_index]);
d47cc544
SB
724
725 if (!node->father)
726 return NULL;
727
f883e0a7 728 return (basic_block) node->father->data;
355be0dc
JH
729}
730
731/* Set the immediate dominator of the block possibly removing
732 existing edge. NULL can be used to remove any edge. */
7031a8b9 733void
d47cc544
SB
734set_immediate_dominator (enum cdi_direction dir, basic_block bb,
735 basic_block dominated_by)
355be0dc 736{
2b28c07a
JC
737 unsigned int dir_index = dom_convert_dir_to_idx (dir);
738 struct et_node *node = bb->dom[dir_index];
b8698a0f 739
2ba31c05 740 gcc_checking_assert (dom_computed[dir_index]);
355be0dc 741
d47cc544 742 if (node->father)
355be0dc 743 {
d47cc544 744 if (node->father->data == dominated_by)
6de9cd9a 745 return;
d47cc544 746 et_split (node);
355be0dc 747 }
d47cc544
SB
748
749 if (dominated_by)
2b28c07a 750 et_set_father (node, dominated_by->dom[dir_index]);
d47cc544 751
2b28c07a
JC
752 if (dom_computed[dir_index] == DOM_OK)
753 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
754}
755
66f97d31
ZD
756/* Returns the list of basic blocks immediately dominated by BB, in the
757 direction DIR. */
9771b263 758vec<basic_block>
66f97d31 759get_dominated_by (enum cdi_direction dir, basic_block bb)
355be0dc 760{
66f97d31 761 unsigned int dir_index = dom_convert_dir_to_idx (dir);
2b28c07a 762 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
6e1aa848 763 vec<basic_block> bbs = vNULL;
66f97d31 764
2ba31c05 765 gcc_checking_assert (dom_computed[dir_index]);
d47cc544
SB
766
767 if (!son)
6e1aa848 768 return vNULL;
d47cc544 769
9771b263 770 bbs.safe_push ((basic_block) son->data);
2d888286 771 for (ason = son->right; ason != son; ason = ason->right)
9771b263 772 bbs.safe_push ((basic_block) ason->data);
355be0dc 773
66f97d31 774 return bbs;
355be0dc
JH
775}
776
66f97d31
ZD
777/* Returns the list of basic blocks that are immediately dominated (in
778 direction DIR) by some block between N_REGION ones stored in REGION,
779 except for blocks in the REGION itself. */
b8698a0f 780
9771b263 781vec<basic_block>
42759f1e 782get_dominated_by_region (enum cdi_direction dir, basic_block *region,
66f97d31 783 unsigned n_region)
42759f1e 784{
66f97d31 785 unsigned i;
42759f1e 786 basic_block dom;
6e1aa848 787 vec<basic_block> doms = vNULL;
42759f1e
ZD
788
789 for (i = 0; i < n_region; i++)
6580ee77 790 region[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
791 for (i = 0; i < n_region; i++)
792 for (dom = first_dom_son (dir, region[i]);
793 dom;
794 dom = next_dom_son (dir, dom))
6580ee77 795 if (!(dom->flags & BB_DUPLICATED))
9771b263 796 doms.safe_push (dom);
42759f1e 797 for (i = 0; i < n_region; i++)
6580ee77 798 region[i]->flags &= ~BB_DUPLICATED;
42759f1e 799
66f97d31 800 return doms;
42759f1e
ZD
801}
802
438c239d 803/* Returns the list of basic blocks including BB dominated by BB, in the
cad9aa15
MK
804 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
805 produce a vector containing all dominated blocks. The vector will be sorted
806 in preorder. */
438c239d 807
9771b263 808vec<basic_block>
cad9aa15 809get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
438c239d 810{
6e1aa848 811 vec<basic_block> bbs = vNULL;
438c239d 812 unsigned i;
cad9aa15 813 unsigned next_level_start;
438c239d
RG
814
815 i = 0;
9771b263
DN
816 bbs.safe_push (bb);
817 next_level_start = 1; /* = bbs.length (); */
438c239d
RG
818
819 do
820 {
821 basic_block son;
822
9771b263 823 bb = bbs[i++];
438c239d
RG
824 for (son = first_dom_son (dir, bb);
825 son;
826 son = next_dom_son (dir, son))
9771b263 827 bbs.safe_push (son);
cad9aa15
MK
828
829 if (i == next_level_start && --depth)
9771b263 830 next_level_start = bbs.length ();
438c239d 831 }
cad9aa15 832 while (i < next_level_start);
438c239d
RG
833
834 return bbs;
835}
836
cad9aa15
MK
837/* Returns the list of basic blocks including BB dominated by BB, in the
838 direction DIR. The vector will be sorted in preorder. */
839
9771b263 840vec<basic_block>
cad9aa15
MK
841get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
842{
843 return get_dominated_to_depth (dir, bb, 0);
844}
845
355be0dc
JH
846/* Redirect all edges pointing to BB to TO. */
847void
d47cc544
SB
848redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
849 basic_block to)
355be0dc 850{
2b28c07a
JC
851 unsigned int dir_index = dom_convert_dir_to_idx (dir);
852 struct et_node *bb_node, *to_node, *son;
b8698a0f 853
2b28c07a
JC
854 bb_node = bb->dom[dir_index];
855 to_node = to->dom[dir_index];
d47cc544 856
2ba31c05 857 gcc_checking_assert (dom_computed[dir_index]);
355be0dc 858
d47cc544
SB
859 if (!bb_node->son)
860 return;
861
862 while (bb_node->son)
355be0dc 863 {
d47cc544
SB
864 son = bb_node->son;
865
866 et_split (son);
867 et_set_father (son, to_node);
355be0dc 868 }
d47cc544 869
2b28c07a
JC
870 if (dom_computed[dir_index] == DOM_OK)
871 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
872}
873
874/* Find first basic block in the tree dominating both BB1 and BB2. */
875basic_block
d47cc544 876nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 877{
2b28c07a
JC
878 unsigned int dir_index = dom_convert_dir_to_idx (dir);
879
2ba31c05 880 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 881
355be0dc
JH
882 if (!bb1)
883 return bb2;
884 if (!bb2)
885 return bb1;
d47cc544 886
f883e0a7 887 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
355be0dc
JH
888}
889
0bca51f0
DN
890
891/* Find the nearest common dominator for the basic blocks in BLOCKS,
892 using dominance direction DIR. */
893
894basic_block
895nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
896{
897 unsigned i, first;
898 bitmap_iterator bi;
899 basic_block dom;
b8698a0f 900
0bca51f0 901 first = bitmap_first_set_bit (blocks);
06e28de2 902 dom = BASIC_BLOCK_FOR_FN (cfun, first);
0bca51f0 903 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
06e28de2
DM
904 if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
905 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
0bca51f0
DN
906
907 return dom;
908}
909
b629276a
DB
910/* Given a dominator tree, we can determine whether one thing
911 dominates another in constant time by using two DFS numbers:
912
913 1. The number for when we visit a node on the way down the tree
914 2. The number for when we visit a node on the way back up the tree
915
916 You can view these as bounds for the range of dfs numbers the
917 nodes in the subtree of the dominator tree rooted at that node
918 will contain.
b8698a0f 919
b629276a
DB
920 The dominator tree is always a simple acyclic tree, so there are
921 only three possible relations two nodes in the dominator tree have
922 to each other:
b8698a0f 923
b629276a
DB
924 1. Node A is above Node B (and thus, Node A dominates node B)
925
926 A
927 |
928 C
929 / \
930 B D
931
932
933 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
934 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
935 because we must hit A in the dominator tree *before* B on the walk
936 down, and we will hit A *after* B on the walk back up
b8698a0f 937
d8701f02 938 2. Node A is below node B (and thus, node B dominates node A)
b8698a0f
L
939
940
b629276a
DB
941 B
942 |
943 A
944 / \
945 C D
946
947 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
948 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
b8698a0f 949
b629276a
DB
950 This is because we must hit A in the dominator tree *after* B on
951 the walk down, and we will hit A *before* B on the walk back up
b8698a0f 952
b629276a
DB
953 3. Node A and B are siblings (and thus, neither dominates the other)
954
955 C
956 |
957 D
958 / \
959 A B
960
961 In the above case, DFS_Number_In of A will *always* be <=
962 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
963 DFS_Number_Out of B. This is because we will always finish the dfs
964 walk of one of the subtrees before the other, and thus, the dfs
965 numbers for one subtree can't intersect with the range of dfs
966 numbers for the other subtree. If you swap A and B's position in
967 the dominator tree, the comparison changes direction, but the point
968 is that both comparisons will always go the same way if there is no
969 dominance relationship.
970
971 Thus, it is sufficient to write
972
973 A_Dominates_B (node A, node B)
974 {
b8698a0f 975 return DFS_Number_In(A) <= DFS_Number_In(B)
b629276a
DB
976 && DFS_Number_Out (A) >= DFS_Number_Out(B);
977 }
978
979 A_Dominated_by_B (node A, node B)
980 {
048f1a9c 981 return DFS_Number_In(A) >= DFS_Number_In(B)
b629276a
DB
982 && DFS_Number_Out (A) <= DFS_Number_Out(B);
983 } */
0bca51f0 984
355be0dc
JH
985/* Return TRUE in case BB1 is dominated by BB2. */
986bool
ed7a4b4b 987dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
b8698a0f 988{
2b28c07a
JC
989 unsigned int dir_index = dom_convert_dir_to_idx (dir);
990 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
b8698a0f 991
2ba31c05 992 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 993
2b28c07a 994 if (dom_computed[dir_index] == DOM_OK)
d47cc544 995 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 996 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
997
998 return et_below (n1, n2);
355be0dc
JH
999}
1000
f074ff6c
ZD
1001/* Returns the entry dfs number for basic block BB, in the direction DIR. */
1002
1003unsigned
1004bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
1005{
2b28c07a
JC
1006 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1007 struct et_node *n = bb->dom[dir_index];
f074ff6c 1008
2ba31c05 1009 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
1010 return n->dfs_num_in;
1011}
1012
1013/* Returns the exit dfs number for basic block BB, in the direction DIR. */
1014
1015unsigned
1016bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1017{
2b28c07a
JC
1018 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1019 struct et_node *n = bb->dom[dir_index];
f074ff6c 1020
2ba31c05 1021 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
1022 return n->dfs_num_out;
1023}
1024
355be0dc 1025/* Verify invariants of dominator structure. */
24e47c76 1026DEBUG_FUNCTION void
d47cc544 1027verify_dominators (enum cdi_direction dir)
355be0dc
JH
1028{
1029 int err = 0;
1fc3998d
ZD
1030 basic_block bb, imm_bb, imm_bb_correct;
1031 struct dom_info di;
1032 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
355be0dc 1033
fce22de5 1034 gcc_assert (dom_info_available_p (dir));
d47cc544 1035
1fc3998d
ZD
1036 init_dom_info (&di, dir);
1037 calc_dfs_tree (&di, reverse);
1038 calc_idoms (&di, reverse);
1039
11cd3bed 1040 FOR_EACH_BB_FN (bb, cfun)
355be0dc 1041 {
1fc3998d
ZD
1042 imm_bb = get_immediate_dominator (dir, bb);
1043 if (!imm_bb)
f8032688 1044 {
66f97d31 1045 error ("dominator of %d status unknown", bb->index);
355be0dc
JH
1046 err = 1;
1047 }
66f97d31 1048
1fc3998d
ZD
1049 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1050 if (imm_bb != imm_bb_correct)
e7bd94cc 1051 {
66f97d31 1052 error ("dominator of %d should be %d, not %d",
1fc3998d 1053 bb->index, imm_bb_correct->index, imm_bb->index);
66f97d31 1054 err = 1;
e7bd94cc
ZD
1055 }
1056 }
1057
1fc3998d 1058 free_dom_info (&di);
ced3f397 1059 gcc_assert (!err);
355be0dc
JH
1060}
1061
738ed977
ZD
1062/* Determine immediate dominator (or postdominator, according to DIR) of BB,
1063 assuming that dominators of other blocks are correct. We also use it to
1064 recompute the dominators in a restricted area, by iterating it until it
71cc389b 1065 reaches a fixed point. */
738ed977 1066
355be0dc 1067basic_block
66f97d31 1068recompute_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 1069{
2b28c07a 1070 unsigned int dir_index = dom_convert_dir_to_idx (dir);
738ed977
ZD
1071 basic_block dom_bb = NULL;
1072 edge e;
628f6a4e 1073 edge_iterator ei;
355be0dc 1074
2ba31c05 1075 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 1076
738ed977
ZD
1077 if (dir == CDI_DOMINATORS)
1078 {
628f6a4e 1079 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977
ZD
1080 {
1081 if (!dominated_by_p (dir, e->src, bb))
1082 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1083 }
1084 }
1085 else
1086 {
628f6a4e 1087 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
1088 {
1089 if (!dominated_by_p (dir, e->dest, bb))
1090 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1091 }
1092 }
f8032688 1093
738ed977 1094 return dom_bb;
355be0dc
JH
1095}
1096
66f97d31
ZD
1097/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1098 of BBS. We assume that all the immediate dominators except for those of the
1099 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1100 currently recorded immediate dominators of blocks in BBS really dominate the
1101 blocks. The basic blocks for that we determine the dominator are removed
1102 from BBS. */
1103
1104static void
9771b263 1105prune_bbs_to_update_dominators (vec<basic_block> bbs,
66f97d31
ZD
1106 bool conservative)
1107{
1108 unsigned i;
1109 bool single;
1110 basic_block bb, dom = NULL;
1111 edge_iterator ei;
1112 edge e;
1113
9771b263 1114 for (i = 0; bbs.iterate (i, &bb);)
66f97d31 1115 {
fefa31b5 1116 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
66f97d31
ZD
1117 goto succeed;
1118
1119 if (single_pred_p (bb))
1120 {
1121 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1122 goto succeed;
1123 }
1124
1125 if (!conservative)
1126 goto fail;
1127
1128 single = true;
1129 dom = NULL;
1130 FOR_EACH_EDGE (e, ei, bb->preds)
1131 {
1132 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1133 continue;
1134
1135 if (!dom)
1136 dom = e->src;
1137 else
1138 {
1139 single = false;
1140 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1141 }
1142 }
1143
1144 gcc_assert (dom != NULL);
1145 if (single
1146 || find_edge (dom, bb))
1147 {
1148 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1149 goto succeed;
1150 }
1151
1152fail:
1153 i++;
1154 continue;
1155
1156succeed:
9771b263 1157 bbs.unordered_remove (i);
66f97d31
ZD
1158 }
1159}
1160
1161/* Returns root of the dominance tree in the direction DIR that contains
1162 BB. */
1163
1164static basic_block
1165root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1166{
f883e0a7 1167 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
66f97d31
ZD
1168}
1169
1170/* See the comment in iterate_fix_dominators. Finds the immediate dominators
1171 for the sons of Y, found using the SON and BROTHER arrays representing
1172 the dominance tree of graph G. BBS maps the vertices of G to the basic
1173 blocks. */
1174
1175static void
9771b263 1176determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
66f97d31
ZD
1177 int y, int *son, int *brother)
1178{
1179 bitmap gprime;
1180 int i, a, nc;
9771b263 1181 vec<int> *sccs;
66f97d31
ZD
1182 basic_block bb, dom, ybb;
1183 unsigned si;
1184 edge e;
1185 edge_iterator ei;
1186
1187 if (son[y] == -1)
1188 return;
9771b263 1189 if (y == (int) bbs.length ())
fefa31b5 1190 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
66f97d31 1191 else
9771b263 1192 ybb = bbs[y];
66f97d31
ZD
1193
1194 if (brother[son[y]] == -1)
1195 {
1196 /* Handle the common case Y has just one son specially. */
9771b263 1197 bb = bbs[son[y]];
66f97d31
ZD
1198 set_immediate_dominator (CDI_DOMINATORS, bb,
1199 recompute_dominator (CDI_DOMINATORS, bb));
1200 identify_vertices (g, y, son[y]);
1201 return;
1202 }
1203
1204 gprime = BITMAP_ALLOC (NULL);
1205 for (a = son[y]; a != -1; a = brother[a])
1206 bitmap_set_bit (gprime, a);
1207
1208 nc = graphds_scc (g, gprime);
1209 BITMAP_FREE (gprime);
1210
9771b263
DN
1211 /* ??? Needed to work around the pre-processor confusion with
1212 using a multi-argument template type as macro argument. */
1213 typedef vec<int> vec_int_heap;
1214 sccs = XCNEWVEC (vec_int_heap, nc);
66f97d31 1215 for (a = son[y]; a != -1; a = brother[a])
9771b263 1216 sccs[g->vertices[a].component].safe_push (a);
66f97d31
ZD
1217
1218 for (i = nc - 1; i >= 0; i--)
1219 {
1220 dom = NULL;
9771b263 1221 FOR_EACH_VEC_ELT (sccs[i], si, a)
66f97d31 1222 {
9771b263 1223 bb = bbs[a];
66f97d31
ZD
1224 FOR_EACH_EDGE (e, ei, bb->preds)
1225 {
1226 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1227 continue;
1228
1229 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1230 }
1231 }
1232
1233 gcc_assert (dom != NULL);
9771b263 1234 FOR_EACH_VEC_ELT (sccs[i], si, a)
66f97d31 1235 {
9771b263 1236 bb = bbs[a];
66f97d31
ZD
1237 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1238 }
1239 }
1240
1241 for (i = 0; i < nc; i++)
9771b263 1242 sccs[i].release ();
66f97d31
ZD
1243 free (sccs);
1244
1245 for (a = son[y]; a != -1; a = brother[a])
1246 identify_vertices (g, y, a);
1247}
1248
1249/* Recompute dominance information for basic blocks in the set BBS. The
1250 function assumes that the immediate dominators of all the other blocks
1251 in CFG are correct, and that there are no unreachable blocks.
1252
1253 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1254 a block of BBS in the current dominance tree dominate it. */
1255
355be0dc 1256void
9771b263 1257iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
66f97d31 1258 bool conservative)
355be0dc 1259{
66f97d31
ZD
1260 unsigned i;
1261 basic_block bb, dom;
1262 struct graph *g;
1263 int n, y;
1264 size_t dom_i;
1265 edge e;
1266 edge_iterator ei;
66f97d31 1267 int *parent, *son, *brother;
2b28c07a 1268 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 1269
66f97d31
ZD
1270 /* We only support updating dominators. There are some problems with
1271 updating postdominators (need to add fake edges from infinite loops
1272 and noreturn functions), and since we do not currently use
1273 iterate_fix_dominators for postdominators, any attempt to handle these
1274 problems would be unused, untested, and almost surely buggy. We keep
1275 the DIR argument for consistency with the rest of the dominator analysis
1276 interface. */
2ba31c05 1277 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
d47cc544 1278
66f97d31
ZD
1279 /* The algorithm we use takes inspiration from the following papers, although
1280 the details are quite different from any of them:
1281
1282 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1283 Dominator Tree of a Reducible Flowgraph
1284 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1285 dominator trees
1286 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1287 Algorithm
1288
1289 First, we use the following heuristics to decrease the size of the BBS
1290 set:
1291 a) if BB has a single predecessor, then its immediate dominator is this
1292 predecessor
1293 additionally, if CONSERVATIVE is true:
1294 b) if all the predecessors of BB except for one (X) are dominated by BB,
1295 then X is the immediate dominator of BB
1296 c) if the nearest common ancestor of the predecessors of BB is X and
1297 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1298
1299 Then, we need to establish the dominance relation among the basic blocks
1300 in BBS. We split the dominance tree by removing the immediate dominator
0d52bcc1 1301 edges from BBS, creating a forest F. We form a graph G whose vertices
66f97d31 1302 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
0d52bcc1 1303 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
66f97d31
ZD
1304 whose root is X. We then determine dominance tree of G. Note that
1305 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1306 In this step, we can use arbitrary algorithm to determine dominators.
1307 We decided to prefer the algorithm [3] to the algorithm of
1308 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1309 10 during gcc bootstrap), and [3] should perform better in this case.
1310
1311 Finally, we need to determine the immediate dominators for the basic
1312 blocks of BBS. If the immediate dominator of X in G is Y, then
1313 the immediate dominator of X in CFG belongs to the tree of F rooted in
1314 Y. We process the dominator tree T of G recursively, starting from leaves.
1315 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1316 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1317 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1318 the following observations:
1319 (i) the immediate dominator of all blocks in a strongly connected
1320 component of G' is the same
1321 (ii) if X has no predecessors in G', then the immediate dominator of X
1322 is the nearest common ancestor of the predecessors of X in the
1323 subtree of F rooted in Y
1324 Therefore, it suffices to find the topological ordering of G', and
1325 process the nodes X_i in this order using the rules (i) and (ii).
1326 Then, we contract all the nodes X_i with Y in G, so that the further
1327 steps work correctly. */
1328
1329 if (!conservative)
1330 {
1331 /* Split the tree now. If the idoms of blocks in BBS are not
1332 conservatively correct, setting the dominators using the
1333 heuristics in prune_bbs_to_update_dominators could
1334 create cycles in the dominance "tree", and cause ICE. */
9771b263 1335 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1336 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1337 }
1338
1339 prune_bbs_to_update_dominators (bbs, conservative);
9771b263 1340 n = bbs.length ();
66f97d31
ZD
1341
1342 if (n == 0)
1343 return;
e7bd94cc 1344
66f97d31 1345 if (n == 1)
355be0dc 1346 {
9771b263 1347 bb = bbs[0];
66f97d31
ZD
1348 set_immediate_dominator (CDI_DOMINATORS, bb,
1349 recompute_dominator (CDI_DOMINATORS, bb));
1350 return;
1351 }
1352
1353 /* Construct the graph G. */
1eb68d2d 1354 hash_map<basic_block, int> map (251);
9771b263 1355 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1356 {
1357 /* If the dominance tree is conservatively correct, split it now. */
1358 if (conservative)
1359 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1eb68d2d 1360 map.put (bb, i);
66f97d31 1361 }
1eb68d2d 1362 map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
66f97d31
ZD
1363
1364 g = new_graph (n + 1);
1365 for (y = 0; y < g->n_vertices; y++)
1366 g->vertices[y].data = BITMAP_ALLOC (NULL);
9771b263 1367 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1368 {
1369 FOR_EACH_EDGE (e, ei, bb->preds)
355be0dc 1370 {
66f97d31
ZD
1371 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1372 if (dom == bb)
1373 continue;
1374
1eb68d2d 1375 dom_i = *map.get (dom);
66f97d31
ZD
1376
1377 /* Do not include parallel edges to G. */
fcaa4ca4 1378 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
66f97d31
ZD
1379 continue;
1380
66f97d31 1381 add_edge (g, dom_i, i);
f8032688
MM
1382 }
1383 }
66f97d31
ZD
1384 for (y = 0; y < g->n_vertices; y++)
1385 BITMAP_FREE (g->vertices[y].data);
66f97d31
ZD
1386
1387 /* Find the dominator tree of G. */
1388 son = XNEWVEC (int, n + 1);
1389 brother = XNEWVEC (int, n + 1);
1390 parent = XNEWVEC (int, n + 1);
1391 graphds_domtree (g, n, parent, son, brother);
1392
1393 /* Finally, traverse the tree and find the immediate dominators. */
1394 for (y = n; son[y] != -1; y = son[y])
1395 continue;
1396 while (y != -1)
1397 {
1398 determine_dominators_for_sons (g, bbs, y, son, brother);
1399
1400 if (brother[y] != -1)
1401 {
1402 y = brother[y];
1403 while (son[y] != -1)
1404 y = son[y];
1405 }
1406 else
1407 y = parent[y];
1408 }
1409
1410 free (son);
1411 free (brother);
1412 free (parent);
e7bd94cc 1413
66f97d31 1414 free_graph (g);
355be0dc 1415}
f8032688 1416
355be0dc 1417void
d47cc544 1418add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 1419{
2b28c07a
JC
1420 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1421
2ba31c05 1422 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
d47cc544 1423
2b28c07a 1424 n_bbs_in_dom_tree[dir_index]++;
b8698a0f 1425
2b28c07a 1426 bb->dom[dir_index] = et_new_tree (bb);
d47cc544 1427
2b28c07a
JC
1428 if (dom_computed[dir_index] == DOM_OK)
1429 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
1430}
1431
1432void
d47cc544
SB
1433delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1434{
2b28c07a 1435 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 1436
2ba31c05 1437 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 1438
2b28c07a
JC
1439 et_free_tree (bb->dom[dir_index]);
1440 bb->dom[dir_index] = NULL;
1441 n_bbs_in_dom_tree[dir_index]--;
1442
1443 if (dom_computed[dir_index] == DOM_OK)
1444 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
d47cc544
SB
1445}
1446
1447/* Returns the first son of BB in the dominator or postdominator tree
1448 as determined by DIR. */
1449
1450basic_block
1451first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 1452{
2b28c07a
JC
1453 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1454 struct et_node *son = bb->dom[dir_index]->son;
d47cc544 1455
f883e0a7 1456 return (basic_block) (son ? son->data : NULL);
d47cc544
SB
1457}
1458
1459/* Returns the next dominance son after BB in the dominator or postdominator
1460 tree as determined by DIR, or NULL if it was the last one. */
1461
1462basic_block
1463next_dom_son (enum cdi_direction dir, basic_block bb)
1464{
2b28c07a
JC
1465 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1466 struct et_node *next = bb->dom[dir_index]->right;
d47cc544 1467
f883e0a7 1468 return (basic_block) (next->father->son == next ? NULL : next->data);
355be0dc
JH
1469}
1470
2b28c07a
JC
1471/* Return dominance availability for dominance info DIR. */
1472
1473enum dom_state
e3f613cb 1474dom_info_state (function *fn, enum cdi_direction dir)
2b28c07a 1475{
e3f613cb
RB
1476 if (!fn->cfg)
1477 return DOM_NONE;
1478
2b28c07a 1479 unsigned int dir_index = dom_convert_dir_to_idx (dir);
e3f613cb
RB
1480 return fn->cfg->x_dom_computed[dir_index];
1481}
2b28c07a 1482
e3f613cb
RB
1483enum dom_state
1484dom_info_state (enum cdi_direction dir)
1485{
1486 return dom_info_state (cfun, dir);
2b28c07a
JC
1487}
1488
1489/* Set the dominance availability for dominance info DIR to NEW_STATE. */
1490
1491void
1492set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1493{
1494 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1495
1496 dom_computed[dir_index] = new_state;
1497}
1498
fce22de5
ZD
1499/* Returns true if dominance information for direction DIR is available. */
1500
1501bool
e3f613cb 1502dom_info_available_p (function *fn, enum cdi_direction dir)
fce22de5 1503{
e3f613cb
RB
1504 return dom_info_state (fn, dir) != DOM_NONE;
1505}
2b28c07a 1506
e3f613cb
RB
1507bool
1508dom_info_available_p (enum cdi_direction dir)
1509{
1510 return dom_info_available_p (cfun, dir);
fce22de5
ZD
1511}
1512
24e47c76 1513DEBUG_FUNCTION void
d47cc544 1514debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
1515{
1516 basic_block bb, bb2;
11cd3bed 1517 FOR_EACH_BB_FN (bb, cfun)
d47cc544 1518 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 1519 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 1520}
1fc3998d
ZD
1521
1522/* Prints to stderr representation of the dominance tree (for direction DIR)
cea618ac 1523 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1fc3998d
ZD
1524 the first line of the output is not indented. */
1525
1526static void
1527debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1528 unsigned indent, bool indent_first)
1529{
1530 basic_block son;
1531 unsigned i;
1532 bool first = true;
1533
1534 if (indent_first)
1535 for (i = 0; i < indent; i++)
1536 fprintf (stderr, "\t");
1537 fprintf (stderr, "%d\t", root->index);
1538
1539 for (son = first_dom_son (dir, root);
1540 son;
1541 son = next_dom_son (dir, son))
1542 {
1543 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1544 first = false;
1545 }
1546
1547 if (first)
1548 fprintf (stderr, "\n");
1549}
1550
1551/* Prints to stderr representation of the dominance tree (for direction DIR)
1552 rooted in ROOT. */
1553
24e47c76 1554DEBUG_FUNCTION void
1fc3998d
ZD
1555debug_dominance_tree (enum cdi_direction dir, basic_block root)
1556{
1557 debug_dominance_tree_1 (dir, root, 0, false);
1558}