]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
stl_memory.h: Rename to stl_auto_ptr.h.
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
c8d3e15a 2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
f8032688
MM
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
1322177d 18 along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688 32 each block its immediate dominator. We use tree balancing and path
f3b569ca 33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
f8032688
MM
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
7932a3db 42#include "obstack.h"
f8032688 43#include "basic-block.h"
4c714dd4 44#include "toplev.h"
355be0dc 45#include "et-forest.h"
74c96e0c 46#include "timevar.h"
f8032688 47
d47cc544
SB
48/* Whether the dominators and the postdominators are available. */
49enum dom_state dom_computed[2];
f8032688
MM
50
51/* We name our nodes with integers, beginning with 1. Zero is reserved for
52 'undefined' or 'end of list'. The name of each node is given by the dfs
53 number of the corresponding basic block. Please note, that we include the
54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
24bd1a0b 55 support multiple entry points. Its dfs number is of course 1. */
f8032688
MM
56
57/* Type of Basic Block aka. TBB */
58typedef unsigned int TBB;
59
60/* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
64
65struct dom_info
66{
67 /* The parent of a node in the DFS tree. */
68 TBB *dfs_parent;
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
71 semidominator. */
72 TBB *key;
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
75 TBB *path_min;
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
77 TBB *bucket;
78 /* And next_bucket[x] points to the next node. */
79 TBB *next_bucket;
80 /* After the algorithm is done, dom[x] contains the immediate dominator
81 of x. */
82 TBB *dom;
83
84 /* The following few fields implement the structures needed for disjoint
85 sets. */
86 /* set_chain[x] is the next node on the path from x to the representant
87 of the set containing x. If set_chain[x]==0 then x is a root. */
88 TBB *set_chain;
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
93 TBB *set_child;
94
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
98 TBB *dfs_order;
09da1532 99 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block *dfs_to_bb;
104
26e0e410 105 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
106 unsigned int dfsnum;
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
108 unsigned int nodes;
26e0e410
RH
109
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge;
f8032688
MM
113};
114
26e0e410 115static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735
AJ
116static void free_dom_info (struct dom_info *);
117static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
118 enum cdi_direction);
119static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
120static void compress (struct dom_info *, TBB);
121static TBB eval (struct dom_info *, TBB);
122static void link_roots (struct dom_info *, TBB, TBB);
123static void calc_idoms (struct dom_info *, enum cdi_direction);
d47cc544 124void debug_dominance_info (enum cdi_direction);
f8032688 125
6de9cd9a
DN
126/* Keeps track of the*/
127static unsigned n_bbs_in_dom_tree[2];
128
f8032688
MM
129/* Helper macro for allocating and initializing an array,
130 for aesthetic reasons. */
131#define init_ar(var, type, num, content) \
3a538a66
KH
132 do \
133 { \
134 unsigned int i = 1; /* Catch content == i. */ \
135 if (! (content)) \
5ed6ace5 136 (var) = XCNEWVEC (type, num); \
3a538a66
KH
137 else \
138 { \
5ed6ace5 139 (var) = XNEWVEC (type, (num)); \
3a538a66
KH
140 for (i = 0; i < num; i++) \
141 (var)[i] = (content); \
142 } \
143 } \
144 while (0)
f8032688
MM
145
146/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 147 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
148
149static void
26e0e410 150init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 151{
24bd1a0b 152 unsigned int num = n_basic_blocks;
f8032688
MM
153 init_ar (di->dfs_parent, TBB, num, 0);
154 init_ar (di->path_min, TBB, num, i);
155 init_ar (di->key, TBB, num, i);
156 init_ar (di->dom, TBB, num, 0);
157
158 init_ar (di->bucket, TBB, num, 0);
159 init_ar (di->next_bucket, TBB, num, 0);
160
161 init_ar (di->set_chain, TBB, num, 0);
162 init_ar (di->set_size, unsigned int, num, 1);
163 init_ar (di->set_child, TBB, num, 0);
164
d55bc081 165 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
166 init_ar (di->dfs_to_bb, basic_block, num, 0);
167
168 di->dfsnum = 1;
169 di->nodes = 0;
26e0e410 170
8bdbfff5 171 di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
f8032688
MM
172}
173
174#undef init_ar
175
176/* Free all allocated memory in DI, but not DI itself. */
177
178static void
7080f735 179free_dom_info (struct dom_info *di)
f8032688
MM
180{
181 free (di->dfs_parent);
182 free (di->path_min);
183 free (di->key);
184 free (di->dom);
185 free (di->bucket);
186 free (di->next_bucket);
187 free (di->set_chain);
188 free (di->set_size);
189 free (di->set_child);
190 free (di->dfs_order);
191 free (di->dfs_to_bb);
8bdbfff5 192 BITMAP_FREE (di->fake_exit_edge);
f8032688
MM
193}
194
195/* The nonrecursive variant of creating a DFS tree. DI is our working
196 structure, BB the starting basic block for this tree and REVERSE
197 is true, if predecessors should be visited instead of successors of a
198 node. After this is done all nodes reachable from BB were visited, have
199 assigned their dfs number and are linked together to form a tree. */
200
201static void
26e0e410
RH
202calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
203 enum cdi_direction reverse)
f8032688 204{
f8032688
MM
205 /* We call this _only_ if bb is not already visited. */
206 edge e;
207 TBB child_i, my_i = 0;
628f6a4e
BE
208 edge_iterator *stack;
209 edge_iterator ei, einext;
f8032688
MM
210 int sp;
211 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
212 problem). */
213 basic_block en_block;
214 /* Ending block. */
215 basic_block ex_block;
216
5ed6ace5 217 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
f8032688
MM
218 sp = 0;
219
220 /* Initialize our border blocks, and the first edge. */
221 if (reverse)
222 {
628f6a4e 223 ei = ei_start (bb->preds);
f8032688
MM
224 en_block = EXIT_BLOCK_PTR;
225 ex_block = ENTRY_BLOCK_PTR;
226 }
227 else
228 {
628f6a4e 229 ei = ei_start (bb->succs);
f8032688
MM
230 en_block = ENTRY_BLOCK_PTR;
231 ex_block = EXIT_BLOCK_PTR;
232 }
233
234 /* When the stack is empty we break out of this loop. */
235 while (1)
236 {
237 basic_block bn;
238
239 /* This loop traverses edges e in depth first manner, and fills the
240 stack. */
628f6a4e 241 while (!ei_end_p (ei))
f8032688 242 {
628f6a4e 243 e = ei_edge (ei);
f8032688
MM
244
245 /* Deduce from E the current and the next block (BB and BN), and the
246 next edge. */
247 if (reverse)
248 {
249 bn = e->src;
250
251 /* If the next node BN is either already visited or a border
252 block the current edge is useless, and simply overwritten
253 with the next edge out of the current node. */
0b17ab2f 254 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 255 {
628f6a4e 256 ei_next (&ei);
f8032688
MM
257 continue;
258 }
259 bb = e->dest;
628f6a4e 260 einext = ei_start (bn->preds);
f8032688
MM
261 }
262 else
263 {
264 bn = e->dest;
0b17ab2f 265 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 266 {
628f6a4e 267 ei_next (&ei);
f8032688
MM
268 continue;
269 }
270 bb = e->src;
628f6a4e 271 einext = ei_start (bn->succs);
f8032688
MM
272 }
273
ced3f397 274 gcc_assert (bn != en_block);
f8032688
MM
275
276 /* Fill the DFS tree info calculatable _before_ recursing. */
277 if (bb != en_block)
0b17ab2f 278 my_i = di->dfs_order[bb->index];
f8032688 279 else
d55bc081 280 my_i = di->dfs_order[last_basic_block];
0b17ab2f 281 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
282 di->dfs_to_bb[child_i] = bn;
283 di->dfs_parent[child_i] = my_i;
284
285 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
286 stack[sp++] = ei;
287 ei = einext;
f8032688
MM
288 }
289
290 if (!sp)
291 break;
628f6a4e 292 ei = stack[--sp];
f8032688
MM
293
294 /* OK. The edge-list was exhausted, meaning normally we would
295 end the recursion. After returning from the recursive call,
296 there were (may be) other statements which were run after a
297 child node was completely considered by DFS. Here is the
298 point to do it in the non-recursive variant.
299 E.g. The block just completed is in e->dest for forward DFS,
300 the block not yet completed (the parent of the one above)
301 in e->src. This could be used e.g. for computing the number of
302 descendants or the tree depth. */
628f6a4e 303 ei_next (&ei);
f8032688
MM
304 }
305 free (stack);
306}
307
308/* The main entry for calculating the DFS tree or forest. DI is our working
309 structure and REVERSE is true, if we are interested in the reverse flow
310 graph. In that case the result is not necessarily a tree but a forest,
311 because there may be nodes from which the EXIT_BLOCK is unreachable. */
312
313static void
7080f735 314calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
315{
316 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
317 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 318 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
319 di->dfs_to_bb[di->dfsnum] = begin;
320 di->dfsnum++;
321
322 calc_dfs_tree_nonrec (di, begin, reverse);
323
324 if (reverse)
325 {
326 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
327 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
328 nodes, but in post-dom we have to deal with them.
329
330 There are two situations in which this occurs. First, noreturn
331 functions. Second, infinite loops. In the first case we need to
332 pretend that there is an edge to the exit block. In the second
333 case, we wind up with a forest. We need to process all noreturn
334 blocks before we know if we've got any infinite loops. */
335
e0082a72 336 basic_block b;
26e0e410
RH
337 bool saw_unconnected = false;
338
e0082a72 339 FOR_EACH_BB_REVERSE (b)
f8032688 340 {
628f6a4e 341 if (EDGE_COUNT (b->succs) > 0)
26e0e410
RH
342 {
343 if (di->dfs_order[b->index] == 0)
344 saw_unconnected = true;
345 continue;
346 }
347 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 348 di->dfs_order[b->index] = di->dfsnum;
f8032688 349 di->dfs_to_bb[di->dfsnum] = b;
26e0e410 350 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
f8032688
MM
351 di->dfsnum++;
352 calc_dfs_tree_nonrec (di, b, reverse);
353 }
26e0e410
RH
354
355 if (saw_unconnected)
356 {
357 FOR_EACH_BB_REVERSE (b)
358 {
359 if (di->dfs_order[b->index])
360 continue;
361 bitmap_set_bit (di->fake_exit_edge, b->index);
362 di->dfs_order[b->index] = di->dfsnum;
363 di->dfs_to_bb[di->dfsnum] = b;
364 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
365 di->dfsnum++;
366 calc_dfs_tree_nonrec (di, b, reverse);
367 }
368 }
f8032688
MM
369 }
370
371 di->nodes = di->dfsnum - 1;
372
24bd1a0b
DB
373 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
374 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
f8032688
MM
375}
376
377/* Compress the path from V to the root of its set and update path_min at the
378 same time. After compress(di, V) set_chain[V] is the root of the set V is
379 in and path_min[V] is the node with the smallest key[] value on the path
380 from V to that root. */
381
382static void
7080f735 383compress (struct dom_info *di, TBB v)
f8032688
MM
384{
385 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
386 greater than 5 even for huge graphs (I've not seen call depth > 4).
387 Also performance wise compress() ranges _far_ behind eval(). */
388 TBB parent = di->set_chain[v];
389 if (di->set_chain[parent])
390 {
391 compress (di, parent);
392 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
393 di->path_min[v] = di->path_min[parent];
394 di->set_chain[v] = di->set_chain[parent];
395 }
396}
397
398/* Compress the path from V to the set root of V if needed (when the root has
399 changed since the last call). Returns the node with the smallest key[]
400 value on the path from V to the root. */
401
402static inline TBB
7080f735 403eval (struct dom_info *di, TBB v)
f8032688
MM
404{
405 /* The representant of the set V is in, also called root (as the set
406 representation is a tree). */
407 TBB rep = di->set_chain[v];
408
409 /* V itself is the root. */
410 if (!rep)
411 return di->path_min[v];
412
413 /* Compress only if necessary. */
414 if (di->set_chain[rep])
415 {
416 compress (di, v);
417 rep = di->set_chain[v];
418 }
419
420 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
421 return di->path_min[v];
422 else
423 return di->path_min[rep];
424}
425
426/* This essentially merges the two sets of V and W, giving a single set with
427 the new root V. The internal representation of these disjoint sets is a
428 balanced tree. Currently link(V,W) is only used with V being the parent
429 of W. */
430
431static void
7080f735 432link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
433{
434 TBB s = w;
435
436 /* Rebalance the tree. */
437 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
438 {
439 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
440 >= 2 * di->set_size[di->set_child[s]])
441 {
442 di->set_chain[di->set_child[s]] = s;
443 di->set_child[s] = di->set_child[di->set_child[s]];
444 }
445 else
446 {
447 di->set_size[di->set_child[s]] = di->set_size[s];
448 s = di->set_chain[s] = di->set_child[s];
449 }
450 }
451
452 di->path_min[s] = di->path_min[w];
453 di->set_size[v] += di->set_size[w];
454 if (di->set_size[v] < 2 * di->set_size[w])
455 {
456 TBB tmp = s;
457 s = di->set_child[v];
458 di->set_child[v] = tmp;
459 }
460
461 /* Merge all subtrees. */
462 while (s)
463 {
464 di->set_chain[s] = v;
465 s = di->set_child[s];
466 }
467}
468
469/* This calculates the immediate dominators (or post-dominators if REVERSE is
470 true). DI is our working structure and should hold the DFS forest.
471 On return the immediate dominator to node V is in di->dom[V]. */
472
473static void
7080f735 474calc_idoms (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
475{
476 TBB v, w, k, par;
477 basic_block en_block;
628f6a4e
BE
478 edge_iterator ei, einext;
479
f8032688
MM
480 if (reverse)
481 en_block = EXIT_BLOCK_PTR;
482 else
483 en_block = ENTRY_BLOCK_PTR;
484
485 /* Go backwards in DFS order, to first look at the leafs. */
486 v = di->nodes;
487 while (v > 1)
488 {
489 basic_block bb = di->dfs_to_bb[v];
628f6a4e 490 edge e;
f8032688
MM
491
492 par = di->dfs_parent[v];
493 k = v;
628f6a4e
BE
494
495 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
496
f8032688 497 if (reverse)
26e0e410 498 {
26e0e410
RH
499 /* If this block has a fake edge to exit, process that first. */
500 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
501 {
628f6a4e
BE
502 einext = ei;
503 einext.index = 0;
26e0e410
RH
504 goto do_fake_exit_edge;
505 }
506 }
f8032688
MM
507
508 /* Search all direct predecessors for the smallest node with a path
509 to them. That way we have the smallest node with also a path to
510 us only over nodes behind us. In effect we search for our
511 semidominator. */
628f6a4e 512 while (!ei_end_p (ei))
f8032688
MM
513 {
514 TBB k1;
515 basic_block b;
516
628f6a4e
BE
517 e = ei_edge (ei);
518 b = (reverse) ? e->dest : e->src;
519 einext = ei;
520 ei_next (&einext);
521
f8032688 522 if (b == en_block)
26e0e410
RH
523 {
524 do_fake_exit_edge:
525 k1 = di->dfs_order[last_basic_block];
526 }
f8032688 527 else
0b17ab2f 528 k1 = di->dfs_order[b->index];
f8032688
MM
529
530 /* Call eval() only if really needed. If k1 is above V in DFS tree,
531 then we know, that eval(k1) == k1 and key[k1] == k1. */
532 if (k1 > v)
533 k1 = di->key[eval (di, k1)];
534 if (k1 < k)
535 k = k1;
628f6a4e
BE
536
537 ei = einext;
f8032688
MM
538 }
539
540 di->key[v] = k;
541 link_roots (di, par, v);
542 di->next_bucket[v] = di->bucket[k];
543 di->bucket[k] = v;
544
545 /* Transform semidominators into dominators. */
546 for (w = di->bucket[par]; w; w = di->next_bucket[w])
547 {
548 k = eval (di, w);
549 if (di->key[k] < di->key[w])
550 di->dom[w] = k;
551 else
552 di->dom[w] = par;
553 }
554 /* We don't need to cleanup next_bucket[]. */
555 di->bucket[par] = 0;
556 v--;
557 }
558
a1f300c0 559 /* Explicitly define the dominators. */
f8032688
MM
560 di->dom[1] = 0;
561 for (v = 2; v <= di->nodes; v++)
562 if (di->dom[v] != di->key[v])
563 di->dom[v] = di->dom[di->dom[v]];
564}
565
d47cc544
SB
566/* Assign dfs numbers starting from NUM to NODE and its sons. */
567
568static void
569assign_dfs_numbers (struct et_node *node, int *num)
570{
571 struct et_node *son;
572
573 node->dfs_num_in = (*num)++;
574
575 if (node->son)
576 {
577 assign_dfs_numbers (node->son, num);
578 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 579 assign_dfs_numbers (son, num);
d47cc544 580 }
f8032688 581
d47cc544
SB
582 node->dfs_num_out = (*num)++;
583}
f8032688 584
5d3cc252 585/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 586 static dominator tree. */
f8032688 587
d47cc544
SB
588static void
589compute_dom_fast_query (enum cdi_direction dir)
590{
591 int num = 0;
592 basic_block bb;
593
fce22de5 594 gcc_assert (dom_info_available_p (dir));
d47cc544
SB
595
596 if (dom_computed[dir] == DOM_OK)
597 return;
598
599 FOR_ALL_BB (bb)
600 {
601 if (!bb->dom[dir]->father)
6de9cd9a 602 assign_dfs_numbers (bb->dom[dir], &num);
d47cc544
SB
603 }
604
605 dom_computed[dir] = DOM_OK;
606}
607
608/* The main entry point into this module. DIR is set depending on whether
609 we want to compute dominators or postdominators. */
610
611void
612calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
613{
614 struct dom_info di;
355be0dc
JH
615 basic_block b;
616
d47cc544
SB
617 if (dom_computed[dir] == DOM_OK)
618 return;
355be0dc 619
74c96e0c 620 timevar_push (TV_DOMINANCE);
fce22de5 621 if (!dom_info_available_p (dir))
d47cc544 622 {
ced3f397 623 gcc_assert (!n_bbs_in_dom_tree[dir]);
f8032688 624
d47cc544
SB
625 FOR_ALL_BB (b)
626 {
627 b->dom[dir] = et_new_tree (b);
628 }
24bd1a0b 629 n_bbs_in_dom_tree[dir] = n_basic_blocks;
f8032688 630
26e0e410 631 init_dom_info (&di, dir);
d47cc544
SB
632 calc_dfs_tree (&di, dir);
633 calc_idoms (&di, dir);
355be0dc 634
d47cc544
SB
635 FOR_EACH_BB (b)
636 {
637 TBB d = di.dom[di.dfs_order[b->index]];
638
639 if (di.dfs_to_bb[d])
640 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
641 }
e0082a72 642
d47cc544
SB
643 free_dom_info (&di);
644 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
645 }
646
d47cc544 647 compute_dom_fast_query (dir);
74c96e0c
ZD
648
649 timevar_pop (TV_DOMINANCE);
355be0dc
JH
650}
651
d47cc544 652/* Free dominance information for direction DIR. */
355be0dc 653void
d47cc544 654free_dominance_info (enum cdi_direction dir)
355be0dc
JH
655{
656 basic_block bb;
657
fce22de5 658 if (!dom_info_available_p (dir))
d47cc544
SB
659 return;
660
661 FOR_ALL_BB (bb)
662 {
bef87a34
KH
663 et_free_tree_force (bb->dom[dir]);
664 bb->dom[dir] = NULL;
d47cc544 665 }
5a6ccafd 666 et_free_pools ();
d47cc544 667
bef87a34 668 n_bbs_in_dom_tree[dir] = 0;
6de9cd9a 669
d47cc544 670 dom_computed[dir] = DOM_NONE;
355be0dc
JH
671}
672
673/* Return the immediate dominator of basic block BB. */
674basic_block
d47cc544 675get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 676{
d47cc544
SB
677 struct et_node *node = bb->dom[dir];
678
ced3f397 679 gcc_assert (dom_computed[dir]);
d47cc544
SB
680
681 if (!node->father)
682 return NULL;
683
6de9cd9a 684 return node->father->data;
355be0dc
JH
685}
686
687/* Set the immediate dominator of the block possibly removing
688 existing edge. NULL can be used to remove any edge. */
689inline void
d47cc544
SB
690set_immediate_dominator (enum cdi_direction dir, basic_block bb,
691 basic_block dominated_by)
355be0dc 692{
d47cc544
SB
693 struct et_node *node = bb->dom[dir];
694
ced3f397 695 gcc_assert (dom_computed[dir]);
355be0dc 696
d47cc544 697 if (node->father)
355be0dc 698 {
d47cc544 699 if (node->father->data == dominated_by)
6de9cd9a 700 return;
d47cc544 701 et_split (node);
355be0dc 702 }
d47cc544
SB
703
704 if (dominated_by)
705 et_set_father (node, dominated_by->dom[dir]);
706
707 if (dom_computed[dir] == DOM_OK)
708 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
709}
710
5d3cc252 711/* Store all basic blocks immediately dominated by BB into BBS and return
d47cc544 712 their number. */
355be0dc 713int
d47cc544 714get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
355be0dc 715{
d47cc544
SB
716 int n;
717 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
718
ced3f397 719 gcc_assert (dom_computed[dir]);
d47cc544
SB
720
721 if (!son)
722 {
723 *bbs = NULL;
724 return 0;
725 }
726
727 for (ason = son->right, n = 1; ason != son; ason = ason->right)
728 n++;
729
5ed6ace5 730 *bbs = XNEWVEC (basic_block, n);
d47cc544
SB
731 (*bbs)[0] = son->data;
732 for (ason = son->right, n = 1; ason != son; ason = ason->right)
733 (*bbs)[n++] = ason->data;
355be0dc 734
355be0dc
JH
735 return n;
736}
737
42759f1e
ZD
738/* Find all basic blocks that are immediately dominated (in direction DIR)
739 by some block between N_REGION ones stored in REGION, except for blocks
740 in the REGION itself. The found blocks are stored to DOMS and their number
741 is returned. */
742
743unsigned
744get_dominated_by_region (enum cdi_direction dir, basic_block *region,
745 unsigned n_region, basic_block *doms)
746{
747 unsigned n_doms = 0, i;
748 basic_block dom;
749
750 for (i = 0; i < n_region; i++)
6580ee77 751 region[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
752 for (i = 0; i < n_region; i++)
753 for (dom = first_dom_son (dir, region[i]);
754 dom;
755 dom = next_dom_son (dir, dom))
6580ee77 756 if (!(dom->flags & BB_DUPLICATED))
42759f1e
ZD
757 doms[n_doms++] = dom;
758 for (i = 0; i < n_region; i++)
6580ee77 759 region[i]->flags &= ~BB_DUPLICATED;
42759f1e
ZD
760
761 return n_doms;
762}
763
355be0dc
JH
764/* Redirect all edges pointing to BB to TO. */
765void
d47cc544
SB
766redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
767 basic_block to)
355be0dc 768{
d47cc544
SB
769 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
770
ced3f397 771 gcc_assert (dom_computed[dir]);
355be0dc 772
d47cc544
SB
773 if (!bb_node->son)
774 return;
775
776 while (bb_node->son)
355be0dc 777 {
d47cc544
SB
778 son = bb_node->son;
779
780 et_split (son);
781 et_set_father (son, to_node);
355be0dc 782 }
d47cc544
SB
783
784 if (dom_computed[dir] == DOM_OK)
785 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
786}
787
788/* Find first basic block in the tree dominating both BB1 and BB2. */
789basic_block
d47cc544 790nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 791{
ced3f397 792 gcc_assert (dom_computed[dir]);
d47cc544 793
355be0dc
JH
794 if (!bb1)
795 return bb2;
796 if (!bb2)
797 return bb1;
d47cc544
SB
798
799 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
355be0dc
JH
800}
801
0bca51f0
DN
802
803/* Find the nearest common dominator for the basic blocks in BLOCKS,
804 using dominance direction DIR. */
805
806basic_block
807nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
808{
809 unsigned i, first;
810 bitmap_iterator bi;
811 basic_block dom;
812
813 first = bitmap_first_set_bit (blocks);
814 dom = BASIC_BLOCK (first);
815 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
816 if (dom != BASIC_BLOCK (i))
817 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
818
819 return dom;
820}
821
b629276a
DB
822/* Given a dominator tree, we can determine whether one thing
823 dominates another in constant time by using two DFS numbers:
824
825 1. The number for when we visit a node on the way down the tree
826 2. The number for when we visit a node on the way back up the tree
827
828 You can view these as bounds for the range of dfs numbers the
829 nodes in the subtree of the dominator tree rooted at that node
830 will contain.
831
832 The dominator tree is always a simple acyclic tree, so there are
833 only three possible relations two nodes in the dominator tree have
834 to each other:
835
836 1. Node A is above Node B (and thus, Node A dominates node B)
837
838 A
839 |
840 C
841 / \
842 B D
843
844
845 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
846 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
847 because we must hit A in the dominator tree *before* B on the walk
848 down, and we will hit A *after* B on the walk back up
849
d8701f02 850 2. Node A is below node B (and thus, node B dominates node A)
b629276a
DB
851
852
853 B
854 |
855 A
856 / \
857 C D
858
859 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
860 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
861
862 This is because we must hit A in the dominator tree *after* B on
863 the walk down, and we will hit A *before* B on the walk back up
864
865 3. Node A and B are siblings (and thus, neither dominates the other)
866
867 C
868 |
869 D
870 / \
871 A B
872
873 In the above case, DFS_Number_In of A will *always* be <=
874 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
875 DFS_Number_Out of B. This is because we will always finish the dfs
876 walk of one of the subtrees before the other, and thus, the dfs
877 numbers for one subtree can't intersect with the range of dfs
878 numbers for the other subtree. If you swap A and B's position in
879 the dominator tree, the comparison changes direction, but the point
880 is that both comparisons will always go the same way if there is no
881 dominance relationship.
882
883 Thus, it is sufficient to write
884
885 A_Dominates_B (node A, node B)
886 {
887 return DFS_Number_In(A) <= DFS_Number_In(B)
888 && DFS_Number_Out (A) >= DFS_Number_Out(B);
889 }
890
891 A_Dominated_by_B (node A, node B)
892 {
893 return DFS_Number_In(A) >= DFS_Number_In(A)
894 && DFS_Number_Out (A) <= DFS_Number_Out(B);
895 } */
0bca51f0 896
355be0dc
JH
897/* Return TRUE in case BB1 is dominated by BB2. */
898bool
d47cc544 899dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
6de9cd9a 900{
d47cc544
SB
901 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
902
ced3f397 903 gcc_assert (dom_computed[dir]);
d47cc544
SB
904
905 if (dom_computed[dir] == DOM_OK)
906 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 907 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
908
909 return et_below (n1, n2);
355be0dc
JH
910}
911
f074ff6c
ZD
912/* Returns the entry dfs number for basic block BB, in the direction DIR. */
913
914unsigned
915bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
916{
917 struct et_node *n = bb->dom[dir];
918
919 gcc_assert (dom_computed[dir] == DOM_OK);
920 return n->dfs_num_in;
921}
922
923/* Returns the exit dfs number for basic block BB, in the direction DIR. */
924
925unsigned
926bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
927{
928 struct et_node *n = bb->dom[dir];
929
930 gcc_assert (dom_computed[dir] == DOM_OK);
931 return n->dfs_num_out;
932}
933
355be0dc
JH
934/* Verify invariants of dominator structure. */
935void
d47cc544 936verify_dominators (enum cdi_direction dir)
355be0dc
JH
937{
938 int err = 0;
939 basic_block bb;
940
fce22de5 941 gcc_assert (dom_info_available_p (dir));
d47cc544 942
355be0dc
JH
943 FOR_EACH_BB (bb)
944 {
945 basic_block dom_bb;
df485d80 946 basic_block imm_bb;
355be0dc 947
d47cc544 948 dom_bb = recount_dominator (dir, bb);
df485d80
FCE
949 imm_bb = get_immediate_dominator (dir, bb);
950 if (dom_bb != imm_bb)
f8032688 951 {
df485d80
FCE
952 if ((dom_bb == NULL) || (imm_bb == NULL))
953 error ("dominator of %d status unknown", bb->index);
08fb229e
FCE
954 else
955 error ("dominator of %d should be %d, not %d",
df485d80 956 bb->index, dom_bb->index, imm_bb->index);
355be0dc
JH
957 err = 1;
958 }
959 }
e7bd94cc 960
fce22de5 961 if (dir == CDI_DOMINATORS)
e7bd94cc
ZD
962 {
963 FOR_EACH_BB (bb)
964 {
965 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
966 {
967 error ("ENTRY does not dominate bb %d", bb->index);
968 err = 1;
969 }
970 }
971 }
972
ced3f397 973 gcc_assert (!err);
355be0dc
JH
974}
975
738ed977
ZD
976/* Determine immediate dominator (or postdominator, according to DIR) of BB,
977 assuming that dominators of other blocks are correct. We also use it to
978 recompute the dominators in a restricted area, by iterating it until it
71cc389b 979 reaches a fixed point. */
738ed977 980
355be0dc 981basic_block
d47cc544 982recount_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 983{
738ed977
ZD
984 basic_block dom_bb = NULL;
985 edge e;
628f6a4e 986 edge_iterator ei;
355be0dc 987
ced3f397 988 gcc_assert (dom_computed[dir]);
d47cc544 989
738ed977
ZD
990 if (dir == CDI_DOMINATORS)
991 {
628f6a4e 992 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977 993 {
e7bd94cc
ZD
994 /* Ignore the predecessors that either are not reachable from
995 the entry block, or whose dominator was not determined yet. */
996 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
997 continue;
998
738ed977
ZD
999 if (!dominated_by_p (dir, e->src, bb))
1000 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1001 }
1002 }
1003 else
1004 {
628f6a4e 1005 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
1006 {
1007 if (!dominated_by_p (dir, e->dest, bb))
1008 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1009 }
1010 }
f8032688 1011
738ed977 1012 return dom_bb;
355be0dc
JH
1013}
1014
1015/* Iteratively recount dominators of BBS. The change is supposed to be local
1016 and not to grow further. */
1017void
d47cc544 1018iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
355be0dc
JH
1019{
1020 int i, changed = 1;
1021 basic_block old_dom, new_dom;
1022
ced3f397 1023 gcc_assert (dom_computed[dir]);
d47cc544 1024
e7bd94cc
ZD
1025 for (i = 0; i < n; i++)
1026 set_immediate_dominator (dir, bbs[i], NULL);
1027
355be0dc
JH
1028 while (changed)
1029 {
1030 changed = 0;
1031 for (i = 0; i < n; i++)
1032 {
d47cc544
SB
1033 old_dom = get_immediate_dominator (dir, bbs[i]);
1034 new_dom = recount_dominator (dir, bbs[i]);
355be0dc
JH
1035 if (old_dom != new_dom)
1036 {
1037 changed = 1;
d47cc544 1038 set_immediate_dominator (dir, bbs[i], new_dom);
355be0dc 1039 }
f8032688
MM
1040 }
1041 }
e7bd94cc
ZD
1042
1043 for (i = 0; i < n; i++)
ced3f397 1044 gcc_assert (get_immediate_dominator (dir, bbs[i]));
355be0dc 1045}
f8032688 1046
355be0dc 1047void
d47cc544 1048add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 1049{
ced3f397
NS
1050 gcc_assert (dom_computed[dir]);
1051 gcc_assert (!bb->dom[dir]);
d47cc544 1052
6de9cd9a
DN
1053 n_bbs_in_dom_tree[dir]++;
1054
d47cc544
SB
1055 bb->dom[dir] = et_new_tree (bb);
1056
1057 if (dom_computed[dir] == DOM_OK)
1058 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
1059}
1060
1061void
d47cc544
SB
1062delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1063{
ced3f397 1064 gcc_assert (dom_computed[dir]);
d47cc544
SB
1065
1066 et_free_tree (bb->dom[dir]);
1067 bb->dom[dir] = NULL;
6de9cd9a 1068 n_bbs_in_dom_tree[dir]--;
d47cc544
SB
1069
1070 if (dom_computed[dir] == DOM_OK)
1071 dom_computed[dir] = DOM_NO_FAST_QUERY;
1072}
1073
1074/* Returns the first son of BB in the dominator or postdominator tree
1075 as determined by DIR. */
1076
1077basic_block
1078first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 1079{
d47cc544
SB
1080 struct et_node *son = bb->dom[dir]->son;
1081
1082 return son ? son->data : NULL;
1083}
1084
1085/* Returns the next dominance son after BB in the dominator or postdominator
1086 tree as determined by DIR, or NULL if it was the last one. */
1087
1088basic_block
1089next_dom_son (enum cdi_direction dir, basic_block bb)
1090{
1091 struct et_node *next = bb->dom[dir]->right;
1092
1093 return next->father->son == next ? NULL : next->data;
355be0dc
JH
1094}
1095
fce22de5
ZD
1096/* Returns true if dominance information for direction DIR is available. */
1097
1098bool
1099dom_info_available_p (enum cdi_direction dir)
1100{
1101 return dom_computed[dir] != DOM_NONE;
1102}
1103
355be0dc 1104void
d47cc544 1105debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
1106{
1107 basic_block bb, bb2;
1108 FOR_EACH_BB (bb)
d47cc544 1109 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 1110 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 1111}