]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
tree-ssa-live.c: Include debug.h and flags.h.
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
6fb5fa3c 2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
f8032688
MM
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
1322177d 18 along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688 32 each block its immediate dominator. We use tree balancing and path
f3b569ca 33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
f8032688
MM
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
7932a3db 42#include "obstack.h"
f8032688 43#include "basic-block.h"
4c714dd4 44#include "toplev.h"
355be0dc 45#include "et-forest.h"
74c96e0c 46#include "timevar.h"
66f97d31
ZD
47#include "vecprim.h"
48#include "pointer-set.h"
49#include "graphds.h"
f8032688 50
d47cc544 51/* Whether the dominators and the postdominators are available. */
2b28c07a 52static enum dom_state dom_computed[2];
f8032688
MM
53
54/* We name our nodes with integers, beginning with 1. Zero is reserved for
55 'undefined' or 'end of list'. The name of each node is given by the dfs
56 number of the corresponding basic block. Please note, that we include the
57 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
24bd1a0b 58 support multiple entry points. Its dfs number is of course 1. */
f8032688
MM
59
60/* Type of Basic Block aka. TBB */
61typedef unsigned int TBB;
62
63/* We work in a poor-mans object oriented fashion, and carry an instance of
64 this structure through all our 'methods'. It holds various arrays
65 reflecting the (sub)structure of the flowgraph. Most of them are of type
66 TBB and are also indexed by TBB. */
67
68struct dom_info
69{
70 /* The parent of a node in the DFS tree. */
71 TBB *dfs_parent;
72 /* For a node x key[x] is roughly the node nearest to the root from which
73 exists a way to x only over nodes behind x. Such a node is also called
74 semidominator. */
75 TBB *key;
76 /* The value in path_min[x] is the node y on the path from x to the root of
77 the tree x is in with the smallest key[y]. */
78 TBB *path_min;
79 /* bucket[x] points to the first node of the set of nodes having x as key. */
80 TBB *bucket;
81 /* And next_bucket[x] points to the next node. */
82 TBB *next_bucket;
83 /* After the algorithm is done, dom[x] contains the immediate dominator
84 of x. */
85 TBB *dom;
86
87 /* The following few fields implement the structures needed for disjoint
88 sets. */
89 /* set_chain[x] is the next node on the path from x to the representant
90 of the set containing x. If set_chain[x]==0 then x is a root. */
91 TBB *set_chain;
92 /* set_size[x] is the number of elements in the set named by x. */
93 unsigned int *set_size;
94 /* set_child[x] is used for balancing the tree representing a set. It can
95 be understood as the next sibling of x. */
96 TBB *set_child;
97
98 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
99 number of that node in DFS order counted from 1. This is an index
100 into most of the other arrays in this structure. */
101 TBB *dfs_order;
09da1532 102 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
103 dfs_to_bb[x] is that basic block. Note, that in our structure there are
104 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
105 is true for every basic block bb, but not the opposite. */
106 basic_block *dfs_to_bb;
107
26e0e410 108 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
109 unsigned int dfsnum;
110 /* The number of nodes in the DFS tree (==dfsnum-1). */
111 unsigned int nodes;
26e0e410
RH
112
113 /* Blocks with bits set here have a fake edge to EXIT. These are used
114 to turn a DFS forest into a proper tree. */
115 bitmap fake_exit_edge;
f8032688
MM
116};
117
26e0e410 118static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735 119static void free_dom_info (struct dom_info *);
2b28c07a
JC
120static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
121static void calc_dfs_tree (struct dom_info *, bool);
7080f735
AJ
122static void compress (struct dom_info *, TBB);
123static TBB eval (struct dom_info *, TBB);
124static void link_roots (struct dom_info *, TBB, TBB);
2b28c07a 125static void calc_idoms (struct dom_info *, bool);
d47cc544 126void debug_dominance_info (enum cdi_direction);
1fc3998d 127void debug_dominance_tree (enum cdi_direction, basic_block);
f8032688 128
6de9cd9a
DN
129/* Keeps track of the*/
130static unsigned n_bbs_in_dom_tree[2];
131
f8032688
MM
132/* Helper macro for allocating and initializing an array,
133 for aesthetic reasons. */
134#define init_ar(var, type, num, content) \
3a538a66
KH
135 do \
136 { \
137 unsigned int i = 1; /* Catch content == i. */ \
138 if (! (content)) \
5ed6ace5 139 (var) = XCNEWVEC (type, num); \
3a538a66
KH
140 else \
141 { \
5ed6ace5 142 (var) = XNEWVEC (type, (num)); \
3a538a66
KH
143 for (i = 0; i < num; i++) \
144 (var)[i] = (content); \
145 } \
146 } \
147 while (0)
f8032688
MM
148
149/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 150 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
151
152static void
26e0e410 153init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 154{
6fb5fa3c 155 /* We need memory for n_basic_blocks nodes. */
24bd1a0b 156 unsigned int num = n_basic_blocks;
f8032688
MM
157 init_ar (di->dfs_parent, TBB, num, 0);
158 init_ar (di->path_min, TBB, num, i);
159 init_ar (di->key, TBB, num, i);
160 init_ar (di->dom, TBB, num, 0);
161
162 init_ar (di->bucket, TBB, num, 0);
163 init_ar (di->next_bucket, TBB, num, 0);
164
165 init_ar (di->set_chain, TBB, num, 0);
166 init_ar (di->set_size, unsigned int, num, 1);
167 init_ar (di->set_child, TBB, num, 0);
168
d55bc081 169 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
170 init_ar (di->dfs_to_bb, basic_block, num, 0);
171
172 di->dfsnum = 1;
173 di->nodes = 0;
26e0e410 174
2b28c07a
JC
175 switch (dir)
176 {
177 case CDI_DOMINATORS:
178 di->fake_exit_edge = NULL;
179 break;
180 case CDI_POST_DOMINATORS:
181 di->fake_exit_edge = BITMAP_ALLOC (NULL);
182 break;
183 default:
184 gcc_unreachable ();
185 break;
186 }
f8032688
MM
187}
188
189#undef init_ar
190
2b28c07a
JC
191/* Map dominance calculation type to array index used for various
192 dominance information arrays. This version is simple -- it will need
193 to be modified, obviously, if additional values are added to
194 cdi_direction. */
195
196static unsigned int
197dom_convert_dir_to_idx (enum cdi_direction dir)
198{
199 gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
200 return dir - 1;
201}
202
f8032688
MM
203/* Free all allocated memory in DI, but not DI itself. */
204
205static void
7080f735 206free_dom_info (struct dom_info *di)
f8032688
MM
207{
208 free (di->dfs_parent);
209 free (di->path_min);
210 free (di->key);
211 free (di->dom);
212 free (di->bucket);
213 free (di->next_bucket);
214 free (di->set_chain);
215 free (di->set_size);
216 free (di->set_child);
217 free (di->dfs_order);
218 free (di->dfs_to_bb);
8bdbfff5 219 BITMAP_FREE (di->fake_exit_edge);
f8032688
MM
220}
221
222/* The nonrecursive variant of creating a DFS tree. DI is our working
223 structure, BB the starting basic block for this tree and REVERSE
224 is true, if predecessors should be visited instead of successors of a
225 node. After this is done all nodes reachable from BB were visited, have
226 assigned their dfs number and are linked together to form a tree. */
227
228static void
2b28c07a 229calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
f8032688 230{
f8032688
MM
231 /* We call this _only_ if bb is not already visited. */
232 edge e;
233 TBB child_i, my_i = 0;
628f6a4e
BE
234 edge_iterator *stack;
235 edge_iterator ei, einext;
f8032688
MM
236 int sp;
237 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
238 problem). */
239 basic_block en_block;
240 /* Ending block. */
241 basic_block ex_block;
242
5ed6ace5 243 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
f8032688
MM
244 sp = 0;
245
246 /* Initialize our border blocks, and the first edge. */
247 if (reverse)
248 {
628f6a4e 249 ei = ei_start (bb->preds);
f8032688
MM
250 en_block = EXIT_BLOCK_PTR;
251 ex_block = ENTRY_BLOCK_PTR;
252 }
253 else
254 {
628f6a4e 255 ei = ei_start (bb->succs);
f8032688
MM
256 en_block = ENTRY_BLOCK_PTR;
257 ex_block = EXIT_BLOCK_PTR;
258 }
259
260 /* When the stack is empty we break out of this loop. */
261 while (1)
262 {
263 basic_block bn;
264
265 /* This loop traverses edges e in depth first manner, and fills the
266 stack. */
628f6a4e 267 while (!ei_end_p (ei))
f8032688 268 {
628f6a4e 269 e = ei_edge (ei);
f8032688
MM
270
271 /* Deduce from E the current and the next block (BB and BN), and the
272 next edge. */
273 if (reverse)
274 {
275 bn = e->src;
276
277 /* If the next node BN is either already visited or a border
278 block the current edge is useless, and simply overwritten
279 with the next edge out of the current node. */
0b17ab2f 280 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 281 {
628f6a4e 282 ei_next (&ei);
f8032688
MM
283 continue;
284 }
285 bb = e->dest;
628f6a4e 286 einext = ei_start (bn->preds);
f8032688
MM
287 }
288 else
289 {
290 bn = e->dest;
0b17ab2f 291 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 292 {
628f6a4e 293 ei_next (&ei);
f8032688
MM
294 continue;
295 }
296 bb = e->src;
628f6a4e 297 einext = ei_start (bn->succs);
f8032688
MM
298 }
299
ced3f397 300 gcc_assert (bn != en_block);
f8032688
MM
301
302 /* Fill the DFS tree info calculatable _before_ recursing. */
303 if (bb != en_block)
0b17ab2f 304 my_i = di->dfs_order[bb->index];
f8032688 305 else
d55bc081 306 my_i = di->dfs_order[last_basic_block];
0b17ab2f 307 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
308 di->dfs_to_bb[child_i] = bn;
309 di->dfs_parent[child_i] = my_i;
310
311 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
312 stack[sp++] = ei;
313 ei = einext;
f8032688
MM
314 }
315
316 if (!sp)
317 break;
628f6a4e 318 ei = stack[--sp];
f8032688
MM
319
320 /* OK. The edge-list was exhausted, meaning normally we would
321 end the recursion. After returning from the recursive call,
322 there were (may be) other statements which were run after a
323 child node was completely considered by DFS. Here is the
324 point to do it in the non-recursive variant.
325 E.g. The block just completed is in e->dest for forward DFS,
326 the block not yet completed (the parent of the one above)
327 in e->src. This could be used e.g. for computing the number of
328 descendants or the tree depth. */
628f6a4e 329 ei_next (&ei);
f8032688
MM
330 }
331 free (stack);
332}
333
334/* The main entry for calculating the DFS tree or forest. DI is our working
335 structure and REVERSE is true, if we are interested in the reverse flow
336 graph. In that case the result is not necessarily a tree but a forest,
337 because there may be nodes from which the EXIT_BLOCK is unreachable. */
338
339static void
2b28c07a 340calc_dfs_tree (struct dom_info *di, bool reverse)
f8032688
MM
341{
342 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
343 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 344 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
345 di->dfs_to_bb[di->dfsnum] = begin;
346 di->dfsnum++;
347
348 calc_dfs_tree_nonrec (di, begin, reverse);
349
350 if (reverse)
351 {
352 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
353 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
354 nodes, but in post-dom we have to deal with them.
355
356 There are two situations in which this occurs. First, noreturn
357 functions. Second, infinite loops. In the first case we need to
358 pretend that there is an edge to the exit block. In the second
359 case, we wind up with a forest. We need to process all noreturn
360 blocks before we know if we've got any infinite loops. */
361
e0082a72 362 basic_block b;
26e0e410
RH
363 bool saw_unconnected = false;
364
e0082a72 365 FOR_EACH_BB_REVERSE (b)
f8032688 366 {
628f6a4e 367 if (EDGE_COUNT (b->succs) > 0)
26e0e410
RH
368 {
369 if (di->dfs_order[b->index] == 0)
370 saw_unconnected = true;
371 continue;
372 }
373 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 374 di->dfs_order[b->index] = di->dfsnum;
f8032688 375 di->dfs_to_bb[di->dfsnum] = b;
26e0e410 376 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
f8032688
MM
377 di->dfsnum++;
378 calc_dfs_tree_nonrec (di, b, reverse);
379 }
26e0e410
RH
380
381 if (saw_unconnected)
382 {
383 FOR_EACH_BB_REVERSE (b)
384 {
385 if (di->dfs_order[b->index])
386 continue;
387 bitmap_set_bit (di->fake_exit_edge, b->index);
388 di->dfs_order[b->index] = di->dfsnum;
389 di->dfs_to_bb[di->dfsnum] = b;
390 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
391 di->dfsnum++;
392 calc_dfs_tree_nonrec (di, b, reverse);
393 }
394 }
f8032688
MM
395 }
396
397 di->nodes = di->dfsnum - 1;
398
24bd1a0b
DB
399 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
400 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
f8032688
MM
401}
402
403/* Compress the path from V to the root of its set and update path_min at the
404 same time. After compress(di, V) set_chain[V] is the root of the set V is
405 in and path_min[V] is the node with the smallest key[] value on the path
406 from V to that root. */
407
408static void
7080f735 409compress (struct dom_info *di, TBB v)
f8032688
MM
410{
411 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
412 greater than 5 even for huge graphs (I've not seen call depth > 4).
413 Also performance wise compress() ranges _far_ behind eval(). */
414 TBB parent = di->set_chain[v];
415 if (di->set_chain[parent])
416 {
417 compress (di, parent);
418 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
419 di->path_min[v] = di->path_min[parent];
420 di->set_chain[v] = di->set_chain[parent];
421 }
422}
423
424/* Compress the path from V to the set root of V if needed (when the root has
425 changed since the last call). Returns the node with the smallest key[]
426 value on the path from V to the root. */
427
428static inline TBB
7080f735 429eval (struct dom_info *di, TBB v)
f8032688
MM
430{
431 /* The representant of the set V is in, also called root (as the set
432 representation is a tree). */
433 TBB rep = di->set_chain[v];
434
435 /* V itself is the root. */
436 if (!rep)
437 return di->path_min[v];
438
439 /* Compress only if necessary. */
440 if (di->set_chain[rep])
441 {
442 compress (di, v);
443 rep = di->set_chain[v];
444 }
445
446 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
447 return di->path_min[v];
448 else
449 return di->path_min[rep];
450}
451
452/* This essentially merges the two sets of V and W, giving a single set with
453 the new root V. The internal representation of these disjoint sets is a
454 balanced tree. Currently link(V,W) is only used with V being the parent
455 of W. */
456
457static void
7080f735 458link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
459{
460 TBB s = w;
461
462 /* Rebalance the tree. */
463 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
464 {
465 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
466 >= 2 * di->set_size[di->set_child[s]])
467 {
468 di->set_chain[di->set_child[s]] = s;
469 di->set_child[s] = di->set_child[di->set_child[s]];
470 }
471 else
472 {
473 di->set_size[di->set_child[s]] = di->set_size[s];
474 s = di->set_chain[s] = di->set_child[s];
475 }
476 }
477
478 di->path_min[s] = di->path_min[w];
479 di->set_size[v] += di->set_size[w];
480 if (di->set_size[v] < 2 * di->set_size[w])
481 {
482 TBB tmp = s;
483 s = di->set_child[v];
484 di->set_child[v] = tmp;
485 }
486
487 /* Merge all subtrees. */
488 while (s)
489 {
490 di->set_chain[s] = v;
491 s = di->set_child[s];
492 }
493}
494
495/* This calculates the immediate dominators (or post-dominators if REVERSE is
496 true). DI is our working structure and should hold the DFS forest.
497 On return the immediate dominator to node V is in di->dom[V]. */
498
499static void
2b28c07a 500calc_idoms (struct dom_info *di, bool reverse)
f8032688
MM
501{
502 TBB v, w, k, par;
503 basic_block en_block;
628f6a4e
BE
504 edge_iterator ei, einext;
505
f8032688
MM
506 if (reverse)
507 en_block = EXIT_BLOCK_PTR;
508 else
509 en_block = ENTRY_BLOCK_PTR;
510
511 /* Go backwards in DFS order, to first look at the leafs. */
512 v = di->nodes;
513 while (v > 1)
514 {
515 basic_block bb = di->dfs_to_bb[v];
628f6a4e 516 edge e;
f8032688
MM
517
518 par = di->dfs_parent[v];
519 k = v;
628f6a4e
BE
520
521 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
522
f8032688 523 if (reverse)
26e0e410 524 {
26e0e410
RH
525 /* If this block has a fake edge to exit, process that first. */
526 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
527 {
628f6a4e
BE
528 einext = ei;
529 einext.index = 0;
26e0e410
RH
530 goto do_fake_exit_edge;
531 }
532 }
f8032688
MM
533
534 /* Search all direct predecessors for the smallest node with a path
535 to them. That way we have the smallest node with also a path to
536 us only over nodes behind us. In effect we search for our
537 semidominator. */
628f6a4e 538 while (!ei_end_p (ei))
f8032688
MM
539 {
540 TBB k1;
541 basic_block b;
542
628f6a4e
BE
543 e = ei_edge (ei);
544 b = (reverse) ? e->dest : e->src;
545 einext = ei;
546 ei_next (&einext);
547
f8032688 548 if (b == en_block)
26e0e410
RH
549 {
550 do_fake_exit_edge:
551 k1 = di->dfs_order[last_basic_block];
552 }
f8032688 553 else
0b17ab2f 554 k1 = di->dfs_order[b->index];
f8032688
MM
555
556 /* Call eval() only if really needed. If k1 is above V in DFS tree,
557 then we know, that eval(k1) == k1 and key[k1] == k1. */
558 if (k1 > v)
559 k1 = di->key[eval (di, k1)];
560 if (k1 < k)
561 k = k1;
628f6a4e
BE
562
563 ei = einext;
f8032688
MM
564 }
565
566 di->key[v] = k;
567 link_roots (di, par, v);
568 di->next_bucket[v] = di->bucket[k];
569 di->bucket[k] = v;
570
571 /* Transform semidominators into dominators. */
572 for (w = di->bucket[par]; w; w = di->next_bucket[w])
573 {
574 k = eval (di, w);
575 if (di->key[k] < di->key[w])
576 di->dom[w] = k;
577 else
578 di->dom[w] = par;
579 }
580 /* We don't need to cleanup next_bucket[]. */
581 di->bucket[par] = 0;
582 v--;
583 }
584
a1f300c0 585 /* Explicitly define the dominators. */
f8032688
MM
586 di->dom[1] = 0;
587 for (v = 2; v <= di->nodes; v++)
588 if (di->dom[v] != di->key[v])
589 di->dom[v] = di->dom[di->dom[v]];
590}
591
d47cc544
SB
592/* Assign dfs numbers starting from NUM to NODE and its sons. */
593
594static void
595assign_dfs_numbers (struct et_node *node, int *num)
596{
597 struct et_node *son;
598
599 node->dfs_num_in = (*num)++;
600
601 if (node->son)
602 {
603 assign_dfs_numbers (node->son, num);
604 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 605 assign_dfs_numbers (son, num);
d47cc544 606 }
f8032688 607
d47cc544
SB
608 node->dfs_num_out = (*num)++;
609}
f8032688 610
5d3cc252 611/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 612 static dominator tree. */
f8032688 613
d47cc544
SB
614static void
615compute_dom_fast_query (enum cdi_direction dir)
616{
617 int num = 0;
618 basic_block bb;
2b28c07a 619 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 620
fce22de5 621 gcc_assert (dom_info_available_p (dir));
d47cc544 622
2b28c07a 623 if (dom_computed[dir_index] == DOM_OK)
d47cc544
SB
624 return;
625
626 FOR_ALL_BB (bb)
627 {
2b28c07a
JC
628 if (!bb->dom[dir_index]->father)
629 assign_dfs_numbers (bb->dom[dir_index], &num);
d47cc544
SB
630 }
631
2b28c07a 632 dom_computed[dir_index] = DOM_OK;
d47cc544
SB
633}
634
635/* The main entry point into this module. DIR is set depending on whether
636 we want to compute dominators or postdominators. */
637
638void
639calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
640{
641 struct dom_info di;
355be0dc 642 basic_block b;
2b28c07a
JC
643 unsigned int dir_index = dom_convert_dir_to_idx (dir);
644 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
355be0dc 645
2b28c07a 646 if (dom_computed[dir_index] == DOM_OK)
d47cc544 647 return;
355be0dc 648
74c96e0c 649 timevar_push (TV_DOMINANCE);
fce22de5 650 if (!dom_info_available_p (dir))
d47cc544 651 {
2b28c07a 652 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
f8032688 653
d47cc544
SB
654 FOR_ALL_BB (b)
655 {
2b28c07a 656 b->dom[dir_index] = et_new_tree (b);
d47cc544 657 }
2b28c07a 658 n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
f8032688 659
26e0e410 660 init_dom_info (&di, dir);
2b28c07a
JC
661 calc_dfs_tree (&di, reverse);
662 calc_idoms (&di, reverse);
355be0dc 663
d47cc544
SB
664 FOR_EACH_BB (b)
665 {
666 TBB d = di.dom[di.dfs_order[b->index]];
667
668 if (di.dfs_to_bb[d])
2b28c07a 669 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
d47cc544 670 }
e0082a72 671
d47cc544 672 free_dom_info (&di);
2b28c07a 673 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
674 }
675
d47cc544 676 compute_dom_fast_query (dir);
74c96e0c
ZD
677
678 timevar_pop (TV_DOMINANCE);
355be0dc
JH
679}
680
d47cc544 681/* Free dominance information for direction DIR. */
355be0dc 682void
d47cc544 683free_dominance_info (enum cdi_direction dir)
355be0dc
JH
684{
685 basic_block bb;
2b28c07a 686 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 687
fce22de5 688 if (!dom_info_available_p (dir))
d47cc544
SB
689 return;
690
691 FOR_ALL_BB (bb)
692 {
2b28c07a
JC
693 et_free_tree_force (bb->dom[dir_index]);
694 bb->dom[dir_index] = NULL;
d47cc544 695 }
5a6ccafd 696 et_free_pools ();
d47cc544 697
2b28c07a 698 n_bbs_in_dom_tree[dir_index] = 0;
6de9cd9a 699
2b28c07a 700 dom_computed[dir_index] = DOM_NONE;
355be0dc
JH
701}
702
703/* Return the immediate dominator of basic block BB. */
704basic_block
d47cc544 705get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 706{
2b28c07a
JC
707 unsigned int dir_index = dom_convert_dir_to_idx (dir);
708 struct et_node *node = bb->dom[dir_index];
d47cc544 709
2b28c07a 710 gcc_assert (dom_computed[dir_index]);
d47cc544
SB
711
712 if (!node->father)
713 return NULL;
714
6de9cd9a 715 return node->father->data;
355be0dc
JH
716}
717
718/* Set the immediate dominator of the block possibly removing
719 existing edge. NULL can be used to remove any edge. */
720inline void
d47cc544
SB
721set_immediate_dominator (enum cdi_direction dir, basic_block bb,
722 basic_block dominated_by)
355be0dc 723{
2b28c07a
JC
724 unsigned int dir_index = dom_convert_dir_to_idx (dir);
725 struct et_node *node = bb->dom[dir_index];
726
727 gcc_assert (dom_computed[dir_index]);
355be0dc 728
d47cc544 729 if (node->father)
355be0dc 730 {
d47cc544 731 if (node->father->data == dominated_by)
6de9cd9a 732 return;
d47cc544 733 et_split (node);
355be0dc 734 }
d47cc544
SB
735
736 if (dominated_by)
2b28c07a 737 et_set_father (node, dominated_by->dom[dir_index]);
d47cc544 738
2b28c07a
JC
739 if (dom_computed[dir_index] == DOM_OK)
740 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
741}
742
66f97d31
ZD
743/* Returns the list of basic blocks immediately dominated by BB, in the
744 direction DIR. */
745VEC (basic_block, heap) *
746get_dominated_by (enum cdi_direction dir, basic_block bb)
355be0dc 747{
d47cc544 748 int n;
66f97d31 749 unsigned int dir_index = dom_convert_dir_to_idx (dir);
2b28c07a 750 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
66f97d31
ZD
751 VEC (basic_block, heap) *bbs = NULL;
752
2b28c07a 753 gcc_assert (dom_computed[dir_index]);
d47cc544
SB
754
755 if (!son)
66f97d31 756 return NULL;
d47cc544 757
66f97d31 758 VEC_safe_push (basic_block, heap, bbs, son->data);
d47cc544 759 for (ason = son->right, n = 1; ason != son; ason = ason->right)
66f97d31 760 VEC_safe_push (basic_block, heap, bbs, ason->data);
355be0dc 761
66f97d31 762 return bbs;
355be0dc
JH
763}
764
66f97d31
ZD
765/* Returns the list of basic blocks that are immediately dominated (in
766 direction DIR) by some block between N_REGION ones stored in REGION,
767 except for blocks in the REGION itself. */
768
769VEC (basic_block, heap) *
42759f1e 770get_dominated_by_region (enum cdi_direction dir, basic_block *region,
66f97d31 771 unsigned n_region)
42759f1e 772{
66f97d31 773 unsigned i;
42759f1e 774 basic_block dom;
66f97d31 775 VEC (basic_block, heap) *doms = NULL;
42759f1e
ZD
776
777 for (i = 0; i < n_region; i++)
6580ee77 778 region[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
779 for (i = 0; i < n_region; i++)
780 for (dom = first_dom_son (dir, region[i]);
781 dom;
782 dom = next_dom_son (dir, dom))
6580ee77 783 if (!(dom->flags & BB_DUPLICATED))
66f97d31 784 VEC_safe_push (basic_block, heap, doms, dom);
42759f1e 785 for (i = 0; i < n_region; i++)
6580ee77 786 region[i]->flags &= ~BB_DUPLICATED;
42759f1e 787
66f97d31 788 return doms;
42759f1e
ZD
789}
790
355be0dc
JH
791/* Redirect all edges pointing to BB to TO. */
792void
d47cc544
SB
793redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
794 basic_block to)
355be0dc 795{
2b28c07a
JC
796 unsigned int dir_index = dom_convert_dir_to_idx (dir);
797 struct et_node *bb_node, *to_node, *son;
798
799 bb_node = bb->dom[dir_index];
800 to_node = to->dom[dir_index];
d47cc544 801
2b28c07a 802 gcc_assert (dom_computed[dir_index]);
355be0dc 803
d47cc544
SB
804 if (!bb_node->son)
805 return;
806
807 while (bb_node->son)
355be0dc 808 {
d47cc544
SB
809 son = bb_node->son;
810
811 et_split (son);
812 et_set_father (son, to_node);
355be0dc 813 }
d47cc544 814
2b28c07a
JC
815 if (dom_computed[dir_index] == DOM_OK)
816 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
817}
818
819/* Find first basic block in the tree dominating both BB1 and BB2. */
820basic_block
d47cc544 821nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 822{
2b28c07a
JC
823 unsigned int dir_index = dom_convert_dir_to_idx (dir);
824
825 gcc_assert (dom_computed[dir_index]);
d47cc544 826
355be0dc
JH
827 if (!bb1)
828 return bb2;
829 if (!bb2)
830 return bb1;
d47cc544 831
2b28c07a 832 return et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
355be0dc
JH
833}
834
0bca51f0
DN
835
836/* Find the nearest common dominator for the basic blocks in BLOCKS,
837 using dominance direction DIR. */
838
839basic_block
840nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
841{
842 unsigned i, first;
843 bitmap_iterator bi;
844 basic_block dom;
845
846 first = bitmap_first_set_bit (blocks);
847 dom = BASIC_BLOCK (first);
848 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
849 if (dom != BASIC_BLOCK (i))
850 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
851
852 return dom;
853}
854
b629276a
DB
855/* Given a dominator tree, we can determine whether one thing
856 dominates another in constant time by using two DFS numbers:
857
858 1. The number for when we visit a node on the way down the tree
859 2. The number for when we visit a node on the way back up the tree
860
861 You can view these as bounds for the range of dfs numbers the
862 nodes in the subtree of the dominator tree rooted at that node
863 will contain.
864
865 The dominator tree is always a simple acyclic tree, so there are
866 only three possible relations two nodes in the dominator tree have
867 to each other:
868
869 1. Node A is above Node B (and thus, Node A dominates node B)
870
871 A
872 |
873 C
874 / \
875 B D
876
877
878 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
879 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
880 because we must hit A in the dominator tree *before* B on the walk
881 down, and we will hit A *after* B on the walk back up
882
d8701f02 883 2. Node A is below node B (and thus, node B dominates node A)
b629276a
DB
884
885
886 B
887 |
888 A
889 / \
890 C D
891
892 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
893 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
894
895 This is because we must hit A in the dominator tree *after* B on
896 the walk down, and we will hit A *before* B on the walk back up
897
898 3. Node A and B are siblings (and thus, neither dominates the other)
899
900 C
901 |
902 D
903 / \
904 A B
905
906 In the above case, DFS_Number_In of A will *always* be <=
907 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
908 DFS_Number_Out of B. This is because we will always finish the dfs
909 walk of one of the subtrees before the other, and thus, the dfs
910 numbers for one subtree can't intersect with the range of dfs
911 numbers for the other subtree. If you swap A and B's position in
912 the dominator tree, the comparison changes direction, but the point
913 is that both comparisons will always go the same way if there is no
914 dominance relationship.
915
916 Thus, it is sufficient to write
917
918 A_Dominates_B (node A, node B)
919 {
920 return DFS_Number_In(A) <= DFS_Number_In(B)
921 && DFS_Number_Out (A) >= DFS_Number_Out(B);
922 }
923
924 A_Dominated_by_B (node A, node B)
925 {
926 return DFS_Number_In(A) >= DFS_Number_In(A)
927 && DFS_Number_Out (A) <= DFS_Number_Out(B);
928 } */
0bca51f0 929
355be0dc
JH
930/* Return TRUE in case BB1 is dominated by BB2. */
931bool
d47cc544 932dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
6de9cd9a 933{
2b28c07a
JC
934 unsigned int dir_index = dom_convert_dir_to_idx (dir);
935 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
936
937 gcc_assert (dom_computed[dir_index]);
d47cc544 938
2b28c07a 939 if (dom_computed[dir_index] == DOM_OK)
d47cc544 940 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 941 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
942
943 return et_below (n1, n2);
355be0dc
JH
944}
945
f074ff6c
ZD
946/* Returns the entry dfs number for basic block BB, in the direction DIR. */
947
948unsigned
949bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
950{
2b28c07a
JC
951 unsigned int dir_index = dom_convert_dir_to_idx (dir);
952 struct et_node *n = bb->dom[dir_index];
f074ff6c 953
2b28c07a 954 gcc_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
955 return n->dfs_num_in;
956}
957
958/* Returns the exit dfs number for basic block BB, in the direction DIR. */
959
960unsigned
961bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
962{
2b28c07a
JC
963 unsigned int dir_index = dom_convert_dir_to_idx (dir);
964 struct et_node *n = bb->dom[dir_index];
f074ff6c 965
2b28c07a 966 gcc_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
967 return n->dfs_num_out;
968}
969
355be0dc
JH
970/* Verify invariants of dominator structure. */
971void
d47cc544 972verify_dominators (enum cdi_direction dir)
355be0dc
JH
973{
974 int err = 0;
1fc3998d
ZD
975 basic_block bb, imm_bb, imm_bb_correct;
976 struct dom_info di;
977 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
355be0dc 978
fce22de5 979 gcc_assert (dom_info_available_p (dir));
d47cc544 980
1fc3998d
ZD
981 init_dom_info (&di, dir);
982 calc_dfs_tree (&di, reverse);
983 calc_idoms (&di, reverse);
984
355be0dc
JH
985 FOR_EACH_BB (bb)
986 {
1fc3998d
ZD
987 imm_bb = get_immediate_dominator (dir, bb);
988 if (!imm_bb)
f8032688 989 {
66f97d31 990 error ("dominator of %d status unknown", bb->index);
355be0dc
JH
991 err = 1;
992 }
66f97d31 993
1fc3998d
ZD
994 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
995 if (imm_bb != imm_bb_correct)
e7bd94cc 996 {
66f97d31 997 error ("dominator of %d should be %d, not %d",
1fc3998d 998 bb->index, imm_bb_correct->index, imm_bb->index);
66f97d31 999 err = 1;
e7bd94cc
ZD
1000 }
1001 }
1002
1fc3998d 1003 free_dom_info (&di);
ced3f397 1004 gcc_assert (!err);
355be0dc
JH
1005}
1006
738ed977
ZD
1007/* Determine immediate dominator (or postdominator, according to DIR) of BB,
1008 assuming that dominators of other blocks are correct. We also use it to
1009 recompute the dominators in a restricted area, by iterating it until it
71cc389b 1010 reaches a fixed point. */
738ed977 1011
355be0dc 1012basic_block
66f97d31 1013recompute_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 1014{
2b28c07a 1015 unsigned int dir_index = dom_convert_dir_to_idx (dir);
738ed977
ZD
1016 basic_block dom_bb = NULL;
1017 edge e;
628f6a4e 1018 edge_iterator ei;
355be0dc 1019
2b28c07a 1020 gcc_assert (dom_computed[dir_index]);
d47cc544 1021
738ed977
ZD
1022 if (dir == CDI_DOMINATORS)
1023 {
628f6a4e 1024 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977
ZD
1025 {
1026 if (!dominated_by_p (dir, e->src, bb))
1027 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1028 }
1029 }
1030 else
1031 {
628f6a4e 1032 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
1033 {
1034 if (!dominated_by_p (dir, e->dest, bb))
1035 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1036 }
1037 }
f8032688 1038
738ed977 1039 return dom_bb;
355be0dc
JH
1040}
1041
66f97d31
ZD
1042/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1043 of BBS. We assume that all the immediate dominators except for those of the
1044 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1045 currently recorded immediate dominators of blocks in BBS really dominate the
1046 blocks. The basic blocks for that we determine the dominator are removed
1047 from BBS. */
1048
1049static void
1050prune_bbs_to_update_dominators (VEC (basic_block, heap) *bbs,
1051 bool conservative)
1052{
1053 unsigned i;
1054 bool single;
1055 basic_block bb, dom = NULL;
1056 edge_iterator ei;
1057 edge e;
1058
1059 for (i = 0; VEC_iterate (basic_block, bbs, i, bb);)
1060 {
1061 if (bb == ENTRY_BLOCK_PTR)
1062 goto succeed;
1063
1064 if (single_pred_p (bb))
1065 {
1066 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1067 goto succeed;
1068 }
1069
1070 if (!conservative)
1071 goto fail;
1072
1073 single = true;
1074 dom = NULL;
1075 FOR_EACH_EDGE (e, ei, bb->preds)
1076 {
1077 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1078 continue;
1079
1080 if (!dom)
1081 dom = e->src;
1082 else
1083 {
1084 single = false;
1085 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1086 }
1087 }
1088
1089 gcc_assert (dom != NULL);
1090 if (single
1091 || find_edge (dom, bb))
1092 {
1093 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1094 goto succeed;
1095 }
1096
1097fail:
1098 i++;
1099 continue;
1100
1101succeed:
1102 VEC_unordered_remove (basic_block, bbs, i);
1103 }
1104}
1105
1106/* Returns root of the dominance tree in the direction DIR that contains
1107 BB. */
1108
1109static basic_block
1110root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1111{
1112 return et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1113}
1114
1115/* See the comment in iterate_fix_dominators. Finds the immediate dominators
1116 for the sons of Y, found using the SON and BROTHER arrays representing
1117 the dominance tree of graph G. BBS maps the vertices of G to the basic
1118 blocks. */
1119
1120static void
1121determine_dominators_for_sons (struct graph *g, VEC (basic_block, heap) *bbs,
1122 int y, int *son, int *brother)
1123{
1124 bitmap gprime;
1125 int i, a, nc;
1126 VEC (int, heap) **sccs;
1127 basic_block bb, dom, ybb;
1128 unsigned si;
1129 edge e;
1130 edge_iterator ei;
1131
1132 if (son[y] == -1)
1133 return;
1134 if (y == (int) VEC_length (basic_block, bbs))
1135 ybb = ENTRY_BLOCK_PTR;
1136 else
1137 ybb = VEC_index (basic_block, bbs, y);
1138
1139 if (brother[son[y]] == -1)
1140 {
1141 /* Handle the common case Y has just one son specially. */
1142 bb = VEC_index (basic_block, bbs, son[y]);
1143 set_immediate_dominator (CDI_DOMINATORS, bb,
1144 recompute_dominator (CDI_DOMINATORS, bb));
1145 identify_vertices (g, y, son[y]);
1146 return;
1147 }
1148
1149 gprime = BITMAP_ALLOC (NULL);
1150 for (a = son[y]; a != -1; a = brother[a])
1151 bitmap_set_bit (gprime, a);
1152
1153 nc = graphds_scc (g, gprime);
1154 BITMAP_FREE (gprime);
1155
1156 sccs = XCNEWVEC (VEC (int, heap) *, nc);
1157 for (a = son[y]; a != -1; a = brother[a])
1158 VEC_safe_push (int, heap, sccs[g->vertices[a].component], a);
1159
1160 for (i = nc - 1; i >= 0; i--)
1161 {
1162 dom = NULL;
1163 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1164 {
1165 bb = VEC_index (basic_block, bbs, a);
1166 FOR_EACH_EDGE (e, ei, bb->preds)
1167 {
1168 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1169 continue;
1170
1171 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1172 }
1173 }
1174
1175 gcc_assert (dom != NULL);
1176 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1177 {
1178 bb = VEC_index (basic_block, bbs, a);
1179 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1180 }
1181 }
1182
1183 for (i = 0; i < nc; i++)
1184 VEC_free (int, heap, sccs[i]);
1185 free (sccs);
1186
1187 for (a = son[y]; a != -1; a = brother[a])
1188 identify_vertices (g, y, a);
1189}
1190
1191/* Recompute dominance information for basic blocks in the set BBS. The
1192 function assumes that the immediate dominators of all the other blocks
1193 in CFG are correct, and that there are no unreachable blocks.
1194
1195 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1196 a block of BBS in the current dominance tree dominate it. */
1197
355be0dc 1198void
66f97d31
ZD
1199iterate_fix_dominators (enum cdi_direction dir, VEC (basic_block, heap) *bbs,
1200 bool conservative)
355be0dc 1201{
66f97d31
ZD
1202 unsigned i;
1203 basic_block bb, dom;
1204 struct graph *g;
1205 int n, y;
1206 size_t dom_i;
1207 edge e;
1208 edge_iterator ei;
1209 struct pointer_map_t *map;
1210 int *parent, *son, *brother;
2b28c07a 1211 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 1212
66f97d31
ZD
1213 /* We only support updating dominators. There are some problems with
1214 updating postdominators (need to add fake edges from infinite loops
1215 and noreturn functions), and since we do not currently use
1216 iterate_fix_dominators for postdominators, any attempt to handle these
1217 problems would be unused, untested, and almost surely buggy. We keep
1218 the DIR argument for consistency with the rest of the dominator analysis
1219 interface. */
1220 gcc_assert (dir == CDI_DOMINATORS);
2b28c07a 1221 gcc_assert (dom_computed[dir_index]);
d47cc544 1222
66f97d31
ZD
1223 /* The algorithm we use takes inspiration from the following papers, although
1224 the details are quite different from any of them:
1225
1226 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1227 Dominator Tree of a Reducible Flowgraph
1228 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1229 dominator trees
1230 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1231 Algorithm
1232
1233 First, we use the following heuristics to decrease the size of the BBS
1234 set:
1235 a) if BB has a single predecessor, then its immediate dominator is this
1236 predecessor
1237 additionally, if CONSERVATIVE is true:
1238 b) if all the predecessors of BB except for one (X) are dominated by BB,
1239 then X is the immediate dominator of BB
1240 c) if the nearest common ancestor of the predecessors of BB is X and
1241 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1242
1243 Then, we need to establish the dominance relation among the basic blocks
1244 in BBS. We split the dominance tree by removing the immediate dominator
0d52bcc1 1245 edges from BBS, creating a forest F. We form a graph G whose vertices
66f97d31 1246 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
0d52bcc1 1247 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
66f97d31
ZD
1248 whose root is X. We then determine dominance tree of G. Note that
1249 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1250 In this step, we can use arbitrary algorithm to determine dominators.
1251 We decided to prefer the algorithm [3] to the algorithm of
1252 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1253 10 during gcc bootstrap), and [3] should perform better in this case.
1254
1255 Finally, we need to determine the immediate dominators for the basic
1256 blocks of BBS. If the immediate dominator of X in G is Y, then
1257 the immediate dominator of X in CFG belongs to the tree of F rooted in
1258 Y. We process the dominator tree T of G recursively, starting from leaves.
1259 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1260 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1261 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1262 the following observations:
1263 (i) the immediate dominator of all blocks in a strongly connected
1264 component of G' is the same
1265 (ii) if X has no predecessors in G', then the immediate dominator of X
1266 is the nearest common ancestor of the predecessors of X in the
1267 subtree of F rooted in Y
1268 Therefore, it suffices to find the topological ordering of G', and
1269 process the nodes X_i in this order using the rules (i) and (ii).
1270 Then, we contract all the nodes X_i with Y in G, so that the further
1271 steps work correctly. */
1272
1273 if (!conservative)
1274 {
1275 /* Split the tree now. If the idoms of blocks in BBS are not
1276 conservatively correct, setting the dominators using the
1277 heuristics in prune_bbs_to_update_dominators could
1278 create cycles in the dominance "tree", and cause ICE. */
1279 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1280 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1281 }
1282
1283 prune_bbs_to_update_dominators (bbs, conservative);
1284 n = VEC_length (basic_block, bbs);
1285
1286 if (n == 0)
1287 return;
e7bd94cc 1288
66f97d31 1289 if (n == 1)
355be0dc 1290 {
66f97d31
ZD
1291 bb = VEC_index (basic_block, bbs, 0);
1292 set_immediate_dominator (CDI_DOMINATORS, bb,
1293 recompute_dominator (CDI_DOMINATORS, bb));
1294 return;
1295 }
1296
1297 /* Construct the graph G. */
1298 map = pointer_map_create ();
1299 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1300 {
1301 /* If the dominance tree is conservatively correct, split it now. */
1302 if (conservative)
1303 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1304 *pointer_map_insert (map, bb) = (void *) (size_t) i;
1305 }
1306 *pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n;
1307
1308 g = new_graph (n + 1);
1309 for (y = 0; y < g->n_vertices; y++)
1310 g->vertices[y].data = BITMAP_ALLOC (NULL);
1311 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1312 {
1313 FOR_EACH_EDGE (e, ei, bb->preds)
355be0dc 1314 {
66f97d31
ZD
1315 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1316 if (dom == bb)
1317 continue;
1318
1319 dom_i = (size_t) *pointer_map_contains (map, dom);
1320
1321 /* Do not include parallel edges to G. */
1322 if (bitmap_bit_p (g->vertices[dom_i].data, i))
1323 continue;
1324
1325 bitmap_set_bit (g->vertices[dom_i].data, i);
1326 add_edge (g, dom_i, i);
f8032688
MM
1327 }
1328 }
66f97d31
ZD
1329 for (y = 0; y < g->n_vertices; y++)
1330 BITMAP_FREE (g->vertices[y].data);
1331 pointer_map_destroy (map);
1332
1333 /* Find the dominator tree of G. */
1334 son = XNEWVEC (int, n + 1);
1335 brother = XNEWVEC (int, n + 1);
1336 parent = XNEWVEC (int, n + 1);
1337 graphds_domtree (g, n, parent, son, brother);
1338
1339 /* Finally, traverse the tree and find the immediate dominators. */
1340 for (y = n; son[y] != -1; y = son[y])
1341 continue;
1342 while (y != -1)
1343 {
1344 determine_dominators_for_sons (g, bbs, y, son, brother);
1345
1346 if (brother[y] != -1)
1347 {
1348 y = brother[y];
1349 while (son[y] != -1)
1350 y = son[y];
1351 }
1352 else
1353 y = parent[y];
1354 }
1355
1356 free (son);
1357 free (brother);
1358 free (parent);
e7bd94cc 1359
66f97d31 1360 free_graph (g);
355be0dc 1361}
f8032688 1362
355be0dc 1363void
d47cc544 1364add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 1365{
2b28c07a
JC
1366 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1367
1368 gcc_assert (dom_computed[dir_index]);
1369 gcc_assert (!bb->dom[dir_index]);
d47cc544 1370
2b28c07a 1371 n_bbs_in_dom_tree[dir_index]++;
6de9cd9a 1372
2b28c07a 1373 bb->dom[dir_index] = et_new_tree (bb);
d47cc544 1374
2b28c07a
JC
1375 if (dom_computed[dir_index] == DOM_OK)
1376 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
1377}
1378
1379void
d47cc544
SB
1380delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1381{
2b28c07a 1382 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 1383
2b28c07a 1384 gcc_assert (dom_computed[dir_index]);
d47cc544 1385
2b28c07a
JC
1386 et_free_tree (bb->dom[dir_index]);
1387 bb->dom[dir_index] = NULL;
1388 n_bbs_in_dom_tree[dir_index]--;
1389
1390 if (dom_computed[dir_index] == DOM_OK)
1391 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
d47cc544
SB
1392}
1393
1394/* Returns the first son of BB in the dominator or postdominator tree
1395 as determined by DIR. */
1396
1397basic_block
1398first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 1399{
2b28c07a
JC
1400 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1401 struct et_node *son = bb->dom[dir_index]->son;
d47cc544
SB
1402
1403 return son ? son->data : NULL;
1404}
1405
1406/* Returns the next dominance son after BB in the dominator or postdominator
1407 tree as determined by DIR, or NULL if it was the last one. */
1408
1409basic_block
1410next_dom_son (enum cdi_direction dir, basic_block bb)
1411{
2b28c07a
JC
1412 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1413 struct et_node *next = bb->dom[dir_index]->right;
d47cc544
SB
1414
1415 return next->father->son == next ? NULL : next->data;
355be0dc
JH
1416}
1417
2b28c07a
JC
1418/* Return dominance availability for dominance info DIR. */
1419
1420enum dom_state
1421dom_info_state (enum cdi_direction dir)
1422{
1423 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1424
1425 return dom_computed[dir_index];
1426}
1427
1428/* Set the dominance availability for dominance info DIR to NEW_STATE. */
1429
1430void
1431set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1432{
1433 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1434
1435 dom_computed[dir_index] = new_state;
1436}
1437
fce22de5
ZD
1438/* Returns true if dominance information for direction DIR is available. */
1439
1440bool
1441dom_info_available_p (enum cdi_direction dir)
1442{
2b28c07a
JC
1443 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1444
1445 return dom_computed[dir_index] != DOM_NONE;
fce22de5
ZD
1446}
1447
355be0dc 1448void
d47cc544 1449debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
1450{
1451 basic_block bb, bb2;
1452 FOR_EACH_BB (bb)
d47cc544 1453 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 1454 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 1455}
1fc3998d
ZD
1456
1457/* Prints to stderr representation of the dominance tree (for direction DIR)
1458 rooted in ROOT, indented by INDENT tabelators. If INDENT_FIRST is false,
1459 the first line of the output is not indented. */
1460
1461static void
1462debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1463 unsigned indent, bool indent_first)
1464{
1465 basic_block son;
1466 unsigned i;
1467 bool first = true;
1468
1469 if (indent_first)
1470 for (i = 0; i < indent; i++)
1471 fprintf (stderr, "\t");
1472 fprintf (stderr, "%d\t", root->index);
1473
1474 for (son = first_dom_son (dir, root);
1475 son;
1476 son = next_dom_son (dir, son))
1477 {
1478 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1479 first = false;
1480 }
1481
1482 if (first)
1483 fprintf (stderr, "\n");
1484}
1485
1486/* Prints to stderr representation of the dominance tree (for direction DIR)
1487 rooted in ROOT. */
1488
1489void
1490debug_dominance_tree (enum cdi_direction dir, basic_block root)
1491{
1492 debug_dominance_tree_1 (dir, root, 0, false);
1493}