]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/go/gofrontend/expressions.cc
alpha: Use byte-manipulation helper expanders more often.
[thirdparty/gcc.git] / gcc / go / gofrontend / expressions.cc
CommitLineData
e440a328 1// expressions.cc -- Go frontend expression handling.
2
3// Copyright 2009 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7#include "go-system.h"
8
9#include <gmp.h>
10
11#ifndef ENABLE_BUILD_WITH_CXX
12extern "C"
13{
14#endif
15
16#include "toplev.h"
17#include "intl.h"
18#include "tree.h"
19#include "gimple.h"
20#include "tree-iterator.h"
21#include "convert.h"
22#include "real.h"
23#include "realmpfr.h"
e440a328 24
25#ifndef ENABLE_BUILD_WITH_CXX
26}
27#endif
28
29#include "go-c.h"
30#include "gogo.h"
31#include "types.h"
32#include "export.h"
33#include "import.h"
34#include "statements.h"
35#include "lex.h"
36#include "expressions.h"
37
38// Class Expression.
39
40Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43{
44}
45
46Expression::~Expression()
47{
48}
49
50// If this expression has a constant integer value, return it.
51
52bool
53Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55{
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58}
59
60// If this expression has a constant floating point value, return it.
61
62bool
63Expression::float_constant_value(mpfr_t val, Type** ptype) const
64{
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81}
82
83// If this expression has a constant complex value, return it.
84
85bool
86Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88{
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99}
100
101// Traverse the expressions.
102
103int
104Expression::traverse(Expression** pexpr, Traverse* traverse)
105{
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116}
117
118// Traverse subexpressions of this expression.
119
120int
121Expression::traverse_subexpressions(Traverse* traverse)
122{
123 return this->do_traverse(traverse);
124}
125
126// Default implementation for do_traverse for child classes.
127
128int
129Expression::do_traverse(Traverse*)
130{
131 return TRAVERSE_CONTINUE;
132}
133
134// This virtual function is called by the parser if the value of this
135// expression is being discarded. By default, we warn. Expressions
136// with side effects override.
137
138void
139Expression::do_discarding_value()
140{
141 this->warn_about_unused_value();
142}
143
144// This virtual function is called to export expressions. This will
145// only be used by expressions which may be constant.
146
147void
148Expression::do_export(Export*) const
149{
150 gcc_unreachable();
151}
152
153// Warn that the value of the expression is not used.
154
155void
156Expression::warn_about_unused_value()
157{
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159}
160
161// Note that this expression is an error. This is called by children
162// when they discover an error.
163
164void
165Expression::set_is_error()
166{
167 this->classification_ = EXPRESSION_ERROR;
168}
169
170// For children to call to report an error conveniently.
171
172void
173Expression::report_error(const char* msg)
174{
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177}
178
179// Set types of variables and constants. This is implemented by the
180// child class.
181
182void
183Expression::determine_type(const Type_context* context)
184{
185 this->do_determine_type(context);
186}
187
188// Set types when there is no context.
189
190void
191Expression::determine_type_no_context()
192{
193 Type_context context;
194 this->do_determine_type(&context);
195}
196
197// Return a tree handling any conversions which must be done during
198// assignment.
199
200tree
201Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204{
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308}
309
310// Return a tree for a conversion from a non-interface type to an
311// interface type.
312
313tree
314Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317{
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
84b7d3c6 365 if (first_field_value == error_mark_node)
366 return error_mark_node;
e440a328 367
368 // Start building a constructor for the value we will return.
369
370 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
371
372 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
373 tree field = TYPE_FIELDS(lhs_type_tree);
374 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
375 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
376 elt->index = field;
377 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
378
379 elt = VEC_quick_push(constructor_elt, init, NULL);
380 field = DECL_CHAIN(field);
381 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
382 elt->index = field;
383
384 if (rhs_type->points_to() != NULL)
385 {
386 // We are assigning a pointer to the interface; the interface
387 // holds the pointer itself.
388 elt->value = rhs_tree;
389 return build_constructor(lhs_type_tree, init);
390 }
391
392 // We are assigning a non-pointer value to the interface; the
393 // interface gets a copy of the value in the heap.
394
395 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
396
397 tree space = gogo->allocate_memory(rhs_type, object_size, location);
398 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
399 space);
400 space = save_expr(space);
401
402 tree ref = build_fold_indirect_ref_loc(location, space);
403 TREE_THIS_NOTRAP(ref) = 1;
404 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
405 ref, rhs_tree);
406
407 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
408
409 return build2(COMPOUND_EXPR, lhs_type_tree, set,
410 build_constructor(lhs_type_tree, init));
411}
412
413// Return a tree for the type descriptor of RHS_TREE, which has
414// interface type RHS_TYPE. If RHS_TREE is nil the result will be
415// NULL.
416
417tree
418Expression::get_interface_type_descriptor(Translate_context*,
419 Type* rhs_type, tree rhs_tree,
420 source_location location)
421{
422 tree rhs_type_tree = TREE_TYPE(rhs_tree);
423 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
424 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
425 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
426 NULL_TREE);
427 if (rhs_type->interface_type()->is_empty())
428 {
429 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
430 "__type_descriptor") == 0);
431 return v;
432 }
433
434 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
435 == 0);
436 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
437 v = save_expr(v);
438 tree v1 = build_fold_indirect_ref_loc(location, v);
439 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
440 tree f = TYPE_FIELDS(TREE_TYPE(v1));
441 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
442 == 0);
443 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
444
445 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
446 fold_convert_loc(location, TREE_TYPE(v),
447 null_pointer_node));
448 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
449 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
450 eq, n, v1);
451}
452
453// Return a tree for the conversion of an interface type to an
454// interface type.
455
456tree
457Expression::convert_interface_to_interface(Translate_context* context,
458 Type *lhs_type, Type *rhs_type,
459 tree rhs_tree, bool for_type_guard,
460 source_location location)
461{
462 Gogo* gogo = context->gogo();
463 Interface_type* lhs_interface_type = lhs_type->interface_type();
464 bool lhs_is_empty = lhs_interface_type->is_empty();
465
466 tree lhs_type_tree = lhs_type->get_tree(gogo);
467 if (lhs_type_tree == error_mark_node)
468 return error_mark_node;
469
470 // In the general case this requires runtime examination of the type
471 // method table to match it up with the interface methods.
472
473 // FIXME: If all of the methods in the right hand side interface
474 // also appear in the left hand side interface, then we don't need
475 // to do a runtime check, although we still need to build a new
476 // method table.
477
478 // Get the type descriptor for the right hand side. This will be
479 // NULL for a nil interface.
480
481 if (!DECL_P(rhs_tree))
482 rhs_tree = save_expr(rhs_tree);
483
484 tree rhs_type_descriptor =
485 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
486 location);
487
488 // The result is going to be a two element constructor.
489
490 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
491
492 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
493 tree field = TYPE_FIELDS(lhs_type_tree);
494 elt->index = field;
495
496 if (for_type_guard)
497 {
498 // A type assertion fails when converting a nil interface.
499 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
500 static tree assert_interface_decl;
501 tree call = Gogo::call_builtin(&assert_interface_decl,
502 location,
503 "__go_assert_interface",
504 2,
505 ptr_type_node,
506 TREE_TYPE(lhs_type_descriptor),
507 lhs_type_descriptor,
508 TREE_TYPE(rhs_type_descriptor),
509 rhs_type_descriptor);
5fb82b5e 510 if (call == error_mark_node)
511 return error_mark_node;
e440a328 512 // This will panic if the interface conversion fails.
513 TREE_NOTHROW(assert_interface_decl) = 0;
514 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
515 }
516 else if (lhs_is_empty)
517 {
518 // A convertion to an empty interface always succeeds, and the
519 // first field is just the type descriptor of the object.
520 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
521 "__type_descriptor") == 0);
522 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
523 elt->value = rhs_type_descriptor;
524 }
525 else
526 {
527 // A conversion to a non-empty interface may fail, but unlike a
528 // type assertion converting nil will always succeed.
529 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
530 == 0);
531 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
532 static tree convert_interface_decl;
533 tree call = Gogo::call_builtin(&convert_interface_decl,
534 location,
535 "__go_convert_interface",
536 2,
537 ptr_type_node,
538 TREE_TYPE(lhs_type_descriptor),
539 lhs_type_descriptor,
540 TREE_TYPE(rhs_type_descriptor),
541 rhs_type_descriptor);
5fb82b5e 542 if (call == error_mark_node)
543 return error_mark_node;
e440a328 544 // This will panic if the interface conversion fails.
545 TREE_NOTHROW(convert_interface_decl) = 0;
546 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
547 }
548
549 // The second field is simply the object pointer.
550
551 elt = VEC_quick_push(constructor_elt, init, NULL);
552 field = DECL_CHAIN(field);
553 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
554 elt->index = field;
555
556 tree rhs_type_tree = TREE_TYPE(rhs_tree);
557 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
558 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
559 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
560 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
561 NULL_TREE);
562
563 return build_constructor(lhs_type_tree, init);
564}
565
566// Return a tree for the conversion of an interface type to a
567// non-interface type.
568
569tree
570Expression::convert_interface_to_type(Translate_context* context,
571 Type *lhs_type, Type* rhs_type,
572 tree rhs_tree, source_location location)
573{
574 Gogo* gogo = context->gogo();
575 tree rhs_type_tree = TREE_TYPE(rhs_tree);
576
577 tree lhs_type_tree = lhs_type->get_tree(gogo);
578 if (lhs_type_tree == error_mark_node)
579 return error_mark_node;
580
581 // Call a function to check that the type is valid. The function
582 // will panic with an appropriate runtime type error if the type is
583 // not valid.
584
585 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
586
587 if (!DECL_P(rhs_tree))
588 rhs_tree = save_expr(rhs_tree);
589
590 tree rhs_type_descriptor =
591 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
592 location);
593
594 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
595
596 static tree check_interface_type_decl;
597 tree call = Gogo::call_builtin(&check_interface_type_decl,
598 location,
599 "__go_check_interface_type",
600 3,
601 void_type_node,
602 TREE_TYPE(lhs_type_descriptor),
603 lhs_type_descriptor,
604 TREE_TYPE(rhs_type_descriptor),
605 rhs_type_descriptor,
606 TREE_TYPE(rhs_inter_descriptor),
607 rhs_inter_descriptor);
5fb82b5e 608 if (call == error_mark_node)
609 return error_mark_node;
e440a328 610 // This call will panic if the conversion is invalid.
611 TREE_NOTHROW(check_interface_type_decl) = 0;
612
613 // If the call succeeds, pull out the value.
614 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
615 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
616 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
617 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
618 NULL_TREE);
619
620 // If the value is a pointer, then it is the value we want.
621 // Otherwise it points to the value.
622 if (lhs_type->points_to() == NULL)
623 {
624 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
625 val = build_fold_indirect_ref_loc(location, val);
626 }
627
628 return build2(COMPOUND_EXPR, lhs_type_tree, call,
629 fold_convert_loc(location, lhs_type_tree, val));
630}
631
632// Convert an expression to a tree. This is implemented by the child
633// class. Not that it is not in general safe to call this multiple
634// times for a single expression, but that we don't catch such errors.
635
636tree
637Expression::get_tree(Translate_context* context)
638{
639 // The child may have marked this expression as having an error.
640 if (this->classification_ == EXPRESSION_ERROR)
641 return error_mark_node;
642
643 return this->do_get_tree(context);
644}
645
646// Return a tree for VAL in TYPE.
647
648tree
649Expression::integer_constant_tree(mpz_t val, tree type)
650{
651 if (type == error_mark_node)
652 return error_mark_node;
653 else if (TREE_CODE(type) == INTEGER_TYPE)
654 return double_int_to_tree(type,
655 mpz_get_double_int(type, val, true));
656 else if (TREE_CODE(type) == REAL_TYPE)
657 {
658 mpfr_t fval;
659 mpfr_init_set_z(fval, val, GMP_RNDN);
660 tree ret = Expression::float_constant_tree(fval, type);
661 mpfr_clear(fval);
662 return ret;
663 }
664 else if (TREE_CODE(type) == COMPLEX_TYPE)
665 {
666 mpfr_t fval;
667 mpfr_init_set_z(fval, val, GMP_RNDN);
668 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
669 mpfr_clear(fval);
670 tree imag = build_real_from_int_cst(TREE_TYPE(type),
671 integer_zero_node);
672 return build_complex(type, real, imag);
673 }
674 else
675 gcc_unreachable();
676}
677
678// Return a tree for VAL in TYPE.
679
680tree
681Expression::float_constant_tree(mpfr_t val, tree type)
682{
683 if (type == error_mark_node)
684 return error_mark_node;
685 else if (TREE_CODE(type) == INTEGER_TYPE)
686 {
687 mpz_t ival;
688 mpz_init(ival);
689 mpfr_get_z(ival, val, GMP_RNDN);
690 tree ret = Expression::integer_constant_tree(ival, type);
691 mpz_clear(ival);
692 return ret;
693 }
694 else if (TREE_CODE(type) == REAL_TYPE)
695 {
696 REAL_VALUE_TYPE r1;
697 real_from_mpfr(&r1, val, type, GMP_RNDN);
698 REAL_VALUE_TYPE r2;
699 real_convert(&r2, TYPE_MODE(type), &r1);
700 return build_real(type, r2);
701 }
702 else if (TREE_CODE(type) == COMPLEX_TYPE)
703 {
704 REAL_VALUE_TYPE r1;
705 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
706 REAL_VALUE_TYPE r2;
707 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
708 tree imag = build_real_from_int_cst(TREE_TYPE(type),
709 integer_zero_node);
710 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
711 }
712 else
713 gcc_unreachable();
714}
715
716// Return a tree for REAL/IMAG in TYPE.
717
718tree
719Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
720{
f690b0bb 721 if (type == error_mark_node)
722 return error_mark_node;
723 else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
724 return Expression::float_constant_tree(real, type);
725 else if (TREE_CODE(type) == COMPLEX_TYPE)
e440a328 726 {
727 REAL_VALUE_TYPE r1;
728 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
729 REAL_VALUE_TYPE r2;
730 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
731
732 REAL_VALUE_TYPE r3;
733 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
734 REAL_VALUE_TYPE r4;
735 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
736
737 return build_complex(type, build_real(TREE_TYPE(type), r2),
738 build_real(TREE_TYPE(type), r4));
739 }
740 else
741 gcc_unreachable();
742}
743
744// Return a tree which evaluates to true if VAL, of arbitrary integer
745// type, is negative or is more than the maximum value of BOUND_TYPE.
746// If SOFAR is not NULL, it is or'red into the result. The return
747// value may be NULL if SOFAR is NULL.
748
749tree
750Expression::check_bounds(tree val, tree bound_type, tree sofar,
751 source_location loc)
752{
753 tree val_type = TREE_TYPE(val);
754 tree ret = NULL_TREE;
755
756 if (!TYPE_UNSIGNED(val_type))
757 {
758 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
759 build_int_cst(val_type, 0));
760 if (ret == boolean_false_node)
761 ret = NULL_TREE;
762 }
763
764 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
765 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
766 {
767 tree max = TYPE_MAX_VALUE(bound_type);
768 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
769 fold_convert_loc(loc, val_type, max));
770 if (big == boolean_false_node)
771 ;
772 else if (ret == NULL_TREE)
773 ret = big;
774 else
775 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
776 ret, big);
777 }
778
779 if (ret == NULL_TREE)
780 return sofar;
781 else if (sofar == NULL_TREE)
782 return ret;
783 else
784 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
785 sofar, ret);
786}
787
788// Error expressions. This are used to avoid cascading errors.
789
790class Error_expression : public Expression
791{
792 public:
793 Error_expression(source_location location)
794 : Expression(EXPRESSION_ERROR, location)
795 { }
796
797 protected:
798 bool
799 do_is_constant() const
800 { return true; }
801
802 bool
803 do_integer_constant_value(bool, mpz_t val, Type**) const
804 {
805 mpz_set_ui(val, 0);
806 return true;
807 }
808
809 bool
810 do_float_constant_value(mpfr_t val, Type**) const
811 {
812 mpfr_set_ui(val, 0, GMP_RNDN);
813 return true;
814 }
815
816 bool
817 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
818 {
819 mpfr_set_ui(real, 0, GMP_RNDN);
820 mpfr_set_ui(imag, 0, GMP_RNDN);
821 return true;
822 }
823
824 void
825 do_discarding_value()
826 { }
827
828 Type*
829 do_type()
830 { return Type::make_error_type(); }
831
832 void
833 do_determine_type(const Type_context*)
834 { }
835
836 Expression*
837 do_copy()
838 { return this; }
839
840 bool
841 do_is_addressable() const
842 { return true; }
843
844 tree
845 do_get_tree(Translate_context*)
846 { return error_mark_node; }
847};
848
849Expression*
850Expression::make_error(source_location location)
851{
852 return new Error_expression(location);
853}
854
855// An expression which is really a type. This is used during parsing.
856// It is an error if these survive after lowering.
857
858class
859Type_expression : public Expression
860{
861 public:
862 Type_expression(Type* type, source_location location)
863 : Expression(EXPRESSION_TYPE, location),
864 type_(type)
865 { }
866
867 protected:
868 int
869 do_traverse(Traverse* traverse)
870 { return Type::traverse(this->type_, traverse); }
871
872 Type*
873 do_type()
874 { return this->type_; }
875
876 void
877 do_determine_type(const Type_context*)
878 { }
879
880 void
881 do_check_types(Gogo*)
882 { this->report_error(_("invalid use of type")); }
883
884 Expression*
885 do_copy()
886 { return this; }
887
888 tree
889 do_get_tree(Translate_context*)
890 { gcc_unreachable(); }
891
892 private:
893 // The type which we are representing as an expression.
894 Type* type_;
895};
896
897Expression*
898Expression::make_type(Type* type, source_location location)
899{
900 return new Type_expression(type, location);
901}
902
e03bdf36 903// Class Parser_expression.
904
905Type*
906Parser_expression::do_type()
907{
908 // We should never really ask for the type of a Parser_expression.
909 // However, it can happen, at least when we have an invalid const
910 // whose initializer refers to the const itself. In that case we
911 // may ask for the type when lowering the const itself.
912 gcc_assert(saw_errors());
913 return Type::make_error_type();
914}
915
e440a328 916// Class Var_expression.
917
918// Lower a variable expression. Here we just make sure that the
919// initialization expression of the variable has been lowered. This
920// ensures that we will be able to determine the type of the variable
921// if necessary.
922
923Expression*
924Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
925{
926 if (this->variable_->is_variable())
927 {
928 Variable* var = this->variable_->var_value();
929 // This is either a local variable or a global variable. A
930 // reference to a variable which is local to an enclosing
931 // function will be a reference to a field in a closure.
932 if (var->is_global())
933 function = NULL;
934 var->lower_init_expression(gogo, function);
935 }
936 return this;
937}
938
e440a328 939// Return the type of a reference to a variable.
940
941Type*
942Var_expression::do_type()
943{
944 if (this->variable_->is_variable())
945 return this->variable_->var_value()->type();
946 else if (this->variable_->is_result_variable())
947 return this->variable_->result_var_value()->type();
948 else
949 gcc_unreachable();
950}
951
0ab09e06 952// Determine the type of a reference to a variable.
953
954void
955Var_expression::do_determine_type(const Type_context*)
956{
957 if (this->variable_->is_variable())
958 this->variable_->var_value()->determine_type();
959}
960
e440a328 961// Something takes the address of this variable. This means that we
962// may want to move the variable onto the heap.
963
964void
965Var_expression::do_address_taken(bool escapes)
966{
967 if (!escapes)
968 ;
969 else if (this->variable_->is_variable())
970 this->variable_->var_value()->set_address_taken();
971 else if (this->variable_->is_result_variable())
972 this->variable_->result_var_value()->set_address_taken();
973 else
974 gcc_unreachable();
975}
976
977// Get the tree for a reference to a variable.
978
979tree
980Var_expression::do_get_tree(Translate_context* context)
981{
982 return this->variable_->get_tree(context->gogo(), context->function());
983}
984
985// Make a reference to a variable in an expression.
986
987Expression*
988Expression::make_var_reference(Named_object* var, source_location location)
989{
990 if (var->is_sink())
991 return Expression::make_sink(location);
992
993 // FIXME: Creating a new object for each reference to a variable is
994 // wasteful.
995 return new Var_expression(var, location);
996}
997
998// Class Temporary_reference_expression.
999
1000// The type.
1001
1002Type*
1003Temporary_reference_expression::do_type()
1004{
1005 return this->statement_->type();
1006}
1007
1008// Called if something takes the address of this temporary variable.
1009// We never have to move temporary variables to the heap, but we do
1010// need to know that they must live in the stack rather than in a
1011// register.
1012
1013void
1014Temporary_reference_expression::do_address_taken(bool)
1015{
1016 this->statement_->set_is_address_taken();
1017}
1018
1019// Get a tree referring to the variable.
1020
1021tree
1022Temporary_reference_expression::do_get_tree(Translate_context*)
1023{
1024 return this->statement_->get_decl();
1025}
1026
1027// Make a reference to a temporary variable.
1028
1029Expression*
1030Expression::make_temporary_reference(Temporary_statement* statement,
1031 source_location location)
1032{
1033 return new Temporary_reference_expression(statement, location);
1034}
1035
1036// A sink expression--a use of the blank identifier _.
1037
1038class Sink_expression : public Expression
1039{
1040 public:
1041 Sink_expression(source_location location)
1042 : Expression(EXPRESSION_SINK, location),
1043 type_(NULL), var_(NULL_TREE)
1044 { }
1045
1046 protected:
1047 void
1048 do_discarding_value()
1049 { }
1050
1051 Type*
1052 do_type();
1053
1054 void
1055 do_determine_type(const Type_context*);
1056
1057 Expression*
1058 do_copy()
1059 { return new Sink_expression(this->location()); }
1060
1061 tree
1062 do_get_tree(Translate_context*);
1063
1064 private:
1065 // The type of this sink variable.
1066 Type* type_;
1067 // The temporary variable we generate.
1068 tree var_;
1069};
1070
1071// Return the type of a sink expression.
1072
1073Type*
1074Sink_expression::do_type()
1075{
1076 if (this->type_ == NULL)
1077 return Type::make_sink_type();
1078 return this->type_;
1079}
1080
1081// Determine the type of a sink expression.
1082
1083void
1084Sink_expression::do_determine_type(const Type_context* context)
1085{
1086 if (context->type != NULL)
1087 this->type_ = context->type;
1088}
1089
1090// Return a temporary variable for a sink expression. This will
1091// presumably be a write-only variable which the middle-end will drop.
1092
1093tree
1094Sink_expression::do_get_tree(Translate_context* context)
1095{
1096 if (this->var_ == NULL_TREE)
1097 {
1098 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1099 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1100 "blank");
1101 }
1102 return this->var_;
1103}
1104
1105// Make a sink expression.
1106
1107Expression*
1108Expression::make_sink(source_location location)
1109{
1110 return new Sink_expression(location);
1111}
1112
1113// Class Func_expression.
1114
1115// FIXME: Can a function expression appear in a constant expression?
1116// The value is unchanging. Initializing a constant to the address of
1117// a function seems like it could work, though there might be little
1118// point to it.
1119
e440a328 1120// Traversal.
1121
1122int
1123Func_expression::do_traverse(Traverse* traverse)
1124{
1125 return (this->closure_ == NULL
1126 ? TRAVERSE_CONTINUE
1127 : Expression::traverse(&this->closure_, traverse));
1128}
1129
1130// Return the type of a function expression.
1131
1132Type*
1133Func_expression::do_type()
1134{
1135 if (this->function_->is_function())
1136 return this->function_->func_value()->type();
1137 else if (this->function_->is_function_declaration())
1138 return this->function_->func_declaration_value()->type();
1139 else
1140 gcc_unreachable();
1141}
1142
1143// Get the tree for a function expression without evaluating the
1144// closure.
1145
1146tree
1147Func_expression::get_tree_without_closure(Gogo* gogo)
1148{
1149 Function_type* fntype;
1150 if (this->function_->is_function())
1151 fntype = this->function_->func_value()->type();
1152 else if (this->function_->is_function_declaration())
1153 fntype = this->function_->func_declaration_value()->type();
1154 else
1155 gcc_unreachable();
1156
1157 // Builtin functions are handled specially by Call_expression. We
1158 // can't take their address.
1159 if (fntype->is_builtin())
1160 {
1161 error_at(this->location(), "invalid use of special builtin function %qs",
1162 this->function_->name().c_str());
1163 return error_mark_node;
1164 }
1165
1166 Named_object* no = this->function_;
9d6f3721 1167
1168 tree id = no->get_id(gogo);
1169 if (id == error_mark_node)
1170 return error_mark_node;
1171
e440a328 1172 tree fndecl;
1173 if (no->is_function())
1174 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1175 else if (no->is_function_declaration())
1176 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1177 else
1178 gcc_unreachable();
1179
9d6f3721 1180 if (fndecl == error_mark_node)
1181 return error_mark_node;
1182
e440a328 1183 return build_fold_addr_expr_loc(this->location(), fndecl);
1184}
1185
1186// Get the tree for a function expression. This is used when we take
1187// the address of a function rather than simply calling it. If the
1188// function has a closure, we must use a trampoline.
1189
1190tree
1191Func_expression::do_get_tree(Translate_context* context)
1192{
1193 Gogo* gogo = context->gogo();
1194
1195 tree fnaddr = this->get_tree_without_closure(gogo);
1196 if (fnaddr == error_mark_node)
1197 return error_mark_node;
1198
1199 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1200 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1201 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1202
1203 // For a normal non-nested function call, that is all we have to do.
1204 if (!this->function_->is_function()
1205 || this->function_->func_value()->enclosing() == NULL)
1206 {
1207 gcc_assert(this->closure_ == NULL);
1208 return fnaddr;
1209 }
1210
1211 // For a nested function call, we have to always allocate a
1212 // trampoline. If we don't always allocate, then closures will not
1213 // be reliably distinct.
1214 Expression* closure = this->closure_;
1215 tree closure_tree;
1216 if (closure == NULL)
1217 closure_tree = null_pointer_node;
1218 else
1219 {
1220 // Get the value of the closure. This will be a pointer to
1221 // space allocated on the heap.
1222 closure_tree = closure->get_tree(context);
1223 if (closure_tree == error_mark_node)
1224 return error_mark_node;
1225 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1226 }
1227
1228 // Now we need to build some code on the heap. This code will load
1229 // the static chain pointer with the closure and then jump to the
1230 // body of the function. The normal gcc approach is to build the
1231 // code on the stack. Unfortunately we can not do that, as Go
1232 // permits us to return the function pointer.
1233
1234 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1235}
1236
1237// Make a reference to a function in an expression.
1238
1239Expression*
1240Expression::make_func_reference(Named_object* function, Expression* closure,
1241 source_location location)
1242{
1243 return new Func_expression(function, closure, location);
1244}
1245
1246// Class Unknown_expression.
1247
1248// Return the name of an unknown expression.
1249
1250const std::string&
1251Unknown_expression::name() const
1252{
1253 return this->named_object_->name();
1254}
1255
1256// Lower a reference to an unknown name.
1257
1258Expression*
1259Unknown_expression::do_lower(Gogo*, Named_object*, int)
1260{
1261 source_location location = this->location();
1262 Named_object* no = this->named_object_;
deded542 1263 Named_object* real;
1264 if (!no->is_unknown())
1265 real = no;
1266 else
e440a328 1267 {
deded542 1268 real = no->unknown_value()->real_named_object();
1269 if (real == NULL)
1270 {
1271 if (this->is_composite_literal_key_)
1272 return this;
1273 error_at(location, "reference to undefined name %qs",
1274 this->named_object_->message_name().c_str());
1275 return Expression::make_error(location);
1276 }
e440a328 1277 }
1278 switch (real->classification())
1279 {
1280 case Named_object::NAMED_OBJECT_CONST:
1281 return Expression::make_const_reference(real, location);
1282 case Named_object::NAMED_OBJECT_TYPE:
1283 return Expression::make_type(real->type_value(), location);
1284 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1285 if (this->is_composite_literal_key_)
1286 return this;
1287 error_at(location, "reference to undefined type %qs",
1288 real->message_name().c_str());
1289 return Expression::make_error(location);
1290 case Named_object::NAMED_OBJECT_VAR:
1291 return Expression::make_var_reference(real, location);
1292 case Named_object::NAMED_OBJECT_FUNC:
1293 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1294 return Expression::make_func_reference(real, NULL, location);
1295 case Named_object::NAMED_OBJECT_PACKAGE:
1296 if (this->is_composite_literal_key_)
1297 return this;
1298 error_at(location, "unexpected reference to package");
1299 return Expression::make_error(location);
1300 default:
1301 gcc_unreachable();
1302 }
1303}
1304
1305// Make a reference to an unknown name.
1306
1307Expression*
1308Expression::make_unknown_reference(Named_object* no, source_location location)
1309{
1310 gcc_assert(no->resolve()->is_unknown());
1311 return new Unknown_expression(no, location);
1312}
1313
1314// A boolean expression.
1315
1316class Boolean_expression : public Expression
1317{
1318 public:
1319 Boolean_expression(bool val, source_location location)
1320 : Expression(EXPRESSION_BOOLEAN, location),
1321 val_(val), type_(NULL)
1322 { }
1323
1324 static Expression*
1325 do_import(Import*);
1326
1327 protected:
1328 bool
1329 do_is_constant() const
1330 { return true; }
1331
1332 Type*
1333 do_type();
1334
1335 void
1336 do_determine_type(const Type_context*);
1337
1338 Expression*
1339 do_copy()
1340 { return this; }
1341
1342 tree
1343 do_get_tree(Translate_context*)
1344 { return this->val_ ? boolean_true_node : boolean_false_node; }
1345
1346 void
1347 do_export(Export* exp) const
1348 { exp->write_c_string(this->val_ ? "true" : "false"); }
1349
1350 private:
1351 // The constant.
1352 bool val_;
1353 // The type as determined by context.
1354 Type* type_;
1355};
1356
1357// Get the type.
1358
1359Type*
1360Boolean_expression::do_type()
1361{
1362 if (this->type_ == NULL)
1363 this->type_ = Type::make_boolean_type();
1364 return this->type_;
1365}
1366
1367// Set the type from the context.
1368
1369void
1370Boolean_expression::do_determine_type(const Type_context* context)
1371{
1372 if (this->type_ != NULL && !this->type_->is_abstract())
1373 ;
1374 else if (context->type != NULL && context->type->is_boolean_type())
1375 this->type_ = context->type;
1376 else if (!context->may_be_abstract)
1377 this->type_ = Type::lookup_bool_type();
1378}
1379
1380// Import a boolean constant.
1381
1382Expression*
1383Boolean_expression::do_import(Import* imp)
1384{
1385 if (imp->peek_char() == 't')
1386 {
1387 imp->require_c_string("true");
1388 return Expression::make_boolean(true, imp->location());
1389 }
1390 else
1391 {
1392 imp->require_c_string("false");
1393 return Expression::make_boolean(false, imp->location());
1394 }
1395}
1396
1397// Make a boolean expression.
1398
1399Expression*
1400Expression::make_boolean(bool val, source_location location)
1401{
1402 return new Boolean_expression(val, location);
1403}
1404
1405// Class String_expression.
1406
1407// Get the type.
1408
1409Type*
1410String_expression::do_type()
1411{
1412 if (this->type_ == NULL)
1413 this->type_ = Type::make_string_type();
1414 return this->type_;
1415}
1416
1417// Set the type from the context.
1418
1419void
1420String_expression::do_determine_type(const Type_context* context)
1421{
1422 if (this->type_ != NULL && !this->type_->is_abstract())
1423 ;
1424 else if (context->type != NULL && context->type->is_string_type())
1425 this->type_ = context->type;
1426 else if (!context->may_be_abstract)
1427 this->type_ = Type::lookup_string_type();
1428}
1429
1430// Build a string constant.
1431
1432tree
1433String_expression::do_get_tree(Translate_context* context)
1434{
1435 return context->gogo()->go_string_constant_tree(this->val_);
1436}
1437
1438// Export a string expression.
1439
1440void
1441String_expression::do_export(Export* exp) const
1442{
1443 std::string s;
1444 s.reserve(this->val_.length() * 4 + 2);
1445 s += '"';
1446 for (std::string::const_iterator p = this->val_.begin();
1447 p != this->val_.end();
1448 ++p)
1449 {
1450 if (*p == '\\' || *p == '"')
1451 {
1452 s += '\\';
1453 s += *p;
1454 }
1455 else if (*p >= 0x20 && *p < 0x7f)
1456 s += *p;
1457 else if (*p == '\n')
1458 s += "\\n";
1459 else if (*p == '\t')
1460 s += "\\t";
1461 else
1462 {
1463 s += "\\x";
1464 unsigned char c = *p;
1465 unsigned int dig = c >> 4;
1466 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1467 dig = c & 0xf;
1468 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1469 }
1470 }
1471 s += '"';
1472 exp->write_string(s);
1473}
1474
1475// Import a string expression.
1476
1477Expression*
1478String_expression::do_import(Import* imp)
1479{
1480 imp->require_c_string("\"");
1481 std::string val;
1482 while (true)
1483 {
1484 int c = imp->get_char();
1485 if (c == '"' || c == -1)
1486 break;
1487 if (c != '\\')
1488 val += static_cast<char>(c);
1489 else
1490 {
1491 c = imp->get_char();
1492 if (c == '\\' || c == '"')
1493 val += static_cast<char>(c);
1494 else if (c == 'n')
1495 val += '\n';
1496 else if (c == 't')
1497 val += '\t';
1498 else if (c == 'x')
1499 {
1500 c = imp->get_char();
1501 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1502 c = imp->get_char();
1503 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1504 char v = (vh << 4) | vl;
1505 val += v;
1506 }
1507 else
1508 {
1509 error_at(imp->location(), "bad string constant");
1510 return Expression::make_error(imp->location());
1511 }
1512 }
1513 }
1514 return Expression::make_string(val, imp->location());
1515}
1516
1517// Make a string expression.
1518
1519Expression*
1520Expression::make_string(const std::string& val, source_location location)
1521{
1522 return new String_expression(val, location);
1523}
1524
1525// Make an integer expression.
1526
1527class Integer_expression : public Expression
1528{
1529 public:
1530 Integer_expression(const mpz_t* val, Type* type, source_location location)
1531 : Expression(EXPRESSION_INTEGER, location),
1532 type_(type)
1533 { mpz_init_set(this->val_, *val); }
1534
1535 static Expression*
1536 do_import(Import*);
1537
1538 // Return whether VAL fits in the type.
1539 static bool
1540 check_constant(mpz_t val, Type*, source_location);
1541
1542 // Write VAL to export data.
1543 static void
1544 export_integer(Export* exp, const mpz_t val);
1545
1546 protected:
1547 bool
1548 do_is_constant() const
1549 { return true; }
1550
1551 bool
1552 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1553
1554 Type*
1555 do_type();
1556
1557 void
1558 do_determine_type(const Type_context* context);
1559
1560 void
1561 do_check_types(Gogo*);
1562
1563 tree
1564 do_get_tree(Translate_context*);
1565
1566 Expression*
1567 do_copy()
1568 { return Expression::make_integer(&this->val_, this->type_,
1569 this->location()); }
1570
1571 void
1572 do_export(Export*) const;
1573
1574 private:
1575 // The integer value.
1576 mpz_t val_;
1577 // The type so far.
1578 Type* type_;
1579};
1580
1581// Return an integer constant value.
1582
1583bool
1584Integer_expression::do_integer_constant_value(bool, mpz_t val,
1585 Type** ptype) const
1586{
1587 if (this->type_ != NULL)
1588 *ptype = this->type_;
1589 mpz_set(val, this->val_);
1590 return true;
1591}
1592
1593// Return the current type. If we haven't set the type yet, we return
1594// an abstract integer type.
1595
1596Type*
1597Integer_expression::do_type()
1598{
1599 if (this->type_ == NULL)
1600 this->type_ = Type::make_abstract_integer_type();
1601 return this->type_;
1602}
1603
1604// Set the type of the integer value. Here we may switch from an
1605// abstract type to a real type.
1606
1607void
1608Integer_expression::do_determine_type(const Type_context* context)
1609{
1610 if (this->type_ != NULL && !this->type_->is_abstract())
1611 ;
1612 else if (context->type != NULL
1613 && (context->type->integer_type() != NULL
1614 || context->type->float_type() != NULL
1615 || context->type->complex_type() != NULL))
1616 this->type_ = context->type;
1617 else if (!context->may_be_abstract)
1618 this->type_ = Type::lookup_integer_type("int");
1619}
1620
1621// Return true if the integer VAL fits in the range of the type TYPE.
1622// Otherwise give an error and return false. TYPE may be NULL.
1623
1624bool
1625Integer_expression::check_constant(mpz_t val, Type* type,
1626 source_location location)
1627{
1628 if (type == NULL)
1629 return true;
1630 Integer_type* itype = type->integer_type();
1631 if (itype == NULL || itype->is_abstract())
1632 return true;
1633
1634 int bits = mpz_sizeinbase(val, 2);
1635
1636 if (itype->is_unsigned())
1637 {
1638 // For an unsigned type we can only accept a nonnegative number,
1639 // and we must be able to represent at least BITS.
1640 if (mpz_sgn(val) >= 0
1641 && bits <= itype->bits())
1642 return true;
1643 }
1644 else
1645 {
1646 // For a signed type we need an extra bit to indicate the sign.
1647 // We have to handle the most negative integer specially.
1648 if (bits + 1 <= itype->bits()
1649 || (bits <= itype->bits()
1650 && mpz_sgn(val) < 0
1651 && (mpz_scan1(val, 0)
1652 == static_cast<unsigned long>(itype->bits() - 1))
1653 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1654 return true;
1655 }
1656
1657 error_at(location, "integer constant overflow");
1658 return false;
1659}
1660
1661// Check the type of an integer constant.
1662
1663void
1664Integer_expression::do_check_types(Gogo*)
1665{
1666 if (this->type_ == NULL)
1667 return;
1668 if (!Integer_expression::check_constant(this->val_, this->type_,
1669 this->location()))
1670 this->set_is_error();
1671}
1672
1673// Get a tree for an integer constant.
1674
1675tree
1676Integer_expression::do_get_tree(Translate_context* context)
1677{
1678 Gogo* gogo = context->gogo();
1679 tree type;
1680 if (this->type_ != NULL && !this->type_->is_abstract())
1681 type = this->type_->get_tree(gogo);
1682 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1683 {
1684 // We are converting to an abstract floating point type.
1685 type = Type::lookup_float_type("float64")->get_tree(gogo);
1686 }
1687 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1688 {
1689 // We are converting to an abstract complex type.
1690 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1691 }
1692 else
1693 {
1694 // If we still have an abstract type here, then this is being
1695 // used in a constant expression which didn't get reduced for
1696 // some reason. Use a type which will fit the value. We use <,
1697 // not <=, because we need an extra bit for the sign bit.
1698 int bits = mpz_sizeinbase(this->val_, 2);
1699 if (bits < INT_TYPE_SIZE)
1700 type = Type::lookup_integer_type("int")->get_tree(gogo);
1701 else if (bits < 64)
1702 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1703 else
1704 type = long_long_integer_type_node;
1705 }
1706 return Expression::integer_constant_tree(this->val_, type);
1707}
1708
1709// Write VAL to export data.
1710
1711void
1712Integer_expression::export_integer(Export* exp, const mpz_t val)
1713{
1714 char* s = mpz_get_str(NULL, 10, val);
1715 exp->write_c_string(s);
1716 free(s);
1717}
1718
1719// Export an integer in a constant expression.
1720
1721void
1722Integer_expression::do_export(Export* exp) const
1723{
1724 Integer_expression::export_integer(exp, this->val_);
1725 // A trailing space lets us reliably identify the end of the number.
1726 exp->write_c_string(" ");
1727}
1728
1729// Import an integer, floating point, or complex value. This handles
1730// all these types because they all start with digits.
1731
1732Expression*
1733Integer_expression::do_import(Import* imp)
1734{
1735 std::string num = imp->read_identifier();
1736 imp->require_c_string(" ");
1737 if (!num.empty() && num[num.length() - 1] == 'i')
1738 {
1739 mpfr_t real;
1740 size_t plus_pos = num.find('+', 1);
1741 size_t minus_pos = num.find('-', 1);
1742 size_t pos;
1743 if (plus_pos == std::string::npos)
1744 pos = minus_pos;
1745 else if (minus_pos == std::string::npos)
1746 pos = plus_pos;
1747 else
1748 {
1749 error_at(imp->location(), "bad number in import data: %qs",
1750 num.c_str());
1751 return Expression::make_error(imp->location());
1752 }
1753 if (pos == std::string::npos)
1754 mpfr_set_ui(real, 0, GMP_RNDN);
1755 else
1756 {
1757 std::string real_str = num.substr(0, pos);
1758 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1759 {
1760 error_at(imp->location(), "bad number in import data: %qs",
1761 real_str.c_str());
1762 return Expression::make_error(imp->location());
1763 }
1764 }
1765
1766 std::string imag_str;
1767 if (pos == std::string::npos)
1768 imag_str = num;
1769 else
1770 imag_str = num.substr(pos);
1771 imag_str = imag_str.substr(0, imag_str.size() - 1);
1772 mpfr_t imag;
1773 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1774 {
1775 error_at(imp->location(), "bad number in import data: %qs",
1776 imag_str.c_str());
1777 return Expression::make_error(imp->location());
1778 }
1779 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1780 imp->location());
1781 mpfr_clear(real);
1782 mpfr_clear(imag);
1783 return ret;
1784 }
1785 else if (num.find('.') == std::string::npos
1786 && num.find('E') == std::string::npos)
1787 {
1788 mpz_t val;
1789 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1790 {
1791 error_at(imp->location(), "bad number in import data: %qs",
1792 num.c_str());
1793 return Expression::make_error(imp->location());
1794 }
1795 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1796 mpz_clear(val);
1797 return ret;
1798 }
1799 else
1800 {
1801 mpfr_t val;
1802 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1803 {
1804 error_at(imp->location(), "bad number in import data: %qs",
1805 num.c_str());
1806 return Expression::make_error(imp->location());
1807 }
1808 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1809 mpfr_clear(val);
1810 return ret;
1811 }
1812}
1813
1814// Build a new integer value.
1815
1816Expression*
1817Expression::make_integer(const mpz_t* val, Type* type,
1818 source_location location)
1819{
1820 return new Integer_expression(val, type, location);
1821}
1822
1823// Floats.
1824
1825class Float_expression : public Expression
1826{
1827 public:
1828 Float_expression(const mpfr_t* val, Type* type, source_location location)
1829 : Expression(EXPRESSION_FLOAT, location),
1830 type_(type)
1831 {
1832 mpfr_init_set(this->val_, *val, GMP_RNDN);
1833 }
1834
1835 // Constrain VAL to fit into TYPE.
1836 static void
1837 constrain_float(mpfr_t val, Type* type);
1838
1839 // Return whether VAL fits in the type.
1840 static bool
1841 check_constant(mpfr_t val, Type*, source_location);
1842
1843 // Write VAL to export data.
1844 static void
1845 export_float(Export* exp, const mpfr_t val);
1846
1847 protected:
1848 bool
1849 do_is_constant() const
1850 { return true; }
1851
1852 bool
1853 do_float_constant_value(mpfr_t val, Type**) const;
1854
1855 Type*
1856 do_type();
1857
1858 void
1859 do_determine_type(const Type_context*);
1860
1861 void
1862 do_check_types(Gogo*);
1863
1864 Expression*
1865 do_copy()
1866 { return Expression::make_float(&this->val_, this->type_,
1867 this->location()); }
1868
1869 tree
1870 do_get_tree(Translate_context*);
1871
1872 void
1873 do_export(Export*) const;
1874
1875 private:
1876 // The floating point value.
1877 mpfr_t val_;
1878 // The type so far.
1879 Type* type_;
1880};
1881
1882// Constrain VAL to fit into TYPE.
1883
1884void
1885Float_expression::constrain_float(mpfr_t val, Type* type)
1886{
1887 Float_type* ftype = type->float_type();
1888 if (ftype != NULL && !ftype->is_abstract())
1889 {
1890 tree type_tree = ftype->type_tree();
1891 REAL_VALUE_TYPE rvt;
1892 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1893 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1894 mpfr_from_real(val, &rvt, GMP_RNDN);
1895 }
1896}
1897
1898// Return a floating point constant value.
1899
1900bool
1901Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1902{
1903 if (this->type_ != NULL)
1904 *ptype = this->type_;
1905 mpfr_set(val, this->val_, GMP_RNDN);
1906 return true;
1907}
1908
1909// Return the current type. If we haven't set the type yet, we return
1910// an abstract float type.
1911
1912Type*
1913Float_expression::do_type()
1914{
1915 if (this->type_ == NULL)
1916 this->type_ = Type::make_abstract_float_type();
1917 return this->type_;
1918}
1919
1920// Set the type of the float value. Here we may switch from an
1921// abstract type to a real type.
1922
1923void
1924Float_expression::do_determine_type(const Type_context* context)
1925{
1926 if (this->type_ != NULL && !this->type_->is_abstract())
1927 ;
1928 else if (context->type != NULL
1929 && (context->type->integer_type() != NULL
1930 || context->type->float_type() != NULL
1931 || context->type->complex_type() != NULL))
1932 this->type_ = context->type;
1933 else if (!context->may_be_abstract)
48080209 1934 this->type_ = Type::lookup_float_type("float64");
e440a328 1935}
1936
1937// Return true if the floating point value VAL fits in the range of
1938// the type TYPE. Otherwise give an error and return false. TYPE may
1939// be NULL.
1940
1941bool
1942Float_expression::check_constant(mpfr_t val, Type* type,
1943 source_location location)
1944{
1945 if (type == NULL)
1946 return true;
1947 Float_type* ftype = type->float_type();
1948 if (ftype == NULL || ftype->is_abstract())
1949 return true;
1950
1951 // A NaN or Infinity always fits in the range of the type.
1952 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1953 return true;
1954
1955 mp_exp_t exp = mpfr_get_exp(val);
1956 mp_exp_t max_exp;
1957 switch (ftype->bits())
1958 {
1959 case 32:
1960 max_exp = 128;
1961 break;
1962 case 64:
1963 max_exp = 1024;
1964 break;
1965 default:
1966 gcc_unreachable();
1967 }
1968 if (exp > max_exp)
1969 {
1970 error_at(location, "floating point constant overflow");
1971 return false;
1972 }
1973 return true;
1974}
1975
1976// Check the type of a float value.
1977
1978void
1979Float_expression::do_check_types(Gogo*)
1980{
1981 if (this->type_ == NULL)
1982 return;
1983
1984 if (!Float_expression::check_constant(this->val_, this->type_,
1985 this->location()))
1986 this->set_is_error();
1987
1988 Integer_type* integer_type = this->type_->integer_type();
1989 if (integer_type != NULL)
1990 {
1991 if (!mpfr_integer_p(this->val_))
1992 this->report_error(_("floating point constant truncated to integer"));
1993 else
1994 {
1995 gcc_assert(!integer_type->is_abstract());
1996 mpz_t ival;
1997 mpz_init(ival);
1998 mpfr_get_z(ival, this->val_, GMP_RNDN);
1999 Integer_expression::check_constant(ival, integer_type,
2000 this->location());
2001 mpz_clear(ival);
2002 }
2003 }
2004}
2005
2006// Get a tree for a float constant.
2007
2008tree
2009Float_expression::do_get_tree(Translate_context* context)
2010{
2011 Gogo* gogo = context->gogo();
2012 tree type;
2013 if (this->type_ != NULL && !this->type_->is_abstract())
2014 type = this->type_->get_tree(gogo);
2015 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2016 {
2017 // We have an abstract integer type. We just hope for the best.
2018 type = Type::lookup_integer_type("int")->get_tree(gogo);
2019 }
2020 else
2021 {
2022 // If we still have an abstract type here, then this is being
2023 // used in a constant expression which didn't get reduced. We
2024 // just use float64 and hope for the best.
2025 type = Type::lookup_float_type("float64")->get_tree(gogo);
2026 }
2027 return Expression::float_constant_tree(this->val_, type);
2028}
2029
2030// Write a floating point number to export data.
2031
2032void
2033Float_expression::export_float(Export *exp, const mpfr_t val)
2034{
2035 mp_exp_t exponent;
2036 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2037 if (*s == '-')
2038 exp->write_c_string("-");
2039 exp->write_c_string("0.");
2040 exp->write_c_string(*s == '-' ? s + 1 : s);
2041 mpfr_free_str(s);
2042 char buf[30];
2043 snprintf(buf, sizeof buf, "E%ld", exponent);
2044 exp->write_c_string(buf);
2045}
2046
2047// Export a floating point number in a constant expression.
2048
2049void
2050Float_expression::do_export(Export* exp) const
2051{
2052 Float_expression::export_float(exp, this->val_);
2053 // A trailing space lets us reliably identify the end of the number.
2054 exp->write_c_string(" ");
2055}
2056
2057// Make a float expression.
2058
2059Expression*
2060Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2061{
2062 return new Float_expression(val, type, location);
2063}
2064
2065// Complex numbers.
2066
2067class Complex_expression : public Expression
2068{
2069 public:
2070 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2071 source_location location)
2072 : Expression(EXPRESSION_COMPLEX, location),
2073 type_(type)
2074 {
2075 mpfr_init_set(this->real_, *real, GMP_RNDN);
2076 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2077 }
2078
2079 // Constrain REAL/IMAG to fit into TYPE.
2080 static void
2081 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2082
2083 // Return whether REAL/IMAG fits in the type.
2084 static bool
2085 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2086
2087 // Write REAL/IMAG to export data.
2088 static void
2089 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2090
2091 protected:
2092 bool
2093 do_is_constant() const
2094 { return true; }
2095
2096 bool
2097 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2098
2099 Type*
2100 do_type();
2101
2102 void
2103 do_determine_type(const Type_context*);
2104
2105 void
2106 do_check_types(Gogo*);
2107
2108 Expression*
2109 do_copy()
2110 {
2111 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2112 this->location());
2113 }
2114
2115 tree
2116 do_get_tree(Translate_context*);
2117
2118 void
2119 do_export(Export*) const;
2120
2121 private:
2122 // The real part.
2123 mpfr_t real_;
2124 // The imaginary part;
2125 mpfr_t imag_;
2126 // The type if known.
2127 Type* type_;
2128};
2129
2130// Constrain REAL/IMAG to fit into TYPE.
2131
2132void
2133Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2134{
2135 Complex_type* ctype = type->complex_type();
2136 if (ctype != NULL && !ctype->is_abstract())
2137 {
2138 tree type_tree = ctype->type_tree();
2139
2140 REAL_VALUE_TYPE rvt;
2141 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2142 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2143 mpfr_from_real(real, &rvt, GMP_RNDN);
2144
2145 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2146 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2147 mpfr_from_real(imag, &rvt, GMP_RNDN);
2148 }
2149}
2150
2151// Return a complex constant value.
2152
2153bool
2154Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2155 Type** ptype) const
2156{
2157 if (this->type_ != NULL)
2158 *ptype = this->type_;
2159 mpfr_set(real, this->real_, GMP_RNDN);
2160 mpfr_set(imag, this->imag_, GMP_RNDN);
2161 return true;
2162}
2163
2164// Return the current type. If we haven't set the type yet, we return
2165// an abstract complex type.
2166
2167Type*
2168Complex_expression::do_type()
2169{
2170 if (this->type_ == NULL)
2171 this->type_ = Type::make_abstract_complex_type();
2172 return this->type_;
2173}
2174
2175// Set the type of the complex value. Here we may switch from an
2176// abstract type to a real type.
2177
2178void
2179Complex_expression::do_determine_type(const Type_context* context)
2180{
2181 if (this->type_ != NULL && !this->type_->is_abstract())
2182 ;
2183 else if (context->type != NULL
2184 && context->type->complex_type() != NULL)
2185 this->type_ = context->type;
2186 else if (!context->may_be_abstract)
48080209 2187 this->type_ = Type::lookup_complex_type("complex128");
e440a328 2188}
2189
2190// Return true if the complex value REAL/IMAG fits in the range of the
2191// type TYPE. Otherwise give an error and return false. TYPE may be
2192// NULL.
2193
2194bool
2195Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2196 source_location location)
2197{
2198 if (type == NULL)
2199 return true;
2200 Complex_type* ctype = type->complex_type();
2201 if (ctype == NULL || ctype->is_abstract())
2202 return true;
2203
2204 mp_exp_t max_exp;
2205 switch (ctype->bits())
2206 {
2207 case 64:
2208 max_exp = 128;
2209 break;
2210 case 128:
2211 max_exp = 1024;
2212 break;
2213 default:
2214 gcc_unreachable();
2215 }
2216
2217 // A NaN or Infinity always fits in the range of the type.
2218 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2219 {
2220 if (mpfr_get_exp(real) > max_exp)
2221 {
2222 error_at(location, "complex real part constant overflow");
2223 return false;
2224 }
2225 }
2226
2227 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2228 {
2229 if (mpfr_get_exp(imag) > max_exp)
2230 {
2231 error_at(location, "complex imaginary part constant overflow");
2232 return false;
2233 }
2234 }
2235
2236 return true;
2237}
2238
2239// Check the type of a complex value.
2240
2241void
2242Complex_expression::do_check_types(Gogo*)
2243{
2244 if (this->type_ == NULL)
2245 return;
2246
2247 if (!Complex_expression::check_constant(this->real_, this->imag_,
2248 this->type_, this->location()))
2249 this->set_is_error();
2250}
2251
2252// Get a tree for a complex constant.
2253
2254tree
2255Complex_expression::do_get_tree(Translate_context* context)
2256{
2257 Gogo* gogo = context->gogo();
2258 tree type;
2259 if (this->type_ != NULL && !this->type_->is_abstract())
2260 type = this->type_->get_tree(gogo);
2261 else
2262 {
2263 // If we still have an abstract type here, this this is being
2264 // used in a constant expression which didn't get reduced. We
2265 // just use complex128 and hope for the best.
2266 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2267 }
2268 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2269}
2270
2271// Write REAL/IMAG to export data.
2272
2273void
2274Complex_expression::export_complex(Export* exp, const mpfr_t real,
2275 const mpfr_t imag)
2276{
2277 if (!mpfr_zero_p(real))
2278 {
2279 Float_expression::export_float(exp, real);
2280 if (mpfr_sgn(imag) > 0)
2281 exp->write_c_string("+");
2282 }
2283 Float_expression::export_float(exp, imag);
2284 exp->write_c_string("i");
2285}
2286
2287// Export a complex number in a constant expression.
2288
2289void
2290Complex_expression::do_export(Export* exp) const
2291{
2292 Complex_expression::export_complex(exp, this->real_, this->imag_);
2293 // A trailing space lets us reliably identify the end of the number.
2294 exp->write_c_string(" ");
2295}
2296
2297// Make a complex expression.
2298
2299Expression*
2300Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2301 source_location location)
2302{
2303 return new Complex_expression(real, imag, type, location);
2304}
2305
d5b605df 2306// Find a named object in an expression.
2307
2308class Find_named_object : public Traverse
2309{
2310 public:
2311 Find_named_object(Named_object* no)
2312 : Traverse(traverse_expressions),
2313 no_(no), found_(false)
2314 { }
2315
2316 // Whether we found the object.
2317 bool
2318 found() const
2319 { return this->found_; }
2320
2321 protected:
2322 int
2323 expression(Expression**);
2324
2325 private:
2326 // The object we are looking for.
2327 Named_object* no_;
2328 // Whether we found it.
2329 bool found_;
2330};
2331
e440a328 2332// A reference to a const in an expression.
2333
2334class Const_expression : public Expression
2335{
2336 public:
2337 Const_expression(Named_object* constant, source_location location)
2338 : Expression(EXPRESSION_CONST_REFERENCE, location),
13e818f5 2339 constant_(constant), type_(NULL), seen_(false)
e440a328 2340 { }
2341
d5b605df 2342 Named_object*
2343 named_object()
2344 { return this->constant_; }
2345
a7f064d5 2346 // Check that the initializer does not refer to the constant itself.
2347 void
2348 check_for_init_loop();
2349
e440a328 2350 protected:
ba4aedd4 2351 int
2352 do_traverse(Traverse*);
2353
e440a328 2354 Expression*
2355 do_lower(Gogo*, Named_object*, int);
2356
2357 bool
2358 do_is_constant() const
2359 { return true; }
2360
2361 bool
2362 do_integer_constant_value(bool, mpz_t val, Type**) const;
2363
2364 bool
2365 do_float_constant_value(mpfr_t val, Type**) const;
2366
2367 bool
2368 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2369
2370 bool
2371 do_string_constant_value(std::string* val) const
2372 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2373
2374 Type*
2375 do_type();
2376
2377 // The type of a const is set by the declaration, not the use.
2378 void
2379 do_determine_type(const Type_context*);
2380
2381 void
2382 do_check_types(Gogo*);
2383
2384 Expression*
2385 do_copy()
2386 { return this; }
2387
2388 tree
2389 do_get_tree(Translate_context* context);
2390
2391 // When exporting a reference to a const as part of a const
2392 // expression, we export the value. We ignore the fact that it has
2393 // a name.
2394 void
2395 do_export(Export* exp) const
2396 { this->constant_->const_value()->expr()->export_expression(exp); }
2397
2398 private:
2399 // The constant.
2400 Named_object* constant_;
2401 // The type of this reference. This is used if the constant has an
2402 // abstract type.
2403 Type* type_;
13e818f5 2404 // Used to prevent infinite recursion when a constant incorrectly
2405 // refers to itself.
2406 mutable bool seen_;
e440a328 2407};
2408
ba4aedd4 2409// Traversal.
2410
2411int
2412Const_expression::do_traverse(Traverse* traverse)
2413{
2414 if (this->type_ != NULL)
2415 return Type::traverse(this->type_, traverse);
2416 return TRAVERSE_CONTINUE;
2417}
2418
e440a328 2419// Lower a constant expression. This is where we convert the
2420// predeclared constant iota into an integer value.
2421
2422Expression*
2423Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2424{
2425 if (this->constant_->const_value()->expr()->classification()
2426 == EXPRESSION_IOTA)
2427 {
2428 if (iota_value == -1)
2429 {
2430 error_at(this->location(),
2431 "iota is only defined in const declarations");
2432 iota_value = 0;
2433 }
2434 mpz_t val;
2435 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2436 Expression* ret = Expression::make_integer(&val, NULL,
2437 this->location());
2438 mpz_clear(val);
2439 return ret;
2440 }
2441
2442 // Make sure that the constant itself has been lowered.
2443 gogo->lower_constant(this->constant_);
2444
2445 return this;
2446}
2447
2448// Return an integer constant value.
2449
2450bool
2451Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2452 Type** ptype) const
2453{
13e818f5 2454 if (this->seen_)
2455 return false;
2456
e440a328 2457 Type* ctype;
2458 if (this->type_ != NULL)
2459 ctype = this->type_;
2460 else
2461 ctype = this->constant_->const_value()->type();
2462 if (ctype != NULL && ctype->integer_type() == NULL)
2463 return false;
2464
2465 Expression* e = this->constant_->const_value()->expr();
13e818f5 2466
2467 this->seen_ = true;
2468
e440a328 2469 Type* t;
2470 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2471
13e818f5 2472 this->seen_ = false;
2473
e440a328 2474 if (r
2475 && ctype != NULL
2476 && !Integer_expression::check_constant(val, ctype, this->location()))
2477 return false;
2478
2479 *ptype = ctype != NULL ? ctype : t;
2480 return r;
2481}
2482
2483// Return a floating point constant value.
2484
2485bool
2486Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2487{
13e818f5 2488 if (this->seen_)
2489 return false;
2490
e440a328 2491 Type* ctype;
2492 if (this->type_ != NULL)
2493 ctype = this->type_;
2494 else
2495 ctype = this->constant_->const_value()->type();
2496 if (ctype != NULL && ctype->float_type() == NULL)
2497 return false;
2498
13e818f5 2499 this->seen_ = true;
2500
e440a328 2501 Type* t;
2502 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2503 &t);
13e818f5 2504
2505 this->seen_ = false;
2506
e440a328 2507 if (r && ctype != NULL)
2508 {
2509 if (!Float_expression::check_constant(val, ctype, this->location()))
2510 return false;
2511 Float_expression::constrain_float(val, ctype);
2512 }
2513 *ptype = ctype != NULL ? ctype : t;
2514 return r;
2515}
2516
2517// Return a complex constant value.
2518
2519bool
2520Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2521 Type **ptype) const
2522{
13e818f5 2523 if (this->seen_)
2524 return false;
2525
e440a328 2526 Type* ctype;
2527 if (this->type_ != NULL)
2528 ctype = this->type_;
2529 else
2530 ctype = this->constant_->const_value()->type();
2531 if (ctype != NULL && ctype->complex_type() == NULL)
2532 return false;
2533
13e818f5 2534 this->seen_ = true;
2535
e440a328 2536 Type *t;
2537 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2538 imag,
2539 &t);
13e818f5 2540
2541 this->seen_ = false;
2542
e440a328 2543 if (r && ctype != NULL)
2544 {
2545 if (!Complex_expression::check_constant(real, imag, ctype,
2546 this->location()))
2547 return false;
2548 Complex_expression::constrain_complex(real, imag, ctype);
2549 }
2550 *ptype = ctype != NULL ? ctype : t;
2551 return r;
2552}
2553
2554// Return the type of the const reference.
2555
2556Type*
2557Const_expression::do_type()
2558{
2559 if (this->type_ != NULL)
2560 return this->type_;
13e818f5 2561
2f78f012 2562 Named_constant* nc = this->constant_->const_value();
2563
2564 if (this->seen_ || nc->lowering())
13e818f5 2565 {
2566 this->report_error(_("constant refers to itself"));
2567 this->type_ = Type::make_error_type();
2568 return this->type_;
2569 }
2570
2571 this->seen_ = true;
2572
e440a328 2573 Type* ret = nc->type();
13e818f5 2574
e440a328 2575 if (ret != NULL)
13e818f5 2576 {
2577 this->seen_ = false;
2578 return ret;
2579 }
2580
e440a328 2581 // During parsing, a named constant may have a NULL type, but we
2582 // must not return a NULL type here.
13e818f5 2583 ret = nc->expr()->type();
2584
2585 this->seen_ = false;
2586
2587 return ret;
e440a328 2588}
2589
2590// Set the type of the const reference.
2591
2592void
2593Const_expression::do_determine_type(const Type_context* context)
2594{
2595 Type* ctype = this->constant_->const_value()->type();
2596 Type* cetype = (ctype != NULL
2597 ? ctype
2598 : this->constant_->const_value()->expr()->type());
2599 if (ctype != NULL && !ctype->is_abstract())
2600 ;
2601 else if (context->type != NULL
2602 && (context->type->integer_type() != NULL
2603 || context->type->float_type() != NULL
2604 || context->type->complex_type() != NULL)
2605 && (cetype->integer_type() != NULL
2606 || cetype->float_type() != NULL
2607 || cetype->complex_type() != NULL))
2608 this->type_ = context->type;
2609 else if (context->type != NULL
2610 && context->type->is_string_type()
2611 && cetype->is_string_type())
2612 this->type_ = context->type;
2613 else if (context->type != NULL
2614 && context->type->is_boolean_type()
2615 && cetype->is_boolean_type())
2616 this->type_ = context->type;
2617 else if (!context->may_be_abstract)
2618 {
2619 if (cetype->is_abstract())
2620 cetype = cetype->make_non_abstract_type();
2621 this->type_ = cetype;
2622 }
2623}
2624
a7f064d5 2625// Check for a loop in which the initializer of a constant refers to
2626// the constant itself.
e440a328 2627
2628void
a7f064d5 2629Const_expression::check_for_init_loop()
e440a328 2630{
d5b605df 2631 if (this->type_ != NULL && this->type_->is_error_type())
2632 return;
2633
a7f064d5 2634 if (this->seen_)
2635 {
2636 this->report_error(_("constant refers to itself"));
2637 this->type_ = Type::make_error_type();
2638 return;
2639 }
2640
d5b605df 2641 Expression* init = this->constant_->const_value()->expr();
2642 Find_named_object find_named_object(this->constant_);
a7f064d5 2643
2644 this->seen_ = true;
d5b605df 2645 Expression::traverse(&init, &find_named_object);
a7f064d5 2646 this->seen_ = false;
2647
d5b605df 2648 if (find_named_object.found())
2649 {
a7f064d5 2650 if (this->type_ == NULL || !this->type_->is_error_type())
2651 {
2652 this->report_error(_("constant refers to itself"));
2653 this->type_ = Type::make_error_type();
2654 }
d5b605df 2655 return;
2656 }
a7f064d5 2657}
2658
2659// Check types of a const reference.
2660
2661void
2662Const_expression::do_check_types(Gogo*)
2663{
2664 if (this->type_ != NULL && this->type_->is_error_type())
2665 return;
2666
2667 this->check_for_init_loop();
d5b605df 2668
e440a328 2669 if (this->type_ == NULL || this->type_->is_abstract())
2670 return;
2671
2672 // Check for integer overflow.
2673 if (this->type_->integer_type() != NULL)
2674 {
2675 mpz_t ival;
2676 mpz_init(ival);
2677 Type* dummy;
2678 if (!this->integer_constant_value(true, ival, &dummy))
2679 {
2680 mpfr_t fval;
2681 mpfr_init(fval);
2682 Expression* cexpr = this->constant_->const_value()->expr();
2683 if (cexpr->float_constant_value(fval, &dummy))
2684 {
2685 if (!mpfr_integer_p(fval))
2686 this->report_error(_("floating point constant "
2687 "truncated to integer"));
2688 else
2689 {
2690 mpfr_get_z(ival, fval, GMP_RNDN);
2691 Integer_expression::check_constant(ival, this->type_,
2692 this->location());
2693 }
2694 }
2695 mpfr_clear(fval);
2696 }
2697 mpz_clear(ival);
2698 }
2699}
2700
2701// Return a tree for the const reference.
2702
2703tree
2704Const_expression::do_get_tree(Translate_context* context)
2705{
2706 Gogo* gogo = context->gogo();
2707 tree type_tree;
2708 if (this->type_ == NULL)
2709 type_tree = NULL_TREE;
2710 else
2711 {
2712 type_tree = this->type_->get_tree(gogo);
2713 if (type_tree == error_mark_node)
2714 return error_mark_node;
2715 }
2716
2717 // If the type has been set for this expression, but the underlying
2718 // object is an abstract int or float, we try to get the abstract
2719 // value. Otherwise we may lose something in the conversion.
2720 if (this->type_ != NULL
a68492b4 2721 && (this->constant_->const_value()->type() == NULL
2722 || this->constant_->const_value()->type()->is_abstract()))
e440a328 2723 {
2724 Expression* expr = this->constant_->const_value()->expr();
2725 mpz_t ival;
2726 mpz_init(ival);
2727 Type* t;
2728 if (expr->integer_constant_value(true, ival, &t))
2729 {
2730 tree ret = Expression::integer_constant_tree(ival, type_tree);
2731 mpz_clear(ival);
2732 return ret;
2733 }
2734 mpz_clear(ival);
2735
2736 mpfr_t fval;
2737 mpfr_init(fval);
2738 if (expr->float_constant_value(fval, &t))
2739 {
2740 tree ret = Expression::float_constant_tree(fval, type_tree);
2741 mpfr_clear(fval);
2742 return ret;
2743 }
2744
2745 mpfr_t imag;
2746 mpfr_init(imag);
2747 if (expr->complex_constant_value(fval, imag, &t))
2748 {
2749 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2750 mpfr_clear(fval);
2751 mpfr_clear(imag);
2752 return ret;
2753 }
2754 mpfr_clear(imag);
2755 mpfr_clear(fval);
2756 }
2757
2758 tree const_tree = this->constant_->get_tree(gogo, context->function());
2759 if (this->type_ == NULL
2760 || const_tree == error_mark_node
2761 || TREE_TYPE(const_tree) == error_mark_node)
2762 return const_tree;
2763
2764 tree ret;
2765 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2766 ret = fold_convert(type_tree, const_tree);
2767 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2768 ret = fold(convert_to_integer(type_tree, const_tree));
2769 else if (TREE_CODE(type_tree) == REAL_TYPE)
2770 ret = fold(convert_to_real(type_tree, const_tree));
2771 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2772 ret = fold(convert_to_complex(type_tree, const_tree));
2773 else
2774 gcc_unreachable();
2775 return ret;
2776}
2777
2778// Make a reference to a constant in an expression.
2779
2780Expression*
2781Expression::make_const_reference(Named_object* constant,
2782 source_location location)
2783{
2784 return new Const_expression(constant, location);
2785}
2786
d5b605df 2787// Find a named object in an expression.
2788
2789int
2790Find_named_object::expression(Expression** pexpr)
2791{
2792 switch ((*pexpr)->classification())
2793 {
2794 case Expression::EXPRESSION_CONST_REFERENCE:
a7f064d5 2795 {
2796 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
2797 if (ce->named_object() == this->no_)
2798 break;
2799
2800 // We need to check a constant initializer explicitly, as
2801 // loops here will not be caught by the loop checking for
2802 // variable initializers.
2803 ce->check_for_init_loop();
2804
2805 return TRAVERSE_CONTINUE;
2806 }
2807
d5b605df 2808 case Expression::EXPRESSION_VAR_REFERENCE:
2809 if ((*pexpr)->var_expression()->named_object() == this->no_)
2810 break;
2811 return TRAVERSE_CONTINUE;
2812 case Expression::EXPRESSION_FUNC_REFERENCE:
2813 if ((*pexpr)->func_expression()->named_object() == this->no_)
2814 break;
2815 return TRAVERSE_CONTINUE;
2816 default:
2817 return TRAVERSE_CONTINUE;
2818 }
2819 this->found_ = true;
2820 return TRAVERSE_EXIT;
2821}
2822
e440a328 2823// The nil value.
2824
2825class Nil_expression : public Expression
2826{
2827 public:
2828 Nil_expression(source_location location)
2829 : Expression(EXPRESSION_NIL, location)
2830 { }
2831
2832 static Expression*
2833 do_import(Import*);
2834
2835 protected:
2836 bool
2837 do_is_constant() const
2838 { return true; }
2839
2840 Type*
2841 do_type()
2842 { return Type::make_nil_type(); }
2843
2844 void
2845 do_determine_type(const Type_context*)
2846 { }
2847
2848 Expression*
2849 do_copy()
2850 { return this; }
2851
2852 tree
2853 do_get_tree(Translate_context*)
2854 { return null_pointer_node; }
2855
2856 void
2857 do_export(Export* exp) const
2858 { exp->write_c_string("nil"); }
2859};
2860
2861// Import a nil expression.
2862
2863Expression*
2864Nil_expression::do_import(Import* imp)
2865{
2866 imp->require_c_string("nil");
2867 return Expression::make_nil(imp->location());
2868}
2869
2870// Make a nil expression.
2871
2872Expression*
2873Expression::make_nil(source_location location)
2874{
2875 return new Nil_expression(location);
2876}
2877
2878// The value of the predeclared constant iota. This is little more
2879// than a marker. This will be lowered to an integer in
2880// Const_expression::do_lower, which is where we know the value that
2881// it should have.
2882
2883class Iota_expression : public Parser_expression
2884{
2885 public:
2886 Iota_expression(source_location location)
2887 : Parser_expression(EXPRESSION_IOTA, location)
2888 { }
2889
2890 protected:
2891 Expression*
2892 do_lower(Gogo*, Named_object*, int)
2893 { gcc_unreachable(); }
2894
2895 // There should only ever be one of these.
2896 Expression*
2897 do_copy()
2898 { gcc_unreachable(); }
2899};
2900
2901// Make an iota expression. This is only called for one case: the
2902// value of the predeclared constant iota.
2903
2904Expression*
2905Expression::make_iota()
2906{
2907 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2908 return &iota_expression;
2909}
2910
2911// A type conversion expression.
2912
2913class Type_conversion_expression : public Expression
2914{
2915 public:
2916 Type_conversion_expression(Type* type, Expression* expr,
2917 source_location location)
2918 : Expression(EXPRESSION_CONVERSION, location),
2919 type_(type), expr_(expr), may_convert_function_types_(false)
2920 { }
2921
2922 // Return the type to which we are converting.
2923 Type*
2924 type() const
2925 { return this->type_; }
2926
2927 // Return the expression which we are converting.
2928 Expression*
2929 expr() const
2930 { return this->expr_; }
2931
2932 // Permit converting from one function type to another. This is
2933 // used internally for method expressions.
2934 void
2935 set_may_convert_function_types()
2936 {
2937 this->may_convert_function_types_ = true;
2938 }
2939
2940 // Import a type conversion expression.
2941 static Expression*
2942 do_import(Import*);
2943
2944 protected:
2945 int
2946 do_traverse(Traverse* traverse);
2947
2948 Expression*
2949 do_lower(Gogo*, Named_object*, int);
2950
2951 bool
2952 do_is_constant() const
2953 { return this->expr_->is_constant(); }
2954
2955 bool
2956 do_integer_constant_value(bool, mpz_t, Type**) const;
2957
2958 bool
2959 do_float_constant_value(mpfr_t, Type**) const;
2960
2961 bool
2962 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2963
2964 bool
2965 do_string_constant_value(std::string*) const;
2966
2967 Type*
2968 do_type()
2969 { return this->type_; }
2970
2971 void
2972 do_determine_type(const Type_context*)
2973 {
2974 Type_context subcontext(this->type_, false);
2975 this->expr_->determine_type(&subcontext);
2976 }
2977
2978 void
2979 do_check_types(Gogo*);
2980
2981 Expression*
2982 do_copy()
2983 {
2984 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2985 this->location());
2986 }
2987
2988 tree
2989 do_get_tree(Translate_context* context);
2990
2991 void
2992 do_export(Export*) const;
2993
2994 private:
2995 // The type to convert to.
2996 Type* type_;
2997 // The expression to convert.
2998 Expression* expr_;
2999 // True if this is permitted to convert function types. This is
3000 // used internally for method expressions.
3001 bool may_convert_function_types_;
3002};
3003
3004// Traversal.
3005
3006int
3007Type_conversion_expression::do_traverse(Traverse* traverse)
3008{
3009 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3010 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3011 return TRAVERSE_EXIT;
3012 return TRAVERSE_CONTINUE;
3013}
3014
3015// Convert to a constant at lowering time.
3016
3017Expression*
3018Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
3019{
3020 Type* type = this->type_;
3021 Expression* val = this->expr_;
3022 source_location location = this->location();
3023
3024 if (type->integer_type() != NULL)
3025 {
3026 mpz_t ival;
3027 mpz_init(ival);
3028 Type* dummy;
3029 if (val->integer_constant_value(false, ival, &dummy))
3030 {
3031 if (!Integer_expression::check_constant(ival, type, location))
3032 mpz_set_ui(ival, 0);
3033 Expression* ret = Expression::make_integer(&ival, type, location);
3034 mpz_clear(ival);
3035 return ret;
3036 }
3037
3038 mpfr_t fval;
3039 mpfr_init(fval);
3040 if (val->float_constant_value(fval, &dummy))
3041 {
3042 if (!mpfr_integer_p(fval))
3043 {
3044 error_at(location,
3045 "floating point constant truncated to integer");
3046 return Expression::make_error(location);
3047 }
3048 mpfr_get_z(ival, fval, GMP_RNDN);
3049 if (!Integer_expression::check_constant(ival, type, location))
3050 mpz_set_ui(ival, 0);
3051 Expression* ret = Expression::make_integer(&ival, type, location);
3052 mpfr_clear(fval);
3053 mpz_clear(ival);
3054 return ret;
3055 }
3056 mpfr_clear(fval);
3057 mpz_clear(ival);
3058 }
3059
3060 if (type->float_type() != NULL)
3061 {
3062 mpfr_t fval;
3063 mpfr_init(fval);
3064 Type* dummy;
3065 if (val->float_constant_value(fval, &dummy))
3066 {
3067 if (!Float_expression::check_constant(fval, type, location))
3068 mpfr_set_ui(fval, 0, GMP_RNDN);
3069 Float_expression::constrain_float(fval, type);
3070 Expression *ret = Expression::make_float(&fval, type, location);
3071 mpfr_clear(fval);
3072 return ret;
3073 }
3074 mpfr_clear(fval);
3075 }
3076
3077 if (type->complex_type() != NULL)
3078 {
3079 mpfr_t real;
3080 mpfr_t imag;
3081 mpfr_init(real);
3082 mpfr_init(imag);
3083 Type* dummy;
3084 if (val->complex_constant_value(real, imag, &dummy))
3085 {
3086 if (!Complex_expression::check_constant(real, imag, type, location))
3087 {
3088 mpfr_set_ui(real, 0, GMP_RNDN);
3089 mpfr_set_ui(imag, 0, GMP_RNDN);
3090 }
3091 Complex_expression::constrain_complex(real, imag, type);
3092 Expression* ret = Expression::make_complex(&real, &imag, type,
3093 location);
3094 mpfr_clear(real);
3095 mpfr_clear(imag);
3096 return ret;
3097 }
3098 mpfr_clear(real);
3099 mpfr_clear(imag);
3100 }
3101
3102 if (type->is_open_array_type() && type->named_type() == NULL)
3103 {
3104 Type* element_type = type->array_type()->element_type()->forwarded();
3105 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3106 bool is_int = element_type == Type::lookup_integer_type("int");
3107 if (is_byte || is_int)
3108 {
3109 std::string s;
3110 if (val->string_constant_value(&s))
3111 {
3112 Expression_list* vals = new Expression_list();
3113 if (is_byte)
3114 {
3115 for (std::string::const_iterator p = s.begin();
3116 p != s.end();
3117 p++)
3118 {
3119 mpz_t val;
3120 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3121 Expression* v = Expression::make_integer(&val,
3122 element_type,
3123 location);
3124 vals->push_back(v);
3125 mpz_clear(val);
3126 }
3127 }
3128 else
3129 {
3130 const char *p = s.data();
3131 const char *pend = s.data() + s.length();
3132 while (p < pend)
3133 {
3134 unsigned int c;
3135 int adv = Lex::fetch_char(p, &c);
3136 if (adv == 0)
3137 {
3138 warning_at(this->location(), 0,
3139 "invalid UTF-8 encoding");
3140 adv = 1;
3141 }
3142 p += adv;
3143 mpz_t val;
3144 mpz_init_set_ui(val, c);
3145 Expression* v = Expression::make_integer(&val,
3146 element_type,
3147 location);
3148 vals->push_back(v);
3149 mpz_clear(val);
3150 }
3151 }
3152
3153 return Expression::make_slice_composite_literal(type, vals,
3154 location);
3155 }
3156 }
3157 }
3158
3159 return this;
3160}
3161
3162// Return the constant integer value if there is one.
3163
3164bool
3165Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3166 mpz_t val,
3167 Type** ptype) const
3168{
3169 if (this->type_->integer_type() == NULL)
3170 return false;
3171
3172 mpz_t ival;
3173 mpz_init(ival);
3174 Type* dummy;
3175 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3176 {
3177 if (!Integer_expression::check_constant(ival, this->type_,
3178 this->location()))
3179 {
3180 mpz_clear(ival);
3181 return false;
3182 }
3183 mpz_set(val, ival);
3184 mpz_clear(ival);
3185 *ptype = this->type_;
3186 return true;
3187 }
3188 mpz_clear(ival);
3189
3190 mpfr_t fval;
3191 mpfr_init(fval);
3192 if (this->expr_->float_constant_value(fval, &dummy))
3193 {
3194 mpfr_get_z(val, fval, GMP_RNDN);
3195 mpfr_clear(fval);
3196 if (!Integer_expression::check_constant(val, this->type_,
3197 this->location()))
3198 return false;
3199 *ptype = this->type_;
3200 return true;
3201 }
3202 mpfr_clear(fval);
3203
3204 return false;
3205}
3206
3207// Return the constant floating point value if there is one.
3208
3209bool
3210Type_conversion_expression::do_float_constant_value(mpfr_t val,
3211 Type** ptype) const
3212{
3213 if (this->type_->float_type() == NULL)
3214 return false;
3215
3216 mpfr_t fval;
3217 mpfr_init(fval);
3218 Type* dummy;
3219 if (this->expr_->float_constant_value(fval, &dummy))
3220 {
3221 if (!Float_expression::check_constant(fval, this->type_,
3222 this->location()))
3223 {
3224 mpfr_clear(fval);
3225 return false;
3226 }
3227 mpfr_set(val, fval, GMP_RNDN);
3228 mpfr_clear(fval);
3229 Float_expression::constrain_float(val, this->type_);
3230 *ptype = this->type_;
3231 return true;
3232 }
3233 mpfr_clear(fval);
3234
3235 return false;
3236}
3237
3238// Return the constant complex value if there is one.
3239
3240bool
3241Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3242 mpfr_t imag,
3243 Type **ptype) const
3244{
3245 if (this->type_->complex_type() == NULL)
3246 return false;
3247
3248 mpfr_t rval;
3249 mpfr_t ival;
3250 mpfr_init(rval);
3251 mpfr_init(ival);
3252 Type* dummy;
3253 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3254 {
3255 if (!Complex_expression::check_constant(rval, ival, this->type_,
3256 this->location()))
3257 {
3258 mpfr_clear(rval);
3259 mpfr_clear(ival);
3260 return false;
3261 }
3262 mpfr_set(real, rval, GMP_RNDN);
3263 mpfr_set(imag, ival, GMP_RNDN);
3264 mpfr_clear(rval);
3265 mpfr_clear(ival);
3266 Complex_expression::constrain_complex(real, imag, this->type_);
3267 *ptype = this->type_;
3268 return true;
3269 }
3270 mpfr_clear(rval);
3271 mpfr_clear(ival);
3272
3273 return false;
3274}
3275
3276// Return the constant string value if there is one.
3277
3278bool
3279Type_conversion_expression::do_string_constant_value(std::string* val) const
3280{
3281 if (this->type_->is_string_type()
3282 && this->expr_->type()->integer_type() != NULL)
3283 {
3284 mpz_t ival;
3285 mpz_init(ival);
3286 Type* dummy;
3287 if (this->expr_->integer_constant_value(false, ival, &dummy))
3288 {
3289 unsigned long ulval = mpz_get_ui(ival);
3290 if (mpz_cmp_ui(ival, ulval) == 0)
3291 {
3292 Lex::append_char(ulval, true, val, this->location());
3293 mpz_clear(ival);
3294 return true;
3295 }
3296 }
3297 mpz_clear(ival);
3298 }
3299
3300 // FIXME: Could handle conversion from const []int here.
3301
3302 return false;
3303}
3304
3305// Check that types are convertible.
3306
3307void
3308Type_conversion_expression::do_check_types(Gogo*)
3309{
3310 Type* type = this->type_;
3311 Type* expr_type = this->expr_->type();
3312 std::string reason;
3313
842f6425 3314 if (type->is_error_type()
3315 || type->is_undefined()
3316 || expr_type->is_error_type()
3317 || expr_type->is_undefined())
3318 {
3319 // Make sure we emit an error for an undefined type.
3320 type->base();
3321 expr_type->base();
3322 this->set_is_error();
3323 return;
3324 }
3325
e440a328 3326 if (this->may_convert_function_types_
3327 && type->function_type() != NULL
3328 && expr_type->function_type() != NULL)
3329 return;
3330
3331 if (Type::are_convertible(type, expr_type, &reason))
3332 return;
3333
3334 error_at(this->location(), "%s", reason.c_str());
3335 this->set_is_error();
3336}
3337
3338// Get a tree for a type conversion.
3339
3340tree
3341Type_conversion_expression::do_get_tree(Translate_context* context)
3342{
3343 Gogo* gogo = context->gogo();
3344 tree type_tree = this->type_->get_tree(gogo);
3345 tree expr_tree = this->expr_->get_tree(context);
3346
3347 if (type_tree == error_mark_node
3348 || expr_tree == error_mark_node
3349 || TREE_TYPE(expr_tree) == error_mark_node)
3350 return error_mark_node;
3351
3352 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3353 return fold_convert(type_tree, expr_tree);
3354
3355 Type* type = this->type_;
3356 Type* expr_type = this->expr_->type();
3357 tree ret;
3358 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3359 ret = Expression::convert_for_assignment(context, type, expr_type,
3360 expr_tree, this->location());
3361 else if (type->integer_type() != NULL)
3362 {
3363 if (expr_type->integer_type() != NULL
3364 || expr_type->float_type() != NULL
3365 || expr_type->is_unsafe_pointer_type())
3366 ret = fold(convert_to_integer(type_tree, expr_tree));
3367 else
3368 gcc_unreachable();
3369 }
3370 else if (type->float_type() != NULL)
3371 {
3372 if (expr_type->integer_type() != NULL
3373 || expr_type->float_type() != NULL)
3374 ret = fold(convert_to_real(type_tree, expr_tree));
3375 else
3376 gcc_unreachable();
3377 }
3378 else if (type->complex_type() != NULL)
3379 {
3380 if (expr_type->complex_type() != NULL)
3381 ret = fold(convert_to_complex(type_tree, expr_tree));
3382 else
3383 gcc_unreachable();
3384 }
3385 else if (type->is_string_type()
3386 && expr_type->integer_type() != NULL)
3387 {
3388 expr_tree = fold_convert(integer_type_node, expr_tree);
3389 if (host_integerp(expr_tree, 0))
3390 {
3391 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3392 std::string s;
3393 Lex::append_char(intval, true, &s, this->location());
3394 Expression* se = Expression::make_string(s, this->location());
3395 return se->get_tree(context);
3396 }
3397
3398 static tree int_to_string_fndecl;
3399 ret = Gogo::call_builtin(&int_to_string_fndecl,
3400 this->location(),
3401 "__go_int_to_string",
3402 1,
3403 type_tree,
3404 integer_type_node,
3405 fold_convert(integer_type_node, expr_tree));
3406 }
3407 else if (type->is_string_type()
3408 && (expr_type->array_type() != NULL
3409 || (expr_type->points_to() != NULL
3410 && expr_type->points_to()->array_type() != NULL)))
3411 {
3412 Type* t = expr_type;
3413 if (t->points_to() != NULL)
3414 {
3415 t = t->points_to();
3416 expr_tree = build_fold_indirect_ref(expr_tree);
3417 }
3418 if (!DECL_P(expr_tree))
3419 expr_tree = save_expr(expr_tree);
3420 Array_type* a = t->array_type();
3421 Type* e = a->element_type()->forwarded();
3422 gcc_assert(e->integer_type() != NULL);
3423 tree valptr = fold_convert(const_ptr_type_node,
3424 a->value_pointer_tree(gogo, expr_tree));
3425 tree len = a->length_tree(gogo, expr_tree);
3426 len = fold_convert_loc(this->location(), size_type_node, len);
3427 if (e->integer_type()->is_unsigned()
3428 && e->integer_type()->bits() == 8)
3429 {
3430 static tree byte_array_to_string_fndecl;
3431 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3432 this->location(),
3433 "__go_byte_array_to_string",
3434 2,
3435 type_tree,
3436 const_ptr_type_node,
3437 valptr,
3438 size_type_node,
3439 len);
3440 }
3441 else
3442 {
3443 gcc_assert(e == Type::lookup_integer_type("int"));
3444 static tree int_array_to_string_fndecl;
3445 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3446 this->location(),
3447 "__go_int_array_to_string",
3448 2,
3449 type_tree,
3450 const_ptr_type_node,
3451 valptr,
3452 size_type_node,
3453 len);
3454 }
3455 }
3456 else if (type->is_open_array_type() && expr_type->is_string_type())
3457 {
3458 Type* e = type->array_type()->element_type()->forwarded();
3459 gcc_assert(e->integer_type() != NULL);
3460 if (e->integer_type()->is_unsigned()
3461 && e->integer_type()->bits() == 8)
3462 {
3463 static tree string_to_byte_array_fndecl;
3464 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3465 this->location(),
3466 "__go_string_to_byte_array",
3467 1,
3468 type_tree,
3469 TREE_TYPE(expr_tree),
3470 expr_tree);
3471 }
3472 else
3473 {
3474 gcc_assert(e == Type::lookup_integer_type("int"));
3475 static tree string_to_int_array_fndecl;
3476 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3477 this->location(),
3478 "__go_string_to_int_array",
3479 1,
3480 type_tree,
3481 TREE_TYPE(expr_tree),
3482 expr_tree);
3483 }
3484 }
3485 else if ((type->is_unsafe_pointer_type()
3486 && expr_type->points_to() != NULL)
3487 || (expr_type->is_unsafe_pointer_type()
3488 && type->points_to() != NULL))
3489 ret = fold_convert(type_tree, expr_tree);
3490 else if (type->is_unsafe_pointer_type()
3491 && expr_type->integer_type() != NULL)
3492 ret = convert_to_pointer(type_tree, expr_tree);
3493 else if (this->may_convert_function_types_
3494 && type->function_type() != NULL
3495 && expr_type->function_type() != NULL)
3496 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3497 else
3498 ret = Expression::convert_for_assignment(context, type, expr_type,
3499 expr_tree, this->location());
3500
3501 return ret;
3502}
3503
3504// Output a type conversion in a constant expression.
3505
3506void
3507Type_conversion_expression::do_export(Export* exp) const
3508{
3509 exp->write_c_string("convert(");
3510 exp->write_type(this->type_);
3511 exp->write_c_string(", ");
3512 this->expr_->export_expression(exp);
3513 exp->write_c_string(")");
3514}
3515
3516// Import a type conversion or a struct construction.
3517
3518Expression*
3519Type_conversion_expression::do_import(Import* imp)
3520{
3521 imp->require_c_string("convert(");
3522 Type* type = imp->read_type();
3523 imp->require_c_string(", ");
3524 Expression* val = Expression::import_expression(imp);
3525 imp->require_c_string(")");
3526 return Expression::make_cast(type, val, imp->location());
3527}
3528
3529// Make a type cast expression.
3530
3531Expression*
3532Expression::make_cast(Type* type, Expression* val, source_location location)
3533{
3534 if (type->is_error_type() || val->is_error_expression())
3535 return Expression::make_error(location);
3536 return new Type_conversion_expression(type, val, location);
3537}
3538
3539// Unary expressions.
3540
3541class Unary_expression : public Expression
3542{
3543 public:
3544 Unary_expression(Operator op, Expression* expr, source_location location)
3545 : Expression(EXPRESSION_UNARY, location),
3546 op_(op), escapes_(true), expr_(expr)
3547 { }
3548
3549 // Return the operator.
3550 Operator
3551 op() const
3552 { return this->op_; }
3553
3554 // Return the operand.
3555 Expression*
3556 operand() const
3557 { return this->expr_; }
3558
3559 // Record that an address expression does not escape.
3560 void
3561 set_does_not_escape()
3562 {
3563 gcc_assert(this->op_ == OPERATOR_AND);
3564 this->escapes_ = false;
3565 }
3566
3567 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3568 // could be done, false if not.
3569 static bool
3570 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3571 source_location);
3572
3573 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3574 // could be done, false if not.
3575 static bool
3576 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3577
3578 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3579 // true if this could be done, false if not.
3580 static bool
3581 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3582 mpfr_t imag);
3583
3584 static Expression*
3585 do_import(Import*);
3586
3587 protected:
3588 int
3589 do_traverse(Traverse* traverse)
3590 { return Expression::traverse(&this->expr_, traverse); }
3591
3592 Expression*
3593 do_lower(Gogo*, Named_object*, int);
3594
3595 bool
3596 do_is_constant() const;
3597
3598 bool
3599 do_integer_constant_value(bool, mpz_t, Type**) const;
3600
3601 bool
3602 do_float_constant_value(mpfr_t, Type**) const;
3603
3604 bool
3605 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3606
3607 Type*
3608 do_type();
3609
3610 void
3611 do_determine_type(const Type_context*);
3612
3613 void
3614 do_check_types(Gogo*);
3615
3616 Expression*
3617 do_copy()
3618 {
3619 return Expression::make_unary(this->op_, this->expr_->copy(),
3620 this->location());
3621 }
3622
3623 bool
3624 do_is_addressable() const
3625 { return this->op_ == OPERATOR_MULT; }
3626
3627 tree
3628 do_get_tree(Translate_context*);
3629
3630 void
3631 do_export(Export*) const;
3632
3633 private:
3634 // The unary operator to apply.
3635 Operator op_;
3636 // Normally true. False if this is an address expression which does
3637 // not escape the current function.
3638 bool escapes_;
3639 // The operand.
3640 Expression* expr_;
3641};
3642
3643// If we are taking the address of a composite literal, and the
3644// contents are not constant, then we want to make a heap composite
3645// instead.
3646
3647Expression*
3648Unary_expression::do_lower(Gogo*, Named_object*, int)
3649{
3650 source_location loc = this->location();
3651 Operator op = this->op_;
3652 Expression* expr = this->expr_;
3653
3654 if (op == OPERATOR_MULT && expr->is_type_expression())
3655 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3656
3657 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3658 // moving x to the heap. FIXME: Is it worth doing a real escape
3659 // analysis here? This case is found in math/unsafe.go and is
3660 // therefore worth special casing.
3661 if (op == OPERATOR_MULT)
3662 {
3663 Expression* e = expr;
3664 while (e->classification() == EXPRESSION_CONVERSION)
3665 {
3666 Type_conversion_expression* te
3667 = static_cast<Type_conversion_expression*>(e);
3668 e = te->expr();
3669 }
3670
3671 if (e->classification() == EXPRESSION_UNARY)
3672 {
3673 Unary_expression* ue = static_cast<Unary_expression*>(e);
3674 if (ue->op_ == OPERATOR_AND)
3675 {
3676 if (e == expr)
3677 {
3678 // *&x == x.
3679 return ue->expr_;
3680 }
3681 ue->set_does_not_escape();
3682 }
3683 }
3684 }
3685
3686 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3687 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3688 {
3689 Expression* ret = NULL;
3690
3691 mpz_t eval;
3692 mpz_init(eval);
3693 Type* etype;
3694 if (expr->integer_constant_value(false, eval, &etype))
3695 {
3696 mpz_t val;
3697 mpz_init(val);
3698 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3699 ret = Expression::make_integer(&val, etype, loc);
3700 mpz_clear(val);
3701 }
3702 mpz_clear(eval);
3703 if (ret != NULL)
3704 return ret;
3705
3706 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3707 {
3708 mpfr_t fval;
3709 mpfr_init(fval);
3710 Type* ftype;
3711 if (expr->float_constant_value(fval, &ftype))
3712 {
3713 mpfr_t val;
3714 mpfr_init(val);
3715 if (Unary_expression::eval_float(op, fval, val))
3716 ret = Expression::make_float(&val, ftype, loc);
3717 mpfr_clear(val);
3718 }
3719 if (ret != NULL)
3720 {
3721 mpfr_clear(fval);
3722 return ret;
3723 }
3724
3725 mpfr_t ival;
3726 mpfr_init(ival);
3727 if (expr->complex_constant_value(fval, ival, &ftype))
3728 {
3729 mpfr_t real;
3730 mpfr_t imag;
3731 mpfr_init(real);
3732 mpfr_init(imag);
3733 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3734 ret = Expression::make_complex(&real, &imag, ftype, loc);
3735 mpfr_clear(real);
3736 mpfr_clear(imag);
3737 }
3738 mpfr_clear(ival);
3739 mpfr_clear(fval);
3740 if (ret != NULL)
3741 return ret;
3742 }
3743 }
3744
3745 return this;
3746}
3747
3748// Return whether a unary expression is a constant.
3749
3750bool
3751Unary_expression::do_is_constant() const
3752{
3753 if (this->op_ == OPERATOR_MULT)
3754 {
3755 // Indirecting through a pointer is only constant if the object
3756 // to which the expression points is constant, but we currently
3757 // have no way to determine that.
3758 return false;
3759 }
3760 else if (this->op_ == OPERATOR_AND)
3761 {
3762 // Taking the address of a variable is constant if it is a
3763 // global variable, not constant otherwise. In other cases
3764 // taking the address is probably not a constant.
3765 Var_expression* ve = this->expr_->var_expression();
3766 if (ve != NULL)
3767 {
3768 Named_object* no = ve->named_object();
3769 return no->is_variable() && no->var_value()->is_global();
3770 }
3771 return false;
3772 }
3773 else
3774 return this->expr_->is_constant();
3775}
3776
3777// Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3778// UVAL, if known; it may be NULL. Return true if this could be done,
3779// false if not.
3780
3781bool
3782Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3783 source_location location)
3784{
3785 switch (op)
3786 {
3787 case OPERATOR_PLUS:
3788 mpz_set(val, uval);
3789 return true;
3790 case OPERATOR_MINUS:
3791 mpz_neg(val, uval);
3792 return Integer_expression::check_constant(val, utype, location);
3793 case OPERATOR_NOT:
3794 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3795 return true;
3796 case OPERATOR_XOR:
3797 if (utype == NULL
3798 || utype->integer_type() == NULL
3799 || utype->integer_type()->is_abstract())
3800 mpz_com(val, uval);
3801 else
3802 {
3803 // The number of HOST_WIDE_INTs that it takes to represent
3804 // UVAL.
3805 size_t count = ((mpz_sizeinbase(uval, 2)
3806 + HOST_BITS_PER_WIDE_INT
3807 - 1)
3808 / HOST_BITS_PER_WIDE_INT);
3809
3810 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3811 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3812
3813 size_t ecount;
3814 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3815 gcc_assert(ecount <= count);
3816
3817 // Trim down to the number of words required by the type.
3818 size_t obits = utype->integer_type()->bits();
3819 if (!utype->integer_type()->is_unsigned())
3820 ++obits;
3821 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3822 / HOST_BITS_PER_WIDE_INT);
3823 gcc_assert(ocount <= ocount);
3824
3825 for (size_t i = 0; i < ocount; ++i)
3826 phwi[i] = ~phwi[i];
3827
3828 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3829 if (clearbits != 0)
3830 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3831 >> clearbits);
3832
3833 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3834
3835 delete[] phwi;
3836 }
3837 return Integer_expression::check_constant(val, utype, location);
3838 case OPERATOR_AND:
3839 case OPERATOR_MULT:
3840 return false;
3841 default:
3842 gcc_unreachable();
3843 }
3844}
3845
3846// Apply unary opcode OP to UVAL, setting VAL. Return true if this
3847// could be done, false if not.
3848
3849bool
3850Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3851{
3852 switch (op)
3853 {
3854 case OPERATOR_PLUS:
3855 mpfr_set(val, uval, GMP_RNDN);
3856 return true;
3857 case OPERATOR_MINUS:
3858 mpfr_neg(val, uval, GMP_RNDN);
3859 return true;
3860 case OPERATOR_NOT:
3861 case OPERATOR_XOR:
3862 case OPERATOR_AND:
3863 case OPERATOR_MULT:
3864 return false;
3865 default:
3866 gcc_unreachable();
3867 }
3868}
3869
3870// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3871// if this could be done, false if not.
3872
3873bool
3874Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3875 mpfr_t real, mpfr_t imag)
3876{
3877 switch (op)
3878 {
3879 case OPERATOR_PLUS:
3880 mpfr_set(real, rval, GMP_RNDN);
3881 mpfr_set(imag, ival, GMP_RNDN);
3882 return true;
3883 case OPERATOR_MINUS:
3884 mpfr_neg(real, rval, GMP_RNDN);
3885 mpfr_neg(imag, ival, GMP_RNDN);
3886 return true;
3887 case OPERATOR_NOT:
3888 case OPERATOR_XOR:
3889 case OPERATOR_AND:
3890 case OPERATOR_MULT:
3891 return false;
3892 default:
3893 gcc_unreachable();
3894 }
3895}
3896
3897// Return the integral constant value of a unary expression, if it has one.
3898
3899bool
3900Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3901 Type** ptype) const
3902{
3903 mpz_t uval;
3904 mpz_init(uval);
3905 bool ret;
3906 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3907 ret = false;
3908 else
3909 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3910 this->location());
3911 mpz_clear(uval);
3912 return ret;
3913}
3914
3915// Return the floating point constant value of a unary expression, if
3916// it has one.
3917
3918bool
3919Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3920{
3921 mpfr_t uval;
3922 mpfr_init(uval);
3923 bool ret;
3924 if (!this->expr_->float_constant_value(uval, ptype))
3925 ret = false;
3926 else
3927 ret = Unary_expression::eval_float(this->op_, uval, val);
3928 mpfr_clear(uval);
3929 return ret;
3930}
3931
3932// Return the complex constant value of a unary expression, if it has
3933// one.
3934
3935bool
3936Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3937 Type** ptype) const
3938{
3939 mpfr_t rval;
3940 mpfr_t ival;
3941 mpfr_init(rval);
3942 mpfr_init(ival);
3943 bool ret;
3944 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3945 ret = false;
3946 else
3947 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3948 mpfr_clear(rval);
3949 mpfr_clear(ival);
3950 return ret;
3951}
3952
3953// Return the type of a unary expression.
3954
3955Type*
3956Unary_expression::do_type()
3957{
3958 switch (this->op_)
3959 {
3960 case OPERATOR_PLUS:
3961 case OPERATOR_MINUS:
3962 case OPERATOR_NOT:
3963 case OPERATOR_XOR:
3964 return this->expr_->type();
3965
3966 case OPERATOR_AND:
3967 return Type::make_pointer_type(this->expr_->type());
3968
3969 case OPERATOR_MULT:
3970 {
3971 Type* subtype = this->expr_->type();
3972 Type* points_to = subtype->points_to();
3973 if (points_to == NULL)
3974 return Type::make_error_type();
3975 return points_to;
3976 }
3977
3978 default:
3979 gcc_unreachable();
3980 }
3981}
3982
3983// Determine abstract types for a unary expression.
3984
3985void
3986Unary_expression::do_determine_type(const Type_context* context)
3987{
3988 switch (this->op_)
3989 {
3990 case OPERATOR_PLUS:
3991 case OPERATOR_MINUS:
3992 case OPERATOR_NOT:
3993 case OPERATOR_XOR:
3994 this->expr_->determine_type(context);
3995 break;
3996
3997 case OPERATOR_AND:
3998 // Taking the address of something.
3999 {
4000 Type* subtype = (context->type == NULL
4001 ? NULL
4002 : context->type->points_to());
4003 Type_context subcontext(subtype, false);
4004 this->expr_->determine_type(&subcontext);
4005 }
4006 break;
4007
4008 case OPERATOR_MULT:
4009 // Indirecting through a pointer.
4010 {
4011 Type* subtype = (context->type == NULL
4012 ? NULL
4013 : Type::make_pointer_type(context->type));
4014 Type_context subcontext(subtype, false);
4015 this->expr_->determine_type(&subcontext);
4016 }
4017 break;
4018
4019 default:
4020 gcc_unreachable();
4021 }
4022}
4023
4024// Check types for a unary expression.
4025
4026void
4027Unary_expression::do_check_types(Gogo*)
4028{
9fe897ef 4029 Type* type = this->expr_->type();
4030 if (type->is_error_type())
4031 {
4032 this->set_is_error();
4033 return;
4034 }
4035
e440a328 4036 switch (this->op_)
4037 {
4038 case OPERATOR_PLUS:
4039 case OPERATOR_MINUS:
9fe897ef 4040 if (type->integer_type() == NULL
4041 && type->float_type() == NULL
4042 && type->complex_type() == NULL)
4043 this->report_error(_("expected numeric type"));
e440a328 4044 break;
4045
4046 case OPERATOR_NOT:
4047 case OPERATOR_XOR:
9fe897ef 4048 if (type->integer_type() == NULL
4049 && !type->is_boolean_type())
4050 this->report_error(_("expected integer or boolean type"));
e440a328 4051 break;
4052
4053 case OPERATOR_AND:
4054 if (!this->expr_->is_addressable())
4055 this->report_error(_("invalid operand for unary %<&%>"));
4056 else
4057 this->expr_->address_taken(this->escapes_);
4058 break;
4059
4060 case OPERATOR_MULT:
4061 // Indirecting through a pointer.
9fe897ef 4062 if (type->points_to() == NULL)
4063 this->report_error(_("expected pointer"));
e440a328 4064 break;
4065
4066 default:
4067 gcc_unreachable();
4068 }
4069}
4070
4071// Get a tree for a unary expression.
4072
4073tree
4074Unary_expression::do_get_tree(Translate_context* context)
4075{
4076 tree expr = this->expr_->get_tree(context);
4077 if (expr == error_mark_node)
4078 return error_mark_node;
4079
4080 source_location loc = this->location();
4081 switch (this->op_)
4082 {
4083 case OPERATOR_PLUS:
4084 return expr;
4085
4086 case OPERATOR_MINUS:
4087 {
4088 tree type = TREE_TYPE(expr);
4089 tree compute_type = excess_precision_type(type);
4090 if (compute_type != NULL_TREE)
4091 expr = ::convert(compute_type, expr);
4092 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4093 (compute_type != NULL_TREE
4094 ? compute_type
4095 : type),
4096 expr);
4097 if (compute_type != NULL_TREE)
4098 ret = ::convert(type, ret);
4099 return ret;
4100 }
4101
4102 case OPERATOR_NOT:
4103 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4104 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4105 else
4106 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4107 build_int_cst(TREE_TYPE(expr), 0));
4108
4109 case OPERATOR_XOR:
4110 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4111
4112 case OPERATOR_AND:
4113 // We should not see a non-constant constructor here; cases
4114 // where we would see one should have been moved onto the heap
4115 // at parse time. Taking the address of a nonconstant
4116 // constructor will not do what the programmer expects.
4117 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4118 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4119
4120 // Build a decl for a constant constructor.
4121 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4122 {
4123 tree decl = build_decl(this->location(), VAR_DECL,
4124 create_tmp_var_name("C"), TREE_TYPE(expr));
4125 DECL_EXTERNAL(decl) = 0;
4126 TREE_PUBLIC(decl) = 0;
4127 TREE_READONLY(decl) = 1;
4128 TREE_CONSTANT(decl) = 1;
4129 TREE_STATIC(decl) = 1;
4130 TREE_ADDRESSABLE(decl) = 1;
4131 DECL_ARTIFICIAL(decl) = 1;
4132 DECL_INITIAL(decl) = expr;
4133 rest_of_decl_compilation(decl, 1, 0);
4134 expr = decl;
4135 }
4136
4137 return build_fold_addr_expr_loc(loc, expr);
4138
4139 case OPERATOR_MULT:
4140 {
4141 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4142
4143 // If we are dereferencing the pointer to a large struct, we
4144 // need to check for nil. We don't bother to check for small
4145 // structs because we expect the system to crash on a nil
4146 // pointer dereference.
4147 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4148 if (s == -1 || s >= 4096)
4149 {
4150 if (!DECL_P(expr))
4151 expr = save_expr(expr);
4152 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4153 expr,
4154 fold_convert(TREE_TYPE(expr),
4155 null_pointer_node));
4156 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4157 loc);
4158 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4159 build3(COND_EXPR, void_type_node,
4160 compare, crash, NULL_TREE),
4161 expr);
4162 }
4163
4164 // If the type of EXPR is a recursive pointer type, then we
4165 // need to insert a cast before indirecting.
4166 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4167 {
4168 Type* pt = this->expr_->type()->points_to();
4169 tree ind = pt->get_tree(context->gogo());
4170 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4171 }
4172
4173 return build_fold_indirect_ref_loc(loc, expr);
4174 }
4175
4176 default:
4177 gcc_unreachable();
4178 }
4179}
4180
4181// Export a unary expression.
4182
4183void
4184Unary_expression::do_export(Export* exp) const
4185{
4186 switch (this->op_)
4187 {
4188 case OPERATOR_PLUS:
4189 exp->write_c_string("+ ");
4190 break;
4191 case OPERATOR_MINUS:
4192 exp->write_c_string("- ");
4193 break;
4194 case OPERATOR_NOT:
4195 exp->write_c_string("! ");
4196 break;
4197 case OPERATOR_XOR:
4198 exp->write_c_string("^ ");
4199 break;
4200 case OPERATOR_AND:
4201 case OPERATOR_MULT:
4202 default:
4203 gcc_unreachable();
4204 }
4205 this->expr_->export_expression(exp);
4206}
4207
4208// Import a unary expression.
4209
4210Expression*
4211Unary_expression::do_import(Import* imp)
4212{
4213 Operator op;
4214 switch (imp->get_char())
4215 {
4216 case '+':
4217 op = OPERATOR_PLUS;
4218 break;
4219 case '-':
4220 op = OPERATOR_MINUS;
4221 break;
4222 case '!':
4223 op = OPERATOR_NOT;
4224 break;
4225 case '^':
4226 op = OPERATOR_XOR;
4227 break;
4228 default:
4229 gcc_unreachable();
4230 }
4231 imp->require_c_string(" ");
4232 Expression* expr = Expression::import_expression(imp);
4233 return Expression::make_unary(op, expr, imp->location());
4234}
4235
4236// Make a unary expression.
4237
4238Expression*
4239Expression::make_unary(Operator op, Expression* expr, source_location location)
4240{
4241 return new Unary_expression(op, expr, location);
4242}
4243
4244// If this is an indirection through a pointer, return the expression
4245// being pointed through. Otherwise return this.
4246
4247Expression*
4248Expression::deref()
4249{
4250 if (this->classification_ == EXPRESSION_UNARY)
4251 {
4252 Unary_expression* ue = static_cast<Unary_expression*>(this);
4253 if (ue->op() == OPERATOR_MULT)
4254 return ue->operand();
4255 }
4256 return this;
4257}
4258
4259// Class Binary_expression.
4260
4261// Traversal.
4262
4263int
4264Binary_expression::do_traverse(Traverse* traverse)
4265{
4266 int t = Expression::traverse(&this->left_, traverse);
4267 if (t == TRAVERSE_EXIT)
4268 return TRAVERSE_EXIT;
4269 return Expression::traverse(&this->right_, traverse);
4270}
4271
4272// Compare integer constants according to OP.
4273
4274bool
4275Binary_expression::compare_integer(Operator op, mpz_t left_val,
4276 mpz_t right_val)
4277{
4278 int i = mpz_cmp(left_val, right_val);
4279 switch (op)
4280 {
4281 case OPERATOR_EQEQ:
4282 return i == 0;
4283 case OPERATOR_NOTEQ:
4284 return i != 0;
4285 case OPERATOR_LT:
4286 return i < 0;
4287 case OPERATOR_LE:
4288 return i <= 0;
4289 case OPERATOR_GT:
4290 return i > 0;
4291 case OPERATOR_GE:
4292 return i >= 0;
4293 default:
4294 gcc_unreachable();
4295 }
4296}
4297
4298// Compare floating point constants according to OP.
4299
4300bool
4301Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4302 mpfr_t right_val)
4303{
4304 int i;
4305 if (type == NULL)
4306 i = mpfr_cmp(left_val, right_val);
4307 else
4308 {
4309 mpfr_t lv;
4310 mpfr_init_set(lv, left_val, GMP_RNDN);
4311 mpfr_t rv;
4312 mpfr_init_set(rv, right_val, GMP_RNDN);
4313 Float_expression::constrain_float(lv, type);
4314 Float_expression::constrain_float(rv, type);
4315 i = mpfr_cmp(lv, rv);
4316 mpfr_clear(lv);
4317 mpfr_clear(rv);
4318 }
4319 switch (op)
4320 {
4321 case OPERATOR_EQEQ:
4322 return i == 0;
4323 case OPERATOR_NOTEQ:
4324 return i != 0;
4325 case OPERATOR_LT:
4326 return i < 0;
4327 case OPERATOR_LE:
4328 return i <= 0;
4329 case OPERATOR_GT:
4330 return i > 0;
4331 case OPERATOR_GE:
4332 return i >= 0;
4333 default:
4334 gcc_unreachable();
4335 }
4336}
4337
4338// Compare complex constants according to OP. Complex numbers may
4339// only be compared for equality.
4340
4341bool
4342Binary_expression::compare_complex(Operator op, Type* type,
4343 mpfr_t left_real, mpfr_t left_imag,
4344 mpfr_t right_real, mpfr_t right_imag)
4345{
4346 bool is_equal;
4347 if (type == NULL)
4348 is_equal = (mpfr_cmp(left_real, right_real) == 0
4349 && mpfr_cmp(left_imag, right_imag) == 0);
4350 else
4351 {
4352 mpfr_t lr;
4353 mpfr_t li;
4354 mpfr_init_set(lr, left_real, GMP_RNDN);
4355 mpfr_init_set(li, left_imag, GMP_RNDN);
4356 mpfr_t rr;
4357 mpfr_t ri;
4358 mpfr_init_set(rr, right_real, GMP_RNDN);
4359 mpfr_init_set(ri, right_imag, GMP_RNDN);
4360 Complex_expression::constrain_complex(lr, li, type);
4361 Complex_expression::constrain_complex(rr, ri, type);
4362 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4363 mpfr_clear(lr);
4364 mpfr_clear(li);
4365 mpfr_clear(rr);
4366 mpfr_clear(ri);
4367 }
4368 switch (op)
4369 {
4370 case OPERATOR_EQEQ:
4371 return is_equal;
4372 case OPERATOR_NOTEQ:
4373 return !is_equal;
4374 default:
4375 gcc_unreachable();
4376 }
4377}
4378
4379// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4380// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4381// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4382// this could be done, false if not.
4383
4384bool
4385Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4386 Type* right_type, mpz_t right_val,
4387 source_location location, mpz_t val)
4388{
4389 bool is_shift_op = false;
4390 switch (op)
4391 {
4392 case OPERATOR_OROR:
4393 case OPERATOR_ANDAND:
4394 case OPERATOR_EQEQ:
4395 case OPERATOR_NOTEQ:
4396 case OPERATOR_LT:
4397 case OPERATOR_LE:
4398 case OPERATOR_GT:
4399 case OPERATOR_GE:
4400 // These return boolean values. We should probably handle them
4401 // anyhow in case a type conversion is used on the result.
4402 return false;
4403 case OPERATOR_PLUS:
4404 mpz_add(val, left_val, right_val);
4405 break;
4406 case OPERATOR_MINUS:
4407 mpz_sub(val, left_val, right_val);
4408 break;
4409 case OPERATOR_OR:
4410 mpz_ior(val, left_val, right_val);
4411 break;
4412 case OPERATOR_XOR:
4413 mpz_xor(val, left_val, right_val);
4414 break;
4415 case OPERATOR_MULT:
4416 mpz_mul(val, left_val, right_val);
4417 break;
4418 case OPERATOR_DIV:
4419 if (mpz_sgn(right_val) != 0)
4420 mpz_tdiv_q(val, left_val, right_val);
4421 else
4422 {
4423 error_at(location, "division by zero");
4424 mpz_set_ui(val, 0);
4425 return true;
4426 }
4427 break;
4428 case OPERATOR_MOD:
4429 if (mpz_sgn(right_val) != 0)
4430 mpz_tdiv_r(val, left_val, right_val);
4431 else
4432 {
4433 error_at(location, "division by zero");
4434 mpz_set_ui(val, 0);
4435 return true;
4436 }
4437 break;
4438 case OPERATOR_LSHIFT:
4439 {
4440 unsigned long shift = mpz_get_ui(right_val);
a28c1598 4441 if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000)
e440a328 4442 {
4443 error_at(location, "shift count overflow");
4444 mpz_set_ui(val, 0);
4445 return true;
4446 }
4447 mpz_mul_2exp(val, left_val, shift);
4448 is_shift_op = true;
4449 break;
4450 }
4451 break;
4452 case OPERATOR_RSHIFT:
4453 {
4454 unsigned long shift = mpz_get_ui(right_val);
4455 if (mpz_cmp_ui(right_val, shift) != 0)
4456 {
4457 error_at(location, "shift count overflow");
4458 mpz_set_ui(val, 0);
4459 return true;
4460 }
4461 if (mpz_cmp_ui(left_val, 0) >= 0)
4462 mpz_tdiv_q_2exp(val, left_val, shift);
4463 else
4464 mpz_fdiv_q_2exp(val, left_val, shift);
4465 is_shift_op = true;
4466 break;
4467 }
4468 break;
4469 case OPERATOR_AND:
4470 mpz_and(val, left_val, right_val);
4471 break;
4472 case OPERATOR_BITCLEAR:
4473 {
4474 mpz_t tval;
4475 mpz_init(tval);
4476 mpz_com(tval, right_val);
4477 mpz_and(val, left_val, tval);
4478 mpz_clear(tval);
4479 }
4480 break;
4481 default:
4482 gcc_unreachable();
4483 }
4484
4485 Type* type = left_type;
4486 if (!is_shift_op)
4487 {
4488 if (type == NULL)
4489 type = right_type;
4490 else if (type != right_type && right_type != NULL)
4491 {
4492 if (type->is_abstract())
4493 type = right_type;
4494 else if (!right_type->is_abstract())
4495 {
4496 // This look like a type error which should be diagnosed
4497 // elsewhere. Don't do anything here, to avoid an
4498 // unhelpful chain of error messages.
4499 return true;
4500 }
4501 }
4502 }
4503
4504 if (type != NULL && !type->is_abstract())
4505 {
4506 // We have to check the operands too, as we have implicitly
4507 // coerced them to TYPE.
4508 if ((type != left_type
4509 && !Integer_expression::check_constant(left_val, type, location))
4510 || (!is_shift_op
4511 && type != right_type
4512 && !Integer_expression::check_constant(right_val, type,
4513 location))
4514 || !Integer_expression::check_constant(val, type, location))
4515 mpz_set_ui(val, 0);
4516 }
4517
4518 return true;
4519}
4520
4521// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4522// Return true if this could be done, false if not.
4523
4524bool
4525Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4526 Type* right_type, mpfr_t right_val,
4527 mpfr_t val, source_location location)
4528{
4529 switch (op)
4530 {
4531 case OPERATOR_OROR:
4532 case OPERATOR_ANDAND:
4533 case OPERATOR_EQEQ:
4534 case OPERATOR_NOTEQ:
4535 case OPERATOR_LT:
4536 case OPERATOR_LE:
4537 case OPERATOR_GT:
4538 case OPERATOR_GE:
4539 // These return boolean values. We should probably handle them
4540 // anyhow in case a type conversion is used on the result.
4541 return false;
4542 case OPERATOR_PLUS:
4543 mpfr_add(val, left_val, right_val, GMP_RNDN);
4544 break;
4545 case OPERATOR_MINUS:
4546 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4547 break;
4548 case OPERATOR_OR:
4549 case OPERATOR_XOR:
4550 case OPERATOR_AND:
4551 case OPERATOR_BITCLEAR:
4552 return false;
4553 case OPERATOR_MULT:
4554 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4555 break;
4556 case OPERATOR_DIV:
4557 if (mpfr_zero_p(right_val))
4558 error_at(location, "division by zero");
4559 mpfr_div(val, left_val, right_val, GMP_RNDN);
4560 break;
4561 case OPERATOR_MOD:
4562 return false;
4563 case OPERATOR_LSHIFT:
4564 case OPERATOR_RSHIFT:
4565 return false;
4566 default:
4567 gcc_unreachable();
4568 }
4569
4570 Type* type = left_type;
4571 if (type == NULL)
4572 type = right_type;
4573 else if (type != right_type && right_type != NULL)
4574 {
4575 if (type->is_abstract())
4576 type = right_type;
4577 else if (!right_type->is_abstract())
4578 {
4579 // This looks like a type error which should be diagnosed
4580 // elsewhere. Don't do anything here, to avoid an unhelpful
4581 // chain of error messages.
4582 return true;
4583 }
4584 }
4585
4586 if (type != NULL && !type->is_abstract())
4587 {
4588 if ((type != left_type
4589 && !Float_expression::check_constant(left_val, type, location))
4590 || (type != right_type
4591 && !Float_expression::check_constant(right_val, type,
4592 location))
4593 || !Float_expression::check_constant(val, type, location))
4594 mpfr_set_ui(val, 0, GMP_RNDN);
4595 }
4596
4597 return true;
4598}
4599
4600// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4601// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4602// could be done, false if not.
4603
4604bool
4605Binary_expression::eval_complex(Operator op, Type* left_type,
4606 mpfr_t left_real, mpfr_t left_imag,
4607 Type *right_type,
4608 mpfr_t right_real, mpfr_t right_imag,
4609 mpfr_t real, mpfr_t imag,
4610 source_location location)
4611{
4612 switch (op)
4613 {
4614 case OPERATOR_OROR:
4615 case OPERATOR_ANDAND:
4616 case OPERATOR_EQEQ:
4617 case OPERATOR_NOTEQ:
4618 case OPERATOR_LT:
4619 case OPERATOR_LE:
4620 case OPERATOR_GT:
4621 case OPERATOR_GE:
4622 // These return boolean values and must be handled differently.
4623 return false;
4624 case OPERATOR_PLUS:
4625 mpfr_add(real, left_real, right_real, GMP_RNDN);
4626 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4627 break;
4628 case OPERATOR_MINUS:
4629 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4630 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4631 break;
4632 case OPERATOR_OR:
4633 case OPERATOR_XOR:
4634 case OPERATOR_AND:
4635 case OPERATOR_BITCLEAR:
4636 return false;
4637 case OPERATOR_MULT:
4638 {
4639 // You might think that multiplying two complex numbers would
4640 // be simple, and you would be right, until you start to think
4641 // about getting the right answer for infinity. If one
4642 // operand here is infinity and the other is anything other
4643 // than zero or NaN, then we are going to wind up subtracting
4644 // two infinity values. That will give us a NaN, but the
4645 // correct answer is infinity.
4646
4647 mpfr_t lrrr;
4648 mpfr_init(lrrr);
4649 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4650
4651 mpfr_t lrri;
4652 mpfr_init(lrri);
4653 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4654
4655 mpfr_t lirr;
4656 mpfr_init(lirr);
4657 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4658
4659 mpfr_t liri;
4660 mpfr_init(liri);
4661 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4662
4663 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4664 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4665
4666 // If we get NaN on both sides, check whether it should really
4667 // be infinity. The rule is that if either side of the
4668 // complex number is infinity, then the whole value is
4669 // infinity, even if the other side is NaN. So the only case
4670 // we have to fix is the one in which both sides are NaN.
4671 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4672 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4673 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4674 {
4675 bool is_infinity = false;
4676
4677 mpfr_t lr;
4678 mpfr_t li;
4679 mpfr_init_set(lr, left_real, GMP_RNDN);
4680 mpfr_init_set(li, left_imag, GMP_RNDN);
4681
4682 mpfr_t rr;
4683 mpfr_t ri;
4684 mpfr_init_set(rr, right_real, GMP_RNDN);
4685 mpfr_init_set(ri, right_imag, GMP_RNDN);
4686
4687 // If the left side is infinity, then the result is
4688 // infinity.
4689 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4690 {
4691 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4692 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4693 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4694 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4695 if (mpfr_nan_p(rr))
4696 {
4697 mpfr_set_ui(rr, 0, GMP_RNDN);
4698 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4699 }
4700 if (mpfr_nan_p(ri))
4701 {
4702 mpfr_set_ui(ri, 0, GMP_RNDN);
4703 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4704 }
4705 is_infinity = true;
4706 }
4707
4708 // If the right side is infinity, then the result is
4709 // infinity.
4710 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4711 {
4712 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4713 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4714 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4715 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4716 if (mpfr_nan_p(lr))
4717 {
4718 mpfr_set_ui(lr, 0, GMP_RNDN);
4719 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4720 }
4721 if (mpfr_nan_p(li))
4722 {
4723 mpfr_set_ui(li, 0, GMP_RNDN);
4724 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4725 }
4726 is_infinity = true;
4727 }
4728
4729 // If we got an overflow in the intermediate computations,
4730 // then the result is infinity.
4731 if (!is_infinity
4732 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4733 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4734 {
4735 if (mpfr_nan_p(lr))
4736 {
4737 mpfr_set_ui(lr, 0, GMP_RNDN);
4738 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4739 }
4740 if (mpfr_nan_p(li))
4741 {
4742 mpfr_set_ui(li, 0, GMP_RNDN);
4743 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4744 }
4745 if (mpfr_nan_p(rr))
4746 {
4747 mpfr_set_ui(rr, 0, GMP_RNDN);
4748 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4749 }
4750 if (mpfr_nan_p(ri))
4751 {
4752 mpfr_set_ui(ri, 0, GMP_RNDN);
4753 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4754 }
4755 is_infinity = true;
4756 }
4757
4758 if (is_infinity)
4759 {
4760 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4761 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4762 mpfr_mul(lirr, li, rr, GMP_RNDN);
4763 mpfr_mul(liri, li, ri, GMP_RNDN);
4764 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4765 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4766 mpfr_set_inf(real, mpfr_sgn(real));
4767 mpfr_set_inf(imag, mpfr_sgn(imag));
4768 }
4769
4770 mpfr_clear(lr);
4771 mpfr_clear(li);
4772 mpfr_clear(rr);
4773 mpfr_clear(ri);
4774 }
4775
4776 mpfr_clear(lrrr);
4777 mpfr_clear(lrri);
4778 mpfr_clear(lirr);
4779 mpfr_clear(liri);
4780 }
4781 break;
4782 case OPERATOR_DIV:
4783 {
4784 // For complex division we want to avoid having an
4785 // intermediate overflow turn the whole result in a NaN. We
4786 // scale the values to try to avoid this.
4787
4788 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4789 error_at(location, "division by zero");
4790
4791 mpfr_t rra;
4792 mpfr_t ria;
4793 mpfr_init(rra);
4794 mpfr_init(ria);
4795 mpfr_abs(rra, right_real, GMP_RNDN);
4796 mpfr_abs(ria, right_imag, GMP_RNDN);
4797 mpfr_t t;
4798 mpfr_init(t);
4799 mpfr_max(t, rra, ria, GMP_RNDN);
4800
4801 mpfr_t rr;
4802 mpfr_t ri;
4803 mpfr_init_set(rr, right_real, GMP_RNDN);
4804 mpfr_init_set(ri, right_imag, GMP_RNDN);
4805 long ilogbw = 0;
4806 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4807 {
4808 ilogbw = mpfr_get_exp(t);
4809 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4810 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4811 }
4812
4813 mpfr_t denom;
4814 mpfr_init(denom);
4815 mpfr_mul(denom, rr, rr, GMP_RNDN);
4816 mpfr_mul(t, ri, ri, GMP_RNDN);
4817 mpfr_add(denom, denom, t, GMP_RNDN);
4818
4819 mpfr_mul(real, left_real, rr, GMP_RNDN);
4820 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4821 mpfr_add(real, real, t, GMP_RNDN);
4822 mpfr_div(real, real, denom, GMP_RNDN);
4823 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4824
4825 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4826 mpfr_mul(t, left_real, ri, GMP_RNDN);
4827 mpfr_sub(imag, imag, t, GMP_RNDN);
4828 mpfr_div(imag, imag, denom, GMP_RNDN);
4829 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4830
4831 // If we wind up with NaN on both sides, check whether we
4832 // should really have infinity. The rule is that if either
4833 // side of the complex number is infinity, then the whole
4834 // value is infinity, even if the other side is NaN. So the
4835 // only case we have to fix is the one in which both sides are
4836 // NaN.
4837 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4838 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4839 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4840 {
4841 if (mpfr_zero_p(denom))
4842 {
4843 mpfr_set_inf(real, mpfr_sgn(rr));
4844 mpfr_mul(real, real, left_real, GMP_RNDN);
4845 mpfr_set_inf(imag, mpfr_sgn(rr));
4846 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4847 }
4848 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4849 && mpfr_number_p(rr) && mpfr_number_p(ri))
4850 {
4851 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4852 mpfr_copysign(t, t, left_real, GMP_RNDN);
4853
4854 mpfr_t t2;
4855 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4856 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4857
4858 mpfr_t t3;
4859 mpfr_init(t3);
4860 mpfr_mul(t3, t, rr, GMP_RNDN);
4861
4862 mpfr_t t4;
4863 mpfr_init(t4);
4864 mpfr_mul(t4, t2, ri, GMP_RNDN);
4865
4866 mpfr_add(t3, t3, t4, GMP_RNDN);
4867 mpfr_set_inf(real, mpfr_sgn(t3));
4868
4869 mpfr_mul(t3, t2, rr, GMP_RNDN);
4870 mpfr_mul(t4, t, ri, GMP_RNDN);
4871 mpfr_sub(t3, t3, t4, GMP_RNDN);
4872 mpfr_set_inf(imag, mpfr_sgn(t3));
4873
4874 mpfr_clear(t2);
4875 mpfr_clear(t3);
4876 mpfr_clear(t4);
4877 }
4878 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4879 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4880 {
4881 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4882 mpfr_copysign(t, t, rr, GMP_RNDN);
4883
4884 mpfr_t t2;
4885 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4886 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4887
4888 mpfr_t t3;
4889 mpfr_init(t3);
4890 mpfr_mul(t3, left_real, t, GMP_RNDN);
4891
4892 mpfr_t t4;
4893 mpfr_init(t4);
4894 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4895
4896 mpfr_add(t3, t3, t4, GMP_RNDN);
4897 mpfr_set_ui(real, 0, GMP_RNDN);
4898 mpfr_mul(real, real, t3, GMP_RNDN);
4899
4900 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4901 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4902 mpfr_sub(t3, t3, t4, GMP_RNDN);
4903 mpfr_set_ui(imag, 0, GMP_RNDN);
4904 mpfr_mul(imag, imag, t3, GMP_RNDN);
4905
4906 mpfr_clear(t2);
4907 mpfr_clear(t3);
4908 mpfr_clear(t4);
4909 }
4910 }
4911
4912 mpfr_clear(denom);
4913 mpfr_clear(rr);
4914 mpfr_clear(ri);
4915 mpfr_clear(t);
4916 mpfr_clear(rra);
4917 mpfr_clear(ria);
4918 }
4919 break;
4920 case OPERATOR_MOD:
4921 return false;
4922 case OPERATOR_LSHIFT:
4923 case OPERATOR_RSHIFT:
4924 return false;
4925 default:
4926 gcc_unreachable();
4927 }
4928
4929 Type* type = left_type;
4930 if (type == NULL)
4931 type = right_type;
4932 else if (type != right_type && right_type != NULL)
4933 {
4934 if (type->is_abstract())
4935 type = right_type;
4936 else if (!right_type->is_abstract())
4937 {
4938 // This looks like a type error which should be diagnosed
4939 // elsewhere. Don't do anything here, to avoid an unhelpful
4940 // chain of error messages.
4941 return true;
4942 }
4943 }
4944
4945 if (type != NULL && !type->is_abstract())
4946 {
4947 if ((type != left_type
4948 && !Complex_expression::check_constant(left_real, left_imag,
4949 type, location))
4950 || (type != right_type
4951 && !Complex_expression::check_constant(right_real, right_imag,
4952 type, location))
4953 || !Complex_expression::check_constant(real, imag, type,
4954 location))
4955 {
4956 mpfr_set_ui(real, 0, GMP_RNDN);
4957 mpfr_set_ui(imag, 0, GMP_RNDN);
4958 }
4959 }
4960
4961 return true;
4962}
4963
4964// Lower a binary expression. We have to evaluate constant
4965// expressions now, in order to implement Go's unlimited precision
4966// constants.
4967
4968Expression*
4969Binary_expression::do_lower(Gogo*, Named_object*, int)
4970{
4971 source_location location = this->location();
4972 Operator op = this->op_;
4973 Expression* left = this->left_;
4974 Expression* right = this->right_;
4975
4976 const bool is_comparison = (op == OPERATOR_EQEQ
4977 || op == OPERATOR_NOTEQ
4978 || op == OPERATOR_LT
4979 || op == OPERATOR_LE
4980 || op == OPERATOR_GT
4981 || op == OPERATOR_GE);
4982
4983 // Integer constant expressions.
4984 {
4985 mpz_t left_val;
4986 mpz_init(left_val);
4987 Type* left_type;
4988 mpz_t right_val;
4989 mpz_init(right_val);
4990 Type* right_type;
4991 if (left->integer_constant_value(false, left_val, &left_type)
4992 && right->integer_constant_value(false, right_val, &right_type))
4993 {
4994 Expression* ret = NULL;
4995 if (left_type != right_type
4996 && left_type != NULL
4997 && right_type != NULL
4998 && left_type->base() != right_type->base()
4999 && op != OPERATOR_LSHIFT
5000 && op != OPERATOR_RSHIFT)
5001 {
5002 // May be a type error--let it be diagnosed later.
5003 }
5004 else if (is_comparison)
5005 {
5006 bool b = Binary_expression::compare_integer(op, left_val,
5007 right_val);
5008 ret = Expression::make_cast(Type::lookup_bool_type(),
5009 Expression::make_boolean(b, location),
5010 location);
5011 }
5012 else
5013 {
5014 mpz_t val;
5015 mpz_init(val);
5016
5017 if (Binary_expression::eval_integer(op, left_type, left_val,
5018 right_type, right_val,
5019 location, val))
5020 {
5021 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5022 Type* type;
5023 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5024 type = left_type;
5025 else if (left_type == NULL)
5026 type = right_type;
5027 else if (right_type == NULL)
5028 type = left_type;
5029 else if (!left_type->is_abstract()
5030 && left_type->named_type() != NULL)
5031 type = left_type;
5032 else if (!right_type->is_abstract()
5033 && right_type->named_type() != NULL)
5034 type = right_type;
5035 else if (!left_type->is_abstract())
5036 type = left_type;
5037 else if (!right_type->is_abstract())
5038 type = right_type;
5039 else if (left_type->float_type() != NULL)
5040 type = left_type;
5041 else if (right_type->float_type() != NULL)
5042 type = right_type;
5043 else if (left_type->complex_type() != NULL)
5044 type = left_type;
5045 else if (right_type->complex_type() != NULL)
5046 type = right_type;
5047 else
5048 type = left_type;
5049 ret = Expression::make_integer(&val, type, location);
5050 }
5051
5052 mpz_clear(val);
5053 }
5054
5055 if (ret != NULL)
5056 {
5057 mpz_clear(right_val);
5058 mpz_clear(left_val);
5059 return ret;
5060 }
5061 }
5062 mpz_clear(right_val);
5063 mpz_clear(left_val);
5064 }
5065
5066 // Floating point constant expressions.
5067 {
5068 mpfr_t left_val;
5069 mpfr_init(left_val);
5070 Type* left_type;
5071 mpfr_t right_val;
5072 mpfr_init(right_val);
5073 Type* right_type;
5074 if (left->float_constant_value(left_val, &left_type)
5075 && right->float_constant_value(right_val, &right_type))
5076 {
5077 Expression* ret = NULL;
5078 if (left_type != right_type
5079 && left_type != NULL
5080 && right_type != NULL
5081 && left_type->base() != right_type->base()
5082 && op != OPERATOR_LSHIFT
5083 && op != OPERATOR_RSHIFT)
5084 {
5085 // May be a type error--let it be diagnosed later.
5086 }
5087 else if (is_comparison)
5088 {
5089 bool b = Binary_expression::compare_float(op,
5090 (left_type != NULL
5091 ? left_type
5092 : right_type),
5093 left_val, right_val);
5094 ret = Expression::make_boolean(b, location);
5095 }
5096 else
5097 {
5098 mpfr_t val;
5099 mpfr_init(val);
5100
5101 if (Binary_expression::eval_float(op, left_type, left_val,
5102 right_type, right_val, val,
5103 location))
5104 {
5105 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5106 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5107 Type* type;
5108 if (left_type == NULL)
5109 type = right_type;
5110 else if (right_type == NULL)
5111 type = left_type;
5112 else if (!left_type->is_abstract()
5113 && left_type->named_type() != NULL)
5114 type = left_type;
5115 else if (!right_type->is_abstract()
5116 && right_type->named_type() != NULL)
5117 type = right_type;
5118 else if (!left_type->is_abstract())
5119 type = left_type;
5120 else if (!right_type->is_abstract())
5121 type = right_type;
5122 else if (left_type->float_type() != NULL)
5123 type = left_type;
5124 else if (right_type->float_type() != NULL)
5125 type = right_type;
5126 else
5127 type = left_type;
5128 ret = Expression::make_float(&val, type, location);
5129 }
5130
5131 mpfr_clear(val);
5132 }
5133
5134 if (ret != NULL)
5135 {
5136 mpfr_clear(right_val);
5137 mpfr_clear(left_val);
5138 return ret;
5139 }
5140 }
5141 mpfr_clear(right_val);
5142 mpfr_clear(left_val);
5143 }
5144
5145 // Complex constant expressions.
5146 {
5147 mpfr_t left_real;
5148 mpfr_t left_imag;
5149 mpfr_init(left_real);
5150 mpfr_init(left_imag);
5151 Type* left_type;
5152
5153 mpfr_t right_real;
5154 mpfr_t right_imag;
5155 mpfr_init(right_real);
5156 mpfr_init(right_imag);
5157 Type* right_type;
5158
5159 if (left->complex_constant_value(left_real, left_imag, &left_type)
5160 && right->complex_constant_value(right_real, right_imag, &right_type))
5161 {
5162 Expression* ret = NULL;
5163 if (left_type != right_type
5164 && left_type != NULL
5165 && right_type != NULL
5166 && left_type->base() != right_type->base())
5167 {
5168 // May be a type error--let it be diagnosed later.
5169 }
3b59603e 5170 else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
e440a328 5171 {
5172 bool b = Binary_expression::compare_complex(op,
5173 (left_type != NULL
5174 ? left_type
5175 : right_type),
5176 left_real,
5177 left_imag,
5178 right_real,
5179 right_imag);
5180 ret = Expression::make_boolean(b, location);
5181 }
5182 else
5183 {
5184 mpfr_t real;
5185 mpfr_t imag;
5186 mpfr_init(real);
5187 mpfr_init(imag);
5188
5189 if (Binary_expression::eval_complex(op, left_type,
5190 left_real, left_imag,
5191 right_type,
5192 right_real, right_imag,
5193 real, imag,
5194 location))
5195 {
5196 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5197 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5198 Type* type;
5199 if (left_type == NULL)
5200 type = right_type;
5201 else if (right_type == NULL)
5202 type = left_type;
5203 else if (!left_type->is_abstract()
5204 && left_type->named_type() != NULL)
5205 type = left_type;
5206 else if (!right_type->is_abstract()
5207 && right_type->named_type() != NULL)
5208 type = right_type;
5209 else if (!left_type->is_abstract())
5210 type = left_type;
5211 else if (!right_type->is_abstract())
5212 type = right_type;
5213 else if (left_type->complex_type() != NULL)
5214 type = left_type;
5215 else if (right_type->complex_type() != NULL)
5216 type = right_type;
5217 else
5218 type = left_type;
5219 ret = Expression::make_complex(&real, &imag, type,
5220 location);
5221 }
5222 mpfr_clear(real);
5223 mpfr_clear(imag);
5224 }
5225
5226 if (ret != NULL)
5227 {
5228 mpfr_clear(left_real);
5229 mpfr_clear(left_imag);
5230 mpfr_clear(right_real);
5231 mpfr_clear(right_imag);
5232 return ret;
5233 }
5234 }
5235
5236 mpfr_clear(left_real);
5237 mpfr_clear(left_imag);
5238 mpfr_clear(right_real);
5239 mpfr_clear(right_imag);
5240 }
5241
5242 // String constant expressions.
5243 if (op == OPERATOR_PLUS
5244 && left->type()->is_string_type()
5245 && right->type()->is_string_type())
5246 {
5247 std::string left_string;
5248 std::string right_string;
5249 if (left->string_constant_value(&left_string)
5250 && right->string_constant_value(&right_string))
5251 return Expression::make_string(left_string + right_string, location);
5252 }
5253
5254 return this;
5255}
5256
5257// Return the integer constant value, if it has one.
5258
5259bool
5260Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5261 Type** ptype) const
5262{
5263 mpz_t left_val;
5264 mpz_init(left_val);
5265 Type* left_type;
5266 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5267 &left_type))
5268 {
5269 mpz_clear(left_val);
5270 return false;
5271 }
5272
5273 mpz_t right_val;
5274 mpz_init(right_val);
5275 Type* right_type;
5276 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5277 &right_type))
5278 {
5279 mpz_clear(right_val);
5280 mpz_clear(left_val);
5281 return false;
5282 }
5283
5284 bool ret;
5285 if (left_type != right_type
5286 && left_type != NULL
5287 && right_type != NULL
5288 && left_type->base() != right_type->base()
5289 && this->op_ != OPERATOR_RSHIFT
5290 && this->op_ != OPERATOR_LSHIFT)
5291 ret = false;
5292 else
5293 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5294 right_type, right_val,
5295 this->location(), val);
5296
5297 mpz_clear(right_val);
5298 mpz_clear(left_val);
5299
5300 if (ret)
5301 *ptype = left_type;
5302
5303 return ret;
5304}
5305
5306// Return the floating point constant value, if it has one.
5307
5308bool
5309Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5310{
5311 mpfr_t left_val;
5312 mpfr_init(left_val);
5313 Type* left_type;
5314 if (!this->left_->float_constant_value(left_val, &left_type))
5315 {
5316 mpfr_clear(left_val);
5317 return false;
5318 }
5319
5320 mpfr_t right_val;
5321 mpfr_init(right_val);
5322 Type* right_type;
5323 if (!this->right_->float_constant_value(right_val, &right_type))
5324 {
5325 mpfr_clear(right_val);
5326 mpfr_clear(left_val);
5327 return false;
5328 }
5329
5330 bool ret;
5331 if (left_type != right_type
5332 && left_type != NULL
5333 && right_type != NULL
5334 && left_type->base() != right_type->base())
5335 ret = false;
5336 else
5337 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5338 right_type, right_val,
5339 val, this->location());
5340
5341 mpfr_clear(left_val);
5342 mpfr_clear(right_val);
5343
5344 if (ret)
5345 *ptype = left_type;
5346
5347 return ret;
5348}
5349
5350// Return the complex constant value, if it has one.
5351
5352bool
5353Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5354 Type** ptype) const
5355{
5356 mpfr_t left_real;
5357 mpfr_t left_imag;
5358 mpfr_init(left_real);
5359 mpfr_init(left_imag);
5360 Type* left_type;
5361 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5362 {
5363 mpfr_clear(left_real);
5364 mpfr_clear(left_imag);
5365 return false;
5366 }
5367
5368 mpfr_t right_real;
5369 mpfr_t right_imag;
5370 mpfr_init(right_real);
5371 mpfr_init(right_imag);
5372 Type* right_type;
5373 if (!this->right_->complex_constant_value(right_real, right_imag,
5374 &right_type))
5375 {
5376 mpfr_clear(left_real);
5377 mpfr_clear(left_imag);
5378 mpfr_clear(right_real);
5379 mpfr_clear(right_imag);
5380 return false;
5381 }
5382
5383 bool ret;
5384 if (left_type != right_type
5385 && left_type != NULL
5386 && right_type != NULL
5387 && left_type->base() != right_type->base())
5388 ret = false;
5389 else
5390 ret = Binary_expression::eval_complex(this->op_, left_type,
5391 left_real, left_imag,
5392 right_type,
5393 right_real, right_imag,
5394 real, imag,
5395 this->location());
5396 mpfr_clear(left_real);
5397 mpfr_clear(left_imag);
5398 mpfr_clear(right_real);
5399 mpfr_clear(right_imag);
5400
5401 if (ret)
5402 *ptype = left_type;
5403
5404 return ret;
5405}
5406
5407// Note that the value is being discarded.
5408
5409void
5410Binary_expression::do_discarding_value()
5411{
5412 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5413 this->right_->discarding_value();
5414 else
5415 this->warn_about_unused_value();
5416}
5417
5418// Get type.
5419
5420Type*
5421Binary_expression::do_type()
5422{
5f5fea79 5423 if (this->classification() == EXPRESSION_ERROR)
5424 return Type::make_error_type();
5425
e440a328 5426 switch (this->op_)
5427 {
5428 case OPERATOR_OROR:
5429 case OPERATOR_ANDAND:
5430 case OPERATOR_EQEQ:
5431 case OPERATOR_NOTEQ:
5432 case OPERATOR_LT:
5433 case OPERATOR_LE:
5434 case OPERATOR_GT:
5435 case OPERATOR_GE:
5436 return Type::lookup_bool_type();
5437
5438 case OPERATOR_PLUS:
5439 case OPERATOR_MINUS:
5440 case OPERATOR_OR:
5441 case OPERATOR_XOR:
5442 case OPERATOR_MULT:
5443 case OPERATOR_DIV:
5444 case OPERATOR_MOD:
5445 case OPERATOR_AND:
5446 case OPERATOR_BITCLEAR:
5447 {
5448 Type* left_type = this->left_->type();
5449 Type* right_type = this->right_->type();
a5fe8571 5450 if (left_type->is_error_type())
5451 return left_type;
5452 else if (right_type->is_error_type())
5453 return right_type;
5f5fea79 5454 else if (!Type::are_compatible_for_binop(left_type, right_type))
5455 {
5456 this->report_error(_("incompatible types in binary expression"));
5457 return Type::make_error_type();
5458 }
a5fe8571 5459 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
e440a328 5460 return left_type;
5461 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5462 return right_type;
5463 else if (!left_type->is_abstract())
5464 return left_type;
5465 else if (!right_type->is_abstract())
5466 return right_type;
5467 else if (left_type->complex_type() != NULL)
5468 return left_type;
5469 else if (right_type->complex_type() != NULL)
5470 return right_type;
5471 else if (left_type->float_type() != NULL)
5472 return left_type;
5473 else if (right_type->float_type() != NULL)
5474 return right_type;
5475 else
5476 return left_type;
5477 }
5478
5479 case OPERATOR_LSHIFT:
5480 case OPERATOR_RSHIFT:
5481 return this->left_->type();
5482
5483 default:
5484 gcc_unreachable();
5485 }
5486}
5487
5488// Set type for a binary expression.
5489
5490void
5491Binary_expression::do_determine_type(const Type_context* context)
5492{
5493 Type* tleft = this->left_->type();
5494 Type* tright = this->right_->type();
5495
5496 // Both sides should have the same type, except for the shift
5497 // operations. For a comparison, we should ignore the incoming
5498 // type.
5499
5500 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5501 || this->op_ == OPERATOR_RSHIFT);
5502
5503 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5504 || this->op_ == OPERATOR_NOTEQ
5505 || this->op_ == OPERATOR_LT
5506 || this->op_ == OPERATOR_LE
5507 || this->op_ == OPERATOR_GT
5508 || this->op_ == OPERATOR_GE);
5509
5510 Type_context subcontext(*context);
5511
5512 if (is_comparison)
5513 {
5514 // In a comparison, the context does not determine the types of
5515 // the operands.
5516 subcontext.type = NULL;
5517 }
5518
5519 // Set the context for the left hand operand.
5520 if (is_shift_op)
5521 {
5522 // The right hand operand plays no role in determining the type
5523 // of the left hand operand. A shift of an abstract integer in
5524 // a string context gets special treatment, which may be a
5525 // language bug.
5526 if (subcontext.type != NULL
5527 && subcontext.type->is_string_type()
5528 && tleft->is_abstract())
5529 error_at(this->location(), "shift of non-integer operand");
5530 }
5531 else if (!tleft->is_abstract())
5532 subcontext.type = tleft;
5533 else if (!tright->is_abstract())
5534 subcontext.type = tright;
5535 else if (subcontext.type == NULL)
5536 {
5537 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5538 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5539 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5540 {
5541 // Both sides have an abstract integer, abstract float, or
5542 // abstract complex type. Just let CONTEXT determine
5543 // whether they may remain abstract or not.
5544 }
5545 else if (tleft->complex_type() != NULL)
5546 subcontext.type = tleft;
5547 else if (tright->complex_type() != NULL)
5548 subcontext.type = tright;
5549 else if (tleft->float_type() != NULL)
5550 subcontext.type = tleft;
5551 else if (tright->float_type() != NULL)
5552 subcontext.type = tright;
5553 else
5554 subcontext.type = tleft;
f58a23ae 5555
5556 if (subcontext.type != NULL && !context->may_be_abstract)
5557 subcontext.type = subcontext.type->make_non_abstract_type();
e440a328 5558 }
5559
5560 this->left_->determine_type(&subcontext);
5561
5562 // The context for the right hand operand is the same as for the
5563 // left hand operand, except for a shift operator.
5564 if (is_shift_op)
5565 {
5566 subcontext.type = Type::lookup_integer_type("uint");
5567 subcontext.may_be_abstract = false;
5568 }
5569
5570 this->right_->determine_type(&subcontext);
5571}
5572
5573// Report an error if the binary operator OP does not support TYPE.
5574// Return whether the operation is OK. This should not be used for
5575// shift.
5576
5577bool
5578Binary_expression::check_operator_type(Operator op, Type* type,
5579 source_location location)
5580{
5581 switch (op)
5582 {
5583 case OPERATOR_OROR:
5584 case OPERATOR_ANDAND:
5585 if (!type->is_boolean_type())
5586 {
5587 error_at(location, "expected boolean type");
5588 return false;
5589 }
5590 break;
5591
5592 case OPERATOR_EQEQ:
5593 case OPERATOR_NOTEQ:
5594 if (type->integer_type() == NULL
5595 && type->float_type() == NULL
5596 && type->complex_type() == NULL
5597 && !type->is_string_type()
5598 && type->points_to() == NULL
5599 && !type->is_nil_type()
5600 && !type->is_boolean_type()
5601 && type->interface_type() == NULL
5602 && (type->array_type() == NULL
5603 || type->array_type()->length() != NULL)
5604 && type->map_type() == NULL
5605 && type->channel_type() == NULL
5606 && type->function_type() == NULL)
5607 {
5608 error_at(location,
5609 ("expected integer, floating, complex, string, pointer, "
5610 "boolean, interface, slice, map, channel, "
5611 "or function type"));
5612 return false;
5613 }
5614 break;
5615
5616 case OPERATOR_LT:
5617 case OPERATOR_LE:
5618 case OPERATOR_GT:
5619 case OPERATOR_GE:
5620 if (type->integer_type() == NULL
5621 && type->float_type() == NULL
5622 && !type->is_string_type())
5623 {
5624 error_at(location, "expected integer, floating, or string type");
5625 return false;
5626 }
5627 break;
5628
5629 case OPERATOR_PLUS:
5630 case OPERATOR_PLUSEQ:
5631 if (type->integer_type() == NULL
5632 && type->float_type() == NULL
5633 && type->complex_type() == NULL
5634 && !type->is_string_type())
5635 {
5636 error_at(location,
5637 "expected integer, floating, complex, or string type");
5638 return false;
5639 }
5640 break;
5641
5642 case OPERATOR_MINUS:
5643 case OPERATOR_MINUSEQ:
5644 case OPERATOR_MULT:
5645 case OPERATOR_MULTEQ:
5646 case OPERATOR_DIV:
5647 case OPERATOR_DIVEQ:
5648 if (type->integer_type() == NULL
5649 && type->float_type() == NULL
5650 && type->complex_type() == NULL)
5651 {
5652 error_at(location, "expected integer, floating, or complex type");
5653 return false;
5654 }
5655 break;
5656
5657 case OPERATOR_MOD:
5658 case OPERATOR_MODEQ:
5659 case OPERATOR_OR:
5660 case OPERATOR_OREQ:
5661 case OPERATOR_AND:
5662 case OPERATOR_ANDEQ:
5663 case OPERATOR_XOR:
5664 case OPERATOR_XOREQ:
5665 case OPERATOR_BITCLEAR:
5666 case OPERATOR_BITCLEAREQ:
5667 if (type->integer_type() == NULL)
5668 {
5669 error_at(location, "expected integer type");
5670 return false;
5671 }
5672 break;
5673
5674 default:
5675 gcc_unreachable();
5676 }
5677
5678 return true;
5679}
5680
5681// Check types.
5682
5683void
5684Binary_expression::do_check_types(Gogo*)
5685{
5f5fea79 5686 if (this->classification() == EXPRESSION_ERROR)
5687 return;
5688
e440a328 5689 Type* left_type = this->left_->type();
5690 Type* right_type = this->right_->type();
5691 if (left_type->is_error_type() || right_type->is_error_type())
9fe897ef 5692 {
5693 this->set_is_error();
5694 return;
5695 }
e440a328 5696
5697 if (this->op_ == OPERATOR_EQEQ
5698 || this->op_ == OPERATOR_NOTEQ
5699 || this->op_ == OPERATOR_LT
5700 || this->op_ == OPERATOR_LE
5701 || this->op_ == OPERATOR_GT
5702 || this->op_ == OPERATOR_GE)
5703 {
5704 if (!Type::are_assignable(left_type, right_type, NULL)
5705 && !Type::are_assignable(right_type, left_type, NULL))
5706 {
5707 this->report_error(_("incompatible types in binary expression"));
5708 return;
5709 }
5710 if (!Binary_expression::check_operator_type(this->op_, left_type,
5711 this->location())
5712 || !Binary_expression::check_operator_type(this->op_, right_type,
5713 this->location()))
5714 {
5715 this->set_is_error();
5716 return;
5717 }
5718 }
5719 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5720 {
5721 if (!Type::are_compatible_for_binop(left_type, right_type))
5722 {
5723 this->report_error(_("incompatible types in binary expression"));
5724 return;
5725 }
5726 if (!Binary_expression::check_operator_type(this->op_, left_type,
5727 this->location()))
5728 {
5729 this->set_is_error();
5730 return;
5731 }
5732 }
5733 else
5734 {
5735 if (left_type->integer_type() == NULL)
5736 this->report_error(_("shift of non-integer operand"));
5737
5738 if (!right_type->is_abstract()
5739 && (right_type->integer_type() == NULL
5740 || !right_type->integer_type()->is_unsigned()))
5741 this->report_error(_("shift count not unsigned integer"));
5742 else
5743 {
5744 mpz_t val;
5745 mpz_init(val);
5746 Type* type;
5747 if (this->right_->integer_constant_value(true, val, &type))
5748 {
5749 if (mpz_sgn(val) < 0)
5750 this->report_error(_("negative shift count"));
5751 }
5752 mpz_clear(val);
5753 }
5754 }
5755}
5756
5757// Get a tree for a binary expression.
5758
5759tree
5760Binary_expression::do_get_tree(Translate_context* context)
5761{
5762 tree left = this->left_->get_tree(context);
5763 tree right = this->right_->get_tree(context);
5764
5765 if (left == error_mark_node || right == error_mark_node)
5766 return error_mark_node;
5767
5768 enum tree_code code;
5769 bool use_left_type = true;
5770 bool is_shift_op = false;
5771 switch (this->op_)
5772 {
5773 case OPERATOR_EQEQ:
5774 case OPERATOR_NOTEQ:
5775 case OPERATOR_LT:
5776 case OPERATOR_LE:
5777 case OPERATOR_GT:
5778 case OPERATOR_GE:
5779 return Expression::comparison_tree(context, this->op_,
5780 this->left_->type(), left,
5781 this->right_->type(), right,
5782 this->location());
5783
5784 case OPERATOR_OROR:
5785 code = TRUTH_ORIF_EXPR;
5786 use_left_type = false;
5787 break;
5788 case OPERATOR_ANDAND:
5789 code = TRUTH_ANDIF_EXPR;
5790 use_left_type = false;
5791 break;
5792 case OPERATOR_PLUS:
5793 code = PLUS_EXPR;
5794 break;
5795 case OPERATOR_MINUS:
5796 code = MINUS_EXPR;
5797 break;
5798 case OPERATOR_OR:
5799 code = BIT_IOR_EXPR;
5800 break;
5801 case OPERATOR_XOR:
5802 code = BIT_XOR_EXPR;
5803 break;
5804 case OPERATOR_MULT:
5805 code = MULT_EXPR;
5806 break;
5807 case OPERATOR_DIV:
5808 {
5809 Type *t = this->left_->type();
5810 if (t->float_type() != NULL || t->complex_type() != NULL)
5811 code = RDIV_EXPR;
5812 else
5813 code = TRUNC_DIV_EXPR;
5814 }
5815 break;
5816 case OPERATOR_MOD:
5817 code = TRUNC_MOD_EXPR;
5818 break;
5819 case OPERATOR_LSHIFT:
5820 code = LSHIFT_EXPR;
5821 is_shift_op = true;
5822 break;
5823 case OPERATOR_RSHIFT:
5824 code = RSHIFT_EXPR;
5825 is_shift_op = true;
5826 break;
5827 case OPERATOR_AND:
5828 code = BIT_AND_EXPR;
5829 break;
5830 case OPERATOR_BITCLEAR:
5831 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5832 code = BIT_AND_EXPR;
5833 break;
5834 default:
5835 gcc_unreachable();
5836 }
5837
5838 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5839
5840 if (this->left_->type()->is_string_type())
5841 {
5842 gcc_assert(this->op_ == OPERATOR_PLUS);
5843 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5844 static tree string_plus_decl;
5845 return Gogo::call_builtin(&string_plus_decl,
5846 this->location(),
5847 "__go_string_plus",
5848 2,
5849 string_type,
5850 string_type,
5851 left,
5852 string_type,
5853 right);
5854 }
5855
5856 tree compute_type = excess_precision_type(type);
5857 if (compute_type != NULL_TREE)
5858 {
5859 left = ::convert(compute_type, left);
5860 right = ::convert(compute_type, right);
5861 }
5862
5863 tree eval_saved = NULL_TREE;
5864 if (is_shift_op)
5865 {
e440a328 5866 // Make sure the values are evaluated.
a7a70f31 5867 if (!DECL_P(left) && TREE_SIDE_EFFECTS(left))
5868 {
5869 left = save_expr(left);
5870 eval_saved = left;
5871 }
5872 if (!DECL_P(right) && TREE_SIDE_EFFECTS(right))
5873 {
5874 right = save_expr(right);
5875 if (eval_saved == NULL_TREE)
5876 eval_saved = right;
5877 else
5878 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5879 void_type_node, eval_saved, right);
5880 }
e440a328 5881 }
5882
5883 tree ret = fold_build2_loc(this->location(),
5884 code,
5885 compute_type != NULL_TREE ? compute_type : type,
5886 left, right);
5887
5888 if (compute_type != NULL_TREE)
5889 ret = ::convert(type, ret);
5890
5891 // In Go, a shift larger than the size of the type is well-defined.
5892 // This is not true in GENERIC, so we need to insert a conditional.
5893 if (is_shift_op)
5894 {
5895 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5896 gcc_assert(this->left_->type()->integer_type() != NULL);
5897 int bits = TYPE_PRECISION(TREE_TYPE(left));
5898
5899 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5900 build_int_cst_type(TREE_TYPE(right), bits));
5901
5902 tree overflow_result = fold_convert_loc(this->location(),
5903 TREE_TYPE(left),
5904 integer_zero_node);
5905 if (this->op_ == OPERATOR_RSHIFT
5906 && !this->left_->type()->integer_type()->is_unsigned())
5907 {
5908 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5909 boolean_type_node, left,
5910 fold_convert_loc(this->location(),
5911 TREE_TYPE(left),
5912 integer_zero_node));
5913 tree neg_one = fold_build2_loc(this->location(),
5914 MINUS_EXPR, TREE_TYPE(left),
5915 fold_convert_loc(this->location(),
5916 TREE_TYPE(left),
5917 integer_zero_node),
5918 fold_convert_loc(this->location(),
5919 TREE_TYPE(left),
5920 integer_one_node));
5921 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5922 TREE_TYPE(left), neg, neg_one,
5923 overflow_result);
5924 }
5925
5926 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5927 compare, ret, overflow_result);
5928
a7a70f31 5929 if (eval_saved != NULL_TREE)
5930 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5931 TREE_TYPE(ret), eval_saved, ret);
e440a328 5932 }
5933
5934 return ret;
5935}
5936
5937// Export a binary expression.
5938
5939void
5940Binary_expression::do_export(Export* exp) const
5941{
5942 exp->write_c_string("(");
5943 this->left_->export_expression(exp);
5944 switch (this->op_)
5945 {
5946 case OPERATOR_OROR:
5947 exp->write_c_string(" || ");
5948 break;
5949 case OPERATOR_ANDAND:
5950 exp->write_c_string(" && ");
5951 break;
5952 case OPERATOR_EQEQ:
5953 exp->write_c_string(" == ");
5954 break;
5955 case OPERATOR_NOTEQ:
5956 exp->write_c_string(" != ");
5957 break;
5958 case OPERATOR_LT:
5959 exp->write_c_string(" < ");
5960 break;
5961 case OPERATOR_LE:
5962 exp->write_c_string(" <= ");
5963 break;
5964 case OPERATOR_GT:
5965 exp->write_c_string(" > ");
5966 break;
5967 case OPERATOR_GE:
5968 exp->write_c_string(" >= ");
5969 break;
5970 case OPERATOR_PLUS:
5971 exp->write_c_string(" + ");
5972 break;
5973 case OPERATOR_MINUS:
5974 exp->write_c_string(" - ");
5975 break;
5976 case OPERATOR_OR:
5977 exp->write_c_string(" | ");
5978 break;
5979 case OPERATOR_XOR:
5980 exp->write_c_string(" ^ ");
5981 break;
5982 case OPERATOR_MULT:
5983 exp->write_c_string(" * ");
5984 break;
5985 case OPERATOR_DIV:
5986 exp->write_c_string(" / ");
5987 break;
5988 case OPERATOR_MOD:
5989 exp->write_c_string(" % ");
5990 break;
5991 case OPERATOR_LSHIFT:
5992 exp->write_c_string(" << ");
5993 break;
5994 case OPERATOR_RSHIFT:
5995 exp->write_c_string(" >> ");
5996 break;
5997 case OPERATOR_AND:
5998 exp->write_c_string(" & ");
5999 break;
6000 case OPERATOR_BITCLEAR:
6001 exp->write_c_string(" &^ ");
6002 break;
6003 default:
6004 gcc_unreachable();
6005 }
6006 this->right_->export_expression(exp);
6007 exp->write_c_string(")");
6008}
6009
6010// Import a binary expression.
6011
6012Expression*
6013Binary_expression::do_import(Import* imp)
6014{
6015 imp->require_c_string("(");
6016
6017 Expression* left = Expression::import_expression(imp);
6018
6019 Operator op;
6020 if (imp->match_c_string(" || "))
6021 {
6022 op = OPERATOR_OROR;
6023 imp->advance(4);
6024 }
6025 else if (imp->match_c_string(" && "))
6026 {
6027 op = OPERATOR_ANDAND;
6028 imp->advance(4);
6029 }
6030 else if (imp->match_c_string(" == "))
6031 {
6032 op = OPERATOR_EQEQ;
6033 imp->advance(4);
6034 }
6035 else if (imp->match_c_string(" != "))
6036 {
6037 op = OPERATOR_NOTEQ;
6038 imp->advance(4);
6039 }
6040 else if (imp->match_c_string(" < "))
6041 {
6042 op = OPERATOR_LT;
6043 imp->advance(3);
6044 }
6045 else if (imp->match_c_string(" <= "))
6046 {
6047 op = OPERATOR_LE;
6048 imp->advance(4);
6049 }
6050 else if (imp->match_c_string(" > "))
6051 {
6052 op = OPERATOR_GT;
6053 imp->advance(3);
6054 }
6055 else if (imp->match_c_string(" >= "))
6056 {
6057 op = OPERATOR_GE;
6058 imp->advance(4);
6059 }
6060 else if (imp->match_c_string(" + "))
6061 {
6062 op = OPERATOR_PLUS;
6063 imp->advance(3);
6064 }
6065 else if (imp->match_c_string(" - "))
6066 {
6067 op = OPERATOR_MINUS;
6068 imp->advance(3);
6069 }
6070 else if (imp->match_c_string(" | "))
6071 {
6072 op = OPERATOR_OR;
6073 imp->advance(3);
6074 }
6075 else if (imp->match_c_string(" ^ "))
6076 {
6077 op = OPERATOR_XOR;
6078 imp->advance(3);
6079 }
6080 else if (imp->match_c_string(" * "))
6081 {
6082 op = OPERATOR_MULT;
6083 imp->advance(3);
6084 }
6085 else if (imp->match_c_string(" / "))
6086 {
6087 op = OPERATOR_DIV;
6088 imp->advance(3);
6089 }
6090 else if (imp->match_c_string(" % "))
6091 {
6092 op = OPERATOR_MOD;
6093 imp->advance(3);
6094 }
6095 else if (imp->match_c_string(" << "))
6096 {
6097 op = OPERATOR_LSHIFT;
6098 imp->advance(4);
6099 }
6100 else if (imp->match_c_string(" >> "))
6101 {
6102 op = OPERATOR_RSHIFT;
6103 imp->advance(4);
6104 }
6105 else if (imp->match_c_string(" & "))
6106 {
6107 op = OPERATOR_AND;
6108 imp->advance(3);
6109 }
6110 else if (imp->match_c_string(" &^ "))
6111 {
6112 op = OPERATOR_BITCLEAR;
6113 imp->advance(4);
6114 }
6115 else
6116 {
6117 error_at(imp->location(), "unrecognized binary operator");
6118 return Expression::make_error(imp->location());
6119 }
6120
6121 Expression* right = Expression::import_expression(imp);
6122
6123 imp->require_c_string(")");
6124
6125 return Expression::make_binary(op, left, right, imp->location());
6126}
6127
6128// Make a binary expression.
6129
6130Expression*
6131Expression::make_binary(Operator op, Expression* left, Expression* right,
6132 source_location location)
6133{
6134 return new Binary_expression(op, left, right, location);
6135}
6136
6137// Implement a comparison.
6138
6139tree
6140Expression::comparison_tree(Translate_context* context, Operator op,
6141 Type* left_type, tree left_tree,
6142 Type* right_type, tree right_tree,
6143 source_location location)
6144{
6145 enum tree_code code;
6146 switch (op)
6147 {
6148 case OPERATOR_EQEQ:
6149 code = EQ_EXPR;
6150 break;
6151 case OPERATOR_NOTEQ:
6152 code = NE_EXPR;
6153 break;
6154 case OPERATOR_LT:
6155 code = LT_EXPR;
6156 break;
6157 case OPERATOR_LE:
6158 code = LE_EXPR;
6159 break;
6160 case OPERATOR_GT:
6161 code = GT_EXPR;
6162 break;
6163 case OPERATOR_GE:
6164 code = GE_EXPR;
6165 break;
6166 default:
6167 gcc_unreachable();
6168 }
6169
15c67ee2 6170 if (left_type->is_string_type() && right_type->is_string_type())
e440a328 6171 {
e440a328 6172 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6173 static tree string_compare_decl;
6174 left_tree = Gogo::call_builtin(&string_compare_decl,
6175 location,
6176 "__go_strcmp",
6177 2,
6178 integer_type_node,
6179 string_type,
6180 left_tree,
6181 string_type,
6182 right_tree);
6183 right_tree = build_int_cst_type(integer_type_node, 0);
6184 }
15c67ee2 6185 else if ((left_type->interface_type() != NULL
6186 && right_type->interface_type() == NULL
6187 && !right_type->is_nil_type())
6188 || (left_type->interface_type() == NULL
6189 && !left_type->is_nil_type()
6190 && right_type->interface_type() != NULL))
e440a328 6191 {
6192 // Comparing an interface value to a non-interface value.
6193 if (left_type->interface_type() == NULL)
6194 {
6195 std::swap(left_type, right_type);
6196 std::swap(left_tree, right_tree);
6197 }
6198
6199 // The right operand is not an interface. We need to take its
6200 // address if it is not a pointer.
6201 tree make_tmp;
6202 tree arg;
6203 if (right_type->points_to() != NULL)
6204 {
6205 make_tmp = NULL_TREE;
6206 arg = right_tree;
6207 }
6208 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6209 {
6210 make_tmp = NULL_TREE;
6211 arg = build_fold_addr_expr_loc(location, right_tree);
6212 if (DECL_P(right_tree))
6213 TREE_ADDRESSABLE(right_tree) = 1;
6214 }
6215 else
6216 {
6217 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6218 get_name(right_tree));
6219 DECL_IGNORED_P(tmp) = 0;
6220 DECL_INITIAL(tmp) = right_tree;
6221 TREE_ADDRESSABLE(tmp) = 1;
6222 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6223 SET_EXPR_LOCATION(make_tmp, location);
6224 arg = build_fold_addr_expr_loc(location, tmp);
6225 }
6226 arg = fold_convert_loc(location, ptr_type_node, arg);
6227
6228 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6229
6230 if (left_type->interface_type()->is_empty())
6231 {
6232 static tree empty_interface_value_compare_decl;
6233 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6234 location,
6235 "__go_empty_interface_value_compare",
6236 3,
6237 integer_type_node,
6238 TREE_TYPE(left_tree),
6239 left_tree,
6240 TREE_TYPE(descriptor),
6241 descriptor,
6242 ptr_type_node,
6243 arg);
5fb82b5e 6244 if (left_tree == error_mark_node)
6245 return error_mark_node;
e440a328 6246 // This can panic if the type is not comparable.
6247 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6248 }
6249 else
6250 {
6251 static tree interface_value_compare_decl;
6252 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6253 location,
6254 "__go_interface_value_compare",
6255 3,
6256 integer_type_node,
6257 TREE_TYPE(left_tree),
6258 left_tree,
6259 TREE_TYPE(descriptor),
6260 descriptor,
6261 ptr_type_node,
6262 arg);
5fb82b5e 6263 if (left_tree == error_mark_node)
6264 return error_mark_node;
e440a328 6265 // This can panic if the type is not comparable.
6266 TREE_NOTHROW(interface_value_compare_decl) = 0;
6267 }
6268 right_tree = build_int_cst_type(integer_type_node, 0);
6269
6270 if (make_tmp != NULL_TREE)
6271 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6272 left_tree);
6273 }
6274 else if (left_type->interface_type() != NULL
6275 && right_type->interface_type() != NULL)
6276 {
739bad04 6277 if (left_type->interface_type()->is_empty()
6278 && right_type->interface_type()->is_empty())
e440a328 6279 {
e440a328 6280 static tree empty_interface_compare_decl;
6281 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6282 location,
6283 "__go_empty_interface_compare",
6284 2,
6285 integer_type_node,
6286 TREE_TYPE(left_tree),
6287 left_tree,
6288 TREE_TYPE(right_tree),
6289 right_tree);
5fb82b5e 6290 if (left_tree == error_mark_node)
6291 return error_mark_node;
e440a328 6292 // This can panic if the type is uncomparable.
6293 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6294 }
739bad04 6295 else if (!left_type->interface_type()->is_empty()
6296 && !right_type->interface_type()->is_empty())
e440a328 6297 {
e440a328 6298 static tree interface_compare_decl;
6299 left_tree = Gogo::call_builtin(&interface_compare_decl,
6300 location,
6301 "__go_interface_compare",
6302 2,
6303 integer_type_node,
6304 TREE_TYPE(left_tree),
6305 left_tree,
6306 TREE_TYPE(right_tree),
6307 right_tree);
5fb82b5e 6308 if (left_tree == error_mark_node)
6309 return error_mark_node;
e440a328 6310 // This can panic if the type is uncomparable.
6311 TREE_NOTHROW(interface_compare_decl) = 0;
6312 }
739bad04 6313 else
6314 {
6315 if (left_type->interface_type()->is_empty())
6316 {
6317 gcc_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
6318 std::swap(left_type, right_type);
6319 std::swap(left_tree, right_tree);
6320 }
6321 gcc_assert(!left_type->interface_type()->is_empty());
6322 gcc_assert(right_type->interface_type()->is_empty());
6323 static tree interface_empty_compare_decl;
6324 left_tree = Gogo::call_builtin(&interface_empty_compare_decl,
6325 location,
6326 "__go_interface_empty_compare",
6327 2,
6328 integer_type_node,
6329 TREE_TYPE(left_tree),
6330 left_tree,
6331 TREE_TYPE(right_tree),
6332 right_tree);
6333 if (left_tree == error_mark_node)
6334 return error_mark_node;
6335 // This can panic if the type is uncomparable.
6336 TREE_NOTHROW(interface_empty_compare_decl) = 0;
6337 }
6338
e440a328 6339 right_tree = build_int_cst_type(integer_type_node, 0);
6340 }
6341
6342 if (left_type->is_nil_type()
6343 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6344 {
6345 std::swap(left_type, right_type);
6346 std::swap(left_tree, right_tree);
6347 }
6348
6349 if (right_type->is_nil_type())
6350 {
6351 if (left_type->array_type() != NULL
6352 && left_type->array_type()->length() == NULL)
6353 {
6354 Array_type* at = left_type->array_type();
6355 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6356 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6357 }
6358 else if (left_type->interface_type() != NULL)
6359 {
6360 // An interface is nil if the first field is nil.
6361 tree left_type_tree = TREE_TYPE(left_tree);
6362 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6363 tree field = TYPE_FIELDS(left_type_tree);
6364 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6365 field, NULL_TREE);
6366 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6367 }
6368 else
6369 {
6370 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6371 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6372 }
6373 }
6374
d8ccb1e3 6375 if (left_tree == error_mark_node || right_tree == error_mark_node)
6376 return error_mark_node;
6377
e440a328 6378 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6379 if (CAN_HAVE_LOCATION_P(ret))
6380 SET_EXPR_LOCATION(ret, location);
6381 return ret;
6382}
6383
6384// Class Bound_method_expression.
6385
6386// Traversal.
6387
6388int
6389Bound_method_expression::do_traverse(Traverse* traverse)
6390{
6391 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6392 return TRAVERSE_EXIT;
6393 return Expression::traverse(&this->method_, traverse);
6394}
6395
6396// Return the type of a bound method expression. The type of this
6397// object is really the type of the method with no receiver. We
6398// should be able to get away with just returning the type of the
6399// method.
6400
6401Type*
6402Bound_method_expression::do_type()
6403{
6404 return this->method_->type();
6405}
6406
6407// Determine the types of a method expression.
6408
6409void
6410Bound_method_expression::do_determine_type(const Type_context*)
6411{
6412 this->method_->determine_type_no_context();
6413 Type* mtype = this->method_->type();
6414 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6415 if (fntype == NULL || !fntype->is_method())
6416 this->expr_->determine_type_no_context();
6417 else
6418 {
6419 Type_context subcontext(fntype->receiver()->type(), false);
6420 this->expr_->determine_type(&subcontext);
6421 }
6422}
6423
6424// Check the types of a method expression.
6425
6426void
6427Bound_method_expression::do_check_types(Gogo*)
6428{
6429 Type* type = this->method_->type()->deref();
6430 if (type == NULL
6431 || type->function_type() == NULL
6432 || !type->function_type()->is_method())
6433 this->report_error(_("object is not a method"));
6434 else
6435 {
6436 Type* rtype = type->function_type()->receiver()->type()->deref();
6437 Type* etype = (this->expr_type_ != NULL
6438 ? this->expr_type_
6439 : this->expr_->type());
6440 etype = etype->deref();
07ba8be5 6441 if (!Type::are_identical(rtype, etype, true, NULL))
e440a328 6442 this->report_error(_("method type does not match object type"));
6443 }
6444}
6445
6446// Get the tree for a method expression. There is no standard tree
6447// representation for this. The only places it may currently be used
6448// are in a Call_expression or a Go_statement, which will take it
6449// apart directly. So this has nothing to do at present.
6450
6451tree
6452Bound_method_expression::do_get_tree(Translate_context*)
6453{
d40405e2 6454 error_at(this->location(), "reference to method other than calling it");
6455 return error_mark_node;
e440a328 6456}
6457
6458// Make a method expression.
6459
6460Bound_method_expression*
6461Expression::make_bound_method(Expression* expr, Expression* method,
6462 source_location location)
6463{
6464 return new Bound_method_expression(expr, method, location);
6465}
6466
6467// Class Builtin_call_expression. This is used for a call to a
6468// builtin function.
6469
6470class Builtin_call_expression : public Call_expression
6471{
6472 public:
6473 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6474 bool is_varargs, source_location location);
6475
6476 protected:
6477 // This overrides Call_expression::do_lower.
6478 Expression*
6479 do_lower(Gogo*, Named_object*, int);
6480
6481 bool
6482 do_is_constant() const;
6483
6484 bool
6485 do_integer_constant_value(bool, mpz_t, Type**) const;
6486
6487 bool
6488 do_float_constant_value(mpfr_t, Type**) const;
6489
6490 bool
6491 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6492
6493 Type*
6494 do_type();
6495
6496 void
6497 do_determine_type(const Type_context*);
6498
6499 void
6500 do_check_types(Gogo*);
6501
6502 Expression*
6503 do_copy()
6504 {
6505 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6506 this->args()->copy(),
6507 this->is_varargs(),
6508 this->location());
6509 }
6510
6511 tree
6512 do_get_tree(Translate_context*);
6513
6514 void
6515 do_export(Export*) const;
6516
6517 virtual bool
6518 do_is_recover_call() const;
6519
6520 virtual void
6521 do_set_recover_arg(Expression*);
6522
6523 private:
6524 // The builtin functions.
6525 enum Builtin_function_code
6526 {
6527 BUILTIN_INVALID,
6528
6529 // Predeclared builtin functions.
6530 BUILTIN_APPEND,
6531 BUILTIN_CAP,
6532 BUILTIN_CLOSE,
6533 BUILTIN_CLOSED,
48080209 6534 BUILTIN_COMPLEX,
e440a328 6535 BUILTIN_COPY,
6536 BUILTIN_IMAG,
6537 BUILTIN_LEN,
6538 BUILTIN_MAKE,
6539 BUILTIN_NEW,
6540 BUILTIN_PANIC,
6541 BUILTIN_PRINT,
6542 BUILTIN_PRINTLN,
6543 BUILTIN_REAL,
6544 BUILTIN_RECOVER,
6545
6546 // Builtin functions from the unsafe package.
6547 BUILTIN_ALIGNOF,
6548 BUILTIN_OFFSETOF,
6549 BUILTIN_SIZEOF
6550 };
6551
6552 Expression*
6553 one_arg() const;
6554
6555 bool
6556 check_one_arg();
6557
6558 static Type*
6559 real_imag_type(Type*);
6560
6561 static Type*
48080209 6562 complex_type(Type*);
e440a328 6563
6564 // A pointer back to the general IR structure. This avoids a global
6565 // variable, or passing it around everywhere.
6566 Gogo* gogo_;
6567 // The builtin function being called.
6568 Builtin_function_code code_;
0f914071 6569 // Used to stop endless loops when the length of an array uses len
6570 // or cap of the array itself.
6571 mutable bool seen_;
e440a328 6572};
6573
6574Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6575 Expression* fn,
6576 Expression_list* args,
6577 bool is_varargs,
6578 source_location location)
6579 : Call_expression(fn, args, is_varargs, location),
0f914071 6580 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
e440a328 6581{
6582 Func_expression* fnexp = this->fn()->func_expression();
6583 gcc_assert(fnexp != NULL);
6584 const std::string& name(fnexp->named_object()->name());
6585 if (name == "append")
6586 this->code_ = BUILTIN_APPEND;
6587 else if (name == "cap")
6588 this->code_ = BUILTIN_CAP;
6589 else if (name == "close")
6590 this->code_ = BUILTIN_CLOSE;
6591 else if (name == "closed")
6592 this->code_ = BUILTIN_CLOSED;
48080209 6593 else if (name == "complex")
6594 this->code_ = BUILTIN_COMPLEX;
e440a328 6595 else if (name == "copy")
6596 this->code_ = BUILTIN_COPY;
6597 else if (name == "imag")
6598 this->code_ = BUILTIN_IMAG;
6599 else if (name == "len")
6600 this->code_ = BUILTIN_LEN;
6601 else if (name == "make")
6602 this->code_ = BUILTIN_MAKE;
6603 else if (name == "new")
6604 this->code_ = BUILTIN_NEW;
6605 else if (name == "panic")
6606 this->code_ = BUILTIN_PANIC;
6607 else if (name == "print")
6608 this->code_ = BUILTIN_PRINT;
6609 else if (name == "println")
6610 this->code_ = BUILTIN_PRINTLN;
6611 else if (name == "real")
6612 this->code_ = BUILTIN_REAL;
6613 else if (name == "recover")
6614 this->code_ = BUILTIN_RECOVER;
6615 else if (name == "Alignof")
6616 this->code_ = BUILTIN_ALIGNOF;
6617 else if (name == "Offsetof")
6618 this->code_ = BUILTIN_OFFSETOF;
6619 else if (name == "Sizeof")
6620 this->code_ = BUILTIN_SIZEOF;
6621 else
6622 gcc_unreachable();
6623}
6624
6625// Return whether this is a call to recover. This is a virtual
6626// function called from the parent class.
6627
6628bool
6629Builtin_call_expression::do_is_recover_call() const
6630{
6631 if (this->classification() == EXPRESSION_ERROR)
6632 return false;
6633 return this->code_ == BUILTIN_RECOVER;
6634}
6635
6636// Set the argument for a call to recover.
6637
6638void
6639Builtin_call_expression::do_set_recover_arg(Expression* arg)
6640{
6641 const Expression_list* args = this->args();
6642 gcc_assert(args == NULL || args->empty());
6643 Expression_list* new_args = new Expression_list();
6644 new_args->push_back(arg);
6645 this->set_args(new_args);
6646}
6647
6648// A traversal class which looks for a call expression.
6649
6650class Find_call_expression : public Traverse
6651{
6652 public:
6653 Find_call_expression()
6654 : Traverse(traverse_expressions),
6655 found_(false)
6656 { }
6657
6658 int
6659 expression(Expression**);
6660
6661 bool
6662 found()
6663 { return this->found_; }
6664
6665 private:
6666 bool found_;
6667};
6668
6669int
6670Find_call_expression::expression(Expression** pexpr)
6671{
6672 if ((*pexpr)->call_expression() != NULL)
6673 {
6674 this->found_ = true;
6675 return TRAVERSE_EXIT;
6676 }
6677 return TRAVERSE_CONTINUE;
6678}
6679
6680// Lower a builtin call expression. This turns new and make into
6681// specific expressions. We also convert to a constant if we can.
6682
6683Expression*
6684Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6685{
6686 if (this->code_ == BUILTIN_NEW)
6687 {
6688 const Expression_list* args = this->args();
6689 if (args == NULL || args->size() < 1)
6690 this->report_error(_("not enough arguments"));
6691 else if (args->size() > 1)
6692 this->report_error(_("too many arguments"));
6693 else
6694 {
6695 Expression* arg = args->front();
6696 if (!arg->is_type_expression())
6697 {
6698 error_at(arg->location(), "expected type");
6699 this->set_is_error();
6700 }
6701 else
6702 return Expression::make_allocation(arg->type(), this->location());
6703 }
6704 }
6705 else if (this->code_ == BUILTIN_MAKE)
6706 {
6707 const Expression_list* args = this->args();
6708 if (args == NULL || args->size() < 1)
6709 this->report_error(_("not enough arguments"));
6710 else
6711 {
6712 Expression* arg = args->front();
6713 if (!arg->is_type_expression())
6714 {
6715 error_at(arg->location(), "expected type");
6716 this->set_is_error();
6717 }
6718 else
6719 {
6720 Expression_list* newargs;
6721 if (args->size() == 1)
6722 newargs = NULL;
6723 else
6724 {
6725 newargs = new Expression_list();
6726 Expression_list::const_iterator p = args->begin();
6727 ++p;
6728 for (; p != args->end(); ++p)
6729 newargs->push_back(*p);
6730 }
6731 return Expression::make_make(arg->type(), newargs,
6732 this->location());
6733 }
6734 }
6735 }
6736 else if (this->is_constant())
6737 {
6738 // We can only lower len and cap if there are no function calls
6739 // in the arguments. Otherwise we have to make the call.
6740 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6741 {
6742 Expression* arg = this->one_arg();
6743 if (!arg->is_constant())
6744 {
6745 Find_call_expression find_call;
6746 Expression::traverse(&arg, &find_call);
6747 if (find_call.found())
6748 return this;
6749 }
6750 }
6751
6752 mpz_t ival;
6753 mpz_init(ival);
6754 Type* type;
6755 if (this->integer_constant_value(true, ival, &type))
6756 {
6757 Expression* ret = Expression::make_integer(&ival, type,
6758 this->location());
6759 mpz_clear(ival);
6760 return ret;
6761 }
6762 mpz_clear(ival);
6763
6764 mpfr_t rval;
6765 mpfr_init(rval);
6766 if (this->float_constant_value(rval, &type))
6767 {
6768 Expression* ret = Expression::make_float(&rval, type,
6769 this->location());
6770 mpfr_clear(rval);
6771 return ret;
6772 }
6773
6774 mpfr_t imag;
6775 mpfr_init(imag);
6776 if (this->complex_constant_value(rval, imag, &type))
6777 {
6778 Expression* ret = Expression::make_complex(&rval, &imag, type,
6779 this->location());
6780 mpfr_clear(rval);
6781 mpfr_clear(imag);
6782 return ret;
6783 }
6784 mpfr_clear(rval);
6785 mpfr_clear(imag);
6786 }
6787 else if (this->code_ == BUILTIN_RECOVER)
6788 {
6789 if (function != NULL)
6790 function->func_value()->set_calls_recover();
6791 else
6792 {
6793 // Calling recover outside of a function always returns the
6794 // nil empty interface.
6795 Type* eface = Type::make_interface_type(NULL, this->location());
6796 return Expression::make_cast(eface,
6797 Expression::make_nil(this->location()),
6798 this->location());
6799 }
6800 }
6801 else if (this->code_ == BUILTIN_APPEND)
6802 {
6803 // Lower the varargs.
6804 const Expression_list* args = this->args();
6805 if (args == NULL || args->empty())
6806 return this;
6807 Type* slice_type = args->front()->type();
6808 if (!slice_type->is_open_array_type())
6809 {
6810 error_at(args->front()->location(), "argument 1 must be a slice");
6811 this->set_is_error();
6812 return this;
6813 }
6814 return this->lower_varargs(gogo, function, slice_type, 2);
6815 }
6816
6817 return this;
6818}
6819
6820// Return the type of the real or imag functions, given the type of
6821// the argument. We need to map complex to float, complex64 to
6822// float32, and complex128 to float64, so it has to be done by name.
6823// This returns NULL if it can't figure out the type.
6824
6825Type*
6826Builtin_call_expression::real_imag_type(Type* arg_type)
6827{
6828 if (arg_type == NULL || arg_type->is_abstract())
6829 return NULL;
6830 Named_type* nt = arg_type->named_type();
6831 if (nt == NULL)
6832 return NULL;
6833 while (nt->real_type()->named_type() != NULL)
6834 nt = nt->real_type()->named_type();
48080209 6835 if (nt->name() == "complex64")
e440a328 6836 return Type::lookup_float_type("float32");
6837 else if (nt->name() == "complex128")
6838 return Type::lookup_float_type("float64");
6839 else
6840 return NULL;
6841}
6842
48080209 6843// Return the type of the complex function, given the type of one of the
e440a328 6844// argments. Like real_imag_type, we have to map by name.
6845
6846Type*
48080209 6847Builtin_call_expression::complex_type(Type* arg_type)
e440a328 6848{
6849 if (arg_type == NULL || arg_type->is_abstract())
6850 return NULL;
6851 Named_type* nt = arg_type->named_type();
6852 if (nt == NULL)
6853 return NULL;
6854 while (nt->real_type()->named_type() != NULL)
6855 nt = nt->real_type()->named_type();
48080209 6856 if (nt->name() == "float32")
e440a328 6857 return Type::lookup_complex_type("complex64");
6858 else if (nt->name() == "float64")
6859 return Type::lookup_complex_type("complex128");
6860 else
6861 return NULL;
6862}
6863
6864// Return a single argument, or NULL if there isn't one.
6865
6866Expression*
6867Builtin_call_expression::one_arg() const
6868{
6869 const Expression_list* args = this->args();
6870 if (args->size() != 1)
6871 return NULL;
6872 return args->front();
6873}
6874
6875// Return whether this is constant: len of a string, or len or cap of
6876// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6877
6878bool
6879Builtin_call_expression::do_is_constant() const
6880{
6881 switch (this->code_)
6882 {
6883 case BUILTIN_LEN:
6884 case BUILTIN_CAP:
6885 {
0f914071 6886 if (this->seen_)
6887 return false;
6888
e440a328 6889 Expression* arg = this->one_arg();
6890 if (arg == NULL)
6891 return false;
6892 Type* arg_type = arg->type();
6893
6894 if (arg_type->points_to() != NULL
6895 && arg_type->points_to()->array_type() != NULL
6896 && !arg_type->points_to()->is_open_array_type())
6897 arg_type = arg_type->points_to();
6898
6899 if (arg_type->array_type() != NULL
6900 && arg_type->array_type()->length() != NULL)
0f914071 6901 return true;
e440a328 6902
6903 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
0f914071 6904 {
6905 this->seen_ = true;
6906 bool ret = arg->is_constant();
6907 this->seen_ = false;
6908 return ret;
6909 }
e440a328 6910 }
6911 break;
6912
6913 case BUILTIN_SIZEOF:
6914 case BUILTIN_ALIGNOF:
6915 return this->one_arg() != NULL;
6916
6917 case BUILTIN_OFFSETOF:
6918 {
6919 Expression* arg = this->one_arg();
6920 if (arg == NULL)
6921 return false;
6922 return arg->field_reference_expression() != NULL;
6923 }
6924
48080209 6925 case BUILTIN_COMPLEX:
e440a328 6926 {
6927 const Expression_list* args = this->args();
6928 if (args != NULL && args->size() == 2)
6929 return args->front()->is_constant() && args->back()->is_constant();
6930 }
6931 break;
6932
6933 case BUILTIN_REAL:
6934 case BUILTIN_IMAG:
6935 {
6936 Expression* arg = this->one_arg();
6937 return arg != NULL && arg->is_constant();
6938 }
6939
6940 default:
6941 break;
6942 }
6943
6944 return false;
6945}
6946
6947// Return an integer constant value if possible.
6948
6949bool
6950Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6951 mpz_t val,
6952 Type** ptype) const
6953{
6954 if (this->code_ == BUILTIN_LEN
6955 || this->code_ == BUILTIN_CAP)
6956 {
6957 Expression* arg = this->one_arg();
6958 if (arg == NULL)
6959 return false;
6960 Type* arg_type = arg->type();
6961
6962 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6963 {
6964 std::string sval;
6965 if (arg->string_constant_value(&sval))
6966 {
6967 mpz_set_ui(val, sval.length());
6968 *ptype = Type::lookup_integer_type("int");
6969 return true;
6970 }
6971 }
6972
6973 if (arg_type->points_to() != NULL
6974 && arg_type->points_to()->array_type() != NULL
6975 && !arg_type->points_to()->is_open_array_type())
6976 arg_type = arg_type->points_to();
6977
6978 if (arg_type->array_type() != NULL
6979 && arg_type->array_type()->length() != NULL)
6980 {
0f914071 6981 if (this->seen_)
6982 return false;
e440a328 6983 Expression* e = arg_type->array_type()->length();
0f914071 6984 this->seen_ = true;
6985 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6986 this->seen_ = false;
6987 if (r)
e440a328 6988 {
6989 *ptype = Type::lookup_integer_type("int");
6990 return true;
6991 }
6992 }
6993 }
6994 else if (this->code_ == BUILTIN_SIZEOF
6995 || this->code_ == BUILTIN_ALIGNOF)
6996 {
6997 Expression* arg = this->one_arg();
6998 if (arg == NULL)
6999 return false;
7000 Type* arg_type = arg->type();
ef3f552a 7001 if (arg_type->is_error_type() || arg_type->is_undefined())
e440a328 7002 return false;
7003 if (arg_type->is_abstract())
7004 return false;
9aa9e2df 7005 if (arg_type->named_type() != NULL)
7006 arg_type->named_type()->convert(this->gogo_);
e440a328 7007 tree arg_type_tree = arg_type->get_tree(this->gogo_);
f690b0bb 7008 if (arg_type_tree == error_mark_node)
7009 return false;
e440a328 7010 unsigned long val_long;
7011 if (this->code_ == BUILTIN_SIZEOF)
7012 {
7013 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
7014 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
7015 if (TREE_INT_CST_HIGH(type_size) != 0)
7016 return false;
7017 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
7018 val_long = static_cast<unsigned long>(val_wide);
7019 if (val_long != val_wide)
7020 return false;
7021 }
7022 else if (this->code_ == BUILTIN_ALIGNOF)
7023 {
637bd3af 7024 if (arg->field_reference_expression() == NULL)
7025 val_long = go_type_alignment(arg_type_tree);
7026 else
e440a328 7027 {
7028 // Calling unsafe.Alignof(s.f) returns the alignment of
7029 // the type of f when it is used as a field in a struct.
637bd3af 7030 val_long = go_field_alignment(arg_type_tree);
e440a328 7031 }
e440a328 7032 }
7033 else
7034 gcc_unreachable();
7035 mpz_set_ui(val, val_long);
7036 *ptype = NULL;
7037 return true;
7038 }
7039 else if (this->code_ == BUILTIN_OFFSETOF)
7040 {
7041 Expression* arg = this->one_arg();
7042 if (arg == NULL)
7043 return false;
7044 Field_reference_expression* farg = arg->field_reference_expression();
7045 if (farg == NULL)
7046 return false;
7047 Expression* struct_expr = farg->expr();
7048 Type* st = struct_expr->type();
7049 if (st->struct_type() == NULL)
7050 return false;
9aa9e2df 7051 if (st->named_type() != NULL)
7052 st->named_type()->convert(this->gogo_);
e440a328 7053 tree struct_tree = st->get_tree(this->gogo_);
7054 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
7055 tree field = TYPE_FIELDS(struct_tree);
7056 for (unsigned int index = farg->field_index(); index > 0; --index)
7057 {
7058 field = DECL_CHAIN(field);
7059 gcc_assert(field != NULL_TREE);
7060 }
7061 HOST_WIDE_INT offset_wide = int_byte_position (field);
7062 if (offset_wide < 0)
7063 return false;
7064 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
7065 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
7066 return false;
7067 mpz_set_ui(val, offset_long);
7068 return true;
7069 }
7070 return false;
7071}
7072
7073// Return a floating point constant value if possible.
7074
7075bool
7076Builtin_call_expression::do_float_constant_value(mpfr_t val,
7077 Type** ptype) const
7078{
7079 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
7080 {
7081 Expression* arg = this->one_arg();
7082 if (arg == NULL)
7083 return false;
7084
7085 mpfr_t real;
7086 mpfr_t imag;
7087 mpfr_init(real);
7088 mpfr_init(imag);
7089
7090 bool ret = false;
7091 Type* type;
7092 if (arg->complex_constant_value(real, imag, &type))
7093 {
7094 if (this->code_ == BUILTIN_REAL)
7095 mpfr_set(val, real, GMP_RNDN);
7096 else
7097 mpfr_set(val, imag, GMP_RNDN);
7098 *ptype = Builtin_call_expression::real_imag_type(type);
7099 ret = true;
7100 }
7101
7102 mpfr_clear(real);
7103 mpfr_clear(imag);
7104 return ret;
7105 }
7106
7107 return false;
7108}
7109
7110// Return a complex constant value if possible.
7111
7112bool
7113Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7114 Type** ptype) const
7115{
48080209 7116 if (this->code_ == BUILTIN_COMPLEX)
e440a328 7117 {
7118 const Expression_list* args = this->args();
7119 if (args == NULL || args->size() != 2)
7120 return false;
7121
7122 mpfr_t r;
7123 mpfr_init(r);
7124 Type* rtype;
7125 if (!args->front()->float_constant_value(r, &rtype))
7126 {
7127 mpfr_clear(r);
7128 return false;
7129 }
7130
7131 mpfr_t i;
7132 mpfr_init(i);
7133
7134 bool ret = false;
7135 Type* itype;
7136 if (args->back()->float_constant_value(i, &itype)
07ba8be5 7137 && Type::are_identical(rtype, itype, false, NULL))
e440a328 7138 {
7139 mpfr_set(real, r, GMP_RNDN);
7140 mpfr_set(imag, i, GMP_RNDN);
48080209 7141 *ptype = Builtin_call_expression::complex_type(rtype);
e440a328 7142 ret = true;
7143 }
7144
7145 mpfr_clear(r);
7146 mpfr_clear(i);
7147
7148 return ret;
7149 }
7150
7151 return false;
7152}
7153
7154// Return the type.
7155
7156Type*
7157Builtin_call_expression::do_type()
7158{
7159 switch (this->code_)
7160 {
7161 case BUILTIN_INVALID:
7162 default:
7163 gcc_unreachable();
7164
7165 case BUILTIN_NEW:
7166 case BUILTIN_MAKE:
7167 {
7168 const Expression_list* args = this->args();
7169 if (args == NULL || args->empty())
7170 return Type::make_error_type();
7171 return Type::make_pointer_type(args->front()->type());
7172 }
7173
7174 case BUILTIN_CAP:
7175 case BUILTIN_COPY:
7176 case BUILTIN_LEN:
7177 case BUILTIN_ALIGNOF:
7178 case BUILTIN_OFFSETOF:
7179 case BUILTIN_SIZEOF:
7180 return Type::lookup_integer_type("int");
7181
7182 case BUILTIN_CLOSE:
7183 case BUILTIN_PANIC:
7184 case BUILTIN_PRINT:
7185 case BUILTIN_PRINTLN:
7186 return Type::make_void_type();
7187
7188 case BUILTIN_CLOSED:
7189 return Type::lookup_bool_type();
7190
7191 case BUILTIN_RECOVER:
7192 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7193
7194 case BUILTIN_APPEND:
7195 {
7196 const Expression_list* args = this->args();
7197 if (args == NULL || args->empty())
7198 return Type::make_error_type();
7199 return args->front()->type();
7200 }
7201
7202 case BUILTIN_REAL:
7203 case BUILTIN_IMAG:
7204 {
7205 Expression* arg = this->one_arg();
7206 if (arg == NULL)
7207 return Type::make_error_type();
7208 Type* t = arg->type();
7209 if (t->is_abstract())
7210 t = t->make_non_abstract_type();
7211 t = Builtin_call_expression::real_imag_type(t);
7212 if (t == NULL)
7213 t = Type::make_error_type();
7214 return t;
7215 }
7216
48080209 7217 case BUILTIN_COMPLEX:
e440a328 7218 {
7219 const Expression_list* args = this->args();
7220 if (args == NULL || args->size() != 2)
7221 return Type::make_error_type();
7222 Type* t = args->front()->type();
7223 if (t->is_abstract())
7224 {
7225 t = args->back()->type();
7226 if (t->is_abstract())
7227 t = t->make_non_abstract_type();
7228 }
48080209 7229 t = Builtin_call_expression::complex_type(t);
e440a328 7230 if (t == NULL)
7231 t = Type::make_error_type();
7232 return t;
7233 }
7234 }
7235}
7236
7237// Determine the type.
7238
7239void
7240Builtin_call_expression::do_determine_type(const Type_context* context)
7241{
fb94b0ca 7242 if (!this->determining_types())
7243 return;
7244
e440a328 7245 this->fn()->determine_type_no_context();
7246
7247 const Expression_list* args = this->args();
7248
7249 bool is_print;
7250 Type* arg_type = NULL;
7251 switch (this->code_)
7252 {
7253 case BUILTIN_PRINT:
7254 case BUILTIN_PRINTLN:
7255 // Do not force a large integer constant to "int".
7256 is_print = true;
7257 break;
7258
7259 case BUILTIN_REAL:
7260 case BUILTIN_IMAG:
48080209 7261 arg_type = Builtin_call_expression::complex_type(context->type);
e440a328 7262 is_print = false;
7263 break;
7264
48080209 7265 case BUILTIN_COMPLEX:
e440a328 7266 {
48080209 7267 // For the complex function the type of one operand can
e440a328 7268 // determine the type of the other, as in a binary expression.
7269 arg_type = Builtin_call_expression::real_imag_type(context->type);
7270 if (args != NULL && args->size() == 2)
7271 {
7272 Type* t1 = args->front()->type();
7273 Type* t2 = args->front()->type();
7274 if (!t1->is_abstract())
7275 arg_type = t1;
7276 else if (!t2->is_abstract())
7277 arg_type = t2;
7278 }
7279 is_print = false;
7280 }
7281 break;
7282
7283 default:
7284 is_print = false;
7285 break;
7286 }
7287
7288 if (args != NULL)
7289 {
7290 for (Expression_list::const_iterator pa = args->begin();
7291 pa != args->end();
7292 ++pa)
7293 {
7294 Type_context subcontext;
7295 subcontext.type = arg_type;
7296
7297 if (is_print)
7298 {
7299 // We want to print large constants, we so can't just
7300 // use the appropriate nonabstract type. Use uint64 for
7301 // an integer if we know it is nonnegative, otherwise
7302 // use int64 for a integer, otherwise use float64 for a
7303 // float or complex128 for a complex.
7304 Type* want_type = NULL;
7305 Type* atype = (*pa)->type();
7306 if (atype->is_abstract())
7307 {
7308 if (atype->integer_type() != NULL)
7309 {
7310 mpz_t val;
7311 mpz_init(val);
7312 Type* dummy;
7313 if (this->integer_constant_value(true, val, &dummy)
7314 && mpz_sgn(val) >= 0)
7315 want_type = Type::lookup_integer_type("uint64");
7316 else
7317 want_type = Type::lookup_integer_type("int64");
7318 mpz_clear(val);
7319 }
7320 else if (atype->float_type() != NULL)
7321 want_type = Type::lookup_float_type("float64");
7322 else if (atype->complex_type() != NULL)
7323 want_type = Type::lookup_complex_type("complex128");
7324 else if (atype->is_abstract_string_type())
7325 want_type = Type::lookup_string_type();
7326 else if (atype->is_abstract_boolean_type())
7327 want_type = Type::lookup_bool_type();
7328 else
7329 gcc_unreachable();
7330 subcontext.type = want_type;
7331 }
7332 }
7333
7334 (*pa)->determine_type(&subcontext);
7335 }
7336 }
7337}
7338
7339// If there is exactly one argument, return true. Otherwise give an
7340// error message and return false.
7341
7342bool
7343Builtin_call_expression::check_one_arg()
7344{
7345 const Expression_list* args = this->args();
7346 if (args == NULL || args->size() < 1)
7347 {
7348 this->report_error(_("not enough arguments"));
7349 return false;
7350 }
7351 else if (args->size() > 1)
7352 {
7353 this->report_error(_("too many arguments"));
7354 return false;
7355 }
7356 if (args->front()->is_error_expression()
4c0f874c 7357 || args->front()->type()->is_error_type()
7358 || args->front()->type()->is_undefined())
e440a328 7359 {
7360 this->set_is_error();
7361 return false;
7362 }
7363 return true;
7364}
7365
7366// Check argument types for a builtin function.
7367
7368void
7369Builtin_call_expression::do_check_types(Gogo*)
7370{
7371 switch (this->code_)
7372 {
7373 case BUILTIN_INVALID:
7374 case BUILTIN_NEW:
7375 case BUILTIN_MAKE:
7376 return;
7377
7378 case BUILTIN_LEN:
7379 case BUILTIN_CAP:
7380 {
7381 // The single argument may be either a string or an array or a
7382 // map or a channel, or a pointer to a closed array.
7383 if (this->check_one_arg())
7384 {
7385 Type* arg_type = this->one_arg()->type();
7386 if (arg_type->points_to() != NULL
7387 && arg_type->points_to()->array_type() != NULL
7388 && !arg_type->points_to()->is_open_array_type())
7389 arg_type = arg_type->points_to();
7390 if (this->code_ == BUILTIN_CAP)
7391 {
7392 if (!arg_type->is_error_type()
7393 && arg_type->array_type() == NULL
7394 && arg_type->channel_type() == NULL)
7395 this->report_error(_("argument must be array or slice "
7396 "or channel"));
7397 }
7398 else
7399 {
7400 if (!arg_type->is_error_type()
7401 && !arg_type->is_string_type()
7402 && arg_type->array_type() == NULL
7403 && arg_type->map_type() == NULL
7404 && arg_type->channel_type() == NULL)
7405 this->report_error(_("argument must be string or "
7406 "array or slice or map or channel"));
7407 }
7408 }
7409 }
7410 break;
7411
7412 case BUILTIN_PRINT:
7413 case BUILTIN_PRINTLN:
7414 {
7415 const Expression_list* args = this->args();
7416 if (args == NULL)
7417 {
7418 if (this->code_ == BUILTIN_PRINT)
7419 warning_at(this->location(), 0,
7420 "no arguments for builtin function %<%s%>",
7421 (this->code_ == BUILTIN_PRINT
7422 ? "print"
7423 : "println"));
7424 }
7425 else
7426 {
7427 for (Expression_list::const_iterator p = args->begin();
7428 p != args->end();
7429 ++p)
7430 {
7431 Type* type = (*p)->type();
7432 if (type->is_error_type()
7433 || type->is_string_type()
7434 || type->integer_type() != NULL
7435 || type->float_type() != NULL
7436 || type->complex_type() != NULL
7437 || type->is_boolean_type()
7438 || type->points_to() != NULL
7439 || type->interface_type() != NULL
7440 || type->channel_type() != NULL
7441 || type->map_type() != NULL
7442 || type->function_type() != NULL
7443 || type->is_open_array_type())
7444 ;
7445 else
7446 this->report_error(_("unsupported argument type to "
7447 "builtin function"));
7448 }
7449 }
7450 }
7451 break;
7452
7453 case BUILTIN_CLOSE:
7454 case BUILTIN_CLOSED:
7455 if (this->check_one_arg())
7456 {
7457 if (this->one_arg()->type()->channel_type() == NULL)
7458 this->report_error(_("argument must be channel"));
7459 }
7460 break;
7461
7462 case BUILTIN_PANIC:
7463 case BUILTIN_SIZEOF:
7464 case BUILTIN_ALIGNOF:
7465 this->check_one_arg();
7466 break;
7467
7468 case BUILTIN_RECOVER:
7469 if (this->args() != NULL && !this->args()->empty())
7470 this->report_error(_("too many arguments"));
7471 break;
7472
7473 case BUILTIN_OFFSETOF:
7474 if (this->check_one_arg())
7475 {
7476 Expression* arg = this->one_arg();
7477 if (arg->field_reference_expression() == NULL)
7478 this->report_error(_("argument must be a field reference"));
7479 }
7480 break;
7481
7482 case BUILTIN_COPY:
7483 {
7484 const Expression_list* args = this->args();
7485 if (args == NULL || args->size() < 2)
7486 {
7487 this->report_error(_("not enough arguments"));
7488 break;
7489 }
7490 else if (args->size() > 2)
7491 {
7492 this->report_error(_("too many arguments"));
7493 break;
7494 }
7495 Type* arg1_type = args->front()->type();
7496 Type* arg2_type = args->back()->type();
7497 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7498 break;
7499
7500 Type* e1;
7501 if (arg1_type->is_open_array_type())
7502 e1 = arg1_type->array_type()->element_type();
7503 else
7504 {
7505 this->report_error(_("left argument must be a slice"));
7506 break;
7507 }
7508
7509 Type* e2;
7510 if (arg2_type->is_open_array_type())
7511 e2 = arg2_type->array_type()->element_type();
7512 else if (arg2_type->is_string_type())
7513 e2 = Type::lookup_integer_type("uint8");
7514 else
7515 {
7516 this->report_error(_("right argument must be a slice or a string"));
7517 break;
7518 }
7519
07ba8be5 7520 if (!Type::are_identical(e1, e2, true, NULL))
e440a328 7521 this->report_error(_("element types must be the same"));
7522 }
7523 break;
7524
7525 case BUILTIN_APPEND:
7526 {
7527 const Expression_list* args = this->args();
b0d311a1 7528 if (args == NULL || args->size() < 2)
e440a328 7529 {
7530 this->report_error(_("not enough arguments"));
7531 break;
7532 }
0b7755ec 7533 if (args->size() > 2)
7534 {
7535 this->report_error(_("too many arguments"));
7536 break;
7537 }
e440a328 7538 std::string reason;
7539 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7540 &reason))
7541 {
7542 if (reason.empty())
7543 this->report_error(_("arguments 1 and 2 have different types"));
7544 else
7545 {
7546 error_at(this->location(),
7547 "arguments 1 and 2 have different types (%s)",
7548 reason.c_str());
7549 this->set_is_error();
7550 }
7551 }
7552 break;
7553 }
7554
7555 case BUILTIN_REAL:
7556 case BUILTIN_IMAG:
7557 if (this->check_one_arg())
7558 {
7559 if (this->one_arg()->type()->complex_type() == NULL)
7560 this->report_error(_("argument must have complex type"));
7561 }
7562 break;
7563
48080209 7564 case BUILTIN_COMPLEX:
e440a328 7565 {
7566 const Expression_list* args = this->args();
7567 if (args == NULL || args->size() < 2)
7568 this->report_error(_("not enough arguments"));
7569 else if (args->size() > 2)
7570 this->report_error(_("too many arguments"));
7571 else if (args->front()->is_error_expression()
7572 || args->front()->type()->is_error_type()
7573 || args->back()->is_error_expression()
7574 || args->back()->type()->is_error_type())
7575 this->set_is_error();
7576 else if (!Type::are_identical(args->front()->type(),
07ba8be5 7577 args->back()->type(), true, NULL))
48080209 7578 this->report_error(_("complex arguments must have identical types"));
e440a328 7579 else if (args->front()->type()->float_type() == NULL)
48080209 7580 this->report_error(_("complex arguments must have "
e440a328 7581 "floating-point type"));
7582 }
7583 break;
7584
7585 default:
7586 gcc_unreachable();
7587 }
7588}
7589
7590// Return the tree for a builtin function.
7591
7592tree
7593Builtin_call_expression::do_get_tree(Translate_context* context)
7594{
7595 Gogo* gogo = context->gogo();
7596 source_location location = this->location();
7597 switch (this->code_)
7598 {
7599 case BUILTIN_INVALID:
7600 case BUILTIN_NEW:
7601 case BUILTIN_MAKE:
7602 gcc_unreachable();
7603
7604 case BUILTIN_LEN:
7605 case BUILTIN_CAP:
7606 {
7607 const Expression_list* args = this->args();
7608 gcc_assert(args != NULL && args->size() == 1);
7609 Expression* arg = *args->begin();
7610 Type* arg_type = arg->type();
0f914071 7611
7612 if (this->seen_)
7613 {
7614 gcc_assert(saw_errors());
7615 return error_mark_node;
7616 }
7617 this->seen_ = true;
7618
e440a328 7619 tree arg_tree = arg->get_tree(context);
0f914071 7620
7621 this->seen_ = false;
7622
e440a328 7623 if (arg_tree == error_mark_node)
7624 return error_mark_node;
7625
7626 if (arg_type->points_to() != NULL)
7627 {
7628 arg_type = arg_type->points_to();
7629 gcc_assert(arg_type->array_type() != NULL
7630 && !arg_type->is_open_array_type());
7631 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7632 arg_tree = build_fold_indirect_ref(arg_tree);
7633 }
7634
7635 tree val_tree;
7636 if (this->code_ == BUILTIN_LEN)
7637 {
7638 if (arg_type->is_string_type())
7639 val_tree = String_type::length_tree(gogo, arg_tree);
7640 else if (arg_type->array_type() != NULL)
0f914071 7641 {
7642 if (this->seen_)
7643 {
7644 gcc_assert(saw_errors());
7645 return error_mark_node;
7646 }
7647 this->seen_ = true;
7648 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7649 this->seen_ = false;
7650 }
e440a328 7651 else if (arg_type->map_type() != NULL)
7652 {
7653 static tree map_len_fndecl;
7654 val_tree = Gogo::call_builtin(&map_len_fndecl,
7655 location,
7656 "__go_map_len",
7657 1,
7658 sizetype,
7659 arg_type->get_tree(gogo),
7660 arg_tree);
7661 }
7662 else if (arg_type->channel_type() != NULL)
7663 {
7664 static tree chan_len_fndecl;
7665 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7666 location,
7667 "__go_chan_len",
7668 1,
7669 sizetype,
7670 arg_type->get_tree(gogo),
7671 arg_tree);
7672 }
7673 else
7674 gcc_unreachable();
7675 }
7676 else
7677 {
7678 if (arg_type->array_type() != NULL)
0f914071 7679 {
7680 if (this->seen_)
7681 {
7682 gcc_assert(saw_errors());
7683 return error_mark_node;
7684 }
7685 this->seen_ = true;
7686 val_tree = arg_type->array_type()->capacity_tree(gogo,
7687 arg_tree);
7688 this->seen_ = false;
7689 }
e440a328 7690 else if (arg_type->channel_type() != NULL)
7691 {
7692 static tree chan_cap_fndecl;
7693 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7694 location,
7695 "__go_chan_cap",
7696 1,
7697 sizetype,
7698 arg_type->get_tree(gogo),
7699 arg_tree);
7700 }
7701 else
7702 gcc_unreachable();
7703 }
7704
d8ccb1e3 7705 if (val_tree == error_mark_node)
7706 return error_mark_node;
7707
e440a328 7708 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7709 if (type_tree == TREE_TYPE(val_tree))
7710 return val_tree;
7711 else
7712 return fold(convert_to_integer(type_tree, val_tree));
7713 }
7714
7715 case BUILTIN_PRINT:
7716 case BUILTIN_PRINTLN:
7717 {
7718 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7719 tree stmt_list = NULL_TREE;
7720
7721 const Expression_list* call_args = this->args();
7722 if (call_args != NULL)
7723 {
7724 for (Expression_list::const_iterator p = call_args->begin();
7725 p != call_args->end();
7726 ++p)
7727 {
7728 if (is_ln && p != call_args->begin())
7729 {
7730 static tree print_space_fndecl;
7731 tree call = Gogo::call_builtin(&print_space_fndecl,
7732 location,
7733 "__go_print_space",
7734 0,
7735 void_type_node);
5fb82b5e 7736 if (call == error_mark_node)
7737 return error_mark_node;
e440a328 7738 append_to_statement_list(call, &stmt_list);
7739 }
7740
7741 Type* type = (*p)->type();
7742
7743 tree arg = (*p)->get_tree(context);
7744 if (arg == error_mark_node)
7745 return error_mark_node;
7746
7747 tree* pfndecl;
7748 const char* fnname;
7749 if (type->is_string_type())
7750 {
7751 static tree print_string_fndecl;
7752 pfndecl = &print_string_fndecl;
7753 fnname = "__go_print_string";
7754 }
7755 else if (type->integer_type() != NULL
7756 && type->integer_type()->is_unsigned())
7757 {
7758 static tree print_uint64_fndecl;
7759 pfndecl = &print_uint64_fndecl;
7760 fnname = "__go_print_uint64";
7761 Type* itype = Type::lookup_integer_type("uint64");
7762 arg = fold_convert_loc(location, itype->get_tree(gogo),
7763 arg);
7764 }
7765 else if (type->integer_type() != NULL)
7766 {
7767 static tree print_int64_fndecl;
7768 pfndecl = &print_int64_fndecl;
7769 fnname = "__go_print_int64";
7770 Type* itype = Type::lookup_integer_type("int64");
7771 arg = fold_convert_loc(location, itype->get_tree(gogo),
7772 arg);
7773 }
7774 else if (type->float_type() != NULL)
7775 {
7776 static tree print_double_fndecl;
7777 pfndecl = &print_double_fndecl;
7778 fnname = "__go_print_double";
7779 arg = fold_convert_loc(location, double_type_node, arg);
7780 }
7781 else if (type->complex_type() != NULL)
7782 {
7783 static tree print_complex_fndecl;
7784 pfndecl = &print_complex_fndecl;
7785 fnname = "__go_print_complex";
7786 arg = fold_convert_loc(location, complex_double_type_node,
7787 arg);
7788 }
7789 else if (type->is_boolean_type())
7790 {
7791 static tree print_bool_fndecl;
7792 pfndecl = &print_bool_fndecl;
7793 fnname = "__go_print_bool";
7794 }
7795 else if (type->points_to() != NULL
7796 || type->channel_type() != NULL
7797 || type->map_type() != NULL
7798 || type->function_type() != NULL)
7799 {
7800 static tree print_pointer_fndecl;
7801 pfndecl = &print_pointer_fndecl;
7802 fnname = "__go_print_pointer";
7803 arg = fold_convert_loc(location, ptr_type_node, arg);
7804 }
7805 else if (type->interface_type() != NULL)
7806 {
7807 if (type->interface_type()->is_empty())
7808 {
7809 static tree print_empty_interface_fndecl;
7810 pfndecl = &print_empty_interface_fndecl;
7811 fnname = "__go_print_empty_interface";
7812 }
7813 else
7814 {
7815 static tree print_interface_fndecl;
7816 pfndecl = &print_interface_fndecl;
7817 fnname = "__go_print_interface";
7818 }
7819 }
7820 else if (type->is_open_array_type())
7821 {
7822 static tree print_slice_fndecl;
7823 pfndecl = &print_slice_fndecl;
7824 fnname = "__go_print_slice";
7825 }
7826 else
7827 gcc_unreachable();
7828
7829 tree call = Gogo::call_builtin(pfndecl,
7830 location,
7831 fnname,
7832 1,
7833 void_type_node,
7834 TREE_TYPE(arg),
7835 arg);
5fb82b5e 7836 if (call == error_mark_node)
7837 return error_mark_node;
7838 append_to_statement_list(call, &stmt_list);
e440a328 7839 }
7840 }
7841
7842 if (is_ln)
7843 {
7844 static tree print_nl_fndecl;
7845 tree call = Gogo::call_builtin(&print_nl_fndecl,
7846 location,
7847 "__go_print_nl",
7848 0,
7849 void_type_node);
5fb82b5e 7850 if (call == error_mark_node)
7851 return error_mark_node;
e440a328 7852 append_to_statement_list(call, &stmt_list);
7853 }
7854
7855 return stmt_list;
7856 }
7857
7858 case BUILTIN_PANIC:
7859 {
7860 const Expression_list* args = this->args();
7861 gcc_assert(args != NULL && args->size() == 1);
7862 Expression* arg = args->front();
7863 tree arg_tree = arg->get_tree(context);
7864 if (arg_tree == error_mark_node)
7865 return error_mark_node;
7866 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7867 arg_tree = Expression::convert_for_assignment(context, empty,
7868 arg->type(),
7869 arg_tree, location);
7870 static tree panic_fndecl;
7871 tree call = Gogo::call_builtin(&panic_fndecl,
7872 location,
7873 "__go_panic",
7874 1,
7875 void_type_node,
7876 TREE_TYPE(arg_tree),
7877 arg_tree);
5fb82b5e 7878 if (call == error_mark_node)
7879 return error_mark_node;
e440a328 7880 // This function will throw an exception.
7881 TREE_NOTHROW(panic_fndecl) = 0;
7882 // This function will not return.
7883 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7884 return call;
7885 }
7886
7887 case BUILTIN_RECOVER:
7888 {
7889 // The argument is set when building recover thunks. It's a
7890 // boolean value which is true if we can recover a value now.
7891 const Expression_list* args = this->args();
7892 gcc_assert(args != NULL && args->size() == 1);
7893 Expression* arg = args->front();
7894 tree arg_tree = arg->get_tree(context);
7895 if (arg_tree == error_mark_node)
7896 return error_mark_node;
7897
7898 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7899 tree empty_tree = empty->get_tree(context->gogo());
7900
7901 Type* nil_type = Type::make_nil_type();
7902 Expression* nil = Expression::make_nil(location);
7903 tree nil_tree = nil->get_tree(context);
7904 tree empty_nil_tree = Expression::convert_for_assignment(context,
7905 empty,
7906 nil_type,
7907 nil_tree,
7908 location);
7909
7910 // We need to handle a deferred call to recover specially,
7911 // because it changes whether it can recover a panic or not.
7912 // See test7 in test/recover1.go.
7913 tree call;
7914 if (this->is_deferred())
7915 {
7916 static tree deferred_recover_fndecl;
7917 call = Gogo::call_builtin(&deferred_recover_fndecl,
7918 location,
7919 "__go_deferred_recover",
7920 0,
7921 empty_tree);
7922 }
7923 else
7924 {
7925 static tree recover_fndecl;
7926 call = Gogo::call_builtin(&recover_fndecl,
7927 location,
7928 "__go_recover",
7929 0,
7930 empty_tree);
7931 }
5fb82b5e 7932 if (call == error_mark_node)
7933 return error_mark_node;
e440a328 7934 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7935 call, empty_nil_tree);
7936 }
7937
7938 case BUILTIN_CLOSE:
7939 case BUILTIN_CLOSED:
7940 {
7941 const Expression_list* args = this->args();
7942 gcc_assert(args != NULL && args->size() == 1);
7943 Expression* arg = args->front();
7944 tree arg_tree = arg->get_tree(context);
7945 if (arg_tree == error_mark_node)
7946 return error_mark_node;
7947 if (this->code_ == BUILTIN_CLOSE)
7948 {
7949 static tree close_fndecl;
7950 return Gogo::call_builtin(&close_fndecl,
7951 location,
7952 "__go_builtin_close",
7953 1,
7954 void_type_node,
7955 TREE_TYPE(arg_tree),
7956 arg_tree);
7957 }
7958 else
7959 {
7960 static tree closed_fndecl;
7961 return Gogo::call_builtin(&closed_fndecl,
7962 location,
7963 "__go_builtin_closed",
7964 1,
7965 boolean_type_node,
7966 TREE_TYPE(arg_tree),
7967 arg_tree);
7968 }
7969 }
7970
7971 case BUILTIN_SIZEOF:
7972 case BUILTIN_OFFSETOF:
7973 case BUILTIN_ALIGNOF:
7974 {
7975 mpz_t val;
7976 mpz_init(val);
7977 Type* dummy;
7978 bool b = this->integer_constant_value(true, val, &dummy);
7f1d9abd 7979 if (!b)
7980 {
7981 gcc_assert(saw_errors());
7982 return error_mark_node;
7983 }
e440a328 7984 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7985 tree ret = Expression::integer_constant_tree(val, type);
7986 mpz_clear(val);
7987 return ret;
7988 }
7989
7990 case BUILTIN_COPY:
7991 {
7992 const Expression_list* args = this->args();
7993 gcc_assert(args != NULL && args->size() == 2);
7994 Expression* arg1 = args->front();
7995 Expression* arg2 = args->back();
7996
7997 tree arg1_tree = arg1->get_tree(context);
7998 tree arg2_tree = arg2->get_tree(context);
7999 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8000 return error_mark_node;
8001
8002 Type* arg1_type = arg1->type();
8003 Array_type* at = arg1_type->array_type();
8004 arg1_tree = save_expr(arg1_tree);
8005 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
8006 tree arg1_len = at->length_tree(gogo, arg1_tree);
d8ccb1e3 8007 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
8008 return error_mark_node;
e440a328 8009
8010 Type* arg2_type = arg2->type();
8011 tree arg2_val;
8012 tree arg2_len;
8013 if (arg2_type->is_open_array_type())
8014 {
8015 at = arg2_type->array_type();
8016 arg2_tree = save_expr(arg2_tree);
8017 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8018 arg2_len = at->length_tree(gogo, arg2_tree);
8019 }
8020 else
8021 {
8022 arg2_tree = save_expr(arg2_tree);
8023 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
8024 arg2_len = String_type::length_tree(gogo, arg2_tree);
8025 }
d8ccb1e3 8026 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8027 return error_mark_node;
e440a328 8028
8029 arg1_len = save_expr(arg1_len);
8030 arg2_len = save_expr(arg2_len);
8031 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
8032 fold_build2_loc(location, LT_EXPR,
8033 boolean_type_node,
8034 arg1_len, arg2_len),
8035 arg1_len, arg2_len);
8036 len = save_expr(len);
8037
8038 Type* element_type = at->element_type();
8039 tree element_type_tree = element_type->get_tree(gogo);
d8ccb1e3 8040 if (element_type_tree == error_mark_node)
8041 return error_mark_node;
e440a328 8042 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8043 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
8044 len);
8045 bytecount = fold_build2_loc(location, MULT_EXPR,
8046 TREE_TYPE(element_size),
8047 bytecount, element_size);
8048 bytecount = fold_convert_loc(location, size_type_node, bytecount);
8049
3991cb03 8050 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
8051 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8052
8053 static tree copy_fndecl;
8054 tree call = Gogo::call_builtin(&copy_fndecl,
8055 location,
8056 "__go_copy",
8057 3,
8058 void_type_node,
8059 ptr_type_node,
8060 arg1_val,
8061 ptr_type_node,
8062 arg2_val,
8063 size_type_node,
8064 bytecount);
8065 if (call == error_mark_node)
8066 return error_mark_node;
e440a328 8067
8068 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
8069 call, len);
8070 }
8071
8072 case BUILTIN_APPEND:
8073 {
8074 const Expression_list* args = this->args();
8075 gcc_assert(args != NULL && args->size() == 2);
8076 Expression* arg1 = args->front();
8077 Expression* arg2 = args->back();
8078
8079 tree arg1_tree = arg1->get_tree(context);
8080 tree arg2_tree = arg2->get_tree(context);
8081 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8082 return error_mark_node;
8083
9d44fbe3 8084 Array_type* at = arg1->type()->array_type();
8085 Type* element_type = at->element_type();
8086
ed64c8e5 8087 arg2_tree = Expression::convert_for_assignment(context, at,
8088 arg2->type(),
8089 arg2_tree,
8090 location);
8091 if (arg2_tree == error_mark_node)
8092 return error_mark_node;
8093
3991cb03 8094 arg2_tree = save_expr(arg2_tree);
ed64c8e5 8095 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8096 tree arg2_len = at->length_tree(gogo, arg2_tree);
3991cb03 8097 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8098 return error_mark_node;
8099 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8100 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
8101
8102 tree element_type_tree = element_type->get_tree(gogo);
8103 if (element_type_tree == error_mark_node)
8104 return error_mark_node;
8105 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8106 element_size = fold_convert_loc(location, size_type_node,
8107 element_size);
e440a328 8108
8109 // We rebuild the decl each time since the slice types may
8110 // change.
8111 tree append_fndecl = NULL_TREE;
8112 return Gogo::call_builtin(&append_fndecl,
8113 location,
8114 "__go_append",
3991cb03 8115 4,
e440a328 8116 TREE_TYPE(arg1_tree),
e440a328 8117 TREE_TYPE(arg1_tree),
8118 arg1_tree,
3991cb03 8119 ptr_type_node,
8120 arg2_val,
8121 size_type_node,
8122 arg2_len,
8123 size_type_node,
8124 element_size);
e440a328 8125 }
8126
8127 case BUILTIN_REAL:
8128 case BUILTIN_IMAG:
8129 {
8130 const Expression_list* args = this->args();
8131 gcc_assert(args != NULL && args->size() == 1);
8132 Expression* arg = args->front();
8133 tree arg_tree = arg->get_tree(context);
8134 if (arg_tree == error_mark_node)
8135 return error_mark_node;
8136 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8137 if (this->code_ == BUILTIN_REAL)
8138 return fold_build1_loc(location, REALPART_EXPR,
8139 TREE_TYPE(TREE_TYPE(arg_tree)),
8140 arg_tree);
8141 else
8142 return fold_build1_loc(location, IMAGPART_EXPR,
8143 TREE_TYPE(TREE_TYPE(arg_tree)),
8144 arg_tree);
8145 }
8146
48080209 8147 case BUILTIN_COMPLEX:
e440a328 8148 {
8149 const Expression_list* args = this->args();
8150 gcc_assert(args != NULL && args->size() == 2);
8151 tree r = args->front()->get_tree(context);
8152 tree i = args->back()->get_tree(context);
8153 if (r == error_mark_node || i == error_mark_node)
8154 return error_mark_node;
8155 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8156 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8157 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8158 return fold_build2_loc(location, COMPLEX_EXPR,
8159 build_complex_type(TREE_TYPE(r)),
8160 r, i);
8161 }
8162
8163 default:
8164 gcc_unreachable();
8165 }
8166}
8167
8168// We have to support exporting a builtin call expression, because
8169// code can set a constant to the result of a builtin expression.
8170
8171void
8172Builtin_call_expression::do_export(Export* exp) const
8173{
8174 bool ok = false;
8175
8176 mpz_t val;
8177 mpz_init(val);
8178 Type* dummy;
8179 if (this->integer_constant_value(true, val, &dummy))
8180 {
8181 Integer_expression::export_integer(exp, val);
8182 ok = true;
8183 }
8184 mpz_clear(val);
8185
8186 if (!ok)
8187 {
8188 mpfr_t fval;
8189 mpfr_init(fval);
8190 if (this->float_constant_value(fval, &dummy))
8191 {
8192 Float_expression::export_float(exp, fval);
8193 ok = true;
8194 }
8195 mpfr_clear(fval);
8196 }
8197
8198 if (!ok)
8199 {
8200 mpfr_t real;
8201 mpfr_t imag;
8202 mpfr_init(real);
8203 mpfr_init(imag);
8204 if (this->complex_constant_value(real, imag, &dummy))
8205 {
8206 Complex_expression::export_complex(exp, real, imag);
8207 ok = true;
8208 }
8209 mpfr_clear(real);
8210 mpfr_clear(imag);
8211 }
8212
8213 if (!ok)
8214 {
8215 error_at(this->location(), "value is not constant");
8216 return;
8217 }
8218
8219 // A trailing space lets us reliably identify the end of the number.
8220 exp->write_c_string(" ");
8221}
8222
8223// Class Call_expression.
8224
8225// Traversal.
8226
8227int
8228Call_expression::do_traverse(Traverse* traverse)
8229{
8230 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8231 return TRAVERSE_EXIT;
8232 if (this->args_ != NULL)
8233 {
8234 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8235 return TRAVERSE_EXIT;
8236 }
8237 return TRAVERSE_CONTINUE;
8238}
8239
8240// Lower a call statement.
8241
8242Expression*
8243Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8244{
8245 // A type case can look like a function call.
8246 if (this->fn_->is_type_expression()
8247 && this->args_ != NULL
8248 && this->args_->size() == 1)
8249 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8250 this->location());
8251
8252 // Recognize a call to a builtin function.
8253 Func_expression* fne = this->fn_->func_expression();
8254 if (fne != NULL
8255 && fne->named_object()->is_function_declaration()
8256 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8257 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8258 this->is_varargs_, this->location());
8259
8260 // Handle an argument which is a call to a function which returns
8261 // multiple results.
8262 if (this->args_ != NULL
8263 && this->args_->size() == 1
8264 && this->args_->front()->call_expression() != NULL
8265 && this->fn_->type()->function_type() != NULL)
8266 {
8267 Function_type* fntype = this->fn_->type()->function_type();
8268 size_t rc = this->args_->front()->call_expression()->result_count();
8269 if (rc > 1
8270 && fntype->parameters() != NULL
8271 && (fntype->parameters()->size() == rc
8272 || (fntype->is_varargs()
8273 && fntype->parameters()->size() - 1 <= rc)))
8274 {
8275 Call_expression* call = this->args_->front()->call_expression();
8276 Expression_list* args = new Expression_list;
8277 for (size_t i = 0; i < rc; ++i)
8278 args->push_back(Expression::make_call_result(call, i));
8279 // We can't return a new call expression here, because this
42535814 8280 // one may be referenced by Call_result expressions. We
8281 // also can't delete the old arguments, because we may still
8282 // traverse them somewhere up the call stack. FIXME.
e440a328 8283 this->args_ = args;
8284 }
8285 }
8286
8287 // Handle a call to a varargs function by packaging up the extra
8288 // parameters.
8289 if (this->fn_->type()->function_type() != NULL
8290 && this->fn_->type()->function_type()->is_varargs())
8291 {
8292 Function_type* fntype = this->fn_->type()->function_type();
8293 const Typed_identifier_list* parameters = fntype->parameters();
8294 gcc_assert(parameters != NULL && !parameters->empty());
8295 Type* varargs_type = parameters->back().type();
8296 return this->lower_varargs(gogo, function, varargs_type,
8297 parameters->size());
8298 }
8299
8300 return this;
8301}
8302
8303// Lower a call to a varargs function. FUNCTION is the function in
8304// which the call occurs--it's not the function we are calling.
8305// VARARGS_TYPE is the type of the varargs parameter, a slice type.
8306// PARAM_COUNT is the number of parameters of the function we are
8307// calling; the last of these parameters will be the varargs
8308// parameter.
8309
8310Expression*
8311Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8312 Type* varargs_type, size_t param_count)
8313{
8314 if (this->varargs_are_lowered_)
8315 return this;
8316
8317 source_location loc = this->location();
8318
8319 gcc_assert(param_count > 0);
8320 gcc_assert(varargs_type->is_open_array_type());
8321
8322 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8323 if (arg_count < param_count - 1)
8324 {
8325 // Not enough arguments; will be caught in check_types.
8326 return this;
8327 }
8328
8329 Expression_list* old_args = this->args_;
8330 Expression_list* new_args = new Expression_list();
8331 bool push_empty_arg = false;
8332 if (old_args == NULL || old_args->empty())
8333 {
8334 gcc_assert(param_count == 1);
8335 push_empty_arg = true;
8336 }
8337 else
8338 {
8339 Expression_list::const_iterator pa;
8340 int i = 1;
8341 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8342 {
8343 if (static_cast<size_t>(i) == param_count)
8344 break;
8345 new_args->push_back(*pa);
8346 }
8347
8348 // We have reached the varargs parameter.
8349
8350 bool issued_error = false;
8351 if (pa == old_args->end())
8352 push_empty_arg = true;
8353 else if (pa + 1 == old_args->end() && this->is_varargs_)
8354 new_args->push_back(*pa);
8355 else if (this->is_varargs_)
8356 {
8357 this->report_error(_("too many arguments"));
8358 return this;
8359 }
e440a328 8360 else
8361 {
8362 Type* element_type = varargs_type->array_type()->element_type();
8363 Expression_list* vals = new Expression_list;
8364 for (; pa != old_args->end(); ++pa, ++i)
8365 {
8366 // Check types here so that we get a better message.
8367 Type* patype = (*pa)->type();
8368 source_location paloc = (*pa)->location();
8369 if (!this->check_argument_type(i, element_type, patype,
8370 paloc, issued_error))
8371 continue;
8372 vals->push_back(*pa);
8373 }
8374 Expression* val =
8375 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8376 new_args->push_back(val);
8377 }
8378 }
8379
8380 if (push_empty_arg)
8381 new_args->push_back(Expression::make_nil(loc));
8382
8383 // We can't return a new call expression here, because this one may
8384 // be referenced by Call_result expressions. FIXME.
8385 if (old_args != NULL)
8386 delete old_args;
8387 this->args_ = new_args;
8388 this->varargs_are_lowered_ = true;
8389
8390 // Lower all the new subexpressions.
8391 Expression* ret = this;
8392 gogo->lower_expression(function, &ret);
8393 gcc_assert(ret == this);
8394 return ret;
8395}
8396
e440a328 8397// Get the function type. Returns NULL if we don't know the type. If
8398// this returns NULL, and if_ERROR is true, issues an error.
8399
8400Function_type*
8401Call_expression::get_function_type() const
8402{
8403 return this->fn_->type()->function_type();
8404}
8405
8406// Return the number of values which this call will return.
8407
8408size_t
8409Call_expression::result_count() const
8410{
8411 const Function_type* fntype = this->get_function_type();
8412 if (fntype == NULL)
8413 return 0;
8414 if (fntype->results() == NULL)
8415 return 0;
8416 return fntype->results()->size();
8417}
8418
8419// Return whether this is a call to the predeclared function recover.
8420
8421bool
8422Call_expression::is_recover_call() const
8423{
8424 return this->do_is_recover_call();
8425}
8426
8427// Set the argument to the recover function.
8428
8429void
8430Call_expression::set_recover_arg(Expression* arg)
8431{
8432 this->do_set_recover_arg(arg);
8433}
8434
8435// Virtual functions also implemented by Builtin_call_expression.
8436
8437bool
8438Call_expression::do_is_recover_call() const
8439{
8440 return false;
8441}
8442
8443void
8444Call_expression::do_set_recover_arg(Expression*)
8445{
8446 gcc_unreachable();
8447}
8448
8449// Get the type.
8450
8451Type*
8452Call_expression::do_type()
8453{
8454 if (this->type_ != NULL)
8455 return this->type_;
8456
8457 Type* ret;
8458 Function_type* fntype = this->get_function_type();
8459 if (fntype == NULL)
8460 return Type::make_error_type();
8461
8462 const Typed_identifier_list* results = fntype->results();
8463 if (results == NULL)
8464 ret = Type::make_void_type();
8465 else if (results->size() == 1)
8466 ret = results->begin()->type();
8467 else
8468 ret = Type::make_call_multiple_result_type(this);
8469
8470 this->type_ = ret;
8471
8472 return this->type_;
8473}
8474
8475// Determine types for a call expression. We can use the function
8476// parameter types to set the types of the arguments.
8477
8478void
8479Call_expression::do_determine_type(const Type_context*)
8480{
fb94b0ca 8481 if (!this->determining_types())
8482 return;
8483
e440a328 8484 this->fn_->determine_type_no_context();
8485 Function_type* fntype = this->get_function_type();
8486 const Typed_identifier_list* parameters = NULL;
8487 if (fntype != NULL)
8488 parameters = fntype->parameters();
8489 if (this->args_ != NULL)
8490 {
8491 Typed_identifier_list::const_iterator pt;
8492 if (parameters != NULL)
8493 pt = parameters->begin();
8494 for (Expression_list::const_iterator pa = this->args_->begin();
8495 pa != this->args_->end();
8496 ++pa)
8497 {
8498 if (parameters != NULL && pt != parameters->end())
8499 {
8500 Type_context subcontext(pt->type(), false);
8501 (*pa)->determine_type(&subcontext);
8502 ++pt;
8503 }
8504 else
8505 (*pa)->determine_type_no_context();
8506 }
8507 }
8508}
8509
fb94b0ca 8510// Called when determining types for a Call_expression. Return true
8511// if we should go ahead, false if they have already been determined.
8512
8513bool
8514Call_expression::determining_types()
8515{
8516 if (this->types_are_determined_)
8517 return false;
8518 else
8519 {
8520 this->types_are_determined_ = true;
8521 return true;
8522 }
8523}
8524
e440a328 8525// Check types for parameter I.
8526
8527bool
8528Call_expression::check_argument_type(int i, const Type* parameter_type,
8529 const Type* argument_type,
8530 source_location argument_location,
8531 bool issued_error)
8532{
8533 std::string reason;
8534 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8535 {
8536 if (!issued_error)
8537 {
8538 if (reason.empty())
8539 error_at(argument_location, "argument %d has incompatible type", i);
8540 else
8541 error_at(argument_location,
8542 "argument %d has incompatible type (%s)",
8543 i, reason.c_str());
8544 }
8545 this->set_is_error();
8546 return false;
8547 }
8548 return true;
8549}
8550
8551// Check types.
8552
8553void
8554Call_expression::do_check_types(Gogo*)
8555{
8556 Function_type* fntype = this->get_function_type();
8557 if (fntype == NULL)
8558 {
8559 if (!this->fn_->type()->is_error_type())
8560 this->report_error(_("expected function"));
8561 return;
8562 }
8563
8564 if (fntype->is_method())
8565 {
8566 // We don't support pointers to methods, so the function has to
8567 // be a bound method expression.
8568 Bound_method_expression* bme = this->fn_->bound_method_expression();
8569 if (bme == NULL)
8570 {
8571 this->report_error(_("method call without object"));
8572 return;
8573 }
8574 Type* first_arg_type = bme->first_argument()->type();
8575 if (first_arg_type->points_to() == NULL)
8576 {
8577 // When passing a value, we need to check that we are
8578 // permitted to copy it.
8579 std::string reason;
8580 if (!Type::are_assignable(fntype->receiver()->type(),
8581 first_arg_type, &reason))
8582 {
8583 if (reason.empty())
8584 this->report_error(_("incompatible type for receiver"));
8585 else
8586 {
8587 error_at(this->location(),
8588 "incompatible type for receiver (%s)",
8589 reason.c_str());
8590 this->set_is_error();
8591 }
8592 }
8593 }
8594 }
8595
8596 // Note that varargs was handled by the lower_varargs() method, so
8597 // we don't have to worry about it here.
8598
8599 const Typed_identifier_list* parameters = fntype->parameters();
8600 if (this->args_ == NULL)
8601 {
8602 if (parameters != NULL && !parameters->empty())
8603 this->report_error(_("not enough arguments"));
8604 }
8605 else if (parameters == NULL)
8606 this->report_error(_("too many arguments"));
8607 else
8608 {
8609 int i = 0;
8610 Typed_identifier_list::const_iterator pt = parameters->begin();
8611 for (Expression_list::const_iterator pa = this->args_->begin();
8612 pa != this->args_->end();
8613 ++pa, ++pt, ++i)
8614 {
8615 if (pt == parameters->end())
8616 {
8617 this->report_error(_("too many arguments"));
8618 return;
8619 }
8620 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8621 (*pa)->location(), false);
8622 }
8623 if (pt != parameters->end())
8624 this->report_error(_("not enough arguments"));
8625 }
8626}
8627
8628// Return whether we have to use a temporary variable to ensure that
8629// we evaluate this call expression in order. If the call returns no
8630// results then it will inevitably be executed last. If the call
8631// returns more than one result then it will be used with Call_result
8632// expressions. So we only have to use a temporary variable if the
8633// call returns exactly one result.
8634
8635bool
8636Call_expression::do_must_eval_in_order() const
8637{
8638 return this->result_count() == 1;
8639}
8640
8641// Get the function and the first argument to use when calling a bound
8642// method.
8643
8644tree
8645Call_expression::bound_method_function(Translate_context* context,
8646 Bound_method_expression* bound_method,
8647 tree* first_arg_ptr)
8648{
8649 Expression* first_argument = bound_method->first_argument();
8650 tree first_arg = first_argument->get_tree(context);
8651 if (first_arg == error_mark_node)
8652 return error_mark_node;
8653
8654 // We always pass a pointer to the first argument when calling a
8655 // method.
8656 if (first_argument->type()->points_to() == NULL)
8657 {
8658 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8659 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8660 || DECL_P(first_arg)
8661 || TREE_CODE(first_arg) == INDIRECT_REF
8662 || TREE_CODE(first_arg) == COMPONENT_REF)
8663 {
8664 first_arg = build_fold_addr_expr(first_arg);
8665 if (DECL_P(first_arg))
8666 TREE_ADDRESSABLE(first_arg) = 1;
8667 }
8668 else
8669 {
8670 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8671 get_name(first_arg));
8672 DECL_IGNORED_P(tmp) = 0;
8673 DECL_INITIAL(tmp) = first_arg;
8674 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8675 build1(DECL_EXPR, void_type_node, tmp),
8676 build_fold_addr_expr(tmp));
8677 TREE_ADDRESSABLE(tmp) = 1;
8678 }
8679 if (first_arg == error_mark_node)
8680 return error_mark_node;
8681 }
8682
8683 Type* fatype = bound_method->first_argument_type();
8684 if (fatype != NULL)
8685 {
8686 if (fatype->points_to() == NULL)
8687 fatype = Type::make_pointer_type(fatype);
8688 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8689 if (first_arg == error_mark_node
8690 || TREE_TYPE(first_arg) == error_mark_node)
8691 return error_mark_node;
8692 }
8693
8694 *first_arg_ptr = first_arg;
8695
8696 return bound_method->method()->get_tree(context);
8697}
8698
8699// Get the function and the first argument to use when calling an
8700// interface method.
8701
8702tree
8703Call_expression::interface_method_function(
8704 Translate_context* context,
8705 Interface_field_reference_expression* interface_method,
8706 tree* first_arg_ptr)
8707{
8708 tree expr = interface_method->expr()->get_tree(context);
8709 if (expr == error_mark_node)
8710 return error_mark_node;
8711 expr = save_expr(expr);
8712 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8713 if (first_arg == error_mark_node)
8714 return error_mark_node;
8715 *first_arg_ptr = first_arg;
8716 return interface_method->get_function_tree(context, expr);
8717}
8718
8719// Build the call expression.
8720
8721tree
8722Call_expression::do_get_tree(Translate_context* context)
8723{
8724 if (this->tree_ != NULL_TREE)
8725 return this->tree_;
8726
8727 Function_type* fntype = this->get_function_type();
8728 if (fntype == NULL)
8729 return error_mark_node;
8730
8731 if (this->fn_->is_error_expression())
8732 return error_mark_node;
8733
8734 Gogo* gogo = context->gogo();
8735 source_location location = this->location();
8736
8737 Func_expression* func = this->fn_->func_expression();
8738 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8739 Interface_field_reference_expression* interface_method =
8740 this->fn_->interface_field_reference_expression();
8741 const bool has_closure = func != NULL && func->closure() != NULL;
8742 const bool is_method = bound_method != NULL || interface_method != NULL;
8743 gcc_assert(!fntype->is_method() || is_method);
8744
8745 int nargs;
8746 tree* args;
8747 if (this->args_ == NULL || this->args_->empty())
8748 {
8749 nargs = is_method ? 1 : 0;
8750 args = nargs == 0 ? NULL : new tree[nargs];
8751 }
8752 else
8753 {
8754 const Typed_identifier_list* params = fntype->parameters();
8755 gcc_assert(params != NULL);
8756
8757 nargs = this->args_->size();
8758 int i = is_method ? 1 : 0;
8759 nargs += i;
8760 args = new tree[nargs];
8761
8762 Typed_identifier_list::const_iterator pp = params->begin();
8763 Expression_list::const_iterator pe;
8764 for (pe = this->args_->begin();
8765 pe != this->args_->end();
8766 ++pe, ++pp, ++i)
8767 {
a805a149 8768 gcc_assert(pp != params->end());
e440a328 8769 tree arg_val = (*pe)->get_tree(context);
8770 args[i] = Expression::convert_for_assignment(context,
8771 pp->type(),
8772 (*pe)->type(),
8773 arg_val,
8774 location);
8775 if (args[i] == error_mark_node)
cf609de4 8776 {
8777 delete[] args;
8778 return error_mark_node;
8779 }
e440a328 8780 }
8781 gcc_assert(pp == params->end());
8782 gcc_assert(i == nargs);
8783 }
8784
8785 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8786 if (rettype == error_mark_node)
cf609de4 8787 {
8788 delete[] args;
8789 return error_mark_node;
8790 }
e440a328 8791
8792 tree fn;
8793 if (has_closure)
8794 fn = func->get_tree_without_closure(gogo);
8795 else if (!is_method)
8796 fn = this->fn_->get_tree(context);
8797 else if (bound_method != NULL)
8798 fn = this->bound_method_function(context, bound_method, &args[0]);
8799 else if (interface_method != NULL)
8800 fn = this->interface_method_function(context, interface_method, &args[0]);
8801 else
8802 gcc_unreachable();
8803
8804 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
cf609de4 8805 {
8806 delete[] args;
8807 return error_mark_node;
8808 }
e440a328 8809
e440a328 8810 tree fndecl = fn;
8811 if (TREE_CODE(fndecl) == ADDR_EXPR)
8812 fndecl = TREE_OPERAND(fndecl, 0);
9aa9e2df 8813
8814 // Add a type cast in case the type of the function is a recursive
8815 // type which refers to itself.
8816 if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl))
8817 {
8818 tree fnt = fntype->get_tree(gogo);
8819 if (fnt == error_mark_node)
8820 return error_mark_node;
8821 fn = fold_convert_loc(location, fnt, fn);
8822 }
8823
8824 // This is to support builtin math functions when using 80387 math.
e440a328 8825 tree excess_type = NULL_TREE;
8826 if (DECL_P(fndecl)
8827 && DECL_IS_BUILTIN(fndecl)
8828 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8829 && nargs > 0
8830 && ((SCALAR_FLOAT_TYPE_P(rettype)
8831 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8832 || (COMPLEX_FLOAT_TYPE_P(rettype)
8833 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8834 {
8835 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8836 if (excess_type != NULL_TREE)
8837 {
8838 tree excess_fndecl = mathfn_built_in(excess_type,
8839 DECL_FUNCTION_CODE(fndecl));
8840 if (excess_fndecl == NULL_TREE)
8841 excess_type = NULL_TREE;
8842 else
8843 {
8844 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8845 for (int i = 0; i < nargs; ++i)
8846 args[i] = ::convert(excess_type, args[i]);
8847 }
8848 }
8849 }
8850
8851 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8852 fn, nargs, args);
8853 delete[] args;
8854
8855 SET_EXPR_LOCATION(ret, location);
8856
8857 if (has_closure)
8858 {
8859 tree closure_tree = func->closure()->get_tree(context);
8860 if (closure_tree != error_mark_node)
8861 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8862 }
8863
8864 // If this is a recursive function type which returns itself, as in
8865 // type F func() F
8866 // we have used ptr_type_node for the return type. Add a cast here
8867 // to the correct type.
8868 if (TREE_TYPE(ret) == ptr_type_node)
8869 {
9aa9e2df 8870 tree t = this->type()->base()->get_tree(gogo);
e440a328 8871 ret = fold_convert_loc(location, t, ret);
8872 }
8873
8874 if (excess_type != NULL_TREE)
8875 {
8876 // Calling convert here can undo our excess precision change.
8877 // That may or may not be a bug in convert_to_real.
8878 ret = build1(NOP_EXPR, rettype, ret);
8879 }
8880
8881 // If there is more than one result, we will refer to the call
8882 // multiple times.
8883 if (fntype->results() != NULL && fntype->results()->size() > 1)
8884 ret = save_expr(ret);
8885
8886 this->tree_ = ret;
8887
8888 return ret;
8889}
8890
8891// Make a call expression.
8892
8893Call_expression*
8894Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8895 source_location location)
8896{
8897 return new Call_expression(fn, args, is_varargs, location);
8898}
8899
8900// A single result from a call which returns multiple results.
8901
8902class Call_result_expression : public Expression
8903{
8904 public:
8905 Call_result_expression(Call_expression* call, unsigned int index)
8906 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8907 call_(call), index_(index)
8908 { }
8909
8910 protected:
8911 int
8912 do_traverse(Traverse*);
8913
8914 Type*
8915 do_type();
8916
8917 void
8918 do_determine_type(const Type_context*);
8919
8920 void
8921 do_check_types(Gogo*);
8922
8923 Expression*
8924 do_copy()
8925 {
8926 return new Call_result_expression(this->call_->call_expression(),
8927 this->index_);
8928 }
8929
8930 bool
8931 do_must_eval_in_order() const
8932 { return true; }
8933
8934 tree
8935 do_get_tree(Translate_context*);
8936
8937 private:
8938 // The underlying call expression.
8939 Expression* call_;
8940 // Which result we want.
8941 unsigned int index_;
8942};
8943
8944// Traverse a call result.
8945
8946int
8947Call_result_expression::do_traverse(Traverse* traverse)
8948{
8949 if (traverse->remember_expression(this->call_))
8950 {
8951 // We have already traversed the call expression.
8952 return TRAVERSE_CONTINUE;
8953 }
8954 return Expression::traverse(&this->call_, traverse);
8955}
8956
8957// Get the type.
8958
8959Type*
8960Call_result_expression::do_type()
8961{
425dd051 8962 if (this->classification() == EXPRESSION_ERROR)
8963 return Type::make_error_type();
8964
e440a328 8965 // THIS->CALL_ can be replaced with a temporary reference due to
8966 // Call_expression::do_must_eval_in_order when there is an error.
8967 Call_expression* ce = this->call_->call_expression();
8968 if (ce == NULL)
5e85f268 8969 {
8970 this->set_is_error();
8971 return Type::make_error_type();
8972 }
e440a328 8973 Function_type* fntype = ce->get_function_type();
8974 if (fntype == NULL)
5e85f268 8975 {
8976 this->set_is_error();
8977 return Type::make_error_type();
8978 }
e440a328 8979 const Typed_identifier_list* results = fntype->results();
7b8d861f 8980 if (results == NULL)
8981 {
8982 this->report_error(_("number of results does not match "
8983 "number of values"));
8984 return Type::make_error_type();
8985 }
e440a328 8986 Typed_identifier_list::const_iterator pr = results->begin();
8987 for (unsigned int i = 0; i < this->index_; ++i)
8988 {
8989 if (pr == results->end())
425dd051 8990 break;
e440a328 8991 ++pr;
8992 }
8993 if (pr == results->end())
425dd051 8994 {
8995 this->report_error(_("number of results does not match "
8996 "number of values"));
8997 return Type::make_error_type();
8998 }
e440a328 8999 return pr->type();
9000}
9001
425dd051 9002// Check the type. Just make sure that we trigger the warning in
9003// do_type.
e440a328 9004
9005void
9006Call_result_expression::do_check_types(Gogo*)
9007{
425dd051 9008 this->type();
e440a328 9009}
9010
9011// Determine the type. We have nothing to do here, but the 0 result
9012// needs to pass down to the caller.
9013
9014void
9015Call_result_expression::do_determine_type(const Type_context*)
9016{
fb94b0ca 9017 this->call_->determine_type_no_context();
e440a328 9018}
9019
9020// Return the tree.
9021
9022tree
9023Call_result_expression::do_get_tree(Translate_context* context)
9024{
9025 tree call_tree = this->call_->get_tree(context);
9026 if (call_tree == error_mark_node)
9027 return error_mark_node;
5e85f268 9028 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
9029 {
9030 gcc_assert(saw_errors());
9031 return error_mark_node;
9032 }
e440a328 9033 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
9034 for (unsigned int i = 0; i < this->index_; ++i)
9035 {
9036 gcc_assert(field != NULL_TREE);
9037 field = DECL_CHAIN(field);
9038 }
9039 gcc_assert(field != NULL_TREE);
9040 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
9041}
9042
9043// Make a reference to a single result of a call which returns
9044// multiple results.
9045
9046Expression*
9047Expression::make_call_result(Call_expression* call, unsigned int index)
9048{
9049 return new Call_result_expression(call, index);
9050}
9051
9052// Class Index_expression.
9053
9054// Traversal.
9055
9056int
9057Index_expression::do_traverse(Traverse* traverse)
9058{
9059 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
9060 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
9061 || (this->end_ != NULL
9062 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
9063 return TRAVERSE_EXIT;
9064 return TRAVERSE_CONTINUE;
9065}
9066
9067// Lower an index expression. This converts the generic index
9068// expression into an array index, a string index, or a map index.
9069
9070Expression*
9071Index_expression::do_lower(Gogo*, Named_object*, int)
9072{
9073 source_location location = this->location();
9074 Expression* left = this->left_;
9075 Expression* start = this->start_;
9076 Expression* end = this->end_;
9077
9078 Type* type = left->type();
9079 if (type->is_error_type())
9080 return Expression::make_error(location);
b0cf7ddd 9081 else if (left->is_type_expression())
9082 {
9083 error_at(location, "attempt to index type expression");
9084 return Expression::make_error(location);
9085 }
e440a328 9086 else if (type->array_type() != NULL)
9087 return Expression::make_array_index(left, start, end, location);
9088 else if (type->points_to() != NULL
9089 && type->points_to()->array_type() != NULL
9090 && !type->points_to()->is_open_array_type())
9091 {
9092 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9093 location);
9094 return Expression::make_array_index(deref, start, end, location);
9095 }
9096 else if (type->is_string_type())
9097 return Expression::make_string_index(left, start, end, location);
9098 else if (type->map_type() != NULL)
9099 {
9100 if (end != NULL)
9101 {
9102 error_at(location, "invalid slice of map");
9103 return Expression::make_error(location);
9104 }
9105 Map_index_expression* ret= Expression::make_map_index(left, start,
9106 location);
9107 if (this->is_lvalue_)
9108 ret->set_is_lvalue();
9109 return ret;
9110 }
9111 else
9112 {
9113 error_at(location,
9114 "attempt to index object which is not array, string, or map");
9115 return Expression::make_error(location);
9116 }
9117}
9118
9119// Make an index expression.
9120
9121Expression*
9122Expression::make_index(Expression* left, Expression* start, Expression* end,
9123 source_location location)
9124{
9125 return new Index_expression(left, start, end, location);
9126}
9127
9128// An array index. This is used for both indexing and slicing.
9129
9130class Array_index_expression : public Expression
9131{
9132 public:
9133 Array_index_expression(Expression* array, Expression* start,
9134 Expression* end, source_location location)
9135 : Expression(EXPRESSION_ARRAY_INDEX, location),
9136 array_(array), start_(start), end_(end), type_(NULL)
9137 { }
9138
9139 protected:
9140 int
9141 do_traverse(Traverse*);
9142
9143 Type*
9144 do_type();
9145
9146 void
9147 do_determine_type(const Type_context*);
9148
9149 void
9150 do_check_types(Gogo*);
9151
9152 Expression*
9153 do_copy()
9154 {
9155 return Expression::make_array_index(this->array_->copy(),
9156 this->start_->copy(),
9157 (this->end_ == NULL
9158 ? NULL
9159 : this->end_->copy()),
9160 this->location());
9161 }
9162
9163 bool
9164 do_is_addressable() const;
9165
9166 void
9167 do_address_taken(bool escapes)
9168 { this->array_->address_taken(escapes); }
9169
9170 tree
9171 do_get_tree(Translate_context*);
9172
9173 private:
9174 // The array we are getting a value from.
9175 Expression* array_;
9176 // The start or only index.
9177 Expression* start_;
9178 // The end index of a slice. This may be NULL for a simple array
9179 // index, or it may be a nil expression for the length of the array.
9180 Expression* end_;
9181 // The type of the expression.
9182 Type* type_;
9183};
9184
9185// Array index traversal.
9186
9187int
9188Array_index_expression::do_traverse(Traverse* traverse)
9189{
9190 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9191 return TRAVERSE_EXIT;
9192 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9193 return TRAVERSE_EXIT;
9194 if (this->end_ != NULL)
9195 {
9196 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9197 return TRAVERSE_EXIT;
9198 }
9199 return TRAVERSE_CONTINUE;
9200}
9201
9202// Return the type of an array index.
9203
9204Type*
9205Array_index_expression::do_type()
9206{
9207 if (this->type_ == NULL)
9208 {
9209 Array_type* type = this->array_->type()->array_type();
9210 if (type == NULL)
9211 this->type_ = Type::make_error_type();
9212 else if (this->end_ == NULL)
9213 this->type_ = type->element_type();
9214 else if (type->is_open_array_type())
9215 {
9216 // A slice of a slice has the same type as the original
9217 // slice.
9218 this->type_ = this->array_->type()->deref();
9219 }
9220 else
9221 {
9222 // A slice of an array is a slice.
9223 this->type_ = Type::make_array_type(type->element_type(), NULL);
9224 }
9225 }
9226 return this->type_;
9227}
9228
9229// Set the type of an array index.
9230
9231void
9232Array_index_expression::do_determine_type(const Type_context*)
9233{
9234 this->array_->determine_type_no_context();
7917ad68 9235 this->start_->determine_type_no_context();
e440a328 9236 if (this->end_ != NULL)
7917ad68 9237 this->end_->determine_type_no_context();
e440a328 9238}
9239
9240// Check types of an array index.
9241
9242void
9243Array_index_expression::do_check_types(Gogo*)
9244{
9245 if (this->start_->type()->integer_type() == NULL)
9246 this->report_error(_("index must be integer"));
9247 if (this->end_ != NULL
9248 && this->end_->type()->integer_type() == NULL
9249 && !this->end_->is_nil_expression())
9250 this->report_error(_("slice end must be integer"));
9251
9252 Array_type* array_type = this->array_->type()->array_type();
f9c68f17 9253 if (array_type == NULL)
9254 {
9255 gcc_assert(this->array_->type()->is_error_type());
9256 return;
9257 }
e440a328 9258
9259 unsigned int int_bits =
9260 Type::lookup_integer_type("int")->integer_type()->bits();
9261
9262 Type* dummy;
9263 mpz_t lval;
9264 mpz_init(lval);
9265 bool lval_valid = (array_type->length() != NULL
9266 && array_type->length()->integer_constant_value(true,
9267 lval,
9268 &dummy));
9269 mpz_t ival;
9270 mpz_init(ival);
9271 if (this->start_->integer_constant_value(true, ival, &dummy))
9272 {
9273 if (mpz_sgn(ival) < 0
9274 || mpz_sizeinbase(ival, 2) >= int_bits
9275 || (lval_valid
9276 && (this->end_ == NULL
9277 ? mpz_cmp(ival, lval) >= 0
9278 : mpz_cmp(ival, lval) > 0)))
9279 {
9280 error_at(this->start_->location(), "array index out of bounds");
9281 this->set_is_error();
9282 }
9283 }
9284 if (this->end_ != NULL && !this->end_->is_nil_expression())
9285 {
9286 if (this->end_->integer_constant_value(true, ival, &dummy))
9287 {
9288 if (mpz_sgn(ival) < 0
9289 || mpz_sizeinbase(ival, 2) >= int_bits
9290 || (lval_valid && mpz_cmp(ival, lval) > 0))
9291 {
9292 error_at(this->end_->location(), "array index out of bounds");
9293 this->set_is_error();
9294 }
9295 }
9296 }
9297 mpz_clear(ival);
9298 mpz_clear(lval);
9299
9300 // A slice of an array requires an addressable array. A slice of a
9301 // slice is always possible.
9302 if (this->end_ != NULL
9303 && !array_type->is_open_array_type()
9304 && !this->array_->is_addressable())
9305 this->report_error(_("array is not addressable"));
9306}
9307
9308// Return whether this expression is addressable.
9309
9310bool
9311Array_index_expression::do_is_addressable() const
9312{
9313 // A slice expression is not addressable.
9314 if (this->end_ != NULL)
9315 return false;
9316
9317 // An index into a slice is addressable.
9318 if (this->array_->type()->is_open_array_type())
9319 return true;
9320
9321 // An index into an array is addressable if the array is
9322 // addressable.
9323 return this->array_->is_addressable();
9324}
9325
9326// Get a tree for an array index.
9327
9328tree
9329Array_index_expression::do_get_tree(Translate_context* context)
9330{
9331 Gogo* gogo = context->gogo();
9332 source_location loc = this->location();
9333
9334 Array_type* array_type = this->array_->type()->array_type();
d8cd8e2d 9335 if (array_type == NULL)
9336 {
9337 gcc_assert(this->array_->type()->is_error_type());
9338 return error_mark_node;
9339 }
e440a328 9340
9341 tree type_tree = array_type->get_tree(gogo);
c65212a0 9342 if (type_tree == error_mark_node)
9343 return error_mark_node;
e440a328 9344
9345 tree array_tree = this->array_->get_tree(context);
9346 if (array_tree == error_mark_node)
9347 return error_mark_node;
9348
9349 if (array_type->length() == NULL && !DECL_P(array_tree))
9350 array_tree = save_expr(array_tree);
9351 tree length_tree = array_type->length_tree(gogo, array_tree);
c65212a0 9352 if (length_tree == error_mark_node)
9353 return error_mark_node;
e440a328 9354 length_tree = save_expr(length_tree);
9355 tree length_type = TREE_TYPE(length_tree);
9356
9357 tree bad_index = boolean_false_node;
9358
9359 tree start_tree = this->start_->get_tree(context);
9360 if (start_tree == error_mark_node)
9361 return error_mark_node;
9362 if (!DECL_P(start_tree))
9363 start_tree = save_expr(start_tree);
9364 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9365 start_tree = convert_to_integer(length_type, start_tree);
9366
9367 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9368 loc);
9369
9370 start_tree = fold_convert_loc(loc, length_type, start_tree);
9371 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9372 fold_build2_loc(loc,
9373 (this->end_ == NULL
9374 ? GE_EXPR
9375 : GT_EXPR),
9376 boolean_type_node, start_tree,
9377 length_tree));
9378
9379 int code = (array_type->length() != NULL
9380 ? (this->end_ == NULL
9381 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9382 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9383 : (this->end_ == NULL
9384 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9385 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9386 tree crash = Gogo::runtime_error(code, loc);
9387
9388 if (this->end_ == NULL)
9389 {
9390 // Simple array indexing. This has to return an l-value, so
9391 // wrap the index check into START_TREE.
9392 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9393 build3(COND_EXPR, void_type_node,
9394 bad_index, crash, NULL_TREE),
9395 start_tree);
9396 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9397
9398 if (array_type->length() != NULL)
9399 {
9400 // Fixed array.
9401 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9402 start_tree, NULL_TREE, NULL_TREE);
9403 }
9404 else
9405 {
9406 // Open array.
9407 tree values = array_type->value_pointer_tree(gogo, array_tree);
9408 tree element_type_tree = array_type->element_type()->get_tree(gogo);
c65212a0 9409 if (element_type_tree == error_mark_node)
9410 return error_mark_node;
e440a328 9411 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9412 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9413 start_tree, element_size);
9414 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9415 TREE_TYPE(values), values, offset);
9416 return build_fold_indirect_ref(ptr);
9417 }
9418 }
9419
9420 // Array slice.
9421
9422 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
c65212a0 9423 if (capacity_tree == error_mark_node)
9424 return error_mark_node;
e440a328 9425 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9426
9427 tree end_tree;
9428 if (this->end_->is_nil_expression())
9429 end_tree = length_tree;
9430 else
9431 {
9432 end_tree = this->end_->get_tree(context);
9433 if (end_tree == error_mark_node)
9434 return error_mark_node;
9435 if (!DECL_P(end_tree))
9436 end_tree = save_expr(end_tree);
9437 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9438 end_tree = convert_to_integer(length_type, end_tree);
9439
9440 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9441 loc);
9442
9443 end_tree = fold_convert_loc(loc, length_type, end_tree);
9444
9445 capacity_tree = save_expr(capacity_tree);
9446 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9447 fold_build2_loc(loc, LT_EXPR,
9448 boolean_type_node,
9449 end_tree, start_tree),
9450 fold_build2_loc(loc, GT_EXPR,
9451 boolean_type_node,
9452 end_tree, capacity_tree));
9453 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9454 bad_index, bad_end);
9455 }
9456
9457 tree element_type_tree = array_type->element_type()->get_tree(gogo);
c65212a0 9458 if (element_type_tree == error_mark_node)
9459 return error_mark_node;
e440a328 9460 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9461
9462 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9463 fold_convert_loc(loc, sizetype, start_tree),
9464 element_size);
9465
9466 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
c65212a0 9467 if (value_pointer == error_mark_node)
9468 return error_mark_node;
e440a328 9469
9470 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9471 TREE_TYPE(value_pointer),
9472 value_pointer, offset);
9473
9474 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9475 end_tree, start_tree);
9476
9477 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9478 capacity_tree, start_tree);
9479
9480 tree struct_tree = this->type()->get_tree(gogo);
9481 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9482
9483 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9484
9485 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9486 tree field = TYPE_FIELDS(struct_tree);
9487 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9488 elt->index = field;
9489 elt->value = value_pointer;
9490
9491 elt = VEC_quick_push(constructor_elt, init, NULL);
9492 field = DECL_CHAIN(field);
9493 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9494 elt->index = field;
9495 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9496
9497 elt = VEC_quick_push(constructor_elt, init, NULL);
9498 field = DECL_CHAIN(field);
9499 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9500 elt->index = field;
9501 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9502
9503 tree constructor = build_constructor(struct_tree, init);
9504
9505 if (TREE_CONSTANT(value_pointer)
9506 && TREE_CONSTANT(result_length_tree)
9507 && TREE_CONSTANT(result_capacity_tree))
9508 TREE_CONSTANT(constructor) = 1;
9509
9510 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9511 build3(COND_EXPR, void_type_node,
9512 bad_index, crash, NULL_TREE),
9513 constructor);
9514}
9515
9516// Make an array index expression. END may be NULL.
9517
9518Expression*
9519Expression::make_array_index(Expression* array, Expression* start,
9520 Expression* end, source_location location)
9521{
9522 // Taking a slice of a composite literal requires moving the literal
9523 // onto the heap.
9524 if (end != NULL && array->is_composite_literal())
9525 {
9526 array = Expression::make_heap_composite(array, location);
9527 array = Expression::make_unary(OPERATOR_MULT, array, location);
9528 }
9529 return new Array_index_expression(array, start, end, location);
9530}
9531
9532// A string index. This is used for both indexing and slicing.
9533
9534class String_index_expression : public Expression
9535{
9536 public:
9537 String_index_expression(Expression* string, Expression* start,
9538 Expression* end, source_location location)
9539 : Expression(EXPRESSION_STRING_INDEX, location),
9540 string_(string), start_(start), end_(end)
9541 { }
9542
9543 protected:
9544 int
9545 do_traverse(Traverse*);
9546
9547 Type*
9548 do_type();
9549
9550 void
9551 do_determine_type(const Type_context*);
9552
9553 void
9554 do_check_types(Gogo*);
9555
9556 Expression*
9557 do_copy()
9558 {
9559 return Expression::make_string_index(this->string_->copy(),
9560 this->start_->copy(),
9561 (this->end_ == NULL
9562 ? NULL
9563 : this->end_->copy()),
9564 this->location());
9565 }
9566
9567 tree
9568 do_get_tree(Translate_context*);
9569
9570 private:
9571 // The string we are getting a value from.
9572 Expression* string_;
9573 // The start or only index.
9574 Expression* start_;
9575 // The end index of a slice. This may be NULL for a single index,
9576 // or it may be a nil expression for the length of the string.
9577 Expression* end_;
9578};
9579
9580// String index traversal.
9581
9582int
9583String_index_expression::do_traverse(Traverse* traverse)
9584{
9585 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9586 return TRAVERSE_EXIT;
9587 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9588 return TRAVERSE_EXIT;
9589 if (this->end_ != NULL)
9590 {
9591 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9592 return TRAVERSE_EXIT;
9593 }
9594 return TRAVERSE_CONTINUE;
9595}
9596
9597// Return the type of a string index.
9598
9599Type*
9600String_index_expression::do_type()
9601{
9602 if (this->end_ == NULL)
9603 return Type::lookup_integer_type("uint8");
9604 else
7672d35f 9605 return this->string_->type();
e440a328 9606}
9607
9608// Determine the type of a string index.
9609
9610void
9611String_index_expression::do_determine_type(const Type_context*)
9612{
9613 this->string_->determine_type_no_context();
93000773 9614 this->start_->determine_type_no_context();
e440a328 9615 if (this->end_ != NULL)
93000773 9616 this->end_->determine_type_no_context();
e440a328 9617}
9618
9619// Check types of a string index.
9620
9621void
9622String_index_expression::do_check_types(Gogo*)
9623{
9624 if (this->start_->type()->integer_type() == NULL)
9625 this->report_error(_("index must be integer"));
9626 if (this->end_ != NULL
9627 && this->end_->type()->integer_type() == NULL
9628 && !this->end_->is_nil_expression())
9629 this->report_error(_("slice end must be integer"));
9630
9631 std::string sval;
9632 bool sval_valid = this->string_->string_constant_value(&sval);
9633
9634 mpz_t ival;
9635 mpz_init(ival);
9636 Type* dummy;
9637 if (this->start_->integer_constant_value(true, ival, &dummy))
9638 {
9639 if (mpz_sgn(ival) < 0
9640 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9641 {
9642 error_at(this->start_->location(), "string index out of bounds");
9643 this->set_is_error();
9644 }
9645 }
9646 if (this->end_ != NULL && !this->end_->is_nil_expression())
9647 {
9648 if (this->end_->integer_constant_value(true, ival, &dummy))
9649 {
9650 if (mpz_sgn(ival) < 0
9651 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9652 {
9653 error_at(this->end_->location(), "string index out of bounds");
9654 this->set_is_error();
9655 }
9656 }
9657 }
9658 mpz_clear(ival);
9659}
9660
9661// Get a tree for a string index.
9662
9663tree
9664String_index_expression::do_get_tree(Translate_context* context)
9665{
9666 source_location loc = this->location();
9667
9668 tree string_tree = this->string_->get_tree(context);
9669 if (string_tree == error_mark_node)
9670 return error_mark_node;
9671
9672 if (this->string_->type()->points_to() != NULL)
9673 string_tree = build_fold_indirect_ref(string_tree);
9674 if (!DECL_P(string_tree))
9675 string_tree = save_expr(string_tree);
9676 tree string_type = TREE_TYPE(string_tree);
9677
9678 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9679 length_tree = save_expr(length_tree);
9680 tree length_type = TREE_TYPE(length_tree);
9681
9682 tree bad_index = boolean_false_node;
9683
9684 tree start_tree = this->start_->get_tree(context);
9685 if (start_tree == error_mark_node)
9686 return error_mark_node;
9687 if (!DECL_P(start_tree))
9688 start_tree = save_expr(start_tree);
9689 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9690 start_tree = convert_to_integer(length_type, start_tree);
9691
9692 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9693 loc);
9694
9695 start_tree = fold_convert_loc(loc, length_type, start_tree);
9696
9697 int code = (this->end_ == NULL
9698 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9699 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9700 tree crash = Gogo::runtime_error(code, loc);
9701
9702 if (this->end_ == NULL)
9703 {
9704 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9705 bad_index,
9706 fold_build2_loc(loc, GE_EXPR,
9707 boolean_type_node,
9708 start_tree, length_tree));
9709
9710 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9711 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9712 bytes_tree,
9713 fold_convert_loc(loc, sizetype, start_tree));
9714 tree index = build_fold_indirect_ref_loc(loc, ptr);
9715
9716 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9717 build3(COND_EXPR, void_type_node,
9718 bad_index, crash, NULL_TREE),
9719 index);
9720 }
9721 else
9722 {
9723 tree end_tree;
9724 if (this->end_->is_nil_expression())
9725 end_tree = build_int_cst(length_type, -1);
9726 else
9727 {
9728 end_tree = this->end_->get_tree(context);
9729 if (end_tree == error_mark_node)
9730 return error_mark_node;
9731 if (!DECL_P(end_tree))
9732 end_tree = save_expr(end_tree);
9733 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9734 end_tree = convert_to_integer(length_type, end_tree);
9735
9736 bad_index = Expression::check_bounds(end_tree, length_type,
9737 bad_index, loc);
9738
9739 end_tree = fold_convert_loc(loc, length_type, end_tree);
9740 }
9741
9742 static tree strslice_fndecl;
9743 tree ret = Gogo::call_builtin(&strslice_fndecl,
9744 loc,
9745 "__go_string_slice",
9746 3,
9747 string_type,
9748 string_type,
9749 string_tree,
9750 length_type,
9751 start_tree,
9752 length_type,
9753 end_tree);
5fb82b5e 9754 if (ret == error_mark_node)
9755 return error_mark_node;
e440a328 9756 // This will panic if the bounds are out of range for the
9757 // string.
9758 TREE_NOTHROW(strslice_fndecl) = 0;
9759
9760 if (bad_index == boolean_false_node)
9761 return ret;
9762 else
9763 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9764 build3(COND_EXPR, void_type_node,
9765 bad_index, crash, NULL_TREE),
9766 ret);
9767 }
9768}
9769
9770// Make a string index expression. END may be NULL.
9771
9772Expression*
9773Expression::make_string_index(Expression* string, Expression* start,
9774 Expression* end, source_location location)
9775{
9776 return new String_index_expression(string, start, end, location);
9777}
9778
9779// Class Map_index.
9780
9781// Get the type of the map.
9782
9783Map_type*
9784Map_index_expression::get_map_type() const
9785{
9786 Map_type* mt = this->map_->type()->deref()->map_type();
c7524fae 9787 if (mt == NULL)
9788 gcc_assert(saw_errors());
e440a328 9789 return mt;
9790}
9791
9792// Map index traversal.
9793
9794int
9795Map_index_expression::do_traverse(Traverse* traverse)
9796{
9797 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9798 return TRAVERSE_EXIT;
9799 return Expression::traverse(&this->index_, traverse);
9800}
9801
9802// Return the type of a map index.
9803
9804Type*
9805Map_index_expression::do_type()
9806{
c7524fae 9807 Map_type* mt = this->get_map_type();
9808 if (mt == NULL)
9809 return Type::make_error_type();
9810 Type* type = mt->val_type();
e440a328 9811 // If this map index is in a tuple assignment, we actually return a
9812 // pointer to the value type. Tuple_map_assignment_statement is
9813 // responsible for handling this correctly. We need to get the type
9814 // right in case this gets assigned to a temporary variable.
9815 if (this->is_in_tuple_assignment_)
9816 type = Type::make_pointer_type(type);
9817 return type;
9818}
9819
9820// Fix the type of a map index.
9821
9822void
9823Map_index_expression::do_determine_type(const Type_context*)
9824{
9825 this->map_->determine_type_no_context();
c7524fae 9826 Map_type* mt = this->get_map_type();
9827 Type* key_type = mt == NULL ? NULL : mt->key_type();
9828 Type_context subcontext(key_type, false);
e440a328 9829 this->index_->determine_type(&subcontext);
9830}
9831
9832// Check types of a map index.
9833
9834void
9835Map_index_expression::do_check_types(Gogo*)
9836{
9837 std::string reason;
c7524fae 9838 Map_type* mt = this->get_map_type();
9839 if (mt == NULL)
9840 return;
9841 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
e440a328 9842 {
9843 if (reason.empty())
9844 this->report_error(_("incompatible type for map index"));
9845 else
9846 {
9847 error_at(this->location(), "incompatible type for map index (%s)",
9848 reason.c_str());
9849 this->set_is_error();
9850 }
9851 }
9852}
9853
9854// Get a tree for a map index.
9855
9856tree
9857Map_index_expression::do_get_tree(Translate_context* context)
9858{
9859 Map_type* type = this->get_map_type();
c7524fae 9860 if (type == NULL)
9861 return error_mark_node;
e440a328 9862
9863 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9864 if (valptr == error_mark_node)
9865 return error_mark_node;
9866 valptr = save_expr(valptr);
9867
9868 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9869
9870 if (this->is_lvalue_)
9871 return build_fold_indirect_ref(valptr);
9872 else if (this->is_in_tuple_assignment_)
9873 {
9874 // Tuple_map_assignment_statement is responsible for using this
9875 // appropriately.
9876 return valptr;
9877 }
9878 else
9879 {
9880 return fold_build3(COND_EXPR, val_type_tree,
9881 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9882 fold_convert(TREE_TYPE(valptr),
9883 null_pointer_node)),
9884 type->val_type()->get_init_tree(context->gogo(),
9885 false),
9886 build_fold_indirect_ref(valptr));
9887 }
9888}
9889
9890// Get a tree for the map index. This returns a tree which evaluates
9891// to a pointer to a value. The pointer will be NULL if the key is
9892// not in the map.
9893
9894tree
9895Map_index_expression::get_value_pointer(Translate_context* context,
9896 bool insert)
9897{
9898 Map_type* type = this->get_map_type();
c7524fae 9899 if (type == NULL)
9900 return error_mark_node;
e440a328 9901
9902 tree map_tree = this->map_->get_tree(context);
9903 tree index_tree = this->index_->get_tree(context);
9904 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9905 this->index_->type(),
9906 index_tree,
9907 this->location());
9908 if (map_tree == error_mark_node || index_tree == error_mark_node)
9909 return error_mark_node;
9910
9911 if (this->map_->type()->points_to() != NULL)
9912 map_tree = build_fold_indirect_ref(map_tree);
9913
9914 // We need to pass in a pointer to the key, so stuff it into a
9915 // variable.
746d2e73 9916 tree tmp;
9917 tree make_tmp;
9918 if (current_function_decl != NULL)
9919 {
9920 tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9921 DECL_IGNORED_P(tmp) = 0;
9922 DECL_INITIAL(tmp) = index_tree;
9923 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9924 TREE_ADDRESSABLE(tmp) = 1;
9925 }
9926 else
9927 {
9928 tmp = build_decl(this->location(), VAR_DECL, create_tmp_var_name("M"),
9929 TREE_TYPE(index_tree));
9930 DECL_EXTERNAL(tmp) = 0;
9931 TREE_PUBLIC(tmp) = 0;
9932 TREE_STATIC(tmp) = 1;
9933 DECL_ARTIFICIAL(tmp) = 1;
9934 if (!TREE_CONSTANT(index_tree))
9935 make_tmp = fold_build2_loc(this->location(), INIT_EXPR, void_type_node,
9936 tmp, index_tree);
9937 else
9938 {
9939 TREE_READONLY(tmp) = 1;
9940 TREE_CONSTANT(tmp) = 1;
9941 DECL_INITIAL(tmp) = index_tree;
9942 make_tmp = NULL_TREE;
9943 }
9944 rest_of_decl_compilation(tmp, 1, 0);
9945 }
9946 tree tmpref = fold_convert_loc(this->location(), const_ptr_type_node,
9947 build_fold_addr_expr_loc(this->location(),
9948 tmp));
e440a328 9949
9950 static tree map_index_fndecl;
9951 tree call = Gogo::call_builtin(&map_index_fndecl,
9952 this->location(),
9953 "__go_map_index",
9954 3,
9955 const_ptr_type_node,
9956 TREE_TYPE(map_tree),
9957 map_tree,
9958 const_ptr_type_node,
9959 tmpref,
9960 boolean_type_node,
9961 (insert
9962 ? boolean_true_node
9963 : boolean_false_node));
5fb82b5e 9964 if (call == error_mark_node)
9965 return error_mark_node;
e440a328 9966 // This can panic on a map of interface type if the interface holds
9967 // an uncomparable or unhashable type.
9968 TREE_NOTHROW(map_index_fndecl) = 0;
9969
9970 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9971 if (val_type_tree == error_mark_node)
9972 return error_mark_node;
9973 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9974
746d2e73 9975 tree ret = fold_convert_loc(this->location(), ptr_val_type_tree, call);
9976 if (make_tmp != NULL_TREE)
9977 ret = build2(COMPOUND_EXPR, ptr_val_type_tree, make_tmp, ret);
9978 return ret;
e440a328 9979}
9980
9981// Make a map index expression.
9982
9983Map_index_expression*
9984Expression::make_map_index(Expression* map, Expression* index,
9985 source_location location)
9986{
9987 return new Map_index_expression(map, index, location);
9988}
9989
9990// Class Field_reference_expression.
9991
9992// Return the type of a field reference.
9993
9994Type*
9995Field_reference_expression::do_type()
9996{
b0e628fb 9997 Type* type = this->expr_->type();
9998 if (type->is_error_type())
9999 return type;
10000 Struct_type* struct_type = type->struct_type();
e440a328 10001 gcc_assert(struct_type != NULL);
10002 return struct_type->field(this->field_index_)->type();
10003}
10004
10005// Check the types for a field reference.
10006
10007void
10008Field_reference_expression::do_check_types(Gogo*)
10009{
b0e628fb 10010 Type* type = this->expr_->type();
10011 if (type->is_error_type())
10012 return;
10013 Struct_type* struct_type = type->struct_type();
e440a328 10014 gcc_assert(struct_type != NULL);
10015 gcc_assert(struct_type->field(this->field_index_) != NULL);
10016}
10017
10018// Get a tree for a field reference.
10019
10020tree
10021Field_reference_expression::do_get_tree(Translate_context* context)
10022{
10023 tree struct_tree = this->expr_->get_tree(context);
10024 if (struct_tree == error_mark_node
10025 || TREE_TYPE(struct_tree) == error_mark_node)
10026 return error_mark_node;
10027 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
10028 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
b1d655d5 10029 if (field == NULL_TREE)
10030 {
10031 // This can happen for a type which refers to itself indirectly
10032 // and then turns out to be erroneous.
10033 gcc_assert(saw_errors());
10034 return error_mark_node;
10035 }
e440a328 10036 for (unsigned int i = this->field_index_; i > 0; --i)
10037 {
10038 field = DECL_CHAIN(field);
10039 gcc_assert(field != NULL_TREE);
10040 }
c35179ff 10041 if (TREE_TYPE(field) == error_mark_node)
10042 return error_mark_node;
e440a328 10043 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
10044 NULL_TREE);
10045}
10046
10047// Make a reference to a qualified identifier in an expression.
10048
10049Field_reference_expression*
10050Expression::make_field_reference(Expression* expr, unsigned int field_index,
10051 source_location location)
10052{
10053 return new Field_reference_expression(expr, field_index, location);
10054}
10055
10056// Class Interface_field_reference_expression.
10057
10058// Return a tree for the pointer to the function to call.
10059
10060tree
10061Interface_field_reference_expression::get_function_tree(Translate_context*,
10062 tree expr)
10063{
10064 if (this->expr_->type()->points_to() != NULL)
10065 expr = build_fold_indirect_ref(expr);
10066
10067 tree expr_type = TREE_TYPE(expr);
10068 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10069
10070 tree field = TYPE_FIELDS(expr_type);
10071 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
10072
10073 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10074 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
10075
10076 table = build_fold_indirect_ref(table);
10077 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
10078
10079 std::string name = Gogo::unpack_hidden_name(this->name_);
10080 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
10081 field != NULL_TREE;
10082 field = DECL_CHAIN(field))
10083 {
10084 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
10085 break;
10086 }
10087 gcc_assert(field != NULL_TREE);
10088
10089 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
10090}
10091
10092// Return a tree for the first argument to pass to the interface
10093// function.
10094
10095tree
10096Interface_field_reference_expression::get_underlying_object_tree(
10097 Translate_context*,
10098 tree expr)
10099{
10100 if (this->expr_->type()->points_to() != NULL)
10101 expr = build_fold_indirect_ref(expr);
10102
10103 tree expr_type = TREE_TYPE(expr);
10104 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10105
10106 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10107 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10108
10109 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10110}
10111
10112// Traversal.
10113
10114int
10115Interface_field_reference_expression::do_traverse(Traverse* traverse)
10116{
10117 return Expression::traverse(&this->expr_, traverse);
10118}
10119
10120// Return the type of an interface field reference.
10121
10122Type*
10123Interface_field_reference_expression::do_type()
10124{
10125 Type* expr_type = this->expr_->type();
10126
10127 Type* points_to = expr_type->points_to();
10128 if (points_to != NULL)
10129 expr_type = points_to;
10130
10131 Interface_type* interface_type = expr_type->interface_type();
10132 if (interface_type == NULL)
10133 return Type::make_error_type();
10134
10135 const Typed_identifier* method = interface_type->find_method(this->name_);
10136 if (method == NULL)
10137 return Type::make_error_type();
10138
10139 return method->type();
10140}
10141
10142// Determine types.
10143
10144void
10145Interface_field_reference_expression::do_determine_type(const Type_context*)
10146{
10147 this->expr_->determine_type_no_context();
10148}
10149
10150// Check the types for an interface field reference.
10151
10152void
10153Interface_field_reference_expression::do_check_types(Gogo*)
10154{
10155 Type* type = this->expr_->type();
10156
10157 Type* points_to = type->points_to();
10158 if (points_to != NULL)
10159 type = points_to;
10160
10161 Interface_type* interface_type = type->interface_type();
10162 if (interface_type == NULL)
10163 this->report_error(_("expected interface or pointer to interface"));
10164 else
10165 {
10166 const Typed_identifier* method =
10167 interface_type->find_method(this->name_);
10168 if (method == NULL)
10169 {
10170 error_at(this->location(), "method %qs not in interface",
10171 Gogo::message_name(this->name_).c_str());
10172 this->set_is_error();
10173 }
10174 }
10175}
10176
10177// Get a tree for a reference to a field in an interface. There is no
10178// standard tree type representation for this: it's a function
10179// attached to its first argument, like a Bound_method_expression.
10180// The only places it may currently be used are in a Call_expression
10181// or a Go_statement, which will take it apart directly. So this has
10182// nothing to do at present.
10183
10184tree
10185Interface_field_reference_expression::do_get_tree(Translate_context*)
10186{
10187 gcc_unreachable();
10188}
10189
10190// Make a reference to a field in an interface.
10191
10192Expression*
10193Expression::make_interface_field_reference(Expression* expr,
10194 const std::string& field,
10195 source_location location)
10196{
10197 return new Interface_field_reference_expression(expr, field, location);
10198}
10199
10200// A general selector. This is a Parser_expression for LEFT.NAME. It
10201// is lowered after we know the type of the left hand side.
10202
10203class Selector_expression : public Parser_expression
10204{
10205 public:
10206 Selector_expression(Expression* left, const std::string& name,
10207 source_location location)
10208 : Parser_expression(EXPRESSION_SELECTOR, location),
10209 left_(left), name_(name)
10210 { }
10211
10212 protected:
10213 int
10214 do_traverse(Traverse* traverse)
10215 { return Expression::traverse(&this->left_, traverse); }
10216
10217 Expression*
10218 do_lower(Gogo*, Named_object*, int);
10219
10220 Expression*
10221 do_copy()
10222 {
10223 return new Selector_expression(this->left_->copy(), this->name_,
10224 this->location());
10225 }
10226
10227 private:
10228 Expression*
10229 lower_method_expression(Gogo*);
10230
10231 // The expression on the left hand side.
10232 Expression* left_;
10233 // The name on the right hand side.
10234 std::string name_;
10235};
10236
10237// Lower a selector expression once we know the real type of the left
10238// hand side.
10239
10240Expression*
10241Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10242{
10243 Expression* left = this->left_;
10244 if (left->is_type_expression())
10245 return this->lower_method_expression(gogo);
10246 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10247 this->location());
10248}
10249
10250// Lower a method expression T.M or (*T).M. We turn this into a
10251// function literal.
10252
10253Expression*
10254Selector_expression::lower_method_expression(Gogo* gogo)
10255{
10256 source_location location = this->location();
10257 Type* type = this->left_->type();
10258 const std::string& name(this->name_);
10259
10260 bool is_pointer;
10261 if (type->points_to() == NULL)
10262 is_pointer = false;
10263 else
10264 {
10265 is_pointer = true;
10266 type = type->points_to();
10267 }
10268 Named_type* nt = type->named_type();
10269 if (nt == NULL)
10270 {
10271 error_at(location,
10272 ("method expression requires named type or "
10273 "pointer to named type"));
10274 return Expression::make_error(location);
10275 }
10276
10277 bool is_ambiguous;
10278 Method* method = nt->method_function(name, &is_ambiguous);
10279 if (method == NULL)
10280 {
10281 if (!is_ambiguous)
10282 error_at(location, "type %<%s%> has no method %<%s%>",
10283 nt->message_name().c_str(),
10284 Gogo::message_name(name).c_str());
10285 else
10286 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10287 Gogo::message_name(name).c_str(),
10288 nt->message_name().c_str());
10289 return Expression::make_error(location);
10290 }
10291
10292 if (!is_pointer && !method->is_value_method())
10293 {
10294 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10295 nt->message_name().c_str(),
10296 Gogo::message_name(name).c_str());
10297 return Expression::make_error(location);
10298 }
10299
10300 // Build a new function type in which the receiver becomes the first
10301 // argument.
10302 Function_type* method_type = method->type();
10303 gcc_assert(method_type->is_method());
10304
10305 const char* const receiver_name = "$this";
10306 Typed_identifier_list* parameters = new Typed_identifier_list();
10307 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10308 location));
10309
10310 const Typed_identifier_list* method_parameters = method_type->parameters();
10311 if (method_parameters != NULL)
10312 {
10313 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10314 p != method_parameters->end();
10315 ++p)
10316 parameters->push_back(*p);
10317 }
10318
10319 const Typed_identifier_list* method_results = method_type->results();
10320 Typed_identifier_list* results;
10321 if (method_results == NULL)
10322 results = NULL;
10323 else
10324 {
10325 results = new Typed_identifier_list();
10326 for (Typed_identifier_list::const_iterator p = method_results->begin();
10327 p != method_results->end();
10328 ++p)
10329 results->push_back(*p);
10330 }
10331
10332 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10333 location);
10334 if (method_type->is_varargs())
10335 fntype->set_is_varargs();
10336
10337 // We generate methods which always takes a pointer to the receiver
10338 // as their first argument. If this is for a pointer type, we can
10339 // simply reuse the existing function. We use an internal hack to
10340 // get the right type.
10341
10342 if (is_pointer)
10343 {
10344 Named_object* mno = (method->needs_stub_method()
10345 ? method->stub_object()
10346 : method->named_object());
10347 Expression* f = Expression::make_func_reference(mno, NULL, location);
10348 f = Expression::make_cast(fntype, f, location);
10349 Type_conversion_expression* tce =
10350 static_cast<Type_conversion_expression*>(f);
10351 tce->set_may_convert_function_types();
10352 return f;
10353 }
10354
10355 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10356 location);
10357
10358 Named_object* vno = gogo->lookup(receiver_name, NULL);
10359 gcc_assert(vno != NULL);
10360 Expression* ve = Expression::make_var_reference(vno, location);
10361 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
f690b0bb 10362
10363 // Even though we found the method above, if it has an error type we
10364 // may see an error here.
10365 if (bm->is_error_expression())
463fe805 10366 {
10367 gogo->finish_function(location);
10368 return bm;
10369 }
e440a328 10370
10371 Expression_list* args;
10372 if (method_parameters == NULL)
10373 args = NULL;
10374 else
10375 {
10376 args = new Expression_list();
10377 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10378 p != method_parameters->end();
10379 ++p)
10380 {
10381 vno = gogo->lookup(p->name(), NULL);
10382 gcc_assert(vno != NULL);
10383 args->push_back(Expression::make_var_reference(vno, location));
10384 }
10385 }
10386
10387 Call_expression* call = Expression::make_call(bm, args,
10388 method_type->is_varargs(),
10389 location);
10390
10391 size_t count = call->result_count();
10392 Statement* s;
10393 if (count == 0)
10394 s = Statement::make_statement(call);
10395 else
10396 {
10397 Expression_list* retvals = new Expression_list();
10398 if (count <= 1)
10399 retvals->push_back(call);
10400 else
10401 {
10402 for (size_t i = 0; i < count; ++i)
10403 retvals->push_back(Expression::make_call_result(call, i));
10404 }
10405 s = Statement::make_return_statement(no->func_value()->type()->results(),
10406 retvals, location);
10407 }
10408 gogo->add_statement(s);
10409
10410 gogo->finish_function(location);
10411
10412 return Expression::make_func_reference(no, NULL, location);
10413}
10414
10415// Make a selector expression.
10416
10417Expression*
10418Expression::make_selector(Expression* left, const std::string& name,
10419 source_location location)
10420{
10421 return new Selector_expression(left, name, location);
10422}
10423
10424// Implement the builtin function new.
10425
10426class Allocation_expression : public Expression
10427{
10428 public:
10429 Allocation_expression(Type* type, source_location location)
10430 : Expression(EXPRESSION_ALLOCATION, location),
10431 type_(type)
10432 { }
10433
10434 protected:
10435 int
10436 do_traverse(Traverse* traverse)
10437 { return Type::traverse(this->type_, traverse); }
10438
10439 Type*
10440 do_type()
10441 { return Type::make_pointer_type(this->type_); }
10442
10443 void
10444 do_determine_type(const Type_context*)
10445 { }
10446
10447 void
10448 do_check_types(Gogo*);
10449
10450 Expression*
10451 do_copy()
10452 { return new Allocation_expression(this->type_, this->location()); }
10453
10454 tree
10455 do_get_tree(Translate_context*);
10456
10457 private:
10458 // The type we are allocating.
10459 Type* type_;
10460};
10461
10462// Check the type of an allocation expression.
10463
10464void
10465Allocation_expression::do_check_types(Gogo*)
10466{
10467 if (this->type_->function_type() != NULL)
10468 this->report_error(_("invalid new of function type"));
10469}
10470
10471// Return a tree for an allocation expression.
10472
10473tree
10474Allocation_expression::do_get_tree(Translate_context* context)
10475{
10476 tree type_tree = this->type_->get_tree(context->gogo());
19824ddb 10477 if (type_tree == error_mark_node)
10478 return error_mark_node;
e440a328 10479 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10480 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10481 this->location());
19824ddb 10482 if (space == error_mark_node)
10483 return error_mark_node;
e440a328 10484 return fold_convert(build_pointer_type(type_tree), space);
10485}
10486
10487// Make an allocation expression.
10488
10489Expression*
10490Expression::make_allocation(Type* type, source_location location)
10491{
10492 return new Allocation_expression(type, location);
10493}
10494
10495// Implement the builtin function make.
10496
10497class Make_expression : public Expression
10498{
10499 public:
10500 Make_expression(Type* type, Expression_list* args, source_location location)
10501 : Expression(EXPRESSION_MAKE, location),
10502 type_(type), args_(args)
10503 { }
10504
10505 protected:
10506 int
10507 do_traverse(Traverse* traverse);
10508
10509 Type*
10510 do_type()
10511 { return this->type_; }
10512
10513 void
10514 do_determine_type(const Type_context*);
10515
10516 void
10517 do_check_types(Gogo*);
10518
10519 Expression*
10520 do_copy()
10521 {
10522 return new Make_expression(this->type_, this->args_->copy(),
10523 this->location());
10524 }
10525
10526 tree
10527 do_get_tree(Translate_context*);
10528
10529 private:
10530 // The type we are making.
10531 Type* type_;
10532 // The arguments to pass to the make routine.
10533 Expression_list* args_;
10534};
10535
10536// Traversal.
10537
10538int
10539Make_expression::do_traverse(Traverse* traverse)
10540{
10541 if (this->args_ != NULL
10542 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10543 return TRAVERSE_EXIT;
10544 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10545 return TRAVERSE_EXIT;
10546 return TRAVERSE_CONTINUE;
10547}
10548
10549// Set types of arguments.
10550
10551void
10552Make_expression::do_determine_type(const Type_context*)
10553{
10554 if (this->args_ != NULL)
10555 {
10556 Type_context context(Type::lookup_integer_type("int"), false);
10557 for (Expression_list::const_iterator pe = this->args_->begin();
10558 pe != this->args_->end();
10559 ++pe)
10560 (*pe)->determine_type(&context);
10561 }
10562}
10563
10564// Check types for a make expression.
10565
10566void
10567Make_expression::do_check_types(Gogo*)
10568{
10569 if (this->type_->channel_type() == NULL
10570 && this->type_->map_type() == NULL
10571 && (this->type_->array_type() == NULL
10572 || this->type_->array_type()->length() != NULL))
10573 this->report_error(_("invalid type for make function"));
10574 else if (!this->type_->check_make_expression(this->args_, this->location()))
10575 this->set_is_error();
10576}
10577
10578// Return a tree for a make expression.
10579
10580tree
10581Make_expression::do_get_tree(Translate_context* context)
10582{
10583 return this->type_->make_expression_tree(context, this->args_,
10584 this->location());
10585}
10586
10587// Make a make expression.
10588
10589Expression*
10590Expression::make_make(Type* type, Expression_list* args,
10591 source_location location)
10592{
10593 return new Make_expression(type, args, location);
10594}
10595
10596// Construct a struct.
10597
10598class Struct_construction_expression : public Expression
10599{
10600 public:
10601 Struct_construction_expression(Type* type, Expression_list* vals,
10602 source_location location)
10603 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10604 type_(type), vals_(vals)
10605 { }
10606
10607 // Return whether this is a constant initializer.
10608 bool
10609 is_constant_struct() const;
10610
10611 protected:
10612 int
10613 do_traverse(Traverse* traverse);
10614
10615 Type*
10616 do_type()
10617 { return this->type_; }
10618
10619 void
10620 do_determine_type(const Type_context*);
10621
10622 void
10623 do_check_types(Gogo*);
10624
10625 Expression*
10626 do_copy()
10627 {
10628 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10629 this->location());
10630 }
10631
10632 bool
10633 do_is_addressable() const
10634 { return true; }
10635
10636 tree
10637 do_get_tree(Translate_context*);
10638
10639 void
10640 do_export(Export*) const;
10641
10642 private:
10643 // The type of the struct to construct.
10644 Type* type_;
10645 // The list of values, in order of the fields in the struct. A NULL
10646 // entry means that the field should be zero-initialized.
10647 Expression_list* vals_;
10648};
10649
10650// Traversal.
10651
10652int
10653Struct_construction_expression::do_traverse(Traverse* traverse)
10654{
10655 if (this->vals_ != NULL
10656 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10657 return TRAVERSE_EXIT;
10658 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10659 return TRAVERSE_EXIT;
10660 return TRAVERSE_CONTINUE;
10661}
10662
10663// Return whether this is a constant initializer.
10664
10665bool
10666Struct_construction_expression::is_constant_struct() const
10667{
10668 if (this->vals_ == NULL)
10669 return true;
10670 for (Expression_list::const_iterator pv = this->vals_->begin();
10671 pv != this->vals_->end();
10672 ++pv)
10673 {
10674 if (*pv != NULL
10675 && !(*pv)->is_constant()
10676 && (!(*pv)->is_composite_literal()
10677 || (*pv)->is_nonconstant_composite_literal()))
10678 return false;
10679 }
10680
10681 const Struct_field_list* fields = this->type_->struct_type()->fields();
10682 for (Struct_field_list::const_iterator pf = fields->begin();
10683 pf != fields->end();
10684 ++pf)
10685 {
10686 // There are no constant constructors for interfaces.
10687 if (pf->type()->interface_type() != NULL)
10688 return false;
10689 }
10690
10691 return true;
10692}
10693
10694// Final type determination.
10695
10696void
10697Struct_construction_expression::do_determine_type(const Type_context*)
10698{
10699 if (this->vals_ == NULL)
10700 return;
10701 const Struct_field_list* fields = this->type_->struct_type()->fields();
10702 Expression_list::const_iterator pv = this->vals_->begin();
10703 for (Struct_field_list::const_iterator pf = fields->begin();
10704 pf != fields->end();
10705 ++pf, ++pv)
10706 {
10707 if (pv == this->vals_->end())
10708 return;
10709 if (*pv != NULL)
10710 {
10711 Type_context subcontext(pf->type(), false);
10712 (*pv)->determine_type(&subcontext);
10713 }
10714 }
a6cb4c0e 10715 // Extra values are an error we will report elsewhere; we still want
10716 // to determine the type to avoid knockon errors.
10717 for (; pv != this->vals_->end(); ++pv)
10718 (*pv)->determine_type_no_context();
e440a328 10719}
10720
10721// Check types.
10722
10723void
10724Struct_construction_expression::do_check_types(Gogo*)
10725{
10726 if (this->vals_ == NULL)
10727 return;
10728
10729 Struct_type* st = this->type_->struct_type();
10730 if (this->vals_->size() > st->field_count())
10731 {
10732 this->report_error(_("too many expressions for struct"));
10733 return;
10734 }
10735
10736 const Struct_field_list* fields = st->fields();
10737 Expression_list::const_iterator pv = this->vals_->begin();
10738 int i = 0;
10739 for (Struct_field_list::const_iterator pf = fields->begin();
10740 pf != fields->end();
10741 ++pf, ++pv, ++i)
10742 {
10743 if (pv == this->vals_->end())
10744 {
10745 this->report_error(_("too few expressions for struct"));
10746 break;
10747 }
10748
10749 if (*pv == NULL)
10750 continue;
10751
10752 std::string reason;
10753 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10754 {
10755 if (reason.empty())
10756 error_at((*pv)->location(),
10757 "incompatible type for field %d in struct construction",
10758 i + 1);
10759 else
10760 error_at((*pv)->location(),
10761 ("incompatible type for field %d in "
10762 "struct construction (%s)"),
10763 i + 1, reason.c_str());
10764 this->set_is_error();
10765 }
10766 }
10767 gcc_assert(pv == this->vals_->end());
10768}
10769
10770// Return a tree for constructing a struct.
10771
10772tree
10773Struct_construction_expression::do_get_tree(Translate_context* context)
10774{
10775 Gogo* gogo = context->gogo();
10776
10777 if (this->vals_ == NULL)
10778 return this->type_->get_init_tree(gogo, false);
10779
10780 tree type_tree = this->type_->get_tree(gogo);
10781 if (type_tree == error_mark_node)
10782 return error_mark_node;
10783 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10784
10785 bool is_constant = true;
10786 const Struct_field_list* fields = this->type_->struct_type()->fields();
10787 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10788 fields->size());
10789 Struct_field_list::const_iterator pf = fields->begin();
10790 Expression_list::const_iterator pv = this->vals_->begin();
10791 for (tree field = TYPE_FIELDS(type_tree);
10792 field != NULL_TREE;
10793 field = DECL_CHAIN(field), ++pf)
10794 {
10795 gcc_assert(pf != fields->end());
10796
10797 tree val;
10798 if (pv == this->vals_->end())
10799 val = pf->type()->get_init_tree(gogo, false);
10800 else if (*pv == NULL)
10801 {
10802 val = pf->type()->get_init_tree(gogo, false);
10803 ++pv;
10804 }
10805 else
10806 {
10807 val = Expression::convert_for_assignment(context, pf->type(),
10808 (*pv)->type(),
10809 (*pv)->get_tree(context),
10810 this->location());
10811 ++pv;
10812 }
10813
10814 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10815 return error_mark_node;
10816
10817 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10818 elt->index = field;
10819 elt->value = val;
10820 if (!TREE_CONSTANT(val))
10821 is_constant = false;
10822 }
10823 gcc_assert(pf == fields->end());
10824
10825 tree ret = build_constructor(type_tree, elts);
10826 if (is_constant)
10827 TREE_CONSTANT(ret) = 1;
10828 return ret;
10829}
10830
10831// Export a struct construction.
10832
10833void
10834Struct_construction_expression::do_export(Export* exp) const
10835{
10836 exp->write_c_string("convert(");
10837 exp->write_type(this->type_);
10838 for (Expression_list::const_iterator pv = this->vals_->begin();
10839 pv != this->vals_->end();
10840 ++pv)
10841 {
10842 exp->write_c_string(", ");
10843 if (*pv != NULL)
10844 (*pv)->export_expression(exp);
10845 }
10846 exp->write_c_string(")");
10847}
10848
10849// Make a struct composite literal. This used by the thunk code.
10850
10851Expression*
10852Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10853 source_location location)
10854{
10855 gcc_assert(type->struct_type() != NULL);
10856 return new Struct_construction_expression(type, vals, location);
10857}
10858
10859// Construct an array. This class is not used directly; instead we
10860// use the child classes, Fixed_array_construction_expression and
10861// Open_array_construction_expression.
10862
10863class Array_construction_expression : public Expression
10864{
10865 protected:
10866 Array_construction_expression(Expression_classification classification,
10867 Type* type, Expression_list* vals,
10868 source_location location)
10869 : Expression(classification, location),
10870 type_(type), vals_(vals)
10871 { }
10872
10873 public:
10874 // Return whether this is a constant initializer.
10875 bool
10876 is_constant_array() const;
10877
10878 // Return the number of elements.
10879 size_t
10880 element_count() const
10881 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10882
10883protected:
10884 int
10885 do_traverse(Traverse* traverse);
10886
10887 Type*
10888 do_type()
10889 { return this->type_; }
10890
10891 void
10892 do_determine_type(const Type_context*);
10893
10894 void
10895 do_check_types(Gogo*);
10896
10897 bool
10898 do_is_addressable() const
10899 { return true; }
10900
10901 void
10902 do_export(Export*) const;
10903
10904 // The list of values.
10905 Expression_list*
10906 vals()
10907 { return this->vals_; }
10908
10909 // Get a constructor tree for the array values.
10910 tree
10911 get_constructor_tree(Translate_context* context, tree type_tree);
10912
10913 private:
10914 // The type of the array to construct.
10915 Type* type_;
10916 // The list of values.
10917 Expression_list* vals_;
10918};
10919
10920// Traversal.
10921
10922int
10923Array_construction_expression::do_traverse(Traverse* traverse)
10924{
10925 if (this->vals_ != NULL
10926 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10927 return TRAVERSE_EXIT;
10928 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10929 return TRAVERSE_EXIT;
10930 return TRAVERSE_CONTINUE;
10931}
10932
10933// Return whether this is a constant initializer.
10934
10935bool
10936Array_construction_expression::is_constant_array() const
10937{
10938 if (this->vals_ == NULL)
10939 return true;
10940
10941 // There are no constant constructors for interfaces.
10942 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10943 return false;
10944
10945 for (Expression_list::const_iterator pv = this->vals_->begin();
10946 pv != this->vals_->end();
10947 ++pv)
10948 {
10949 if (*pv != NULL
10950 && !(*pv)->is_constant()
10951 && (!(*pv)->is_composite_literal()
10952 || (*pv)->is_nonconstant_composite_literal()))
10953 return false;
10954 }
10955 return true;
10956}
10957
10958// Final type determination.
10959
10960void
10961Array_construction_expression::do_determine_type(const Type_context*)
10962{
10963 if (this->vals_ == NULL)
10964 return;
10965 Type_context subcontext(this->type_->array_type()->element_type(), false);
10966 for (Expression_list::const_iterator pv = this->vals_->begin();
10967 pv != this->vals_->end();
10968 ++pv)
10969 {
10970 if (*pv != NULL)
10971 (*pv)->determine_type(&subcontext);
10972 }
10973}
10974
10975// Check types.
10976
10977void
10978Array_construction_expression::do_check_types(Gogo*)
10979{
10980 if (this->vals_ == NULL)
10981 return;
10982
10983 Array_type* at = this->type_->array_type();
10984 int i = 0;
10985 Type* element_type = at->element_type();
10986 for (Expression_list::const_iterator pv = this->vals_->begin();
10987 pv != this->vals_->end();
10988 ++pv, ++i)
10989 {
10990 if (*pv != NULL
10991 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10992 {
10993 error_at((*pv)->location(),
10994 "incompatible type for element %d in composite literal",
10995 i + 1);
10996 this->set_is_error();
10997 }
10998 }
10999
11000 Expression* length = at->length();
11001 if (length != NULL)
11002 {
11003 mpz_t val;
11004 mpz_init(val);
11005 Type* type;
11006 if (at->length()->integer_constant_value(true, val, &type))
11007 {
11008 if (this->vals_->size() > mpz_get_ui(val))
11009 this->report_error(_("too many elements in composite literal"));
11010 }
11011 mpz_clear(val);
11012 }
11013}
11014
11015// Get a constructor tree for the array values.
11016
11017tree
11018Array_construction_expression::get_constructor_tree(Translate_context* context,
11019 tree type_tree)
11020{
11021 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11022 (this->vals_ == NULL
11023 ? 0
11024 : this->vals_->size()));
11025 Type* element_type = this->type_->array_type()->element_type();
11026 bool is_constant = true;
11027 if (this->vals_ != NULL)
11028 {
11029 size_t i = 0;
11030 for (Expression_list::const_iterator pv = this->vals_->begin();
11031 pv != this->vals_->end();
11032 ++pv, ++i)
11033 {
11034 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
11035 elt->index = size_int(i);
11036 if (*pv == NULL)
11037 elt->value = element_type->get_init_tree(context->gogo(), false);
11038 else
11039 {
11040 tree value_tree = (*pv)->get_tree(context);
11041 elt->value = Expression::convert_for_assignment(context,
11042 element_type,
11043 (*pv)->type(),
11044 value_tree,
11045 this->location());
11046 }
11047 if (elt->value == error_mark_node)
11048 return error_mark_node;
11049 if (!TREE_CONSTANT(elt->value))
11050 is_constant = false;
11051 }
11052 }
11053
11054 tree ret = build_constructor(type_tree, values);
11055 if (is_constant)
11056 TREE_CONSTANT(ret) = 1;
11057 return ret;
11058}
11059
11060// Export an array construction.
11061
11062void
11063Array_construction_expression::do_export(Export* exp) const
11064{
11065 exp->write_c_string("convert(");
11066 exp->write_type(this->type_);
11067 if (this->vals_ != NULL)
11068 {
11069 for (Expression_list::const_iterator pv = this->vals_->begin();
11070 pv != this->vals_->end();
11071 ++pv)
11072 {
11073 exp->write_c_string(", ");
11074 if (*pv != NULL)
11075 (*pv)->export_expression(exp);
11076 }
11077 }
11078 exp->write_c_string(")");
11079}
11080
11081// Construct a fixed array.
11082
11083class Fixed_array_construction_expression :
11084 public Array_construction_expression
11085{
11086 public:
11087 Fixed_array_construction_expression(Type* type, Expression_list* vals,
11088 source_location location)
11089 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
11090 type, vals, location)
11091 {
11092 gcc_assert(type->array_type() != NULL
11093 && type->array_type()->length() != NULL);
11094 }
11095
11096 protected:
11097 Expression*
11098 do_copy()
11099 {
11100 return new Fixed_array_construction_expression(this->type(),
11101 (this->vals() == NULL
11102 ? NULL
11103 : this->vals()->copy()),
11104 this->location());
11105 }
11106
11107 tree
11108 do_get_tree(Translate_context*);
11109};
11110
11111// Return a tree for constructing a fixed array.
11112
11113tree
11114Fixed_array_construction_expression::do_get_tree(Translate_context* context)
11115{
11116 return this->get_constructor_tree(context,
11117 this->type()->get_tree(context->gogo()));
11118}
11119
11120// Construct an open array.
11121
11122class Open_array_construction_expression : public Array_construction_expression
11123{
11124 public:
11125 Open_array_construction_expression(Type* type, Expression_list* vals,
11126 source_location location)
11127 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11128 type, vals, location)
11129 {
11130 gcc_assert(type->array_type() != NULL
11131 && type->array_type()->length() == NULL);
11132 }
11133
11134 protected:
11135 // Note that taking the address of an open array literal is invalid.
11136
11137 Expression*
11138 do_copy()
11139 {
11140 return new Open_array_construction_expression(this->type(),
11141 (this->vals() == NULL
11142 ? NULL
11143 : this->vals()->copy()),
11144 this->location());
11145 }
11146
11147 tree
11148 do_get_tree(Translate_context*);
11149};
11150
11151// Return a tree for constructing an open array.
11152
11153tree
11154Open_array_construction_expression::do_get_tree(Translate_context* context)
11155{
f9c68f17 11156 Array_type* array_type = this->type()->array_type();
11157 if (array_type == NULL)
11158 {
11159 gcc_assert(this->type()->is_error_type());
11160 return error_mark_node;
11161 }
11162
11163 Type* element_type = array_type->element_type();
e440a328 11164 tree element_type_tree = element_type->get_tree(context->gogo());
3d60812e 11165 if (element_type_tree == error_mark_node)
11166 return error_mark_node;
11167
e440a328 11168 tree values;
11169 tree length_tree;
11170 if (this->vals() == NULL || this->vals()->empty())
11171 {
11172 // We need to create a unique value.
11173 tree max = size_int(0);
11174 tree constructor_type = build_array_type(element_type_tree,
11175 build_index_type(max));
11176 if (constructor_type == error_mark_node)
11177 return error_mark_node;
11178 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11179 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11180 elt->index = size_int(0);
11181 elt->value = element_type->get_init_tree(context->gogo(), false);
11182 values = build_constructor(constructor_type, vec);
11183 if (TREE_CONSTANT(elt->value))
11184 TREE_CONSTANT(values) = 1;
11185 length_tree = size_int(0);
11186 }
11187 else
11188 {
11189 tree max = size_int(this->vals()->size() - 1);
11190 tree constructor_type = build_array_type(element_type_tree,
11191 build_index_type(max));
11192 if (constructor_type == error_mark_node)
11193 return error_mark_node;
11194 values = this->get_constructor_tree(context, constructor_type);
11195 length_tree = size_int(this->vals()->size());
11196 }
11197
11198 if (values == error_mark_node)
11199 return error_mark_node;
11200
11201 bool is_constant_initializer = TREE_CONSTANT(values);
d8829beb 11202
11203 // We have to copy the initial values into heap memory if we are in
11204 // a function or if the values are not constants. We also have to
11205 // copy them if they may contain pointers in a non-constant context,
11206 // as otherwise the garbage collector won't see them.
11207 bool copy_to_heap = (context->function() != NULL
11208 || !is_constant_initializer
11209 || (element_type->has_pointer()
11210 && !context->is_const()));
e440a328 11211
11212 if (is_constant_initializer)
11213 {
11214 tree tmp = build_decl(this->location(), VAR_DECL,
11215 create_tmp_var_name("C"), TREE_TYPE(values));
11216 DECL_EXTERNAL(tmp) = 0;
11217 TREE_PUBLIC(tmp) = 0;
11218 TREE_STATIC(tmp) = 1;
11219 DECL_ARTIFICIAL(tmp) = 1;
d8829beb 11220 if (copy_to_heap)
e440a328 11221 {
d8829beb 11222 // If we are not copying the value to the heap, we will only
11223 // initialize the value once, so we can use this directly
11224 // rather than copying it. In that case we can't make it
11225 // read-only, because the program is permitted to change it.
e440a328 11226 TREE_READONLY(tmp) = 1;
11227 TREE_CONSTANT(tmp) = 1;
11228 }
11229 DECL_INITIAL(tmp) = values;
11230 rest_of_decl_compilation(tmp, 1, 0);
11231 values = tmp;
11232 }
11233
11234 tree space;
11235 tree set;
d8829beb 11236 if (!copy_to_heap)
e440a328 11237 {
d8829beb 11238 // the initializer will only run once.
e440a328 11239 space = build_fold_addr_expr(values);
11240 set = NULL_TREE;
11241 }
11242 else
11243 {
11244 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11245 space = context->gogo()->allocate_memory(element_type, memsize,
11246 this->location());
11247 space = save_expr(space);
11248
11249 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11250 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11251 TREE_THIS_NOTRAP(ref) = 1;
11252 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11253 }
11254
11255 // Build a constructor for the open array.
11256
11257 tree type_tree = this->type()->get_tree(context->gogo());
3d60812e 11258 if (type_tree == error_mark_node)
11259 return error_mark_node;
e440a328 11260 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11261
11262 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11263
11264 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11265 tree field = TYPE_FIELDS(type_tree);
11266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11267 elt->index = field;
11268 elt->value = fold_convert(TREE_TYPE(field), space);
11269
11270 elt = VEC_quick_push(constructor_elt, init, NULL);
11271 field = DECL_CHAIN(field);
11272 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11273 elt->index = field;
11274 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11275
11276 elt = VEC_quick_push(constructor_elt, init, NULL);
11277 field = DECL_CHAIN(field);
11278 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11279 elt->index = field;
11280 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11281
11282 tree constructor = build_constructor(type_tree, init);
3d60812e 11283 if (constructor == error_mark_node)
11284 return error_mark_node;
d8829beb 11285 if (!copy_to_heap)
e440a328 11286 TREE_CONSTANT(constructor) = 1;
11287
11288 if (set == NULL_TREE)
11289 return constructor;
11290 else
11291 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11292}
11293
11294// Make a slice composite literal. This is used by the type
11295// descriptor code.
11296
11297Expression*
11298Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11299 source_location location)
11300{
11301 gcc_assert(type->is_open_array_type());
11302 return new Open_array_construction_expression(type, vals, location);
11303}
11304
11305// Construct a map.
11306
11307class Map_construction_expression : public Expression
11308{
11309 public:
11310 Map_construction_expression(Type* type, Expression_list* vals,
11311 source_location location)
11312 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11313 type_(type), vals_(vals)
11314 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11315
11316 protected:
11317 int
11318 do_traverse(Traverse* traverse);
11319
11320 Type*
11321 do_type()
11322 { return this->type_; }
11323
11324 void
11325 do_determine_type(const Type_context*);
11326
11327 void
11328 do_check_types(Gogo*);
11329
11330 Expression*
11331 do_copy()
11332 {
11333 return new Map_construction_expression(this->type_, this->vals_->copy(),
11334 this->location());
11335 }
11336
11337 tree
11338 do_get_tree(Translate_context*);
11339
11340 void
11341 do_export(Export*) const;
11342
11343 private:
11344 // The type of the map to construct.
11345 Type* type_;
11346 // The list of values.
11347 Expression_list* vals_;
11348};
11349
11350// Traversal.
11351
11352int
11353Map_construction_expression::do_traverse(Traverse* traverse)
11354{
11355 if (this->vals_ != NULL
11356 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11357 return TRAVERSE_EXIT;
11358 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11359 return TRAVERSE_EXIT;
11360 return TRAVERSE_CONTINUE;
11361}
11362
11363// Final type determination.
11364
11365void
11366Map_construction_expression::do_determine_type(const Type_context*)
11367{
11368 if (this->vals_ == NULL)
11369 return;
11370
11371 Map_type* mt = this->type_->map_type();
11372 Type_context key_context(mt->key_type(), false);
11373 Type_context val_context(mt->val_type(), false);
11374 for (Expression_list::const_iterator pv = this->vals_->begin();
11375 pv != this->vals_->end();
11376 ++pv)
11377 {
11378 (*pv)->determine_type(&key_context);
11379 ++pv;
11380 (*pv)->determine_type(&val_context);
11381 }
11382}
11383
11384// Check types.
11385
11386void
11387Map_construction_expression::do_check_types(Gogo*)
11388{
11389 if (this->vals_ == NULL)
11390 return;
11391
11392 Map_type* mt = this->type_->map_type();
11393 int i = 0;
11394 Type* key_type = mt->key_type();
11395 Type* val_type = mt->val_type();
11396 for (Expression_list::const_iterator pv = this->vals_->begin();
11397 pv != this->vals_->end();
11398 ++pv, ++i)
11399 {
11400 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11401 {
11402 error_at((*pv)->location(),
11403 "incompatible type for element %d key in map construction",
11404 i + 1);
11405 this->set_is_error();
11406 }
11407 ++pv;
11408 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11409 {
11410 error_at((*pv)->location(),
11411 ("incompatible type for element %d value "
11412 "in map construction"),
11413 i + 1);
11414 this->set_is_error();
11415 }
11416 }
11417}
11418
11419// Return a tree for constructing a map.
11420
11421tree
11422Map_construction_expression::do_get_tree(Translate_context* context)
11423{
11424 Gogo* gogo = context->gogo();
11425 source_location loc = this->location();
11426
11427 Map_type* mt = this->type_->map_type();
11428
11429 // Build a struct to hold the key and value.
11430 tree struct_type = make_node(RECORD_TYPE);
11431
11432 Type* key_type = mt->key_type();
11433 tree id = get_identifier("__key");
5845bde6 11434 tree key_type_tree = key_type->get_tree(gogo);
11435 if (key_type_tree == error_mark_node)
11436 return error_mark_node;
11437 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
e440a328 11438 DECL_CONTEXT(key_field) = struct_type;
11439 TYPE_FIELDS(struct_type) = key_field;
11440
11441 Type* val_type = mt->val_type();
11442 id = get_identifier("__val");
5845bde6 11443 tree val_type_tree = val_type->get_tree(gogo);
11444 if (val_type_tree == error_mark_node)
11445 return error_mark_node;
11446 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
e440a328 11447 DECL_CONTEXT(val_field) = struct_type;
11448 DECL_CHAIN(key_field) = val_field;
11449
11450 layout_type(struct_type);
11451
11452 bool is_constant = true;
11453 size_t i = 0;
11454 tree valaddr;
11455 tree make_tmp;
11456
11457 if (this->vals_ == NULL || this->vals_->empty())
11458 {
11459 valaddr = null_pointer_node;
11460 make_tmp = NULL_TREE;
11461 }
11462 else
11463 {
11464 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11465 this->vals_->size() / 2);
11466
11467 for (Expression_list::const_iterator pv = this->vals_->begin();
11468 pv != this->vals_->end();
11469 ++pv, ++i)
11470 {
11471 bool one_is_constant = true;
11472
11473 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11474
11475 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11476 elt->index = key_field;
11477 tree val_tree = (*pv)->get_tree(context);
11478 elt->value = Expression::convert_for_assignment(context, key_type,
11479 (*pv)->type(),
11480 val_tree, loc);
11481 if (elt->value == error_mark_node)
11482 return error_mark_node;
11483 if (!TREE_CONSTANT(elt->value))
11484 one_is_constant = false;
11485
11486 ++pv;
11487
11488 elt = VEC_quick_push(constructor_elt, one, NULL);
11489 elt->index = val_field;
11490 val_tree = (*pv)->get_tree(context);
11491 elt->value = Expression::convert_for_assignment(context, val_type,
11492 (*pv)->type(),
11493 val_tree, loc);
11494 if (elt->value == error_mark_node)
11495 return error_mark_node;
11496 if (!TREE_CONSTANT(elt->value))
11497 one_is_constant = false;
11498
11499 elt = VEC_quick_push(constructor_elt, values, NULL);
11500 elt->index = size_int(i);
11501 elt->value = build_constructor(struct_type, one);
11502 if (one_is_constant)
11503 TREE_CONSTANT(elt->value) = 1;
11504 else
11505 is_constant = false;
11506 }
11507
11508 tree index_type = build_index_type(size_int(i - 1));
11509 tree array_type = build_array_type(struct_type, index_type);
11510 tree init = build_constructor(array_type, values);
11511 if (is_constant)
11512 TREE_CONSTANT(init) = 1;
11513 tree tmp;
11514 if (current_function_decl != NULL)
11515 {
11516 tmp = create_tmp_var(array_type, get_name(array_type));
11517 DECL_INITIAL(tmp) = init;
11518 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11519 TREE_ADDRESSABLE(tmp) = 1;
11520 }
11521 else
11522 {
11523 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11524 DECL_EXTERNAL(tmp) = 0;
11525 TREE_PUBLIC(tmp) = 0;
11526 TREE_STATIC(tmp) = 1;
11527 DECL_ARTIFICIAL(tmp) = 1;
11528 if (!TREE_CONSTANT(init))
11529 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11530 init);
11531 else
11532 {
11533 TREE_READONLY(tmp) = 1;
11534 TREE_CONSTANT(tmp) = 1;
11535 DECL_INITIAL(tmp) = init;
11536 make_tmp = NULL_TREE;
11537 }
11538 rest_of_decl_compilation(tmp, 1, 0);
11539 }
11540
11541 valaddr = build_fold_addr_expr(tmp);
11542 }
11543
11544 tree descriptor = gogo->map_descriptor(mt);
11545
11546 tree type_tree = this->type_->get_tree(gogo);
5845bde6 11547 if (type_tree == error_mark_node)
11548 return error_mark_node;
e440a328 11549
11550 static tree construct_map_fndecl;
11551 tree call = Gogo::call_builtin(&construct_map_fndecl,
11552 loc,
11553 "__go_construct_map",
11554 6,
11555 type_tree,
11556 TREE_TYPE(descriptor),
11557 descriptor,
11558 sizetype,
11559 size_int(i),
11560 sizetype,
11561 TYPE_SIZE_UNIT(struct_type),
11562 sizetype,
11563 byte_position(val_field),
11564 sizetype,
11565 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11566 const_ptr_type_node,
11567 fold_convert(const_ptr_type_node, valaddr));
5fb82b5e 11568 if (call == error_mark_node)
11569 return error_mark_node;
e440a328 11570
11571 tree ret;
11572 if (make_tmp == NULL)
11573 ret = call;
11574 else
11575 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11576 return ret;
11577}
11578
11579// Export an array construction.
11580
11581void
11582Map_construction_expression::do_export(Export* exp) const
11583{
11584 exp->write_c_string("convert(");
11585 exp->write_type(this->type_);
11586 for (Expression_list::const_iterator pv = this->vals_->begin();
11587 pv != this->vals_->end();
11588 ++pv)
11589 {
11590 exp->write_c_string(", ");
11591 (*pv)->export_expression(exp);
11592 }
11593 exp->write_c_string(")");
11594}
11595
11596// A general composite literal. This is lowered to a type specific
11597// version.
11598
11599class Composite_literal_expression : public Parser_expression
11600{
11601 public:
11602 Composite_literal_expression(Type* type, int depth, bool has_keys,
11603 Expression_list* vals, source_location location)
11604 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11605 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11606 { }
11607
11608 protected:
11609 int
11610 do_traverse(Traverse* traverse);
11611
11612 Expression*
11613 do_lower(Gogo*, Named_object*, int);
11614
11615 Expression*
11616 do_copy()
11617 {
11618 return new Composite_literal_expression(this->type_, this->depth_,
11619 this->has_keys_,
11620 (this->vals_ == NULL
11621 ? NULL
11622 : this->vals_->copy()),
11623 this->location());
11624 }
11625
11626 private:
11627 Expression*
81c4b26b 11628 lower_struct(Gogo*, Type*);
e440a328 11629
11630 Expression*
11631 lower_array(Type*);
11632
11633 Expression*
11634 make_array(Type*, Expression_list*);
11635
11636 Expression*
a287720d 11637 lower_map(Gogo*, Named_object*, Type*);
e440a328 11638
11639 // The type of the composite literal.
11640 Type* type_;
11641 // The depth within a list of composite literals within a composite
11642 // literal, when the type is omitted.
11643 int depth_;
11644 // The values to put in the composite literal.
11645 Expression_list* vals_;
11646 // If this is true, then VALS_ is a list of pairs: a key and a
11647 // value. In an array initializer, a missing key will be NULL.
11648 bool has_keys_;
11649};
11650
11651// Traversal.
11652
11653int
11654Composite_literal_expression::do_traverse(Traverse* traverse)
11655{
11656 if (this->vals_ != NULL
11657 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11658 return TRAVERSE_EXIT;
11659 return Type::traverse(this->type_, traverse);
11660}
11661
11662// Lower a generic composite literal into a specific version based on
11663// the type.
11664
11665Expression*
a287720d 11666Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
e440a328 11667{
11668 Type* type = this->type_;
11669
11670 for (int depth = this->depth_; depth > 0; --depth)
11671 {
11672 if (type->array_type() != NULL)
11673 type = type->array_type()->element_type();
11674 else if (type->map_type() != NULL)
11675 type = type->map_type()->val_type();
11676 else
11677 {
11678 if (!type->is_error_type())
11679 error_at(this->location(),
11680 ("may only omit types within composite literals "
11681 "of slice, array, or map type"));
11682 return Expression::make_error(this->location());
11683 }
11684 }
11685
11686 if (type->is_error_type())
11687 return Expression::make_error(this->location());
11688 else if (type->struct_type() != NULL)
81c4b26b 11689 return this->lower_struct(gogo, type);
e440a328 11690 else if (type->array_type() != NULL)
11691 return this->lower_array(type);
11692 else if (type->map_type() != NULL)
a287720d 11693 return this->lower_map(gogo, function, type);
e440a328 11694 else
11695 {
11696 error_at(this->location(),
11697 ("expected struct, slice, array, or map type "
11698 "for composite literal"));
11699 return Expression::make_error(this->location());
11700 }
11701}
11702
11703// Lower a struct composite literal.
11704
11705Expression*
81c4b26b 11706Composite_literal_expression::lower_struct(Gogo* gogo, Type* type)
e440a328 11707{
11708 source_location location = this->location();
11709 Struct_type* st = type->struct_type();
11710 if (this->vals_ == NULL || !this->has_keys_)
11711 return new Struct_construction_expression(type, this->vals_, location);
11712
11713 size_t field_count = st->field_count();
11714 std::vector<Expression*> vals(field_count);
11715 Expression_list::const_iterator p = this->vals_->begin();
11716 while (p != this->vals_->end())
11717 {
11718 Expression* name_expr = *p;
11719
11720 ++p;
11721 gcc_assert(p != this->vals_->end());
11722 Expression* val = *p;
11723
11724 ++p;
11725
11726 if (name_expr == NULL)
11727 {
11728 error_at(val->location(), "mixture of field and value initializers");
11729 return Expression::make_error(location);
11730 }
11731
11732 bool bad_key = false;
11733 std::string name;
81c4b26b 11734 const Named_object* no = NULL;
e440a328 11735 switch (name_expr->classification())
11736 {
11737 case EXPRESSION_UNKNOWN_REFERENCE:
11738 name = name_expr->unknown_expression()->name();
11739 break;
11740
11741 case EXPRESSION_CONST_REFERENCE:
81c4b26b 11742 no = static_cast<Const_expression*>(name_expr)->named_object();
e440a328 11743 break;
11744
11745 case EXPRESSION_TYPE:
11746 {
11747 Type* t = name_expr->type();
11748 Named_type* nt = t->named_type();
11749 if (nt == NULL)
11750 bad_key = true;
11751 else
81c4b26b 11752 no = nt->named_object();
e440a328 11753 }
11754 break;
11755
11756 case EXPRESSION_VAR_REFERENCE:
81c4b26b 11757 no = name_expr->var_expression()->named_object();
e440a328 11758 break;
11759
11760 case EXPRESSION_FUNC_REFERENCE:
81c4b26b 11761 no = name_expr->func_expression()->named_object();
e440a328 11762 break;
11763
11764 case EXPRESSION_UNARY:
11765 // If there is a local variable around with the same name as
11766 // the field, and this occurs in the closure, then the
11767 // parser may turn the field reference into an indirection
11768 // through the closure. FIXME: This is a mess.
11769 {
11770 bad_key = true;
11771 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11772 if (ue->op() == OPERATOR_MULT)
11773 {
11774 Field_reference_expression* fre =
11775 ue->operand()->field_reference_expression();
11776 if (fre != NULL)
11777 {
11778 Struct_type* st =
11779 fre->expr()->type()->deref()->struct_type();
11780 if (st != NULL)
11781 {
11782 const Struct_field* sf = st->field(fre->field_index());
11783 name = sf->field_name();
11784 char buf[20];
11785 snprintf(buf, sizeof buf, "%u", fre->field_index());
11786 size_t buflen = strlen(buf);
11787 if (name.compare(name.length() - buflen, buflen, buf)
11788 == 0)
11789 {
11790 name = name.substr(0, name.length() - buflen);
11791 bad_key = false;
11792 }
11793 }
11794 }
11795 }
11796 }
11797 break;
11798
11799 default:
11800 bad_key = true;
11801 break;
11802 }
11803 if (bad_key)
11804 {
11805 error_at(name_expr->location(), "expected struct field name");
11806 return Expression::make_error(location);
11807 }
11808
81c4b26b 11809 if (no != NULL)
11810 {
11811 name = no->name();
11812
11813 // A predefined name won't be packed. If it starts with a
11814 // lower case letter we need to check for that case, because
11815 // the field name will be packed.
11816 if (!Gogo::is_hidden_name(name)
11817 && name[0] >= 'a'
11818 && name[0] <= 'z')
11819 {
11820 Named_object* gno = gogo->lookup_global(name.c_str());
11821 if (gno == no)
11822 name = gogo->pack_hidden_name(name, false);
11823 }
11824 }
11825
e440a328 11826 unsigned int index;
11827 const Struct_field* sf = st->find_local_field(name, &index);
11828 if (sf == NULL)
11829 {
11830 error_at(name_expr->location(), "unknown field %qs in %qs",
11831 Gogo::message_name(name).c_str(),
11832 (type->named_type() != NULL
11833 ? type->named_type()->message_name().c_str()
11834 : "unnamed struct"));
11835 return Expression::make_error(location);
11836 }
11837 if (vals[index] != NULL)
11838 {
11839 error_at(name_expr->location(),
11840 "duplicate value for field %qs in %qs",
11841 Gogo::message_name(name).c_str(),
11842 (type->named_type() != NULL
11843 ? type->named_type()->message_name().c_str()
11844 : "unnamed struct"));
11845 return Expression::make_error(location);
11846 }
11847
11848 vals[index] = val;
11849 }
11850
11851 Expression_list* list = new Expression_list;
11852 list->reserve(field_count);
11853 for (size_t i = 0; i < field_count; ++i)
11854 list->push_back(vals[i]);
11855
11856 return new Struct_construction_expression(type, list, location);
11857}
11858
11859// Lower an array composite literal.
11860
11861Expression*
11862Composite_literal_expression::lower_array(Type* type)
11863{
11864 source_location location = this->location();
11865 if (this->vals_ == NULL || !this->has_keys_)
11866 return this->make_array(type, this->vals_);
11867
11868 std::vector<Expression*> vals;
11869 vals.reserve(this->vals_->size());
11870 unsigned long index = 0;
11871 Expression_list::const_iterator p = this->vals_->begin();
11872 while (p != this->vals_->end())
11873 {
11874 Expression* index_expr = *p;
11875
11876 ++p;
11877 gcc_assert(p != this->vals_->end());
11878 Expression* val = *p;
11879
11880 ++p;
11881
11882 if (index_expr != NULL)
11883 {
11884 mpz_t ival;
11885 mpz_init(ival);
6f6d9955 11886
e440a328 11887 Type* dummy;
11888 if (!index_expr->integer_constant_value(true, ival, &dummy))
11889 {
11890 mpz_clear(ival);
11891 error_at(index_expr->location(),
11892 "index expression is not integer constant");
11893 return Expression::make_error(location);
11894 }
6f6d9955 11895
e440a328 11896 if (mpz_sgn(ival) < 0)
11897 {
11898 mpz_clear(ival);
11899 error_at(index_expr->location(), "index expression is negative");
11900 return Expression::make_error(location);
11901 }
6f6d9955 11902
e440a328 11903 index = mpz_get_ui(ival);
11904 if (mpz_cmp_ui(ival, index) != 0)
11905 {
11906 mpz_clear(ival);
11907 error_at(index_expr->location(), "index value overflow");
11908 return Expression::make_error(location);
11909 }
6f6d9955 11910
11911 Named_type* ntype = Type::lookup_integer_type("int");
11912 Integer_type* inttype = ntype->integer_type();
11913 mpz_t max;
11914 mpz_init_set_ui(max, 1);
11915 mpz_mul_2exp(max, max, inttype->bits() - 1);
11916 bool ok = mpz_cmp(ival, max) < 0;
11917 mpz_clear(max);
11918 if (!ok)
11919 {
11920 mpz_clear(ival);
11921 error_at(index_expr->location(), "index value overflow");
11922 return Expression::make_error(location);
11923 }
11924
e440a328 11925 mpz_clear(ival);
6f6d9955 11926
11927 // FIXME: Our representation isn't very good; this avoids
11928 // thrashing.
11929 if (index > 0x1000000)
11930 {
11931 error_at(index_expr->location(), "index too large for compiler");
11932 return Expression::make_error(location);
11933 }
e440a328 11934 }
11935
11936 if (index == vals.size())
11937 vals.push_back(val);
11938 else
11939 {
11940 if (index > vals.size())
11941 {
11942 vals.reserve(index + 32);
11943 vals.resize(index + 1, static_cast<Expression*>(NULL));
11944 }
11945 if (vals[index] != NULL)
11946 {
11947 error_at((index_expr != NULL
11948 ? index_expr->location()
11949 : val->location()),
11950 "duplicate value for index %lu",
11951 index);
11952 return Expression::make_error(location);
11953 }
11954 vals[index] = val;
11955 }
11956
11957 ++index;
11958 }
11959
11960 size_t size = vals.size();
11961 Expression_list* list = new Expression_list;
11962 list->reserve(size);
11963 for (size_t i = 0; i < size; ++i)
11964 list->push_back(vals[i]);
11965
11966 return this->make_array(type, list);
11967}
11968
11969// Actually build the array composite literal. This handles
11970// [...]{...}.
11971
11972Expression*
11973Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11974{
11975 source_location location = this->location();
11976 Array_type* at = type->array_type();
11977 if (at->length() != NULL && at->length()->is_nil_expression())
11978 {
11979 size_t size = vals == NULL ? 0 : vals->size();
11980 mpz_t vlen;
11981 mpz_init_set_ui(vlen, size);
11982 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11983 mpz_clear(vlen);
11984 at = Type::make_array_type(at->element_type(), elen);
11985 type = at;
11986 }
11987 if (at->length() != NULL)
11988 return new Fixed_array_construction_expression(type, vals, location);
11989 else
11990 return new Open_array_construction_expression(type, vals, location);
11991}
11992
11993// Lower a map composite literal.
11994
11995Expression*
a287720d 11996Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11997 Type* type)
e440a328 11998{
11999 source_location location = this->location();
12000 if (this->vals_ != NULL)
12001 {
12002 if (!this->has_keys_)
12003 {
12004 error_at(location, "map composite literal must have keys");
12005 return Expression::make_error(location);
12006 }
12007
a287720d 12008 for (Expression_list::iterator p = this->vals_->begin();
e440a328 12009 p != this->vals_->end();
12010 p += 2)
12011 {
12012 if (*p == NULL)
12013 {
12014 ++p;
12015 error_at((*p)->location(),
12016 "map composite literal must have keys for every value");
12017 return Expression::make_error(location);
12018 }
a287720d 12019 // Make sure we have lowered the key; it may not have been
12020 // lowered in order to handle keys for struct composite
12021 // literals. Lower it now to get the right error message.
12022 if ((*p)->unknown_expression() != NULL)
12023 {
12024 (*p)->unknown_expression()->clear_is_composite_literal_key();
12025 gogo->lower_expression(function, &*p);
12026 gcc_assert((*p)->is_error_expression());
12027 return Expression::make_error(location);
12028 }
e440a328 12029 }
12030 }
12031
12032 return new Map_construction_expression(type, this->vals_, location);
12033}
12034
12035// Make a composite literal expression.
12036
12037Expression*
12038Expression::make_composite_literal(Type* type, int depth, bool has_keys,
12039 Expression_list* vals,
12040 source_location location)
12041{
12042 return new Composite_literal_expression(type, depth, has_keys, vals,
12043 location);
12044}
12045
12046// Return whether this expression is a composite literal.
12047
12048bool
12049Expression::is_composite_literal() const
12050{
12051 switch (this->classification_)
12052 {
12053 case EXPRESSION_COMPOSITE_LITERAL:
12054 case EXPRESSION_STRUCT_CONSTRUCTION:
12055 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
12056 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
12057 case EXPRESSION_MAP_CONSTRUCTION:
12058 return true;
12059 default:
12060 return false;
12061 }
12062}
12063
12064// Return whether this expression is a composite literal which is not
12065// constant.
12066
12067bool
12068Expression::is_nonconstant_composite_literal() const
12069{
12070 switch (this->classification_)
12071 {
12072 case EXPRESSION_STRUCT_CONSTRUCTION:
12073 {
12074 const Struct_construction_expression *psce =
12075 static_cast<const Struct_construction_expression*>(this);
12076 return !psce->is_constant_struct();
12077 }
12078 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
12079 {
12080 const Fixed_array_construction_expression *pace =
12081 static_cast<const Fixed_array_construction_expression*>(this);
12082 return !pace->is_constant_array();
12083 }
12084 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
12085 {
12086 const Open_array_construction_expression *pace =
12087 static_cast<const Open_array_construction_expression*>(this);
12088 return !pace->is_constant_array();
12089 }
12090 case EXPRESSION_MAP_CONSTRUCTION:
12091 return true;
12092 default:
12093 return false;
12094 }
12095}
12096
12097// Return true if this is a reference to a local variable.
12098
12099bool
12100Expression::is_local_variable() const
12101{
12102 const Var_expression* ve = this->var_expression();
12103 if (ve == NULL)
12104 return false;
12105 const Named_object* no = ve->named_object();
12106 return (no->is_result_variable()
12107 || (no->is_variable() && !no->var_value()->is_global()));
12108}
12109
12110// Class Type_guard_expression.
12111
12112// Traversal.
12113
12114int
12115Type_guard_expression::do_traverse(Traverse* traverse)
12116{
12117 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
12118 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12119 return TRAVERSE_EXIT;
12120 return TRAVERSE_CONTINUE;
12121}
12122
12123// Check types of a type guard expression. The expression must have
12124// an interface type, but the actual type conversion is checked at run
12125// time.
12126
12127void
12128Type_guard_expression::do_check_types(Gogo*)
12129{
12130 // 6g permits using a type guard with unsafe.pointer; we are
12131 // compatible.
12132 Type* expr_type = this->expr_->type();
12133 if (expr_type->is_unsafe_pointer_type())
12134 {
12135 if (this->type_->points_to() == NULL
12136 && (this->type_->integer_type() == NULL
12137 || (this->type_->forwarded()
12138 != Type::lookup_integer_type("uintptr"))))
12139 this->report_error(_("invalid unsafe.Pointer conversion"));
12140 }
12141 else if (this->type_->is_unsafe_pointer_type())
12142 {
12143 if (expr_type->points_to() == NULL
12144 && (expr_type->integer_type() == NULL
12145 || (expr_type->forwarded()
12146 != Type::lookup_integer_type("uintptr"))))
12147 this->report_error(_("invalid unsafe.Pointer conversion"));
12148 }
12149 else if (expr_type->interface_type() == NULL)
f725ade8 12150 {
12151 if (!expr_type->is_error_type() && !this->type_->is_error_type())
12152 this->report_error(_("type assertion only valid for interface types"));
12153 this->set_is_error();
12154 }
e440a328 12155 else if (this->type_->interface_type() == NULL)
12156 {
12157 std::string reason;
12158 if (!expr_type->interface_type()->implements_interface(this->type_,
12159 &reason))
12160 {
f725ade8 12161 if (!this->type_->is_error_type())
e440a328 12162 {
f725ade8 12163 if (reason.empty())
12164 this->report_error(_("impossible type assertion: "
12165 "type does not implement interface"));
12166 else
12167 error_at(this->location(),
12168 ("impossible type assertion: "
12169 "type does not implement interface (%s)"),
12170 reason.c_str());
e440a328 12171 }
f725ade8 12172 this->set_is_error();
e440a328 12173 }
12174 }
12175}
12176
12177// Return a tree for a type guard expression.
12178
12179tree
12180Type_guard_expression::do_get_tree(Translate_context* context)
12181{
12182 Gogo* gogo = context->gogo();
12183 tree expr_tree = this->expr_->get_tree(context);
12184 if (expr_tree == error_mark_node)
12185 return error_mark_node;
12186 Type* expr_type = this->expr_->type();
12187 if ((this->type_->is_unsafe_pointer_type()
12188 && (expr_type->points_to() != NULL
12189 || expr_type->integer_type() != NULL))
12190 || (expr_type->is_unsafe_pointer_type()
12191 && this->type_->points_to() != NULL))
12192 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12193 else if (expr_type->is_unsafe_pointer_type()
12194 && this->type_->integer_type() != NULL)
12195 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12196 else if (this->type_->interface_type() != NULL)
12197 return Expression::convert_interface_to_interface(context, this->type_,
12198 this->expr_->type(),
12199 expr_tree, true,
12200 this->location());
12201 else
12202 return Expression::convert_for_assignment(context, this->type_,
12203 this->expr_->type(), expr_tree,
12204 this->location());
12205}
12206
12207// Make a type guard expression.
12208
12209Expression*
12210Expression::make_type_guard(Expression* expr, Type* type,
12211 source_location location)
12212{
12213 return new Type_guard_expression(expr, type, location);
12214}
12215
12216// Class Heap_composite_expression.
12217
12218// When you take the address of a composite literal, it is allocated
12219// on the heap. This class implements that.
12220
12221class Heap_composite_expression : public Expression
12222{
12223 public:
12224 Heap_composite_expression(Expression* expr, source_location location)
12225 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12226 expr_(expr)
12227 { }
12228
12229 protected:
12230 int
12231 do_traverse(Traverse* traverse)
12232 { return Expression::traverse(&this->expr_, traverse); }
12233
12234 Type*
12235 do_type()
12236 { return Type::make_pointer_type(this->expr_->type()); }
12237
12238 void
12239 do_determine_type(const Type_context*)
12240 { this->expr_->determine_type_no_context(); }
12241
12242 Expression*
12243 do_copy()
12244 {
12245 return Expression::make_heap_composite(this->expr_->copy(),
12246 this->location());
12247 }
12248
12249 tree
12250 do_get_tree(Translate_context*);
12251
12252 // We only export global objects, and the parser does not generate
12253 // this in global scope.
12254 void
12255 do_export(Export*) const
12256 { gcc_unreachable(); }
12257
12258 private:
12259 // The composite literal which is being put on the heap.
12260 Expression* expr_;
12261};
12262
12263// Return a tree which allocates a composite literal on the heap.
12264
12265tree
12266Heap_composite_expression::do_get_tree(Translate_context* context)
12267{
12268 tree expr_tree = this->expr_->get_tree(context);
12269 if (expr_tree == error_mark_node)
12270 return error_mark_node;
12271 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12272 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12273 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12274 expr_size, this->location());
12275 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12276 space = save_expr(space);
12277 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12278 TREE_THIS_NOTRAP(ref) = 1;
12279 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12280 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12281 space);
12282 SET_EXPR_LOCATION(ret, this->location());
12283 return ret;
12284}
12285
12286// Allocate a composite literal on the heap.
12287
12288Expression*
12289Expression::make_heap_composite(Expression* expr, source_location location)
12290{
12291 return new Heap_composite_expression(expr, location);
12292}
12293
12294// Class Receive_expression.
12295
12296// Return the type of a receive expression.
12297
12298Type*
12299Receive_expression::do_type()
12300{
12301 Channel_type* channel_type = this->channel_->type()->channel_type();
12302 if (channel_type == NULL)
12303 return Type::make_error_type();
12304 return channel_type->element_type();
12305}
12306
12307// Check types for a receive expression.
12308
12309void
12310Receive_expression::do_check_types(Gogo*)
12311{
12312 Type* type = this->channel_->type();
12313 if (type->is_error_type())
12314 {
12315 this->set_is_error();
12316 return;
12317 }
12318 if (type->channel_type() == NULL)
12319 {
12320 this->report_error(_("expected channel"));
12321 return;
12322 }
12323 if (!type->channel_type()->may_receive())
12324 {
12325 this->report_error(_("invalid receive on send-only channel"));
12326 return;
12327 }
12328}
12329
12330// Get a tree for a receive expression.
12331
12332tree
12333Receive_expression::do_get_tree(Translate_context* context)
12334{
12335 Channel_type* channel_type = this->channel_->type()->channel_type();
5b8368f4 12336 if (channel_type == NULL)
12337 {
12338 gcc_assert(this->channel_->type()->is_error_type());
12339 return error_mark_node;
12340 }
e440a328 12341 Type* element_type = channel_type->element_type();
12342 tree element_type_tree = element_type->get_tree(context->gogo());
12343
12344 tree channel = this->channel_->get_tree(context);
12345 if (element_type_tree == error_mark_node || channel == error_mark_node)
12346 return error_mark_node;
12347
12348 return Gogo::receive_from_channel(element_type_tree, channel,
12349 this->for_select_, this->location());
12350}
12351
12352// Make a receive expression.
12353
12354Receive_expression*
12355Expression::make_receive(Expression* channel, source_location location)
12356{
12357 return new Receive_expression(channel, location);
12358}
12359
e440a328 12360// An expression which evaluates to a pointer to the type descriptor
12361// of a type.
12362
12363class Type_descriptor_expression : public Expression
12364{
12365 public:
12366 Type_descriptor_expression(Type* type, source_location location)
12367 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12368 type_(type)
12369 { }
12370
12371 protected:
12372 Type*
12373 do_type()
12374 { return Type::make_type_descriptor_ptr_type(); }
12375
12376 void
12377 do_determine_type(const Type_context*)
12378 { }
12379
12380 Expression*
12381 do_copy()
12382 { return this; }
12383
12384 tree
12385 do_get_tree(Translate_context* context)
12386 { return this->type_->type_descriptor_pointer(context->gogo()); }
12387
12388 private:
12389 // The type for which this is the descriptor.
12390 Type* type_;
12391};
12392
12393// Make a type descriptor expression.
12394
12395Expression*
12396Expression::make_type_descriptor(Type* type, source_location location)
12397{
12398 return new Type_descriptor_expression(type, location);
12399}
12400
12401// An expression which evaluates to some characteristic of a type.
12402// This is only used to initialize fields of a type descriptor. Using
12403// a new expression class is slightly inefficient but gives us a good
12404// separation between the frontend and the middle-end with regard to
12405// how types are laid out.
12406
12407class Type_info_expression : public Expression
12408{
12409 public:
12410 Type_info_expression(Type* type, Type_info type_info)
12411 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12412 type_(type), type_info_(type_info)
12413 { }
12414
12415 protected:
12416 Type*
12417 do_type();
12418
12419 void
12420 do_determine_type(const Type_context*)
12421 { }
12422
12423 Expression*
12424 do_copy()
12425 { return this; }
12426
12427 tree
12428 do_get_tree(Translate_context* context);
12429
12430 private:
12431 // The type for which we are getting information.
12432 Type* type_;
12433 // What information we want.
12434 Type_info type_info_;
12435};
12436
12437// The type is chosen to match what the type descriptor struct
12438// expects.
12439
12440Type*
12441Type_info_expression::do_type()
12442{
12443 switch (this->type_info_)
12444 {
12445 case TYPE_INFO_SIZE:
12446 return Type::lookup_integer_type("uintptr");
12447 case TYPE_INFO_ALIGNMENT:
12448 case TYPE_INFO_FIELD_ALIGNMENT:
12449 return Type::lookup_integer_type("uint8");
12450 default:
12451 gcc_unreachable();
12452 }
12453}
12454
12455// Return type information in GENERIC.
12456
12457tree
12458Type_info_expression::do_get_tree(Translate_context* context)
12459{
12460 tree type_tree = this->type_->get_tree(context->gogo());
12461 if (type_tree == error_mark_node)
12462 return error_mark_node;
12463
12464 tree val_type_tree = this->type()->get_tree(context->gogo());
12465 gcc_assert(val_type_tree != error_mark_node);
12466
12467 if (this->type_info_ == TYPE_INFO_SIZE)
12468 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12469 TYPE_SIZE_UNIT(type_tree));
12470 else
12471 {
637bd3af 12472 unsigned int val;
e440a328 12473 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
637bd3af 12474 val = go_type_alignment(type_tree);
e440a328 12475 else
637bd3af 12476 val = go_field_alignment(type_tree);
e440a328 12477 return build_int_cstu(val_type_tree, val);
12478 }
12479}
12480
12481// Make a type info expression.
12482
12483Expression*
12484Expression::make_type_info(Type* type, Type_info type_info)
12485{
12486 return new Type_info_expression(type, type_info);
12487}
12488
12489// An expression which evaluates to the offset of a field within a
12490// struct. This, like Type_info_expression, q.v., is only used to
12491// initialize fields of a type descriptor.
12492
12493class Struct_field_offset_expression : public Expression
12494{
12495 public:
12496 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12497 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12498 type_(type), field_(field)
12499 { }
12500
12501 protected:
12502 Type*
12503 do_type()
12504 { return Type::lookup_integer_type("uintptr"); }
12505
12506 void
12507 do_determine_type(const Type_context*)
12508 { }
12509
12510 Expression*
12511 do_copy()
12512 { return this; }
12513
12514 tree
12515 do_get_tree(Translate_context* context);
12516
12517 private:
12518 // The type of the struct.
12519 Struct_type* type_;
12520 // The field.
12521 const Struct_field* field_;
12522};
12523
12524// Return a struct field offset in GENERIC.
12525
12526tree
12527Struct_field_offset_expression::do_get_tree(Translate_context* context)
12528{
12529 tree type_tree = this->type_->get_tree(context->gogo());
12530 if (type_tree == error_mark_node)
12531 return error_mark_node;
12532
12533 tree val_type_tree = this->type()->get_tree(context->gogo());
12534 gcc_assert(val_type_tree != error_mark_node);
12535
12536 const Struct_field_list* fields = this->type_->fields();
12537 tree struct_field_tree = TYPE_FIELDS(type_tree);
12538 Struct_field_list::const_iterator p;
12539 for (p = fields->begin();
12540 p != fields->end();
12541 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12542 {
12543 gcc_assert(struct_field_tree != NULL_TREE);
12544 if (&*p == this->field_)
12545 break;
12546 }
12547 gcc_assert(&*p == this->field_);
12548
12549 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12550 byte_position(struct_field_tree));
12551}
12552
12553// Make an expression for a struct field offset.
12554
12555Expression*
12556Expression::make_struct_field_offset(Struct_type* type,
12557 const Struct_field* field)
12558{
12559 return new Struct_field_offset_expression(type, field);
12560}
12561
12562// An expression which evaluates to the address of an unnamed label.
12563
12564class Label_addr_expression : public Expression
12565{
12566 public:
12567 Label_addr_expression(Label* label, source_location location)
12568 : Expression(EXPRESSION_LABEL_ADDR, location),
12569 label_(label)
12570 { }
12571
12572 protected:
12573 Type*
12574 do_type()
12575 { return Type::make_pointer_type(Type::make_void_type()); }
12576
12577 void
12578 do_determine_type(const Type_context*)
12579 { }
12580
12581 Expression*
12582 do_copy()
12583 { return new Label_addr_expression(this->label_, this->location()); }
12584
12585 tree
12586 do_get_tree(Translate_context*)
12587 { return this->label_->get_addr(this->location()); }
12588
12589 private:
12590 // The label whose address we are taking.
12591 Label* label_;
12592};
12593
12594// Make an expression for the address of an unnamed label.
12595
12596Expression*
12597Expression::make_label_addr(Label* label, source_location location)
12598{
12599 return new Label_addr_expression(label, location);
12600}
12601
12602// Import an expression. This comes at the end in order to see the
12603// various class definitions.
12604
12605Expression*
12606Expression::import_expression(Import* imp)
12607{
12608 int c = imp->peek_char();
12609 if (imp->match_c_string("- ")
12610 || imp->match_c_string("! ")
12611 || imp->match_c_string("^ "))
12612 return Unary_expression::do_import(imp);
12613 else if (c == '(')
12614 return Binary_expression::do_import(imp);
12615 else if (imp->match_c_string("true")
12616 || imp->match_c_string("false"))
12617 return Boolean_expression::do_import(imp);
12618 else if (c == '"')
12619 return String_expression::do_import(imp);
12620 else if (c == '-' || (c >= '0' && c <= '9'))
12621 {
12622 // This handles integers, floats and complex constants.
12623 return Integer_expression::do_import(imp);
12624 }
12625 else if (imp->match_c_string("nil"))
12626 return Nil_expression::do_import(imp);
12627 else if (imp->match_c_string("convert"))
12628 return Type_conversion_expression::do_import(imp);
12629 else
12630 {
12631 error_at(imp->location(), "import error: expected expression");
12632 return Expression::make_error(imp->location());
12633 }
12634}
12635
12636// Class Expression_list.
12637
12638// Traverse the list.
12639
12640int
12641Expression_list::traverse(Traverse* traverse)
12642{
12643 for (Expression_list::iterator p = this->begin();
12644 p != this->end();
12645 ++p)
12646 {
12647 if (*p != NULL)
12648 {
12649 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12650 return TRAVERSE_EXIT;
12651 }
12652 }
12653 return TRAVERSE_CONTINUE;
12654}
12655
12656// Copy the list.
12657
12658Expression_list*
12659Expression_list::copy()
12660{
12661 Expression_list* ret = new Expression_list();
12662 for (Expression_list::iterator p = this->begin();
12663 p != this->end();
12664 ++p)
12665 {
12666 if (*p == NULL)
12667 ret->push_back(NULL);
12668 else
12669 ret->push_back((*p)->copy());
12670 }
12671 return ret;
12672}
12673
12674// Return whether an expression list has an error expression.
12675
12676bool
12677Expression_list::contains_error() const
12678{
12679 for (Expression_list::const_iterator p = this->begin();
12680 p != this->end();
12681 ++p)
12682 if (*p != NULL && (*p)->is_error_expression())
12683 return true;
12684 return false;
12685}