]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/go/gofrontend/expressions.cc
PR libstdc++/52433
[thirdparty/gcc.git] / gcc / go / gofrontend / expressions.cc
CommitLineData
e440a328 1// expressions.cc -- Go frontend expression handling.
2
3// Copyright 2009 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7#include "go-system.h"
8
9#include <gmp.h>
10
11#ifndef ENABLE_BUILD_WITH_CXX
12extern "C"
13{
14#endif
15
16#include "toplev.h"
17#include "intl.h"
18#include "tree.h"
19#include "gimple.h"
20#include "tree-iterator.h"
21#include "convert.h"
22#include "real.h"
23#include "realmpfr.h"
e440a328 24
25#ifndef ENABLE_BUILD_WITH_CXX
26}
27#endif
28
29#include "go-c.h"
30#include "gogo.h"
31#include "types.h"
32#include "export.h"
33#include "import.h"
34#include "statements.h"
35#include "lex.h"
a9182619 36#include "runtime.h"
6e193e6f 37#include "backend.h"
e440a328 38#include "expressions.h"
d751bb78 39#include "ast-dump.h"
e440a328 40
41// Class Expression.
42
43Expression::Expression(Expression_classification classification,
b13c66cd 44 Location location)
e440a328 45 : classification_(classification), location_(location)
46{
47}
48
49Expression::~Expression()
50{
51}
52
53// If this expression has a constant integer value, return it.
54
55bool
56Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
57 Type** ptype) const
58{
59 *ptype = NULL;
60 return this->do_integer_constant_value(iota_is_constant, val, ptype);
61}
62
63// If this expression has a constant floating point value, return it.
64
65bool
66Expression::float_constant_value(mpfr_t val, Type** ptype) const
67{
68 *ptype = NULL;
69 if (this->do_float_constant_value(val, ptype))
70 return true;
71 mpz_t ival;
72 mpz_init(ival);
73 Type* t;
74 bool ret;
75 if (!this->do_integer_constant_value(false, ival, &t))
76 ret = false;
77 else
78 {
79 mpfr_set_z(val, ival, GMP_RNDN);
80 ret = true;
81 }
82 mpz_clear(ival);
83 return ret;
84}
85
86// If this expression has a constant complex value, return it.
87
88bool
89Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
90 Type** ptype) const
91{
92 *ptype = NULL;
93 if (this->do_complex_constant_value(real, imag, ptype))
94 return true;
95 Type *t;
96 if (this->float_constant_value(real, &t))
97 {
98 mpfr_set_ui(imag, 0, GMP_RNDN);
99 return true;
100 }
101 return false;
102}
103
104// Traverse the expressions.
105
106int
107Expression::traverse(Expression** pexpr, Traverse* traverse)
108{
109 Expression* expr = *pexpr;
110 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
111 {
112 int t = traverse->expression(pexpr);
113 if (t == TRAVERSE_EXIT)
114 return TRAVERSE_EXIT;
115 else if (t == TRAVERSE_SKIP_COMPONENTS)
116 return TRAVERSE_CONTINUE;
117 }
118 return expr->do_traverse(traverse);
119}
120
121// Traverse subexpressions of this expression.
122
123int
124Expression::traverse_subexpressions(Traverse* traverse)
125{
126 return this->do_traverse(traverse);
127}
128
129// Default implementation for do_traverse for child classes.
130
131int
132Expression::do_traverse(Traverse*)
133{
134 return TRAVERSE_CONTINUE;
135}
136
137// This virtual function is called by the parser if the value of this
a7549a6a 138// expression is being discarded. By default, we give an error.
139// Expressions with side effects override.
e440a328 140
141void
142Expression::do_discarding_value()
143{
a7549a6a 144 this->unused_value_error();
e440a328 145}
146
147// This virtual function is called to export expressions. This will
148// only be used by expressions which may be constant.
149
150void
151Expression::do_export(Export*) const
152{
c3e6f413 153 go_unreachable();
e440a328 154}
155
a7549a6a 156// Give an error saying that the value of the expression is not used.
e440a328 157
158void
a7549a6a 159Expression::unused_value_error()
e440a328 160{
a7549a6a 161 error_at(this->location(), "value computed is not used");
e440a328 162}
163
164// Note that this expression is an error. This is called by children
165// when they discover an error.
166
167void
168Expression::set_is_error()
169{
170 this->classification_ = EXPRESSION_ERROR;
171}
172
173// For children to call to report an error conveniently.
174
175void
176Expression::report_error(const char* msg)
177{
178 error_at(this->location_, "%s", msg);
179 this->set_is_error();
180}
181
182// Set types of variables and constants. This is implemented by the
183// child class.
184
185void
186Expression::determine_type(const Type_context* context)
187{
188 this->do_determine_type(context);
189}
190
191// Set types when there is no context.
192
193void
194Expression::determine_type_no_context()
195{
196 Type_context context;
197 this->do_determine_type(&context);
198}
199
200// Return a tree handling any conversions which must be done during
201// assignment.
202
203tree
204Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
205 Type* rhs_type, tree rhs_tree,
b13c66cd 206 Location location)
e440a328 207{
208 if (lhs_type == rhs_type)
209 return rhs_tree;
210
5c13bd80 211 if (lhs_type->is_error() || rhs_type->is_error())
e440a328 212 return error_mark_node;
213
e440a328 214 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
215 return error_mark_node;
216
217 Gogo* gogo = context->gogo();
218
9f0e0513 219 tree lhs_type_tree = type_to_tree(lhs_type->get_backend(gogo));
e440a328 220 if (lhs_type_tree == error_mark_node)
221 return error_mark_node;
222
223 if (lhs_type->interface_type() != NULL)
224 {
225 if (rhs_type->interface_type() == NULL)
226 return Expression::convert_type_to_interface(context, lhs_type,
227 rhs_type, rhs_tree,
228 location);
229 else
230 return Expression::convert_interface_to_interface(context, lhs_type,
231 rhs_type, rhs_tree,
232 false, location);
233 }
234 else if (rhs_type->interface_type() != NULL)
235 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
236 rhs_tree, location);
411eb89e 237 else if (lhs_type->is_slice_type() && rhs_type->is_nil_type())
e440a328 238 {
239 // Assigning nil to an open array.
c484d925 240 go_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
e440a328 241
242 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
243
244 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
245 tree field = TYPE_FIELDS(lhs_type_tree);
c484d925 246 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
e440a328 247 "__values") == 0);
248 elt->index = field;
249 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
250
251 elt = VEC_quick_push(constructor_elt, init, NULL);
252 field = DECL_CHAIN(field);
c484d925 253 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
e440a328 254 "__count") == 0);
255 elt->index = field;
256 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
257
258 elt = VEC_quick_push(constructor_elt, init, NULL);
259 field = DECL_CHAIN(field);
c484d925 260 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
e440a328 261 "__capacity") == 0);
262 elt->index = field;
263 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
264
265 tree val = build_constructor(lhs_type_tree, init);
266 TREE_CONSTANT(val) = 1;
267
268 return val;
269 }
270 else if (rhs_type->is_nil_type())
271 {
272 // The left hand side should be a pointer type at the tree
273 // level.
c484d925 274 go_assert(POINTER_TYPE_P(lhs_type_tree));
e440a328 275 return fold_convert(lhs_type_tree, null_pointer_node);
276 }
277 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
278 {
279 // No conversion is needed.
280 return rhs_tree;
281 }
282 else if (POINTER_TYPE_P(lhs_type_tree)
283 || INTEGRAL_TYPE_P(lhs_type_tree)
284 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
285 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
b13c66cd 286 return fold_convert_loc(location.gcc_location(), lhs_type_tree, rhs_tree);
e440a328 287 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
288 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
289 {
290 // This conversion must be permitted by Go, or we wouldn't have
291 // gotten here.
c484d925 292 go_assert(int_size_in_bytes(lhs_type_tree)
e440a328 293 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
b13c66cd 294 return fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR,
295 lhs_type_tree, rhs_tree);
e440a328 296 }
297 else
298 {
c484d925 299 go_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
e440a328 300 return rhs_tree;
301 }
302}
303
304// Return a tree for a conversion from a non-interface type to an
305// interface type.
306
307tree
308Expression::convert_type_to_interface(Translate_context* context,
309 Type* lhs_type, Type* rhs_type,
b13c66cd 310 tree rhs_tree, Location location)
e440a328 311{
312 Gogo* gogo = context->gogo();
313 Interface_type* lhs_interface_type = lhs_type->interface_type();
314 bool lhs_is_empty = lhs_interface_type->is_empty();
315
316 // Since RHS_TYPE is a static type, we can create the interface
317 // method table at compile time.
318
319 // When setting an interface to nil, we just set both fields to
320 // NULL.
321 if (rhs_type->is_nil_type())
63697958 322 {
323 Btype* lhs_btype = lhs_type->get_backend(gogo);
324 return expr_to_tree(gogo->backend()->zero_expression(lhs_btype));
325 }
e440a328 326
327 // This should have been checked already.
c484d925 328 go_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
e440a328 329
9f0e0513 330 tree lhs_type_tree = type_to_tree(lhs_type->get_backend(gogo));
e440a328 331 if (lhs_type_tree == error_mark_node)
332 return error_mark_node;
333
334 // An interface is a tuple. If LHS_TYPE is an empty interface type,
335 // then the first field is the type descriptor for RHS_TYPE.
336 // Otherwise it is the interface method table for RHS_TYPE.
337 tree first_field_value;
338 if (lhs_is_empty)
a1d23b41 339 first_field_value = rhs_type->type_descriptor_pointer(gogo, location);
e440a328 340 else
341 {
342 // Build the interface method table for this interface and this
343 // object type: a list of function pointers for each interface
344 // method.
345 Named_type* rhs_named_type = rhs_type->named_type();
346 bool is_pointer = false;
347 if (rhs_named_type == NULL)
348 {
349 rhs_named_type = rhs_type->deref()->named_type();
350 is_pointer = true;
351 }
352 tree method_table;
353 if (rhs_named_type == NULL)
354 method_table = null_pointer_node;
355 else
356 method_table =
357 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
358 is_pointer);
b13c66cd 359 first_field_value = fold_convert_loc(location.gcc_location(),
360 const_ptr_type_node, method_table);
e440a328 361 }
84b7d3c6 362 if (first_field_value == error_mark_node)
363 return error_mark_node;
e440a328 364
365 // Start building a constructor for the value we will return.
366
367 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
368
369 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
370 tree field = TYPE_FIELDS(lhs_type_tree);
c484d925 371 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
e440a328 372 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
373 elt->index = field;
b13c66cd 374 elt->value = fold_convert_loc(location.gcc_location(), TREE_TYPE(field),
375 first_field_value);
e440a328 376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
c484d925 379 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
e440a328 380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
b13c66cd 396 space = fold_convert_loc(location.gcc_location(),
397 build_pointer_type(TREE_TYPE(rhs_tree)), space);
e440a328 398 space = save_expr(space);
399
b13c66cd 400 tree ref = build_fold_indirect_ref_loc(location.gcc_location(), space);
e440a328 401 TREE_THIS_NOTRAP(ref) = 1;
b13c66cd 402 tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
403 void_type_node, ref, rhs_tree);
e440a328 404
b13c66cd 405 elt->value = fold_convert_loc(location.gcc_location(), TREE_TYPE(field),
406 space);
e440a328 407
408 return build2(COMPOUND_EXPR, lhs_type_tree, set,
409 build_constructor(lhs_type_tree, init));
410}
411
412// Return a tree for the type descriptor of RHS_TREE, which has
413// interface type RHS_TYPE. If RHS_TREE is nil the result will be
414// NULL.
415
416tree
417Expression::get_interface_type_descriptor(Translate_context*,
418 Type* rhs_type, tree rhs_tree,
b13c66cd 419 Location location)
e440a328 420{
421 tree rhs_type_tree = TREE_TYPE(rhs_tree);
c484d925 422 go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
e440a328 423 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
424 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
425 NULL_TREE);
426 if (rhs_type->interface_type()->is_empty())
427 {
c484d925 428 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
e440a328 429 "__type_descriptor") == 0);
430 return v;
431 }
432
c484d925 433 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
e440a328 434 == 0);
c484d925 435 go_assert(POINTER_TYPE_P(TREE_TYPE(v)));
e440a328 436 v = save_expr(v);
b13c66cd 437 tree v1 = build_fold_indirect_ref_loc(location.gcc_location(), v);
c484d925 438 go_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
e440a328 439 tree f = TYPE_FIELDS(TREE_TYPE(v1));
c484d925 440 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
e440a328 441 == 0);
442 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
443
b13c66cd 444 tree eq = fold_build2_loc(location.gcc_location(), EQ_EXPR, boolean_type_node,
445 v, fold_convert_loc(location.gcc_location(),
446 TREE_TYPE(v),
447 null_pointer_node));
448 tree n = fold_convert_loc(location.gcc_location(), TREE_TYPE(v1),
449 null_pointer_node);
450 return fold_build3_loc(location.gcc_location(), COND_EXPR, TREE_TYPE(v1),
e440a328 451 eq, n, v1);
452}
453
454// Return a tree for the conversion of an interface type to an
455// interface type.
456
457tree
458Expression::convert_interface_to_interface(Translate_context* context,
459 Type *lhs_type, Type *rhs_type,
460 tree rhs_tree, bool for_type_guard,
b13c66cd 461 Location location)
e440a328 462{
463 Gogo* gogo = context->gogo();
464 Interface_type* lhs_interface_type = lhs_type->interface_type();
465 bool lhs_is_empty = lhs_interface_type->is_empty();
466
9f0e0513 467 tree lhs_type_tree = type_to_tree(lhs_type->get_backend(gogo));
e440a328 468 if (lhs_type_tree == error_mark_node)
469 return error_mark_node;
470
471 // In the general case this requires runtime examination of the type
472 // method table to match it up with the interface methods.
473
474 // FIXME: If all of the methods in the right hand side interface
475 // also appear in the left hand side interface, then we don't need
476 // to do a runtime check, although we still need to build a new
477 // method table.
478
479 // Get the type descriptor for the right hand side. This will be
480 // NULL for a nil interface.
481
482 if (!DECL_P(rhs_tree))
483 rhs_tree = save_expr(rhs_tree);
484
485 tree rhs_type_descriptor =
486 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
487 location);
488
489 // The result is going to be a two element constructor.
490
491 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
492
493 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
494 tree field = TYPE_FIELDS(lhs_type_tree);
495 elt->index = field;
496
497 if (for_type_guard)
498 {
499 // A type assertion fails when converting a nil interface.
a1d23b41 500 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo,
501 location);
e440a328 502 static tree assert_interface_decl;
503 tree call = Gogo::call_builtin(&assert_interface_decl,
504 location,
505 "__go_assert_interface",
506 2,
507 ptr_type_node,
508 TREE_TYPE(lhs_type_descriptor),
509 lhs_type_descriptor,
510 TREE_TYPE(rhs_type_descriptor),
511 rhs_type_descriptor);
5fb82b5e 512 if (call == error_mark_node)
513 return error_mark_node;
e440a328 514 // This will panic if the interface conversion fails.
515 TREE_NOTHROW(assert_interface_decl) = 0;
b13c66cd 516 elt->value = fold_convert_loc(location.gcc_location(), TREE_TYPE(field),
517 call);
e440a328 518 }
519 else if (lhs_is_empty)
520 {
521 // A convertion to an empty interface always succeeds, and the
522 // first field is just the type descriptor of the object.
c484d925 523 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
e440a328 524 "__type_descriptor") == 0);
7172c949 525 elt->value = fold_convert_loc(location.gcc_location(),
526 TREE_TYPE(field), rhs_type_descriptor);
e440a328 527 }
528 else
529 {
530 // A conversion to a non-empty interface may fail, but unlike a
531 // type assertion converting nil will always succeed.
c484d925 532 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
e440a328 533 == 0);
a1d23b41 534 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo,
535 location);
e440a328 536 static tree convert_interface_decl;
537 tree call = Gogo::call_builtin(&convert_interface_decl,
538 location,
539 "__go_convert_interface",
540 2,
541 ptr_type_node,
542 TREE_TYPE(lhs_type_descriptor),
543 lhs_type_descriptor,
544 TREE_TYPE(rhs_type_descriptor),
545 rhs_type_descriptor);
5fb82b5e 546 if (call == error_mark_node)
547 return error_mark_node;
e440a328 548 // This will panic if the interface conversion fails.
549 TREE_NOTHROW(convert_interface_decl) = 0;
b13c66cd 550 elt->value = fold_convert_loc(location.gcc_location(), TREE_TYPE(field),
551 call);
e440a328 552 }
553
554 // The second field is simply the object pointer.
555
556 elt = VEC_quick_push(constructor_elt, init, NULL);
557 field = DECL_CHAIN(field);
c484d925 558 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
e440a328 559 elt->index = field;
560
561 tree rhs_type_tree = TREE_TYPE(rhs_tree);
c484d925 562 go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
e440a328 563 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
c484d925 564 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
e440a328 565 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
566 NULL_TREE);
567
568 return build_constructor(lhs_type_tree, init);
569}
570
571// Return a tree for the conversion of an interface type to a
572// non-interface type.
573
574tree
575Expression::convert_interface_to_type(Translate_context* context,
576 Type *lhs_type, Type* rhs_type,
b13c66cd 577 tree rhs_tree, Location location)
e440a328 578{
579 Gogo* gogo = context->gogo();
580 tree rhs_type_tree = TREE_TYPE(rhs_tree);
581
9f0e0513 582 tree lhs_type_tree = type_to_tree(lhs_type->get_backend(gogo));
e440a328 583 if (lhs_type_tree == error_mark_node)
584 return error_mark_node;
585
586 // Call a function to check that the type is valid. The function
587 // will panic with an appropriate runtime type error if the type is
588 // not valid.
589
a1d23b41 590 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo, location);
e440a328 591
592 if (!DECL_P(rhs_tree))
593 rhs_tree = save_expr(rhs_tree);
594
595 tree rhs_type_descriptor =
596 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
597 location);
598
a1d23b41 599 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo,
600 location);
e440a328 601
602 static tree check_interface_type_decl;
603 tree call = Gogo::call_builtin(&check_interface_type_decl,
604 location,
605 "__go_check_interface_type",
606 3,
607 void_type_node,
608 TREE_TYPE(lhs_type_descriptor),
609 lhs_type_descriptor,
610 TREE_TYPE(rhs_type_descriptor),
611 rhs_type_descriptor,
612 TREE_TYPE(rhs_inter_descriptor),
613 rhs_inter_descriptor);
5fb82b5e 614 if (call == error_mark_node)
615 return error_mark_node;
e440a328 616 // This call will panic if the conversion is invalid.
617 TREE_NOTHROW(check_interface_type_decl) = 0;
618
619 // If the call succeeds, pull out the value.
c484d925 620 go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
e440a328 621 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
c484d925 622 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
e440a328 623 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
624 NULL_TREE);
625
626 // If the value is a pointer, then it is the value we want.
627 // Otherwise it points to the value.
628 if (lhs_type->points_to() == NULL)
629 {
b13c66cd 630 val = fold_convert_loc(location.gcc_location(),
631 build_pointer_type(lhs_type_tree), val);
632 val = build_fold_indirect_ref_loc(location.gcc_location(), val);
e440a328 633 }
634
635 return build2(COMPOUND_EXPR, lhs_type_tree, call,
b13c66cd 636 fold_convert_loc(location.gcc_location(), lhs_type_tree, val));
e440a328 637}
638
639// Convert an expression to a tree. This is implemented by the child
640// class. Not that it is not in general safe to call this multiple
641// times for a single expression, but that we don't catch such errors.
642
643tree
644Expression::get_tree(Translate_context* context)
645{
646 // The child may have marked this expression as having an error.
647 if (this->classification_ == EXPRESSION_ERROR)
648 return error_mark_node;
649
650 return this->do_get_tree(context);
651}
652
653// Return a tree for VAL in TYPE.
654
655tree
656Expression::integer_constant_tree(mpz_t val, tree type)
657{
658 if (type == error_mark_node)
659 return error_mark_node;
660 else if (TREE_CODE(type) == INTEGER_TYPE)
661 return double_int_to_tree(type,
662 mpz_get_double_int(type, val, true));
663 else if (TREE_CODE(type) == REAL_TYPE)
664 {
665 mpfr_t fval;
666 mpfr_init_set_z(fval, val, GMP_RNDN);
667 tree ret = Expression::float_constant_tree(fval, type);
668 mpfr_clear(fval);
669 return ret;
670 }
671 else if (TREE_CODE(type) == COMPLEX_TYPE)
672 {
673 mpfr_t fval;
674 mpfr_init_set_z(fval, val, GMP_RNDN);
675 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
676 mpfr_clear(fval);
677 tree imag = build_real_from_int_cst(TREE_TYPE(type),
678 integer_zero_node);
679 return build_complex(type, real, imag);
680 }
681 else
c3e6f413 682 go_unreachable();
e440a328 683}
684
685// Return a tree for VAL in TYPE.
686
687tree
688Expression::float_constant_tree(mpfr_t val, tree type)
689{
690 if (type == error_mark_node)
691 return error_mark_node;
692 else if (TREE_CODE(type) == INTEGER_TYPE)
693 {
694 mpz_t ival;
695 mpz_init(ival);
696 mpfr_get_z(ival, val, GMP_RNDN);
697 tree ret = Expression::integer_constant_tree(ival, type);
698 mpz_clear(ival);
699 return ret;
700 }
701 else if (TREE_CODE(type) == REAL_TYPE)
702 {
703 REAL_VALUE_TYPE r1;
704 real_from_mpfr(&r1, val, type, GMP_RNDN);
705 REAL_VALUE_TYPE r2;
706 real_convert(&r2, TYPE_MODE(type), &r1);
707 return build_real(type, r2);
708 }
709 else if (TREE_CODE(type) == COMPLEX_TYPE)
710 {
711 REAL_VALUE_TYPE r1;
712 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
713 REAL_VALUE_TYPE r2;
714 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
715 tree imag = build_real_from_int_cst(TREE_TYPE(type),
716 integer_zero_node);
717 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
718 }
719 else
c3e6f413 720 go_unreachable();
e440a328 721}
722
723// Return a tree for REAL/IMAG in TYPE.
724
725tree
726Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
727{
f690b0bb 728 if (type == error_mark_node)
729 return error_mark_node;
730 else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
731 return Expression::float_constant_tree(real, type);
732 else if (TREE_CODE(type) == COMPLEX_TYPE)
e440a328 733 {
734 REAL_VALUE_TYPE r1;
735 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
736 REAL_VALUE_TYPE r2;
737 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
738
739 REAL_VALUE_TYPE r3;
740 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
741 REAL_VALUE_TYPE r4;
742 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
743
744 return build_complex(type, build_real(TREE_TYPE(type), r2),
745 build_real(TREE_TYPE(type), r4));
746 }
747 else
c3e6f413 748 go_unreachable();
e440a328 749}
750
751// Return a tree which evaluates to true if VAL, of arbitrary integer
752// type, is negative or is more than the maximum value of BOUND_TYPE.
753// If SOFAR is not NULL, it is or'red into the result. The return
754// value may be NULL if SOFAR is NULL.
755
756tree
757Expression::check_bounds(tree val, tree bound_type, tree sofar,
b13c66cd 758 Location loc)
e440a328 759{
760 tree val_type = TREE_TYPE(val);
761 tree ret = NULL_TREE;
762
763 if (!TYPE_UNSIGNED(val_type))
764 {
b13c66cd 765 ret = fold_build2_loc(loc.gcc_location(), LT_EXPR, boolean_type_node, val,
e440a328 766 build_int_cst(val_type, 0));
767 if (ret == boolean_false_node)
768 ret = NULL_TREE;
769 }
770
c3068ac0 771 HOST_WIDE_INT val_type_size = int_size_in_bytes(val_type);
772 HOST_WIDE_INT bound_type_size = int_size_in_bytes(bound_type);
773 go_assert(val_type_size != -1 && bound_type_size != -1);
774 if (val_type_size > bound_type_size
775 || (val_type_size == bound_type_size
776 && TYPE_UNSIGNED(val_type)
777 && !TYPE_UNSIGNED(bound_type)))
e440a328 778 {
779 tree max = TYPE_MAX_VALUE(bound_type);
b13c66cd 780 tree big = fold_build2_loc(loc.gcc_location(), GT_EXPR, boolean_type_node,
781 val, fold_convert_loc(loc.gcc_location(),
782 val_type, max));
e440a328 783 if (big == boolean_false_node)
784 ;
785 else if (ret == NULL_TREE)
786 ret = big;
787 else
b13c66cd 788 ret = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
789 boolean_type_node, ret, big);
e440a328 790 }
791
792 if (ret == NULL_TREE)
793 return sofar;
794 else if (sofar == NULL_TREE)
795 return ret;
796 else
b13c66cd 797 return fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR, boolean_type_node,
e440a328 798 sofar, ret);
799}
800
d751bb78 801void
802Expression::dump_expression(Ast_dump_context* ast_dump_context) const
803{
804 this->do_dump_expression(ast_dump_context);
805}
806
e440a328 807// Error expressions. This are used to avoid cascading errors.
808
809class Error_expression : public Expression
810{
811 public:
b13c66cd 812 Error_expression(Location location)
e440a328 813 : Expression(EXPRESSION_ERROR, location)
814 { }
815
816 protected:
817 bool
818 do_is_constant() const
819 { return true; }
820
821 bool
822 do_integer_constant_value(bool, mpz_t val, Type**) const
823 {
824 mpz_set_ui(val, 0);
825 return true;
826 }
827
828 bool
829 do_float_constant_value(mpfr_t val, Type**) const
830 {
831 mpfr_set_ui(val, 0, GMP_RNDN);
832 return true;
833 }
834
835 bool
836 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
837 {
838 mpfr_set_ui(real, 0, GMP_RNDN);
839 mpfr_set_ui(imag, 0, GMP_RNDN);
840 return true;
841 }
842
843 void
844 do_discarding_value()
845 { }
846
847 Type*
848 do_type()
849 { return Type::make_error_type(); }
850
851 void
852 do_determine_type(const Type_context*)
853 { }
854
855 Expression*
856 do_copy()
857 { return this; }
858
859 bool
860 do_is_addressable() const
861 { return true; }
862
863 tree
864 do_get_tree(Translate_context*)
865 { return error_mark_node; }
d751bb78 866
867 void
868 do_dump_expression(Ast_dump_context*) const;
e440a328 869};
870
d751bb78 871// Dump the ast representation for an error expression to a dump context.
872
873void
874Error_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
875{
876 ast_dump_context->ostream() << "_Error_" ;
877}
878
e440a328 879Expression*
b13c66cd 880Expression::make_error(Location location)
e440a328 881{
882 return new Error_expression(location);
883}
884
885// An expression which is really a type. This is used during parsing.
886// It is an error if these survive after lowering.
887
888class
889Type_expression : public Expression
890{
891 public:
b13c66cd 892 Type_expression(Type* type, Location location)
e440a328 893 : Expression(EXPRESSION_TYPE, location),
894 type_(type)
895 { }
896
897 protected:
898 int
899 do_traverse(Traverse* traverse)
900 { return Type::traverse(this->type_, traverse); }
901
902 Type*
903 do_type()
904 { return this->type_; }
905
906 void
907 do_determine_type(const Type_context*)
908 { }
909
910 void
911 do_check_types(Gogo*)
912 { this->report_error(_("invalid use of type")); }
913
914 Expression*
915 do_copy()
916 { return this; }
917
918 tree
919 do_get_tree(Translate_context*)
c3e6f413 920 { go_unreachable(); }
e440a328 921
d751bb78 922 void do_dump_expression(Ast_dump_context*) const;
923
e440a328 924 private:
925 // The type which we are representing as an expression.
926 Type* type_;
927};
928
d751bb78 929void
930Type_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
931{
932 ast_dump_context->dump_type(this->type_);
933}
934
e440a328 935Expression*
b13c66cd 936Expression::make_type(Type* type, Location location)
e440a328 937{
938 return new Type_expression(type, location);
939}
940
e03bdf36 941// Class Parser_expression.
942
943Type*
944Parser_expression::do_type()
945{
946 // We should never really ask for the type of a Parser_expression.
947 // However, it can happen, at least when we have an invalid const
948 // whose initializer refers to the const itself. In that case we
949 // may ask for the type when lowering the const itself.
c484d925 950 go_assert(saw_errors());
e03bdf36 951 return Type::make_error_type();
952}
953
e440a328 954// Class Var_expression.
955
956// Lower a variable expression. Here we just make sure that the
957// initialization expression of the variable has been lowered. This
958// ensures that we will be able to determine the type of the variable
959// if necessary.
960
961Expression*
ceeb4318 962Var_expression::do_lower(Gogo* gogo, Named_object* function,
963 Statement_inserter* inserter, int)
e440a328 964{
965 if (this->variable_->is_variable())
966 {
967 Variable* var = this->variable_->var_value();
968 // This is either a local variable or a global variable. A
969 // reference to a variable which is local to an enclosing
970 // function will be a reference to a field in a closure.
971 if (var->is_global())
ceeb4318 972 {
973 function = NULL;
974 inserter = NULL;
975 }
976 var->lower_init_expression(gogo, function, inserter);
e440a328 977 }
978 return this;
979}
980
e440a328 981// Return the type of a reference to a variable.
982
983Type*
984Var_expression::do_type()
985{
986 if (this->variable_->is_variable())
987 return this->variable_->var_value()->type();
988 else if (this->variable_->is_result_variable())
989 return this->variable_->result_var_value()->type();
990 else
c3e6f413 991 go_unreachable();
e440a328 992}
993
0ab09e06 994// Determine the type of a reference to a variable.
995
996void
997Var_expression::do_determine_type(const Type_context*)
998{
999 if (this->variable_->is_variable())
1000 this->variable_->var_value()->determine_type();
1001}
1002
e440a328 1003// Something takes the address of this variable. This means that we
1004// may want to move the variable onto the heap.
1005
1006void
1007Var_expression::do_address_taken(bool escapes)
1008{
1009 if (!escapes)
f325319b 1010 {
1011 if (this->variable_->is_variable())
1012 this->variable_->var_value()->set_non_escaping_address_taken();
1013 else if (this->variable_->is_result_variable())
1014 this->variable_->result_var_value()->set_non_escaping_address_taken();
1015 else
1016 go_unreachable();
1017 }
e440a328 1018 else
f325319b 1019 {
1020 if (this->variable_->is_variable())
1021 this->variable_->var_value()->set_address_taken();
1022 else if (this->variable_->is_result_variable())
1023 this->variable_->result_var_value()->set_address_taken();
1024 else
1025 go_unreachable();
1026 }
e440a328 1027}
1028
1029// Get the tree for a reference to a variable.
1030
1031tree
1032Var_expression::do_get_tree(Translate_context* context)
1033{
fe2f84cf 1034 Bvariable* bvar = this->variable_->get_backend_variable(context->gogo(),
1035 context->function());
1036 tree ret = var_to_tree(bvar);
1037 if (ret == error_mark_node)
1038 return error_mark_node;
1039 bool is_in_heap;
1040 if (this->variable_->is_variable())
1041 is_in_heap = this->variable_->var_value()->is_in_heap();
1042 else if (this->variable_->is_result_variable())
1043 is_in_heap = this->variable_->result_var_value()->is_in_heap();
1044 else
c3e6f413 1045 go_unreachable();
fe2f84cf 1046 if (is_in_heap)
1047 {
b13c66cd 1048 ret = build_fold_indirect_ref_loc(this->location().gcc_location(), ret);
fe2f84cf 1049 TREE_THIS_NOTRAP(ret) = 1;
1050 }
1051 return ret;
e440a328 1052}
1053
d751bb78 1054// Ast dump for variable expression.
1055
1056void
1057Var_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1058{
1059 ast_dump_context->ostream() << this->variable_->name() ;
1060}
1061
e440a328 1062// Make a reference to a variable in an expression.
1063
1064Expression*
b13c66cd 1065Expression::make_var_reference(Named_object* var, Location location)
e440a328 1066{
1067 if (var->is_sink())
1068 return Expression::make_sink(location);
1069
1070 // FIXME: Creating a new object for each reference to a variable is
1071 // wasteful.
1072 return new Var_expression(var, location);
1073}
1074
1075// Class Temporary_reference_expression.
1076
1077// The type.
1078
1079Type*
1080Temporary_reference_expression::do_type()
1081{
1082 return this->statement_->type();
1083}
1084
1085// Called if something takes the address of this temporary variable.
1086// We never have to move temporary variables to the heap, but we do
1087// need to know that they must live in the stack rather than in a
1088// register.
1089
1090void
1091Temporary_reference_expression::do_address_taken(bool)
1092{
1093 this->statement_->set_is_address_taken();
1094}
1095
1096// Get a tree referring to the variable.
1097
1098tree
eefc1ed3 1099Temporary_reference_expression::do_get_tree(Translate_context* context)
e440a328 1100{
eefc1ed3 1101 Bvariable* bvar = this->statement_->get_backend_variable(context);
1102
1103 // The gcc backend can't represent the same set of recursive types
1104 // that the Go frontend can. In some cases this means that a
1105 // temporary variable won't have the right backend type. Correct
1106 // that here by adding a type cast. We need to use base() to push
1107 // the circularity down one level.
1108 tree ret = var_to_tree(bvar);
ceeb4318 1109 if (!this->is_lvalue_
1110 && POINTER_TYPE_P(TREE_TYPE(ret))
1111 && VOID_TYPE_P(TREE_TYPE(TREE_TYPE(ret))))
eefc1ed3 1112 {
9f0e0513 1113 Btype* type_btype = this->type()->base()->get_backend(context->gogo());
1114 tree type_tree = type_to_tree(type_btype);
b13c66cd 1115 ret = fold_convert_loc(this->location().gcc_location(), type_tree, ret);
eefc1ed3 1116 }
1117 return ret;
e440a328 1118}
1119
d751bb78 1120// Ast dump for temporary reference.
1121
1122void
1123Temporary_reference_expression::do_dump_expression(
1124 Ast_dump_context* ast_dump_context) const
1125{
1126 ast_dump_context->dump_temp_variable_name(this->statement_);
1127}
1128
e440a328 1129// Make a reference to a temporary variable.
1130
ceeb4318 1131Temporary_reference_expression*
e440a328 1132Expression::make_temporary_reference(Temporary_statement* statement,
b13c66cd 1133 Location location)
e440a328 1134{
1135 return new Temporary_reference_expression(statement, location);
1136}
1137
e9d3367e 1138// Class Set_and_use_temporary_expression.
1139
1140// Return the type.
1141
1142Type*
1143Set_and_use_temporary_expression::do_type()
1144{
1145 return this->statement_->type();
1146}
1147
1148// Take the address.
1149
1150void
1151Set_and_use_temporary_expression::do_address_taken(bool)
1152{
1153 this->statement_->set_is_address_taken();
1154}
1155
1156// Return the backend representation.
1157
1158tree
1159Set_and_use_temporary_expression::do_get_tree(Translate_context* context)
1160{
1161 Bvariable* bvar = this->statement_->get_backend_variable(context);
1162 tree var_tree = var_to_tree(bvar);
1163 tree expr_tree = this->expr_->get_tree(context);
1164 if (var_tree == error_mark_node || expr_tree == error_mark_node)
1165 return error_mark_node;
1166 Location loc = this->location();
1167 return build2_loc(loc.gcc_location(), COMPOUND_EXPR, TREE_TYPE(var_tree),
1168 build2_loc(loc.gcc_location(), MODIFY_EXPR, void_type_node,
1169 var_tree, expr_tree),
1170 var_tree);
1171}
1172
1173// Dump.
1174
1175void
1176Set_and_use_temporary_expression::do_dump_expression(
1177 Ast_dump_context* ast_dump_context) const
1178{
1179 ast_dump_context->ostream() << '(';
1180 ast_dump_context->dump_temp_variable_name(this->statement_);
1181 ast_dump_context->ostream() << " = ";
1182 this->expr_->dump_expression(ast_dump_context);
1183 ast_dump_context->ostream() << ')';
1184}
1185
1186// Make a set-and-use temporary.
1187
1188Set_and_use_temporary_expression*
1189Expression::make_set_and_use_temporary(Temporary_statement* statement,
1190 Expression* expr, Location location)
1191{
1192 return new Set_and_use_temporary_expression(statement, expr, location);
1193}
1194
e440a328 1195// A sink expression--a use of the blank identifier _.
1196
1197class Sink_expression : public Expression
1198{
1199 public:
b13c66cd 1200 Sink_expression(Location location)
e440a328 1201 : Expression(EXPRESSION_SINK, location),
1202 type_(NULL), var_(NULL_TREE)
1203 { }
1204
1205 protected:
1206 void
1207 do_discarding_value()
1208 { }
1209
1210 Type*
1211 do_type();
1212
1213 void
1214 do_determine_type(const Type_context*);
1215
1216 Expression*
1217 do_copy()
1218 { return new Sink_expression(this->location()); }
1219
1220 tree
1221 do_get_tree(Translate_context*);
1222
d751bb78 1223 void
1224 do_dump_expression(Ast_dump_context*) const;
1225
e440a328 1226 private:
1227 // The type of this sink variable.
1228 Type* type_;
1229 // The temporary variable we generate.
1230 tree var_;
1231};
1232
1233// Return the type of a sink expression.
1234
1235Type*
1236Sink_expression::do_type()
1237{
1238 if (this->type_ == NULL)
1239 return Type::make_sink_type();
1240 return this->type_;
1241}
1242
1243// Determine the type of a sink expression.
1244
1245void
1246Sink_expression::do_determine_type(const Type_context* context)
1247{
1248 if (context->type != NULL)
1249 this->type_ = context->type;
1250}
1251
1252// Return a temporary variable for a sink expression. This will
1253// presumably be a write-only variable which the middle-end will drop.
1254
1255tree
1256Sink_expression::do_get_tree(Translate_context* context)
1257{
1258 if (this->var_ == NULL_TREE)
1259 {
c484d925 1260 go_assert(this->type_ != NULL && !this->type_->is_sink_type());
9f0e0513 1261 Btype* bt = this->type_->get_backend(context->gogo());
1262 this->var_ = create_tmp_var(type_to_tree(bt), "blank");
e440a328 1263 }
1264 return this->var_;
1265}
1266
d751bb78 1267// Ast dump for sink expression.
1268
1269void
1270Sink_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1271{
1272 ast_dump_context->ostream() << "_" ;
1273}
1274
e440a328 1275// Make a sink expression.
1276
1277Expression*
b13c66cd 1278Expression::make_sink(Location location)
e440a328 1279{
1280 return new Sink_expression(location);
1281}
1282
1283// Class Func_expression.
1284
1285// FIXME: Can a function expression appear in a constant expression?
1286// The value is unchanging. Initializing a constant to the address of
1287// a function seems like it could work, though there might be little
1288// point to it.
1289
e440a328 1290// Traversal.
1291
1292int
1293Func_expression::do_traverse(Traverse* traverse)
1294{
1295 return (this->closure_ == NULL
1296 ? TRAVERSE_CONTINUE
1297 : Expression::traverse(&this->closure_, traverse));
1298}
1299
1300// Return the type of a function expression.
1301
1302Type*
1303Func_expression::do_type()
1304{
1305 if (this->function_->is_function())
1306 return this->function_->func_value()->type();
1307 else if (this->function_->is_function_declaration())
1308 return this->function_->func_declaration_value()->type();
1309 else
c3e6f413 1310 go_unreachable();
e440a328 1311}
1312
1313// Get the tree for a function expression without evaluating the
1314// closure.
1315
1316tree
1317Func_expression::get_tree_without_closure(Gogo* gogo)
1318{
1319 Function_type* fntype;
1320 if (this->function_->is_function())
1321 fntype = this->function_->func_value()->type();
1322 else if (this->function_->is_function_declaration())
1323 fntype = this->function_->func_declaration_value()->type();
1324 else
c3e6f413 1325 go_unreachable();
e440a328 1326
1327 // Builtin functions are handled specially by Call_expression. We
1328 // can't take their address.
1329 if (fntype->is_builtin())
1330 {
cb0e02f3 1331 error_at(this->location(),
1332 "invalid use of special builtin function %qs; must be called",
e440a328 1333 this->function_->name().c_str());
1334 return error_mark_node;
1335 }
1336
1337 Named_object* no = this->function_;
9d6f3721 1338
1339 tree id = no->get_id(gogo);
1340 if (id == error_mark_node)
1341 return error_mark_node;
1342
e440a328 1343 tree fndecl;
1344 if (no->is_function())
1345 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1346 else if (no->is_function_declaration())
1347 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1348 else
c3e6f413 1349 go_unreachable();
e440a328 1350
9d6f3721 1351 if (fndecl == error_mark_node)
1352 return error_mark_node;
1353
b13c66cd 1354 return build_fold_addr_expr_loc(this->location().gcc_location(), fndecl);
e440a328 1355}
1356
1357// Get the tree for a function expression. This is used when we take
1358// the address of a function rather than simply calling it. If the
1359// function has a closure, we must use a trampoline.
1360
1361tree
1362Func_expression::do_get_tree(Translate_context* context)
1363{
1364 Gogo* gogo = context->gogo();
1365
1366 tree fnaddr = this->get_tree_without_closure(gogo);
1367 if (fnaddr == error_mark_node)
1368 return error_mark_node;
1369
c484d925 1370 go_assert(TREE_CODE(fnaddr) == ADDR_EXPR
e440a328 1371 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1372 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1373
1374 // For a normal non-nested function call, that is all we have to do.
1375 if (!this->function_->is_function()
1376 || this->function_->func_value()->enclosing() == NULL)
1377 {
c484d925 1378 go_assert(this->closure_ == NULL);
e440a328 1379 return fnaddr;
1380 }
1381
1382 // For a nested function call, we have to always allocate a
1383 // trampoline. If we don't always allocate, then closures will not
1384 // be reliably distinct.
1385 Expression* closure = this->closure_;
1386 tree closure_tree;
1387 if (closure == NULL)
1388 closure_tree = null_pointer_node;
1389 else
1390 {
1391 // Get the value of the closure. This will be a pointer to
1392 // space allocated on the heap.
1393 closure_tree = closure->get_tree(context);
1394 if (closure_tree == error_mark_node)
1395 return error_mark_node;
c484d925 1396 go_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
e440a328 1397 }
1398
1399 // Now we need to build some code on the heap. This code will load
1400 // the static chain pointer with the closure and then jump to the
1401 // body of the function. The normal gcc approach is to build the
1402 // code on the stack. Unfortunately we can not do that, as Go
1403 // permits us to return the function pointer.
1404
1405 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1406}
1407
d751bb78 1408// Ast dump for function.
1409
1410void
1411Func_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1412{
8b1c301d 1413 ast_dump_context->ostream() << this->function_->name();
1414 if (this->closure_ != NULL)
1415 {
1416 ast_dump_context->ostream() << " {closure = ";
1417 this->closure_->dump_expression(ast_dump_context);
1418 ast_dump_context->ostream() << "}";
1419 }
d751bb78 1420}
1421
e440a328 1422// Make a reference to a function in an expression.
1423
1424Expression*
1425Expression::make_func_reference(Named_object* function, Expression* closure,
b13c66cd 1426 Location location)
e440a328 1427{
1428 return new Func_expression(function, closure, location);
1429}
1430
1431// Class Unknown_expression.
1432
1433// Return the name of an unknown expression.
1434
1435const std::string&
1436Unknown_expression::name() const
1437{
1438 return this->named_object_->name();
1439}
1440
1441// Lower a reference to an unknown name.
1442
1443Expression*
ceeb4318 1444Unknown_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
e440a328 1445{
b13c66cd 1446 Location location = this->location();
e440a328 1447 Named_object* no = this->named_object_;
deded542 1448 Named_object* real;
1449 if (!no->is_unknown())
1450 real = no;
1451 else
e440a328 1452 {
deded542 1453 real = no->unknown_value()->real_named_object();
1454 if (real == NULL)
1455 {
1456 if (this->is_composite_literal_key_)
1457 return this;
acf8e158 1458 if (!this->no_error_message_)
1459 error_at(location, "reference to undefined name %qs",
1460 this->named_object_->message_name().c_str());
deded542 1461 return Expression::make_error(location);
1462 }
e440a328 1463 }
1464 switch (real->classification())
1465 {
1466 case Named_object::NAMED_OBJECT_CONST:
1467 return Expression::make_const_reference(real, location);
1468 case Named_object::NAMED_OBJECT_TYPE:
1469 return Expression::make_type(real->type_value(), location);
1470 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1471 if (this->is_composite_literal_key_)
1472 return this;
acf8e158 1473 if (!this->no_error_message_)
1474 error_at(location, "reference to undefined type %qs",
1475 real->message_name().c_str());
e440a328 1476 return Expression::make_error(location);
1477 case Named_object::NAMED_OBJECT_VAR:
7d834090 1478 real->var_value()->set_is_used();
e440a328 1479 return Expression::make_var_reference(real, location);
1480 case Named_object::NAMED_OBJECT_FUNC:
1481 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1482 return Expression::make_func_reference(real, NULL, location);
1483 case Named_object::NAMED_OBJECT_PACKAGE:
1484 if (this->is_composite_literal_key_)
1485 return this;
acf8e158 1486 if (!this->no_error_message_)
1487 error_at(location, "unexpected reference to package");
e440a328 1488 return Expression::make_error(location);
1489 default:
c3e6f413 1490 go_unreachable();
e440a328 1491 }
1492}
1493
d751bb78 1494// Dump the ast representation for an unknown expression to a dump context.
1495
1496void
1497Unknown_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1498{
1499 ast_dump_context->ostream() << "_Unknown_(" << this->named_object_->name()
1500 << ")";
d751bb78 1501}
1502
e440a328 1503// Make a reference to an unknown name.
1504
acf8e158 1505Unknown_expression*
b13c66cd 1506Expression::make_unknown_reference(Named_object* no, Location location)
e440a328 1507{
e440a328 1508 return new Unknown_expression(no, location);
1509}
1510
1511// A boolean expression.
1512
1513class Boolean_expression : public Expression
1514{
1515 public:
b13c66cd 1516 Boolean_expression(bool val, Location location)
e440a328 1517 : Expression(EXPRESSION_BOOLEAN, location),
1518 val_(val), type_(NULL)
1519 { }
1520
1521 static Expression*
1522 do_import(Import*);
1523
1524 protected:
1525 bool
1526 do_is_constant() const
1527 { return true; }
1528
1529 Type*
1530 do_type();
1531
1532 void
1533 do_determine_type(const Type_context*);
1534
1535 Expression*
1536 do_copy()
1537 { return this; }
1538
1539 tree
1540 do_get_tree(Translate_context*)
1541 { return this->val_ ? boolean_true_node : boolean_false_node; }
1542
1543 void
1544 do_export(Export* exp) const
1545 { exp->write_c_string(this->val_ ? "true" : "false"); }
1546
d751bb78 1547 void
1548 do_dump_expression(Ast_dump_context* ast_dump_context) const
1549 { ast_dump_context->ostream() << (this->val_ ? "true" : "false"); }
1550
e440a328 1551 private:
1552 // The constant.
1553 bool val_;
1554 // The type as determined by context.
1555 Type* type_;
1556};
1557
1558// Get the type.
1559
1560Type*
1561Boolean_expression::do_type()
1562{
1563 if (this->type_ == NULL)
1564 this->type_ = Type::make_boolean_type();
1565 return this->type_;
1566}
1567
1568// Set the type from the context.
1569
1570void
1571Boolean_expression::do_determine_type(const Type_context* context)
1572{
1573 if (this->type_ != NULL && !this->type_->is_abstract())
1574 ;
1575 else if (context->type != NULL && context->type->is_boolean_type())
1576 this->type_ = context->type;
1577 else if (!context->may_be_abstract)
1578 this->type_ = Type::lookup_bool_type();
1579}
1580
1581// Import a boolean constant.
1582
1583Expression*
1584Boolean_expression::do_import(Import* imp)
1585{
1586 if (imp->peek_char() == 't')
1587 {
1588 imp->require_c_string("true");
1589 return Expression::make_boolean(true, imp->location());
1590 }
1591 else
1592 {
1593 imp->require_c_string("false");
1594 return Expression::make_boolean(false, imp->location());
1595 }
1596}
1597
1598// Make a boolean expression.
1599
1600Expression*
b13c66cd 1601Expression::make_boolean(bool val, Location location)
e440a328 1602{
1603 return new Boolean_expression(val, location);
1604}
1605
1606// Class String_expression.
1607
1608// Get the type.
1609
1610Type*
1611String_expression::do_type()
1612{
1613 if (this->type_ == NULL)
1614 this->type_ = Type::make_string_type();
1615 return this->type_;
1616}
1617
1618// Set the type from the context.
1619
1620void
1621String_expression::do_determine_type(const Type_context* context)
1622{
1623 if (this->type_ != NULL && !this->type_->is_abstract())
1624 ;
1625 else if (context->type != NULL && context->type->is_string_type())
1626 this->type_ = context->type;
1627 else if (!context->may_be_abstract)
1628 this->type_ = Type::lookup_string_type();
1629}
1630
1631// Build a string constant.
1632
1633tree
1634String_expression::do_get_tree(Translate_context* context)
1635{
1636 return context->gogo()->go_string_constant_tree(this->val_);
1637}
1638
8b1c301d 1639 // Write string literal to string dump.
e440a328 1640
1641void
8b1c301d 1642String_expression::export_string(String_dump* exp,
1643 const String_expression* str)
e440a328 1644{
1645 std::string s;
8b1c301d 1646 s.reserve(str->val_.length() * 4 + 2);
e440a328 1647 s += '"';
8b1c301d 1648 for (std::string::const_iterator p = str->val_.begin();
1649 p != str->val_.end();
e440a328 1650 ++p)
1651 {
1652 if (*p == '\\' || *p == '"')
1653 {
1654 s += '\\';
1655 s += *p;
1656 }
1657 else if (*p >= 0x20 && *p < 0x7f)
1658 s += *p;
1659 else if (*p == '\n')
1660 s += "\\n";
1661 else if (*p == '\t')
1662 s += "\\t";
1663 else
1664 {
1665 s += "\\x";
1666 unsigned char c = *p;
1667 unsigned int dig = c >> 4;
1668 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1669 dig = c & 0xf;
1670 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1671 }
1672 }
1673 s += '"';
1674 exp->write_string(s);
1675}
1676
8b1c301d 1677// Export a string expression.
1678
1679void
1680String_expression::do_export(Export* exp) const
1681{
1682 String_expression::export_string(exp, this);
1683}
1684
e440a328 1685// Import a string expression.
1686
1687Expression*
1688String_expression::do_import(Import* imp)
1689{
1690 imp->require_c_string("\"");
1691 std::string val;
1692 while (true)
1693 {
1694 int c = imp->get_char();
1695 if (c == '"' || c == -1)
1696 break;
1697 if (c != '\\')
1698 val += static_cast<char>(c);
1699 else
1700 {
1701 c = imp->get_char();
1702 if (c == '\\' || c == '"')
1703 val += static_cast<char>(c);
1704 else if (c == 'n')
1705 val += '\n';
1706 else if (c == 't')
1707 val += '\t';
1708 else if (c == 'x')
1709 {
1710 c = imp->get_char();
1711 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1712 c = imp->get_char();
1713 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1714 char v = (vh << 4) | vl;
1715 val += v;
1716 }
1717 else
1718 {
1719 error_at(imp->location(), "bad string constant");
1720 return Expression::make_error(imp->location());
1721 }
1722 }
1723 }
1724 return Expression::make_string(val, imp->location());
1725}
1726
d751bb78 1727// Ast dump for string expression.
1728
1729void
1730String_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1731{
8b1c301d 1732 String_expression::export_string(ast_dump_context, this);
d751bb78 1733}
1734
e440a328 1735// Make a string expression.
1736
1737Expression*
b13c66cd 1738Expression::make_string(const std::string& val, Location location)
e440a328 1739{
1740 return new String_expression(val, location);
1741}
1742
1743// Make an integer expression.
1744
1745class Integer_expression : public Expression
1746{
1747 public:
5d4b8566 1748 Integer_expression(const mpz_t* val, Type* type, bool is_character_constant,
1749 Location location)
e440a328 1750 : Expression(EXPRESSION_INTEGER, location),
5d4b8566 1751 type_(type), is_character_constant_(is_character_constant)
e440a328 1752 { mpz_init_set(this->val_, *val); }
1753
1754 static Expression*
1755 do_import(Import*);
1756
1757 // Return whether VAL fits in the type.
1758 static bool
b13c66cd 1759 check_constant(mpz_t val, Type*, Location);
e440a328 1760
8b1c301d 1761 // Write VAL to string dump.
e440a328 1762 static void
8b1c301d 1763 export_integer(String_dump* exp, const mpz_t val);
e440a328 1764
d751bb78 1765 // Write VAL to dump context.
1766 static void
1767 dump_integer(Ast_dump_context* ast_dump_context, const mpz_t val);
1768
e440a328 1769 protected:
1770 bool
1771 do_is_constant() const
1772 { return true; }
1773
1774 bool
1775 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1776
1777 Type*
1778 do_type();
1779
1780 void
1781 do_determine_type(const Type_context* context);
1782
1783 void
1784 do_check_types(Gogo*);
1785
1786 tree
1787 do_get_tree(Translate_context*);
1788
1789 Expression*
1790 do_copy()
5d4b8566 1791 {
1792 if (this->is_character_constant_)
1793 return Expression::make_character(&this->val_, this->type_,
1794 this->location());
1795 else
1796 return Expression::make_integer(&this->val_, this->type_,
1797 this->location());
1798 }
e440a328 1799
1800 void
1801 do_export(Export*) const;
1802
d751bb78 1803 void
1804 do_dump_expression(Ast_dump_context*) const;
1805
e440a328 1806 private:
1807 // The integer value.
1808 mpz_t val_;
1809 // The type so far.
1810 Type* type_;
5d4b8566 1811 // Whether this is a character constant.
1812 bool is_character_constant_;
e440a328 1813};
1814
1815// Return an integer constant value.
1816
1817bool
1818Integer_expression::do_integer_constant_value(bool, mpz_t val,
1819 Type** ptype) const
1820{
1821 if (this->type_ != NULL)
1822 *ptype = this->type_;
1823 mpz_set(val, this->val_);
1824 return true;
1825}
1826
1827// Return the current type. If we haven't set the type yet, we return
1828// an abstract integer type.
1829
1830Type*
1831Integer_expression::do_type()
1832{
1833 if (this->type_ == NULL)
5d4b8566 1834 {
1835 if (this->is_character_constant_)
1836 this->type_ = Type::make_abstract_character_type();
1837 else
1838 this->type_ = Type::make_abstract_integer_type();
1839 }
e440a328 1840 return this->type_;
1841}
1842
1843// Set the type of the integer value. Here we may switch from an
1844// abstract type to a real type.
1845
1846void
1847Integer_expression::do_determine_type(const Type_context* context)
1848{
1849 if (this->type_ != NULL && !this->type_->is_abstract())
1850 ;
1851 else if (context->type != NULL
1852 && (context->type->integer_type() != NULL
1853 || context->type->float_type() != NULL
1854 || context->type->complex_type() != NULL))
1855 this->type_ = context->type;
1856 else if (!context->may_be_abstract)
5d4b8566 1857 {
1858 if (this->is_character_constant_)
1859 this->type_ = Type::lookup_integer_type("int32");
1860 else
1861 this->type_ = Type::lookup_integer_type("int");
1862 }
e440a328 1863}
1864
1865// Return true if the integer VAL fits in the range of the type TYPE.
1866// Otherwise give an error and return false. TYPE may be NULL.
1867
1868bool
1869Integer_expression::check_constant(mpz_t val, Type* type,
b13c66cd 1870 Location location)
e440a328 1871{
1872 if (type == NULL)
1873 return true;
1874 Integer_type* itype = type->integer_type();
1875 if (itype == NULL || itype->is_abstract())
1876 return true;
1877
1878 int bits = mpz_sizeinbase(val, 2);
1879
1880 if (itype->is_unsigned())
1881 {
1882 // For an unsigned type we can only accept a nonnegative number,
1883 // and we must be able to represent at least BITS.
1884 if (mpz_sgn(val) >= 0
1885 && bits <= itype->bits())
1886 return true;
1887 }
1888 else
1889 {
1890 // For a signed type we need an extra bit to indicate the sign.
1891 // We have to handle the most negative integer specially.
1892 if (bits + 1 <= itype->bits()
1893 || (bits <= itype->bits()
1894 && mpz_sgn(val) < 0
1895 && (mpz_scan1(val, 0)
1896 == static_cast<unsigned long>(itype->bits() - 1))
1897 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1898 return true;
1899 }
1900
1901 error_at(location, "integer constant overflow");
1902 return false;
1903}
1904
1905// Check the type of an integer constant.
1906
1907void
1908Integer_expression::do_check_types(Gogo*)
1909{
1910 if (this->type_ == NULL)
1911 return;
1912 if (!Integer_expression::check_constant(this->val_, this->type_,
1913 this->location()))
1914 this->set_is_error();
1915}
1916
1917// Get a tree for an integer constant.
1918
1919tree
1920Integer_expression::do_get_tree(Translate_context* context)
1921{
1922 Gogo* gogo = context->gogo();
1923 tree type;
1924 if (this->type_ != NULL && !this->type_->is_abstract())
9f0e0513 1925 type = type_to_tree(this->type_->get_backend(gogo));
e440a328 1926 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1927 {
1928 // We are converting to an abstract floating point type.
9f0e0513 1929 Type* ftype = Type::lookup_float_type("float64");
1930 type = type_to_tree(ftype->get_backend(gogo));
e440a328 1931 }
1932 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1933 {
1934 // We are converting to an abstract complex type.
9f0e0513 1935 Type* ctype = Type::lookup_complex_type("complex128");
1936 type = type_to_tree(ctype->get_backend(gogo));
e440a328 1937 }
1938 else
1939 {
1940 // If we still have an abstract type here, then this is being
1941 // used in a constant expression which didn't get reduced for
1942 // some reason. Use a type which will fit the value. We use <,
1943 // not <=, because we need an extra bit for the sign bit.
1944 int bits = mpz_sizeinbase(this->val_, 2);
1945 if (bits < INT_TYPE_SIZE)
9f0e0513 1946 {
1947 Type* t = Type::lookup_integer_type("int");
1948 type = type_to_tree(t->get_backend(gogo));
1949 }
e440a328 1950 else if (bits < 64)
9f0e0513 1951 {
1952 Type* t = Type::lookup_integer_type("int64");
1953 type = type_to_tree(t->get_backend(gogo));
1954 }
e440a328 1955 else
1956 type = long_long_integer_type_node;
1957 }
1958 return Expression::integer_constant_tree(this->val_, type);
1959}
1960
1961// Write VAL to export data.
1962
1963void
8b1c301d 1964Integer_expression::export_integer(String_dump* exp, const mpz_t val)
e440a328 1965{
1966 char* s = mpz_get_str(NULL, 10, val);
1967 exp->write_c_string(s);
1968 free(s);
1969}
1970
1971// Export an integer in a constant expression.
1972
1973void
1974Integer_expression::do_export(Export* exp) const
1975{
1976 Integer_expression::export_integer(exp, this->val_);
5d4b8566 1977 if (this->is_character_constant_)
1978 exp->write_c_string("'");
e440a328 1979 // A trailing space lets us reliably identify the end of the number.
1980 exp->write_c_string(" ");
1981}
1982
1983// Import an integer, floating point, or complex value. This handles
1984// all these types because they all start with digits.
1985
1986Expression*
1987Integer_expression::do_import(Import* imp)
1988{
1989 std::string num = imp->read_identifier();
1990 imp->require_c_string(" ");
1991 if (!num.empty() && num[num.length() - 1] == 'i')
1992 {
1993 mpfr_t real;
1994 size_t plus_pos = num.find('+', 1);
1995 size_t minus_pos = num.find('-', 1);
1996 size_t pos;
1997 if (plus_pos == std::string::npos)
1998 pos = minus_pos;
1999 else if (minus_pos == std::string::npos)
2000 pos = plus_pos;
2001 else
2002 {
2003 error_at(imp->location(), "bad number in import data: %qs",
2004 num.c_str());
2005 return Expression::make_error(imp->location());
2006 }
2007 if (pos == std::string::npos)
2008 mpfr_set_ui(real, 0, GMP_RNDN);
2009 else
2010 {
2011 std::string real_str = num.substr(0, pos);
2012 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
2013 {
2014 error_at(imp->location(), "bad number in import data: %qs",
2015 real_str.c_str());
2016 return Expression::make_error(imp->location());
2017 }
2018 }
2019
2020 std::string imag_str;
2021 if (pos == std::string::npos)
2022 imag_str = num;
2023 else
2024 imag_str = num.substr(pos);
2025 imag_str = imag_str.substr(0, imag_str.size() - 1);
2026 mpfr_t imag;
2027 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
2028 {
2029 error_at(imp->location(), "bad number in import data: %qs",
2030 imag_str.c_str());
2031 return Expression::make_error(imp->location());
2032 }
2033 Expression* ret = Expression::make_complex(&real, &imag, NULL,
2034 imp->location());
2035 mpfr_clear(real);
2036 mpfr_clear(imag);
2037 return ret;
2038 }
2039 else if (num.find('.') == std::string::npos
2040 && num.find('E') == std::string::npos)
2041 {
5d4b8566 2042 bool is_character_constant = (!num.empty()
2043 && num[num.length() - 1] == '\'');
2044 if (is_character_constant)
2045 num = num.substr(0, num.length() - 1);
e440a328 2046 mpz_t val;
2047 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
2048 {
2049 error_at(imp->location(), "bad number in import data: %qs",
2050 num.c_str());
2051 return Expression::make_error(imp->location());
2052 }
5d4b8566 2053 Expression* ret;
2054 if (is_character_constant)
2055 ret = Expression::make_character(&val, NULL, imp->location());
2056 else
2057 ret = Expression::make_integer(&val, NULL, imp->location());
e440a328 2058 mpz_clear(val);
2059 return ret;
2060 }
2061 else
2062 {
2063 mpfr_t val;
2064 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
2065 {
2066 error_at(imp->location(), "bad number in import data: %qs",
2067 num.c_str());
2068 return Expression::make_error(imp->location());
2069 }
2070 Expression* ret = Expression::make_float(&val, NULL, imp->location());
2071 mpfr_clear(val);
2072 return ret;
2073 }
2074}
d751bb78 2075// Ast dump for integer expression.
2076
2077void
2078Integer_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
2079{
5d4b8566 2080 if (this->is_character_constant_)
2081 ast_dump_context->ostream() << '\'';
8b1c301d 2082 Integer_expression::export_integer(ast_dump_context, this->val_);
5d4b8566 2083 if (this->is_character_constant_)
2084 ast_dump_context->ostream() << '\'';
d751bb78 2085}
2086
e440a328 2087// Build a new integer value.
2088
2089Expression*
5d4b8566 2090Expression::make_integer(const mpz_t* val, Type* type, Location location)
2091{
2092 return new Integer_expression(val, type, false, location);
2093}
2094
2095// Build a new character constant value.
2096
2097Expression*
2098Expression::make_character(const mpz_t* val, Type* type, Location location)
e440a328 2099{
5d4b8566 2100 return new Integer_expression(val, type, true, location);
e440a328 2101}
2102
2103// Floats.
2104
2105class Float_expression : public Expression
2106{
2107 public:
b13c66cd 2108 Float_expression(const mpfr_t* val, Type* type, Location location)
e440a328 2109 : Expression(EXPRESSION_FLOAT, location),
2110 type_(type)
2111 {
2112 mpfr_init_set(this->val_, *val, GMP_RNDN);
2113 }
2114
2115 // Constrain VAL to fit into TYPE.
2116 static void
2117 constrain_float(mpfr_t val, Type* type);
2118
2119 // Return whether VAL fits in the type.
2120 static bool
b13c66cd 2121 check_constant(mpfr_t val, Type*, Location);
e440a328 2122
2123 // Write VAL to export data.
2124 static void
8b1c301d 2125 export_float(String_dump* exp, const mpfr_t val);
2126
d751bb78 2127 // Write VAL to dump file.
2128 static void
2129 dump_float(Ast_dump_context* ast_dump_context, const mpfr_t val);
e440a328 2130
2131 protected:
2132 bool
2133 do_is_constant() const
2134 { return true; }
2135
2136 bool
2137 do_float_constant_value(mpfr_t val, Type**) const;
2138
2139 Type*
2140 do_type();
2141
2142 void
2143 do_determine_type(const Type_context*);
2144
2145 void
2146 do_check_types(Gogo*);
2147
2148 Expression*
2149 do_copy()
2150 { return Expression::make_float(&this->val_, this->type_,
2151 this->location()); }
2152
2153 tree
2154 do_get_tree(Translate_context*);
2155
2156 void
2157 do_export(Export*) const;
2158
d751bb78 2159 void
2160 do_dump_expression(Ast_dump_context*) const;
2161
e440a328 2162 private:
2163 // The floating point value.
2164 mpfr_t val_;
2165 // The type so far.
2166 Type* type_;
2167};
2168
2169// Constrain VAL to fit into TYPE.
2170
2171void
2172Float_expression::constrain_float(mpfr_t val, Type* type)
2173{
2174 Float_type* ftype = type->float_type();
2175 if (ftype != NULL && !ftype->is_abstract())
2f50f88a 2176 mpfr_prec_round(val, ftype->bits(), GMP_RNDN);
e440a328 2177}
2178
2179// Return a floating point constant value.
2180
2181bool
2182Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2183{
2184 if (this->type_ != NULL)
2185 *ptype = this->type_;
2186 mpfr_set(val, this->val_, GMP_RNDN);
2187 return true;
2188}
2189
2190// Return the current type. If we haven't set the type yet, we return
2191// an abstract float type.
2192
2193Type*
2194Float_expression::do_type()
2195{
2196 if (this->type_ == NULL)
2197 this->type_ = Type::make_abstract_float_type();
2198 return this->type_;
2199}
2200
2201// Set the type of the float value. Here we may switch from an
2202// abstract type to a real type.
2203
2204void
2205Float_expression::do_determine_type(const Type_context* context)
2206{
2207 if (this->type_ != NULL && !this->type_->is_abstract())
2208 ;
2209 else if (context->type != NULL
2210 && (context->type->integer_type() != NULL
2211 || context->type->float_type() != NULL
2212 || context->type->complex_type() != NULL))
2213 this->type_ = context->type;
2214 else if (!context->may_be_abstract)
48080209 2215 this->type_ = Type::lookup_float_type("float64");
e440a328 2216}
2217
2218// Return true if the floating point value VAL fits in the range of
2219// the type TYPE. Otherwise give an error and return false. TYPE may
2220// be NULL.
2221
2222bool
2223Float_expression::check_constant(mpfr_t val, Type* type,
b13c66cd 2224 Location location)
e440a328 2225{
2226 if (type == NULL)
2227 return true;
2228 Float_type* ftype = type->float_type();
2229 if (ftype == NULL || ftype->is_abstract())
2230 return true;
2231
2232 // A NaN or Infinity always fits in the range of the type.
2233 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
2234 return true;
2235
2236 mp_exp_t exp = mpfr_get_exp(val);
2237 mp_exp_t max_exp;
2238 switch (ftype->bits())
2239 {
2240 case 32:
2241 max_exp = 128;
2242 break;
2243 case 64:
2244 max_exp = 1024;
2245 break;
2246 default:
c3e6f413 2247 go_unreachable();
e440a328 2248 }
2249 if (exp > max_exp)
2250 {
2251 error_at(location, "floating point constant overflow");
2252 return false;
2253 }
2254 return true;
2255}
2256
2257// Check the type of a float value.
2258
2259void
2260Float_expression::do_check_types(Gogo*)
2261{
2262 if (this->type_ == NULL)
2263 return;
2264
2265 if (!Float_expression::check_constant(this->val_, this->type_,
2266 this->location()))
2267 this->set_is_error();
2268
2269 Integer_type* integer_type = this->type_->integer_type();
2270 if (integer_type != NULL)
2271 {
2272 if (!mpfr_integer_p(this->val_))
2273 this->report_error(_("floating point constant truncated to integer"));
2274 else
2275 {
c484d925 2276 go_assert(!integer_type->is_abstract());
e440a328 2277 mpz_t ival;
2278 mpz_init(ival);
2279 mpfr_get_z(ival, this->val_, GMP_RNDN);
2280 Integer_expression::check_constant(ival, integer_type,
2281 this->location());
2282 mpz_clear(ival);
2283 }
2284 }
2285}
2286
2287// Get a tree for a float constant.
2288
2289tree
2290Float_expression::do_get_tree(Translate_context* context)
2291{
2292 Gogo* gogo = context->gogo();
2293 tree type;
2294 if (this->type_ != NULL && !this->type_->is_abstract())
9f0e0513 2295 type = type_to_tree(this->type_->get_backend(gogo));
e440a328 2296 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2297 {
2298 // We have an abstract integer type. We just hope for the best.
9f0e0513 2299 type = type_to_tree(Type::lookup_integer_type("int")->get_backend(gogo));
e440a328 2300 }
2301 else
2302 {
2303 // If we still have an abstract type here, then this is being
2304 // used in a constant expression which didn't get reduced. We
2305 // just use float64 and hope for the best.
9f0e0513 2306 Type* ft = Type::lookup_float_type("float64");
2307 type = type_to_tree(ft->get_backend(gogo));
e440a328 2308 }
2309 return Expression::float_constant_tree(this->val_, type);
2310}
2311
8b1c301d 2312// Write a floating point number to a string dump.
e440a328 2313
2314void
8b1c301d 2315Float_expression::export_float(String_dump *exp, const mpfr_t val)
e440a328 2316{
2317 mp_exp_t exponent;
2318 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2319 if (*s == '-')
2320 exp->write_c_string("-");
2321 exp->write_c_string("0.");
2322 exp->write_c_string(*s == '-' ? s + 1 : s);
2323 mpfr_free_str(s);
2324 char buf[30];
2325 snprintf(buf, sizeof buf, "E%ld", exponent);
2326 exp->write_c_string(buf);
2327}
2328
2329// Export a floating point number in a constant expression.
2330
2331void
2332Float_expression::do_export(Export* exp) const
2333{
2334 Float_expression::export_float(exp, this->val_);
2335 // A trailing space lets us reliably identify the end of the number.
2336 exp->write_c_string(" ");
2337}
2338
d751bb78 2339// Dump a floating point number to the dump file.
2340
2341void
2342Float_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
2343{
8b1c301d 2344 Float_expression::export_float(ast_dump_context, this->val_);
d751bb78 2345}
2346
e440a328 2347// Make a float expression.
2348
2349Expression*
b13c66cd 2350Expression::make_float(const mpfr_t* val, Type* type, Location location)
e440a328 2351{
2352 return new Float_expression(val, type, location);
2353}
2354
2355// Complex numbers.
2356
2357class Complex_expression : public Expression
2358{
2359 public:
2360 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
b13c66cd 2361 Location location)
e440a328 2362 : Expression(EXPRESSION_COMPLEX, location),
2363 type_(type)
2364 {
2365 mpfr_init_set(this->real_, *real, GMP_RNDN);
2366 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2367 }
2368
2369 // Constrain REAL/IMAG to fit into TYPE.
2370 static void
2371 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2372
2373 // Return whether REAL/IMAG fits in the type.
2374 static bool
b13c66cd 2375 check_constant(mpfr_t real, mpfr_t imag, Type*, Location);
e440a328 2376
8b1c301d 2377 // Write REAL/IMAG to string dump.
e440a328 2378 static void
8b1c301d 2379 export_complex(String_dump* exp, const mpfr_t real, const mpfr_t val);
e440a328 2380
d751bb78 2381 // Write REAL/IMAG to dump context.
2382 static void
2383 dump_complex(Ast_dump_context* ast_dump_context,
2384 const mpfr_t real, const mpfr_t val);
2385
e440a328 2386 protected:
2387 bool
2388 do_is_constant() const
2389 { return true; }
2390
2391 bool
2392 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2393
2394 Type*
2395 do_type();
2396
2397 void
2398 do_determine_type(const Type_context*);
2399
2400 void
2401 do_check_types(Gogo*);
2402
2403 Expression*
2404 do_copy()
2405 {
2406 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2407 this->location());
2408 }
2409
2410 tree
2411 do_get_tree(Translate_context*);
2412
2413 void
2414 do_export(Export*) const;
2415
d751bb78 2416 void
2417 do_dump_expression(Ast_dump_context*) const;
2418
e440a328 2419 private:
2420 // The real part.
2421 mpfr_t real_;
2422 // The imaginary part;
2423 mpfr_t imag_;
2424 // The type if known.
2425 Type* type_;
2426};
2427
2428// Constrain REAL/IMAG to fit into TYPE.
2429
2430void
2431Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2432{
2433 Complex_type* ctype = type->complex_type();
2434 if (ctype != NULL && !ctype->is_abstract())
2435 {
2f50f88a 2436 mpfr_prec_round(real, ctype->bits() / 2, GMP_RNDN);
2437 mpfr_prec_round(imag, ctype->bits() / 2, GMP_RNDN);
e440a328 2438 }
2439}
2440
2441// Return a complex constant value.
2442
2443bool
2444Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2445 Type** ptype) const
2446{
2447 if (this->type_ != NULL)
2448 *ptype = this->type_;
2449 mpfr_set(real, this->real_, GMP_RNDN);
2450 mpfr_set(imag, this->imag_, GMP_RNDN);
2451 return true;
2452}
2453
2454// Return the current type. If we haven't set the type yet, we return
2455// an abstract complex type.
2456
2457Type*
2458Complex_expression::do_type()
2459{
2460 if (this->type_ == NULL)
2461 this->type_ = Type::make_abstract_complex_type();
2462 return this->type_;
2463}
2464
2465// Set the type of the complex value. Here we may switch from an
2466// abstract type to a real type.
2467
2468void
2469Complex_expression::do_determine_type(const Type_context* context)
2470{
2471 if (this->type_ != NULL && !this->type_->is_abstract())
2472 ;
2473 else if (context->type != NULL
2474 && context->type->complex_type() != NULL)
2475 this->type_ = context->type;
2476 else if (!context->may_be_abstract)
48080209 2477 this->type_ = Type::lookup_complex_type("complex128");
e440a328 2478}
2479
2480// Return true if the complex value REAL/IMAG fits in the range of the
2481// type TYPE. Otherwise give an error and return false. TYPE may be
2482// NULL.
2483
2484bool
2485Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
b13c66cd 2486 Location location)
e440a328 2487{
2488 if (type == NULL)
2489 return true;
2490 Complex_type* ctype = type->complex_type();
2491 if (ctype == NULL || ctype->is_abstract())
2492 return true;
2493
2494 mp_exp_t max_exp;
2495 switch (ctype->bits())
2496 {
2497 case 64:
2498 max_exp = 128;
2499 break;
2500 case 128:
2501 max_exp = 1024;
2502 break;
2503 default:
c3e6f413 2504 go_unreachable();
e440a328 2505 }
2506
2507 // A NaN or Infinity always fits in the range of the type.
2508 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2509 {
2510 if (mpfr_get_exp(real) > max_exp)
2511 {
2512 error_at(location, "complex real part constant overflow");
2513 return false;
2514 }
2515 }
2516
2517 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2518 {
2519 if (mpfr_get_exp(imag) > max_exp)
2520 {
2521 error_at(location, "complex imaginary part constant overflow");
2522 return false;
2523 }
2524 }
2525
2526 return true;
2527}
2528
2529// Check the type of a complex value.
2530
2531void
2532Complex_expression::do_check_types(Gogo*)
2533{
2534 if (this->type_ == NULL)
2535 return;
2536
2537 if (!Complex_expression::check_constant(this->real_, this->imag_,
2538 this->type_, this->location()))
2539 this->set_is_error();
2540}
2541
2542// Get a tree for a complex constant.
2543
2544tree
2545Complex_expression::do_get_tree(Translate_context* context)
2546{
2547 Gogo* gogo = context->gogo();
2548 tree type;
2549 if (this->type_ != NULL && !this->type_->is_abstract())
9f0e0513 2550 type = type_to_tree(this->type_->get_backend(gogo));
e440a328 2551 else
2552 {
2553 // If we still have an abstract type here, this this is being
2554 // used in a constant expression which didn't get reduced. We
2555 // just use complex128 and hope for the best.
9f0e0513 2556 Type* ct = Type::lookup_complex_type("complex128");
2557 type = type_to_tree(ct->get_backend(gogo));
e440a328 2558 }
2559 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2560}
2561
2562// Write REAL/IMAG to export data.
2563
2564void
8b1c301d 2565Complex_expression::export_complex(String_dump* exp, const mpfr_t real,
e440a328 2566 const mpfr_t imag)
2567{
2568 if (!mpfr_zero_p(real))
2569 {
2570 Float_expression::export_float(exp, real);
2571 if (mpfr_sgn(imag) > 0)
2572 exp->write_c_string("+");
2573 }
2574 Float_expression::export_float(exp, imag);
2575 exp->write_c_string("i");
2576}
2577
2578// Export a complex number in a constant expression.
2579
2580void
2581Complex_expression::do_export(Export* exp) const
2582{
2583 Complex_expression::export_complex(exp, this->real_, this->imag_);
2584 // A trailing space lets us reliably identify the end of the number.
2585 exp->write_c_string(" ");
2586}
2587
d751bb78 2588// Dump a complex expression to the dump file.
2589
2590void
2591Complex_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
2592{
8b1c301d 2593 Complex_expression::export_complex(ast_dump_context,
d751bb78 2594 this->real_,
2595 this->imag_);
2596}
2597
e440a328 2598// Make a complex expression.
2599
2600Expression*
2601Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
b13c66cd 2602 Location location)
e440a328 2603{
2604 return new Complex_expression(real, imag, type, location);
2605}
2606
d5b605df 2607// Find a named object in an expression.
2608
2609class Find_named_object : public Traverse
2610{
2611 public:
2612 Find_named_object(Named_object* no)
2613 : Traverse(traverse_expressions),
2614 no_(no), found_(false)
2615 { }
2616
2617 // Whether we found the object.
2618 bool
2619 found() const
2620 { return this->found_; }
2621
2622 protected:
2623 int
2624 expression(Expression**);
2625
2626 private:
2627 // The object we are looking for.
2628 Named_object* no_;
2629 // Whether we found it.
2630 bool found_;
2631};
2632
e440a328 2633// A reference to a const in an expression.
2634
2635class Const_expression : public Expression
2636{
2637 public:
b13c66cd 2638 Const_expression(Named_object* constant, Location location)
e440a328 2639 : Expression(EXPRESSION_CONST_REFERENCE, location),
13e818f5 2640 constant_(constant), type_(NULL), seen_(false)
e440a328 2641 { }
2642
d5b605df 2643 Named_object*
2644 named_object()
2645 { return this->constant_; }
2646
a7f064d5 2647 // Check that the initializer does not refer to the constant itself.
2648 void
2649 check_for_init_loop();
2650
e440a328 2651 protected:
ba4aedd4 2652 int
2653 do_traverse(Traverse*);
2654
e440a328 2655 Expression*
ceeb4318 2656 do_lower(Gogo*, Named_object*, Statement_inserter*, int);
e440a328 2657
2658 bool
2659 do_is_constant() const
2660 { return true; }
2661
2662 bool
2663 do_integer_constant_value(bool, mpz_t val, Type**) const;
2664
2665 bool
2666 do_float_constant_value(mpfr_t val, Type**) const;
2667
2668 bool
2669 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2670
2671 bool
2672 do_string_constant_value(std::string* val) const
2673 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2674
2675 Type*
2676 do_type();
2677
2678 // The type of a const is set by the declaration, not the use.
2679 void
2680 do_determine_type(const Type_context*);
2681
2682 void
2683 do_check_types(Gogo*);
2684
2685 Expression*
2686 do_copy()
2687 { return this; }
2688
2689 tree
2690 do_get_tree(Translate_context* context);
2691
2692 // When exporting a reference to a const as part of a const
2693 // expression, we export the value. We ignore the fact that it has
2694 // a name.
2695 void
2696 do_export(Export* exp) const
2697 { this->constant_->const_value()->expr()->export_expression(exp); }
2698
d751bb78 2699 void
2700 do_dump_expression(Ast_dump_context*) const;
2701
e440a328 2702 private:
2703 // The constant.
2704 Named_object* constant_;
2705 // The type of this reference. This is used if the constant has an
2706 // abstract type.
2707 Type* type_;
13e818f5 2708 // Used to prevent infinite recursion when a constant incorrectly
2709 // refers to itself.
2710 mutable bool seen_;
e440a328 2711};
2712
ba4aedd4 2713// Traversal.
2714
2715int
2716Const_expression::do_traverse(Traverse* traverse)
2717{
2718 if (this->type_ != NULL)
2719 return Type::traverse(this->type_, traverse);
2720 return TRAVERSE_CONTINUE;
2721}
2722
e440a328 2723// Lower a constant expression. This is where we convert the
2724// predeclared constant iota into an integer value.
2725
2726Expression*
ceeb4318 2727Const_expression::do_lower(Gogo* gogo, Named_object*,
2728 Statement_inserter*, int iota_value)
e440a328 2729{
2730 if (this->constant_->const_value()->expr()->classification()
2731 == EXPRESSION_IOTA)
2732 {
2733 if (iota_value == -1)
2734 {
2735 error_at(this->location(),
2736 "iota is only defined in const declarations");
2737 iota_value = 0;
2738 }
2739 mpz_t val;
2740 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2741 Expression* ret = Expression::make_integer(&val, NULL,
2742 this->location());
2743 mpz_clear(val);
2744 return ret;
2745 }
2746
2747 // Make sure that the constant itself has been lowered.
2748 gogo->lower_constant(this->constant_);
2749
2750 return this;
2751}
2752
2753// Return an integer constant value.
2754
2755bool
2756Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2757 Type** ptype) const
2758{
13e818f5 2759 if (this->seen_)
2760 return false;
2761
e440a328 2762 Type* ctype;
2763 if (this->type_ != NULL)
2764 ctype = this->type_;
2765 else
2766 ctype = this->constant_->const_value()->type();
2767 if (ctype != NULL && ctype->integer_type() == NULL)
2768 return false;
2769
2770 Expression* e = this->constant_->const_value()->expr();
13e818f5 2771
2772 this->seen_ = true;
2773
e440a328 2774 Type* t;
2775 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2776
13e818f5 2777 this->seen_ = false;
2778
e440a328 2779 if (r
2780 && ctype != NULL
2781 && !Integer_expression::check_constant(val, ctype, this->location()))
2782 return false;
2783
2784 *ptype = ctype != NULL ? ctype : t;
2785 return r;
2786}
2787
2788// Return a floating point constant value.
2789
2790bool
2791Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2792{
13e818f5 2793 if (this->seen_)
2794 return false;
2795
e440a328 2796 Type* ctype;
2797 if (this->type_ != NULL)
2798 ctype = this->type_;
2799 else
2800 ctype = this->constant_->const_value()->type();
2801 if (ctype != NULL && ctype->float_type() == NULL)
2802 return false;
2803
13e818f5 2804 this->seen_ = true;
2805
e440a328 2806 Type* t;
2807 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2808 &t);
13e818f5 2809
2810 this->seen_ = false;
2811
e440a328 2812 if (r && ctype != NULL)
2813 {
2814 if (!Float_expression::check_constant(val, ctype, this->location()))
2815 return false;
2816 Float_expression::constrain_float(val, ctype);
2817 }
2818 *ptype = ctype != NULL ? ctype : t;
2819 return r;
2820}
2821
2822// Return a complex constant value.
2823
2824bool
2825Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2826 Type **ptype) const
2827{
13e818f5 2828 if (this->seen_)
2829 return false;
2830
e440a328 2831 Type* ctype;
2832 if (this->type_ != NULL)
2833 ctype = this->type_;
2834 else
2835 ctype = this->constant_->const_value()->type();
2836 if (ctype != NULL && ctype->complex_type() == NULL)
2837 return false;
2838
13e818f5 2839 this->seen_ = true;
2840
e440a328 2841 Type *t;
2842 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2843 imag,
2844 &t);
13e818f5 2845
2846 this->seen_ = false;
2847
e440a328 2848 if (r && ctype != NULL)
2849 {
2850 if (!Complex_expression::check_constant(real, imag, ctype,
2851 this->location()))
2852 return false;
2853 Complex_expression::constrain_complex(real, imag, ctype);
2854 }
2855 *ptype = ctype != NULL ? ctype : t;
2856 return r;
2857}
2858
2859// Return the type of the const reference.
2860
2861Type*
2862Const_expression::do_type()
2863{
2864 if (this->type_ != NULL)
2865 return this->type_;
13e818f5 2866
2f78f012 2867 Named_constant* nc = this->constant_->const_value();
2868
2869 if (this->seen_ || nc->lowering())
13e818f5 2870 {
2871 this->report_error(_("constant refers to itself"));
2872 this->type_ = Type::make_error_type();
2873 return this->type_;
2874 }
2875
2876 this->seen_ = true;
2877
e440a328 2878 Type* ret = nc->type();
13e818f5 2879
e440a328 2880 if (ret != NULL)
13e818f5 2881 {
2882 this->seen_ = false;
2883 return ret;
2884 }
2885
e440a328 2886 // During parsing, a named constant may have a NULL type, but we
2887 // must not return a NULL type here.
13e818f5 2888 ret = nc->expr()->type();
2889
2890 this->seen_ = false;
2891
2892 return ret;
e440a328 2893}
2894
2895// Set the type of the const reference.
2896
2897void
2898Const_expression::do_determine_type(const Type_context* context)
2899{
2900 Type* ctype = this->constant_->const_value()->type();
2901 Type* cetype = (ctype != NULL
2902 ? ctype
2903 : this->constant_->const_value()->expr()->type());
2904 if (ctype != NULL && !ctype->is_abstract())
2905 ;
2906 else if (context->type != NULL
2907 && (context->type->integer_type() != NULL
2908 || context->type->float_type() != NULL
2909 || context->type->complex_type() != NULL)
2910 && (cetype->integer_type() != NULL
2911 || cetype->float_type() != NULL
2912 || cetype->complex_type() != NULL))
2913 this->type_ = context->type;
2914 else if (context->type != NULL
2915 && context->type->is_string_type()
2916 && cetype->is_string_type())
2917 this->type_ = context->type;
2918 else if (context->type != NULL
2919 && context->type->is_boolean_type()
2920 && cetype->is_boolean_type())
2921 this->type_ = context->type;
2922 else if (!context->may_be_abstract)
2923 {
2924 if (cetype->is_abstract())
2925 cetype = cetype->make_non_abstract_type();
2926 this->type_ = cetype;
2927 }
2928}
2929
a7f064d5 2930// Check for a loop in which the initializer of a constant refers to
2931// the constant itself.
e440a328 2932
2933void
a7f064d5 2934Const_expression::check_for_init_loop()
e440a328 2935{
5c13bd80 2936 if (this->type_ != NULL && this->type_->is_error())
d5b605df 2937 return;
2938
a7f064d5 2939 if (this->seen_)
2940 {
2941 this->report_error(_("constant refers to itself"));
2942 this->type_ = Type::make_error_type();
2943 return;
2944 }
2945
d5b605df 2946 Expression* init = this->constant_->const_value()->expr();
2947 Find_named_object find_named_object(this->constant_);
a7f064d5 2948
2949 this->seen_ = true;
d5b605df 2950 Expression::traverse(&init, &find_named_object);
a7f064d5 2951 this->seen_ = false;
2952
d5b605df 2953 if (find_named_object.found())
2954 {
5c13bd80 2955 if (this->type_ == NULL || !this->type_->is_error())
a7f064d5 2956 {
2957 this->report_error(_("constant refers to itself"));
2958 this->type_ = Type::make_error_type();
2959 }
d5b605df 2960 return;
2961 }
a7f064d5 2962}
2963
2964// Check types of a const reference.
2965
2966void
2967Const_expression::do_check_types(Gogo*)
2968{
5c13bd80 2969 if (this->type_ != NULL && this->type_->is_error())
a7f064d5 2970 return;
2971
2972 this->check_for_init_loop();
d5b605df 2973
e440a328 2974 if (this->type_ == NULL || this->type_->is_abstract())
2975 return;
2976
2977 // Check for integer overflow.
2978 if (this->type_->integer_type() != NULL)
2979 {
2980 mpz_t ival;
2981 mpz_init(ival);
2982 Type* dummy;
2983 if (!this->integer_constant_value(true, ival, &dummy))
2984 {
2985 mpfr_t fval;
2986 mpfr_init(fval);
2987 Expression* cexpr = this->constant_->const_value()->expr();
2988 if (cexpr->float_constant_value(fval, &dummy))
2989 {
2990 if (!mpfr_integer_p(fval))
2991 this->report_error(_("floating point constant "
2992 "truncated to integer"));
2993 else
2994 {
2995 mpfr_get_z(ival, fval, GMP_RNDN);
2996 Integer_expression::check_constant(ival, this->type_,
2997 this->location());
2998 }
2999 }
3000 mpfr_clear(fval);
3001 }
3002 mpz_clear(ival);
3003 }
3004}
3005
3006// Return a tree for the const reference.
3007
3008tree
3009Const_expression::do_get_tree(Translate_context* context)
3010{
3011 Gogo* gogo = context->gogo();
3012 tree type_tree;
3013 if (this->type_ == NULL)
3014 type_tree = NULL_TREE;
3015 else
3016 {
9f0e0513 3017 type_tree = type_to_tree(this->type_->get_backend(gogo));
e440a328 3018 if (type_tree == error_mark_node)
3019 return error_mark_node;
3020 }
3021
3022 // If the type has been set for this expression, but the underlying
3023 // object is an abstract int or float, we try to get the abstract
3024 // value. Otherwise we may lose something in the conversion.
3025 if (this->type_ != NULL
a68492b4 3026 && (this->constant_->const_value()->type() == NULL
3027 || this->constant_->const_value()->type()->is_abstract()))
e440a328 3028 {
3029 Expression* expr = this->constant_->const_value()->expr();
3030 mpz_t ival;
3031 mpz_init(ival);
3032 Type* t;
3033 if (expr->integer_constant_value(true, ival, &t))
3034 {
3035 tree ret = Expression::integer_constant_tree(ival, type_tree);
3036 mpz_clear(ival);
3037 return ret;
3038 }
3039 mpz_clear(ival);
3040
3041 mpfr_t fval;
3042 mpfr_init(fval);
3043 if (expr->float_constant_value(fval, &t))
3044 {
3045 tree ret = Expression::float_constant_tree(fval, type_tree);
3046 mpfr_clear(fval);
3047 return ret;
3048 }
3049
3050 mpfr_t imag;
3051 mpfr_init(imag);
3052 if (expr->complex_constant_value(fval, imag, &t))
3053 {
3054 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
3055 mpfr_clear(fval);
3056 mpfr_clear(imag);
3057 return ret;
3058 }
3059 mpfr_clear(imag);
3060 mpfr_clear(fval);
3061 }
3062
3063 tree const_tree = this->constant_->get_tree(gogo, context->function());
3064 if (this->type_ == NULL
3065 || const_tree == error_mark_node
3066 || TREE_TYPE(const_tree) == error_mark_node)
3067 return const_tree;
3068
3069 tree ret;
3070 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
3071 ret = fold_convert(type_tree, const_tree);
3072 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
3073 ret = fold(convert_to_integer(type_tree, const_tree));
3074 else if (TREE_CODE(type_tree) == REAL_TYPE)
3075 ret = fold(convert_to_real(type_tree, const_tree));
3076 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
3077 ret = fold(convert_to_complex(type_tree, const_tree));
3078 else
c3e6f413 3079 go_unreachable();
e440a328 3080 return ret;
3081}
3082
d751bb78 3083// Dump ast representation for constant expression.
3084
3085void
3086Const_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
3087{
3088 ast_dump_context->ostream() << this->constant_->name();
3089}
3090
e440a328 3091// Make a reference to a constant in an expression.
3092
3093Expression*
3094Expression::make_const_reference(Named_object* constant,
b13c66cd 3095 Location location)
e440a328 3096{
3097 return new Const_expression(constant, location);
3098}
3099
d5b605df 3100// Find a named object in an expression.
3101
3102int
3103Find_named_object::expression(Expression** pexpr)
3104{
3105 switch ((*pexpr)->classification())
3106 {
3107 case Expression::EXPRESSION_CONST_REFERENCE:
a7f064d5 3108 {
3109 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
3110 if (ce->named_object() == this->no_)
3111 break;
3112
3113 // We need to check a constant initializer explicitly, as
3114 // loops here will not be caught by the loop checking for
3115 // variable initializers.
3116 ce->check_for_init_loop();
3117
3118 return TRAVERSE_CONTINUE;
3119 }
3120
d5b605df 3121 case Expression::EXPRESSION_VAR_REFERENCE:
3122 if ((*pexpr)->var_expression()->named_object() == this->no_)
3123 break;
3124 return TRAVERSE_CONTINUE;
3125 case Expression::EXPRESSION_FUNC_REFERENCE:
3126 if ((*pexpr)->func_expression()->named_object() == this->no_)
3127 break;
3128 return TRAVERSE_CONTINUE;
3129 default:
3130 return TRAVERSE_CONTINUE;
3131 }
3132 this->found_ = true;
3133 return TRAVERSE_EXIT;
3134}
3135
e440a328 3136// The nil value.
3137
3138class Nil_expression : public Expression
3139{
3140 public:
b13c66cd 3141 Nil_expression(Location location)
e440a328 3142 : Expression(EXPRESSION_NIL, location)
3143 { }
3144
3145 static Expression*
3146 do_import(Import*);
3147
3148 protected:
3149 bool
3150 do_is_constant() const
3151 { return true; }
3152
3153 Type*
3154 do_type()
3155 { return Type::make_nil_type(); }
3156
3157 void
3158 do_determine_type(const Type_context*)
3159 { }
3160
3161 Expression*
3162 do_copy()
3163 { return this; }
3164
3165 tree
3166 do_get_tree(Translate_context*)
3167 { return null_pointer_node; }
3168
3169 void
3170 do_export(Export* exp) const
3171 { exp->write_c_string("nil"); }
d751bb78 3172
3173 void
3174 do_dump_expression(Ast_dump_context* ast_dump_context) const
3175 { ast_dump_context->ostream() << "nil"; }
e440a328 3176};
3177
3178// Import a nil expression.
3179
3180Expression*
3181Nil_expression::do_import(Import* imp)
3182{
3183 imp->require_c_string("nil");
3184 return Expression::make_nil(imp->location());
3185}
3186
3187// Make a nil expression.
3188
3189Expression*
b13c66cd 3190Expression::make_nil(Location location)
e440a328 3191{
3192 return new Nil_expression(location);
3193}
3194
3195// The value of the predeclared constant iota. This is little more
3196// than a marker. This will be lowered to an integer in
3197// Const_expression::do_lower, which is where we know the value that
3198// it should have.
3199
3200class Iota_expression : public Parser_expression
3201{
3202 public:
b13c66cd 3203 Iota_expression(Location location)
e440a328 3204 : Parser_expression(EXPRESSION_IOTA, location)
3205 { }
3206
3207 protected:
3208 Expression*
ceeb4318 3209 do_lower(Gogo*, Named_object*, Statement_inserter*, int)
c3e6f413 3210 { go_unreachable(); }
e440a328 3211
3212 // There should only ever be one of these.
3213 Expression*
3214 do_copy()
c3e6f413 3215 { go_unreachable(); }
d751bb78 3216
3217 void
3218 do_dump_expression(Ast_dump_context* ast_dump_context) const
3219 { ast_dump_context->ostream() << "iota"; }
e440a328 3220};
3221
3222// Make an iota expression. This is only called for one case: the
3223// value of the predeclared constant iota.
3224
3225Expression*
3226Expression::make_iota()
3227{
b13c66cd 3228 static Iota_expression iota_expression(Linemap::unknown_location());
e440a328 3229 return &iota_expression;
3230}
3231
3232// A type conversion expression.
3233
3234class Type_conversion_expression : public Expression
3235{
3236 public:
3237 Type_conversion_expression(Type* type, Expression* expr,
b13c66cd 3238 Location location)
e440a328 3239 : Expression(EXPRESSION_CONVERSION, location),
3240 type_(type), expr_(expr), may_convert_function_types_(false)
3241 { }
3242
3243 // Return the type to which we are converting.
3244 Type*
3245 type() const
3246 { return this->type_; }
3247
3248 // Return the expression which we are converting.
3249 Expression*
3250 expr() const
3251 { return this->expr_; }
3252
3253 // Permit converting from one function type to another. This is
3254 // used internally for method expressions.
3255 void
3256 set_may_convert_function_types()
3257 {
3258 this->may_convert_function_types_ = true;
3259 }
3260
3261 // Import a type conversion expression.
3262 static Expression*
3263 do_import(Import*);
3264
3265 protected:
3266 int
3267 do_traverse(Traverse* traverse);
3268
3269 Expression*
ceeb4318 3270 do_lower(Gogo*, Named_object*, Statement_inserter*, int);
e440a328 3271
3272 bool
3273 do_is_constant() const
3274 { return this->expr_->is_constant(); }
3275
3276 bool
3277 do_integer_constant_value(bool, mpz_t, Type**) const;
3278
3279 bool
3280 do_float_constant_value(mpfr_t, Type**) const;
3281
3282 bool
3283 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3284
3285 bool
3286 do_string_constant_value(std::string*) const;
3287
3288 Type*
3289 do_type()
3290 { return this->type_; }
3291
3292 void
3293 do_determine_type(const Type_context*)
3294 {
3295 Type_context subcontext(this->type_, false);
3296 this->expr_->determine_type(&subcontext);
3297 }
3298
3299 void
3300 do_check_types(Gogo*);
3301
3302 Expression*
3303 do_copy()
3304 {
3305 return new Type_conversion_expression(this->type_, this->expr_->copy(),
3306 this->location());
3307 }
3308
3309 tree
3310 do_get_tree(Translate_context* context);
3311
3312 void
3313 do_export(Export*) const;
3314
d751bb78 3315 void
3316 do_dump_expression(Ast_dump_context*) const;
3317
e440a328 3318 private:
3319 // The type to convert to.
3320 Type* type_;
3321 // The expression to convert.
3322 Expression* expr_;
3323 // True if this is permitted to convert function types. This is
3324 // used internally for method expressions.
3325 bool may_convert_function_types_;
3326};
3327
3328// Traversal.
3329
3330int
3331Type_conversion_expression::do_traverse(Traverse* traverse)
3332{
3333 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3334 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3335 return TRAVERSE_EXIT;
3336 return TRAVERSE_CONTINUE;
3337}
3338
3339// Convert to a constant at lowering time.
3340
3341Expression*
ceeb4318 3342Type_conversion_expression::do_lower(Gogo*, Named_object*,
3343 Statement_inserter*, int)
e440a328 3344{
3345 Type* type = this->type_;
3346 Expression* val = this->expr_;
b13c66cd 3347 Location location = this->location();
e440a328 3348
3349 if (type->integer_type() != NULL)
3350 {
3351 mpz_t ival;
3352 mpz_init(ival);
3353 Type* dummy;
3354 if (val->integer_constant_value(false, ival, &dummy))
3355 {
3356 if (!Integer_expression::check_constant(ival, type, location))
3357 mpz_set_ui(ival, 0);
3358 Expression* ret = Expression::make_integer(&ival, type, location);
3359 mpz_clear(ival);
3360 return ret;
3361 }
3362
3363 mpfr_t fval;
3364 mpfr_init(fval);
3365 if (val->float_constant_value(fval, &dummy))
3366 {
3367 if (!mpfr_integer_p(fval))
3368 {
3369 error_at(location,
3370 "floating point constant truncated to integer");
3371 return Expression::make_error(location);
3372 }
3373 mpfr_get_z(ival, fval, GMP_RNDN);
3374 if (!Integer_expression::check_constant(ival, type, location))
3375 mpz_set_ui(ival, 0);
3376 Expression* ret = Expression::make_integer(&ival, type, location);
3377 mpfr_clear(fval);
3378 mpz_clear(ival);
3379 return ret;
3380 }
3381 mpfr_clear(fval);
3382 mpz_clear(ival);
3383 }
3384
3385 if (type->float_type() != NULL)
3386 {
3387 mpfr_t fval;
3388 mpfr_init(fval);
3389 Type* dummy;
3390 if (val->float_constant_value(fval, &dummy))
3391 {
3392 if (!Float_expression::check_constant(fval, type, location))
3393 mpfr_set_ui(fval, 0, GMP_RNDN);
3394 Float_expression::constrain_float(fval, type);
3395 Expression *ret = Expression::make_float(&fval, type, location);
3396 mpfr_clear(fval);
3397 return ret;
3398 }
3399 mpfr_clear(fval);
3400 }
3401
3402 if (type->complex_type() != NULL)
3403 {
3404 mpfr_t real;
3405 mpfr_t imag;
3406 mpfr_init(real);
3407 mpfr_init(imag);
3408 Type* dummy;
3409 if (val->complex_constant_value(real, imag, &dummy))
3410 {
3411 if (!Complex_expression::check_constant(real, imag, type, location))
3412 {
3413 mpfr_set_ui(real, 0, GMP_RNDN);
3414 mpfr_set_ui(imag, 0, GMP_RNDN);
3415 }
3416 Complex_expression::constrain_complex(real, imag, type);
3417 Expression* ret = Expression::make_complex(&real, &imag, type,
3418 location);
3419 mpfr_clear(real);
3420 mpfr_clear(imag);
3421 return ret;
3422 }
3423 mpfr_clear(real);
3424 mpfr_clear(imag);
3425 }
3426
55072f2b 3427 if (type->is_slice_type())
e440a328 3428 {
3429 Type* element_type = type->array_type()->element_type()->forwarded();
60963afd 3430 bool is_byte = (element_type->integer_type() != NULL
3431 && element_type->integer_type()->is_byte());
3432 bool is_rune = (element_type->integer_type() != NULL
3433 && element_type->integer_type()->is_rune());
3434 if (is_byte || is_rune)
e440a328 3435 {
3436 std::string s;
3437 if (val->string_constant_value(&s))
3438 {
3439 Expression_list* vals = new Expression_list();
3440 if (is_byte)
3441 {
3442 for (std::string::const_iterator p = s.begin();
3443 p != s.end();
3444 p++)
3445 {
3446 mpz_t val;
3447 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3448 Expression* v = Expression::make_integer(&val,
3449 element_type,
3450 location);
3451 vals->push_back(v);
3452 mpz_clear(val);
3453 }
3454 }
3455 else
3456 {
3457 const char *p = s.data();
3458 const char *pend = s.data() + s.length();
3459 while (p < pend)
3460 {
3461 unsigned int c;
3462 int adv = Lex::fetch_char(p, &c);
3463 if (adv == 0)
3464 {
3465 warning_at(this->location(), 0,
3466 "invalid UTF-8 encoding");
3467 adv = 1;
3468 }
3469 p += adv;
3470 mpz_t val;
3471 mpz_init_set_ui(val, c);
3472 Expression* v = Expression::make_integer(&val,
3473 element_type,
3474 location);
3475 vals->push_back(v);
3476 mpz_clear(val);
3477 }
3478 }
3479
3480 return Expression::make_slice_composite_literal(type, vals,
3481 location);
3482 }
3483 }
3484 }
3485
3486 return this;
3487}
3488
3489// Return the constant integer value if there is one.
3490
3491bool
3492Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3493 mpz_t val,
3494 Type** ptype) const
3495{
3496 if (this->type_->integer_type() == NULL)
3497 return false;
3498
3499 mpz_t ival;
3500 mpz_init(ival);
3501 Type* dummy;
3502 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3503 {
3504 if (!Integer_expression::check_constant(ival, this->type_,
3505 this->location()))
3506 {
3507 mpz_clear(ival);
3508 return false;
3509 }
3510 mpz_set(val, ival);
3511 mpz_clear(ival);
3512 *ptype = this->type_;
3513 return true;
3514 }
3515 mpz_clear(ival);
3516
3517 mpfr_t fval;
3518 mpfr_init(fval);
3519 if (this->expr_->float_constant_value(fval, &dummy))
3520 {
3521 mpfr_get_z(val, fval, GMP_RNDN);
3522 mpfr_clear(fval);
3523 if (!Integer_expression::check_constant(val, this->type_,
3524 this->location()))
3525 return false;
3526 *ptype = this->type_;
3527 return true;
3528 }
3529 mpfr_clear(fval);
3530
3531 return false;
3532}
3533
3534// Return the constant floating point value if there is one.
3535
3536bool
3537Type_conversion_expression::do_float_constant_value(mpfr_t val,
3538 Type** ptype) const
3539{
3540 if (this->type_->float_type() == NULL)
3541 return false;
3542
3543 mpfr_t fval;
3544 mpfr_init(fval);
3545 Type* dummy;
3546 if (this->expr_->float_constant_value(fval, &dummy))
3547 {
3548 if (!Float_expression::check_constant(fval, this->type_,
3549 this->location()))
3550 {
3551 mpfr_clear(fval);
3552 return false;
3553 }
3554 mpfr_set(val, fval, GMP_RNDN);
3555 mpfr_clear(fval);
3556 Float_expression::constrain_float(val, this->type_);
3557 *ptype = this->type_;
3558 return true;
3559 }
3560 mpfr_clear(fval);
3561
3562 return false;
3563}
3564
3565// Return the constant complex value if there is one.
3566
3567bool
3568Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3569 mpfr_t imag,
3570 Type **ptype) const
3571{
3572 if (this->type_->complex_type() == NULL)
3573 return false;
3574
3575 mpfr_t rval;
3576 mpfr_t ival;
3577 mpfr_init(rval);
3578 mpfr_init(ival);
3579 Type* dummy;
3580 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3581 {
3582 if (!Complex_expression::check_constant(rval, ival, this->type_,
3583 this->location()))
3584 {
3585 mpfr_clear(rval);
3586 mpfr_clear(ival);
3587 return false;
3588 }
3589 mpfr_set(real, rval, GMP_RNDN);
3590 mpfr_set(imag, ival, GMP_RNDN);
3591 mpfr_clear(rval);
3592 mpfr_clear(ival);
3593 Complex_expression::constrain_complex(real, imag, this->type_);
3594 *ptype = this->type_;
3595 return true;
3596 }
3597 mpfr_clear(rval);
3598 mpfr_clear(ival);
3599
3600 return false;
3601}
3602
3603// Return the constant string value if there is one.
3604
3605bool
3606Type_conversion_expression::do_string_constant_value(std::string* val) const
3607{
3608 if (this->type_->is_string_type()
3609 && this->expr_->type()->integer_type() != NULL)
3610 {
3611 mpz_t ival;
3612 mpz_init(ival);
3613 Type* dummy;
3614 if (this->expr_->integer_constant_value(false, ival, &dummy))
3615 {
3616 unsigned long ulval = mpz_get_ui(ival);
3617 if (mpz_cmp_ui(ival, ulval) == 0)
3618 {
3619 Lex::append_char(ulval, true, val, this->location());
3620 mpz_clear(ival);
3621 return true;
3622 }
3623 }
3624 mpz_clear(ival);
3625 }
3626
3627 // FIXME: Could handle conversion from const []int here.
3628
3629 return false;
3630}
3631
3632// Check that types are convertible.
3633
3634void
3635Type_conversion_expression::do_check_types(Gogo*)
3636{
3637 Type* type = this->type_;
3638 Type* expr_type = this->expr_->type();
3639 std::string reason;
3640
5c13bd80 3641 if (type->is_error() || expr_type->is_error())
842f6425 3642 {
842f6425 3643 this->set_is_error();
3644 return;
3645 }
3646
e440a328 3647 if (this->may_convert_function_types_
3648 && type->function_type() != NULL
3649 && expr_type->function_type() != NULL)
3650 return;
3651
3652 if (Type::are_convertible(type, expr_type, &reason))
3653 return;
3654
3655 error_at(this->location(), "%s", reason.c_str());
3656 this->set_is_error();
3657}
3658
3659// Get a tree for a type conversion.
3660
3661tree
3662Type_conversion_expression::do_get_tree(Translate_context* context)
3663{
3664 Gogo* gogo = context->gogo();
9f0e0513 3665 tree type_tree = type_to_tree(this->type_->get_backend(gogo));
e440a328 3666 tree expr_tree = this->expr_->get_tree(context);
3667
3668 if (type_tree == error_mark_node
3669 || expr_tree == error_mark_node
3670 || TREE_TYPE(expr_tree) == error_mark_node)
3671 return error_mark_node;
3672
3673 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3674 return fold_convert(type_tree, expr_tree);
3675
3676 Type* type = this->type_;
3677 Type* expr_type = this->expr_->type();
3678 tree ret;
3679 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3680 ret = Expression::convert_for_assignment(context, type, expr_type,
3681 expr_tree, this->location());
3682 else if (type->integer_type() != NULL)
3683 {
3684 if (expr_type->integer_type() != NULL
3685 || expr_type->float_type() != NULL
3686 || expr_type->is_unsafe_pointer_type())
3687 ret = fold(convert_to_integer(type_tree, expr_tree));
3688 else
c3e6f413 3689 go_unreachable();
e440a328 3690 }
3691 else if (type->float_type() != NULL)
3692 {
3693 if (expr_type->integer_type() != NULL
3694 || expr_type->float_type() != NULL)
3695 ret = fold(convert_to_real(type_tree, expr_tree));
3696 else
c3e6f413 3697 go_unreachable();
e440a328 3698 }
3699 else if (type->complex_type() != NULL)
3700 {
3701 if (expr_type->complex_type() != NULL)
3702 ret = fold(convert_to_complex(type_tree, expr_tree));
3703 else
c3e6f413 3704 go_unreachable();
e440a328 3705 }
3706 else if (type->is_string_type()
3707 && expr_type->integer_type() != NULL)
3708 {
3709 expr_tree = fold_convert(integer_type_node, expr_tree);
3710 if (host_integerp(expr_tree, 0))
3711 {
3712 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3713 std::string s;
3714 Lex::append_char(intval, true, &s, this->location());
3715 Expression* se = Expression::make_string(s, this->location());
3716 return se->get_tree(context);
3717 }
3718
3719 static tree int_to_string_fndecl;
3720 ret = Gogo::call_builtin(&int_to_string_fndecl,
3721 this->location(),
3722 "__go_int_to_string",
3723 1,
3724 type_tree,
3725 integer_type_node,
3726 fold_convert(integer_type_node, expr_tree));
3727 }
55072f2b 3728 else if (type->is_string_type() && expr_type->is_slice_type())
e440a328 3729 {
e440a328 3730 if (!DECL_P(expr_tree))
3731 expr_tree = save_expr(expr_tree);
55072f2b 3732 Array_type* a = expr_type->array_type();
e440a328 3733 Type* e = a->element_type()->forwarded();
c484d925 3734 go_assert(e->integer_type() != NULL);
e440a328 3735 tree valptr = fold_convert(const_ptr_type_node,
3736 a->value_pointer_tree(gogo, expr_tree));
3737 tree len = a->length_tree(gogo, expr_tree);
b13c66cd 3738 len = fold_convert_loc(this->location().gcc_location(), integer_type_node,
3739 len);
60963afd 3740 if (e->integer_type()->is_byte())
e440a328 3741 {
3742 static tree byte_array_to_string_fndecl;
3743 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3744 this->location(),
3745 "__go_byte_array_to_string",
3746 2,
3747 type_tree,
3748 const_ptr_type_node,
3749 valptr,
9581e91d 3750 integer_type_node,
e440a328 3751 len);
3752 }
3753 else
3754 {
60963afd 3755 go_assert(e->integer_type()->is_rune());
e440a328 3756 static tree int_array_to_string_fndecl;
3757 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3758 this->location(),
3759 "__go_int_array_to_string",
3760 2,
3761 type_tree,
3762 const_ptr_type_node,
3763 valptr,
9581e91d 3764 integer_type_node,
e440a328 3765 len);
3766 }
3767 }
411eb89e 3768 else if (type->is_slice_type() && expr_type->is_string_type())
e440a328 3769 {
3770 Type* e = type->array_type()->element_type()->forwarded();
c484d925 3771 go_assert(e->integer_type() != NULL);
60963afd 3772 if (e->integer_type()->is_byte())
e440a328 3773 {
ef43e66c 3774 tree string_to_byte_array_fndecl = NULL_TREE;
e440a328 3775 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3776 this->location(),
3777 "__go_string_to_byte_array",
3778 1,
3779 type_tree,
3780 TREE_TYPE(expr_tree),
3781 expr_tree);
3782 }
3783 else
3784 {
60963afd 3785 go_assert(e->integer_type()->is_rune());
ef43e66c 3786 tree string_to_int_array_fndecl = NULL_TREE;
e440a328 3787 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3788 this->location(),
3789 "__go_string_to_int_array",
3790 1,
3791 type_tree,
3792 TREE_TYPE(expr_tree),
3793 expr_tree);
3794 }
3795 }
3796 else if ((type->is_unsafe_pointer_type()
3797 && expr_type->points_to() != NULL)
3798 || (expr_type->is_unsafe_pointer_type()
3799 && type->points_to() != NULL))
3800 ret = fold_convert(type_tree, expr_tree);
3801 else if (type->is_unsafe_pointer_type()
3802 && expr_type->integer_type() != NULL)
3803 ret = convert_to_pointer(type_tree, expr_tree);
3804 else if (this->may_convert_function_types_
3805 && type->function_type() != NULL
3806 && expr_type->function_type() != NULL)
b13c66cd 3807 ret = fold_convert_loc(this->location().gcc_location(), type_tree,
3808 expr_tree);
e440a328 3809 else
3810 ret = Expression::convert_for_assignment(context, type, expr_type,
3811 expr_tree, this->location());
3812
3813 return ret;
3814}
3815
3816// Output a type conversion in a constant expression.
3817
3818void
3819Type_conversion_expression::do_export(Export* exp) const
3820{
3821 exp->write_c_string("convert(");
3822 exp->write_type(this->type_);
3823 exp->write_c_string(", ");
3824 this->expr_->export_expression(exp);
3825 exp->write_c_string(")");
3826}
3827
3828// Import a type conversion or a struct construction.
3829
3830Expression*
3831Type_conversion_expression::do_import(Import* imp)
3832{
3833 imp->require_c_string("convert(");
3834 Type* type = imp->read_type();
3835 imp->require_c_string(", ");
3836 Expression* val = Expression::import_expression(imp);
3837 imp->require_c_string(")");
3838 return Expression::make_cast(type, val, imp->location());
3839}
3840
d751bb78 3841// Dump ast representation for a type conversion expression.
3842
3843void
3844Type_conversion_expression::do_dump_expression(
3845 Ast_dump_context* ast_dump_context) const
3846{
3847 ast_dump_context->dump_type(this->type_);
3848 ast_dump_context->ostream() << "(";
3849 ast_dump_context->dump_expression(this->expr_);
3850 ast_dump_context->ostream() << ") ";
3851}
3852
e440a328 3853// Make a type cast expression.
3854
3855Expression*
b13c66cd 3856Expression::make_cast(Type* type, Expression* val, Location location)
e440a328 3857{
3858 if (type->is_error_type() || val->is_error_expression())
3859 return Expression::make_error(location);
3860 return new Type_conversion_expression(type, val, location);
3861}
3862
9581e91d 3863// An unsafe type conversion, used to pass values to builtin functions.
3864
3865class Unsafe_type_conversion_expression : public Expression
3866{
3867 public:
3868 Unsafe_type_conversion_expression(Type* type, Expression* expr,
b13c66cd 3869 Location location)
9581e91d 3870 : Expression(EXPRESSION_UNSAFE_CONVERSION, location),
3871 type_(type), expr_(expr)
3872 { }
3873
3874 protected:
3875 int
3876 do_traverse(Traverse* traverse);
3877
3878 Type*
3879 do_type()
3880 { return this->type_; }
3881
3882 void
3883 do_determine_type(const Type_context*)
a9182619 3884 { this->expr_->determine_type_no_context(); }
9581e91d 3885
3886 Expression*
3887 do_copy()
3888 {
3889 return new Unsafe_type_conversion_expression(this->type_,
3890 this->expr_->copy(),
3891 this->location());
3892 }
3893
3894 tree
3895 do_get_tree(Translate_context*);
3896
d751bb78 3897 void
3898 do_dump_expression(Ast_dump_context*) const;
3899
9581e91d 3900 private:
3901 // The type to convert to.
3902 Type* type_;
3903 // The expression to convert.
3904 Expression* expr_;
3905};
3906
3907// Traversal.
3908
3909int
3910Unsafe_type_conversion_expression::do_traverse(Traverse* traverse)
3911{
3912 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3913 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3914 return TRAVERSE_EXIT;
3915 return TRAVERSE_CONTINUE;
3916}
3917
3918// Convert to backend representation.
3919
3920tree
3921Unsafe_type_conversion_expression::do_get_tree(Translate_context* context)
3922{
3923 // We are only called for a limited number of cases.
3924
3925 Type* t = this->type_;
3926 Type* et = this->expr_->type();
3927
9f0e0513 3928 tree type_tree = type_to_tree(this->type_->get_backend(context->gogo()));
9581e91d 3929 tree expr_tree = this->expr_->get_tree(context);
3930 if (type_tree == error_mark_node || expr_tree == error_mark_node)
3931 return error_mark_node;
3932
b13c66cd 3933 Location loc = this->location();
9581e91d 3934
3935 bool use_view_convert = false;
411eb89e 3936 if (t->is_slice_type())
9581e91d 3937 {
411eb89e 3938 go_assert(et->is_slice_type());
9581e91d 3939 use_view_convert = true;
3940 }
3941 else if (t->map_type() != NULL)
c484d925 3942 go_assert(et->map_type() != NULL);
9581e91d 3943 else if (t->channel_type() != NULL)
c484d925 3944 go_assert(et->channel_type() != NULL);
09ea332d 3945 else if (t->points_to() != NULL)
c484d925 3946 go_assert(et->points_to() != NULL || et->is_nil_type());
9581e91d 3947 else if (et->is_unsafe_pointer_type())
c484d925 3948 go_assert(t->points_to() != NULL);
9581e91d 3949 else if (t->interface_type() != NULL && !t->interface_type()->is_empty())
3950 {
c484d925 3951 go_assert(et->interface_type() != NULL
9581e91d 3952 && !et->interface_type()->is_empty());
3953 use_view_convert = true;
3954 }
3955 else if (t->interface_type() != NULL && t->interface_type()->is_empty())
3956 {
c484d925 3957 go_assert(et->interface_type() != NULL
9581e91d 3958 && et->interface_type()->is_empty());
3959 use_view_convert = true;
3960 }
588e3cf9 3961 else if (t->integer_type() != NULL)
3962 {
c484d925 3963 go_assert(et->is_boolean_type()
588e3cf9 3964 || et->integer_type() != NULL
3965 || et->function_type() != NULL
3966 || et->points_to() != NULL
3967 || et->map_type() != NULL
3968 || et->channel_type() != NULL);
3969 return convert_to_integer(type_tree, expr_tree);
3970 }
9581e91d 3971 else
c3e6f413 3972 go_unreachable();
9581e91d 3973
3974 if (use_view_convert)
b13c66cd 3975 return fold_build1_loc(loc.gcc_location(), VIEW_CONVERT_EXPR, type_tree,
3976 expr_tree);
9581e91d 3977 else
b13c66cd 3978 return fold_convert_loc(loc.gcc_location(), type_tree, expr_tree);
9581e91d 3979}
3980
d751bb78 3981// Dump ast representation for an unsafe type conversion expression.
3982
3983void
3984Unsafe_type_conversion_expression::do_dump_expression(
3985 Ast_dump_context* ast_dump_context) const
3986{
3987 ast_dump_context->dump_type(this->type_);
3988 ast_dump_context->ostream() << "(";
3989 ast_dump_context->dump_expression(this->expr_);
3990 ast_dump_context->ostream() << ") ";
3991}
3992
9581e91d 3993// Make an unsafe type conversion expression.
3994
3995Expression*
3996Expression::make_unsafe_cast(Type* type, Expression* expr,
b13c66cd 3997 Location location)
9581e91d 3998{
3999 return new Unsafe_type_conversion_expression(type, expr, location);
4000}
4001
e440a328 4002// Unary expressions.
4003
4004class Unary_expression : public Expression
4005{
4006 public:
b13c66cd 4007 Unary_expression(Operator op, Expression* expr, Location location)
e440a328 4008 : Expression(EXPRESSION_UNARY, location),
09ea332d 4009 op_(op), escapes_(true), create_temp_(false), expr_(expr)
e440a328 4010 { }
4011
4012 // Return the operator.
4013 Operator
4014 op() const
4015 { return this->op_; }
4016
4017 // Return the operand.
4018 Expression*
4019 operand() const
4020 { return this->expr_; }
4021
4022 // Record that an address expression does not escape.
4023 void
4024 set_does_not_escape()
4025 {
c484d925 4026 go_assert(this->op_ == OPERATOR_AND);
e440a328 4027 this->escapes_ = false;
4028 }
4029
09ea332d 4030 // Record that this is an address expression which should create a
4031 // temporary variable if necessary. This is used for method calls.
4032 void
4033 set_create_temp()
4034 {
4035 go_assert(this->op_ == OPERATOR_AND);
4036 this->create_temp_ = true;
4037 }
4038
e440a328 4039 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
4040 // could be done, false if not.
4041 static bool
4042 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
b13c66cd 4043 Location);
e440a328 4044
4045 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
4046 // could be done, false if not.
4047 static bool
4048 eval_float(Operator op, mpfr_t uval, mpfr_t val);
4049
4050 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
4051 // true if this could be done, false if not.
4052 static bool
4053 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
4054 mpfr_t imag);
4055
4056 static Expression*
4057 do_import(Import*);
4058
4059 protected:
4060 int
4061 do_traverse(Traverse* traverse)
4062 { return Expression::traverse(&this->expr_, traverse); }
4063
4064 Expression*
ceeb4318 4065 do_lower(Gogo*, Named_object*, Statement_inserter*, int);
e440a328 4066
4067 bool
4068 do_is_constant() const;
4069
4070 bool
4071 do_integer_constant_value(bool, mpz_t, Type**) const;
4072
4073 bool
4074 do_float_constant_value(mpfr_t, Type**) const;
4075
4076 bool
4077 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
4078
4079 Type*
4080 do_type();
4081
4082 void
4083 do_determine_type(const Type_context*);
4084
4085 void
4086 do_check_types(Gogo*);
4087
4088 Expression*
4089 do_copy()
4090 {
4091 return Expression::make_unary(this->op_, this->expr_->copy(),
4092 this->location());
4093 }
4094
baef9f7a 4095 bool
4096 do_must_eval_subexpressions_in_order(int*) const
4097 { return this->op_ == OPERATOR_MULT; }
4098
e440a328 4099 bool
4100 do_is_addressable() const
4101 { return this->op_ == OPERATOR_MULT; }
4102
4103 tree
4104 do_get_tree(Translate_context*);
4105
4106 void
4107 do_export(Export*) const;
4108
d751bb78 4109 void
4110 do_dump_expression(Ast_dump_context*) const;
4111
e440a328 4112 private:
4113 // The unary operator to apply.
4114 Operator op_;
4115 // Normally true. False if this is an address expression which does
4116 // not escape the current function.
4117 bool escapes_;
09ea332d 4118 // True if this is an address expression which should create a
4119 // temporary variable if necessary.
4120 bool create_temp_;
e440a328 4121 // The operand.
4122 Expression* expr_;
4123};
4124
4125// If we are taking the address of a composite literal, and the
4126// contents are not constant, then we want to make a heap composite
4127// instead.
4128
4129Expression*
ceeb4318 4130Unary_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
e440a328 4131{
b13c66cd 4132 Location loc = this->location();
e440a328 4133 Operator op = this->op_;
4134 Expression* expr = this->expr_;
4135
4136 if (op == OPERATOR_MULT && expr->is_type_expression())
4137 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
4138
4139 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
4140 // moving x to the heap. FIXME: Is it worth doing a real escape
4141 // analysis here? This case is found in math/unsafe.go and is
4142 // therefore worth special casing.
4143 if (op == OPERATOR_MULT)
4144 {
4145 Expression* e = expr;
4146 while (e->classification() == EXPRESSION_CONVERSION)
4147 {
4148 Type_conversion_expression* te
4149 = static_cast<Type_conversion_expression*>(e);
4150 e = te->expr();
4151 }
4152
4153 if (e->classification() == EXPRESSION_UNARY)
4154 {
4155 Unary_expression* ue = static_cast<Unary_expression*>(e);
4156 if (ue->op_ == OPERATOR_AND)
4157 {
4158 if (e == expr)
4159 {
4160 // *&x == x.
4161 return ue->expr_;
4162 }
4163 ue->set_does_not_escape();
4164 }
4165 }
4166 }
4167
55661ce9 4168 // Catching an invalid indirection of unsafe.Pointer here avoid
4169 // having to deal with TYPE_VOID in other places.
4170 if (op == OPERATOR_MULT && expr->type()->is_unsafe_pointer_type())
4171 {
4172 error_at(this->location(), "invalid indirect of %<unsafe.Pointer%>");
4173 return Expression::make_error(this->location());
4174 }
4175
e440a328 4176 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
4177 || op == OPERATOR_NOT || op == OPERATOR_XOR)
4178 {
4179 Expression* ret = NULL;
4180
4181 mpz_t eval;
4182 mpz_init(eval);
4183 Type* etype;
4184 if (expr->integer_constant_value(false, eval, &etype))
4185 {
4186 mpz_t val;
4187 mpz_init(val);
4188 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
4189 ret = Expression::make_integer(&val, etype, loc);
4190 mpz_clear(val);
4191 }
4192 mpz_clear(eval);
4193 if (ret != NULL)
4194 return ret;
4195
4196 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
4197 {
4198 mpfr_t fval;
4199 mpfr_init(fval);
4200 Type* ftype;
4201 if (expr->float_constant_value(fval, &ftype))
4202 {
4203 mpfr_t val;
4204 mpfr_init(val);
4205 if (Unary_expression::eval_float(op, fval, val))
4206 ret = Expression::make_float(&val, ftype, loc);
4207 mpfr_clear(val);
4208 }
4209 if (ret != NULL)
4210 {
4211 mpfr_clear(fval);
4212 return ret;
4213 }
4214
4215 mpfr_t ival;
4216 mpfr_init(ival);
4217 if (expr->complex_constant_value(fval, ival, &ftype))
4218 {
4219 mpfr_t real;
4220 mpfr_t imag;
4221 mpfr_init(real);
4222 mpfr_init(imag);
4223 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
4224 ret = Expression::make_complex(&real, &imag, ftype, loc);
4225 mpfr_clear(real);
4226 mpfr_clear(imag);
4227 }
4228 mpfr_clear(ival);
4229 mpfr_clear(fval);
4230 if (ret != NULL)
4231 return ret;
4232 }
4233 }
4234
4235 return this;
4236}
4237
4238// Return whether a unary expression is a constant.
4239
4240bool
4241Unary_expression::do_is_constant() const
4242{
4243 if (this->op_ == OPERATOR_MULT)
4244 {
4245 // Indirecting through a pointer is only constant if the object
4246 // to which the expression points is constant, but we currently
4247 // have no way to determine that.
4248 return false;
4249 }
4250 else if (this->op_ == OPERATOR_AND)
4251 {
4252 // Taking the address of a variable is constant if it is a
4253 // global variable, not constant otherwise. In other cases
4254 // taking the address is probably not a constant.
4255 Var_expression* ve = this->expr_->var_expression();
4256 if (ve != NULL)
4257 {
4258 Named_object* no = ve->named_object();
4259 return no->is_variable() && no->var_value()->is_global();
4260 }
4261 return false;
4262 }
4263 else
4264 return this->expr_->is_constant();
4265}
4266
4267// Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
4268// UVAL, if known; it may be NULL. Return true if this could be done,
4269// false if not.
4270
4271bool
4272Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
b13c66cd 4273 Location location)
e440a328 4274{
4275 switch (op)
4276 {
4277 case OPERATOR_PLUS:
4278 mpz_set(val, uval);
4279 return true;
4280 case OPERATOR_MINUS:
4281 mpz_neg(val, uval);
4282 return Integer_expression::check_constant(val, utype, location);
4283 case OPERATOR_NOT:
4284 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
4285 return true;
4286 case OPERATOR_XOR:
4287 if (utype == NULL
4288 || utype->integer_type() == NULL
4289 || utype->integer_type()->is_abstract())
4290 mpz_com(val, uval);
4291 else
4292 {
4293 // The number of HOST_WIDE_INTs that it takes to represent
4294 // UVAL.
4295 size_t count = ((mpz_sizeinbase(uval, 2)
4296 + HOST_BITS_PER_WIDE_INT
4297 - 1)
4298 / HOST_BITS_PER_WIDE_INT);
4299
4300 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
4301 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
4302
68448d53 4303 size_t obits = utype->integer_type()->bits();
4304
4305 if (!utype->integer_type()->is_unsigned()
4306 && mpz_sgn(uval) < 0)
4307 {
4308 mpz_t adj;
4309 mpz_init_set_ui(adj, 1);
4310 mpz_mul_2exp(adj, adj, obits);
4311 mpz_add(uval, uval, adj);
4312 mpz_clear(adj);
4313 }
4314
e440a328 4315 size_t ecount;
4316 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
c484d925 4317 go_assert(ecount <= count);
e440a328 4318
4319 // Trim down to the number of words required by the type.
e440a328 4320 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
4321 / HOST_BITS_PER_WIDE_INT);
c484d925 4322 go_assert(ocount <= count);
e440a328 4323
4324 for (size_t i = 0; i < ocount; ++i)
4325 phwi[i] = ~phwi[i];
4326
4327 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
4328 if (clearbits != 0)
4329 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
4330 >> clearbits);
4331
4332 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
4333
68448d53 4334 if (!utype->integer_type()->is_unsigned()
4335 && mpz_tstbit(val, obits - 1))
4336 {
4337 mpz_t adj;
4338 mpz_init_set_ui(adj, 1);
4339 mpz_mul_2exp(adj, adj, obits);
4340 mpz_sub(val, val, adj);
4341 mpz_clear(adj);
4342 }
4343
e440a328 4344 delete[] phwi;
4345 }
4346 return Integer_expression::check_constant(val, utype, location);
4347 case OPERATOR_AND:
4348 case OPERATOR_MULT:
4349 return false;
4350 default:
c3e6f413 4351 go_unreachable();
e440a328 4352 }
4353}
4354
4355// Apply unary opcode OP to UVAL, setting VAL. Return true if this
4356// could be done, false if not.
4357
4358bool
4359Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
4360{
4361 switch (op)
4362 {
4363 case OPERATOR_PLUS:
4364 mpfr_set(val, uval, GMP_RNDN);
4365 return true;
4366 case OPERATOR_MINUS:
4367 mpfr_neg(val, uval, GMP_RNDN);
4368 return true;
4369 case OPERATOR_NOT:
4370 case OPERATOR_XOR:
4371 case OPERATOR_AND:
4372 case OPERATOR_MULT:
4373 return false;
4374 default:
c3e6f413 4375 go_unreachable();
e440a328 4376 }
4377}
4378
4379// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
4380// if this could be done, false if not.
4381
4382bool
4383Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
4384 mpfr_t real, mpfr_t imag)
4385{
4386 switch (op)
4387 {
4388 case OPERATOR_PLUS:
4389 mpfr_set(real, rval, GMP_RNDN);
4390 mpfr_set(imag, ival, GMP_RNDN);
4391 return true;
4392 case OPERATOR_MINUS:
4393 mpfr_neg(real, rval, GMP_RNDN);
4394 mpfr_neg(imag, ival, GMP_RNDN);
4395 return true;
4396 case OPERATOR_NOT:
4397 case OPERATOR_XOR:
4398 case OPERATOR_AND:
4399 case OPERATOR_MULT:
4400 return false;
4401 default:
c3e6f413 4402 go_unreachable();
e440a328 4403 }
4404}
4405
4406// Return the integral constant value of a unary expression, if it has one.
4407
4408bool
4409Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
4410 Type** ptype) const
4411{
4412 mpz_t uval;
4413 mpz_init(uval);
4414 bool ret;
4415 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
4416 ret = false;
4417 else
4418 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
4419 this->location());
4420 mpz_clear(uval);
4421 return ret;
4422}
4423
4424// Return the floating point constant value of a unary expression, if
4425// it has one.
4426
4427bool
4428Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
4429{
4430 mpfr_t uval;
4431 mpfr_init(uval);
4432 bool ret;
4433 if (!this->expr_->float_constant_value(uval, ptype))
4434 ret = false;
4435 else
4436 ret = Unary_expression::eval_float(this->op_, uval, val);
4437 mpfr_clear(uval);
4438 return ret;
4439}
4440
4441// Return the complex constant value of a unary expression, if it has
4442// one.
4443
4444bool
4445Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
4446 Type** ptype) const
4447{
4448 mpfr_t rval;
4449 mpfr_t ival;
4450 mpfr_init(rval);
4451 mpfr_init(ival);
4452 bool ret;
4453 if (!this->expr_->complex_constant_value(rval, ival, ptype))
4454 ret = false;
4455 else
4456 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
4457 mpfr_clear(rval);
4458 mpfr_clear(ival);
4459 return ret;
4460}
4461
4462// Return the type of a unary expression.
4463
4464Type*
4465Unary_expression::do_type()
4466{
4467 switch (this->op_)
4468 {
4469 case OPERATOR_PLUS:
4470 case OPERATOR_MINUS:
4471 case OPERATOR_NOT:
4472 case OPERATOR_XOR:
4473 return this->expr_->type();
4474
4475 case OPERATOR_AND:
4476 return Type::make_pointer_type(this->expr_->type());
4477
4478 case OPERATOR_MULT:
4479 {
4480 Type* subtype = this->expr_->type();
4481 Type* points_to = subtype->points_to();
4482 if (points_to == NULL)
4483 return Type::make_error_type();
4484 return points_to;
4485 }
4486
4487 default:
c3e6f413 4488 go_unreachable();
e440a328 4489 }
4490}
4491
4492// Determine abstract types for a unary expression.
4493
4494void
4495Unary_expression::do_determine_type(const Type_context* context)
4496{
4497 switch (this->op_)
4498 {
4499 case OPERATOR_PLUS:
4500 case OPERATOR_MINUS:
4501 case OPERATOR_NOT:
4502 case OPERATOR_XOR:
4503 this->expr_->determine_type(context);
4504 break;
4505
4506 case OPERATOR_AND:
4507 // Taking the address of something.
4508 {
4509 Type* subtype = (context->type == NULL
4510 ? NULL
4511 : context->type->points_to());
4512 Type_context subcontext(subtype, false);
4513 this->expr_->determine_type(&subcontext);
4514 }
4515 break;
4516
4517 case OPERATOR_MULT:
4518 // Indirecting through a pointer.
4519 {
4520 Type* subtype = (context->type == NULL
4521 ? NULL
4522 : Type::make_pointer_type(context->type));
4523 Type_context subcontext(subtype, false);
4524 this->expr_->determine_type(&subcontext);
4525 }
4526 break;
4527
4528 default:
c3e6f413 4529 go_unreachable();
e440a328 4530 }
4531}
4532
4533// Check types for a unary expression.
4534
4535void
4536Unary_expression::do_check_types(Gogo*)
4537{
9fe897ef 4538 Type* type = this->expr_->type();
5c13bd80 4539 if (type->is_error())
9fe897ef 4540 {
4541 this->set_is_error();
4542 return;
4543 }
4544
e440a328 4545 switch (this->op_)
4546 {
4547 case OPERATOR_PLUS:
4548 case OPERATOR_MINUS:
9fe897ef 4549 if (type->integer_type() == NULL
4550 && type->float_type() == NULL
4551 && type->complex_type() == NULL)
4552 this->report_error(_("expected numeric type"));
e440a328 4553 break;
4554
4555 case OPERATOR_NOT:
4556 case OPERATOR_XOR:
9fe897ef 4557 if (type->integer_type() == NULL
4558 && !type->is_boolean_type())
4559 this->report_error(_("expected integer or boolean type"));
e440a328 4560 break;
4561
4562 case OPERATOR_AND:
4563 if (!this->expr_->is_addressable())
09ea332d 4564 {
4565 if (!this->create_temp_)
4566 this->report_error(_("invalid operand for unary %<&%>"));
4567 }
e440a328 4568 else
4569 this->expr_->address_taken(this->escapes_);
4570 break;
4571
4572 case OPERATOR_MULT:
4573 // Indirecting through a pointer.
9fe897ef 4574 if (type->points_to() == NULL)
4575 this->report_error(_("expected pointer"));
e440a328 4576 break;
4577
4578 default:
c3e6f413 4579 go_unreachable();
e440a328 4580 }
4581}
4582
4583// Get a tree for a unary expression.
4584
4585tree
4586Unary_expression::do_get_tree(Translate_context* context)
4587{
e9d3367e 4588 Location loc = this->location();
4589
4590 // Taking the address of a set-and-use-temporary expression requires
4591 // setting the temporary and then taking the address.
4592 if (this->op_ == OPERATOR_AND)
4593 {
4594 Set_and_use_temporary_expression* sut =
4595 this->expr_->set_and_use_temporary_expression();
4596 if (sut != NULL)
4597 {
4598 Temporary_statement* temp = sut->temporary();
4599 Bvariable* bvar = temp->get_backend_variable(context);
4600 tree var_tree = var_to_tree(bvar);
4601 Expression* val = sut->expression();
4602 tree val_tree = val->get_tree(context);
4603 if (var_tree == error_mark_node || val_tree == error_mark_node)
4604 return error_mark_node;
4605 tree addr_tree = build_fold_addr_expr_loc(loc.gcc_location(),
4606 var_tree);
4607 return build2_loc(loc.gcc_location(), COMPOUND_EXPR,
4608 TREE_TYPE(addr_tree),
4609 build2_loc(sut->location().gcc_location(),
4610 MODIFY_EXPR, void_type_node,
4611 var_tree, val_tree),
4612 addr_tree);
4613 }
4614 }
4615
e440a328 4616 tree expr = this->expr_->get_tree(context);
4617 if (expr == error_mark_node)
4618 return error_mark_node;
4619
e440a328 4620 switch (this->op_)
4621 {
4622 case OPERATOR_PLUS:
4623 return expr;
4624
4625 case OPERATOR_MINUS:
4626 {
4627 tree type = TREE_TYPE(expr);
4628 tree compute_type = excess_precision_type(type);
4629 if (compute_type != NULL_TREE)
4630 expr = ::convert(compute_type, expr);
b13c66cd 4631 tree ret = fold_build1_loc(loc.gcc_location(), NEGATE_EXPR,
e440a328 4632 (compute_type != NULL_TREE
4633 ? compute_type
4634 : type),
4635 expr);
4636 if (compute_type != NULL_TREE)
4637 ret = ::convert(type, ret);
4638 return ret;
4639 }
4640
4641 case OPERATOR_NOT:
4642 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
b13c66cd 4643 return fold_build1_loc(loc.gcc_location(), TRUTH_NOT_EXPR,
4644 TREE_TYPE(expr), expr);
e440a328 4645 else
b13c66cd 4646 return fold_build2_loc(loc.gcc_location(), NE_EXPR, boolean_type_node,
4647 expr, build_int_cst(TREE_TYPE(expr), 0));
e440a328 4648
4649 case OPERATOR_XOR:
b13c66cd 4650 return fold_build1_loc(loc.gcc_location(), BIT_NOT_EXPR, TREE_TYPE(expr),
4651 expr);
e440a328 4652
4653 case OPERATOR_AND:
09ea332d 4654 if (!this->create_temp_)
4655 {
4656 // We should not see a non-constant constructor here; cases
4657 // where we would see one should have been moved onto the
4658 // heap at parse time. Taking the address of a nonconstant
4659 // constructor will not do what the programmer expects.
4660 go_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4661 go_assert(TREE_CODE(expr) != ADDR_EXPR);
4662 }
e440a328 4663
4664 // Build a decl for a constant constructor.
4665 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4666 {
b13c66cd 4667 tree decl = build_decl(this->location().gcc_location(), VAR_DECL,
e440a328 4668 create_tmp_var_name("C"), TREE_TYPE(expr));
4669 DECL_EXTERNAL(decl) = 0;
4670 TREE_PUBLIC(decl) = 0;
4671 TREE_READONLY(decl) = 1;
4672 TREE_CONSTANT(decl) = 1;
4673 TREE_STATIC(decl) = 1;
4674 TREE_ADDRESSABLE(decl) = 1;
4675 DECL_ARTIFICIAL(decl) = 1;
4676 DECL_INITIAL(decl) = expr;
4677 rest_of_decl_compilation(decl, 1, 0);
4678 expr = decl;
4679 }
4680
09ea332d 4681 if (this->create_temp_
4682 && !TREE_ADDRESSABLE(TREE_TYPE(expr))
4683 && !DECL_P(expr)
4684 && TREE_CODE(expr) != INDIRECT_REF
4685 && TREE_CODE(expr) != COMPONENT_REF)
4686 {
4687 tree tmp = create_tmp_var(TREE_TYPE(expr), get_name(expr));
4688 DECL_IGNORED_P(tmp) = 1;
4689 DECL_INITIAL(tmp) = expr;
4690 TREE_ADDRESSABLE(tmp) = 1;
b13c66cd 4691 return build2_loc(loc.gcc_location(), COMPOUND_EXPR,
09ea332d 4692 build_pointer_type(TREE_TYPE(expr)),
b13c66cd 4693 build1_loc(loc.gcc_location(), DECL_EXPR,
4694 void_type_node, tmp),
4695 build_fold_addr_expr_loc(loc.gcc_location(), tmp));
09ea332d 4696 }
4697
b13c66cd 4698 return build_fold_addr_expr_loc(loc.gcc_location(), expr);
e440a328 4699
4700 case OPERATOR_MULT:
4701 {
c484d925 4702 go_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
e440a328 4703
4704 // If we are dereferencing the pointer to a large struct, we
4705 // need to check for nil. We don't bother to check for small
4706 // structs because we expect the system to crash on a nil
4707 // pointer dereference.
19b4f09b 4708 tree target_type_tree = TREE_TYPE(TREE_TYPE(expr));
4709 if (!VOID_TYPE_P(target_type_tree))
e440a328 4710 {
19b4f09b 4711 HOST_WIDE_INT s = int_size_in_bytes(target_type_tree);
4712 if (s == -1 || s >= 4096)
4713 {
4714 if (!DECL_P(expr))
4715 expr = save_expr(expr);
4716 tree compare = fold_build2_loc(loc.gcc_location(), EQ_EXPR,
4717 boolean_type_node,
4718 expr,
4719 fold_convert(TREE_TYPE(expr),
4720 null_pointer_node));
4721 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4722 loc);
4723 expr = fold_build2_loc(loc.gcc_location(), COMPOUND_EXPR,
4724 TREE_TYPE(expr), build3(COND_EXPR,
4725 void_type_node,
4726 compare, crash,
4727 NULL_TREE),
4728 expr);
4729 }
e440a328 4730 }
4731
4732 // If the type of EXPR is a recursive pointer type, then we
4733 // need to insert a cast before indirecting.
19b4f09b 4734 if (VOID_TYPE_P(target_type_tree))
e440a328 4735 {
4736 Type* pt = this->expr_->type()->points_to();
9f0e0513 4737 tree ind = type_to_tree(pt->get_backend(context->gogo()));
b13c66cd 4738 expr = fold_convert_loc(loc.gcc_location(),
4739 build_pointer_type(ind), expr);
e440a328 4740 }
4741
b13c66cd 4742 return build_fold_indirect_ref_loc(loc.gcc_location(), expr);
e440a328 4743 }
4744
4745 default:
c3e6f413 4746 go_unreachable();
e440a328 4747 }
4748}
4749
4750// Export a unary expression.
4751
4752void
4753Unary_expression::do_export(Export* exp) const
4754{
4755 switch (this->op_)
4756 {
4757 case OPERATOR_PLUS:
4758 exp->write_c_string("+ ");
4759 break;
4760 case OPERATOR_MINUS:
4761 exp->write_c_string("- ");
4762 break;
4763 case OPERATOR_NOT:
4764 exp->write_c_string("! ");
4765 break;
4766 case OPERATOR_XOR:
4767 exp->write_c_string("^ ");
4768 break;
4769 case OPERATOR_AND:
4770 case OPERATOR_MULT:
4771 default:
c3e6f413 4772 go_unreachable();
e440a328 4773 }
4774 this->expr_->export_expression(exp);
4775}
4776
4777// Import a unary expression.
4778
4779Expression*
4780Unary_expression::do_import(Import* imp)
4781{
4782 Operator op;
4783 switch (imp->get_char())
4784 {
4785 case '+':
4786 op = OPERATOR_PLUS;
4787 break;
4788 case '-':
4789 op = OPERATOR_MINUS;
4790 break;
4791 case '!':
4792 op = OPERATOR_NOT;
4793 break;
4794 case '^':
4795 op = OPERATOR_XOR;
4796 break;
4797 default:
c3e6f413 4798 go_unreachable();
e440a328 4799 }
4800 imp->require_c_string(" ");
4801 Expression* expr = Expression::import_expression(imp);
4802 return Expression::make_unary(op, expr, imp->location());
4803}
4804
d751bb78 4805// Dump ast representation of an unary expression.
4806
4807void
4808Unary_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
4809{
4810 ast_dump_context->dump_operator(this->op_);
4811 ast_dump_context->ostream() << "(";
4812 ast_dump_context->dump_expression(this->expr_);
4813 ast_dump_context->ostream() << ") ";
4814}
4815
e440a328 4816// Make a unary expression.
4817
4818Expression*
b13c66cd 4819Expression::make_unary(Operator op, Expression* expr, Location location)
e440a328 4820{
4821 return new Unary_expression(op, expr, location);
4822}
4823
4824// If this is an indirection through a pointer, return the expression
4825// being pointed through. Otherwise return this.
4826
4827Expression*
4828Expression::deref()
4829{
4830 if (this->classification_ == EXPRESSION_UNARY)
4831 {
4832 Unary_expression* ue = static_cast<Unary_expression*>(this);
4833 if (ue->op() == OPERATOR_MULT)
4834 return ue->operand();
4835 }
4836 return this;
4837}
4838
4839// Class Binary_expression.
4840
4841// Traversal.
4842
4843int
4844Binary_expression::do_traverse(Traverse* traverse)
4845{
4846 int t = Expression::traverse(&this->left_, traverse);
4847 if (t == TRAVERSE_EXIT)
4848 return TRAVERSE_EXIT;
4849 return Expression::traverse(&this->right_, traverse);
4850}
4851
4852// Compare integer constants according to OP.
4853
4854bool
4855Binary_expression::compare_integer(Operator op, mpz_t left_val,
4856 mpz_t right_val)
4857{
4858 int i = mpz_cmp(left_val, right_val);
4859 switch (op)
4860 {
4861 case OPERATOR_EQEQ:
4862 return i == 0;
4863 case OPERATOR_NOTEQ:
4864 return i != 0;
4865 case OPERATOR_LT:
4866 return i < 0;
4867 case OPERATOR_LE:
4868 return i <= 0;
4869 case OPERATOR_GT:
4870 return i > 0;
4871 case OPERATOR_GE:
4872 return i >= 0;
4873 default:
c3e6f413 4874 go_unreachable();
e440a328 4875 }
4876}
4877
4878// Compare floating point constants according to OP.
4879
4880bool
4881Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4882 mpfr_t right_val)
4883{
4884 int i;
4885 if (type == NULL)
4886 i = mpfr_cmp(left_val, right_val);
4887 else
4888 {
4889 mpfr_t lv;
4890 mpfr_init_set(lv, left_val, GMP_RNDN);
4891 mpfr_t rv;
4892 mpfr_init_set(rv, right_val, GMP_RNDN);
4893 Float_expression::constrain_float(lv, type);
4894 Float_expression::constrain_float(rv, type);
4895 i = mpfr_cmp(lv, rv);
4896 mpfr_clear(lv);
4897 mpfr_clear(rv);
4898 }
4899 switch (op)
4900 {
4901 case OPERATOR_EQEQ:
4902 return i == 0;
4903 case OPERATOR_NOTEQ:
4904 return i != 0;
4905 case OPERATOR_LT:
4906 return i < 0;
4907 case OPERATOR_LE:
4908 return i <= 0;
4909 case OPERATOR_GT:
4910 return i > 0;
4911 case OPERATOR_GE:
4912 return i >= 0;
4913 default:
c3e6f413 4914 go_unreachable();
e440a328 4915 }
4916}
4917
4918// Compare complex constants according to OP. Complex numbers may
4919// only be compared for equality.
4920
4921bool
4922Binary_expression::compare_complex(Operator op, Type* type,
4923 mpfr_t left_real, mpfr_t left_imag,
4924 mpfr_t right_real, mpfr_t right_imag)
4925{
4926 bool is_equal;
4927 if (type == NULL)
4928 is_equal = (mpfr_cmp(left_real, right_real) == 0
4929 && mpfr_cmp(left_imag, right_imag) == 0);
4930 else
4931 {
4932 mpfr_t lr;
4933 mpfr_t li;
4934 mpfr_init_set(lr, left_real, GMP_RNDN);
4935 mpfr_init_set(li, left_imag, GMP_RNDN);
4936 mpfr_t rr;
4937 mpfr_t ri;
4938 mpfr_init_set(rr, right_real, GMP_RNDN);
4939 mpfr_init_set(ri, right_imag, GMP_RNDN);
4940 Complex_expression::constrain_complex(lr, li, type);
4941 Complex_expression::constrain_complex(rr, ri, type);
4942 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4943 mpfr_clear(lr);
4944 mpfr_clear(li);
4945 mpfr_clear(rr);
4946 mpfr_clear(ri);
4947 }
4948 switch (op)
4949 {
4950 case OPERATOR_EQEQ:
4951 return is_equal;
4952 case OPERATOR_NOTEQ:
4953 return !is_equal;
4954 default:
c3e6f413 4955 go_unreachable();
e440a328 4956 }
4957}
4958
4959// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4960// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4961// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4962// this could be done, false if not.
4963
4964bool
4965Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4966 Type* right_type, mpz_t right_val,
b13c66cd 4967 Location location, mpz_t val)
e440a328 4968{
4969 bool is_shift_op = false;
4970 switch (op)
4971 {
4972 case OPERATOR_OROR:
4973 case OPERATOR_ANDAND:
4974 case OPERATOR_EQEQ:
4975 case OPERATOR_NOTEQ:
4976 case OPERATOR_LT:
4977 case OPERATOR_LE:
4978 case OPERATOR_GT:
4979 case OPERATOR_GE:
4980 // These return boolean values. We should probably handle them
4981 // anyhow in case a type conversion is used on the result.
4982 return false;
4983 case OPERATOR_PLUS:
4984 mpz_add(val, left_val, right_val);
4985 break;
4986 case OPERATOR_MINUS:
4987 mpz_sub(val, left_val, right_val);
4988 break;
4989 case OPERATOR_OR:
4990 mpz_ior(val, left_val, right_val);
4991 break;
4992 case OPERATOR_XOR:
4993 mpz_xor(val, left_val, right_val);
4994 break;
4995 case OPERATOR_MULT:
4996 mpz_mul(val, left_val, right_val);
4997 break;
4998 case OPERATOR_DIV:
4999 if (mpz_sgn(right_val) != 0)
5000 mpz_tdiv_q(val, left_val, right_val);
5001 else
5002 {
5003 error_at(location, "division by zero");
5004 mpz_set_ui(val, 0);
5005 return true;
5006 }
5007 break;
5008 case OPERATOR_MOD:
5009 if (mpz_sgn(right_val) != 0)
5010 mpz_tdiv_r(val, left_val, right_val);
5011 else
5012 {
5013 error_at(location, "division by zero");
5014 mpz_set_ui(val, 0);
5015 return true;
5016 }
5017 break;
5018 case OPERATOR_LSHIFT:
5019 {
5020 unsigned long shift = mpz_get_ui(right_val);
a28c1598 5021 if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000)
e440a328 5022 {
5023 error_at(location, "shift count overflow");
5024 mpz_set_ui(val, 0);
5025 return true;
5026 }
5027 mpz_mul_2exp(val, left_val, shift);
5028 is_shift_op = true;
5029 break;
5030 }
5031 break;
5032 case OPERATOR_RSHIFT:
5033 {
5034 unsigned long shift = mpz_get_ui(right_val);
5035 if (mpz_cmp_ui(right_val, shift) != 0)
5036 {
5037 error_at(location, "shift count overflow");
5038 mpz_set_ui(val, 0);
5039 return true;
5040 }
5041 if (mpz_cmp_ui(left_val, 0) >= 0)
5042 mpz_tdiv_q_2exp(val, left_val, shift);
5043 else
5044 mpz_fdiv_q_2exp(val, left_val, shift);
5045 is_shift_op = true;
5046 break;
5047 }
5048 break;
5049 case OPERATOR_AND:
5050 mpz_and(val, left_val, right_val);
5051 break;
5052 case OPERATOR_BITCLEAR:
5053 {
5054 mpz_t tval;
5055 mpz_init(tval);
5056 mpz_com(tval, right_val);
5057 mpz_and(val, left_val, tval);
5058 mpz_clear(tval);
5059 }
5060 break;
5061 default:
c3e6f413 5062 go_unreachable();
e440a328 5063 }
5064
5065 Type* type = left_type;
5066 if (!is_shift_op)
5067 {
5068 if (type == NULL)
5069 type = right_type;
5070 else if (type != right_type && right_type != NULL)
5071 {
5072 if (type->is_abstract())
5073 type = right_type;
5074 else if (!right_type->is_abstract())
5075 {
5076 // This look like a type error which should be diagnosed
5077 // elsewhere. Don't do anything here, to avoid an
5078 // unhelpful chain of error messages.
5079 return true;
5080 }
5081 }
5082 }
5083
5084 if (type != NULL && !type->is_abstract())
5085 {
5086 // We have to check the operands too, as we have implicitly
5087 // coerced them to TYPE.
5088 if ((type != left_type
5089 && !Integer_expression::check_constant(left_val, type, location))
5090 || (!is_shift_op
5091 && type != right_type
5092 && !Integer_expression::check_constant(right_val, type,
5093 location))
5094 || !Integer_expression::check_constant(val, type, location))
5095 mpz_set_ui(val, 0);
5096 }
5097
5098 return true;
5099}
5100
5101// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
5102// Return true if this could be done, false if not.
5103
5104bool
5105Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
5106 Type* right_type, mpfr_t right_val,
b13c66cd 5107 mpfr_t val, Location location)
e440a328 5108{
5109 switch (op)
5110 {
5111 case OPERATOR_OROR:
5112 case OPERATOR_ANDAND:
5113 case OPERATOR_EQEQ:
5114 case OPERATOR_NOTEQ:
5115 case OPERATOR_LT:
5116 case OPERATOR_LE:
5117 case OPERATOR_GT:
5118 case OPERATOR_GE:
5119 // These return boolean values. We should probably handle them
5120 // anyhow in case a type conversion is used on the result.
5121 return false;
5122 case OPERATOR_PLUS:
5123 mpfr_add(val, left_val, right_val, GMP_RNDN);
5124 break;
5125 case OPERATOR_MINUS:
5126 mpfr_sub(val, left_val, right_val, GMP_RNDN);
5127 break;
5128 case OPERATOR_OR:
5129 case OPERATOR_XOR:
5130 case OPERATOR_AND:
5131 case OPERATOR_BITCLEAR:
5132 return false;
5133 case OPERATOR_MULT:
5134 mpfr_mul(val, left_val, right_val, GMP_RNDN);
5135 break;
5136 case OPERATOR_DIV:
5137 if (mpfr_zero_p(right_val))
5138 error_at(location, "division by zero");
5139 mpfr_div(val, left_val, right_val, GMP_RNDN);
5140 break;
5141 case OPERATOR_MOD:
5142 return false;
5143 case OPERATOR_LSHIFT:
5144 case OPERATOR_RSHIFT:
5145 return false;
5146 default:
c3e6f413 5147 go_unreachable();
e440a328 5148 }
5149
5150 Type* type = left_type;
5151 if (type == NULL)
5152 type = right_type;
5153 else if (type != right_type && right_type != NULL)
5154 {
5155 if (type->is_abstract())
5156 type = right_type;
5157 else if (!right_type->is_abstract())
5158 {
5159 // This looks like a type error which should be diagnosed
5160 // elsewhere. Don't do anything here, to avoid an unhelpful
5161 // chain of error messages.
5162 return true;
5163 }
5164 }
5165
5166 if (type != NULL && !type->is_abstract())
5167 {
5168 if ((type != left_type
5169 && !Float_expression::check_constant(left_val, type, location))
5170 || (type != right_type
5171 && !Float_expression::check_constant(right_val, type,
5172 location))
5173 || !Float_expression::check_constant(val, type, location))
5174 mpfr_set_ui(val, 0, GMP_RNDN);
5175 }
5176
5177 return true;
5178}
5179
5180// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
5181// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
5182// could be done, false if not.
5183
5184bool
5185Binary_expression::eval_complex(Operator op, Type* left_type,
5186 mpfr_t left_real, mpfr_t left_imag,
5187 Type *right_type,
5188 mpfr_t right_real, mpfr_t right_imag,
5189 mpfr_t real, mpfr_t imag,
b13c66cd 5190 Location location)
e440a328 5191{
5192 switch (op)
5193 {
5194 case OPERATOR_OROR:
5195 case OPERATOR_ANDAND:
5196 case OPERATOR_EQEQ:
5197 case OPERATOR_NOTEQ:
5198 case OPERATOR_LT:
5199 case OPERATOR_LE:
5200 case OPERATOR_GT:
5201 case OPERATOR_GE:
5202 // These return boolean values and must be handled differently.
5203 return false;
5204 case OPERATOR_PLUS:
5205 mpfr_add(real, left_real, right_real, GMP_RNDN);
5206 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
5207 break;
5208 case OPERATOR_MINUS:
5209 mpfr_sub(real, left_real, right_real, GMP_RNDN);
5210 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
5211 break;
5212 case OPERATOR_OR:
5213 case OPERATOR_XOR:
5214 case OPERATOR_AND:
5215 case OPERATOR_BITCLEAR:
5216 return false;
5217 case OPERATOR_MULT:
5218 {
5219 // You might think that multiplying two complex numbers would
5220 // be simple, and you would be right, until you start to think
5221 // about getting the right answer for infinity. If one
5222 // operand here is infinity and the other is anything other
5223 // than zero or NaN, then we are going to wind up subtracting
5224 // two infinity values. That will give us a NaN, but the
5225 // correct answer is infinity.
5226
5227 mpfr_t lrrr;
5228 mpfr_init(lrrr);
5229 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
5230
5231 mpfr_t lrri;
5232 mpfr_init(lrri);
5233 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
5234
5235 mpfr_t lirr;
5236 mpfr_init(lirr);
5237 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
5238
5239 mpfr_t liri;
5240 mpfr_init(liri);
5241 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
5242
5243 mpfr_sub(real, lrrr, liri, GMP_RNDN);
5244 mpfr_add(imag, lrri, lirr, GMP_RNDN);
5245
5246 // If we get NaN on both sides, check whether it should really
5247 // be infinity. The rule is that if either side of the
5248 // complex number is infinity, then the whole value is
5249 // infinity, even if the other side is NaN. So the only case
5250 // we have to fix is the one in which both sides are NaN.
5251 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
5252 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
5253 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
5254 {
5255 bool is_infinity = false;
5256
5257 mpfr_t lr;
5258 mpfr_t li;
5259 mpfr_init_set(lr, left_real, GMP_RNDN);
5260 mpfr_init_set(li, left_imag, GMP_RNDN);
5261
5262 mpfr_t rr;
5263 mpfr_t ri;
5264 mpfr_init_set(rr, right_real, GMP_RNDN);
5265 mpfr_init_set(ri, right_imag, GMP_RNDN);
5266
5267 // If the left side is infinity, then the result is
5268 // infinity.
5269 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
5270 {
5271 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
5272 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
5273 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
5274 mpfr_copysign(li, li, left_imag, GMP_RNDN);
5275 if (mpfr_nan_p(rr))
5276 {
5277 mpfr_set_ui(rr, 0, GMP_RNDN);
5278 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
5279 }
5280 if (mpfr_nan_p(ri))
5281 {
5282 mpfr_set_ui(ri, 0, GMP_RNDN);
5283 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
5284 }
5285 is_infinity = true;
5286 }
5287
5288 // If the right side is infinity, then the result is
5289 // infinity.
5290 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
5291 {
5292 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
5293 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
5294 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
5295 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
5296 if (mpfr_nan_p(lr))
5297 {
5298 mpfr_set_ui(lr, 0, GMP_RNDN);
5299 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
5300 }
5301 if (mpfr_nan_p(li))
5302 {
5303 mpfr_set_ui(li, 0, GMP_RNDN);
5304 mpfr_copysign(li, li, left_imag, GMP_RNDN);
5305 }
5306 is_infinity = true;
5307 }
5308
5309 // If we got an overflow in the intermediate computations,
5310 // then the result is infinity.
5311 if (!is_infinity
5312 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
5313 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
5314 {
5315 if (mpfr_nan_p(lr))
5316 {
5317 mpfr_set_ui(lr, 0, GMP_RNDN);
5318 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
5319 }
5320 if (mpfr_nan_p(li))
5321 {
5322 mpfr_set_ui(li, 0, GMP_RNDN);
5323 mpfr_copysign(li, li, left_imag, GMP_RNDN);
5324 }
5325 if (mpfr_nan_p(rr))
5326 {
5327 mpfr_set_ui(rr, 0, GMP_RNDN);
5328 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
5329 }
5330 if (mpfr_nan_p(ri))
5331 {
5332 mpfr_set_ui(ri, 0, GMP_RNDN);
5333 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
5334 }
5335 is_infinity = true;
5336 }
5337
5338 if (is_infinity)
5339 {
5340 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
5341 mpfr_mul(lrri, lr, ri, GMP_RNDN);
5342 mpfr_mul(lirr, li, rr, GMP_RNDN);
5343 mpfr_mul(liri, li, ri, GMP_RNDN);
5344 mpfr_sub(real, lrrr, liri, GMP_RNDN);
5345 mpfr_add(imag, lrri, lirr, GMP_RNDN);
5346 mpfr_set_inf(real, mpfr_sgn(real));
5347 mpfr_set_inf(imag, mpfr_sgn(imag));
5348 }
5349
5350 mpfr_clear(lr);
5351 mpfr_clear(li);
5352 mpfr_clear(rr);
5353 mpfr_clear(ri);
5354 }
5355
5356 mpfr_clear(lrrr);
5357 mpfr_clear(lrri);
5358 mpfr_clear(lirr);
5359 mpfr_clear(liri);
5360 }
5361 break;
5362 case OPERATOR_DIV:
5363 {
5364 // For complex division we want to avoid having an
5365 // intermediate overflow turn the whole result in a NaN. We
5366 // scale the values to try to avoid this.
5367
5368 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
5369 error_at(location, "division by zero");
5370
5371 mpfr_t rra;
5372 mpfr_t ria;
5373 mpfr_init(rra);
5374 mpfr_init(ria);
5375 mpfr_abs(rra, right_real, GMP_RNDN);
5376 mpfr_abs(ria, right_imag, GMP_RNDN);
5377 mpfr_t t;
5378 mpfr_init(t);
5379 mpfr_max(t, rra, ria, GMP_RNDN);
5380
5381 mpfr_t rr;
5382 mpfr_t ri;
5383 mpfr_init_set(rr, right_real, GMP_RNDN);
5384 mpfr_init_set(ri, right_imag, GMP_RNDN);
5385 long ilogbw = 0;
5386 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
5387 {
5388 ilogbw = mpfr_get_exp(t);
5389 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
5390 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
5391 }
5392
5393 mpfr_t denom;
5394 mpfr_init(denom);
5395 mpfr_mul(denom, rr, rr, GMP_RNDN);
5396 mpfr_mul(t, ri, ri, GMP_RNDN);
5397 mpfr_add(denom, denom, t, GMP_RNDN);
5398
5399 mpfr_mul(real, left_real, rr, GMP_RNDN);
5400 mpfr_mul(t, left_imag, ri, GMP_RNDN);
5401 mpfr_add(real, real, t, GMP_RNDN);
5402 mpfr_div(real, real, denom, GMP_RNDN);
5403 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
5404
5405 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
5406 mpfr_mul(t, left_real, ri, GMP_RNDN);
5407 mpfr_sub(imag, imag, t, GMP_RNDN);
5408 mpfr_div(imag, imag, denom, GMP_RNDN);
5409 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
5410
5411 // If we wind up with NaN on both sides, check whether we
5412 // should really have infinity. The rule is that if either
5413 // side of the complex number is infinity, then the whole
5414 // value is infinity, even if the other side is NaN. So the
5415 // only case we have to fix is the one in which both sides are
5416 // NaN.
5417 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
5418 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
5419 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
5420 {
5421 if (mpfr_zero_p(denom))
5422 {
5423 mpfr_set_inf(real, mpfr_sgn(rr));
5424 mpfr_mul(real, real, left_real, GMP_RNDN);
5425 mpfr_set_inf(imag, mpfr_sgn(rr));
5426 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
5427 }
5428 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
5429 && mpfr_number_p(rr) && mpfr_number_p(ri))
5430 {
5431 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
5432 mpfr_copysign(t, t, left_real, GMP_RNDN);
5433
5434 mpfr_t t2;
5435 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
5436 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
5437
5438 mpfr_t t3;
5439 mpfr_init(t3);
5440 mpfr_mul(t3, t, rr, GMP_RNDN);
5441
5442 mpfr_t t4;
5443 mpfr_init(t4);
5444 mpfr_mul(t4, t2, ri, GMP_RNDN);
5445
5446 mpfr_add(t3, t3, t4, GMP_RNDN);
5447 mpfr_set_inf(real, mpfr_sgn(t3));
5448
5449 mpfr_mul(t3, t2, rr, GMP_RNDN);
5450 mpfr_mul(t4, t, ri, GMP_RNDN);
5451 mpfr_sub(t3, t3, t4, GMP_RNDN);
5452 mpfr_set_inf(imag, mpfr_sgn(t3));
5453
5454 mpfr_clear(t2);
5455 mpfr_clear(t3);
5456 mpfr_clear(t4);
5457 }
5458 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
5459 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
5460 {
5461 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
5462 mpfr_copysign(t, t, rr, GMP_RNDN);
5463
5464 mpfr_t t2;
5465 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
5466 mpfr_copysign(t2, t2, ri, GMP_RNDN);
5467
5468 mpfr_t t3;
5469 mpfr_init(t3);
5470 mpfr_mul(t3, left_real, t, GMP_RNDN);
5471
5472 mpfr_t t4;
5473 mpfr_init(t4);
5474 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
5475
5476 mpfr_add(t3, t3, t4, GMP_RNDN);
5477 mpfr_set_ui(real, 0, GMP_RNDN);
5478 mpfr_mul(real, real, t3, GMP_RNDN);
5479
5480 mpfr_mul(t3, left_imag, t, GMP_RNDN);
5481 mpfr_mul(t4, left_real, t2, GMP_RNDN);
5482 mpfr_sub(t3, t3, t4, GMP_RNDN);
5483 mpfr_set_ui(imag, 0, GMP_RNDN);
5484 mpfr_mul(imag, imag, t3, GMP_RNDN);
5485
5486 mpfr_clear(t2);
5487 mpfr_clear(t3);
5488 mpfr_clear(t4);
5489 }
5490 }
5491
5492 mpfr_clear(denom);
5493 mpfr_clear(rr);
5494 mpfr_clear(ri);
5495 mpfr_clear(t);
5496 mpfr_clear(rra);
5497 mpfr_clear(ria);
5498 }
5499 break;
5500 case OPERATOR_MOD:
5501 return false;
5502 case OPERATOR_LSHIFT:
5503 case OPERATOR_RSHIFT:
5504 return false;
5505 default:
c3e6f413 5506 go_unreachable();
e440a328 5507 }
5508
5509 Type* type = left_type;
5510 if (type == NULL)
5511 type = right_type;
5512 else if (type != right_type && right_type != NULL)
5513 {
5514 if (type->is_abstract())
5515 type = right_type;
5516 else if (!right_type->is_abstract())
5517 {
5518 // This looks like a type error which should be diagnosed
5519 // elsewhere. Don't do anything here, to avoid an unhelpful
5520 // chain of error messages.
5521 return true;
5522 }
5523 }
5524
5525 if (type != NULL && !type->is_abstract())
5526 {
5527 if ((type != left_type
5528 && !Complex_expression::check_constant(left_real, left_imag,
5529 type, location))
5530 || (type != right_type
5531 && !Complex_expression::check_constant(right_real, right_imag,
5532 type, location))
5533 || !Complex_expression::check_constant(real, imag, type,
5534 location))
5535 {
5536 mpfr_set_ui(real, 0, GMP_RNDN);
5537 mpfr_set_ui(imag, 0, GMP_RNDN);
5538 }
5539 }
5540
5541 return true;
5542}
5543
5544// Lower a binary expression. We have to evaluate constant
5545// expressions now, in order to implement Go's unlimited precision
5546// constants.
5547
5548Expression*
e9d3367e 5549Binary_expression::do_lower(Gogo* gogo, Named_object*,
5550 Statement_inserter* inserter, int)
e440a328 5551{
b13c66cd 5552 Location location = this->location();
e440a328 5553 Operator op = this->op_;
5554 Expression* left = this->left_;
5555 Expression* right = this->right_;
5556
5557 const bool is_comparison = (op == OPERATOR_EQEQ
5558 || op == OPERATOR_NOTEQ
5559 || op == OPERATOR_LT
5560 || op == OPERATOR_LE
5561 || op == OPERATOR_GT
5562 || op == OPERATOR_GE);
5563
5564 // Integer constant expressions.
5565 {
5566 mpz_t left_val;
5567 mpz_init(left_val);
5568 Type* left_type;
5569 mpz_t right_val;
5570 mpz_init(right_val);
5571 Type* right_type;
5572 if (left->integer_constant_value(false, left_val, &left_type)
5573 && right->integer_constant_value(false, right_val, &right_type))
5574 {
5575 Expression* ret = NULL;
5576 if (left_type != right_type
5577 && left_type != NULL
cfdd67bc 5578 && !left_type->is_abstract()
e440a328 5579 && right_type != NULL
cfdd67bc 5580 && !right_type->is_abstract()
e440a328 5581 && left_type->base() != right_type->base()
5582 && op != OPERATOR_LSHIFT
5583 && op != OPERATOR_RSHIFT)
5584 {
5585 // May be a type error--let it be diagnosed later.
ca33b5eb 5586 return this;
e440a328 5587 }
5588 else if (is_comparison)
5589 {
5590 bool b = Binary_expression::compare_integer(op, left_val,
5591 right_val);
5592 ret = Expression::make_cast(Type::lookup_bool_type(),
5593 Expression::make_boolean(b, location),
5594 location);
5595 }
5596 else
5597 {
5598 mpz_t val;
5599 mpz_init(val);
5600
5601 if (Binary_expression::eval_integer(op, left_type, left_val,
5602 right_type, right_val,
5603 location, val))
5604 {
c484d925 5605 go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
e440a328 5606 Type* type;
5607 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5608 type = left_type;
5609 else if (left_type == NULL)
5610 type = right_type;
5611 else if (right_type == NULL)
5612 type = left_type;
5613 else if (!left_type->is_abstract()
5614 && left_type->named_type() != NULL)
5615 type = left_type;
5616 else if (!right_type->is_abstract()
5617 && right_type->named_type() != NULL)
5618 type = right_type;
5619 else if (!left_type->is_abstract())
5620 type = left_type;
5621 else if (!right_type->is_abstract())
5622 type = right_type;
5623 else if (left_type->float_type() != NULL)
5624 type = left_type;
5625 else if (right_type->float_type() != NULL)
5626 type = right_type;
5627 else if (left_type->complex_type() != NULL)
5628 type = left_type;
5629 else if (right_type->complex_type() != NULL)
5630 type = right_type;
5631 else
5632 type = left_type;
cfdd67bc 5633
5634 bool is_character = false;
5635 if (type == NULL)
5636 {
5637 Type* t = this->left_->type();
5638 if (t->integer_type() != NULL
5639 && t->integer_type()->is_rune())
5640 is_character = true;
5641 else if (op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT)
5642 {
5643 t = this->right_->type();
5644 if (t->integer_type() != NULL
5645 && t->integer_type()->is_rune())
5646 is_character = true;
5647 }
5648 }
5649
5650 if (is_character)
5651 ret = Expression::make_character(&val, type, location);
5652 else
5653 ret = Expression::make_integer(&val, type, location);
e440a328 5654 }
5655
5656 mpz_clear(val);
5657 }
5658
5659 if (ret != NULL)
5660 {
5661 mpz_clear(right_val);
5662 mpz_clear(left_val);
5663 return ret;
5664 }
5665 }
5666 mpz_clear(right_val);
5667 mpz_clear(left_val);
5668 }
5669
5670 // Floating point constant expressions.
5671 {
5672 mpfr_t left_val;
5673 mpfr_init(left_val);
5674 Type* left_type;
5675 mpfr_t right_val;
5676 mpfr_init(right_val);
5677 Type* right_type;
5678 if (left->float_constant_value(left_val, &left_type)
5679 && right->float_constant_value(right_val, &right_type))
5680 {
5681 Expression* ret = NULL;
5682 if (left_type != right_type
5683 && left_type != NULL
5684 && right_type != NULL
5685 && left_type->base() != right_type->base()
5686 && op != OPERATOR_LSHIFT
5687 && op != OPERATOR_RSHIFT)
5688 {
5689 // May be a type error--let it be diagnosed later.
ca33b5eb 5690 return this;
e440a328 5691 }
5692 else if (is_comparison)
5693 {
5694 bool b = Binary_expression::compare_float(op,
5695 (left_type != NULL
5696 ? left_type
5697 : right_type),
5698 left_val, right_val);
5699 ret = Expression::make_boolean(b, location);
5700 }
5701 else
5702 {
5703 mpfr_t val;
5704 mpfr_init(val);
5705
5706 if (Binary_expression::eval_float(op, left_type, left_val,
5707 right_type, right_val, val,
5708 location))
5709 {
c484d925 5710 go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
e440a328 5711 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5712 Type* type;
5713 if (left_type == NULL)
5714 type = right_type;
5715 else if (right_type == NULL)
5716 type = left_type;
5717 else if (!left_type->is_abstract()
5718 && left_type->named_type() != NULL)
5719 type = left_type;
5720 else if (!right_type->is_abstract()
5721 && right_type->named_type() != NULL)
5722 type = right_type;
5723 else if (!left_type->is_abstract())
5724 type = left_type;
5725 else if (!right_type->is_abstract())
5726 type = right_type;
5727 else if (left_type->float_type() != NULL)
5728 type = left_type;
5729 else if (right_type->float_type() != NULL)
5730 type = right_type;
5731 else
5732 type = left_type;
5733 ret = Expression::make_float(&val, type, location);
5734 }
5735
5736 mpfr_clear(val);
5737 }
5738
5739 if (ret != NULL)
5740 {
5741 mpfr_clear(right_val);
5742 mpfr_clear(left_val);
5743 return ret;
5744 }
5745 }
5746 mpfr_clear(right_val);
5747 mpfr_clear(left_val);
5748 }
5749
5750 // Complex constant expressions.
5751 {
5752 mpfr_t left_real;
5753 mpfr_t left_imag;
5754 mpfr_init(left_real);
5755 mpfr_init(left_imag);
5756 Type* left_type;
5757
5758 mpfr_t right_real;
5759 mpfr_t right_imag;
5760 mpfr_init(right_real);
5761 mpfr_init(right_imag);
5762 Type* right_type;
5763
5764 if (left->complex_constant_value(left_real, left_imag, &left_type)
5765 && right->complex_constant_value(right_real, right_imag, &right_type))
5766 {
5767 Expression* ret = NULL;
5768 if (left_type != right_type
5769 && left_type != NULL
5770 && right_type != NULL
5771 && left_type->base() != right_type->base())
5772 {
5773 // May be a type error--let it be diagnosed later.
ca33b5eb 5774 return this;
e440a328 5775 }
3b59603e 5776 else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
e440a328 5777 {
5778 bool b = Binary_expression::compare_complex(op,
5779 (left_type != NULL
5780 ? left_type
5781 : right_type),
5782 left_real,
5783 left_imag,
5784 right_real,
5785 right_imag);
5786 ret = Expression::make_boolean(b, location);
5787 }
5788 else
5789 {
5790 mpfr_t real;
5791 mpfr_t imag;
5792 mpfr_init(real);
5793 mpfr_init(imag);
5794
5795 if (Binary_expression::eval_complex(op, left_type,
5796 left_real, left_imag,
5797 right_type,
5798 right_real, right_imag,
5799 real, imag,
5800 location))
5801 {
c484d925 5802 go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
e440a328 5803 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5804 Type* type;
5805 if (left_type == NULL)
5806 type = right_type;
5807 else if (right_type == NULL)
5808 type = left_type;
5809 else if (!left_type->is_abstract()
5810 && left_type->named_type() != NULL)
5811 type = left_type;
5812 else if (!right_type->is_abstract()
5813 && right_type->named_type() != NULL)
5814 type = right_type;
5815 else if (!left_type->is_abstract())
5816 type = left_type;
5817 else if (!right_type->is_abstract())
5818 type = right_type;
5819 else if (left_type->complex_type() != NULL)
5820 type = left_type;
5821 else if (right_type->complex_type() != NULL)
5822 type = right_type;
5823 else
5824 type = left_type;
5825 ret = Expression::make_complex(&real, &imag, type,
5826 location);
5827 }
5828 mpfr_clear(real);
5829 mpfr_clear(imag);
5830 }
5831
5832 if (ret != NULL)
5833 {
5834 mpfr_clear(left_real);
5835 mpfr_clear(left_imag);
5836 mpfr_clear(right_real);
5837 mpfr_clear(right_imag);
5838 return ret;
5839 }
5840 }
5841
5842 mpfr_clear(left_real);
5843 mpfr_clear(left_imag);
5844 mpfr_clear(right_real);
5845 mpfr_clear(right_imag);
5846 }
5847
5848 // String constant expressions.
315fa98d 5849 if (left->type()->is_string_type() && right->type()->is_string_type())
e440a328 5850 {
5851 std::string left_string;
5852 std::string right_string;
5853 if (left->string_constant_value(&left_string)
5854 && right->string_constant_value(&right_string))
315fa98d 5855 {
5856 if (op == OPERATOR_PLUS)
5857 return Expression::make_string(left_string + right_string,
5858 location);
5859 else if (is_comparison)
5860 {
5861 int cmp = left_string.compare(right_string);
5862 bool r;
5863 switch (op)
5864 {
5865 case OPERATOR_EQEQ:
5866 r = cmp == 0;
5867 break;
5868 case OPERATOR_NOTEQ:
5869 r = cmp != 0;
5870 break;
5871 case OPERATOR_LT:
5872 r = cmp < 0;
5873 break;
5874 case OPERATOR_LE:
5875 r = cmp <= 0;
5876 break;
5877 case OPERATOR_GT:
5878 r = cmp > 0;
5879 break;
5880 case OPERATOR_GE:
5881 r = cmp >= 0;
5882 break;
5883 default:
5884 go_unreachable();
5885 }
5886 return Expression::make_boolean(r, location);
5887 }
5888 }
e440a328 5889 }
5890
b40dc774 5891 // Special case for shift of a floating point constant.
5892 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5893 {
5894 mpfr_t left_val;
5895 mpfr_init(left_val);
5896 Type* left_type;
5897 mpz_t right_val;
5898 mpz_init(right_val);
5899 Type* right_type;
5900 if (left->float_constant_value(left_val, &left_type)
5901 && right->integer_constant_value(false, right_val, &right_type)
5902 && mpfr_integer_p(left_val)
5903 && (left_type == NULL
5904 || left_type->is_abstract()
5905 || left_type->integer_type() != NULL))
5906 {
5907 mpz_t left_int;
5908 mpz_init(left_int);
5909 mpfr_get_z(left_int, left_val, GMP_RNDN);
5910
5911 mpz_t val;
5912 mpz_init(val);
5913
5914 Expression* ret = NULL;
5915 if (Binary_expression::eval_integer(op, left_type, left_int,
5916 right_type, right_val,
5917 location, val))
5918 ret = Expression::make_integer(&val, left_type, location);
5919
5920 mpz_clear(left_int);
5921 mpz_clear(val);
5922
5923 if (ret != NULL)
5924 {
5925 mpfr_clear(left_val);
5926 mpz_clear(right_val);
5927 return ret;
5928 }
5929 }
5930
5931 mpfr_clear(left_val);
5932 mpz_clear(right_val);
5933 }
5934
e9d3367e 5935 // Lower struct and array comparisons.
5936 if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
5937 {
5938 if (left->type()->struct_type() != NULL)
5939 return this->lower_struct_comparison(gogo, inserter);
5940 else if (left->type()->array_type() != NULL
5941 && !left->type()->is_slice_type())
5942 return this->lower_array_comparison(gogo, inserter);
5943 }
5944
e440a328 5945 return this;
5946}
5947
e9d3367e 5948// Lower a struct comparison.
5949
5950Expression*
5951Binary_expression::lower_struct_comparison(Gogo* gogo,
5952 Statement_inserter* inserter)
5953{
5954 Struct_type* st = this->left_->type()->struct_type();
5955 Struct_type* st2 = this->right_->type()->struct_type();
5956 if (st2 == NULL)
5957 return this;
5958 if (st != st2 && !Type::are_identical(st, st2, false, NULL))
5959 return this;
5960 if (!Type::are_compatible_for_comparison(true, this->left_->type(),
5961 this->right_->type(), NULL))
5962 return this;
5963
5964 // See if we can compare using memcmp. As a heuristic, we use
5965 // memcmp rather than field references and comparisons if there are
5966 // more than two fields.
113ef6a5 5967 if (st->compare_is_identity(gogo) && st->total_field_count() > 2)
e9d3367e 5968 return this->lower_compare_to_memcmp(gogo, inserter);
5969
5970 Location loc = this->location();
5971
5972 Expression* left = this->left_;
5973 Temporary_statement* left_temp = NULL;
5974 if (left->var_expression() == NULL
5975 && left->temporary_reference_expression() == NULL)
5976 {
5977 left_temp = Statement::make_temporary(left->type(), NULL, loc);
5978 inserter->insert(left_temp);
5979 left = Expression::make_set_and_use_temporary(left_temp, left, loc);
5980 }
5981
5982 Expression* right = this->right_;
5983 Temporary_statement* right_temp = NULL;
5984 if (right->var_expression() == NULL
5985 && right->temporary_reference_expression() == NULL)
5986 {
5987 right_temp = Statement::make_temporary(right->type(), NULL, loc);
5988 inserter->insert(right_temp);
5989 right = Expression::make_set_and_use_temporary(right_temp, right, loc);
5990 }
5991
5992 Expression* ret = Expression::make_boolean(true, loc);
5993 const Struct_field_list* fields = st->fields();
5994 unsigned int field_index = 0;
5995 for (Struct_field_list::const_iterator pf = fields->begin();
5996 pf != fields->end();
5997 ++pf, ++field_index)
5998 {
5999 if (field_index > 0)
6000 {
6001 if (left_temp == NULL)
6002 left = left->copy();
6003 else
6004 left = Expression::make_temporary_reference(left_temp, loc);
6005 if (right_temp == NULL)
6006 right = right->copy();
6007 else
6008 right = Expression::make_temporary_reference(right_temp, loc);
6009 }
6010 Expression* f1 = Expression::make_field_reference(left, field_index,
6011 loc);
6012 Expression* f2 = Expression::make_field_reference(right, field_index,
6013 loc);
6014 Expression* cond = Expression::make_binary(OPERATOR_EQEQ, f1, f2, loc);
6015 ret = Expression::make_binary(OPERATOR_ANDAND, ret, cond, loc);
6016 }
6017
6018 if (this->op_ == OPERATOR_NOTEQ)
6019 ret = Expression::make_unary(OPERATOR_NOT, ret, loc);
6020
6021 return ret;
6022}
6023
6024// Lower an array comparison.
6025
6026Expression*
6027Binary_expression::lower_array_comparison(Gogo* gogo,
6028 Statement_inserter* inserter)
6029{
6030 Array_type* at = this->left_->type()->array_type();
6031 Array_type* at2 = this->right_->type()->array_type();
6032 if (at2 == NULL)
6033 return this;
6034 if (at != at2 && !Type::are_identical(at, at2, false, NULL))
6035 return this;
6036 if (!Type::are_compatible_for_comparison(true, this->left_->type(),
6037 this->right_->type(), NULL))
6038 return this;
6039
6040 // Call memcmp directly if possible. This may let the middle-end
6041 // optimize the call.
113ef6a5 6042 if (at->compare_is_identity(gogo))
e9d3367e 6043 return this->lower_compare_to_memcmp(gogo, inserter);
6044
6045 // Call the array comparison function.
6046 Named_object* hash_fn;
6047 Named_object* equal_fn;
6048 at->type_functions(gogo, this->left_->type()->named_type(), NULL, NULL,
6049 &hash_fn, &equal_fn);
6050
6051 Location loc = this->location();
6052
6053 Expression* func = Expression::make_func_reference(equal_fn, NULL, loc);
6054
6055 Expression_list* args = new Expression_list();
6056 args->push_back(this->operand_address(inserter, this->left_));
6057 args->push_back(this->operand_address(inserter, this->right_));
6058 args->push_back(Expression::make_type_info(at, TYPE_INFO_SIZE));
6059
6060 Expression* ret = Expression::make_call(func, args, false, loc);
6061
6062 if (this->op_ == OPERATOR_NOTEQ)
6063 ret = Expression::make_unary(OPERATOR_NOT, ret, loc);
6064
6065 return ret;
6066}
6067
6068// Lower a struct or array comparison to a call to memcmp.
6069
6070Expression*
6071Binary_expression::lower_compare_to_memcmp(Gogo*, Statement_inserter* inserter)
6072{
6073 Location loc = this->location();
6074
6075 Expression* a1 = this->operand_address(inserter, this->left_);
6076 Expression* a2 = this->operand_address(inserter, this->right_);
6077 Expression* len = Expression::make_type_info(this->left_->type(),
6078 TYPE_INFO_SIZE);
6079
6080 Expression* call = Runtime::make_call(Runtime::MEMCMP, loc, 3, a1, a2, len);
6081
6082 mpz_t zval;
6083 mpz_init_set_ui(zval, 0);
6084 Expression* zero = Expression::make_integer(&zval, NULL, loc);
6085 mpz_clear(zval);
6086
6087 return Expression::make_binary(this->op_, call, zero, loc);
6088}
6089
6090// Return the address of EXPR, cast to unsafe.Pointer.
6091
6092Expression*
6093Binary_expression::operand_address(Statement_inserter* inserter,
6094 Expression* expr)
6095{
6096 Location loc = this->location();
6097
6098 if (!expr->is_addressable())
6099 {
6100 Temporary_statement* temp = Statement::make_temporary(expr->type(), NULL,
6101 loc);
6102 inserter->insert(temp);
6103 expr = Expression::make_set_and_use_temporary(temp, expr, loc);
6104 }
6105 expr = Expression::make_unary(OPERATOR_AND, expr, loc);
6106 static_cast<Unary_expression*>(expr)->set_does_not_escape();
6107 Type* void_type = Type::make_void_type();
6108 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
6109 return Expression::make_cast(unsafe_pointer_type, expr, loc);
6110}
6111
e440a328 6112// Return the integer constant value, if it has one.
6113
6114bool
6115Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
6116 Type** ptype) const
6117{
6118 mpz_t left_val;
6119 mpz_init(left_val);
6120 Type* left_type;
6121 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
6122 &left_type))
6123 {
6124 mpz_clear(left_val);
6125 return false;
6126 }
6127
6128 mpz_t right_val;
6129 mpz_init(right_val);
6130 Type* right_type;
6131 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
6132 &right_type))
6133 {
6134 mpz_clear(right_val);
6135 mpz_clear(left_val);
6136 return false;
6137 }
6138
6139 bool ret;
6140 if (left_type != right_type
6141 && left_type != NULL
6142 && right_type != NULL
6143 && left_type->base() != right_type->base()
6144 && this->op_ != OPERATOR_RSHIFT
6145 && this->op_ != OPERATOR_LSHIFT)
6146 ret = false;
6147 else
6148 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
6149 right_type, right_val,
6150 this->location(), val);
6151
6152 mpz_clear(right_val);
6153 mpz_clear(left_val);
6154
6155 if (ret)
6156 *ptype = left_type;
6157
6158 return ret;
6159}
6160
6161// Return the floating point constant value, if it has one.
6162
6163bool
6164Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
6165{
6166 mpfr_t left_val;
6167 mpfr_init(left_val);
6168 Type* left_type;
6169 if (!this->left_->float_constant_value(left_val, &left_type))
6170 {
6171 mpfr_clear(left_val);
6172 return false;
6173 }
6174
6175 mpfr_t right_val;
6176 mpfr_init(right_val);
6177 Type* right_type;
6178 if (!this->right_->float_constant_value(right_val, &right_type))
6179 {
6180 mpfr_clear(right_val);
6181 mpfr_clear(left_val);
6182 return false;
6183 }
6184
6185 bool ret;
6186 if (left_type != right_type
6187 && left_type != NULL
6188 && right_type != NULL
6189 && left_type->base() != right_type->base())
6190 ret = false;
6191 else
6192 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
6193 right_type, right_val,
6194 val, this->location());
6195
6196 mpfr_clear(left_val);
6197 mpfr_clear(right_val);
6198
6199 if (ret)
6200 *ptype = left_type;
6201
6202 return ret;
6203}
6204
6205// Return the complex constant value, if it has one.
6206
6207bool
6208Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6209 Type** ptype) const
6210{
6211 mpfr_t left_real;
6212 mpfr_t left_imag;
6213 mpfr_init(left_real);
6214 mpfr_init(left_imag);
6215 Type* left_type;
6216 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
6217 {
6218 mpfr_clear(left_real);
6219 mpfr_clear(left_imag);
6220 return false;
6221 }
6222
6223 mpfr_t right_real;
6224 mpfr_t right_imag;
6225 mpfr_init(right_real);
6226 mpfr_init(right_imag);
6227 Type* right_type;
6228 if (!this->right_->complex_constant_value(right_real, right_imag,
6229 &right_type))
6230 {
6231 mpfr_clear(left_real);
6232 mpfr_clear(left_imag);
6233 mpfr_clear(right_real);
6234 mpfr_clear(right_imag);
6235 return false;
6236 }
6237
6238 bool ret;
6239 if (left_type != right_type
6240 && left_type != NULL
6241 && right_type != NULL
6242 && left_type->base() != right_type->base())
6243 ret = false;
6244 else
6245 ret = Binary_expression::eval_complex(this->op_, left_type,
6246 left_real, left_imag,
6247 right_type,
6248 right_real, right_imag,
6249 real, imag,
6250 this->location());
6251 mpfr_clear(left_real);
6252 mpfr_clear(left_imag);
6253 mpfr_clear(right_real);
6254 mpfr_clear(right_imag);
6255
6256 if (ret)
6257 *ptype = left_type;
6258
6259 return ret;
6260}
6261
6262// Note that the value is being discarded.
6263
6264void
6265Binary_expression::do_discarding_value()
6266{
6267 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
6268 this->right_->discarding_value();
6269 else
a7549a6a 6270 this->unused_value_error();
e440a328 6271}
6272
6273// Get type.
6274
6275Type*
6276Binary_expression::do_type()
6277{
5f5fea79 6278 if (this->classification() == EXPRESSION_ERROR)
6279 return Type::make_error_type();
6280
e440a328 6281 switch (this->op_)
6282 {
6283 case OPERATOR_OROR:
6284 case OPERATOR_ANDAND:
6285 case OPERATOR_EQEQ:
6286 case OPERATOR_NOTEQ:
6287 case OPERATOR_LT:
6288 case OPERATOR_LE:
6289 case OPERATOR_GT:
6290 case OPERATOR_GE:
6291 return Type::lookup_bool_type();
6292
6293 case OPERATOR_PLUS:
6294 case OPERATOR_MINUS:
6295 case OPERATOR_OR:
6296 case OPERATOR_XOR:
6297 case OPERATOR_MULT:
6298 case OPERATOR_DIV:
6299 case OPERATOR_MOD:
6300 case OPERATOR_AND:
6301 case OPERATOR_BITCLEAR:
6302 {
6303 Type* left_type = this->left_->type();
6304 Type* right_type = this->right_->type();
5c13bd80 6305 if (left_type->is_error())
a5fe8571 6306 return left_type;
5c13bd80 6307 else if (right_type->is_error())
a5fe8571 6308 return right_type;
5f5fea79 6309 else if (!Type::are_compatible_for_binop(left_type, right_type))
6310 {
6311 this->report_error(_("incompatible types in binary expression"));
6312 return Type::make_error_type();
6313 }
a5fe8571 6314 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
e440a328 6315 return left_type;
6316 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
6317 return right_type;
6318 else if (!left_type->is_abstract())
6319 return left_type;
6320 else if (!right_type->is_abstract())
6321 return right_type;
6322 else if (left_type->complex_type() != NULL)
6323 return left_type;
6324 else if (right_type->complex_type() != NULL)
6325 return right_type;
6326 else if (left_type->float_type() != NULL)
6327 return left_type;
6328 else if (right_type->float_type() != NULL)
6329 return right_type;
cfdd67bc 6330 else if (left_type->integer_type() != NULL
6331 && left_type->integer_type()->is_rune())
6332 return left_type;
6333 else if (right_type->integer_type() != NULL
6334 && right_type->integer_type()->is_rune())
6335 return right_type;
e440a328 6336 else
6337 return left_type;
6338 }
6339
6340 case OPERATOR_LSHIFT:
6341 case OPERATOR_RSHIFT:
6342 return this->left_->type();
6343
6344 default:
c3e6f413 6345 go_unreachable();
e440a328 6346 }
6347}
6348
6349// Set type for a binary expression.
6350
6351void
6352Binary_expression::do_determine_type(const Type_context* context)
6353{
6354 Type* tleft = this->left_->type();
6355 Type* tright = this->right_->type();
6356
6357 // Both sides should have the same type, except for the shift
6358 // operations. For a comparison, we should ignore the incoming
6359 // type.
6360
6361 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
6362 || this->op_ == OPERATOR_RSHIFT);
6363
6364 bool is_comparison = (this->op_ == OPERATOR_EQEQ
6365 || this->op_ == OPERATOR_NOTEQ
6366 || this->op_ == OPERATOR_LT
6367 || this->op_ == OPERATOR_LE
6368 || this->op_ == OPERATOR_GT
6369 || this->op_ == OPERATOR_GE);
6370
6371 Type_context subcontext(*context);
6372
6373 if (is_comparison)
6374 {
6375 // In a comparison, the context does not determine the types of
6376 // the operands.
6377 subcontext.type = NULL;
6378 }
6379
6380 // Set the context for the left hand operand.
6381 if (is_shift_op)
6382 {
b40dc774 6383 // The right hand operand of a shift plays no role in
6384 // determining the type of the left hand operand.
e440a328 6385 }
6386 else if (!tleft->is_abstract())
6387 subcontext.type = tleft;
6388 else if (!tright->is_abstract())
6389 subcontext.type = tright;
6390 else if (subcontext.type == NULL)
6391 {
6392 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
6393 || (tleft->float_type() != NULL && tright->float_type() != NULL)
6394 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
6395 {
6396 // Both sides have an abstract integer, abstract float, or
6397 // abstract complex type. Just let CONTEXT determine
6398 // whether they may remain abstract or not.
6399 }
6400 else if (tleft->complex_type() != NULL)
6401 subcontext.type = tleft;
6402 else if (tright->complex_type() != NULL)
6403 subcontext.type = tright;
6404 else if (tleft->float_type() != NULL)
6405 subcontext.type = tleft;
6406 else if (tright->float_type() != NULL)
6407 subcontext.type = tright;
6408 else
6409 subcontext.type = tleft;
f58a23ae 6410
6411 if (subcontext.type != NULL && !context->may_be_abstract)
6412 subcontext.type = subcontext.type->make_non_abstract_type();
e440a328 6413 }
6414
6415 this->left_->determine_type(&subcontext);
6416
e440a328 6417 if (is_shift_op)
6418 {
b40dc774 6419 // We may have inherited an unusable type for the shift operand.
6420 // Give a useful error if that happened.
6421 if (tleft->is_abstract()
6422 && subcontext.type != NULL
6423 && (this->left_->type()->integer_type() == NULL
6424 || (subcontext.type->integer_type() == NULL
6425 && subcontext.type->float_type() == NULL
6426 && subcontext.type->complex_type() == NULL)))
6427 this->report_error(("invalid context-determined non-integer type "
6428 "for shift operand"));
6429
6430 // The context for the right hand operand is the same as for the
6431 // left hand operand, except for a shift operator.
e440a328 6432 subcontext.type = Type::lookup_integer_type("uint");
6433 subcontext.may_be_abstract = false;
6434 }
6435
6436 this->right_->determine_type(&subcontext);
6437}
6438
6439// Report an error if the binary operator OP does not support TYPE.
be8b5eee 6440// OTYPE is the type of the other operand. Return whether the
6441// operation is OK. This should not be used for shift.
e440a328 6442
6443bool
be8b5eee 6444Binary_expression::check_operator_type(Operator op, Type* type, Type* otype,
b13c66cd 6445 Location location)
e440a328 6446{
6447 switch (op)
6448 {
6449 case OPERATOR_OROR:
6450 case OPERATOR_ANDAND:
6451 if (!type->is_boolean_type())
6452 {
6453 error_at(location, "expected boolean type");
6454 return false;
6455 }
6456 break;
6457
6458 case OPERATOR_EQEQ:
6459 case OPERATOR_NOTEQ:
e9d3367e 6460 {
6461 std::string reason;
6462 if (!Type::are_compatible_for_comparison(true, type, otype, &reason))
6463 {
6464 error_at(location, "%s", reason.c_str());
6465 return false;
6466 }
6467 }
e440a328 6468 break;
6469
6470 case OPERATOR_LT:
6471 case OPERATOR_LE:
6472 case OPERATOR_GT:
6473 case OPERATOR_GE:
e9d3367e 6474 {
6475 std::string reason;
6476 if (!Type::are_compatible_for_comparison(false, type, otype, &reason))
6477 {
6478 error_at(location, "%s", reason.c_str());
6479 return false;
6480 }
6481 }
e440a328 6482 break;
6483
6484 case OPERATOR_PLUS:
6485 case OPERATOR_PLUSEQ:
6486 if (type->integer_type() == NULL
6487 && type->float_type() == NULL
6488 && type->complex_type() == NULL
6489 && !type->is_string_type())
6490 {
6491 error_at(location,
6492 "expected integer, floating, complex, or string type");
6493 return false;
6494 }
6495 break;
6496
6497 case OPERATOR_MINUS:
6498 case OPERATOR_MINUSEQ:
6499 case OPERATOR_MULT:
6500 case OPERATOR_MULTEQ:
6501 case OPERATOR_DIV:
6502 case OPERATOR_DIVEQ:
6503 if (type->integer_type() == NULL
6504 && type->float_type() == NULL
6505 && type->complex_type() == NULL)
6506 {
6507 error_at(location, "expected integer, floating, or complex type");
6508 return false;
6509 }
6510 break;
6511
6512 case OPERATOR_MOD:
6513 case OPERATOR_MODEQ:
6514 case OPERATOR_OR:
6515 case OPERATOR_OREQ:
6516 case OPERATOR_AND:
6517 case OPERATOR_ANDEQ:
6518 case OPERATOR_XOR:
6519 case OPERATOR_XOREQ:
6520 case OPERATOR_BITCLEAR:
6521 case OPERATOR_BITCLEAREQ:
6522 if (type->integer_type() == NULL)
6523 {
6524 error_at(location, "expected integer type");
6525 return false;
6526 }
6527 break;
6528
6529 default:
c3e6f413 6530 go_unreachable();
e440a328 6531 }
6532
6533 return true;
6534}
6535
6536// Check types.
6537
6538void
6539Binary_expression::do_check_types(Gogo*)
6540{
5f5fea79 6541 if (this->classification() == EXPRESSION_ERROR)
6542 return;
6543
e440a328 6544 Type* left_type = this->left_->type();
6545 Type* right_type = this->right_->type();
5c13bd80 6546 if (left_type->is_error() || right_type->is_error())
9fe897ef 6547 {
6548 this->set_is_error();
6549 return;
6550 }
e440a328 6551
6552 if (this->op_ == OPERATOR_EQEQ
6553 || this->op_ == OPERATOR_NOTEQ
6554 || this->op_ == OPERATOR_LT
6555 || this->op_ == OPERATOR_LE
6556 || this->op_ == OPERATOR_GT
6557 || this->op_ == OPERATOR_GE)
6558 {
6559 if (!Type::are_assignable(left_type, right_type, NULL)
6560 && !Type::are_assignable(right_type, left_type, NULL))
6561 {
6562 this->report_error(_("incompatible types in binary expression"));
6563 return;
6564 }
6565 if (!Binary_expression::check_operator_type(this->op_, left_type,
be8b5eee 6566 right_type,
e440a328 6567 this->location())
6568 || !Binary_expression::check_operator_type(this->op_, right_type,
be8b5eee 6569 left_type,
e440a328 6570 this->location()))
6571 {
6572 this->set_is_error();
6573 return;
6574 }
6575 }
6576 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
6577 {
6578 if (!Type::are_compatible_for_binop(left_type, right_type))
6579 {
6580 this->report_error(_("incompatible types in binary expression"));
6581 return;
6582 }
6583 if (!Binary_expression::check_operator_type(this->op_, left_type,
be8b5eee 6584 right_type,
e440a328 6585 this->location()))
6586 {
6587 this->set_is_error();
6588 return;
6589 }
6590 }
6591 else
6592 {
6593 if (left_type->integer_type() == NULL)
6594 this->report_error(_("shift of non-integer operand"));
6595
6596 if (!right_type->is_abstract()
6597 && (right_type->integer_type() == NULL
6598 || !right_type->integer_type()->is_unsigned()))
6599 this->report_error(_("shift count not unsigned integer"));
6600 else
6601 {
6602 mpz_t val;
6603 mpz_init(val);
6604 Type* type;
6605 if (this->right_->integer_constant_value(true, val, &type))
6606 {
6607 if (mpz_sgn(val) < 0)
a4eba91b 6608 {
6609 this->report_error(_("negative shift count"));
6610 mpz_set_ui(val, 0);
b13c66cd 6611 Location rloc = this->right_->location();
a4eba91b 6612 this->right_ = Expression::make_integer(&val, right_type,
6613 rloc);
6614 }
e440a328 6615 }
6616 mpz_clear(val);
6617 }
6618 }
6619}
6620
6621// Get a tree for a binary expression.
6622
6623tree
6624Binary_expression::do_get_tree(Translate_context* context)
6625{
6626 tree left = this->left_->get_tree(context);
6627 tree right = this->right_->get_tree(context);
6628
6629 if (left == error_mark_node || right == error_mark_node)
6630 return error_mark_node;
6631
6632 enum tree_code code;
6633 bool use_left_type = true;
6634 bool is_shift_op = false;
6635 switch (this->op_)
6636 {
6637 case OPERATOR_EQEQ:
6638 case OPERATOR_NOTEQ:
6639 case OPERATOR_LT:
6640 case OPERATOR_LE:
6641 case OPERATOR_GT:
6642 case OPERATOR_GE:
6643 return Expression::comparison_tree(context, this->op_,
6644 this->left_->type(), left,
6645 this->right_->type(), right,
6646 this->location());
6647
6648 case OPERATOR_OROR:
6649 code = TRUTH_ORIF_EXPR;
6650 use_left_type = false;
6651 break;
6652 case OPERATOR_ANDAND:
6653 code = TRUTH_ANDIF_EXPR;
6654 use_left_type = false;
6655 break;
6656 case OPERATOR_PLUS:
6657 code = PLUS_EXPR;
6658 break;
6659 case OPERATOR_MINUS:
6660 code = MINUS_EXPR;
6661 break;
6662 case OPERATOR_OR:
6663 code = BIT_IOR_EXPR;
6664 break;
6665 case OPERATOR_XOR:
6666 code = BIT_XOR_EXPR;
6667 break;
6668 case OPERATOR_MULT:
6669 code = MULT_EXPR;
6670 break;
6671 case OPERATOR_DIV:
6672 {
6673 Type *t = this->left_->type();
6674 if (t->float_type() != NULL || t->complex_type() != NULL)
6675 code = RDIV_EXPR;
6676 else
6677 code = TRUNC_DIV_EXPR;
6678 }
6679 break;
6680 case OPERATOR_MOD:
6681 code = TRUNC_MOD_EXPR;
6682 break;
6683 case OPERATOR_LSHIFT:
6684 code = LSHIFT_EXPR;
6685 is_shift_op = true;
6686 break;
6687 case OPERATOR_RSHIFT:
6688 code = RSHIFT_EXPR;
6689 is_shift_op = true;
6690 break;
6691 case OPERATOR_AND:
6692 code = BIT_AND_EXPR;
6693 break;
6694 case OPERATOR_BITCLEAR:
6695 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
6696 code = BIT_AND_EXPR;
6697 break;
6698 default:
c3e6f413 6699 go_unreachable();
e440a328 6700 }
6701
6702 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
6703
6704 if (this->left_->type()->is_string_type())
6705 {
c484d925 6706 go_assert(this->op_ == OPERATOR_PLUS);
9f0e0513 6707 Type* st = Type::make_string_type();
6708 tree string_type = type_to_tree(st->get_backend(context->gogo()));
e440a328 6709 static tree string_plus_decl;
6710 return Gogo::call_builtin(&string_plus_decl,
6711 this->location(),
6712 "__go_string_plus",
6713 2,
6714 string_type,
6715 string_type,
6716 left,
6717 string_type,
6718 right);
6719 }
6720
6721 tree compute_type = excess_precision_type(type);
6722 if (compute_type != NULL_TREE)
6723 {
6724 left = ::convert(compute_type, left);
6725 right = ::convert(compute_type, right);
6726 }
6727
6728 tree eval_saved = NULL_TREE;
6729 if (is_shift_op)
6730 {
e440a328 6731 // Make sure the values are evaluated.
a7a70f31 6732 if (!DECL_P(left) && TREE_SIDE_EFFECTS(left))
6733 {
6734 left = save_expr(left);
6735 eval_saved = left;
6736 }
6737 if (!DECL_P(right) && TREE_SIDE_EFFECTS(right))
6738 {
6739 right = save_expr(right);
6740 if (eval_saved == NULL_TREE)
6741 eval_saved = right;
6742 else
b13c66cd 6743 eval_saved = fold_build2_loc(this->location().gcc_location(),
6744 COMPOUND_EXPR,
a7a70f31 6745 void_type_node, eval_saved, right);
6746 }
e440a328 6747 }
6748
b13c66cd 6749 tree ret = fold_build2_loc(this->location().gcc_location(),
e440a328 6750 code,
6751 compute_type != NULL_TREE ? compute_type : type,
6752 left, right);
6753
6754 if (compute_type != NULL_TREE)
6755 ret = ::convert(type, ret);
6756
6757 // In Go, a shift larger than the size of the type is well-defined.
6758 // This is not true in GENERIC, so we need to insert a conditional.
6759 if (is_shift_op)
6760 {
c484d925 6761 go_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
6762 go_assert(this->left_->type()->integer_type() != NULL);
e440a328 6763 int bits = TYPE_PRECISION(TREE_TYPE(left));
6764
6765 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
6766 build_int_cst_type(TREE_TYPE(right), bits));
6767
b13c66cd 6768 tree overflow_result = fold_convert_loc(this->location().gcc_location(),
e440a328 6769 TREE_TYPE(left),
6770 integer_zero_node);
6771 if (this->op_ == OPERATOR_RSHIFT
6772 && !this->left_->type()->integer_type()->is_unsigned())
6773 {
b13c66cd 6774 tree neg =
6775 fold_build2_loc(this->location().gcc_location(), LT_EXPR,
6776 boolean_type_node, left,
6777 fold_convert_loc(this->location().gcc_location(),
6778 TREE_TYPE(left),
6779 integer_zero_node));
6780 tree neg_one =
6781 fold_build2_loc(this->location().gcc_location(),
6782 MINUS_EXPR, TREE_TYPE(left),
6783 fold_convert_loc(this->location().gcc_location(),
6784 TREE_TYPE(left),
6785 integer_zero_node),
6786 fold_convert_loc(this->location().gcc_location(),
6787 TREE_TYPE(left),
6788 integer_one_node));
6789 overflow_result =
6790 fold_build3_loc(this->location().gcc_location(), COND_EXPR,
6791 TREE_TYPE(left), neg, neg_one,
6792 overflow_result);
6793 }
6794
6795 ret = fold_build3_loc(this->location().gcc_location(), COND_EXPR,
6796 TREE_TYPE(left), compare, ret, overflow_result);
e440a328 6797
a7a70f31 6798 if (eval_saved != NULL_TREE)
b13c66cd 6799 ret = fold_build2_loc(this->location().gcc_location(), COMPOUND_EXPR,
a7a70f31 6800 TREE_TYPE(ret), eval_saved, ret);
e440a328 6801 }
6802
6803 return ret;
6804}
6805
6806// Export a binary expression.
6807
6808void
6809Binary_expression::do_export(Export* exp) const
6810{
6811 exp->write_c_string("(");
6812 this->left_->export_expression(exp);
6813 switch (this->op_)
6814 {
6815 case OPERATOR_OROR:
6816 exp->write_c_string(" || ");
6817 break;
6818 case OPERATOR_ANDAND:
6819 exp->write_c_string(" && ");
6820 break;
6821 case OPERATOR_EQEQ:
6822 exp->write_c_string(" == ");
6823 break;
6824 case OPERATOR_NOTEQ:
6825 exp->write_c_string(" != ");
6826 break;
6827 case OPERATOR_LT:
6828 exp->write_c_string(" < ");
6829 break;
6830 case OPERATOR_LE:
6831 exp->write_c_string(" <= ");
6832 break;
6833 case OPERATOR_GT:
6834 exp->write_c_string(" > ");
6835 break;
6836 case OPERATOR_GE:
6837 exp->write_c_string(" >= ");
6838 break;
6839 case OPERATOR_PLUS:
6840 exp->write_c_string(" + ");
6841 break;
6842 case OPERATOR_MINUS:
6843 exp->write_c_string(" - ");
6844 break;
6845 case OPERATOR_OR:
6846 exp->write_c_string(" | ");
6847 break;
6848 case OPERATOR_XOR:
6849 exp->write_c_string(" ^ ");
6850 break;
6851 case OPERATOR_MULT:
6852 exp->write_c_string(" * ");
6853 break;
6854 case OPERATOR_DIV:
6855 exp->write_c_string(" / ");
6856 break;
6857 case OPERATOR_MOD:
6858 exp->write_c_string(" % ");
6859 break;
6860 case OPERATOR_LSHIFT:
6861 exp->write_c_string(" << ");
6862 break;
6863 case OPERATOR_RSHIFT:
6864 exp->write_c_string(" >> ");
6865 break;
6866 case OPERATOR_AND:
6867 exp->write_c_string(" & ");
6868 break;
6869 case OPERATOR_BITCLEAR:
6870 exp->write_c_string(" &^ ");
6871 break;
6872 default:
c3e6f413 6873 go_unreachable();
e440a328 6874 }
6875 this->right_->export_expression(exp);
6876 exp->write_c_string(")");
6877}
6878
6879// Import a binary expression.
6880
6881Expression*
6882Binary_expression::do_import(Import* imp)
6883{
6884 imp->require_c_string("(");
6885
6886 Expression* left = Expression::import_expression(imp);
6887
6888 Operator op;
6889 if (imp->match_c_string(" || "))
6890 {
6891 op = OPERATOR_OROR;
6892 imp->advance(4);
6893 }
6894 else if (imp->match_c_string(" && "))
6895 {
6896 op = OPERATOR_ANDAND;
6897 imp->advance(4);
6898 }
6899 else if (imp->match_c_string(" == "))
6900 {
6901 op = OPERATOR_EQEQ;
6902 imp->advance(4);
6903 }
6904 else if (imp->match_c_string(" != "))
6905 {
6906 op = OPERATOR_NOTEQ;
6907 imp->advance(4);
6908 }
6909 else if (imp->match_c_string(" < "))
6910 {
6911 op = OPERATOR_LT;
6912 imp->advance(3);
6913 }
6914 else if (imp->match_c_string(" <= "))
6915 {
6916 op = OPERATOR_LE;
6917 imp->advance(4);
6918 }
6919 else if (imp->match_c_string(" > "))
6920 {
6921 op = OPERATOR_GT;
6922 imp->advance(3);
6923 }
6924 else if (imp->match_c_string(" >= "))
6925 {
6926 op = OPERATOR_GE;
6927 imp->advance(4);
6928 }
6929 else if (imp->match_c_string(" + "))
6930 {
6931 op = OPERATOR_PLUS;
6932 imp->advance(3);
6933 }
6934 else if (imp->match_c_string(" - "))
6935 {
6936 op = OPERATOR_MINUS;
6937 imp->advance(3);
6938 }
6939 else if (imp->match_c_string(" | "))
6940 {
6941 op = OPERATOR_OR;
6942 imp->advance(3);
6943 }
6944 else if (imp->match_c_string(" ^ "))
6945 {
6946 op = OPERATOR_XOR;
6947 imp->advance(3);
6948 }
6949 else if (imp->match_c_string(" * "))
6950 {
6951 op = OPERATOR_MULT;
6952 imp->advance(3);
6953 }
6954 else if (imp->match_c_string(" / "))
6955 {
6956 op = OPERATOR_DIV;
6957 imp->advance(3);
6958 }
6959 else if (imp->match_c_string(" % "))
6960 {
6961 op = OPERATOR_MOD;
6962 imp->advance(3);
6963 }
6964 else if (imp->match_c_string(" << "))
6965 {
6966 op = OPERATOR_LSHIFT;
6967 imp->advance(4);
6968 }
6969 else if (imp->match_c_string(" >> "))
6970 {
6971 op = OPERATOR_RSHIFT;
6972 imp->advance(4);
6973 }
6974 else if (imp->match_c_string(" & "))
6975 {
6976 op = OPERATOR_AND;
6977 imp->advance(3);
6978 }
6979 else if (imp->match_c_string(" &^ "))
6980 {
6981 op = OPERATOR_BITCLEAR;
6982 imp->advance(4);
6983 }
6984 else
6985 {
6986 error_at(imp->location(), "unrecognized binary operator");
6987 return Expression::make_error(imp->location());
6988 }
6989
6990 Expression* right = Expression::import_expression(imp);
6991
6992 imp->require_c_string(")");
6993
6994 return Expression::make_binary(op, left, right, imp->location());
6995}
6996
d751bb78 6997// Dump ast representation of a binary expression.
6998
6999void
7000Binary_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
7001{
7002 ast_dump_context->ostream() << "(";
7003 ast_dump_context->dump_expression(this->left_);
7004 ast_dump_context->ostream() << " ";
7005 ast_dump_context->dump_operator(this->op_);
7006 ast_dump_context->ostream() << " ";
7007 ast_dump_context->dump_expression(this->right_);
7008 ast_dump_context->ostream() << ") ";
7009}
7010
e440a328 7011// Make a binary expression.
7012
7013Expression*
7014Expression::make_binary(Operator op, Expression* left, Expression* right,
b13c66cd 7015 Location location)
e440a328 7016{
7017 return new Binary_expression(op, left, right, location);
7018}
7019
7020// Implement a comparison.
7021
7022tree
7023Expression::comparison_tree(Translate_context* context, Operator op,
7024 Type* left_type, tree left_tree,
7025 Type* right_type, tree right_tree,
b13c66cd 7026 Location location)
e440a328 7027{
7028 enum tree_code code;
7029 switch (op)
7030 {
7031 case OPERATOR_EQEQ:
7032 code = EQ_EXPR;
7033 break;
7034 case OPERATOR_NOTEQ:
7035 code = NE_EXPR;
7036 break;
7037 case OPERATOR_LT:
7038 code = LT_EXPR;
7039 break;
7040 case OPERATOR_LE:
7041 code = LE_EXPR;
7042 break;
7043 case OPERATOR_GT:
7044 code = GT_EXPR;
7045 break;
7046 case OPERATOR_GE:
7047 code = GE_EXPR;
7048 break;
7049 default:
c3e6f413 7050 go_unreachable();
e440a328 7051 }
7052
15c67ee2 7053 if (left_type->is_string_type() && right_type->is_string_type())
e440a328 7054 {
9f0e0513 7055 Type* st = Type::make_string_type();
7056 tree string_type = type_to_tree(st->get_backend(context->gogo()));
e440a328 7057 static tree string_compare_decl;
7058 left_tree = Gogo::call_builtin(&string_compare_decl,
7059 location,
7060 "__go_strcmp",
7061 2,
7062 integer_type_node,
7063 string_type,
7064 left_tree,
7065 string_type,
7066 right_tree);
7067 right_tree = build_int_cst_type(integer_type_node, 0);
7068 }
15c67ee2 7069 else if ((left_type->interface_type() != NULL
7070 && right_type->interface_type() == NULL
7071 && !right_type->is_nil_type())
7072 || (left_type->interface_type() == NULL
7073 && !left_type->is_nil_type()
7074 && right_type->interface_type() != NULL))
e440a328 7075 {
7076 // Comparing an interface value to a non-interface value.
7077 if (left_type->interface_type() == NULL)
7078 {
7079 std::swap(left_type, right_type);
7080 std::swap(left_tree, right_tree);
7081 }
7082
7083 // The right operand is not an interface. We need to take its
7084 // address if it is not a pointer.
7085 tree make_tmp;
7086 tree arg;
7087 if (right_type->points_to() != NULL)
7088 {
7089 make_tmp = NULL_TREE;
7090 arg = right_tree;
7091 }
7092 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
7093 {
7094 make_tmp = NULL_TREE;
b13c66cd 7095 arg = build_fold_addr_expr_loc(location.gcc_location(), right_tree);
e440a328 7096 if (DECL_P(right_tree))
7097 TREE_ADDRESSABLE(right_tree) = 1;
7098 }
7099 else
7100 {
7101 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
7102 get_name(right_tree));
7103 DECL_IGNORED_P(tmp) = 0;
7104 DECL_INITIAL(tmp) = right_tree;
7105 TREE_ADDRESSABLE(tmp) = 1;
7106 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
b13c66cd 7107 SET_EXPR_LOCATION(make_tmp, location.gcc_location());
7108 arg = build_fold_addr_expr_loc(location.gcc_location(), tmp);
e440a328 7109 }
b13c66cd 7110 arg = fold_convert_loc(location.gcc_location(), ptr_type_node, arg);
e440a328 7111
a1d23b41 7112 tree descriptor = right_type->type_descriptor_pointer(context->gogo(),
7113 location);
e440a328 7114
7115 if (left_type->interface_type()->is_empty())
7116 {
7117 static tree empty_interface_value_compare_decl;
7118 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
7119 location,
7120 "__go_empty_interface_value_compare",
7121 3,
7122 integer_type_node,
7123 TREE_TYPE(left_tree),
7124 left_tree,
7125 TREE_TYPE(descriptor),
7126 descriptor,
7127 ptr_type_node,
7128 arg);
5fb82b5e 7129 if (left_tree == error_mark_node)
7130 return error_mark_node;
e440a328 7131 // This can panic if the type is not comparable.
7132 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
7133 }
7134 else
7135 {
7136 static tree interface_value_compare_decl;
7137 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
7138 location,
7139 "__go_interface_value_compare",
7140 3,
7141 integer_type_node,
7142 TREE_TYPE(left_tree),
7143 left_tree,
7144 TREE_TYPE(descriptor),
7145 descriptor,
7146 ptr_type_node,
7147 arg);
5fb82b5e 7148 if (left_tree == error_mark_node)
7149 return error_mark_node;
e440a328 7150 // This can panic if the type is not comparable.
7151 TREE_NOTHROW(interface_value_compare_decl) = 0;
7152 }
7153 right_tree = build_int_cst_type(integer_type_node, 0);
7154
7155 if (make_tmp != NULL_TREE)
7156 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
7157 left_tree);
7158 }
7159 else if (left_type->interface_type() != NULL
7160 && right_type->interface_type() != NULL)
7161 {
739bad04 7162 if (left_type->interface_type()->is_empty()
7163 && right_type->interface_type()->is_empty())
e440a328 7164 {
e440a328 7165 static tree empty_interface_compare_decl;
7166 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
7167 location,
7168 "__go_empty_interface_compare",
7169 2,
7170 integer_type_node,
7171 TREE_TYPE(left_tree),
7172 left_tree,
7173 TREE_TYPE(right_tree),
7174 right_tree);
5fb82b5e 7175 if (left_tree == error_mark_node)
7176 return error_mark_node;
e440a328 7177 // This can panic if the type is uncomparable.
7178 TREE_NOTHROW(empty_interface_compare_decl) = 0;
7179 }
739bad04 7180 else if (!left_type->interface_type()->is_empty()
7181 && !right_type->interface_type()->is_empty())
e440a328 7182 {
e440a328 7183 static tree interface_compare_decl;
7184 left_tree = Gogo::call_builtin(&interface_compare_decl,
7185 location,
7186 "__go_interface_compare",
7187 2,
7188 integer_type_node,
7189 TREE_TYPE(left_tree),
7190 left_tree,
7191 TREE_TYPE(right_tree),
7192 right_tree);
5fb82b5e 7193 if (left_tree == error_mark_node)
7194 return error_mark_node;
e440a328 7195 // This can panic if the type is uncomparable.
7196 TREE_NOTHROW(interface_compare_decl) = 0;
7197 }
739bad04 7198 else
7199 {
7200 if (left_type->interface_type()->is_empty())
7201 {
c484d925 7202 go_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
739bad04 7203 std::swap(left_type, right_type);
7204 std::swap(left_tree, right_tree);
7205 }
c484d925 7206 go_assert(!left_type->interface_type()->is_empty());
7207 go_assert(right_type->interface_type()->is_empty());
739bad04 7208 static tree interface_empty_compare_decl;
7209 left_tree = Gogo::call_builtin(&interface_empty_compare_decl,
7210 location,
7211 "__go_interface_empty_compare",
7212 2,
7213 integer_type_node,
7214 TREE_TYPE(left_tree),
7215 left_tree,
7216 TREE_TYPE(right_tree),
7217 right_tree);
7218 if (left_tree == error_mark_node)
7219 return error_mark_node;
7220 // This can panic if the type is uncomparable.
7221 TREE_NOTHROW(interface_empty_compare_decl) = 0;
7222 }
7223
e440a328 7224 right_tree = build_int_cst_type(integer_type_node, 0);
7225 }
7226
7227 if (left_type->is_nil_type()
7228 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
7229 {
7230 std::swap(left_type, right_type);
7231 std::swap(left_tree, right_tree);
7232 }
7233
7234 if (right_type->is_nil_type())
7235 {
7236 if (left_type->array_type() != NULL
7237 && left_type->array_type()->length() == NULL)
7238 {
7239 Array_type* at = left_type->array_type();
7240 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
7241 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
7242 }
7243 else if (left_type->interface_type() != NULL)
7244 {
7245 // An interface is nil if the first field is nil.
7246 tree left_type_tree = TREE_TYPE(left_tree);
c484d925 7247 go_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
e440a328 7248 tree field = TYPE_FIELDS(left_type_tree);
7249 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
7250 field, NULL_TREE);
7251 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
7252 }
7253 else
7254 {
c484d925 7255 go_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
e440a328 7256 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
7257 }
7258 }
7259
d8ccb1e3 7260 if (left_tree == error_mark_node || right_tree == error_mark_node)
7261 return error_mark_node;
7262
e440a328 7263 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
7264 if (CAN_HAVE_LOCATION_P(ret))
b13c66cd 7265 SET_EXPR_LOCATION(ret, location.gcc_location());
e440a328 7266 return ret;
7267}
7268
7269// Class Bound_method_expression.
7270
7271// Traversal.
7272
7273int
7274Bound_method_expression::do_traverse(Traverse* traverse)
7275{
e0659c9e 7276 return Expression::traverse(&this->expr_, traverse);
e440a328 7277}
7278
7279// Return the type of a bound method expression. The type of this
7280// object is really the type of the method with no receiver. We
7281// should be able to get away with just returning the type of the
7282// method.
7283
7284Type*
7285Bound_method_expression::do_type()
7286{
e0659c9e 7287 if (this->method_->is_function())
7288 return this->method_->func_value()->type();
7289 else if (this->method_->is_function_declaration())
7290 return this->method_->func_declaration_value()->type();
7291 else
7292 return Type::make_error_type();
e440a328 7293}
7294
7295// Determine the types of a method expression.
7296
7297void
7298Bound_method_expression::do_determine_type(const Type_context*)
7299{
e0659c9e 7300 Function_type* fntype = this->type()->function_type();
e440a328 7301 if (fntype == NULL || !fntype->is_method())
7302 this->expr_->determine_type_no_context();
7303 else
7304 {
7305 Type_context subcontext(fntype->receiver()->type(), false);
7306 this->expr_->determine_type(&subcontext);
7307 }
7308}
7309
7310// Check the types of a method expression.
7311
7312void
7313Bound_method_expression::do_check_types(Gogo*)
7314{
e0659c9e 7315 if (!this->method_->is_function()
7316 && !this->method_->is_function_declaration())
e440a328 7317 this->report_error(_("object is not a method"));
7318 else
7319 {
e0659c9e 7320 Type* rtype = this->type()->function_type()->receiver()->type()->deref();
e440a328 7321 Type* etype = (this->expr_type_ != NULL
7322 ? this->expr_type_
7323 : this->expr_->type());
7324 etype = etype->deref();
07ba8be5 7325 if (!Type::are_identical(rtype, etype, true, NULL))
e440a328 7326 this->report_error(_("method type does not match object type"));
7327 }
7328}
7329
7330// Get the tree for a method expression. There is no standard tree
7331// representation for this. The only places it may currently be used
7332// are in a Call_expression or a Go_statement, which will take it
7333// apart directly. So this has nothing to do at present.
7334
7335tree
7336Bound_method_expression::do_get_tree(Translate_context*)
7337{
d40405e2 7338 error_at(this->location(), "reference to method other than calling it");
7339 return error_mark_node;
e440a328 7340}
7341
d751bb78 7342// Dump ast representation of a bound method expression.
7343
7344void
7345Bound_method_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
7346 const
7347{
7348 if (this->expr_type_ != NULL)
7349 ast_dump_context->ostream() << "(";
7350 ast_dump_context->dump_expression(this->expr_);
7351 if (this->expr_type_ != NULL)
7352 {
7353 ast_dump_context->ostream() << ":";
7354 ast_dump_context->dump_type(this->expr_type_);
7355 ast_dump_context->ostream() << ")";
7356 }
7357
e0659c9e 7358 ast_dump_context->ostream() << "." << this->method_->name();
d751bb78 7359}
7360
e440a328 7361// Make a method expression.
7362
7363Bound_method_expression*
e0659c9e 7364Expression::make_bound_method(Expression* expr, Named_object* method,
b13c66cd 7365 Location location)
e440a328 7366{
7367 return new Bound_method_expression(expr, method, location);
7368}
7369
7370// Class Builtin_call_expression. This is used for a call to a
7371// builtin function.
7372
7373class Builtin_call_expression : public Call_expression
7374{
7375 public:
7376 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
b13c66cd 7377 bool is_varargs, Location location);
e440a328 7378
7379 protected:
7380 // This overrides Call_expression::do_lower.
7381 Expression*
ceeb4318 7382 do_lower(Gogo*, Named_object*, Statement_inserter*, int);
e440a328 7383
7384 bool
7385 do_is_constant() const;
7386
7387 bool
7388 do_integer_constant_value(bool, mpz_t, Type**) const;
7389
7390 bool
7391 do_float_constant_value(mpfr_t, Type**) const;
7392
7393 bool
7394 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
7395
a7549a6a 7396 void
7397 do_discarding_value();
7398
e440a328 7399 Type*
7400 do_type();
7401
7402 void
7403 do_determine_type(const Type_context*);
7404
7405 void
7406 do_check_types(Gogo*);
7407
7408 Expression*
7409 do_copy()
7410 {
7411 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
7412 this->args()->copy(),
7413 this->is_varargs(),
7414 this->location());
7415 }
7416
7417 tree
7418 do_get_tree(Translate_context*);
7419
7420 void
7421 do_export(Export*) const;
7422
7423 virtual bool
7424 do_is_recover_call() const;
7425
7426 virtual void
7427 do_set_recover_arg(Expression*);
7428
7429 private:
7430 // The builtin functions.
7431 enum Builtin_function_code
7432 {
7433 BUILTIN_INVALID,
7434
7435 // Predeclared builtin functions.
7436 BUILTIN_APPEND,
7437 BUILTIN_CAP,
7438 BUILTIN_CLOSE,
48080209 7439 BUILTIN_COMPLEX,
e440a328 7440 BUILTIN_COPY,
1cce762f 7441 BUILTIN_DELETE,
e440a328 7442 BUILTIN_IMAG,
7443 BUILTIN_LEN,
7444 BUILTIN_MAKE,
7445 BUILTIN_NEW,
7446 BUILTIN_PANIC,
7447 BUILTIN_PRINT,
7448 BUILTIN_PRINTLN,
7449 BUILTIN_REAL,
7450 BUILTIN_RECOVER,
7451
7452 // Builtin functions from the unsafe package.
7453 BUILTIN_ALIGNOF,
7454 BUILTIN_OFFSETOF,
7455 BUILTIN_SIZEOF
7456 };
7457
7458 Expression*
7459 one_arg() const;
7460
7461 bool
7462 check_one_arg();
7463
7464 static Type*
7465 real_imag_type(Type*);
7466
7467 static Type*
48080209 7468 complex_type(Type*);
e440a328 7469
a9182619 7470 Expression*
7471 lower_make();
7472
7473 bool
7474 check_int_value(Expression*);
7475
e440a328 7476 // A pointer back to the general IR structure. This avoids a global
7477 // variable, or passing it around everywhere.
7478 Gogo* gogo_;
7479 // The builtin function being called.
7480 Builtin_function_code code_;
0f914071 7481 // Used to stop endless loops when the length of an array uses len
7482 // or cap of the array itself.
7483 mutable bool seen_;
e440a328 7484};
7485
7486Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
7487 Expression* fn,
7488 Expression_list* args,
7489 bool is_varargs,
b13c66cd 7490 Location location)
e440a328 7491 : Call_expression(fn, args, is_varargs, location),
0f914071 7492 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
e440a328 7493{
7494 Func_expression* fnexp = this->fn()->func_expression();
c484d925 7495 go_assert(fnexp != NULL);
e440a328 7496 const std::string& name(fnexp->named_object()->name());
7497 if (name == "append")
7498 this->code_ = BUILTIN_APPEND;
7499 else if (name == "cap")
7500 this->code_ = BUILTIN_CAP;
7501 else if (name == "close")
7502 this->code_ = BUILTIN_CLOSE;
48080209 7503 else if (name == "complex")
7504 this->code_ = BUILTIN_COMPLEX;
e440a328 7505 else if (name == "copy")
7506 this->code_ = BUILTIN_COPY;
1cce762f 7507 else if (name == "delete")
7508 this->code_ = BUILTIN_DELETE;
e440a328 7509 else if (name == "imag")
7510 this->code_ = BUILTIN_IMAG;
7511 else if (name == "len")
7512 this->code_ = BUILTIN_LEN;
7513 else if (name == "make")
7514 this->code_ = BUILTIN_MAKE;
7515 else if (name == "new")
7516 this->code_ = BUILTIN_NEW;
7517 else if (name == "panic")
7518 this->code_ = BUILTIN_PANIC;
7519 else if (name == "print")
7520 this->code_ = BUILTIN_PRINT;
7521 else if (name == "println")
7522 this->code_ = BUILTIN_PRINTLN;
7523 else if (name == "real")
7524 this->code_ = BUILTIN_REAL;
7525 else if (name == "recover")
7526 this->code_ = BUILTIN_RECOVER;
7527 else if (name == "Alignof")
7528 this->code_ = BUILTIN_ALIGNOF;
7529 else if (name == "Offsetof")
7530 this->code_ = BUILTIN_OFFSETOF;
7531 else if (name == "Sizeof")
7532 this->code_ = BUILTIN_SIZEOF;
7533 else
c3e6f413 7534 go_unreachable();
e440a328 7535}
7536
7537// Return whether this is a call to recover. This is a virtual
7538// function called from the parent class.
7539
7540bool
7541Builtin_call_expression::do_is_recover_call() const
7542{
7543 if (this->classification() == EXPRESSION_ERROR)
7544 return false;
7545 return this->code_ == BUILTIN_RECOVER;
7546}
7547
7548// Set the argument for a call to recover.
7549
7550void
7551Builtin_call_expression::do_set_recover_arg(Expression* arg)
7552{
7553 const Expression_list* args = this->args();
c484d925 7554 go_assert(args == NULL || args->empty());
e440a328 7555 Expression_list* new_args = new Expression_list();
7556 new_args->push_back(arg);
7557 this->set_args(new_args);
7558}
7559
7560// A traversal class which looks for a call expression.
7561
7562class Find_call_expression : public Traverse
7563{
7564 public:
7565 Find_call_expression()
7566 : Traverse(traverse_expressions),
7567 found_(false)
7568 { }
7569
7570 int
7571 expression(Expression**);
7572
7573 bool
7574 found()
7575 { return this->found_; }
7576
7577 private:
7578 bool found_;
7579};
7580
7581int
7582Find_call_expression::expression(Expression** pexpr)
7583{
7584 if ((*pexpr)->call_expression() != NULL)
7585 {
7586 this->found_ = true;
7587 return TRAVERSE_EXIT;
7588 }
7589 return TRAVERSE_CONTINUE;
7590}
7591
7592// Lower a builtin call expression. This turns new and make into
7593// specific expressions. We also convert to a constant if we can.
7594
7595Expression*
ceeb4318 7596Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function,
7597 Statement_inserter* inserter, int)
e440a328 7598{
a9182619 7599 if (this->classification() == EXPRESSION_ERROR)
7600 return this;
7601
b13c66cd 7602 Location loc = this->location();
1cce762f 7603
a8725655 7604 if (this->is_varargs() && this->code_ != BUILTIN_APPEND)
7605 {
7606 this->report_error(_("invalid use of %<...%> with builtin function"));
1cce762f 7607 return Expression::make_error(loc);
a8725655 7608 }
7609
1cce762f 7610 if (this->is_constant())
e440a328 7611 {
7612 // We can only lower len and cap if there are no function calls
7613 // in the arguments. Otherwise we have to make the call.
7614 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
7615 {
7616 Expression* arg = this->one_arg();
7617 if (!arg->is_constant())
7618 {
7619 Find_call_expression find_call;
7620 Expression::traverse(&arg, &find_call);
7621 if (find_call.found())
7622 return this;
7623 }
7624 }
7625
7626 mpz_t ival;
7627 mpz_init(ival);
7628 Type* type;
7629 if (this->integer_constant_value(true, ival, &type))
7630 {
1cce762f 7631 Expression* ret = Expression::make_integer(&ival, type, loc);
e440a328 7632 mpz_clear(ival);
7633 return ret;
7634 }
7635 mpz_clear(ival);
7636
7637 mpfr_t rval;
7638 mpfr_init(rval);
7639 if (this->float_constant_value(rval, &type))
7640 {
1cce762f 7641 Expression* ret = Expression::make_float(&rval, type, loc);
e440a328 7642 mpfr_clear(rval);
7643 return ret;
7644 }
7645
7646 mpfr_t imag;
7647 mpfr_init(imag);
7648 if (this->complex_constant_value(rval, imag, &type))
7649 {
1cce762f 7650 Expression* ret = Expression::make_complex(&rval, &imag, type, loc);
e440a328 7651 mpfr_clear(rval);
7652 mpfr_clear(imag);
7653 return ret;
7654 }
7655 mpfr_clear(rval);
7656 mpfr_clear(imag);
7657 }
1cce762f 7658
7659 switch (this->code_)
e440a328 7660 {
1cce762f 7661 default:
7662 break;
7663
7664 case BUILTIN_NEW:
7665 {
7666 const Expression_list* args = this->args();
7667 if (args == NULL || args->size() < 1)
7668 this->report_error(_("not enough arguments"));
7669 else if (args->size() > 1)
7670 this->report_error(_("too many arguments"));
7671 else
7672 {
7673 Expression* arg = args->front();
7674 if (!arg->is_type_expression())
7675 {
7676 error_at(arg->location(), "expected type");
7677 this->set_is_error();
7678 }
7679 else
7680 return Expression::make_allocation(arg->type(), loc);
7681 }
7682 }
7683 break;
7684
7685 case BUILTIN_MAKE:
7686 return this->lower_make();
7687
7688 case BUILTIN_RECOVER:
e440a328 7689 if (function != NULL)
7690 function->func_value()->set_calls_recover();
7691 else
7692 {
7693 // Calling recover outside of a function always returns the
7694 // nil empty interface.
823c7e3d 7695 Type* eface = Type::make_empty_interface_type(loc);
1cce762f 7696 return Expression::make_cast(eface, Expression::make_nil(loc), loc);
e440a328 7697 }
1cce762f 7698 break;
7699
7700 case BUILTIN_APPEND:
7701 {
7702 // Lower the varargs.
7703 const Expression_list* args = this->args();
7704 if (args == NULL || args->empty())
e440a328 7705 return this;
1cce762f 7706 Type* slice_type = args->front()->type();
7707 if (!slice_type->is_slice_type())
7708 {
7709 error_at(args->front()->location(), "argument 1 must be a slice");
7710 this->set_is_error();
7711 return this;
7712 }
19fd40c3 7713 Type* element_type = slice_type->array_type()->element_type();
7714 this->lower_varargs(gogo, function, inserter,
7715 Type::make_array_type(element_type, NULL),
7716 2);
1cce762f 7717 }
7718 break;
7719
7720 case BUILTIN_DELETE:
7721 {
7722 // Lower to a runtime function call.
7723 const Expression_list* args = this->args();
7724 if (args == NULL || args->size() < 2)
7725 this->report_error(_("not enough arguments"));
7726 else if (args->size() > 2)
7727 this->report_error(_("too many arguments"));
7728 else if (args->front()->type()->map_type() == NULL)
7729 this->report_error(_("argument 1 must be a map"));
7730 else
7731 {
7732 // Since this function returns no value it must appear in
7733 // a statement by itself, so we don't have to worry about
7734 // order of evaluation of values around it. Evaluate the
7735 // map first to get order of evaluation right.
7736 Map_type* mt = args->front()->type()->map_type();
7737 Temporary_statement* map_temp =
7738 Statement::make_temporary(mt, args->front(), loc);
7739 inserter->insert(map_temp);
7740
7741 Temporary_statement* key_temp =
7742 Statement::make_temporary(mt->key_type(), args->back(), loc);
7743 inserter->insert(key_temp);
7744
7745 Expression* e1 = Expression::make_temporary_reference(map_temp,
7746 loc);
7747 Expression* e2 = Expression::make_temporary_reference(key_temp,
7748 loc);
7749 e2 = Expression::make_unary(OPERATOR_AND, e2, loc);
7750 return Runtime::make_call(Runtime::MAPDELETE, this->location(),
7751 2, e1, e2);
7752 }
7753 }
7754 break;
e440a328 7755 }
7756
7757 return this;
7758}
7759
a9182619 7760// Lower a make expression.
7761
7762Expression*
7763Builtin_call_expression::lower_make()
7764{
b13c66cd 7765 Location loc = this->location();
a9182619 7766
7767 const Expression_list* args = this->args();
7768 if (args == NULL || args->size() < 1)
7769 {
7770 this->report_error(_("not enough arguments"));
7771 return Expression::make_error(this->location());
7772 }
7773
7774 Expression_list::const_iterator parg = args->begin();
7775
7776 Expression* first_arg = *parg;
7777 if (!first_arg->is_type_expression())
7778 {
7779 error_at(first_arg->location(), "expected type");
7780 this->set_is_error();
7781 return Expression::make_error(this->location());
7782 }
7783 Type* type = first_arg->type();
7784
7785 bool is_slice = false;
7786 bool is_map = false;
7787 bool is_chan = false;
411eb89e 7788 if (type->is_slice_type())
a9182619 7789 is_slice = true;
7790 else if (type->map_type() != NULL)
7791 is_map = true;
7792 else if (type->channel_type() != NULL)
7793 is_chan = true;
7794 else
7795 {
7796 this->report_error(_("invalid type for make function"));
7797 return Expression::make_error(this->location());
7798 }
7799
ac84c822 7800 bool have_big_args = false;
7801 Type* uintptr_type = Type::lookup_integer_type("uintptr");
7802 int uintptr_bits = uintptr_type->integer_type()->bits();
7803
a9182619 7804 ++parg;
7805 Expression* len_arg;
7806 if (parg == args->end())
7807 {
7808 if (is_slice)
7809 {
7810 this->report_error(_("length required when allocating a slice"));
7811 return Expression::make_error(this->location());
7812 }
7813
7814 mpz_t zval;
7815 mpz_init_set_ui(zval, 0);
7816 len_arg = Expression::make_integer(&zval, NULL, loc);
7817 mpz_clear(zval);
7818 }
7819 else
7820 {
7821 len_arg = *parg;
7822 if (!this->check_int_value(len_arg))
7823 {
7824 this->report_error(_("bad size for make"));
7825 return Expression::make_error(this->location());
7826 }
ac84c822 7827 if (len_arg->type()->integer_type() != NULL
7828 && len_arg->type()->integer_type()->bits() > uintptr_bits)
7829 have_big_args = true;
a9182619 7830 ++parg;
7831 }
7832
7833 Expression* cap_arg = NULL;
7834 if (is_slice && parg != args->end())
7835 {
7836 cap_arg = *parg;
7837 if (!this->check_int_value(cap_arg))
7838 {
7839 this->report_error(_("bad capacity when making slice"));
7840 return Expression::make_error(this->location());
7841 }
ac84c822 7842 if (cap_arg->type()->integer_type() != NULL
7843 && cap_arg->type()->integer_type()->bits() > uintptr_bits)
7844 have_big_args = true;
a9182619 7845 ++parg;
7846 }
7847
7848 if (parg != args->end())
7849 {
7850 this->report_error(_("too many arguments to make"));
7851 return Expression::make_error(this->location());
7852 }
7853
b13c66cd 7854 Location type_loc = first_arg->location();
a9182619 7855 Expression* type_arg;
7856 if (is_slice || is_chan)
7857 type_arg = Expression::make_type_descriptor(type, type_loc);
7858 else if (is_map)
7859 type_arg = Expression::make_map_descriptor(type->map_type(), type_loc);
7860 else
7861 go_unreachable();
7862
7863 Expression* call;
7864 if (is_slice)
7865 {
7866 if (cap_arg == NULL)
ac84c822 7867 call = Runtime::make_call((have_big_args
7868 ? Runtime::MAKESLICE1BIG
7869 : Runtime::MAKESLICE1),
7870 loc, 2, type_arg, len_arg);
a9182619 7871 else
ac84c822 7872 call = Runtime::make_call((have_big_args
7873 ? Runtime::MAKESLICE2BIG
7874 : Runtime::MAKESLICE2),
7875 loc, 3, type_arg, len_arg, cap_arg);
a9182619 7876 }
7877 else if (is_map)
ac84c822 7878 call = Runtime::make_call((have_big_args
7879 ? Runtime::MAKEMAPBIG
7880 : Runtime::MAKEMAP),
7881 loc, 2, type_arg, len_arg);
a9182619 7882 else if (is_chan)
ac84c822 7883 call = Runtime::make_call((have_big_args
7884 ? Runtime::MAKECHANBIG
7885 : Runtime::MAKECHAN),
7886 loc, 2, type_arg, len_arg);
a9182619 7887 else
7888 go_unreachable();
7889
7890 return Expression::make_unsafe_cast(type, call, loc);
7891}
7892
7893// Return whether an expression has an integer value. Report an error
7894// if not. This is used when handling calls to the predeclared make
7895// function.
7896
7897bool
7898Builtin_call_expression::check_int_value(Expression* e)
7899{
7900 if (e->type()->integer_type() != NULL)
7901 return true;
7902
7903 // Check for a floating point constant with integer value.
7904 mpfr_t fval;
7905 mpfr_init(fval);
7906
7907 Type* dummy;
7908 if (e->float_constant_value(fval, &dummy) && mpfr_integer_p(fval))
7909 {
7910 mpz_t ival;
7911 mpz_init(ival);
7912
7913 bool ok = false;
7914
7915 mpfr_clear_overflow();
7916 mpfr_clear_erangeflag();
7917 mpfr_get_z(ival, fval, GMP_RNDN);
7918 if (!mpfr_overflow_p()
7919 && !mpfr_erangeflag_p()
7920 && mpz_sgn(ival) >= 0)
7921 {
7922 Named_type* ntype = Type::lookup_integer_type("int");
7923 Integer_type* inttype = ntype->integer_type();
7924 mpz_t max;
7925 mpz_init_set_ui(max, 1);
7926 mpz_mul_2exp(max, max, inttype->bits() - 1);
7927 ok = mpz_cmp(ival, max) < 0;
7928 mpz_clear(max);
7929 }
7930 mpz_clear(ival);
7931
7932 if (ok)
7933 {
7934 mpfr_clear(fval);
7935 return true;
7936 }
7937 }
7938
7939 mpfr_clear(fval);
7940
7941 return false;
7942}
7943
e440a328 7944// Return the type of the real or imag functions, given the type of
7945// the argument. We need to map complex to float, complex64 to
7946// float32, and complex128 to float64, so it has to be done by name.
7947// This returns NULL if it can't figure out the type.
7948
7949Type*
7950Builtin_call_expression::real_imag_type(Type* arg_type)
7951{
7952 if (arg_type == NULL || arg_type->is_abstract())
7953 return NULL;
7954 Named_type* nt = arg_type->named_type();
7955 if (nt == NULL)
7956 return NULL;
7957 while (nt->real_type()->named_type() != NULL)
7958 nt = nt->real_type()->named_type();
48080209 7959 if (nt->name() == "complex64")
e440a328 7960 return Type::lookup_float_type("float32");
7961 else if (nt->name() == "complex128")
7962 return Type::lookup_float_type("float64");
7963 else
7964 return NULL;
7965}
7966
48080209 7967// Return the type of the complex function, given the type of one of the
e440a328 7968// argments. Like real_imag_type, we have to map by name.
7969
7970Type*
48080209 7971Builtin_call_expression::complex_type(Type* arg_type)
e440a328 7972{
7973 if (arg_type == NULL || arg_type->is_abstract())
7974 return NULL;
7975 Named_type* nt = arg_type->named_type();
7976 if (nt == NULL)
7977 return NULL;
7978 while (nt->real_type()->named_type() != NULL)
7979 nt = nt->real_type()->named_type();
48080209 7980 if (nt->name() == "float32")
e440a328 7981 return Type::lookup_complex_type("complex64");
7982 else if (nt->name() == "float64")
7983 return Type::lookup_complex_type("complex128");
7984 else
7985 return NULL;
7986}
7987
7988// Return a single argument, or NULL if there isn't one.
7989
7990Expression*
7991Builtin_call_expression::one_arg() const
7992{
7993 const Expression_list* args = this->args();
7994 if (args->size() != 1)
7995 return NULL;
7996 return args->front();
7997}
7998
7999// Return whether this is constant: len of a string, or len or cap of
8000// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
8001
8002bool
8003Builtin_call_expression::do_is_constant() const
8004{
8005 switch (this->code_)
8006 {
8007 case BUILTIN_LEN:
8008 case BUILTIN_CAP:
8009 {
0f914071 8010 if (this->seen_)
8011 return false;
8012
e440a328 8013 Expression* arg = this->one_arg();
8014 if (arg == NULL)
8015 return false;
8016 Type* arg_type = arg->type();
8017
8018 if (arg_type->points_to() != NULL
8019 && arg_type->points_to()->array_type() != NULL
411eb89e 8020 && !arg_type->points_to()->is_slice_type())
e440a328 8021 arg_type = arg_type->points_to();
8022
8023 if (arg_type->array_type() != NULL
8024 && arg_type->array_type()->length() != NULL)
0f914071 8025 return true;
e440a328 8026
8027 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
0f914071 8028 {
8029 this->seen_ = true;
8030 bool ret = arg->is_constant();
8031 this->seen_ = false;
8032 return ret;
8033 }
e440a328 8034 }
8035 break;
8036
8037 case BUILTIN_SIZEOF:
8038 case BUILTIN_ALIGNOF:
8039 return this->one_arg() != NULL;
8040
8041 case BUILTIN_OFFSETOF:
8042 {
8043 Expression* arg = this->one_arg();
8044 if (arg == NULL)
8045 return false;
8046 return arg->field_reference_expression() != NULL;
8047 }
8048
48080209 8049 case BUILTIN_COMPLEX:
e440a328 8050 {
8051 const Expression_list* args = this->args();
8052 if (args != NULL && args->size() == 2)
8053 return args->front()->is_constant() && args->back()->is_constant();
8054 }
8055 break;
8056
8057 case BUILTIN_REAL:
8058 case BUILTIN_IMAG:
8059 {
8060 Expression* arg = this->one_arg();
8061 return arg != NULL && arg->is_constant();
8062 }
8063
8064 default:
8065 break;
8066 }
8067
8068 return false;
8069}
8070
8071// Return an integer constant value if possible.
8072
8073bool
8074Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
8075 mpz_t val,
8076 Type** ptype) const
8077{
8078 if (this->code_ == BUILTIN_LEN
8079 || this->code_ == BUILTIN_CAP)
8080 {
8081 Expression* arg = this->one_arg();
8082 if (arg == NULL)
8083 return false;
8084 Type* arg_type = arg->type();
8085
8086 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
8087 {
8088 std::string sval;
8089 if (arg->string_constant_value(&sval))
8090 {
8091 mpz_set_ui(val, sval.length());
8092 *ptype = Type::lookup_integer_type("int");
8093 return true;
8094 }
8095 }
8096
8097 if (arg_type->points_to() != NULL
8098 && arg_type->points_to()->array_type() != NULL
411eb89e 8099 && !arg_type->points_to()->is_slice_type())
e440a328 8100 arg_type = arg_type->points_to();
8101
8102 if (arg_type->array_type() != NULL
8103 && arg_type->array_type()->length() != NULL)
8104 {
0f914071 8105 if (this->seen_)
8106 return false;
e440a328 8107 Expression* e = arg_type->array_type()->length();
0f914071 8108 this->seen_ = true;
8109 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
8110 this->seen_ = false;
8111 if (r)
e440a328 8112 {
8113 *ptype = Type::lookup_integer_type("int");
8114 return true;
8115 }
8116 }
8117 }
8118 else if (this->code_ == BUILTIN_SIZEOF
8119 || this->code_ == BUILTIN_ALIGNOF)
8120 {
8121 Expression* arg = this->one_arg();
8122 if (arg == NULL)
8123 return false;
8124 Type* arg_type = arg->type();
5c13bd80 8125 if (arg_type->is_error())
e440a328 8126 return false;
8127 if (arg_type->is_abstract())
8128 return false;
9aa9e2df 8129 if (arg_type->named_type() != NULL)
8130 arg_type->named_type()->convert(this->gogo_);
927a01eb 8131
8132 unsigned int ret;
e440a328 8133 if (this->code_ == BUILTIN_SIZEOF)
8134 {
927a01eb 8135 if (!arg_type->backend_type_size(this->gogo_, &ret))
e440a328 8136 return false;
8137 }
8138 else if (this->code_ == BUILTIN_ALIGNOF)
8139 {
637bd3af 8140 if (arg->field_reference_expression() == NULL)
927a01eb 8141 {
8142 if (!arg_type->backend_type_align(this->gogo_, &ret))
8143 return false;
8144 }
637bd3af 8145 else
e440a328 8146 {
8147 // Calling unsafe.Alignof(s.f) returns the alignment of
8148 // the type of f when it is used as a field in a struct.
927a01eb 8149 if (!arg_type->backend_type_field_align(this->gogo_, &ret))
8150 return false;
e440a328 8151 }
e440a328 8152 }
8153 else
c3e6f413 8154 go_unreachable();
927a01eb 8155
8156 mpz_set_ui(val, ret);
e440a328 8157 *ptype = NULL;
8158 return true;
8159 }
8160 else if (this->code_ == BUILTIN_OFFSETOF)
8161 {
8162 Expression* arg = this->one_arg();
8163 if (arg == NULL)
8164 return false;
8165 Field_reference_expression* farg = arg->field_reference_expression();
8166 if (farg == NULL)
8167 return false;
8168 Expression* struct_expr = farg->expr();
8169 Type* st = struct_expr->type();
8170 if (st->struct_type() == NULL)
8171 return false;
9aa9e2df 8172 if (st->named_type() != NULL)
8173 st->named_type()->convert(this->gogo_);
927a01eb 8174 unsigned int offset;
8175 if (!st->struct_type()->backend_field_offset(this->gogo_,
8176 farg->field_index(),
8177 &offset))
e440a328 8178 return false;
927a01eb 8179 mpz_set_ui(val, offset);
e440a328 8180 return true;
8181 }
8182 return false;
8183}
8184
8185// Return a floating point constant value if possible.
8186
8187bool
8188Builtin_call_expression::do_float_constant_value(mpfr_t val,
8189 Type** ptype) const
8190{
8191 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
8192 {
8193 Expression* arg = this->one_arg();
8194 if (arg == NULL)
8195 return false;
8196
8197 mpfr_t real;
8198 mpfr_t imag;
8199 mpfr_init(real);
8200 mpfr_init(imag);
8201
8202 bool ret = false;
8203 Type* type;
8204 if (arg->complex_constant_value(real, imag, &type))
8205 {
8206 if (this->code_ == BUILTIN_REAL)
8207 mpfr_set(val, real, GMP_RNDN);
8208 else
8209 mpfr_set(val, imag, GMP_RNDN);
8210 *ptype = Builtin_call_expression::real_imag_type(type);
8211 ret = true;
8212 }
8213
8214 mpfr_clear(real);
8215 mpfr_clear(imag);
8216 return ret;
8217 }
8218
8219 return false;
8220}
8221
8222// Return a complex constant value if possible.
8223
8224bool
8225Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
8226 Type** ptype) const
8227{
48080209 8228 if (this->code_ == BUILTIN_COMPLEX)
e440a328 8229 {
8230 const Expression_list* args = this->args();
8231 if (args == NULL || args->size() != 2)
8232 return false;
8233
8234 mpfr_t r;
8235 mpfr_init(r);
8236 Type* rtype;
8237 if (!args->front()->float_constant_value(r, &rtype))
8238 {
8239 mpfr_clear(r);
8240 return false;
8241 }
8242
8243 mpfr_t i;
8244 mpfr_init(i);
8245
8246 bool ret = false;
8247 Type* itype;
8248 if (args->back()->float_constant_value(i, &itype)
07ba8be5 8249 && Type::are_identical(rtype, itype, false, NULL))
e440a328 8250 {
8251 mpfr_set(real, r, GMP_RNDN);
8252 mpfr_set(imag, i, GMP_RNDN);
48080209 8253 *ptype = Builtin_call_expression::complex_type(rtype);
e440a328 8254 ret = true;
8255 }
8256
8257 mpfr_clear(r);
8258 mpfr_clear(i);
8259
8260 return ret;
8261 }
8262
8263 return false;
8264}
8265
a7549a6a 8266// Give an error if we are discarding the value of an expression which
8267// should not normally be discarded. We don't give an error for
8268// discarding the value of an ordinary function call, but we do for
8269// builtin functions, purely for consistency with the gc compiler.
8270
8271void
8272Builtin_call_expression::do_discarding_value()
8273{
8274 switch (this->code_)
8275 {
8276 case BUILTIN_INVALID:
8277 default:
8278 go_unreachable();
8279
8280 case BUILTIN_APPEND:
8281 case BUILTIN_CAP:
8282 case BUILTIN_COMPLEX:
8283 case BUILTIN_IMAG:
8284 case BUILTIN_LEN:
8285 case BUILTIN_MAKE:
8286 case BUILTIN_NEW:
8287 case BUILTIN_REAL:
8288 case BUILTIN_ALIGNOF:
8289 case BUILTIN_OFFSETOF:
8290 case BUILTIN_SIZEOF:
8291 this->unused_value_error();
8292 break;
8293
8294 case BUILTIN_CLOSE:
8295 case BUILTIN_COPY:
1cce762f 8296 case BUILTIN_DELETE:
a7549a6a 8297 case BUILTIN_PANIC:
8298 case BUILTIN_PRINT:
8299 case BUILTIN_PRINTLN:
8300 case BUILTIN_RECOVER:
8301 break;
8302 }
8303}
8304
e440a328 8305// Return the type.
8306
8307Type*
8308Builtin_call_expression::do_type()
8309{
8310 switch (this->code_)
8311 {
8312 case BUILTIN_INVALID:
8313 default:
c3e6f413 8314 go_unreachable();
e440a328 8315
8316 case BUILTIN_NEW:
8317 case BUILTIN_MAKE:
8318 {
8319 const Expression_list* args = this->args();
8320 if (args == NULL || args->empty())
8321 return Type::make_error_type();
8322 return Type::make_pointer_type(args->front()->type());
8323 }
8324
8325 case BUILTIN_CAP:
8326 case BUILTIN_COPY:
8327 case BUILTIN_LEN:
8328 case BUILTIN_ALIGNOF:
8329 case BUILTIN_OFFSETOF:
8330 case BUILTIN_SIZEOF:
8331 return Type::lookup_integer_type("int");
8332
8333 case BUILTIN_CLOSE:
1cce762f 8334 case BUILTIN_DELETE:
e440a328 8335 case BUILTIN_PANIC:
8336 case BUILTIN_PRINT:
8337 case BUILTIN_PRINTLN:
8338 return Type::make_void_type();
8339
e440a328 8340 case BUILTIN_RECOVER:
823c7e3d 8341 return Type::make_empty_interface_type(Linemap::predeclared_location());
e440a328 8342
8343 case BUILTIN_APPEND:
8344 {
8345 const Expression_list* args = this->args();
8346 if (args == NULL || args->empty())
8347 return Type::make_error_type();
8348 return args->front()->type();
8349 }
8350
8351 case BUILTIN_REAL:
8352 case BUILTIN_IMAG:
8353 {
8354 Expression* arg = this->one_arg();
8355 if (arg == NULL)
8356 return Type::make_error_type();
8357 Type* t = arg->type();
8358 if (t->is_abstract())
8359 t = t->make_non_abstract_type();
8360 t = Builtin_call_expression::real_imag_type(t);
8361 if (t == NULL)
8362 t = Type::make_error_type();
8363 return t;
8364 }
8365
48080209 8366 case BUILTIN_COMPLEX:
e440a328 8367 {
8368 const Expression_list* args = this->args();
8369 if (args == NULL || args->size() != 2)
8370 return Type::make_error_type();
8371 Type* t = args->front()->type();
8372 if (t->is_abstract())
8373 {
8374 t = args->back()->type();
8375 if (t->is_abstract())
8376 t = t->make_non_abstract_type();
8377 }
48080209 8378 t = Builtin_call_expression::complex_type(t);
e440a328 8379 if (t == NULL)
8380 t = Type::make_error_type();
8381 return t;
8382 }
8383 }
8384}
8385
8386// Determine the type.
8387
8388void
8389Builtin_call_expression::do_determine_type(const Type_context* context)
8390{
fb94b0ca 8391 if (!this->determining_types())
8392 return;
8393
e440a328 8394 this->fn()->determine_type_no_context();
8395
8396 const Expression_list* args = this->args();
8397
8398 bool is_print;
8399 Type* arg_type = NULL;
8400 switch (this->code_)
8401 {
8402 case BUILTIN_PRINT:
8403 case BUILTIN_PRINTLN:
8404 // Do not force a large integer constant to "int".
8405 is_print = true;
8406 break;
8407
8408 case BUILTIN_REAL:
8409 case BUILTIN_IMAG:
48080209 8410 arg_type = Builtin_call_expression::complex_type(context->type);
e440a328 8411 is_print = false;
8412 break;
8413
48080209 8414 case BUILTIN_COMPLEX:
e440a328 8415 {
48080209 8416 // For the complex function the type of one operand can
e440a328 8417 // determine the type of the other, as in a binary expression.
8418 arg_type = Builtin_call_expression::real_imag_type(context->type);
8419 if (args != NULL && args->size() == 2)
8420 {
8421 Type* t1 = args->front()->type();
8422 Type* t2 = args->front()->type();
8423 if (!t1->is_abstract())
8424 arg_type = t1;
8425 else if (!t2->is_abstract())
8426 arg_type = t2;
8427 }
8428 is_print = false;
8429 }
8430 break;
8431
8432 default:
8433 is_print = false;
8434 break;
8435 }
8436
8437 if (args != NULL)
8438 {
8439 for (Expression_list::const_iterator pa = args->begin();
8440 pa != args->end();
8441 ++pa)
8442 {
8443 Type_context subcontext;
8444 subcontext.type = arg_type;
8445
8446 if (is_print)
8447 {
8448 // We want to print large constants, we so can't just
8449 // use the appropriate nonabstract type. Use uint64 for
8450 // an integer if we know it is nonnegative, otherwise
8451 // use int64 for a integer, otherwise use float64 for a
8452 // float or complex128 for a complex.
8453 Type* want_type = NULL;
8454 Type* atype = (*pa)->type();
8455 if (atype->is_abstract())
8456 {
8457 if (atype->integer_type() != NULL)
8458 {
8459 mpz_t val;
8460 mpz_init(val);
8461 Type* dummy;
8462 if (this->integer_constant_value(true, val, &dummy)
8463 && mpz_sgn(val) >= 0)
8464 want_type = Type::lookup_integer_type("uint64");
8465 else
8466 want_type = Type::lookup_integer_type("int64");
8467 mpz_clear(val);
8468 }
8469 else if (atype->float_type() != NULL)
8470 want_type = Type::lookup_float_type("float64");
8471 else if (atype->complex_type() != NULL)
8472 want_type = Type::lookup_complex_type("complex128");
8473 else if (atype->is_abstract_string_type())
8474 want_type = Type::lookup_string_type();
8475 else if (atype->is_abstract_boolean_type())
8476 want_type = Type::lookup_bool_type();
8477 else
c3e6f413 8478 go_unreachable();
e440a328 8479 subcontext.type = want_type;
8480 }
8481 }
8482
8483 (*pa)->determine_type(&subcontext);
8484 }
8485 }
8486}
8487
8488// If there is exactly one argument, return true. Otherwise give an
8489// error message and return false.
8490
8491bool
8492Builtin_call_expression::check_one_arg()
8493{
8494 const Expression_list* args = this->args();
8495 if (args == NULL || args->size() < 1)
8496 {
8497 this->report_error(_("not enough arguments"));
8498 return false;
8499 }
8500 else if (args->size() > 1)
8501 {
8502 this->report_error(_("too many arguments"));
8503 return false;
8504 }
8505 if (args->front()->is_error_expression()
5c13bd80 8506 || args->front()->type()->is_error())
e440a328 8507 {
8508 this->set_is_error();
8509 return false;
8510 }
8511 return true;
8512}
8513
8514// Check argument types for a builtin function.
8515
8516void
8517Builtin_call_expression::do_check_types(Gogo*)
8518{
8519 switch (this->code_)
8520 {
8521 case BUILTIN_INVALID:
8522 case BUILTIN_NEW:
8523 case BUILTIN_MAKE:
cd238b8d 8524 case BUILTIN_DELETE:
e440a328 8525 return;
8526
8527 case BUILTIN_LEN:
8528 case BUILTIN_CAP:
8529 {
8530 // The single argument may be either a string or an array or a
8531 // map or a channel, or a pointer to a closed array.
8532 if (this->check_one_arg())
8533 {
8534 Type* arg_type = this->one_arg()->type();
8535 if (arg_type->points_to() != NULL
8536 && arg_type->points_to()->array_type() != NULL
411eb89e 8537 && !arg_type->points_to()->is_slice_type())
e440a328 8538 arg_type = arg_type->points_to();
8539 if (this->code_ == BUILTIN_CAP)
8540 {
5c13bd80 8541 if (!arg_type->is_error()
e440a328 8542 && arg_type->array_type() == NULL
8543 && arg_type->channel_type() == NULL)
8544 this->report_error(_("argument must be array or slice "
8545 "or channel"));
8546 }
8547 else
8548 {
5c13bd80 8549 if (!arg_type->is_error()
e440a328 8550 && !arg_type->is_string_type()
8551 && arg_type->array_type() == NULL
8552 && arg_type->map_type() == NULL
8553 && arg_type->channel_type() == NULL)
8554 this->report_error(_("argument must be string or "
8555 "array or slice or map or channel"));
8556 }
8557 }
8558 }
8559 break;
8560
8561 case BUILTIN_PRINT:
8562 case BUILTIN_PRINTLN:
8563 {
8564 const Expression_list* args = this->args();
8565 if (args == NULL)
8566 {
8567 if (this->code_ == BUILTIN_PRINT)
8568 warning_at(this->location(), 0,
8569 "no arguments for builtin function %<%s%>",
8570 (this->code_ == BUILTIN_PRINT
8571 ? "print"
8572 : "println"));
8573 }
8574 else
8575 {
8576 for (Expression_list::const_iterator p = args->begin();
8577 p != args->end();
8578 ++p)
8579 {
8580 Type* type = (*p)->type();
5c13bd80 8581 if (type->is_error()
e440a328 8582 || type->is_string_type()
8583 || type->integer_type() != NULL
8584 || type->float_type() != NULL
8585 || type->complex_type() != NULL
8586 || type->is_boolean_type()
8587 || type->points_to() != NULL
8588 || type->interface_type() != NULL
8589 || type->channel_type() != NULL
8590 || type->map_type() != NULL
8591 || type->function_type() != NULL
411eb89e 8592 || type->is_slice_type())
e440a328 8593 ;
acf8e158 8594 else if ((*p)->is_type_expression())
8595 {
8596 // If this is a type expression it's going to give
8597 // an error anyhow, so we don't need one here.
8598 }
e440a328 8599 else
8600 this->report_error(_("unsupported argument type to "
8601 "builtin function"));
8602 }
8603 }
8604 }
8605 break;
8606
8607 case BUILTIN_CLOSE:
e440a328 8608 if (this->check_one_arg())
8609 {
8610 if (this->one_arg()->type()->channel_type() == NULL)
8611 this->report_error(_("argument must be channel"));
5202d986 8612 else if (!this->one_arg()->type()->channel_type()->may_send())
8613 this->report_error(_("cannot close receive-only channel"));
e440a328 8614 }
8615 break;
8616
8617 case BUILTIN_PANIC:
8618 case BUILTIN_SIZEOF:
8619 case BUILTIN_ALIGNOF:
8620 this->check_one_arg();
8621 break;
8622
8623 case BUILTIN_RECOVER:
8624 if (this->args() != NULL && !this->args()->empty())
8625 this->report_error(_("too many arguments"));
8626 break;
8627
8628 case BUILTIN_OFFSETOF:
8629 if (this->check_one_arg())
8630 {
8631 Expression* arg = this->one_arg();
8632 if (arg->field_reference_expression() == NULL)
8633 this->report_error(_("argument must be a field reference"));
8634 }
8635 break;
8636
8637 case BUILTIN_COPY:
8638 {
8639 const Expression_list* args = this->args();
8640 if (args == NULL || args->size() < 2)
8641 {
8642 this->report_error(_("not enough arguments"));
8643 break;
8644 }
8645 else if (args->size() > 2)
8646 {
8647 this->report_error(_("too many arguments"));
8648 break;
8649 }
8650 Type* arg1_type = args->front()->type();
8651 Type* arg2_type = args->back()->type();
5c13bd80 8652 if (arg1_type->is_error() || arg2_type->is_error())
e440a328 8653 break;
8654
8655 Type* e1;
411eb89e 8656 if (arg1_type->is_slice_type())
e440a328 8657 e1 = arg1_type->array_type()->element_type();
8658 else
8659 {
8660 this->report_error(_("left argument must be a slice"));
8661 break;
8662 }
8663
411eb89e 8664 if (arg2_type->is_slice_type())
60963afd 8665 {
8666 Type* e2 = arg2_type->array_type()->element_type();
8667 if (!Type::are_identical(e1, e2, true, NULL))
8668 this->report_error(_("element types must be the same"));
8669 }
e440a328 8670 else if (arg2_type->is_string_type())
e440a328 8671 {
60963afd 8672 if (e1->integer_type() == NULL || !e1->integer_type()->is_byte())
8673 this->report_error(_("first argument must be []byte"));
e440a328 8674 }
60963afd 8675 else
8676 this->report_error(_("second argument must be slice or string"));
e440a328 8677 }
8678 break;
8679
8680 case BUILTIN_APPEND:
8681 {
8682 const Expression_list* args = this->args();
b0d311a1 8683 if (args == NULL || args->size() < 2)
e440a328 8684 {
8685 this->report_error(_("not enough arguments"));
8686 break;
8687 }
0b7755ec 8688 if (args->size() > 2)
8689 {
8690 this->report_error(_("too many arguments"));
8691 break;
8692 }
cd238b8d 8693 if (args->front()->type()->is_error()
8694 || args->back()->type()->is_error())
8695 break;
8696
8697 Array_type* at = args->front()->type()->array_type();
8698 Type* e = at->element_type();
4fd4fcf4 8699
8700 // The language permits appending a string to a []byte, as a
8701 // special case.
8702 if (args->back()->type()->is_string_type())
8703 {
60963afd 8704 if (e->integer_type() != NULL && e->integer_type()->is_byte())
4fd4fcf4 8705 break;
8706 }
8707
19fd40c3 8708 // The language says that the second argument must be
8709 // assignable to a slice of the element type of the first
8710 // argument. We already know the first argument is a slice
8711 // type.
cd238b8d 8712 Type* arg2_type = Type::make_array_type(e, NULL);
e440a328 8713 std::string reason;
19fd40c3 8714 if (!Type::are_assignable(arg2_type, args->back()->type(), &reason))
e440a328 8715 {
8716 if (reason.empty())
19fd40c3 8717 this->report_error(_("argument 2 has invalid type"));
e440a328 8718 else
8719 {
19fd40c3 8720 error_at(this->location(), "argument 2 has invalid type (%s)",
e440a328 8721 reason.c_str());
8722 this->set_is_error();
8723 }
8724 }
8725 break;
8726 }
8727
8728 case BUILTIN_REAL:
8729 case BUILTIN_IMAG:
8730 if (this->check_one_arg())
8731 {
8732 if (this->one_arg()->type()->complex_type() == NULL)
8733 this->report_error(_("argument must have complex type"));
8734 }
8735 break;
8736
48080209 8737 case BUILTIN_COMPLEX:
e440a328 8738 {
8739 const Expression_list* args = this->args();
8740 if (args == NULL || args->size() < 2)
8741 this->report_error(_("not enough arguments"));
8742 else if (args->size() > 2)
8743 this->report_error(_("too many arguments"));
8744 else if (args->front()->is_error_expression()
5c13bd80 8745 || args->front()->type()->is_error()
e440a328 8746 || args->back()->is_error_expression()
5c13bd80 8747 || args->back()->type()->is_error())
e440a328 8748 this->set_is_error();
8749 else if (!Type::are_identical(args->front()->type(),
07ba8be5 8750 args->back()->type(), true, NULL))
48080209 8751 this->report_error(_("complex arguments must have identical types"));
e440a328 8752 else if (args->front()->type()->float_type() == NULL)
48080209 8753 this->report_error(_("complex arguments must have "
e440a328 8754 "floating-point type"));
8755 }
8756 break;
8757
8758 default:
c3e6f413 8759 go_unreachable();
e440a328 8760 }
8761}
8762
8763// Return the tree for a builtin function.
8764
8765tree
8766Builtin_call_expression::do_get_tree(Translate_context* context)
8767{
8768 Gogo* gogo = context->gogo();
b13c66cd 8769 Location location = this->location();
e440a328 8770 switch (this->code_)
8771 {
8772 case BUILTIN_INVALID:
8773 case BUILTIN_NEW:
8774 case BUILTIN_MAKE:
c3e6f413 8775 go_unreachable();
e440a328 8776
8777 case BUILTIN_LEN:
8778 case BUILTIN_CAP:
8779 {
8780 const Expression_list* args = this->args();
c484d925 8781 go_assert(args != NULL && args->size() == 1);
e440a328 8782 Expression* arg = *args->begin();
8783 Type* arg_type = arg->type();
0f914071 8784
8785 if (this->seen_)
8786 {
c484d925 8787 go_assert(saw_errors());
0f914071 8788 return error_mark_node;
8789 }
8790 this->seen_ = true;
8791
e440a328 8792 tree arg_tree = arg->get_tree(context);
0f914071 8793
8794 this->seen_ = false;
8795
e440a328 8796 if (arg_tree == error_mark_node)
8797 return error_mark_node;
8798
8799 if (arg_type->points_to() != NULL)
8800 {
8801 arg_type = arg_type->points_to();
c484d925 8802 go_assert(arg_type->array_type() != NULL
411eb89e 8803 && !arg_type->is_slice_type());
c484d925 8804 go_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
e440a328 8805 arg_tree = build_fold_indirect_ref(arg_tree);
8806 }
8807
8808 tree val_tree;
8809 if (this->code_ == BUILTIN_LEN)
8810 {
8811 if (arg_type->is_string_type())
8812 val_tree = String_type::length_tree(gogo, arg_tree);
8813 else if (arg_type->array_type() != NULL)
0f914071 8814 {
8815 if (this->seen_)
8816 {
c484d925 8817 go_assert(saw_errors());
0f914071 8818 return error_mark_node;
8819 }
8820 this->seen_ = true;
8821 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
8822 this->seen_ = false;
8823 }
e440a328 8824 else if (arg_type->map_type() != NULL)
8825 {
9f0e0513 8826 tree arg_type_tree = type_to_tree(arg_type->get_backend(gogo));
e440a328 8827 static tree map_len_fndecl;
8828 val_tree = Gogo::call_builtin(&map_len_fndecl,
8829 location,
8830 "__go_map_len",
8831 1,
9581e91d 8832 integer_type_node,
9f0e0513 8833 arg_type_tree,
e440a328 8834 arg_tree);
8835 }
8836 else if (arg_type->channel_type() != NULL)
8837 {
9f0e0513 8838 tree arg_type_tree = type_to_tree(arg_type->get_backend(gogo));
e440a328 8839 static tree chan_len_fndecl;
8840 val_tree = Gogo::call_builtin(&chan_len_fndecl,
8841 location,
8842 "__go_chan_len",
8843 1,
9581e91d 8844 integer_type_node,
9f0e0513 8845 arg_type_tree,
e440a328 8846 arg_tree);
8847 }
8848 else
c3e6f413 8849 go_unreachable();
e440a328 8850 }
8851 else
8852 {
8853 if (arg_type->array_type() != NULL)
0f914071 8854 {
8855 if (this->seen_)
8856 {
c484d925 8857 go_assert(saw_errors());
0f914071 8858 return error_mark_node;
8859 }
8860 this->seen_ = true;
8861 val_tree = arg_type->array_type()->capacity_tree(gogo,
8862 arg_tree);
8863 this->seen_ = false;
8864 }
e440a328 8865 else if (arg_type->channel_type() != NULL)
8866 {
9f0e0513 8867 tree arg_type_tree = type_to_tree(arg_type->get_backend(gogo));
e440a328 8868 static tree chan_cap_fndecl;
8869 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
8870 location,
8871 "__go_chan_cap",
8872 1,
9581e91d 8873 integer_type_node,
9f0e0513 8874 arg_type_tree,
e440a328 8875 arg_tree);
8876 }
8877 else
c3e6f413 8878 go_unreachable();
e440a328 8879 }
8880
d8ccb1e3 8881 if (val_tree == error_mark_node)
8882 return error_mark_node;
8883
9f0e0513 8884 Type* int_type = Type::lookup_integer_type("int");
8885 tree type_tree = type_to_tree(int_type->get_backend(gogo));
e440a328 8886 if (type_tree == TREE_TYPE(val_tree))
8887 return val_tree;
8888 else
8889 return fold(convert_to_integer(type_tree, val_tree));
8890 }
8891
8892 case BUILTIN_PRINT:
8893 case BUILTIN_PRINTLN:
8894 {
8895 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
8896 tree stmt_list = NULL_TREE;
8897
8898 const Expression_list* call_args = this->args();
8899 if (call_args != NULL)
8900 {
8901 for (Expression_list::const_iterator p = call_args->begin();
8902 p != call_args->end();
8903 ++p)
8904 {
8905 if (is_ln && p != call_args->begin())
8906 {
8907 static tree print_space_fndecl;
8908 tree call = Gogo::call_builtin(&print_space_fndecl,
8909 location,
8910 "__go_print_space",
8911 0,
8912 void_type_node);
5fb82b5e 8913 if (call == error_mark_node)
8914 return error_mark_node;
e440a328 8915 append_to_statement_list(call, &stmt_list);
8916 }
8917
8918 Type* type = (*p)->type();
8919
8920 tree arg = (*p)->get_tree(context);
8921 if (arg == error_mark_node)
8922 return error_mark_node;
8923
8924 tree* pfndecl;
8925 const char* fnname;
8926 if (type->is_string_type())
8927 {
8928 static tree print_string_fndecl;
8929 pfndecl = &print_string_fndecl;
8930 fnname = "__go_print_string";
8931 }
8932 else if (type->integer_type() != NULL
8933 && type->integer_type()->is_unsigned())
8934 {
8935 static tree print_uint64_fndecl;
8936 pfndecl = &print_uint64_fndecl;
8937 fnname = "__go_print_uint64";
8938 Type* itype = Type::lookup_integer_type("uint64");
9f0e0513 8939 Btype* bitype = itype->get_backend(gogo);
b13c66cd 8940 arg = fold_convert_loc(location.gcc_location(),
8941 type_to_tree(bitype), arg);
e440a328 8942 }
8943 else if (type->integer_type() != NULL)
8944 {
8945 static tree print_int64_fndecl;
8946 pfndecl = &print_int64_fndecl;
8947 fnname = "__go_print_int64";
8948 Type* itype = Type::lookup_integer_type("int64");
9f0e0513 8949 Btype* bitype = itype->get_backend(gogo);
b13c66cd 8950 arg = fold_convert_loc(location.gcc_location(),
8951 type_to_tree(bitype), arg);
e440a328 8952 }
8953 else if (type->float_type() != NULL)
8954 {
8955 static tree print_double_fndecl;
8956 pfndecl = &print_double_fndecl;
8957 fnname = "__go_print_double";
b13c66cd 8958 arg = fold_convert_loc(location.gcc_location(),
8959 double_type_node, arg);
e440a328 8960 }
8961 else if (type->complex_type() != NULL)
8962 {
8963 static tree print_complex_fndecl;
8964 pfndecl = &print_complex_fndecl;
8965 fnname = "__go_print_complex";
b13c66cd 8966 arg = fold_convert_loc(location.gcc_location(),
8967 complex_double_type_node, arg);
e440a328 8968 }
8969 else if (type->is_boolean_type())
8970 {
8971 static tree print_bool_fndecl;
8972 pfndecl = &print_bool_fndecl;
8973 fnname = "__go_print_bool";
8974 }
8975 else if (type->points_to() != NULL
8976 || type->channel_type() != NULL
8977 || type->map_type() != NULL
8978 || type->function_type() != NULL)
8979 {
8980 static tree print_pointer_fndecl;
8981 pfndecl = &print_pointer_fndecl;
8982 fnname = "__go_print_pointer";
b13c66cd 8983 arg = fold_convert_loc(location.gcc_location(),
8984 ptr_type_node, arg);
e440a328 8985 }
8986 else if (type->interface_type() != NULL)
8987 {
8988 if (type->interface_type()->is_empty())
8989 {
8990 static tree print_empty_interface_fndecl;
8991 pfndecl = &print_empty_interface_fndecl;
8992 fnname = "__go_print_empty_interface";
8993 }
8994 else
8995 {
8996 static tree print_interface_fndecl;
8997 pfndecl = &print_interface_fndecl;
8998 fnname = "__go_print_interface";
8999 }
9000 }
411eb89e 9001 else if (type->is_slice_type())
e440a328 9002 {
9003 static tree print_slice_fndecl;
9004 pfndecl = &print_slice_fndecl;
9005 fnname = "__go_print_slice";
9006 }
9007 else
cd238b8d 9008 {
9009 go_assert(saw_errors());
9010 return error_mark_node;
9011 }
e440a328 9012
9013 tree call = Gogo::call_builtin(pfndecl,
9014 location,
9015 fnname,
9016 1,
9017 void_type_node,
9018 TREE_TYPE(arg),
9019 arg);
5fb82b5e 9020 if (call == error_mark_node)
9021 return error_mark_node;
9022 append_to_statement_list(call, &stmt_list);
e440a328 9023 }
9024 }
9025
9026 if (is_ln)
9027 {
9028 static tree print_nl_fndecl;
9029 tree call = Gogo::call_builtin(&print_nl_fndecl,
9030 location,
9031 "__go_print_nl",
9032 0,
9033 void_type_node);
5fb82b5e 9034 if (call == error_mark_node)
9035 return error_mark_node;
e440a328 9036 append_to_statement_list(call, &stmt_list);
9037 }
9038
9039 return stmt_list;
9040 }
9041
9042 case BUILTIN_PANIC:
9043 {
9044 const Expression_list* args = this->args();
c484d925 9045 go_assert(args != NULL && args->size() == 1);
e440a328 9046 Expression* arg = args->front();
9047 tree arg_tree = arg->get_tree(context);
9048 if (arg_tree == error_mark_node)
9049 return error_mark_node;
b13c66cd 9050 Type *empty =
823c7e3d 9051 Type::make_empty_interface_type(Linemap::predeclared_location());
e440a328 9052 arg_tree = Expression::convert_for_assignment(context, empty,
9053 arg->type(),
9054 arg_tree, location);
9055 static tree panic_fndecl;
9056 tree call = Gogo::call_builtin(&panic_fndecl,
9057 location,
9058 "__go_panic",
9059 1,
9060 void_type_node,
9061 TREE_TYPE(arg_tree),
9062 arg_tree);
5fb82b5e 9063 if (call == error_mark_node)
9064 return error_mark_node;
e440a328 9065 // This function will throw an exception.
9066 TREE_NOTHROW(panic_fndecl) = 0;
9067 // This function will not return.
9068 TREE_THIS_VOLATILE(panic_fndecl) = 1;
9069 return call;
9070 }
9071
9072 case BUILTIN_RECOVER:
9073 {
9074 // The argument is set when building recover thunks. It's a
9075 // boolean value which is true if we can recover a value now.
9076 const Expression_list* args = this->args();
c484d925 9077 go_assert(args != NULL && args->size() == 1);
e440a328 9078 Expression* arg = args->front();
9079 tree arg_tree = arg->get_tree(context);
9080 if (arg_tree == error_mark_node)
9081 return error_mark_node;
9082
b13c66cd 9083 Type *empty =
823c7e3d 9084 Type::make_empty_interface_type(Linemap::predeclared_location());
9f0e0513 9085 tree empty_tree = type_to_tree(empty->get_backend(context->gogo()));
e440a328 9086
9087 Type* nil_type = Type::make_nil_type();
9088 Expression* nil = Expression::make_nil(location);
9089 tree nil_tree = nil->get_tree(context);
9090 tree empty_nil_tree = Expression::convert_for_assignment(context,
9091 empty,
9092 nil_type,
9093 nil_tree,
9094 location);
9095
9096 // We need to handle a deferred call to recover specially,
9097 // because it changes whether it can recover a panic or not.
9098 // See test7 in test/recover1.go.
9099 tree call;
9100 if (this->is_deferred())
9101 {
9102 static tree deferred_recover_fndecl;
9103 call = Gogo::call_builtin(&deferred_recover_fndecl,
9104 location,
9105 "__go_deferred_recover",
9106 0,
9107 empty_tree);
9108 }
9109 else
9110 {
9111 static tree recover_fndecl;
9112 call = Gogo::call_builtin(&recover_fndecl,
9113 location,
9114 "__go_recover",
9115 0,
9116 empty_tree);
9117 }
5fb82b5e 9118 if (call == error_mark_node)
9119 return error_mark_node;
b13c66cd 9120 return fold_build3_loc(location.gcc_location(), COND_EXPR, empty_tree,
9121 arg_tree, call, empty_nil_tree);
e440a328 9122 }
9123
9124 case BUILTIN_CLOSE:
e440a328 9125 {
9126 const Expression_list* args = this->args();
c484d925 9127 go_assert(args != NULL && args->size() == 1);
e440a328 9128 Expression* arg = args->front();
9129 tree arg_tree = arg->get_tree(context);
9130 if (arg_tree == error_mark_node)
9131 return error_mark_node;
0dc2f918 9132 static tree close_fndecl;
9133 return Gogo::call_builtin(&close_fndecl,
9134 location,
9135 "__go_builtin_close",
9136 1,
9137 void_type_node,
9138 TREE_TYPE(arg_tree),
9139 arg_tree);
e440a328 9140 }
9141
9142 case BUILTIN_SIZEOF:
9143 case BUILTIN_OFFSETOF:
9144 case BUILTIN_ALIGNOF:
9145 {
9146 mpz_t val;
9147 mpz_init(val);
9148 Type* dummy;
9149 bool b = this->integer_constant_value(true, val, &dummy);
7f1d9abd 9150 if (!b)
9151 {
c484d925 9152 go_assert(saw_errors());
7f1d9abd 9153 return error_mark_node;
9154 }
9f0e0513 9155 Type* int_type = Type::lookup_integer_type("int");
9156 tree type = type_to_tree(int_type->get_backend(gogo));
e440a328 9157 tree ret = Expression::integer_constant_tree(val, type);
9158 mpz_clear(val);
9159 return ret;
9160 }
9161
9162 case BUILTIN_COPY:
9163 {
9164 const Expression_list* args = this->args();
c484d925 9165 go_assert(args != NULL && args->size() == 2);
e440a328 9166 Expression* arg1 = args->front();
9167 Expression* arg2 = args->back();
9168
9169 tree arg1_tree = arg1->get_tree(context);
9170 tree arg2_tree = arg2->get_tree(context);
9171 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
9172 return error_mark_node;
9173
9174 Type* arg1_type = arg1->type();
9175 Array_type* at = arg1_type->array_type();
9176 arg1_tree = save_expr(arg1_tree);
9177 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
9178 tree arg1_len = at->length_tree(gogo, arg1_tree);
d8ccb1e3 9179 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
9180 return error_mark_node;
e440a328 9181
9182 Type* arg2_type = arg2->type();
9183 tree arg2_val;
9184 tree arg2_len;
411eb89e 9185 if (arg2_type->is_slice_type())
e440a328 9186 {
9187 at = arg2_type->array_type();
9188 arg2_tree = save_expr(arg2_tree);
9189 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
9190 arg2_len = at->length_tree(gogo, arg2_tree);
9191 }
9192 else
9193 {
9194 arg2_tree = save_expr(arg2_tree);
9195 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
9196 arg2_len = String_type::length_tree(gogo, arg2_tree);
9197 }
d8ccb1e3 9198 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
9199 return error_mark_node;
e440a328 9200
9201 arg1_len = save_expr(arg1_len);
9202 arg2_len = save_expr(arg2_len);
b13c66cd 9203 tree len = fold_build3_loc(location.gcc_location(), COND_EXPR,
9204 TREE_TYPE(arg1_len),
9205 fold_build2_loc(location.gcc_location(),
9206 LT_EXPR, boolean_type_node,
e440a328 9207 arg1_len, arg2_len),
9208 arg1_len, arg2_len);
9209 len = save_expr(len);
9210
9211 Type* element_type = at->element_type();
9f0e0513 9212 Btype* element_btype = element_type->get_backend(gogo);
9213 tree element_type_tree = type_to_tree(element_btype);
d8ccb1e3 9214 if (element_type_tree == error_mark_node)
9215 return error_mark_node;
e440a328 9216 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
b13c66cd 9217 tree bytecount = fold_convert_loc(location.gcc_location(),
9218 TREE_TYPE(element_size), len);
9219 bytecount = fold_build2_loc(location.gcc_location(), MULT_EXPR,
e440a328 9220 TREE_TYPE(element_size),
9221 bytecount, element_size);
b13c66cd 9222 bytecount = fold_convert_loc(location.gcc_location(), size_type_node,
9223 bytecount);
e440a328 9224
b13c66cd 9225 arg1_val = fold_convert_loc(location.gcc_location(), ptr_type_node,
9226 arg1_val);
9227 arg2_val = fold_convert_loc(location.gcc_location(), ptr_type_node,
9228 arg2_val);
3991cb03 9229
9230 static tree copy_fndecl;
9231 tree call = Gogo::call_builtin(&copy_fndecl,
9232 location,
9233 "__go_copy",
9234 3,
9235 void_type_node,
9236 ptr_type_node,
9237 arg1_val,
9238 ptr_type_node,
9239 arg2_val,
9240 size_type_node,
9241 bytecount);
9242 if (call == error_mark_node)
9243 return error_mark_node;
e440a328 9244
b13c66cd 9245 return fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
9246 TREE_TYPE(len), call, len);
e440a328 9247 }
9248
9249 case BUILTIN_APPEND:
9250 {
9251 const Expression_list* args = this->args();
c484d925 9252 go_assert(args != NULL && args->size() == 2);
e440a328 9253 Expression* arg1 = args->front();
9254 Expression* arg2 = args->back();
9255
9256 tree arg1_tree = arg1->get_tree(context);
9257 tree arg2_tree = arg2->get_tree(context);
9258 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
9259 return error_mark_node;
9260
9d44fbe3 9261 Array_type* at = arg1->type()->array_type();
4fd4fcf4 9262 Type* element_type = at->element_type()->forwarded();
9d44fbe3 9263
4fd4fcf4 9264 tree arg2_val;
9265 tree arg2_len;
9266 tree element_size;
9267 if (arg2->type()->is_string_type()
60963afd 9268 && element_type->integer_type() != NULL
9269 && element_type->integer_type()->is_byte())
4fd4fcf4 9270 {
9271 arg2_tree = save_expr(arg2_tree);
9272 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
9273 arg2_len = String_type::length_tree(gogo, arg2_tree);
9274 element_size = size_int(1);
9275 }
9276 else
9277 {
9278 arg2_tree = Expression::convert_for_assignment(context, at,
9279 arg2->type(),
9280 arg2_tree,
9281 location);
9282 if (arg2_tree == error_mark_node)
9283 return error_mark_node;
9284
9285 arg2_tree = save_expr(arg2_tree);
9286
9287 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
9288 arg2_len = at->length_tree(gogo, arg2_tree);
9289
9290 Btype* element_btype = element_type->get_backend(gogo);
9291 tree element_type_tree = type_to_tree(element_btype);
9292 if (element_type_tree == error_mark_node)
9293 return error_mark_node;
9294 element_size = TYPE_SIZE_UNIT(element_type_tree);
9295 }
ed64c8e5 9296
b13c66cd 9297 arg2_val = fold_convert_loc(location.gcc_location(), ptr_type_node,
9298 arg2_val);
9299 arg2_len = fold_convert_loc(location.gcc_location(), size_type_node,
9300 arg2_len);
9301 element_size = fold_convert_loc(location.gcc_location(), size_type_node,
3991cb03 9302 element_size);
e440a328 9303
4fd4fcf4 9304 if (arg2_val == error_mark_node
9305 || arg2_len == error_mark_node
9306 || element_size == error_mark_node)
9307 return error_mark_node;
9308
e440a328 9309 // We rebuild the decl each time since the slice types may
9310 // change.
9311 tree append_fndecl = NULL_TREE;
9312 return Gogo::call_builtin(&append_fndecl,
9313 location,
9314 "__go_append",
3991cb03 9315 4,
e440a328 9316 TREE_TYPE(arg1_tree),
e440a328 9317 TREE_TYPE(arg1_tree),
9318 arg1_tree,
3991cb03 9319 ptr_type_node,
9320 arg2_val,
9321 size_type_node,
9322 arg2_len,
9323 size_type_node,
9324 element_size);
e440a328 9325 }
9326
9327 case BUILTIN_REAL:
9328 case BUILTIN_IMAG:
9329 {
9330 const Expression_list* args = this->args();
c484d925 9331 go_assert(args != NULL && args->size() == 1);
e440a328 9332 Expression* arg = args->front();
9333 tree arg_tree = arg->get_tree(context);
9334 if (arg_tree == error_mark_node)
9335 return error_mark_node;
c484d925 9336 go_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
e440a328 9337 if (this->code_ == BUILTIN_REAL)
b13c66cd 9338 return fold_build1_loc(location.gcc_location(), REALPART_EXPR,
e440a328 9339 TREE_TYPE(TREE_TYPE(arg_tree)),
9340 arg_tree);
9341 else
b13c66cd 9342 return fold_build1_loc(location.gcc_location(), IMAGPART_EXPR,
e440a328 9343 TREE_TYPE(TREE_TYPE(arg_tree)),
9344 arg_tree);
9345 }
9346
48080209 9347 case BUILTIN_COMPLEX:
e440a328 9348 {
9349 const Expression_list* args = this->args();
c484d925 9350 go_assert(args != NULL && args->size() == 2);
e440a328 9351 tree r = args->front()->get_tree(context);
9352 tree i = args->back()->get_tree(context);
9353 if (r == error_mark_node || i == error_mark_node)
9354 return error_mark_node;
c484d925 9355 go_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
e440a328 9356 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
c484d925 9357 go_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
b13c66cd 9358 return fold_build2_loc(location.gcc_location(), COMPLEX_EXPR,
e440a328 9359 build_complex_type(TREE_TYPE(r)),
9360 r, i);
9361 }
9362
9363 default:
c3e6f413 9364 go_unreachable();
e440a328 9365 }
9366}
9367
9368// We have to support exporting a builtin call expression, because
9369// code can set a constant to the result of a builtin expression.
9370
9371void
9372Builtin_call_expression::do_export(Export* exp) const
9373{
9374 bool ok = false;
9375
9376 mpz_t val;
9377 mpz_init(val);
9378 Type* dummy;
9379 if (this->integer_constant_value(true, val, &dummy))
9380 {
9381 Integer_expression::export_integer(exp, val);
9382 ok = true;
9383 }
9384 mpz_clear(val);
9385
9386 if (!ok)
9387 {
9388 mpfr_t fval;
9389 mpfr_init(fval);
9390 if (this->float_constant_value(fval, &dummy))
9391 {
9392 Float_expression::export_float(exp, fval);
9393 ok = true;
9394 }
9395 mpfr_clear(fval);
9396 }
9397
9398 if (!ok)
9399 {
9400 mpfr_t real;
9401 mpfr_t imag;
9402 mpfr_init(real);
9403 mpfr_init(imag);
9404 if (this->complex_constant_value(real, imag, &dummy))
9405 {
9406 Complex_expression::export_complex(exp, real, imag);
9407 ok = true;
9408 }
9409 mpfr_clear(real);
9410 mpfr_clear(imag);
9411 }
9412
9413 if (!ok)
9414 {
9415 error_at(this->location(), "value is not constant");
9416 return;
9417 }
9418
9419 // A trailing space lets us reliably identify the end of the number.
9420 exp->write_c_string(" ");
9421}
9422
9423// Class Call_expression.
9424
9425// Traversal.
9426
9427int
9428Call_expression::do_traverse(Traverse* traverse)
9429{
9430 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
9431 return TRAVERSE_EXIT;
9432 if (this->args_ != NULL)
9433 {
9434 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
9435 return TRAVERSE_EXIT;
9436 }
9437 return TRAVERSE_CONTINUE;
9438}
9439
9440// Lower a call statement.
9441
9442Expression*
ceeb4318 9443Call_expression::do_lower(Gogo* gogo, Named_object* function,
9444 Statement_inserter* inserter, int)
e440a328 9445{
b13c66cd 9446 Location loc = this->location();
09ea332d 9447
ceeb4318 9448 // A type cast can look like a function call.
e440a328 9449 if (this->fn_->is_type_expression()
9450 && this->args_ != NULL
9451 && this->args_->size() == 1)
9452 return Expression::make_cast(this->fn_->type(), this->args_->front(),
09ea332d 9453 loc);
e440a328 9454
9455 // Recognize a call to a builtin function.
9456 Func_expression* fne = this->fn_->func_expression();
9457 if (fne != NULL
9458 && fne->named_object()->is_function_declaration()
9459 && fne->named_object()->func_declaration_value()->type()->is_builtin())
9460 return new Builtin_call_expression(gogo, this->fn_, this->args_,
09ea332d 9461 this->is_varargs_, loc);
e440a328 9462
9463 // Handle an argument which is a call to a function which returns
9464 // multiple results.
9465 if (this->args_ != NULL
9466 && this->args_->size() == 1
9467 && this->args_->front()->call_expression() != NULL
9468 && this->fn_->type()->function_type() != NULL)
9469 {
9470 Function_type* fntype = this->fn_->type()->function_type();
9471 size_t rc = this->args_->front()->call_expression()->result_count();
9472 if (rc > 1
9473 && fntype->parameters() != NULL
9474 && (fntype->parameters()->size() == rc
9475 || (fntype->is_varargs()
9476 && fntype->parameters()->size() - 1 <= rc)))
9477 {
9478 Call_expression* call = this->args_->front()->call_expression();
9479 Expression_list* args = new Expression_list;
9480 for (size_t i = 0; i < rc; ++i)
9481 args->push_back(Expression::make_call_result(call, i));
9482 // We can't return a new call expression here, because this
42535814 9483 // one may be referenced by Call_result expressions. We
9484 // also can't delete the old arguments, because we may still
9485 // traverse them somewhere up the call stack. FIXME.
e440a328 9486 this->args_ = args;
9487 }
9488 }
9489
ceeb4318 9490 // If this call returns multiple results, create a temporary
9491 // variable for each result.
9492 size_t rc = this->result_count();
9493 if (rc > 1 && this->results_ == NULL)
9494 {
9495 std::vector<Temporary_statement*>* temps =
9496 new std::vector<Temporary_statement*>;
9497 temps->reserve(rc);
9498 const Typed_identifier_list* results =
9499 this->fn_->type()->function_type()->results();
9500 for (Typed_identifier_list::const_iterator p = results->begin();
9501 p != results->end();
9502 ++p)
9503 {
9504 Temporary_statement* temp = Statement::make_temporary(p->type(),
09ea332d 9505 NULL, loc);
ceeb4318 9506 inserter->insert(temp);
9507 temps->push_back(temp);
9508 }
9509 this->results_ = temps;
9510 }
9511
e440a328 9512 // Handle a call to a varargs function by packaging up the extra
9513 // parameters.
9514 if (this->fn_->type()->function_type() != NULL
9515 && this->fn_->type()->function_type()->is_varargs())
9516 {
9517 Function_type* fntype = this->fn_->type()->function_type();
9518 const Typed_identifier_list* parameters = fntype->parameters();
c484d925 9519 go_assert(parameters != NULL && !parameters->empty());
e440a328 9520 Type* varargs_type = parameters->back().type();
09ea332d 9521 this->lower_varargs(gogo, function, inserter, varargs_type,
9522 parameters->size());
9523 }
9524
9525 // If this is call to a method, call the method directly passing the
9526 // object as the first parameter.
9527 Bound_method_expression* bme = this->fn_->bound_method_expression();
9528 if (bme != NULL)
9529 {
9530 Named_object* method = bme->method();
9531 Expression* first_arg = bme->first_argument();
9532
9533 // We always pass a pointer when calling a method.
9534 if (first_arg->type()->points_to() == NULL
9535 && !first_arg->type()->is_error())
9536 {
9537 first_arg = Expression::make_unary(OPERATOR_AND, first_arg, loc);
9538 // We may need to create a temporary variable so that we can
9539 // take the address. We can't do that here because it will
9540 // mess up the order of evaluation.
9541 Unary_expression* ue = static_cast<Unary_expression*>(first_arg);
9542 ue->set_create_temp();
9543 }
9544
9545 // If we are calling a method which was inherited from an
9546 // embedded struct, and the method did not get a stub, then the
9547 // first type may be wrong.
9548 Type* fatype = bme->first_argument_type();
9549 if (fatype != NULL)
9550 {
9551 if (fatype->points_to() == NULL)
9552 fatype = Type::make_pointer_type(fatype);
9553 first_arg = Expression::make_unsafe_cast(fatype, first_arg, loc);
9554 }
9555
9556 Expression_list* new_args = new Expression_list();
9557 new_args->push_back(first_arg);
9558 if (this->args_ != NULL)
9559 {
9560 for (Expression_list::const_iterator p = this->args_->begin();
9561 p != this->args_->end();
9562 ++p)
9563 new_args->push_back(*p);
9564 }
9565
9566 // We have to change in place because this structure may be
9567 // referenced by Call_result_expressions. We can't delete the
9568 // old arguments, because we may be traversing them up in some
9569 // caller. FIXME.
9570 this->args_ = new_args;
9571 this->fn_ = Expression::make_func_reference(method, NULL,
9572 bme->location());
e440a328 9573 }
9574
9575 return this;
9576}
9577
9578// Lower a call to a varargs function. FUNCTION is the function in
9579// which the call occurs--it's not the function we are calling.
9580// VARARGS_TYPE is the type of the varargs parameter, a slice type.
9581// PARAM_COUNT is the number of parameters of the function we are
9582// calling; the last of these parameters will be the varargs
9583// parameter.
9584
09ea332d 9585void
e440a328 9586Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
ceeb4318 9587 Statement_inserter* inserter,
e440a328 9588 Type* varargs_type, size_t param_count)
9589{
9590 if (this->varargs_are_lowered_)
09ea332d 9591 return;
e440a328 9592
b13c66cd 9593 Location loc = this->location();
e440a328 9594
c484d925 9595 go_assert(param_count > 0);
411eb89e 9596 go_assert(varargs_type->is_slice_type());
e440a328 9597
9598 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
9599 if (arg_count < param_count - 1)
9600 {
9601 // Not enough arguments; will be caught in check_types.
09ea332d 9602 return;
e440a328 9603 }
9604
9605 Expression_list* old_args = this->args_;
9606 Expression_list* new_args = new Expression_list();
9607 bool push_empty_arg = false;
9608 if (old_args == NULL || old_args->empty())
9609 {
c484d925 9610 go_assert(param_count == 1);
e440a328 9611 push_empty_arg = true;
9612 }
9613 else
9614 {
9615 Expression_list::const_iterator pa;
9616 int i = 1;
9617 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
9618 {
9619 if (static_cast<size_t>(i) == param_count)
9620 break;
9621 new_args->push_back(*pa);
9622 }
9623
9624 // We have reached the varargs parameter.
9625
9626 bool issued_error = false;
9627 if (pa == old_args->end())
9628 push_empty_arg = true;
9629 else if (pa + 1 == old_args->end() && this->is_varargs_)
9630 new_args->push_back(*pa);
9631 else if (this->is_varargs_)
9632 {
9633 this->report_error(_("too many arguments"));
09ea332d 9634 return;
e440a328 9635 }
e440a328 9636 else
9637 {
9638 Type* element_type = varargs_type->array_type()->element_type();
9639 Expression_list* vals = new Expression_list;
9640 for (; pa != old_args->end(); ++pa, ++i)
9641 {
9642 // Check types here so that we get a better message.
9643 Type* patype = (*pa)->type();
b13c66cd 9644 Location paloc = (*pa)->location();
e440a328 9645 if (!this->check_argument_type(i, element_type, patype,
9646 paloc, issued_error))
9647 continue;
9648 vals->push_back(*pa);
9649 }
9650 Expression* val =
9651 Expression::make_slice_composite_literal(varargs_type, vals, loc);
09ea332d 9652 gogo->lower_expression(function, inserter, &val);
e440a328 9653 new_args->push_back(val);
9654 }
9655 }
9656
9657 if (push_empty_arg)
9658 new_args->push_back(Expression::make_nil(loc));
9659
9660 // We can't return a new call expression here, because this one may
6d4c2432 9661 // be referenced by Call_result expressions. FIXME. We can't
9662 // delete OLD_ARGS because we may have both a Call_expression and a
9663 // Builtin_call_expression which refer to them. FIXME.
e440a328 9664 this->args_ = new_args;
9665 this->varargs_are_lowered_ = true;
e440a328 9666}
9667
ceeb4318 9668// Get the function type. This can return NULL in error cases.
e440a328 9669
9670Function_type*
9671Call_expression::get_function_type() const
9672{
9673 return this->fn_->type()->function_type();
9674}
9675
9676// Return the number of values which this call will return.
9677
9678size_t
9679Call_expression::result_count() const
9680{
9681 const Function_type* fntype = this->get_function_type();
9682 if (fntype == NULL)
9683 return 0;
9684 if (fntype->results() == NULL)
9685 return 0;
9686 return fntype->results()->size();
9687}
9688
ceeb4318 9689// Return the temporary which holds a result.
9690
9691Temporary_statement*
9692Call_expression::result(size_t i) const
9693{
cd238b8d 9694 if (this->results_ == NULL || this->results_->size() <= i)
9695 {
9696 go_assert(saw_errors());
9697 return NULL;
9698 }
ceeb4318 9699 return (*this->results_)[i];
9700}
9701
e440a328 9702// Return whether this is a call to the predeclared function recover.
9703
9704bool
9705Call_expression::is_recover_call() const
9706{
9707 return this->do_is_recover_call();
9708}
9709
9710// Set the argument to the recover function.
9711
9712void
9713Call_expression::set_recover_arg(Expression* arg)
9714{
9715 this->do_set_recover_arg(arg);
9716}
9717
9718// Virtual functions also implemented by Builtin_call_expression.
9719
9720bool
9721Call_expression::do_is_recover_call() const
9722{
9723 return false;
9724}
9725
9726void
9727Call_expression::do_set_recover_arg(Expression*)
9728{
c3e6f413 9729 go_unreachable();
e440a328 9730}
9731
ceeb4318 9732// We have found an error with this call expression; return true if
9733// we should report it.
9734
9735bool
9736Call_expression::issue_error()
9737{
9738 if (this->issued_error_)
9739 return false;
9740 else
9741 {
9742 this->issued_error_ = true;
9743 return true;
9744 }
9745}
9746
e440a328 9747// Get the type.
9748
9749Type*
9750Call_expression::do_type()
9751{
9752 if (this->type_ != NULL)
9753 return this->type_;
9754
9755 Type* ret;
9756 Function_type* fntype = this->get_function_type();
9757 if (fntype == NULL)
9758 return Type::make_error_type();
9759
9760 const Typed_identifier_list* results = fntype->results();
9761 if (results == NULL)
9762 ret = Type::make_void_type();
9763 else if (results->size() == 1)
9764 ret = results->begin()->type();
9765 else
9766 ret = Type::make_call_multiple_result_type(this);
9767
9768 this->type_ = ret;
9769
9770 return this->type_;
9771}
9772
9773// Determine types for a call expression. We can use the function
9774// parameter types to set the types of the arguments.
9775
9776void
9777Call_expression::do_determine_type(const Type_context*)
9778{
fb94b0ca 9779 if (!this->determining_types())
9780 return;
9781
e440a328 9782 this->fn_->determine_type_no_context();
9783 Function_type* fntype = this->get_function_type();
9784 const Typed_identifier_list* parameters = NULL;
9785 if (fntype != NULL)
9786 parameters = fntype->parameters();
9787 if (this->args_ != NULL)
9788 {
9789 Typed_identifier_list::const_iterator pt;
9790 if (parameters != NULL)
9791 pt = parameters->begin();
09ea332d 9792 bool first = true;
e440a328 9793 for (Expression_list::const_iterator pa = this->args_->begin();
9794 pa != this->args_->end();
9795 ++pa)
9796 {
09ea332d 9797 if (first)
9798 {
9799 first = false;
9800 // If this is a method, the first argument is the
9801 // receiver.
9802 if (fntype != NULL && fntype->is_method())
9803 {
9804 Type* rtype = fntype->receiver()->type();
9805 // The receiver is always passed as a pointer.
9806 if (rtype->points_to() == NULL)
9807 rtype = Type::make_pointer_type(rtype);
9808 Type_context subcontext(rtype, false);
9809 (*pa)->determine_type(&subcontext);
9810 continue;
9811 }
9812 }
9813
e440a328 9814 if (parameters != NULL && pt != parameters->end())
9815 {
9816 Type_context subcontext(pt->type(), false);
9817 (*pa)->determine_type(&subcontext);
9818 ++pt;
9819 }
9820 else
9821 (*pa)->determine_type_no_context();
9822 }
9823 }
9824}
9825
fb94b0ca 9826// Called when determining types for a Call_expression. Return true
9827// if we should go ahead, false if they have already been determined.
9828
9829bool
9830Call_expression::determining_types()
9831{
9832 if (this->types_are_determined_)
9833 return false;
9834 else
9835 {
9836 this->types_are_determined_ = true;
9837 return true;
9838 }
9839}
9840
e440a328 9841// Check types for parameter I.
9842
9843bool
9844Call_expression::check_argument_type(int i, const Type* parameter_type,
9845 const Type* argument_type,
b13c66cd 9846 Location argument_location,
e440a328 9847 bool issued_error)
9848{
9849 std::string reason;
053ee6ca 9850 bool ok;
9851 if (this->are_hidden_fields_ok_)
9852 ok = Type::are_assignable_hidden_ok(parameter_type, argument_type,
9853 &reason);
9854 else
9855 ok = Type::are_assignable(parameter_type, argument_type, &reason);
9856 if (!ok)
e440a328 9857 {
9858 if (!issued_error)
9859 {
9860 if (reason.empty())
9861 error_at(argument_location, "argument %d has incompatible type", i);
9862 else
9863 error_at(argument_location,
9864 "argument %d has incompatible type (%s)",
9865 i, reason.c_str());
9866 }
9867 this->set_is_error();
9868 return false;
9869 }
9870 return true;
9871}
9872
9873// Check types.
9874
9875void
9876Call_expression::do_check_types(Gogo*)
9877{
9878 Function_type* fntype = this->get_function_type();
9879 if (fntype == NULL)
9880 {
5c13bd80 9881 if (!this->fn_->type()->is_error())
e440a328 9882 this->report_error(_("expected function"));
9883 return;
9884 }
9885
09ea332d 9886 bool is_method = fntype->is_method();
9887 if (is_method)
e440a328 9888 {
09ea332d 9889 go_assert(this->args_ != NULL && !this->args_->empty());
9890 Type* rtype = fntype->receiver()->type();
9891 Expression* first_arg = this->args_->front();
9892 // The language permits copying hidden fields for a method
9893 // receiver. We dereference the values since receivers are
9894 // always passed as pointers.
9895 std::string reason;
9896 if (!Type::are_assignable_hidden_ok(rtype->deref(),
9897 first_arg->type()->deref(),
9898 &reason))
e440a328 9899 {
09ea332d 9900 if (reason.empty())
9901 this->report_error(_("incompatible type for receiver"));
9902 else
e440a328 9903 {
09ea332d 9904 error_at(this->location(),
9905 "incompatible type for receiver (%s)",
9906 reason.c_str());
9907 this->set_is_error();
e440a328 9908 }
9909 }
9910 }
9911
9912 // Note that varargs was handled by the lower_varargs() method, so
9913 // we don't have to worry about it here.
9914
9915 const Typed_identifier_list* parameters = fntype->parameters();
9916 if (this->args_ == NULL)
9917 {
9918 if (parameters != NULL && !parameters->empty())
9919 this->report_error(_("not enough arguments"));
9920 }
9921 else if (parameters == NULL)
09ea332d 9922 {
9923 if (!is_method || this->args_->size() > 1)
9924 this->report_error(_("too many arguments"));
9925 }
e440a328 9926 else
9927 {
9928 int i = 0;
09ea332d 9929 Expression_list::const_iterator pa = this->args_->begin();
9930 if (is_method)
9931 ++pa;
9932 for (Typed_identifier_list::const_iterator pt = parameters->begin();
9933 pt != parameters->end();
9934 ++pt, ++pa, ++i)
e440a328 9935 {
09ea332d 9936 if (pa == this->args_->end())
e440a328 9937 {
09ea332d 9938 this->report_error(_("not enough arguments"));
e440a328 9939 return;
9940 }
9941 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
9942 (*pa)->location(), false);
9943 }
09ea332d 9944 if (pa != this->args_->end())
9945 this->report_error(_("too many arguments"));
e440a328 9946 }
9947}
9948
9949// Return whether we have to use a temporary variable to ensure that
9950// we evaluate this call expression in order. If the call returns no
ceeb4318 9951// results then it will inevitably be executed last.
e440a328 9952
9953bool
9954Call_expression::do_must_eval_in_order() const
9955{
ceeb4318 9956 return this->result_count() > 0;
e440a328 9957}
9958
e440a328 9959// Get the function and the first argument to use when calling an
9960// interface method.
9961
9962tree
9963Call_expression::interface_method_function(
9964 Translate_context* context,
9965 Interface_field_reference_expression* interface_method,
9966 tree* first_arg_ptr)
9967{
9968 tree expr = interface_method->expr()->get_tree(context);
9969 if (expr == error_mark_node)
9970 return error_mark_node;
9971 expr = save_expr(expr);
9972 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
9973 if (first_arg == error_mark_node)
9974 return error_mark_node;
9975 *first_arg_ptr = first_arg;
9976 return interface_method->get_function_tree(context, expr);
9977}
9978
9979// Build the call expression.
9980
9981tree
9982Call_expression::do_get_tree(Translate_context* context)
9983{
9984 if (this->tree_ != NULL_TREE)
9985 return this->tree_;
9986
9987 Function_type* fntype = this->get_function_type();
9988 if (fntype == NULL)
9989 return error_mark_node;
9990
9991 if (this->fn_->is_error_expression())
9992 return error_mark_node;
9993
9994 Gogo* gogo = context->gogo();
b13c66cd 9995 Location location = this->location();
e440a328 9996
9997 Func_expression* func = this->fn_->func_expression();
e440a328 9998 Interface_field_reference_expression* interface_method =
9999 this->fn_->interface_field_reference_expression();
10000 const bool has_closure = func != NULL && func->closure() != NULL;
09ea332d 10001 const bool is_interface_method = interface_method != NULL;
e440a328 10002
10003 int nargs;
10004 tree* args;
10005 if (this->args_ == NULL || this->args_->empty())
10006 {
09ea332d 10007 nargs = is_interface_method ? 1 : 0;
e440a328 10008 args = nargs == 0 ? NULL : new tree[nargs];
10009 }
09ea332d 10010 else if (fntype->parameters() == NULL || fntype->parameters()->empty())
10011 {
10012 // Passing a receiver parameter.
10013 go_assert(!is_interface_method
10014 && fntype->is_method()
10015 && this->args_->size() == 1);
10016 nargs = 1;
10017 args = new tree[nargs];
10018 args[0] = this->args_->front()->get_tree(context);
10019 }
e440a328 10020 else
10021 {
10022 const Typed_identifier_list* params = fntype->parameters();
e440a328 10023
10024 nargs = this->args_->size();
09ea332d 10025 int i = is_interface_method ? 1 : 0;
e440a328 10026 nargs += i;
10027 args = new tree[nargs];
10028
10029 Typed_identifier_list::const_iterator pp = params->begin();
09ea332d 10030 Expression_list::const_iterator pe = this->args_->begin();
10031 if (!is_interface_method && fntype->is_method())
10032 {
10033 args[i] = (*pe)->get_tree(context);
10034 ++pe;
10035 ++i;
10036 }
10037 for (; pe != this->args_->end(); ++pe, ++pp, ++i)
e440a328 10038 {
c484d925 10039 go_assert(pp != params->end());
e440a328 10040 tree arg_val = (*pe)->get_tree(context);
10041 args[i] = Expression::convert_for_assignment(context,
10042 pp->type(),
10043 (*pe)->type(),
10044 arg_val,
10045 location);
10046 if (args[i] == error_mark_node)
cf609de4 10047 {
10048 delete[] args;
10049 return error_mark_node;
10050 }
e440a328 10051 }
c484d925 10052 go_assert(pp == params->end());
10053 go_assert(i == nargs);
e440a328 10054 }
10055
9f0e0513 10056 tree rettype = TREE_TYPE(TREE_TYPE(type_to_tree(fntype->get_backend(gogo))));
e440a328 10057 if (rettype == error_mark_node)
cf609de4 10058 {
10059 delete[] args;
10060 return error_mark_node;
10061 }
e440a328 10062
10063 tree fn;
10064 if (has_closure)
10065 fn = func->get_tree_without_closure(gogo);
09ea332d 10066 else if (!is_interface_method)
e440a328 10067 fn = this->fn_->get_tree(context);
e440a328 10068 else
09ea332d 10069 fn = this->interface_method_function(context, interface_method, &args[0]);
e440a328 10070
10071 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
cf609de4 10072 {
10073 delete[] args;
10074 return error_mark_node;
10075 }
e440a328 10076
e440a328 10077 tree fndecl = fn;
10078 if (TREE_CODE(fndecl) == ADDR_EXPR)
10079 fndecl = TREE_OPERAND(fndecl, 0);
9aa9e2df 10080
10081 // Add a type cast in case the type of the function is a recursive
10082 // type which refers to itself.
10083 if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl))
10084 {
9f0e0513 10085 tree fnt = type_to_tree(fntype->get_backend(gogo));
9aa9e2df 10086 if (fnt == error_mark_node)
10087 return error_mark_node;
b13c66cd 10088 fn = fold_convert_loc(location.gcc_location(), fnt, fn);
9aa9e2df 10089 }
10090
10091 // This is to support builtin math functions when using 80387 math.
e440a328 10092 tree excess_type = NULL_TREE;
68e1881d 10093 if (optimize
10094 && TREE_CODE(fndecl) == FUNCTION_DECL
e440a328 10095 && DECL_IS_BUILTIN(fndecl)
10096 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
10097 && nargs > 0
10098 && ((SCALAR_FLOAT_TYPE_P(rettype)
10099 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
10100 || (COMPLEX_FLOAT_TYPE_P(rettype)
10101 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
10102 {
10103 excess_type = excess_precision_type(TREE_TYPE(args[0]));
10104 if (excess_type != NULL_TREE)
10105 {
10106 tree excess_fndecl = mathfn_built_in(excess_type,
10107 DECL_FUNCTION_CODE(fndecl));
10108 if (excess_fndecl == NULL_TREE)
10109 excess_type = NULL_TREE;
10110 else
10111 {
b13c66cd 10112 fn = build_fold_addr_expr_loc(location.gcc_location(),
10113 excess_fndecl);
e440a328 10114 for (int i = 0; i < nargs; ++i)
26ae0101 10115 {
10116 if (SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[i]))
10117 || COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[i])))
10118 args[i] = ::convert(excess_type, args[i]);
10119 }
e440a328 10120 }
10121 }
10122 }
10123
10124 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
10125 fn, nargs, args);
10126 delete[] args;
10127
b13c66cd 10128 SET_EXPR_LOCATION(ret, location.gcc_location());
e440a328 10129
10130 if (has_closure)
10131 {
10132 tree closure_tree = func->closure()->get_tree(context);
10133 if (closure_tree != error_mark_node)
10134 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
10135 }
10136
10137 // If this is a recursive function type which returns itself, as in
10138 // type F func() F
10139 // we have used ptr_type_node for the return type. Add a cast here
10140 // to the correct type.
10141 if (TREE_TYPE(ret) == ptr_type_node)
10142 {
9f0e0513 10143 tree t = type_to_tree(this->type()->base()->get_backend(gogo));
b13c66cd 10144 ret = fold_convert_loc(location.gcc_location(), t, ret);
e440a328 10145 }
10146
10147 if (excess_type != NULL_TREE)
10148 {
10149 // Calling convert here can undo our excess precision change.
10150 // That may or may not be a bug in convert_to_real.
10151 ret = build1(NOP_EXPR, rettype, ret);
10152 }
10153
ceeb4318 10154 if (this->results_ != NULL)
10155 ret = this->set_results(context, ret);
e440a328 10156
10157 this->tree_ = ret;
10158
10159 return ret;
10160}
10161
ceeb4318 10162// Set the result variables if this call returns multiple results.
10163
10164tree
10165Call_expression::set_results(Translate_context* context, tree call_tree)
10166{
10167 tree stmt_list = NULL_TREE;
10168
10169 call_tree = save_expr(call_tree);
10170
10171 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
10172 {
10173 go_assert(saw_errors());
10174 return call_tree;
10175 }
10176
b13c66cd 10177 Location loc = this->location();
ceeb4318 10178 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
10179 size_t rc = this->result_count();
10180 for (size_t i = 0; i < rc; ++i, field = DECL_CHAIN(field))
10181 {
10182 go_assert(field != NULL_TREE);
10183
10184 Temporary_statement* temp = this->result(i);
cd238b8d 10185 if (temp == NULL)
10186 {
10187 go_assert(saw_errors());
10188 return error_mark_node;
10189 }
ceeb4318 10190 Temporary_reference_expression* ref =
10191 Expression::make_temporary_reference(temp, loc);
10192 ref->set_is_lvalue();
10193 tree temp_tree = ref->get_tree(context);
10194 if (temp_tree == error_mark_node)
10195 continue;
10196
b13c66cd 10197 tree val_tree = build3_loc(loc.gcc_location(), COMPONENT_REF,
10198 TREE_TYPE(field), call_tree, field, NULL_TREE);
10199 tree set_tree = build2_loc(loc.gcc_location(), MODIFY_EXPR,
10200 void_type_node, temp_tree, val_tree);
ceeb4318 10201
10202 append_to_statement_list(set_tree, &stmt_list);
10203 }
10204 go_assert(field == NULL_TREE);
10205
10206 return save_expr(stmt_list);
10207}
10208
d751bb78 10209// Dump ast representation for a call expressin.
10210
10211void
10212Call_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
10213{
10214 this->fn_->dump_expression(ast_dump_context);
10215 ast_dump_context->ostream() << "(";
10216 if (args_ != NULL)
10217 ast_dump_context->dump_expression_list(this->args_);
10218
10219 ast_dump_context->ostream() << ") ";
10220}
10221
e440a328 10222// Make a call expression.
10223
10224Call_expression*
10225Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
b13c66cd 10226 Location location)
e440a328 10227{
10228 return new Call_expression(fn, args, is_varargs, location);
10229}
10230
10231// A single result from a call which returns multiple results.
10232
10233class Call_result_expression : public Expression
10234{
10235 public:
10236 Call_result_expression(Call_expression* call, unsigned int index)
10237 : Expression(EXPRESSION_CALL_RESULT, call->location()),
10238 call_(call), index_(index)
10239 { }
10240
10241 protected:
10242 int
10243 do_traverse(Traverse*);
10244
10245 Type*
10246 do_type();
10247
10248 void
10249 do_determine_type(const Type_context*);
10250
10251 void
10252 do_check_types(Gogo*);
10253
10254 Expression*
10255 do_copy()
10256 {
10257 return new Call_result_expression(this->call_->call_expression(),
10258 this->index_);
10259 }
10260
10261 bool
10262 do_must_eval_in_order() const
10263 { return true; }
10264
10265 tree
10266 do_get_tree(Translate_context*);
10267
d751bb78 10268 void
10269 do_dump_expression(Ast_dump_context*) const;
10270
e440a328 10271 private:
10272 // The underlying call expression.
10273 Expression* call_;
10274 // Which result we want.
10275 unsigned int index_;
10276};
10277
10278// Traverse a call result.
10279
10280int
10281Call_result_expression::do_traverse(Traverse* traverse)
10282{
10283 if (traverse->remember_expression(this->call_))
10284 {
10285 // We have already traversed the call expression.
10286 return TRAVERSE_CONTINUE;
10287 }
10288 return Expression::traverse(&this->call_, traverse);
10289}
10290
10291// Get the type.
10292
10293Type*
10294Call_result_expression::do_type()
10295{
425dd051 10296 if (this->classification() == EXPRESSION_ERROR)
10297 return Type::make_error_type();
10298
e440a328 10299 // THIS->CALL_ can be replaced with a temporary reference due to
10300 // Call_expression::do_must_eval_in_order when there is an error.
10301 Call_expression* ce = this->call_->call_expression();
10302 if (ce == NULL)
5e85f268 10303 {
10304 this->set_is_error();
10305 return Type::make_error_type();
10306 }
e440a328 10307 Function_type* fntype = ce->get_function_type();
10308 if (fntype == NULL)
5e85f268 10309 {
e37658e2 10310 if (ce->issue_error())
99b3f06f 10311 {
10312 if (!ce->fn()->type()->is_error())
10313 this->report_error(_("expected function"));
10314 }
5e85f268 10315 this->set_is_error();
10316 return Type::make_error_type();
10317 }
e440a328 10318 const Typed_identifier_list* results = fntype->results();
ceeb4318 10319 if (results == NULL || results->size() < 2)
7b8d861f 10320 {
ceeb4318 10321 if (ce->issue_error())
10322 this->report_error(_("number of results does not match "
10323 "number of values"));
7b8d861f 10324 return Type::make_error_type();
10325 }
e440a328 10326 Typed_identifier_list::const_iterator pr = results->begin();
10327 for (unsigned int i = 0; i < this->index_; ++i)
10328 {
10329 if (pr == results->end())
425dd051 10330 break;
e440a328 10331 ++pr;
10332 }
10333 if (pr == results->end())
425dd051 10334 {
ceeb4318 10335 if (ce->issue_error())
10336 this->report_error(_("number of results does not match "
10337 "number of values"));
425dd051 10338 return Type::make_error_type();
10339 }
e440a328 10340 return pr->type();
10341}
10342
425dd051 10343// Check the type. Just make sure that we trigger the warning in
10344// do_type.
e440a328 10345
10346void
10347Call_result_expression::do_check_types(Gogo*)
10348{
425dd051 10349 this->type();
e440a328 10350}
10351
10352// Determine the type. We have nothing to do here, but the 0 result
10353// needs to pass down to the caller.
10354
10355void
10356Call_result_expression::do_determine_type(const Type_context*)
10357{
fb94b0ca 10358 this->call_->determine_type_no_context();
e440a328 10359}
10360
ceeb4318 10361// Return the tree. We just refer to the temporary set by the call
10362// expression. We don't do this at lowering time because it makes it
10363// hard to evaluate the call at the right time.
e440a328 10364
10365tree
10366Call_result_expression::do_get_tree(Translate_context* context)
10367{
ceeb4318 10368 Call_expression* ce = this->call_->call_expression();
cd238b8d 10369 if (ce == NULL)
10370 {
10371 go_assert(this->call_->is_error_expression());
10372 return error_mark_node;
10373 }
ceeb4318 10374 Temporary_statement* ts = ce->result(this->index_);
cd238b8d 10375 if (ts == NULL)
10376 {
10377 go_assert(saw_errors());
10378 return error_mark_node;
10379 }
ceeb4318 10380 Expression* ref = Expression::make_temporary_reference(ts, this->location());
10381 return ref->get_tree(context);
e440a328 10382}
10383
d751bb78 10384// Dump ast representation for a call result expression.
10385
10386void
10387Call_result_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
10388 const
10389{
10390 // FIXME: Wouldn't it be better if the call is assigned to a temporary
10391 // (struct) and the fields are referenced instead.
10392 ast_dump_context->ostream() << this->index_ << "@(";
10393 ast_dump_context->dump_expression(this->call_);
10394 ast_dump_context->ostream() << ")";
10395}
10396
e440a328 10397// Make a reference to a single result of a call which returns
10398// multiple results.
10399
10400Expression*
10401Expression::make_call_result(Call_expression* call, unsigned int index)
10402{
10403 return new Call_result_expression(call, index);
10404}
10405
10406// Class Index_expression.
10407
10408// Traversal.
10409
10410int
10411Index_expression::do_traverse(Traverse* traverse)
10412{
10413 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
10414 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
10415 || (this->end_ != NULL
10416 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
10417 return TRAVERSE_EXIT;
10418 return TRAVERSE_CONTINUE;
10419}
10420
10421// Lower an index expression. This converts the generic index
10422// expression into an array index, a string index, or a map index.
10423
10424Expression*
ceeb4318 10425Index_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
e440a328 10426{
b13c66cd 10427 Location location = this->location();
e440a328 10428 Expression* left = this->left_;
10429 Expression* start = this->start_;
10430 Expression* end = this->end_;
10431
10432 Type* type = left->type();
5c13bd80 10433 if (type->is_error())
e440a328 10434 return Expression::make_error(location);
b0cf7ddd 10435 else if (left->is_type_expression())
10436 {
10437 error_at(location, "attempt to index type expression");
10438 return Expression::make_error(location);
10439 }
e440a328 10440 else if (type->array_type() != NULL)
10441 return Expression::make_array_index(left, start, end, location);
10442 else if (type->points_to() != NULL
10443 && type->points_to()->array_type() != NULL
411eb89e 10444 && !type->points_to()->is_slice_type())
e440a328 10445 {
10446 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
10447 location);
10448 return Expression::make_array_index(deref, start, end, location);
10449 }
10450 else if (type->is_string_type())
10451 return Expression::make_string_index(left, start, end, location);
10452 else if (type->map_type() != NULL)
10453 {
10454 if (end != NULL)
10455 {
10456 error_at(location, "invalid slice of map");
10457 return Expression::make_error(location);
10458 }
6d4c2432 10459 Map_index_expression* ret = Expression::make_map_index(left, start,
10460 location);
e440a328 10461 if (this->is_lvalue_)
10462 ret->set_is_lvalue();
10463 return ret;
10464 }
10465 else
10466 {
10467 error_at(location,
10468 "attempt to index object which is not array, string, or map");
10469 return Expression::make_error(location);
10470 }
10471}
10472
d751bb78 10473// Write an indexed expression (expr[expr:expr] or expr[expr]) to a
10474// dump context
10475
10476void
10477Index_expression::dump_index_expression(Ast_dump_context* ast_dump_context,
10478 const Expression* expr,
10479 const Expression* start,
10480 const Expression* end)
10481{
10482 expr->dump_expression(ast_dump_context);
10483 ast_dump_context->ostream() << "[";
10484 start->dump_expression(ast_dump_context);
10485 if (end != NULL)
10486 {
10487 ast_dump_context->ostream() << ":";
10488 end->dump_expression(ast_dump_context);
10489 }
10490 ast_dump_context->ostream() << "]";
10491}
10492
10493// Dump ast representation for an index expression.
10494
10495void
10496Index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
10497 const
10498{
10499 Index_expression::dump_index_expression(ast_dump_context, this->left_,
10500 this->start_, this->end_);
10501}
10502
e440a328 10503// Make an index expression.
10504
10505Expression*
10506Expression::make_index(Expression* left, Expression* start, Expression* end,
b13c66cd 10507 Location location)
e440a328 10508{
10509 return new Index_expression(left, start, end, location);
10510}
10511
10512// An array index. This is used for both indexing and slicing.
10513
10514class Array_index_expression : public Expression
10515{
10516 public:
10517 Array_index_expression(Expression* array, Expression* start,
b13c66cd 10518 Expression* end, Location location)
e440a328 10519 : Expression(EXPRESSION_ARRAY_INDEX, location),
10520 array_(array), start_(start), end_(end), type_(NULL)
10521 { }
10522
10523 protected:
10524 int
10525 do_traverse(Traverse*);
10526
10527 Type*
10528 do_type();
10529
10530 void
10531 do_determine_type(const Type_context*);
10532
10533 void
10534 do_check_types(Gogo*);
10535
10536 Expression*
10537 do_copy()
10538 {
10539 return Expression::make_array_index(this->array_->copy(),
10540 this->start_->copy(),
10541 (this->end_ == NULL
10542 ? NULL
10543 : this->end_->copy()),
10544 this->location());
10545 }
10546
baef9f7a 10547 bool
10548 do_must_eval_subexpressions_in_order(int* skip) const
10549 {
10550 *skip = 1;
10551 return true;
10552 }
10553
e440a328 10554 bool
10555 do_is_addressable() const;
10556
10557 void
10558 do_address_taken(bool escapes)
10559 { this->array_->address_taken(escapes); }
10560
10561 tree
10562 do_get_tree(Translate_context*);
10563
d751bb78 10564 void
10565 do_dump_expression(Ast_dump_context*) const;
10566
e440a328 10567 private:
10568 // The array we are getting a value from.
10569 Expression* array_;
10570 // The start or only index.
10571 Expression* start_;
10572 // The end index of a slice. This may be NULL for a simple array
10573 // index, or it may be a nil expression for the length of the array.
10574 Expression* end_;
10575 // The type of the expression.
10576 Type* type_;
10577};
10578
10579// Array index traversal.
10580
10581int
10582Array_index_expression::do_traverse(Traverse* traverse)
10583{
10584 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
10585 return TRAVERSE_EXIT;
10586 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
10587 return TRAVERSE_EXIT;
10588 if (this->end_ != NULL)
10589 {
10590 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
10591 return TRAVERSE_EXIT;
10592 }
10593 return TRAVERSE_CONTINUE;
10594}
10595
10596// Return the type of an array index.
10597
10598Type*
10599Array_index_expression::do_type()
10600{
10601 if (this->type_ == NULL)
10602 {
10603 Array_type* type = this->array_->type()->array_type();
10604 if (type == NULL)
10605 this->type_ = Type::make_error_type();
10606 else if (this->end_ == NULL)
10607 this->type_ = type->element_type();
411eb89e 10608 else if (type->is_slice_type())
e440a328 10609 {
10610 // A slice of a slice has the same type as the original
10611 // slice.
10612 this->type_ = this->array_->type()->deref();
10613 }
10614 else
10615 {
10616 // A slice of an array is a slice.
10617 this->type_ = Type::make_array_type(type->element_type(), NULL);
10618 }
10619 }
10620 return this->type_;
10621}
10622
10623// Set the type of an array index.
10624
10625void
10626Array_index_expression::do_determine_type(const Type_context*)
10627{
10628 this->array_->determine_type_no_context();
7917ad68 10629 this->start_->determine_type_no_context();
e440a328 10630 if (this->end_ != NULL)
7917ad68 10631 this->end_->determine_type_no_context();
e440a328 10632}
10633
10634// Check types of an array index.
10635
10636void
10637Array_index_expression::do_check_types(Gogo*)
10638{
10639 if (this->start_->type()->integer_type() == NULL)
10640 this->report_error(_("index must be integer"));
10641 if (this->end_ != NULL
10642 && this->end_->type()->integer_type() == NULL
99b3f06f 10643 && !this->end_->type()->is_error()
10644 && !this->end_->is_nil_expression()
10645 && !this->end_->is_error_expression())
e440a328 10646 this->report_error(_("slice end must be integer"));
10647
10648 Array_type* array_type = this->array_->type()->array_type();
f9c68f17 10649 if (array_type == NULL)
10650 {
c484d925 10651 go_assert(this->array_->type()->is_error());
f9c68f17 10652 return;
10653 }
e440a328 10654
10655 unsigned int int_bits =
10656 Type::lookup_integer_type("int")->integer_type()->bits();
10657
10658 Type* dummy;
10659 mpz_t lval;
10660 mpz_init(lval);
10661 bool lval_valid = (array_type->length() != NULL
10662 && array_type->length()->integer_constant_value(true,
10663 lval,
10664 &dummy));
10665 mpz_t ival;
10666 mpz_init(ival);
10667 if (this->start_->integer_constant_value(true, ival, &dummy))
10668 {
10669 if (mpz_sgn(ival) < 0
10670 || mpz_sizeinbase(ival, 2) >= int_bits
10671 || (lval_valid
10672 && (this->end_ == NULL
10673 ? mpz_cmp(ival, lval) >= 0
10674 : mpz_cmp(ival, lval) > 0)))
10675 {
10676 error_at(this->start_->location(), "array index out of bounds");
10677 this->set_is_error();
10678 }
10679 }
10680 if (this->end_ != NULL && !this->end_->is_nil_expression())
10681 {
10682 if (this->end_->integer_constant_value(true, ival, &dummy))
10683 {
10684 if (mpz_sgn(ival) < 0
10685 || mpz_sizeinbase(ival, 2) >= int_bits
10686 || (lval_valid && mpz_cmp(ival, lval) > 0))
10687 {
10688 error_at(this->end_->location(), "array index out of bounds");
10689 this->set_is_error();
10690 }
10691 }
10692 }
10693 mpz_clear(ival);
10694 mpz_clear(lval);
10695
10696 // A slice of an array requires an addressable array. A slice of a
10697 // slice is always possible.
411eb89e 10698 if (this->end_ != NULL && !array_type->is_slice_type())
88ec30c8 10699 {
10700 if (!this->array_->is_addressable())
8da39c3b 10701 this->report_error(_("slice of unaddressable value"));
88ec30c8 10702 else
10703 this->array_->address_taken(true);
10704 }
e440a328 10705}
10706
10707// Return whether this expression is addressable.
10708
10709bool
10710Array_index_expression::do_is_addressable() const
10711{
10712 // A slice expression is not addressable.
10713 if (this->end_ != NULL)
10714 return false;
10715
10716 // An index into a slice is addressable.
411eb89e 10717 if (this->array_->type()->is_slice_type())
e440a328 10718 return true;
10719
10720 // An index into an array is addressable if the array is
10721 // addressable.
10722 return this->array_->is_addressable();
10723}
10724
10725// Get a tree for an array index.
10726
10727tree
10728Array_index_expression::do_get_tree(Translate_context* context)
10729{
10730 Gogo* gogo = context->gogo();
b13c66cd 10731 Location loc = this->location();
e440a328 10732
10733 Array_type* array_type = this->array_->type()->array_type();
d8cd8e2d 10734 if (array_type == NULL)
10735 {
c484d925 10736 go_assert(this->array_->type()->is_error());
d8cd8e2d 10737 return error_mark_node;
10738 }
e440a328 10739
9f0e0513 10740 tree type_tree = type_to_tree(array_type->get_backend(gogo));
c65212a0 10741 if (type_tree == error_mark_node)
10742 return error_mark_node;
e440a328 10743
10744 tree array_tree = this->array_->get_tree(context);
10745 if (array_tree == error_mark_node)
10746 return error_mark_node;
10747
10748 if (array_type->length() == NULL && !DECL_P(array_tree))
10749 array_tree = save_expr(array_tree);
a04bfdfc 10750
10751 tree length_tree = NULL_TREE;
10752 if (this->end_ == NULL || this->end_->is_nil_expression())
10753 {
10754 length_tree = array_type->length_tree(gogo, array_tree);
10755 if (length_tree == error_mark_node)
10756 return error_mark_node;
10757 length_tree = save_expr(length_tree);
10758 }
10759
10760 tree capacity_tree = NULL_TREE;
10761 if (this->end_ != NULL)
10762 {
10763 capacity_tree = array_type->capacity_tree(gogo, array_tree);
10764 if (capacity_tree == error_mark_node)
10765 return error_mark_node;
10766 capacity_tree = save_expr(capacity_tree);
10767 }
10768
10769 tree length_type = (length_tree != NULL_TREE
10770 ? TREE_TYPE(length_tree)
10771 : TREE_TYPE(capacity_tree));
e440a328 10772
10773 tree bad_index = boolean_false_node;
10774
10775 tree start_tree = this->start_->get_tree(context);
10776 if (start_tree == error_mark_node)
10777 return error_mark_node;
10778 if (!DECL_P(start_tree))
10779 start_tree = save_expr(start_tree);
10780 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
10781 start_tree = convert_to_integer(length_type, start_tree);
10782
10783 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
10784 loc);
10785
b13c66cd 10786 start_tree = fold_convert_loc(loc.gcc_location(), length_type, start_tree);
10787 bad_index = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
10788 boolean_type_node, bad_index,
10789 fold_build2_loc(loc.gcc_location(),
e440a328 10790 (this->end_ == NULL
10791 ? GE_EXPR
10792 : GT_EXPR),
10793 boolean_type_node, start_tree,
a04bfdfc 10794 (this->end_ == NULL
10795 ? length_tree
10796 : capacity_tree)));
e440a328 10797
10798 int code = (array_type->length() != NULL
10799 ? (this->end_ == NULL
10800 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
10801 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
10802 : (this->end_ == NULL
10803 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
10804 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
10805 tree crash = Gogo::runtime_error(code, loc);
10806
10807 if (this->end_ == NULL)
10808 {
10809 // Simple array indexing. This has to return an l-value, so
10810 // wrap the index check into START_TREE.
10811 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
10812 build3(COND_EXPR, void_type_node,
10813 bad_index, crash, NULL_TREE),
10814 start_tree);
b13c66cd 10815 start_tree = fold_convert_loc(loc.gcc_location(), sizetype, start_tree);
e440a328 10816
10817 if (array_type->length() != NULL)
10818 {
10819 // Fixed array.
10820 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
10821 start_tree, NULL_TREE, NULL_TREE);
10822 }
10823 else
10824 {
10825 // Open array.
10826 tree values = array_type->value_pointer_tree(gogo, array_tree);
9f0e0513 10827 Type* element_type = array_type->element_type();
10828 Btype* belement_type = element_type->get_backend(gogo);
10829 tree element_type_tree = type_to_tree(belement_type);
c65212a0 10830 if (element_type_tree == error_mark_node)
10831 return error_mark_node;
e440a328 10832 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
b13c66cd 10833 tree offset = fold_build2_loc(loc.gcc_location(), MULT_EXPR, sizetype,
e440a328 10834 start_tree, element_size);
b13c66cd 10835 tree ptr = fold_build2_loc(loc.gcc_location(), POINTER_PLUS_EXPR,
e440a328 10836 TREE_TYPE(values), values, offset);
10837 return build_fold_indirect_ref(ptr);
10838 }
10839 }
10840
10841 // Array slice.
10842
e440a328 10843 tree end_tree;
10844 if (this->end_->is_nil_expression())
10845 end_tree = length_tree;
10846 else
10847 {
10848 end_tree = this->end_->get_tree(context);
10849 if (end_tree == error_mark_node)
10850 return error_mark_node;
10851 if (!DECL_P(end_tree))
10852 end_tree = save_expr(end_tree);
10853 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
10854 end_tree = convert_to_integer(length_type, end_tree);
10855
10856 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
10857 loc);
10858
b13c66cd 10859 end_tree = fold_convert_loc(loc.gcc_location(), length_type, end_tree);
e440a328 10860
b13c66cd 10861 tree bad_end = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
10862 boolean_type_node,
10863 fold_build2_loc(loc.gcc_location(),
10864 LT_EXPR, boolean_type_node,
e440a328 10865 end_tree, start_tree),
b13c66cd 10866 fold_build2_loc(loc.gcc_location(),
10867 GT_EXPR, boolean_type_node,
e440a328 10868 end_tree, capacity_tree));
b13c66cd 10869 bad_index = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
10870 boolean_type_node, bad_index, bad_end);
e440a328 10871 }
10872
9f0e0513 10873 Type* element_type = array_type->element_type();
10874 tree element_type_tree = type_to_tree(element_type->get_backend(gogo));
c65212a0 10875 if (element_type_tree == error_mark_node)
10876 return error_mark_node;
e440a328 10877 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
10878
b13c66cd 10879 tree offset = fold_build2_loc(loc.gcc_location(), MULT_EXPR, sizetype,
10880 fold_convert_loc(loc.gcc_location(), sizetype,
10881 start_tree),
e440a328 10882 element_size);
10883
10884 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
c65212a0 10885 if (value_pointer == error_mark_node)
10886 return error_mark_node;
e440a328 10887
b13c66cd 10888 value_pointer = fold_build2_loc(loc.gcc_location(), POINTER_PLUS_EXPR,
e440a328 10889 TREE_TYPE(value_pointer),
10890 value_pointer, offset);
10891
b13c66cd 10892 tree result_length_tree = fold_build2_loc(loc.gcc_location(), MINUS_EXPR,
10893 length_type, end_tree, start_tree);
e440a328 10894
b13c66cd 10895 tree result_capacity_tree = fold_build2_loc(loc.gcc_location(), MINUS_EXPR,
10896 length_type, capacity_tree,
10897 start_tree);
e440a328 10898
9f0e0513 10899 tree struct_tree = type_to_tree(this->type()->get_backend(gogo));
c484d925 10900 go_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
e440a328 10901
10902 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
10903
10904 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
10905 tree field = TYPE_FIELDS(struct_tree);
c484d925 10906 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
e440a328 10907 elt->index = field;
10908 elt->value = value_pointer;
10909
10910 elt = VEC_quick_push(constructor_elt, init, NULL);
10911 field = DECL_CHAIN(field);
c484d925 10912 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
e440a328 10913 elt->index = field;
b13c66cd 10914 elt->value = fold_convert_loc(loc.gcc_location(), TREE_TYPE(field),
10915 result_length_tree);
e440a328 10916
10917 elt = VEC_quick_push(constructor_elt, init, NULL);
10918 field = DECL_CHAIN(field);
c484d925 10919 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
e440a328 10920 elt->index = field;
b13c66cd 10921 elt->value = fold_convert_loc(loc.gcc_location(), TREE_TYPE(field),
10922 result_capacity_tree);
e440a328 10923
10924 tree constructor = build_constructor(struct_tree, init);
10925
10926 if (TREE_CONSTANT(value_pointer)
10927 && TREE_CONSTANT(result_length_tree)
10928 && TREE_CONSTANT(result_capacity_tree))
10929 TREE_CONSTANT(constructor) = 1;
10930
b13c66cd 10931 return fold_build2_loc(loc.gcc_location(), COMPOUND_EXPR,
10932 TREE_TYPE(constructor),
e440a328 10933 build3(COND_EXPR, void_type_node,
10934 bad_index, crash, NULL_TREE),
10935 constructor);
10936}
10937
d751bb78 10938// Dump ast representation for an array index expression.
10939
10940void
10941Array_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
10942 const
10943{
10944 Index_expression::dump_index_expression(ast_dump_context, this->array_,
10945 this->start_, this->end_);
10946}
10947
e440a328 10948// Make an array index expression. END may be NULL.
10949
10950Expression*
10951Expression::make_array_index(Expression* array, Expression* start,
b13c66cd 10952 Expression* end, Location location)
e440a328 10953{
e440a328 10954 return new Array_index_expression(array, start, end, location);
10955}
10956
10957// A string index. This is used for both indexing and slicing.
10958
10959class String_index_expression : public Expression
10960{
10961 public:
10962 String_index_expression(Expression* string, Expression* start,
b13c66cd 10963 Expression* end, Location location)
e440a328 10964 : Expression(EXPRESSION_STRING_INDEX, location),
10965 string_(string), start_(start), end_(end)
10966 { }
10967
10968 protected:
10969 int
10970 do_traverse(Traverse*);
10971
10972 Type*
10973 do_type();
10974
10975 void
10976 do_determine_type(const Type_context*);
10977
10978 void
10979 do_check_types(Gogo*);
10980
10981 Expression*
10982 do_copy()
10983 {
10984 return Expression::make_string_index(this->string_->copy(),
10985 this->start_->copy(),
10986 (this->end_ == NULL
10987 ? NULL
10988 : this->end_->copy()),
10989 this->location());
10990 }
10991
baef9f7a 10992 bool
10993 do_must_eval_subexpressions_in_order(int* skip) const
10994 {
10995 *skip = 1;
10996 return true;
10997 }
10998
e440a328 10999 tree
11000 do_get_tree(Translate_context*);
11001
d751bb78 11002 void
11003 do_dump_expression(Ast_dump_context*) const;
11004
e440a328 11005 private:
11006 // The string we are getting a value from.
11007 Expression* string_;
11008 // The start or only index.
11009 Expression* start_;
11010 // The end index of a slice. This may be NULL for a single index,
11011 // or it may be a nil expression for the length of the string.
11012 Expression* end_;
11013};
11014
11015// String index traversal.
11016
11017int
11018String_index_expression::do_traverse(Traverse* traverse)
11019{
11020 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
11021 return TRAVERSE_EXIT;
11022 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
11023 return TRAVERSE_EXIT;
11024 if (this->end_ != NULL)
11025 {
11026 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
11027 return TRAVERSE_EXIT;
11028 }
11029 return TRAVERSE_CONTINUE;
11030}
11031
11032// Return the type of a string index.
11033
11034Type*
11035String_index_expression::do_type()
11036{
11037 if (this->end_ == NULL)
11038 return Type::lookup_integer_type("uint8");
11039 else
7672d35f 11040 return this->string_->type();
e440a328 11041}
11042
11043// Determine the type of a string index.
11044
11045void
11046String_index_expression::do_determine_type(const Type_context*)
11047{
11048 this->string_->determine_type_no_context();
93000773 11049 this->start_->determine_type_no_context();
e440a328 11050 if (this->end_ != NULL)
93000773 11051 this->end_->determine_type_no_context();
e440a328 11052}
11053
11054// Check types of a string index.
11055
11056void
11057String_index_expression::do_check_types(Gogo*)
11058{
11059 if (this->start_->type()->integer_type() == NULL)
11060 this->report_error(_("index must be integer"));
11061 if (this->end_ != NULL
11062 && this->end_->type()->integer_type() == NULL
11063 && !this->end_->is_nil_expression())
11064 this->report_error(_("slice end must be integer"));
11065
11066 std::string sval;
11067 bool sval_valid = this->string_->string_constant_value(&sval);
11068
11069 mpz_t ival;
11070 mpz_init(ival);
11071 Type* dummy;
11072 if (this->start_->integer_constant_value(true, ival, &dummy))
11073 {
11074 if (mpz_sgn(ival) < 0
11075 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
11076 {
11077 error_at(this->start_->location(), "string index out of bounds");
11078 this->set_is_error();
11079 }
11080 }
11081 if (this->end_ != NULL && !this->end_->is_nil_expression())
11082 {
11083 if (this->end_->integer_constant_value(true, ival, &dummy))
11084 {
11085 if (mpz_sgn(ival) < 0
11086 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
11087 {
11088 error_at(this->end_->location(), "string index out of bounds");
11089 this->set_is_error();
11090 }
11091 }
11092 }
11093 mpz_clear(ival);
11094}
11095
11096// Get a tree for a string index.
11097
11098tree
11099String_index_expression::do_get_tree(Translate_context* context)
11100{
b13c66cd 11101 Location loc = this->location();
e440a328 11102
11103 tree string_tree = this->string_->get_tree(context);
11104 if (string_tree == error_mark_node)
11105 return error_mark_node;
11106
11107 if (this->string_->type()->points_to() != NULL)
11108 string_tree = build_fold_indirect_ref(string_tree);
11109 if (!DECL_P(string_tree))
11110 string_tree = save_expr(string_tree);
11111 tree string_type = TREE_TYPE(string_tree);
11112
11113 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
11114 length_tree = save_expr(length_tree);
11115 tree length_type = TREE_TYPE(length_tree);
11116
11117 tree bad_index = boolean_false_node;
11118
11119 tree start_tree = this->start_->get_tree(context);
11120 if (start_tree == error_mark_node)
11121 return error_mark_node;
11122 if (!DECL_P(start_tree))
11123 start_tree = save_expr(start_tree);
11124 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
11125 start_tree = convert_to_integer(length_type, start_tree);
11126
11127 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
11128 loc);
11129
b13c66cd 11130 start_tree = fold_convert_loc(loc.gcc_location(), length_type, start_tree);
e440a328 11131
11132 int code = (this->end_ == NULL
11133 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
11134 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
11135 tree crash = Gogo::runtime_error(code, loc);
11136
11137 if (this->end_ == NULL)
11138 {
b13c66cd 11139 bad_index = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
11140 boolean_type_node, bad_index,
11141 fold_build2_loc(loc.gcc_location(), GE_EXPR,
e440a328 11142 boolean_type_node,
11143 start_tree, length_tree));
11144
11145 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
b13c66cd 11146 tree ptr = fold_build2_loc(loc.gcc_location(), POINTER_PLUS_EXPR,
11147 TREE_TYPE(bytes_tree),
e440a328 11148 bytes_tree,
b13c66cd 11149 fold_convert_loc(loc.gcc_location(), sizetype,
11150 start_tree));
11151 tree index = build_fold_indirect_ref_loc(loc.gcc_location(), ptr);
e440a328 11152
11153 return build2(COMPOUND_EXPR, TREE_TYPE(index),
11154 build3(COND_EXPR, void_type_node,
11155 bad_index, crash, NULL_TREE),
11156 index);
11157 }
11158 else
11159 {
11160 tree end_tree;
11161 if (this->end_->is_nil_expression())
11162 end_tree = build_int_cst(length_type, -1);
11163 else
11164 {
11165 end_tree = this->end_->get_tree(context);
11166 if (end_tree == error_mark_node)
11167 return error_mark_node;
11168 if (!DECL_P(end_tree))
11169 end_tree = save_expr(end_tree);
11170 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
11171 end_tree = convert_to_integer(length_type, end_tree);
11172
11173 bad_index = Expression::check_bounds(end_tree, length_type,
11174 bad_index, loc);
11175
b13c66cd 11176 end_tree = fold_convert_loc(loc.gcc_location(), length_type,
11177 end_tree);
e440a328 11178 }
11179
11180 static tree strslice_fndecl;
11181 tree ret = Gogo::call_builtin(&strslice_fndecl,
11182 loc,
11183 "__go_string_slice",
11184 3,
11185 string_type,
11186 string_type,
11187 string_tree,
11188 length_type,
11189 start_tree,
11190 length_type,
11191 end_tree);
5fb82b5e 11192 if (ret == error_mark_node)
11193 return error_mark_node;
e440a328 11194 // This will panic if the bounds are out of range for the
11195 // string.
11196 TREE_NOTHROW(strslice_fndecl) = 0;
11197
11198 if (bad_index == boolean_false_node)
11199 return ret;
11200 else
11201 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
11202 build3(COND_EXPR, void_type_node,
11203 bad_index, crash, NULL_TREE),
11204 ret);
11205 }
11206}
11207
d751bb78 11208// Dump ast representation for a string index expression.
11209
11210void
11211String_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
11212 const
11213{
11214 Index_expression::dump_index_expression(ast_dump_context, this->string_,
11215 this->start_, this->end_);
11216}
11217
e440a328 11218// Make a string index expression. END may be NULL.
11219
11220Expression*
11221Expression::make_string_index(Expression* string, Expression* start,
b13c66cd 11222 Expression* end, Location location)
e440a328 11223{
11224 return new String_index_expression(string, start, end, location);
11225}
11226
11227// Class Map_index.
11228
11229// Get the type of the map.
11230
11231Map_type*
11232Map_index_expression::get_map_type() const
11233{
11234 Map_type* mt = this->map_->type()->deref()->map_type();
c7524fae 11235 if (mt == NULL)
c484d925 11236 go_assert(saw_errors());
e440a328 11237 return mt;
11238}
11239
11240// Map index traversal.
11241
11242int
11243Map_index_expression::do_traverse(Traverse* traverse)
11244{
11245 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
11246 return TRAVERSE_EXIT;
11247 return Expression::traverse(&this->index_, traverse);
11248}
11249
11250// Return the type of a map index.
11251
11252Type*
11253Map_index_expression::do_type()
11254{
c7524fae 11255 Map_type* mt = this->get_map_type();
11256 if (mt == NULL)
11257 return Type::make_error_type();
11258 Type* type = mt->val_type();
e440a328 11259 // If this map index is in a tuple assignment, we actually return a
11260 // pointer to the value type. Tuple_map_assignment_statement is
11261 // responsible for handling this correctly. We need to get the type
11262 // right in case this gets assigned to a temporary variable.
11263 if (this->is_in_tuple_assignment_)
11264 type = Type::make_pointer_type(type);
11265 return type;
11266}
11267
11268// Fix the type of a map index.
11269
11270void
11271Map_index_expression::do_determine_type(const Type_context*)
11272{
11273 this->map_->determine_type_no_context();
c7524fae 11274 Map_type* mt = this->get_map_type();
11275 Type* key_type = mt == NULL ? NULL : mt->key_type();
11276 Type_context subcontext(key_type, false);
e440a328 11277 this->index_->determine_type(&subcontext);
11278}
11279
11280// Check types of a map index.
11281
11282void
11283Map_index_expression::do_check_types(Gogo*)
11284{
11285 std::string reason;
c7524fae 11286 Map_type* mt = this->get_map_type();
11287 if (mt == NULL)
11288 return;
11289 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
e440a328 11290 {
11291 if (reason.empty())
11292 this->report_error(_("incompatible type for map index"));
11293 else
11294 {
11295 error_at(this->location(), "incompatible type for map index (%s)",
11296 reason.c_str());
11297 this->set_is_error();
11298 }
11299 }
11300}
11301
11302// Get a tree for a map index.
11303
11304tree
11305Map_index_expression::do_get_tree(Translate_context* context)
11306{
11307 Map_type* type = this->get_map_type();
c7524fae 11308 if (type == NULL)
11309 return error_mark_node;
e440a328 11310
11311 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
11312 if (valptr == error_mark_node)
11313 return error_mark_node;
11314 valptr = save_expr(valptr);
11315
11316 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
11317
11318 if (this->is_lvalue_)
11319 return build_fold_indirect_ref(valptr);
11320 else if (this->is_in_tuple_assignment_)
11321 {
11322 // Tuple_map_assignment_statement is responsible for using this
11323 // appropriately.
11324 return valptr;
11325 }
11326 else
11327 {
63697958 11328 Gogo* gogo = context->gogo();
11329 Btype* val_btype = type->val_type()->get_backend(gogo);
11330 Bexpression* val_zero = gogo->backend()->zero_expression(val_btype);
e440a328 11331 return fold_build3(COND_EXPR, val_type_tree,
11332 fold_build2(EQ_EXPR, boolean_type_node, valptr,
11333 fold_convert(TREE_TYPE(valptr),
11334 null_pointer_node)),
63697958 11335 expr_to_tree(val_zero),
e440a328 11336 build_fold_indirect_ref(valptr));
11337 }
11338}
11339
11340// Get a tree for the map index. This returns a tree which evaluates
11341// to a pointer to a value. The pointer will be NULL if the key is
11342// not in the map.
11343
11344tree
11345Map_index_expression::get_value_pointer(Translate_context* context,
11346 bool insert)
11347{
11348 Map_type* type = this->get_map_type();
c7524fae 11349 if (type == NULL)
11350 return error_mark_node;
e440a328 11351
11352 tree map_tree = this->map_->get_tree(context);
11353 tree index_tree = this->index_->get_tree(context);
11354 index_tree = Expression::convert_for_assignment(context, type->key_type(),
11355 this->index_->type(),
11356 index_tree,
11357 this->location());
11358 if (map_tree == error_mark_node || index_tree == error_mark_node)
11359 return error_mark_node;
11360
11361 if (this->map_->type()->points_to() != NULL)
11362 map_tree = build_fold_indirect_ref(map_tree);
11363
11364 // We need to pass in a pointer to the key, so stuff it into a
11365 // variable.
746d2e73 11366 tree tmp;
11367 tree make_tmp;
11368 if (current_function_decl != NULL)
11369 {
11370 tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
11371 DECL_IGNORED_P(tmp) = 0;
11372 DECL_INITIAL(tmp) = index_tree;
11373 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
11374 TREE_ADDRESSABLE(tmp) = 1;
11375 }
11376 else
11377 {
b13c66cd 11378 tmp = build_decl(this->location().gcc_location(), VAR_DECL,
11379 create_tmp_var_name("M"),
746d2e73 11380 TREE_TYPE(index_tree));
11381 DECL_EXTERNAL(tmp) = 0;
11382 TREE_PUBLIC(tmp) = 0;
11383 TREE_STATIC(tmp) = 1;
11384 DECL_ARTIFICIAL(tmp) = 1;
11385 if (!TREE_CONSTANT(index_tree))
b13c66cd 11386 make_tmp = fold_build2_loc(this->location().gcc_location(),
11387 INIT_EXPR, void_type_node,
746d2e73 11388 tmp, index_tree);
11389 else
11390 {
11391 TREE_READONLY(tmp) = 1;
11392 TREE_CONSTANT(tmp) = 1;
11393 DECL_INITIAL(tmp) = index_tree;
11394 make_tmp = NULL_TREE;
11395 }
11396 rest_of_decl_compilation(tmp, 1, 0);
11397 }
b13c66cd 11398 tree tmpref =
11399 fold_convert_loc(this->location().gcc_location(), const_ptr_type_node,
11400 build_fold_addr_expr_loc(this->location().gcc_location(),
11401 tmp));
e440a328 11402
11403 static tree map_index_fndecl;
11404 tree call = Gogo::call_builtin(&map_index_fndecl,
11405 this->location(),
11406 "__go_map_index",
11407 3,
11408 const_ptr_type_node,
11409 TREE_TYPE(map_tree),
11410 map_tree,
11411 const_ptr_type_node,
11412 tmpref,
11413 boolean_type_node,
11414 (insert
11415 ? boolean_true_node
11416 : boolean_false_node));
5fb82b5e 11417 if (call == error_mark_node)
11418 return error_mark_node;
e440a328 11419 // This can panic on a map of interface type if the interface holds
11420 // an uncomparable or unhashable type.
11421 TREE_NOTHROW(map_index_fndecl) = 0;
11422
9f0e0513 11423 Type* val_type = type->val_type();
11424 tree val_type_tree = type_to_tree(val_type->get_backend(context->gogo()));
e440a328 11425 if (val_type_tree == error_mark_node)
11426 return error_mark_node;
11427 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
11428
b13c66cd 11429 tree ret = fold_convert_loc(this->location().gcc_location(),
11430 ptr_val_type_tree, call);
746d2e73 11431 if (make_tmp != NULL_TREE)
11432 ret = build2(COMPOUND_EXPR, ptr_val_type_tree, make_tmp, ret);
11433 return ret;
e440a328 11434}
11435
d751bb78 11436// Dump ast representation for a map index expression
11437
11438void
11439Map_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
11440 const
11441{
11442 Index_expression::dump_index_expression(ast_dump_context,
11443 this->map_, this->index_, NULL);
11444}
11445
e440a328 11446// Make a map index expression.
11447
11448Map_index_expression*
11449Expression::make_map_index(Expression* map, Expression* index,
b13c66cd 11450 Location location)
e440a328 11451{
11452 return new Map_index_expression(map, index, location);
11453}
11454
11455// Class Field_reference_expression.
11456
11457// Return the type of a field reference.
11458
11459Type*
11460Field_reference_expression::do_type()
11461{
b0e628fb 11462 Type* type = this->expr_->type();
5c13bd80 11463 if (type->is_error())
b0e628fb 11464 return type;
11465 Struct_type* struct_type = type->struct_type();
c484d925 11466 go_assert(struct_type != NULL);
e440a328 11467 return struct_type->field(this->field_index_)->type();
11468}
11469
11470// Check the types for a field reference.
11471
11472void
11473Field_reference_expression::do_check_types(Gogo*)
11474{
b0e628fb 11475 Type* type = this->expr_->type();
5c13bd80 11476 if (type->is_error())
b0e628fb 11477 return;
11478 Struct_type* struct_type = type->struct_type();
c484d925 11479 go_assert(struct_type != NULL);
11480 go_assert(struct_type->field(this->field_index_) != NULL);
e440a328 11481}
11482
11483// Get a tree for a field reference.
11484
11485tree
11486Field_reference_expression::do_get_tree(Translate_context* context)
11487{
11488 tree struct_tree = this->expr_->get_tree(context);
11489 if (struct_tree == error_mark_node
11490 || TREE_TYPE(struct_tree) == error_mark_node)
11491 return error_mark_node;
c484d925 11492 go_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
e440a328 11493 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
b1d655d5 11494 if (field == NULL_TREE)
11495 {
11496 // This can happen for a type which refers to itself indirectly
11497 // and then turns out to be erroneous.
c484d925 11498 go_assert(saw_errors());
b1d655d5 11499 return error_mark_node;
11500 }
e440a328 11501 for (unsigned int i = this->field_index_; i > 0; --i)
11502 {
11503 field = DECL_CHAIN(field);
c484d925 11504 go_assert(field != NULL_TREE);
e440a328 11505 }
c35179ff 11506 if (TREE_TYPE(field) == error_mark_node)
11507 return error_mark_node;
e440a328 11508 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
11509 NULL_TREE);
11510}
11511
d751bb78 11512// Dump ast representation for a field reference expression.
11513
11514void
11515Field_reference_expression::do_dump_expression(
11516 Ast_dump_context* ast_dump_context) const
11517{
11518 this->expr_->dump_expression(ast_dump_context);
11519 ast_dump_context->ostream() << "." << this->field_index_;
11520}
11521
e440a328 11522// Make a reference to a qualified identifier in an expression.
11523
11524Field_reference_expression*
11525Expression::make_field_reference(Expression* expr, unsigned int field_index,
b13c66cd 11526 Location location)
e440a328 11527{
11528 return new Field_reference_expression(expr, field_index, location);
11529}
11530
11531// Class Interface_field_reference_expression.
11532
11533// Return a tree for the pointer to the function to call.
11534
11535tree
11536Interface_field_reference_expression::get_function_tree(Translate_context*,
11537 tree expr)
11538{
11539 if (this->expr_->type()->points_to() != NULL)
11540 expr = build_fold_indirect_ref(expr);
11541
11542 tree expr_type = TREE_TYPE(expr);
c484d925 11543 go_assert(TREE_CODE(expr_type) == RECORD_TYPE);
e440a328 11544
11545 tree field = TYPE_FIELDS(expr_type);
c484d925 11546 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
e440a328 11547
11548 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
c484d925 11549 go_assert(POINTER_TYPE_P(TREE_TYPE(table)));
e440a328 11550
11551 table = build_fold_indirect_ref(table);
c484d925 11552 go_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
e440a328 11553
11554 std::string name = Gogo::unpack_hidden_name(this->name_);
11555 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
11556 field != NULL_TREE;
11557 field = DECL_CHAIN(field))
11558 {
11559 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
11560 break;
11561 }
c484d925 11562 go_assert(field != NULL_TREE);
e440a328 11563
11564 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
11565}
11566
11567// Return a tree for the first argument to pass to the interface
11568// function.
11569
11570tree
11571Interface_field_reference_expression::get_underlying_object_tree(
11572 Translate_context*,
11573 tree expr)
11574{
11575 if (this->expr_->type()->points_to() != NULL)
11576 expr = build_fold_indirect_ref(expr);
11577
11578 tree expr_type = TREE_TYPE(expr);
c484d925 11579 go_assert(TREE_CODE(expr_type) == RECORD_TYPE);
e440a328 11580
11581 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
c484d925 11582 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
e440a328 11583
11584 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
11585}
11586
11587// Traversal.
11588
11589int
11590Interface_field_reference_expression::do_traverse(Traverse* traverse)
11591{
11592 return Expression::traverse(&this->expr_, traverse);
11593}
11594
11595// Return the type of an interface field reference.
11596
11597Type*
11598Interface_field_reference_expression::do_type()
11599{
11600 Type* expr_type = this->expr_->type();
11601
11602 Type* points_to = expr_type->points_to();
11603 if (points_to != NULL)
11604 expr_type = points_to;
11605
11606 Interface_type* interface_type = expr_type->interface_type();
11607 if (interface_type == NULL)
11608 return Type::make_error_type();
11609
11610 const Typed_identifier* method = interface_type->find_method(this->name_);
11611 if (method == NULL)
11612 return Type::make_error_type();
11613
11614 return method->type();
11615}
11616
11617// Determine types.
11618
11619void
11620Interface_field_reference_expression::do_determine_type(const Type_context*)
11621{
11622 this->expr_->determine_type_no_context();
11623}
11624
11625// Check the types for an interface field reference.
11626
11627void
11628Interface_field_reference_expression::do_check_types(Gogo*)
11629{
11630 Type* type = this->expr_->type();
11631
11632 Type* points_to = type->points_to();
11633 if (points_to != NULL)
11634 type = points_to;
11635
11636 Interface_type* interface_type = type->interface_type();
11637 if (interface_type == NULL)
5c491127 11638 {
11639 if (!type->is_error_type())
11640 this->report_error(_("expected interface or pointer to interface"));
11641 }
e440a328 11642 else
11643 {
11644 const Typed_identifier* method =
11645 interface_type->find_method(this->name_);
11646 if (method == NULL)
11647 {
11648 error_at(this->location(), "method %qs not in interface",
11649 Gogo::message_name(this->name_).c_str());
11650 this->set_is_error();
11651 }
11652 }
11653}
11654
11655// Get a tree for a reference to a field in an interface. There is no
11656// standard tree type representation for this: it's a function
11657// attached to its first argument, like a Bound_method_expression.
11658// The only places it may currently be used are in a Call_expression
11659// or a Go_statement, which will take it apart directly. So this has
11660// nothing to do at present.
11661
11662tree
11663Interface_field_reference_expression::do_get_tree(Translate_context*)
11664{
c3e6f413 11665 go_unreachable();
e440a328 11666}
11667
d751bb78 11668// Dump ast representation for an interface field reference.
11669
11670void
11671Interface_field_reference_expression::do_dump_expression(
11672 Ast_dump_context* ast_dump_context) const
11673{
11674 this->expr_->dump_expression(ast_dump_context);
11675 ast_dump_context->ostream() << "." << this->name_;
11676}
11677
e440a328 11678// Make a reference to a field in an interface.
11679
11680Expression*
11681Expression::make_interface_field_reference(Expression* expr,
11682 const std::string& field,
b13c66cd 11683 Location location)
e440a328 11684{
11685 return new Interface_field_reference_expression(expr, field, location);
11686}
11687
11688// A general selector. This is a Parser_expression for LEFT.NAME. It
11689// is lowered after we know the type of the left hand side.
11690
11691class Selector_expression : public Parser_expression
11692{
11693 public:
11694 Selector_expression(Expression* left, const std::string& name,
b13c66cd 11695 Location location)
e440a328 11696 : Parser_expression(EXPRESSION_SELECTOR, location),
11697 left_(left), name_(name)
11698 { }
11699
11700 protected:
11701 int
11702 do_traverse(Traverse* traverse)
11703 { return Expression::traverse(&this->left_, traverse); }
11704
11705 Expression*
ceeb4318 11706 do_lower(Gogo*, Named_object*, Statement_inserter*, int);
e440a328 11707
11708 Expression*
11709 do_copy()
11710 {
11711 return new Selector_expression(this->left_->copy(), this->name_,
11712 this->location());
11713 }
11714
d751bb78 11715 void
11716 do_dump_expression(Ast_dump_context* ast_dump_context) const;
11717
e440a328 11718 private:
11719 Expression*
11720 lower_method_expression(Gogo*);
11721
11722 // The expression on the left hand side.
11723 Expression* left_;
11724 // The name on the right hand side.
11725 std::string name_;
11726};
11727
11728// Lower a selector expression once we know the real type of the left
11729// hand side.
11730
11731Expression*
ceeb4318 11732Selector_expression::do_lower(Gogo* gogo, Named_object*, Statement_inserter*,
11733 int)
e440a328 11734{
11735 Expression* left = this->left_;
11736 if (left->is_type_expression())
11737 return this->lower_method_expression(gogo);
11738 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
11739 this->location());
11740}
11741
11742// Lower a method expression T.M or (*T).M. We turn this into a
11743// function literal.
11744
11745Expression*
11746Selector_expression::lower_method_expression(Gogo* gogo)
11747{
b13c66cd 11748 Location location = this->location();
e440a328 11749 Type* type = this->left_->type();
11750 const std::string& name(this->name_);
11751
11752 bool is_pointer;
11753 if (type->points_to() == NULL)
11754 is_pointer = false;
11755 else
11756 {
11757 is_pointer = true;
11758 type = type->points_to();
11759 }
11760 Named_type* nt = type->named_type();
11761 if (nt == NULL)
11762 {
11763 error_at(location,
11764 ("method expression requires named type or "
11765 "pointer to named type"));
11766 return Expression::make_error(location);
11767 }
11768
11769 bool is_ambiguous;
11770 Method* method = nt->method_function(name, &is_ambiguous);
ab1468c3 11771 const Typed_identifier* imethod = NULL;
dcc8506b 11772 if (method == NULL && !is_pointer)
ab1468c3 11773 {
11774 Interface_type* it = nt->interface_type();
11775 if (it != NULL)
11776 imethod = it->find_method(name);
11777 }
11778
11779 if (method == NULL && imethod == NULL)
e440a328 11780 {
11781 if (!is_ambiguous)
dcc8506b 11782 error_at(location, "type %<%s%s%> has no method %<%s%>",
11783 is_pointer ? "*" : "",
e440a328 11784 nt->message_name().c_str(),
11785 Gogo::message_name(name).c_str());
11786 else
dcc8506b 11787 error_at(location, "method %<%s%s%> is ambiguous in type %<%s%>",
e440a328 11788 Gogo::message_name(name).c_str(),
dcc8506b 11789 is_pointer ? "*" : "",
e440a328 11790 nt->message_name().c_str());
11791 return Expression::make_error(location);
11792 }
11793
ab1468c3 11794 if (method != NULL && !is_pointer && !method->is_value_method())
e440a328 11795 {
11796 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
11797 nt->message_name().c_str(),
11798 Gogo::message_name(name).c_str());
11799 return Expression::make_error(location);
11800 }
11801
11802 // Build a new function type in which the receiver becomes the first
11803 // argument.
ab1468c3 11804 Function_type* method_type;
11805 if (method != NULL)
11806 {
11807 method_type = method->type();
c484d925 11808 go_assert(method_type->is_method());
ab1468c3 11809 }
11810 else
11811 {
11812 method_type = imethod->type()->function_type();
c484d925 11813 go_assert(method_type != NULL && !method_type->is_method());
ab1468c3 11814 }
e440a328 11815
11816 const char* const receiver_name = "$this";
11817 Typed_identifier_list* parameters = new Typed_identifier_list();
11818 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
11819 location));
11820
11821 const Typed_identifier_list* method_parameters = method_type->parameters();
11822 if (method_parameters != NULL)
11823 {
f470da59 11824 int i = 0;
e440a328 11825 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
11826 p != method_parameters->end();
f470da59 11827 ++p, ++i)
11828 {
68883531 11829 if (!p->name().empty())
f470da59 11830 parameters->push_back(*p);
11831 else
11832 {
11833 char buf[20];
11834 snprintf(buf, sizeof buf, "$param%d", i);
11835 parameters->push_back(Typed_identifier(buf, p->type(),
11836 p->location()));
11837 }
11838 }
e440a328 11839 }
11840
11841 const Typed_identifier_list* method_results = method_type->results();
11842 Typed_identifier_list* results;
11843 if (method_results == NULL)
11844 results = NULL;
11845 else
11846 {
11847 results = new Typed_identifier_list();
11848 for (Typed_identifier_list::const_iterator p = method_results->begin();
11849 p != method_results->end();
11850 ++p)
11851 results->push_back(*p);
11852 }
11853
11854 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
11855 location);
11856 if (method_type->is_varargs())
11857 fntype->set_is_varargs();
11858
11859 // We generate methods which always takes a pointer to the receiver
11860 // as their first argument. If this is for a pointer type, we can
11861 // simply reuse the existing function. We use an internal hack to
11862 // get the right type.
11863
ab1468c3 11864 if (method != NULL && is_pointer)
e440a328 11865 {
11866 Named_object* mno = (method->needs_stub_method()
11867 ? method->stub_object()
11868 : method->named_object());
11869 Expression* f = Expression::make_func_reference(mno, NULL, location);
11870 f = Expression::make_cast(fntype, f, location);
11871 Type_conversion_expression* tce =
11872 static_cast<Type_conversion_expression*>(f);
11873 tce->set_may_convert_function_types();
11874 return f;
11875 }
11876
11877 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
11878 location);
11879
11880 Named_object* vno = gogo->lookup(receiver_name, NULL);
c484d925 11881 go_assert(vno != NULL);
e440a328 11882 Expression* ve = Expression::make_var_reference(vno, location);
ab1468c3 11883 Expression* bm;
11884 if (method != NULL)
11885 bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
11886 else
11887 bm = Expression::make_interface_field_reference(ve, name, location);
f690b0bb 11888
11889 // Even though we found the method above, if it has an error type we
11890 // may see an error here.
11891 if (bm->is_error_expression())
463fe805 11892 {
11893 gogo->finish_function(location);
11894 return bm;
11895 }
e440a328 11896
11897 Expression_list* args;
f470da59 11898 if (parameters->size() <= 1)
e440a328 11899 args = NULL;
11900 else
11901 {
11902 args = new Expression_list();
f470da59 11903 Typed_identifier_list::const_iterator p = parameters->begin();
11904 ++p;
11905 for (; p != parameters->end(); ++p)
e440a328 11906 {
11907 vno = gogo->lookup(p->name(), NULL);
c484d925 11908 go_assert(vno != NULL);
e440a328 11909 args->push_back(Expression::make_var_reference(vno, location));
11910 }
11911 }
11912
ceeb4318 11913 gogo->start_block(location);
11914
e440a328 11915 Call_expression* call = Expression::make_call(bm, args,
11916 method_type->is_varargs(),
11917 location);
11918
11919 size_t count = call->result_count();
11920 Statement* s;
11921 if (count == 0)
a7549a6a 11922 s = Statement::make_statement(call, true);
e440a328 11923 else
11924 {
11925 Expression_list* retvals = new Expression_list();
11926 if (count <= 1)
11927 retvals->push_back(call);
11928 else
11929 {
11930 for (size_t i = 0; i < count; ++i)
11931 retvals->push_back(Expression::make_call_result(call, i));
11932 }
be2fc38d 11933 s = Statement::make_return_statement(retvals, location);
e440a328 11934 }
11935 gogo->add_statement(s);
11936
ceeb4318 11937 Block* b = gogo->finish_block(location);
11938
11939 gogo->add_block(b, location);
11940
11941 // Lower the call in case there are multiple results.
11942 gogo->lower_block(no, b);
11943
e440a328 11944 gogo->finish_function(location);
11945
11946 return Expression::make_func_reference(no, NULL, location);
11947}
11948
d751bb78 11949// Dump the ast for a selector expression.
11950
11951void
11952Selector_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
11953 const
11954{
11955 ast_dump_context->dump_expression(this->left_);
11956 ast_dump_context->ostream() << ".";
11957 ast_dump_context->ostream() << this->name_;
11958}
11959
e440a328 11960// Make a selector expression.
11961
11962Expression*
11963Expression::make_selector(Expression* left, const std::string& name,
b13c66cd 11964 Location location)
e440a328 11965{
11966 return new Selector_expression(left, name, location);
11967}
11968
11969// Implement the builtin function new.
11970
11971class Allocation_expression : public Expression
11972{
11973 public:
b13c66cd 11974 Allocation_expression(Type* type, Location location)
e440a328 11975 : Expression(EXPRESSION_ALLOCATION, location),
11976 type_(type)
11977 { }
11978
11979 protected:
11980 int
11981 do_traverse(Traverse* traverse)
11982 { return Type::traverse(this->type_, traverse); }
11983
11984 Type*
11985 do_type()
11986 { return Type::make_pointer_type(this->type_); }
11987
11988 void
11989 do_determine_type(const Type_context*)
11990 { }
11991
e440a328 11992 Expression*
11993 do_copy()
11994 { return new Allocation_expression(this->type_, this->location()); }
11995
11996 tree
11997 do_get_tree(Translate_context*);
11998
d751bb78 11999 void
12000 do_dump_expression(Ast_dump_context*) const;
12001
e440a328 12002 private:
12003 // The type we are allocating.
12004 Type* type_;
12005};
12006
e440a328 12007// Return a tree for an allocation expression.
12008
12009tree
12010Allocation_expression::do_get_tree(Translate_context* context)
12011{
9f0e0513 12012 tree type_tree = type_to_tree(this->type_->get_backend(context->gogo()));
19824ddb 12013 if (type_tree == error_mark_node)
12014 return error_mark_node;
e440a328 12015 tree size_tree = TYPE_SIZE_UNIT(type_tree);
12016 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
12017 this->location());
19824ddb 12018 if (space == error_mark_node)
12019 return error_mark_node;
e440a328 12020 return fold_convert(build_pointer_type(type_tree), space);
12021}
12022
d751bb78 12023// Dump ast representation for an allocation expression.
12024
12025void
12026Allocation_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
12027 const
12028{
12029 ast_dump_context->ostream() << "new(";
12030 ast_dump_context->dump_type(this->type_);
12031 ast_dump_context->ostream() << ")";
12032}
12033
e440a328 12034// Make an allocation expression.
12035
12036Expression*
b13c66cd 12037Expression::make_allocation(Type* type, Location location)
e440a328 12038{
12039 return new Allocation_expression(type, location);
12040}
12041
e440a328 12042// Construct a struct.
12043
12044class Struct_construction_expression : public Expression
12045{
12046 public:
12047 Struct_construction_expression(Type* type, Expression_list* vals,
b13c66cd 12048 Location location)
e440a328 12049 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
12050 type_(type), vals_(vals)
12051 { }
12052
12053 // Return whether this is a constant initializer.
12054 bool
12055 is_constant_struct() const;
12056
12057 protected:
12058 int
12059 do_traverse(Traverse* traverse);
12060
12061 Type*
12062 do_type()
12063 { return this->type_; }
12064
12065 void
12066 do_determine_type(const Type_context*);
12067
12068 void
12069 do_check_types(Gogo*);
12070
12071 Expression*
12072 do_copy()
12073 {
12074 return new Struct_construction_expression(this->type_, this->vals_->copy(),
12075 this->location());
12076 }
12077
e440a328 12078 tree
12079 do_get_tree(Translate_context*);
12080
12081 void
12082 do_export(Export*) const;
12083
d751bb78 12084 void
12085 do_dump_expression(Ast_dump_context*) const;
12086
e440a328 12087 private:
12088 // The type of the struct to construct.
12089 Type* type_;
12090 // The list of values, in order of the fields in the struct. A NULL
12091 // entry means that the field should be zero-initialized.
12092 Expression_list* vals_;
12093};
12094
12095// Traversal.
12096
12097int
12098Struct_construction_expression::do_traverse(Traverse* traverse)
12099{
12100 if (this->vals_ != NULL
12101 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
12102 return TRAVERSE_EXIT;
12103 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12104 return TRAVERSE_EXIT;
12105 return TRAVERSE_CONTINUE;
12106}
12107
12108// Return whether this is a constant initializer.
12109
12110bool
12111Struct_construction_expression::is_constant_struct() const
12112{
12113 if (this->vals_ == NULL)
12114 return true;
12115 for (Expression_list::const_iterator pv = this->vals_->begin();
12116 pv != this->vals_->end();
12117 ++pv)
12118 {
12119 if (*pv != NULL
12120 && !(*pv)->is_constant()
12121 && (!(*pv)->is_composite_literal()
12122 || (*pv)->is_nonconstant_composite_literal()))
12123 return false;
12124 }
12125
12126 const Struct_field_list* fields = this->type_->struct_type()->fields();
12127 for (Struct_field_list::const_iterator pf = fields->begin();
12128 pf != fields->end();
12129 ++pf)
12130 {
12131 // There are no constant constructors for interfaces.
12132 if (pf->type()->interface_type() != NULL)
12133 return false;
12134 }
12135
12136 return true;
12137}
12138
12139// Final type determination.
12140
12141void
12142Struct_construction_expression::do_determine_type(const Type_context*)
12143{
12144 if (this->vals_ == NULL)
12145 return;
12146 const Struct_field_list* fields = this->type_->struct_type()->fields();
12147 Expression_list::const_iterator pv = this->vals_->begin();
12148 for (Struct_field_list::const_iterator pf = fields->begin();
12149 pf != fields->end();
12150 ++pf, ++pv)
12151 {
12152 if (pv == this->vals_->end())
12153 return;
12154 if (*pv != NULL)
12155 {
12156 Type_context subcontext(pf->type(), false);
12157 (*pv)->determine_type(&subcontext);
12158 }
12159 }
a6cb4c0e 12160 // Extra values are an error we will report elsewhere; we still want
12161 // to determine the type to avoid knockon errors.
12162 for (; pv != this->vals_->end(); ++pv)
12163 (*pv)->determine_type_no_context();
e440a328 12164}
12165
12166// Check types.
12167
12168void
12169Struct_construction_expression::do_check_types(Gogo*)
12170{
12171 if (this->vals_ == NULL)
12172 return;
12173
12174 Struct_type* st = this->type_->struct_type();
12175 if (this->vals_->size() > st->field_count())
12176 {
12177 this->report_error(_("too many expressions for struct"));
12178 return;
12179 }
12180
12181 const Struct_field_list* fields = st->fields();
12182 Expression_list::const_iterator pv = this->vals_->begin();
12183 int i = 0;
12184 for (Struct_field_list::const_iterator pf = fields->begin();
12185 pf != fields->end();
12186 ++pf, ++pv, ++i)
12187 {
12188 if (pv == this->vals_->end())
12189 {
12190 this->report_error(_("too few expressions for struct"));
12191 break;
12192 }
12193
12194 if (*pv == NULL)
12195 continue;
12196
12197 std::string reason;
12198 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
12199 {
12200 if (reason.empty())
12201 error_at((*pv)->location(),
12202 "incompatible type for field %d in struct construction",
12203 i + 1);
12204 else
12205 error_at((*pv)->location(),
12206 ("incompatible type for field %d in "
12207 "struct construction (%s)"),
12208 i + 1, reason.c_str());
12209 this->set_is_error();
12210 }
12211 }
c484d925 12212 go_assert(pv == this->vals_->end());
e440a328 12213}
12214
12215// Return a tree for constructing a struct.
12216
12217tree
12218Struct_construction_expression::do_get_tree(Translate_context* context)
12219{
12220 Gogo* gogo = context->gogo();
12221
12222 if (this->vals_ == NULL)
63697958 12223 {
12224 Btype* btype = this->type_->get_backend(gogo);
12225 return expr_to_tree(gogo->backend()->zero_expression(btype));
12226 }
e440a328 12227
9f0e0513 12228 tree type_tree = type_to_tree(this->type_->get_backend(gogo));
e440a328 12229 if (type_tree == error_mark_node)
12230 return error_mark_node;
c484d925 12231 go_assert(TREE_CODE(type_tree) == RECORD_TYPE);
e440a328 12232
12233 bool is_constant = true;
12234 const Struct_field_list* fields = this->type_->struct_type()->fields();
12235 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
12236 fields->size());
12237 Struct_field_list::const_iterator pf = fields->begin();
12238 Expression_list::const_iterator pv = this->vals_->begin();
12239 for (tree field = TYPE_FIELDS(type_tree);
12240 field != NULL_TREE;
12241 field = DECL_CHAIN(field), ++pf)
12242 {
c484d925 12243 go_assert(pf != fields->end());
e440a328 12244
63697958 12245 Btype* fbtype = pf->type()->get_backend(gogo);
12246
e440a328 12247 tree val;
12248 if (pv == this->vals_->end())
63697958 12249 val = expr_to_tree(gogo->backend()->zero_expression(fbtype));
e440a328 12250 else if (*pv == NULL)
12251 {
63697958 12252 val = expr_to_tree(gogo->backend()->zero_expression(fbtype));
e440a328 12253 ++pv;
12254 }
12255 else
12256 {
12257 val = Expression::convert_for_assignment(context, pf->type(),
12258 (*pv)->type(),
12259 (*pv)->get_tree(context),
12260 this->location());
12261 ++pv;
12262 }
12263
12264 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
12265 return error_mark_node;
12266
12267 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
12268 elt->index = field;
12269 elt->value = val;
12270 if (!TREE_CONSTANT(val))
12271 is_constant = false;
12272 }
c484d925 12273 go_assert(pf == fields->end());
e440a328 12274
12275 tree ret = build_constructor(type_tree, elts);
12276 if (is_constant)
12277 TREE_CONSTANT(ret) = 1;
12278 return ret;
12279}
12280
12281// Export a struct construction.
12282
12283void
12284Struct_construction_expression::do_export(Export* exp) const
12285{
12286 exp->write_c_string("convert(");
12287 exp->write_type(this->type_);
12288 for (Expression_list::const_iterator pv = this->vals_->begin();
12289 pv != this->vals_->end();
12290 ++pv)
12291 {
12292 exp->write_c_string(", ");
12293 if (*pv != NULL)
12294 (*pv)->export_expression(exp);
12295 }
12296 exp->write_c_string(")");
12297}
12298
d751bb78 12299// Dump ast representation of a struct construction expression.
12300
12301void
12302Struct_construction_expression::do_dump_expression(
12303 Ast_dump_context* ast_dump_context) const
12304{
d751bb78 12305 ast_dump_context->dump_type(this->type_);
12306 ast_dump_context->ostream() << "{";
12307 ast_dump_context->dump_expression_list(this->vals_);
12308 ast_dump_context->ostream() << "}";
12309}
12310
e440a328 12311// Make a struct composite literal. This used by the thunk code.
12312
12313Expression*
12314Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
b13c66cd 12315 Location location)
e440a328 12316{
c484d925 12317 go_assert(type->struct_type() != NULL);
e440a328 12318 return new Struct_construction_expression(type, vals, location);
12319}
12320
12321// Construct an array. This class is not used directly; instead we
12322// use the child classes, Fixed_array_construction_expression and
12323// Open_array_construction_expression.
12324
12325class Array_construction_expression : public Expression
12326{
12327 protected:
12328 Array_construction_expression(Expression_classification classification,
12329 Type* type, Expression_list* vals,
b13c66cd 12330 Location location)
e440a328 12331 : Expression(classification, location),
12332 type_(type), vals_(vals)
12333 { }
12334
12335 public:
12336 // Return whether this is a constant initializer.
12337 bool
12338 is_constant_array() const;
12339
12340 // Return the number of elements.
12341 size_t
12342 element_count() const
12343 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
12344
12345protected:
12346 int
12347 do_traverse(Traverse* traverse);
12348
12349 Type*
12350 do_type()
12351 { return this->type_; }
12352
12353 void
12354 do_determine_type(const Type_context*);
12355
12356 void
12357 do_check_types(Gogo*);
12358
e440a328 12359 void
12360 do_export(Export*) const;
12361
12362 // The list of values.
12363 Expression_list*
12364 vals()
12365 { return this->vals_; }
12366
12367 // Get a constructor tree for the array values.
12368 tree
12369 get_constructor_tree(Translate_context* context, tree type_tree);
12370
d751bb78 12371 void
12372 do_dump_expression(Ast_dump_context*) const;
12373
e440a328 12374 private:
12375 // The type of the array to construct.
12376 Type* type_;
12377 // The list of values.
12378 Expression_list* vals_;
12379};
12380
12381// Traversal.
12382
12383int
12384Array_construction_expression::do_traverse(Traverse* traverse)
12385{
12386 if (this->vals_ != NULL
12387 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
12388 return TRAVERSE_EXIT;
12389 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12390 return TRAVERSE_EXIT;
12391 return TRAVERSE_CONTINUE;
12392}
12393
12394// Return whether this is a constant initializer.
12395
12396bool
12397Array_construction_expression::is_constant_array() const
12398{
12399 if (this->vals_ == NULL)
12400 return true;
12401
12402 // There are no constant constructors for interfaces.
12403 if (this->type_->array_type()->element_type()->interface_type() != NULL)
12404 return false;
12405
12406 for (Expression_list::const_iterator pv = this->vals_->begin();
12407 pv != this->vals_->end();
12408 ++pv)
12409 {
12410 if (*pv != NULL
12411 && !(*pv)->is_constant()
12412 && (!(*pv)->is_composite_literal()
12413 || (*pv)->is_nonconstant_composite_literal()))
12414 return false;
12415 }
12416 return true;
12417}
12418
12419// Final type determination.
12420
12421void
12422Array_construction_expression::do_determine_type(const Type_context*)
12423{
12424 if (this->vals_ == NULL)
12425 return;
12426 Type_context subcontext(this->type_->array_type()->element_type(), false);
12427 for (Expression_list::const_iterator pv = this->vals_->begin();
12428 pv != this->vals_->end();
12429 ++pv)
12430 {
12431 if (*pv != NULL)
12432 (*pv)->determine_type(&subcontext);
12433 }
12434}
12435
12436// Check types.
12437
12438void
12439Array_construction_expression::do_check_types(Gogo*)
12440{
12441 if (this->vals_ == NULL)
12442 return;
12443
12444 Array_type* at = this->type_->array_type();
12445 int i = 0;
12446 Type* element_type = at->element_type();
12447 for (Expression_list::const_iterator pv = this->vals_->begin();
12448 pv != this->vals_->end();
12449 ++pv, ++i)
12450 {
12451 if (*pv != NULL
12452 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
12453 {
12454 error_at((*pv)->location(),
12455 "incompatible type for element %d in composite literal",
12456 i + 1);
12457 this->set_is_error();
12458 }
12459 }
12460
12461 Expression* length = at->length();
09add252 12462 if (length != NULL && !length->is_error_expression())
e440a328 12463 {
12464 mpz_t val;
12465 mpz_init(val);
12466 Type* type;
12467 if (at->length()->integer_constant_value(true, val, &type))
12468 {
12469 if (this->vals_->size() > mpz_get_ui(val))
12470 this->report_error(_("too many elements in composite literal"));
12471 }
12472 mpz_clear(val);
12473 }
12474}
12475
12476// Get a constructor tree for the array values.
12477
12478tree
12479Array_construction_expression::get_constructor_tree(Translate_context* context,
12480 tree type_tree)
12481{
12482 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
12483 (this->vals_ == NULL
12484 ? 0
12485 : this->vals_->size()));
12486 Type* element_type = this->type_->array_type()->element_type();
12487 bool is_constant = true;
12488 if (this->vals_ != NULL)
12489 {
12490 size_t i = 0;
12491 for (Expression_list::const_iterator pv = this->vals_->begin();
12492 pv != this->vals_->end();
12493 ++pv, ++i)
12494 {
12495 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
12496 elt->index = size_int(i);
12497 if (*pv == NULL)
63697958 12498 {
12499 Gogo* gogo = context->gogo();
12500 Btype* ebtype = element_type->get_backend(gogo);
12501 Bexpression *zv = gogo->backend()->zero_expression(ebtype);
12502 elt->value = expr_to_tree(zv);
12503 }
e440a328 12504 else
12505 {
12506 tree value_tree = (*pv)->get_tree(context);
12507 elt->value = Expression::convert_for_assignment(context,
12508 element_type,
12509 (*pv)->type(),
12510 value_tree,
12511 this->location());
12512 }
12513 if (elt->value == error_mark_node)
12514 return error_mark_node;
12515 if (!TREE_CONSTANT(elt->value))
12516 is_constant = false;
12517 }
12518 }
12519
12520 tree ret = build_constructor(type_tree, values);
12521 if (is_constant)
12522 TREE_CONSTANT(ret) = 1;
12523 return ret;
12524}
12525
12526// Export an array construction.
12527
12528void
12529Array_construction_expression::do_export(Export* exp) const
12530{
12531 exp->write_c_string("convert(");
12532 exp->write_type(this->type_);
12533 if (this->vals_ != NULL)
12534 {
12535 for (Expression_list::const_iterator pv = this->vals_->begin();
12536 pv != this->vals_->end();
12537 ++pv)
12538 {
12539 exp->write_c_string(", ");
12540 if (*pv != NULL)
12541 (*pv)->export_expression(exp);
12542 }
12543 }
12544 exp->write_c_string(")");
12545}
12546
d751bb78 12547// Dump ast representation of an array construction expressin.
12548
12549void
12550Array_construction_expression::do_dump_expression(
12551 Ast_dump_context* ast_dump_context) const
12552{
8b1c301d 12553 Expression* length = this->type_->array_type() != NULL ?
12554 this->type_->array_type()->length() : NULL;
12555
12556 ast_dump_context->ostream() << "[" ;
12557 if (length != NULL)
12558 {
12559 ast_dump_context->dump_expression(length);
12560 }
12561 ast_dump_context->ostream() << "]" ;
d751bb78 12562 ast_dump_context->dump_type(this->type_);
12563 ast_dump_context->ostream() << "{" ;
12564 ast_dump_context->dump_expression_list(this->vals_);
12565 ast_dump_context->ostream() << "}" ;
12566
12567}
12568
e440a328 12569// Construct a fixed array.
12570
12571class Fixed_array_construction_expression :
12572 public Array_construction_expression
12573{
12574 public:
12575 Fixed_array_construction_expression(Type* type, Expression_list* vals,
b13c66cd 12576 Location location)
e440a328 12577 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
12578 type, vals, location)
12579 {
c484d925 12580 go_assert(type->array_type() != NULL
e440a328 12581 && type->array_type()->length() != NULL);
12582 }
12583
12584 protected:
12585 Expression*
12586 do_copy()
12587 {
12588 return new Fixed_array_construction_expression(this->type(),
12589 (this->vals() == NULL
12590 ? NULL
12591 : this->vals()->copy()),
12592 this->location());
12593 }
12594
12595 tree
12596 do_get_tree(Translate_context*);
8b1c301d 12597
12598 void
12599 do_dump_expression(Ast_dump_context*);
e440a328 12600};
12601
12602// Return a tree for constructing a fixed array.
12603
12604tree
12605Fixed_array_construction_expression::do_get_tree(Translate_context* context)
12606{
9f0e0513 12607 Type* type = this->type();
12608 Btype* btype = type->get_backend(context->gogo());
12609 return this->get_constructor_tree(context, type_to_tree(btype));
e440a328 12610}
12611
8b1c301d 12612// Dump ast representation of an array construction expressin.
12613
12614void
12615Fixed_array_construction_expression::do_dump_expression(
12616 Ast_dump_context* ast_dump_context)
12617{
12618
12619 ast_dump_context->ostream() << "[";
12620 ast_dump_context->dump_expression (this->type()->array_type()->length());
12621 ast_dump_context->ostream() << "]";
12622 ast_dump_context->dump_type(this->type());
12623 ast_dump_context->ostream() << "{";
12624 ast_dump_context->dump_expression_list(this->vals());
12625 ast_dump_context->ostream() << "}";
12626
12627}
e440a328 12628// Construct an open array.
12629
12630class Open_array_construction_expression : public Array_construction_expression
12631{
12632 public:
12633 Open_array_construction_expression(Type* type, Expression_list* vals,
b13c66cd 12634 Location location)
e440a328 12635 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
12636 type, vals, location)
12637 {
c484d925 12638 go_assert(type->array_type() != NULL
e440a328 12639 && type->array_type()->length() == NULL);
12640 }
12641
12642 protected:
12643 // Note that taking the address of an open array literal is invalid.
12644
12645 Expression*
12646 do_copy()
12647 {
12648 return new Open_array_construction_expression(this->type(),
12649 (this->vals() == NULL
12650 ? NULL
12651 : this->vals()->copy()),
12652 this->location());
12653 }
12654
12655 tree
12656 do_get_tree(Translate_context*);
12657};
12658
12659// Return a tree for constructing an open array.
12660
12661tree
12662Open_array_construction_expression::do_get_tree(Translate_context* context)
12663{
f9c68f17 12664 Array_type* array_type = this->type()->array_type();
12665 if (array_type == NULL)
12666 {
c484d925 12667 go_assert(this->type()->is_error());
f9c68f17 12668 return error_mark_node;
12669 }
12670
12671 Type* element_type = array_type->element_type();
9f0e0513 12672 Btype* belement_type = element_type->get_backend(context->gogo());
12673 tree element_type_tree = type_to_tree(belement_type);
3d60812e 12674 if (element_type_tree == error_mark_node)
12675 return error_mark_node;
12676
e440a328 12677 tree values;
12678 tree length_tree;
12679 if (this->vals() == NULL || this->vals()->empty())
12680 {
12681 // We need to create a unique value.
12682 tree max = size_int(0);
12683 tree constructor_type = build_array_type(element_type_tree,
12684 build_index_type(max));
12685 if (constructor_type == error_mark_node)
12686 return error_mark_node;
12687 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
12688 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
12689 elt->index = size_int(0);
63697958 12690 Gogo* gogo = context->gogo();
12691 Btype* btype = element_type->get_backend(gogo);
12692 elt->value = expr_to_tree(gogo->backend()->zero_expression(btype));
e440a328 12693 values = build_constructor(constructor_type, vec);
12694 if (TREE_CONSTANT(elt->value))
12695 TREE_CONSTANT(values) = 1;
12696 length_tree = size_int(0);
12697 }
12698 else
12699 {
12700 tree max = size_int(this->vals()->size() - 1);
12701 tree constructor_type = build_array_type(element_type_tree,
12702 build_index_type(max));
12703 if (constructor_type == error_mark_node)
12704 return error_mark_node;
12705 values = this->get_constructor_tree(context, constructor_type);
12706 length_tree = size_int(this->vals()->size());
12707 }
12708
12709 if (values == error_mark_node)
12710 return error_mark_node;
12711
12712 bool is_constant_initializer = TREE_CONSTANT(values);
d8829beb 12713
12714 // We have to copy the initial values into heap memory if we are in
12715 // a function or if the values are not constants. We also have to
12716 // copy them if they may contain pointers in a non-constant context,
12717 // as otherwise the garbage collector won't see them.
12718 bool copy_to_heap = (context->function() != NULL
12719 || !is_constant_initializer
12720 || (element_type->has_pointer()
12721 && !context->is_const()));
e440a328 12722
12723 if (is_constant_initializer)
12724 {
b13c66cd 12725 tree tmp = build_decl(this->location().gcc_location(), VAR_DECL,
e440a328 12726 create_tmp_var_name("C"), TREE_TYPE(values));
12727 DECL_EXTERNAL(tmp) = 0;
12728 TREE_PUBLIC(tmp) = 0;
12729 TREE_STATIC(tmp) = 1;
12730 DECL_ARTIFICIAL(tmp) = 1;
d8829beb 12731 if (copy_to_heap)
e440a328 12732 {
d8829beb 12733 // If we are not copying the value to the heap, we will only
12734 // initialize the value once, so we can use this directly
12735 // rather than copying it. In that case we can't make it
12736 // read-only, because the program is permitted to change it.
e440a328 12737 TREE_READONLY(tmp) = 1;
12738 TREE_CONSTANT(tmp) = 1;
12739 }
12740 DECL_INITIAL(tmp) = values;
12741 rest_of_decl_compilation(tmp, 1, 0);
12742 values = tmp;
12743 }
12744
12745 tree space;
12746 tree set;
d8829beb 12747 if (!copy_to_heap)
e440a328 12748 {
d8829beb 12749 // the initializer will only run once.
e440a328 12750 space = build_fold_addr_expr(values);
12751 set = NULL_TREE;
12752 }
12753 else
12754 {
12755 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
12756 space = context->gogo()->allocate_memory(element_type, memsize,
12757 this->location());
12758 space = save_expr(space);
12759
12760 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
b13c66cd 12761 tree ref = build_fold_indirect_ref_loc(this->location().gcc_location(),
12762 s);
e440a328 12763 TREE_THIS_NOTRAP(ref) = 1;
12764 set = build2(MODIFY_EXPR, void_type_node, ref, values);
12765 }
12766
12767 // Build a constructor for the open array.
12768
9f0e0513 12769 tree type_tree = type_to_tree(this->type()->get_backend(context->gogo()));
3d60812e 12770 if (type_tree == error_mark_node)
12771 return error_mark_node;
c484d925 12772 go_assert(TREE_CODE(type_tree) == RECORD_TYPE);
e440a328 12773
12774 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
12775
12776 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
12777 tree field = TYPE_FIELDS(type_tree);
c484d925 12778 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
e440a328 12779 elt->index = field;
12780 elt->value = fold_convert(TREE_TYPE(field), space);
12781
12782 elt = VEC_quick_push(constructor_elt, init, NULL);
12783 field = DECL_CHAIN(field);
c484d925 12784 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
e440a328 12785 elt->index = field;
12786 elt->value = fold_convert(TREE_TYPE(field), length_tree);
12787
12788 elt = VEC_quick_push(constructor_elt, init, NULL);
12789 field = DECL_CHAIN(field);
c484d925 12790 go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
e440a328 12791 elt->index = field;
12792 elt->value = fold_convert(TREE_TYPE(field), length_tree);
12793
12794 tree constructor = build_constructor(type_tree, init);
3d60812e 12795 if (constructor == error_mark_node)
12796 return error_mark_node;
d8829beb 12797 if (!copy_to_heap)
e440a328 12798 TREE_CONSTANT(constructor) = 1;
12799
12800 if (set == NULL_TREE)
12801 return constructor;
12802 else
12803 return build2(COMPOUND_EXPR, type_tree, set, constructor);
12804}
12805
12806// Make a slice composite literal. This is used by the type
12807// descriptor code.
12808
12809Expression*
12810Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
b13c66cd 12811 Location location)
e440a328 12812{
411eb89e 12813 go_assert(type->is_slice_type());
e440a328 12814 return new Open_array_construction_expression(type, vals, location);
12815}
12816
12817// Construct a map.
12818
12819class Map_construction_expression : public Expression
12820{
12821 public:
12822 Map_construction_expression(Type* type, Expression_list* vals,
b13c66cd 12823 Location location)
e440a328 12824 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
12825 type_(type), vals_(vals)
c484d925 12826 { go_assert(vals == NULL || vals->size() % 2 == 0); }
e440a328 12827
12828 protected:
12829 int
12830 do_traverse(Traverse* traverse);
12831
12832 Type*
12833 do_type()
12834 { return this->type_; }
12835
12836 void
12837 do_determine_type(const Type_context*);
12838
12839 void
12840 do_check_types(Gogo*);
12841
12842 Expression*
12843 do_copy()
12844 {
12845 return new Map_construction_expression(this->type_, this->vals_->copy(),
12846 this->location());
12847 }
12848
12849 tree
12850 do_get_tree(Translate_context*);
12851
12852 void
12853 do_export(Export*) const;
12854
d751bb78 12855 void
12856 do_dump_expression(Ast_dump_context*) const;
12857
e440a328 12858 private:
12859 // The type of the map to construct.
12860 Type* type_;
12861 // The list of values.
12862 Expression_list* vals_;
12863};
12864
12865// Traversal.
12866
12867int
12868Map_construction_expression::do_traverse(Traverse* traverse)
12869{
12870 if (this->vals_ != NULL
12871 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
12872 return TRAVERSE_EXIT;
12873 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12874 return TRAVERSE_EXIT;
12875 return TRAVERSE_CONTINUE;
12876}
12877
12878// Final type determination.
12879
12880void
12881Map_construction_expression::do_determine_type(const Type_context*)
12882{
12883 if (this->vals_ == NULL)
12884 return;
12885
12886 Map_type* mt = this->type_->map_type();
12887 Type_context key_context(mt->key_type(), false);
12888 Type_context val_context(mt->val_type(), false);
12889 for (Expression_list::const_iterator pv = this->vals_->begin();
12890 pv != this->vals_->end();
12891 ++pv)
12892 {
12893 (*pv)->determine_type(&key_context);
12894 ++pv;
12895 (*pv)->determine_type(&val_context);
12896 }
12897}
12898
12899// Check types.
12900
12901void
12902Map_construction_expression::do_check_types(Gogo*)
12903{
12904 if (this->vals_ == NULL)
12905 return;
12906
12907 Map_type* mt = this->type_->map_type();
12908 int i = 0;
12909 Type* key_type = mt->key_type();
12910 Type* val_type = mt->val_type();
12911 for (Expression_list::const_iterator pv = this->vals_->begin();
12912 pv != this->vals_->end();
12913 ++pv, ++i)
12914 {
12915 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
12916 {
12917 error_at((*pv)->location(),
12918 "incompatible type for element %d key in map construction",
12919 i + 1);
12920 this->set_is_error();
12921 }
12922 ++pv;
12923 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
12924 {
12925 error_at((*pv)->location(),
12926 ("incompatible type for element %d value "
12927 "in map construction"),
12928 i + 1);
12929 this->set_is_error();
12930 }
12931 }
12932}
12933
12934// Return a tree for constructing a map.
12935
12936tree
12937Map_construction_expression::do_get_tree(Translate_context* context)
12938{
12939 Gogo* gogo = context->gogo();
b13c66cd 12940 Location loc = this->location();
e440a328 12941
12942 Map_type* mt = this->type_->map_type();
12943
12944 // Build a struct to hold the key and value.
12945 tree struct_type = make_node(RECORD_TYPE);
12946
12947 Type* key_type = mt->key_type();
12948 tree id = get_identifier("__key");
9f0e0513 12949 tree key_type_tree = type_to_tree(key_type->get_backend(gogo));
5845bde6 12950 if (key_type_tree == error_mark_node)
12951 return error_mark_node;
b13c66cd 12952 tree key_field = build_decl(loc.gcc_location(), FIELD_DECL, id,
12953 key_type_tree);
e440a328 12954 DECL_CONTEXT(key_field) = struct_type;
12955 TYPE_FIELDS(struct_type) = key_field;
12956
12957 Type* val_type = mt->val_type();
12958 id = get_identifier("__val");
9f0e0513 12959 tree val_type_tree = type_to_tree(val_type->get_backend(gogo));
5845bde6 12960 if (val_type_tree == error_mark_node)
12961 return error_mark_node;
b13c66cd 12962 tree val_field = build_decl(loc.gcc_location(), FIELD_DECL, id,
12963 val_type_tree);
e440a328 12964 DECL_CONTEXT(val_field) = struct_type;
12965 DECL_CHAIN(key_field) = val_field;
12966
12967 layout_type(struct_type);
12968
12969 bool is_constant = true;
12970 size_t i = 0;
12971 tree valaddr;
12972 tree make_tmp;
12973
12974 if (this->vals_ == NULL || this->vals_->empty())
12975 {
12976 valaddr = null_pointer_node;
12977 make_tmp = NULL_TREE;
12978 }
12979 else
12980 {
12981 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
12982 this->vals_->size() / 2);
12983
12984 for (Expression_list::const_iterator pv = this->vals_->begin();
12985 pv != this->vals_->end();
12986 ++pv, ++i)
12987 {
12988 bool one_is_constant = true;
12989
12990 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
12991
12992 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
12993 elt->index = key_field;
12994 tree val_tree = (*pv)->get_tree(context);
12995 elt->value = Expression::convert_for_assignment(context, key_type,
12996 (*pv)->type(),
12997 val_tree, loc);
12998 if (elt->value == error_mark_node)
12999 return error_mark_node;
13000 if (!TREE_CONSTANT(elt->value))
13001 one_is_constant = false;
13002
13003 ++pv;
13004
13005 elt = VEC_quick_push(constructor_elt, one, NULL);
13006 elt->index = val_field;
13007 val_tree = (*pv)->get_tree(context);
13008 elt->value = Expression::convert_for_assignment(context, val_type,
13009 (*pv)->type(),
13010 val_tree, loc);
13011 if (elt->value == error_mark_node)
13012 return error_mark_node;
13013 if (!TREE_CONSTANT(elt->value))
13014 one_is_constant = false;
13015
13016 elt = VEC_quick_push(constructor_elt, values, NULL);
13017 elt->index = size_int(i);
13018 elt->value = build_constructor(struct_type, one);
13019 if (one_is_constant)
13020 TREE_CONSTANT(elt->value) = 1;
13021 else
13022 is_constant = false;
13023 }
13024
13025 tree index_type = build_index_type(size_int(i - 1));
13026 tree array_type = build_array_type(struct_type, index_type);
13027 tree init = build_constructor(array_type, values);
13028 if (is_constant)
13029 TREE_CONSTANT(init) = 1;
13030 tree tmp;
13031 if (current_function_decl != NULL)
13032 {
13033 tmp = create_tmp_var(array_type, get_name(array_type));
13034 DECL_INITIAL(tmp) = init;
b13c66cd 13035 make_tmp = fold_build1_loc(loc.gcc_location(), DECL_EXPR,
13036 void_type_node, tmp);
e440a328 13037 TREE_ADDRESSABLE(tmp) = 1;
13038 }
13039 else
13040 {
b13c66cd 13041 tmp = build_decl(loc.gcc_location(), VAR_DECL,
13042 create_tmp_var_name("M"), array_type);
e440a328 13043 DECL_EXTERNAL(tmp) = 0;
13044 TREE_PUBLIC(tmp) = 0;
13045 TREE_STATIC(tmp) = 1;
13046 DECL_ARTIFICIAL(tmp) = 1;
13047 if (!TREE_CONSTANT(init))
b13c66cd 13048 make_tmp = fold_build2_loc(loc.gcc_location(), INIT_EXPR,
13049 void_type_node, tmp, init);
e440a328 13050 else
13051 {
13052 TREE_READONLY(tmp) = 1;
13053 TREE_CONSTANT(tmp) = 1;
13054 DECL_INITIAL(tmp) = init;
13055 make_tmp = NULL_TREE;
13056 }
13057 rest_of_decl_compilation(tmp, 1, 0);
13058 }
13059
13060 valaddr = build_fold_addr_expr(tmp);
13061 }
13062
2b5f213d 13063 tree descriptor = mt->map_descriptor_pointer(gogo, loc);
e440a328 13064
9f0e0513 13065 tree type_tree = type_to_tree(this->type_->get_backend(gogo));
5845bde6 13066 if (type_tree == error_mark_node)
13067 return error_mark_node;
e440a328 13068
13069 static tree construct_map_fndecl;
13070 tree call = Gogo::call_builtin(&construct_map_fndecl,
13071 loc,
13072 "__go_construct_map",
13073 6,
13074 type_tree,
13075 TREE_TYPE(descriptor),
13076 descriptor,
13077 sizetype,
13078 size_int(i),
13079 sizetype,
13080 TYPE_SIZE_UNIT(struct_type),
13081 sizetype,
13082 byte_position(val_field),
13083 sizetype,
13084 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
13085 const_ptr_type_node,
13086 fold_convert(const_ptr_type_node, valaddr));
5fb82b5e 13087 if (call == error_mark_node)
13088 return error_mark_node;
e440a328 13089
13090 tree ret;
13091 if (make_tmp == NULL)
13092 ret = call;
13093 else
b13c66cd 13094 ret = fold_build2_loc(loc.gcc_location(), COMPOUND_EXPR, type_tree,
13095 make_tmp, call);
e440a328 13096 return ret;
13097}
13098
13099// Export an array construction.
13100
13101void
13102Map_construction_expression::do_export(Export* exp) const
13103{
13104 exp->write_c_string("convert(");
13105 exp->write_type(this->type_);
13106 for (Expression_list::const_iterator pv = this->vals_->begin();
13107 pv != this->vals_->end();
13108 ++pv)
13109 {
13110 exp->write_c_string(", ");
13111 (*pv)->export_expression(exp);
13112 }
13113 exp->write_c_string(")");
13114}
13115
d751bb78 13116// Dump ast representation for a map construction expression.
13117
13118void
13119Map_construction_expression::do_dump_expression(
13120 Ast_dump_context* ast_dump_context) const
13121{
d751bb78 13122 ast_dump_context->ostream() << "{" ;
8b1c301d 13123 ast_dump_context->dump_expression_list(this->vals_, true);
d751bb78 13124 ast_dump_context->ostream() << "}";
13125}
13126
e440a328 13127// A general composite literal. This is lowered to a type specific
13128// version.
13129
13130class Composite_literal_expression : public Parser_expression
13131{
13132 public:
13133 Composite_literal_expression(Type* type, int depth, bool has_keys,
b13c66cd 13134 Expression_list* vals, Location location)
e440a328 13135 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
13136 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
13137 { }
13138
13139 protected:
13140 int
13141 do_traverse(Traverse* traverse);
13142
13143 Expression*
ceeb4318 13144 do_lower(Gogo*, Named_object*, Statement_inserter*, int);
e440a328 13145
13146 Expression*
13147 do_copy()
13148 {
13149 return new Composite_literal_expression(this->type_, this->depth_,
13150 this->has_keys_,
13151 (this->vals_ == NULL
13152 ? NULL
13153 : this->vals_->copy()),
13154 this->location());
13155 }
13156
d751bb78 13157 void
13158 do_dump_expression(Ast_dump_context*) const;
13159
e440a328 13160 private:
13161 Expression*
81c4b26b 13162 lower_struct(Gogo*, Type*);
e440a328 13163
13164 Expression*
113ef6a5 13165 lower_array(Type*);
e440a328 13166
13167 Expression*
113ef6a5 13168 make_array(Type*, Expression_list*);
e440a328 13169
13170 Expression*
ceeb4318 13171 lower_map(Gogo*, Named_object*, Statement_inserter*, Type*);
e440a328 13172
13173 // The type of the composite literal.
13174 Type* type_;
13175 // The depth within a list of composite literals within a composite
13176 // literal, when the type is omitted.
13177 int depth_;
13178 // The values to put in the composite literal.
13179 Expression_list* vals_;
13180 // If this is true, then VALS_ is a list of pairs: a key and a
13181 // value. In an array initializer, a missing key will be NULL.
13182 bool has_keys_;
13183};
13184
13185// Traversal.
13186
13187int
13188Composite_literal_expression::do_traverse(Traverse* traverse)
13189{
13190 if (this->vals_ != NULL
13191 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
13192 return TRAVERSE_EXIT;
13193 return Type::traverse(this->type_, traverse);
13194}
13195
13196// Lower a generic composite literal into a specific version based on
13197// the type.
13198
13199Expression*
ceeb4318 13200Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function,
13201 Statement_inserter* inserter, int)
e440a328 13202{
13203 Type* type = this->type_;
13204
13205 for (int depth = this->depth_; depth > 0; --depth)
13206 {
13207 if (type->array_type() != NULL)
13208 type = type->array_type()->element_type();
13209 else if (type->map_type() != NULL)
13210 type = type->map_type()->val_type();
13211 else
13212 {
5c13bd80 13213 if (!type->is_error())
e440a328 13214 error_at(this->location(),
13215 ("may only omit types within composite literals "
13216 "of slice, array, or map type"));
13217 return Expression::make_error(this->location());
13218 }
13219 }
13220
e00772b3 13221 Type *pt = type->points_to();
13222 bool is_pointer = false;
13223 if (pt != NULL)
13224 {
13225 is_pointer = true;
13226 type = pt;
13227 }
13228
13229 Expression* ret;
5c13bd80 13230 if (type->is_error())
e440a328 13231 return Expression::make_error(this->location());
13232 else if (type->struct_type() != NULL)
e00772b3 13233 ret = this->lower_struct(gogo, type);
e440a328 13234 else if (type->array_type() != NULL)
113ef6a5 13235 ret = this->lower_array(type);
e440a328 13236 else if (type->map_type() != NULL)
e00772b3 13237 ret = this->lower_map(gogo, function, inserter, type);
e440a328 13238 else
13239 {
13240 error_at(this->location(),
13241 ("expected struct, slice, array, or map type "
13242 "for composite literal"));
13243 return Expression::make_error(this->location());
13244 }
e00772b3 13245
13246 if (is_pointer)
13247 ret = Expression::make_heap_composite(ret, this->location());
13248
13249 return ret;
e440a328 13250}
13251
13252// Lower a struct composite literal.
13253
13254Expression*
81c4b26b 13255Composite_literal_expression::lower_struct(Gogo* gogo, Type* type)
e440a328 13256{
b13c66cd 13257 Location location = this->location();
e440a328 13258 Struct_type* st = type->struct_type();
13259 if (this->vals_ == NULL || !this->has_keys_)
07daa4e7 13260 {
e6013c28 13261 if (this->vals_ != NULL
13262 && !this->vals_->empty()
13263 && type->named_type() != NULL
13264 && type->named_type()->named_object()->package() != NULL)
13265 {
13266 for (Struct_field_list::const_iterator pf = st->fields()->begin();
13267 pf != st->fields()->end();
13268 ++pf)
07daa4e7 13269 {
e6013c28 13270 if (Gogo::is_hidden_name(pf->field_name()))
07daa4e7 13271 error_at(this->location(),
e6013c28 13272 "assignment of unexported field %qs in %qs literal",
13273 Gogo::message_name(pf->field_name()).c_str(),
13274 type->named_type()->message_name().c_str());
07daa4e7 13275 }
13276 }
13277
13278 return new Struct_construction_expression(type, this->vals_, location);
13279 }
e440a328 13280
13281 size_t field_count = st->field_count();
13282 std::vector<Expression*> vals(field_count);
13283 Expression_list::const_iterator p = this->vals_->begin();
13284 while (p != this->vals_->end())
13285 {
13286 Expression* name_expr = *p;
13287
13288 ++p;
c484d925 13289 go_assert(p != this->vals_->end());
e440a328 13290 Expression* val = *p;
13291
13292 ++p;
13293
13294 if (name_expr == NULL)
13295 {
13296 error_at(val->location(), "mixture of field and value initializers");
13297 return Expression::make_error(location);
13298 }
13299
13300 bool bad_key = false;
13301 std::string name;
81c4b26b 13302 const Named_object* no = NULL;
e440a328 13303 switch (name_expr->classification())
13304 {
13305 case EXPRESSION_UNKNOWN_REFERENCE:
13306 name = name_expr->unknown_expression()->name();
13307 break;
13308
13309 case EXPRESSION_CONST_REFERENCE:
81c4b26b 13310 no = static_cast<Const_expression*>(name_expr)->named_object();
e440a328 13311 break;
13312
13313 case EXPRESSION_TYPE:
13314 {
13315 Type* t = name_expr->type();
13316 Named_type* nt = t->named_type();
13317 if (nt == NULL)
13318 bad_key = true;
13319 else
81c4b26b 13320 no = nt->named_object();
e440a328 13321 }
13322 break;
13323
13324 case EXPRESSION_VAR_REFERENCE:
81c4b26b 13325 no = name_expr->var_expression()->named_object();
e440a328 13326 break;
13327
13328 case EXPRESSION_FUNC_REFERENCE:
81c4b26b 13329 no = name_expr->func_expression()->named_object();
e440a328 13330 break;
13331
13332 case EXPRESSION_UNARY:
13333 // If there is a local variable around with the same name as
13334 // the field, and this occurs in the closure, then the
13335 // parser may turn the field reference into an indirection
13336 // through the closure. FIXME: This is a mess.
13337 {
13338 bad_key = true;
13339 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
13340 if (ue->op() == OPERATOR_MULT)
13341 {
13342 Field_reference_expression* fre =
13343 ue->operand()->field_reference_expression();
13344 if (fre != NULL)
13345 {
13346 Struct_type* st =
13347 fre->expr()->type()->deref()->struct_type();
13348 if (st != NULL)
13349 {
13350 const Struct_field* sf = st->field(fre->field_index());
13351 name = sf->field_name();
2d29d278 13352
13353 // See below. FIXME.
13354 if (!Gogo::is_hidden_name(name)
13355 && name[0] >= 'a'
13356 && name[0] <= 'z')
13357 {
13358 if (gogo->lookup_global(name.c_str()) != NULL)
13359 name = gogo->pack_hidden_name(name, false);
13360 }
13361
e440a328 13362 char buf[20];
13363 snprintf(buf, sizeof buf, "%u", fre->field_index());
13364 size_t buflen = strlen(buf);
13365 if (name.compare(name.length() - buflen, buflen, buf)
13366 == 0)
13367 {
13368 name = name.substr(0, name.length() - buflen);
13369 bad_key = false;
13370 }
13371 }
13372 }
13373 }
13374 }
13375 break;
13376
13377 default:
13378 bad_key = true;
13379 break;
13380 }
13381 if (bad_key)
13382 {
13383 error_at(name_expr->location(), "expected struct field name");
13384 return Expression::make_error(location);
13385 }
13386
81c4b26b 13387 if (no != NULL)
13388 {
13389 name = no->name();
13390
13391 // A predefined name won't be packed. If it starts with a
13392 // lower case letter we need to check for that case, because
2d29d278 13393 // the field name will be packed. FIXME.
81c4b26b 13394 if (!Gogo::is_hidden_name(name)
13395 && name[0] >= 'a'
13396 && name[0] <= 'z')
13397 {
13398 Named_object* gno = gogo->lookup_global(name.c_str());
13399 if (gno == no)
13400 name = gogo->pack_hidden_name(name, false);
13401 }
13402 }
13403
e440a328 13404 unsigned int index;
13405 const Struct_field* sf = st->find_local_field(name, &index);
13406 if (sf == NULL)
13407 {
13408 error_at(name_expr->location(), "unknown field %qs in %qs",
13409 Gogo::message_name(name).c_str(),
13410 (type->named_type() != NULL
13411 ? type->named_type()->message_name().c_str()
13412 : "unnamed struct"));
13413 return Expression::make_error(location);
13414 }
13415 if (vals[index] != NULL)
13416 {
13417 error_at(name_expr->location(),
13418 "duplicate value for field %qs in %qs",
13419 Gogo::message_name(name).c_str(),
13420 (type->named_type() != NULL
13421 ? type->named_type()->message_name().c_str()
13422 : "unnamed struct"));
13423 return Expression::make_error(location);
13424 }
13425
07daa4e7 13426 if (type->named_type() != NULL
13427 && type->named_type()->named_object()->package() != NULL
13428 && Gogo::is_hidden_name(sf->field_name()))
13429 error_at(name_expr->location(),
13430 "assignment of unexported field %qs in %qs literal",
13431 Gogo::message_name(sf->field_name()).c_str(),
13432 type->named_type()->message_name().c_str());
07daa4e7 13433
e440a328 13434 vals[index] = val;
13435 }
13436
13437 Expression_list* list = new Expression_list;
13438 list->reserve(field_count);
13439 for (size_t i = 0; i < field_count; ++i)
13440 list->push_back(vals[i]);
13441
13442 return new Struct_construction_expression(type, list, location);
13443}
13444
13445// Lower an array composite literal.
13446
13447Expression*
113ef6a5 13448Composite_literal_expression::lower_array(Type* type)
e440a328 13449{
b13c66cd 13450 Location location = this->location();
e440a328 13451 if (this->vals_ == NULL || !this->has_keys_)
113ef6a5 13452 return this->make_array(type, this->vals_);
e440a328 13453
13454 std::vector<Expression*> vals;
13455 vals.reserve(this->vals_->size());
13456 unsigned long index = 0;
13457 Expression_list::const_iterator p = this->vals_->begin();
13458 while (p != this->vals_->end())
13459 {
13460 Expression* index_expr = *p;
13461
13462 ++p;
c484d925 13463 go_assert(p != this->vals_->end());
e440a328 13464 Expression* val = *p;
13465
13466 ++p;
13467
13468 if (index_expr != NULL)
13469 {
13470 mpz_t ival;
13471 mpz_init(ival);
6f6d9955 13472
e440a328 13473 Type* dummy;
13474 if (!index_expr->integer_constant_value(true, ival, &dummy))
13475 {
13476 mpz_clear(ival);
13477 error_at(index_expr->location(),
13478 "index expression is not integer constant");
13479 return Expression::make_error(location);
13480 }
6f6d9955 13481
e440a328 13482 if (mpz_sgn(ival) < 0)
13483 {
13484 mpz_clear(ival);
13485 error_at(index_expr->location(), "index expression is negative");
13486 return Expression::make_error(location);
13487 }
6f6d9955 13488
e440a328 13489 index = mpz_get_ui(ival);
13490 if (mpz_cmp_ui(ival, index) != 0)
13491 {
13492 mpz_clear(ival);
13493 error_at(index_expr->location(), "index value overflow");
13494 return Expression::make_error(location);
13495 }
6f6d9955 13496
13497 Named_type* ntype = Type::lookup_integer_type("int");
13498 Integer_type* inttype = ntype->integer_type();
13499 mpz_t max;
13500 mpz_init_set_ui(max, 1);
13501 mpz_mul_2exp(max, max, inttype->bits() - 1);
13502 bool ok = mpz_cmp(ival, max) < 0;
13503 mpz_clear(max);
13504 if (!ok)
13505 {
13506 mpz_clear(ival);
13507 error_at(index_expr->location(), "index value overflow");
13508 return Expression::make_error(location);
13509 }
13510
e440a328 13511 mpz_clear(ival);
6f6d9955 13512
13513 // FIXME: Our representation isn't very good; this avoids
13514 // thrashing.
13515 if (index > 0x1000000)
13516 {
13517 error_at(index_expr->location(), "index too large for compiler");
13518 return Expression::make_error(location);
13519 }
e440a328 13520 }
13521
13522 if (index == vals.size())
13523 vals.push_back(val);
13524 else
13525 {
13526 if (index > vals.size())
13527 {
13528 vals.reserve(index + 32);
13529 vals.resize(index + 1, static_cast<Expression*>(NULL));
13530 }
13531 if (vals[index] != NULL)
13532 {
13533 error_at((index_expr != NULL
13534 ? index_expr->location()
13535 : val->location()),
13536 "duplicate value for index %lu",
13537 index);
13538 return Expression::make_error(location);
13539 }
13540 vals[index] = val;
13541 }
13542
13543 ++index;
13544 }
13545
13546 size_t size = vals.size();
13547 Expression_list* list = new Expression_list;
13548 list->reserve(size);
13549 for (size_t i = 0; i < size; ++i)
13550 list->push_back(vals[i]);
13551
113ef6a5 13552 return this->make_array(type, list);
e440a328 13553}
13554
13555// Actually build the array composite literal. This handles
13556// [...]{...}.
13557
13558Expression*
113ef6a5 13559Composite_literal_expression::make_array(Type* type, Expression_list* vals)
e440a328 13560{
b13c66cd 13561 Location location = this->location();
e440a328 13562 Array_type* at = type->array_type();
13563 if (at->length() != NULL && at->length()->is_nil_expression())
13564 {
13565 size_t size = vals == NULL ? 0 : vals->size();
13566 mpz_t vlen;
13567 mpz_init_set_ui(vlen, size);
13568 Expression* elen = Expression::make_integer(&vlen, NULL, location);
13569 mpz_clear(vlen);
13570 at = Type::make_array_type(at->element_type(), elen);
13571 type = at;
13572 }
13573 if (at->length() != NULL)
13574 return new Fixed_array_construction_expression(type, vals, location);
13575 else
13576 return new Open_array_construction_expression(type, vals, location);
13577}
13578
13579// Lower a map composite literal.
13580
13581Expression*
a287720d 13582Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
ceeb4318 13583 Statement_inserter* inserter,
a287720d 13584 Type* type)
e440a328 13585{
b13c66cd 13586 Location location = this->location();
e440a328 13587 if (this->vals_ != NULL)
13588 {
13589 if (!this->has_keys_)
13590 {
13591 error_at(location, "map composite literal must have keys");
13592 return Expression::make_error(location);
13593 }
13594
a287720d 13595 for (Expression_list::iterator p = this->vals_->begin();
e440a328 13596 p != this->vals_->end();
13597 p += 2)
13598 {
13599 if (*p == NULL)
13600 {
13601 ++p;
13602 error_at((*p)->location(),
13603 "map composite literal must have keys for every value");
13604 return Expression::make_error(location);
13605 }
a287720d 13606 // Make sure we have lowered the key; it may not have been
13607 // lowered in order to handle keys for struct composite
13608 // literals. Lower it now to get the right error message.
13609 if ((*p)->unknown_expression() != NULL)
13610 {
13611 (*p)->unknown_expression()->clear_is_composite_literal_key();
ceeb4318 13612 gogo->lower_expression(function, inserter, &*p);
c484d925 13613 go_assert((*p)->is_error_expression());
a287720d 13614 return Expression::make_error(location);
13615 }
e440a328 13616 }
13617 }
13618
13619 return new Map_construction_expression(type, this->vals_, location);
13620}
13621
d751bb78 13622// Dump ast representation for a composite literal expression.
13623
13624void
13625Composite_literal_expression::do_dump_expression(
13626 Ast_dump_context* ast_dump_context) const
13627{
8b1c301d 13628 ast_dump_context->ostream() << "composite(";
d751bb78 13629 ast_dump_context->dump_type(this->type_);
13630 ast_dump_context->ostream() << ", {";
8b1c301d 13631 ast_dump_context->dump_expression_list(this->vals_, this->has_keys_);
d751bb78 13632 ast_dump_context->ostream() << "})";
13633}
13634
e440a328 13635// Make a composite literal expression.
13636
13637Expression*
13638Expression::make_composite_literal(Type* type, int depth, bool has_keys,
13639 Expression_list* vals,
b13c66cd 13640 Location location)
e440a328 13641{
13642 return new Composite_literal_expression(type, depth, has_keys, vals,
13643 location);
13644}
13645
13646// Return whether this expression is a composite literal.
13647
13648bool
13649Expression::is_composite_literal() const
13650{
13651 switch (this->classification_)
13652 {
13653 case EXPRESSION_COMPOSITE_LITERAL:
13654 case EXPRESSION_STRUCT_CONSTRUCTION:
13655 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
13656 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
13657 case EXPRESSION_MAP_CONSTRUCTION:
13658 return true;
13659 default:
13660 return false;
13661 }
13662}
13663
13664// Return whether this expression is a composite literal which is not
13665// constant.
13666
13667bool
13668Expression::is_nonconstant_composite_literal() const
13669{
13670 switch (this->classification_)
13671 {
13672 case EXPRESSION_STRUCT_CONSTRUCTION:
13673 {
13674 const Struct_construction_expression *psce =
13675 static_cast<const Struct_construction_expression*>(this);
13676 return !psce->is_constant_struct();
13677 }
13678 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
13679 {
13680 const Fixed_array_construction_expression *pace =
13681 static_cast<const Fixed_array_construction_expression*>(this);
13682 return !pace->is_constant_array();
13683 }
13684 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
13685 {
13686 const Open_array_construction_expression *pace =
13687 static_cast<const Open_array_construction_expression*>(this);
13688 return !pace->is_constant_array();
13689 }
13690 case EXPRESSION_MAP_CONSTRUCTION:
13691 return true;
13692 default:
13693 return false;
13694 }
13695}
13696
13697// Return true if this is a reference to a local variable.
13698
13699bool
13700Expression::is_local_variable() const
13701{
13702 const Var_expression* ve = this->var_expression();
13703 if (ve == NULL)
13704 return false;
13705 const Named_object* no = ve->named_object();
13706 return (no->is_result_variable()
13707 || (no->is_variable() && !no->var_value()->is_global()));
13708}
13709
13710// Class Type_guard_expression.
13711
13712// Traversal.
13713
13714int
13715Type_guard_expression::do_traverse(Traverse* traverse)
13716{
13717 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
13718 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
13719 return TRAVERSE_EXIT;
13720 return TRAVERSE_CONTINUE;
13721}
13722
13723// Check types of a type guard expression. The expression must have
13724// an interface type, but the actual type conversion is checked at run
13725// time.
13726
13727void
13728Type_guard_expression::do_check_types(Gogo*)
13729{
13730 // 6g permits using a type guard with unsafe.pointer; we are
13731 // compatible.
13732 Type* expr_type = this->expr_->type();
13733 if (expr_type->is_unsafe_pointer_type())
13734 {
13735 if (this->type_->points_to() == NULL
13736 && (this->type_->integer_type() == NULL
13737 || (this->type_->forwarded()
13738 != Type::lookup_integer_type("uintptr"))))
13739 this->report_error(_("invalid unsafe.Pointer conversion"));
13740 }
13741 else if (this->type_->is_unsafe_pointer_type())
13742 {
13743 if (expr_type->points_to() == NULL
13744 && (expr_type->integer_type() == NULL
13745 || (expr_type->forwarded()
13746 != Type::lookup_integer_type("uintptr"))))
13747 this->report_error(_("invalid unsafe.Pointer conversion"));
13748 }
13749 else if (expr_type->interface_type() == NULL)
f725ade8 13750 {
5c13bd80 13751 if (!expr_type->is_error() && !this->type_->is_error())
f725ade8 13752 this->report_error(_("type assertion only valid for interface types"));
13753 this->set_is_error();
13754 }
e440a328 13755 else if (this->type_->interface_type() == NULL)
13756 {
13757 std::string reason;
13758 if (!expr_type->interface_type()->implements_interface(this->type_,
13759 &reason))
13760 {
5c13bd80 13761 if (!this->type_->is_error())
e440a328 13762 {
f725ade8 13763 if (reason.empty())
13764 this->report_error(_("impossible type assertion: "
13765 "type does not implement interface"));
13766 else
13767 error_at(this->location(),
13768 ("impossible type assertion: "
13769 "type does not implement interface (%s)"),
13770 reason.c_str());
e440a328 13771 }
f725ade8 13772 this->set_is_error();
e440a328 13773 }
13774 }
13775}
13776
13777// Return a tree for a type guard expression.
13778
13779tree
13780Type_guard_expression::do_get_tree(Translate_context* context)
13781{
13782 Gogo* gogo = context->gogo();
13783 tree expr_tree = this->expr_->get_tree(context);
13784 if (expr_tree == error_mark_node)
13785 return error_mark_node;
13786 Type* expr_type = this->expr_->type();
13787 if ((this->type_->is_unsafe_pointer_type()
13788 && (expr_type->points_to() != NULL
13789 || expr_type->integer_type() != NULL))
13790 || (expr_type->is_unsafe_pointer_type()
13791 && this->type_->points_to() != NULL))
9f0e0513 13792 return convert_to_pointer(type_to_tree(this->type_->get_backend(gogo)),
13793 expr_tree);
e440a328 13794 else if (expr_type->is_unsafe_pointer_type()
13795 && this->type_->integer_type() != NULL)
9f0e0513 13796 return convert_to_integer(type_to_tree(this->type_->get_backend(gogo)),
13797 expr_tree);
e440a328 13798 else if (this->type_->interface_type() != NULL)
13799 return Expression::convert_interface_to_interface(context, this->type_,
13800 this->expr_->type(),
13801 expr_tree, true,
13802 this->location());
13803 else
13804 return Expression::convert_for_assignment(context, this->type_,
13805 this->expr_->type(), expr_tree,
13806 this->location());
13807}
13808
d751bb78 13809// Dump ast representation for a type guard expression.
13810
13811void
13812Type_guard_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
13813 const
13814{
13815 this->expr_->dump_expression(ast_dump_context);
13816 ast_dump_context->ostream() << ".";
13817 ast_dump_context->dump_type(this->type_);
13818}
13819
e440a328 13820// Make a type guard expression.
13821
13822Expression*
13823Expression::make_type_guard(Expression* expr, Type* type,
b13c66cd 13824 Location location)
e440a328 13825{
13826 return new Type_guard_expression(expr, type, location);
13827}
13828
13829// Class Heap_composite_expression.
13830
13831// When you take the address of a composite literal, it is allocated
13832// on the heap. This class implements that.
13833
13834class Heap_composite_expression : public Expression
13835{
13836 public:
b13c66cd 13837 Heap_composite_expression(Expression* expr, Location location)
e440a328 13838 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
13839 expr_(expr)
13840 { }
13841
13842 protected:
13843 int
13844 do_traverse(Traverse* traverse)
13845 { return Expression::traverse(&this->expr_, traverse); }
13846
13847 Type*
13848 do_type()
13849 { return Type::make_pointer_type(this->expr_->type()); }
13850
13851 void
13852 do_determine_type(const Type_context*)
13853 { this->expr_->determine_type_no_context(); }
13854
13855 Expression*
13856 do_copy()
13857 {
13858 return Expression::make_heap_composite(this->expr_->copy(),
13859 this->location());
13860 }
13861
13862 tree
13863 do_get_tree(Translate_context*);
13864
13865 // We only export global objects, and the parser does not generate
13866 // this in global scope.
13867 void
13868 do_export(Export*) const
c3e6f413 13869 { go_unreachable(); }
e440a328 13870
d751bb78 13871 void
13872 do_dump_expression(Ast_dump_context*) const;
13873
e440a328 13874 private:
13875 // The composite literal which is being put on the heap.
13876 Expression* expr_;
13877};
13878
13879// Return a tree which allocates a composite literal on the heap.
13880
13881tree
13882Heap_composite_expression::do_get_tree(Translate_context* context)
13883{
13884 tree expr_tree = this->expr_->get_tree(context);
6d3ed74c 13885 if (expr_tree == error_mark_node || TREE_TYPE(expr_tree) == error_mark_node)
e440a328 13886 return error_mark_node;
13887 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
c484d925 13888 go_assert(TREE_CODE(expr_size) == INTEGER_CST);
e440a328 13889 tree space = context->gogo()->allocate_memory(this->expr_->type(),
13890 expr_size, this->location());
13891 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
13892 space = save_expr(space);
b13c66cd 13893 tree ref = build_fold_indirect_ref_loc(this->location().gcc_location(),
13894 space);
e440a328 13895 TREE_THIS_NOTRAP(ref) = 1;
13896 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
13897 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
13898 space);
b13c66cd 13899 SET_EXPR_LOCATION(ret, this->location().gcc_location());
e440a328 13900 return ret;
13901}
13902
d751bb78 13903// Dump ast representation for a heap composite expression.
13904
13905void
13906Heap_composite_expression::do_dump_expression(
13907 Ast_dump_context* ast_dump_context) const
13908{
13909 ast_dump_context->ostream() << "&(";
13910 ast_dump_context->dump_expression(this->expr_);
13911 ast_dump_context->ostream() << ")";
13912}
13913
e440a328 13914// Allocate a composite literal on the heap.
13915
13916Expression*
b13c66cd 13917Expression::make_heap_composite(Expression* expr, Location location)
e440a328 13918{
13919 return new Heap_composite_expression(expr, location);
13920}
13921
13922// Class Receive_expression.
13923
13924// Return the type of a receive expression.
13925
13926Type*
13927Receive_expression::do_type()
13928{
13929 Channel_type* channel_type = this->channel_->type()->channel_type();
13930 if (channel_type == NULL)
13931 return Type::make_error_type();
13932 return channel_type->element_type();
13933}
13934
13935// Check types for a receive expression.
13936
13937void
13938Receive_expression::do_check_types(Gogo*)
13939{
13940 Type* type = this->channel_->type();
5c13bd80 13941 if (type->is_error())
e440a328 13942 {
13943 this->set_is_error();
13944 return;
13945 }
13946 if (type->channel_type() == NULL)
13947 {
13948 this->report_error(_("expected channel"));
13949 return;
13950 }
13951 if (!type->channel_type()->may_receive())
13952 {
13953 this->report_error(_("invalid receive on send-only channel"));
13954 return;
13955 }
13956}
13957
13958// Get a tree for a receive expression.
13959
13960tree
13961Receive_expression::do_get_tree(Translate_context* context)
13962{
f24f10bb 13963 Location loc = this->location();
13964
e440a328 13965 Channel_type* channel_type = this->channel_->type()->channel_type();
5b8368f4 13966 if (channel_type == NULL)
13967 {
c484d925 13968 go_assert(this->channel_->type()->is_error());
5b8368f4 13969 return error_mark_node;
13970 }
f24f10bb 13971
13972 Expression* td = Expression::make_type_descriptor(channel_type, loc);
13973 tree td_tree = td->get_tree(context);
13974
e440a328 13975 Type* element_type = channel_type->element_type();
9f0e0513 13976 Btype* element_type_btype = element_type->get_backend(context->gogo());
13977 tree element_type_tree = type_to_tree(element_type_btype);
e440a328 13978
13979 tree channel = this->channel_->get_tree(context);
13980 if (element_type_tree == error_mark_node || channel == error_mark_node)
13981 return error_mark_node;
13982
f24f10bb 13983 return Gogo::receive_from_channel(element_type_tree, td_tree, channel, loc);
e440a328 13984}
13985
d751bb78 13986// Dump ast representation for a receive expression.
13987
13988void
13989Receive_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
13990{
13991 ast_dump_context->ostream() << " <- " ;
13992 ast_dump_context->dump_expression(channel_);
13993}
13994
e440a328 13995// Make a receive expression.
13996
13997Receive_expression*
b13c66cd 13998Expression::make_receive(Expression* channel, Location location)
e440a328 13999{
14000 return new Receive_expression(channel, location);
14001}
14002
e440a328 14003// An expression which evaluates to a pointer to the type descriptor
14004// of a type.
14005
14006class Type_descriptor_expression : public Expression
14007{
14008 public:
b13c66cd 14009 Type_descriptor_expression(Type* type, Location location)
e440a328 14010 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
14011 type_(type)
14012 { }
14013
14014 protected:
14015 Type*
14016 do_type()
14017 { return Type::make_type_descriptor_ptr_type(); }
14018
14019 void
14020 do_determine_type(const Type_context*)
14021 { }
14022
14023 Expression*
14024 do_copy()
14025 { return this; }
14026
14027 tree
14028 do_get_tree(Translate_context* context)
a1d23b41 14029 {
14030 return this->type_->type_descriptor_pointer(context->gogo(),
14031 this->location());
14032 }
e440a328 14033
d751bb78 14034 void
14035 do_dump_expression(Ast_dump_context*) const;
14036
e440a328 14037 private:
14038 // The type for which this is the descriptor.
14039 Type* type_;
14040};
14041
d751bb78 14042// Dump ast representation for a type descriptor expression.
14043
14044void
14045Type_descriptor_expression::do_dump_expression(
14046 Ast_dump_context* ast_dump_context) const
14047{
14048 ast_dump_context->dump_type(this->type_);
14049}
14050
e440a328 14051// Make a type descriptor expression.
14052
14053Expression*
b13c66cd 14054Expression::make_type_descriptor(Type* type, Location location)
e440a328 14055{
14056 return new Type_descriptor_expression(type, location);
14057}
14058
14059// An expression which evaluates to some characteristic of a type.
14060// This is only used to initialize fields of a type descriptor. Using
14061// a new expression class is slightly inefficient but gives us a good
14062// separation between the frontend and the middle-end with regard to
14063// how types are laid out.
14064
14065class Type_info_expression : public Expression
14066{
14067 public:
14068 Type_info_expression(Type* type, Type_info type_info)
b13c66cd 14069 : Expression(EXPRESSION_TYPE_INFO, Linemap::predeclared_location()),
e440a328 14070 type_(type), type_info_(type_info)
14071 { }
14072
14073 protected:
14074 Type*
14075 do_type();
14076
14077 void
14078 do_determine_type(const Type_context*)
14079 { }
14080
14081 Expression*
14082 do_copy()
14083 { return this; }
14084
14085 tree
14086 do_get_tree(Translate_context* context);
14087
d751bb78 14088 void
14089 do_dump_expression(Ast_dump_context*) const;
14090
e440a328 14091 private:
14092 // The type for which we are getting information.
14093 Type* type_;
14094 // What information we want.
14095 Type_info type_info_;
14096};
14097
14098// The type is chosen to match what the type descriptor struct
14099// expects.
14100
14101Type*
14102Type_info_expression::do_type()
14103{
14104 switch (this->type_info_)
14105 {
14106 case TYPE_INFO_SIZE:
14107 return Type::lookup_integer_type("uintptr");
14108 case TYPE_INFO_ALIGNMENT:
14109 case TYPE_INFO_FIELD_ALIGNMENT:
14110 return Type::lookup_integer_type("uint8");
14111 default:
c3e6f413 14112 go_unreachable();
e440a328 14113 }
14114}
14115
14116// Return type information in GENERIC.
14117
14118tree
14119Type_info_expression::do_get_tree(Translate_context* context)
14120{
927a01eb 14121 Btype* btype = this->type_->get_backend(context->gogo());
14122 Gogo* gogo = context->gogo();
14123 size_t val;
14124 switch (this->type_info_)
e440a328 14125 {
927a01eb 14126 case TYPE_INFO_SIZE:
14127 val = gogo->backend()->type_size(btype);
14128 break;
14129 case TYPE_INFO_ALIGNMENT:
14130 val = gogo->backend()->type_alignment(btype);
14131 break;
14132 case TYPE_INFO_FIELD_ALIGNMENT:
14133 val = gogo->backend()->type_field_alignment(btype);
14134 break;
14135 default:
14136 go_unreachable();
e440a328 14137 }
927a01eb 14138 tree val_type_tree = type_to_tree(this->type()->get_backend(gogo));
14139 go_assert(val_type_tree != error_mark_node);
14140 return build_int_cstu(val_type_tree, val);
e440a328 14141}
14142
d751bb78 14143// Dump ast representation for a type info expression.
14144
14145void
14146Type_info_expression::do_dump_expression(
14147 Ast_dump_context* ast_dump_context) const
14148{
14149 ast_dump_context->ostream() << "typeinfo(";
14150 ast_dump_context->dump_type(this->type_);
14151 ast_dump_context->ostream() << ",";
14152 ast_dump_context->ostream() <<
14153 (this->type_info_ == TYPE_INFO_ALIGNMENT ? "alignment"
14154 : this->type_info_ == TYPE_INFO_FIELD_ALIGNMENT ? "field alignment"
14155 : this->type_info_ == TYPE_INFO_SIZE ? "size "
14156 : "unknown");
14157 ast_dump_context->ostream() << ")";
14158}
14159
e440a328 14160// Make a type info expression.
14161
14162Expression*
14163Expression::make_type_info(Type* type, Type_info type_info)
14164{
14165 return new Type_info_expression(type, type_info);
14166}
14167
14168// An expression which evaluates to the offset of a field within a
14169// struct. This, like Type_info_expression, q.v., is only used to
14170// initialize fields of a type descriptor.
14171
14172class Struct_field_offset_expression : public Expression
14173{
14174 public:
14175 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
b13c66cd 14176 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET,
14177 Linemap::predeclared_location()),
e440a328 14178 type_(type), field_(field)
14179 { }
14180
14181 protected:
14182 Type*
14183 do_type()
14184 { return Type::lookup_integer_type("uintptr"); }
14185
14186 void
14187 do_determine_type(const Type_context*)
14188 { }
14189
14190 Expression*
14191 do_copy()
14192 { return this; }
14193
14194 tree
14195 do_get_tree(Translate_context* context);
14196
d751bb78 14197 void
14198 do_dump_expression(Ast_dump_context*) const;
14199
e440a328 14200 private:
14201 // The type of the struct.
14202 Struct_type* type_;
14203 // The field.
14204 const Struct_field* field_;
14205};
14206
14207// Return a struct field offset in GENERIC.
14208
14209tree
14210Struct_field_offset_expression::do_get_tree(Translate_context* context)
14211{
9f0e0513 14212 tree type_tree = type_to_tree(this->type_->get_backend(context->gogo()));
e440a328 14213 if (type_tree == error_mark_node)
14214 return error_mark_node;
14215
9f0e0513 14216 tree val_type_tree = type_to_tree(this->type()->get_backend(context->gogo()));
c484d925 14217 go_assert(val_type_tree != error_mark_node);
e440a328 14218
14219 const Struct_field_list* fields = this->type_->fields();
14220 tree struct_field_tree = TYPE_FIELDS(type_tree);
14221 Struct_field_list::const_iterator p;
14222 for (p = fields->begin();
14223 p != fields->end();
14224 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
14225 {
c484d925 14226 go_assert(struct_field_tree != NULL_TREE);
e440a328 14227 if (&*p == this->field_)
14228 break;
14229 }
c484d925 14230 go_assert(&*p == this->field_);
e440a328 14231
14232 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
14233 byte_position(struct_field_tree));
14234}
14235
d751bb78 14236// Dump ast representation for a struct field offset expression.
14237
14238void
14239Struct_field_offset_expression::do_dump_expression(
14240 Ast_dump_context* ast_dump_context) const
14241{
14242 ast_dump_context->ostream() << "unsafe.Offsetof(";
2d29d278 14243 ast_dump_context->dump_type(this->type_);
14244 ast_dump_context->ostream() << '.';
14245 ast_dump_context->ostream() <<
14246 Gogo::message_name(this->field_->field_name());
d751bb78 14247 ast_dump_context->ostream() << ")";
14248}
14249
e440a328 14250// Make an expression for a struct field offset.
14251
14252Expression*
14253Expression::make_struct_field_offset(Struct_type* type,
14254 const Struct_field* field)
14255{
14256 return new Struct_field_offset_expression(type, field);
14257}
14258
a9182619 14259// An expression which evaluates to a pointer to the map descriptor of
14260// a map type.
14261
14262class Map_descriptor_expression : public Expression
14263{
14264 public:
b13c66cd 14265 Map_descriptor_expression(Map_type* type, Location location)
a9182619 14266 : Expression(EXPRESSION_MAP_DESCRIPTOR, location),
14267 type_(type)
14268 { }
14269
14270 protected:
14271 Type*
14272 do_type()
14273 { return Type::make_pointer_type(Map_type::make_map_descriptor_type()); }
14274
14275 void
14276 do_determine_type(const Type_context*)
14277 { }
14278
14279 Expression*
14280 do_copy()
14281 { return this; }
14282
14283 tree
14284 do_get_tree(Translate_context* context)
14285 {
14286 return this->type_->map_descriptor_pointer(context->gogo(),
14287 this->location());
14288 }
14289
d751bb78 14290 void
14291 do_dump_expression(Ast_dump_context*) const;
14292
a9182619 14293 private:
14294 // The type for which this is the descriptor.
14295 Map_type* type_;
14296};
14297
d751bb78 14298// Dump ast representation for a map descriptor expression.
14299
14300void
14301Map_descriptor_expression::do_dump_expression(
14302 Ast_dump_context* ast_dump_context) const
14303{
14304 ast_dump_context->ostream() << "map_descriptor(";
14305 ast_dump_context->dump_type(this->type_);
14306 ast_dump_context->ostream() << ")";
14307}
14308
a9182619 14309// Make a map descriptor expression.
14310
14311Expression*
b13c66cd 14312Expression::make_map_descriptor(Map_type* type, Location location)
a9182619 14313{
14314 return new Map_descriptor_expression(type, location);
14315}
14316
e440a328 14317// An expression which evaluates to the address of an unnamed label.
14318
14319class Label_addr_expression : public Expression
14320{
14321 public:
b13c66cd 14322 Label_addr_expression(Label* label, Location location)
e440a328 14323 : Expression(EXPRESSION_LABEL_ADDR, location),
14324 label_(label)
14325 { }
14326
14327 protected:
14328 Type*
14329 do_type()
14330 { return Type::make_pointer_type(Type::make_void_type()); }
14331
14332 void
14333 do_determine_type(const Type_context*)
14334 { }
14335
14336 Expression*
14337 do_copy()
14338 { return new Label_addr_expression(this->label_, this->location()); }
14339
14340 tree
6e193e6f 14341 do_get_tree(Translate_context* context)
14342 {
e8816003 14343 return expr_to_tree(this->label_->get_addr(context, this->location()));
6e193e6f 14344 }
e440a328 14345
d751bb78 14346 void
14347 do_dump_expression(Ast_dump_context* ast_dump_context) const
14348 { ast_dump_context->ostream() << this->label_->name(); }
14349
e440a328 14350 private:
14351 // The label whose address we are taking.
14352 Label* label_;
14353};
14354
14355// Make an expression for the address of an unnamed label.
14356
14357Expression*
b13c66cd 14358Expression::make_label_addr(Label* label, Location location)
e440a328 14359{
14360 return new Label_addr_expression(label, location);
14361}
14362
14363// Import an expression. This comes at the end in order to see the
14364// various class definitions.
14365
14366Expression*
14367Expression::import_expression(Import* imp)
14368{
14369 int c = imp->peek_char();
14370 if (imp->match_c_string("- ")
14371 || imp->match_c_string("! ")
14372 || imp->match_c_string("^ "))
14373 return Unary_expression::do_import(imp);
14374 else if (c == '(')
14375 return Binary_expression::do_import(imp);
14376 else if (imp->match_c_string("true")
14377 || imp->match_c_string("false"))
14378 return Boolean_expression::do_import(imp);
14379 else if (c == '"')
14380 return String_expression::do_import(imp);
14381 else if (c == '-' || (c >= '0' && c <= '9'))
14382 {
14383 // This handles integers, floats and complex constants.
14384 return Integer_expression::do_import(imp);
14385 }
14386 else if (imp->match_c_string("nil"))
14387 return Nil_expression::do_import(imp);
14388 else if (imp->match_c_string("convert"))
14389 return Type_conversion_expression::do_import(imp);
14390 else
14391 {
14392 error_at(imp->location(), "import error: expected expression");
14393 return Expression::make_error(imp->location());
14394 }
14395}
14396
14397// Class Expression_list.
14398
14399// Traverse the list.
14400
14401int
14402Expression_list::traverse(Traverse* traverse)
14403{
14404 for (Expression_list::iterator p = this->begin();
14405 p != this->end();
14406 ++p)
14407 {
14408 if (*p != NULL)
14409 {
14410 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
14411 return TRAVERSE_EXIT;
14412 }
14413 }
14414 return TRAVERSE_CONTINUE;
14415}
14416
14417// Copy the list.
14418
14419Expression_list*
14420Expression_list::copy()
14421{
14422 Expression_list* ret = new Expression_list();
14423 for (Expression_list::iterator p = this->begin();
14424 p != this->end();
14425 ++p)
14426 {
14427 if (*p == NULL)
14428 ret->push_back(NULL);
14429 else
14430 ret->push_back((*p)->copy());
14431 }
14432 return ret;
14433}
14434
14435// Return whether an expression list has an error expression.
14436
14437bool
14438Expression_list::contains_error() const
14439{
14440 for (Expression_list::const_iterator p = this->begin();
14441 p != this->end();
14442 ++p)
14443 if (*p != NULL && (*p)->is_error_expression())
14444 return true;
14445 return false;
14446}