]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/lower-subreg.cc
build: Fix missing variable quotes and typo
[thirdparty/gcc.git] / gcc / lower-subreg.cc
CommitLineData
e53a16e7 1/* Decompose multiword subregs.
a945c346 2 Copyright (C) 2007-2024 Free Software Foundation, Inc.
e53a16e7
ILT
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
e53a16e7
ILT
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
e53a16e7
ILT
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
c7131fb2 25#include "backend.h"
e53a16e7 26#include "rtl.h"
957060b5
AM
27#include "tree.h"
28#include "cfghooks.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
e53a16e7 31#include "tm_p.h"
957060b5 32#include "expmed.h"
e53a16e7 33#include "insn-config.h"
957060b5
AM
34#include "emit-rtl.h"
35#include "recog.h"
60393bbc
AM
36#include "cfgrtl.h"
37#include "cfgbuild.h"
8d074192 38#include "dce.h"
e53a16e7 39#include "expr.h"
650c36ec 40#include "explow.h"
e53a16e7 41#include "tree-pass.h"
af4ba423 42#include "lower-subreg.h"
cf55cb6a 43#include "rtl-iter.h"
99e1629f 44#include "target.h"
e53a16e7 45
e53a16e7
ILT
46
47/* Decompose multi-word pseudo-registers into individual
af4ba423
KZ
48 pseudo-registers when possible and profitable. This is possible
49 when all the uses of a multi-word register are via SUBREG, or are
50 copies of the register to another location. Breaking apart the
51 register permits more CSE and permits better register allocation.
52 This is profitable if the machine does not have move instructions
53 to do this.
54
55 This pass only splits moves with modes that are wider than
d7fde18c
JJ
56 word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
57 integer modes that are twice the width of word_mode. The latter
58 could be generalized if there was a need to do this, but the trend in
af4ba423
KZ
59 architectures is to not need this.
60
61 There are two useful preprocessor defines for use by maintainers:
62
63 #define LOG_COSTS 1
64
65 if you wish to see the actual cost estimates that are being used
66 for each mode wider than word mode and the cost estimates for zero
67 extension and the shifts. This can be useful when port maintainers
68 are tuning insn rtx costs.
69
70 #define FORCE_LOWERING 1
71
72 if you wish to test the pass with all the transformation forced on.
73 This can be useful for finding bugs in the transformations. */
74
75#define LOG_COSTS 0
76#define FORCE_LOWERING 0
e53a16e7
ILT
77
78/* Bit N in this bitmap is set if regno N is used in a context in
79 which we can decompose it. */
80static bitmap decomposable_context;
81
82/* Bit N in this bitmap is set if regno N is used in a context in
67914693 83 which it cannot be decomposed. */
e53a16e7
ILT
84static bitmap non_decomposable_context;
85
402464a0
BS
86/* Bit N in this bitmap is set if regno N is used in a subreg
87 which changes the mode but not the size. This typically happens
88 when the register accessed as a floating-point value; we want to
89 avoid generating accesses to its subwords in integer modes. */
90static bitmap subreg_context;
91
e53a16e7
ILT
92/* Bit N in the bitmap in element M of this array is set if there is a
93 copy from reg M to reg N. */
9771b263 94static vec<bitmap> reg_copy_graph;
e53a16e7 95
af4ba423
KZ
96struct target_lower_subreg default_target_lower_subreg;
97#if SWITCHABLE_TARGET
98struct target_lower_subreg *this_target_lower_subreg
99 = &default_target_lower_subreg;
100#endif
101
102#define twice_word_mode \
103 this_target_lower_subreg->x_twice_word_mode
104#define choices \
105 this_target_lower_subreg->x_choices
106
8536340f
RS
107/* Return true if MODE is a mode we know how to lower. When returning true,
108 store its byte size in *BYTES and its word size in *WORDS. */
109
110static inline bool
111interesting_mode_p (machine_mode mode, unsigned int *bytes,
112 unsigned int *words)
113{
cf098191
RS
114 if (!GET_MODE_SIZE (mode).is_constant (bytes))
115 return false;
8536340f
RS
116 *words = CEIL (*bytes, UNITS_PER_WORD);
117 return true;
118}
119
af4ba423
KZ
120/* RTXes used while computing costs. */
121struct cost_rtxes {
122 /* Source and target registers. */
123 rtx source;
124 rtx target;
125
126 /* A twice_word_mode ZERO_EXTEND of SOURCE. */
127 rtx zext;
128
129 /* A shift of SOURCE. */
130 rtx shift;
131
132 /* A SET of TARGET. */
133 rtx set;
134};
135
136/* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
137 rtxes in RTXES. SPEED_P selects between the speed and size cost. */
138
139static int
140shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
ef4bddc2 141 machine_mode mode, int op1)
af4ba423 142{
af4ba423
KZ
143 PUT_CODE (rtxes->shift, code);
144 PUT_MODE (rtxes->shift, mode);
145 PUT_MODE (rtxes->source, mode);
abd3c800 146 XEXP (rtxes->shift, 1) = gen_int_shift_amount (mode, op1);
e548c9df 147 return set_src_cost (rtxes->shift, mode, speed_p);
af4ba423
KZ
148}
149
150/* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
151 to true if it is profitable to split a double-word CODE shift
152 of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
153 for speed or size profitability.
154
155 Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
156 the cost of moving zero into a word-mode register. WORD_MOVE_COST
157 is the cost of moving between word registers. */
158
159static void
160compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
161 bool *splitting, enum rtx_code code,
162 int word_move_zero_cost, int word_move_cost)
163{
d7fde18c 164 int wide_cost, narrow_cost, upper_cost, i;
af4ba423
KZ
165
166 for (i = 0; i < BITS_PER_WORD; i++)
167 {
168 wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
169 i + BITS_PER_WORD);
170 if (i == 0)
171 narrow_cost = word_move_cost;
172 else
173 narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);
174
d7fde18c
JJ
175 if (code != ASHIFTRT)
176 upper_cost = word_move_zero_cost;
177 else if (i == BITS_PER_WORD - 1)
178 upper_cost = word_move_cost;
179 else
180 upper_cost = shift_cost (speed_p, rtxes, code, word_mode,
181 BITS_PER_WORD - 1);
182
af4ba423
KZ
183 if (LOG_COSTS)
184 fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
185 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
d7fde18c 186 i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost);
af4ba423 187
d7fde18c 188 if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost)
af4ba423
KZ
189 splitting[i] = true;
190 }
191}
192
193/* Compute what we should do when optimizing for speed or size; SPEED_P
194 selects which. Use RTXES for computing costs. */
195
196static void
197compute_costs (bool speed_p, struct cost_rtxes *rtxes)
198{
199 unsigned int i;
200 int word_move_zero_cost, word_move_cost;
201
69523a7c 202 PUT_MODE (rtxes->target, word_mode);
af4ba423 203 SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
69523a7c 204 word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p);
af4ba423
KZ
205
206 SET_SRC (rtxes->set) = rtxes->source;
69523a7c 207 word_move_cost = set_rtx_cost (rtxes->set, speed_p);
af4ba423
KZ
208
209 if (LOG_COSTS)
210 fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
211 GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);
212
213 for (i = 0; i < MAX_MACHINE_MODE; i++)
214 {
ef4bddc2 215 machine_mode mode = (machine_mode) i;
8536340f
RS
216 unsigned int size, factor;
217 if (interesting_mode_p (mode, &size, &factor) && factor > 1)
af4ba423 218 {
8536340f 219 unsigned int mode_move_cost;
af4ba423
KZ
220
221 PUT_MODE (rtxes->target, mode);
222 PUT_MODE (rtxes->source, mode);
69523a7c 223 mode_move_cost = set_rtx_cost (rtxes->set, speed_p);
af4ba423
KZ
224
225 if (LOG_COSTS)
226 fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
227 GET_MODE_NAME (mode), mode_move_cost,
228 word_move_cost, factor);
229
230 if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
231 {
232 choices[speed_p].move_modes_to_split[i] = true;
233 choices[speed_p].something_to_do = true;
234 }
235 }
236 }
237
238 /* For the moves and shifts, the only case that is checked is one
239 where the mode of the target is an integer mode twice the width
240 of the word_mode.
241
242 If it is not profitable to split a double word move then do not
243 even consider the shifts or the zero extension. */
244 if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
245 {
246 int zext_cost;
247
248 /* The only case here to check to see if moving the upper part with a
249 zero is cheaper than doing the zext itself. */
af4ba423 250 PUT_MODE (rtxes->source, word_mode);
e548c9df 251 zext_cost = set_src_cost (rtxes->zext, twice_word_mode, speed_p);
af4ba423
KZ
252
253 if (LOG_COSTS)
254 fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
255 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
256 zext_cost, word_move_cost, word_move_zero_cost);
257
258 if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
259 choices[speed_p].splitting_zext = true;
260
261 compute_splitting_shift (speed_p, rtxes,
262 choices[speed_p].splitting_ashift, ASHIFT,
263 word_move_zero_cost, word_move_cost);
264 compute_splitting_shift (speed_p, rtxes,
265 choices[speed_p].splitting_lshiftrt, LSHIFTRT,
266 word_move_zero_cost, word_move_cost);
d7fde18c
JJ
267 compute_splitting_shift (speed_p, rtxes,
268 choices[speed_p].splitting_ashiftrt, ASHIFTRT,
269 word_move_zero_cost, word_move_cost);
af4ba423
KZ
270 }
271}
272
273/* Do one-per-target initialisation. This involves determining
274 which operations on the machine are profitable. If none are found,
275 then the pass just returns when called. */
276
277void
278init_lower_subreg (void)
279{
280 struct cost_rtxes rtxes;
281
282 memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));
283
490d0f6c 284 twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode).require ();
af4ba423 285
c3dc5e66
RS
286 rtxes.target = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
287 rtxes.source = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
f7df4a84 288 rtxes.set = gen_rtx_SET (rtxes.target, rtxes.source);
af4ba423
KZ
289 rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
290 rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);
291
292 if (LOG_COSTS)
293 fprintf (stderr, "\nSize costs\n==========\n\n");
294 compute_costs (false, &rtxes);
295
296 if (LOG_COSTS)
297 fprintf (stderr, "\nSpeed costs\n===========\n\n");
298 compute_costs (true, &rtxes);
299}
2b54c30f
ILT
300
301static bool
302simple_move_operand (rtx x)
303{
304 if (GET_CODE (x) == SUBREG)
305 x = SUBREG_REG (x);
306
307 if (!OBJECT_P (x))
308 return false;
309
310 if (GET_CODE (x) == LABEL_REF
311 || GET_CODE (x) == SYMBOL_REF
7e0c3f57
ILT
312 || GET_CODE (x) == HIGH
313 || GET_CODE (x) == CONST)
2b54c30f
ILT
314 return false;
315
316 if (MEM_P (x)
317 && (MEM_VOLATILE_P (x)
5bfed9a9 318 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))))
2b54c30f
ILT
319 return false;
320
321 return true;
322}
323
38e60111
PB
324/* If X is an operator that can be treated as a simple move that we
325 can split, then return the operand that is operated on. */
326
327static rtx
328operand_for_swap_move_operator (rtx x)
329{
330 /* A word sized rotate of a register pair is equivalent to swapping
331 the registers in the register pair. */
332 if (GET_CODE (x) == ROTATE
333 && GET_MODE (x) == twice_word_mode
334 && simple_move_operand (XEXP (x, 0))
335 && CONST_INT_P (XEXP (x, 1))
336 && INTVAL (XEXP (x, 1)) == BITS_PER_WORD)
337 return XEXP (x, 0);
338
339 return NULL_RTX;
340}
341
af4ba423
KZ
342/* If INSN is a single set between two objects that we want to split,
343 return the single set. SPEED_P says whether we are optimizing
344 INSN for speed or size.
345
346 INSN should have been passed to recog and extract_insn before this
347 is called. */
e53a16e7
ILT
348
349static rtx
e967cc2f 350simple_move (rtx_insn *insn, bool speed_p)
e53a16e7 351{
38e60111 352 rtx x, op;
e53a16e7 353 rtx set;
ef4bddc2 354 machine_mode mode;
e53a16e7
ILT
355
356 if (recog_data.n_operands != 2)
357 return NULL_RTX;
358
359 set = single_set (insn);
360 if (!set)
361 return NULL_RTX;
362
363 x = SET_DEST (set);
364 if (x != recog_data.operand[0] && x != recog_data.operand[1])
365 return NULL_RTX;
2b54c30f 366 if (!simple_move_operand (x))
e53a16e7
ILT
367 return NULL_RTX;
368
369 x = SET_SRC (set);
38e60111
PB
370 if ((op = operand_for_swap_move_operator (x)) != NULL_RTX)
371 x = op;
372
e53a16e7
ILT
373 if (x != recog_data.operand[0] && x != recog_data.operand[1])
374 return NULL_RTX;
2b54c30f
ILT
375 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
376 things like x86 rdtsc which returns a DImode value. */
377 if (GET_CODE (x) != ASM_OPERANDS
378 && !simple_move_operand (x))
e53a16e7
ILT
379 return NULL_RTX;
380
381 /* We try to decompose in integer modes, to avoid generating
382 inefficient code copying between integer and floating point
383 registers. That means that we can't decompose if this is a
384 non-integer mode for which there is no integer mode of the same
385 size. */
576fe41a 386 mode = GET_MODE (SET_DEST (set));
51124532 387 scalar_int_mode int_mode;
e53a16e7 388 if (!SCALAR_INT_MODE_P (mode)
51124532
JW
389 && (!int_mode_for_size (GET_MODE_BITSIZE (mode), 0).exists (&int_mode)
390 || !targetm.modes_tieable_p (mode, int_mode)))
e53a16e7
ILT
391 return NULL_RTX;
392
1f64a081
ILT
393 /* Reject PARTIAL_INT modes. They are used for processor specific
394 purposes and it's probably best not to tamper with them. */
395 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
396 return NULL_RTX;
397
af4ba423
KZ
398 if (!choices[speed_p].move_modes_to_split[(int) mode])
399 return NULL_RTX;
400
e53a16e7
ILT
401 return set;
402}
403
404/* If SET is a copy from one multi-word pseudo-register to another,
405 record that in reg_copy_graph. Return whether it is such a
406 copy. */
407
408static bool
409find_pseudo_copy (rtx set)
410{
411 rtx dest = SET_DEST (set);
412 rtx src = SET_SRC (set);
38e60111 413 rtx op;
e53a16e7
ILT
414 unsigned int rd, rs;
415 bitmap b;
416
38e60111
PB
417 if ((op = operand_for_swap_move_operator (src)) != NULL_RTX)
418 src = op;
419
e53a16e7
ILT
420 if (!REG_P (dest) || !REG_P (src))
421 return false;
422
423 rd = REGNO (dest);
424 rs = REGNO (src);
425 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
426 return false;
427
9771b263 428 b = reg_copy_graph[rs];
e53a16e7
ILT
429 if (b == NULL)
430 {
431 b = BITMAP_ALLOC (NULL);
9771b263 432 reg_copy_graph[rs] = b;
e53a16e7
ILT
433 }
434
435 bitmap_set_bit (b, rd);
436
437 return true;
438}
439
440/* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
441 where they are copied to another register, add the register to
442 which they are copied to DECOMPOSABLE_CONTEXT. Use
443 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
444 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
445
446static void
447propagate_pseudo_copies (void)
448{
0e3de1d4 449 auto_bitmap queue, propagate;
e53a16e7
ILT
450
451 bitmap_copy (queue, decomposable_context);
452 do
453 {
454 bitmap_iterator iter;
455 unsigned int i;
456
457 bitmap_clear (propagate);
458
459 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
460 {
9771b263 461 bitmap b = reg_copy_graph[i];
e53a16e7
ILT
462 if (b)
463 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
464 }
465
466 bitmap_and_compl (queue, propagate, decomposable_context);
467 bitmap_ior_into (decomposable_context, propagate);
468 }
469 while (!bitmap_empty_p (queue));
e53a16e7
ILT
470}
471
472/* A pointer to one of these values is passed to
a36a1928 473 find_decomposable_subregs. */
e53a16e7
ILT
474
475enum classify_move_insn
476{
477 /* Not a simple move from one location to another. */
478 NOT_SIMPLE_MOVE,
c2c47e8f
UW
479 /* A simple move we want to decompose. */
480 DECOMPOSABLE_SIMPLE_MOVE,
481 /* Any other simple move. */
e53a16e7
ILT
482 SIMPLE_MOVE
483};
484
a36a1928
RS
485/* If we find a SUBREG in *LOC which we could use to decompose a
486 pseudo-register, set a bit in DECOMPOSABLE_CONTEXT. If we find an
487 unadorned register which is not a simple pseudo-register copy,
488 DATA will point at the type of move, and we set a bit in
489 DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate. */
e53a16e7 490
a36a1928
RS
491static void
492find_decomposable_subregs (rtx *loc, enum classify_move_insn *pcmi)
e53a16e7 493{
a36a1928
RS
494 subrtx_var_iterator::array_type array;
495 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
e53a16e7 496 {
a36a1928
RS
497 rtx x = *iter;
498 if (GET_CODE (x) == SUBREG)
499 {
500 rtx inner = SUBREG_REG (x);
501 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
e53a16e7 502
a36a1928
RS
503 if (!REG_P (inner))
504 continue;
e53a16e7 505
a36a1928
RS
506 regno = REGNO (inner);
507 if (HARD_REGISTER_NUM_P (regno))
508 {
509 iter.skip_subrtxes ();
510 continue;
511 }
e53a16e7 512
8536340f
RS
513 if (!interesting_mode_p (GET_MODE (x), &outer_size, &outer_words)
514 || !interesting_mode_p (GET_MODE (inner), &inner_size,
515 &inner_words))
516 continue;
e53a16e7 517
a36a1928
RS
518 /* We only try to decompose single word subregs of multi-word
519 registers. When we find one, we return -1 to avoid iterating
520 over the inner register.
e53a16e7 521
a36a1928
RS
522 ??? This doesn't allow, e.g., DImode subregs of TImode values
523 on 32-bit targets. We would need to record the way the
524 pseudo-register was used, and only decompose if all the uses
525 were the same number and size of pieces. Hopefully this
526 doesn't happen much. */
e53a16e7 527
75b5bc01
JJ
528 if (outer_words == 1
529 && inner_words > 1
530 /* Don't allow to decompose floating point subregs of
531 multi-word pseudos if the floating point mode does
532 not have word size, because otherwise we'd generate
533 a subreg with that floating mode from a different
534 sized integral pseudo which is not allowed by
535 validate_subreg. */
536 && (!FLOAT_MODE_P (GET_MODE (x))
537 || outer_size == UNITS_PER_WORD))
a36a1928
RS
538 {
539 bitmap_set_bit (decomposable_context, regno);
540 iter.skip_subrtxes ();
541 continue;
542 }
03743286 543
a36a1928
RS
544 /* If this is a cast from one mode to another, where the modes
545 have the same size, and they are not tieable, then mark this
546 register as non-decomposable. If we decompose it we are
547 likely to mess up whatever the backend is trying to do. */
548 if (outer_words > 1
549 && outer_size == inner_size
99e1629f 550 && !targetm.modes_tieable_p (GET_MODE (x), GET_MODE (inner)))
a36a1928
RS
551 {
552 bitmap_set_bit (non_decomposable_context, regno);
553 bitmap_set_bit (subreg_context, regno);
554 iter.skip_subrtxes ();
555 continue;
556 }
03743286 557 }
a36a1928 558 else if (REG_P (x))
e53a16e7 559 {
8536340f 560 unsigned int regno, size, words;
a36a1928
RS
561
562 /* We will see an outer SUBREG before we see the inner REG, so
563 when we see a plain REG here it means a direct reference to
564 the register.
565
566 If this is not a simple copy from one location to another,
67914693 567 then we cannot decompose this register. If this is a simple
a36a1928
RS
568 copy we want to decompose, and the mode is right,
569 then we mark the register as decomposable.
570 Otherwise we don't say anything about this register --
571 it could be decomposed, but whether that would be
572 profitable depends upon how it is used elsewhere.
573
574 We only set bits in the bitmap for multi-word
575 pseudo-registers, since those are the only ones we care about
576 and it keeps the size of the bitmaps down. */
577
578 regno = REGNO (x);
579 if (!HARD_REGISTER_NUM_P (regno)
8536340f
RS
580 && interesting_mode_p (GET_MODE (x), &size, &words)
581 && words > 1)
e53a16e7 582 {
a36a1928
RS
583 switch (*pcmi)
584 {
585 case NOT_SIMPLE_MOVE:
586 bitmap_set_bit (non_decomposable_context, regno);
587 break;
588 case DECOMPOSABLE_SIMPLE_MOVE:
99e1629f 589 if (targetm.modes_tieable_p (GET_MODE (x), word_mode))
a36a1928
RS
590 bitmap_set_bit (decomposable_context, regno);
591 break;
592 case SIMPLE_MOVE:
593 break;
594 default:
595 gcc_unreachable ();
596 }
e53a16e7
ILT
597 }
598 }
a36a1928
RS
599 else if (MEM_P (x))
600 {
601 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
2b54c30f 602
a36a1928
RS
603 /* Any registers used in a MEM do not participate in a
604 SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion
605 here, and return -1 to block the parent's recursion. */
606 find_decomposable_subregs (&XEXP (x, 0), &cmi_mem);
607 iter.skip_subrtxes ();
608 }
2b54c30f 609 }
e53a16e7
ILT
610}
611
612/* Decompose REGNO into word-sized components. We smash the REG node
613 in place. This ensures that (1) something goes wrong quickly if we
614 fail to make some replacement, and (2) the debug information inside
615 the symbol table is automatically kept up to date. */
616
617static void
618decompose_register (unsigned int regno)
619{
620 rtx reg;
8536340f 621 unsigned int size, words, i;
e53a16e7
ILT
622 rtvec v;
623
624 reg = regno_reg_rtx[regno];
625
626 regno_reg_rtx[regno] = NULL_RTX;
e53a16e7 627
8536340f
RS
628 if (!interesting_mode_p (GET_MODE (reg), &size, &words))
629 gcc_unreachable ();
e53a16e7
ILT
630
631 v = rtvec_alloc (words);
632 for (i = 0; i < words; ++i)
633 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
634
635 PUT_CODE (reg, CONCATN);
636 XVEC (reg, 0) = v;
637
638 if (dump_file)
639 {
640 fprintf (dump_file, "; Splitting reg %u ->", regno);
641 for (i = 0; i < words; ++i)
642 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
643 fputc ('\n', dump_file);
644 }
645}
646
647/* Get a SUBREG of a CONCATN. */
648
649static rtx
91914e56 650simplify_subreg_concatn (machine_mode outermode, rtx op, poly_uint64 orig_byte)
e53a16e7 651{
8536340f 652 unsigned int outer_size, outer_words, inner_size, inner_words;
ef4bddc2 653 machine_mode innermode, partmode;
e53a16e7
ILT
654 rtx part;
655 unsigned int final_offset;
91914e56 656 unsigned int byte;
e53a16e7 657
8536340f
RS
658 innermode = GET_MODE (op);
659 if (!interesting_mode_p (outermode, &outer_size, &outer_words)
660 || !interesting_mode_p (innermode, &inner_size, &inner_words))
661 gcc_unreachable ();
662
91914e56
RS
663 /* Must be constant if interesting_mode_p passes. */
664 byte = orig_byte.to_constant ();
e53a16e7 665 gcc_assert (GET_CODE (op) == CONCATN);
8536340f 666 gcc_assert (byte % outer_size == 0);
e53a16e7 667
8536340f
RS
668 gcc_assert (byte < inner_size);
669 if (outer_size > inner_size)
2ab9a4a5 670 return NULL_RTX;
e53a16e7 671
8536340f 672 inner_size /= XVECLEN (op, 0);
e53a16e7 673 part = XVECEXP (op, 0, byte / inner_size);
695ae295
UB
674 partmode = GET_MODE (part);
675
61b2290a 676 final_offset = byte % inner_size;
8536340f 677 if (final_offset + outer_size > inner_size)
61b2290a
RS
678 return NULL_RTX;
679
822a55a0
UB
680 /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
681 regular CONST_VECTORs. They have vector or integer modes, depending
682 on the capabilities of the target. Cope with them. */
683 if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
684 partmode = GET_MODE_INNER (innermode);
685 else if (partmode == VOIDmode)
61b2290a
RS
686 partmode = mode_for_size (inner_size * BITS_PER_UNIT,
687 GET_MODE_CLASS (innermode), 0).require ();
e53a16e7 688
695ae295 689 return simplify_gen_subreg (outermode, part, partmode, final_offset);
e53a16e7
ILT
690}
691
692/* Wrapper around simplify_gen_subreg which handles CONCATN. */
693
694static rtx
ef4bddc2
RS
695simplify_gen_subreg_concatn (machine_mode outermode, rtx op,
696 machine_mode innermode, unsigned int byte)
e53a16e7 697{
0e6c5b58
ILT
698 rtx ret;
699
e53a16e7
ILT
700 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
701 If OP is a SUBREG of a CONCATN, then it must be a simple mode
702 change with the same size and offset 0, or it must extract a
703 part. We shouldn't see anything else here. */
704 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
705 {
706 rtx op2;
707
cf098191
RS
708 if (known_eq (GET_MODE_SIZE (GET_MODE (op)),
709 GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
91914e56 710 && known_eq (SUBREG_BYTE (op), 0))
e53a16e7
ILT
711 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
712 GET_MODE (SUBREG_REG (op)), byte);
713
714 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
715 SUBREG_BYTE (op));
716 if (op2 == NULL_RTX)
717 {
718 /* We don't handle paradoxical subregs here. */
03a95621
RS
719 gcc_assert (!paradoxical_subreg_p (outermode, GET_MODE (op)));
720 gcc_assert (!paradoxical_subreg_p (op));
e53a16e7
ILT
721 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
722 byte + SUBREG_BYTE (op));
723 gcc_assert (op2 != NULL_RTX);
724 return op2;
725 }
726
727 op = op2;
728 gcc_assert (op != NULL_RTX);
729 gcc_assert (innermode == GET_MODE (op));
730 }
0e6c5b58 731
e53a16e7
ILT
732 if (GET_CODE (op) == CONCATN)
733 return simplify_subreg_concatn (outermode, op, byte);
0e6c5b58
ILT
734
735 ret = simplify_gen_subreg (outermode, op, innermode, byte);
736
737 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
738 resolve_simple_move will ask for the high part of the paradoxical
739 subreg, which does not have a value. Just return a zero. */
740 if (ret == NULL_RTX
03a95621 741 && paradoxical_subreg_p (op))
0e6c5b58
ILT
742 return CONST0_RTX (outermode);
743
744 gcc_assert (ret != NULL_RTX);
745 return ret;
e53a16e7
ILT
746}
747
748/* Return whether we should resolve X into the registers into which it
749 was decomposed. */
750
751static bool
752resolve_reg_p (rtx x)
753{
754 return GET_CODE (x) == CONCATN;
755}
756
757/* Return whether X is a SUBREG of a register which we need to
758 resolve. */
759
760static bool
761resolve_subreg_p (rtx x)
762{
763 if (GET_CODE (x) != SUBREG)
764 return false;
765 return resolve_reg_p (SUBREG_REG (x));
766}
767
cf55cb6a 768/* Look for SUBREGs in *LOC which need to be decomposed. */
e53a16e7 769
cf55cb6a
RS
770static bool
771resolve_subreg_use (rtx *loc, rtx insn)
e53a16e7 772{
cf55cb6a
RS
773 subrtx_ptr_iterator::array_type array;
774 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
e53a16e7 775 {
cf55cb6a
RS
776 rtx *loc = *iter;
777 rtx x = *loc;
778 if (resolve_subreg_p (x))
e53a16e7 779 {
cf55cb6a
RS
780 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
781 SUBREG_BYTE (x));
e53a16e7 782
cf55cb6a
RS
783 /* It is possible for a note to contain a reference which we can
784 decompose. In this case, return 1 to the caller to indicate
785 that the note must be removed. */
786 if (!x)
787 {
788 gcc_assert (!insn);
789 return true;
790 }
e53a16e7 791
cf55cb6a
RS
792 validate_change (insn, loc, x, 1);
793 iter.skip_subrtxes ();
794 }
795 else if (resolve_reg_p (x))
796 /* Return 1 to the caller to indicate that we found a direct
797 reference to a register which is being decomposed. This can
798 happen inside notes, multiword shift or zero-extend
799 instructions. */
800 return true;
e53a16e7
ILT
801 }
802
cf55cb6a 803 return false;
e53a16e7
ILT
804}
805
e53a16e7
ILT
806/* Resolve any decomposed registers which appear in register notes on
807 INSN. */
808
809static void
e967cc2f 810resolve_reg_notes (rtx_insn *insn)
e53a16e7
ILT
811{
812 rtx *pnote, note;
813
814 note = find_reg_equal_equiv_note (insn);
815 if (note)
816 {
6fb5fa3c 817 int old_count = num_validated_changes ();
cf55cb6a 818 if (resolve_subreg_use (&XEXP (note, 0), NULL_RTX))
4a8cae83 819 remove_note (insn, note);
6fb5fa3c
DB
820 else
821 if (old_count != num_validated_changes ())
822 df_notes_rescan (insn);
e53a16e7
ILT
823 }
824
825 pnote = &REG_NOTES (insn);
826 while (*pnote != NULL_RTX)
827 {
60564289 828 bool del = false;
e53a16e7
ILT
829
830 note = *pnote;
831 switch (REG_NOTE_KIND (note))
832 {
6fb5fa3c
DB
833 case REG_DEAD:
834 case REG_UNUSED:
e53a16e7 835 if (resolve_reg_p (XEXP (note, 0)))
60564289 836 del = true;
e53a16e7
ILT
837 break;
838
839 default:
840 break;
841 }
842
60564289 843 if (del)
e53a16e7
ILT
844 *pnote = XEXP (note, 1);
845 else
846 pnote = &XEXP (note, 1);
847 }
848}
849
2b54c30f 850/* Return whether X can be decomposed into subwords. */
e53a16e7
ILT
851
852static bool
2b54c30f 853can_decompose_p (rtx x)
e53a16e7
ILT
854{
855 if (REG_P (x))
856 {
857 unsigned int regno = REGNO (x);
858
859 if (HARD_REGISTER_NUM_P (regno))
488c8379 860 {
8536340f 861 unsigned int byte, num_bytes, num_words;
488c8379 862
8536340f
RS
863 if (!interesting_mode_p (GET_MODE (x), &num_bytes, &num_words))
864 return false;
488c8379
RS
865 for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
866 if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
867 return false;
868 return true;
869 }
e53a16e7 870 else
402464a0 871 return !bitmap_bit_p (subreg_context, regno);
e53a16e7
ILT
872 }
873
2b54c30f 874 return true;
e53a16e7
ILT
875}
876
38e60111
PB
877/* OPND is a concatn operand this is used with a simple move operator.
878 Return a new rtx with the concatn's operands swapped. */
879
880static rtx
881resolve_operand_for_swap_move_operator (rtx opnd)
882{
883 gcc_assert (GET_CODE (opnd) == CONCATN);
884 rtx concatn = copy_rtx (opnd);
885 rtx op0 = XVECEXP (concatn, 0, 0);
886 rtx op1 = XVECEXP (concatn, 0, 1);
887 XVECEXP (concatn, 0, 0) = op1;
888 XVECEXP (concatn, 0, 1) = op0;
889 return concatn;
890}
891
e53a16e7
ILT
892/* Decompose the registers used in a simple move SET within INSN. If
893 we don't change anything, return INSN, otherwise return the start
894 of the sequence of moves. */
895
e967cc2f
DM
896static rtx_insn *
897resolve_simple_move (rtx set, rtx_insn *insn)
e53a16e7 898{
38e60111 899 rtx src, dest, real_dest, src_op;
e967cc2f 900 rtx_insn *insns;
ef4bddc2 901 machine_mode orig_mode, dest_mode;
8536340f 902 unsigned int orig_size, words;
e53a16e7
ILT
903 bool pushing;
904
905 src = SET_SRC (set);
906 dest = SET_DEST (set);
907 orig_mode = GET_MODE (dest);
908
8536340f
RS
909 if (!interesting_mode_p (orig_mode, &orig_size, &words))
910 gcc_unreachable ();
af4ba423 911 gcc_assert (words > 1);
e53a16e7
ILT
912
913 start_sequence ();
914
915 /* We have to handle copying from a SUBREG of a decomposed reg where
916 the SUBREG is larger than word size. Rather than assume that we
917 can take a word_mode SUBREG of the destination, we copy to a new
918 register and then copy that to the destination. */
919
920 real_dest = NULL_RTX;
921
38e60111
PB
922 if ((src_op = operand_for_swap_move_operator (src)) != NULL_RTX)
923 {
924 if (resolve_reg_p (dest))
925 {
926 /* DEST is a CONCATN, so swap its operands and strip
927 SRC's operator. */
928 dest = resolve_operand_for_swap_move_operator (dest);
929 src = src_op;
aed445b0
JJ
930 if (resolve_reg_p (src))
931 {
932 gcc_assert (GET_CODE (src) == CONCATN);
933 if (reg_overlap_mentioned_p (XVECEXP (dest, 0, 0),
934 XVECEXP (src, 0, 1)))
935 {
30e1c3d7 936 /* If there is overlap between the first half of the
aed445b0
JJ
937 destination and what will be stored to the second one,
938 use a temporary pseudo. See PR114211. */
939 rtx tem = gen_reg_rtx (GET_MODE (XVECEXP (src, 0, 1)));
940 emit_move_insn (tem, XVECEXP (src, 0, 1));
941 src = copy_rtx (src);
942 XVECEXP (src, 0, 1) = tem;
943 }
944 }
38e60111
PB
945 }
946 else if (resolve_reg_p (src_op))
947 {
948 /* SRC is an operation on a CONCATN, so strip the operator and
949 swap the CONCATN's operands. */
950 src = resolve_operand_for_swap_move_operator (src_op);
951 }
952 }
953
e53a16e7
ILT
954 if (GET_CODE (src) == SUBREG
955 && resolve_reg_p (SUBREG_REG (src))
91914e56 956 && (maybe_ne (SUBREG_BYTE (src), 0)
cf098191 957 || maybe_ne (orig_size, GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
e53a16e7
ILT
958 {
959 real_dest = dest;
960 dest = gen_reg_rtx (orig_mode);
961 if (REG_P (real_dest))
962 REG_ATTRS (dest) = REG_ATTRS (real_dest);
963 }
964
965 /* Similarly if we are copying to a SUBREG of a decomposed reg where
966 the SUBREG is larger than word size. */
967
968 if (GET_CODE (dest) == SUBREG
969 && resolve_reg_p (SUBREG_REG (dest))
91914e56 970 && (maybe_ne (SUBREG_BYTE (dest), 0)
cf098191
RS
971 || maybe_ne (orig_size,
972 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
e53a16e7 973 {
e967cc2f
DM
974 rtx reg, smove;
975 rtx_insn *minsn;
e53a16e7
ILT
976
977 reg = gen_reg_rtx (orig_mode);
978 minsn = emit_move_insn (reg, src);
979 smove = single_set (minsn);
980 gcc_assert (smove != NULL_RTX);
981 resolve_simple_move (smove, minsn);
982 src = reg;
983 }
984
985 /* If we didn't have any big SUBREGS of decomposed registers, and
986 neither side of the move is a register we are decomposing, then
987 we don't have to do anything here. */
988
989 if (src == SET_SRC (set)
990 && dest == SET_DEST (set)
991 && !resolve_reg_p (src)
992 && !resolve_subreg_p (src)
993 && !resolve_reg_p (dest)
994 && !resolve_subreg_p (dest))
995 {
996 end_sequence ();
997 return insn;
998 }
999
30d18db4
ILT
1000 /* It's possible for the code to use a subreg of a decomposed
1001 register while forming an address. We need to handle that before
1002 passing the address to emit_move_insn. We pass NULL_RTX as the
67914693 1003 insn parameter to resolve_subreg_use because we cannot validate
30d18db4
ILT
1004 the insn yet. */
1005 if (MEM_P (src) || MEM_P (dest))
1006 {
1007 int acg;
1008
1009 if (MEM_P (src))
cf55cb6a 1010 resolve_subreg_use (&XEXP (src, 0), NULL_RTX);
30d18db4 1011 if (MEM_P (dest))
cf55cb6a 1012 resolve_subreg_use (&XEXP (dest, 0), NULL_RTX);
30d18db4
ILT
1013 acg = apply_change_group ();
1014 gcc_assert (acg);
1015 }
1016
e53a16e7
ILT
1017 /* If SRC is a register which we can't decompose, or has side
1018 effects, we need to move via a temporary register. */
1019
2b54c30f 1020 if (!can_decompose_p (src)
e53a16e7
ILT
1021 || side_effects_p (src)
1022 || GET_CODE (src) == ASM_OPERANDS)
1023 {
1024 rtx reg;
1025
1026 reg = gen_reg_rtx (orig_mode);
ce5d49a8 1027
760edf20
TS
1028 if (AUTO_INC_DEC)
1029 {
d8485bdb 1030 rtx_insn *move = emit_move_insn (reg, src);
760edf20
TS
1031 if (MEM_P (src))
1032 {
1033 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
1034 if (note)
1035 add_reg_note (move, REG_INC, XEXP (note, 0));
1036 }
1037 }
1038 else
1039 emit_move_insn (reg, src);
1040
e53a16e7
ILT
1041 src = reg;
1042 }
1043
1044 /* If DEST is a register which we can't decompose, or has side
1045 effects, we need to first move to a temporary register. We
1046 handle the common case of pushing an operand directly. We also
1047 go through a temporary register if it holds a floating point
1048 value. This gives us better code on systems which can't move
1049 data easily between integer and floating point registers. */
1050
1051 dest_mode = orig_mode;
1052 pushing = push_operand (dest, dest_mode);
2b54c30f 1053 if (!can_decompose_p (dest)
e53a16e7
ILT
1054 || (side_effects_p (dest) && !pushing)
1055 || (!SCALAR_INT_MODE_P (dest_mode)
1056 && !resolve_reg_p (dest)
1057 && !resolve_subreg_p (dest)))
1058 {
1059 if (real_dest == NULL_RTX)
1060 real_dest = dest;
1061 if (!SCALAR_INT_MODE_P (dest_mode))
636bfdfa 1062 dest_mode = int_mode_for_mode (dest_mode).require ();
e53a16e7
ILT
1063 dest = gen_reg_rtx (dest_mode);
1064 if (REG_P (real_dest))
1065 REG_ATTRS (dest) = REG_ATTRS (real_dest);
1066 }
1067
1068 if (pushing)
1069 {
1070 unsigned int i, j, jinc;
1071
8536340f 1072 gcc_assert (orig_size % UNITS_PER_WORD == 0);
e53a16e7
ILT
1073 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
1074 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
1075
1076 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
1077 {
1078 j = 0;
1079 jinc = 1;
1080 }
1081 else
1082 {
1083 j = words - 1;
1084 jinc = -1;
1085 }
1086
1087 for (i = 0; i < words; ++i, j += jinc)
1088 {
1089 rtx temp;
1090
1091 temp = copy_rtx (XEXP (dest, 0));
1092 temp = adjust_automodify_address_nv (dest, word_mode, temp,
1093 j * UNITS_PER_WORD);
1094 emit_move_insn (temp,
1095 simplify_gen_subreg_concatn (word_mode, src,
1096 orig_mode,
1097 j * UNITS_PER_WORD));
1098 }
1099 }
1100 else
1101 {
1102 unsigned int i;
1103
e53a16e7 1104 for (i = 0; i < words; ++i)
c7969df1
JL
1105 {
1106 rtx t = simplify_gen_subreg_concatn (word_mode, dest,
1107 dest_mode,
1108 i * UNITS_PER_WORD);
1109 /* simplify_gen_subreg_concatn can return (const_int 0) for
1110 some sub-objects of paradoxical subregs. As a source operand,
1111 that's fine. As a destination it must be avoided. Those are
1112 supposed to be don't care bits, so we can just drop that store
1113 on the floor. */
1114 if (t != CONST0_RTX (word_mode))
1115 emit_move_insn (t,
1116 simplify_gen_subreg_concatn (word_mode, src,
1117 orig_mode,
1118 i * UNITS_PER_WORD));
1119 }
e53a16e7
ILT
1120 }
1121
1122 if (real_dest != NULL_RTX)
1123 {
e967cc2f
DM
1124 rtx mdest, smove;
1125 rtx_insn *minsn;
e53a16e7
ILT
1126
1127 if (dest_mode == orig_mode)
1128 mdest = dest;
1129 else
1130 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
1131 minsn = emit_move_insn (real_dest, mdest);
1132
760edf20 1133 if (AUTO_INC_DEC && MEM_P (real_dest)
ce5d49a8
ZC
1134 && !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest)))
1135 {
1136 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
1137 if (note)
1138 add_reg_note (minsn, REG_INC, XEXP (note, 0));
1139 }
ce5d49a8 1140
e53a16e7
ILT
1141 smove = single_set (minsn);
1142 gcc_assert (smove != NULL_RTX);
1143
1144 resolve_simple_move (smove, minsn);
1145 }
1146
1147 insns = get_insns ();
1148 end_sequence ();
1149
1d65f45c 1150 copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
73663bb7 1151
e53a16e7
ILT
1152 emit_insn_before (insns, insn);
1153
82981227 1154 /* If we get here via self-recursion, then INSN is not yet in the insns
6873ecab
SB
1155 chain and delete_insn will fail. We only want to remove INSN from the
1156 current sequence. See PR56738. */
1157 if (in_sequence_p ())
1158 remove_insn (insn);
1159 else
1160 delete_insn (insn);
e53a16e7
ILT
1161
1162 return insns;
1163}
1164
1165/* Change a CLOBBER of a decomposed register into a CLOBBER of the
1166 component registers. Return whether we changed something. */
1167
1168static bool
e967cc2f 1169resolve_clobber (rtx pat, rtx_insn *insn)
e53a16e7 1170{
d70dcf29 1171 rtx reg;
ef4bddc2 1172 machine_mode orig_mode;
8536340f 1173 unsigned int orig_size, words, i;
7e0c3f57 1174 int ret;
e53a16e7
ILT
1175
1176 reg = XEXP (pat, 0);
eafeba3e
RB
1177 /* For clobbers we can look through paradoxical subregs which
1178 we do not handle in simplify_gen_subreg_concatn. */
1179 if (paradoxical_subreg_p (reg))
1180 reg = SUBREG_REG (reg);
9a5a8e58 1181 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
e53a16e7
ILT
1182 return false;
1183
1184 orig_mode = GET_MODE (reg);
8536340f
RS
1185 if (!interesting_mode_p (orig_mode, &orig_size, &words))
1186 gcc_unreachable ();
e53a16e7 1187
7e0c3f57
ILT
1188 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
1189 simplify_gen_subreg_concatn (word_mode, reg,
1190 orig_mode, 0),
1191 0);
6fb5fa3c 1192 df_insn_rescan (insn);
7e0c3f57
ILT
1193 gcc_assert (ret != 0);
1194
e53a16e7
ILT
1195 for (i = words - 1; i > 0; --i)
1196 {
1197 rtx x;
1198
9a5a8e58
ILT
1199 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
1200 i * UNITS_PER_WORD);
e53a16e7
ILT
1201 x = gen_rtx_CLOBBER (VOIDmode, x);
1202 emit_insn_after (x, insn);
1203 }
1204
d4fd3465
ILT
1205 resolve_reg_notes (insn);
1206
e53a16e7
ILT
1207 return true;
1208}
1209
1210/* A USE of a decomposed register is no longer meaningful. Return
1211 whether we changed something. */
1212
1213static bool
e967cc2f 1214resolve_use (rtx pat, rtx_insn *insn)
e53a16e7
ILT
1215{
1216 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
1217 {
1218 delete_insn (insn);
1219 return true;
1220 }
d4fd3465
ILT
1221
1222 resolve_reg_notes (insn);
1223
e53a16e7
ILT
1224 return false;
1225}
1226
b5b8b0ac
AO
1227/* A VAR_LOCATION can be simplified. */
1228
1229static void
e967cc2f 1230resolve_debug (rtx_insn *insn)
b5b8b0ac 1231{
f2d3f347
RS
1232 subrtx_ptr_iterator::array_type array;
1233 FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), NONCONST)
1234 {
1235 rtx *loc = *iter;
1236 rtx x = *loc;
1237 if (resolve_subreg_p (x))
1238 {
1239 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
1240 SUBREG_BYTE (x));
1241
1242 if (x)
1243 *loc = x;
1244 else
1245 x = copy_rtx (*loc);
1246 }
1247 if (resolve_reg_p (x))
1248 *loc = copy_rtx (x);
1249 }
b5b8b0ac
AO
1250
1251 df_insn_rescan (insn);
1252
1253 resolve_reg_notes (insn);
1254}
1255
af4ba423
KZ
1256/* Check if INSN is a decomposable multiword-shift or zero-extend and
1257 set the decomposable_context bitmap accordingly. SPEED_P is true
1258 if we are optimizing INSN for speed rather than size. Return true
1259 if INSN is decomposable. */
e0892570 1260
af4ba423 1261static bool
e967cc2f 1262find_decomposable_shift_zext (rtx_insn *insn, bool speed_p)
e0892570
AK
1263{
1264 rtx set;
1265 rtx op;
1266 rtx op_operand;
1267
1268 set = single_set (insn);
1269 if (!set)
af4ba423 1270 return false;
e0892570
AK
1271
1272 op = SET_SRC (set);
1273 if (GET_CODE (op) != ASHIFT
1274 && GET_CODE (op) != LSHIFTRT
d7fde18c 1275 && GET_CODE (op) != ASHIFTRT
e0892570 1276 && GET_CODE (op) != ZERO_EXTEND)
af4ba423 1277 return false;
e0892570
AK
1278
1279 op_operand = XEXP (op, 0);
1280 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
1281 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
1282 || HARD_REGISTER_NUM_P (REGNO (op_operand))
af4ba423
KZ
1283 || GET_MODE (op) != twice_word_mode)
1284 return false;
e0892570
AK
1285
1286 if (GET_CODE (op) == ZERO_EXTEND)
1287 {
1288 if (GET_MODE (op_operand) != word_mode
af4ba423
KZ
1289 || !choices[speed_p].splitting_zext)
1290 return false;
e0892570
AK
1291 }
1292 else /* left or right shift */
1293 {
af4ba423
KZ
1294 bool *splitting = (GET_CODE (op) == ASHIFT
1295 ? choices[speed_p].splitting_ashift
d7fde18c
JJ
1296 : GET_CODE (op) == ASHIFTRT
1297 ? choices[speed_p].splitting_ashiftrt
af4ba423 1298 : choices[speed_p].splitting_lshiftrt);
481683e1 1299 if (!CONST_INT_P (XEXP (op, 1))
af4ba423
KZ
1300 || !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
1301 2 * BITS_PER_WORD - 1)
1302 || !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
1303 return false;
1304
1305 bitmap_set_bit (decomposable_context, REGNO (op_operand));
e0892570
AK
1306 }
1307
1308 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
1309
af4ba423 1310 return true;
e0892570
AK
1311}
1312
1313/* Decompose a more than word wide shift (in INSN) of a multiword
1314 pseudo or a multiword zero-extend of a wordmode pseudo into a move
650c36ec
RS
1315 and 'set to zero' insn. SPEED_P says whether we are optimizing
1316 for speed or size, when checking if a ZERO_EXTEND is preferable.
1317 Return a pointer to the new insn when a replacement was done. */
e0892570 1318
e967cc2f 1319static rtx_insn *
650c36ec 1320resolve_shift_zext (rtx_insn *insn, bool speed_p)
e0892570
AK
1321{
1322 rtx set;
1323 rtx op;
1324 rtx op_operand;
e967cc2f 1325 rtx_insn *insns;
d7fde18c 1326 rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX;
e0892570 1327 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
e4dc9904 1328 scalar_int_mode inner_mode;
e0892570
AK
1329
1330 set = single_set (insn);
1331 if (!set)
e967cc2f 1332 return NULL;
e0892570
AK
1333
1334 op = SET_SRC (set);
1335 if (GET_CODE (op) != ASHIFT
1336 && GET_CODE (op) != LSHIFTRT
d7fde18c 1337 && GET_CODE (op) != ASHIFTRT
e0892570 1338 && GET_CODE (op) != ZERO_EXTEND)
e967cc2f 1339 return NULL;
e0892570
AK
1340
1341 op_operand = XEXP (op, 0);
e4dc9904
RS
1342 if (!is_a <scalar_int_mode> (GET_MODE (op_operand), &inner_mode))
1343 return NULL;
e0892570 1344
af4ba423
KZ
1345 /* We can tear this operation apart only if the regs were already
1346 torn apart. */
e0892570 1347 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
e967cc2f 1348 return NULL;
e0892570
AK
1349
1350 /* src_reg_num is the number of the word mode register which we
1351 are operating on. For a left shift and a zero_extend on little
1352 endian machines this is register 0. */
d7fde18c
JJ
1353 src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT)
1354 ? 1 : 0;
e0892570 1355
e4dc9904 1356 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
e0892570
AK
1357 src_reg_num = 1 - src_reg_num;
1358
1359 if (GET_CODE (op) == ZERO_EXTEND)
acbe5496 1360 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
e0892570
AK
1361 else
1362 dest_reg_num = 1 - src_reg_num;
1363
1364 offset1 = UNITS_PER_WORD * dest_reg_num;
1365 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1366 src_offset = UNITS_PER_WORD * src_reg_num;
1367
e0892570
AK
1368 start_sequence ();
1369
1370 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1371 GET_MODE (SET_DEST (set)),
1372 offset1);
d7fde18c
JJ
1373 dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1374 GET_MODE (SET_DEST (set)),
1375 offset2);
e0892570
AK
1376 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1377 GET_MODE (op_operand),
1378 src_offset);
d7fde18c
JJ
1379 if (GET_CODE (op) == ASHIFTRT
1380 && INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1)
1381 upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg),
1382 BITS_PER_WORD - 1, NULL_RTX, 0);
1383
e0892570
AK
1384 if (GET_CODE (op) != ZERO_EXTEND)
1385 {
1386 int shift_count = INTVAL (XEXP (op, 1));
1387 if (shift_count > BITS_PER_WORD)
1388 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1389 LSHIFT_EXPR : RSHIFT_EXPR,
1390 word_mode, src_reg,
eb6c3df1 1391 shift_count - BITS_PER_WORD,
d7fde18c 1392 dest_reg, GET_CODE (op) != ASHIFTRT);
e0892570
AK
1393 }
1394
650c36ec
RS
1395 /* Consider using ZERO_EXTEND instead of setting DEST_UPPER to zero
1396 if this is considered reasonable. */
1397 if (GET_CODE (op) == LSHIFTRT
1398 && GET_MODE (op) == twice_word_mode
1399 && REG_P (SET_DEST (set))
1400 && !choices[speed_p].splitting_zext)
1401 {
1402 rtx tmp = force_reg (word_mode, copy_rtx (src_reg));
1403 tmp = simplify_gen_unary (ZERO_EXTEND, twice_word_mode, tmp, word_mode);
1404 emit_move_insn (SET_DEST (set), tmp);
1405 }
d7fde18c 1406 else
650c36ec
RS
1407 {
1408 if (dest_reg != src_reg)
1409 emit_move_insn (dest_reg, src_reg);
1410 if (GET_CODE (op) != ASHIFTRT)
1411 emit_move_insn (dest_upper, CONST0_RTX (word_mode));
1412 else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1)
1413 emit_move_insn (dest_upper, copy_rtx (src_reg));
1414 else
1415 emit_move_insn (dest_upper, upper_src);
1416 }
1417
e0892570
AK
1418 insns = get_insns ();
1419
1420 end_sequence ();
1421
1422 emit_insn_before (insns, insn);
1423
1424 if (dump_file)
1425 {
e967cc2f 1426 rtx_insn *in;
e0892570
AK
1427 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1428 for (in = insns; in != insn; in = NEXT_INSN (in))
1429 fprintf (dump_file, "%d ", INSN_UID (in));
1430 fprintf (dump_file, "\n");
1431 }
1432
1433 delete_insn (insn);
1434 return insns;
1435}
1436
af4ba423
KZ
1437/* Print to dump_file a description of what we're doing with shift code CODE.
1438 SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
1439
1440static void
1441dump_shift_choices (enum rtx_code code, bool *splitting)
1442{
1443 int i;
1444 const char *sep;
1445
1446 fprintf (dump_file,
1447 " Splitting mode %s for %s lowering with shift amounts = ",
1448 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
1449 sep = "";
1450 for (i = 0; i < BITS_PER_WORD; i++)
1451 if (splitting[i])
1452 {
1453 fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
1454 sep = ",";
1455 }
1456 fprintf (dump_file, "\n");
1457}
1458
1459/* Print to dump_file a description of what we're doing when optimizing
1460 for speed or size; SPEED_P says which. DESCRIPTION is a description
1461 of the SPEED_P choice. */
1462
1463static void
1464dump_choices (bool speed_p, const char *description)
1465{
8536340f 1466 unsigned int size, factor, i;
af4ba423
KZ
1467
1468 fprintf (dump_file, "Choices when optimizing for %s:\n", description);
1469
1470 for (i = 0; i < MAX_MACHINE_MODE; i++)
8536340f
RS
1471 if (interesting_mode_p ((machine_mode) i, &size, &factor)
1472 && factor > 1)
af4ba423
KZ
1473 fprintf (dump_file, " %s mode %s for copy lowering.\n",
1474 choices[speed_p].move_modes_to_split[i]
1475 ? "Splitting"
1476 : "Skipping",
ef4bddc2 1477 GET_MODE_NAME ((machine_mode) i));
af4ba423
KZ
1478
1479 fprintf (dump_file, " %s mode %s for zero_extend lowering.\n",
1480 choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
1481 GET_MODE_NAME (twice_word_mode));
1482
1483 dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
d7fde18c
JJ
1484 dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt);
1485 dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt);
af4ba423
KZ
1486 fprintf (dump_file, "\n");
1487}
1488
e53a16e7 1489/* Look for registers which are always accessed via word-sized SUBREGs
c2c47e8f
UW
1490 or -if DECOMPOSE_COPIES is true- via copies. Decompose these
1491 registers into several word-sized pseudo-registers. */
e53a16e7
ILT
1492
1493static void
c2c47e8f 1494decompose_multiword_subregs (bool decompose_copies)
e53a16e7
ILT
1495{
1496 unsigned int max;
1497 basic_block bb;
af4ba423 1498 bool speed_p;
e53a16e7 1499
af4ba423
KZ
1500 if (dump_file)
1501 {
1502 dump_choices (false, "size");
1503 dump_choices (true, "speed");
1504 }
1505
1506 /* Check if this target even has any modes to consider lowering. */
1507 if (!choices[false].something_to_do && !choices[true].something_to_do)
1508 {
1509 if (dump_file)
1510 fprintf (dump_file, "Nothing to do!\n");
1511 return;
1512 }
6fb5fa3c 1513
e53a16e7
ILT
1514 max = max_reg_num ();
1515
1516 /* First see if there are any multi-word pseudo-registers. If there
1517 aren't, there is nothing we can do. This should speed up this
1518 pass in the normal case, since it should be faster than scanning
1519 all the insns. */
1520 {
1521 unsigned int i;
af4ba423 1522 bool useful_modes_seen = false;
e53a16e7
ILT
1523
1524 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
af4ba423
KZ
1525 if (regno_reg_rtx[i] != NULL)
1526 {
ef4bddc2 1527 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
af4ba423
KZ
1528 if (choices[false].move_modes_to_split[(int) mode]
1529 || choices[true].move_modes_to_split[(int) mode])
1530 {
1531 useful_modes_seen = true;
1532 break;
1533 }
1534 }
1535
1536 if (!useful_modes_seen)
e53a16e7 1537 {
af4ba423
KZ
1538 if (dump_file)
1539 fprintf (dump_file, "Nothing to lower in this function.\n");
1540 return;
e53a16e7 1541 }
e53a16e7
ILT
1542 }
1543
8d074192 1544 if (df)
af4ba423
KZ
1545 {
1546 df_set_flags (DF_DEFER_INSN_RESCAN);
1547 run_word_dce ();
1548 }
8d074192 1549
af4ba423
KZ
1550 /* FIXME: It may be possible to change this code to look for each
1551 multi-word pseudo-register and to find each insn which sets or
1552 uses that register. That should be faster than scanning all the
1553 insns. */
e53a16e7
ILT
1554
1555 decomposable_context = BITMAP_ALLOC (NULL);
1556 non_decomposable_context = BITMAP_ALLOC (NULL);
402464a0 1557 subreg_context = BITMAP_ALLOC (NULL);
e53a16e7 1558
9771b263 1559 reg_copy_graph.create (max);
cb3874dc 1560 reg_copy_graph.safe_grow_cleared (max, true);
9771b263 1561 memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max);
e53a16e7 1562
af4ba423 1563 speed_p = optimize_function_for_speed_p (cfun);
11cd3bed 1564 FOR_EACH_BB_FN (bb, cfun)
e53a16e7 1565 {
e967cc2f 1566 rtx_insn *insn;
e53a16e7
ILT
1567
1568 FOR_BB_INSNS (bb, insn)
1569 {
1570 rtx set;
1571 enum classify_move_insn cmi;
1572 int i, n;
1573
1574 if (!INSN_P (insn)
1575 || GET_CODE (PATTERN (insn)) == CLOBBER
1576 || GET_CODE (PATTERN (insn)) == USE)
1577 continue;
1578
d5785e76
JJ
1579 recog_memoized (insn);
1580
af4ba423 1581 if (find_decomposable_shift_zext (insn, speed_p))
e0892570
AK
1582 continue;
1583
e53a16e7
ILT
1584 extract_insn (insn);
1585
af4ba423 1586 set = simple_move (insn, speed_p);
e53a16e7
ILT
1587
1588 if (!set)
1589 cmi = NOT_SIMPLE_MOVE;
1590 else
1591 {
c2c47e8f
UW
1592 /* We mark pseudo-to-pseudo copies as decomposable during the
1593 second pass only. The first pass is so early that there is
1594 good chance such moves will be optimized away completely by
1595 subsequent optimizations anyway.
1596
1597 However, we call find_pseudo_copy even during the first pass
1598 so as to properly set up the reg_copy_graph. */
4a8cae83 1599 if (find_pseudo_copy (set))
c2c47e8f 1600 cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE;
e53a16e7
ILT
1601 else
1602 cmi = SIMPLE_MOVE;
1603 }
1604
1605 n = recog_data.n_operands;
1606 for (i = 0; i < n; ++i)
1607 {
a36a1928 1608 find_decomposable_subregs (&recog_data.operand[i], &cmi);
e53a16e7
ILT
1609
1610 /* We handle ASM_OPERANDS as a special case to support
1611 things like x86 rdtsc which returns a DImode value.
1612 We can decompose the output, which will certainly be
1613 operand 0, but not the inputs. */
1614
1615 if (cmi == SIMPLE_MOVE
1616 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1617 {
1618 gcc_assert (i == 0);
1619 cmi = NOT_SIMPLE_MOVE;
1620 }
1621 }
1622 }
1623 }
1624
1625 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1626 if (!bitmap_empty_p (decomposable_context))
1627 {
7984c787
SB
1628 unsigned int i;
1629 sbitmap_iterator sbi;
e53a16e7
ILT
1630 bitmap_iterator iter;
1631 unsigned int regno;
1632
1633 propagate_pseudo_copies ();
1634
7ba9e72d 1635 auto_sbitmap sub_blocks (last_basic_block_for_fn (cfun));
f61e445a 1636 bitmap_clear (sub_blocks);
e53a16e7
ILT
1637
1638 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1639 decompose_register (regno);
1640
11cd3bed 1641 FOR_EACH_BB_FN (bb, cfun)
e53a16e7 1642 {
e967cc2f 1643 rtx_insn *insn;
e53a16e7 1644
ba4807a0 1645 FOR_BB_INSNS (bb, insn)
e53a16e7 1646 {
11895e28 1647 rtx pat;
e53a16e7
ILT
1648
1649 if (!INSN_P (insn))
1650 continue;
1651
e53a16e7
ILT
1652 pat = PATTERN (insn);
1653 if (GET_CODE (pat) == CLOBBER)
d4fd3465 1654 resolve_clobber (pat, insn);
e53a16e7 1655 else if (GET_CODE (pat) == USE)
d4fd3465 1656 resolve_use (pat, insn);
b5b8b0ac
AO
1657 else if (DEBUG_INSN_P (insn))
1658 resolve_debug (insn);
e53a16e7
ILT
1659 else
1660 {
1661 rtx set;
1662 int i;
1663
1664 recog_memoized (insn);
1665 extract_insn (insn);
1666
af4ba423 1667 set = simple_move (insn, speed_p);
e53a16e7
ILT
1668 if (set)
1669 {
e967cc2f 1670 rtx_insn *orig_insn = insn;
73663bb7 1671 bool cfi = control_flow_insn_p (insn);
e53a16e7 1672
7984c787
SB
1673 /* We can end up splitting loads to multi-word pseudos
1674 into separate loads to machine word size pseudos.
1675 When this happens, we first had one load that can
1676 throw, and after resolve_simple_move we'll have a
1677 bunch of loads (at least two). All those loads may
1678 trap if we can have non-call exceptions, so they
1679 all will end the current basic block. We split the
1680 block after the outer loop over all insns, but we
1681 make sure here that we will be able to split the
1682 basic block and still produce the correct control
1683 flow graph for it. */
1684 gcc_assert (!cfi
8f4f502f 1685 || (cfun->can_throw_non_call_exceptions
7984c787
SB
1686 && can_throw_internal (insn)));
1687
e53a16e7
ILT
1688 insn = resolve_simple_move (set, insn);
1689 if (insn != orig_insn)
1690 {
e53a16e7
ILT
1691 recog_memoized (insn);
1692 extract_insn (insn);
73663bb7
ILT
1693
1694 if (cfi)
d7c028c0 1695 bitmap_set_bit (sub_blocks, bb->index);
e53a16e7
ILT
1696 }
1697 }
e0892570
AK
1698 else
1699 {
e967cc2f 1700 rtx_insn *decomposed_shift;
e0892570 1701
650c36ec 1702 decomposed_shift = resolve_shift_zext (insn, speed_p);
e0892570
AK
1703 if (decomposed_shift != NULL_RTX)
1704 {
e0892570
AK
1705 insn = decomposed_shift;
1706 recog_memoized (insn);
1707 extract_insn (insn);
1708 }
1709 }
e53a16e7
ILT
1710
1711 for (i = recog_data.n_operands - 1; i >= 0; --i)
cf55cb6a 1712 resolve_subreg_use (recog_data.operand_loc[i], insn);
e53a16e7
ILT
1713
1714 resolve_reg_notes (insn);
1715
1716 if (num_validated_changes () > 0)
1717 {
1718 for (i = recog_data.n_dups - 1; i >= 0; --i)
1719 {
1720 rtx *pl = recog_data.dup_loc[i];
1721 int dup_num = recog_data.dup_num[i];
1722 rtx *px = recog_data.operand_loc[dup_num];
1723
1a309dfb 1724 validate_unshare_change (insn, pl, *px, 1);
e53a16e7
ILT
1725 }
1726
1727 i = apply_change_group ();
1728 gcc_assert (i);
e53a16e7
ILT
1729 }
1730 }
e53a16e7
ILT
1731 }
1732 }
1733
7984c787
SB
1734 /* If we had insns to split that caused control flow insns in the middle
1735 of a basic block, split those blocks now. Note that we only handle
1736 the case where splitting a load has caused multiple possibly trapping
1737 loads to appear. */
d4ac4ce2 1738 EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi)
7984c787 1739 {
e967cc2f 1740 rtx_insn *insn, *end;
7984c787
SB
1741 edge fallthru;
1742
06e28de2 1743 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7984c787
SB
1744 insn = BB_HEAD (bb);
1745 end = BB_END (bb);
1746
1747 while (insn != end)
1748 {
1749 if (control_flow_insn_p (insn))
1750 {
1751 /* Split the block after insn. There will be a fallthru
1752 edge, which is OK so we keep it. We have to create the
1753 exception edges ourselves. */
1754 fallthru = split_block (bb, insn);
1755 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1756 bb = fallthru->dest;
1757 insn = BB_HEAD (bb);
1758 }
1759 else
1760 insn = NEXT_INSN (insn);
1761 }
1762 }
e53a16e7
ILT
1763 }
1764
3f207ab3
TS
1765 for (bitmap b : reg_copy_graph)
1766 if (b)
1767 BITMAP_FREE (b);
e53a16e7 1768
9771b263 1769 reg_copy_graph.release ();
e53a16e7
ILT
1770
1771 BITMAP_FREE (decomposable_context);
1772 BITMAP_FREE (non_decomposable_context);
402464a0 1773 BITMAP_FREE (subreg_context);
e53a16e7
ILT
1774}
1775\f
e53a16e7
ILT
1776/* Implement first lower subreg pass. */
1777
27a4cd48
DM
1778namespace {
1779
1780const pass_data pass_data_lower_subreg =
e53a16e7 1781{
27a4cd48
DM
1782 RTL_PASS, /* type */
1783 "subreg1", /* name */
1784 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
1785 TV_LOWER_SUBREG, /* tv_id */
1786 0, /* properties_required */
1787 0, /* properties_provided */
1788 0, /* properties_destroyed */
1789 0, /* todo_flags_start */
3bea341f 1790 0, /* todo_flags_finish */
e53a16e7
ILT
1791};
1792
27a4cd48
DM
1793class pass_lower_subreg : public rtl_opt_pass
1794{
1795public:
c3284718
RS
1796 pass_lower_subreg (gcc::context *ctxt)
1797 : rtl_opt_pass (pass_data_lower_subreg, ctxt)
27a4cd48
DM
1798 {}
1799
1800 /* opt_pass methods: */
725793af
DM
1801 bool gate (function *) final override { return flag_split_wide_types != 0; }
1802 unsigned int execute (function *) final override
be55bfe6
TS
1803 {
1804 decompose_multiword_subregs (false);
1805 return 0;
1806 }
27a4cd48
DM
1807
1808}; // class pass_lower_subreg
1809
1810} // anon namespace
1811
1812rtl_opt_pass *
1813make_pass_lower_subreg (gcc::context *ctxt)
1814{
1815 return new pass_lower_subreg (ctxt);
1816}
1817
be55bfe6
TS
1818/* Implement second lower subreg pass. */
1819
27a4cd48
DM
1820namespace {
1821
1822const pass_data pass_data_lower_subreg2 =
e53a16e7 1823{
27a4cd48
DM
1824 RTL_PASS, /* type */
1825 "subreg2", /* name */
1826 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
1827 TV_LOWER_SUBREG, /* tv_id */
1828 0, /* properties_required */
1829 0, /* properties_provided */
1830 0, /* properties_destroyed */
1831 0, /* todo_flags_start */
3bea341f 1832 TODO_df_finish, /* todo_flags_finish */
e53a16e7 1833};
27a4cd48
DM
1834
1835class pass_lower_subreg2 : public rtl_opt_pass
1836{
1837public:
c3284718
RS
1838 pass_lower_subreg2 (gcc::context *ctxt)
1839 : rtl_opt_pass (pass_data_lower_subreg2, ctxt)
27a4cd48
DM
1840 {}
1841
1842 /* opt_pass methods: */
725793af
DM
1843 bool gate (function *) final override
1844 {
1845 return flag_split_wide_types && flag_split_wide_types_early;
1846 }
1847 unsigned int execute (function *) final override
be55bfe6
TS
1848 {
1849 decompose_multiword_subregs (true);
1850 return 0;
1851 }
27a4cd48
DM
1852
1853}; // class pass_lower_subreg2
1854
1855} // anon namespace
1856
1857rtl_opt_pass *
1858make_pass_lower_subreg2 (gcc::context *ctxt)
1859{
1860 return new pass_lower_subreg2 (ctxt);
1861}
b18081df
SB
1862
1863/* Implement third lower subreg pass. */
1864
1865namespace {
1866
1867const pass_data pass_data_lower_subreg3 =
1868{
1869 RTL_PASS, /* type */
1870 "subreg3", /* name */
1871 OPTGROUP_NONE, /* optinfo_flags */
1872 TV_LOWER_SUBREG, /* tv_id */
1873 0, /* properties_required */
1874 0, /* properties_provided */
1875 0, /* properties_destroyed */
1876 0, /* todo_flags_start */
1877 TODO_df_finish, /* todo_flags_finish */
1878};
1879
1880class pass_lower_subreg3 : public rtl_opt_pass
1881{
1882public:
1883 pass_lower_subreg3 (gcc::context *ctxt)
1884 : rtl_opt_pass (pass_data_lower_subreg3, ctxt)
1885 {}
1886
1887 /* opt_pass methods: */
725793af
DM
1888 bool gate (function *) final override { return flag_split_wide_types; }
1889 unsigned int execute (function *) final override
b18081df
SB
1890 {
1891 decompose_multiword_subregs (true);
1892 return 0;
1893 }
1894
1895}; // class pass_lower_subreg3
1896
1897} // anon namespace
1898
1899rtl_opt_pass *
1900make_pass_lower_subreg3 (gcc::context *ctxt)
1901{
1902 return new pass_lower_subreg3 (ctxt);
1903}