]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/rtlanal.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / rtlanal.c
CommitLineData
af082de3 1/* Analyze RTL for GNU compiler.
5624e564 2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
2c88418c 3
1322177d 4This file is part of GCC.
2c88418c 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
2c88418c 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
2c88418c
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
2c88418c
RS
19
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5 25#include "target.h"
9f02e6a5 26#include "rtl.h"
957060b5
AM
27#include "tree.h"
28#include "predict.h"
c7131fb2 29#include "df.h"
957060b5 30#include "tm_p.h"
bc204393 31#include "insn-config.h"
957060b5
AM
32#include "regs.h"
33#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
bc204393 34#include "recog.h"
957060b5 35#include "diagnostic-core.h"
f894b69b 36#include "output.h"
f5eb5fd0 37#include "flags.h"
277f65de 38#include "addresses.h"
476dd0ce 39#include "rtl-iter.h"
2c88418c 40
e2373f95 41/* Forward declarations */
7bc980e1 42static void set_of_1 (rtx, const_rtx, void *);
f7d504c2
KG
43static bool covers_regno_p (const_rtx, unsigned int);
44static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
f7d504c2 45static int computed_jump_p_1 (const_rtx);
7bc980e1 46static void parms_set (rtx, const_rtx, void *);
2a1777af 47
ef4bddc2
RS
48static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
49 const_rtx, machine_mode,
2f93eea8 50 unsigned HOST_WIDE_INT);
ef4bddc2
RS
51static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
52 const_rtx, machine_mode,
2f93eea8 53 unsigned HOST_WIDE_INT);
ef4bddc2
RS
54static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
55 machine_mode,
2f93eea8 56 unsigned int);
ef4bddc2
RS
57static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
58 machine_mode, unsigned int);
2f93eea8 59
476dd0ce
RS
60rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
61rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
62
b12cbf2c
AN
63/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
64 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
65 SIGN_EXTEND then while narrowing we also have to enforce the
66 representation and sign-extend the value to mode DESTINATION_REP.
67
68 If the value is already sign-extended to DESTINATION_REP mode we
69 can just switch to DESTINATION mode on it. For each pair of
70 integral modes SOURCE and DESTINATION, when truncating from SOURCE
71 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
72 contains the number of high-order bits in SOURCE that have to be
73 copies of the sign-bit so that we can do this mode-switch to
74 DESTINATION. */
75
76static unsigned int
77num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
2c88418c 78\f
476dd0ce
RS
79/* Store X into index I of ARRAY. ARRAY is known to have at least I
80 elements. Return the new base of ARRAY. */
81
82template <typename T>
83typename T::value_type *
84generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
85 value_type *base,
86 size_t i, value_type x)
87{
88 if (base == array.stack)
89 {
90 if (i < LOCAL_ELEMS)
91 {
92 base[i] = x;
93 return base;
94 }
95 gcc_checking_assert (i == LOCAL_ELEMS);
cb6f4591
RS
96 /* A previous iteration might also have moved from the stack to the
97 heap, in which case the heap array will already be big enough. */
98 if (vec_safe_length (array.heap) <= i)
99 vec_safe_grow (array.heap, i + 1);
476dd0ce
RS
100 base = array.heap->address ();
101 memcpy (base, array.stack, sizeof (array.stack));
102 base[LOCAL_ELEMS] = x;
103 return base;
104 }
105 unsigned int length = array.heap->length ();
106 if (length > i)
107 {
108 gcc_checking_assert (base == array.heap->address ());
109 base[i] = x;
110 return base;
111 }
112 else
113 {
114 gcc_checking_assert (i == length);
115 vec_safe_push (array.heap, x);
116 return array.heap->address ();
117 }
118}
119
120/* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
121 number of elements added to the worklist. */
122
123template <typename T>
124size_t
125generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
126 value_type *base,
127 size_t end, rtx_type x)
128{
641123eb
RS
129 enum rtx_code code = GET_CODE (x);
130 const char *format = GET_RTX_FORMAT (code);
476dd0ce 131 size_t orig_end = end;
641123eb
RS
132 if (__builtin_expect (INSN_P (x), false))
133 {
134 /* Put the pattern at the top of the queue, since that's what
135 we're likely to want most. It also allows for the SEQUENCE
136 code below. */
137 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
138 if (format[i] == 'e')
139 {
140 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
141 if (__builtin_expect (end < LOCAL_ELEMS, true))
142 base[end++] = subx;
143 else
144 base = add_single_to_queue (array, base, end++, subx);
145 }
146 }
147 else
148 for (int i = 0; format[i]; ++i)
149 if (format[i] == 'e')
150 {
151 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
152 if (__builtin_expect (end < LOCAL_ELEMS, true))
153 base[end++] = subx;
154 else
155 base = add_single_to_queue (array, base, end++, subx);
156 }
157 else if (format[i] == 'E')
158 {
159 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
160 rtx *vec = x->u.fld[i].rt_rtvec->elem;
161 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
162 for (unsigned int j = 0; j < length; j++)
163 base[end++] = T::get_value (vec[j]);
164 else
165 for (unsigned int j = 0; j < length; j++)
166 base = add_single_to_queue (array, base, end++,
167 T::get_value (vec[j]));
168 if (code == SEQUENCE && end == length)
169 /* If the subrtxes of the sequence fill the entire array then
170 we know that no other parts of a containing insn are queued.
171 The caller is therefore iterating over the sequence as a
172 PATTERN (...), so we also want the patterns of the
173 subinstructions. */
174 for (unsigned int j = 0; j < length; j++)
175 {
176 typename T::rtx_type x = T::get_rtx (base[j]);
177 if (INSN_P (x))
178 base[j] = T::get_value (PATTERN (x));
179 }
180 }
476dd0ce
RS
181 return end - orig_end;
182}
183
184template <typename T>
185void
186generic_subrtx_iterator <T>::free_array (array_type &array)
187{
188 vec_free (array.heap);
189}
190
191template <typename T>
192const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
193
194template class generic_subrtx_iterator <const_rtx_accessor>;
195template class generic_subrtx_iterator <rtx_var_accessor>;
196template class generic_subrtx_iterator <rtx_ptr_accessor>;
197
2c88418c
RS
198/* Return 1 if the value of X is unstable
199 (would be different at a different point in the program).
200 The frame pointer, arg pointer, etc. are considered stable
201 (within one function) and so is anything marked `unchanging'. */
202
203int
f7d504c2 204rtx_unstable_p (const_rtx x)
2c88418c 205{
f7d504c2 206 const RTX_CODE code = GET_CODE (x);
b3694847
SS
207 int i;
208 const char *fmt;
2c88418c 209
ae0fb1b9
JW
210 switch (code)
211 {
212 case MEM:
389fdba0 213 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
2c88418c 214
ae0fb1b9 215 case CONST:
d8116890 216 CASE_CONST_ANY:
ae0fb1b9
JW
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return 0;
2c88418c 220
ae0fb1b9
JW
221 case REG:
222 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
c0fc376b 223 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9 224 /* The arg pointer varies if it is not a fixed register. */
389fdba0 225 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 226 return 0;
c0fc376b
RH
227 /* ??? When call-clobbered, the value is stable modulo the restore
228 that must happen after a call. This currently screws up local-alloc
229 into believing that the restore is not needed. */
f8fe0a4a 230 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
c0fc376b 231 return 0;
c0fc376b 232 return 1;
ae0fb1b9
JW
233
234 case ASM_OPERANDS:
235 if (MEM_VOLATILE_P (x))
236 return 1;
237
5d3cc252 238 /* Fall through. */
ae0fb1b9
JW
239
240 default:
241 break;
242 }
2c88418c
RS
243
244 fmt = GET_RTX_FORMAT (code);
245 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246 if (fmt[i] == 'e')
9c82ac6b
JW
247 {
248 if (rtx_unstable_p (XEXP (x, i)))
249 return 1;
250 }
251 else if (fmt[i] == 'E')
252 {
253 int j;
254 for (j = 0; j < XVECLEN (x, i); j++)
255 if (rtx_unstable_p (XVECEXP (x, i, j)))
256 return 1;
257 }
258
2c88418c
RS
259 return 0;
260}
261
262/* Return 1 if X has a value that can vary even between two
263 executions of the program. 0 means X can be compared reliably
264 against certain constants or near-constants.
e38fe8e0
BS
265 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
266 zero, we are slightly more conservative.
2c88418c
RS
267 The frame pointer and the arg pointer are considered constant. */
268
4f588890
KG
269bool
270rtx_varies_p (const_rtx x, bool for_alias)
2c88418c 271{
e978d62e 272 RTX_CODE code;
b3694847
SS
273 int i;
274 const char *fmt;
2c88418c 275
e978d62e
PB
276 if (!x)
277 return 0;
278
279 code = GET_CODE (x);
2c88418c
RS
280 switch (code)
281 {
282 case MEM:
389fdba0 283 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
55efb413 284
2c88418c 285 case CONST:
d8116890 286 CASE_CONST_ANY:
2c88418c
RS
287 case SYMBOL_REF:
288 case LABEL_REF:
289 return 0;
290
291 case REG:
292 /* Note that we have to test for the actual rtx used for the frame
293 and arg pointers and not just the register number in case we have
294 eliminated the frame and/or arg pointer and are using it
295 for pseudos. */
c0fc376b 296 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9
JL
297 /* The arg pointer varies if it is not a fixed register. */
298 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 299 return 0;
e38fe8e0 300 if (x == pic_offset_table_rtx
e38fe8e0
BS
301 /* ??? When call-clobbered, the value is stable modulo the restore
302 that must happen after a call. This currently screws up
303 local-alloc into believing that the restore is not needed, so we
304 must return 0 only if we are called from alias analysis. */
f8fe0a4a 305 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
e38fe8e0 306 return 0;
c0fc376b 307 return 1;
2c88418c
RS
308
309 case LO_SUM:
310 /* The operand 0 of a LO_SUM is considered constant
e7d96a83
JW
311 (in fact it is related specifically to operand 1)
312 during alias analysis. */
313 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
314 || rtx_varies_p (XEXP (x, 1), for_alias);
a6a2274a 315
ae0fb1b9
JW
316 case ASM_OPERANDS:
317 if (MEM_VOLATILE_P (x))
318 return 1;
319
5d3cc252 320 /* Fall through. */
ae0fb1b9 321
e9a25f70
JL
322 default:
323 break;
2c88418c
RS
324 }
325
326 fmt = GET_RTX_FORMAT (code);
327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328 if (fmt[i] == 'e')
9c82ac6b 329 {
e38fe8e0 330 if (rtx_varies_p (XEXP (x, i), for_alias))
9c82ac6b
JW
331 return 1;
332 }
333 else if (fmt[i] == 'E')
334 {
335 int j;
336 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 337 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
9c82ac6b
JW
338 return 1;
339 }
340
2c88418c
RS
341 return 0;
342}
343
1e677938
BE
344/* Compute an approximation for the offset between the register
345 FROM and TO for the current function, as it was at the start
346 of the routine. */
347
348static HOST_WIDE_INT
349get_initial_register_offset (int from, int to)
350{
351#ifdef ELIMINABLE_REGS
352 static const struct elim_table_t
353 {
354 const int from;
355 const int to;
356 } table[] = ELIMINABLE_REGS;
357 HOST_WIDE_INT offset1, offset2;
358 unsigned int i, j;
359
360 if (to == from)
361 return 0;
362
363 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
364 before the reload pass. We need to give at least
365 an estimation for the resulting frame size. */
366 if (! reload_completed)
367 {
368 offset1 = crtl->outgoing_args_size + get_frame_size ();
369#if !STACK_GROWS_DOWNWARD
370 offset1 = - offset1;
371#endif
372 if (to == STACK_POINTER_REGNUM)
373 return offset1;
374 else if (from == STACK_POINTER_REGNUM)
375 return - offset1;
376 else
377 return 0;
378 }
379
380 for (i = 0; i < ARRAY_SIZE (table); i++)
381 if (table[i].from == from)
382 {
383 if (table[i].to == to)
384 {
385 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
386 offset1);
387 return offset1;
388 }
389 for (j = 0; j < ARRAY_SIZE (table); j++)
390 {
391 if (table[j].to == to
392 && table[j].from == table[i].to)
393 {
394 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
395 offset1);
396 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
397 offset2);
398 return offset1 + offset2;
399 }
400 if (table[j].from == to
401 && table[j].to == table[i].to)
402 {
403 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
404 offset1);
405 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
406 offset2);
407 return offset1 - offset2;
408 }
409 }
410 }
411 else if (table[i].to == from)
412 {
413 if (table[i].from == to)
414 {
415 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
416 offset1);
417 return - offset1;
418 }
419 for (j = 0; j < ARRAY_SIZE (table); j++)
420 {
421 if (table[j].to == to
422 && table[j].from == table[i].from)
423 {
424 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
425 offset1);
426 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
427 offset2);
428 return - offset1 + offset2;
429 }
430 if (table[j].from == to
431 && table[j].to == table[i].from)
432 {
433 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
434 offset1);
435 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
436 offset2);
437 return - offset1 - offset2;
438 }
439 }
440 }
441
442 /* If the requested register combination was not found,
443 try a different more simple combination. */
444 if (from == ARG_POINTER_REGNUM)
445 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
446 else if (to == ARG_POINTER_REGNUM)
447 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
448 else if (from == HARD_FRAME_POINTER_REGNUM)
449 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
450 else if (to == HARD_FRAME_POINTER_REGNUM)
451 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
452 else
453 return 0;
454
455#else
456 HOST_WIDE_INT offset;
457
458 if (to == from)
459 return 0;
460
461 if (reload_completed)
462 {
463 INITIAL_FRAME_POINTER_OFFSET (offset);
464 }
465 else
466 {
467 offset = crtl->outgoing_args_size + get_frame_size ();
468#if !STACK_GROWS_DOWNWARD
469 offset = - offset;
470#endif
471 }
472
473 if (to == STACK_POINTER_REGNUM)
474 return offset;
475 else if (from == STACK_POINTER_REGNUM)
476 return - offset;
477 else
478 return 0;
479
480#endif
481}
482
c7e30a96
EB
483/* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
484 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
485 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
486 references on strict alignment machines. */
2c88418c 487
2358ff91 488static int
48e8382e 489rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
ef4bddc2 490 machine_mode mode, bool unaligned_mems)
2c88418c 491{
b3694847 492 enum rtx_code code = GET_CODE (x);
2c88418c 493
c7e30a96
EB
494 /* The offset must be a multiple of the mode size if we are considering
495 unaligned memory references on strict alignment machines. */
496 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
48e8382e
PB
497 {
498 HOST_WIDE_INT actual_offset = offset;
c7e30a96 499
48e8382e
PB
500#ifdef SPARC_STACK_BOUNDARY_HACK
501 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
502 the real alignment of %sp. However, when it does this, the
503 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
504 if (SPARC_STACK_BOUNDARY_HACK
505 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
506 actual_offset -= STACK_POINTER_OFFSET;
507#endif
508
65a74b5d
PB
509 if (actual_offset % GET_MODE_SIZE (mode) != 0)
510 return 1;
48e8382e
PB
511 }
512
2c88418c
RS
513 switch (code)
514 {
515 case SYMBOL_REF:
48e8382e
PB
516 if (SYMBOL_REF_WEAK (x))
517 return 1;
518 if (!CONSTANT_POOL_ADDRESS_P (x))
519 {
520 tree decl;
521 HOST_WIDE_INT decl_size;
522
523 if (offset < 0)
524 return 1;
525 if (size == 0)
526 size = GET_MODE_SIZE (mode);
527 if (size == 0)
528 return offset != 0;
529
530 /* If the size of the access or of the symbol is unknown,
531 assume the worst. */
532 decl = SYMBOL_REF_DECL (x);
533
534 /* Else check that the access is in bounds. TODO: restructure
71c00b5c 535 expr_size/tree_expr_size/int_expr_size and just use the latter. */
48e8382e
PB
536 if (!decl)
537 decl_size = -1;
538 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
9541ffee 539 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
9439e9a1 540 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
48e8382e
PB
541 : -1);
542 else if (TREE_CODE (decl) == STRING_CST)
543 decl_size = TREE_STRING_LENGTH (decl);
544 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
545 decl_size = int_size_in_bytes (TREE_TYPE (decl));
546 else
547 decl_size = -1;
548
549 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
550 }
551
552 return 0;
ff0b6b99 553
2c88418c 554 case LABEL_REF:
2c88418c
RS
555 return 0;
556
557 case REG:
c7e30a96
EB
558 /* Stack references are assumed not to trap, but we need to deal with
559 nonsensical offsets. */
1e677938
BE
560 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
561 || x == stack_pointer_rtx
562 /* The arg pointer varies if it is not a fixed register. */
563 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c7e30a96 564 {
1e677938
BE
565#ifdef RED_ZONE_SIZE
566 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
567#else
568 HOST_WIDE_INT red_zone_size = 0;
569#endif
570 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
571 / BITS_PER_UNIT;
572 HOST_WIDE_INT low_bound, high_bound;
573
c7e30a96
EB
574 if (size == 0)
575 size = GET_MODE_SIZE (mode);
1e677938
BE
576
577 if (x == frame_pointer_rtx)
578 {
579 if (FRAME_GROWS_DOWNWARD)
580 {
581 high_bound = STARTING_FRAME_OFFSET;
582 low_bound = high_bound - get_frame_size ();
583 }
584 else
585 {
586 low_bound = STARTING_FRAME_OFFSET;
587 high_bound = low_bound + get_frame_size ();
588 }
589 }
590 else if (x == hard_frame_pointer_rtx)
c7e30a96 591 {
1e677938
BE
592 HOST_WIDE_INT sp_offset
593 = get_initial_register_offset (STACK_POINTER_REGNUM,
594 HARD_FRAME_POINTER_REGNUM);
595 HOST_WIDE_INT ap_offset
596 = get_initial_register_offset (ARG_POINTER_REGNUM,
597 HARD_FRAME_POINTER_REGNUM);
598
599#if STACK_GROWS_DOWNWARD
600 low_bound = sp_offset - red_zone_size - stack_boundary;
601 high_bound = ap_offset
602 + FIRST_PARM_OFFSET (current_function_decl)
603#if !ARGS_GROW_DOWNWARD
604 + crtl->args.size
605#endif
606 + stack_boundary;
607#else
608 high_bound = sp_offset + red_zone_size + stack_boundary;
609 low_bound = ap_offset
610 + FIRST_PARM_OFFSET (current_function_decl)
611#if ARGS_GROW_DOWNWARD
612 - crtl->args.size
613#endif
614 - stack_boundary;
615#endif
616 }
617 else if (x == stack_pointer_rtx)
618 {
619 HOST_WIDE_INT ap_offset
620 = get_initial_register_offset (ARG_POINTER_REGNUM,
621 STACK_POINTER_REGNUM);
622
623#if STACK_GROWS_DOWNWARD
624 low_bound = - red_zone_size - stack_boundary;
625 high_bound = ap_offset
626 + FIRST_PARM_OFFSET (current_function_decl)
627#if !ARGS_GROW_DOWNWARD
628 + crtl->args.size
629#endif
630 + stack_boundary;
631#else
632 high_bound = red_zone_size + stack_boundary;
633 low_bound = ap_offset
634 + FIRST_PARM_OFFSET (current_function_decl)
635#if ARGS_GROW_DOWNWARD
636 - crtl->args.size
637#endif
638 - stack_boundary;
639#endif
c7e30a96
EB
640 }
641 else
642 {
1e677938
BE
643 /* We assume that accesses are safe to at least the
644 next stack boundary.
645 Examples are varargs and __builtin_return_address. */
646#if ARGS_GROW_DOWNWARD
647 high_bound = FIRST_PARM_OFFSET (current_function_decl)
648 + stack_boundary;
649 low_bound = FIRST_PARM_OFFSET (current_function_decl)
650 - crtl->args.size - stack_boundary;
651#else
652 low_bound = FIRST_PARM_OFFSET (current_function_decl)
653 - stack_boundary;
654 high_bound = FIRST_PARM_OFFSET (current_function_decl)
655 + crtl->args.size + stack_boundary;
656#endif
c7e30a96 657 }
1e677938
BE
658
659 if (offset >= low_bound && offset <= high_bound - size)
660 return 0;
661 return 1;
c7e30a96 662 }
4f73495e
RH
663 /* All of the virtual frame registers are stack references. */
664 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
665 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
666 return 0;
667 return 1;
2c88418c
RS
668
669 case CONST:
48e8382e
PB
670 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
671 mode, unaligned_mems);
2c88418c
RS
672
673 case PLUS:
2358ff91 674 /* An address is assumed not to trap if:
48e8382e
PB
675 - it is the pic register plus a constant. */
676 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
677 return 0;
678
c7e30a96 679 /* - or it is an address that can't trap plus a constant integer. */
481683e1 680 if (CONST_INT_P (XEXP (x, 1))
48e8382e
PB
681 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
682 size, mode, unaligned_mems))
2358ff91
EB
683 return 0;
684
685 return 1;
2c88418c
RS
686
687 case LO_SUM:
4f73495e 688 case PRE_MODIFY:
48e8382e
PB
689 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
690 mode, unaligned_mems);
4f73495e
RH
691
692 case PRE_DEC:
693 case PRE_INC:
694 case POST_DEC:
695 case POST_INC:
696 case POST_MODIFY:
48e8382e
PB
697 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
698 mode, unaligned_mems);
4f73495e 699
e9a25f70
JL
700 default:
701 break;
2c88418c
RS
702 }
703
704 /* If it isn't one of the case above, it can cause a trap. */
705 return 1;
706}
707
2358ff91
EB
708/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
709
710int
f7d504c2 711rtx_addr_can_trap_p (const_rtx x)
2358ff91 712{
48e8382e 713 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
2358ff91
EB
714}
715
4977bab6
ZW
716/* Return true if X is an address that is known to not be zero. */
717
718bool
f7d504c2 719nonzero_address_p (const_rtx x)
4977bab6 720{
f7d504c2 721 const enum rtx_code code = GET_CODE (x);
4977bab6
ZW
722
723 switch (code)
724 {
725 case SYMBOL_REF:
06da803c 726 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
4977bab6
ZW
727
728 case LABEL_REF:
729 return true;
730
4977bab6
ZW
731 case REG:
732 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
733 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
734 || x == stack_pointer_rtx
735 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
736 return true;
737 /* All of the virtual frame registers are stack references. */
738 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
739 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
740 return true;
741 return false;
742
743 case CONST:
744 return nonzero_address_p (XEXP (x, 0));
745
746 case PLUS:
4977bab6 747 /* Handle PIC references. */
bc2164e8 748 if (XEXP (x, 0) == pic_offset_table_rtx
4977bab6
ZW
749 && CONSTANT_P (XEXP (x, 1)))
750 return true;
751 return false;
752
753 case PRE_MODIFY:
754 /* Similar to the above; allow positive offsets. Further, since
755 auto-inc is only allowed in memories, the register must be a
756 pointer. */
481683e1 757 if (CONST_INT_P (XEXP (x, 1))
4977bab6
ZW
758 && INTVAL (XEXP (x, 1)) > 0)
759 return true;
760 return nonzero_address_p (XEXP (x, 0));
761
762 case PRE_INC:
763 /* Similarly. Further, the offset is always positive. */
764 return true;
765
766 case PRE_DEC:
767 case POST_DEC:
768 case POST_INC:
769 case POST_MODIFY:
770 return nonzero_address_p (XEXP (x, 0));
771
772 case LO_SUM:
773 return nonzero_address_p (XEXP (x, 1));
774
775 default:
776 break;
777 }
778
779 /* If it isn't one of the case above, might be zero. */
780 return false;
781}
782
a6a2274a 783/* Return 1 if X refers to a memory location whose address
2c88418c 784 cannot be compared reliably with constant addresses,
a6a2274a 785 or if X refers to a BLKmode memory object.
e38fe8e0
BS
786 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
787 zero, we are slightly more conservative. */
2c88418c 788
4f588890
KG
789bool
790rtx_addr_varies_p (const_rtx x, bool for_alias)
2c88418c 791{
b3694847
SS
792 enum rtx_code code;
793 int i;
794 const char *fmt;
2c88418c
RS
795
796 if (x == 0)
797 return 0;
798
799 code = GET_CODE (x);
800 if (code == MEM)
e38fe8e0 801 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
2c88418c
RS
802
803 fmt = GET_RTX_FORMAT (code);
804 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
805 if (fmt[i] == 'e')
833c0b26 806 {
e38fe8e0 807 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
833c0b26
RK
808 return 1;
809 }
810 else if (fmt[i] == 'E')
811 {
812 int j;
813 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 814 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
833c0b26
RK
815 return 1;
816 }
2c88418c
RS
817 return 0;
818}
819\f
da4fdf2d
SB
820/* Return the CALL in X if there is one. */
821
822rtx
823get_call_rtx_from (rtx x)
824{
825 if (INSN_P (x))
826 x = PATTERN (x);
827 if (GET_CODE (x) == PARALLEL)
828 x = XVECEXP (x, 0, 0);
829 if (GET_CODE (x) == SET)
830 x = SET_SRC (x);
831 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
832 return x;
833 return NULL_RTX;
834}
835\f
2c88418c
RS
836/* Return the value of the integer term in X, if one is apparent;
837 otherwise return 0.
838 Only obvious integer terms are detected.
3ef42a0c 839 This is used in cse.c with the `related_value' field. */
2c88418c 840
c166a311 841HOST_WIDE_INT
f7d504c2 842get_integer_term (const_rtx x)
2c88418c
RS
843{
844 if (GET_CODE (x) == CONST)
845 x = XEXP (x, 0);
846
847 if (GET_CODE (x) == MINUS
481683e1 848 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
849 return - INTVAL (XEXP (x, 1));
850 if (GET_CODE (x) == PLUS
481683e1 851 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
852 return INTVAL (XEXP (x, 1));
853 return 0;
854}
855
856/* If X is a constant, return the value sans apparent integer term;
857 otherwise return 0.
858 Only obvious integer terms are detected. */
859
860rtx
f7d504c2 861get_related_value (const_rtx x)
2c88418c
RS
862{
863 if (GET_CODE (x) != CONST)
864 return 0;
865 x = XEXP (x, 0);
866 if (GET_CODE (x) == PLUS
481683e1 867 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
868 return XEXP (x, 0);
869 else if (GET_CODE (x) == MINUS
481683e1 870 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
871 return XEXP (x, 0);
872 return 0;
873}
874\f
7ffb5e78
RS
875/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
876 to somewhere in the same object or object_block as SYMBOL. */
877
878bool
f7d504c2 879offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
7ffb5e78
RS
880{
881 tree decl;
882
883 if (GET_CODE (symbol) != SYMBOL_REF)
884 return false;
885
886 if (offset == 0)
887 return true;
888
889 if (offset > 0)
890 {
891 if (CONSTANT_POOL_ADDRESS_P (symbol)
892 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
893 return true;
894
895 decl = SYMBOL_REF_DECL (symbol);
896 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
897 return true;
898 }
899
900 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
901 && SYMBOL_REF_BLOCK (symbol)
902 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
903 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
904 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
905 return true;
906
907 return false;
908}
909
910/* Split X into a base and a constant offset, storing them in *BASE_OUT
911 and *OFFSET_OUT respectively. */
912
913void
914split_const (rtx x, rtx *base_out, rtx *offset_out)
915{
916 if (GET_CODE (x) == CONST)
917 {
918 x = XEXP (x, 0);
481683e1 919 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
7ffb5e78
RS
920 {
921 *base_out = XEXP (x, 0);
922 *offset_out = XEXP (x, 1);
923 return;
924 }
925 }
926 *base_out = x;
927 *offset_out = const0_rtx;
928}
929\f
4b983fdc
RH
930/* Return the number of places FIND appears within X. If COUNT_DEST is
931 zero, we do not count occurrences inside the destination of a SET. */
932
933int
f7d504c2 934count_occurrences (const_rtx x, const_rtx find, int count_dest)
4b983fdc
RH
935{
936 int i, j;
937 enum rtx_code code;
938 const char *format_ptr;
939 int count;
940
941 if (x == find)
942 return 1;
943
944 code = GET_CODE (x);
945
946 switch (code)
947 {
948 case REG:
d8116890 949 CASE_CONST_ANY:
4b983fdc
RH
950 case SYMBOL_REF:
951 case CODE_LABEL:
952 case PC:
953 case CC0:
954 return 0;
955
2372a062
BS
956 case EXPR_LIST:
957 count = count_occurrences (XEXP (x, 0), find, count_dest);
958 if (XEXP (x, 1))
959 count += count_occurrences (XEXP (x, 1), find, count_dest);
960 return count;
b8698a0f 961
4b983fdc 962 case MEM:
3c0cb5de 963 if (MEM_P (find) && rtx_equal_p (x, find))
4b983fdc
RH
964 return 1;
965 break;
966
967 case SET:
968 if (SET_DEST (x) == find && ! count_dest)
969 return count_occurrences (SET_SRC (x), find, count_dest);
970 break;
971
972 default:
973 break;
974 }
975
976 format_ptr = GET_RTX_FORMAT (code);
977 count = 0;
978
979 for (i = 0; i < GET_RTX_LENGTH (code); i++)
980 {
981 switch (*format_ptr++)
982 {
983 case 'e':
984 count += count_occurrences (XEXP (x, i), find, count_dest);
985 break;
986
987 case 'E':
988 for (j = 0; j < XVECLEN (x, i); j++)
989 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
990 break;
991 }
992 }
993 return count;
994}
6fb5fa3c 995
7bc14a04
PB
996\f
997/* Return TRUE if OP is a register or subreg of a register that
998 holds an unsigned quantity. Otherwise, return FALSE. */
999
1000bool
1001unsigned_reg_p (rtx op)
1002{
1003 if (REG_P (op)
1004 && REG_EXPR (op)
1005 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1006 return true;
1007
1008 if (GET_CODE (op) == SUBREG
362d42dc 1009 && SUBREG_PROMOTED_SIGN (op))
7bc14a04
PB
1010 return true;
1011
1012 return false;
1013}
1014
4b983fdc 1015\f
2c88418c
RS
1016/* Nonzero if register REG appears somewhere within IN.
1017 Also works if REG is not a register; in this case it checks
1018 for a subexpression of IN that is Lisp "equal" to REG. */
1019
1020int
f7d504c2 1021reg_mentioned_p (const_rtx reg, const_rtx in)
2c88418c 1022{
b3694847
SS
1023 const char *fmt;
1024 int i;
1025 enum rtx_code code;
2c88418c
RS
1026
1027 if (in == 0)
1028 return 0;
1029
1030 if (reg == in)
1031 return 1;
1032
1033 if (GET_CODE (in) == LABEL_REF)
a827d9b1 1034 return reg == LABEL_REF_LABEL (in);
2c88418c
RS
1035
1036 code = GET_CODE (in);
1037
1038 switch (code)
1039 {
1040 /* Compare registers by number. */
1041 case REG:
f8cfc6aa 1042 return REG_P (reg) && REGNO (in) == REGNO (reg);
2c88418c
RS
1043
1044 /* These codes have no constituent expressions
1045 and are unique. */
1046 case SCRATCH:
1047 case CC0:
1048 case PC:
1049 return 0;
1050
d8116890 1051 CASE_CONST_ANY:
2c88418c
RS
1052 /* These are kept unique for a given value. */
1053 return 0;
a6a2274a 1054
e9a25f70
JL
1055 default:
1056 break;
2c88418c
RS
1057 }
1058
1059 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1060 return 1;
1061
1062 fmt = GET_RTX_FORMAT (code);
1063
1064 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1065 {
1066 if (fmt[i] == 'E')
1067 {
b3694847 1068 int j;
2c88418c
RS
1069 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1070 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1071 return 1;
1072 }
1073 else if (fmt[i] == 'e'
1074 && reg_mentioned_p (reg, XEXP (in, i)))
1075 return 1;
1076 }
1077 return 0;
1078}
1079\f
1080/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1081 no CODE_LABEL insn. */
1082
1083int
b32d5189 1084no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
2c88418c 1085{
b32d5189 1086 rtx_insn *p;
978f547f
JH
1087 if (beg == end)
1088 return 0;
2c88418c 1089 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
4b4bf941 1090 if (LABEL_P (p))
2c88418c
RS
1091 return 0;
1092 return 1;
1093}
1094
1095/* Nonzero if register REG is used in an insn between
1096 FROM_INSN and TO_INSN (exclusive of those two). */
1097
1098int
b32d5189
DM
1099reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1100 const rtx_insn *to_insn)
2c88418c 1101{
1bbbc4a3 1102 rtx_insn *insn;
2c88418c
RS
1103
1104 if (from_insn == to_insn)
1105 return 0;
1106
1107 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
b5b8b0ac 1108 if (NONDEBUG_INSN_P (insn)
8f3e7a26 1109 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
76dd5923 1110 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
2c88418c
RS
1111 return 1;
1112 return 0;
1113}
1114\f
1115/* Nonzero if the old value of X, a register, is referenced in BODY. If X
1116 is entirely replaced by a new value and the only use is as a SET_DEST,
1117 we do not consider it a reference. */
1118
1119int
f7d504c2 1120reg_referenced_p (const_rtx x, const_rtx body)
2c88418c
RS
1121{
1122 int i;
1123
1124 switch (GET_CODE (body))
1125 {
1126 case SET:
1127 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1128 return 1;
1129
1130 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1131 of a REG that occupies all of the REG, the insn references X if
1132 it is mentioned in the destination. */
1133 if (GET_CODE (SET_DEST (body)) != CC0
1134 && GET_CODE (SET_DEST (body)) != PC
f8cfc6aa 1135 && !REG_P (SET_DEST (body))
2c88418c 1136 && ! (GET_CODE (SET_DEST (body)) == SUBREG
f8cfc6aa 1137 && REG_P (SUBREG_REG (SET_DEST (body)))
2c88418c
RS
1138 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1139 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1140 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1141 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1142 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1143 return 1;
e9a25f70 1144 return 0;
2c88418c
RS
1145
1146 case ASM_OPERANDS:
1147 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1148 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1149 return 1;
e9a25f70 1150 return 0;
2c88418c
RS
1151
1152 case CALL:
1153 case USE:
14a774a9 1154 case IF_THEN_ELSE:
2c88418c
RS
1155 return reg_overlap_mentioned_p (x, body);
1156
1157 case TRAP_IF:
1158 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1159
21b8482a
JJ
1160 case PREFETCH:
1161 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1162
2ac4fed0
RK
1163 case UNSPEC:
1164 case UNSPEC_VOLATILE:
2f9fb4c2
R
1165 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1166 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1167 return 1;
1168 return 0;
1169
2c88418c
RS
1170 case PARALLEL:
1171 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1172 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1173 return 1;
e9a25f70 1174 return 0;
a6a2274a 1175
0d3ffb5a 1176 case CLOBBER:
3c0cb5de 1177 if (MEM_P (XEXP (body, 0)))
0d3ffb5a
GK
1178 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1179 return 1;
1180 return 0;
1181
0c99ec5c
RH
1182 case COND_EXEC:
1183 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1184 return 1;
1185 return reg_referenced_p (x, COND_EXEC_CODE (body));
1186
e9a25f70
JL
1187 default:
1188 return 0;
2c88418c 1189 }
2c88418c 1190}
2c88418c
RS
1191\f
1192/* Nonzero if register REG is set or clobbered in an insn between
1193 FROM_INSN and TO_INSN (exclusive of those two). */
1194
1195int
a5d567ec
DM
1196reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1197 const rtx_insn *to_insn)
2c88418c 1198{
1bbbc4a3 1199 const rtx_insn *insn;
2c88418c
RS
1200
1201 if (from_insn == to_insn)
1202 return 0;
1203
1204 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
2c3c49de 1205 if (INSN_P (insn) && reg_set_p (reg, insn))
2c88418c
RS
1206 return 1;
1207 return 0;
1208}
1209
1210/* Internals of reg_set_between_p. */
2c88418c 1211int
ed7a4b4b 1212reg_set_p (const_rtx reg, const_rtx insn)
2c88418c 1213{
d9a5f0cc
OE
1214 /* After delay slot handling, call and branch insns might be in a
1215 sequence. Check all the elements there. */
1216 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1217 {
1218 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1219 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1220 return true;
1221
1222 return false;
1223 }
1224
2c88418c
RS
1225 /* We can be passed an insn or part of one. If we are passed an insn,
1226 check if a side-effect of the insn clobbers REG. */
4977bab6
ZW
1227 if (INSN_P (insn)
1228 && (FIND_REG_INC_NOTE (insn, reg)
4b4bf941 1229 || (CALL_P (insn)
f8cfc6aa 1230 && ((REG_P (reg)
4f1605d2 1231 && REGNO (reg) < FIRST_PSEUDO_REGISTER
5da20cfe
RS
1232 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1233 GET_MODE (reg), REGNO (reg)))
3c0cb5de 1234 || MEM_P (reg)
4977bab6 1235 || find_reg_fusage (insn, CLOBBER, reg)))))
d9a5f0cc 1236 return true;
2c88418c 1237
91b2d119 1238 return set_of (reg, insn) != NULL_RTX;
2c88418c
RS
1239}
1240
1241/* Similar to reg_set_between_p, but check all registers in X. Return 0
1242 only if none of them are modified between START and END. Return 1 if
fa10beec 1243 X contains a MEM; this routine does use memory aliasing. */
2c88418c
RS
1244
1245int
8f6bce51 1246modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
2c88418c 1247{
9678086d 1248 const enum rtx_code code = GET_CODE (x);
6f7d635c 1249 const char *fmt;
f8163c92 1250 int i, j;
1bbbc4a3 1251 rtx_insn *insn;
7b52eede
JH
1252
1253 if (start == end)
1254 return 0;
2c88418c
RS
1255
1256 switch (code)
1257 {
d8116890 1258 CASE_CONST_ANY:
2c88418c
RS
1259 case CONST:
1260 case SYMBOL_REF:
1261 case LABEL_REF:
1262 return 0;
1263
1264 case PC:
1265 case CC0:
1266 return 1;
1267
1268 case MEM:
7b52eede 1269 if (modified_between_p (XEXP (x, 0), start, end))
2c88418c 1270 return 1;
550b7784
KK
1271 if (MEM_READONLY_P (x))
1272 return 0;
7b52eede
JH
1273 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1274 if (memory_modified_in_insn_p (x, insn))
1275 return 1;
1276 return 0;
2c88418c
RS
1277 break;
1278
1279 case REG:
1280 return reg_set_between_p (x, start, end);
a6a2274a 1281
e9a25f70
JL
1282 default:
1283 break;
2c88418c
RS
1284 }
1285
1286 fmt = GET_RTX_FORMAT (code);
1287 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
f8163c92
RK
1288 {
1289 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1290 return 1;
1291
d4757e6a 1292 else if (fmt[i] == 'E')
f8163c92
RK
1293 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1294 if (modified_between_p (XVECEXP (x, i, j), start, end))
1295 return 1;
1296 }
1297
1298 return 0;
1299}
1300
1301/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1302 of them are modified in INSN. Return 1 if X contains a MEM; this routine
7b52eede 1303 does use memory aliasing. */
f8163c92
RK
1304
1305int
9678086d 1306modified_in_p (const_rtx x, const_rtx insn)
f8163c92 1307{
9678086d 1308 const enum rtx_code code = GET_CODE (x);
6f7d635c 1309 const char *fmt;
f8163c92
RK
1310 int i, j;
1311
1312 switch (code)
1313 {
d8116890 1314 CASE_CONST_ANY:
f8163c92
RK
1315 case CONST:
1316 case SYMBOL_REF:
1317 case LABEL_REF:
1318 return 0;
1319
1320 case PC:
1321 case CC0:
2c88418c
RS
1322 return 1;
1323
f8163c92 1324 case MEM:
7b52eede 1325 if (modified_in_p (XEXP (x, 0), insn))
f8163c92 1326 return 1;
550b7784
KK
1327 if (MEM_READONLY_P (x))
1328 return 0;
7b52eede
JH
1329 if (memory_modified_in_insn_p (x, insn))
1330 return 1;
1331 return 0;
f8163c92
RK
1332 break;
1333
1334 case REG:
1335 return reg_set_p (x, insn);
e9a25f70
JL
1336
1337 default:
1338 break;
f8163c92
RK
1339 }
1340
1341 fmt = GET_RTX_FORMAT (code);
1342 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1343 {
1344 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1345 return 1;
1346
d4757e6a 1347 else if (fmt[i] == 'E')
f8163c92
RK
1348 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1349 if (modified_in_p (XVECEXP (x, i, j), insn))
1350 return 1;
1351 }
1352
2c88418c
RS
1353 return 0;
1354}
1355\f
91b2d119
JH
1356/* Helper function for set_of. */
1357struct set_of_data
1358 {
7bc980e1
KG
1359 const_rtx found;
1360 const_rtx pat;
91b2d119
JH
1361 };
1362
1363static void
7bc980e1 1364set_of_1 (rtx x, const_rtx pat, void *data1)
91b2d119 1365{
7bc980e1
KG
1366 struct set_of_data *const data = (struct set_of_data *) (data1);
1367 if (rtx_equal_p (x, data->pat)
1368 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1369 data->found = pat;
91b2d119
JH
1370}
1371
1372/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
eaec9b3d 1373 (either directly or via STRICT_LOW_PART and similar modifiers). */
7bc980e1
KG
1374const_rtx
1375set_of (const_rtx pat, const_rtx insn)
91b2d119
JH
1376{
1377 struct set_of_data data;
1378 data.found = NULL_RTX;
1379 data.pat = pat;
1380 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1381 return data.found;
1382}
e2724e63 1383
f7d0b0fc
RS
1384/* Add all hard register in X to *PSET. */
1385void
1386find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1387{
1388 subrtx_iterator::array_type array;
1389 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1390 {
1391 const_rtx x = *iter;
1392 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1393 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1394 }
1395}
1396
e2724e63
BS
1397/* This function, called through note_stores, collects sets and
1398 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1399 by DATA. */
1400void
1401record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1402{
1403 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1404 if (REG_P (x) && HARD_REGISTER_P (x))
1405 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1406}
1407
1408/* Examine INSN, and compute the set of hard registers written by it.
1409 Store it in *PSET. Should only be called after reload. */
1410void
fd769c94 1411find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
e2724e63
BS
1412{
1413 rtx link;
1414
1415 CLEAR_HARD_REG_SET (*pset);
1416 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
3ee634fd
TV
1417 if (CALL_P (insn))
1418 {
1419 if (implicit)
1420 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1421
1422 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1423 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1424 }
e2724e63
BS
1425 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1426 if (REG_NOTE_KIND (link) == REG_INC)
1427 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1428}
1429
e2724e63
BS
1430/* Like record_hard_reg_sets, but called through note_uses. */
1431void
1432record_hard_reg_uses (rtx *px, void *data)
1433{
f7d0b0fc 1434 find_all_hard_regs (*px, (HARD_REG_SET *) data);
e2724e63 1435}
91b2d119 1436\f
2c88418c
RS
1437/* Given an INSN, return a SET expression if this insn has only a single SET.
1438 It may also have CLOBBERs, USEs, or SET whose output
1439 will not be used, which we ignore. */
1440
1441rtx
e8a54173 1442single_set_2 (const rtx_insn *insn, const_rtx pat)
2c88418c 1443{
c9b89a21
JH
1444 rtx set = NULL;
1445 int set_verified = 1;
2c88418c 1446 int i;
c9b89a21 1447
b1cdafbb 1448 if (GET_CODE (pat) == PARALLEL)
2c88418c 1449 {
c9b89a21 1450 for (i = 0; i < XVECLEN (pat, 0); i++)
b1cdafbb 1451 {
c9b89a21
JH
1452 rtx sub = XVECEXP (pat, 0, i);
1453 switch (GET_CODE (sub))
1454 {
1455 case USE:
1456 case CLOBBER:
1457 break;
1458
1459 case SET:
1460 /* We can consider insns having multiple sets, where all
1461 but one are dead as single set insns. In common case
1462 only single set is present in the pattern so we want
f63d1bf7 1463 to avoid checking for REG_UNUSED notes unless necessary.
c9b89a21
JH
1464
1465 When we reach set first time, we just expect this is
1466 the single set we are looking for and only when more
1467 sets are found in the insn, we check them. */
1468 if (!set_verified)
1469 {
1470 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1471 && !side_effects_p (set))
1472 set = NULL;
1473 else
1474 set_verified = 1;
1475 }
1476 if (!set)
1477 set = sub, set_verified = 0;
1478 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1479 || side_effects_p (sub))
1480 return NULL_RTX;
1481 break;
1482
1483 default:
1484 return NULL_RTX;
1485 }
787ccee0 1486 }
2c88418c 1487 }
c9b89a21 1488 return set;
2c88418c 1489}
941c63ac
JL
1490
1491/* Given an INSN, return nonzero if it has more than one SET, else return
1492 zero. */
1493
5f7d3786 1494int
f7d504c2 1495multiple_sets (const_rtx insn)
941c63ac 1496{
cae8acdd 1497 int found;
941c63ac 1498 int i;
a6a2274a 1499
941c63ac 1500 /* INSN must be an insn. */
2c3c49de 1501 if (! INSN_P (insn))
941c63ac
JL
1502 return 0;
1503
1504 /* Only a PARALLEL can have multiple SETs. */
1505 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1506 {
1507 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1508 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1509 {
1510 /* If we have already found a SET, then return now. */
1511 if (found)
1512 return 1;
1513 else
1514 found = 1;
1515 }
1516 }
a6a2274a 1517
941c63ac
JL
1518 /* Either zero or one SET. */
1519 return 0;
1520}
2c88418c 1521\f
7142e318
JW
1522/* Return nonzero if the destination of SET equals the source
1523 and there are no side effects. */
1524
1525int
f7d504c2 1526set_noop_p (const_rtx set)
7142e318
JW
1527{
1528 rtx src = SET_SRC (set);
1529 rtx dst = SET_DEST (set);
1530
371b8fc0
JH
1531 if (dst == pc_rtx && src == pc_rtx)
1532 return 1;
1533
3c0cb5de 1534 if (MEM_P (dst) && MEM_P (src))
cd648cec
JH
1535 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1536
46d096a3 1537 if (GET_CODE (dst) == ZERO_EXTRACT)
7142e318 1538 return rtx_equal_p (XEXP (dst, 0), src)
cd648cec
JH
1539 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1540 && !side_effects_p (src);
7142e318
JW
1541
1542 if (GET_CODE (dst) == STRICT_LOW_PART)
1543 dst = XEXP (dst, 0);
1544
1545 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1546 {
1547 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1548 return 0;
1549 src = SUBREG_REG (src);
1550 dst = SUBREG_REG (dst);
1551 }
1552
8c895291
TB
1553 /* It is a NOOP if destination overlaps with selected src vector
1554 elements. */
1555 if (GET_CODE (src) == VEC_SELECT
1556 && REG_P (XEXP (src, 0)) && REG_P (dst)
1557 && HARD_REGISTER_P (XEXP (src, 0))
1558 && HARD_REGISTER_P (dst))
1559 {
1560 int i;
1561 rtx par = XEXP (src, 1);
1562 rtx src0 = XEXP (src, 0);
1563 int c0 = INTVAL (XVECEXP (par, 0, 0));
1564 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1565
1566 for (i = 1; i < XVECLEN (par, 0); i++)
1567 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1568 return 0;
1569 return
1570 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1571 offset, GET_MODE (dst)) == (int) REGNO (dst);
1572 }
1573
f8cfc6aa 1574 return (REG_P (src) && REG_P (dst)
7142e318
JW
1575 && REGNO (src) == REGNO (dst));
1576}
0005550b
JH
1577\f
1578/* Return nonzero if an insn consists only of SETs, each of which only sets a
1579 value to itself. */
1580
1581int
8a1b6388 1582noop_move_p (const rtx_insn *insn)
0005550b
JH
1583{
1584 rtx pat = PATTERN (insn);
1585
b5832b43
JH
1586 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1587 return 1;
1588
0005550b
JH
1589 /* Insns carrying these notes are useful later on. */
1590 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1591 return 0;
1592
8f7e6e33
BC
1593 /* Check the code to be executed for COND_EXEC. */
1594 if (GET_CODE (pat) == COND_EXEC)
1595 pat = COND_EXEC_CODE (pat);
1596
0005550b
JH
1597 if (GET_CODE (pat) == SET && set_noop_p (pat))
1598 return 1;
1599
1600 if (GET_CODE (pat) == PARALLEL)
1601 {
1602 int i;
1603 /* If nothing but SETs of registers to themselves,
1604 this insn can also be deleted. */
1605 for (i = 0; i < XVECLEN (pat, 0); i++)
1606 {
1607 rtx tem = XVECEXP (pat, 0, i);
1608
1609 if (GET_CODE (tem) == USE
1610 || GET_CODE (tem) == CLOBBER)
1611 continue;
1612
1613 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1614 return 0;
1615 }
1616
1617 return 1;
1618 }
1619 return 0;
1620}
1621\f
7142e318 1622
2c88418c
RS
1623/* Return nonzero if register in range [REGNO, ENDREGNO)
1624 appears either explicitly or implicitly in X
1625 other than being stored into.
1626
1627 References contained within the substructure at LOC do not count.
1628 LOC may be zero, meaning don't ignore anything. */
1629
c9bd6bcd 1630bool
f7d504c2 1631refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
0c20a65f 1632 rtx *loc)
2c88418c 1633{
770ae6cc
RK
1634 int i;
1635 unsigned int x_regno;
1636 RTX_CODE code;
1637 const char *fmt;
2c88418c
RS
1638
1639 repeat:
1640 /* The contents of a REG_NONNEG note is always zero, so we must come here
1641 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1642 if (x == 0)
c9bd6bcd 1643 return false;
2c88418c
RS
1644
1645 code = GET_CODE (x);
1646
1647 switch (code)
1648 {
1649 case REG:
770ae6cc 1650 x_regno = REGNO (x);
f8163c92
RK
1651
1652 /* If we modifying the stack, frame, or argument pointer, it will
1653 clobber a virtual register. In fact, we could be more precise,
1654 but it isn't worth it. */
770ae6cc 1655 if ((x_regno == STACK_POINTER_REGNUM
3f393fc6
TS
1656 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1657 && x_regno == ARG_POINTER_REGNUM)
770ae6cc 1658 || x_regno == FRAME_POINTER_REGNUM)
f8163c92 1659 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
c9bd6bcd 1660 return true;
f8163c92 1661
09e18274 1662 return endregno > x_regno && regno < END_REGNO (x);
2c88418c
RS
1663
1664 case SUBREG:
1665 /* If this is a SUBREG of a hard reg, we can see exactly which
1666 registers are being modified. Otherwise, handle normally. */
f8cfc6aa 1667 if (REG_P (SUBREG_REG (x))
2c88418c
RS
1668 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1669 {
ddef6bc7 1670 unsigned int inner_regno = subreg_regno (x);
770ae6cc 1671 unsigned int inner_endregno
403c659c 1672 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
f1f4e530 1673 ? subreg_nregs (x) : 1);
2c88418c
RS
1674
1675 return endregno > inner_regno && regno < inner_endregno;
1676 }
1677 break;
1678
1679 case CLOBBER:
1680 case SET:
1681 if (&SET_DEST (x) != loc
1682 /* Note setting a SUBREG counts as referring to the REG it is in for
1683 a pseudo but not for hard registers since we can
1684 treat each word individually. */
1685 && ((GET_CODE (SET_DEST (x)) == SUBREG
1686 && loc != &SUBREG_REG (SET_DEST (x))
f8cfc6aa 1687 && REG_P (SUBREG_REG (SET_DEST (x)))
2c88418c
RS
1688 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1689 && refers_to_regno_p (regno, endregno,
1690 SUBREG_REG (SET_DEST (x)), loc))
f8cfc6aa 1691 || (!REG_P (SET_DEST (x))
2c88418c 1692 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
c9bd6bcd 1693 return true;
2c88418c
RS
1694
1695 if (code == CLOBBER || loc == &SET_SRC (x))
c9bd6bcd 1696 return false;
2c88418c
RS
1697 x = SET_SRC (x);
1698 goto repeat;
e9a25f70
JL
1699
1700 default:
1701 break;
2c88418c
RS
1702 }
1703
1704 /* X does not match, so try its subexpressions. */
1705
1706 fmt = GET_RTX_FORMAT (code);
1707 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1708 {
1709 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1710 {
1711 if (i == 0)
1712 {
1713 x = XEXP (x, 0);
1714 goto repeat;
1715 }
1716 else
1717 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
c9bd6bcd 1718 return true;
2c88418c
RS
1719 }
1720 else if (fmt[i] == 'E')
1721 {
b3694847 1722 int j;
6a87d634 1723 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2c88418c
RS
1724 if (loc != &XVECEXP (x, i, j)
1725 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
c9bd6bcd 1726 return true;
2c88418c
RS
1727 }
1728 }
c9bd6bcd 1729 return false;
2c88418c
RS
1730}
1731
1732/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1733 we check if any register number in X conflicts with the relevant register
1734 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1735 contains a MEM (we don't bother checking for memory addresses that can't
1736 conflict because we expect this to be a rare case. */
1737
1738int
f7d504c2 1739reg_overlap_mentioned_p (const_rtx x, const_rtx in)
2c88418c 1740{
770ae6cc 1741 unsigned int regno, endregno;
2c88418c 1742
6f626d1b
PB
1743 /* If either argument is a constant, then modifying X can not
1744 affect IN. Here we look at IN, we can profitably combine
1745 CONSTANT_P (x) with the switch statement below. */
1746 if (CONSTANT_P (in))
b98b49ac 1747 return 0;
0c99ec5c 1748
6f626d1b 1749 recurse:
0c99ec5c 1750 switch (GET_CODE (x))
2c88418c 1751 {
6f626d1b
PB
1752 case STRICT_LOW_PART:
1753 case ZERO_EXTRACT:
1754 case SIGN_EXTRACT:
1755 /* Overly conservative. */
1756 x = XEXP (x, 0);
1757 goto recurse;
1758
0c99ec5c 1759 case SUBREG:
2c88418c
RS
1760 regno = REGNO (SUBREG_REG (x));
1761 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 1762 regno = subreg_regno (x);
f1f4e530
JM
1763 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1764 ? subreg_nregs (x) : 1);
0c99ec5c 1765 goto do_reg;
2c88418c 1766
0c99ec5c
RH
1767 case REG:
1768 regno = REGNO (x);
09e18274 1769 endregno = END_REGNO (x);
f1f4e530 1770 do_reg:
8e2e89f7 1771 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
2c88418c 1772
0c99ec5c
RH
1773 case MEM:
1774 {
1775 const char *fmt;
1776 int i;
2c88418c 1777
3c0cb5de 1778 if (MEM_P (in))
2c88418c
RS
1779 return 1;
1780
0c99ec5c
RH
1781 fmt = GET_RTX_FORMAT (GET_CODE (in));
1782 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
3b009185
RH
1783 if (fmt[i] == 'e')
1784 {
1785 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1786 return 1;
1787 }
1788 else if (fmt[i] == 'E')
1789 {
1790 int j;
1791 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1792 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1793 return 1;
1794 }
c0222c21 1795
0c99ec5c
RH
1796 return 0;
1797 }
1798
1799 case SCRATCH:
1800 case PC:
1801 case CC0:
1802 return reg_mentioned_p (x, in);
1803
1804 case PARALLEL:
37ceff9d 1805 {
90d036a0 1806 int i;
37ceff9d
RH
1807
1808 /* If any register in here refers to it we return true. */
7193d1dc
RK
1809 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1810 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1811 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
6f626d1b 1812 return 1;
7193d1dc 1813 return 0;
37ceff9d 1814 }
2c88418c 1815
0c99ec5c 1816 default:
41374e13 1817 gcc_assert (CONSTANT_P (x));
6f626d1b
PB
1818 return 0;
1819 }
2c88418c
RS
1820}
1821\f
2c88418c 1822/* Call FUN on each register or MEM that is stored into or clobbered by X.
c3a1ef9d
MM
1823 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1824 ignored by note_stores, but passed to FUN.
1825
1826 FUN receives three arguments:
1827 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1828 2. the SET or CLOBBER rtx that does the store,
1829 3. the pointer DATA provided to note_stores.
2c88418c
RS
1830
1831 If the item being stored in or clobbered is a SUBREG of a hard register,
1832 the SUBREG will be passed. */
a6a2274a 1833
2c88418c 1834void
7bc980e1 1835note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
2c88418c 1836{
aa317c97 1837 int i;
90d036a0 1838
aa317c97
KG
1839 if (GET_CODE (x) == COND_EXEC)
1840 x = COND_EXEC_CODE (x);
90d036a0 1841
aa317c97
KG
1842 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1843 {
1844 rtx dest = SET_DEST (x);
1845
1846 while ((GET_CODE (dest) == SUBREG
1847 && (!REG_P (SUBREG_REG (dest))
1848 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1849 || GET_CODE (dest) == ZERO_EXTRACT
1850 || GET_CODE (dest) == STRICT_LOW_PART)
1851 dest = XEXP (dest, 0);
1852
1853 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1854 each of whose first operand is a register. */
1855 if (GET_CODE (dest) == PARALLEL)
1856 {
1857 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1858 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1859 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1860 }
1861 else
1862 (*fun) (dest, x, data);
1863 }
770ae6cc 1864
aa317c97
KG
1865 else if (GET_CODE (x) == PARALLEL)
1866 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1867 note_stores (XVECEXP (x, 0, i), fun, data);
1868}
2c88418c 1869\f
e2373f95
RK
1870/* Like notes_stores, but call FUN for each expression that is being
1871 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1872 FUN for each expression, not any interior subexpressions. FUN receives a
1873 pointer to the expression and the DATA passed to this function.
1874
1875 Note that this is not quite the same test as that done in reg_referenced_p
1876 since that considers something as being referenced if it is being
1877 partially set, while we do not. */
1878
1879void
0c20a65f 1880note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
e2373f95
RK
1881{
1882 rtx body = *pbody;
1883 int i;
1884
1885 switch (GET_CODE (body))
1886 {
1887 case COND_EXEC:
1888 (*fun) (&COND_EXEC_TEST (body), data);
1889 note_uses (&COND_EXEC_CODE (body), fun, data);
1890 return;
1891
1892 case PARALLEL:
1893 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1894 note_uses (&XVECEXP (body, 0, i), fun, data);
1895 return;
1896
bbbc206e
BS
1897 case SEQUENCE:
1898 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1899 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1900 return;
1901
e2373f95
RK
1902 case USE:
1903 (*fun) (&XEXP (body, 0), data);
1904 return;
1905
1906 case ASM_OPERANDS:
1907 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1908 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1909 return;
1910
1911 case TRAP_IF:
1912 (*fun) (&TRAP_CONDITION (body), data);
1913 return;
1914
21b8482a
JJ
1915 case PREFETCH:
1916 (*fun) (&XEXP (body, 0), data);
1917 return;
1918
e2373f95
RK
1919 case UNSPEC:
1920 case UNSPEC_VOLATILE:
1921 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1922 (*fun) (&XVECEXP (body, 0, i), data);
1923 return;
1924
1925 case CLOBBER:
3c0cb5de 1926 if (MEM_P (XEXP (body, 0)))
e2373f95
RK
1927 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1928 return;
1929
1930 case SET:
1931 {
1932 rtx dest = SET_DEST (body);
1933
1934 /* For sets we replace everything in source plus registers in memory
1935 expression in store and operands of a ZERO_EXTRACT. */
1936 (*fun) (&SET_SRC (body), data);
1937
1938 if (GET_CODE (dest) == ZERO_EXTRACT)
1939 {
1940 (*fun) (&XEXP (dest, 1), data);
1941 (*fun) (&XEXP (dest, 2), data);
1942 }
1943
1944 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1945 dest = XEXP (dest, 0);
1946
3c0cb5de 1947 if (MEM_P (dest))
e2373f95
RK
1948 (*fun) (&XEXP (dest, 0), data);
1949 }
1950 return;
1951
1952 default:
1953 /* All the other possibilities never store. */
1954 (*fun) (pbody, data);
1955 return;
1956 }
1957}
1958\f
2c88418c
RS
1959/* Return nonzero if X's old contents don't survive after INSN.
1960 This will be true if X is (cc0) or if X is a register and
1961 X dies in INSN or because INSN entirely sets X.
1962
46d096a3
SB
1963 "Entirely set" means set directly and not through a SUBREG, or
1964 ZERO_EXTRACT, so no trace of the old contents remains.
2c88418c
RS
1965 Likewise, REG_INC does not count.
1966
1967 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1968 but for this use that makes no difference, since regs don't overlap
1969 during their lifetimes. Therefore, this function may be used
6fb5fa3c 1970 at any time after deaths have been computed.
2c88418c
RS
1971
1972 If REG is a hard reg that occupies multiple machine registers, this
1973 function will only return 1 if each of those registers will be replaced
1974 by INSN. */
1975
1976int
f7d504c2 1977dead_or_set_p (const_rtx insn, const_rtx x)
2c88418c 1978{
09e18274 1979 unsigned int regno, end_regno;
770ae6cc 1980 unsigned int i;
2c88418c
RS
1981
1982 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1983 if (GET_CODE (x) == CC0)
1984 return 1;
1985
41374e13 1986 gcc_assert (REG_P (x));
2c88418c
RS
1987
1988 regno = REGNO (x);
09e18274
RS
1989 end_regno = END_REGNO (x);
1990 for (i = regno; i < end_regno; i++)
2c88418c
RS
1991 if (! dead_or_set_regno_p (insn, i))
1992 return 0;
1993
1994 return 1;
1995}
1996
194acded
HPN
1997/* Return TRUE iff DEST is a register or subreg of a register and
1998 doesn't change the number of words of the inner register, and any
1999 part of the register is TEST_REGNO. */
2000
2001static bool
f7d504c2 2002covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
2003{
2004 unsigned int regno, endregno;
2005
2006 if (GET_CODE (dest) == SUBREG
2007 && (((GET_MODE_SIZE (GET_MODE (dest))
2008 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2009 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2010 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2011 dest = SUBREG_REG (dest);
2012
2013 if (!REG_P (dest))
2014 return false;
2015
2016 regno = REGNO (dest);
09e18274 2017 endregno = END_REGNO (dest);
194acded
HPN
2018 return (test_regno >= regno && test_regno < endregno);
2019}
2020
2021/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2022 any member matches the covers_regno_no_parallel_p criteria. */
2023
2024static bool
f7d504c2 2025covers_regno_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
2026{
2027 if (GET_CODE (dest) == PARALLEL)
2028 {
2029 /* Some targets place small structures in registers for return
2030 values of functions, and those registers are wrapped in
2031 PARALLELs that we may see as the destination of a SET. */
2032 int i;
2033
2034 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2035 {
2036 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2037 if (inner != NULL_RTX
2038 && covers_regno_no_parallel_p (inner, test_regno))
2039 return true;
2040 }
2041
2042 return false;
2043 }
2044 else
2045 return covers_regno_no_parallel_p (dest, test_regno);
2046}
2047
6fb5fa3c 2048/* Utility function for dead_or_set_p to check an individual register. */
2c88418c
RS
2049
2050int
f7d504c2 2051dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2c88418c 2052{
f7d504c2 2053 const_rtx pattern;
2c88418c 2054
0a2287bf
RH
2055 /* See if there is a death note for something that includes TEST_REGNO. */
2056 if (find_regno_note (insn, REG_DEAD, test_regno))
2057 return 1;
2c88418c 2058
4b4bf941 2059 if (CALL_P (insn)
8f3e7a26
RK
2060 && find_regno_fusage (insn, CLOBBER, test_regno))
2061 return 1;
2062
0c99ec5c
RH
2063 pattern = PATTERN (insn);
2064
10439b59 2065 /* If a COND_EXEC is not executed, the value survives. */
0c99ec5c 2066 if (GET_CODE (pattern) == COND_EXEC)
10439b59 2067 return 0;
0c99ec5c
RH
2068
2069 if (GET_CODE (pattern) == SET)
194acded 2070 return covers_regno_p (SET_DEST (pattern), test_regno);
0c99ec5c 2071 else if (GET_CODE (pattern) == PARALLEL)
2c88418c 2072 {
b3694847 2073 int i;
2c88418c 2074
0c99ec5c 2075 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2c88418c 2076 {
0c99ec5c
RH
2077 rtx body = XVECEXP (pattern, 0, i);
2078
2079 if (GET_CODE (body) == COND_EXEC)
2080 body = COND_EXEC_CODE (body);
2c88418c 2081
194acded
HPN
2082 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2083 && covers_regno_p (SET_DEST (body), test_regno))
2084 return 1;
2c88418c
RS
2085 }
2086 }
2087
2088 return 0;
2089}
2090
2091/* Return the reg-note of kind KIND in insn INSN, if there is one.
2092 If DATUM is nonzero, look for one whose datum is DATUM. */
2093
2094rtx
f7d504c2 2095find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2c88418c 2096{
b3694847 2097 rtx link;
2c88418c 2098
7a40b8b1 2099 gcc_checking_assert (insn);
af082de3 2100
ae78d276 2101 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 2102 if (! INSN_P (insn))
ae78d276 2103 return 0;
cd798543
AP
2104 if (datum == 0)
2105 {
2106 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2107 if (REG_NOTE_KIND (link) == kind)
2108 return link;
2109 return 0;
2110 }
ae78d276 2111
2c88418c 2112 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cd798543 2113 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2c88418c
RS
2114 return link;
2115 return 0;
2116}
2117
2118/* Return the reg-note of kind KIND in insn INSN which applies to register
99309f3b
RK
2119 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2120 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2121 it might be the case that the note overlaps REGNO. */
2c88418c
RS
2122
2123rtx
f7d504c2 2124find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2c88418c 2125{
b3694847 2126 rtx link;
2c88418c 2127
ae78d276 2128 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 2129 if (! INSN_P (insn))
ae78d276
MM
2130 return 0;
2131
2c88418c
RS
2132 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2133 if (REG_NOTE_KIND (link) == kind
2134 /* Verify that it is a register, so that scratch and MEM won't cause a
2135 problem here. */
f8cfc6aa 2136 && REG_P (XEXP (link, 0))
99309f3b 2137 && REGNO (XEXP (link, 0)) <= regno
09e18274 2138 && END_REGNO (XEXP (link, 0)) > regno)
2c88418c
RS
2139 return link;
2140 return 0;
2141}
8f3e7a26 2142
d9c695ff
RK
2143/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2144 has such a note. */
2145
2146rtx
f7d504c2 2147find_reg_equal_equiv_note (const_rtx insn)
d9c695ff 2148{
cd648cec 2149 rtx link;
d9c695ff 2150
cd648cec 2151 if (!INSN_P (insn))
d9c695ff 2152 return 0;
ea8f106d 2153
cd648cec
JH
2154 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2155 if (REG_NOTE_KIND (link) == REG_EQUAL
2156 || REG_NOTE_KIND (link) == REG_EQUIV)
2157 {
ea8f106d
SB
2158 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2159 insns that have multiple sets. Checking single_set to
2160 make sure of this is not the proper check, as explained
2161 in the comment in set_unique_reg_note.
2162
2163 This should be changed into an assert. */
2164 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
cd648cec
JH
2165 return 0;
2166 return link;
2167 }
2168 return NULL;
d9c695ff
RK
2169}
2170
2a450639
RS
2171/* Check whether INSN is a single_set whose source is known to be
2172 equivalent to a constant. Return that constant if so, otherwise
2173 return null. */
2174
2175rtx
68a1a6c0 2176find_constant_src (const rtx_insn *insn)
2a450639
RS
2177{
2178 rtx note, set, x;
2179
2180 set = single_set (insn);
2181 if (set)
2182 {
2183 x = avoid_constant_pool_reference (SET_SRC (set));
2184 if (CONSTANT_P (x))
2185 return x;
2186 }
2187
2188 note = find_reg_equal_equiv_note (insn);
2189 if (note && CONSTANT_P (XEXP (note, 0)))
2190 return XEXP (note, 0);
2191
2192 return NULL_RTX;
2193}
2194
8f3e7a26
RK
2195/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2196 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2197
2198int
f7d504c2 2199find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
8f3e7a26
RK
2200{
2201 /* If it's not a CALL_INSN, it can't possibly have a
2202 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
4b4bf941 2203 if (!CALL_P (insn))
8f3e7a26
RK
2204 return 0;
2205
41374e13 2206 gcc_assert (datum);
8f3e7a26 2207
f8cfc6aa 2208 if (!REG_P (datum))
8f3e7a26 2209 {
b3694847 2210 rtx link;
8f3e7a26
RK
2211
2212 for (link = CALL_INSN_FUNCTION_USAGE (insn);
a6a2274a 2213 link;
8f3e7a26 2214 link = XEXP (link, 1))
a6a2274a 2215 if (GET_CODE (XEXP (link, 0)) == code
cc863bea 2216 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
a6a2274a 2217 return 1;
8f3e7a26
RK
2218 }
2219 else
2220 {
770ae6cc 2221 unsigned int regno = REGNO (datum);
8f3e7a26
RK
2222
2223 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2224 to pseudo registers, so don't bother checking. */
2225
2226 if (regno < FIRST_PSEUDO_REGISTER)
a6a2274a 2227 {
72d19505 2228 unsigned int end_regno = END_REGNO (datum);
770ae6cc 2229 unsigned int i;
8f3e7a26
RK
2230
2231 for (i = regno; i < end_regno; i++)
2232 if (find_regno_fusage (insn, code, i))
2233 return 1;
a6a2274a 2234 }
8f3e7a26
RK
2235 }
2236
2237 return 0;
2238}
2239
2240/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2241 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2242
2243int
f7d504c2 2244find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
8f3e7a26 2245{
b3694847 2246 rtx link;
8f3e7a26
RK
2247
2248 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2249 to pseudo registers, so don't bother checking. */
2250
2251 if (regno >= FIRST_PSEUDO_REGISTER
4b4bf941 2252 || !CALL_P (insn) )
8f3e7a26
RK
2253 return 0;
2254
2255 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
83ab3839 2256 {
770ae6cc 2257 rtx op, reg;
83ab3839
RH
2258
2259 if (GET_CODE (op = XEXP (link, 0)) == code
f8cfc6aa 2260 && REG_P (reg = XEXP (op, 0))
09e18274 2261 && REGNO (reg) <= regno
72d19505 2262 && END_REGNO (reg) > regno)
83ab3839
RH
2263 return 1;
2264 }
8f3e7a26
RK
2265
2266 return 0;
2267}
a6a063b8 2268
2c88418c 2269\f
e5af9ddd
RS
2270/* Return true if KIND is an integer REG_NOTE. */
2271
2272static bool
2273int_reg_note_p (enum reg_note kind)
2274{
2275 return kind == REG_BR_PROB;
2276}
2277
efc0b2bd
ILT
2278/* Allocate a register note with kind KIND and datum DATUM. LIST is
2279 stored as the pointer to the next register note. */
65c5f2a6 2280
efc0b2bd
ILT
2281rtx
2282alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
65c5f2a6
ILT
2283{
2284 rtx note;
2285
e5af9ddd 2286 gcc_checking_assert (!int_reg_note_p (kind));
65c5f2a6
ILT
2287 switch (kind)
2288 {
2289 case REG_CC_SETTER:
2290 case REG_CC_USER:
2291 case REG_LABEL_TARGET:
2292 case REG_LABEL_OPERAND:
0a35513e 2293 case REG_TM:
65c5f2a6
ILT
2294 /* These types of register notes use an INSN_LIST rather than an
2295 EXPR_LIST, so that copying is done right and dumps look
2296 better. */
efc0b2bd 2297 note = alloc_INSN_LIST (datum, list);
65c5f2a6
ILT
2298 PUT_REG_NOTE_KIND (note, kind);
2299 break;
2300
2301 default:
efc0b2bd 2302 note = alloc_EXPR_LIST (kind, datum, list);
65c5f2a6
ILT
2303 break;
2304 }
2305
efc0b2bd
ILT
2306 return note;
2307}
2308
2309/* Add register note with kind KIND and datum DATUM to INSN. */
2310
2311void
2312add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2313{
2314 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
65c5f2a6
ILT
2315}
2316
e5af9ddd
RS
2317/* Add an integer register note with kind KIND and datum DATUM to INSN. */
2318
2319void
2320add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2321{
2322 gcc_checking_assert (int_reg_note_p (kind));
ef4bddc2 2323 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
e5af9ddd
RS
2324 datum, REG_NOTES (insn));
2325}
2326
2327/* Add a register note like NOTE to INSN. */
2328
2329void
9b8d3c60 2330add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
e5af9ddd
RS
2331{
2332 if (GET_CODE (note) == INT_LIST)
2333 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2334 else
2335 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2336}
2337
2c88418c
RS
2338/* Remove register note NOTE from the REG_NOTES of INSN. */
2339
2340void
f7d504c2 2341remove_note (rtx insn, const_rtx note)
2c88418c 2342{
b3694847 2343 rtx link;
2c88418c 2344
49c3bb12
RH
2345 if (note == NULL_RTX)
2346 return;
2347
2c88418c 2348 if (REG_NOTES (insn) == note)
6fb5fa3c
DB
2349 REG_NOTES (insn) = XEXP (note, 1);
2350 else
2351 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2352 if (XEXP (link, 1) == note)
2353 {
2354 XEXP (link, 1) = XEXP (note, 1);
2355 break;
2356 }
2357
2358 switch (REG_NOTE_KIND (note))
2c88418c 2359 {
6fb5fa3c
DB
2360 case REG_EQUAL:
2361 case REG_EQUIV:
b2908ba6 2362 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
2363 break;
2364 default:
2365 break;
2c88418c 2366 }
2c88418c 2367}
55a98783 2368
7cd689bc
SB
2369/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2370
2371void
43534595 2372remove_reg_equal_equiv_notes (rtx_insn *insn)
7cd689bc
SB
2373{
2374 rtx *loc;
2375
2376 loc = &REG_NOTES (insn);
2377 while (*loc)
2378 {
2379 enum reg_note kind = REG_NOTE_KIND (*loc);
2380 if (kind == REG_EQUAL || kind == REG_EQUIV)
2381 *loc = XEXP (*loc, 1);
2382 else
2383 loc = &XEXP (*loc, 1);
2384 }
2385}
885c9b5d
EB
2386
2387/* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2388
2389void
2390remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2391{
2392 df_ref eq_use;
2393
2394 if (!df)
2395 return;
2396
2397 /* This loop is a little tricky. We cannot just go down the chain because
2398 it is being modified by some actions in the loop. So we just iterate
2399 over the head. We plan to drain the list anyway. */
2400 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2401 {
1bbbc4a3 2402 rtx_insn *insn = DF_REF_INSN (eq_use);
885c9b5d
EB
2403 rtx note = find_reg_equal_equiv_note (insn);
2404
2405 /* This assert is generally triggered when someone deletes a REG_EQUAL
2406 or REG_EQUIV note by hacking the list manually rather than calling
2407 remove_note. */
2408 gcc_assert (note);
2409
2410 remove_note (insn, note);
2411 }
2412}
7cd689bc 2413
5f0d2358
RK
2414/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2415 return 1 if it is found. A simple equality test is used to determine if
2416 NODE matches. */
2417
0d53e74e
TS
2418bool
2419in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
5f0d2358 2420{
f7d504c2 2421 const_rtx x;
5f0d2358
RK
2422
2423 for (x = listp; x; x = XEXP (x, 1))
2424 if (node == XEXP (x, 0))
0d53e74e 2425 return true;
5f0d2358 2426
0d53e74e 2427 return false;
5f0d2358
RK
2428}
2429
dd248abd
RK
2430/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2431 remove that entry from the list if it is found.
55a98783 2432
dd248abd 2433 A simple equality test is used to determine if NODE matches. */
55a98783
JL
2434
2435void
2382940b 2436remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
55a98783 2437{
2382940b 2438 rtx_expr_list *temp = *listp;
e67d1102 2439 rtx_expr_list *prev = NULL;
55a98783
JL
2440
2441 while (temp)
2442 {
2382940b 2443 if (node == temp->element ())
55a98783
JL
2444 {
2445 /* Splice the node out of the list. */
2446 if (prev)
2382940b 2447 XEXP (prev, 1) = temp->next ();
55a98783 2448 else
2382940b 2449 *listp = temp->next ();
55a98783
JL
2450
2451 return;
2452 }
dd248abd
RK
2453
2454 prev = temp;
2382940b 2455 temp = temp->next ();
55a98783
JL
2456 }
2457}
b5241a5a
DM
2458
2459/* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2460 remove that entry from the list if it is found.
2461
2462 A simple equality test is used to determine if NODE matches. */
2463
2464void
2465remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2466{
2467 rtx_insn_list *temp = *listp;
e67d1102 2468 rtx_insn_list *prev = NULL;
b5241a5a
DM
2469
2470 while (temp)
2471 {
2472 if (node == temp->insn ())
2473 {
2474 /* Splice the node out of the list. */
2475 if (prev)
2476 XEXP (prev, 1) = temp->next ();
2477 else
2478 *listp = temp->next ();
2479
2480 return;
2481 }
2482
2483 prev = temp;
2484 temp = temp->next ();
2485 }
2486}
2c88418c 2487\f
2b067faf
RS
2488/* Nonzero if X contains any volatile instructions. These are instructions
2489 which may cause unpredictable machine state instructions, and thus no
adddc347
HPN
2490 instructions or register uses should be moved or combined across them.
2491 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2b067faf
RS
2492
2493int
f7d504c2 2494volatile_insn_p (const_rtx x)
2b067faf 2495{
f7d504c2 2496 const RTX_CODE code = GET_CODE (x);
2b067faf
RS
2497 switch (code)
2498 {
2499 case LABEL_REF:
2500 case SYMBOL_REF:
2b067faf 2501 case CONST:
d8116890 2502 CASE_CONST_ANY:
2b067faf
RS
2503 case CC0:
2504 case PC:
2505 case REG:
2506 case SCRATCH:
2507 case CLOBBER:
2b067faf
RS
2508 case ADDR_VEC:
2509 case ADDR_DIFF_VEC:
2510 case CALL:
2511 case MEM:
2512 return 0;
2513
2514 case UNSPEC_VOLATILE:
2b067faf
RS
2515 return 1;
2516
4c46ea23 2517 case ASM_INPUT:
2b067faf
RS
2518 case ASM_OPERANDS:
2519 if (MEM_VOLATILE_P (x))
2520 return 1;
e9a25f70
JL
2521
2522 default:
2523 break;
2b067faf
RS
2524 }
2525
2526 /* Recursively scan the operands of this expression. */
2527
2528 {
f7d504c2 2529 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2530 int i;
a6a2274a 2531
2b067faf
RS
2532 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2533 {
2534 if (fmt[i] == 'e')
2535 {
31001f72 2536 if (volatile_insn_p (XEXP (x, i)))
2b067faf
RS
2537 return 1;
2538 }
d4757e6a 2539 else if (fmt[i] == 'E')
2b067faf 2540 {
b3694847 2541 int j;
2b067faf 2542 for (j = 0; j < XVECLEN (x, i); j++)
31001f72 2543 if (volatile_insn_p (XVECEXP (x, i, j)))
2b067faf
RS
2544 return 1;
2545 }
2546 }
2547 }
2548 return 0;
2549}
2550
2c88418c 2551/* Nonzero if X contains any volatile memory references
2ac4fed0 2552 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2c88418c
RS
2553
2554int
f7d504c2 2555volatile_refs_p (const_rtx x)
2c88418c 2556{
f7d504c2 2557 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2558 switch (code)
2559 {
2560 case LABEL_REF:
2561 case SYMBOL_REF:
2c88418c 2562 case CONST:
d8116890 2563 CASE_CONST_ANY:
2c88418c
RS
2564 case CC0:
2565 case PC:
2566 case REG:
2567 case SCRATCH:
2568 case CLOBBER:
2c88418c
RS
2569 case ADDR_VEC:
2570 case ADDR_DIFF_VEC:
2571 return 0;
2572
2ac4fed0 2573 case UNSPEC_VOLATILE:
2c88418c
RS
2574 return 1;
2575
2576 case MEM:
4c46ea23 2577 case ASM_INPUT:
2c88418c
RS
2578 case ASM_OPERANDS:
2579 if (MEM_VOLATILE_P (x))
2580 return 1;
e9a25f70
JL
2581
2582 default:
2583 break;
2c88418c
RS
2584 }
2585
2586 /* Recursively scan the operands of this expression. */
2587
2588 {
f7d504c2 2589 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2590 int i;
a6a2274a 2591
2c88418c
RS
2592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2593 {
2594 if (fmt[i] == 'e')
2595 {
2596 if (volatile_refs_p (XEXP (x, i)))
2597 return 1;
2598 }
d4757e6a 2599 else if (fmt[i] == 'E')
2c88418c 2600 {
b3694847 2601 int j;
2c88418c
RS
2602 for (j = 0; j < XVECLEN (x, i); j++)
2603 if (volatile_refs_p (XVECEXP (x, i, j)))
2604 return 1;
2605 }
2606 }
2607 }
2608 return 0;
2609}
2610
2611/* Similar to above, except that it also rejects register pre- and post-
2612 incrementing. */
2613
2614int
f7d504c2 2615side_effects_p (const_rtx x)
2c88418c 2616{
f7d504c2 2617 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2618 switch (code)
2619 {
2620 case LABEL_REF:
2621 case SYMBOL_REF:
2c88418c 2622 case CONST:
d8116890 2623 CASE_CONST_ANY:
2c88418c
RS
2624 case CC0:
2625 case PC:
2626 case REG:
2627 case SCRATCH:
2c88418c
RS
2628 case ADDR_VEC:
2629 case ADDR_DIFF_VEC:
b5b8b0ac 2630 case VAR_LOCATION:
2c88418c
RS
2631 return 0;
2632
2633 case CLOBBER:
2634 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2635 when some combination can't be done. If we see one, don't think
2636 that we can simplify the expression. */
2637 return (GET_MODE (x) != VOIDmode);
2638
2639 case PRE_INC:
2640 case PRE_DEC:
2641 case POST_INC:
2642 case POST_DEC:
1fb9c5cd
MH
2643 case PRE_MODIFY:
2644 case POST_MODIFY:
2c88418c 2645 case CALL:
2ac4fed0 2646 case UNSPEC_VOLATILE:
2c88418c
RS
2647 return 1;
2648
2649 case MEM:
4c46ea23 2650 case ASM_INPUT:
2c88418c
RS
2651 case ASM_OPERANDS:
2652 if (MEM_VOLATILE_P (x))
2653 return 1;
e9a25f70
JL
2654
2655 default:
2656 break;
2c88418c
RS
2657 }
2658
2659 /* Recursively scan the operands of this expression. */
2660
2661 {
b3694847
SS
2662 const char *fmt = GET_RTX_FORMAT (code);
2663 int i;
a6a2274a 2664
2c88418c
RS
2665 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2666 {
2667 if (fmt[i] == 'e')
2668 {
2669 if (side_effects_p (XEXP (x, i)))
2670 return 1;
2671 }
d4757e6a 2672 else if (fmt[i] == 'E')
2c88418c 2673 {
b3694847 2674 int j;
2c88418c
RS
2675 for (j = 0; j < XVECLEN (x, i); j++)
2676 if (side_effects_p (XVECEXP (x, i, j)))
2677 return 1;
2678 }
2679 }
2680 }
2681 return 0;
2682}
2683\f
e755fcf5 2684/* Return nonzero if evaluating rtx X might cause a trap.
48e8382e
PB
2685 FLAGS controls how to consider MEMs. A nonzero means the context
2686 of the access may have changed from the original, such that the
2687 address may have become invalid. */
2c88418c 2688
215b063c 2689int
f7d504c2 2690may_trap_p_1 (const_rtx x, unsigned flags)
2c88418c
RS
2691{
2692 int i;
2693 enum rtx_code code;
6f7d635c 2694 const char *fmt;
48e8382e
PB
2695
2696 /* We make no distinction currently, but this function is part of
2697 the internal target-hooks ABI so we keep the parameter as
2698 "unsigned flags". */
2699 bool code_changed = flags != 0;
2c88418c
RS
2700
2701 if (x == 0)
2702 return 0;
2703 code = GET_CODE (x);
2704 switch (code)
2705 {
2706 /* Handle these cases quickly. */
d8116890 2707 CASE_CONST_ANY:
2c88418c
RS
2708 case SYMBOL_REF:
2709 case LABEL_REF:
2710 case CONST:
2711 case PC:
2712 case CC0:
2713 case REG:
2714 case SCRATCH:
2715 return 0;
2716
215b063c 2717 case UNSPEC:
215b063c
PB
2718 return targetm.unspec_may_trap_p (x, flags);
2719
c84a808e 2720 case UNSPEC_VOLATILE:
215b063c 2721 case ASM_INPUT:
2c88418c
RS
2722 case TRAP_IF:
2723 return 1;
2724
22aa60a1
RH
2725 case ASM_OPERANDS:
2726 return MEM_VOLATILE_P (x);
2727
2c88418c
RS
2728 /* Memory ref can trap unless it's a static var or a stack slot. */
2729 case MEM:
d809253a
EB
2730 /* Recognize specific pattern of stack checking probes. */
2731 if (flag_stack_check
2732 && MEM_VOLATILE_P (x)
2733 && XEXP (x, 0) == stack_pointer_rtx)
2734 return 1;
e755fcf5 2735 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
48e8382e
PB
2736 reference; moving it out of context such as when moving code
2737 when optimizing, might cause its address to become invalid. */
2738 code_changed
2739 || !MEM_NOTRAP_P (x))
2740 {
f5541398 2741 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
48e8382e
PB
2742 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2743 GET_MODE (x), code_changed);
2744 }
2745
2746 return 0;
2c88418c
RS
2747
2748 /* Division by a non-constant might trap. */
2749 case DIV:
2750 case MOD:
2751 case UDIV:
2752 case UMOD:
3d3dbadd 2753 if (HONOR_SNANS (x))
52bfebf0 2754 return 1;
3d8bf70f 2755 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
f9013075
DE
2756 return flag_trapping_math;
2757 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2c88418c 2758 return 1;
e9a25f70
JL
2759 break;
2760
b278301b
RK
2761 case EXPR_LIST:
2762 /* An EXPR_LIST is used to represent a function call. This
2763 certainly may trap. */
2764 return 1;
e9a25f70 2765
734508ea
JW
2766 case GE:
2767 case GT:
2768 case LE:
2769 case LT:
19aec195 2770 case LTGT:
55143861 2771 case COMPARE:
734508ea 2772 /* Some floating point comparisons may trap. */
f5eb5fd0
JH
2773 if (!flag_trapping_math)
2774 break;
734508ea
JW
2775 /* ??? There is no machine independent way to check for tests that trap
2776 when COMPARE is used, though many targets do make this distinction.
2777 For instance, sparc uses CCFPE for compares which generate exceptions
2778 and CCFP for compares which do not generate exceptions. */
1b457aa4 2779 if (HONOR_NANS (x))
55143861
JJ
2780 return 1;
2781 /* But often the compare has some CC mode, so check operand
2782 modes as well. */
1b457aa4
MG
2783 if (HONOR_NANS (XEXP (x, 0))
2784 || HONOR_NANS (XEXP (x, 1)))
52bfebf0
RS
2785 return 1;
2786 break;
2787
2788 case EQ:
2789 case NE:
3d3dbadd 2790 if (HONOR_SNANS (x))
52bfebf0
RS
2791 return 1;
2792 /* Often comparison is CC mode, so check operand modes. */
3d3dbadd
MG
2793 if (HONOR_SNANS (XEXP (x, 0))
2794 || HONOR_SNANS (XEXP (x, 1)))
55143861
JJ
2795 return 1;
2796 break;
2797
22fd5743
FH
2798 case FIX:
2799 /* Conversion of floating point might trap. */
1b457aa4 2800 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
22fd5743
FH
2801 return 1;
2802 break;
2803
05cc23e8
RH
2804 case NEG:
2805 case ABS:
e3947b34 2806 case SUBREG:
05cc23e8
RH
2807 /* These operations don't trap even with floating point. */
2808 break;
2809
2c88418c
RS
2810 default:
2811 /* Any floating arithmetic may trap. */
c84a808e 2812 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2c88418c
RS
2813 return 1;
2814 }
2815
2816 fmt = GET_RTX_FORMAT (code);
2817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2818 {
2819 if (fmt[i] == 'e')
2820 {
e755fcf5 2821 if (may_trap_p_1 (XEXP (x, i), flags))
2c88418c
RS
2822 return 1;
2823 }
2824 else if (fmt[i] == 'E')
2825 {
b3694847 2826 int j;
2c88418c 2827 for (j = 0; j < XVECLEN (x, i); j++)
e755fcf5 2828 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2c88418c
RS
2829 return 1;
2830 }
2831 }
2832 return 0;
2833}
2358ff91
EB
2834
2835/* Return nonzero if evaluating rtx X might cause a trap. */
2836
2837int
f7d504c2 2838may_trap_p (const_rtx x)
2358ff91 2839{
e755fcf5
ZD
2840 return may_trap_p_1 (x, 0);
2841}
2842
c0220ea4 2843/* Same as above, but additionally return nonzero if evaluating rtx X might
2358ff91
EB
2844 cause a fault. We define a fault for the purpose of this function as a
2845 erroneous execution condition that cannot be encountered during the normal
2846 execution of a valid program; the typical example is an unaligned memory
2847 access on a strict alignment machine. The compiler guarantees that it
2848 doesn't generate code that will fault from a valid program, but this
2849 guarantee doesn't mean anything for individual instructions. Consider
2850 the following example:
2851
2852 struct S { int d; union { char *cp; int *ip; }; };
2853
2854 int foo(struct S *s)
2855 {
2856 if (s->d == 1)
2857 return *s->ip;
2858 else
2859 return *s->cp;
2860 }
2861
2862 on a strict alignment machine. In a valid program, foo will never be
2863 invoked on a structure for which d is equal to 1 and the underlying
2864 unique field of the union not aligned on a 4-byte boundary, but the
2865 expression *s->ip might cause a fault if considered individually.
2866
2867 At the RTL level, potentially problematic expressions will almost always
2868 verify may_trap_p; for example, the above dereference can be emitted as
2869 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2870 However, suppose that foo is inlined in a caller that causes s->cp to
2871 point to a local character variable and guarantees that s->d is not set
2872 to 1; foo may have been effectively translated into pseudo-RTL as:
2873
2874 if ((reg:SI) == 1)
2875 (set (reg:SI) (mem:SI (%fp - 7)))
2876 else
2877 (set (reg:QI) (mem:QI (%fp - 7)))
2878
2879 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2880 memory reference to a stack slot, but it will certainly cause a fault
2881 on a strict alignment machine. */
2882
2883int
f7d504c2 2884may_trap_or_fault_p (const_rtx x)
2358ff91 2885{
48e8382e 2886 return may_trap_p_1 (x, 1);
2358ff91 2887}
2c88418c
RS
2888\f
2889/* Return nonzero if X contains a comparison that is not either EQ or NE,
2890 i.e., an inequality. */
2891
2892int
f7d504c2 2893inequality_comparisons_p (const_rtx x)
2c88418c 2894{
b3694847
SS
2895 const char *fmt;
2896 int len, i;
f7d504c2 2897 const enum rtx_code code = GET_CODE (x);
2c88418c
RS
2898
2899 switch (code)
2900 {
2901 case REG:
2902 case SCRATCH:
2903 case PC:
2904 case CC0:
d8116890 2905 CASE_CONST_ANY:
2c88418c
RS
2906 case CONST:
2907 case LABEL_REF:
2908 case SYMBOL_REF:
2909 return 0;
2910
2911 case LT:
2912 case LTU:
2913 case GT:
2914 case GTU:
2915 case LE:
2916 case LEU:
2917 case GE:
2918 case GEU:
2919 return 1;
a6a2274a 2920
e9a25f70
JL
2921 default:
2922 break;
2c88418c
RS
2923 }
2924
2925 len = GET_RTX_LENGTH (code);
2926 fmt = GET_RTX_FORMAT (code);
2927
2928 for (i = 0; i < len; i++)
2929 {
2930 if (fmt[i] == 'e')
2931 {
2932 if (inequality_comparisons_p (XEXP (x, i)))
2933 return 1;
2934 }
2935 else if (fmt[i] == 'E')
2936 {
b3694847 2937 int j;
2c88418c
RS
2938 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2939 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2940 return 1;
2941 }
2942 }
a6a2274a 2943
2c88418c
RS
2944 return 0;
2945}
2946\f
1ed0205e
VM
2947/* Replace any occurrence of FROM in X with TO. The function does
2948 not enter into CONST_DOUBLE for the replace.
2c88418c
RS
2949
2950 Note that copying is not done so X must not be shared unless all copies
2951 are to be modified. */
2952
2953rtx
0c20a65f 2954replace_rtx (rtx x, rtx from, rtx to)
2c88418c 2955{
b3694847
SS
2956 int i, j;
2957 const char *fmt;
2c88418c
RS
2958
2959 if (x == from)
2960 return to;
2961
2962 /* Allow this function to make replacements in EXPR_LISTs. */
2963 if (x == 0)
2964 return 0;
2965
9dd791c8
AO
2966 if (GET_CODE (x) == SUBREG)
2967 {
55d796da 2968 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
9dd791c8 2969
481683e1 2970 if (CONST_INT_P (new_rtx))
9dd791c8 2971 {
55d796da 2972 x = simplify_subreg (GET_MODE (x), new_rtx,
9dd791c8
AO
2973 GET_MODE (SUBREG_REG (x)),
2974 SUBREG_BYTE (x));
41374e13 2975 gcc_assert (x);
9dd791c8
AO
2976 }
2977 else
55d796da 2978 SUBREG_REG (x) = new_rtx;
9dd791c8
AO
2979
2980 return x;
2981 }
2982 else if (GET_CODE (x) == ZERO_EXTEND)
2983 {
55d796da 2984 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
9dd791c8 2985
481683e1 2986 if (CONST_INT_P (new_rtx))
9dd791c8
AO
2987 {
2988 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
55d796da 2989 new_rtx, GET_MODE (XEXP (x, 0)));
41374e13 2990 gcc_assert (x);
9dd791c8
AO
2991 }
2992 else
55d796da 2993 XEXP (x, 0) = new_rtx;
9dd791c8
AO
2994
2995 return x;
2996 }
2997
2c88418c
RS
2998 fmt = GET_RTX_FORMAT (GET_CODE (x));
2999 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3000 {
3001 if (fmt[i] == 'e')
3002 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
3003 else if (fmt[i] == 'E')
3004 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3005 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
3006 }
3007
3008 return x;
a6a2274a 3009}
2c88418c 3010\f
a2b7026c
RS
3011/* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3012 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
39811184 3013
a2b7026c
RS
3014void
3015replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
39811184 3016{
a2b7026c
RS
3017 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3018 rtx x = *loc;
3019 if (JUMP_TABLE_DATA_P (x))
4af16369 3020 {
a2b7026c
RS
3021 x = PATTERN (x);
3022 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3023 int len = GET_NUM_ELEM (vec);
3024 for (int i = 0; i < len; ++i)
4af16369 3025 {
a2b7026c
RS
3026 rtx ref = RTVEC_ELT (vec, i);
3027 if (XEXP (ref, 0) == old_label)
3028 {
3029 XEXP (ref, 0) = new_label;
3030 if (update_label_nuses)
3031 {
3032 ++LABEL_NUSES (new_label);
3033 --LABEL_NUSES (old_label);
3034 }
3035 }
4af16369 3036 }
a2b7026c 3037 return;
4af16369
JZ
3038 }
3039
39811184 3040 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
a2b7026c 3041 field. This is not handled by the iterator because it doesn't
39811184 3042 handle unprinted ('0') fields. */
a2b7026c
RS
3043 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3044 JUMP_LABEL (x) = new_label;
39811184 3045
a2b7026c
RS
3046 subrtx_ptr_iterator::array_type array;
3047 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
4af16369 3048 {
a2b7026c
RS
3049 rtx *loc = *iter;
3050 if (rtx x = *loc)
4af16369 3051 {
a2b7026c
RS
3052 if (GET_CODE (x) == SYMBOL_REF
3053 && CONSTANT_POOL_ADDRESS_P (x))
3054 {
3055 rtx c = get_pool_constant (x);
3056 if (rtx_referenced_p (old_label, c))
3057 {
3058 /* Create a copy of constant C; replace the label inside
3059 but do not update LABEL_NUSES because uses in constant pool
3060 are not counted. */
3061 rtx new_c = copy_rtx (c);
3062 replace_label (&new_c, old_label, new_label, false);
3063
3064 /* Add the new constant NEW_C to constant pool and replace
3065 the old reference to constant by new reference. */
3066 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3067 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3068 }
3069 }
3070
3071 if ((GET_CODE (x) == LABEL_REF
3072 || GET_CODE (x) == INSN_LIST)
3073 && XEXP (x, 0) == old_label)
3074 {
3075 XEXP (x, 0) = new_label;
3076 if (update_label_nuses)
3077 {
3078 ++LABEL_NUSES (new_label);
3079 --LABEL_NUSES (old_label);
3080 }
3081 }
4af16369 3082 }
4af16369 3083 }
a2b7026c 3084}
39811184 3085
a2b7026c
RS
3086void
3087replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3088 bool update_label_nuses)
3089{
3090 rtx insn_as_rtx = insn;
3091 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3092 gcc_checking_assert (insn_as_rtx == insn);
39811184
JZ
3093}
3094
e08cf836 3095/* Return true if X is referenced in BODY. */
39811184 3096
e08cf836
RS
3097bool
3098rtx_referenced_p (const_rtx x, const_rtx body)
39811184 3099{
e08cf836
RS
3100 subrtx_iterator::array_type array;
3101 FOR_EACH_SUBRTX (iter, array, body, ALL)
3102 if (const_rtx y = *iter)
3103 {
3104 /* Check if a label_ref Y refers to label X. */
a827d9b1
DM
3105 if (GET_CODE (y) == LABEL_REF
3106 && LABEL_P (x)
3107 && LABEL_REF_LABEL (y) == x)
e08cf836 3108 return true;
39811184 3109
e08cf836
RS
3110 if (rtx_equal_p (x, y))
3111 return true;
39811184 3112
e08cf836
RS
3113 /* If Y is a reference to pool constant traverse the constant. */
3114 if (GET_CODE (y) == SYMBOL_REF
3115 && CONSTANT_POOL_ADDRESS_P (y))
3116 iter.substitute (get_pool_constant (y));
3117 }
3118 return false;
39811184
JZ
3119}
3120
ee735eef
JZ
3121/* If INSN is a tablejump return true and store the label (before jump table) to
3122 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
39811184
JZ
3123
3124bool
c5241a21 3125tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
39811184 3126{
1476d1bd
MM
3127 rtx label;
3128 rtx_insn *table;
ee735eef 3129
dc0ff1c8
BS
3130 if (!JUMP_P (insn))
3131 return false;
3132
3133 label = JUMP_LABEL (insn);
3134 if (label != NULL_RTX && !ANY_RETURN_P (label)
b32d5189 3135 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
481683e1 3136 && JUMP_TABLE_DATA_P (table))
39811184 3137 {
ee735eef
JZ
3138 if (labelp)
3139 *labelp = label;
3140 if (tablep)
8942ee0f 3141 *tablep = as_a <rtx_jump_table_data *> (table);
39811184
JZ
3142 return true;
3143 }
3144 return false;
3145}
3146
fce7e199
RH
3147/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3148 constant that is not in the constant pool and not in the condition
3149 of an IF_THEN_ELSE. */
2a1777af
JL
3150
3151static int
f7d504c2 3152computed_jump_p_1 (const_rtx x)
2a1777af 3153{
f7d504c2 3154 const enum rtx_code code = GET_CODE (x);
2a1777af 3155 int i, j;
6f7d635c 3156 const char *fmt;
2a1777af
JL
3157
3158 switch (code)
3159 {
2a1777af
JL
3160 case LABEL_REF:
3161 case PC:
3162 return 0;
3163
fce7e199 3164 case CONST:
d8116890 3165 CASE_CONST_ANY:
fce7e199 3166 case SYMBOL_REF:
2a1777af
JL
3167 case REG:
3168 return 1;
3169
3170 case MEM:
3171 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3172 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3173
3174 case IF_THEN_ELSE:
fce7e199
RH
3175 return (computed_jump_p_1 (XEXP (x, 1))
3176 || computed_jump_p_1 (XEXP (x, 2)));
1d300e19
KG
3177
3178 default:
3179 break;
2a1777af
JL
3180 }
3181
3182 fmt = GET_RTX_FORMAT (code);
3183 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3184 {
3185 if (fmt[i] == 'e'
fce7e199 3186 && computed_jump_p_1 (XEXP (x, i)))
2a1777af
JL
3187 return 1;
3188
d4757e6a 3189 else if (fmt[i] == 'E')
2a1777af 3190 for (j = 0; j < XVECLEN (x, i); j++)
fce7e199 3191 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2a1777af
JL
3192 return 1;
3193 }
3194
3195 return 0;
3196}
3197
3198/* Return nonzero if INSN is an indirect jump (aka computed jump).
3199
3200 Tablejumps and casesi insns are not considered indirect jumps;
4eb00163 3201 we can recognize them by a (use (label_ref)). */
2a1777af
JL
3202
3203int
63bd6324 3204computed_jump_p (const rtx_insn *insn)
2a1777af
JL
3205{
3206 int i;
4b4bf941 3207 if (JUMP_P (insn))
2a1777af
JL
3208 {
3209 rtx pat = PATTERN (insn);
2a1777af 3210
cf7c4aa6
HPN
3211 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3212 if (JUMP_LABEL (insn) != NULL)
f759eb8b 3213 return 0;
cf7c4aa6
HPN
3214
3215 if (GET_CODE (pat) == PARALLEL)
2a1777af
JL
3216 {
3217 int len = XVECLEN (pat, 0);
3218 int has_use_labelref = 0;
3219
3220 for (i = len - 1; i >= 0; i--)
3221 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3222 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3223 == LABEL_REF))
c7b3b99f
PCC
3224 {
3225 has_use_labelref = 1;
3226 break;
3227 }
2a1777af
JL
3228
3229 if (! has_use_labelref)
3230 for (i = len - 1; i >= 0; i--)
3231 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3232 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
fce7e199 3233 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2a1777af
JL
3234 return 1;
3235 }
3236 else if (GET_CODE (pat) == SET
3237 && SET_DEST (pat) == pc_rtx
fce7e199 3238 && computed_jump_p_1 (SET_SRC (pat)))
2a1777af
JL
3239 return 1;
3240 }
3241 return 0;
3242}
ccc2d6d0 3243
4deef538
AO
3244\f
3245
8d8e205b
RS
3246/* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3247 the equivalent add insn and pass the result to FN, using DATA as the
3248 final argument. */
4deef538
AO
3249
3250static int
8d8e205b 3251for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
4deef538 3252{
8d8e205b 3253 rtx x = XEXP (mem, 0);
4deef538
AO
3254 switch (GET_CODE (x))
3255 {
3256 case PRE_INC:
3257 case POST_INC:
3258 {
8d8e205b 3259 int size = GET_MODE_SIZE (GET_MODE (mem));
4deef538
AO
3260 rtx r1 = XEXP (x, 0);
3261 rtx c = gen_int_mode (size, GET_MODE (r1));
8d8e205b 3262 return fn (mem, x, r1, r1, c, data);
4deef538
AO
3263 }
3264
3265 case PRE_DEC:
3266 case POST_DEC:
3267 {
8d8e205b 3268 int size = GET_MODE_SIZE (GET_MODE (mem));
4deef538
AO
3269 rtx r1 = XEXP (x, 0);
3270 rtx c = gen_int_mode (-size, GET_MODE (r1));
8d8e205b 3271 return fn (mem, x, r1, r1, c, data);
4deef538
AO
3272 }
3273
3274 case PRE_MODIFY:
3275 case POST_MODIFY:
3276 {
3277 rtx r1 = XEXP (x, 0);
3278 rtx add = XEXP (x, 1);
8d8e205b 3279 return fn (mem, x, r1, add, NULL, data);
4deef538
AO
3280 }
3281
3282 default:
8d8e205b 3283 gcc_unreachable ();
4deef538
AO
3284 }
3285}
3286
8d8e205b
RS
3287/* Traverse *LOC looking for MEMs that have autoinc addresses.
3288 For each such autoinc operation found, call FN, passing it
4deef538
AO
3289 the innermost enclosing MEM, the operation itself, the RTX modified
3290 by the operation, two RTXs (the second may be NULL) that, once
3291 added, represent the value to be held by the modified RTX
8d8e205b
RS
3292 afterwards, and DATA. FN is to return 0 to continue the
3293 traversal or any other value to have it returned to the caller of
4deef538
AO
3294 for_each_inc_dec. */
3295
3296int
8d8e205b 3297for_each_inc_dec (rtx x,
4deef538 3298 for_each_inc_dec_fn fn,
8d8e205b 3299 void *data)
4deef538 3300{
8d8e205b
RS
3301 subrtx_var_iterator::array_type array;
3302 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3303 {
3304 rtx mem = *iter;
3305 if (mem
3306 && MEM_P (mem)
3307 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3308 {
3309 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3310 if (res != 0)
3311 return res;
3312 iter.skip_subrtxes ();
3313 }
3314 }
3315 return 0;
4deef538
AO
3316}
3317
3318\f
777b1b71
RH
3319/* Searches X for any reference to REGNO, returning the rtx of the
3320 reference found if any. Otherwise, returns NULL_RTX. */
3321
3322rtx
0c20a65f 3323regno_use_in (unsigned int regno, rtx x)
777b1b71 3324{
b3694847 3325 const char *fmt;
777b1b71
RH
3326 int i, j;
3327 rtx tem;
3328
f8cfc6aa 3329 if (REG_P (x) && REGNO (x) == regno)
777b1b71
RH
3330 return x;
3331
3332 fmt = GET_RTX_FORMAT (GET_CODE (x));
3333 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3334 {
3335 if (fmt[i] == 'e')
3336 {
3337 if ((tem = regno_use_in (regno, XEXP (x, i))))
3338 return tem;
3339 }
3340 else if (fmt[i] == 'E')
3341 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3342 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3343 return tem;
3344 }
3345
3346 return NULL_RTX;
3347}
2dfa9a87 3348
e5c56fd9 3349/* Return a value indicating whether OP, an operand of a commutative
350911e6
AM
3350 operation, is preferred as the first or second operand. The more
3351 positive the value, the stronger the preference for being the first
3352 operand. */
e5c56fd9 3353
9b3bd424 3354int
0c20a65f 3355commutative_operand_precedence (rtx op)
e5c56fd9 3356{
e3d6e740 3357 enum rtx_code code = GET_CODE (op);
b8698a0f 3358
350911e6 3359 /* Constants always become the second operand. Prefer "nice" constants. */
e3d6e740 3360 if (code == CONST_INT)
7e0b4eae 3361 return -8;
807e902e
KZ
3362 if (code == CONST_WIDE_INT)
3363 return -8;
e3d6e740 3364 if (code == CONST_DOUBLE)
7e0b4eae 3365 return -7;
091a3ac7
CF
3366 if (code == CONST_FIXED)
3367 return -7;
9ce79a7a 3368 op = avoid_constant_pool_reference (op);
79b82df3 3369 code = GET_CODE (op);
ec8e098d
PB
3370
3371 switch (GET_RTX_CLASS (code))
3372 {
3373 case RTX_CONST_OBJ:
3374 if (code == CONST_INT)
7e0b4eae 3375 return -6;
807e902e
KZ
3376 if (code == CONST_WIDE_INT)
3377 return -6;
ec8e098d 3378 if (code == CONST_DOUBLE)
7e0b4eae 3379 return -5;
091a3ac7
CF
3380 if (code == CONST_FIXED)
3381 return -5;
7e0b4eae 3382 return -4;
ec8e098d
PB
3383
3384 case RTX_EXTRA:
3385 /* SUBREGs of objects should come second. */
3386 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
7e0b4eae 3387 return -3;
6fb5fa3c 3388 return 0;
ec8e098d
PB
3389
3390 case RTX_OBJ:
3391 /* Complex expressions should be the first, so decrease priority
7e0b4eae
PB
3392 of objects. Prefer pointer objects over non pointer objects. */
3393 if ((REG_P (op) && REG_POINTER (op))
3394 || (MEM_P (op) && MEM_POINTER (op)))
3395 return -1;
3396 return -2;
ec8e098d
PB
3397
3398 case RTX_COMM_ARITH:
3399 /* Prefer operands that are themselves commutative to be first.
3400 This helps to make things linear. In particular,
3401 (and (and (reg) (reg)) (not (reg))) is canonical. */
3402 return 4;
3403
3404 case RTX_BIN_ARITH:
3405 /* If only one operand is a binary expression, it will be the first
3406 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3407 is canonical, although it will usually be further simplified. */
3408 return 2;
b8698a0f 3409
ec8e098d
PB
3410 case RTX_UNARY:
3411 /* Then prefer NEG and NOT. */
3412 if (code == NEG || code == NOT)
3413 return 1;
e5c56fd9 3414
ec8e098d
PB
3415 default:
3416 return 0;
3417 }
e5c56fd9
JH
3418}
3419
f63d1bf7 3420/* Return 1 iff it is necessary to swap operands of commutative operation
e5c56fd9
JH
3421 in order to canonicalize expression. */
3422
7e0b4eae 3423bool
0c20a65f 3424swap_commutative_operands_p (rtx x, rtx y)
e5c56fd9 3425{
9b3bd424
RH
3426 return (commutative_operand_precedence (x)
3427 < commutative_operand_precedence (y));
e5c56fd9 3428}
2dfa9a87
MH
3429
3430/* Return 1 if X is an autoincrement side effect and the register is
3431 not the stack pointer. */
3432int
f7d504c2 3433auto_inc_p (const_rtx x)
2dfa9a87
MH
3434{
3435 switch (GET_CODE (x))
3436 {
3437 case PRE_INC:
3438 case POST_INC:
3439 case PRE_DEC:
3440 case POST_DEC:
3441 case PRE_MODIFY:
3442 case POST_MODIFY:
3443 /* There are no REG_INC notes for SP. */
3444 if (XEXP (x, 0) != stack_pointer_rtx)
3445 return 1;
3446 default:
3447 break;
3448 }
3449 return 0;
3450}
3b10cf4b 3451
f9da5064 3452/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
db7ba742 3453int
f7d504c2 3454loc_mentioned_in_p (rtx *loc, const_rtx in)
db7ba742 3455{
a52b023a
PB
3456 enum rtx_code code;
3457 const char *fmt;
db7ba742
R
3458 int i, j;
3459
a52b023a
PB
3460 if (!in)
3461 return 0;
3462
3463 code = GET_CODE (in);
3464 fmt = GET_RTX_FORMAT (code);
db7ba742
R
3465 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3466 {
db7ba742
R
3467 if (fmt[i] == 'e')
3468 {
e0651058 3469 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
db7ba742
R
3470 return 1;
3471 }
3472 else if (fmt[i] == 'E')
3473 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
e0651058
AO
3474 if (loc == &XVECEXP (in, i, j)
3475 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
db7ba742
R
3476 return 1;
3477 }
3478 return 0;
3479}
ddef6bc7 3480
bb51e270
RS
3481/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3482 and SUBREG_BYTE, return the bit offset where the subreg begins
3483 (counting from the least significant bit of the operand). */
33aceff2
JW
3484
3485unsigned int
ef4bddc2
RS
3486subreg_lsb_1 (machine_mode outer_mode,
3487 machine_mode inner_mode,
bb51e270 3488 unsigned int subreg_byte)
33aceff2 3489{
33aceff2
JW
3490 unsigned int bitpos;
3491 unsigned int byte;
3492 unsigned int word;
3493
3494 /* A paradoxical subreg begins at bit position 0. */
5511bc5a 3495 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
33aceff2
JW
3496 return 0;
3497
3498 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3499 /* If the subreg crosses a word boundary ensure that
3500 it also begins and ends on a word boundary. */
41374e13
NS
3501 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3502 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3503 && (subreg_byte % UNITS_PER_WORD
3504 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
33aceff2
JW
3505
3506 if (WORDS_BIG_ENDIAN)
3507 word = (GET_MODE_SIZE (inner_mode)
bb51e270 3508 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
33aceff2 3509 else
bb51e270 3510 word = subreg_byte / UNITS_PER_WORD;
33aceff2
JW
3511 bitpos = word * BITS_PER_WORD;
3512
3513 if (BYTES_BIG_ENDIAN)
3514 byte = (GET_MODE_SIZE (inner_mode)
bb51e270 3515 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
33aceff2 3516 else
bb51e270 3517 byte = subreg_byte % UNITS_PER_WORD;
33aceff2
JW
3518 bitpos += byte * BITS_PER_UNIT;
3519
3520 return bitpos;
3521}
3522
bb51e270
RS
3523/* Given a subreg X, return the bit offset where the subreg begins
3524 (counting from the least significant bit of the reg). */
3525
3526unsigned int
f7d504c2 3527subreg_lsb (const_rtx x)
bb51e270
RS
3528{
3529 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3530 SUBREG_BYTE (x));
3531}
3532
f1f4e530 3533/* Fill in information about a subreg of a hard register.
ddef6bc7
JJ
3534 xregno - A regno of an inner hard subreg_reg (or what will become one).
3535 xmode - The mode of xregno.
3536 offset - The byte offset.
3537 ymode - The mode of a top level SUBREG (or what may become one).
0cb07998
RS
3538 info - Pointer to structure to fill in.
3539
3540 Rather than considering one particular inner register (and thus one
3541 particular "outer" register) in isolation, this function really uses
3542 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3543 function does not check whether adding INFO->offset to XREGNO gives
3544 a valid hard register; even if INFO->offset + XREGNO is out of range,
3545 there might be another register of the same type that is in range.
3546 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3547 register, since that can depend on things like whether the final
3548 register number is even or odd. Callers that want to check whether
3549 this particular subreg can be replaced by a simple (reg ...) should
3550 use simplify_subreg_regno. */
3551
c619e982 3552void
ef4bddc2
RS
3553subreg_get_info (unsigned int xregno, machine_mode xmode,
3554 unsigned int offset, machine_mode ymode,
f1f4e530 3555 struct subreg_info *info)
04c5580f 3556{
8521c414 3557 int nregs_xmode, nregs_ymode;
04c5580f 3558 int mode_multiple, nregs_multiple;
f1f4e530 3559 int offset_adj, y_offset, y_offset_adj;
8521c414 3560 int regsize_xmode, regsize_ymode;
f1f4e530 3561 bool rknown;
04c5580f 3562
41374e13 3563 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
04c5580f 3564
f1f4e530
JM
3565 rknown = false;
3566
dd79bb7e
GK
3567 /* If there are holes in a non-scalar mode in registers, we expect
3568 that it is made up of its units concatenated together. */
8521c414 3569 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
dd79bb7e 3570 {
ef4bddc2 3571 machine_mode xmode_unit;
8521c414
JM
3572
3573 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
1c0e448f 3574 xmode_unit = GET_MODE_INNER (xmode);
8521c414
JM
3575 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3576 gcc_assert (nregs_xmode
3577 == (GET_MODE_NUNITS (xmode)
3578 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3579 gcc_assert (hard_regno_nregs[xregno][xmode]
3580 == (hard_regno_nregs[xregno][xmode_unit]
3581 * GET_MODE_NUNITS (xmode)));
dd79bb7e
GK
3582
3583 /* You can only ask for a SUBREG of a value with holes in the middle
3584 if you don't cross the holes. (Such a SUBREG should be done by
3585 picking a different register class, or doing it in memory if
3586 necessary.) An example of a value with holes is XCmode on 32-bit
3587 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
b8698a0f 3588 3 for each part, but in memory it's two 128-bit parts.
dd79bb7e
GK
3589 Padding is assumed to be at the end (not necessarily the 'high part')
3590 of each unit. */
b8698a0f 3591 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
8521c414
JM
3592 < GET_MODE_NUNITS (xmode))
3593 && (offset / GET_MODE_SIZE (xmode_unit)
dd79bb7e 3594 != ((offset + GET_MODE_SIZE (ymode) - 1)
8521c414 3595 / GET_MODE_SIZE (xmode_unit))))
f1f4e530
JM
3596 {
3597 info->representable_p = false;
3598 rknown = true;
3599 }
dd79bb7e
GK
3600 }
3601 else
3602 nregs_xmode = hard_regno_nregs[xregno][xmode];
b8698a0f 3603
66fd46b6 3604 nregs_ymode = hard_regno_nregs[xregno][ymode];
04c5580f 3605
dd79bb7e 3606 /* Paradoxical subregs are otherwise valid. */
f1f4e530
JM
3607 if (!rknown
3608 && offset == 0
5511bc5a 3609 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
f1f4e530
JM
3610 {
3611 info->representable_p = true;
3612 /* If this is a big endian paradoxical subreg, which uses more
3613 actual hard registers than the original register, we must
3614 return a negative offset so that we find the proper highpart
3615 of the register. */
3616 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
c0a6a1ef 3617 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
f1f4e530
JM
3618 info->offset = nregs_xmode - nregs_ymode;
3619 else
3620 info->offset = 0;
3621 info->nregs = nregs_ymode;
3622 return;
3623 }
04c5580f 3624
8521c414
JM
3625 /* If registers store different numbers of bits in the different
3626 modes, we cannot generally form this subreg. */
f1f4e530 3627 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
5f7fc2b8
JM
3628 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3629 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3630 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
f1f4e530
JM
3631 {
3632 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
f1f4e530 3633 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
f1f4e530
JM
3634 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3635 {
3636 info->representable_p = false;
3637 info->nregs
3638 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3639 info->offset = offset / regsize_xmode;
3640 return;
3641 }
3642 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3643 {
3644 info->representable_p = false;
3645 info->nregs
3646 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3647 info->offset = offset / regsize_xmode;
3648 return;
3649 }
9ab41c76
AH
3650 /* Quick exit for the simple and common case of extracting whole
3651 subregisters from a multiregister value. */
3652 /* ??? It would be better to integrate this into the code below,
3653 if we can generalize the concept enough and figure out how
3654 odd-sized modes can coexist with the other weird cases we support. */
3655 if (!rknown
3656 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3657 && regsize_xmode == regsize_ymode
3658 && (offset % regsize_ymode) == 0)
3659 {
3660 info->representable_p = true;
3661 info->nregs = nregs_ymode;
3662 info->offset = offset / regsize_ymode;
3663 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3664 return;
3665 }
f1f4e530 3666 }
8521c414 3667
dd79bb7e 3668 /* Lowpart subregs are otherwise valid. */
f1f4e530
JM
3669 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3670 {
3671 info->representable_p = true;
3672 rknown = true;
a446b4e8
JM
3673
3674 if (offset == 0 || nregs_xmode == nregs_ymode)
3675 {
3676 info->offset = 0;
3677 info->nregs = nregs_ymode;
3678 return;
3679 }
f1f4e530 3680 }
04c5580f 3681
dd79bb7e
GK
3682 /* This should always pass, otherwise we don't know how to verify
3683 the constraint. These conditions may be relaxed but
3684 subreg_regno_offset would need to be redesigned. */
41374e13 3685 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
41374e13 3686 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
04c5580f 3687
c0a6a1ef
BS
3688 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3689 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3690 {
3691 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3692 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3693 HOST_WIDE_INT off_low = offset & (ysize - 1);
3694 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3695 offset = (xsize - ysize - off_high) | off_low;
3696 }
b20b352b 3697 /* The XMODE value can be seen as a vector of NREGS_XMODE
dcc24678 3698 values. The subreg must represent a lowpart of given field.
04c5580f 3699 Compute what field it is. */
f1f4e530
JM
3700 offset_adj = offset;
3701 offset_adj -= subreg_lowpart_offset (ymode,
3702 mode_for_size (GET_MODE_BITSIZE (xmode)
3703 / nregs_xmode,
3704 MODE_INT, 0));
04c5580f 3705
dd79bb7e 3706 /* Size of ymode must not be greater than the size of xmode. */
04c5580f 3707 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
41374e13 3708 gcc_assert (mode_multiple != 0);
04c5580f
JH
3709
3710 y_offset = offset / GET_MODE_SIZE (ymode);
f1f4e530
JM
3711 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3712 nregs_multiple = nregs_xmode / nregs_ymode;
41374e13 3713
f1f4e530 3714 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
41374e13
NS
3715 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3716
f1f4e530
JM
3717 if (!rknown)
3718 {
3719 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3720 rknown = true;
3721 }
3722 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3723 info->nregs = nregs_ymode;
3724}
3725
3726/* This function returns the regno offset of a subreg expression.
3727 xregno - A regno of an inner hard subreg_reg (or what will become one).
3728 xmode - The mode of xregno.
3729 offset - The byte offset.
3730 ymode - The mode of a top level SUBREG (or what may become one).
3731 RETURN - The regno offset which would be used. */
3732unsigned int
ef4bddc2
RS
3733subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3734 unsigned int offset, machine_mode ymode)
f1f4e530
JM
3735{
3736 struct subreg_info info;
3737 subreg_get_info (xregno, xmode, offset, ymode, &info);
3738 return info.offset;
3739}
3740
3741/* This function returns true when the offset is representable via
3742 subreg_offset in the given regno.
3743 xregno - A regno of an inner hard subreg_reg (or what will become one).
3744 xmode - The mode of xregno.
3745 offset - The byte offset.
3746 ymode - The mode of a top level SUBREG (or what may become one).
3747 RETURN - Whether the offset is representable. */
3748bool
ef4bddc2
RS
3749subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3750 unsigned int offset, machine_mode ymode)
f1f4e530
JM
3751{
3752 struct subreg_info info;
3753 subreg_get_info (xregno, xmode, offset, ymode, &info);
05cee290 3754 return info.representable_p;
04c5580f
JH
3755}
3756
eef302d2
RS
3757/* Return the number of a YMODE register to which
3758
3759 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3760
3761 can be simplified. Return -1 if the subreg can't be simplified.
3762
3763 XREGNO is a hard register number. */
3764
3765int
ef4bddc2
RS
3766simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3767 unsigned int offset, machine_mode ymode)
eef302d2
RS
3768{
3769 struct subreg_info info;
3770 unsigned int yregno;
3771
3772#ifdef CANNOT_CHANGE_MODE_CLASS
3773 /* Give the backend a chance to disallow the mode change. */
3774 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3775 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
55a2c322
VM
3776 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3777 /* We can use mode change in LRA for some transformations. */
3778 && ! lra_in_progress)
eef302d2
RS
3779 return -1;
3780#endif
3781
3782 /* We shouldn't simplify stack-related registers. */
3783 if ((!reload_completed || frame_pointer_needed)
d4e0d036 3784 && xregno == FRAME_POINTER_REGNUM)
eef302d2
RS
3785 return -1;
3786
3787 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
98072ee5 3788 && xregno == ARG_POINTER_REGNUM)
eef302d2
RS
3789 return -1;
3790
55a2c322
VM
3791 if (xregno == STACK_POINTER_REGNUM
3792 /* We should convert hard stack register in LRA if it is
3793 possible. */
3794 && ! lra_in_progress)
eef302d2
RS
3795 return -1;
3796
3797 /* Try to get the register offset. */
3798 subreg_get_info (xregno, xmode, offset, ymode, &info);
3799 if (!info.representable_p)
3800 return -1;
3801
3802 /* Make sure that the offsetted register value is in range. */
3803 yregno = xregno + info.offset;
3804 if (!HARD_REGISTER_NUM_P (yregno))
3805 return -1;
3806
3807 /* See whether (reg:YMODE YREGNO) is valid.
3808
3809 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
eb93b31f
EB
3810 This is a kludge to work around how complex FP arguments are passed
3811 on IA-64 and should be fixed. See PR target/49226. */
eef302d2
RS
3812 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3813 && HARD_REGNO_MODE_OK (xregno, xmode))
3814 return -1;
3815
3816 return (int) yregno;
3817}
3818
dc297297 3819/* Return the final regno that a subreg expression refers to. */
a6a2274a 3820unsigned int
f7d504c2 3821subreg_regno (const_rtx x)
ddef6bc7
JJ
3822{
3823 unsigned int ret;
3824 rtx subreg = SUBREG_REG (x);
3825 int regno = REGNO (subreg);
3826
a6a2274a
KH
3827 ret = regno + subreg_regno_offset (regno,
3828 GET_MODE (subreg),
ddef6bc7
JJ
3829 SUBREG_BYTE (x),
3830 GET_MODE (x));
3831 return ret;
3832
3833}
f1f4e530
JM
3834
3835/* Return the number of registers that a subreg expression refers
3836 to. */
3837unsigned int
f7d504c2 3838subreg_nregs (const_rtx x)
ba49cb7b
KZ
3839{
3840 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3841}
3842
3843/* Return the number of registers that a subreg REG with REGNO
3844 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3845 changed so that the regno can be passed in. */
3846
3847unsigned int
3848subreg_nregs_with_regno (unsigned int regno, const_rtx x)
f1f4e530
JM
3849{
3850 struct subreg_info info;
3851 rtx subreg = SUBREG_REG (x);
f1f4e530
JM
3852
3853 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3854 &info);
3855 return info.nregs;
3856}
3857
ba49cb7b 3858
833366d6
JH
3859struct parms_set_data
3860{
3861 int nregs;
3862 HARD_REG_SET regs;
3863};
3864
3865/* Helper function for noticing stores to parameter registers. */
3866static void
7bc980e1 3867parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
833366d6 3868{
1634b18f 3869 struct parms_set_data *const d = (struct parms_set_data *) data;
833366d6
JH
3870 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3871 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3872 {
3873 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3874 d->nregs--;
3875 }
3876}
3877
a6a2274a 3878/* Look backward for first parameter to be loaded.
b2df20b4
DJ
3879 Note that loads of all parameters will not necessarily be
3880 found if CSE has eliminated some of them (e.g., an argument
3881 to the outer function is passed down as a parameter).
833366d6 3882 Do not skip BOUNDARY. */
62fc98cc 3883rtx_insn *
9321cf00 3884find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
833366d6
JH
3885{
3886 struct parms_set_data parm;
9321cf00
DM
3887 rtx p;
3888 rtx_insn *before, *first_set;
833366d6
JH
3889
3890 /* Since different machines initialize their parameter registers
3891 in different orders, assume nothing. Collect the set of all
3892 parameter registers. */
3893 CLEAR_HARD_REG_SET (parm.regs);
3894 parm.nregs = 0;
3895 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3896 if (GET_CODE (XEXP (p, 0)) == USE
f8cfc6aa 3897 && REG_P (XEXP (XEXP (p, 0), 0)))
833366d6 3898 {
41374e13 3899 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
833366d6
JH
3900
3901 /* We only care about registers which can hold function
3902 arguments. */
3903 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3904 continue;
3905
3906 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3907 parm.nregs++;
3908 }
3909 before = call_insn;
b2df20b4 3910 first_set = call_insn;
833366d6
JH
3911
3912 /* Search backward for the first set of a register in this set. */
3913 while (parm.nregs && before != boundary)
3914 {
3915 before = PREV_INSN (before);
3916
3917 /* It is possible that some loads got CSEed from one call to
3918 another. Stop in that case. */
4b4bf941 3919 if (CALL_P (before))
833366d6
JH
3920 break;
3921
dbc1a163 3922 /* Our caller needs either ensure that we will find all sets
833366d6 3923 (in case code has not been optimized yet), or take care
eaec9b3d 3924 for possible labels in a way by setting boundary to preceding
833366d6 3925 CODE_LABEL. */
4b4bf941 3926 if (LABEL_P (before))
dbc1a163 3927 {
41374e13 3928 gcc_assert (before == boundary);
dbc1a163
RH
3929 break;
3930 }
833366d6 3931
0d025d43 3932 if (INSN_P (before))
b2df20b4
DJ
3933 {
3934 int nregs_old = parm.nregs;
3935 note_stores (PATTERN (before), parms_set, &parm);
3936 /* If we found something that did not set a parameter reg,
3937 we're done. Do not keep going, as that might result
3938 in hoisting an insn before the setting of a pseudo
3939 that is used by the hoisted insn. */
3940 if (nregs_old != parm.nregs)
3941 first_set = before;
3942 else
3943 break;
3944 }
833366d6 3945 }
9321cf00 3946 return first_set;
833366d6 3947}
3dec4024 3948
14b493d6 3949/* Return true if we should avoid inserting code between INSN and preceding
3dec4024
JH
3950 call instruction. */
3951
3952bool
e4685bc8 3953keep_with_call_p (const rtx_insn *insn)
3dec4024
JH
3954{
3955 rtx set;
3956
3957 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3958 {
f8cfc6aa 3959 if (REG_P (SET_DEST (set))
5df533b3 3960 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3dec4024
JH
3961 && fixed_regs[REGNO (SET_DEST (set))]
3962 && general_operand (SET_SRC (set), VOIDmode))
3963 return true;
f8cfc6aa 3964 if (REG_P (SET_SRC (set))
82f81f18 3965 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
f8cfc6aa 3966 && REG_P (SET_DEST (set))
3dec4024
JH
3967 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3968 return true;
bc204393
RH
3969 /* There may be a stack pop just after the call and before the store
3970 of the return register. Search for the actual store when deciding
3971 if we can break or not. */
3dec4024
JH
3972 if (SET_DEST (set) == stack_pointer_rtx)
3973 {
75547801 3974 /* This CONST_CAST is okay because next_nonnote_insn just
4e9b57fa 3975 returns its argument and we assign it to a const_rtx
75547801 3976 variable. */
e4685bc8
TS
3977 const rtx_insn *i2
3978 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
bc204393 3979 if (i2 && keep_with_call_p (i2))
3dec4024
JH
3980 return true;
3981 }
3982 }
3983 return false;
3984}
71d2c5bd 3985
432f982f
JH
3986/* Return true if LABEL is a target of JUMP_INSN. This applies only
3987 to non-complex jumps. That is, direct unconditional, conditional,
3988 and tablejumps, but not computed jumps or returns. It also does
3989 not apply to the fallthru case of a conditional jump. */
3990
3991bool
c5241a21 3992label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
432f982f
JH
3993{
3994 rtx tmp = JUMP_LABEL (jump_insn);
8942ee0f 3995 rtx_jump_table_data *table;
432f982f
JH
3996
3997 if (label == tmp)
3998 return true;
3999
8942ee0f 4000 if (tablejump_p (jump_insn, NULL, &table))
432f982f 4001 {
95c43227 4002 rtvec vec = table->get_labels ();
432f982f
JH
4003 int i, veclen = GET_NUM_ELEM (vec);
4004
4005 for (i = 0; i < veclen; ++i)
4006 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4007 return true;
4008 }
4009
cb2f563b
HPN
4010 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4011 return true;
4012
432f982f
JH
4013 return false;
4014}
4015
f894b69b
PB
4016\f
4017/* Return an estimate of the cost of computing rtx X.
4018 One use is in cse, to decide which expression to keep in the hash table.
4019 Another is in rtl generation, to pick the cheapest way to multiply.
b8698a0f 4020 Other uses like the latter are expected in the future.
f40751dd 4021
68f932c4
RS
4022 X appears as operand OPNO in an expression with code OUTER_CODE.
4023 SPEED specifies whether costs optimized for speed or size should
f40751dd 4024 be returned. */
f894b69b
PB
4025
4026int
e548c9df
AM
4027rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4028 int opno, bool speed)
f894b69b
PB
4029{
4030 int i, j;
4031 enum rtx_code code;
4032 const char *fmt;
4033 int total;
e098c169 4034 int factor;
f894b69b
PB
4035
4036 if (x == 0)
4037 return 0;
4038
e548c9df
AM
4039 if (GET_MODE (x) != VOIDmode)
4040 mode = GET_MODE (x);
4041
e098c169
HPN
4042 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4043 many insns, taking N times as long. */
e548c9df 4044 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
e098c169
HPN
4045 if (factor == 0)
4046 factor = 1;
4047
f894b69b
PB
4048 /* Compute the default costs of certain things.
4049 Note that targetm.rtx_costs can override the defaults. */
4050
4051 code = GET_CODE (x);
4052 switch (code)
4053 {
4054 case MULT:
e098c169
HPN
4055 /* Multiplication has time-complexity O(N*N), where N is the
4056 number of units (translated from digits) when using
4057 schoolbook long multiplication. */
4058 total = factor * factor * COSTS_N_INSNS (5);
f894b69b
PB
4059 break;
4060 case DIV:
4061 case UDIV:
4062 case MOD:
4063 case UMOD:
e098c169
HPN
4064 /* Similarly, complexity for schoolbook long division. */
4065 total = factor * factor * COSTS_N_INSNS (7);
f894b69b
PB
4066 break;
4067 case USE:
db3edc20 4068 /* Used in combine.c as a marker. */
f894b69b
PB
4069 total = 0;
4070 break;
e098c169
HPN
4071 case SET:
4072 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4073 the mode for the factor. */
e548c9df
AM
4074 mode = GET_MODE (SET_DEST (x));
4075 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
e098c169
HPN
4076 if (factor == 0)
4077 factor = 1;
4078 /* Pass through. */
f894b69b 4079 default:
e098c169 4080 total = factor * COSTS_N_INSNS (1);
f894b69b
PB
4081 }
4082
4083 switch (code)
4084 {
4085 case REG:
4086 return 0;
4087
4088 case SUBREG:
edb81165 4089 total = 0;
f894b69b
PB
4090 /* If we can't tie these modes, make this expensive. The larger
4091 the mode, the more expensive it is. */
e548c9df 4092 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
e098c169 4093 return COSTS_N_INSNS (2 + factor);
f894b69b
PB
4094 break;
4095
4096 default:
e548c9df 4097 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
f894b69b
PB
4098 return total;
4099 break;
4100 }
4101
4102 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4103 which is already in total. */
4104
4105 fmt = GET_RTX_FORMAT (code);
4106 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4107 if (fmt[i] == 'e')
e548c9df 4108 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
f894b69b
PB
4109 else if (fmt[i] == 'E')
4110 for (j = 0; j < XVECLEN (x, i); j++)
e548c9df 4111 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
f894b69b
PB
4112
4113 return total;
4114}
22939744
BS
4115
4116/* Fill in the structure C with information about both speed and size rtx
68f932c4 4117 costs for X, which is operand OPNO in an expression with code OUTER. */
22939744
BS
4118
4119void
e548c9df 4120get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
68f932c4 4121 struct full_rtx_costs *c)
22939744 4122{
e548c9df
AM
4123 c->speed = rtx_cost (x, mode, outer, opno, true);
4124 c->size = rtx_cost (x, mode, outer, opno, false);
22939744
BS
4125}
4126
f894b69b
PB
4127\f
4128/* Return cost of address expression X.
b8698a0f 4129 Expect that X is properly formed address reference.
f40751dd
JH
4130
4131 SPEED parameter specify whether costs optimized for speed or size should
4132 be returned. */
f894b69b
PB
4133
4134int
ef4bddc2 4135address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
f894b69b 4136{
f894b69b
PB
4137 /* We may be asked for cost of various unusual addresses, such as operands
4138 of push instruction. It is not worthwhile to complicate writing
4139 of the target hook by such cases. */
4140
09e881c9 4141 if (!memory_address_addr_space_p (mode, x, as))
f894b69b
PB
4142 return 1000;
4143
b413068c 4144 return targetm.address_cost (x, mode, as, speed);
f894b69b
PB
4145}
4146
4147/* If the target doesn't override, compute the cost as with arithmetic. */
4148
4149int
ef4bddc2 4150default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
f894b69b 4151{
e548c9df 4152 return rtx_cost (x, Pmode, MEM, 0, speed);
f894b69b 4153}
2f93eea8
PB
4154\f
4155
4156unsigned HOST_WIDE_INT
ef4bddc2 4157nonzero_bits (const_rtx x, machine_mode mode)
2f93eea8
PB
4158{
4159 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4160}
4161
4162unsigned int
ef4bddc2 4163num_sign_bit_copies (const_rtx x, machine_mode mode)
2f93eea8
PB
4164{
4165 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4166}
4167
4168/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4169 It avoids exponential behavior in nonzero_bits1 when X has
4170 identical subexpressions on the first or the second level. */
4171
4172static unsigned HOST_WIDE_INT
ef4bddc2
RS
4173cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4174 machine_mode known_mode,
2f93eea8
PB
4175 unsigned HOST_WIDE_INT known_ret)
4176{
4177 if (x == known_x && mode == known_mode)
4178 return known_ret;
4179
4180 /* Try to find identical subexpressions. If found call
4181 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4182 precomputed value for the subexpression as KNOWN_RET. */
4183
4184 if (ARITHMETIC_P (x))
4185 {
4186 rtx x0 = XEXP (x, 0);
4187 rtx x1 = XEXP (x, 1);
4188
4189 /* Check the first level. */
4190 if (x0 == x1)
4191 return nonzero_bits1 (x, mode, x0, mode,
4192 cached_nonzero_bits (x0, mode, known_x,
4193 known_mode, known_ret));
4194
4195 /* Check the second level. */
4196 if (ARITHMETIC_P (x0)
4197 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4198 return nonzero_bits1 (x, mode, x1, mode,
4199 cached_nonzero_bits (x1, mode, known_x,
4200 known_mode, known_ret));
4201
4202 if (ARITHMETIC_P (x1)
4203 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4204 return nonzero_bits1 (x, mode, x0, mode,
4205 cached_nonzero_bits (x0, mode, known_x,
4206 known_mode, known_ret));
4207 }
4208
4209 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4210}
4211
4212/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4213 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4214 is less useful. We can't allow both, because that results in exponential
4215 run time recursion. There is a nullstone testcase that triggered
4216 this. This macro avoids accidental uses of num_sign_bit_copies. */
4217#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4218
4219/* Given an expression, X, compute which bits in X can be nonzero.
4220 We don't care about bits outside of those defined in MODE.
4221
4222 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4223 an arithmetic operation, we can do better. */
4224
4225static unsigned HOST_WIDE_INT
ef4bddc2
RS
4226nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4227 machine_mode known_mode,
2f93eea8
PB
4228 unsigned HOST_WIDE_INT known_ret)
4229{
4230 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4231 unsigned HOST_WIDE_INT inner_nz;
4232 enum rtx_code code;
ef4bddc2 4233 machine_mode inner_mode;
5511bc5a 4234 unsigned int mode_width = GET_MODE_PRECISION (mode);
2f93eea8 4235
ff596cd2
RL
4236 /* For floating-point and vector values, assume all bits are needed. */
4237 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4238 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4239 return nonzero;
4240
4241 /* If X is wider than MODE, use its mode instead. */
5511bc5a 4242 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
2f93eea8
PB
4243 {
4244 mode = GET_MODE (x);
4245 nonzero = GET_MODE_MASK (mode);
5511bc5a 4246 mode_width = GET_MODE_PRECISION (mode);
2f93eea8
PB
4247 }
4248
4249 if (mode_width > HOST_BITS_PER_WIDE_INT)
4250 /* Our only callers in this case look for single bit values. So
4251 just return the mode mask. Those tests will then be false. */
4252 return nonzero;
4253
2f93eea8
PB
4254 /* If MODE is wider than X, but both are a single word for both the host
4255 and target machines, we can compute this from which bits of the
4256 object might be nonzero in its own mode, taking into account the fact
4257 that on many CISC machines, accessing an object in a wider mode
4258 causes the high-order bits to become undefined. So they are
4259 not known to be zero. */
4260
9e11bfef
TS
4261 if (!WORD_REGISTER_OPERATIONS
4262 && GET_MODE (x) != VOIDmode
4263 && GET_MODE (x) != mode
5511bc5a
BS
4264 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4265 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4266 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4267 {
4268 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4269 known_x, known_mode, known_ret);
4270 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4271 return nonzero;
4272 }
2f93eea8
PB
4273
4274 code = GET_CODE (x);
4275 switch (code)
4276 {
4277 case REG:
2a870875 4278#if defined(POINTERS_EXTEND_UNSIGNED)
2f93eea8
PB
4279 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4280 all the bits above ptr_mode are known to be zero. */
5932a4d4 4281 /* As we do not know which address space the pointer is referring to,
d4ebfa65
BE
4282 we can do this only if the target does not support different pointer
4283 or address modes depending on the address space. */
4284 if (target_default_pointer_address_modes_p ()
4285 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2a870875
RS
4286 && REG_POINTER (x)
4287 && !targetm.have_ptr_extend ())
2f93eea8
PB
4288 nonzero &= GET_MODE_MASK (ptr_mode);
4289#endif
4290
4291 /* Include declared information about alignment of pointers. */
4292 /* ??? We don't properly preserve REG_POINTER changes across
4293 pointer-to-integer casts, so we can't trust it except for
4294 things that we know must be pointers. See execute/960116-1.c. */
4295 if ((x == stack_pointer_rtx
4296 || x == frame_pointer_rtx
4297 || x == arg_pointer_rtx)
4298 && REGNO_POINTER_ALIGN (REGNO (x)))
4299 {
4300 unsigned HOST_WIDE_INT alignment
4301 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4302
4303#ifdef PUSH_ROUNDING
4304 /* If PUSH_ROUNDING is defined, it is possible for the
4305 stack to be momentarily aligned only to that amount,
4306 so we pick the least alignment. */
4307 if (x == stack_pointer_rtx && PUSH_ARGS)
4308 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4309 alignment);
4310#endif
4311
4312 nonzero &= ~(alignment - 1);
4313 }
4314
4315 {
4316 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
55d796da 4317 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
2f93eea8
PB
4318 known_mode, known_ret,
4319 &nonzero_for_hook);
4320
55d796da
KG
4321 if (new_rtx)
4322 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
2f93eea8
PB
4323 known_mode, known_ret);
4324
4325 return nonzero_for_hook;
4326 }
4327
4328 case CONST_INT:
2f93eea8 4329 /* If X is negative in MODE, sign-extend the value. */
58f2ae18 4330 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
c04fc4f0
EB
4331 && mode_width < BITS_PER_WORD
4332 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4333 != 0)
0cadbfaa 4334 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
2f93eea8 4335
c04fc4f0 4336 return UINTVAL (x);
2f93eea8
PB
4337
4338 case MEM:
4339#ifdef LOAD_EXTEND_OP
4340 /* In many, if not most, RISC machines, reading a byte from memory
4341 zeros the rest of the register. Noticing that fact saves a lot
4342 of extra zero-extends. */
4343 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4344 nonzero &= GET_MODE_MASK (GET_MODE (x));
4345#endif
4346 break;
4347
4348 case EQ: case NE:
4349 case UNEQ: case LTGT:
4350 case GT: case GTU: case UNGT:
4351 case LT: case LTU: case UNLT:
4352 case GE: case GEU: case UNGE:
4353 case LE: case LEU: case UNLE:
4354 case UNORDERED: case ORDERED:
2f93eea8
PB
4355 /* If this produces an integer result, we know which bits are set.
4356 Code here used to clear bits outside the mode of X, but that is
4357 now done above. */
b8698a0f
L
4358 /* Mind that MODE is the mode the caller wants to look at this
4359 operation in, and not the actual operation mode. We can wind
505ac507
RH
4360 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4361 that describes the results of a vector compare. */
4362 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
2f93eea8
PB
4363 && mode_width <= HOST_BITS_PER_WIDE_INT)
4364 nonzero = STORE_FLAG_VALUE;
4365 break;
4366
4367 case NEG:
4368#if 0
4369 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4370 and num_sign_bit_copies. */
4371 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5511bc5a 4372 == GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4373 nonzero = 1;
4374#endif
4375
86cdf393 4376 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
2f93eea8
PB
4377 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4378 break;
4379
4380 case ABS:
4381#if 0
4382 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4383 and num_sign_bit_copies. */
4384 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5511bc5a 4385 == GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4386 nonzero = 1;
4387#endif
4388 break;
4389
4390 case TRUNCATE:
4391 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4392 known_x, known_mode, known_ret)
4393 & GET_MODE_MASK (mode));
4394 break;
4395
4396 case ZERO_EXTEND:
4397 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4398 known_x, known_mode, known_ret);
4399 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4400 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4401 break;
4402
4403 case SIGN_EXTEND:
4404 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4405 Otherwise, show all the bits in the outer mode but not the inner
4406 may be nonzero. */
4407 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4408 known_x, known_mode, known_ret);
4409 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4410 {
4411 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
2d0c270f 4412 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
2f93eea8
PB
4413 inner_nz |= (GET_MODE_MASK (mode)
4414 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4415 }
4416
4417 nonzero &= inner_nz;
4418 break;
4419
4420 case AND:
4421 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4422 known_x, known_mode, known_ret)
4423 & cached_nonzero_bits (XEXP (x, 1), mode,
4424 known_x, known_mode, known_ret);
4425 break;
4426
4427 case XOR: case IOR:
4428 case UMIN: case UMAX: case SMIN: case SMAX:
4429 {
c04fc4f0
EB
4430 unsigned HOST_WIDE_INT nonzero0
4431 = cached_nonzero_bits (XEXP (x, 0), mode,
4432 known_x, known_mode, known_ret);
2f93eea8
PB
4433
4434 /* Don't call nonzero_bits for the second time if it cannot change
4435 anything. */
4436 if ((nonzero & nonzero0) != nonzero)
4437 nonzero &= nonzero0
4438 | cached_nonzero_bits (XEXP (x, 1), mode,
4439 known_x, known_mode, known_ret);
4440 }
4441 break;
4442
4443 case PLUS: case MINUS:
4444 case MULT:
4445 case DIV: case UDIV:
4446 case MOD: case UMOD:
4447 /* We can apply the rules of arithmetic to compute the number of
4448 high- and low-order zero bits of these operations. We start by
4449 computing the width (position of the highest-order nonzero bit)
4450 and the number of low-order zero bits for each value. */
4451 {
c04fc4f0
EB
4452 unsigned HOST_WIDE_INT nz0
4453 = cached_nonzero_bits (XEXP (x, 0), mode,
4454 known_x, known_mode, known_ret);
4455 unsigned HOST_WIDE_INT nz1
4456 = cached_nonzero_bits (XEXP (x, 1), mode,
4457 known_x, known_mode, known_ret);
5511bc5a 4458 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
2f93eea8
PB
4459 int width0 = floor_log2 (nz0) + 1;
4460 int width1 = floor_log2 (nz1) + 1;
4461 int low0 = floor_log2 (nz0 & -nz0);
4462 int low1 = floor_log2 (nz1 & -nz1);
c04fc4f0
EB
4463 unsigned HOST_WIDE_INT op0_maybe_minusp
4464 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4465 unsigned HOST_WIDE_INT op1_maybe_minusp
4466 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
2f93eea8
PB
4467 unsigned int result_width = mode_width;
4468 int result_low = 0;
4469
4470 switch (code)
4471 {
4472 case PLUS:
4473 result_width = MAX (width0, width1) + 1;
4474 result_low = MIN (low0, low1);
4475 break;
4476 case MINUS:
4477 result_low = MIN (low0, low1);
4478 break;
4479 case MULT:
4480 result_width = width0 + width1;
4481 result_low = low0 + low1;
4482 break;
4483 case DIV:
4484 if (width1 == 0)
4485 break;
c04fc4f0 4486 if (!op0_maybe_minusp && !op1_maybe_minusp)
2f93eea8
PB
4487 result_width = width0;
4488 break;
4489 case UDIV:
4490 if (width1 == 0)
4491 break;
4492 result_width = width0;
4493 break;
4494 case MOD:
4495 if (width1 == 0)
4496 break;
c04fc4f0 4497 if (!op0_maybe_minusp && !op1_maybe_minusp)
2f93eea8
PB
4498 result_width = MIN (width0, width1);
4499 result_low = MIN (low0, low1);
4500 break;
4501 case UMOD:
4502 if (width1 == 0)
4503 break;
4504 result_width = MIN (width0, width1);
4505 result_low = MIN (low0, low1);
4506 break;
4507 default:
41374e13 4508 gcc_unreachable ();
2f93eea8
PB
4509 }
4510
4511 if (result_width < mode_width)
c04fc4f0 4512 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
2f93eea8
PB
4513
4514 if (result_low > 0)
c04fc4f0 4515 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
2f93eea8
PB
4516 }
4517 break;
4518
4519 case ZERO_EXTRACT:
481683e1 4520 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4521 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
c04fc4f0 4522 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
2f93eea8
PB
4523 break;
4524
4525 case SUBREG:
4526 /* If this is a SUBREG formed for a promoted variable that has
4527 been zero-extended, we know that at least the high-order bits
4528 are zero, though others might be too. */
4529
362d42dc 4530 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
2f93eea8
PB
4531 nonzero = GET_MODE_MASK (GET_MODE (x))
4532 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4533 known_x, known_mode, known_ret);
4534
2d0c270f 4535 inner_mode = GET_MODE (SUBREG_REG (x));
2f93eea8
PB
4536 /* If the inner mode is a single word for both the host and target
4537 machines, we can compute this from which bits of the inner
4538 object might be nonzero. */
5511bc5a
BS
4539 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4540 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
2f93eea8
PB
4541 {
4542 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4543 known_x, known_mode, known_ret);
4544
9e11bfef 4545#if WORD_REGISTER_OPERATIONS && defined (LOAD_EXTEND_OP)
2f93eea8
PB
4546 /* If this is a typical RISC machine, we only have to worry
4547 about the way loads are extended. */
2d0c270f
BS
4548 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4549 ? val_signbit_known_set_p (inner_mode, nonzero)
4550 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
3c0cb5de 4551 || !MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4552#endif
4553 {
4554 /* On many CISC machines, accessing an object in a wider mode
4555 causes the high-order bits to become undefined. So they are
4556 not known to be zero. */
5511bc5a
BS
4557 if (GET_MODE_PRECISION (GET_MODE (x))
4558 > GET_MODE_PRECISION (inner_mode))
2f93eea8 4559 nonzero |= (GET_MODE_MASK (GET_MODE (x))
2d0c270f 4560 & ~GET_MODE_MASK (inner_mode));
2f93eea8
PB
4561 }
4562 }
4563 break;
4564
4565 case ASHIFTRT:
4566 case LSHIFTRT:
4567 case ASHIFT:
4568 case ROTATE:
4569 /* The nonzero bits are in two classes: any bits within MODE
4570 that aren't in GET_MODE (x) are always significant. The rest of the
4571 nonzero bits are those that are significant in the operand of
4572 the shift when shifted the appropriate number of bits. This
4573 shows that high-order bits are cleared by the right shift and
4574 low-order bits by left shifts. */
481683e1 4575 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4576 && INTVAL (XEXP (x, 1)) >= 0
39b2ac74 4577 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5511bc5a 4578 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8 4579 {
ef4bddc2 4580 machine_mode inner_mode = GET_MODE (x);
5511bc5a 4581 unsigned int width = GET_MODE_PRECISION (inner_mode);
2f93eea8
PB
4582 int count = INTVAL (XEXP (x, 1));
4583 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
c04fc4f0
EB
4584 unsigned HOST_WIDE_INT op_nonzero
4585 = cached_nonzero_bits (XEXP (x, 0), mode,
4586 known_x, known_mode, known_ret);
2f93eea8
PB
4587 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4588 unsigned HOST_WIDE_INT outer = 0;
4589
4590 if (mode_width > width)
4591 outer = (op_nonzero & nonzero & ~mode_mask);
4592
4593 if (code == LSHIFTRT)
4594 inner >>= count;
4595 else if (code == ASHIFTRT)
4596 {
4597 inner >>= count;
4598
4599 /* If the sign bit may have been nonzero before the shift, we
4600 need to mark all the places it could have been copied to
4601 by the shift as possibly nonzero. */
c04fc4f0
EB
4602 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4603 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4604 << (width - count);
2f93eea8
PB
4605 }
4606 else if (code == ASHIFT)
4607 inner <<= count;
4608 else
4609 inner = ((inner << (count % width)
4610 | (inner >> (width - (count % width)))) & mode_mask);
4611
4612 nonzero &= (outer | inner);
4613 }
4614 break;
4615
4616 case FFS:
4617 case POPCOUNT:
4618 /* This is at most the number of bits in the mode. */
c04fc4f0 4619 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4620 break;
4621
4622 case CLZ:
4623 /* If CLZ has a known value at zero, then the nonzero bits are
4624 that value, plus the number of bits in the mode minus one. */
4625 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
c04fc4f0
EB
4626 nonzero
4627 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4628 else
4629 nonzero = -1;
4630 break;
4631
4632 case CTZ:
4633 /* If CTZ has a known value at zero, then the nonzero bits are
4634 that value, plus the number of bits in the mode minus one. */
4635 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
c04fc4f0
EB
4636 nonzero
4637 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4638 else
4639 nonzero = -1;
4640 break;
4641
8840ae2b
JJ
4642 case CLRSB:
4643 /* This is at most the number of bits in the mode minus 1. */
4644 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4645 break;
4646
2f93eea8
PB
4647 case PARITY:
4648 nonzero = 1;
4649 break;
4650
4651 case IF_THEN_ELSE:
4652 {
c04fc4f0
EB
4653 unsigned HOST_WIDE_INT nonzero_true
4654 = cached_nonzero_bits (XEXP (x, 1), mode,
4655 known_x, known_mode, known_ret);
2f93eea8
PB
4656
4657 /* Don't call nonzero_bits for the second time if it cannot change
4658 anything. */
4659 if ((nonzero & nonzero_true) != nonzero)
4660 nonzero &= nonzero_true
4661 | cached_nonzero_bits (XEXP (x, 2), mode,
4662 known_x, known_mode, known_ret);
4663 }
4664 break;
4665
4666 default:
4667 break;
4668 }
4669
4670 return nonzero;
4671}
4672
4673/* See the macro definition above. */
4674#undef cached_num_sign_bit_copies
4675
4676\f
4677/* The function cached_num_sign_bit_copies is a wrapper around
4678 num_sign_bit_copies1. It avoids exponential behavior in
4679 num_sign_bit_copies1 when X has identical subexpressions on the
4680 first or the second level. */
4681
4682static unsigned int
ef4bddc2
RS
4683cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4684 machine_mode known_mode,
2f93eea8
PB
4685 unsigned int known_ret)
4686{
4687 if (x == known_x && mode == known_mode)
4688 return known_ret;
4689
4690 /* Try to find identical subexpressions. If found call
4691 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4692 the precomputed value for the subexpression as KNOWN_RET. */
4693
4694 if (ARITHMETIC_P (x))
4695 {
4696 rtx x0 = XEXP (x, 0);
4697 rtx x1 = XEXP (x, 1);
4698
4699 /* Check the first level. */
4700 if (x0 == x1)
4701 return
4702 num_sign_bit_copies1 (x, mode, x0, mode,
4703 cached_num_sign_bit_copies (x0, mode, known_x,
4704 known_mode,
4705 known_ret));
4706
4707 /* Check the second level. */
4708 if (ARITHMETIC_P (x0)
4709 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4710 return
4711 num_sign_bit_copies1 (x, mode, x1, mode,
4712 cached_num_sign_bit_copies (x1, mode, known_x,
4713 known_mode,
4714 known_ret));
4715
4716 if (ARITHMETIC_P (x1)
4717 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4718 return
4719 num_sign_bit_copies1 (x, mode, x0, mode,
4720 cached_num_sign_bit_copies (x0, mode, known_x,
4721 known_mode,
4722 known_ret));
4723 }
4724
4725 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4726}
4727
4728/* Return the number of bits at the high-order end of X that are known to
4729 be equal to the sign bit. X will be used in mode MODE; if MODE is
4730 VOIDmode, X will be used in its own mode. The returned value will always
4731 be between 1 and the number of bits in MODE. */
4732
4733static unsigned int
ef4bddc2
RS
4734num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4735 machine_mode known_mode,
2f93eea8
PB
4736 unsigned int known_ret)
4737{
4738 enum rtx_code code = GET_CODE (x);
5511bc5a 4739 unsigned int bitwidth = GET_MODE_PRECISION (mode);
2f93eea8
PB
4740 int num0, num1, result;
4741 unsigned HOST_WIDE_INT nonzero;
4742
4743 /* If we weren't given a mode, use the mode of X. If the mode is still
4744 VOIDmode, we don't know anything. Likewise if one of the modes is
4745 floating-point. */
4746
4747 if (mode == VOIDmode)
4748 mode = GET_MODE (x);
4749
ff596cd2
RL
4750 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4751 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4752 return 1;
4753
4754 /* For a smaller object, just ignore the high bits. */
5511bc5a 4755 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4756 {
4757 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4758 known_x, known_mode, known_ret);
4759 return MAX (1,
5511bc5a 4760 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
2f93eea8
PB
4761 }
4762
5511bc5a 4763 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8 4764 {
5511bc5a
BS
4765 /* If this machine does not do all register operations on the entire
4766 register and MODE is wider than the mode of X, we can say nothing
4767 at all about the high-order bits. */
9e11bfef
TS
4768 if (!WORD_REGISTER_OPERATIONS)
4769 return 1;
4770
2f93eea8
PB
4771 /* Likewise on machines that do, if the mode of the object is smaller
4772 than a word and loads of that size don't sign extend, we can say
4773 nothing about the high order bits. */
5511bc5a 4774 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
2f93eea8
PB
4775#ifdef LOAD_EXTEND_OP
4776 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4777#endif
4778 )
4779 return 1;
2f93eea8
PB
4780 }
4781
4782 switch (code)
4783 {
4784 case REG:
4785
2a870875 4786#if defined(POINTERS_EXTEND_UNSIGNED)
2f93eea8
PB
4787 /* If pointers extend signed and this is a pointer in Pmode, say that
4788 all the bits above ptr_mode are known to be sign bit copies. */
5932a4d4 4789 /* As we do not know which address space the pointer is referring to,
d4ebfa65
BE
4790 we can do this only if the target does not support different pointer
4791 or address modes depending on the address space. */
4792 if (target_default_pointer_address_modes_p ()
4793 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2a870875
RS
4794 && mode == Pmode && REG_POINTER (x)
4795 && !targetm.have_ptr_extend ())
5511bc5a 4796 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
2f93eea8
PB
4797#endif
4798
4799 {
4800 unsigned int copies_for_hook = 1, copies = 1;
55d796da 4801 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
2f93eea8
PB
4802 known_mode, known_ret,
4803 &copies_for_hook);
4804
55d796da
KG
4805 if (new_rtx)
4806 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
2f93eea8
PB
4807 known_mode, known_ret);
4808
4809 if (copies > 1 || copies_for_hook > 1)
4810 return MAX (copies, copies_for_hook);
4811
4812 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4813 }
4814 break;
4815
4816 case MEM:
4817#ifdef LOAD_EXTEND_OP
4818 /* Some RISC machines sign-extend all loads of smaller than a word. */
4819 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4820 return MAX (1, ((int) bitwidth
5511bc5a 4821 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
2f93eea8
PB
4822#endif
4823 break;
4824
4825 case CONST_INT:
4826 /* If the constant is negative, take its 1's complement and remask.
4827 Then see how many zero bits we have. */
c04fc4f0 4828 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
2f93eea8 4829 if (bitwidth <= HOST_BITS_PER_WIDE_INT
c04fc4f0 4830 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
4831 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4832
4833 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4834
4835 case SUBREG:
4836 /* If this is a SUBREG for a promoted object that is sign-extended
4837 and we are looking at it in a wider mode, we know that at least the
4838 high-order bits are known to be sign bit copies. */
4839
362d42dc 4840 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
2f93eea8
PB
4841 {
4842 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4843 known_x, known_mode, known_ret);
4844 return MAX ((int) bitwidth
5511bc5a 4845 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
2f93eea8
PB
4846 num0);
4847 }
4848
4849 /* For a smaller object, just ignore the high bits. */
5511bc5a 4850 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
2f93eea8
PB
4851 {
4852 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4853 known_x, known_mode, known_ret);
4854 return MAX (1, (num0
5511bc5a 4855 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
2f93eea8
PB
4856 - bitwidth)));
4857 }
4858
2f93eea8
PB
4859#ifdef LOAD_EXTEND_OP
4860 /* For paradoxical SUBREGs on machines where all register operations
4861 affect the entire register, just look inside. Note that we are
4862 passing MODE to the recursive call, so the number of sign bit copies
4863 will remain relative to that mode, not the inner mode. */
4864
4865 /* This works only if loads sign extend. Otherwise, if we get a
4866 reload for the inner part, it may be loaded from the stack, and
4867 then we lose all sign bit copies that existed before the store
4868 to the stack. */
4869
9e11bfef
TS
4870 if (WORD_REGISTER_OPERATIONS
4871 && paradoxical_subreg_p (x)
2f93eea8 4872 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3c0cb5de 4873 && MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4874 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4875 known_x, known_mode, known_ret);
2f93eea8
PB
4876#endif
4877 break;
4878
4879 case SIGN_EXTRACT:
481683e1 4880 if (CONST_INT_P (XEXP (x, 1)))
2f93eea8
PB
4881 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4882 break;
4883
4884 case SIGN_EXTEND:
5511bc5a 4885 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
2f93eea8
PB
4886 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4887 known_x, known_mode, known_ret));
4888
4889 case TRUNCATE:
4890 /* For a smaller object, just ignore the high bits. */
4891 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4892 known_x, known_mode, known_ret);
5511bc5a 4893 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
2f93eea8
PB
4894 - bitwidth)));
4895
4896 case NOT:
4897 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4898 known_x, known_mode, known_ret);
4899
4900 case ROTATE: case ROTATERT:
4901 /* If we are rotating left by a number of bits less than the number
4902 of sign bit copies, we can just subtract that amount from the
4903 number. */
481683e1 4904 if (CONST_INT_P (XEXP (x, 1))
2f93eea8
PB
4905 && INTVAL (XEXP (x, 1)) >= 0
4906 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4907 {
4908 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4909 known_x, known_mode, known_ret);
4910 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4911 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4912 }
4913 break;
4914
4915 case NEG:
4916 /* In general, this subtracts one sign bit copy. But if the value
4917 is known to be positive, the number of sign bit copies is the
4918 same as that of the input. Finally, if the input has just one bit
4919 that might be nonzero, all the bits are copies of the sign bit. */
4920 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4921 known_x, known_mode, known_ret);
4922 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4923 return num0 > 1 ? num0 - 1 : 1;
4924
4925 nonzero = nonzero_bits (XEXP (x, 0), mode);
4926 if (nonzero == 1)
4927 return bitwidth;
4928
4929 if (num0 > 1
c04fc4f0 4930 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
2f93eea8
PB
4931 num0--;
4932
4933 return num0;
4934
4935 case IOR: case AND: case XOR:
4936 case SMIN: case SMAX: case UMIN: case UMAX:
4937 /* Logical operations will preserve the number of sign-bit copies.
4938 MIN and MAX operations always return one of the operands. */
4939 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4940 known_x, known_mode, known_ret);
4941 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4942 known_x, known_mode, known_ret);
22761ec3
AN
4943
4944 /* If num1 is clearing some of the top bits then regardless of
4945 the other term, we are guaranteed to have at least that many
4946 high-order zero bits. */
4947 if (code == AND
4948 && num1 > 1
4949 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 4950 && CONST_INT_P (XEXP (x, 1))
c04fc4f0
EB
4951 && (UINTVAL (XEXP (x, 1))
4952 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
22761ec3
AN
4953 return num1;
4954
4955 /* Similarly for IOR when setting high-order bits. */
4956 if (code == IOR
4957 && num1 > 1
4958 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 4959 && CONST_INT_P (XEXP (x, 1))
c04fc4f0
EB
4960 && (UINTVAL (XEXP (x, 1))
4961 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
22761ec3
AN
4962 return num1;
4963
2f93eea8
PB
4964 return MIN (num0, num1);
4965
4966 case PLUS: case MINUS:
4967 /* For addition and subtraction, we can have a 1-bit carry. However,
4968 if we are subtracting 1 from a positive number, there will not
4969 be such a carry. Furthermore, if the positive number is known to
4970 be 0 or 1, we know the result is either -1 or 0. */
4971
4972 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4973 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4974 {
4975 nonzero = nonzero_bits (XEXP (x, 0), mode);
c04fc4f0 4976 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
2f93eea8
PB
4977 return (nonzero == 1 || nonzero == 0 ? bitwidth
4978 : bitwidth - floor_log2 (nonzero) - 1);
4979 }
4980
4981 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4982 known_x, known_mode, known_ret);
4983 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4984 known_x, known_mode, known_ret);
4985 result = MAX (1, MIN (num0, num1) - 1);
4986
2f93eea8
PB
4987 return result;
4988
4989 case MULT:
4990 /* The number of bits of the product is the sum of the number of
4991 bits of both terms. However, unless one of the terms if known
4992 to be positive, we must allow for an additional bit since negating
4993 a negative number can remove one sign bit copy. */
4994
4995 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4996 known_x, known_mode, known_ret);
4997 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4998 known_x, known_mode, known_ret);
4999
5000 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5001 if (result > 0
5002 && (bitwidth > HOST_BITS_PER_WIDE_INT
5003 || (((nonzero_bits (XEXP (x, 0), mode)
c04fc4f0 5004 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8 5005 && ((nonzero_bits (XEXP (x, 1), mode)
c04fc4f0
EB
5006 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
5007 != 0))))
2f93eea8
PB
5008 result--;
5009
5010 return MAX (1, result);
5011
5012 case UDIV:
5013 /* The result must be <= the first operand. If the first operand
5014 has the high bit set, we know nothing about the number of sign
5015 bit copies. */
5016 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5017 return 1;
5018 else if ((nonzero_bits (XEXP (x, 0), mode)
c04fc4f0 5019 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
5020 return 1;
5021 else
5022 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5023 known_x, known_mode, known_ret);
5024
5025 case UMOD:
24d179b4
JJ
5026 /* The result must be <= the second operand. If the second operand
5027 has (or just might have) the high bit set, we know nothing about
5028 the number of sign bit copies. */
5029 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5030 return 1;
5031 else if ((nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 5032 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
24d179b4
JJ
5033 return 1;
5034 else
5035 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
2f93eea8
PB
5036 known_x, known_mode, known_ret);
5037
5038 case DIV:
5039 /* Similar to unsigned division, except that we have to worry about
5040 the case where the divisor is negative, in which case we have
5041 to add 1. */
5042 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5043 known_x, known_mode, known_ret);
5044 if (result > 1
5045 && (bitwidth > HOST_BITS_PER_WIDE_INT
5046 || (nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 5047 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
2f93eea8
PB
5048 result--;
5049
5050 return result;
5051
5052 case MOD:
5053 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5054 known_x, known_mode, known_ret);
5055 if (result > 1
5056 && (bitwidth > HOST_BITS_PER_WIDE_INT
5057 || (nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 5058 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
2f93eea8
PB
5059 result--;
5060
5061 return result;
5062
5063 case ASHIFTRT:
5064 /* Shifts by a constant add to the number of bits equal to the
5065 sign bit. */
5066 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5067 known_x, known_mode, known_ret);
481683e1 5068 if (CONST_INT_P (XEXP (x, 1))
39b2ac74 5069 && INTVAL (XEXP (x, 1)) > 0
5511bc5a 5070 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
5071 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5072
5073 return num0;
5074
5075 case ASHIFT:
5076 /* Left shifts destroy copies. */
481683e1 5077 if (!CONST_INT_P (XEXP (x, 1))
2f93eea8 5078 || INTVAL (XEXP (x, 1)) < 0
39b2ac74 5079 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5511bc5a 5080 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
5081 return 1;
5082
5083 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5084 known_x, known_mode, known_ret);
5085 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5086
5087 case IF_THEN_ELSE:
5088 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5089 known_x, known_mode, known_ret);
5090 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5091 known_x, known_mode, known_ret);
5092 return MIN (num0, num1);
5093
5094 case EQ: case NE: case GE: case GT: case LE: case LT:
5095 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5096 case GEU: case GTU: case LEU: case LTU:
5097 case UNORDERED: case ORDERED:
5098 /* If the constant is negative, take its 1's complement and remask.
5099 Then see how many zero bits we have. */
5100 nonzero = STORE_FLAG_VALUE;
5101 if (bitwidth <= HOST_BITS_PER_WIDE_INT
c04fc4f0 5102 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
5103 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5104
5105 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5106
5107 default:
5108 break;
5109 }
5110
5111 /* If we haven't been able to figure it out by one of the above rules,
5112 see if some of the high-order bits are known to be zero. If so,
5113 count those bits and return one less than that amount. If we can't
5114 safely compute the mask for this mode, always return BITWIDTH. */
5115
5511bc5a 5116 bitwidth = GET_MODE_PRECISION (mode);
2f93eea8
PB
5117 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5118 return 1;
5119
5120 nonzero = nonzero_bits (x, mode);
c04fc4f0 5121 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
2f93eea8
PB
5122 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5123}
6fd21094
RS
5124
5125/* Calculate the rtx_cost of a single instruction. A return value of
5126 zero indicates an instruction pattern without a known cost. */
5127
5128int
f40751dd 5129insn_rtx_cost (rtx pat, bool speed)
6fd21094
RS
5130{
5131 int i, cost;
5132 rtx set;
5133
5134 /* Extract the single set rtx from the instruction pattern.
5135 We can't use single_set since we only have the pattern. */
5136 if (GET_CODE (pat) == SET)
5137 set = pat;
5138 else if (GET_CODE (pat) == PARALLEL)
5139 {
5140 set = NULL_RTX;
5141 for (i = 0; i < XVECLEN (pat, 0); i++)
5142 {
5143 rtx x = XVECEXP (pat, 0, i);
5144 if (GET_CODE (x) == SET)
5145 {
5146 if (set)
5147 return 0;
5148 set = x;
5149 }
5150 }
5151 if (!set)
5152 return 0;
5153 }
5154 else
5155 return 0;
5156
e548c9df 5157 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
6fd21094
RS
5158 return cost > 0 ? cost : COSTS_N_INSNS (1);
5159}
75473b02 5160
11204b2d
ZC
5161/* Returns estimate on cost of computing SEQ. */
5162
5163unsigned
5164seq_cost (const rtx_insn *seq, bool speed)
5165{
5166 unsigned cost = 0;
5167 rtx set;
5168
5169 for (; seq; seq = NEXT_INSN (seq))
5170 {
5171 set = single_set (seq);
5172 if (set)
5173 cost += set_rtx_cost (set, speed);
5174 else
5175 cost++;
5176 }
5177
5178 return cost;
5179}
5180
75473b02
SB
5181/* Given an insn INSN and condition COND, return the condition in a
5182 canonical form to simplify testing by callers. Specifically:
5183
5184 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5185 (2) Both operands will be machine operands; (cc0) will have been replaced.
5186 (3) If an operand is a constant, it will be the second operand.
5187 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5188 for GE, GEU, and LEU.
5189
5190 If the condition cannot be understood, or is an inequality floating-point
5191 comparison which needs to be reversed, 0 will be returned.
5192
5193 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5194
5195 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5196 insn used in locating the condition was found. If a replacement test
5197 of the condition is desired, it should be placed in front of that
5198 insn and we will be sure that the inputs are still valid.
5199
5200 If WANT_REG is nonzero, we wish the condition to be relative to that
5201 register, if possible. Therefore, do not canonicalize the condition
b8698a0f 5202 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
75473b02
SB
5203 to be a compare to a CC mode register.
5204
5205 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5206 and at INSN. */
5207
5208rtx
61aa0978
DM
5209canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5210 rtx_insn **earliest,
75473b02
SB
5211 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5212{
5213 enum rtx_code code;
61aa0978 5214 rtx_insn *prev = insn;
f7d504c2 5215 const_rtx set;
75473b02
SB
5216 rtx tem;
5217 rtx op0, op1;
5218 int reverse_code = 0;
ef4bddc2 5219 machine_mode mode;
569f8d98 5220 basic_block bb = BLOCK_FOR_INSN (insn);
75473b02
SB
5221
5222 code = GET_CODE (cond);
5223 mode = GET_MODE (cond);
5224 op0 = XEXP (cond, 0);
5225 op1 = XEXP (cond, 1);
5226
5227 if (reverse)
5228 code = reversed_comparison_code (cond, insn);
5229 if (code == UNKNOWN)
5230 return 0;
5231
5232 if (earliest)
5233 *earliest = insn;
5234
5235 /* If we are comparing a register with zero, see if the register is set
5236 in the previous insn to a COMPARE or a comparison operation. Perform
5237 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5238 in cse.c */
5239
5240 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5241 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5242 && op1 == CONST0_RTX (GET_MODE (op0))
5243 && op0 != want_reg)
5244 {
5245 /* Set nonzero when we find something of interest. */
5246 rtx x = 0;
5247
75473b02
SB
5248 /* If comparison with cc0, import actual comparison from compare
5249 insn. */
5250 if (op0 == cc0_rtx)
5251 {
5252 if ((prev = prev_nonnote_insn (prev)) == 0
5253 || !NONJUMP_INSN_P (prev)
5254 || (set = single_set (prev)) == 0
5255 || SET_DEST (set) != cc0_rtx)
5256 return 0;
5257
5258 op0 = SET_SRC (set);
5259 op1 = CONST0_RTX (GET_MODE (op0));
5260 if (earliest)
5261 *earliest = prev;
5262 }
75473b02
SB
5263
5264 /* If this is a COMPARE, pick up the two things being compared. */
5265 if (GET_CODE (op0) == COMPARE)
5266 {
5267 op1 = XEXP (op0, 1);
5268 op0 = XEXP (op0, 0);
5269 continue;
5270 }
5271 else if (!REG_P (op0))
5272 break;
5273
5274 /* Go back to the previous insn. Stop if it is not an INSN. We also
5275 stop if it isn't a single set or if it has a REG_INC note because
5276 we don't want to bother dealing with it. */
5277
f0fc0803 5278 prev = prev_nonnote_nondebug_insn (prev);
b5b8b0ac
AO
5279
5280 if (prev == 0
75473b02 5281 || !NONJUMP_INSN_P (prev)
569f8d98
ZD
5282 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5283 /* In cfglayout mode, there do not have to be labels at the
5284 beginning of a block, or jumps at the end, so the previous
5285 conditions would not stop us when we reach bb boundary. */
5286 || BLOCK_FOR_INSN (prev) != bb)
75473b02
SB
5287 break;
5288
5289 set = set_of (op0, prev);
5290
5291 if (set
5292 && (GET_CODE (set) != SET
5293 || !rtx_equal_p (SET_DEST (set), op0)))
5294 break;
5295
5296 /* If this is setting OP0, get what it sets it to if it looks
5297 relevant. */
5298 if (set)
5299 {
ef4bddc2 5300 machine_mode inner_mode = GET_MODE (SET_DEST (set));
75473b02
SB
5301#ifdef FLOAT_STORE_FLAG_VALUE
5302 REAL_VALUE_TYPE fsfv;
5303#endif
5304
5305 /* ??? We may not combine comparisons done in a CCmode with
5306 comparisons not done in a CCmode. This is to aid targets
5307 like Alpha that have an IEEE compliant EQ instruction, and
5308 a non-IEEE compliant BEQ instruction. The use of CCmode is
5309 actually artificial, simply to prevent the combination, but
5310 should not affect other platforms.
5311
5312 However, we must allow VOIDmode comparisons to match either
5313 CCmode or non-CCmode comparison, because some ports have
5314 modeless comparisons inside branch patterns.
5315
5316 ??? This mode check should perhaps look more like the mode check
5317 in simplify_comparison in combine. */
2c8798a2
RS
5318 if (((GET_MODE_CLASS (mode) == MODE_CC)
5319 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5320 && mode != VOIDmode
5321 && inner_mode != VOIDmode)
5322 break;
5323 if (GET_CODE (SET_SRC (set)) == COMPARE
5324 || (((code == NE
5325 || (code == LT
5326 && val_signbit_known_set_p (inner_mode,
5327 STORE_FLAG_VALUE))
75473b02 5328#ifdef FLOAT_STORE_FLAG_VALUE
2c8798a2
RS
5329 || (code == LT
5330 && SCALAR_FLOAT_MODE_P (inner_mode)
5331 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5332 REAL_VALUE_NEGATIVE (fsfv)))
75473b02 5333#endif
2c8798a2
RS
5334 ))
5335 && COMPARISON_P (SET_SRC (set))))
75473b02
SB
5336 x = SET_SRC (set);
5337 else if (((code == EQ
5338 || (code == GE
2d0c270f
BS
5339 && val_signbit_known_set_p (inner_mode,
5340 STORE_FLAG_VALUE))
75473b02
SB
5341#ifdef FLOAT_STORE_FLAG_VALUE
5342 || (code == GE
3d8bf70f 5343 && SCALAR_FLOAT_MODE_P (inner_mode)
75473b02
SB
5344 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5345 REAL_VALUE_NEGATIVE (fsfv)))
5346#endif
5347 ))
2c8798a2 5348 && COMPARISON_P (SET_SRC (set)))
75473b02
SB
5349 {
5350 reverse_code = 1;
5351 x = SET_SRC (set);
5352 }
2c8798a2
RS
5353 else if ((code == EQ || code == NE)
5354 && GET_CODE (SET_SRC (set)) == XOR)
5355 /* Handle sequences like:
5356
5357 (set op0 (xor X Y))
5358 ...(eq|ne op0 (const_int 0))...
5359
5360 in which case:
5361
5362 (eq op0 (const_int 0)) reduces to (eq X Y)
5363 (ne op0 (const_int 0)) reduces to (ne X Y)
5364
5365 This is the form used by MIPS16, for example. */
5366 x = SET_SRC (set);
75473b02
SB
5367 else
5368 break;
5369 }
5370
5371 else if (reg_set_p (op0, prev))
5372 /* If this sets OP0, but not directly, we have to give up. */
5373 break;
5374
5375 if (x)
5376 {
5377 /* If the caller is expecting the condition to be valid at INSN,
5378 make sure X doesn't change before INSN. */
5379 if (valid_at_insn_p)
5380 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5381 break;
5382 if (COMPARISON_P (x))
5383 code = GET_CODE (x);
5384 if (reverse_code)
5385 {
5386 code = reversed_comparison_code (x, prev);
5387 if (code == UNKNOWN)
5388 return 0;
5389 reverse_code = 0;
5390 }
5391
5392 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5393 if (earliest)
5394 *earliest = prev;
5395 }
5396 }
5397
5398 /* If constant is first, put it last. */
5399 if (CONSTANT_P (op0))
5400 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5401
5402 /* If OP0 is the result of a comparison, we weren't able to find what
5403 was really being compared, so fail. */
5404 if (!allow_cc_mode
5405 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5406 return 0;
5407
5408 /* Canonicalize any ordered comparison with integers involving equality
5409 if we can do computations in the relevant mode and we do not
5410 overflow. */
5411
5412 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
481683e1 5413 && CONST_INT_P (op1)
75473b02 5414 && GET_MODE (op0) != VOIDmode
5511bc5a 5415 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
75473b02
SB
5416 {
5417 HOST_WIDE_INT const_val = INTVAL (op1);
5418 unsigned HOST_WIDE_INT uconst_val = const_val;
5419 unsigned HOST_WIDE_INT max_val
5420 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5421
5422 switch (code)
5423 {
5424 case LE:
5425 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5426 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5427 break;
5428
5429 /* When cross-compiling, const_val might be sign-extended from
5430 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5431 case GE:
c04fc4f0
EB
5432 if ((const_val & max_val)
5433 != ((unsigned HOST_WIDE_INT) 1
5511bc5a 5434 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
75473b02
SB
5435 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5436 break;
5437
5438 case LEU:
5439 if (uconst_val < max_val)
5440 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5441 break;
5442
5443 case GEU:
5444 if (uconst_val != 0)
5445 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5446 break;
5447
5448 default:
5449 break;
5450 }
5451 }
5452
5453 /* Never return CC0; return zero instead. */
5454 if (CC0_P (op0))
5455 return 0;
5456
5457 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5458}
5459
5460/* Given a jump insn JUMP, return the condition that will cause it to branch
5461 to its JUMP_LABEL. If the condition cannot be understood, or is an
5462 inequality floating-point comparison which needs to be reversed, 0 will
5463 be returned.
5464
5465 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5466 insn used in locating the condition was found. If a replacement test
5467 of the condition is desired, it should be placed in front of that
5468 insn and we will be sure that the inputs are still valid. If EARLIEST
5469 is null, the returned condition will be valid at INSN.
5470
5471 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5472 compare CC mode register.
5473
5474 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5475
5476rtx
61aa0978
DM
5477get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5478 int valid_at_insn_p)
75473b02
SB
5479{
5480 rtx cond;
5481 int reverse;
5482 rtx set;
5483
5484 /* If this is not a standard conditional jump, we can't parse it. */
5485 if (!JUMP_P (jump)
5486 || ! any_condjump_p (jump))
5487 return 0;
5488 set = pc_set (jump);
5489
5490 cond = XEXP (SET_SRC (set), 0);
5491
5492 /* If this branches to JUMP_LABEL when the condition is false, reverse
5493 the condition. */
5494 reverse
5495 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
a827d9b1 5496 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
75473b02
SB
5497
5498 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5499 allow_cc_mode, valid_at_insn_p);
5500}
5501
b12cbf2c
AN
5502/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5503 TARGET_MODE_REP_EXTENDED.
5504
5505 Note that we assume that the property of
5506 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5507 narrower than mode B. I.e., if A is a mode narrower than B then in
5508 order to be able to operate on it in mode B, mode A needs to
5509 satisfy the requirements set by the representation of mode B. */
5510
5511static void
5512init_num_sign_bit_copies_in_rep (void)
5513{
ef4bddc2 5514 machine_mode mode, in_mode;
b12cbf2c
AN
5515
5516 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5517 in_mode = GET_MODE_WIDER_MODE (mode))
5518 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5519 mode = GET_MODE_WIDER_MODE (mode))
5520 {
ef4bddc2 5521 machine_mode i;
b12cbf2c
AN
5522
5523 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5524 extends to the next widest mode. */
5525 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5526 || GET_MODE_WIDER_MODE (mode) == in_mode);
5527
5528 /* We are in in_mode. Count how many bits outside of mode
5529 have to be copies of the sign-bit. */
5530 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5531 {
ef4bddc2 5532 machine_mode wider = GET_MODE_WIDER_MODE (i);
b12cbf2c
AN
5533
5534 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5535 /* We can only check sign-bit copies starting from the
5536 top-bit. In order to be able to check the bits we
5537 have already seen we pretend that subsequent bits
5538 have to be sign-bit copies too. */
5539 || num_sign_bit_copies_in_rep [in_mode][mode])
5540 num_sign_bit_copies_in_rep [in_mode][mode]
5511bc5a 5541 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
b12cbf2c
AN
5542 }
5543 }
5544}
5545
d3b72690
PB
5546/* Suppose that truncation from the machine mode of X to MODE is not a
5547 no-op. See if there is anything special about X so that we can
5548 assume it already contains a truncated value of MODE. */
5549
5550bool
ef4bddc2 5551truncated_to_mode (machine_mode mode, const_rtx x)
d3b72690 5552{
b12cbf2c
AN
5553 /* This register has already been used in MODE without explicit
5554 truncation. */
5555 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5556 return true;
5557
5558 /* See if we already satisfy the requirements of MODE. If yes we
5559 can just switch to MODE. */
5560 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5561 && (num_sign_bit_copies (x, GET_MODE (x))
5562 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5563 return true;
d3b72690 5564
b12cbf2c
AN
5565 return false;
5566}
cf94b0fc 5567\f
476dd0ce
RS
5568/* Return true if RTX code CODE has a single sequence of zero or more
5569 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5570 entry in that case. */
5571
5572static bool
5573setup_reg_subrtx_bounds (unsigned int code)
5574{
5575 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5576 unsigned int i = 0;
5577 for (; format[i] != 'e'; ++i)
5578 {
5579 if (!format[i])
5580 /* No subrtxes. Leave start and count as 0. */
5581 return true;
5582 if (format[i] == 'E' || format[i] == 'V')
5583 return false;
5584 }
5585
5586 /* Record the sequence of 'e's. */
5587 rtx_all_subrtx_bounds[code].start = i;
5588 do
5589 ++i;
5590 while (format[i] == 'e');
5591 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5592 /* rtl-iter.h relies on this. */
5593 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5594
5595 for (; format[i]; ++i)
5596 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5597 return false;
5598
5599 return true;
5600}
5601
e02101ff 5602/* Initialize rtx_all_subrtx_bounds. */
cf94b0fc
PB
5603void
5604init_rtlanal (void)
5605{
5606 int i;
5607 for (i = 0; i < NUM_RTX_CODE; i++)
5608 {
476dd0ce
RS
5609 if (!setup_reg_subrtx_bounds (i))
5610 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5611 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5612 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
cf94b0fc 5613 }
b12cbf2c
AN
5614
5615 init_num_sign_bit_copies_in_rep ();
cf94b0fc 5616}
3d8504ac
RS
5617\f
5618/* Check whether this is a constant pool constant. */
5619bool
5620constant_pool_constant_p (rtx x)
5621{
5622 x = avoid_constant_pool_reference (x);
48175537 5623 return CONST_DOUBLE_P (x);
3d8504ac 5624}
842e098c
AN
5625\f
5626/* If M is a bitmask that selects a field of low-order bits within an item but
5627 not the entire word, return the length of the field. Return -1 otherwise.
5628 M is used in machine mode MODE. */
5629
5630int
ef4bddc2 5631low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
842e098c
AN
5632{
5633 if (mode != VOIDmode)
5634 {
5511bc5a 5635 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
842e098c
AN
5636 return -1;
5637 m &= GET_MODE_MASK (mode);
5638 }
5639
5640 return exact_log2 (m + 1);
5641}
372d6395
RS
5642
5643/* Return the mode of MEM's address. */
5644
ef4bddc2 5645machine_mode
372d6395
RS
5646get_address_mode (rtx mem)
5647{
ef4bddc2 5648 machine_mode mode;
372d6395
RS
5649
5650 gcc_assert (MEM_P (mem));
5651 mode = GET_MODE (XEXP (mem, 0));
5652 if (mode != VOIDmode)
5653 return mode;
5654 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5655}
ca3f2950
SB
5656\f
5657/* Split up a CONST_DOUBLE or integer constant rtx
5658 into two rtx's for single words,
5659 storing in *FIRST the word that comes first in memory in the target
807e902e
KZ
5660 and in *SECOND the other.
5661
5662 TODO: This function needs to be rewritten to work on any size
5663 integer. */
ca3f2950
SB
5664
5665void
5666split_double (rtx value, rtx *first, rtx *second)
5667{
5668 if (CONST_INT_P (value))
5669 {
5670 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5671 {
5672 /* In this case the CONST_INT holds both target words.
5673 Extract the bits from it into two word-sized pieces.
5674 Sign extend each half to HOST_WIDE_INT. */
5675 unsigned HOST_WIDE_INT low, high;
5676 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5677 unsigned bits_per_word = BITS_PER_WORD;
5678
5679 /* Set sign_bit to the most significant bit of a word. */
5680 sign_bit = 1;
5681 sign_bit <<= bits_per_word - 1;
5682
5683 /* Set mask so that all bits of the word are set. We could
5684 have used 1 << BITS_PER_WORD instead of basing the
5685 calculation on sign_bit. However, on machines where
5686 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5687 compiler warning, even though the code would never be
5688 executed. */
5689 mask = sign_bit << 1;
5690 mask--;
5691
5692 /* Set sign_extend as any remaining bits. */
5693 sign_extend = ~mask;
5694
5695 /* Pick the lower word and sign-extend it. */
5696 low = INTVAL (value);
5697 low &= mask;
5698 if (low & sign_bit)
5699 low |= sign_extend;
5700
5701 /* Pick the higher word, shifted to the least significant
5702 bits, and sign-extend it. */
5703 high = INTVAL (value);
5704 high >>= bits_per_word - 1;
5705 high >>= 1;
5706 high &= mask;
5707 if (high & sign_bit)
5708 high |= sign_extend;
5709
5710 /* Store the words in the target machine order. */
5711 if (WORDS_BIG_ENDIAN)
5712 {
5713 *first = GEN_INT (high);
5714 *second = GEN_INT (low);
5715 }
5716 else
5717 {
5718 *first = GEN_INT (low);
5719 *second = GEN_INT (high);
5720 }
5721 }
5722 else
5723 {
5724 /* The rule for using CONST_INT for a wider mode
5725 is that we regard the value as signed.
5726 So sign-extend it. */
5727 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5728 if (WORDS_BIG_ENDIAN)
5729 {
5730 *first = high;
5731 *second = value;
5732 }
5733 else
5734 {
5735 *first = value;
5736 *second = high;
5737 }
5738 }
5739 }
807e902e
KZ
5740 else if (GET_CODE (value) == CONST_WIDE_INT)
5741 {
5742 /* All of this is scary code and needs to be converted to
5743 properly work with any size integer. */
5744 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5745 if (WORDS_BIG_ENDIAN)
5746 {
5747 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5748 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5749 }
5750 else
5751 {
5752 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5753 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5754 }
5755 }
48175537 5756 else if (!CONST_DOUBLE_P (value))
ca3f2950
SB
5757 {
5758 if (WORDS_BIG_ENDIAN)
5759 {
5760 *first = const0_rtx;
5761 *second = value;
5762 }
5763 else
5764 {
5765 *first = value;
5766 *second = const0_rtx;
5767 }
5768 }
5769 else if (GET_MODE (value) == VOIDmode
5770 /* This is the old way we did CONST_DOUBLE integers. */
5771 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5772 {
5773 /* In an integer, the words are defined as most and least significant.
5774 So order them by the target's convention. */
5775 if (WORDS_BIG_ENDIAN)
5776 {
5777 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5778 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5779 }
5780 else
5781 {
5782 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5783 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5784 }
5785 }
5786 else
5787 {
ca3f2950 5788 long l[2];
ca3f2950
SB
5789
5790 /* Note, this converts the REAL_VALUE_TYPE to the target's
5791 format, splits up the floating point double and outputs
5792 exactly 32 bits of it into each of l[0] and l[1] --
5793 not necessarily BITS_PER_WORD bits. */
34a72c33 5794 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
ca3f2950
SB
5795
5796 /* If 32 bits is an entire word for the target, but not for the host,
5797 then sign-extend on the host so that the number will look the same
5798 way on the host that it would on the target. See for instance
5799 simplify_unary_operation. The #if is needed to avoid compiler
5800 warnings. */
5801
5802#if HOST_BITS_PER_LONG > 32
5803 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5804 {
5805 if (l[0] & ((long) 1 << 31))
aa256c4a 5806 l[0] |= ((unsigned long) (-1) << 32);
ca3f2950 5807 if (l[1] & ((long) 1 << 31))
aa256c4a 5808 l[1] |= ((unsigned long) (-1) << 32);
ca3f2950
SB
5809 }
5810#endif
5811
5812 *first = GEN_INT (l[0]);
5813 *second = GEN_INT (l[1]);
5814 }
5815}
5816
3936bafc
YR
5817/* Return true if X is a sign_extract or zero_extract from the least
5818 significant bit. */
5819
5820static bool
5821lsb_bitfield_op_p (rtx x)
5822{
5823 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5824 {
ef4bddc2 5825 machine_mode mode = GET_MODE (XEXP (x, 0));
a9195970 5826 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
3936bafc
YR
5827 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5828
5829 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5830 }
5831 return false;
5832}
5833
277f65de
RS
5834/* Strip outer address "mutations" from LOC and return a pointer to the
5835 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5836 stripped expression there.
5837
5838 "Mutations" either convert between modes or apply some kind of
3936bafc 5839 extension, truncation or alignment. */
277f65de
RS
5840
5841rtx *
5842strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5843{
5844 for (;;)
5845 {
5846 enum rtx_code code = GET_CODE (*loc);
5847 if (GET_RTX_CLASS (code) == RTX_UNARY)
5848 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5849 used to convert between pointer sizes. */
5850 loc = &XEXP (*loc, 0);
3936bafc
YR
5851 else if (lsb_bitfield_op_p (*loc))
5852 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5853 acts as a combined truncation and extension. */
5854 loc = &XEXP (*loc, 0);
277f65de
RS
5855 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5856 /* (and ... (const_int -X)) is used to align to X bytes. */
5857 loc = &XEXP (*loc, 0);
163497f1
VM
5858 else if (code == SUBREG
5859 && !OBJECT_P (SUBREG_REG (*loc))
5860 && subreg_lowpart_p (*loc))
5861 /* (subreg (operator ...) ...) inside and is used for mode
5862 conversion too. */
99a0106f 5863 loc = &SUBREG_REG (*loc);
277f65de
RS
5864 else
5865 return loc;
5866 if (outer_code)
5867 *outer_code = code;
5868 }
5869}
5870
ec5a3504
RS
5871/* Return true if CODE applies some kind of scale. The scaled value is
5872 is the first operand and the scale is the second. */
277f65de
RS
5873
5874static bool
ec5a3504 5875binary_scale_code_p (enum rtx_code code)
277f65de 5876{
ec5a3504
RS
5877 return (code == MULT
5878 || code == ASHIFT
5879 /* Needed by ARM targets. */
5880 || code == ASHIFTRT
5881 || code == LSHIFTRT
5882 || code == ROTATE
5883 || code == ROTATERT);
277f65de
RS
5884}
5885
ec5a3504
RS
5886/* If *INNER can be interpreted as a base, return a pointer to the inner term
5887 (see address_info). Return null otherwise. */
277f65de 5888
ec5a3504
RS
5889static rtx *
5890get_base_term (rtx *inner)
277f65de 5891{
ec5a3504
RS
5892 if (GET_CODE (*inner) == LO_SUM)
5893 inner = strip_address_mutations (&XEXP (*inner, 0));
5894 if (REG_P (*inner)
5895 || MEM_P (*inner)
948cd9a5
MK
5896 || GET_CODE (*inner) == SUBREG
5897 || GET_CODE (*inner) == SCRATCH)
ec5a3504
RS
5898 return inner;
5899 return 0;
5900}
5901
5902/* If *INNER can be interpreted as an index, return a pointer to the inner term
5903 (see address_info). Return null otherwise. */
5904
5905static rtx *
5906get_index_term (rtx *inner)
5907{
5908 /* At present, only constant scales are allowed. */
5909 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5910 inner = strip_address_mutations (&XEXP (*inner, 0));
5911 if (REG_P (*inner)
5912 || MEM_P (*inner)
71acd477
MK
5913 || GET_CODE (*inner) == SUBREG
5914 || GET_CODE (*inner) == SCRATCH)
ec5a3504
RS
5915 return inner;
5916 return 0;
277f65de
RS
5917}
5918
5919/* Set the segment part of address INFO to LOC, given that INNER is the
5920 unmutated value. */
5921
5922static void
5923set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5924{
277f65de
RS
5925 gcc_assert (!info->segment);
5926 info->segment = loc;
5927 info->segment_term = inner;
5928}
5929
5930/* Set the base part of address INFO to LOC, given that INNER is the
5931 unmutated value. */
5932
5933static void
5934set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5935{
277f65de
RS
5936 gcc_assert (!info->base);
5937 info->base = loc;
5938 info->base_term = inner;
5939}
5940
5941/* Set the index part of address INFO to LOC, given that INNER is the
5942 unmutated value. */
5943
5944static void
5945set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5946{
277f65de
RS
5947 gcc_assert (!info->index);
5948 info->index = loc;
5949 info->index_term = inner;
5950}
5951
5952/* Set the displacement part of address INFO to LOC, given that INNER
5953 is the constant term. */
5954
5955static void
5956set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5957{
277f65de
RS
5958 gcc_assert (!info->disp);
5959 info->disp = loc;
5960 info->disp_term = inner;
5961}
5962
5963/* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5964 rest of INFO accordingly. */
5965
5966static void
5967decompose_incdec_address (struct address_info *info)
5968{
5969 info->autoinc_p = true;
5970
5971 rtx *base = &XEXP (*info->inner, 0);
5972 set_address_base (info, base, base);
5973 gcc_checking_assert (info->base == info->base_term);
5974
5975 /* These addresses are only valid when the size of the addressed
5976 value is known. */
5977 gcc_checking_assert (info->mode != VOIDmode);
5978}
5979
5980/* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5981 of INFO accordingly. */
5982
5983static void
5984decompose_automod_address (struct address_info *info)
5985{
5986 info->autoinc_p = true;
5987
5988 rtx *base = &XEXP (*info->inner, 0);
5989 set_address_base (info, base, base);
5990 gcc_checking_assert (info->base == info->base_term);
5991
5992 rtx plus = XEXP (*info->inner, 1);
5993 gcc_assert (GET_CODE (plus) == PLUS);
5994
5995 info->base_term2 = &XEXP (plus, 0);
5996 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5997
5998 rtx *step = &XEXP (plus, 1);
5999 rtx *inner_step = strip_address_mutations (step);
6000 if (CONSTANT_P (*inner_step))
6001 set_address_disp (info, step, inner_step);
6002 else
6003 set_address_index (info, step, inner_step);
6004}
6005
6006/* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6007 values in [PTR, END). Return a pointer to the end of the used array. */
6008
6009static rtx **
6010extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6011{
6012 rtx x = *loc;
6013 if (GET_CODE (x) == PLUS)
6014 {
6015 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6016 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6017 }
6018 else
6019 {
6020 gcc_assert (ptr != end);
6021 *ptr++ = loc;
6022 }
6023 return ptr;
6024}
6025
6026/* Evaluate the likelihood of X being a base or index value, returning
6027 positive if it is likely to be a base, negative if it is likely to be
6028 an index, and 0 if we can't tell. Make the magnitude of the return
6029 value reflect the amount of confidence we have in the answer.
6030
6031 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6032
6033static int
ef4bddc2 6034baseness (rtx x, machine_mode mode, addr_space_t as,
277f65de
RS
6035 enum rtx_code outer_code, enum rtx_code index_code)
6036{
277f65de
RS
6037 /* Believe *_POINTER unless the address shape requires otherwise. */
6038 if (REG_P (x) && REG_POINTER (x))
6039 return 2;
6040 if (MEM_P (x) && MEM_POINTER (x))
6041 return 2;
6042
6043 if (REG_P (x) && HARD_REGISTER_P (x))
6044 {
6045 /* X is a hard register. If it only fits one of the base
6046 or index classes, choose that interpretation. */
6047 int regno = REGNO (x);
6048 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6049 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6050 if (base_p != index_p)
6051 return base_p ? 1 : -1;
6052 }
6053 return 0;
6054}
6055
6056/* INFO->INNER describes a normal, non-automodified address.
6057 Fill in the rest of INFO accordingly. */
6058
6059static void
6060decompose_normal_address (struct address_info *info)
6061{
6062 /* Treat the address as the sum of up to four values. */
6063 rtx *ops[4];
6064 size_t n_ops = extract_plus_operands (info->inner, ops,
6065 ops + ARRAY_SIZE (ops)) - ops;
6066
6067 /* If there is more than one component, any base component is in a PLUS. */
6068 if (n_ops > 1)
6069 info->base_outer_code = PLUS;
6070
ec5a3504
RS
6071 /* Try to classify each sum operand now. Leave those that could be
6072 either a base or an index in OPS. */
277f65de
RS
6073 rtx *inner_ops[4];
6074 size_t out = 0;
6075 for (size_t in = 0; in < n_ops; ++in)
6076 {
6077 rtx *loc = ops[in];
6078 rtx *inner = strip_address_mutations (loc);
6079 if (CONSTANT_P (*inner))
6080 set_address_disp (info, loc, inner);
6081 else if (GET_CODE (*inner) == UNSPEC)
6082 set_address_segment (info, loc, inner);
6083 else
6084 {
ec5a3504
RS
6085 /* The only other possibilities are a base or an index. */
6086 rtx *base_term = get_base_term (inner);
6087 rtx *index_term = get_index_term (inner);
6088 gcc_assert (base_term || index_term);
6089 if (!base_term)
6090 set_address_index (info, loc, index_term);
6091 else if (!index_term)
6092 set_address_base (info, loc, base_term);
6093 else
6094 {
6095 gcc_assert (base_term == index_term);
6096 ops[out] = loc;
6097 inner_ops[out] = base_term;
6098 ++out;
6099 }
277f65de
RS
6100 }
6101 }
6102
6103 /* Classify the remaining OPS members as bases and indexes. */
6104 if (out == 1)
6105 {
ec5a3504
RS
6106 /* If we haven't seen a base or an index yet, assume that this is
6107 the base. If we were confident that another term was the base
6108 or index, treat the remaining operand as the other kind. */
6109 if (!info->base)
277f65de
RS
6110 set_address_base (info, ops[0], inner_ops[0]);
6111 else
6112 set_address_index (info, ops[0], inner_ops[0]);
6113 }
6114 else if (out == 2)
6115 {
6116 /* In the event of a tie, assume the base comes first. */
6117 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6118 GET_CODE (*ops[1]))
6119 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6120 GET_CODE (*ops[0])))
6121 {
6122 set_address_base (info, ops[0], inner_ops[0]);
6123 set_address_index (info, ops[1], inner_ops[1]);
6124 }
6125 else
6126 {
6127 set_address_base (info, ops[1], inner_ops[1]);
6128 set_address_index (info, ops[0], inner_ops[0]);
6129 }
6130 }
6131 else
6132 gcc_assert (out == 0);
6133}
6134
6135/* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6136 or VOIDmode if not known. AS is the address space associated with LOC.
6137 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6138
6139void
ef4bddc2 6140decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
277f65de
RS
6141 addr_space_t as, enum rtx_code outer_code)
6142{
6143 memset (info, 0, sizeof (*info));
6144 info->mode = mode;
6145 info->as = as;
6146 info->addr_outer_code = outer_code;
6147 info->outer = loc;
6148 info->inner = strip_address_mutations (loc, &outer_code);
6149 info->base_outer_code = outer_code;
6150 switch (GET_CODE (*info->inner))
6151 {
6152 case PRE_DEC:
6153 case PRE_INC:
6154 case POST_DEC:
6155 case POST_INC:
6156 decompose_incdec_address (info);
6157 break;
6158
6159 case PRE_MODIFY:
6160 case POST_MODIFY:
6161 decompose_automod_address (info);
6162 break;
6163
6164 default:
6165 decompose_normal_address (info);
6166 break;
6167 }
6168}
6169
6170/* Describe address operand LOC in INFO. */
6171
6172void
6173decompose_lea_address (struct address_info *info, rtx *loc)
6174{
6175 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6176}
6177
6178/* Describe the address of MEM X in INFO. */
6179
6180void
6181decompose_mem_address (struct address_info *info, rtx x)
6182{
6183 gcc_assert (MEM_P (x));
6184 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6185 MEM_ADDR_SPACE (x), MEM);
6186}
6187
6188/* Update INFO after a change to the address it describes. */
6189
6190void
6191update_address (struct address_info *info)
6192{
6193 decompose_address (info, info->outer, info->mode, info->as,
6194 info->addr_outer_code);
6195}
6196
6197/* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6198 more complicated than that. */
6199
6200HOST_WIDE_INT
6201get_index_scale (const struct address_info *info)
6202{
6203 rtx index = *info->index;
6204 if (GET_CODE (index) == MULT
6205 && CONST_INT_P (XEXP (index, 1))
6206 && info->index_term == &XEXP (index, 0))
6207 return INTVAL (XEXP (index, 1));
6208
6209 if (GET_CODE (index) == ASHIFT
6210 && CONST_INT_P (XEXP (index, 1))
6211 && info->index_term == &XEXP (index, 0))
6212 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6213
6214 if (info->index == info->index_term)
6215 return 1;
6216
6217 return 0;
6218}
6219
6220/* Return the "index code" of INFO, in the form required by
6221 ok_for_base_p_1. */
6222
6223enum rtx_code
6224get_index_code (const struct address_info *info)
6225{
6226 if (info->index)
6227 return GET_CODE (*info->index);
6228
6229 if (info->disp)
6230 return GET_CODE (*info->disp);
6231
6232 return SCRATCH;
6233}
093a6c99 6234
093a6c99
RS
6235/* Return true if X contains a thread-local symbol. */
6236
6237bool
6180e3d8 6238tls_referenced_p (const_rtx x)
093a6c99
RS
6239{
6240 if (!targetm.have_tls)
6241 return false;
6242
6180e3d8 6243 subrtx_iterator::array_type array;
ebd3cb12 6244 FOR_EACH_SUBRTX (iter, array, x, ALL)
6180e3d8
RS
6245 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6246 return true;
6247 return false;
093a6c99 6248}