]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* gdbtypes.h (make_function_type): Remove OBJFILE parameter.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4c4b4cd2 104static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 107 CORE_ADDR *);
14f9c5c9 108
d2e4a39e 109static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 110 CORE_ADDR *);
14f9c5c9 111
4c4b4cd2 112static void ada_add_block_symbols (struct obstack *,
76a01679 113 struct block *, const char *,
2570f2b7 114 domain_enum, struct objfile *, int);
14f9c5c9 115
4c4b4cd2 116static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 117
76a01679 118static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 119 struct block *);
14f9c5c9 120
4c4b4cd2
PH
121static int num_defns_collected (struct obstack *);
122
123static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 124
d2e4a39e 125static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
126 *, const char *, int,
127 domain_enum, int);
14f9c5c9 128
4c4b4cd2 129static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 130 struct type *);
14f9c5c9 131
d2e4a39e 132static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 133 struct symbol *, struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
4c4b4cd2
PH
137static char *ada_op_name (enum exp_opcode);
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
aeb5907d
JB
149static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
4c4b4cd2 157static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 158 int, int, int *);
4c4b4cd2 159
d2e4a39e 160static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
d2e4a39e 170static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 171 struct objfile *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
d2e4a39e 178static struct type *packed_array_type (struct type *, long *);
14f9c5c9 179
d2e4a39e 180static struct type *decode_packed_array_type (struct type *);
14f9c5c9 181
d2e4a39e 182static struct value *decode_packed_array (struct value *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
52ce6436
PH
187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
d2e4a39e 200static int wild_match (const char *, int, const char *);
14f9c5c9 201
d2e4a39e 202static struct value *ada_coerce_ref (struct value *);
14f9c5c9 203
4c4b4cd2
PH
204static LONGEST pos_atr (struct value *);
205
3cb382c9 206static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 207
d2e4a39e 208static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static struct symbol *standard_lookup (const char *, const struct block *,
211 domain_enum);
14f9c5c9 212
4c4b4cd2
PH
213static struct value *ada_search_struct_field (char *, struct value *, int,
214 struct type *);
215
216static struct value *ada_value_primitive_field (struct value *, int, int,
217 struct type *);
218
76a01679 219static int find_struct_field (char *, struct type *, int,
52ce6436 220 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
221
222static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
223 struct value *);
224
225static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231static struct value *ada_coerce_to_simple_array (struct value *);
232
233static int ada_is_direct_array_type (struct type *);
234
72d5681a
PH
235static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
714e53ab
PH
237
238static void check_size (const struct type *);
52ce6436
PH
239
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
4c4b4cd2
PH
270\f
271
76a01679 272
4c4b4cd2 273/* Maximum-sized dynamic type. */
14f9c5c9
AS
274static unsigned int varsize_limit;
275
4c4b4cd2
PH
276/* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278static char *ada_completer_word_break_characters =
279#ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281#else
14f9c5c9 282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 283#endif
14f9c5c9 284
4c4b4cd2 285/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 286static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 287 = "__gnat_ada_main_program_name";
14f9c5c9 288
4c4b4cd2
PH
289/* Limit on the number of warnings to raise per expression evaluation. */
290static int warning_limit = 2;
291
292/* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294static int warnings_issued = 0;
295
296static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298};
299
300static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302};
303
304/* Space for allocating results of ada_lookup_symbol_list. */
305static struct obstack symbol_list_obstack;
306
307 /* Utilities */
308
41d27058
JB
309/* Given DECODED_NAME a string holding a symbol name in its
310 decoded form (ie using the Ada dotted notation), returns
311 its unqualified name. */
312
313static const char *
314ada_unqualified_name (const char *decoded_name)
315{
316 const char *result = strrchr (decoded_name, '.');
317
318 if (result != NULL)
319 result++; /* Skip the dot... */
320 else
321 result = decoded_name;
322
323 return result;
324}
325
326/* Return a string starting with '<', followed by STR, and '>'.
327 The result is good until the next call. */
328
329static char *
330add_angle_brackets (const char *str)
331{
332 static char *result = NULL;
333
334 xfree (result);
88c15c34 335 result = xstrprintf ("<%s>", str);
41d27058
JB
336 return result;
337}
96d887e8 338
4c4b4cd2
PH
339static char *
340ada_get_gdb_completer_word_break_characters (void)
341{
342 return ada_completer_word_break_characters;
343}
344
e79af960
JB
345/* Print an array element index using the Ada syntax. */
346
347static void
348ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 349 const struct value_print_options *options)
e79af960 350{
79a45b7d 351 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
352 fprintf_filtered (stream, " => ");
353}
354
4c4b4cd2
PH
355/* Read the string located at ADDR from the inferior and store the
356 result into BUF. */
357
358static void
14f9c5c9
AS
359extract_string (CORE_ADDR addr, char *buf)
360{
d2e4a39e 361 int char_index = 0;
14f9c5c9 362
4c4b4cd2
PH
363 /* Loop, reading one byte at a time, until we reach the '\000'
364 end-of-string marker. */
d2e4a39e
AS
365 do
366 {
367 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 368 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
369 char_index++;
370 }
371 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
372}
373
f27cf670 374/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 375 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 376 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 377
f27cf670
AS
378void *
379grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 380{
d2e4a39e
AS
381 if (*size < min_size)
382 {
383 *size *= 2;
384 if (*size < min_size)
4c4b4cd2 385 *size = min_size;
f27cf670 386 vect = xrealloc (vect, *size * element_size);
d2e4a39e 387 }
f27cf670 388 return vect;
14f9c5c9
AS
389}
390
391/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 392 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
393
394static int
ebf56fd3 395field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
396{
397 int len = strlen (target);
d2e4a39e 398 return
4c4b4cd2
PH
399 (strncmp (field_name, target, len) == 0
400 && (field_name[len] == '\0'
401 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
402 && strcmp (field_name + strlen (field_name) - 6,
403 "___XVN") != 0)));
14f9c5c9
AS
404}
405
406
872c8b51
JB
407/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
408 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
409 and return its index. This function also handles fields whose name
410 have ___ suffixes because the compiler sometimes alters their name
411 by adding such a suffix to represent fields with certain constraints.
412 If the field could not be found, return a negative number if
413 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
414
415int
416ada_get_field_index (const struct type *type, const char *field_name,
417 int maybe_missing)
418{
419 int fieldno;
872c8b51
JB
420 struct type *struct_type = check_typedef ((struct type *) type);
421
422 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
423 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
424 return fieldno;
425
426 if (!maybe_missing)
323e0a4a 427 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 428 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
429
430 return -1;
431}
432
433/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
434
435int
d2e4a39e 436ada_name_prefix_len (const char *name)
14f9c5c9
AS
437{
438 if (name == NULL)
439 return 0;
d2e4a39e 440 else
14f9c5c9 441 {
d2e4a39e 442 const char *p = strstr (name, "___");
14f9c5c9 443 if (p == NULL)
4c4b4cd2 444 return strlen (name);
14f9c5c9 445 else
4c4b4cd2 446 return p - name;
14f9c5c9
AS
447 }
448}
449
4c4b4cd2
PH
450/* Return non-zero if SUFFIX is a suffix of STR.
451 Return zero if STR is null. */
452
14f9c5c9 453static int
d2e4a39e 454is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
455{
456 int len1, len2;
457 if (str == NULL)
458 return 0;
459 len1 = strlen (str);
460 len2 = strlen (suffix);
4c4b4cd2 461 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
462}
463
4c4b4cd2
PH
464/* The contents of value VAL, treated as a value of type TYPE. The
465 result is an lval in memory if VAL is. */
14f9c5c9 466
d2e4a39e 467static struct value *
4c4b4cd2 468coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 469{
61ee279c 470 type = ada_check_typedef (type);
df407dfe 471 if (value_type (val) == type)
4c4b4cd2 472 return val;
d2e4a39e 473 else
14f9c5c9 474 {
4c4b4cd2
PH
475 struct value *result;
476
477 /* Make sure that the object size is not unreasonable before
478 trying to allocate some memory for it. */
714e53ab 479 check_size (type);
4c4b4cd2
PH
480
481 result = allocate_value (type);
74bcbdf3 482 set_value_component_location (result, val);
9bbda503
AC
483 set_value_bitsize (result, value_bitsize (val));
484 set_value_bitpos (result, value_bitpos (val));
42ae5230 485 set_value_address (result, value_address (val));
d69fe07e 486 if (value_lazy (val)
df407dfe 487 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 488 set_value_lazy (result, 1);
d2e4a39e 489 else
0fd88904 490 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 491 TYPE_LENGTH (type));
14f9c5c9
AS
492 return result;
493 }
494}
495
fc1a4b47
AC
496static const gdb_byte *
497cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
498{
499 if (valaddr == NULL)
500 return NULL;
501 else
502 return valaddr + offset;
503}
504
505static CORE_ADDR
ebf56fd3 506cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
507{
508 if (address == 0)
509 return 0;
d2e4a39e 510 else
14f9c5c9
AS
511 return address + offset;
512}
513
4c4b4cd2
PH
514/* Issue a warning (as for the definition of warning in utils.c, but
515 with exactly one argument rather than ...), unless the limit on the
516 number of warnings has passed during the evaluation of the current
517 expression. */
a2249542 518
77109804
AC
519/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
520 provided by "complaint". */
521static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522
14f9c5c9 523static void
a2249542 524lim_warning (const char *format, ...)
14f9c5c9 525{
a2249542
MK
526 va_list args;
527 va_start (args, format);
528
4c4b4cd2
PH
529 warnings_issued += 1;
530 if (warnings_issued <= warning_limit)
a2249542
MK
531 vwarning (format, args);
532
533 va_end (args);
4c4b4cd2
PH
534}
535
714e53ab
PH
536/* Issue an error if the size of an object of type T is unreasonable,
537 i.e. if it would be a bad idea to allocate a value of this type in
538 GDB. */
539
540static void
541check_size (const struct type *type)
542{
543 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 544 error (_("object size is larger than varsize-limit"));
714e53ab
PH
545}
546
547
c3e5cd34
PH
548/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
549 gdbtypes.h, but some of the necessary definitions in that file
550 seem to have gone missing. */
551
552/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 553static LONGEST
c3e5cd34 554max_of_size (int size)
4c4b4cd2 555{
76a01679
JB
556 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
557 return top_bit | (top_bit - 1);
4c4b4cd2
PH
558}
559
c3e5cd34 560/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 561static LONGEST
c3e5cd34 562min_of_size (int size)
4c4b4cd2 563{
c3e5cd34 564 return -max_of_size (size) - 1;
4c4b4cd2
PH
565}
566
c3e5cd34 567/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 568static ULONGEST
c3e5cd34 569umax_of_size (int size)
4c4b4cd2 570{
76a01679
JB
571 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
572 return top_bit | (top_bit - 1);
4c4b4cd2
PH
573}
574
c3e5cd34
PH
575/* Maximum value of integral type T, as a signed quantity. */
576static LONGEST
577max_of_type (struct type *t)
4c4b4cd2 578{
c3e5cd34
PH
579 if (TYPE_UNSIGNED (t))
580 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
581 else
582 return max_of_size (TYPE_LENGTH (t));
583}
584
585/* Minimum value of integral type T, as a signed quantity. */
586static LONGEST
587min_of_type (struct type *t)
588{
589 if (TYPE_UNSIGNED (t))
590 return 0;
591 else
592 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
593}
594
595/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 596static LONGEST
4c4b4cd2
PH
597discrete_type_high_bound (struct type *type)
598{
76a01679 599 switch (TYPE_CODE (type))
4c4b4cd2
PH
600 {
601 case TYPE_CODE_RANGE:
690cc4eb 602 return TYPE_HIGH_BOUND (type);
4c4b4cd2 603 case TYPE_CODE_ENUM:
690cc4eb
PH
604 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
605 case TYPE_CODE_BOOL:
606 return 1;
607 case TYPE_CODE_CHAR:
76a01679 608 case TYPE_CODE_INT:
690cc4eb 609 return max_of_type (type);
4c4b4cd2 610 default:
323e0a4a 611 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
612 }
613}
614
615/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 616static LONGEST
4c4b4cd2
PH
617discrete_type_low_bound (struct type *type)
618{
76a01679 619 switch (TYPE_CODE (type))
4c4b4cd2
PH
620 {
621 case TYPE_CODE_RANGE:
690cc4eb 622 return TYPE_LOW_BOUND (type);
4c4b4cd2 623 case TYPE_CODE_ENUM:
690cc4eb
PH
624 return TYPE_FIELD_BITPOS (type, 0);
625 case TYPE_CODE_BOOL:
626 return 0;
627 case TYPE_CODE_CHAR:
76a01679 628 case TYPE_CODE_INT:
690cc4eb 629 return min_of_type (type);
4c4b4cd2 630 default:
323e0a4a 631 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
632 }
633}
634
635/* The identity on non-range types. For range types, the underlying
76a01679 636 non-range scalar type. */
4c4b4cd2
PH
637
638static struct type *
639base_type (struct type *type)
640{
641 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
642 {
76a01679
JB
643 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
644 return type;
4c4b4cd2
PH
645 type = TYPE_TARGET_TYPE (type);
646 }
647 return type;
14f9c5c9 648}
4c4b4cd2 649\f
76a01679 650
4c4b4cd2 651 /* Language Selection */
14f9c5c9
AS
652
653/* If the main program is in Ada, return language_ada, otherwise return LANG
654 (the main program is in Ada iif the adainit symbol is found).
655
4c4b4cd2 656 MAIN_PST is not used. */
d2e4a39e 657
14f9c5c9 658enum language
d2e4a39e 659ada_update_initial_language (enum language lang,
4c4b4cd2 660 struct partial_symtab *main_pst)
14f9c5c9 661{
d2e4a39e 662 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
663 (struct objfile *) NULL) != NULL)
664 return language_ada;
14f9c5c9
AS
665
666 return lang;
667}
96d887e8
PH
668
669/* If the main procedure is written in Ada, then return its name.
670 The result is good until the next call. Return NULL if the main
671 procedure doesn't appear to be in Ada. */
672
673char *
674ada_main_name (void)
675{
676 struct minimal_symbol *msym;
f9bc20b9 677 static char *main_program_name = NULL;
6c038f32 678
96d887e8
PH
679 /* For Ada, the name of the main procedure is stored in a specific
680 string constant, generated by the binder. Look for that symbol,
681 extract its address, and then read that string. If we didn't find
682 that string, then most probably the main procedure is not written
683 in Ada. */
684 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685
686 if (msym != NULL)
687 {
f9bc20b9
JB
688 CORE_ADDR main_program_name_addr;
689 int err_code;
690
96d887e8
PH
691 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
692 if (main_program_name_addr == 0)
323e0a4a 693 error (_("Invalid address for Ada main program name."));
96d887e8 694
f9bc20b9
JB
695 xfree (main_program_name);
696 target_read_string (main_program_name_addr, &main_program_name,
697 1024, &err_code);
698
699 if (err_code != 0)
700 return NULL;
96d887e8
PH
701 return main_program_name;
702 }
703
704 /* The main procedure doesn't seem to be in Ada. */
705 return NULL;
706}
14f9c5c9 707\f
4c4b4cd2 708 /* Symbols */
d2e4a39e 709
4c4b4cd2
PH
710/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 of NULLs. */
14f9c5c9 712
d2e4a39e
AS
713const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
735 {NULL, NULL}
14f9c5c9
AS
736};
737
4c4b4cd2
PH
738/* The "encoded" form of DECODED, according to GNAT conventions.
739 The result is valid until the next call to ada_encode. */
740
14f9c5c9 741char *
4c4b4cd2 742ada_encode (const char *decoded)
14f9c5c9 743{
4c4b4cd2
PH
744 static char *encoding_buffer = NULL;
745 static size_t encoding_buffer_size = 0;
d2e4a39e 746 const char *p;
14f9c5c9 747 int k;
d2e4a39e 748
4c4b4cd2 749 if (decoded == NULL)
14f9c5c9
AS
750 return NULL;
751
4c4b4cd2
PH
752 GROW_VECT (encoding_buffer, encoding_buffer_size,
753 2 * strlen (decoded) + 10);
14f9c5c9
AS
754
755 k = 0;
4c4b4cd2 756 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 757 {
cdc7bb92 758 if (*p == '.')
4c4b4cd2
PH
759 {
760 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
761 k += 2;
762 }
14f9c5c9 763 else if (*p == '"')
4c4b4cd2
PH
764 {
765 const struct ada_opname_map *mapping;
766
767 for (mapping = ada_opname_table;
1265e4aa
JB
768 mapping->encoded != NULL
769 && strncmp (mapping->decoded, p,
770 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
771 ;
772 if (mapping->encoded == NULL)
323e0a4a 773 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
774 strcpy (encoding_buffer + k, mapping->encoded);
775 k += strlen (mapping->encoded);
776 break;
777 }
d2e4a39e 778 else
4c4b4cd2
PH
779 {
780 encoding_buffer[k] = *p;
781 k += 1;
782 }
14f9c5c9
AS
783 }
784
4c4b4cd2
PH
785 encoding_buffer[k] = '\0';
786 return encoding_buffer;
14f9c5c9
AS
787}
788
789/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
790 quotes, unfolded, but with the quotes stripped away. Result good
791 to next call. */
792
d2e4a39e
AS
793char *
794ada_fold_name (const char *name)
14f9c5c9 795{
d2e4a39e 796 static char *fold_buffer = NULL;
14f9c5c9
AS
797 static size_t fold_buffer_size = 0;
798
799 int len = strlen (name);
d2e4a39e 800 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
801
802 if (name[0] == '\'')
803 {
d2e4a39e
AS
804 strncpy (fold_buffer, name + 1, len - 2);
805 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
806 }
807 else
808 {
809 int i;
810 for (i = 0; i <= len; i += 1)
4c4b4cd2 811 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
812 }
813
814 return fold_buffer;
815}
816
529cad9c
PH
817/* Return nonzero if C is either a digit or a lowercase alphabet character. */
818
819static int
820is_lower_alphanum (const char c)
821{
822 return (isdigit (c) || (isalpha (c) && islower (c)));
823}
824
29480c32
JB
825/* Remove either of these suffixes:
826 . .{DIGIT}+
827 . ${DIGIT}+
828 . ___{DIGIT}+
829 . __{DIGIT}+.
830 These are suffixes introduced by the compiler for entities such as
831 nested subprogram for instance, in order to avoid name clashes.
832 They do not serve any purpose for the debugger. */
833
834static void
835ada_remove_trailing_digits (const char *encoded, int *len)
836{
837 if (*len > 1 && isdigit (encoded[*len - 1]))
838 {
839 int i = *len - 2;
840 while (i > 0 && isdigit (encoded[i]))
841 i--;
842 if (i >= 0 && encoded[i] == '.')
843 *len = i;
844 else if (i >= 0 && encoded[i] == '$')
845 *len = i;
846 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
847 *len = i - 2;
848 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
849 *len = i - 1;
850 }
851}
852
853/* Remove the suffix introduced by the compiler for protected object
854 subprograms. */
855
856static void
857ada_remove_po_subprogram_suffix (const char *encoded, int *len)
858{
859 /* Remove trailing N. */
860
861 /* Protected entry subprograms are broken into two
862 separate subprograms: The first one is unprotected, and has
863 a 'N' suffix; the second is the protected version, and has
864 the 'P' suffix. The second calls the first one after handling
865 the protection. Since the P subprograms are internally generated,
866 we leave these names undecoded, giving the user a clue that this
867 entity is internal. */
868
869 if (*len > 1
870 && encoded[*len - 1] == 'N'
871 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
872 *len = *len - 1;
873}
874
875/* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
14f9c5c9 878
4c4b4cd2 879 The resulting string is valid until the next call of ada_decode.
29480c32 880 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
881 is returned. */
882
883const char *
884ada_decode (const char *encoded)
14f9c5c9
AS
885{
886 int i, j;
887 int len0;
d2e4a39e 888 const char *p;
4c4b4cd2 889 char *decoded;
14f9c5c9 890 int at_start_name;
4c4b4cd2
PH
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
d2e4a39e 893
29480c32
JB
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
4c4b4cd2
PH
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
14f9c5c9 899
29480c32
JB
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
4c4b4cd2 903 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
904 goto Suppress;
905
4c4b4cd2 906 len0 = strlen (encoded);
4c4b4cd2 907
29480c32
JB
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 910
4c4b4cd2
PH
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
917 {
918 if (p[3] == 'X')
4c4b4cd2 919 len0 = p - encoded;
14f9c5c9 920 else
4c4b4cd2 921 goto Suppress;
14f9c5c9 922 }
4c4b4cd2 923
29480c32
JB
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
4c4b4cd2 928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 929 len0 -= 3;
76a01679 930
29480c32
JB
931 /* Remove trailing "B" suffixes. */
932 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
933
4c4b4cd2 934 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
935 len0 -= 1;
936
4c4b4cd2 937 /* Make decoded big enough for possible expansion by operator name. */
29480c32 938
4c4b4cd2
PH
939 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
940 decoded = decoding_buffer;
14f9c5c9 941
29480c32
JB
942 /* Remove trailing __{digit}+ or trailing ${digit}+. */
943
4c4b4cd2 944 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 945 {
4c4b4cd2
PH
946 i = len0 - 2;
947 while ((i >= 0 && isdigit (encoded[i]))
948 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
949 i -= 1;
950 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
951 len0 = i - 1;
952 else if (encoded[i] == '$')
953 len0 = i;
d2e4a39e 954 }
14f9c5c9 955
29480c32
JB
956 /* The first few characters that are not alphabetic are not part
957 of any encoding we use, so we can copy them over verbatim. */
958
4c4b4cd2
PH
959 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
960 decoded[j] = encoded[i];
14f9c5c9
AS
961
962 at_start_name = 1;
963 while (i < len0)
964 {
29480c32 965 /* Is this a symbol function? */
4c4b4cd2
PH
966 if (at_start_name && encoded[i] == 'O')
967 {
968 int k;
969 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
970 {
971 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
972 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
973 op_len - 1) == 0)
974 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
975 {
976 strcpy (decoded + j, ada_opname_table[k].decoded);
977 at_start_name = 0;
978 i += op_len;
979 j += strlen (ada_opname_table[k].decoded);
980 break;
981 }
982 }
983 if (ada_opname_table[k].encoded != NULL)
984 continue;
985 }
14f9c5c9
AS
986 at_start_name = 0;
987
529cad9c
PH
988 /* Replace "TK__" with "__", which will eventually be translated
989 into "." (just below). */
990
4c4b4cd2
PH
991 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
992 i += 2;
529cad9c 993
29480c32
JB
994 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
995 be translated into "." (just below). These are internal names
996 generated for anonymous blocks inside which our symbol is nested. */
997
998 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
999 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1000 && isdigit (encoded [i+4]))
1001 {
1002 int k = i + 5;
1003
1004 while (k < len0 && isdigit (encoded[k]))
1005 k++; /* Skip any extra digit. */
1006
1007 /* Double-check that the "__B_{DIGITS}+" sequence we found
1008 is indeed followed by "__". */
1009 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1010 i = k;
1011 }
1012
529cad9c
PH
1013 /* Remove _E{DIGITS}+[sb] */
1014
1015 /* Just as for protected object subprograms, there are 2 categories
1016 of subprograms created by the compiler for each entry. The first
1017 one implements the actual entry code, and has a suffix following
1018 the convention above; the second one implements the barrier and
1019 uses the same convention as above, except that the 'E' is replaced
1020 by a 'B'.
1021
1022 Just as above, we do not decode the name of barrier functions
1023 to give the user a clue that the code he is debugging has been
1024 internally generated. */
1025
1026 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1027 && isdigit (encoded[i+2]))
1028 {
1029 int k = i + 3;
1030
1031 while (k < len0 && isdigit (encoded[k]))
1032 k++;
1033
1034 if (k < len0
1035 && (encoded[k] == 'b' || encoded[k] == 's'))
1036 {
1037 k++;
1038 /* Just as an extra precaution, make sure that if this
1039 suffix is followed by anything else, it is a '_'.
1040 Otherwise, we matched this sequence by accident. */
1041 if (k == len0
1042 || (k < len0 && encoded[k] == '_'))
1043 i = k;
1044 }
1045 }
1046
1047 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1048 the GNAT front-end in protected object subprograms. */
1049
1050 if (i < len0 + 3
1051 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1052 {
1053 /* Backtrack a bit up until we reach either the begining of
1054 the encoded name, or "__". Make sure that we only find
1055 digits or lowercase characters. */
1056 const char *ptr = encoded + i - 1;
1057
1058 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1059 ptr--;
1060 if (ptr < encoded
1061 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1062 i++;
1063 }
1064
4c4b4cd2
PH
1065 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1066 {
29480c32
JB
1067 /* This is a X[bn]* sequence not separated from the previous
1068 part of the name with a non-alpha-numeric character (in other
1069 words, immediately following an alpha-numeric character), then
1070 verify that it is placed at the end of the encoded name. If
1071 not, then the encoding is not valid and we should abort the
1072 decoding. Otherwise, just skip it, it is used in body-nested
1073 package names. */
4c4b4cd2
PH
1074 do
1075 i += 1;
1076 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1077 if (i < len0)
1078 goto Suppress;
1079 }
cdc7bb92 1080 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1081 {
29480c32 1082 /* Replace '__' by '.'. */
4c4b4cd2
PH
1083 decoded[j] = '.';
1084 at_start_name = 1;
1085 i += 2;
1086 j += 1;
1087 }
14f9c5c9 1088 else
4c4b4cd2 1089 {
29480c32
JB
1090 /* It's a character part of the decoded name, so just copy it
1091 over. */
4c4b4cd2
PH
1092 decoded[j] = encoded[i];
1093 i += 1;
1094 j += 1;
1095 }
14f9c5c9 1096 }
4c4b4cd2 1097 decoded[j] = '\000';
14f9c5c9 1098
29480c32
JB
1099 /* Decoded names should never contain any uppercase character.
1100 Double-check this, and abort the decoding if we find one. */
1101
4c4b4cd2
PH
1102 for (i = 0; decoded[i] != '\0'; i += 1)
1103 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1104 goto Suppress;
1105
4c4b4cd2
PH
1106 if (strcmp (decoded, encoded) == 0)
1107 return encoded;
1108 else
1109 return decoded;
14f9c5c9
AS
1110
1111Suppress:
4c4b4cd2
PH
1112 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1113 decoded = decoding_buffer;
1114 if (encoded[0] == '<')
1115 strcpy (decoded, encoded);
14f9c5c9 1116 else
88c15c34 1117 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1118 return decoded;
1119
1120}
1121
1122/* Table for keeping permanent unique copies of decoded names. Once
1123 allocated, names in this table are never released. While this is a
1124 storage leak, it should not be significant unless there are massive
1125 changes in the set of decoded names in successive versions of a
1126 symbol table loaded during a single session. */
1127static struct htab *decoded_names_store;
1128
1129/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1130 in the language-specific part of GSYMBOL, if it has not been
1131 previously computed. Tries to save the decoded name in the same
1132 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1133 in any case, the decoded symbol has a lifetime at least that of
1134 GSYMBOL).
1135 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1136 const, but nevertheless modified to a semantically equivalent form
1137 when a decoded name is cached in it.
76a01679 1138*/
4c4b4cd2 1139
76a01679
JB
1140char *
1141ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1142{
76a01679 1143 char **resultp =
4c4b4cd2
PH
1144 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1145 if (*resultp == NULL)
1146 {
1147 const char *decoded = ada_decode (gsymbol->name);
714835d5 1148 if (gsymbol->obj_section != NULL)
76a01679 1149 {
714835d5
UW
1150 struct objfile *objf = gsymbol->obj_section->objfile;
1151 *resultp = obsavestring (decoded, strlen (decoded),
1152 &objf->objfile_obstack);
76a01679 1153 }
4c4b4cd2 1154 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1155 case, we put the result on the heap. Since we only decode
1156 when needed, we hope this usually does not cause a
1157 significant memory leak (FIXME). */
4c4b4cd2 1158 if (*resultp == NULL)
76a01679
JB
1159 {
1160 char **slot = (char **) htab_find_slot (decoded_names_store,
1161 decoded, INSERT);
1162 if (*slot == NULL)
1163 *slot = xstrdup (decoded);
1164 *resultp = *slot;
1165 }
4c4b4cd2 1166 }
14f9c5c9 1167
4c4b4cd2
PH
1168 return *resultp;
1169}
76a01679 1170
2c0b251b 1171static char *
76a01679 1172ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1173{
1174 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1175}
1176
1177/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1178 suffixes that encode debugging information or leading _ada_ on
1179 SYM_NAME (see is_name_suffix commentary for the debugging
1180 information that is ignored). If WILD, then NAME need only match a
1181 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1182 either argument is NULL. */
14f9c5c9 1183
2c0b251b 1184static int
d2e4a39e 1185ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1186{
1187 if (sym_name == NULL || name == NULL)
1188 return 0;
1189 else if (wild)
1190 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1191 else
1192 {
1193 int len_name = strlen (name);
4c4b4cd2
PH
1194 return (strncmp (sym_name, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name))
1196 || (strncmp (sym_name, "_ada_", 5) == 0
1197 && strncmp (sym_name + 5, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1199 }
14f9c5c9 1200}
14f9c5c9 1201\f
d2e4a39e 1202
4c4b4cd2 1203 /* Arrays */
14f9c5c9 1204
4c4b4cd2 1205/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1206
d2e4a39e
AS
1207static char *bound_name[] = {
1208 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1209 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210};
1211
1212/* Maximum number of array dimensions we are prepared to handle. */
1213
4c4b4cd2 1214#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1215
4c4b4cd2 1216/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1217
1218static void
ebf56fd3 1219modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1220{
4c4b4cd2 1221 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1222}
1223
1224
4c4b4cd2
PH
1225/* The desc_* routines return primitive portions of array descriptors
1226 (fat pointers). */
14f9c5c9
AS
1227
1228/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1229 level of indirection, if needed. */
1230
d2e4a39e
AS
1231static struct type *
1232desc_base_type (struct type *type)
14f9c5c9
AS
1233{
1234 if (type == NULL)
1235 return NULL;
61ee279c 1236 type = ada_check_typedef (type);
1265e4aa
JB
1237 if (type != NULL
1238 && (TYPE_CODE (type) == TYPE_CODE_PTR
1239 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1240 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1241 else
1242 return type;
1243}
1244
4c4b4cd2
PH
1245/* True iff TYPE indicates a "thin" array pointer type. */
1246
14f9c5c9 1247static int
d2e4a39e 1248is_thin_pntr (struct type *type)
14f9c5c9 1249{
d2e4a39e 1250 return
14f9c5c9
AS
1251 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1252 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1253}
1254
4c4b4cd2
PH
1255/* The descriptor type for thin pointer type TYPE. */
1256
d2e4a39e
AS
1257static struct type *
1258thin_descriptor_type (struct type *type)
14f9c5c9 1259{
d2e4a39e 1260 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1261 if (base_type == NULL)
1262 return NULL;
1263 if (is_suffix (ada_type_name (base_type), "___XVE"))
1264 return base_type;
d2e4a39e 1265 else
14f9c5c9 1266 {
d2e4a39e 1267 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1268 if (alt_type == NULL)
4c4b4cd2 1269 return base_type;
14f9c5c9 1270 else
4c4b4cd2 1271 return alt_type;
14f9c5c9
AS
1272 }
1273}
1274
4c4b4cd2
PH
1275/* A pointer to the array data for thin-pointer value VAL. */
1276
d2e4a39e
AS
1277static struct value *
1278thin_data_pntr (struct value *val)
14f9c5c9 1279{
df407dfe 1280 struct type *type = value_type (val);
556bdfd4
UW
1281 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1282 data_type = lookup_pointer_type (data_type);
1283
14f9c5c9 1284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1285 return value_cast (data_type, value_copy (val));
d2e4a39e 1286 else
42ae5230 1287 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1288}
1289
4c4b4cd2
PH
1290/* True iff TYPE indicates a "thick" array pointer type. */
1291
14f9c5c9 1292static int
d2e4a39e 1293is_thick_pntr (struct type *type)
14f9c5c9
AS
1294{
1295 type = desc_base_type (type);
1296 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1297 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1298}
1299
4c4b4cd2
PH
1300/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1301 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1302
d2e4a39e
AS
1303static struct type *
1304desc_bounds_type (struct type *type)
14f9c5c9 1305{
d2e4a39e 1306 struct type *r;
14f9c5c9
AS
1307
1308 type = desc_base_type (type);
1309
1310 if (type == NULL)
1311 return NULL;
1312 else if (is_thin_pntr (type))
1313 {
1314 type = thin_descriptor_type (type);
1315 if (type == NULL)
4c4b4cd2 1316 return NULL;
14f9c5c9
AS
1317 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1318 if (r != NULL)
61ee279c 1319 return ada_check_typedef (r);
14f9c5c9
AS
1320 }
1321 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1322 {
1323 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1324 if (r != NULL)
61ee279c 1325 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1326 }
1327 return NULL;
1328}
1329
1330/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1331 one, a pointer to its bounds data. Otherwise NULL. */
1332
d2e4a39e
AS
1333static struct value *
1334desc_bounds (struct value *arr)
14f9c5c9 1335{
df407dfe 1336 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1337 if (is_thin_pntr (type))
14f9c5c9 1338 {
d2e4a39e 1339 struct type *bounds_type =
4c4b4cd2 1340 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1341 LONGEST addr;
1342
4cdfadb1 1343 if (bounds_type == NULL)
323e0a4a 1344 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1345
1346 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1347 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1348 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1349 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1350 addr = value_as_long (arr);
d2e4a39e 1351 else
42ae5230 1352 addr = value_address (arr);
14f9c5c9 1353
d2e4a39e 1354 return
4c4b4cd2
PH
1355 value_from_longest (lookup_pointer_type (bounds_type),
1356 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1357 }
1358
1359 else if (is_thick_pntr (type))
d2e4a39e 1360 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1361 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1362 else
1363 return NULL;
1364}
1365
4c4b4cd2
PH
1366/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1367 position of the field containing the address of the bounds data. */
1368
14f9c5c9 1369static int
d2e4a39e 1370fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1371{
1372 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373}
1374
1375/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1376 size of the field containing the address of the bounds data. */
1377
14f9c5c9 1378static int
d2e4a39e 1379fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1380{
1381 type = desc_base_type (type);
1382
d2e4a39e 1383 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1384 return TYPE_FIELD_BITSIZE (type, 1);
1385 else
61ee279c 1386 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1387}
1388
4c4b4cd2 1389/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1390 pointer to one, the type of its array data (a array-with-no-bounds type);
1391 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1392 data. */
4c4b4cd2 1393
d2e4a39e 1394static struct type *
556bdfd4 1395desc_data_target_type (struct type *type)
14f9c5c9
AS
1396{
1397 type = desc_base_type (type);
1398
4c4b4cd2 1399 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1400 if (is_thin_pntr (type))
556bdfd4 1401 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1402 else if (is_thick_pntr (type))
556bdfd4
UW
1403 {
1404 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1405
1406 if (data_type
1407 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1408 return TYPE_TARGET_TYPE (data_type);
1409 }
1410
1411 return NULL;
14f9c5c9
AS
1412}
1413
1414/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1415 its array data. */
4c4b4cd2 1416
d2e4a39e
AS
1417static struct value *
1418desc_data (struct value *arr)
14f9c5c9 1419{
df407dfe 1420 struct type *type = value_type (arr);
14f9c5c9
AS
1421 if (is_thin_pntr (type))
1422 return thin_data_pntr (arr);
1423 else if (is_thick_pntr (type))
d2e4a39e 1424 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1425 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1426 else
1427 return NULL;
1428}
1429
1430
1431/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1432 position of the field containing the address of the data. */
1433
14f9c5c9 1434static int
d2e4a39e 1435fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1436{
1437 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1438}
1439
1440/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1441 size of the field containing the address of the data. */
1442
14f9c5c9 1443static int
d2e4a39e 1444fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1445{
1446 type = desc_base_type (type);
1447
1448 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1449 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1450 else
14f9c5c9
AS
1451 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1452}
1453
4c4b4cd2 1454/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1455 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1456 bound, if WHICH is 1. The first bound is I=1. */
1457
d2e4a39e
AS
1458static struct value *
1459desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1460{
d2e4a39e 1461 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1462 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1463}
1464
1465/* If BOUNDS is an array-bounds structure type, return the bit position
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1467 bound, if WHICH is 1. The first bound is I=1. */
1468
14f9c5c9 1469static int
d2e4a39e 1470desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1471{
d2e4a39e 1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1473}
1474
1475/* If BOUNDS is an array-bounds structure type, return the bit field size
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
76a01679 1479static int
d2e4a39e 1480desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1481{
1482 type = desc_base_type (type);
1483
d2e4a39e
AS
1484 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1485 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1486 else
1487 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1488}
1489
1490/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1491 Ith bound (numbering from 1). Otherwise, NULL. */
1492
d2e4a39e
AS
1493static struct type *
1494desc_index_type (struct type *type, int i)
14f9c5c9
AS
1495{
1496 type = desc_base_type (type);
1497
1498 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1499 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1500 else
14f9c5c9
AS
1501 return NULL;
1502}
1503
4c4b4cd2
PH
1504/* The number of index positions in the array-bounds type TYPE.
1505 Return 0 if TYPE is NULL. */
1506
14f9c5c9 1507static int
d2e4a39e 1508desc_arity (struct type *type)
14f9c5c9
AS
1509{
1510 type = desc_base_type (type);
1511
1512 if (type != NULL)
1513 return TYPE_NFIELDS (type) / 2;
1514 return 0;
1515}
1516
4c4b4cd2
PH
1517/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1518 an array descriptor type (representing an unconstrained array
1519 type). */
1520
76a01679
JB
1521static int
1522ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1523{
1524 if (type == NULL)
1525 return 0;
61ee279c 1526 type = ada_check_typedef (type);
4c4b4cd2 1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1528 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1529}
1530
52ce6436
PH
1531/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1532 * to one. */
1533
2c0b251b 1534static int
52ce6436
PH
1535ada_is_array_type (struct type *type)
1536{
1537 while (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 type = TYPE_TARGET_TYPE (type);
1541 return ada_is_direct_array_type (type);
1542}
1543
4c4b4cd2 1544/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1545
14f9c5c9 1546int
4c4b4cd2 1547ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1548{
1549 if (type == NULL)
1550 return 0;
61ee279c 1551 type = ada_check_typedef (type);
14f9c5c9 1552 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1553 || (TYPE_CODE (type) == TYPE_CODE_PTR
1554 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1555}
1556
4c4b4cd2
PH
1557/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1558
14f9c5c9 1559int
4c4b4cd2 1560ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1561{
556bdfd4 1562 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1563
1564 if (type == NULL)
1565 return 0;
61ee279c 1566 type = ada_check_typedef (type);
556bdfd4
UW
1567 return (data_type != NULL
1568 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1569 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1570}
1571
1572/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1573 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1574 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1575 is still needed. */
1576
14f9c5c9 1577int
ebf56fd3 1578ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1579{
d2e4a39e 1580 return
14f9c5c9
AS
1581 type != NULL
1582 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1583 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1584 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1585 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1586}
1587
1588
4c4b4cd2 1589/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1590 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1591 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1592 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1593 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1594 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1595 a descriptor. */
d2e4a39e
AS
1596struct type *
1597ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1598{
df407dfe
AC
1599 if (ada_is_packed_array_type (value_type (arr)))
1600 return decode_packed_array_type (value_type (arr));
14f9c5c9 1601
df407dfe
AC
1602 if (!ada_is_array_descriptor_type (value_type (arr)))
1603 return value_type (arr);
d2e4a39e
AS
1604
1605 if (!bounds)
1606 return
556bdfd4 1607 ada_check_typedef (desc_data_target_type (value_type (arr)));
14f9c5c9
AS
1608 else
1609 {
d2e4a39e 1610 struct type *elt_type;
14f9c5c9 1611 int arity;
d2e4a39e 1612 struct value *descriptor;
df407dfe 1613 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1614
df407dfe
AC
1615 elt_type = ada_array_element_type (value_type (arr), -1);
1616 arity = ada_array_arity (value_type (arr));
14f9c5c9 1617
d2e4a39e 1618 if (elt_type == NULL || arity == 0)
df407dfe 1619 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1620
1621 descriptor = desc_bounds (arr);
d2e4a39e 1622 if (value_as_long (descriptor) == 0)
4c4b4cd2 1623 return NULL;
d2e4a39e 1624 while (arity > 0)
4c4b4cd2
PH
1625 {
1626 struct type *range_type = alloc_type (objf);
1627 struct type *array_type = alloc_type (objf);
1628 struct value *low = desc_one_bound (descriptor, arity, 0);
1629 struct value *high = desc_one_bound (descriptor, arity, 1);
1630 arity -= 1;
1631
df407dfe 1632 create_range_type (range_type, value_type (low),
529cad9c
PH
1633 longest_to_int (value_as_long (low)),
1634 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1635 elt_type = create_array_type (array_type, elt_type, range_type);
1636 }
14f9c5c9
AS
1637
1638 return lookup_pointer_type (elt_type);
1639 }
1640}
1641
1642/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1643 Otherwise, returns either a standard GDB array with bounds set
1644 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1645 GDB array. Returns NULL if ARR is a null fat pointer. */
1646
d2e4a39e
AS
1647struct value *
1648ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1649{
df407dfe 1650 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1651 {
d2e4a39e 1652 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1653 if (arrType == NULL)
4c4b4cd2 1654 return NULL;
14f9c5c9
AS
1655 return value_cast (arrType, value_copy (desc_data (arr)));
1656 }
df407dfe 1657 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1658 return decode_packed_array (arr);
1659 else
1660 return arr;
1661}
1662
1663/* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1665 be ARR itself if it already is in the proper form). */
1666
1667static struct value *
d2e4a39e 1668ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1669{
df407dfe 1670 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1671 {
d2e4a39e 1672 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1673 if (arrVal == NULL)
323e0a4a 1674 error (_("Bounds unavailable for null array pointer."));
529cad9c 1675 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1676 return value_ind (arrVal);
1677 }
df407dfe 1678 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1679 return decode_packed_array (arr);
d2e4a39e 1680 else
14f9c5c9
AS
1681 return arr;
1682}
1683
1684/* If TYPE represents a GNAT array type, return it translated to an
1685 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1686 packing). For other types, is the identity. */
1687
d2e4a39e
AS
1688struct type *
1689ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1690{
17280b9f
UW
1691 if (ada_is_packed_array_type (type))
1692 return decode_packed_array_type (type);
1693
1694 if (ada_is_array_descriptor_type (type))
556bdfd4 1695 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1696
1697 return type;
14f9c5c9
AS
1698}
1699
4c4b4cd2
PH
1700/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701
14f9c5c9 1702int
d2e4a39e 1703ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1704{
1705 if (type == NULL)
1706 return 0;
4c4b4cd2 1707 type = desc_base_type (type);
61ee279c 1708 type = ada_check_typedef (type);
d2e4a39e 1709 return
14f9c5c9
AS
1710 ada_type_name (type) != NULL
1711 && strstr (ada_type_name (type), "___XP") != NULL;
1712}
1713
1714/* Given that TYPE is a standard GDB array type with all bounds filled
1715 in, and that the element size of its ultimate scalar constituents
1716 (that is, either its elements, or, if it is an array of arrays, its
1717 elements' elements, etc.) is *ELT_BITS, return an identical type,
1718 but with the bit sizes of its elements (and those of any
1719 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1720 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 in bits. */
1722
d2e4a39e
AS
1723static struct type *
1724packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1725{
d2e4a39e
AS
1726 struct type *new_elt_type;
1727 struct type *new_type;
14f9c5c9
AS
1728 LONGEST low_bound, high_bound;
1729
61ee279c 1730 type = ada_check_typedef (type);
14f9c5c9
AS
1731 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1732 return type;
1733
1734 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1735 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1736 elt_bits);
262452ec 1737 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1738 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1739 TYPE_NAME (new_type) = ada_type_name (type);
1740
262452ec 1741 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1742 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1743 low_bound = high_bound = 0;
1744 if (high_bound < low_bound)
1745 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1746 else
14f9c5c9
AS
1747 {
1748 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1749 TYPE_LENGTH (new_type) =
4c4b4cd2 1750 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1751 }
1752
876cecd0 1753 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1754 return new_type;
1755}
1756
4c4b4cd2
PH
1757/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1758
d2e4a39e
AS
1759static struct type *
1760decode_packed_array_type (struct type *type)
1761{
4c4b4cd2 1762 struct symbol *sym;
d2e4a39e 1763 struct block **blocks;
727e3d2e
JB
1764 char *raw_name = ada_type_name (ada_check_typedef (type));
1765 char *name;
1766 char *tail;
d2e4a39e 1767 struct type *shadow_type;
14f9c5c9
AS
1768 long bits;
1769 int i, n;
1770
727e3d2e
JB
1771 if (!raw_name)
1772 raw_name = ada_type_name (desc_base_type (type));
1773
1774 if (!raw_name)
1775 return NULL;
1776
1777 name = (char *) alloca (strlen (raw_name) + 1);
1778 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1779 type = desc_base_type (type);
1780
14f9c5c9
AS
1781 memcpy (name, raw_name, tail - raw_name);
1782 name[tail - raw_name] = '\000';
1783
4c4b4cd2
PH
1784 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1785 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1786 {
323e0a4a 1787 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1788 return NULL;
1789 }
4c4b4cd2 1790 shadow_type = SYMBOL_TYPE (sym);
cb249c71 1791 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1792
1793 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1794 {
323e0a4a 1795 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1796 return NULL;
1797 }
d2e4a39e 1798
14f9c5c9
AS
1799 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1800 {
4c4b4cd2 1801 lim_warning
323e0a4a 1802 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1803 return NULL;
1804 }
d2e4a39e 1805
14f9c5c9
AS
1806 return packed_array_type (shadow_type, &bits);
1807}
1808
4c4b4cd2 1809/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1810 returns a simple array that denotes that array. Its type is a
1811 standard GDB array type except that the BITSIZEs of the array
1812 target types are set to the number of bits in each element, and the
4c4b4cd2 1813 type length is set appropriately. */
14f9c5c9 1814
d2e4a39e
AS
1815static struct value *
1816decode_packed_array (struct value *arr)
14f9c5c9 1817{
4c4b4cd2 1818 struct type *type;
14f9c5c9 1819
4c4b4cd2 1820 arr = ada_coerce_ref (arr);
284614f0
JB
1821
1822 /* If our value is a pointer, then dererence it. Make sure that
1823 this operation does not cause the target type to be fixed, as
1824 this would indirectly cause this array to be decoded. The rest
1825 of the routine assumes that the array hasn't been decoded yet,
1826 so we use the basic "value_ind" routine to perform the dereferencing,
1827 as opposed to using "ada_value_ind". */
df407dfe 1828 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1829 arr = value_ind (arr);
4c4b4cd2 1830
df407dfe 1831 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1832 if (type == NULL)
1833 {
323e0a4a 1834 error (_("can't unpack array"));
14f9c5c9
AS
1835 return NULL;
1836 }
61ee279c 1837
32c9a795
MD
1838 if (gdbarch_bits_big_endian (current_gdbarch)
1839 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1840 {
1841 /* This is a (right-justified) modular type representing a packed
1842 array with no wrapper. In order to interpret the value through
1843 the (left-justified) packed array type we just built, we must
1844 first left-justify it. */
1845 int bit_size, bit_pos;
1846 ULONGEST mod;
1847
df407dfe 1848 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1849 bit_size = 0;
1850 while (mod > 0)
1851 {
1852 bit_size += 1;
1853 mod >>= 1;
1854 }
df407dfe 1855 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1856 arr = ada_value_primitive_packed_val (arr, NULL,
1857 bit_pos / HOST_CHAR_BIT,
1858 bit_pos % HOST_CHAR_BIT,
1859 bit_size,
1860 type);
1861 }
1862
4c4b4cd2 1863 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1864}
1865
1866
1867/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1868 given in IND. ARR must be a simple array. */
14f9c5c9 1869
d2e4a39e
AS
1870static struct value *
1871value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1872{
1873 int i;
1874 int bits, elt_off, bit_off;
1875 long elt_total_bit_offset;
d2e4a39e
AS
1876 struct type *elt_type;
1877 struct value *v;
14f9c5c9
AS
1878
1879 bits = 0;
1880 elt_total_bit_offset = 0;
df407dfe 1881 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1882 for (i = 0; i < arity; i += 1)
14f9c5c9 1883 {
d2e4a39e 1884 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1885 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1886 error
323e0a4a 1887 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1888 else
4c4b4cd2
PH
1889 {
1890 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1891 LONGEST lowerbound, upperbound;
1892 LONGEST idx;
1893
1894 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1895 {
323e0a4a 1896 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1897 lowerbound = upperbound = 0;
1898 }
1899
3cb382c9 1900 idx = pos_atr (ind[i]);
4c4b4cd2 1901 if (idx < lowerbound || idx > upperbound)
323e0a4a 1902 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1903 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1904 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1905 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1906 }
14f9c5c9
AS
1907 }
1908 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1909 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1910
1911 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1912 bits, elt_type);
14f9c5c9
AS
1913 return v;
1914}
1915
4c4b4cd2 1916/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1917
1918static int
d2e4a39e 1919has_negatives (struct type *type)
14f9c5c9 1920{
d2e4a39e
AS
1921 switch (TYPE_CODE (type))
1922 {
1923 default:
1924 return 0;
1925 case TYPE_CODE_INT:
1926 return !TYPE_UNSIGNED (type);
1927 case TYPE_CODE_RANGE:
1928 return TYPE_LOW_BOUND (type) < 0;
1929 }
14f9c5c9 1930}
d2e4a39e 1931
14f9c5c9
AS
1932
1933/* Create a new value of type TYPE from the contents of OBJ starting
1934 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1935 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1936 assigning through the result will set the field fetched from.
1937 VALADDR is ignored unless OBJ is NULL, in which case,
1938 VALADDR+OFFSET must address the start of storage containing the
1939 packed value. The value returned in this case is never an lval.
1940 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1941
d2e4a39e 1942struct value *
fc1a4b47 1943ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1944 long offset, int bit_offset, int bit_size,
4c4b4cd2 1945 struct type *type)
14f9c5c9 1946{
d2e4a39e 1947 struct value *v;
4c4b4cd2
PH
1948 int src, /* Index into the source area */
1949 targ, /* Index into the target area */
1950 srcBitsLeft, /* Number of source bits left to move */
1951 nsrc, ntarg, /* Number of source and target bytes */
1952 unusedLS, /* Number of bits in next significant
1953 byte of source that are unused */
1954 accumSize; /* Number of meaningful bits in accum */
1955 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1956 unsigned char *unpacked;
4c4b4cd2 1957 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1958 unsigned char sign;
1959 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1960 /* Transmit bytes from least to most significant; delta is the direction
1961 the indices move. */
32c9a795 1962 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1963
61ee279c 1964 type = ada_check_typedef (type);
14f9c5c9
AS
1965
1966 if (obj == NULL)
1967 {
1968 v = allocate_value (type);
d2e4a39e 1969 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1970 }
9214ee5f 1971 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
1972 {
1973 v = value_at (type,
42ae5230 1974 value_address (obj) + offset);
d2e4a39e 1975 bytes = (unsigned char *) alloca (len);
42ae5230 1976 read_memory (value_address (v), bytes, len);
14f9c5c9 1977 }
d2e4a39e 1978 else
14f9c5c9
AS
1979 {
1980 v = allocate_value (type);
0fd88904 1981 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1982 }
d2e4a39e
AS
1983
1984 if (obj != NULL)
14f9c5c9 1985 {
42ae5230 1986 CORE_ADDR new_addr;
74bcbdf3 1987 set_value_component_location (v, obj);
42ae5230 1988 new_addr = value_address (obj) + offset;
9bbda503
AC
1989 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1990 set_value_bitsize (v, bit_size);
df407dfe 1991 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 1992 {
42ae5230 1993 ++new_addr;
9bbda503 1994 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1995 }
42ae5230 1996 set_value_address (v, new_addr);
14f9c5c9
AS
1997 }
1998 else
9bbda503 1999 set_value_bitsize (v, bit_size);
0fd88904 2000 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2001
2002 srcBitsLeft = bit_size;
2003 nsrc = len;
2004 ntarg = TYPE_LENGTH (type);
2005 sign = 0;
2006 if (bit_size == 0)
2007 {
2008 memset (unpacked, 0, TYPE_LENGTH (type));
2009 return v;
2010 }
32c9a795 2011 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2012 {
d2e4a39e 2013 src = len - 1;
1265e4aa
JB
2014 if (has_negatives (type)
2015 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2016 sign = ~0;
d2e4a39e
AS
2017
2018 unusedLS =
4c4b4cd2
PH
2019 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2020 % HOST_CHAR_BIT;
14f9c5c9
AS
2021
2022 switch (TYPE_CODE (type))
4c4b4cd2
PH
2023 {
2024 case TYPE_CODE_ARRAY:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_STRUCT:
2027 /* Non-scalar values must be aligned at a byte boundary... */
2028 accumSize =
2029 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2030 /* ... And are placed at the beginning (most-significant) bytes
2031 of the target. */
529cad9c 2032 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2033 ntarg = targ + 1;
4c4b4cd2
PH
2034 break;
2035 default:
2036 accumSize = 0;
2037 targ = TYPE_LENGTH (type) - 1;
2038 break;
2039 }
14f9c5c9 2040 }
d2e4a39e 2041 else
14f9c5c9
AS
2042 {
2043 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2044
2045 src = targ = 0;
2046 unusedLS = bit_offset;
2047 accumSize = 0;
2048
d2e4a39e 2049 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2050 sign = ~0;
14f9c5c9 2051 }
d2e4a39e 2052
14f9c5c9
AS
2053 accum = 0;
2054 while (nsrc > 0)
2055 {
2056 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2057 part of the value. */
d2e4a39e 2058 unsigned int unusedMSMask =
4c4b4cd2
PH
2059 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2060 1;
2061 /* Sign-extend bits for this byte. */
14f9c5c9 2062 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2063 accum |=
4c4b4cd2 2064 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2065 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2066 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2067 {
2068 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2069 accumSize -= HOST_CHAR_BIT;
2070 accum >>= HOST_CHAR_BIT;
2071 ntarg -= 1;
2072 targ += delta;
2073 }
14f9c5c9
AS
2074 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2075 unusedLS = 0;
2076 nsrc -= 1;
2077 src += delta;
2078 }
2079 while (ntarg > 0)
2080 {
2081 accum |= sign << accumSize;
2082 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2083 accumSize -= HOST_CHAR_BIT;
2084 accum >>= HOST_CHAR_BIT;
2085 ntarg -= 1;
2086 targ += delta;
2087 }
2088
2089 return v;
2090}
d2e4a39e 2091
14f9c5c9
AS
2092/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2093 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2094 not overlap. */
14f9c5c9 2095static void
fc1a4b47 2096move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2097 int src_offset, int n)
14f9c5c9
AS
2098{
2099 unsigned int accum, mask;
2100 int accum_bits, chunk_size;
2101
2102 target += targ_offset / HOST_CHAR_BIT;
2103 targ_offset %= HOST_CHAR_BIT;
2104 source += src_offset / HOST_CHAR_BIT;
2105 src_offset %= HOST_CHAR_BIT;
32c9a795 2106 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2107 {
2108 accum = (unsigned char) *source;
2109 source += 1;
2110 accum_bits = HOST_CHAR_BIT - src_offset;
2111
d2e4a39e 2112 while (n > 0)
4c4b4cd2
PH
2113 {
2114 int unused_right;
2115 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2116 accum_bits += HOST_CHAR_BIT;
2117 source += 1;
2118 chunk_size = HOST_CHAR_BIT - targ_offset;
2119 if (chunk_size > n)
2120 chunk_size = n;
2121 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2122 mask = ((1 << chunk_size) - 1) << unused_right;
2123 *target =
2124 (*target & ~mask)
2125 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2126 n -= chunk_size;
2127 accum_bits -= chunk_size;
2128 target += 1;
2129 targ_offset = 0;
2130 }
14f9c5c9
AS
2131 }
2132 else
2133 {
2134 accum = (unsigned char) *source >> src_offset;
2135 source += 1;
2136 accum_bits = HOST_CHAR_BIT - src_offset;
2137
d2e4a39e 2138 while (n > 0)
4c4b4cd2
PH
2139 {
2140 accum = accum + ((unsigned char) *source << accum_bits);
2141 accum_bits += HOST_CHAR_BIT;
2142 source += 1;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 if (chunk_size > n)
2145 chunk_size = n;
2146 mask = ((1 << chunk_size) - 1) << targ_offset;
2147 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2148 n -= chunk_size;
2149 accum_bits -= chunk_size;
2150 accum >>= chunk_size;
2151 target += 1;
2152 targ_offset = 0;
2153 }
14f9c5c9
AS
2154 }
2155}
2156
14f9c5c9
AS
2157/* Store the contents of FROMVAL into the location of TOVAL.
2158 Return a new value with the location of TOVAL and contents of
2159 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2160 floating-point or non-scalar types. */
14f9c5c9 2161
d2e4a39e
AS
2162static struct value *
2163ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2164{
df407dfe
AC
2165 struct type *type = value_type (toval);
2166 int bits = value_bitsize (toval);
14f9c5c9 2167
52ce6436
PH
2168 toval = ada_coerce_ref (toval);
2169 fromval = ada_coerce_ref (fromval);
2170
2171 if (ada_is_direct_array_type (value_type (toval)))
2172 toval = ada_coerce_to_simple_array (toval);
2173 if (ada_is_direct_array_type (value_type (fromval)))
2174 fromval = ada_coerce_to_simple_array (fromval);
2175
88e3b34b 2176 if (!deprecated_value_modifiable (toval))
323e0a4a 2177 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2178
d2e4a39e 2179 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2180 && bits > 0
d2e4a39e 2181 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2182 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2183 {
df407dfe
AC
2184 int len = (value_bitpos (toval)
2185 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2186 int from_size;
d2e4a39e
AS
2187 char *buffer = (char *) alloca (len);
2188 struct value *val;
42ae5230 2189 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2190
2191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2192 fromval = value_cast (type, fromval);
14f9c5c9 2193
52ce6436 2194 read_memory (to_addr, buffer, len);
aced2898
PH
2195 from_size = value_bitsize (fromval);
2196 if (from_size == 0)
2197 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2198 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2199 move_bits (buffer, value_bitpos (toval),
aced2898 2200 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2201 else
0fd88904 2202 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2203 0, bits);
52ce6436
PH
2204 write_memory (to_addr, buffer, len);
2205 if (deprecated_memory_changed_hook)
2206 deprecated_memory_changed_hook (to_addr, len);
2207
14f9c5c9 2208 val = value_copy (toval);
0fd88904 2209 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2210 TYPE_LENGTH (type));
04624583 2211 deprecated_set_value_type (val, type);
d2e4a39e 2212
14f9c5c9
AS
2213 return val;
2214 }
2215
2216 return value_assign (toval, fromval);
2217}
2218
2219
52ce6436
PH
2220/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2221 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2222 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2223 * COMPONENT, and not the inferior's memory. The current contents
2224 * of COMPONENT are ignored. */
2225static void
2226value_assign_to_component (struct value *container, struct value *component,
2227 struct value *val)
2228{
2229 LONGEST offset_in_container =
42ae5230 2230 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2231 int bit_offset_in_container =
2232 value_bitpos (component) - value_bitpos (container);
2233 int bits;
2234
2235 val = value_cast (value_type (component), val);
2236
2237 if (value_bitsize (component) == 0)
2238 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2239 else
2240 bits = value_bitsize (component);
2241
32c9a795 2242 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2243 move_bits (value_contents_writeable (container) + offset_in_container,
2244 value_bitpos (container) + bit_offset_in_container,
2245 value_contents (val),
2246 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2247 bits);
2248 else
2249 move_bits (value_contents_writeable (container) + offset_in_container,
2250 value_bitpos (container) + bit_offset_in_container,
2251 value_contents (val), 0, bits);
2252}
2253
4c4b4cd2
PH
2254/* The value of the element of array ARR at the ARITY indices given in IND.
2255 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2256 thereto. */
2257
d2e4a39e
AS
2258struct value *
2259ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2260{
2261 int k;
d2e4a39e
AS
2262 struct value *elt;
2263 struct type *elt_type;
14f9c5c9
AS
2264
2265 elt = ada_coerce_to_simple_array (arr);
2266
df407dfe 2267 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2268 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2269 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2270 return value_subscript_packed (elt, arity, ind);
2271
2272 for (k = 0; k < arity; k += 1)
2273 {
2274 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2275 error (_("too many subscripts (%d expected)"), k);
3cb382c9 2276 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
14f9c5c9
AS
2277 }
2278 return elt;
2279}
2280
2281/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2282 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2283 IND. Does not read the entire array into memory. */
14f9c5c9 2284
2c0b251b 2285static struct value *
d2e4a39e 2286ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2287 struct value **ind)
14f9c5c9
AS
2288{
2289 int k;
2290
2291 for (k = 0; k < arity; k += 1)
2292 {
2293 LONGEST lwb, upb;
d2e4a39e 2294 struct value *idx;
14f9c5c9
AS
2295
2296 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2297 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2298 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2299 value_copy (arr));
14f9c5c9 2300 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
3cb382c9 2301 idx = value_pos_atr (builtin_type_int32, ind[k]);
4c4b4cd2 2302 if (lwb != 0)
89eef114
UW
2303 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2304 BINOP_SUB);
2305
2306 arr = value_ptradd (arr, idx);
14f9c5c9
AS
2307 type = TYPE_TARGET_TYPE (type);
2308 }
2309
2310 return value_ind (arr);
2311}
2312
0b5d8877 2313/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2314 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2315 elements starting at index LOW. The lower bound of this array is LOW, as
2316 per Ada rules. */
0b5d8877 2317static struct value *
f5938064
JG
2318ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2319 int low, int high)
0b5d8877 2320{
6c038f32 2321 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2322 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2323 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2324 struct type *index_type =
2325 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2326 low, high);
6c038f32 2327 struct type *slice_type =
0b5d8877 2328 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2329 return value_at_lazy (slice_type, base);
0b5d8877
PH
2330}
2331
2332
2333static struct value *
2334ada_value_slice (struct value *array, int low, int high)
2335{
df407dfe 2336 struct type *type = value_type (array);
6c038f32 2337 struct type *index_type =
0b5d8877 2338 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2339 struct type *slice_type =
0b5d8877 2340 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2341 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2342}
2343
14f9c5c9
AS
2344/* If type is a record type in the form of a standard GNAT array
2345 descriptor, returns the number of dimensions for type. If arr is a
2346 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2347 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2348
2349int
d2e4a39e 2350ada_array_arity (struct type *type)
14f9c5c9
AS
2351{
2352 int arity;
2353
2354 if (type == NULL)
2355 return 0;
2356
2357 type = desc_base_type (type);
2358
2359 arity = 0;
d2e4a39e 2360 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2361 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2362 else
2363 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2364 {
4c4b4cd2 2365 arity += 1;
61ee279c 2366 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2367 }
d2e4a39e 2368
14f9c5c9
AS
2369 return arity;
2370}
2371
2372/* If TYPE is a record type in the form of a standard GNAT array
2373 descriptor or a simple array type, returns the element type for
2374 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2375 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2376
d2e4a39e
AS
2377struct type *
2378ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2379{
2380 type = desc_base_type (type);
2381
d2e4a39e 2382 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2383 {
2384 int k;
d2e4a39e 2385 struct type *p_array_type;
14f9c5c9 2386
556bdfd4 2387 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2388
2389 k = ada_array_arity (type);
2390 if (k == 0)
4c4b4cd2 2391 return NULL;
d2e4a39e 2392
4c4b4cd2 2393 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2394 if (nindices >= 0 && k > nindices)
4c4b4cd2 2395 k = nindices;
d2e4a39e 2396 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2397 {
61ee279c 2398 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2399 k -= 1;
2400 }
14f9c5c9
AS
2401 return p_array_type;
2402 }
2403 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2404 {
2405 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2406 {
2407 type = TYPE_TARGET_TYPE (type);
2408 nindices -= 1;
2409 }
14f9c5c9
AS
2410 return type;
2411 }
2412
2413 return NULL;
2414}
2415
4c4b4cd2
PH
2416/* The type of nth index in arrays of given type (n numbering from 1).
2417 Does not examine memory. */
14f9c5c9 2418
d2e4a39e
AS
2419struct type *
2420ada_index_type (struct type *type, int n)
14f9c5c9 2421{
4c4b4cd2
PH
2422 struct type *result_type;
2423
14f9c5c9
AS
2424 type = desc_base_type (type);
2425
2426 if (n > ada_array_arity (type))
2427 return NULL;
2428
4c4b4cd2 2429 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2430 {
2431 int i;
2432
2433 for (i = 1; i < n; i += 1)
4c4b4cd2 2434 type = TYPE_TARGET_TYPE (type);
262452ec 2435 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2436 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2437 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2438 perhaps stabsread.c would make more sense. */
2439 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
6d84d3d8 2440 result_type = builtin_type_int32;
14f9c5c9 2441
4c4b4cd2 2442 return result_type;
14f9c5c9 2443 }
d2e4a39e 2444 else
14f9c5c9
AS
2445 return desc_index_type (desc_bounds_type (type), n);
2446}
2447
2448/* Given that arr is an array type, returns the lower bound of the
2449 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2450 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2451 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2452 bounds type. It works for other arrays with bounds supplied by
2453 run-time quantities other than discriminants. */
14f9c5c9 2454
abb68b3e 2455static LONGEST
d2e4a39e 2456ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2457 struct type ** typep)
14f9c5c9 2458{
262452ec
JK
2459 struct type *type, *index_type_desc, *index_type;
2460 LONGEST retval;
2461
2462 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2463
2464 if (ada_is_packed_array_type (arr_type))
2465 arr_type = decode_packed_array_type (arr_type);
2466
4c4b4cd2 2467 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2468 {
2469 if (typep != NULL)
6d84d3d8 2470 *typep = builtin_type_int32;
d2e4a39e 2471 return (LONGEST) - which;
14f9c5c9
AS
2472 }
2473
2474 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2475 type = TYPE_TARGET_TYPE (arr_type);
2476 else
2477 type = arr_type;
2478
2479 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2480 if (index_type_desc != NULL)
2481 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2482 NULL, TYPE_OBJFILE (arr_type));
2483 else
14f9c5c9 2484 {
d2e4a39e 2485 while (n > 1)
4c4b4cd2
PH
2486 {
2487 type = TYPE_TARGET_TYPE (type);
2488 n -= 1;
2489 }
14f9c5c9 2490
abb68b3e 2491 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2492 }
262452ec
JK
2493
2494 switch (TYPE_CODE (index_type))
14f9c5c9 2495 {
262452ec
JK
2496 case TYPE_CODE_RANGE:
2497 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2498 : TYPE_HIGH_BOUND (index_type);
2499 break;
2500 case TYPE_CODE_ENUM:
2501 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2502 : TYPE_FIELD_BITPOS (index_type,
2503 TYPE_NFIELDS (index_type) - 1);
2504 break;
2505 default:
2506 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2507 }
abb68b3e 2508
262452ec
JK
2509 if (typep != NULL)
2510 *typep = index_type;
abb68b3e 2511
262452ec 2512 return retval;
14f9c5c9
AS
2513}
2514
2515/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2516 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2517 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2518 supplied by run-time quantities other than discriminants. */
14f9c5c9 2519
d2e4a39e 2520struct value *
4dc81987 2521ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2522{
df407dfe 2523 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2524
2525 if (ada_is_packed_array_type (arr_type))
2526 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2527 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2528 {
d2e4a39e 2529 struct type *type;
14f9c5c9
AS
2530 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2531 return value_from_longest (type, v);
2532 }
2533 else
2534 return desc_one_bound (desc_bounds (arr), n, which);
2535}
2536
2537/* Given that arr is an array value, returns the length of the
2538 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2539 supplied by run-time quantities other than discriminants.
2540 Does not work for arrays indexed by enumeration types with representation
2541 clauses at the moment. */
14f9c5c9 2542
2c0b251b 2543static struct value *
d2e4a39e 2544ada_array_length (struct value *arr, int n)
14f9c5c9 2545{
df407dfe 2546 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2547
2548 if (ada_is_packed_array_type (arr_type))
2549 return ada_array_length (decode_packed_array (arr), n);
2550
4c4b4cd2 2551 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2552 {
d2e4a39e 2553 struct type *type;
14f9c5c9 2554 LONGEST v =
4c4b4cd2
PH
2555 ada_array_bound_from_type (arr_type, n, 1, &type) -
2556 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2557 return value_from_longest (type, v);
2558 }
2559 else
d2e4a39e 2560 return
030b4912 2561 value_from_longest (builtin_type_int32,
4c4b4cd2
PH
2562 value_as_long (desc_one_bound (desc_bounds (arr),
2563 n, 1))
2564 - value_as_long (desc_one_bound (desc_bounds (arr),
2565 n, 0)) + 1);
2566}
2567
2568/* An empty array whose type is that of ARR_TYPE (an array type),
2569 with bounds LOW to LOW-1. */
2570
2571static struct value *
2572empty_array (struct type *arr_type, int low)
2573{
6c038f32 2574 struct type *index_type =
0b5d8877
PH
2575 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2576 low, low - 1);
2577 struct type *elt_type = ada_array_element_type (arr_type, 1);
2578 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2579}
14f9c5c9 2580\f
d2e4a39e 2581
4c4b4cd2 2582 /* Name resolution */
14f9c5c9 2583
4c4b4cd2
PH
2584/* The "decoded" name for the user-definable Ada operator corresponding
2585 to OP. */
14f9c5c9 2586
d2e4a39e 2587static const char *
4c4b4cd2 2588ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2589{
2590 int i;
2591
4c4b4cd2 2592 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2593 {
2594 if (ada_opname_table[i].op == op)
4c4b4cd2 2595 return ada_opname_table[i].decoded;
14f9c5c9 2596 }
323e0a4a 2597 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2598}
2599
2600
4c4b4cd2
PH
2601/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2602 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2603 undefined namespace) and converts operators that are
2604 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2605 non-null, it provides a preferred result type [at the moment, only
2606 type void has any effect---causing procedures to be preferred over
2607 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2608 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2609
4c4b4cd2
PH
2610static void
2611resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2612{
2613 int pc;
2614 pc = 0;
4c4b4cd2 2615 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2616}
2617
4c4b4cd2
PH
2618/* Resolve the operator of the subexpression beginning at
2619 position *POS of *EXPP. "Resolving" consists of replacing
2620 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2621 with their resolutions, replacing built-in operators with
2622 function calls to user-defined operators, where appropriate, and,
2623 when DEPROCEDURE_P is non-zero, converting function-valued variables
2624 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2625 are as in ada_resolve, above. */
14f9c5c9 2626
d2e4a39e 2627static struct value *
4c4b4cd2 2628resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2629 struct type *context_type)
14f9c5c9
AS
2630{
2631 int pc = *pos;
2632 int i;
4c4b4cd2 2633 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2634 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2635 struct value **argvec; /* Vector of operand types (alloca'ed). */
2636 int nargs; /* Number of operands. */
52ce6436 2637 int oplen;
14f9c5c9
AS
2638
2639 argvec = NULL;
2640 nargs = 0;
2641 exp = *expp;
2642
52ce6436
PH
2643 /* Pass one: resolve operands, saving their types and updating *pos,
2644 if needed. */
14f9c5c9
AS
2645 switch (op)
2646 {
4c4b4cd2
PH
2647 case OP_FUNCALL:
2648 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2649 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2650 *pos += 7;
4c4b4cd2
PH
2651 else
2652 {
2653 *pos += 3;
2654 resolve_subexp (expp, pos, 0, NULL);
2655 }
2656 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2657 break;
2658
14f9c5c9 2659 case UNOP_ADDR:
4c4b4cd2
PH
2660 *pos += 1;
2661 resolve_subexp (expp, pos, 0, NULL);
2662 break;
2663
52ce6436
PH
2664 case UNOP_QUAL:
2665 *pos += 3;
17466c1a 2666 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2667 break;
2668
52ce6436 2669 case OP_ATR_MODULUS:
4c4b4cd2
PH
2670 case OP_ATR_SIZE:
2671 case OP_ATR_TAG:
4c4b4cd2
PH
2672 case OP_ATR_FIRST:
2673 case OP_ATR_LAST:
2674 case OP_ATR_LENGTH:
2675 case OP_ATR_POS:
2676 case OP_ATR_VAL:
4c4b4cd2
PH
2677 case OP_ATR_MIN:
2678 case OP_ATR_MAX:
52ce6436
PH
2679 case TERNOP_IN_RANGE:
2680 case BINOP_IN_BOUNDS:
2681 case UNOP_IN_RANGE:
2682 case OP_AGGREGATE:
2683 case OP_OTHERS:
2684 case OP_CHOICES:
2685 case OP_POSITIONAL:
2686 case OP_DISCRETE_RANGE:
2687 case OP_NAME:
2688 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2689 *pos += oplen;
14f9c5c9
AS
2690 break;
2691
2692 case BINOP_ASSIGN:
2693 {
4c4b4cd2
PH
2694 struct value *arg1;
2695
2696 *pos += 1;
2697 arg1 = resolve_subexp (expp, pos, 0, NULL);
2698 if (arg1 == NULL)
2699 resolve_subexp (expp, pos, 1, NULL);
2700 else
df407dfe 2701 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2702 break;
14f9c5c9
AS
2703 }
2704
4c4b4cd2 2705 case UNOP_CAST:
4c4b4cd2
PH
2706 *pos += 3;
2707 nargs = 1;
2708 break;
14f9c5c9 2709
4c4b4cd2
PH
2710 case BINOP_ADD:
2711 case BINOP_SUB:
2712 case BINOP_MUL:
2713 case BINOP_DIV:
2714 case BINOP_REM:
2715 case BINOP_MOD:
2716 case BINOP_EXP:
2717 case BINOP_CONCAT:
2718 case BINOP_LOGICAL_AND:
2719 case BINOP_LOGICAL_OR:
2720 case BINOP_BITWISE_AND:
2721 case BINOP_BITWISE_IOR:
2722 case BINOP_BITWISE_XOR:
14f9c5c9 2723
4c4b4cd2
PH
2724 case BINOP_EQUAL:
2725 case BINOP_NOTEQUAL:
2726 case BINOP_LESS:
2727 case BINOP_GTR:
2728 case BINOP_LEQ:
2729 case BINOP_GEQ:
14f9c5c9 2730
4c4b4cd2
PH
2731 case BINOP_REPEAT:
2732 case BINOP_SUBSCRIPT:
2733 case BINOP_COMMA:
40c8aaa9
JB
2734 *pos += 1;
2735 nargs = 2;
2736 break;
14f9c5c9 2737
4c4b4cd2
PH
2738 case UNOP_NEG:
2739 case UNOP_PLUS:
2740 case UNOP_LOGICAL_NOT:
2741 case UNOP_ABS:
2742 case UNOP_IND:
2743 *pos += 1;
2744 nargs = 1;
2745 break;
14f9c5c9 2746
4c4b4cd2
PH
2747 case OP_LONG:
2748 case OP_DOUBLE:
2749 case OP_VAR_VALUE:
2750 *pos += 4;
2751 break;
14f9c5c9 2752
4c4b4cd2
PH
2753 case OP_TYPE:
2754 case OP_BOOL:
2755 case OP_LAST:
4c4b4cd2
PH
2756 case OP_INTERNALVAR:
2757 *pos += 3;
2758 break;
14f9c5c9 2759
4c4b4cd2
PH
2760 case UNOP_MEMVAL:
2761 *pos += 3;
2762 nargs = 1;
2763 break;
2764
67f3407f
DJ
2765 case OP_REGISTER:
2766 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2767 break;
2768
4c4b4cd2
PH
2769 case STRUCTOP_STRUCT:
2770 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2771 nargs = 1;
2772 break;
2773
4c4b4cd2 2774 case TERNOP_SLICE:
4c4b4cd2
PH
2775 *pos += 1;
2776 nargs = 3;
2777 break;
2778
52ce6436 2779 case OP_STRING:
14f9c5c9 2780 break;
4c4b4cd2
PH
2781
2782 default:
323e0a4a 2783 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2784 }
2785
76a01679 2786 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2787 for (i = 0; i < nargs; i += 1)
2788 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2789 argvec[i] = NULL;
2790 exp = *expp;
2791
2792 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2793 switch (op)
2794 {
2795 default:
2796 break;
2797
14f9c5c9 2798 case OP_VAR_VALUE:
4c4b4cd2 2799 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2800 {
2801 struct ada_symbol_info *candidates;
2802 int n_candidates;
2803
2804 n_candidates =
2805 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2806 (exp->elts[pc + 2].symbol),
2807 exp->elts[pc + 1].block, VAR_DOMAIN,
2808 &candidates);
2809
2810 if (n_candidates > 1)
2811 {
2812 /* Types tend to get re-introduced locally, so if there
2813 are any local symbols that are not types, first filter
2814 out all types. */
2815 int j;
2816 for (j = 0; j < n_candidates; j += 1)
2817 switch (SYMBOL_CLASS (candidates[j].sym))
2818 {
2819 case LOC_REGISTER:
2820 case LOC_ARG:
2821 case LOC_REF_ARG:
76a01679
JB
2822 case LOC_REGPARM_ADDR:
2823 case LOC_LOCAL:
76a01679 2824 case LOC_COMPUTED:
76a01679
JB
2825 goto FoundNonType;
2826 default:
2827 break;
2828 }
2829 FoundNonType:
2830 if (j < n_candidates)
2831 {
2832 j = 0;
2833 while (j < n_candidates)
2834 {
2835 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2836 {
2837 candidates[j] = candidates[n_candidates - 1];
2838 n_candidates -= 1;
2839 }
2840 else
2841 j += 1;
2842 }
2843 }
2844 }
2845
2846 if (n_candidates == 0)
323e0a4a 2847 error (_("No definition found for %s"),
76a01679
JB
2848 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2849 else if (n_candidates == 1)
2850 i = 0;
2851 else if (deprocedure_p
2852 && !is_nonfunction (candidates, n_candidates))
2853 {
06d5cf63
JB
2854 i = ada_resolve_function
2855 (candidates, n_candidates, NULL, 0,
2856 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2857 context_type);
76a01679 2858 if (i < 0)
323e0a4a 2859 error (_("Could not find a match for %s"),
76a01679
JB
2860 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2861 }
2862 else
2863 {
323e0a4a 2864 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2865 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2866 user_select_syms (candidates, n_candidates, 1);
2867 i = 0;
2868 }
2869
2870 exp->elts[pc + 1].block = candidates[i].block;
2871 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2872 if (innermost_block == NULL
2873 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2874 innermost_block = candidates[i].block;
2875 }
2876
2877 if (deprocedure_p
2878 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2879 == TYPE_CODE_FUNC))
2880 {
2881 replace_operator_with_call (expp, pc, 0, 0,
2882 exp->elts[pc + 2].symbol,
2883 exp->elts[pc + 1].block);
2884 exp = *expp;
2885 }
14f9c5c9
AS
2886 break;
2887
2888 case OP_FUNCALL:
2889 {
4c4b4cd2 2890 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2891 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2892 {
2893 struct ada_symbol_info *candidates;
2894 int n_candidates;
2895
2896 n_candidates =
76a01679
JB
2897 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2898 (exp->elts[pc + 5].symbol),
2899 exp->elts[pc + 4].block, VAR_DOMAIN,
2900 &candidates);
4c4b4cd2
PH
2901 if (n_candidates == 1)
2902 i = 0;
2903 else
2904 {
06d5cf63
JB
2905 i = ada_resolve_function
2906 (candidates, n_candidates,
2907 argvec, nargs,
2908 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2909 context_type);
4c4b4cd2 2910 if (i < 0)
323e0a4a 2911 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2912 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2913 }
2914
2915 exp->elts[pc + 4].block = candidates[i].block;
2916 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2917 if (innermost_block == NULL
2918 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2919 innermost_block = candidates[i].block;
2920 }
14f9c5c9
AS
2921 }
2922 break;
2923 case BINOP_ADD:
2924 case BINOP_SUB:
2925 case BINOP_MUL:
2926 case BINOP_DIV:
2927 case BINOP_REM:
2928 case BINOP_MOD:
2929 case BINOP_CONCAT:
2930 case BINOP_BITWISE_AND:
2931 case BINOP_BITWISE_IOR:
2932 case BINOP_BITWISE_XOR:
2933 case BINOP_EQUAL:
2934 case BINOP_NOTEQUAL:
2935 case BINOP_LESS:
2936 case BINOP_GTR:
2937 case BINOP_LEQ:
2938 case BINOP_GEQ:
2939 case BINOP_EXP:
2940 case UNOP_NEG:
2941 case UNOP_PLUS:
2942 case UNOP_LOGICAL_NOT:
2943 case UNOP_ABS:
2944 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2945 {
2946 struct ada_symbol_info *candidates;
2947 int n_candidates;
2948
2949 n_candidates =
2950 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2951 (struct block *) NULL, VAR_DOMAIN,
2952 &candidates);
2953 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2954 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2955 if (i < 0)
2956 break;
2957
76a01679
JB
2958 replace_operator_with_call (expp, pc, nargs, 1,
2959 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2960 exp = *expp;
2961 }
14f9c5c9 2962 break;
4c4b4cd2
PH
2963
2964 case OP_TYPE:
b3dbf008 2965 case OP_REGISTER:
4c4b4cd2 2966 return NULL;
14f9c5c9
AS
2967 }
2968
2969 *pos = pc;
2970 return evaluate_subexp_type (exp, pos);
2971}
2972
2973/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2974 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2975 a non-pointer. A type of 'void' (which is never a valid expression type)
2976 by convention matches anything. */
14f9c5c9 2977/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2978 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2979
2980static int
4dc81987 2981ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2982{
61ee279c
PH
2983 ftype = ada_check_typedef (ftype);
2984 atype = ada_check_typedef (atype);
14f9c5c9
AS
2985
2986 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2987 ftype = TYPE_TARGET_TYPE (ftype);
2988 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2989 atype = TYPE_TARGET_TYPE (atype);
2990
d2e4a39e 2991 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2992 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2993 return 1;
2994
d2e4a39e 2995 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2996 {
2997 default:
2998 return 1;
2999 case TYPE_CODE_PTR:
3000 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3001 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3002 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3003 else
1265e4aa
JB
3004 return (may_deref
3005 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3006 case TYPE_CODE_INT:
3007 case TYPE_CODE_ENUM:
3008 case TYPE_CODE_RANGE:
3009 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3010 {
3011 case TYPE_CODE_INT:
3012 case TYPE_CODE_ENUM:
3013 case TYPE_CODE_RANGE:
3014 return 1;
3015 default:
3016 return 0;
3017 }
14f9c5c9
AS
3018
3019 case TYPE_CODE_ARRAY:
d2e4a39e 3020 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3021 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3022
3023 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3024 if (ada_is_array_descriptor_type (ftype))
3025 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3026 || ada_is_array_descriptor_type (atype));
14f9c5c9 3027 else
4c4b4cd2
PH
3028 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3029 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3030
3031 case TYPE_CODE_UNION:
3032 case TYPE_CODE_FLT:
3033 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3034 }
3035}
3036
3037/* Return non-zero if the formals of FUNC "sufficiently match" the
3038 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3039 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3040 argument function. */
14f9c5c9
AS
3041
3042static int
d2e4a39e 3043ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3044{
3045 int i;
d2e4a39e 3046 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3047
1265e4aa
JB
3048 if (SYMBOL_CLASS (func) == LOC_CONST
3049 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3050 return (n_actuals == 0);
3051 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3052 return 0;
3053
3054 if (TYPE_NFIELDS (func_type) != n_actuals)
3055 return 0;
3056
3057 for (i = 0; i < n_actuals; i += 1)
3058 {
4c4b4cd2 3059 if (actuals[i] == NULL)
76a01679
JB
3060 return 0;
3061 else
3062 {
61ee279c 3063 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3064 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3065
76a01679
JB
3066 if (!ada_type_match (ftype, atype, 1))
3067 return 0;
3068 }
14f9c5c9
AS
3069 }
3070 return 1;
3071}
3072
3073/* False iff function type FUNC_TYPE definitely does not produce a value
3074 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3075 FUNC_TYPE is not a valid function type with a non-null return type
3076 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3077
3078static int
d2e4a39e 3079return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3080{
d2e4a39e 3081 struct type *return_type;
14f9c5c9
AS
3082
3083 if (func_type == NULL)
3084 return 1;
3085
4c4b4cd2
PH
3086 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3087 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3088 else
3089 return_type = base_type (func_type);
14f9c5c9
AS
3090 if (return_type == NULL)
3091 return 1;
3092
4c4b4cd2 3093 context_type = base_type (context_type);
14f9c5c9
AS
3094
3095 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3096 return context_type == NULL || return_type == context_type;
3097 else if (context_type == NULL)
3098 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3099 else
3100 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3101}
3102
3103
4c4b4cd2 3104/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3105 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3106 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3107 that returns that type, then eliminate matches that don't. If
3108 CONTEXT_TYPE is void and there is at least one match that does not
3109 return void, eliminate all matches that do.
3110
14f9c5c9
AS
3111 Asks the user if there is more than one match remaining. Returns -1
3112 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3113 solely for messages. May re-arrange and modify SYMS in
3114 the process; the index returned is for the modified vector. */
14f9c5c9 3115
4c4b4cd2
PH
3116static int
3117ada_resolve_function (struct ada_symbol_info syms[],
3118 int nsyms, struct value **args, int nargs,
3119 const char *name, struct type *context_type)
14f9c5c9
AS
3120{
3121 int k;
4c4b4cd2 3122 int m; /* Number of hits */
d2e4a39e
AS
3123 struct type *fallback;
3124 struct type *return_type;
14f9c5c9
AS
3125
3126 return_type = context_type;
3127 if (context_type == NULL)
3128 fallback = builtin_type_void;
3129 else
3130 fallback = NULL;
3131
d2e4a39e 3132 m = 0;
14f9c5c9
AS
3133 while (1)
3134 {
3135 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3136 {
61ee279c 3137 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3138
3139 if (ada_args_match (syms[k].sym, args, nargs)
3140 && return_match (type, return_type))
3141 {
3142 syms[m] = syms[k];
3143 m += 1;
3144 }
3145 }
14f9c5c9 3146 if (m > 0 || return_type == fallback)
4c4b4cd2 3147 break;
14f9c5c9 3148 else
4c4b4cd2 3149 return_type = fallback;
14f9c5c9
AS
3150 }
3151
3152 if (m == 0)
3153 return -1;
3154 else if (m > 1)
3155 {
323e0a4a 3156 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3157 user_select_syms (syms, m, 1);
14f9c5c9
AS
3158 return 0;
3159 }
3160 return 0;
3161}
3162
4c4b4cd2
PH
3163/* Returns true (non-zero) iff decoded name N0 should appear before N1
3164 in a listing of choices during disambiguation (see sort_choices, below).
3165 The idea is that overloadings of a subprogram name from the
3166 same package should sort in their source order. We settle for ordering
3167 such symbols by their trailing number (__N or $N). */
3168
14f9c5c9 3169static int
4c4b4cd2 3170encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3171{
3172 if (N1 == NULL)
3173 return 0;
3174 else if (N0 == NULL)
3175 return 1;
3176 else
3177 {
3178 int k0, k1;
d2e4a39e 3179 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3180 ;
d2e4a39e 3181 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3182 ;
d2e4a39e 3183 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3184 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3185 {
3186 int n0, n1;
3187 n0 = k0;
3188 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3189 n0 -= 1;
3190 n1 = k1;
3191 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3192 n1 -= 1;
3193 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3194 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3195 }
14f9c5c9
AS
3196 return (strcmp (N0, N1) < 0);
3197 }
3198}
d2e4a39e 3199
4c4b4cd2
PH
3200/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3201 encoded names. */
3202
d2e4a39e 3203static void
4c4b4cd2 3204sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3205{
4c4b4cd2 3206 int i;
d2e4a39e 3207 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3208 {
4c4b4cd2 3209 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3210 int j;
3211
d2e4a39e 3212 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3213 {
3214 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3215 SYMBOL_LINKAGE_NAME (sym.sym)))
3216 break;
3217 syms[j + 1] = syms[j];
3218 }
d2e4a39e 3219 syms[j + 1] = sym;
14f9c5c9
AS
3220 }
3221}
3222
4c4b4cd2
PH
3223/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3224 by asking the user (if necessary), returning the number selected,
3225 and setting the first elements of SYMS items. Error if no symbols
3226 selected. */
14f9c5c9
AS
3227
3228/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3229 to be re-integrated one of these days. */
14f9c5c9
AS
3230
3231int
4c4b4cd2 3232user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3233{
3234 int i;
d2e4a39e 3235 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3236 int n_chosen;
3237 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3238 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3239
3240 if (max_results < 1)
323e0a4a 3241 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3242 if (nsyms <= 1)
3243 return nsyms;
3244
717d2f5a
JB
3245 if (select_mode == multiple_symbols_cancel)
3246 error (_("\
3247canceled because the command is ambiguous\n\
3248See set/show multiple-symbol."));
3249
3250 /* If select_mode is "all", then return all possible symbols.
3251 Only do that if more than one symbol can be selected, of course.
3252 Otherwise, display the menu as usual. */
3253 if (select_mode == multiple_symbols_all && max_results > 1)
3254 return nsyms;
3255
323e0a4a 3256 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3257 if (max_results > 1)
323e0a4a 3258 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3259
4c4b4cd2 3260 sort_choices (syms, nsyms);
14f9c5c9
AS
3261
3262 for (i = 0; i < nsyms; i += 1)
3263 {
4c4b4cd2
PH
3264 if (syms[i].sym == NULL)
3265 continue;
3266
3267 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3268 {
76a01679
JB
3269 struct symtab_and_line sal =
3270 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3271 if (sal.symtab == NULL)
3272 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3273 i + first_choice,
3274 SYMBOL_PRINT_NAME (syms[i].sym),
3275 sal.line);
3276 else
3277 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3278 SYMBOL_PRINT_NAME (syms[i].sym),
3279 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3280 continue;
3281 }
d2e4a39e 3282 else
4c4b4cd2
PH
3283 {
3284 int is_enumeral =
3285 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3286 && SYMBOL_TYPE (syms[i].sym) != NULL
3287 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3288 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3289
3290 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3291 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3292 i + first_choice,
3293 SYMBOL_PRINT_NAME (syms[i].sym),
3294 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3295 else if (is_enumeral
3296 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3297 {
a3f17187 3298 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3299 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3300 gdb_stdout, -1, 0);
323e0a4a 3301 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3302 SYMBOL_PRINT_NAME (syms[i].sym));
3303 }
3304 else if (symtab != NULL)
3305 printf_unfiltered (is_enumeral
323e0a4a
AC
3306 ? _("[%d] %s in %s (enumeral)\n")
3307 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3308 i + first_choice,
3309 SYMBOL_PRINT_NAME (syms[i].sym),
3310 symtab->filename);
3311 else
3312 printf_unfiltered (is_enumeral
323e0a4a
AC
3313 ? _("[%d] %s (enumeral)\n")
3314 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3315 i + first_choice,
3316 SYMBOL_PRINT_NAME (syms[i].sym));
3317 }
14f9c5c9 3318 }
d2e4a39e 3319
14f9c5c9 3320 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3321 "overload-choice");
14f9c5c9
AS
3322
3323 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3324 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3325
3326 return n_chosen;
3327}
3328
3329/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3330 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3331 order in CHOICES[0 .. N-1], and return N.
3332
3333 The user types choices as a sequence of numbers on one line
3334 separated by blanks, encoding them as follows:
3335
4c4b4cd2 3336 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3337 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3338 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3339
4c4b4cd2 3340 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3341
3342 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3343 prompts (for use with the -f switch). */
14f9c5c9
AS
3344
3345int
d2e4a39e 3346get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3347 int is_all_choice, char *annotation_suffix)
14f9c5c9 3348{
d2e4a39e 3349 char *args;
0bcd0149 3350 char *prompt;
14f9c5c9
AS
3351 int n_chosen;
3352 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3353
14f9c5c9
AS
3354 prompt = getenv ("PS2");
3355 if (prompt == NULL)
0bcd0149 3356 prompt = "> ";
14f9c5c9 3357
0bcd0149 3358 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3359
14f9c5c9 3360 if (args == NULL)
323e0a4a 3361 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3362
3363 n_chosen = 0;
76a01679 3364
4c4b4cd2
PH
3365 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3366 order, as given in args. Choices are validated. */
14f9c5c9
AS
3367 while (1)
3368 {
d2e4a39e 3369 char *args2;
14f9c5c9
AS
3370 int choice, j;
3371
3372 while (isspace (*args))
4c4b4cd2 3373 args += 1;
14f9c5c9 3374 if (*args == '\0' && n_chosen == 0)
323e0a4a 3375 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3376 else if (*args == '\0')
4c4b4cd2 3377 break;
14f9c5c9
AS
3378
3379 choice = strtol (args, &args2, 10);
d2e4a39e 3380 if (args == args2 || choice < 0
4c4b4cd2 3381 || choice > n_choices + first_choice - 1)
323e0a4a 3382 error (_("Argument must be choice number"));
14f9c5c9
AS
3383 args = args2;
3384
d2e4a39e 3385 if (choice == 0)
323e0a4a 3386 error (_("cancelled"));
14f9c5c9
AS
3387
3388 if (choice < first_choice)
4c4b4cd2
PH
3389 {
3390 n_chosen = n_choices;
3391 for (j = 0; j < n_choices; j += 1)
3392 choices[j] = j;
3393 break;
3394 }
14f9c5c9
AS
3395 choice -= first_choice;
3396
d2e4a39e 3397 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3398 {
3399 }
14f9c5c9
AS
3400
3401 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3402 {
3403 int k;
3404 for (k = n_chosen - 1; k > j; k -= 1)
3405 choices[k + 1] = choices[k];
3406 choices[j + 1] = choice;
3407 n_chosen += 1;
3408 }
14f9c5c9
AS
3409 }
3410
3411 if (n_chosen > max_results)
323e0a4a 3412 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3413
14f9c5c9
AS
3414 return n_chosen;
3415}
3416
4c4b4cd2
PH
3417/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3418 on the function identified by SYM and BLOCK, and taking NARGS
3419 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3420
3421static void
d2e4a39e 3422replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3423 int oplen, struct symbol *sym,
3424 struct block *block)
14f9c5c9
AS
3425{
3426 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3427 symbol, -oplen for operator being replaced). */
d2e4a39e 3428 struct expression *newexp = (struct expression *)
14f9c5c9 3429 xmalloc (sizeof (struct expression)
4c4b4cd2 3430 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3431 struct expression *exp = *expp;
14f9c5c9
AS
3432
3433 newexp->nelts = exp->nelts + 7 - oplen;
3434 newexp->language_defn = exp->language_defn;
3435 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3436 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3437 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3438
3439 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3440 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3441
3442 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3443 newexp->elts[pc + 4].block = block;
3444 newexp->elts[pc + 5].symbol = sym;
3445
3446 *expp = newexp;
aacb1f0a 3447 xfree (exp);
d2e4a39e 3448}
14f9c5c9
AS
3449
3450/* Type-class predicates */
3451
4c4b4cd2
PH
3452/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3453 or FLOAT). */
14f9c5c9
AS
3454
3455static int
d2e4a39e 3456numeric_type_p (struct type *type)
14f9c5c9
AS
3457{
3458 if (type == NULL)
3459 return 0;
d2e4a39e
AS
3460 else
3461 {
3462 switch (TYPE_CODE (type))
4c4b4cd2
PH
3463 {
3464 case TYPE_CODE_INT:
3465 case TYPE_CODE_FLT:
3466 return 1;
3467 case TYPE_CODE_RANGE:
3468 return (type == TYPE_TARGET_TYPE (type)
3469 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3470 default:
3471 return 0;
3472 }
d2e4a39e 3473 }
14f9c5c9
AS
3474}
3475
4c4b4cd2 3476/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3477
3478static int
d2e4a39e 3479integer_type_p (struct type *type)
14f9c5c9
AS
3480{
3481 if (type == NULL)
3482 return 0;
d2e4a39e
AS
3483 else
3484 {
3485 switch (TYPE_CODE (type))
4c4b4cd2
PH
3486 {
3487 case TYPE_CODE_INT:
3488 return 1;
3489 case TYPE_CODE_RANGE:
3490 return (type == TYPE_TARGET_TYPE (type)
3491 || integer_type_p (TYPE_TARGET_TYPE (type)));
3492 default:
3493 return 0;
3494 }
d2e4a39e 3495 }
14f9c5c9
AS
3496}
3497
4c4b4cd2 3498/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3499
3500static int
d2e4a39e 3501scalar_type_p (struct type *type)
14f9c5c9
AS
3502{
3503 if (type == NULL)
3504 return 0;
d2e4a39e
AS
3505 else
3506 {
3507 switch (TYPE_CODE (type))
4c4b4cd2
PH
3508 {
3509 case TYPE_CODE_INT:
3510 case TYPE_CODE_RANGE:
3511 case TYPE_CODE_ENUM:
3512 case TYPE_CODE_FLT:
3513 return 1;
3514 default:
3515 return 0;
3516 }
d2e4a39e 3517 }
14f9c5c9
AS
3518}
3519
4c4b4cd2 3520/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3521
3522static int
d2e4a39e 3523discrete_type_p (struct type *type)
14f9c5c9
AS
3524{
3525 if (type == NULL)
3526 return 0;
d2e4a39e
AS
3527 else
3528 {
3529 switch (TYPE_CODE (type))
4c4b4cd2
PH
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_RANGE:
3533 case TYPE_CODE_ENUM:
3534 return 1;
3535 default:
3536 return 0;
3537 }
d2e4a39e 3538 }
14f9c5c9
AS
3539}
3540
4c4b4cd2
PH
3541/* Returns non-zero if OP with operands in the vector ARGS could be
3542 a user-defined function. Errs on the side of pre-defined operators
3543 (i.e., result 0). */
14f9c5c9
AS
3544
3545static int
d2e4a39e 3546possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3547{
76a01679 3548 struct type *type0 =
df407dfe 3549 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3550 struct type *type1 =
df407dfe 3551 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3552
4c4b4cd2
PH
3553 if (type0 == NULL)
3554 return 0;
3555
14f9c5c9
AS
3556 switch (op)
3557 {
3558 default:
3559 return 0;
3560
3561 case BINOP_ADD:
3562 case BINOP_SUB:
3563 case BINOP_MUL:
3564 case BINOP_DIV:
d2e4a39e 3565 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3566
3567 case BINOP_REM:
3568 case BINOP_MOD:
3569 case BINOP_BITWISE_AND:
3570 case BINOP_BITWISE_IOR:
3571 case BINOP_BITWISE_XOR:
d2e4a39e 3572 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3573
3574 case BINOP_EQUAL:
3575 case BINOP_NOTEQUAL:
3576 case BINOP_LESS:
3577 case BINOP_GTR:
3578 case BINOP_LEQ:
3579 case BINOP_GEQ:
d2e4a39e 3580 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3581
3582 case BINOP_CONCAT:
ee90b9ab 3583 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3584
3585 case BINOP_EXP:
d2e4a39e 3586 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3587
3588 case UNOP_NEG:
3589 case UNOP_PLUS:
3590 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3591 case UNOP_ABS:
3592 return (!numeric_type_p (type0));
14f9c5c9
AS
3593
3594 }
3595}
3596\f
4c4b4cd2 3597 /* Renaming */
14f9c5c9 3598
aeb5907d
JB
3599/* NOTES:
3600
3601 1. In the following, we assume that a renaming type's name may
3602 have an ___XD suffix. It would be nice if this went away at some
3603 point.
3604 2. We handle both the (old) purely type-based representation of
3605 renamings and the (new) variable-based encoding. At some point,
3606 it is devoutly to be hoped that the former goes away
3607 (FIXME: hilfinger-2007-07-09).
3608 3. Subprogram renamings are not implemented, although the XRS
3609 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3610
3611/* If SYM encodes a renaming,
3612
3613 <renaming> renames <renamed entity>,
3614
3615 sets *LEN to the length of the renamed entity's name,
3616 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3617 the string describing the subcomponent selected from the renamed
3618 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3619 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3620 are undefined). Otherwise, returns a value indicating the category
3621 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3622 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3623 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3624 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3625 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3626 may be NULL, in which case they are not assigned.
3627
3628 [Currently, however, GCC does not generate subprogram renamings.] */
3629
3630enum ada_renaming_category
3631ada_parse_renaming (struct symbol *sym,
3632 const char **renamed_entity, int *len,
3633 const char **renaming_expr)
3634{
3635 enum ada_renaming_category kind;
3636 const char *info;
3637 const char *suffix;
3638
3639 if (sym == NULL)
3640 return ADA_NOT_RENAMING;
3641 switch (SYMBOL_CLASS (sym))
14f9c5c9 3642 {
aeb5907d
JB
3643 default:
3644 return ADA_NOT_RENAMING;
3645 case LOC_TYPEDEF:
3646 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3647 renamed_entity, len, renaming_expr);
3648 case LOC_LOCAL:
3649 case LOC_STATIC:
3650 case LOC_COMPUTED:
3651 case LOC_OPTIMIZED_OUT:
3652 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3653 if (info == NULL)
3654 return ADA_NOT_RENAMING;
3655 switch (info[5])
3656 {
3657 case '_':
3658 kind = ADA_OBJECT_RENAMING;
3659 info += 6;
3660 break;
3661 case 'E':
3662 kind = ADA_EXCEPTION_RENAMING;
3663 info += 7;
3664 break;
3665 case 'P':
3666 kind = ADA_PACKAGE_RENAMING;
3667 info += 7;
3668 break;
3669 case 'S':
3670 kind = ADA_SUBPROGRAM_RENAMING;
3671 info += 7;
3672 break;
3673 default:
3674 return ADA_NOT_RENAMING;
3675 }
14f9c5c9 3676 }
4c4b4cd2 3677
aeb5907d
JB
3678 if (renamed_entity != NULL)
3679 *renamed_entity = info;
3680 suffix = strstr (info, "___XE");
3681 if (suffix == NULL || suffix == info)
3682 return ADA_NOT_RENAMING;
3683 if (len != NULL)
3684 *len = strlen (info) - strlen (suffix);
3685 suffix += 5;
3686 if (renaming_expr != NULL)
3687 *renaming_expr = suffix;
3688 return kind;
3689}
3690
3691/* Assuming TYPE encodes a renaming according to the old encoding in
3692 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3693 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3694 ADA_NOT_RENAMING otherwise. */
3695static enum ada_renaming_category
3696parse_old_style_renaming (struct type *type,
3697 const char **renamed_entity, int *len,
3698 const char **renaming_expr)
3699{
3700 enum ada_renaming_category kind;
3701 const char *name;
3702 const char *info;
3703 const char *suffix;
14f9c5c9 3704
aeb5907d
JB
3705 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3706 || TYPE_NFIELDS (type) != 1)
3707 return ADA_NOT_RENAMING;
14f9c5c9 3708
aeb5907d
JB
3709 name = type_name_no_tag (type);
3710 if (name == NULL)
3711 return ADA_NOT_RENAMING;
3712
3713 name = strstr (name, "___XR");
3714 if (name == NULL)
3715 return ADA_NOT_RENAMING;
3716 switch (name[5])
3717 {
3718 case '\0':
3719 case '_':
3720 kind = ADA_OBJECT_RENAMING;
3721 break;
3722 case 'E':
3723 kind = ADA_EXCEPTION_RENAMING;
3724 break;
3725 case 'P':
3726 kind = ADA_PACKAGE_RENAMING;
3727 break;
3728 case 'S':
3729 kind = ADA_SUBPROGRAM_RENAMING;
3730 break;
3731 default:
3732 return ADA_NOT_RENAMING;
3733 }
14f9c5c9 3734
aeb5907d
JB
3735 info = TYPE_FIELD_NAME (type, 0);
3736 if (info == NULL)
3737 return ADA_NOT_RENAMING;
3738 if (renamed_entity != NULL)
3739 *renamed_entity = info;
3740 suffix = strstr (info, "___XE");
3741 if (renaming_expr != NULL)
3742 *renaming_expr = suffix + 5;
3743 if (suffix == NULL || suffix == info)
3744 return ADA_NOT_RENAMING;
3745 if (len != NULL)
3746 *len = suffix - info;
3747 return kind;
3748}
52ce6436 3749
14f9c5c9 3750\f
d2e4a39e 3751
4c4b4cd2 3752 /* Evaluation: Function Calls */
14f9c5c9 3753
4c4b4cd2
PH
3754/* Return an lvalue containing the value VAL. This is the identity on
3755 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3756 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3757 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3758
d2e4a39e 3759static struct value *
4c4b4cd2 3760ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3761{
c3e5cd34
PH
3762 if (! VALUE_LVAL (val))
3763 {
df407dfe 3764 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3765
3766 /* The following is taken from the structure-return code in
3767 call_function_by_hand. FIXME: Therefore, some refactoring seems
3768 indicated. */
4d1e7dd1 3769 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34 3770 {
42ae5230 3771 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3772 reserving sufficient space. */
3773 *sp -= len;
3774 if (gdbarch_frame_align_p (current_gdbarch))
3775 *sp = gdbarch_frame_align (current_gdbarch, *sp);
42ae5230 3776 set_value_address (val, *sp);
c3e5cd34
PH
3777 }
3778 else
3779 {
3780 /* Stack grows upward. Align the frame, allocate space, and
3781 then again, re-align the frame. */
3782 if (gdbarch_frame_align_p (current_gdbarch))
3783 *sp = gdbarch_frame_align (current_gdbarch, *sp);
42ae5230 3784 set_value_address (val, *sp);
c3e5cd34
PH
3785 *sp += len;
3786 if (gdbarch_frame_align_p (current_gdbarch))
3787 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3788 }
a84a8a0d 3789 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3790
42ae5230 3791 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3792 }
14f9c5c9
AS
3793
3794 return val;
3795}
3796
3797/* Return the value ACTUAL, converted to be an appropriate value for a
3798 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3799 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3800 values not residing in memory, updating it as needed. */
14f9c5c9 3801
a93c0eb6
JB
3802struct value *
3803ada_convert_actual (struct value *actual, struct type *formal_type0,
3804 CORE_ADDR *sp)
14f9c5c9 3805{
df407dfe 3806 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3807 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3808 struct type *formal_target =
3809 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3810 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3811 struct type *actual_target =
3812 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3813 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3814
4c4b4cd2 3815 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3816 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3817 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3818 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3819 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3820 {
a84a8a0d 3821 struct value *result;
14f9c5c9 3822 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3823 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3824 result = desc_data (actual);
14f9c5c9 3825 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3826 {
3827 if (VALUE_LVAL (actual) != lval_memory)
3828 {
3829 struct value *val;
df407dfe 3830 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3831 val = allocate_value (actual_type);
990a07ab 3832 memcpy ((char *) value_contents_raw (val),
0fd88904 3833 (char *) value_contents (actual),
4c4b4cd2
PH
3834 TYPE_LENGTH (actual_type));
3835 actual = ensure_lval (val, sp);
3836 }
a84a8a0d 3837 result = value_addr (actual);
4c4b4cd2 3838 }
a84a8a0d
JB
3839 else
3840 return actual;
3841 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3842 }
3843 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3844 return ada_value_ind (actual);
3845
3846 return actual;
3847}
3848
3849
4c4b4cd2
PH
3850/* Push a descriptor of type TYPE for array value ARR on the stack at
3851 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3852 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3853 to-descriptor type rather than a descriptor type), a struct value *
3854 representing a pointer to this descriptor. */
14f9c5c9 3855
d2e4a39e
AS
3856static struct value *
3857make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3858{
d2e4a39e
AS
3859 struct type *bounds_type = desc_bounds_type (type);
3860 struct type *desc_type = desc_base_type (type);
3861 struct value *descriptor = allocate_value (desc_type);
3862 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3863 int i;
d2e4a39e 3864
df407dfe 3865 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3866 {
0fd88904 3867 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3868 value_as_long (ada_array_bound (arr, i, 0)),
3869 desc_bound_bitpos (bounds_type, i, 0),
3870 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3871 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3872 value_as_long (ada_array_bound (arr, i, 1)),
3873 desc_bound_bitpos (bounds_type, i, 1),
3874 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3875 }
d2e4a39e 3876
4c4b4cd2 3877 bounds = ensure_lval (bounds, sp);
d2e4a39e 3878
0fd88904 3879 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3880 value_address (ensure_lval (arr, sp)),
76a01679
JB
3881 fat_pntr_data_bitpos (desc_type),
3882 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3883
0fd88904 3884 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3885 value_address (bounds),
4c4b4cd2
PH
3886 fat_pntr_bounds_bitpos (desc_type),
3887 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3888
4c4b4cd2 3889 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3890
3891 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3892 return value_addr (descriptor);
3893 else
3894 return descriptor;
3895}
14f9c5c9 3896\f
963a6417
PH
3897/* Dummy definitions for an experimental caching module that is not
3898 * used in the public sources. */
96d887e8 3899
96d887e8
PH
3900static int
3901lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3902 struct symbol **sym, struct block **block)
96d887e8
PH
3903{
3904 return 0;
3905}
3906
3907static void
3908cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3909 struct block *block)
96d887e8
PH
3910{
3911}
4c4b4cd2
PH
3912\f
3913 /* Symbol Lookup */
3914
3915/* Return the result of a standard (literal, C-like) lookup of NAME in
3916 given DOMAIN, visible from lexical block BLOCK. */
3917
3918static struct symbol *
3919standard_lookup (const char *name, const struct block *block,
3920 domain_enum domain)
3921{
3922 struct symbol *sym;
4c4b4cd2 3923
2570f2b7 3924 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3925 return sym;
2570f2b7
UW
3926 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3927 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3928 return sym;
3929}
3930
3931
3932/* Non-zero iff there is at least one non-function/non-enumeral symbol
3933 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3934 since they contend in overloading in the same way. */
3935static int
3936is_nonfunction (struct ada_symbol_info syms[], int n)
3937{
3938 int i;
3939
3940 for (i = 0; i < n; i += 1)
3941 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3942 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3943 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3944 return 1;
3945
3946 return 0;
3947}
3948
3949/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3950 struct types. Otherwise, they may not. */
14f9c5c9
AS
3951
3952static int
d2e4a39e 3953equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3954{
d2e4a39e 3955 if (type0 == type1)
14f9c5c9 3956 return 1;
d2e4a39e 3957 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3958 || TYPE_CODE (type0) != TYPE_CODE (type1))
3959 return 0;
d2e4a39e 3960 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3961 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3962 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3963 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3964 return 1;
d2e4a39e 3965
14f9c5c9
AS
3966 return 0;
3967}
3968
3969/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3970 no more defined than that of SYM1. */
14f9c5c9
AS
3971
3972static int
d2e4a39e 3973lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3974{
3975 if (sym0 == sym1)
3976 return 1;
176620f1 3977 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3978 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3979 return 0;
3980
d2e4a39e 3981 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3982 {
3983 case LOC_UNDEF:
3984 return 1;
3985 case LOC_TYPEDEF:
3986 {
4c4b4cd2
PH
3987 struct type *type0 = SYMBOL_TYPE (sym0);
3988 struct type *type1 = SYMBOL_TYPE (sym1);
3989 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3990 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3991 int len0 = strlen (name0);
3992 return
3993 TYPE_CODE (type0) == TYPE_CODE (type1)
3994 && (equiv_types (type0, type1)
3995 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3996 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3997 }
3998 case LOC_CONST:
3999 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4000 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4001 default:
4002 return 0;
14f9c5c9
AS
4003 }
4004}
4005
4c4b4cd2
PH
4006/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4007 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4008
4009static void
76a01679
JB
4010add_defn_to_vec (struct obstack *obstackp,
4011 struct symbol *sym,
2570f2b7 4012 struct block *block)
14f9c5c9
AS
4013{
4014 int i;
4015 size_t tmp;
4c4b4cd2 4016 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4017
529cad9c
PH
4018 /* Do not try to complete stub types, as the debugger is probably
4019 already scanning all symbols matching a certain name at the
4020 time when this function is called. Trying to replace the stub
4021 type by its associated full type will cause us to restart a scan
4022 which may lead to an infinite recursion. Instead, the client
4023 collecting the matching symbols will end up collecting several
4024 matches, with at least one of them complete. It can then filter
4025 out the stub ones if needed. */
4026
4c4b4cd2
PH
4027 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4028 {
4029 if (lesseq_defined_than (sym, prevDefns[i].sym))
4030 return;
4031 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4032 {
4033 prevDefns[i].sym = sym;
4034 prevDefns[i].block = block;
4c4b4cd2 4035 return;
76a01679 4036 }
4c4b4cd2
PH
4037 }
4038
4039 {
4040 struct ada_symbol_info info;
4041
4042 info.sym = sym;
4043 info.block = block;
4c4b4cd2
PH
4044 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4045 }
4046}
4047
4048/* Number of ada_symbol_info structures currently collected in
4049 current vector in *OBSTACKP. */
4050
76a01679
JB
4051static int
4052num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4053{
4054 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4055}
4056
4057/* Vector of ada_symbol_info structures currently collected in current
4058 vector in *OBSTACKP. If FINISH, close off the vector and return
4059 its final address. */
4060
76a01679 4061static struct ada_symbol_info *
4c4b4cd2
PH
4062defns_collected (struct obstack *obstackp, int finish)
4063{
4064 if (finish)
4065 return obstack_finish (obstackp);
4066 else
4067 return (struct ada_symbol_info *) obstack_base (obstackp);
4068}
4069
96d887e8
PH
4070/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4071 Check the global symbols if GLOBAL, the static symbols if not.
4072 Do wild-card match if WILD. */
4c4b4cd2 4073
96d887e8
PH
4074static struct partial_symbol *
4075ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4076 int global, domain_enum namespace, int wild)
4c4b4cd2 4077{
96d887e8
PH
4078 struct partial_symbol **start;
4079 int name_len = strlen (name);
4080 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4081 int i;
4c4b4cd2 4082
96d887e8 4083 if (length == 0)
4c4b4cd2 4084 {
96d887e8 4085 return (NULL);
4c4b4cd2
PH
4086 }
4087
96d887e8
PH
4088 start = (global ?
4089 pst->objfile->global_psymbols.list + pst->globals_offset :
4090 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4091
96d887e8 4092 if (wild)
4c4b4cd2 4093 {
96d887e8
PH
4094 for (i = 0; i < length; i += 1)
4095 {
4096 struct partial_symbol *psym = start[i];
4c4b4cd2 4097
5eeb2539
AR
4098 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4099 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4100 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4101 return psym;
4102 }
4103 return NULL;
4c4b4cd2 4104 }
96d887e8
PH
4105 else
4106 {
4107 if (global)
4108 {
4109 int U;
4110 i = 0;
4111 U = length - 1;
4112 while (U - i > 4)
4113 {
4114 int M = (U + i) >> 1;
4115 struct partial_symbol *psym = start[M];
4116 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4117 i = M + 1;
4118 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4119 U = M - 1;
4120 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4121 i = M + 1;
4122 else
4123 U = M;
4124 }
4125 }
4126 else
4127 i = 0;
4c4b4cd2 4128
96d887e8
PH
4129 while (i < length)
4130 {
4131 struct partial_symbol *psym = start[i];
4c4b4cd2 4132
5eeb2539
AR
4133 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4134 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4135 {
4136 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4137
96d887e8
PH
4138 if (cmp < 0)
4139 {
4140 if (global)
4141 break;
4142 }
4143 else if (cmp == 0
4144 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4145 + name_len))
96d887e8
PH
4146 return psym;
4147 }
4148 i += 1;
4149 }
4c4b4cd2 4150
96d887e8
PH
4151 if (global)
4152 {
4153 int U;
4154 i = 0;
4155 U = length - 1;
4156 while (U - i > 4)
4157 {
4158 int M = (U + i) >> 1;
4159 struct partial_symbol *psym = start[M];
4160 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4161 i = M + 1;
4162 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4163 U = M - 1;
4164 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4165 i = M + 1;
4166 else
4167 U = M;
4168 }
4169 }
4170 else
4171 i = 0;
4c4b4cd2 4172
96d887e8
PH
4173 while (i < length)
4174 {
4175 struct partial_symbol *psym = start[i];
4c4b4cd2 4176
5eeb2539
AR
4177 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4178 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4179 {
4180 int cmp;
4c4b4cd2 4181
96d887e8
PH
4182 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4183 if (cmp == 0)
4184 {
4185 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4186 if (cmp == 0)
4187 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4188 name_len);
96d887e8 4189 }
4c4b4cd2 4190
96d887e8
PH
4191 if (cmp < 0)
4192 {
4193 if (global)
4194 break;
4195 }
4196 else if (cmp == 0
4197 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4198 + name_len + 5))
96d887e8
PH
4199 return psym;
4200 }
4201 i += 1;
4202 }
4203 }
4204 return NULL;
4c4b4cd2
PH
4205}
4206
96d887e8
PH
4207/* Return a minimal symbol matching NAME according to Ada decoding
4208 rules. Returns NULL if there is no such minimal symbol. Names
4209 prefixed with "standard__" are handled specially: "standard__" is
4210 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4211
96d887e8
PH
4212struct minimal_symbol *
4213ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4214{
4c4b4cd2 4215 struct objfile *objfile;
96d887e8
PH
4216 struct minimal_symbol *msymbol;
4217 int wild_match;
4c4b4cd2 4218
96d887e8 4219 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4220 {
96d887e8 4221 name += sizeof ("standard__") - 1;
4c4b4cd2 4222 wild_match = 0;
4c4b4cd2
PH
4223 }
4224 else
96d887e8 4225 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4226
96d887e8
PH
4227 ALL_MSYMBOLS (objfile, msymbol)
4228 {
4229 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4230 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4231 return msymbol;
4232 }
4c4b4cd2 4233
96d887e8
PH
4234 return NULL;
4235}
4c4b4cd2 4236
96d887e8
PH
4237/* For all subprograms that statically enclose the subprogram of the
4238 selected frame, add symbols matching identifier NAME in DOMAIN
4239 and their blocks to the list of data in OBSTACKP, as for
4240 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4241 wildcard prefix. */
4c4b4cd2 4242
96d887e8
PH
4243static void
4244add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4245 const char *name, domain_enum namespace,
96d887e8
PH
4246 int wild_match)
4247{
96d887e8 4248}
14f9c5c9 4249
96d887e8
PH
4250/* True if TYPE is definitely an artificial type supplied to a symbol
4251 for which no debugging information was given in the symbol file. */
14f9c5c9 4252
96d887e8
PH
4253static int
4254is_nondebugging_type (struct type *type)
4255{
4256 char *name = ada_type_name (type);
4257 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4258}
4c4b4cd2 4259
96d887e8
PH
4260/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4261 duplicate other symbols in the list (The only case I know of where
4262 this happens is when object files containing stabs-in-ecoff are
4263 linked with files containing ordinary ecoff debugging symbols (or no
4264 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4265 Returns the number of items in the modified list. */
4c4b4cd2 4266
96d887e8
PH
4267static int
4268remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4269{
4270 int i, j;
4c4b4cd2 4271
96d887e8
PH
4272 i = 0;
4273 while (i < nsyms)
4274 {
339c13b6
JB
4275 int remove = 0;
4276
4277 /* If two symbols have the same name and one of them is a stub type,
4278 the get rid of the stub. */
4279
4280 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4281 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4282 {
4283 for (j = 0; j < nsyms; j++)
4284 {
4285 if (j != i
4286 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4287 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4288 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4289 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4290 remove = 1;
4291 }
4292 }
4293
4294 /* Two symbols with the same name, same class and same address
4295 should be identical. */
4296
4297 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4298 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4299 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4300 {
4301 for (j = 0; j < nsyms; j += 1)
4302 {
4303 if (i != j
4304 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4305 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4306 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4307 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4308 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4309 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4310 remove = 1;
4c4b4cd2 4311 }
4c4b4cd2 4312 }
339c13b6
JB
4313
4314 if (remove)
4315 {
4316 for (j = i + 1; j < nsyms; j += 1)
4317 syms[j - 1] = syms[j];
4318 nsyms -= 1;
4319 }
4320
96d887e8 4321 i += 1;
14f9c5c9 4322 }
96d887e8 4323 return nsyms;
14f9c5c9
AS
4324}
4325
96d887e8
PH
4326/* Given a type that corresponds to a renaming entity, use the type name
4327 to extract the scope (package name or function name, fully qualified,
4328 and following the GNAT encoding convention) where this renaming has been
4329 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4330
96d887e8
PH
4331static char *
4332xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4333{
96d887e8
PH
4334 /* The renaming types adhere to the following convention:
4335 <scope>__<rename>___<XR extension>.
4336 So, to extract the scope, we search for the "___XR" extension,
4337 and then backtrack until we find the first "__". */
76a01679 4338
96d887e8
PH
4339 const char *name = type_name_no_tag (renaming_type);
4340 char *suffix = strstr (name, "___XR");
4341 char *last;
4342 int scope_len;
4343 char *scope;
14f9c5c9 4344
96d887e8
PH
4345 /* Now, backtrack a bit until we find the first "__". Start looking
4346 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4347
96d887e8
PH
4348 for (last = suffix - 3; last > name; last--)
4349 if (last[0] == '_' && last[1] == '_')
4350 break;
76a01679 4351
96d887e8 4352 /* Make a copy of scope and return it. */
14f9c5c9 4353
96d887e8
PH
4354 scope_len = last - name;
4355 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4356
96d887e8
PH
4357 strncpy (scope, name, scope_len);
4358 scope[scope_len] = '\0';
4c4b4cd2 4359
96d887e8 4360 return scope;
4c4b4cd2
PH
4361}
4362
96d887e8 4363/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4364
96d887e8
PH
4365static int
4366is_package_name (const char *name)
4c4b4cd2 4367{
96d887e8
PH
4368 /* Here, We take advantage of the fact that no symbols are generated
4369 for packages, while symbols are generated for each function.
4370 So the condition for NAME represent a package becomes equivalent
4371 to NAME not existing in our list of symbols. There is only one
4372 small complication with library-level functions (see below). */
4c4b4cd2 4373
96d887e8 4374 char *fun_name;
76a01679 4375
96d887e8
PH
4376 /* If it is a function that has not been defined at library level,
4377 then we should be able to look it up in the symbols. */
4378 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4379 return 0;
14f9c5c9 4380
96d887e8
PH
4381 /* Library-level function names start with "_ada_". See if function
4382 "_ada_" followed by NAME can be found. */
14f9c5c9 4383
96d887e8 4384 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4385 functions names cannot contain "__" in them. */
96d887e8
PH
4386 if (strstr (name, "__") != NULL)
4387 return 0;
4c4b4cd2 4388
b435e160 4389 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4390
96d887e8
PH
4391 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4392}
14f9c5c9 4393
96d887e8 4394/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4395 not visible from FUNCTION_NAME. */
14f9c5c9 4396
96d887e8 4397static int
aeb5907d 4398old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4399{
aeb5907d
JB
4400 char *scope;
4401
4402 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4403 return 0;
4404
4405 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4406
96d887e8 4407 make_cleanup (xfree, scope);
14f9c5c9 4408
96d887e8
PH
4409 /* If the rename has been defined in a package, then it is visible. */
4410 if (is_package_name (scope))
aeb5907d 4411 return 0;
14f9c5c9 4412
96d887e8
PH
4413 /* Check that the rename is in the current function scope by checking
4414 that its name starts with SCOPE. */
76a01679 4415
96d887e8
PH
4416 /* If the function name starts with "_ada_", it means that it is
4417 a library-level function. Strip this prefix before doing the
4418 comparison, as the encoding for the renaming does not contain
4419 this prefix. */
4420 if (strncmp (function_name, "_ada_", 5) == 0)
4421 function_name += 5;
f26caa11 4422
aeb5907d 4423 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4424}
4425
aeb5907d
JB
4426/* Remove entries from SYMS that corresponds to a renaming entity that
4427 is not visible from the function associated with CURRENT_BLOCK or
4428 that is superfluous due to the presence of more specific renaming
4429 information. Places surviving symbols in the initial entries of
4430 SYMS and returns the number of surviving symbols.
96d887e8
PH
4431
4432 Rationale:
aeb5907d
JB
4433 First, in cases where an object renaming is implemented as a
4434 reference variable, GNAT may produce both the actual reference
4435 variable and the renaming encoding. In this case, we discard the
4436 latter.
4437
4438 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4439 entity. Unfortunately, STABS currently does not support the definition
4440 of types that are local to a given lexical block, so all renamings types
4441 are emitted at library level. As a consequence, if an application
4442 contains two renaming entities using the same name, and a user tries to
4443 print the value of one of these entities, the result of the ada symbol
4444 lookup will also contain the wrong renaming type.
f26caa11 4445
96d887e8
PH
4446 This function partially covers for this limitation by attempting to
4447 remove from the SYMS list renaming symbols that should be visible
4448 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4449 method with the current information available. The implementation
4450 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4451
4452 - When the user tries to print a rename in a function while there
4453 is another rename entity defined in a package: Normally, the
4454 rename in the function has precedence over the rename in the
4455 package, so the latter should be removed from the list. This is
4456 currently not the case.
4457
4458 - This function will incorrectly remove valid renames if
4459 the CURRENT_BLOCK corresponds to a function which symbol name
4460 has been changed by an "Export" pragma. As a consequence,
4461 the user will be unable to print such rename entities. */
4c4b4cd2 4462
14f9c5c9 4463static int
aeb5907d
JB
4464remove_irrelevant_renamings (struct ada_symbol_info *syms,
4465 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4466{
4467 struct symbol *current_function;
4468 char *current_function_name;
4469 int i;
aeb5907d
JB
4470 int is_new_style_renaming;
4471
4472 /* If there is both a renaming foo___XR... encoded as a variable and
4473 a simple variable foo in the same block, discard the latter.
4474 First, zero out such symbols, then compress. */
4475 is_new_style_renaming = 0;
4476 for (i = 0; i < nsyms; i += 1)
4477 {
4478 struct symbol *sym = syms[i].sym;
4479 struct block *block = syms[i].block;
4480 const char *name;
4481 const char *suffix;
4482
4483 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4484 continue;
4485 name = SYMBOL_LINKAGE_NAME (sym);
4486 suffix = strstr (name, "___XR");
4487
4488 if (suffix != NULL)
4489 {
4490 int name_len = suffix - name;
4491 int j;
4492 is_new_style_renaming = 1;
4493 for (j = 0; j < nsyms; j += 1)
4494 if (i != j && syms[j].sym != NULL
4495 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4496 name_len) == 0
4497 && block == syms[j].block)
4498 syms[j].sym = NULL;
4499 }
4500 }
4501 if (is_new_style_renaming)
4502 {
4503 int j, k;
4504
4505 for (j = k = 0; j < nsyms; j += 1)
4506 if (syms[j].sym != NULL)
4507 {
4508 syms[k] = syms[j];
4509 k += 1;
4510 }
4511 return k;
4512 }
4c4b4cd2
PH
4513
4514 /* Extract the function name associated to CURRENT_BLOCK.
4515 Abort if unable to do so. */
76a01679 4516
4c4b4cd2
PH
4517 if (current_block == NULL)
4518 return nsyms;
76a01679 4519
7f0df278 4520 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4521 if (current_function == NULL)
4522 return nsyms;
4523
4524 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4525 if (current_function_name == NULL)
4526 return nsyms;
4527
4528 /* Check each of the symbols, and remove it from the list if it is
4529 a type corresponding to a renaming that is out of the scope of
4530 the current block. */
4531
4532 i = 0;
4533 while (i < nsyms)
4534 {
aeb5907d
JB
4535 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4536 == ADA_OBJECT_RENAMING
4537 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4538 {
4539 int j;
aeb5907d 4540 for (j = i + 1; j < nsyms; j += 1)
76a01679 4541 syms[j - 1] = syms[j];
4c4b4cd2
PH
4542 nsyms -= 1;
4543 }
4544 else
4545 i += 1;
4546 }
4547
4548 return nsyms;
4549}
4550
339c13b6
JB
4551/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4552 whose name and domain match NAME and DOMAIN respectively.
4553 If no match was found, then extend the search to "enclosing"
4554 routines (in other words, if we're inside a nested function,
4555 search the symbols defined inside the enclosing functions).
4556
4557 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4558
4559static void
4560ada_add_local_symbols (struct obstack *obstackp, const char *name,
4561 struct block *block, domain_enum domain,
4562 int wild_match)
4563{
4564 int block_depth = 0;
4565
4566 while (block != NULL)
4567 {
4568 block_depth += 1;
4569 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4570
4571 /* If we found a non-function match, assume that's the one. */
4572 if (is_nonfunction (defns_collected (obstackp, 0),
4573 num_defns_collected (obstackp)))
4574 return;
4575
4576 block = BLOCK_SUPERBLOCK (block);
4577 }
4578
4579 /* If no luck so far, try to find NAME as a local symbol in some lexically
4580 enclosing subprogram. */
4581 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4582 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4583}
4584
4585/* Add to OBSTACKP all non-local symbols whose name and domain match
4586 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4587 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4588
4589static void
4590ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4591 domain_enum domain, int global,
4592 int wild_match)
4593{
4594 struct objfile *objfile;
4595 struct partial_symtab *ps;
4596
4597 ALL_PSYMTABS (objfile, ps)
4598 {
4599 QUIT;
4600 if (ps->readin
4601 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4602 {
4603 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4604 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4605
4606 if (s == NULL || !s->primary)
4607 continue;
4608 ada_add_block_symbols (obstackp,
4609 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4610 name, domain, objfile, wild_match);
4611 }
4612 }
4613}
4614
4c4b4cd2
PH
4615/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4616 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4617 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4618 indicating the symbols found and the blocks and symbol tables (if
4619 any) in which they were found. This vector are transient---good only to
4620 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4621 symbol match within the nest of blocks whose innermost member is BLOCK0,
4622 is the one match returned (no other matches in that or
4623 enclosing blocks is returned). If there are any matches in or
4624 surrounding BLOCK0, then these alone are returned. Otherwise, the
4625 search extends to global and file-scope (static) symbol tables.
4626 Names prefixed with "standard__" are handled specially: "standard__"
4627 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4628
4629int
4c4b4cd2 4630ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4631 domain_enum namespace,
4632 struct ada_symbol_info **results)
14f9c5c9
AS
4633{
4634 struct symbol *sym;
14f9c5c9 4635 struct block *block;
4c4b4cd2 4636 const char *name;
4c4b4cd2 4637 int wild_match;
14f9c5c9 4638 int cacheIfUnique;
4c4b4cd2 4639 int ndefns;
14f9c5c9 4640
4c4b4cd2
PH
4641 obstack_free (&symbol_list_obstack, NULL);
4642 obstack_init (&symbol_list_obstack);
14f9c5c9 4643
14f9c5c9
AS
4644 cacheIfUnique = 0;
4645
4646 /* Search specified block and its superiors. */
4647
4c4b4cd2
PH
4648 wild_match = (strstr (name0, "__") == NULL);
4649 name = name0;
76a01679
JB
4650 block = (struct block *) block0; /* FIXME: No cast ought to be
4651 needed, but adding const will
4652 have a cascade effect. */
339c13b6
JB
4653
4654 /* Special case: If the user specifies a symbol name inside package
4655 Standard, do a non-wild matching of the symbol name without
4656 the "standard__" prefix. This was primarily introduced in order
4657 to allow the user to specifically access the standard exceptions
4658 using, for instance, Standard.Constraint_Error when Constraint_Error
4659 is ambiguous (due to the user defining its own Constraint_Error
4660 entity inside its program). */
4c4b4cd2
PH
4661 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4662 {
4663 wild_match = 0;
4664 block = NULL;
4665 name = name0 + sizeof ("standard__") - 1;
4666 }
4667
339c13b6 4668 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4669
339c13b6
JB
4670 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4671 wild_match);
4c4b4cd2 4672 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4673 goto done;
d2e4a39e 4674
339c13b6
JB
4675 /* No non-global symbols found. Check our cache to see if we have
4676 already performed this search before. If we have, then return
4677 the same result. */
4678
14f9c5c9 4679 cacheIfUnique = 1;
2570f2b7 4680 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4681 {
4682 if (sym != NULL)
2570f2b7 4683 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4684 goto done;
4685 }
14f9c5c9 4686
339c13b6
JB
4687 /* Search symbols from all global blocks. */
4688
4689 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4690 wild_match);
d2e4a39e 4691
4c4b4cd2 4692 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4693 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4694
4c4b4cd2 4695 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4696 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4697 wild_match);
14f9c5c9 4698
4c4b4cd2
PH
4699done:
4700 ndefns = num_defns_collected (&symbol_list_obstack);
4701 *results = defns_collected (&symbol_list_obstack, 1);
4702
4703 ndefns = remove_extra_symbols (*results, ndefns);
4704
d2e4a39e 4705 if (ndefns == 0)
2570f2b7 4706 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4707
4c4b4cd2 4708 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4709 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4710
aeb5907d 4711 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4712
14f9c5c9
AS
4713 return ndefns;
4714}
4715
d2e4a39e 4716struct symbol *
aeb5907d 4717ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4718 domain_enum namespace, struct block **block_found)
14f9c5c9 4719{
4c4b4cd2 4720 struct ada_symbol_info *candidates;
14f9c5c9
AS
4721 int n_candidates;
4722
aeb5907d 4723 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4724
4725 if (n_candidates == 0)
4726 return NULL;
4c4b4cd2 4727
aeb5907d
JB
4728 if (block_found != NULL)
4729 *block_found = candidates[0].block;
4c4b4cd2 4730
21b556f4 4731 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4732}
4733
4734/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4735 scope and in global scopes, or NULL if none. NAME is folded and
4736 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4737 choosing the first symbol if there are multiple choices.
4738 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4739 table in which the symbol was found (in both cases, these
4740 assignments occur only if the pointers are non-null). */
4741struct symbol *
4742ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4743 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4744{
4745 if (is_a_field_of_this != NULL)
4746 *is_a_field_of_this = 0;
4747
4748 return
4749 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4750 block0, namespace, NULL);
4c4b4cd2 4751}
14f9c5c9 4752
4c4b4cd2
PH
4753static struct symbol *
4754ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4755 const char *linkage_name,
4756 const struct block *block,
21b556f4 4757 const domain_enum domain)
4c4b4cd2
PH
4758{
4759 if (linkage_name == NULL)
4760 linkage_name = name;
76a01679 4761 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4762 NULL);
14f9c5c9
AS
4763}
4764
4765
4c4b4cd2
PH
4766/* True iff STR is a possible encoded suffix of a normal Ada name
4767 that is to be ignored for matching purposes. Suffixes of parallel
4768 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4769 are given by any of the regular expressions:
4c4b4cd2 4770
babe1480
JB
4771 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4772 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4773 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4774 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4775
4776 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4777 match is performed. This sequence is used to differentiate homonyms,
4778 is an optional part of a valid name suffix. */
4c4b4cd2 4779
14f9c5c9 4780static int
d2e4a39e 4781is_name_suffix (const char *str)
14f9c5c9
AS
4782{
4783 int k;
4c4b4cd2
PH
4784 const char *matching;
4785 const int len = strlen (str);
4786
babe1480
JB
4787 /* Skip optional leading __[0-9]+. */
4788
4c4b4cd2
PH
4789 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4790 {
babe1480
JB
4791 str += 3;
4792 while (isdigit (str[0]))
4793 str += 1;
4c4b4cd2 4794 }
babe1480
JB
4795
4796 /* [.$][0-9]+ */
4c4b4cd2 4797
babe1480 4798 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4799 {
babe1480 4800 matching = str + 1;
4c4b4cd2
PH
4801 while (isdigit (matching[0]))
4802 matching += 1;
4803 if (matching[0] == '\0')
4804 return 1;
4805 }
4806
4807 /* ___[0-9]+ */
babe1480 4808
4c4b4cd2
PH
4809 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4810 {
4811 matching = str + 3;
4812 while (isdigit (matching[0]))
4813 matching += 1;
4814 if (matching[0] == '\0')
4815 return 1;
4816 }
4817
529cad9c
PH
4818#if 0
4819 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4820 with a N at the end. Unfortunately, the compiler uses the same
4821 convention for other internal types it creates. So treating
4822 all entity names that end with an "N" as a name suffix causes
4823 some regressions. For instance, consider the case of an enumerated
4824 type. To support the 'Image attribute, it creates an array whose
4825 name ends with N.
4826 Having a single character like this as a suffix carrying some
4827 information is a bit risky. Perhaps we should change the encoding
4828 to be something like "_N" instead. In the meantime, do not do
4829 the following check. */
4830 /* Protected Object Subprograms */
4831 if (len == 1 && str [0] == 'N')
4832 return 1;
4833#endif
4834
4835 /* _E[0-9]+[bs]$ */
4836 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4837 {
4838 matching = str + 3;
4839 while (isdigit (matching[0]))
4840 matching += 1;
4841 if ((matching[0] == 'b' || matching[0] == 's')
4842 && matching [1] == '\0')
4843 return 1;
4844 }
4845
4c4b4cd2
PH
4846 /* ??? We should not modify STR directly, as we are doing below. This
4847 is fine in this case, but may become problematic later if we find
4848 that this alternative did not work, and want to try matching
4849 another one from the begining of STR. Since we modified it, we
4850 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4851 if (str[0] == 'X')
4852 {
4853 str += 1;
d2e4a39e 4854 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4855 {
4856 if (str[0] != 'n' && str[0] != 'b')
4857 return 0;
4858 str += 1;
4859 }
14f9c5c9 4860 }
babe1480 4861
14f9c5c9
AS
4862 if (str[0] == '\000')
4863 return 1;
babe1480 4864
d2e4a39e 4865 if (str[0] == '_')
14f9c5c9
AS
4866 {
4867 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4868 return 0;
d2e4a39e 4869 if (str[2] == '_')
4c4b4cd2 4870 {
61ee279c
PH
4871 if (strcmp (str + 3, "JM") == 0)
4872 return 1;
4873 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4874 the LJM suffix in favor of the JM one. But we will
4875 still accept LJM as a valid suffix for a reasonable
4876 amount of time, just to allow ourselves to debug programs
4877 compiled using an older version of GNAT. */
4c4b4cd2
PH
4878 if (strcmp (str + 3, "LJM") == 0)
4879 return 1;
4880 if (str[3] != 'X')
4881 return 0;
1265e4aa
JB
4882 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4883 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4884 return 1;
4885 if (str[4] == 'R' && str[5] != 'T')
4886 return 1;
4887 return 0;
4888 }
4889 if (!isdigit (str[2]))
4890 return 0;
4891 for (k = 3; str[k] != '\0'; k += 1)
4892 if (!isdigit (str[k]) && str[k] != '_')
4893 return 0;
14f9c5c9
AS
4894 return 1;
4895 }
4c4b4cd2 4896 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4897 {
4c4b4cd2
PH
4898 for (k = 2; str[k] != '\0'; k += 1)
4899 if (!isdigit (str[k]) && str[k] != '_')
4900 return 0;
14f9c5c9
AS
4901 return 1;
4902 }
4903 return 0;
4904}
d2e4a39e 4905
aeb5907d
JB
4906/* Return non-zero if the string starting at NAME and ending before
4907 NAME_END contains no capital letters. */
529cad9c
PH
4908
4909static int
4910is_valid_name_for_wild_match (const char *name0)
4911{
4912 const char *decoded_name = ada_decode (name0);
4913 int i;
4914
5823c3ef
JB
4915 /* If the decoded name starts with an angle bracket, it means that
4916 NAME0 does not follow the GNAT encoding format. It should then
4917 not be allowed as a possible wild match. */
4918 if (decoded_name[0] == '<')
4919 return 0;
4920
529cad9c
PH
4921 for (i=0; decoded_name[i] != '\0'; i++)
4922 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4923 return 0;
4924
4925 return 1;
4926}
4927
4c4b4cd2
PH
4928/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4929 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4930 informational suffixes of NAME (i.e., for which is_name_suffix is
4931 true). */
4932
14f9c5c9 4933static int
4c4b4cd2 4934wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4935{
5823c3ef
JB
4936 char* match;
4937 const char* start;
4938 start = name0;
4939 while (1)
14f9c5c9 4940 {
5823c3ef
JB
4941 match = strstr (start, patn0);
4942 if (match == NULL)
4943 return 0;
4944 if ((match == name0
4945 || match[-1] == '.'
4946 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4947 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4948 && is_name_suffix (match + patn_len))
4949 return (match == name0 || is_valid_name_for_wild_match (name0));
4950 start = match + 1;
96d887e8 4951 }
96d887e8
PH
4952}
4953
96d887e8
PH
4954/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4955 vector *defn_symbols, updating the list of symbols in OBSTACKP
4956 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4957 OBJFILE is the section containing BLOCK.
4958 SYMTAB is recorded with each symbol added. */
4959
4960static void
4961ada_add_block_symbols (struct obstack *obstackp,
76a01679 4962 struct block *block, const char *name,
96d887e8 4963 domain_enum domain, struct objfile *objfile,
2570f2b7 4964 int wild)
96d887e8
PH
4965{
4966 struct dict_iterator iter;
4967 int name_len = strlen (name);
4968 /* A matching argument symbol, if any. */
4969 struct symbol *arg_sym;
4970 /* Set true when we find a matching non-argument symbol. */
4971 int found_sym;
4972 struct symbol *sym;
4973
4974 arg_sym = NULL;
4975 found_sym = 0;
4976 if (wild)
4977 {
4978 struct symbol *sym;
4979 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4980 {
5eeb2539
AR
4981 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4982 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4983 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4984 {
2a2d4dc3
AS
4985 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4986 continue;
4987 else if (SYMBOL_IS_ARGUMENT (sym))
4988 arg_sym = sym;
4989 else
4990 {
76a01679
JB
4991 found_sym = 1;
4992 add_defn_to_vec (obstackp,
4993 fixup_symbol_section (sym, objfile),
2570f2b7 4994 block);
76a01679
JB
4995 }
4996 }
4997 }
96d887e8
PH
4998 }
4999 else
5000 {
5001 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5002 {
5eeb2539
AR
5003 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5004 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5005 {
5006 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5007 if (cmp == 0
5008 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5009 {
2a2d4dc3
AS
5010 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5011 {
5012 if (SYMBOL_IS_ARGUMENT (sym))
5013 arg_sym = sym;
5014 else
5015 {
5016 found_sym = 1;
5017 add_defn_to_vec (obstackp,
5018 fixup_symbol_section (sym, objfile),
5019 block);
5020 }
5021 }
76a01679
JB
5022 }
5023 }
5024 }
96d887e8
PH
5025 }
5026
5027 if (!found_sym && arg_sym != NULL)
5028 {
76a01679
JB
5029 add_defn_to_vec (obstackp,
5030 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5031 block);
96d887e8
PH
5032 }
5033
5034 if (!wild)
5035 {
5036 arg_sym = NULL;
5037 found_sym = 0;
5038
5039 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5040 {
5eeb2539
AR
5041 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5042 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5043 {
5044 int cmp;
5045
5046 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5047 if (cmp == 0)
5048 {
5049 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5050 if (cmp == 0)
5051 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5052 name_len);
5053 }
5054
5055 if (cmp == 0
5056 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5057 {
2a2d4dc3
AS
5058 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5059 {
5060 if (SYMBOL_IS_ARGUMENT (sym))
5061 arg_sym = sym;
5062 else
5063 {
5064 found_sym = 1;
5065 add_defn_to_vec (obstackp,
5066 fixup_symbol_section (sym, objfile),
5067 block);
5068 }
5069 }
76a01679
JB
5070 }
5071 }
76a01679 5072 }
96d887e8
PH
5073
5074 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5075 They aren't parameters, right? */
5076 if (!found_sym && arg_sym != NULL)
5077 {
5078 add_defn_to_vec (obstackp,
76a01679 5079 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5080 block);
96d887e8
PH
5081 }
5082 }
5083}
5084\f
41d27058
JB
5085
5086 /* Symbol Completion */
5087
5088/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5089 name in a form that's appropriate for the completion. The result
5090 does not need to be deallocated, but is only good until the next call.
5091
5092 TEXT_LEN is equal to the length of TEXT.
5093 Perform a wild match if WILD_MATCH is set.
5094 ENCODED should be set if TEXT represents the start of a symbol name
5095 in its encoded form. */
5096
5097static const char *
5098symbol_completion_match (const char *sym_name,
5099 const char *text, int text_len,
5100 int wild_match, int encoded)
5101{
5102 char *result;
5103 const int verbatim_match = (text[0] == '<');
5104 int match = 0;
5105
5106 if (verbatim_match)
5107 {
5108 /* Strip the leading angle bracket. */
5109 text = text + 1;
5110 text_len--;
5111 }
5112
5113 /* First, test against the fully qualified name of the symbol. */
5114
5115 if (strncmp (sym_name, text, text_len) == 0)
5116 match = 1;
5117
5118 if (match && !encoded)
5119 {
5120 /* One needed check before declaring a positive match is to verify
5121 that iff we are doing a verbatim match, the decoded version
5122 of the symbol name starts with '<'. Otherwise, this symbol name
5123 is not a suitable completion. */
5124 const char *sym_name_copy = sym_name;
5125 int has_angle_bracket;
5126
5127 sym_name = ada_decode (sym_name);
5128 has_angle_bracket = (sym_name[0] == '<');
5129 match = (has_angle_bracket == verbatim_match);
5130 sym_name = sym_name_copy;
5131 }
5132
5133 if (match && !verbatim_match)
5134 {
5135 /* When doing non-verbatim match, another check that needs to
5136 be done is to verify that the potentially matching symbol name
5137 does not include capital letters, because the ada-mode would
5138 not be able to understand these symbol names without the
5139 angle bracket notation. */
5140 const char *tmp;
5141
5142 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5143 if (*tmp != '\0')
5144 match = 0;
5145 }
5146
5147 /* Second: Try wild matching... */
5148
5149 if (!match && wild_match)
5150 {
5151 /* Since we are doing wild matching, this means that TEXT
5152 may represent an unqualified symbol name. We therefore must
5153 also compare TEXT against the unqualified name of the symbol. */
5154 sym_name = ada_unqualified_name (ada_decode (sym_name));
5155
5156 if (strncmp (sym_name, text, text_len) == 0)
5157 match = 1;
5158 }
5159
5160 /* Finally: If we found a mach, prepare the result to return. */
5161
5162 if (!match)
5163 return NULL;
5164
5165 if (verbatim_match)
5166 sym_name = add_angle_brackets (sym_name);
5167
5168 if (!encoded)
5169 sym_name = ada_decode (sym_name);
5170
5171 return sym_name;
5172}
5173
2ba95b9b
JB
5174typedef char *char_ptr;
5175DEF_VEC_P (char_ptr);
5176
41d27058
JB
5177/* A companion function to ada_make_symbol_completion_list().
5178 Check if SYM_NAME represents a symbol which name would be suitable
5179 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5180 it is appended at the end of the given string vector SV.
5181
5182 ORIG_TEXT is the string original string from the user command
5183 that needs to be completed. WORD is the entire command on which
5184 completion should be performed. These two parameters are used to
5185 determine which part of the symbol name should be added to the
5186 completion vector.
5187 if WILD_MATCH is set, then wild matching is performed.
5188 ENCODED should be set if TEXT represents a symbol name in its
5189 encoded formed (in which case the completion should also be
5190 encoded). */
5191
5192static void
d6565258 5193symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5194 const char *sym_name,
5195 const char *text, int text_len,
5196 const char *orig_text, const char *word,
5197 int wild_match, int encoded)
5198{
5199 const char *match = symbol_completion_match (sym_name, text, text_len,
5200 wild_match, encoded);
5201 char *completion;
5202
5203 if (match == NULL)
5204 return;
5205
5206 /* We found a match, so add the appropriate completion to the given
5207 string vector. */
5208
5209 if (word == orig_text)
5210 {
5211 completion = xmalloc (strlen (match) + 5);
5212 strcpy (completion, match);
5213 }
5214 else if (word > orig_text)
5215 {
5216 /* Return some portion of sym_name. */
5217 completion = xmalloc (strlen (match) + 5);
5218 strcpy (completion, match + (word - orig_text));
5219 }
5220 else
5221 {
5222 /* Return some of ORIG_TEXT plus sym_name. */
5223 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5224 strncpy (completion, word, orig_text - word);
5225 completion[orig_text - word] = '\0';
5226 strcat (completion, match);
5227 }
5228
d6565258 5229 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5230}
5231
5232/* Return a list of possible symbol names completing TEXT0. The list
5233 is NULL terminated. WORD is the entire command on which completion
5234 is made. */
5235
5236static char **
5237ada_make_symbol_completion_list (char *text0, char *word)
5238{
5239 char *text;
5240 int text_len;
5241 int wild_match;
5242 int encoded;
2ba95b9b 5243 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5244 struct symbol *sym;
5245 struct symtab *s;
5246 struct partial_symtab *ps;
5247 struct minimal_symbol *msymbol;
5248 struct objfile *objfile;
5249 struct block *b, *surrounding_static_block = 0;
5250 int i;
5251 struct dict_iterator iter;
5252
5253 if (text0[0] == '<')
5254 {
5255 text = xstrdup (text0);
5256 make_cleanup (xfree, text);
5257 text_len = strlen (text);
5258 wild_match = 0;
5259 encoded = 1;
5260 }
5261 else
5262 {
5263 text = xstrdup (ada_encode (text0));
5264 make_cleanup (xfree, text);
5265 text_len = strlen (text);
5266 for (i = 0; i < text_len; i++)
5267 text[i] = tolower (text[i]);
5268
5269 encoded = (strstr (text0, "__") != NULL);
5270 /* If the name contains a ".", then the user is entering a fully
5271 qualified entity name, and the match must not be done in wild
5272 mode. Similarly, if the user wants to complete what looks like
5273 an encoded name, the match must not be done in wild mode. */
5274 wild_match = (strchr (text0, '.') == NULL && !encoded);
5275 }
5276
5277 /* First, look at the partial symtab symbols. */
5278 ALL_PSYMTABS (objfile, ps)
5279 {
5280 struct partial_symbol **psym;
5281
5282 /* If the psymtab's been read in we'll get it when we search
5283 through the blockvector. */
5284 if (ps->readin)
5285 continue;
5286
5287 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5288 psym < (objfile->global_psymbols.list + ps->globals_offset
5289 + ps->n_global_syms); psym++)
5290 {
5291 QUIT;
d6565258 5292 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5293 text, text_len, text0, word,
5294 wild_match, encoded);
5295 }
5296
5297 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5298 psym < (objfile->static_psymbols.list + ps->statics_offset
5299 + ps->n_static_syms); psym++)
5300 {
5301 QUIT;
d6565258 5302 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5303 text, text_len, text0, word,
5304 wild_match, encoded);
5305 }
5306 }
5307
5308 /* At this point scan through the misc symbol vectors and add each
5309 symbol you find to the list. Eventually we want to ignore
5310 anything that isn't a text symbol (everything else will be
5311 handled by the psymtab code above). */
5312
5313 ALL_MSYMBOLS (objfile, msymbol)
5314 {
5315 QUIT;
d6565258 5316 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5317 text, text_len, text0, word, wild_match, encoded);
5318 }
5319
5320 /* Search upwards from currently selected frame (so that we can
5321 complete on local vars. */
5322
5323 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5324 {
5325 if (!BLOCK_SUPERBLOCK (b))
5326 surrounding_static_block = b; /* For elmin of dups */
5327
5328 ALL_BLOCK_SYMBOLS (b, iter, sym)
5329 {
d6565258 5330 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5331 text, text_len, text0, word,
5332 wild_match, encoded);
5333 }
5334 }
5335
5336 /* Go through the symtabs and check the externs and statics for
5337 symbols which match. */
5338
5339 ALL_SYMTABS (objfile, s)
5340 {
5341 QUIT;
5342 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5343 ALL_BLOCK_SYMBOLS (b, iter, sym)
5344 {
d6565258 5345 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5346 text, text_len, text0, word,
5347 wild_match, encoded);
5348 }
5349 }
5350
5351 ALL_SYMTABS (objfile, s)
5352 {
5353 QUIT;
5354 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5355 /* Don't do this block twice. */
5356 if (b == surrounding_static_block)
5357 continue;
5358 ALL_BLOCK_SYMBOLS (b, iter, sym)
5359 {
d6565258 5360 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5361 text, text_len, text0, word,
5362 wild_match, encoded);
5363 }
5364 }
5365
5366 /* Append the closing NULL entry. */
2ba95b9b 5367 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5368
2ba95b9b
JB
5369 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5370 return the copy. It's unfortunate that we have to make a copy
5371 of an array that we're about to destroy, but there is nothing much
5372 we can do about it. Fortunately, it's typically not a very large
5373 array. */
5374 {
5375 const size_t completions_size =
5376 VEC_length (char_ptr, completions) * sizeof (char *);
5377 char **result = malloc (completions_size);
5378
5379 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5380
5381 VEC_free (char_ptr, completions);
5382 return result;
5383 }
41d27058
JB
5384}
5385
963a6417 5386 /* Field Access */
96d887e8 5387
73fb9985
JB
5388/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5389 for tagged types. */
5390
5391static int
5392ada_is_dispatch_table_ptr_type (struct type *type)
5393{
5394 char *name;
5395
5396 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5397 return 0;
5398
5399 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5400 if (name == NULL)
5401 return 0;
5402
5403 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5404}
5405
963a6417
PH
5406/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5407 to be invisible to users. */
96d887e8 5408
963a6417
PH
5409int
5410ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5411{
963a6417
PH
5412 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5413 return 1;
73fb9985
JB
5414
5415 /* Check the name of that field. */
5416 {
5417 const char *name = TYPE_FIELD_NAME (type, field_num);
5418
5419 /* Anonymous field names should not be printed.
5420 brobecker/2007-02-20: I don't think this can actually happen
5421 but we don't want to print the value of annonymous fields anyway. */
5422 if (name == NULL)
5423 return 1;
5424
5425 /* A field named "_parent" is internally generated by GNAT for
5426 tagged types, and should not be printed either. */
5427 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5428 return 1;
5429 }
5430
5431 /* If this is the dispatch table of a tagged type, then ignore. */
5432 if (ada_is_tagged_type (type, 1)
5433 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5434 return 1;
5435
5436 /* Not a special field, so it should not be ignored. */
5437 return 0;
963a6417 5438}
96d887e8 5439
963a6417
PH
5440/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5441 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5442
963a6417
PH
5443int
5444ada_is_tagged_type (struct type *type, int refok)
5445{
5446 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5447}
96d887e8 5448
963a6417 5449/* True iff TYPE represents the type of X'Tag */
96d887e8 5450
963a6417
PH
5451int
5452ada_is_tag_type (struct type *type)
5453{
5454 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5455 return 0;
5456 else
96d887e8 5457 {
963a6417
PH
5458 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5459 return (name != NULL
5460 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5461 }
96d887e8
PH
5462}
5463
963a6417 5464/* The type of the tag on VAL. */
76a01679 5465
963a6417
PH
5466struct type *
5467ada_tag_type (struct value *val)
96d887e8 5468{
df407dfe 5469 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5470}
96d887e8 5471
963a6417 5472/* The value of the tag on VAL. */
96d887e8 5473
963a6417
PH
5474struct value *
5475ada_value_tag (struct value *val)
5476{
03ee6b2e 5477 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5478}
5479
963a6417
PH
5480/* The value of the tag on the object of type TYPE whose contents are
5481 saved at VALADDR, if it is non-null, or is at memory address
5482 ADDRESS. */
96d887e8 5483
963a6417 5484static struct value *
10a2c479 5485value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5486 const gdb_byte *valaddr,
963a6417 5487 CORE_ADDR address)
96d887e8 5488{
963a6417
PH
5489 int tag_byte_offset, dummy1, dummy2;
5490 struct type *tag_type;
5491 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5492 NULL, NULL, NULL))
96d887e8 5493 {
fc1a4b47 5494 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5495 ? NULL
5496 : valaddr + tag_byte_offset);
963a6417 5497 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5498
963a6417 5499 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5500 }
963a6417
PH
5501 return NULL;
5502}
96d887e8 5503
963a6417
PH
5504static struct type *
5505type_from_tag (struct value *tag)
5506{
5507 const char *type_name = ada_tag_name (tag);
5508 if (type_name != NULL)
5509 return ada_find_any_type (ada_encode (type_name));
5510 return NULL;
5511}
96d887e8 5512
963a6417
PH
5513struct tag_args
5514{
5515 struct value *tag;
5516 char *name;
5517};
4c4b4cd2 5518
529cad9c
PH
5519
5520static int ada_tag_name_1 (void *);
5521static int ada_tag_name_2 (struct tag_args *);
5522
4c4b4cd2
PH
5523/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5524 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5525 The value stored in ARGS->name is valid until the next call to
5526 ada_tag_name_1. */
5527
5528static int
5529ada_tag_name_1 (void *args0)
5530{
5531 struct tag_args *args = (struct tag_args *) args0;
5532 static char name[1024];
76a01679 5533 char *p;
4c4b4cd2
PH
5534 struct value *val;
5535 args->name = NULL;
03ee6b2e 5536 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5537 if (val == NULL)
5538 return ada_tag_name_2 (args);
03ee6b2e 5539 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5540 if (val == NULL)
5541 return 0;
5542 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5543 for (p = name; *p != '\0'; p += 1)
5544 if (isalpha (*p))
5545 *p = tolower (*p);
5546 args->name = name;
5547 return 0;
5548}
5549
5550/* Utility function for ada_tag_name_1 that tries the second
5551 representation for the dispatch table (in which there is no
5552 explicit 'tsd' field in the referent of the tag pointer, and instead
5553 the tsd pointer is stored just before the dispatch table. */
5554
5555static int
5556ada_tag_name_2 (struct tag_args *args)
5557{
5558 struct type *info_type;
5559 static char name[1024];
5560 char *p;
5561 struct value *val, *valp;
5562
5563 args->name = NULL;
5564 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5565 if (info_type == NULL)
5566 return 0;
5567 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5568 valp = value_cast (info_type, args->tag);
5569 if (valp == NULL)
5570 return 0;
89eef114
UW
5571 val = value_ind (value_ptradd (valp,
5572 value_from_longest (builtin_type_int8, -1)));
4c4b4cd2
PH
5573 if (val == NULL)
5574 return 0;
03ee6b2e 5575 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5576 if (val == NULL)
5577 return 0;
5578 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5579 for (p = name; *p != '\0'; p += 1)
5580 if (isalpha (*p))
5581 *p = tolower (*p);
5582 args->name = name;
5583 return 0;
5584}
5585
5586/* The type name of the dynamic type denoted by the 'tag value TAG, as
5587 * a C string. */
5588
5589const char *
5590ada_tag_name (struct value *tag)
5591{
5592 struct tag_args args;
df407dfe 5593 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5594 return NULL;
76a01679 5595 args.tag = tag;
4c4b4cd2
PH
5596 args.name = NULL;
5597 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5598 return args.name;
5599}
5600
5601/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5602
d2e4a39e 5603struct type *
ebf56fd3 5604ada_parent_type (struct type *type)
14f9c5c9
AS
5605{
5606 int i;
5607
61ee279c 5608 type = ada_check_typedef (type);
14f9c5c9
AS
5609
5610 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5611 return NULL;
5612
5613 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5614 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5615 {
5616 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5617
5618 /* If the _parent field is a pointer, then dereference it. */
5619 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5620 parent_type = TYPE_TARGET_TYPE (parent_type);
5621 /* If there is a parallel XVS type, get the actual base type. */
5622 parent_type = ada_get_base_type (parent_type);
5623
5624 return ada_check_typedef (parent_type);
5625 }
14f9c5c9
AS
5626
5627 return NULL;
5628}
5629
4c4b4cd2
PH
5630/* True iff field number FIELD_NUM of structure type TYPE contains the
5631 parent-type (inherited) fields of a derived type. Assumes TYPE is
5632 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5633
5634int
ebf56fd3 5635ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5636{
61ee279c 5637 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5638 return (name != NULL
5639 && (strncmp (name, "PARENT", 6) == 0
5640 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5641}
5642
4c4b4cd2 5643/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5644 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5645 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5646 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5647 structures. */
14f9c5c9
AS
5648
5649int
ebf56fd3 5650ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5651{
d2e4a39e
AS
5652 const char *name = TYPE_FIELD_NAME (type, field_num);
5653 return (name != NULL
4c4b4cd2
PH
5654 && (strncmp (name, "PARENT", 6) == 0
5655 || strcmp (name, "REP") == 0
5656 || strncmp (name, "_parent", 7) == 0
5657 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5658}
5659
4c4b4cd2
PH
5660/* True iff field number FIELD_NUM of structure or union type TYPE
5661 is a variant wrapper. Assumes TYPE is a structure type with at least
5662 FIELD_NUM+1 fields. */
14f9c5c9
AS
5663
5664int
ebf56fd3 5665ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5666{
d2e4a39e 5667 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5668 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5669 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5670 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5671 == TYPE_CODE_UNION)));
14f9c5c9
AS
5672}
5673
5674/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5675 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5676 returns the type of the controlling discriminant for the variant. */
5677
d2e4a39e 5678struct type *
ebf56fd3 5679ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5680{
d2e4a39e 5681 char *name = ada_variant_discrim_name (var_type);
76a01679 5682 struct type *type =
4c4b4cd2 5683 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9 5684 if (type == NULL)
6d84d3d8 5685 return builtin_type_int32;
14f9c5c9
AS
5686 else
5687 return type;
5688}
5689
4c4b4cd2 5690/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5691 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5692 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5693
5694int
ebf56fd3 5695ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5696{
d2e4a39e 5697 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5698 return (name != NULL && name[0] == 'O');
5699}
5700
5701/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5702 returns the name of the discriminant controlling the variant.
5703 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5704
d2e4a39e 5705char *
ebf56fd3 5706ada_variant_discrim_name (struct type *type0)
14f9c5c9 5707{
d2e4a39e 5708 static char *result = NULL;
14f9c5c9 5709 static size_t result_len = 0;
d2e4a39e
AS
5710 struct type *type;
5711 const char *name;
5712 const char *discrim_end;
5713 const char *discrim_start;
14f9c5c9
AS
5714
5715 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5716 type = TYPE_TARGET_TYPE (type0);
5717 else
5718 type = type0;
5719
5720 name = ada_type_name (type);
5721
5722 if (name == NULL || name[0] == '\000')
5723 return "";
5724
5725 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5726 discrim_end -= 1)
5727 {
4c4b4cd2
PH
5728 if (strncmp (discrim_end, "___XVN", 6) == 0)
5729 break;
14f9c5c9
AS
5730 }
5731 if (discrim_end == name)
5732 return "";
5733
d2e4a39e 5734 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5735 discrim_start -= 1)
5736 {
d2e4a39e 5737 if (discrim_start == name + 1)
4c4b4cd2 5738 return "";
76a01679 5739 if ((discrim_start > name + 3
4c4b4cd2
PH
5740 && strncmp (discrim_start - 3, "___", 3) == 0)
5741 || discrim_start[-1] == '.')
5742 break;
14f9c5c9
AS
5743 }
5744
5745 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5746 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5747 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5748 return result;
5749}
5750
4c4b4cd2
PH
5751/* Scan STR for a subtype-encoded number, beginning at position K.
5752 Put the position of the character just past the number scanned in
5753 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5754 Return 1 if there was a valid number at the given position, and 0
5755 otherwise. A "subtype-encoded" number consists of the absolute value
5756 in decimal, followed by the letter 'm' to indicate a negative number.
5757 Assumes 0m does not occur. */
14f9c5c9
AS
5758
5759int
d2e4a39e 5760ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5761{
5762 ULONGEST RU;
5763
d2e4a39e 5764 if (!isdigit (str[k]))
14f9c5c9
AS
5765 return 0;
5766
4c4b4cd2 5767 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5768 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5769 LONGEST. */
14f9c5c9
AS
5770 RU = 0;
5771 while (isdigit (str[k]))
5772 {
d2e4a39e 5773 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5774 k += 1;
5775 }
5776
d2e4a39e 5777 if (str[k] == 'm')
14f9c5c9
AS
5778 {
5779 if (R != NULL)
4c4b4cd2 5780 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5781 k += 1;
5782 }
5783 else if (R != NULL)
5784 *R = (LONGEST) RU;
5785
4c4b4cd2 5786 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5787 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5788 number representable as a LONGEST (although either would probably work
5789 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5790 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5791
5792 if (new_k != NULL)
5793 *new_k = k;
5794 return 1;
5795}
5796
4c4b4cd2
PH
5797/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5798 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5799 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5800
d2e4a39e 5801int
ebf56fd3 5802ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5803{
d2e4a39e 5804 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5805 int p;
5806
5807 p = 0;
5808 while (1)
5809 {
d2e4a39e 5810 switch (name[p])
4c4b4cd2
PH
5811 {
5812 case '\0':
5813 return 0;
5814 case 'S':
5815 {
5816 LONGEST W;
5817 if (!ada_scan_number (name, p + 1, &W, &p))
5818 return 0;
5819 if (val == W)
5820 return 1;
5821 break;
5822 }
5823 case 'R':
5824 {
5825 LONGEST L, U;
5826 if (!ada_scan_number (name, p + 1, &L, &p)
5827 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5828 return 0;
5829 if (val >= L && val <= U)
5830 return 1;
5831 break;
5832 }
5833 case 'O':
5834 return 1;
5835 default:
5836 return 0;
5837 }
5838 }
5839}
5840
5841/* FIXME: Lots of redundancy below. Try to consolidate. */
5842
5843/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5844 ARG_TYPE, extract and return the value of one of its (non-static)
5845 fields. FIELDNO says which field. Differs from value_primitive_field
5846 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5847
4c4b4cd2 5848static struct value *
d2e4a39e 5849ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5850 struct type *arg_type)
14f9c5c9 5851{
14f9c5c9
AS
5852 struct type *type;
5853
61ee279c 5854 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5855 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5856
4c4b4cd2 5857 /* Handle packed fields. */
14f9c5c9
AS
5858
5859 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5860 {
5861 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5862 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5863
0fd88904 5864 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5865 offset + bit_pos / 8,
5866 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5867 }
5868 else
5869 return value_primitive_field (arg1, offset, fieldno, arg_type);
5870}
5871
52ce6436
PH
5872/* Find field with name NAME in object of type TYPE. If found,
5873 set the following for each argument that is non-null:
5874 - *FIELD_TYPE_P to the field's type;
5875 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5876 an object of that type;
5877 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5878 - *BIT_SIZE_P to its size in bits if the field is packed, and
5879 0 otherwise;
5880 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5881 fields up to but not including the desired field, or by the total
5882 number of fields if not found. A NULL value of NAME never
5883 matches; the function just counts visible fields in this case.
5884
5885 Returns 1 if found, 0 otherwise. */
5886
4c4b4cd2 5887static int
76a01679
JB
5888find_struct_field (char *name, struct type *type, int offset,
5889 struct type **field_type_p,
52ce6436
PH
5890 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5891 int *index_p)
4c4b4cd2
PH
5892{
5893 int i;
5894
61ee279c 5895 type = ada_check_typedef (type);
76a01679 5896
52ce6436
PH
5897 if (field_type_p != NULL)
5898 *field_type_p = NULL;
5899 if (byte_offset_p != NULL)
d5d6fca5 5900 *byte_offset_p = 0;
52ce6436
PH
5901 if (bit_offset_p != NULL)
5902 *bit_offset_p = 0;
5903 if (bit_size_p != NULL)
5904 *bit_size_p = 0;
5905
5906 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5907 {
5908 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5909 int fld_offset = offset + bit_pos / 8;
5910 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5911
4c4b4cd2
PH
5912 if (t_field_name == NULL)
5913 continue;
5914
52ce6436 5915 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5916 {
5917 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5918 if (field_type_p != NULL)
5919 *field_type_p = TYPE_FIELD_TYPE (type, i);
5920 if (byte_offset_p != NULL)
5921 *byte_offset_p = fld_offset;
5922 if (bit_offset_p != NULL)
5923 *bit_offset_p = bit_pos % 8;
5924 if (bit_size_p != NULL)
5925 *bit_size_p = bit_size;
76a01679
JB
5926 return 1;
5927 }
4c4b4cd2
PH
5928 else if (ada_is_wrapper_field (type, i))
5929 {
52ce6436
PH
5930 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5931 field_type_p, byte_offset_p, bit_offset_p,
5932 bit_size_p, index_p))
76a01679
JB
5933 return 1;
5934 }
4c4b4cd2
PH
5935 else if (ada_is_variant_part (type, i))
5936 {
52ce6436
PH
5937 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5938 fixed type?? */
4c4b4cd2 5939 int j;
52ce6436
PH
5940 struct type *field_type
5941 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5942
52ce6436 5943 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5944 {
76a01679
JB
5945 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5946 fld_offset
5947 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5948 field_type_p, byte_offset_p,
52ce6436 5949 bit_offset_p, bit_size_p, index_p))
76a01679 5950 return 1;
4c4b4cd2
PH
5951 }
5952 }
52ce6436
PH
5953 else if (index_p != NULL)
5954 *index_p += 1;
4c4b4cd2
PH
5955 }
5956 return 0;
5957}
5958
52ce6436 5959/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5960
52ce6436
PH
5961static int
5962num_visible_fields (struct type *type)
5963{
5964 int n;
5965 n = 0;
5966 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5967 return n;
5968}
14f9c5c9 5969
4c4b4cd2 5970/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5971 and search in it assuming it has (class) type TYPE.
5972 If found, return value, else return NULL.
5973
4c4b4cd2 5974 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5975
4c4b4cd2 5976static struct value *
d2e4a39e 5977ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5978 struct type *type)
14f9c5c9
AS
5979{
5980 int i;
61ee279c 5981 type = ada_check_typedef (type);
14f9c5c9 5982
52ce6436 5983 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5984 {
5985 char *t_field_name = TYPE_FIELD_NAME (type, i);
5986
5987 if (t_field_name == NULL)
4c4b4cd2 5988 continue;
14f9c5c9
AS
5989
5990 else if (field_name_match (t_field_name, name))
4c4b4cd2 5991 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5992
5993 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5994 {
06d5cf63
JB
5995 struct value *v = /* Do not let indent join lines here. */
5996 ada_search_struct_field (name, arg,
5997 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5998 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5999 if (v != NULL)
6000 return v;
6001 }
14f9c5c9
AS
6002
6003 else if (ada_is_variant_part (type, i))
4c4b4cd2 6004 {
52ce6436 6005 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6006 int j;
61ee279c 6007 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6008 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6009
52ce6436 6010 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6011 {
06d5cf63
JB
6012 struct value *v = ada_search_struct_field /* Force line break. */
6013 (name, arg,
6014 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6015 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6016 if (v != NULL)
6017 return v;
6018 }
6019 }
14f9c5c9
AS
6020 }
6021 return NULL;
6022}
d2e4a39e 6023
52ce6436
PH
6024static struct value *ada_index_struct_field_1 (int *, struct value *,
6025 int, struct type *);
6026
6027
6028/* Return field #INDEX in ARG, where the index is that returned by
6029 * find_struct_field through its INDEX_P argument. Adjust the address
6030 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6031 * If found, return value, else return NULL. */
6032
6033static struct value *
6034ada_index_struct_field (int index, struct value *arg, int offset,
6035 struct type *type)
6036{
6037 return ada_index_struct_field_1 (&index, arg, offset, type);
6038}
6039
6040
6041/* Auxiliary function for ada_index_struct_field. Like
6042 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6043 * *INDEX_P. */
6044
6045static struct value *
6046ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6047 struct type *type)
6048{
6049 int i;
6050 type = ada_check_typedef (type);
6051
6052 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6053 {
6054 if (TYPE_FIELD_NAME (type, i) == NULL)
6055 continue;
6056 else if (ada_is_wrapper_field (type, i))
6057 {
6058 struct value *v = /* Do not let indent join lines here. */
6059 ada_index_struct_field_1 (index_p, arg,
6060 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6061 TYPE_FIELD_TYPE (type, i));
6062 if (v != NULL)
6063 return v;
6064 }
6065
6066 else if (ada_is_variant_part (type, i))
6067 {
6068 /* PNH: Do we ever get here? See ada_search_struct_field,
6069 find_struct_field. */
6070 error (_("Cannot assign this kind of variant record"));
6071 }
6072 else if (*index_p == 0)
6073 return ada_value_primitive_field (arg, offset, i, type);
6074 else
6075 *index_p -= 1;
6076 }
6077 return NULL;
6078}
6079
4c4b4cd2
PH
6080/* Given ARG, a value of type (pointer or reference to a)*
6081 structure/union, extract the component named NAME from the ultimate
6082 target structure/union and return it as a value with its
f5938064 6083 appropriate type.
14f9c5c9 6084
4c4b4cd2
PH
6085 The routine searches for NAME among all members of the structure itself
6086 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6087 (e.g., '_parent').
6088
03ee6b2e
PH
6089 If NO_ERR, then simply return NULL in case of error, rather than
6090 calling error. */
14f9c5c9 6091
d2e4a39e 6092struct value *
03ee6b2e 6093ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6094{
4c4b4cd2 6095 struct type *t, *t1;
d2e4a39e 6096 struct value *v;
14f9c5c9 6097
4c4b4cd2 6098 v = NULL;
df407dfe 6099 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6100 if (TYPE_CODE (t) == TYPE_CODE_REF)
6101 {
6102 t1 = TYPE_TARGET_TYPE (t);
6103 if (t1 == NULL)
03ee6b2e 6104 goto BadValue;
61ee279c 6105 t1 = ada_check_typedef (t1);
4c4b4cd2 6106 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6107 {
994b9211 6108 arg = coerce_ref (arg);
76a01679
JB
6109 t = t1;
6110 }
4c4b4cd2 6111 }
14f9c5c9 6112
4c4b4cd2
PH
6113 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6114 {
6115 t1 = TYPE_TARGET_TYPE (t);
6116 if (t1 == NULL)
03ee6b2e 6117 goto BadValue;
61ee279c 6118 t1 = ada_check_typedef (t1);
4c4b4cd2 6119 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6120 {
6121 arg = value_ind (arg);
6122 t = t1;
6123 }
4c4b4cd2 6124 else
76a01679 6125 break;
4c4b4cd2 6126 }
14f9c5c9 6127
4c4b4cd2 6128 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6129 goto BadValue;
14f9c5c9 6130
4c4b4cd2
PH
6131 if (t1 == t)
6132 v = ada_search_struct_field (name, arg, 0, t);
6133 else
6134 {
6135 int bit_offset, bit_size, byte_offset;
6136 struct type *field_type;
6137 CORE_ADDR address;
6138
76a01679
JB
6139 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6140 address = value_as_address (arg);
4c4b4cd2 6141 else
0fd88904 6142 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6143
1ed6ede0 6144 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6145 if (find_struct_field (name, t1, 0,
6146 &field_type, &byte_offset, &bit_offset,
52ce6436 6147 &bit_size, NULL))
76a01679
JB
6148 {
6149 if (bit_size != 0)
6150 {
714e53ab
PH
6151 if (TYPE_CODE (t) == TYPE_CODE_REF)
6152 arg = ada_coerce_ref (arg);
6153 else
6154 arg = ada_value_ind (arg);
76a01679
JB
6155 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6156 bit_offset, bit_size,
6157 field_type);
6158 }
6159 else
f5938064 6160 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6161 }
6162 }
6163
03ee6b2e
PH
6164 if (v != NULL || no_err)
6165 return v;
6166 else
323e0a4a 6167 error (_("There is no member named %s."), name);
14f9c5c9 6168
03ee6b2e
PH
6169 BadValue:
6170 if (no_err)
6171 return NULL;
6172 else
6173 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6174}
6175
6176/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6177 If DISPP is non-null, add its byte displacement from the beginning of a
6178 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6179 work for packed fields).
6180
6181 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6182 followed by "___".
14f9c5c9 6183
4c4b4cd2
PH
6184 TYPE can be either a struct or union. If REFOK, TYPE may also
6185 be a (pointer or reference)+ to a struct or union, and the
6186 ultimate target type will be searched.
14f9c5c9
AS
6187
6188 Looks recursively into variant clauses and parent types.
6189
4c4b4cd2
PH
6190 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6191 TYPE is not a type of the right kind. */
14f9c5c9 6192
4c4b4cd2 6193static struct type *
76a01679
JB
6194ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6195 int noerr, int *dispp)
14f9c5c9
AS
6196{
6197 int i;
6198
6199 if (name == NULL)
6200 goto BadName;
6201
76a01679 6202 if (refok && type != NULL)
4c4b4cd2
PH
6203 while (1)
6204 {
61ee279c 6205 type = ada_check_typedef (type);
76a01679
JB
6206 if (TYPE_CODE (type) != TYPE_CODE_PTR
6207 && TYPE_CODE (type) != TYPE_CODE_REF)
6208 break;
6209 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6210 }
14f9c5c9 6211
76a01679 6212 if (type == NULL
1265e4aa
JB
6213 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6214 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6215 {
4c4b4cd2 6216 if (noerr)
76a01679 6217 return NULL;
4c4b4cd2 6218 else
76a01679
JB
6219 {
6220 target_terminal_ours ();
6221 gdb_flush (gdb_stdout);
323e0a4a
AC
6222 if (type == NULL)
6223 error (_("Type (null) is not a structure or union type"));
6224 else
6225 {
6226 /* XXX: type_sprint */
6227 fprintf_unfiltered (gdb_stderr, _("Type "));
6228 type_print (type, "", gdb_stderr, -1);
6229 error (_(" is not a structure or union type"));
6230 }
76a01679 6231 }
14f9c5c9
AS
6232 }
6233
6234 type = to_static_fixed_type (type);
6235
6236 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6237 {
6238 char *t_field_name = TYPE_FIELD_NAME (type, i);
6239 struct type *t;
6240 int disp;
d2e4a39e 6241
14f9c5c9 6242 if (t_field_name == NULL)
4c4b4cd2 6243 continue;
14f9c5c9
AS
6244
6245 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6246 {
6247 if (dispp != NULL)
6248 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6249 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6250 }
14f9c5c9
AS
6251
6252 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6253 {
6254 disp = 0;
6255 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6256 0, 1, &disp);
6257 if (t != NULL)
6258 {
6259 if (dispp != NULL)
6260 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6261 return t;
6262 }
6263 }
14f9c5c9
AS
6264
6265 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6266 {
6267 int j;
61ee279c 6268 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6269
6270 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6271 {
b1f33ddd
JB
6272 /* FIXME pnh 2008/01/26: We check for a field that is
6273 NOT wrapped in a struct, since the compiler sometimes
6274 generates these for unchecked variant types. Revisit
6275 if the compiler changes this practice. */
6276 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6277 disp = 0;
b1f33ddd
JB
6278 if (v_field_name != NULL
6279 && field_name_match (v_field_name, name))
6280 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6281 else
6282 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6283 name, 0, 1, &disp);
6284
4c4b4cd2
PH
6285 if (t != NULL)
6286 {
6287 if (dispp != NULL)
6288 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6289 return t;
6290 }
6291 }
6292 }
14f9c5c9
AS
6293
6294 }
6295
6296BadName:
d2e4a39e 6297 if (!noerr)
14f9c5c9
AS
6298 {
6299 target_terminal_ours ();
6300 gdb_flush (gdb_stdout);
323e0a4a
AC
6301 if (name == NULL)
6302 {
6303 /* XXX: type_sprint */
6304 fprintf_unfiltered (gdb_stderr, _("Type "));
6305 type_print (type, "", gdb_stderr, -1);
6306 error (_(" has no component named <null>"));
6307 }
6308 else
6309 {
6310 /* XXX: type_sprint */
6311 fprintf_unfiltered (gdb_stderr, _("Type "));
6312 type_print (type, "", gdb_stderr, -1);
6313 error (_(" has no component named %s"), name);
6314 }
14f9c5c9
AS
6315 }
6316
6317 return NULL;
6318}
6319
b1f33ddd
JB
6320/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6321 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6322 represents an unchecked union (that is, the variant part of a
6323 record that is named in an Unchecked_Union pragma). */
6324
6325static int
6326is_unchecked_variant (struct type *var_type, struct type *outer_type)
6327{
6328 char *discrim_name = ada_variant_discrim_name (var_type);
6329 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6330 == NULL);
6331}
6332
6333
14f9c5c9
AS
6334/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6335 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6336 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6337 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6338
d2e4a39e 6339int
ebf56fd3 6340ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6341 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6342{
6343 int others_clause;
6344 int i;
d2e4a39e 6345 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6346 struct value *outer;
6347 struct value *discrim;
14f9c5c9
AS
6348 LONGEST discrim_val;
6349
0c281816
JB
6350 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6351 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6352 if (discrim == NULL)
14f9c5c9 6353 return -1;
0c281816 6354 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6355
6356 others_clause = -1;
6357 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6358 {
6359 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6360 others_clause = i;
14f9c5c9 6361 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6362 return i;
14f9c5c9
AS
6363 }
6364
6365 return others_clause;
6366}
d2e4a39e 6367\f
14f9c5c9
AS
6368
6369
4c4b4cd2 6370 /* Dynamic-Sized Records */
14f9c5c9
AS
6371
6372/* Strategy: The type ostensibly attached to a value with dynamic size
6373 (i.e., a size that is not statically recorded in the debugging
6374 data) does not accurately reflect the size or layout of the value.
6375 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6376 conventional types that are constructed on the fly. */
14f9c5c9
AS
6377
6378/* There is a subtle and tricky problem here. In general, we cannot
6379 determine the size of dynamic records without its data. However,
6380 the 'struct value' data structure, which GDB uses to represent
6381 quantities in the inferior process (the target), requires the size
6382 of the type at the time of its allocation in order to reserve space
6383 for GDB's internal copy of the data. That's why the
6384 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6385 rather than struct value*s.
14f9c5c9
AS
6386
6387 However, GDB's internal history variables ($1, $2, etc.) are
6388 struct value*s containing internal copies of the data that are not, in
6389 general, the same as the data at their corresponding addresses in
6390 the target. Fortunately, the types we give to these values are all
6391 conventional, fixed-size types (as per the strategy described
6392 above), so that we don't usually have to perform the
6393 'to_fixed_xxx_type' conversions to look at their values.
6394 Unfortunately, there is one exception: if one of the internal
6395 history variables is an array whose elements are unconstrained
6396 records, then we will need to create distinct fixed types for each
6397 element selected. */
6398
6399/* The upshot of all of this is that many routines take a (type, host
6400 address, target address) triple as arguments to represent a value.
6401 The host address, if non-null, is supposed to contain an internal
6402 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6403 target at the target address. */
14f9c5c9
AS
6404
6405/* Assuming that VAL0 represents a pointer value, the result of
6406 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6407 dynamic-sized types. */
14f9c5c9 6408
d2e4a39e
AS
6409struct value *
6410ada_value_ind (struct value *val0)
14f9c5c9 6411{
d2e4a39e 6412 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6413 return ada_to_fixed_value (val);
14f9c5c9
AS
6414}
6415
6416/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6417 qualifiers on VAL0. */
6418
d2e4a39e
AS
6419static struct value *
6420ada_coerce_ref (struct value *val0)
6421{
df407dfe 6422 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6423 {
6424 struct value *val = val0;
994b9211 6425 val = coerce_ref (val);
d2e4a39e 6426 val = unwrap_value (val);
4c4b4cd2 6427 return ada_to_fixed_value (val);
d2e4a39e
AS
6428 }
6429 else
14f9c5c9
AS
6430 return val0;
6431}
6432
6433/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6434 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6435
6436static unsigned int
ebf56fd3 6437align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6438{
6439 return (off + alignment - 1) & ~(alignment - 1);
6440}
6441
4c4b4cd2 6442/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6443
6444static unsigned int
ebf56fd3 6445field_alignment (struct type *type, int f)
14f9c5c9 6446{
d2e4a39e 6447 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6448 int len;
14f9c5c9
AS
6449 int align_offset;
6450
64a1bf19
JB
6451 /* The field name should never be null, unless the debugging information
6452 is somehow malformed. In this case, we assume the field does not
6453 require any alignment. */
6454 if (name == NULL)
6455 return 1;
6456
6457 len = strlen (name);
6458
4c4b4cd2
PH
6459 if (!isdigit (name[len - 1]))
6460 return 1;
14f9c5c9 6461
d2e4a39e 6462 if (isdigit (name[len - 2]))
14f9c5c9
AS
6463 align_offset = len - 2;
6464 else
6465 align_offset = len - 1;
6466
4c4b4cd2 6467 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6468 return TARGET_CHAR_BIT;
6469
4c4b4cd2
PH
6470 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6471}
6472
6473/* Find a symbol named NAME. Ignores ambiguity. */
6474
6475struct symbol *
6476ada_find_any_symbol (const char *name)
6477{
6478 struct symbol *sym;
6479
6480 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6481 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6482 return sym;
6483
6484 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6485 return sym;
14f9c5c9
AS
6486}
6487
dddfab26
UW
6488/* Find a type named NAME. Ignores ambiguity. This routine will look
6489 solely for types defined by debug info, it will not search the GDB
6490 primitive types. */
4c4b4cd2 6491
d2e4a39e 6492struct type *
ebf56fd3 6493ada_find_any_type (const char *name)
14f9c5c9 6494{
4c4b4cd2 6495 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6496
14f9c5c9 6497 if (sym != NULL)
dddfab26 6498 return SYMBOL_TYPE (sym);
14f9c5c9 6499
dddfab26 6500 return NULL;
14f9c5c9
AS
6501}
6502
aeb5907d
JB
6503/* Given NAME and an associated BLOCK, search all symbols for
6504 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6505 associated to NAME. Return this symbol if found, return
6506 NULL otherwise. */
6507
6508struct symbol *
6509ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6510{
6511 struct symbol *sym;
6512
6513 sym = find_old_style_renaming_symbol (name, block);
6514
6515 if (sym != NULL)
6516 return sym;
6517
6518 /* Not right yet. FIXME pnh 7/20/2007. */
6519 sym = ada_find_any_symbol (name);
6520 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6521 return sym;
6522 else
6523 return NULL;
6524}
6525
6526static struct symbol *
6527find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6528{
7f0df278 6529 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6530 char *rename;
6531
6532 if (function_sym != NULL)
6533 {
6534 /* If the symbol is defined inside a function, NAME is not fully
6535 qualified. This means we need to prepend the function name
6536 as well as adding the ``___XR'' suffix to build the name of
6537 the associated renaming symbol. */
6538 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6539 /* Function names sometimes contain suffixes used
6540 for instance to qualify nested subprograms. When building
6541 the XR type name, we need to make sure that this suffix is
6542 not included. So do not include any suffix in the function
6543 name length below. */
6544 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6545 const int rename_len = function_name_len + 2 /* "__" */
6546 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6547
529cad9c
PH
6548 /* Strip the suffix if necessary. */
6549 function_name[function_name_len] = '\0';
6550
4c4b4cd2
PH
6551 /* Library-level functions are a special case, as GNAT adds
6552 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6553 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6554 have this prefix, so we need to skip this prefix if present. */
6555 if (function_name_len > 5 /* "_ada_" */
6556 && strstr (function_name, "_ada_") == function_name)
6557 function_name = function_name + 5;
6558
6559 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34
PM
6560 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6561 function_name, name);
4c4b4cd2
PH
6562 }
6563 else
6564 {
6565 const int rename_len = strlen (name) + 6;
6566 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6567 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6568 }
6569
6570 return ada_find_any_symbol (rename);
6571}
6572
14f9c5c9 6573/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6574 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6575 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6576 otherwise return 0. */
6577
14f9c5c9 6578int
d2e4a39e 6579ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6580{
6581 if (type1 == NULL)
6582 return 1;
6583 else if (type0 == NULL)
6584 return 0;
6585 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6586 return 1;
6587 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6588 return 0;
4c4b4cd2
PH
6589 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6590 return 1;
14f9c5c9
AS
6591 else if (ada_is_packed_array_type (type0))
6592 return 1;
4c4b4cd2
PH
6593 else if (ada_is_array_descriptor_type (type0)
6594 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6595 return 1;
aeb5907d
JB
6596 else
6597 {
6598 const char *type0_name = type_name_no_tag (type0);
6599 const char *type1_name = type_name_no_tag (type1);
6600
6601 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6602 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6603 return 1;
6604 }
14f9c5c9
AS
6605 return 0;
6606}
6607
6608/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6609 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6610
d2e4a39e
AS
6611char *
6612ada_type_name (struct type *type)
14f9c5c9 6613{
d2e4a39e 6614 if (type == NULL)
14f9c5c9
AS
6615 return NULL;
6616 else if (TYPE_NAME (type) != NULL)
6617 return TYPE_NAME (type);
6618 else
6619 return TYPE_TAG_NAME (type);
6620}
6621
6622/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6623 SUFFIX to the name of TYPE. */
14f9c5c9 6624
d2e4a39e 6625struct type *
ebf56fd3 6626ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6627{
d2e4a39e 6628 static char *name;
14f9c5c9 6629 static size_t name_len = 0;
14f9c5c9 6630 int len;
d2e4a39e
AS
6631 char *typename = ada_type_name (type);
6632
14f9c5c9
AS
6633 if (typename == NULL)
6634 return NULL;
6635
6636 len = strlen (typename);
6637
d2e4a39e 6638 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6639
6640 strcpy (name, typename);
6641 strcpy (name + len, suffix);
6642
6643 return ada_find_any_type (name);
6644}
6645
6646
6647/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6648 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6649
d2e4a39e
AS
6650static struct type *
6651dynamic_template_type (struct type *type)
14f9c5c9 6652{
61ee279c 6653 type = ada_check_typedef (type);
14f9c5c9
AS
6654
6655 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6656 || ada_type_name (type) == NULL)
14f9c5c9 6657 return NULL;
d2e4a39e 6658 else
14f9c5c9
AS
6659 {
6660 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6661 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6662 return type;
14f9c5c9 6663 else
4c4b4cd2 6664 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6665 }
6666}
6667
6668/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6669 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6670
d2e4a39e
AS
6671static int
6672is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6673{
6674 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6675 return name != NULL
14f9c5c9
AS
6676 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6677 && strstr (name, "___XVL") != NULL;
6678}
6679
4c4b4cd2
PH
6680/* The index of the variant field of TYPE, or -1 if TYPE does not
6681 represent a variant record type. */
14f9c5c9 6682
d2e4a39e 6683static int
4c4b4cd2 6684variant_field_index (struct type *type)
14f9c5c9
AS
6685{
6686 int f;
6687
4c4b4cd2
PH
6688 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6689 return -1;
6690
6691 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6692 {
6693 if (ada_is_variant_part (type, f))
6694 return f;
6695 }
6696 return -1;
14f9c5c9
AS
6697}
6698
4c4b4cd2
PH
6699/* A record type with no fields. */
6700
d2e4a39e
AS
6701static struct type *
6702empty_record (struct objfile *objfile)
14f9c5c9 6703{
d2e4a39e 6704 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6705 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6706 TYPE_NFIELDS (type) = 0;
6707 TYPE_FIELDS (type) = NULL;
b1f33ddd 6708 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6709 TYPE_NAME (type) = "<empty>";
6710 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6711 TYPE_LENGTH (type) = 0;
6712 return type;
6713}
6714
6715/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6716 the value of type TYPE at VALADDR or ADDRESS (see comments at
6717 the beginning of this section) VAL according to GNAT conventions.
6718 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6719 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6720 an outer-level type (i.e., as opposed to a branch of a variant.) A
6721 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6722 of the variant.
14f9c5c9 6723
4c4b4cd2
PH
6724 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6725 length are not statically known are discarded. As a consequence,
6726 VALADDR, ADDRESS and DVAL0 are ignored.
6727
6728 NOTE: Limitations: For now, we assume that dynamic fields and
6729 variants occupy whole numbers of bytes. However, they need not be
6730 byte-aligned. */
6731
6732struct type *
10a2c479 6733ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6734 const gdb_byte *valaddr,
4c4b4cd2
PH
6735 CORE_ADDR address, struct value *dval0,
6736 int keep_dynamic_fields)
14f9c5c9 6737{
d2e4a39e
AS
6738 struct value *mark = value_mark ();
6739 struct value *dval;
6740 struct type *rtype;
14f9c5c9 6741 int nfields, bit_len;
4c4b4cd2 6742 int variant_field;
14f9c5c9 6743 long off;
4c4b4cd2 6744 int fld_bit_len, bit_incr;
14f9c5c9
AS
6745 int f;
6746
4c4b4cd2
PH
6747 /* Compute the number of fields in this record type that are going
6748 to be processed: unless keep_dynamic_fields, this includes only
6749 fields whose position and length are static will be processed. */
6750 if (keep_dynamic_fields)
6751 nfields = TYPE_NFIELDS (type);
6752 else
6753 {
6754 nfields = 0;
76a01679 6755 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6756 && !ada_is_variant_part (type, nfields)
6757 && !is_dynamic_field (type, nfields))
6758 nfields++;
6759 }
6760
14f9c5c9
AS
6761 rtype = alloc_type (TYPE_OBJFILE (type));
6762 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6763 INIT_CPLUS_SPECIFIC (rtype);
6764 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6765 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6766 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6767 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6768 TYPE_NAME (rtype) = ada_type_name (type);
6769 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6770 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6771
d2e4a39e
AS
6772 off = 0;
6773 bit_len = 0;
4c4b4cd2
PH
6774 variant_field = -1;
6775
14f9c5c9
AS
6776 for (f = 0; f < nfields; f += 1)
6777 {
6c038f32
PH
6778 off = align_value (off, field_alignment (type, f))
6779 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6780 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6781 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6782
d2e4a39e 6783 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6784 {
6785 variant_field = f;
6786 fld_bit_len = bit_incr = 0;
6787 }
14f9c5c9 6788 else if (is_dynamic_field (type, f))
4c4b4cd2 6789 {
284614f0
JB
6790 const gdb_byte *field_valaddr = valaddr;
6791 CORE_ADDR field_address = address;
6792 struct type *field_type =
6793 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6794
4c4b4cd2 6795 if (dval0 == NULL)
b5304971
JG
6796 {
6797 /* rtype's length is computed based on the run-time
6798 value of discriminants. If the discriminants are not
6799 initialized, the type size may be completely bogus and
6800 GDB may fail to allocate a value for it. So check the
6801 size first before creating the value. */
6802 check_size (rtype);
6803 dval = value_from_contents_and_address (rtype, valaddr, address);
6804 }
4c4b4cd2
PH
6805 else
6806 dval = dval0;
6807
284614f0
JB
6808 /* If the type referenced by this field is an aligner type, we need
6809 to unwrap that aligner type, because its size might not be set.
6810 Keeping the aligner type would cause us to compute the wrong
6811 size for this field, impacting the offset of the all the fields
6812 that follow this one. */
6813 if (ada_is_aligner_type (field_type))
6814 {
6815 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6816
6817 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6818 field_address = cond_offset_target (field_address, field_offset);
6819 field_type = ada_aligned_type (field_type);
6820 }
6821
6822 field_valaddr = cond_offset_host (field_valaddr,
6823 off / TARGET_CHAR_BIT);
6824 field_address = cond_offset_target (field_address,
6825 off / TARGET_CHAR_BIT);
6826
6827 /* Get the fixed type of the field. Note that, in this case,
6828 we do not want to get the real type out of the tag: if
6829 the current field is the parent part of a tagged record,
6830 we will get the tag of the object. Clearly wrong: the real
6831 type of the parent is not the real type of the child. We
6832 would end up in an infinite loop. */
6833 field_type = ada_get_base_type (field_type);
6834 field_type = ada_to_fixed_type (field_type, field_valaddr,
6835 field_address, dval, 0);
6836
6837 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6838 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6839 bit_incr = fld_bit_len =
6840 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6841 }
14f9c5c9 6842 else
4c4b4cd2
PH
6843 {
6844 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6845 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6846 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6847 bit_incr = fld_bit_len =
6848 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6849 else
6850 bit_incr = fld_bit_len =
6851 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6852 }
14f9c5c9 6853 if (off + fld_bit_len > bit_len)
4c4b4cd2 6854 bit_len = off + fld_bit_len;
14f9c5c9 6855 off += bit_incr;
4c4b4cd2
PH
6856 TYPE_LENGTH (rtype) =
6857 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6858 }
4c4b4cd2
PH
6859
6860 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6861 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6862 the record. This can happen in the presence of representation
6863 clauses. */
6864 if (variant_field >= 0)
6865 {
6866 struct type *branch_type;
6867
6868 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6869
6870 if (dval0 == NULL)
6871 dval = value_from_contents_and_address (rtype, valaddr, address);
6872 else
6873 dval = dval0;
6874
6875 branch_type =
6876 to_fixed_variant_branch_type
6877 (TYPE_FIELD_TYPE (type, variant_field),
6878 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6879 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6880 if (branch_type == NULL)
6881 {
6882 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6883 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6884 TYPE_NFIELDS (rtype) -= 1;
6885 }
6886 else
6887 {
6888 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6889 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6890 fld_bit_len =
6891 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6892 TARGET_CHAR_BIT;
6893 if (off + fld_bit_len > bit_len)
6894 bit_len = off + fld_bit_len;
6895 TYPE_LENGTH (rtype) =
6896 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6897 }
6898 }
6899
714e53ab
PH
6900 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6901 should contain the alignment of that record, which should be a strictly
6902 positive value. If null or negative, then something is wrong, most
6903 probably in the debug info. In that case, we don't round up the size
6904 of the resulting type. If this record is not part of another structure,
6905 the current RTYPE length might be good enough for our purposes. */
6906 if (TYPE_LENGTH (type) <= 0)
6907 {
323e0a4a
AC
6908 if (TYPE_NAME (rtype))
6909 warning (_("Invalid type size for `%s' detected: %d."),
6910 TYPE_NAME (rtype), TYPE_LENGTH (type));
6911 else
6912 warning (_("Invalid type size for <unnamed> detected: %d."),
6913 TYPE_LENGTH (type));
714e53ab
PH
6914 }
6915 else
6916 {
6917 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6918 TYPE_LENGTH (type));
6919 }
14f9c5c9
AS
6920
6921 value_free_to_mark (mark);
d2e4a39e 6922 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6923 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6924 return rtype;
6925}
6926
4c4b4cd2
PH
6927/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6928 of 1. */
14f9c5c9 6929
d2e4a39e 6930static struct type *
fc1a4b47 6931template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6932 CORE_ADDR address, struct value *dval0)
6933{
6934 return ada_template_to_fixed_record_type_1 (type, valaddr,
6935 address, dval0, 1);
6936}
6937
6938/* An ordinary record type in which ___XVL-convention fields and
6939 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6940 static approximations, containing all possible fields. Uses
6941 no runtime values. Useless for use in values, but that's OK,
6942 since the results are used only for type determinations. Works on both
6943 structs and unions. Representation note: to save space, we memorize
6944 the result of this function in the TYPE_TARGET_TYPE of the
6945 template type. */
6946
6947static struct type *
6948template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6949{
6950 struct type *type;
6951 int nfields;
6952 int f;
6953
4c4b4cd2
PH
6954 if (TYPE_TARGET_TYPE (type0) != NULL)
6955 return TYPE_TARGET_TYPE (type0);
6956
6957 nfields = TYPE_NFIELDS (type0);
6958 type = type0;
14f9c5c9
AS
6959
6960 for (f = 0; f < nfields; f += 1)
6961 {
61ee279c 6962 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6963 struct type *new_type;
14f9c5c9 6964
4c4b4cd2
PH
6965 if (is_dynamic_field (type0, f))
6966 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6967 else
f192137b 6968 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6969 if (type == type0 && new_type != field_type)
6970 {
6971 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6972 TYPE_CODE (type) = TYPE_CODE (type0);
6973 INIT_CPLUS_SPECIFIC (type);
6974 TYPE_NFIELDS (type) = nfields;
6975 TYPE_FIELDS (type) = (struct field *)
6976 TYPE_ALLOC (type, nfields * sizeof (struct field));
6977 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6978 sizeof (struct field) * nfields);
6979 TYPE_NAME (type) = ada_type_name (type0);
6980 TYPE_TAG_NAME (type) = NULL;
876cecd0 6981 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6982 TYPE_LENGTH (type) = 0;
6983 }
6984 TYPE_FIELD_TYPE (type, f) = new_type;
6985 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6986 }
14f9c5c9
AS
6987 return type;
6988}
6989
4c4b4cd2 6990/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6991 whose address in memory is ADDRESS, returns a revision of TYPE,
6992 which should be a non-dynamic-sized record, in which the variant
6993 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6994 for discriminant values in DVAL0, which can be NULL if the record
6995 contains the necessary discriminant values. */
6996
d2e4a39e 6997static struct type *
fc1a4b47 6998to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6999 CORE_ADDR address, struct value *dval0)
14f9c5c9 7000{
d2e4a39e 7001 struct value *mark = value_mark ();
4c4b4cd2 7002 struct value *dval;
d2e4a39e 7003 struct type *rtype;
14f9c5c9
AS
7004 struct type *branch_type;
7005 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7006 int variant_field = variant_field_index (type);
14f9c5c9 7007
4c4b4cd2 7008 if (variant_field == -1)
14f9c5c9
AS
7009 return type;
7010
4c4b4cd2
PH
7011 if (dval0 == NULL)
7012 dval = value_from_contents_and_address (type, valaddr, address);
7013 else
7014 dval = dval0;
7015
14f9c5c9
AS
7016 rtype = alloc_type (TYPE_OBJFILE (type));
7017 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7018 INIT_CPLUS_SPECIFIC (rtype);
7019 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7020 TYPE_FIELDS (rtype) =
7021 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7022 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7023 sizeof (struct field) * nfields);
14f9c5c9
AS
7024 TYPE_NAME (rtype) = ada_type_name (type);
7025 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7026 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7027 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7028
4c4b4cd2
PH
7029 branch_type = to_fixed_variant_branch_type
7030 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7031 cond_offset_host (valaddr,
4c4b4cd2
PH
7032 TYPE_FIELD_BITPOS (type, variant_field)
7033 / TARGET_CHAR_BIT),
d2e4a39e 7034 cond_offset_target (address,
4c4b4cd2
PH
7035 TYPE_FIELD_BITPOS (type, variant_field)
7036 / TARGET_CHAR_BIT), dval);
d2e4a39e 7037 if (branch_type == NULL)
14f9c5c9 7038 {
4c4b4cd2
PH
7039 int f;
7040 for (f = variant_field + 1; f < nfields; f += 1)
7041 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7042 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7043 }
7044 else
7045 {
4c4b4cd2
PH
7046 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7047 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7048 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7049 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7050 }
4c4b4cd2 7051 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7052
4c4b4cd2 7053 value_free_to_mark (mark);
14f9c5c9
AS
7054 return rtype;
7055}
7056
7057/* An ordinary record type (with fixed-length fields) that describes
7058 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7059 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7060 should be in DVAL, a record value; it may be NULL if the object
7061 at ADDR itself contains any necessary discriminant values.
7062 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7063 values from the record are needed. Except in the case that DVAL,
7064 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7065 unchecked) is replaced by a particular branch of the variant.
7066
7067 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7068 is questionable and may be removed. It can arise during the
7069 processing of an unconstrained-array-of-record type where all the
7070 variant branches have exactly the same size. This is because in
7071 such cases, the compiler does not bother to use the XVS convention
7072 when encoding the record. I am currently dubious of this
7073 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7074
d2e4a39e 7075static struct type *
fc1a4b47 7076to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7077 CORE_ADDR address, struct value *dval)
14f9c5c9 7078{
d2e4a39e 7079 struct type *templ_type;
14f9c5c9 7080
876cecd0 7081 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7082 return type0;
7083
d2e4a39e 7084 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7085
7086 if (templ_type != NULL)
7087 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7088 else if (variant_field_index (type0) >= 0)
7089 {
7090 if (dval == NULL && valaddr == NULL && address == 0)
7091 return type0;
7092 return to_record_with_fixed_variant_part (type0, valaddr, address,
7093 dval);
7094 }
14f9c5c9
AS
7095 else
7096 {
876cecd0 7097 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7098 return type0;
7099 }
7100
7101}
7102
7103/* An ordinary record type (with fixed-length fields) that describes
7104 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7105 union type. Any necessary discriminants' values should be in DVAL,
7106 a record value. That is, this routine selects the appropriate
7107 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7108 indicated in the union's type name. Returns VAR_TYPE0 itself if
7109 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7110
d2e4a39e 7111static struct type *
fc1a4b47 7112to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7113 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7114{
7115 int which;
d2e4a39e
AS
7116 struct type *templ_type;
7117 struct type *var_type;
14f9c5c9
AS
7118
7119 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7120 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7121 else
14f9c5c9
AS
7122 var_type = var_type0;
7123
7124 templ_type = ada_find_parallel_type (var_type, "___XVU");
7125
7126 if (templ_type != NULL)
7127 var_type = templ_type;
7128
b1f33ddd
JB
7129 if (is_unchecked_variant (var_type, value_type (dval)))
7130 return var_type0;
d2e4a39e
AS
7131 which =
7132 ada_which_variant_applies (var_type,
0fd88904 7133 value_type (dval), value_contents (dval));
14f9c5c9
AS
7134
7135 if (which < 0)
7136 return empty_record (TYPE_OBJFILE (var_type));
7137 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7138 return to_fixed_record_type
d2e4a39e
AS
7139 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7140 valaddr, address, dval);
4c4b4cd2 7141 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7142 return
7143 to_fixed_record_type
7144 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7145 else
7146 return TYPE_FIELD_TYPE (var_type, which);
7147}
7148
7149/* Assuming that TYPE0 is an array type describing the type of a value
7150 at ADDR, and that DVAL describes a record containing any
7151 discriminants used in TYPE0, returns a type for the value that
7152 contains no dynamic components (that is, no components whose sizes
7153 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7154 true, gives an error message if the resulting type's size is over
4c4b4cd2 7155 varsize_limit. */
14f9c5c9 7156
d2e4a39e
AS
7157static struct type *
7158to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7159 int ignore_too_big)
14f9c5c9 7160{
d2e4a39e
AS
7161 struct type *index_type_desc;
7162 struct type *result;
284614f0 7163 int packed_array_p;
14f9c5c9 7164
284614f0 7165 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7166 return type0;
14f9c5c9 7167
284614f0
JB
7168 packed_array_p = ada_is_packed_array_type (type0);
7169 if (packed_array_p)
7170 type0 = decode_packed_array_type (type0);
7171
14f9c5c9
AS
7172 index_type_desc = ada_find_parallel_type (type0, "___XA");
7173 if (index_type_desc == NULL)
7174 {
61ee279c 7175 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7176 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7177 depend on the contents of the array in properly constructed
7178 debugging data. */
529cad9c
PH
7179 /* Create a fixed version of the array element type.
7180 We're not providing the address of an element here,
e1d5a0d2 7181 and thus the actual object value cannot be inspected to do
529cad9c
PH
7182 the conversion. This should not be a problem, since arrays of
7183 unconstrained objects are not allowed. In particular, all
7184 the elements of an array of a tagged type should all be of
7185 the same type specified in the debugging info. No need to
7186 consult the object tag. */
1ed6ede0 7187 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7188
284614f0
JB
7189 /* Make sure we always create a new array type when dealing with
7190 packed array types, since we're going to fix-up the array
7191 type length and element bitsize a little further down. */
7192 if (elt_type0 == elt_type && !packed_array_p)
4c4b4cd2 7193 result = type0;
14f9c5c9 7194 else
4c4b4cd2
PH
7195 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7196 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7197 }
7198 else
7199 {
7200 int i;
7201 struct type *elt_type0;
7202
7203 elt_type0 = type0;
7204 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7205 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7206
7207 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7208 depend on the contents of the array in properly constructed
7209 debugging data. */
529cad9c
PH
7210 /* Create a fixed version of the array element type.
7211 We're not providing the address of an element here,
e1d5a0d2 7212 and thus the actual object value cannot be inspected to do
529cad9c
PH
7213 the conversion. This should not be a problem, since arrays of
7214 unconstrained objects are not allowed. In particular, all
7215 the elements of an array of a tagged type should all be of
7216 the same type specified in the debugging info. No need to
7217 consult the object tag. */
1ed6ede0
JB
7218 result =
7219 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7220 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7221 {
7222 struct type *range_type =
7223 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7224 dval, TYPE_OBJFILE (type0));
7225 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7226 result, range_type);
7227 }
d2e4a39e 7228 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7229 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7230 }
7231
284614f0
JB
7232 if (packed_array_p)
7233 {
7234 /* So far, the resulting type has been created as if the original
7235 type was a regular (non-packed) array type. As a result, the
7236 bitsize of the array elements needs to be set again, and the array
7237 length needs to be recomputed based on that bitsize. */
7238 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7239 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7240
7241 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7242 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7243 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7244 TYPE_LENGTH (result)++;
7245 }
7246
876cecd0 7247 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7248 return result;
d2e4a39e 7249}
14f9c5c9
AS
7250
7251
7252/* A standard type (containing no dynamically sized components)
7253 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7254 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7255 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7256 ADDRESS or in VALADDR contains these discriminants.
7257
1ed6ede0
JB
7258 If CHECK_TAG is not null, in the case of tagged types, this function
7259 attempts to locate the object's tag and use it to compute the actual
7260 type. However, when ADDRESS is null, we cannot use it to determine the
7261 location of the tag, and therefore compute the tagged type's actual type.
7262 So we return the tagged type without consulting the tag. */
529cad9c 7263
f192137b
JB
7264static struct type *
7265ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7266 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7267{
61ee279c 7268 type = ada_check_typedef (type);
d2e4a39e
AS
7269 switch (TYPE_CODE (type))
7270 {
7271 default:
14f9c5c9 7272 return type;
d2e4a39e 7273 case TYPE_CODE_STRUCT:
4c4b4cd2 7274 {
76a01679 7275 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7276 struct type *fixed_record_type =
7277 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7278 /* If STATIC_TYPE is a tagged type and we know the object's address,
7279 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7280 type from there. Note that we have to use the fixed record
7281 type (the parent part of the record may have dynamic fields
7282 and the way the location of _tag is expressed may depend on
7283 them). */
529cad9c 7284
1ed6ede0 7285 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7286 {
7287 struct type *real_type =
1ed6ede0
JB
7288 type_from_tag (value_tag_from_contents_and_address
7289 (fixed_record_type,
7290 valaddr,
7291 address));
76a01679 7292 if (real_type != NULL)
1ed6ede0 7293 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7294 }
4af88198
JB
7295
7296 /* Check to see if there is a parallel ___XVZ variable.
7297 If there is, then it provides the actual size of our type. */
7298 else if (ada_type_name (fixed_record_type) != NULL)
7299 {
7300 char *name = ada_type_name (fixed_record_type);
7301 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7302 int xvz_found = 0;
7303 LONGEST size;
7304
88c15c34 7305 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7306 size = get_int_var_value (xvz_name, &xvz_found);
7307 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7308 {
7309 fixed_record_type = copy_type (fixed_record_type);
7310 TYPE_LENGTH (fixed_record_type) = size;
7311
7312 /* The FIXED_RECORD_TYPE may have be a stub. We have
7313 observed this when the debugging info is STABS, and
7314 apparently it is something that is hard to fix.
7315
7316 In practice, we don't need the actual type definition
7317 at all, because the presence of the XVZ variable allows us
7318 to assume that there must be a XVS type as well, which we
7319 should be able to use later, when we need the actual type
7320 definition.
7321
7322 In the meantime, pretend that the "fixed" type we are
7323 returning is NOT a stub, because this can cause trouble
7324 when using this type to create new types targeting it.
7325 Indeed, the associated creation routines often check
7326 whether the target type is a stub and will try to replace
7327 it, thus using a type with the wrong size. This, in turn,
7328 might cause the new type to have the wrong size too.
7329 Consider the case of an array, for instance, where the size
7330 of the array is computed from the number of elements in
7331 our array multiplied by the size of its element. */
7332 TYPE_STUB (fixed_record_type) = 0;
7333 }
7334 }
1ed6ede0 7335 return fixed_record_type;
4c4b4cd2 7336 }
d2e4a39e 7337 case TYPE_CODE_ARRAY:
4c4b4cd2 7338 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7339 case TYPE_CODE_UNION:
7340 if (dval == NULL)
4c4b4cd2 7341 return type;
d2e4a39e 7342 else
4c4b4cd2 7343 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7344 }
14f9c5c9
AS
7345}
7346
f192137b
JB
7347/* The same as ada_to_fixed_type_1, except that it preserves the type
7348 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7349 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7350
7351struct type *
7352ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7353 CORE_ADDR address, struct value *dval, int check_tag)
7354
7355{
7356 struct type *fixed_type =
7357 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7358
7359 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7360 && TYPE_TARGET_TYPE (type) == fixed_type)
7361 return type;
7362
7363 return fixed_type;
7364}
7365
14f9c5c9 7366/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7367 TYPE0, but based on no runtime data. */
14f9c5c9 7368
d2e4a39e
AS
7369static struct type *
7370to_static_fixed_type (struct type *type0)
14f9c5c9 7371{
d2e4a39e 7372 struct type *type;
14f9c5c9
AS
7373
7374 if (type0 == NULL)
7375 return NULL;
7376
876cecd0 7377 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7378 return type0;
7379
61ee279c 7380 type0 = ada_check_typedef (type0);
d2e4a39e 7381
14f9c5c9
AS
7382 switch (TYPE_CODE (type0))
7383 {
7384 default:
7385 return type0;
7386 case TYPE_CODE_STRUCT:
7387 type = dynamic_template_type (type0);
d2e4a39e 7388 if (type != NULL)
4c4b4cd2
PH
7389 return template_to_static_fixed_type (type);
7390 else
7391 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7392 case TYPE_CODE_UNION:
7393 type = ada_find_parallel_type (type0, "___XVU");
7394 if (type != NULL)
4c4b4cd2
PH
7395 return template_to_static_fixed_type (type);
7396 else
7397 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7398 }
7399}
7400
4c4b4cd2
PH
7401/* A static approximation of TYPE with all type wrappers removed. */
7402
d2e4a39e
AS
7403static struct type *
7404static_unwrap_type (struct type *type)
14f9c5c9
AS
7405{
7406 if (ada_is_aligner_type (type))
7407 {
61ee279c 7408 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7409 if (ada_type_name (type1) == NULL)
4c4b4cd2 7410 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7411
7412 return static_unwrap_type (type1);
7413 }
d2e4a39e 7414 else
14f9c5c9 7415 {
d2e4a39e
AS
7416 struct type *raw_real_type = ada_get_base_type (type);
7417 if (raw_real_type == type)
4c4b4cd2 7418 return type;
14f9c5c9 7419 else
4c4b4cd2 7420 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7421 }
7422}
7423
7424/* In some cases, incomplete and private types require
4c4b4cd2 7425 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7426 type Foo;
7427 type FooP is access Foo;
7428 V: FooP;
7429 type Foo is array ...;
4c4b4cd2 7430 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7431 cross-references to such types, we instead substitute for FooP a
7432 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7433 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7434
7435/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7436 exists, otherwise TYPE. */
7437
d2e4a39e 7438struct type *
61ee279c 7439ada_check_typedef (struct type *type)
14f9c5c9 7440{
727e3d2e
JB
7441 if (type == NULL)
7442 return NULL;
7443
14f9c5c9
AS
7444 CHECK_TYPEDEF (type);
7445 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7446 || !TYPE_STUB (type)
14f9c5c9
AS
7447 || TYPE_TAG_NAME (type) == NULL)
7448 return type;
d2e4a39e 7449 else
14f9c5c9 7450 {
d2e4a39e
AS
7451 char *name = TYPE_TAG_NAME (type);
7452 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7453 return (type1 == NULL) ? type : type1;
7454 }
7455}
7456
7457/* A value representing the data at VALADDR/ADDRESS as described by
7458 type TYPE0, but with a standard (static-sized) type that correctly
7459 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7460 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7461 creation of struct values]. */
14f9c5c9 7462
4c4b4cd2
PH
7463static struct value *
7464ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7465 struct value *val0)
14f9c5c9 7466{
1ed6ede0 7467 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7468 if (type == type0 && val0 != NULL)
7469 return val0;
d2e4a39e 7470 else
4c4b4cd2
PH
7471 return value_from_contents_and_address (type, 0, address);
7472}
7473
7474/* A value representing VAL, but with a standard (static-sized) type
7475 that correctly describes it. Does not necessarily create a new
7476 value. */
7477
7478static struct value *
7479ada_to_fixed_value (struct value *val)
7480{
df407dfe 7481 return ada_to_fixed_value_create (value_type (val),
42ae5230 7482 value_address (val),
4c4b4cd2 7483 val);
14f9c5c9
AS
7484}
7485
4c4b4cd2 7486/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7487 chosen to approximate the real type of VAL as well as possible, but
7488 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7489 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7490
2c0b251b 7491static struct value *
d2e4a39e 7492ada_to_static_fixed_value (struct value *val)
14f9c5c9 7493{
d2e4a39e 7494 struct type *type =
df407dfe
AC
7495 to_static_fixed_type (static_unwrap_type (value_type (val)));
7496 if (type == value_type (val))
14f9c5c9
AS
7497 return val;
7498 else
4c4b4cd2 7499 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7500}
d2e4a39e 7501\f
14f9c5c9 7502
14f9c5c9
AS
7503/* Attributes */
7504
4c4b4cd2
PH
7505/* Table mapping attribute numbers to names.
7506 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7507
d2e4a39e 7508static const char *attribute_names[] = {
14f9c5c9
AS
7509 "<?>",
7510
d2e4a39e 7511 "first",
14f9c5c9
AS
7512 "last",
7513 "length",
7514 "image",
14f9c5c9
AS
7515 "max",
7516 "min",
4c4b4cd2
PH
7517 "modulus",
7518 "pos",
7519 "size",
7520 "tag",
14f9c5c9 7521 "val",
14f9c5c9
AS
7522 0
7523};
7524
d2e4a39e 7525const char *
4c4b4cd2 7526ada_attribute_name (enum exp_opcode n)
14f9c5c9 7527{
4c4b4cd2
PH
7528 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7529 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7530 else
7531 return attribute_names[0];
7532}
7533
4c4b4cd2 7534/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7535
4c4b4cd2
PH
7536static LONGEST
7537pos_atr (struct value *arg)
14f9c5c9 7538{
24209737
PH
7539 struct value *val = coerce_ref (arg);
7540 struct type *type = value_type (val);
14f9c5c9 7541
d2e4a39e 7542 if (!discrete_type_p (type))
323e0a4a 7543 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7544
7545 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7546 {
7547 int i;
24209737 7548 LONGEST v = value_as_long (val);
14f9c5c9 7549
d2e4a39e 7550 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7551 {
7552 if (v == TYPE_FIELD_BITPOS (type, i))
7553 return i;
7554 }
323e0a4a 7555 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7556 }
7557 else
24209737 7558 return value_as_long (val);
4c4b4cd2
PH
7559}
7560
7561static struct value *
3cb382c9 7562value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7563{
3cb382c9 7564 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7565}
7566
4c4b4cd2 7567/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7568
d2e4a39e
AS
7569static struct value *
7570value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7571{
d2e4a39e 7572 if (!discrete_type_p (type))
323e0a4a 7573 error (_("'VAL only defined on discrete types"));
df407dfe 7574 if (!integer_type_p (value_type (arg)))
323e0a4a 7575 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7576
7577 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7578 {
7579 long pos = value_as_long (arg);
7580 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7581 error (_("argument to 'VAL out of range"));
d2e4a39e 7582 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7583 }
7584 else
7585 return value_from_longest (type, value_as_long (arg));
7586}
14f9c5c9 7587\f
d2e4a39e 7588
4c4b4cd2 7589 /* Evaluation */
14f9c5c9 7590
4c4b4cd2
PH
7591/* True if TYPE appears to be an Ada character type.
7592 [At the moment, this is true only for Character and Wide_Character;
7593 It is a heuristic test that could stand improvement]. */
14f9c5c9 7594
d2e4a39e
AS
7595int
7596ada_is_character_type (struct type *type)
14f9c5c9 7597{
7b9f71f2
JB
7598 const char *name;
7599
7600 /* If the type code says it's a character, then assume it really is,
7601 and don't check any further. */
7602 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7603 return 1;
7604
7605 /* Otherwise, assume it's a character type iff it is a discrete type
7606 with a known character type name. */
7607 name = ada_type_name (type);
7608 return (name != NULL
7609 && (TYPE_CODE (type) == TYPE_CODE_INT
7610 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7611 && (strcmp (name, "character") == 0
7612 || strcmp (name, "wide_character") == 0
5a517ebd 7613 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7614 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7615}
7616
4c4b4cd2 7617/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7618
7619int
ebf56fd3 7620ada_is_string_type (struct type *type)
14f9c5c9 7621{
61ee279c 7622 type = ada_check_typedef (type);
d2e4a39e 7623 if (type != NULL
14f9c5c9 7624 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7625 && (ada_is_simple_array_type (type)
7626 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7627 && ada_array_arity (type) == 1)
7628 {
7629 struct type *elttype = ada_array_element_type (type, 1);
7630
7631 return ada_is_character_type (elttype);
7632 }
d2e4a39e 7633 else
14f9c5c9
AS
7634 return 0;
7635}
7636
7637
7638/* True if TYPE is a struct type introduced by the compiler to force the
7639 alignment of a value. Such types have a single field with a
4c4b4cd2 7640 distinctive name. */
14f9c5c9
AS
7641
7642int
ebf56fd3 7643ada_is_aligner_type (struct type *type)
14f9c5c9 7644{
61ee279c 7645 type = ada_check_typedef (type);
714e53ab
PH
7646
7647 /* If we can find a parallel XVS type, then the XVS type should
7648 be used instead of this type. And hence, this is not an aligner
7649 type. */
7650 if (ada_find_parallel_type (type, "___XVS") != NULL)
7651 return 0;
7652
14f9c5c9 7653 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7654 && TYPE_NFIELDS (type) == 1
7655 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7656}
7657
7658/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7659 the parallel type. */
14f9c5c9 7660
d2e4a39e
AS
7661struct type *
7662ada_get_base_type (struct type *raw_type)
14f9c5c9 7663{
d2e4a39e
AS
7664 struct type *real_type_namer;
7665 struct type *raw_real_type;
14f9c5c9
AS
7666
7667 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7668 return raw_type;
7669
284614f0
JB
7670 if (ada_is_aligner_type (raw_type))
7671 /* The encoding specifies that we should always use the aligner type.
7672 So, even if this aligner type has an associated XVS type, we should
7673 simply ignore it.
7674
7675 According to the compiler gurus, an XVS type parallel to an aligner
7676 type may exist because of a stabs limitation. In stabs, aligner
7677 types are empty because the field has a variable-sized type, and
7678 thus cannot actually be used as an aligner type. As a result,
7679 we need the associated parallel XVS type to decode the type.
7680 Since the policy in the compiler is to not change the internal
7681 representation based on the debugging info format, we sometimes
7682 end up having a redundant XVS type parallel to the aligner type. */
7683 return raw_type;
7684
14f9c5c9 7685 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7686 if (real_type_namer == NULL
14f9c5c9
AS
7687 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7688 || TYPE_NFIELDS (real_type_namer) != 1)
7689 return raw_type;
7690
7691 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7692 if (raw_real_type == NULL)
14f9c5c9
AS
7693 return raw_type;
7694 else
7695 return raw_real_type;
d2e4a39e 7696}
14f9c5c9 7697
4c4b4cd2 7698/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7699
d2e4a39e
AS
7700struct type *
7701ada_aligned_type (struct type *type)
14f9c5c9
AS
7702{
7703 if (ada_is_aligner_type (type))
7704 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7705 else
7706 return ada_get_base_type (type);
7707}
7708
7709
7710/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7711 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7712
fc1a4b47
AC
7713const gdb_byte *
7714ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7715{
d2e4a39e 7716 if (ada_is_aligner_type (type))
14f9c5c9 7717 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7718 valaddr +
7719 TYPE_FIELD_BITPOS (type,
7720 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7721 else
7722 return valaddr;
7723}
7724
4c4b4cd2
PH
7725
7726
14f9c5c9 7727/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7728 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7729const char *
7730ada_enum_name (const char *name)
14f9c5c9 7731{
4c4b4cd2
PH
7732 static char *result;
7733 static size_t result_len = 0;
d2e4a39e 7734 char *tmp;
14f9c5c9 7735
4c4b4cd2
PH
7736 /* First, unqualify the enumeration name:
7737 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7738 all the preceeding characters, the unqualified name starts
7739 right after that dot.
4c4b4cd2 7740 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7741 translates dots into "__". Search forward for double underscores,
7742 but stop searching when we hit an overloading suffix, which is
7743 of the form "__" followed by digits. */
4c4b4cd2 7744
c3e5cd34
PH
7745 tmp = strrchr (name, '.');
7746 if (tmp != NULL)
4c4b4cd2
PH
7747 name = tmp + 1;
7748 else
14f9c5c9 7749 {
4c4b4cd2
PH
7750 while ((tmp = strstr (name, "__")) != NULL)
7751 {
7752 if (isdigit (tmp[2]))
7753 break;
7754 else
7755 name = tmp + 2;
7756 }
14f9c5c9
AS
7757 }
7758
7759 if (name[0] == 'Q')
7760 {
14f9c5c9
AS
7761 int v;
7762 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7763 {
7764 if (sscanf (name + 2, "%x", &v) != 1)
7765 return name;
7766 }
14f9c5c9 7767 else
4c4b4cd2 7768 return name;
14f9c5c9 7769
4c4b4cd2 7770 GROW_VECT (result, result_len, 16);
14f9c5c9 7771 if (isascii (v) && isprint (v))
88c15c34 7772 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7773 else if (name[1] == 'U')
88c15c34 7774 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7775 else
88c15c34 7776 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7777
7778 return result;
7779 }
d2e4a39e 7780 else
4c4b4cd2 7781 {
c3e5cd34
PH
7782 tmp = strstr (name, "__");
7783 if (tmp == NULL)
7784 tmp = strstr (name, "$");
7785 if (tmp != NULL)
4c4b4cd2
PH
7786 {
7787 GROW_VECT (result, result_len, tmp - name + 1);
7788 strncpy (result, name, tmp - name);
7789 result[tmp - name] = '\0';
7790 return result;
7791 }
7792
7793 return name;
7794 }
14f9c5c9
AS
7795}
7796
14f9c5c9
AS
7797/* Evaluate the subexpression of EXP starting at *POS as for
7798 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7799 expression. */
14f9c5c9 7800
d2e4a39e
AS
7801static struct value *
7802evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7803{
4b27a620 7804 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7805}
7806
7807/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7808 value it wraps. */
14f9c5c9 7809
d2e4a39e
AS
7810static struct value *
7811unwrap_value (struct value *val)
14f9c5c9 7812{
df407dfe 7813 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7814 if (ada_is_aligner_type (type))
7815 {
de4d072f 7816 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7817 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7818 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7819 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7820
7821 return unwrap_value (v);
7822 }
d2e4a39e 7823 else
14f9c5c9 7824 {
d2e4a39e 7825 struct type *raw_real_type =
61ee279c 7826 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7827
14f9c5c9 7828 if (type == raw_real_type)
4c4b4cd2 7829 return val;
14f9c5c9 7830
d2e4a39e 7831 return
4c4b4cd2
PH
7832 coerce_unspec_val_to_type
7833 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7834 value_address (val),
1ed6ede0 7835 NULL, 1));
14f9c5c9
AS
7836 }
7837}
d2e4a39e
AS
7838
7839static struct value *
7840cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7841{
7842 LONGEST val;
7843
df407dfe 7844 if (type == value_type (arg))
14f9c5c9 7845 return arg;
df407dfe 7846 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7847 val = ada_float_to_fixed (type,
df407dfe 7848 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7849 value_as_long (arg)));
d2e4a39e 7850 else
14f9c5c9 7851 {
a53b7a21 7852 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7853 val = ada_float_to_fixed (type, argd);
7854 }
7855
7856 return value_from_longest (type, val);
7857}
7858
d2e4a39e 7859static struct value *
a53b7a21 7860cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7861{
df407dfe 7862 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7863 value_as_long (arg));
a53b7a21 7864 return value_from_double (type, val);
14f9c5c9
AS
7865}
7866
4c4b4cd2
PH
7867/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7868 return the converted value. */
7869
d2e4a39e
AS
7870static struct value *
7871coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7872{
df407dfe 7873 struct type *type2 = value_type (val);
14f9c5c9
AS
7874 if (type == type2)
7875 return val;
7876
61ee279c
PH
7877 type2 = ada_check_typedef (type2);
7878 type = ada_check_typedef (type);
14f9c5c9 7879
d2e4a39e
AS
7880 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7881 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7882 {
7883 val = ada_value_ind (val);
df407dfe 7884 type2 = value_type (val);
14f9c5c9
AS
7885 }
7886
d2e4a39e 7887 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7888 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7889 {
7890 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7891 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7892 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7893 error (_("Incompatible types in assignment"));
04624583 7894 deprecated_set_value_type (val, type);
14f9c5c9 7895 }
d2e4a39e 7896 return val;
14f9c5c9
AS
7897}
7898
4c4b4cd2
PH
7899static struct value *
7900ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7901{
7902 struct value *val;
7903 struct type *type1, *type2;
7904 LONGEST v, v1, v2;
7905
994b9211
AC
7906 arg1 = coerce_ref (arg1);
7907 arg2 = coerce_ref (arg2);
df407dfe
AC
7908 type1 = base_type (ada_check_typedef (value_type (arg1)));
7909 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7910
76a01679
JB
7911 if (TYPE_CODE (type1) != TYPE_CODE_INT
7912 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7913 return value_binop (arg1, arg2, op);
7914
76a01679 7915 switch (op)
4c4b4cd2
PH
7916 {
7917 case BINOP_MOD:
7918 case BINOP_DIV:
7919 case BINOP_REM:
7920 break;
7921 default:
7922 return value_binop (arg1, arg2, op);
7923 }
7924
7925 v2 = value_as_long (arg2);
7926 if (v2 == 0)
323e0a4a 7927 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7928
7929 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7930 return value_binop (arg1, arg2, op);
7931
7932 v1 = value_as_long (arg1);
7933 switch (op)
7934 {
7935 case BINOP_DIV:
7936 v = v1 / v2;
76a01679
JB
7937 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7938 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7939 break;
7940 case BINOP_REM:
7941 v = v1 % v2;
76a01679
JB
7942 if (v * v1 < 0)
7943 v -= v2;
4c4b4cd2
PH
7944 break;
7945 default:
7946 /* Should not reach this point. */
7947 v = 0;
7948 }
7949
7950 val = allocate_value (type1);
990a07ab 7951 store_unsigned_integer (value_contents_raw (val),
df407dfe 7952 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7953 return val;
7954}
7955
7956static int
7957ada_value_equal (struct value *arg1, struct value *arg2)
7958{
df407dfe
AC
7959 if (ada_is_direct_array_type (value_type (arg1))
7960 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7961 {
f58b38bf
JB
7962 /* Automatically dereference any array reference before
7963 we attempt to perform the comparison. */
7964 arg1 = ada_coerce_ref (arg1);
7965 arg2 = ada_coerce_ref (arg2);
7966
4c4b4cd2
PH
7967 arg1 = ada_coerce_to_simple_array (arg1);
7968 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7969 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7970 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7971 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7972 /* FIXME: The following works only for types whose
76a01679
JB
7973 representations use all bits (no padding or undefined bits)
7974 and do not have user-defined equality. */
7975 return
df407dfe 7976 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7977 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7978 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7979 }
7980 return value_equal (arg1, arg2);
7981}
7982
52ce6436
PH
7983/* Total number of component associations in the aggregate starting at
7984 index PC in EXP. Assumes that index PC is the start of an
7985 OP_AGGREGATE. */
7986
7987static int
7988num_component_specs (struct expression *exp, int pc)
7989{
7990 int n, m, i;
7991 m = exp->elts[pc + 1].longconst;
7992 pc += 3;
7993 n = 0;
7994 for (i = 0; i < m; i += 1)
7995 {
7996 switch (exp->elts[pc].opcode)
7997 {
7998 default:
7999 n += 1;
8000 break;
8001 case OP_CHOICES:
8002 n += exp->elts[pc + 1].longconst;
8003 break;
8004 }
8005 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8006 }
8007 return n;
8008}
8009
8010/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8011 component of LHS (a simple array or a record), updating *POS past
8012 the expression, assuming that LHS is contained in CONTAINER. Does
8013 not modify the inferior's memory, nor does it modify LHS (unless
8014 LHS == CONTAINER). */
8015
8016static void
8017assign_component (struct value *container, struct value *lhs, LONGEST index,
8018 struct expression *exp, int *pos)
8019{
8020 struct value *mark = value_mark ();
8021 struct value *elt;
8022 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8023 {
6d84d3d8 8024 struct value *index_val = value_from_longest (builtin_type_int32, index);
52ce6436
PH
8025 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8026 }
8027 else
8028 {
8029 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8030 elt = ada_to_fixed_value (unwrap_value (elt));
8031 }
8032
8033 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8034 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8035 else
8036 value_assign_to_component (container, elt,
8037 ada_evaluate_subexp (NULL, exp, pos,
8038 EVAL_NORMAL));
8039
8040 value_free_to_mark (mark);
8041}
8042
8043/* Assuming that LHS represents an lvalue having a record or array
8044 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8045 of that aggregate's value to LHS, advancing *POS past the
8046 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8047 lvalue containing LHS (possibly LHS itself). Does not modify
8048 the inferior's memory, nor does it modify the contents of
8049 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8050
8051static struct value *
8052assign_aggregate (struct value *container,
8053 struct value *lhs, struct expression *exp,
8054 int *pos, enum noside noside)
8055{
8056 struct type *lhs_type;
8057 int n = exp->elts[*pos+1].longconst;
8058 LONGEST low_index, high_index;
8059 int num_specs;
8060 LONGEST *indices;
8061 int max_indices, num_indices;
8062 int is_array_aggregate;
8063 int i;
8064 struct value *mark = value_mark ();
8065
8066 *pos += 3;
8067 if (noside != EVAL_NORMAL)
8068 {
8069 int i;
8070 for (i = 0; i < n; i += 1)
8071 ada_evaluate_subexp (NULL, exp, pos, noside);
8072 return container;
8073 }
8074
8075 container = ada_coerce_ref (container);
8076 if (ada_is_direct_array_type (value_type (container)))
8077 container = ada_coerce_to_simple_array (container);
8078 lhs = ada_coerce_ref (lhs);
8079 if (!deprecated_value_modifiable (lhs))
8080 error (_("Left operand of assignment is not a modifiable lvalue."));
8081
8082 lhs_type = value_type (lhs);
8083 if (ada_is_direct_array_type (lhs_type))
8084 {
8085 lhs = ada_coerce_to_simple_array (lhs);
8086 lhs_type = value_type (lhs);
8087 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8088 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8089 is_array_aggregate = 1;
8090 }
8091 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8092 {
8093 low_index = 0;
8094 high_index = num_visible_fields (lhs_type) - 1;
8095 is_array_aggregate = 0;
8096 }
8097 else
8098 error (_("Left-hand side must be array or record."));
8099
8100 num_specs = num_component_specs (exp, *pos - 3);
8101 max_indices = 4 * num_specs + 4;
8102 indices = alloca (max_indices * sizeof (indices[0]));
8103 indices[0] = indices[1] = low_index - 1;
8104 indices[2] = indices[3] = high_index + 1;
8105 num_indices = 4;
8106
8107 for (i = 0; i < n; i += 1)
8108 {
8109 switch (exp->elts[*pos].opcode)
8110 {
8111 case OP_CHOICES:
8112 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8113 &num_indices, max_indices,
8114 low_index, high_index);
8115 break;
8116 case OP_POSITIONAL:
8117 aggregate_assign_positional (container, lhs, exp, pos, indices,
8118 &num_indices, max_indices,
8119 low_index, high_index);
8120 break;
8121 case OP_OTHERS:
8122 if (i != n-1)
8123 error (_("Misplaced 'others' clause"));
8124 aggregate_assign_others (container, lhs, exp, pos, indices,
8125 num_indices, low_index, high_index);
8126 break;
8127 default:
8128 error (_("Internal error: bad aggregate clause"));
8129 }
8130 }
8131
8132 return container;
8133}
8134
8135/* Assign into the component of LHS indexed by the OP_POSITIONAL
8136 construct at *POS, updating *POS past the construct, given that
8137 the positions are relative to lower bound LOW, where HIGH is the
8138 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8139 updating *NUM_INDICES as needed. CONTAINER is as for
8140 assign_aggregate. */
8141static void
8142aggregate_assign_positional (struct value *container,
8143 struct value *lhs, struct expression *exp,
8144 int *pos, LONGEST *indices, int *num_indices,
8145 int max_indices, LONGEST low, LONGEST high)
8146{
8147 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8148
8149 if (ind - 1 == high)
e1d5a0d2 8150 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8151 if (ind <= high)
8152 {
8153 add_component_interval (ind, ind, indices, num_indices, max_indices);
8154 *pos += 3;
8155 assign_component (container, lhs, ind, exp, pos);
8156 }
8157 else
8158 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8159}
8160
8161/* Assign into the components of LHS indexed by the OP_CHOICES
8162 construct at *POS, updating *POS past the construct, given that
8163 the allowable indices are LOW..HIGH. Record the indices assigned
8164 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8165 needed. CONTAINER is as for assign_aggregate. */
8166static void
8167aggregate_assign_from_choices (struct value *container,
8168 struct value *lhs, struct expression *exp,
8169 int *pos, LONGEST *indices, int *num_indices,
8170 int max_indices, LONGEST low, LONGEST high)
8171{
8172 int j;
8173 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8174 int choice_pos, expr_pc;
8175 int is_array = ada_is_direct_array_type (value_type (lhs));
8176
8177 choice_pos = *pos += 3;
8178
8179 for (j = 0; j < n_choices; j += 1)
8180 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8181 expr_pc = *pos;
8182 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8183
8184 for (j = 0; j < n_choices; j += 1)
8185 {
8186 LONGEST lower, upper;
8187 enum exp_opcode op = exp->elts[choice_pos].opcode;
8188 if (op == OP_DISCRETE_RANGE)
8189 {
8190 choice_pos += 1;
8191 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8192 EVAL_NORMAL));
8193 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8194 EVAL_NORMAL));
8195 }
8196 else if (is_array)
8197 {
8198 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8199 EVAL_NORMAL));
8200 upper = lower;
8201 }
8202 else
8203 {
8204 int ind;
8205 char *name;
8206 switch (op)
8207 {
8208 case OP_NAME:
8209 name = &exp->elts[choice_pos + 2].string;
8210 break;
8211 case OP_VAR_VALUE:
8212 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8213 break;
8214 default:
8215 error (_("Invalid record component association."));
8216 }
8217 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8218 ind = 0;
8219 if (! find_struct_field (name, value_type (lhs), 0,
8220 NULL, NULL, NULL, NULL, &ind))
8221 error (_("Unknown component name: %s."), name);
8222 lower = upper = ind;
8223 }
8224
8225 if (lower <= upper && (lower < low || upper > high))
8226 error (_("Index in component association out of bounds."));
8227
8228 add_component_interval (lower, upper, indices, num_indices,
8229 max_indices);
8230 while (lower <= upper)
8231 {
8232 int pos1;
8233 pos1 = expr_pc;
8234 assign_component (container, lhs, lower, exp, &pos1);
8235 lower += 1;
8236 }
8237 }
8238}
8239
8240/* Assign the value of the expression in the OP_OTHERS construct in
8241 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8242 have not been previously assigned. The index intervals already assigned
8243 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8244 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8245static void
8246aggregate_assign_others (struct value *container,
8247 struct value *lhs, struct expression *exp,
8248 int *pos, LONGEST *indices, int num_indices,
8249 LONGEST low, LONGEST high)
8250{
8251 int i;
8252 int expr_pc = *pos+1;
8253
8254 for (i = 0; i < num_indices - 2; i += 2)
8255 {
8256 LONGEST ind;
8257 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8258 {
8259 int pos;
8260 pos = expr_pc;
8261 assign_component (container, lhs, ind, exp, &pos);
8262 }
8263 }
8264 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8265}
8266
8267/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8268 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8269 modifying *SIZE as needed. It is an error if *SIZE exceeds
8270 MAX_SIZE. The resulting intervals do not overlap. */
8271static void
8272add_component_interval (LONGEST low, LONGEST high,
8273 LONGEST* indices, int *size, int max_size)
8274{
8275 int i, j;
8276 for (i = 0; i < *size; i += 2) {
8277 if (high >= indices[i] && low <= indices[i + 1])
8278 {
8279 int kh;
8280 for (kh = i + 2; kh < *size; kh += 2)
8281 if (high < indices[kh])
8282 break;
8283 if (low < indices[i])
8284 indices[i] = low;
8285 indices[i + 1] = indices[kh - 1];
8286 if (high > indices[i + 1])
8287 indices[i + 1] = high;
8288 memcpy (indices + i + 2, indices + kh, *size - kh);
8289 *size -= kh - i - 2;
8290 return;
8291 }
8292 else if (high < indices[i])
8293 break;
8294 }
8295
8296 if (*size == max_size)
8297 error (_("Internal error: miscounted aggregate components."));
8298 *size += 2;
8299 for (j = *size-1; j >= i+2; j -= 1)
8300 indices[j] = indices[j - 2];
8301 indices[i] = low;
8302 indices[i + 1] = high;
8303}
8304
6e48bd2c
JB
8305/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8306 is different. */
8307
8308static struct value *
8309ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8310{
8311 if (type == ada_check_typedef (value_type (arg2)))
8312 return arg2;
8313
8314 if (ada_is_fixed_point_type (type))
8315 return (cast_to_fixed (type, arg2));
8316
8317 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8318 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8319
8320 return value_cast (type, arg2);
8321}
8322
284614f0
JB
8323/* Evaluating Ada expressions, and printing their result.
8324 ------------------------------------------------------
8325
8326 We usually evaluate an Ada expression in order to print its value.
8327 We also evaluate an expression in order to print its type, which
8328 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8329 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8330 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8331 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8332 similar.
8333
8334 Evaluating expressions is a little more complicated for Ada entities
8335 than it is for entities in languages such as C. The main reason for
8336 this is that Ada provides types whose definition might be dynamic.
8337 One example of such types is variant records. Or another example
8338 would be an array whose bounds can only be known at run time.
8339
8340 The following description is a general guide as to what should be
8341 done (and what should NOT be done) in order to evaluate an expression
8342 involving such types, and when. This does not cover how the semantic
8343 information is encoded by GNAT as this is covered separatly. For the
8344 document used as the reference for the GNAT encoding, see exp_dbug.ads
8345 in the GNAT sources.
8346
8347 Ideally, we should embed each part of this description next to its
8348 associated code. Unfortunately, the amount of code is so vast right
8349 now that it's hard to see whether the code handling a particular
8350 situation might be duplicated or not. One day, when the code is
8351 cleaned up, this guide might become redundant with the comments
8352 inserted in the code, and we might want to remove it.
8353
8354 When evaluating Ada expressions, the tricky issue is that they may
8355 reference entities whose type contents and size are not statically
8356 known. Consider for instance a variant record:
8357
8358 type Rec (Empty : Boolean := True) is record
8359 case Empty is
8360 when True => null;
8361 when False => Value : Integer;
8362 end case;
8363 end record;
8364 Yes : Rec := (Empty => False, Value => 1);
8365 No : Rec := (empty => True);
8366
8367 The size and contents of that record depends on the value of the
8368 descriminant (Rec.Empty). At this point, neither the debugging
8369 information nor the associated type structure in GDB are able to
8370 express such dynamic types. So what the debugger does is to create
8371 "fixed" versions of the type that applies to the specific object.
8372 We also informally refer to this opperation as "fixing" an object,
8373 which means creating its associated fixed type.
8374
8375 Example: when printing the value of variable "Yes" above, its fixed
8376 type would look like this:
8377
8378 type Rec is record
8379 Empty : Boolean;
8380 Value : Integer;
8381 end record;
8382
8383 On the other hand, if we printed the value of "No", its fixed type
8384 would become:
8385
8386 type Rec is record
8387 Empty : Boolean;
8388 end record;
8389
8390 Things become a little more complicated when trying to fix an entity
8391 with a dynamic type that directly contains another dynamic type,
8392 such as an array of variant records, for instance. There are
8393 two possible cases: Arrays, and records.
8394
8395 Arrays are a little simpler to handle, because the same amount of
8396 memory is allocated for each element of the array, even if the amount
8397 of space used by each element changes from element to element.
8398 Consider for instance the following array of type Rec:
8399
8400 type Rec_Array is array (1 .. 2) of Rec;
8401
8402 The type structure in GDB describes an array in terms of its
8403 bounds, and the type of its elements. By design, all elements
8404 in the array have the same type. So we cannot use a fixed type
8405 for the array elements in this case, since the fixed type depends
8406 on the actual value of each element.
8407
8408 Fortunately, what happens in practice is that each element of
8409 the array has the same size, which is the maximum size that
8410 might be needed in order to hold an object of the element type.
8411 And the compiler shows it in the debugging information by wrapping
8412 the array element inside a private PAD type. This type should not
8413 be shown to the user, and must be "unwrap"'ed before printing. Note
8414 that we also use the adjective "aligner" in our code to designate
8415 these wrapper types.
8416
8417 These wrapper types should have a constant size, which is the size
8418 of each element of the array. In the case when the size is statically
8419 known, the PAD type will already have the right size, and the array
8420 element type should remain unfixed. But there are cases when
8421 this size is not statically known. For instance, assuming that
8422 "Five" is an integer variable:
8423
8424 type Dynamic is array (1 .. Five) of Integer;
8425 type Wrapper (Has_Length : Boolean := False) is record
8426 Data : Dynamic;
8427 case Has_Length is
8428 when True => Length : Integer;
8429 when False => null;
8430 end case;
8431 end record;
8432 type Wrapper_Array is array (1 .. 2) of Wrapper;
8433
8434 Hello : Wrapper_Array := (others => (Has_Length => True,
8435 Data => (others => 17),
8436 Length => 1));
8437
8438
8439 The debugging info would describe variable Hello as being an
8440 array of a PAD type. The size of that PAD type is not statically
8441 known, but can be determined using a parallel XVZ variable.
8442 In that case, a copy of the PAD type with the correct size should
8443 be used for the fixed array.
8444
8445 However, things are slightly different in the case of dynamic
8446 record types. In this case, in order to compute the associated
8447 fixed type, we need to determine the size and offset of each of
8448 its components. This, in turn, requires us to compute the fixed
8449 type of each of these components.
8450
8451 Consider for instance the example:
8452
8453 type Bounded_String (Max_Size : Natural) is record
8454 Str : String (1 .. Max_Size);
8455 Length : Natural;
8456 end record;
8457 My_String : Bounded_String (Max_Size => 10);
8458
8459 In that case, the position of field "Length" depends on the size
8460 of field Str, which itself depends on the value of the Max_Size
8461 discriminant. In order to fix the type of variable My_String,
8462 we need to fix the type of field Str. Therefore, fixing a variant
8463 record requires us to fix each of its components.
8464
8465 However, if a component does not have a dynamic size, the component
8466 should not be fixed. In particular, fields that use a PAD type
8467 should not fixed. Here is an example where this might happen
8468 (assuming type Rec above):
8469
8470 type Container (Big : Boolean) is record
8471 First : Rec;
8472 After : Integer;
8473 case Big is
8474 when True => Another : Integer;
8475 when False => null;
8476 end case;
8477 end record;
8478 My_Container : Container := (Big => False,
8479 First => (Empty => True),
8480 After => 42);
8481
8482 In that example, the compiler creates a PAD type for component First,
8483 whose size is constant, and then positions the component After just
8484 right after it. The offset of component After is therefore constant
8485 in this case.
8486
8487 The debugger computes the position of each field based on an algorithm
8488 that uses, among other things, the actual position and size of the field
8489 preceding it. Let's now imagine that the user is trying to print the
8490 value of My_Container. If the type fixing was recursive, we would
8491 end up computing the offset of field After based on the size of the
8492 fixed version of field First. And since in our example First has
8493 only one actual field, the size of the fixed type is actually smaller
8494 than the amount of space allocated to that field, and thus we would
8495 compute the wrong offset of field After.
8496
8497 Unfortunately, we need to watch out for dynamic components of variant
8498 records (identified by the ___XVL suffix in the component name).
8499 Even if the target type is a PAD type, the size of that type might
8500 not be statically known. So the PAD type needs to be unwrapped and
8501 the resulting type needs to be fixed. Otherwise, we might end up
8502 with the wrong size for our component. This can be observed with
8503 the following type declarations:
8504
8505 type Octal is new Integer range 0 .. 7;
8506 type Octal_Array is array (Positive range <>) of Octal;
8507 pragma Pack (Octal_Array);
8508
8509 type Octal_Buffer (Size : Positive) is record
8510 Buffer : Octal_Array (1 .. Size);
8511 Length : Integer;
8512 end record;
8513
8514 In that case, Buffer is a PAD type whose size is unset and needs
8515 to be computed by fixing the unwrapped type.
8516
8517 Lastly, when should the sub-elements of a type that remained unfixed
8518 thus far, be actually fixed?
8519
8520 The answer is: Only when referencing that element. For instance
8521 when selecting one component of a record, this specific component
8522 should be fixed at that point in time. Or when printing the value
8523 of a record, each component should be fixed before its value gets
8524 printed. Similarly for arrays, the element of the array should be
8525 fixed when printing each element of the array, or when extracting
8526 one element out of that array. On the other hand, fixing should
8527 not be performed on the elements when taking a slice of an array!
8528
8529 Note that one of the side-effects of miscomputing the offset and
8530 size of each field is that we end up also miscomputing the size
8531 of the containing type. This can have adverse results when computing
8532 the value of an entity. GDB fetches the value of an entity based
8533 on the size of its type, and thus a wrong size causes GDB to fetch
8534 the wrong amount of memory. In the case where the computed size is
8535 too small, GDB fetches too little data to print the value of our
8536 entiry. Results in this case as unpredicatble, as we usually read
8537 past the buffer containing the data =:-o. */
8538
8539/* Implement the evaluate_exp routine in the exp_descriptor structure
8540 for the Ada language. */
8541
52ce6436 8542static struct value *
ebf56fd3 8543ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8544 int *pos, enum noside noside)
14f9c5c9
AS
8545{
8546 enum exp_opcode op;
14f9c5c9
AS
8547 int tem, tem2, tem3;
8548 int pc;
8549 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8550 struct type *type;
52ce6436 8551 int nargs, oplen;
d2e4a39e 8552 struct value **argvec;
14f9c5c9 8553
d2e4a39e
AS
8554 pc = *pos;
8555 *pos += 1;
14f9c5c9
AS
8556 op = exp->elts[pc].opcode;
8557
d2e4a39e 8558 switch (op)
14f9c5c9
AS
8559 {
8560 default:
8561 *pos -= 1;
6e48bd2c
JB
8562 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8563 arg1 = unwrap_value (arg1);
8564
8565 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8566 then we need to perform the conversion manually, because
8567 evaluate_subexp_standard doesn't do it. This conversion is
8568 necessary in Ada because the different kinds of float/fixed
8569 types in Ada have different representations.
8570
8571 Similarly, we need to perform the conversion from OP_LONG
8572 ourselves. */
8573 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8574 arg1 = ada_value_cast (expect_type, arg1, noside);
8575
8576 return arg1;
4c4b4cd2
PH
8577
8578 case OP_STRING:
8579 {
76a01679
JB
8580 struct value *result;
8581 *pos -= 1;
8582 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8583 /* The result type will have code OP_STRING, bashed there from
8584 OP_ARRAY. Bash it back. */
df407dfe
AC
8585 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8586 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8587 return result;
4c4b4cd2 8588 }
14f9c5c9
AS
8589
8590 case UNOP_CAST:
8591 (*pos) += 2;
8592 type = exp->elts[pc + 1].type;
8593 arg1 = evaluate_subexp (type, exp, pos, noside);
8594 if (noside == EVAL_SKIP)
4c4b4cd2 8595 goto nosideret;
6e48bd2c 8596 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8597 return arg1;
8598
4c4b4cd2
PH
8599 case UNOP_QUAL:
8600 (*pos) += 2;
8601 type = exp->elts[pc + 1].type;
8602 return ada_evaluate_subexp (type, exp, pos, noside);
8603
14f9c5c9
AS
8604 case BINOP_ASSIGN:
8605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8606 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8607 {
8608 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8609 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8610 return arg1;
8611 return ada_value_assign (arg1, arg1);
8612 }
003f3813
JB
8613 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8614 except if the lhs of our assignment is a convenience variable.
8615 In the case of assigning to a convenience variable, the lhs
8616 should be exactly the result of the evaluation of the rhs. */
8617 type = value_type (arg1);
8618 if (VALUE_LVAL (arg1) == lval_internalvar)
8619 type = NULL;
8620 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8621 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8622 return arg1;
df407dfe
AC
8623 if (ada_is_fixed_point_type (value_type (arg1)))
8624 arg2 = cast_to_fixed (value_type (arg1), arg2);
8625 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8626 error
323e0a4a 8627 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8628 else
df407dfe 8629 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8630 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8631
8632 case BINOP_ADD:
8633 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8634 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8635 if (noside == EVAL_SKIP)
4c4b4cd2 8636 goto nosideret;
2ac8a782
JB
8637 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8638 return (value_from_longest
8639 (value_type (arg1),
8640 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8641 if ((ada_is_fixed_point_type (value_type (arg1))
8642 || ada_is_fixed_point_type (value_type (arg2)))
8643 && value_type (arg1) != value_type (arg2))
323e0a4a 8644 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8645 /* Do the addition, and cast the result to the type of the first
8646 argument. We cannot cast the result to a reference type, so if
8647 ARG1 is a reference type, find its underlying type. */
8648 type = value_type (arg1);
8649 while (TYPE_CODE (type) == TYPE_CODE_REF)
8650 type = TYPE_TARGET_TYPE (type);
f44316fa 8651 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8652 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8653
8654 case BINOP_SUB:
8655 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8656 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8657 if (noside == EVAL_SKIP)
4c4b4cd2 8658 goto nosideret;
2ac8a782
JB
8659 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8660 return (value_from_longest
8661 (value_type (arg1),
8662 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8663 if ((ada_is_fixed_point_type (value_type (arg1))
8664 || ada_is_fixed_point_type (value_type (arg2)))
8665 && value_type (arg1) != value_type (arg2))
323e0a4a 8666 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8667 /* Do the substraction, and cast the result to the type of the first
8668 argument. We cannot cast the result to a reference type, so if
8669 ARG1 is a reference type, find its underlying type. */
8670 type = value_type (arg1);
8671 while (TYPE_CODE (type) == TYPE_CODE_REF)
8672 type = TYPE_TARGET_TYPE (type);
f44316fa 8673 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8674 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8675
8676 case BINOP_MUL:
8677 case BINOP_DIV:
e1578042
JB
8678 case BINOP_REM:
8679 case BINOP_MOD:
14f9c5c9
AS
8680 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8681 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8682 if (noside == EVAL_SKIP)
4c4b4cd2 8683 goto nosideret;
e1578042 8684 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8685 {
8686 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8687 return value_zero (value_type (arg1), not_lval);
8688 }
14f9c5c9 8689 else
4c4b4cd2 8690 {
a53b7a21 8691 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8692 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8693 arg1 = cast_from_fixed (type, arg1);
df407dfe 8694 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8695 arg2 = cast_from_fixed (type, arg2);
f44316fa 8696 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8697 return ada_value_binop (arg1, arg2, op);
8698 }
8699
4c4b4cd2
PH
8700 case BINOP_EQUAL:
8701 case BINOP_NOTEQUAL:
14f9c5c9 8702 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8703 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8704 if (noside == EVAL_SKIP)
76a01679 8705 goto nosideret;
4c4b4cd2 8706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8707 tem = 0;
4c4b4cd2 8708 else
f44316fa
UW
8709 {
8710 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8711 tem = ada_value_equal (arg1, arg2);
8712 }
4c4b4cd2 8713 if (op == BINOP_NOTEQUAL)
76a01679 8714 tem = !tem;
fbb06eb1
UW
8715 type = language_bool_type (exp->language_defn, exp->gdbarch);
8716 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8717
8718 case UNOP_NEG:
8719 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8720 if (noside == EVAL_SKIP)
8721 goto nosideret;
df407dfe
AC
8722 else if (ada_is_fixed_point_type (value_type (arg1)))
8723 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8724 else
f44316fa
UW
8725 {
8726 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8727 return value_neg (arg1);
8728 }
4c4b4cd2 8729
2330c6c6
JB
8730 case BINOP_LOGICAL_AND:
8731 case BINOP_LOGICAL_OR:
8732 case UNOP_LOGICAL_NOT:
000d5124
JB
8733 {
8734 struct value *val;
8735
8736 *pos -= 1;
8737 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8738 type = language_bool_type (exp->language_defn, exp->gdbarch);
8739 return value_cast (type, val);
000d5124 8740 }
2330c6c6
JB
8741
8742 case BINOP_BITWISE_AND:
8743 case BINOP_BITWISE_IOR:
8744 case BINOP_BITWISE_XOR:
000d5124
JB
8745 {
8746 struct value *val;
8747
8748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8749 *pos = pc;
8750 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8751
8752 return value_cast (value_type (arg1), val);
8753 }
2330c6c6 8754
14f9c5c9
AS
8755 case OP_VAR_VALUE:
8756 *pos -= 1;
6799def4 8757
14f9c5c9 8758 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8759 {
8760 *pos += 4;
8761 goto nosideret;
8762 }
8763 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8764 /* Only encountered when an unresolved symbol occurs in a
8765 context other than a function call, in which case, it is
52ce6436 8766 invalid. */
323e0a4a 8767 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8768 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8769 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8770 {
0c1f74cf
JB
8771 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8772 if (ada_is_tagged_type (type, 0))
8773 {
8774 /* Tagged types are a little special in the fact that the real
8775 type is dynamic and can only be determined by inspecting the
8776 object's tag. This means that we need to get the object's
8777 value first (EVAL_NORMAL) and then extract the actual object
8778 type from its tag.
8779
8780 Note that we cannot skip the final step where we extract
8781 the object type from its tag, because the EVAL_NORMAL phase
8782 results in dynamic components being resolved into fixed ones.
8783 This can cause problems when trying to print the type
8784 description of tagged types whose parent has a dynamic size:
8785 We use the type name of the "_parent" component in order
8786 to print the name of the ancestor type in the type description.
8787 If that component had a dynamic size, the resolution into
8788 a fixed type would result in the loss of that type name,
8789 thus preventing us from printing the name of the ancestor
8790 type in the type description. */
b79819ba
JB
8791 struct type *actual_type;
8792
0c1f74cf 8793 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8794 actual_type = type_from_tag (ada_value_tag (arg1));
8795 if (actual_type == NULL)
8796 /* If, for some reason, we were unable to determine
8797 the actual type from the tag, then use the static
8798 approximation that we just computed as a fallback.
8799 This can happen if the debugging information is
8800 incomplete, for instance. */
8801 actual_type = type;
8802
8803 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8804 }
8805
4c4b4cd2
PH
8806 *pos += 4;
8807 return value_zero
8808 (to_static_fixed_type
8809 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8810 not_lval);
8811 }
d2e4a39e 8812 else
4c4b4cd2 8813 {
284614f0
JB
8814 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8815 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8816 return ada_to_fixed_value (arg1);
8817 }
8818
8819 case OP_FUNCALL:
8820 (*pos) += 2;
8821
8822 /* Allocate arg vector, including space for the function to be
8823 called in argvec[0] and a terminating NULL. */
8824 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8825 argvec =
8826 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8827
8828 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8829 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8830 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8831 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8832 else
8833 {
8834 for (tem = 0; tem <= nargs; tem += 1)
8835 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8836 argvec[tem] = 0;
8837
8838 if (noside == EVAL_SKIP)
8839 goto nosideret;
8840 }
8841
df407dfe 8842 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8843 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8844 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8845 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8846 /* This is a packed array that has already been fixed, and
8847 therefore already coerced to a simple array. Nothing further
8848 to do. */
8849 ;
df407dfe
AC
8850 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8851 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8852 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8853 argvec[0] = value_addr (argvec[0]);
8854
df407dfe 8855 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8856 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8857 {
61ee279c 8858 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8859 {
8860 case TYPE_CODE_FUNC:
61ee279c 8861 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8862 break;
8863 case TYPE_CODE_ARRAY:
8864 break;
8865 case TYPE_CODE_STRUCT:
8866 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8867 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8868 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8869 break;
8870 default:
323e0a4a 8871 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8872 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8873 break;
8874 }
8875 }
8876
8877 switch (TYPE_CODE (type))
8878 {
8879 case TYPE_CODE_FUNC:
8880 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8881 return allocate_value (TYPE_TARGET_TYPE (type));
8882 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8883 case TYPE_CODE_STRUCT:
8884 {
8885 int arity;
8886
4c4b4cd2
PH
8887 arity = ada_array_arity (type);
8888 type = ada_array_element_type (type, nargs);
8889 if (type == NULL)
323e0a4a 8890 error (_("cannot subscript or call a record"));
4c4b4cd2 8891 if (arity != nargs)
323e0a4a 8892 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8894 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8895 return
8896 unwrap_value (ada_value_subscript
8897 (argvec[0], nargs, argvec + 1));
8898 }
8899 case TYPE_CODE_ARRAY:
8900 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8901 {
8902 type = ada_array_element_type (type, nargs);
8903 if (type == NULL)
323e0a4a 8904 error (_("element type of array unknown"));
4c4b4cd2 8905 else
0a07e705 8906 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8907 }
8908 return
8909 unwrap_value (ada_value_subscript
8910 (ada_coerce_to_simple_array (argvec[0]),
8911 nargs, argvec + 1));
8912 case TYPE_CODE_PTR: /* Pointer to array */
8913 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8914 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8915 {
8916 type = ada_array_element_type (type, nargs);
8917 if (type == NULL)
323e0a4a 8918 error (_("element type of array unknown"));
4c4b4cd2 8919 else
0a07e705 8920 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8921 }
8922 return
8923 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8924 nargs, argvec + 1));
8925
8926 default:
e1d5a0d2
PH
8927 error (_("Attempt to index or call something other than an "
8928 "array or function"));
4c4b4cd2
PH
8929 }
8930
8931 case TERNOP_SLICE:
8932 {
8933 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8934 struct value *low_bound_val =
8935 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8936 struct value *high_bound_val =
8937 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8938 LONGEST low_bound;
8939 LONGEST high_bound;
994b9211
AC
8940 low_bound_val = coerce_ref (low_bound_val);
8941 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8942 low_bound = pos_atr (low_bound_val);
8943 high_bound = pos_atr (high_bound_val);
963a6417 8944
4c4b4cd2
PH
8945 if (noside == EVAL_SKIP)
8946 goto nosideret;
8947
4c4b4cd2
PH
8948 /* If this is a reference to an aligner type, then remove all
8949 the aligners. */
df407dfe
AC
8950 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8951 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8952 TYPE_TARGET_TYPE (value_type (array)) =
8953 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8954
df407dfe 8955 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8956 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8957
8958 /* If this is a reference to an array or an array lvalue,
8959 convert to a pointer. */
df407dfe
AC
8960 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8961 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8962 && VALUE_LVAL (array) == lval_memory))
8963 array = value_addr (array);
8964
1265e4aa 8965 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8966 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8967 (value_type (array))))
0b5d8877 8968 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8969
8970 array = ada_coerce_to_simple_array_ptr (array);
8971
714e53ab
PH
8972 /* If we have more than one level of pointer indirection,
8973 dereference the value until we get only one level. */
df407dfe
AC
8974 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8975 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8976 == TYPE_CODE_PTR))
8977 array = value_ind (array);
8978
8979 /* Make sure we really do have an array type before going further,
8980 to avoid a SEGV when trying to get the index type or the target
8981 type later down the road if the debug info generated by
8982 the compiler is incorrect or incomplete. */
df407dfe 8983 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8984 error (_("cannot take slice of non-array"));
714e53ab 8985
df407dfe 8986 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8987 {
0b5d8877 8988 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8989 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8990 low_bound);
8991 else
8992 {
8993 struct type *arr_type0 =
df407dfe 8994 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8995 NULL, 1);
f5938064
JG
8996 return ada_value_slice_from_ptr (array, arr_type0,
8997 longest_to_int (low_bound),
8998 longest_to_int (high_bound));
4c4b4cd2
PH
8999 }
9000 }
9001 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9002 return array;
9003 else if (high_bound < low_bound)
df407dfe 9004 return empty_array (value_type (array), low_bound);
4c4b4cd2 9005 else
529cad9c
PH
9006 return ada_value_slice (array, longest_to_int (low_bound),
9007 longest_to_int (high_bound));
4c4b4cd2 9008 }
14f9c5c9 9009
4c4b4cd2
PH
9010 case UNOP_IN_RANGE:
9011 (*pos) += 2;
9012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9013 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9014
14f9c5c9 9015 if (noside == EVAL_SKIP)
4c4b4cd2 9016 goto nosideret;
14f9c5c9 9017
4c4b4cd2
PH
9018 switch (TYPE_CODE (type))
9019 {
9020 default:
e1d5a0d2
PH
9021 lim_warning (_("Membership test incompletely implemented; "
9022 "always returns true"));
fbb06eb1
UW
9023 type = language_bool_type (exp->language_defn, exp->gdbarch);
9024 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9025
9026 case TYPE_CODE_RANGE:
030b4912
UW
9027 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9028 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9030 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9031 type = language_bool_type (exp->language_defn, exp->gdbarch);
9032 return
9033 value_from_longest (type,
4c4b4cd2
PH
9034 (value_less (arg1, arg3)
9035 || value_equal (arg1, arg3))
9036 && (value_less (arg2, arg1)
9037 || value_equal (arg2, arg1)));
9038 }
9039
9040 case BINOP_IN_BOUNDS:
14f9c5c9 9041 (*pos) += 2;
4c4b4cd2
PH
9042 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9043 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9044
4c4b4cd2
PH
9045 if (noside == EVAL_SKIP)
9046 goto nosideret;
14f9c5c9 9047
4c4b4cd2 9048 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9049 {
9050 type = language_bool_type (exp->language_defn, exp->gdbarch);
9051 return value_zero (type, not_lval);
9052 }
14f9c5c9 9053
4c4b4cd2 9054 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9055
df407dfe 9056 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 9057 error (_("invalid dimension number to 'range"));
14f9c5c9 9058
4c4b4cd2
PH
9059 arg3 = ada_array_bound (arg2, tem, 1);
9060 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 9061
f44316fa
UW
9062 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9063 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9064 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9065 return
fbb06eb1 9066 value_from_longest (type,
4c4b4cd2
PH
9067 (value_less (arg1, arg3)
9068 || value_equal (arg1, arg3))
9069 && (value_less (arg2, arg1)
9070 || value_equal (arg2, arg1)));
9071
9072 case TERNOP_IN_RANGE:
9073 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9074 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9075 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9076
9077 if (noside == EVAL_SKIP)
9078 goto nosideret;
9079
f44316fa
UW
9080 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9081 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9082 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9083 return
fbb06eb1 9084 value_from_longest (type,
4c4b4cd2
PH
9085 (value_less (arg1, arg3)
9086 || value_equal (arg1, arg3))
9087 && (value_less (arg2, arg1)
9088 || value_equal (arg2, arg1)));
9089
9090 case OP_ATR_FIRST:
9091 case OP_ATR_LAST:
9092 case OP_ATR_LENGTH:
9093 {
76a01679
JB
9094 struct type *type_arg;
9095 if (exp->elts[*pos].opcode == OP_TYPE)
9096 {
9097 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9098 arg1 = NULL;
5bc23cb3 9099 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9100 }
9101 else
9102 {
9103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9104 type_arg = NULL;
9105 }
9106
9107 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9108 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9109 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9110 *pos += 4;
9111
9112 if (noside == EVAL_SKIP)
9113 goto nosideret;
9114
9115 if (type_arg == NULL)
9116 {
9117 arg1 = ada_coerce_ref (arg1);
9118
df407dfe 9119 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
9120 arg1 = ada_coerce_to_simple_array (arg1);
9121
df407dfe 9122 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 9123 error (_("invalid dimension number to '%s"),
76a01679
JB
9124 ada_attribute_name (op));
9125
9126 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9127 {
df407dfe 9128 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
9129 if (type == NULL)
9130 error
323e0a4a 9131 (_("attempt to take bound of something that is not an array"));
76a01679
JB
9132 return allocate_value (type);
9133 }
9134
9135 switch (op)
9136 {
9137 default: /* Should never happen. */
323e0a4a 9138 error (_("unexpected attribute encountered"));
76a01679
JB
9139 case OP_ATR_FIRST:
9140 return ada_array_bound (arg1, tem, 0);
9141 case OP_ATR_LAST:
9142 return ada_array_bound (arg1, tem, 1);
9143 case OP_ATR_LENGTH:
9144 return ada_array_length (arg1, tem);
9145 }
9146 }
9147 else if (discrete_type_p (type_arg))
9148 {
9149 struct type *range_type;
9150 char *name = ada_type_name (type_arg);
9151 range_type = NULL;
9152 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9153 range_type =
9154 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9155 if (range_type == NULL)
9156 range_type = type_arg;
9157 switch (op)
9158 {
9159 default:
323e0a4a 9160 error (_("unexpected attribute encountered"));
76a01679 9161 case OP_ATR_FIRST:
690cc4eb
PH
9162 return value_from_longest
9163 (range_type, discrete_type_low_bound (range_type));
76a01679 9164 case OP_ATR_LAST:
690cc4eb
PH
9165 return value_from_longest
9166 (range_type, discrete_type_high_bound (range_type));
76a01679 9167 case OP_ATR_LENGTH:
323e0a4a 9168 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9169 }
9170 }
9171 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9172 error (_("unimplemented type attribute"));
76a01679
JB
9173 else
9174 {
9175 LONGEST low, high;
9176
9177 if (ada_is_packed_array_type (type_arg))
9178 type_arg = decode_packed_array_type (type_arg);
9179
9180 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 9181 error (_("invalid dimension number to '%s"),
76a01679
JB
9182 ada_attribute_name (op));
9183
9184 type = ada_index_type (type_arg, tem);
9185 if (type == NULL)
9186 error
323e0a4a 9187 (_("attempt to take bound of something that is not an array"));
76a01679
JB
9188 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9189 return allocate_value (type);
9190
9191 switch (op)
9192 {
9193 default:
323e0a4a 9194 error (_("unexpected attribute encountered"));
76a01679
JB
9195 case OP_ATR_FIRST:
9196 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9197 return value_from_longest (type, low);
9198 case OP_ATR_LAST:
9199 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9200 return value_from_longest (type, high);
9201 case OP_ATR_LENGTH:
9202 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9203 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9204 return value_from_longest (type, high - low + 1);
9205 }
9206 }
14f9c5c9
AS
9207 }
9208
4c4b4cd2
PH
9209 case OP_ATR_TAG:
9210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9211 if (noside == EVAL_SKIP)
76a01679 9212 goto nosideret;
4c4b4cd2
PH
9213
9214 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9215 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9216
9217 return ada_value_tag (arg1);
9218
9219 case OP_ATR_MIN:
9220 case OP_ATR_MAX:
9221 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9223 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9224 if (noside == EVAL_SKIP)
76a01679 9225 goto nosideret;
d2e4a39e 9226 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9227 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9228 else
f44316fa
UW
9229 {
9230 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9231 return value_binop (arg1, arg2,
9232 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9233 }
14f9c5c9 9234
4c4b4cd2
PH
9235 case OP_ATR_MODULUS:
9236 {
31dedfee 9237 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9238 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9239
76a01679
JB
9240 if (noside == EVAL_SKIP)
9241 goto nosideret;
4c4b4cd2 9242
76a01679 9243 if (!ada_is_modular_type (type_arg))
323e0a4a 9244 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9245
76a01679
JB
9246 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9247 ada_modulus (type_arg));
4c4b4cd2
PH
9248 }
9249
9250
9251 case OP_ATR_POS:
9252 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9254 if (noside == EVAL_SKIP)
76a01679 9255 goto nosideret;
3cb382c9
UW
9256 type = builtin_type (exp->gdbarch)->builtin_int;
9257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9258 return value_zero (type, not_lval);
14f9c5c9 9259 else
3cb382c9 9260 return value_pos_atr (type, arg1);
14f9c5c9 9261
4c4b4cd2
PH
9262 case OP_ATR_SIZE:
9263 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9264 type = value_type (arg1);
9265
9266 /* If the argument is a reference, then dereference its type, since
9267 the user is really asking for the size of the actual object,
9268 not the size of the pointer. */
9269 if (TYPE_CODE (type) == TYPE_CODE_REF)
9270 type = TYPE_TARGET_TYPE (type);
9271
4c4b4cd2 9272 if (noside == EVAL_SKIP)
76a01679 9273 goto nosideret;
4c4b4cd2 9274 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 9275 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 9276 else
6d2e05aa 9277 return value_from_longest (builtin_type_int32,
8c1c099f 9278 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9279
9280 case OP_ATR_VAL:
9281 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9283 type = exp->elts[pc + 2].type;
14f9c5c9 9284 if (noside == EVAL_SKIP)
76a01679 9285 goto nosideret;
4c4b4cd2 9286 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9287 return value_zero (type, not_lval);
4c4b4cd2 9288 else
76a01679 9289 return value_val_atr (type, arg1);
4c4b4cd2
PH
9290
9291 case BINOP_EXP:
9292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9293 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9294 if (noside == EVAL_SKIP)
9295 goto nosideret;
9296 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9297 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9298 else
f44316fa
UW
9299 {
9300 /* For integer exponentiation operations,
9301 only promote the first argument. */
9302 if (is_integral_type (value_type (arg2)))
9303 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9304 else
9305 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9306
9307 return value_binop (arg1, arg2, op);
9308 }
4c4b4cd2
PH
9309
9310 case UNOP_PLUS:
9311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9312 if (noside == EVAL_SKIP)
9313 goto nosideret;
9314 else
9315 return arg1;
9316
9317 case UNOP_ABS:
9318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9319 if (noside == EVAL_SKIP)
9320 goto nosideret;
f44316fa 9321 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9322 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9323 return value_neg (arg1);
14f9c5c9 9324 else
4c4b4cd2 9325 return arg1;
14f9c5c9
AS
9326
9327 case UNOP_IND:
6b0d7253 9328 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9329 if (noside == EVAL_SKIP)
4c4b4cd2 9330 goto nosideret;
df407dfe 9331 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9332 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9333 {
9334 if (ada_is_array_descriptor_type (type))
9335 /* GDB allows dereferencing GNAT array descriptors. */
9336 {
9337 struct type *arrType = ada_type_of_array (arg1, 0);
9338 if (arrType == NULL)
323e0a4a 9339 error (_("Attempt to dereference null array pointer."));
00a4c844 9340 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9341 }
9342 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9343 || TYPE_CODE (type) == TYPE_CODE_REF
9344 /* In C you can dereference an array to get the 1st elt. */
9345 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9346 {
9347 type = to_static_fixed_type
9348 (ada_aligned_type
9349 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9350 check_size (type);
9351 return value_zero (type, lval_memory);
9352 }
4c4b4cd2 9353 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9354 {
9355 /* GDB allows dereferencing an int. */
9356 if (expect_type == NULL)
9357 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9358 lval_memory);
9359 else
9360 {
9361 expect_type =
9362 to_static_fixed_type (ada_aligned_type (expect_type));
9363 return value_zero (expect_type, lval_memory);
9364 }
9365 }
4c4b4cd2 9366 else
323e0a4a 9367 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9368 }
76a01679 9369 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9370 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9371
96967637
JB
9372 if (TYPE_CODE (type) == TYPE_CODE_INT)
9373 /* GDB allows dereferencing an int. If we were given
9374 the expect_type, then use that as the target type.
9375 Otherwise, assume that the target type is an int. */
9376 {
9377 if (expect_type != NULL)
9378 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9379 arg1));
9380 else
9381 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9382 (CORE_ADDR) value_as_address (arg1));
9383 }
6b0d7253 9384
4c4b4cd2
PH
9385 if (ada_is_array_descriptor_type (type))
9386 /* GDB allows dereferencing GNAT array descriptors. */
9387 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9388 else
4c4b4cd2 9389 return ada_value_ind (arg1);
14f9c5c9
AS
9390
9391 case STRUCTOP_STRUCT:
9392 tem = longest_to_int (exp->elts[pc + 1].longconst);
9393 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9395 if (noside == EVAL_SKIP)
4c4b4cd2 9396 goto nosideret;
14f9c5c9 9397 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9398 {
df407dfe 9399 struct type *type1 = value_type (arg1);
76a01679
JB
9400 if (ada_is_tagged_type (type1, 1))
9401 {
9402 type = ada_lookup_struct_elt_type (type1,
9403 &exp->elts[pc + 2].string,
9404 1, 1, NULL);
9405 if (type == NULL)
9406 /* In this case, we assume that the field COULD exist
9407 in some extension of the type. Return an object of
9408 "type" void, which will match any formal
9409 (see ada_type_match). */
9410 return value_zero (builtin_type_void, lval_memory);
9411 }
9412 else
9413 type =
9414 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9415 0, NULL);
9416
9417 return value_zero (ada_aligned_type (type), lval_memory);
9418 }
14f9c5c9 9419 else
284614f0
JB
9420 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9421 arg1 = unwrap_value (arg1);
9422 return ada_to_fixed_value (arg1);
9423
14f9c5c9 9424 case OP_TYPE:
4c4b4cd2
PH
9425 /* The value is not supposed to be used. This is here to make it
9426 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9427 (*pos) += 2;
9428 if (noside == EVAL_SKIP)
4c4b4cd2 9429 goto nosideret;
14f9c5c9 9430 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9431 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9432 else
323e0a4a 9433 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9434
9435 case OP_AGGREGATE:
9436 case OP_CHOICES:
9437 case OP_OTHERS:
9438 case OP_DISCRETE_RANGE:
9439 case OP_POSITIONAL:
9440 case OP_NAME:
9441 if (noside == EVAL_NORMAL)
9442 switch (op)
9443 {
9444 case OP_NAME:
9445 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9446 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9447 case OP_AGGREGATE:
9448 error (_("Aggregates only allowed on the right of an assignment"));
9449 default:
e1d5a0d2 9450 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9451 }
9452
9453 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9454 *pos += oplen - 1;
9455 for (tem = 0; tem < nargs; tem += 1)
9456 ada_evaluate_subexp (NULL, exp, pos, noside);
9457 goto nosideret;
14f9c5c9
AS
9458 }
9459
9460nosideret:
cb18ec49 9461 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9462}
14f9c5c9 9463\f
d2e4a39e 9464
4c4b4cd2 9465 /* Fixed point */
14f9c5c9
AS
9466
9467/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9468 type name that encodes the 'small and 'delta information.
4c4b4cd2 9469 Otherwise, return NULL. */
14f9c5c9 9470
d2e4a39e 9471static const char *
ebf56fd3 9472fixed_type_info (struct type *type)
14f9c5c9 9473{
d2e4a39e 9474 const char *name = ada_type_name (type);
14f9c5c9
AS
9475 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9476
d2e4a39e
AS
9477 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9478 {
14f9c5c9
AS
9479 const char *tail = strstr (name, "___XF_");
9480 if (tail == NULL)
4c4b4cd2 9481 return NULL;
d2e4a39e 9482 else
4c4b4cd2 9483 return tail + 5;
14f9c5c9
AS
9484 }
9485 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9486 return fixed_type_info (TYPE_TARGET_TYPE (type));
9487 else
9488 return NULL;
9489}
9490
4c4b4cd2 9491/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9492
9493int
ebf56fd3 9494ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9495{
9496 return fixed_type_info (type) != NULL;
9497}
9498
4c4b4cd2
PH
9499/* Return non-zero iff TYPE represents a System.Address type. */
9500
9501int
9502ada_is_system_address_type (struct type *type)
9503{
9504 return (TYPE_NAME (type)
9505 && strcmp (TYPE_NAME (type), "system__address") == 0);
9506}
9507
14f9c5c9
AS
9508/* Assuming that TYPE is the representation of an Ada fixed-point
9509 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9510 delta cannot be determined. */
14f9c5c9
AS
9511
9512DOUBLEST
ebf56fd3 9513ada_delta (struct type *type)
14f9c5c9
AS
9514{
9515 const char *encoding = fixed_type_info (type);
facc390f 9516 DOUBLEST num, den;
14f9c5c9 9517
facc390f
JB
9518 /* Strictly speaking, num and den are encoded as integer. However,
9519 they may not fit into a long, and they will have to be converted
9520 to DOUBLEST anyway. So scan them as DOUBLEST. */
9521 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9522 &num, &den) < 2)
14f9c5c9 9523 return -1.0;
d2e4a39e 9524 else
facc390f 9525 return num / den;
14f9c5c9
AS
9526}
9527
9528/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9529 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9530
9531static DOUBLEST
ebf56fd3 9532scaling_factor (struct type *type)
14f9c5c9
AS
9533{
9534 const char *encoding = fixed_type_info (type);
facc390f 9535 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9536 int n;
d2e4a39e 9537
facc390f
JB
9538 /* Strictly speaking, num's and den's are encoded as integer. However,
9539 they may not fit into a long, and they will have to be converted
9540 to DOUBLEST anyway. So scan them as DOUBLEST. */
9541 n = sscanf (encoding,
9542 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9543 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9544 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9545
9546 if (n < 2)
9547 return 1.0;
9548 else if (n == 4)
facc390f 9549 return num1 / den1;
d2e4a39e 9550 else
facc390f 9551 return num0 / den0;
14f9c5c9
AS
9552}
9553
9554
9555/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9556 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9557
9558DOUBLEST
ebf56fd3 9559ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9560{
d2e4a39e 9561 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9562}
9563
4c4b4cd2
PH
9564/* The representation of a fixed-point value of type TYPE
9565 corresponding to the value X. */
14f9c5c9
AS
9566
9567LONGEST
ebf56fd3 9568ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9569{
9570 return (LONGEST) (x / scaling_factor (type) + 0.5);
9571}
9572
9573
4c4b4cd2 9574 /* VAX floating formats */
14f9c5c9
AS
9575
9576/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9577 types. */
9578
14f9c5c9 9579int
d2e4a39e 9580ada_is_vax_floating_type (struct type *type)
14f9c5c9 9581{
d2e4a39e 9582 int name_len =
14f9c5c9 9583 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9584 return
14f9c5c9 9585 name_len > 6
d2e4a39e 9586 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9587 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9588 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9589}
9590
9591/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9592 ada_is_vax_floating_point. */
9593
14f9c5c9 9594int
d2e4a39e 9595ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9596{
d2e4a39e 9597 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9598}
9599
4c4b4cd2 9600/* A value representing the special debugging function that outputs
14f9c5c9 9601 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9602 ada_is_vax_floating_type (TYPE). */
9603
d2e4a39e
AS
9604struct value *
9605ada_vax_float_print_function (struct type *type)
9606{
9607 switch (ada_vax_float_type_suffix (type))
9608 {
9609 case 'F':
9610 return get_var_value ("DEBUG_STRING_F", 0);
9611 case 'D':
9612 return get_var_value ("DEBUG_STRING_D", 0);
9613 case 'G':
9614 return get_var_value ("DEBUG_STRING_G", 0);
9615 default:
323e0a4a 9616 error (_("invalid VAX floating-point type"));
d2e4a39e 9617 }
14f9c5c9 9618}
14f9c5c9 9619\f
d2e4a39e 9620
4c4b4cd2 9621 /* Range types */
14f9c5c9
AS
9622
9623/* Scan STR beginning at position K for a discriminant name, and
9624 return the value of that discriminant field of DVAL in *PX. If
9625 PNEW_K is not null, put the position of the character beyond the
9626 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9627 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9628
9629static int
07d8f827 9630scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9631 int *pnew_k)
14f9c5c9
AS
9632{
9633 static char *bound_buffer = NULL;
9634 static size_t bound_buffer_len = 0;
9635 char *bound;
9636 char *pend;
d2e4a39e 9637 struct value *bound_val;
14f9c5c9
AS
9638
9639 if (dval == NULL || str == NULL || str[k] == '\0')
9640 return 0;
9641
d2e4a39e 9642 pend = strstr (str + k, "__");
14f9c5c9
AS
9643 if (pend == NULL)
9644 {
d2e4a39e 9645 bound = str + k;
14f9c5c9
AS
9646 k += strlen (bound);
9647 }
d2e4a39e 9648 else
14f9c5c9 9649 {
d2e4a39e 9650 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9651 bound = bound_buffer;
d2e4a39e
AS
9652 strncpy (bound_buffer, str + k, pend - (str + k));
9653 bound[pend - (str + k)] = '\0';
9654 k = pend - str;
14f9c5c9 9655 }
d2e4a39e 9656
df407dfe 9657 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9658 if (bound_val == NULL)
9659 return 0;
9660
9661 *px = value_as_long (bound_val);
9662 if (pnew_k != NULL)
9663 *pnew_k = k;
9664 return 1;
9665}
9666
9667/* Value of variable named NAME in the current environment. If
9668 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9669 otherwise causes an error with message ERR_MSG. */
9670
d2e4a39e
AS
9671static struct value *
9672get_var_value (char *name, char *err_msg)
14f9c5c9 9673{
4c4b4cd2 9674 struct ada_symbol_info *syms;
14f9c5c9
AS
9675 int nsyms;
9676
4c4b4cd2
PH
9677 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9678 &syms);
14f9c5c9
AS
9679
9680 if (nsyms != 1)
9681 {
9682 if (err_msg == NULL)
4c4b4cd2 9683 return 0;
14f9c5c9 9684 else
8a3fe4f8 9685 error (("%s"), err_msg);
14f9c5c9
AS
9686 }
9687
4c4b4cd2 9688 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9689}
d2e4a39e 9690
14f9c5c9 9691/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9692 no such variable found, returns 0, and sets *FLAG to 0. If
9693 successful, sets *FLAG to 1. */
9694
14f9c5c9 9695LONGEST
4c4b4cd2 9696get_int_var_value (char *name, int *flag)
14f9c5c9 9697{
4c4b4cd2 9698 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9699
14f9c5c9
AS
9700 if (var_val == 0)
9701 {
9702 if (flag != NULL)
4c4b4cd2 9703 *flag = 0;
14f9c5c9
AS
9704 return 0;
9705 }
9706 else
9707 {
9708 if (flag != NULL)
4c4b4cd2 9709 *flag = 1;
14f9c5c9
AS
9710 return value_as_long (var_val);
9711 }
9712}
d2e4a39e 9713
14f9c5c9
AS
9714
9715/* Return a range type whose base type is that of the range type named
9716 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9717 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9718 Extract discriminant values, if needed, from DVAL. If a new type
9719 must be created, allocate in OBJFILE's space. The bounds
9720 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9721 the named range type. */
14f9c5c9 9722
d2e4a39e 9723static struct type *
ebf56fd3 9724to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9725{
9726 struct type *raw_type = ada_find_any_type (name);
9727 struct type *base_type;
d2e4a39e 9728 char *subtype_info;
14f9c5c9 9729
dddfab26
UW
9730 /* Also search primitive types if type symbol could not be found. */
9731 if (raw_type == NULL)
9732 raw_type = language_lookup_primitive_type_by_name
9733 (language_def (language_ada), current_gdbarch, name);
9734
14f9c5c9 9735 if (raw_type == NULL)
6d84d3d8 9736 base_type = builtin_type_int32;
14f9c5c9
AS
9737 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9738 base_type = TYPE_TARGET_TYPE (raw_type);
9739 else
9740 base_type = raw_type;
9741
9742 subtype_info = strstr (name, "___XD");
9743 if (subtype_info == NULL)
690cc4eb
PH
9744 {
9745 LONGEST L = discrete_type_low_bound (raw_type);
9746 LONGEST U = discrete_type_high_bound (raw_type);
9747 if (L < INT_MIN || U > INT_MAX)
9748 return raw_type;
9749 else
9750 return create_range_type (alloc_type (objfile), raw_type,
9751 discrete_type_low_bound (raw_type),
9752 discrete_type_high_bound (raw_type));
9753 }
14f9c5c9
AS
9754 else
9755 {
9756 static char *name_buf = NULL;
9757 static size_t name_len = 0;
9758 int prefix_len = subtype_info - name;
9759 LONGEST L, U;
9760 struct type *type;
9761 char *bounds_str;
9762 int n;
9763
9764 GROW_VECT (name_buf, name_len, prefix_len + 5);
9765 strncpy (name_buf, name, prefix_len);
9766 name_buf[prefix_len] = '\0';
9767
9768 subtype_info += 5;
9769 bounds_str = strchr (subtype_info, '_');
9770 n = 1;
9771
d2e4a39e 9772 if (*subtype_info == 'L')
4c4b4cd2
PH
9773 {
9774 if (!ada_scan_number (bounds_str, n, &L, &n)
9775 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9776 return raw_type;
9777 if (bounds_str[n] == '_')
9778 n += 2;
9779 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9780 n += 1;
9781 subtype_info += 1;
9782 }
d2e4a39e 9783 else
4c4b4cd2
PH
9784 {
9785 int ok;
9786 strcpy (name_buf + prefix_len, "___L");
9787 L = get_int_var_value (name_buf, &ok);
9788 if (!ok)
9789 {
323e0a4a 9790 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9791 L = 1;
9792 }
9793 }
14f9c5c9 9794
d2e4a39e 9795 if (*subtype_info == 'U')
4c4b4cd2
PH
9796 {
9797 if (!ada_scan_number (bounds_str, n, &U, &n)
9798 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9799 return raw_type;
9800 }
d2e4a39e 9801 else
4c4b4cd2
PH
9802 {
9803 int ok;
9804 strcpy (name_buf + prefix_len, "___U");
9805 U = get_int_var_value (name_buf, &ok);
9806 if (!ok)
9807 {
323e0a4a 9808 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9809 U = L;
9810 }
9811 }
14f9c5c9 9812
d2e4a39e 9813 if (objfile == NULL)
4c4b4cd2 9814 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9815 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9816 TYPE_NAME (type) = name;
14f9c5c9
AS
9817 return type;
9818 }
9819}
9820
4c4b4cd2
PH
9821/* True iff NAME is the name of a range type. */
9822
14f9c5c9 9823int
d2e4a39e 9824ada_is_range_type_name (const char *name)
14f9c5c9
AS
9825{
9826 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9827}
14f9c5c9 9828\f
d2e4a39e 9829
4c4b4cd2
PH
9830 /* Modular types */
9831
9832/* True iff TYPE is an Ada modular type. */
14f9c5c9 9833
14f9c5c9 9834int
d2e4a39e 9835ada_is_modular_type (struct type *type)
14f9c5c9 9836{
4c4b4cd2 9837 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9838
9839 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9840 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9841 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9842}
9843
0056e4d5
JB
9844/* Try to determine the lower and upper bounds of the given modular type
9845 using the type name only. Return non-zero and set L and U as the lower
9846 and upper bounds (respectively) if successful. */
9847
9848int
9849ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9850{
9851 char *name = ada_type_name (type);
9852 char *suffix;
9853 int k;
9854 LONGEST U;
9855
9856 if (name == NULL)
9857 return 0;
9858
9859 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9860 we are looking for static bounds, which means an __XDLU suffix.
9861 Moreover, we know that the lower bound of modular types is always
9862 zero, so the actual suffix should start with "__XDLU_0__", and
9863 then be followed by the upper bound value. */
9864 suffix = strstr (name, "__XDLU_0__");
9865 if (suffix == NULL)
9866 return 0;
9867 k = 10;
9868 if (!ada_scan_number (suffix, k, &U, NULL))
9869 return 0;
9870
9871 *modulus = (ULONGEST) U + 1;
9872 return 1;
9873}
9874
4c4b4cd2
PH
9875/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9876
61ee279c 9877ULONGEST
0056e4d5 9878ada_modulus (struct type *type)
14f9c5c9 9879{
0056e4d5
JB
9880 ULONGEST modulus;
9881
9882 /* Normally, the modulus of a modular type is equal to the value of
9883 its upper bound + 1. However, the upper bound is currently stored
9884 as an int, which is not always big enough to hold the actual bound
9885 value. To workaround this, try to take advantage of the encoding
9886 that GNAT uses with with discrete types. To avoid some unnecessary
9887 parsing, we do this only when the size of TYPE is greater than
9888 the size of the field holding the bound. */
9889 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9890 && ada_modulus_from_name (type, &modulus))
9891 return modulus;
9892
d37209fd 9893 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9894}
d2e4a39e 9895\f
f7f9143b
JB
9896
9897/* Ada exception catchpoint support:
9898 ---------------------------------
9899
9900 We support 3 kinds of exception catchpoints:
9901 . catchpoints on Ada exceptions
9902 . catchpoints on unhandled Ada exceptions
9903 . catchpoints on failed assertions
9904
9905 Exceptions raised during failed assertions, or unhandled exceptions
9906 could perfectly be caught with the general catchpoint on Ada exceptions.
9907 However, we can easily differentiate these two special cases, and having
9908 the option to distinguish these two cases from the rest can be useful
9909 to zero-in on certain situations.
9910
9911 Exception catchpoints are a specialized form of breakpoint,
9912 since they rely on inserting breakpoints inside known routines
9913 of the GNAT runtime. The implementation therefore uses a standard
9914 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9915 of breakpoint_ops.
9916
0259addd
JB
9917 Support in the runtime for exception catchpoints have been changed
9918 a few times already, and these changes affect the implementation
9919 of these catchpoints. In order to be able to support several
9920 variants of the runtime, we use a sniffer that will determine
9921 the runtime variant used by the program being debugged.
9922
f7f9143b
JB
9923 At this time, we do not support the use of conditions on Ada exception
9924 catchpoints. The COND and COND_STRING fields are therefore set
9925 to NULL (most of the time, see below).
9926
9927 Conditions where EXP_STRING, COND, and COND_STRING are used:
9928
9929 When a user specifies the name of a specific exception in the case
9930 of catchpoints on Ada exceptions, we store the name of that exception
9931 in the EXP_STRING. We then translate this request into an actual
9932 condition stored in COND_STRING, and then parse it into an expression
9933 stored in COND. */
9934
9935/* The different types of catchpoints that we introduced for catching
9936 Ada exceptions. */
9937
9938enum exception_catchpoint_kind
9939{
9940 ex_catch_exception,
9941 ex_catch_exception_unhandled,
9942 ex_catch_assert
9943};
9944
3d0b0fa3
JB
9945/* Ada's standard exceptions. */
9946
9947static char *standard_exc[] = {
9948 "constraint_error",
9949 "program_error",
9950 "storage_error",
9951 "tasking_error"
9952};
9953
0259addd
JB
9954typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9955
9956/* A structure that describes how to support exception catchpoints
9957 for a given executable. */
9958
9959struct exception_support_info
9960{
9961 /* The name of the symbol to break on in order to insert
9962 a catchpoint on exceptions. */
9963 const char *catch_exception_sym;
9964
9965 /* The name of the symbol to break on in order to insert
9966 a catchpoint on unhandled exceptions. */
9967 const char *catch_exception_unhandled_sym;
9968
9969 /* The name of the symbol to break on in order to insert
9970 a catchpoint on failed assertions. */
9971 const char *catch_assert_sym;
9972
9973 /* Assuming that the inferior just triggered an unhandled exception
9974 catchpoint, this function is responsible for returning the address
9975 in inferior memory where the name of that exception is stored.
9976 Return zero if the address could not be computed. */
9977 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9978};
9979
9980static CORE_ADDR ada_unhandled_exception_name_addr (void);
9981static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9982
9983/* The following exception support info structure describes how to
9984 implement exception catchpoints with the latest version of the
9985 Ada runtime (as of 2007-03-06). */
9986
9987static const struct exception_support_info default_exception_support_info =
9988{
9989 "__gnat_debug_raise_exception", /* catch_exception_sym */
9990 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9991 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9992 ada_unhandled_exception_name_addr
9993};
9994
9995/* The following exception support info structure describes how to
9996 implement exception catchpoints with a slightly older version
9997 of the Ada runtime. */
9998
9999static const struct exception_support_info exception_support_info_fallback =
10000{
10001 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10002 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10003 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10004 ada_unhandled_exception_name_addr_from_raise
10005};
10006
10007/* For each executable, we sniff which exception info structure to use
10008 and cache it in the following global variable. */
10009
10010static const struct exception_support_info *exception_info = NULL;
10011
10012/* Inspect the Ada runtime and determine which exception info structure
10013 should be used to provide support for exception catchpoints.
10014
10015 This function will always set exception_info, or raise an error. */
10016
10017static void
10018ada_exception_support_info_sniffer (void)
10019{
10020 struct symbol *sym;
10021
10022 /* If the exception info is already known, then no need to recompute it. */
10023 if (exception_info != NULL)
10024 return;
10025
10026 /* Check the latest (default) exception support info. */
10027 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10028 NULL, VAR_DOMAIN);
10029 if (sym != NULL)
10030 {
10031 exception_info = &default_exception_support_info;
10032 return;
10033 }
10034
10035 /* Try our fallback exception suport info. */
10036 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10037 NULL, VAR_DOMAIN);
10038 if (sym != NULL)
10039 {
10040 exception_info = &exception_support_info_fallback;
10041 return;
10042 }
10043
10044 /* Sometimes, it is normal for us to not be able to find the routine
10045 we are looking for. This happens when the program is linked with
10046 the shared version of the GNAT runtime, and the program has not been
10047 started yet. Inform the user of these two possible causes if
10048 applicable. */
10049
10050 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10051 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10052
10053 /* If the symbol does not exist, then check that the program is
10054 already started, to make sure that shared libraries have been
10055 loaded. If it is not started, this may mean that the symbol is
10056 in a shared library. */
10057
10058 if (ptid_get_pid (inferior_ptid) == 0)
10059 error (_("Unable to insert catchpoint. Try to start the program first."));
10060
10061 /* At this point, we know that we are debugging an Ada program and
10062 that the inferior has been started, but we still are not able to
10063 find the run-time symbols. That can mean that we are in
10064 configurable run time mode, or that a-except as been optimized
10065 out by the linker... In any case, at this point it is not worth
10066 supporting this feature. */
10067
10068 error (_("Cannot insert catchpoints in this configuration."));
10069}
10070
10071/* An observer of "executable_changed" events.
10072 Its role is to clear certain cached values that need to be recomputed
10073 each time a new executable is loaded by GDB. */
10074
10075static void
781b42b0 10076ada_executable_changed_observer (void)
0259addd
JB
10077{
10078 /* If the executable changed, then it is possible that the Ada runtime
10079 is different. So we need to invalidate the exception support info
10080 cache. */
10081 exception_info = NULL;
10082}
10083
f7f9143b
JB
10084/* Return the name of the function at PC, NULL if could not find it.
10085 This function only checks the debugging information, not the symbol
10086 table. */
10087
10088static char *
10089function_name_from_pc (CORE_ADDR pc)
10090{
10091 char *func_name;
10092
10093 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10094 return NULL;
10095
10096 return func_name;
10097}
10098
10099/* True iff FRAME is very likely to be that of a function that is
10100 part of the runtime system. This is all very heuristic, but is
10101 intended to be used as advice as to what frames are uninteresting
10102 to most users. */
10103
10104static int
10105is_known_support_routine (struct frame_info *frame)
10106{
4ed6b5be 10107 struct symtab_and_line sal;
f7f9143b
JB
10108 char *func_name;
10109 int i;
f7f9143b 10110
4ed6b5be
JB
10111 /* If this code does not have any debugging information (no symtab),
10112 This cannot be any user code. */
f7f9143b 10113
4ed6b5be 10114 find_frame_sal (frame, &sal);
f7f9143b
JB
10115 if (sal.symtab == NULL)
10116 return 1;
10117
4ed6b5be
JB
10118 /* If there is a symtab, but the associated source file cannot be
10119 located, then assume this is not user code: Selecting a frame
10120 for which we cannot display the code would not be very helpful
10121 for the user. This should also take care of case such as VxWorks
10122 where the kernel has some debugging info provided for a few units. */
f7f9143b 10123
9bbc9174 10124 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10125 return 1;
10126
4ed6b5be
JB
10127 /* Check the unit filename againt the Ada runtime file naming.
10128 We also check the name of the objfile against the name of some
10129 known system libraries that sometimes come with debugging info
10130 too. */
10131
f7f9143b
JB
10132 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10133 {
10134 re_comp (known_runtime_file_name_patterns[i]);
10135 if (re_exec (sal.symtab->filename))
10136 return 1;
4ed6b5be
JB
10137 if (sal.symtab->objfile != NULL
10138 && re_exec (sal.symtab->objfile->name))
10139 return 1;
f7f9143b
JB
10140 }
10141
4ed6b5be 10142 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10143
4ed6b5be 10144 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
10145 if (func_name == NULL)
10146 return 1;
10147
10148 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10149 {
10150 re_comp (known_auxiliary_function_name_patterns[i]);
10151 if (re_exec (func_name))
10152 return 1;
10153 }
10154
10155 return 0;
10156}
10157
10158/* Find the first frame that contains debugging information and that is not
10159 part of the Ada run-time, starting from FI and moving upward. */
10160
0ef643c8 10161void
f7f9143b
JB
10162ada_find_printable_frame (struct frame_info *fi)
10163{
10164 for (; fi != NULL; fi = get_prev_frame (fi))
10165 {
10166 if (!is_known_support_routine (fi))
10167 {
10168 select_frame (fi);
10169 break;
10170 }
10171 }
10172
10173}
10174
10175/* Assuming that the inferior just triggered an unhandled exception
10176 catchpoint, return the address in inferior memory where the name
10177 of the exception is stored.
10178
10179 Return zero if the address could not be computed. */
10180
10181static CORE_ADDR
10182ada_unhandled_exception_name_addr (void)
0259addd
JB
10183{
10184 return parse_and_eval_address ("e.full_name");
10185}
10186
10187/* Same as ada_unhandled_exception_name_addr, except that this function
10188 should be used when the inferior uses an older version of the runtime,
10189 where the exception name needs to be extracted from a specific frame
10190 several frames up in the callstack. */
10191
10192static CORE_ADDR
10193ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10194{
10195 int frame_level;
10196 struct frame_info *fi;
10197
10198 /* To determine the name of this exception, we need to select
10199 the frame corresponding to RAISE_SYM_NAME. This frame is
10200 at least 3 levels up, so we simply skip the first 3 frames
10201 without checking the name of their associated function. */
10202 fi = get_current_frame ();
10203 for (frame_level = 0; frame_level < 3; frame_level += 1)
10204 if (fi != NULL)
10205 fi = get_prev_frame (fi);
10206
10207 while (fi != NULL)
10208 {
10209 const char *func_name =
10210 function_name_from_pc (get_frame_address_in_block (fi));
10211 if (func_name != NULL
0259addd 10212 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10213 break; /* We found the frame we were looking for... */
10214 fi = get_prev_frame (fi);
10215 }
10216
10217 if (fi == NULL)
10218 return 0;
10219
10220 select_frame (fi);
10221 return parse_and_eval_address ("id.full_name");
10222}
10223
10224/* Assuming the inferior just triggered an Ada exception catchpoint
10225 (of any type), return the address in inferior memory where the name
10226 of the exception is stored, if applicable.
10227
10228 Return zero if the address could not be computed, or if not relevant. */
10229
10230static CORE_ADDR
10231ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10232 struct breakpoint *b)
10233{
10234 switch (ex)
10235 {
10236 case ex_catch_exception:
10237 return (parse_and_eval_address ("e.full_name"));
10238 break;
10239
10240 case ex_catch_exception_unhandled:
0259addd 10241 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10242 break;
10243
10244 case ex_catch_assert:
10245 return 0; /* Exception name is not relevant in this case. */
10246 break;
10247
10248 default:
10249 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10250 break;
10251 }
10252
10253 return 0; /* Should never be reached. */
10254}
10255
10256/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10257 any error that ada_exception_name_addr_1 might cause to be thrown.
10258 When an error is intercepted, a warning with the error message is printed,
10259 and zero is returned. */
10260
10261static CORE_ADDR
10262ada_exception_name_addr (enum exception_catchpoint_kind ex,
10263 struct breakpoint *b)
10264{
10265 struct gdb_exception e;
10266 CORE_ADDR result = 0;
10267
10268 TRY_CATCH (e, RETURN_MASK_ERROR)
10269 {
10270 result = ada_exception_name_addr_1 (ex, b);
10271 }
10272
10273 if (e.reason < 0)
10274 {
10275 warning (_("failed to get exception name: %s"), e.message);
10276 return 0;
10277 }
10278
10279 return result;
10280}
10281
10282/* Implement the PRINT_IT method in the breakpoint_ops structure
10283 for all exception catchpoint kinds. */
10284
10285static enum print_stop_action
10286print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10287{
10288 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10289 char exception_name[256];
10290
10291 if (addr != 0)
10292 {
10293 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10294 exception_name [sizeof (exception_name) - 1] = '\0';
10295 }
10296
10297 ada_find_printable_frame (get_current_frame ());
10298
10299 annotate_catchpoint (b->number);
10300 switch (ex)
10301 {
10302 case ex_catch_exception:
10303 if (addr != 0)
10304 printf_filtered (_("\nCatchpoint %d, %s at "),
10305 b->number, exception_name);
10306 else
10307 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10308 break;
10309 case ex_catch_exception_unhandled:
10310 if (addr != 0)
10311 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10312 b->number, exception_name);
10313 else
10314 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10315 b->number);
10316 break;
10317 case ex_catch_assert:
10318 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10319 b->number);
10320 break;
10321 }
10322
10323 return PRINT_SRC_AND_LOC;
10324}
10325
10326/* Implement the PRINT_ONE method in the breakpoint_ops structure
10327 for all exception catchpoint kinds. */
10328
10329static void
10330print_one_exception (enum exception_catchpoint_kind ex,
10331 struct breakpoint *b, CORE_ADDR *last_addr)
10332{
79a45b7d
TT
10333 struct value_print_options opts;
10334
10335 get_user_print_options (&opts);
10336 if (opts.addressprint)
f7f9143b
JB
10337 {
10338 annotate_field (4);
10339 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10340 }
10341
10342 annotate_field (5);
10343 *last_addr = b->loc->address;
10344 switch (ex)
10345 {
10346 case ex_catch_exception:
10347 if (b->exp_string != NULL)
10348 {
10349 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10350
10351 ui_out_field_string (uiout, "what", msg);
10352 xfree (msg);
10353 }
10354 else
10355 ui_out_field_string (uiout, "what", "all Ada exceptions");
10356
10357 break;
10358
10359 case ex_catch_exception_unhandled:
10360 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10361 break;
10362
10363 case ex_catch_assert:
10364 ui_out_field_string (uiout, "what", "failed Ada assertions");
10365 break;
10366
10367 default:
10368 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10369 break;
10370 }
10371}
10372
10373/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10374 for all exception catchpoint kinds. */
10375
10376static void
10377print_mention_exception (enum exception_catchpoint_kind ex,
10378 struct breakpoint *b)
10379{
10380 switch (ex)
10381 {
10382 case ex_catch_exception:
10383 if (b->exp_string != NULL)
10384 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10385 b->number, b->exp_string);
10386 else
10387 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10388
10389 break;
10390
10391 case ex_catch_exception_unhandled:
10392 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10393 b->number);
10394 break;
10395
10396 case ex_catch_assert:
10397 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10398 break;
10399
10400 default:
10401 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10402 break;
10403 }
10404}
10405
10406/* Virtual table for "catch exception" breakpoints. */
10407
10408static enum print_stop_action
10409print_it_catch_exception (struct breakpoint *b)
10410{
10411 return print_it_exception (ex_catch_exception, b);
10412}
10413
10414static void
10415print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10416{
10417 print_one_exception (ex_catch_exception, b, last_addr);
10418}
10419
10420static void
10421print_mention_catch_exception (struct breakpoint *b)
10422{
10423 print_mention_exception (ex_catch_exception, b);
10424}
10425
10426static struct breakpoint_ops catch_exception_breakpoint_ops =
10427{
ce78b96d
JB
10428 NULL, /* insert */
10429 NULL, /* remove */
10430 NULL, /* breakpoint_hit */
f7f9143b
JB
10431 print_it_catch_exception,
10432 print_one_catch_exception,
10433 print_mention_catch_exception
10434};
10435
10436/* Virtual table for "catch exception unhandled" breakpoints. */
10437
10438static enum print_stop_action
10439print_it_catch_exception_unhandled (struct breakpoint *b)
10440{
10441 return print_it_exception (ex_catch_exception_unhandled, b);
10442}
10443
10444static void
10445print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10446{
10447 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10448}
10449
10450static void
10451print_mention_catch_exception_unhandled (struct breakpoint *b)
10452{
10453 print_mention_exception (ex_catch_exception_unhandled, b);
10454}
10455
10456static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10457 NULL, /* insert */
10458 NULL, /* remove */
10459 NULL, /* breakpoint_hit */
f7f9143b
JB
10460 print_it_catch_exception_unhandled,
10461 print_one_catch_exception_unhandled,
10462 print_mention_catch_exception_unhandled
10463};
10464
10465/* Virtual table for "catch assert" breakpoints. */
10466
10467static enum print_stop_action
10468print_it_catch_assert (struct breakpoint *b)
10469{
10470 return print_it_exception (ex_catch_assert, b);
10471}
10472
10473static void
10474print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10475{
10476 print_one_exception (ex_catch_assert, b, last_addr);
10477}
10478
10479static void
10480print_mention_catch_assert (struct breakpoint *b)
10481{
10482 print_mention_exception (ex_catch_assert, b);
10483}
10484
10485static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10486 NULL, /* insert */
10487 NULL, /* remove */
10488 NULL, /* breakpoint_hit */
f7f9143b
JB
10489 print_it_catch_assert,
10490 print_one_catch_assert,
10491 print_mention_catch_assert
10492};
10493
10494/* Return non-zero if B is an Ada exception catchpoint. */
10495
10496int
10497ada_exception_catchpoint_p (struct breakpoint *b)
10498{
10499 return (b->ops == &catch_exception_breakpoint_ops
10500 || b->ops == &catch_exception_unhandled_breakpoint_ops
10501 || b->ops == &catch_assert_breakpoint_ops);
10502}
10503
f7f9143b
JB
10504/* Return a newly allocated copy of the first space-separated token
10505 in ARGSP, and then adjust ARGSP to point immediately after that
10506 token.
10507
10508 Return NULL if ARGPS does not contain any more tokens. */
10509
10510static char *
10511ada_get_next_arg (char **argsp)
10512{
10513 char *args = *argsp;
10514 char *end;
10515 char *result;
10516
10517 /* Skip any leading white space. */
10518
10519 while (isspace (*args))
10520 args++;
10521
10522 if (args[0] == '\0')
10523 return NULL; /* No more arguments. */
10524
10525 /* Find the end of the current argument. */
10526
10527 end = args;
10528 while (*end != '\0' && !isspace (*end))
10529 end++;
10530
10531 /* Adjust ARGSP to point to the start of the next argument. */
10532
10533 *argsp = end;
10534
10535 /* Make a copy of the current argument and return it. */
10536
10537 result = xmalloc (end - args + 1);
10538 strncpy (result, args, end - args);
10539 result[end - args] = '\0';
10540
10541 return result;
10542}
10543
10544/* Split the arguments specified in a "catch exception" command.
10545 Set EX to the appropriate catchpoint type.
10546 Set EXP_STRING to the name of the specific exception if
10547 specified by the user. */
10548
10549static void
10550catch_ada_exception_command_split (char *args,
10551 enum exception_catchpoint_kind *ex,
10552 char **exp_string)
10553{
10554 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10555 char *exception_name;
10556
10557 exception_name = ada_get_next_arg (&args);
10558 make_cleanup (xfree, exception_name);
10559
10560 /* Check that we do not have any more arguments. Anything else
10561 is unexpected. */
10562
10563 while (isspace (*args))
10564 args++;
10565
10566 if (args[0] != '\0')
10567 error (_("Junk at end of expression"));
10568
10569 discard_cleanups (old_chain);
10570
10571 if (exception_name == NULL)
10572 {
10573 /* Catch all exceptions. */
10574 *ex = ex_catch_exception;
10575 *exp_string = NULL;
10576 }
10577 else if (strcmp (exception_name, "unhandled") == 0)
10578 {
10579 /* Catch unhandled exceptions. */
10580 *ex = ex_catch_exception_unhandled;
10581 *exp_string = NULL;
10582 }
10583 else
10584 {
10585 /* Catch a specific exception. */
10586 *ex = ex_catch_exception;
10587 *exp_string = exception_name;
10588 }
10589}
10590
10591/* Return the name of the symbol on which we should break in order to
10592 implement a catchpoint of the EX kind. */
10593
10594static const char *
10595ada_exception_sym_name (enum exception_catchpoint_kind ex)
10596{
0259addd
JB
10597 gdb_assert (exception_info != NULL);
10598
f7f9143b
JB
10599 switch (ex)
10600 {
10601 case ex_catch_exception:
0259addd 10602 return (exception_info->catch_exception_sym);
f7f9143b
JB
10603 break;
10604 case ex_catch_exception_unhandled:
0259addd 10605 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10606 break;
10607 case ex_catch_assert:
0259addd 10608 return (exception_info->catch_assert_sym);
f7f9143b
JB
10609 break;
10610 default:
10611 internal_error (__FILE__, __LINE__,
10612 _("unexpected catchpoint kind (%d)"), ex);
10613 }
10614}
10615
10616/* Return the breakpoint ops "virtual table" used for catchpoints
10617 of the EX kind. */
10618
10619static struct breakpoint_ops *
4b9eee8c 10620ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10621{
10622 switch (ex)
10623 {
10624 case ex_catch_exception:
10625 return (&catch_exception_breakpoint_ops);
10626 break;
10627 case ex_catch_exception_unhandled:
10628 return (&catch_exception_unhandled_breakpoint_ops);
10629 break;
10630 case ex_catch_assert:
10631 return (&catch_assert_breakpoint_ops);
10632 break;
10633 default:
10634 internal_error (__FILE__, __LINE__,
10635 _("unexpected catchpoint kind (%d)"), ex);
10636 }
10637}
10638
10639/* Return the condition that will be used to match the current exception
10640 being raised with the exception that the user wants to catch. This
10641 assumes that this condition is used when the inferior just triggered
10642 an exception catchpoint.
10643
10644 The string returned is a newly allocated string that needs to be
10645 deallocated later. */
10646
10647static char *
10648ada_exception_catchpoint_cond_string (const char *exp_string)
10649{
3d0b0fa3
JB
10650 int i;
10651
10652 /* The standard exceptions are a special case. They are defined in
10653 runtime units that have been compiled without debugging info; if
10654 EXP_STRING is the not-fully-qualified name of a standard
10655 exception (e.g. "constraint_error") then, during the evaluation
10656 of the condition expression, the symbol lookup on this name would
10657 *not* return this standard exception. The catchpoint condition
10658 may then be set only on user-defined exceptions which have the
10659 same not-fully-qualified name (e.g. my_package.constraint_error).
10660
10661 To avoid this unexcepted behavior, these standard exceptions are
10662 systematically prefixed by "standard". This means that "catch
10663 exception constraint_error" is rewritten into "catch exception
10664 standard.constraint_error".
10665
10666 If an exception named contraint_error is defined in another package of
10667 the inferior program, then the only way to specify this exception as a
10668 breakpoint condition is to use its fully-qualified named:
10669 e.g. my_package.constraint_error. */
10670
10671 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10672 {
10673 if (strcmp (standard_exc [i], exp_string) == 0)
10674 {
10675 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10676 exp_string);
10677 }
10678 }
f7f9143b
JB
10679 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10680}
10681
10682/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10683
10684static struct expression *
10685ada_parse_catchpoint_condition (char *cond_string,
10686 struct symtab_and_line sal)
10687{
10688 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10689}
10690
10691/* Return the symtab_and_line that should be used to insert an exception
10692 catchpoint of the TYPE kind.
10693
10694 EX_STRING should contain the name of a specific exception
10695 that the catchpoint should catch, or NULL otherwise.
10696
10697 The idea behind all the remaining parameters is that their names match
10698 the name of certain fields in the breakpoint structure that are used to
10699 handle exception catchpoints. This function returns the value to which
10700 these fields should be set, depending on the type of catchpoint we need
10701 to create.
10702
10703 If COND and COND_STRING are both non-NULL, any value they might
10704 hold will be free'ed, and then replaced by newly allocated ones.
10705 These parameters are left untouched otherwise. */
10706
10707static struct symtab_and_line
10708ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10709 char **addr_string, char **cond_string,
10710 struct expression **cond, struct breakpoint_ops **ops)
10711{
10712 const char *sym_name;
10713 struct symbol *sym;
10714 struct symtab_and_line sal;
10715
0259addd
JB
10716 /* First, find out which exception support info to use. */
10717 ada_exception_support_info_sniffer ();
10718
10719 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10720 the Ada exceptions requested by the user. */
10721
10722 sym_name = ada_exception_sym_name (ex);
10723 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10724
10725 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10726 that should be compiled with debugging information. As a result, we
10727 expect to find that symbol in the symtabs. If we don't find it, then
10728 the target most likely does not support Ada exceptions, or we cannot
10729 insert exception breakpoints yet, because the GNAT runtime hasn't been
10730 loaded yet. */
10731
10732 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10733 in such a way that no debugging information is produced for the symbol
10734 we are looking for. In this case, we could search the minimal symbols
10735 as a fall-back mechanism. This would still be operating in degraded
10736 mode, however, as we would still be missing the debugging information
10737 that is needed in order to extract the name of the exception being
10738 raised (this name is printed in the catchpoint message, and is also
10739 used when trying to catch a specific exception). We do not handle
10740 this case for now. */
10741
10742 if (sym == NULL)
0259addd 10743 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10744
10745 /* Make sure that the symbol we found corresponds to a function. */
10746 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10747 error (_("Symbol \"%s\" is not a function (class = %d)"),
10748 sym_name, SYMBOL_CLASS (sym));
10749
10750 sal = find_function_start_sal (sym, 1);
10751
10752 /* Set ADDR_STRING. */
10753
10754 *addr_string = xstrdup (sym_name);
10755
10756 /* Set the COND and COND_STRING (if not NULL). */
10757
10758 if (cond_string != NULL && cond != NULL)
10759 {
10760 if (*cond_string != NULL)
10761 {
10762 xfree (*cond_string);
10763 *cond_string = NULL;
10764 }
10765 if (*cond != NULL)
10766 {
10767 xfree (*cond);
10768 *cond = NULL;
10769 }
10770 if (exp_string != NULL)
10771 {
10772 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10773 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10774 }
10775 }
10776
10777 /* Set OPS. */
4b9eee8c 10778 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10779
10780 return sal;
10781}
10782
10783/* Parse the arguments (ARGS) of the "catch exception" command.
10784
10785 Set TYPE to the appropriate exception catchpoint type.
10786 If the user asked the catchpoint to catch only a specific
10787 exception, then save the exception name in ADDR_STRING.
10788
10789 See ada_exception_sal for a description of all the remaining
10790 function arguments of this function. */
10791
10792struct symtab_and_line
10793ada_decode_exception_location (char *args, char **addr_string,
10794 char **exp_string, char **cond_string,
10795 struct expression **cond,
10796 struct breakpoint_ops **ops)
10797{
10798 enum exception_catchpoint_kind ex;
10799
10800 catch_ada_exception_command_split (args, &ex, exp_string);
10801 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10802 cond, ops);
10803}
10804
10805struct symtab_and_line
10806ada_decode_assert_location (char *args, char **addr_string,
10807 struct breakpoint_ops **ops)
10808{
10809 /* Check that no argument where provided at the end of the command. */
10810
10811 if (args != NULL)
10812 {
10813 while (isspace (*args))
10814 args++;
10815 if (*args != '\0')
10816 error (_("Junk at end of arguments."));
10817 }
10818
10819 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10820 ops);
10821}
10822
4c4b4cd2
PH
10823 /* Operators */
10824/* Information about operators given special treatment in functions
10825 below. */
10826/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10827
10828#define ADA_OPERATORS \
10829 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10830 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10831 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10832 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10833 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10834 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10835 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10836 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10837 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10838 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10839 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10840 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10841 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10842 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10843 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10844 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10845 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10846 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10847 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10848
10849static void
10850ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10851{
10852 switch (exp->elts[pc - 1].opcode)
10853 {
76a01679 10854 default:
4c4b4cd2
PH
10855 operator_length_standard (exp, pc, oplenp, argsp);
10856 break;
10857
10858#define OP_DEFN(op, len, args, binop) \
10859 case op: *oplenp = len; *argsp = args; break;
10860 ADA_OPERATORS;
10861#undef OP_DEFN
52ce6436
PH
10862
10863 case OP_AGGREGATE:
10864 *oplenp = 3;
10865 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10866 break;
10867
10868 case OP_CHOICES:
10869 *oplenp = 3;
10870 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10871 break;
4c4b4cd2
PH
10872 }
10873}
10874
10875static char *
10876ada_op_name (enum exp_opcode opcode)
10877{
10878 switch (opcode)
10879 {
76a01679 10880 default:
4c4b4cd2 10881 return op_name_standard (opcode);
52ce6436 10882
4c4b4cd2
PH
10883#define OP_DEFN(op, len, args, binop) case op: return #op;
10884 ADA_OPERATORS;
10885#undef OP_DEFN
52ce6436
PH
10886
10887 case OP_AGGREGATE:
10888 return "OP_AGGREGATE";
10889 case OP_CHOICES:
10890 return "OP_CHOICES";
10891 case OP_NAME:
10892 return "OP_NAME";
4c4b4cd2
PH
10893 }
10894}
10895
10896/* As for operator_length, but assumes PC is pointing at the first
10897 element of the operator, and gives meaningful results only for the
52ce6436 10898 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10899
10900static void
76a01679
JB
10901ada_forward_operator_length (struct expression *exp, int pc,
10902 int *oplenp, int *argsp)
4c4b4cd2 10903{
76a01679 10904 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10905 {
10906 default:
10907 *oplenp = *argsp = 0;
10908 break;
52ce6436 10909
4c4b4cd2
PH
10910#define OP_DEFN(op, len, args, binop) \
10911 case op: *oplenp = len; *argsp = args; break;
10912 ADA_OPERATORS;
10913#undef OP_DEFN
52ce6436
PH
10914
10915 case OP_AGGREGATE:
10916 *oplenp = 3;
10917 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10918 break;
10919
10920 case OP_CHOICES:
10921 *oplenp = 3;
10922 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10923 break;
10924
10925 case OP_STRING:
10926 case OP_NAME:
10927 {
10928 int len = longest_to_int (exp->elts[pc + 1].longconst);
10929 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10930 *argsp = 0;
10931 break;
10932 }
4c4b4cd2
PH
10933 }
10934}
10935
10936static int
10937ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10938{
10939 enum exp_opcode op = exp->elts[elt].opcode;
10940 int oplen, nargs;
10941 int pc = elt;
10942 int i;
76a01679 10943
4c4b4cd2
PH
10944 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10945
76a01679 10946 switch (op)
4c4b4cd2 10947 {
76a01679 10948 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10949 case OP_ATR_FIRST:
10950 case OP_ATR_LAST:
10951 case OP_ATR_LENGTH:
10952 case OP_ATR_IMAGE:
10953 case OP_ATR_MAX:
10954 case OP_ATR_MIN:
10955 case OP_ATR_MODULUS:
10956 case OP_ATR_POS:
10957 case OP_ATR_SIZE:
10958 case OP_ATR_TAG:
10959 case OP_ATR_VAL:
10960 break;
10961
10962 case UNOP_IN_RANGE:
10963 case UNOP_QUAL:
323e0a4a
AC
10964 /* XXX: gdb_sprint_host_address, type_sprint */
10965 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10966 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10967 fprintf_filtered (stream, " (");
10968 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10969 fprintf_filtered (stream, ")");
10970 break;
10971 case BINOP_IN_BOUNDS:
52ce6436
PH
10972 fprintf_filtered (stream, " (%d)",
10973 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10974 break;
10975 case TERNOP_IN_RANGE:
10976 break;
10977
52ce6436
PH
10978 case OP_AGGREGATE:
10979 case OP_OTHERS:
10980 case OP_DISCRETE_RANGE:
10981 case OP_POSITIONAL:
10982 case OP_CHOICES:
10983 break;
10984
10985 case OP_NAME:
10986 case OP_STRING:
10987 {
10988 char *name = &exp->elts[elt + 2].string;
10989 int len = longest_to_int (exp->elts[elt + 1].longconst);
10990 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10991 break;
10992 }
10993
4c4b4cd2
PH
10994 default:
10995 return dump_subexp_body_standard (exp, stream, elt);
10996 }
10997
10998 elt += oplen;
10999 for (i = 0; i < nargs; i += 1)
11000 elt = dump_subexp (exp, stream, elt);
11001
11002 return elt;
11003}
11004
11005/* The Ada extension of print_subexp (q.v.). */
11006
76a01679
JB
11007static void
11008ada_print_subexp (struct expression *exp, int *pos,
11009 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11010{
52ce6436 11011 int oplen, nargs, i;
4c4b4cd2
PH
11012 int pc = *pos;
11013 enum exp_opcode op = exp->elts[pc].opcode;
11014
11015 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11016
52ce6436 11017 *pos += oplen;
4c4b4cd2
PH
11018 switch (op)
11019 {
11020 default:
52ce6436 11021 *pos -= oplen;
4c4b4cd2
PH
11022 print_subexp_standard (exp, pos, stream, prec);
11023 return;
11024
11025 case OP_VAR_VALUE:
4c4b4cd2
PH
11026 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11027 return;
11028
11029 case BINOP_IN_BOUNDS:
323e0a4a 11030 /* XXX: sprint_subexp */
4c4b4cd2 11031 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11032 fputs_filtered (" in ", stream);
4c4b4cd2 11033 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11034 fputs_filtered ("'range", stream);
4c4b4cd2 11035 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11036 fprintf_filtered (stream, "(%ld)",
11037 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11038 return;
11039
11040 case TERNOP_IN_RANGE:
4c4b4cd2 11041 if (prec >= PREC_EQUAL)
76a01679 11042 fputs_filtered ("(", stream);
323e0a4a 11043 /* XXX: sprint_subexp */
4c4b4cd2 11044 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11045 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11046 print_subexp (exp, pos, stream, PREC_EQUAL);
11047 fputs_filtered (" .. ", stream);
11048 print_subexp (exp, pos, stream, PREC_EQUAL);
11049 if (prec >= PREC_EQUAL)
76a01679
JB
11050 fputs_filtered (")", stream);
11051 return;
4c4b4cd2
PH
11052
11053 case OP_ATR_FIRST:
11054 case OP_ATR_LAST:
11055 case OP_ATR_LENGTH:
11056 case OP_ATR_IMAGE:
11057 case OP_ATR_MAX:
11058 case OP_ATR_MIN:
11059 case OP_ATR_MODULUS:
11060 case OP_ATR_POS:
11061 case OP_ATR_SIZE:
11062 case OP_ATR_TAG:
11063 case OP_ATR_VAL:
4c4b4cd2 11064 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11065 {
11066 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11067 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11068 *pos += 3;
11069 }
4c4b4cd2 11070 else
76a01679 11071 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11072 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11073 if (nargs > 1)
76a01679
JB
11074 {
11075 int tem;
11076 for (tem = 1; tem < nargs; tem += 1)
11077 {
11078 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11079 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11080 }
11081 fputs_filtered (")", stream);
11082 }
4c4b4cd2 11083 return;
14f9c5c9 11084
4c4b4cd2 11085 case UNOP_QUAL:
4c4b4cd2
PH
11086 type_print (exp->elts[pc + 1].type, "", stream, 0);
11087 fputs_filtered ("'(", stream);
11088 print_subexp (exp, pos, stream, PREC_PREFIX);
11089 fputs_filtered (")", stream);
11090 return;
14f9c5c9 11091
4c4b4cd2 11092 case UNOP_IN_RANGE:
323e0a4a 11093 /* XXX: sprint_subexp */
4c4b4cd2 11094 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11095 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11096 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11097 return;
52ce6436
PH
11098
11099 case OP_DISCRETE_RANGE:
11100 print_subexp (exp, pos, stream, PREC_SUFFIX);
11101 fputs_filtered ("..", stream);
11102 print_subexp (exp, pos, stream, PREC_SUFFIX);
11103 return;
11104
11105 case OP_OTHERS:
11106 fputs_filtered ("others => ", stream);
11107 print_subexp (exp, pos, stream, PREC_SUFFIX);
11108 return;
11109
11110 case OP_CHOICES:
11111 for (i = 0; i < nargs-1; i += 1)
11112 {
11113 if (i > 0)
11114 fputs_filtered ("|", stream);
11115 print_subexp (exp, pos, stream, PREC_SUFFIX);
11116 }
11117 fputs_filtered (" => ", stream);
11118 print_subexp (exp, pos, stream, PREC_SUFFIX);
11119 return;
11120
11121 case OP_POSITIONAL:
11122 print_subexp (exp, pos, stream, PREC_SUFFIX);
11123 return;
11124
11125 case OP_AGGREGATE:
11126 fputs_filtered ("(", stream);
11127 for (i = 0; i < nargs; i += 1)
11128 {
11129 if (i > 0)
11130 fputs_filtered (", ", stream);
11131 print_subexp (exp, pos, stream, PREC_SUFFIX);
11132 }
11133 fputs_filtered (")", stream);
11134 return;
4c4b4cd2
PH
11135 }
11136}
14f9c5c9
AS
11137
11138/* Table mapping opcodes into strings for printing operators
11139 and precedences of the operators. */
11140
d2e4a39e
AS
11141static const struct op_print ada_op_print_tab[] = {
11142 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11143 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11144 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11145 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11146 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11147 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11148 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11149 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11150 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11151 {">=", BINOP_GEQ, PREC_ORDER, 0},
11152 {">", BINOP_GTR, PREC_ORDER, 0},
11153 {"<", BINOP_LESS, PREC_ORDER, 0},
11154 {">>", BINOP_RSH, PREC_SHIFT, 0},
11155 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11156 {"+", BINOP_ADD, PREC_ADD, 0},
11157 {"-", BINOP_SUB, PREC_ADD, 0},
11158 {"&", BINOP_CONCAT, PREC_ADD, 0},
11159 {"*", BINOP_MUL, PREC_MUL, 0},
11160 {"/", BINOP_DIV, PREC_MUL, 0},
11161 {"rem", BINOP_REM, PREC_MUL, 0},
11162 {"mod", BINOP_MOD, PREC_MUL, 0},
11163 {"**", BINOP_EXP, PREC_REPEAT, 0},
11164 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11165 {"-", UNOP_NEG, PREC_PREFIX, 0},
11166 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11167 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11168 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11169 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11170 {".all", UNOP_IND, PREC_SUFFIX, 1},
11171 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11172 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11173 {NULL, 0, 0, 0}
14f9c5c9
AS
11174};
11175\f
72d5681a
PH
11176enum ada_primitive_types {
11177 ada_primitive_type_int,
11178 ada_primitive_type_long,
11179 ada_primitive_type_short,
11180 ada_primitive_type_char,
11181 ada_primitive_type_float,
11182 ada_primitive_type_double,
11183 ada_primitive_type_void,
11184 ada_primitive_type_long_long,
11185 ada_primitive_type_long_double,
11186 ada_primitive_type_natural,
11187 ada_primitive_type_positive,
11188 ada_primitive_type_system_address,
11189 nr_ada_primitive_types
11190};
6c038f32
PH
11191
11192static void
d4a9a881 11193ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11194 struct language_arch_info *lai)
11195{
d4a9a881 11196 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11197 lai->primitive_type_vector
d4a9a881 11198 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
11199 struct type *);
11200 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 11201 init_type (TYPE_CODE_INT,
d4a9a881 11202 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11203 0, "integer", (struct objfile *) NULL);
72d5681a 11204 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 11205 init_type (TYPE_CODE_INT,
d4a9a881 11206 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11207 0, "long_integer", (struct objfile *) NULL);
72d5681a 11208 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 11209 init_type (TYPE_CODE_INT,
d4a9a881 11210 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11211 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
11212 lai->string_char_type =
11213 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
11214 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11215 0, "character", (struct objfile *) NULL);
72d5681a 11216 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 11217 init_type (TYPE_CODE_FLT,
d4a9a881 11218 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 11219 0, "float", (struct objfile *) NULL);
72d5681a 11220 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 11221 init_type (TYPE_CODE_FLT,
d4a9a881 11222 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11223 0, "long_float", (struct objfile *) NULL);
72d5681a 11224 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 11225 init_type (TYPE_CODE_INT,
d4a9a881 11226 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11227 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 11228 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 11229 init_type (TYPE_CODE_FLT,
d4a9a881 11230 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11231 0, "long_long_float", (struct objfile *) NULL);
72d5681a 11232 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 11233 init_type (TYPE_CODE_INT,
d4a9a881 11234 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11235 0, "natural", (struct objfile *) NULL);
72d5681a 11236 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 11237 init_type (TYPE_CODE_INT,
d4a9a881 11238 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11239 0, "positive", (struct objfile *) NULL);
72d5681a 11240 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 11241
72d5681a 11242 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
11243 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11244 (struct objfile *) NULL));
72d5681a
PH
11245 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11246 = "system__address";
fbb06eb1 11247
47e729a8 11248 lai->bool_type_symbol = NULL;
fbb06eb1 11249 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11250}
6c038f32
PH
11251\f
11252 /* Language vector */
11253
11254/* Not really used, but needed in the ada_language_defn. */
11255
11256static void
6c7a06a3 11257emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11258{
6c7a06a3 11259 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11260}
11261
11262static int
11263parse (void)
11264{
11265 warnings_issued = 0;
11266 return ada_parse ();
11267}
11268
11269static const struct exp_descriptor ada_exp_descriptor = {
11270 ada_print_subexp,
11271 ada_operator_length,
11272 ada_op_name,
11273 ada_dump_subexp_body,
11274 ada_evaluate_subexp
11275};
11276
11277const struct language_defn ada_language_defn = {
11278 "ada", /* Language name */
11279 language_ada,
6c038f32
PH
11280 range_check_off,
11281 type_check_off,
11282 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11283 that's not quite what this means. */
6c038f32 11284 array_row_major,
9a044a89 11285 macro_expansion_no,
6c038f32
PH
11286 &ada_exp_descriptor,
11287 parse,
11288 ada_error,
11289 resolve,
11290 ada_printchar, /* Print a character constant */
11291 ada_printstr, /* Function to print string constant */
11292 emit_char, /* Function to print single char (not used) */
6c038f32 11293 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11294 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11295 ada_val_print, /* Print a value using appropriate syntax */
11296 ada_value_print, /* Print a top-level value */
11297 NULL, /* Language specific skip_trampoline */
2b2d9e11 11298 NULL, /* name_of_this */
6c038f32
PH
11299 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11300 basic_lookup_transparent_type, /* lookup_transparent_type */
11301 ada_la_decode, /* Language specific symbol demangler */
11302 NULL, /* Language specific class_name_from_physname */
11303 ada_op_print_tab, /* expression operators for printing */
11304 0, /* c-style arrays */
11305 1, /* String lower bound */
6c038f32 11306 ada_get_gdb_completer_word_break_characters,
41d27058 11307 ada_make_symbol_completion_list,
72d5681a 11308 ada_language_arch_info,
e79af960 11309 ada_print_array_index,
41f1b697 11310 default_pass_by_reference,
ae6a3a4c 11311 c_get_string,
6c038f32
PH
11312 LANG_MAGIC
11313};
11314
2c0b251b
PA
11315/* Provide a prototype to silence -Wmissing-prototypes. */
11316extern initialize_file_ftype _initialize_ada_language;
11317
d2e4a39e 11318void
6c038f32 11319_initialize_ada_language (void)
14f9c5c9 11320{
6c038f32
PH
11321 add_language (&ada_language_defn);
11322
11323 varsize_limit = 65536;
6c038f32
PH
11324
11325 obstack_init (&symbol_list_obstack);
11326
11327 decoded_names_store = htab_create_alloc
11328 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11329 NULL, xcalloc, xfree);
6b69afc4
JB
11330
11331 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11332}