]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
14f9c5c9 | 59 | |
4c4b4cd2 PH |
60 | /* Define whether or not the C operator '/' truncates towards zero for |
61 | differently signed operands (truncation direction is undefined in C). | |
62 | Copied from valarith.c. */ | |
63 | ||
64 | #ifndef TRUNCATION_TOWARDS_ZERO | |
65 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
66 | #endif | |
67 | ||
4c4b4cd2 | 68 | static void extract_string (CORE_ADDR addr, char *buf); |
14f9c5c9 | 69 | |
14f9c5c9 AS |
70 | static void modify_general_field (char *, LONGEST, int, int); |
71 | ||
d2e4a39e | 72 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 73 | |
d2e4a39e | 74 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 81 | |
556bdfd4 | 82 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static struct value *desc_data (struct value *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int desc_arity (struct type *); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 103 | |
4c4b4cd2 | 104 | static struct value *ensure_lval (struct value *, CORE_ADDR *); |
14f9c5c9 | 105 | |
d2e4a39e | 106 | static struct value *convert_actual (struct value *, struct type *, |
4c4b4cd2 | 107 | CORE_ADDR *); |
14f9c5c9 | 108 | |
d2e4a39e | 109 | static struct value *make_array_descriptor (struct type *, struct value *, |
4c4b4cd2 | 110 | CORE_ADDR *); |
14f9c5c9 | 111 | |
4c4b4cd2 | 112 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 113 | struct block *, const char *, |
2570f2b7 | 114 | domain_enum, struct objfile *, int); |
14f9c5c9 | 115 | |
4c4b4cd2 | 116 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 117 | |
76a01679 | 118 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 119 | struct block *); |
14f9c5c9 | 120 | |
4c4b4cd2 PH |
121 | static int num_defns_collected (struct obstack *); |
122 | ||
123 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 124 | |
d2e4a39e | 125 | static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab |
76a01679 JB |
126 | *, const char *, int, |
127 | domain_enum, int); | |
14f9c5c9 | 128 | |
4c4b4cd2 | 129 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 130 | struct type *); |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 133 | struct symbol *, struct block *); |
14f9c5c9 | 134 | |
d2e4a39e | 135 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 136 | |
4c4b4cd2 PH |
137 | static char *ada_op_name (enum exp_opcode); |
138 | ||
139 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int numeric_type_p (struct type *); |
14f9c5c9 | 142 | |
d2e4a39e | 143 | static int integer_type_p (struct type *); |
14f9c5c9 | 144 | |
d2e4a39e | 145 | static int scalar_type_p (struct type *); |
14f9c5c9 | 146 | |
d2e4a39e | 147 | static int discrete_type_p (struct type *); |
14f9c5c9 | 148 | |
aeb5907d JB |
149 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
150 | const char **, | |
151 | int *, | |
152 | const char **); | |
153 | ||
154 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
155 | struct block *); | |
156 | ||
4c4b4cd2 | 157 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 158 | int, int, int *); |
4c4b4cd2 | 159 | |
d2e4a39e | 160 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 161 | |
d2e4a39e | 162 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 163 | |
10a2c479 | 164 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 165 | const gdb_byte *, |
4c4b4cd2 PH |
166 | CORE_ADDR, struct value *); |
167 | ||
168 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_fixed_range_type (char *, struct value *, |
4c4b4cd2 | 171 | struct objfile *); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 174 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 175 | |
d2e4a39e | 176 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 177 | |
d2e4a39e | 178 | static struct type *packed_array_type (struct type *, long *); |
14f9c5c9 | 179 | |
d2e4a39e | 180 | static struct type *decode_packed_array_type (struct type *); |
14f9c5c9 | 181 | |
d2e4a39e | 182 | static struct value *decode_packed_array (struct value *); |
14f9c5c9 | 183 | |
d2e4a39e | 184 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 185 | struct value **); |
14f9c5c9 | 186 | |
52ce6436 PH |
187 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int); |
188 | ||
4c4b4cd2 PH |
189 | static struct value *coerce_unspec_val_to_type (struct value *, |
190 | struct type *); | |
14f9c5c9 | 191 | |
d2e4a39e | 192 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 193 | |
d2e4a39e | 194 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int is_name_suffix (const char *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int wild_match (const char *, int, const char *); |
14f9c5c9 | 201 | |
d2e4a39e | 202 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 203 | |
4c4b4cd2 PH |
204 | static LONGEST pos_atr (struct value *); |
205 | ||
3cb382c9 | 206 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 207 | |
d2e4a39e | 208 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 209 | |
4c4b4cd2 PH |
210 | static struct symbol *standard_lookup (const char *, const struct block *, |
211 | domain_enum); | |
14f9c5c9 | 212 | |
4c4b4cd2 PH |
213 | static struct value *ada_search_struct_field (char *, struct value *, int, |
214 | struct type *); | |
215 | ||
216 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
217 | struct type *); | |
218 | ||
76a01679 | 219 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 220 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
221 | |
222 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
223 | struct value *); | |
224 | ||
225 | static struct value *ada_to_fixed_value (struct value *); | |
14f9c5c9 | 226 | |
4c4b4cd2 PH |
227 | static int ada_resolve_function (struct ada_symbol_info *, int, |
228 | struct value **, int, const char *, | |
229 | struct type *); | |
230 | ||
231 | static struct value *ada_coerce_to_simple_array (struct value *); | |
232 | ||
233 | static int ada_is_direct_array_type (struct type *); | |
234 | ||
72d5681a PH |
235 | static void ada_language_arch_info (struct gdbarch *, |
236 | struct language_arch_info *); | |
714e53ab PH |
237 | |
238 | static void check_size (const struct type *); | |
52ce6436 PH |
239 | |
240 | static struct value *ada_index_struct_field (int, struct value *, int, | |
241 | struct type *); | |
242 | ||
243 | static struct value *assign_aggregate (struct value *, struct value *, | |
244 | struct expression *, int *, enum noside); | |
245 | ||
246 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
247 | struct expression *, | |
248 | int *, LONGEST *, int *, | |
249 | int, LONGEST, LONGEST); | |
250 | ||
251 | static void aggregate_assign_positional (struct value *, struct value *, | |
252 | struct expression *, | |
253 | int *, LONGEST *, int *, int, | |
254 | LONGEST, LONGEST); | |
255 | ||
256 | ||
257 | static void aggregate_assign_others (struct value *, struct value *, | |
258 | struct expression *, | |
259 | int *, LONGEST *, int, LONGEST, LONGEST); | |
260 | ||
261 | ||
262 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
263 | ||
264 | ||
265 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
266 | int *, enum noside); | |
267 | ||
268 | static void ada_forward_operator_length (struct expression *, int, int *, | |
269 | int *); | |
4c4b4cd2 PH |
270 | \f |
271 | ||
76a01679 | 272 | |
4c4b4cd2 | 273 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
274 | static unsigned int varsize_limit; |
275 | ||
4c4b4cd2 PH |
276 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
277 | returned by a function that does not return a const char *. */ | |
278 | static char *ada_completer_word_break_characters = | |
279 | #ifdef VMS | |
280 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
281 | #else | |
14f9c5c9 | 282 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 283 | #endif |
14f9c5c9 | 284 | |
4c4b4cd2 | 285 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 286 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 287 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 288 | |
4c4b4cd2 PH |
289 | /* Limit on the number of warnings to raise per expression evaluation. */ |
290 | static int warning_limit = 2; | |
291 | ||
292 | /* Number of warning messages issued; reset to 0 by cleanups after | |
293 | expression evaluation. */ | |
294 | static int warnings_issued = 0; | |
295 | ||
296 | static const char *known_runtime_file_name_patterns[] = { | |
297 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
298 | }; | |
299 | ||
300 | static const char *known_auxiliary_function_name_patterns[] = { | |
301 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
302 | }; | |
303 | ||
304 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
305 | static struct obstack symbol_list_obstack; | |
306 | ||
307 | /* Utilities */ | |
308 | ||
41d27058 JB |
309 | /* Given DECODED_NAME a string holding a symbol name in its |
310 | decoded form (ie using the Ada dotted notation), returns | |
311 | its unqualified name. */ | |
312 | ||
313 | static const char * | |
314 | ada_unqualified_name (const char *decoded_name) | |
315 | { | |
316 | const char *result = strrchr (decoded_name, '.'); | |
317 | ||
318 | if (result != NULL) | |
319 | result++; /* Skip the dot... */ | |
320 | else | |
321 | result = decoded_name; | |
322 | ||
323 | return result; | |
324 | } | |
325 | ||
326 | /* Return a string starting with '<', followed by STR, and '>'. | |
327 | The result is good until the next call. */ | |
328 | ||
329 | static char * | |
330 | add_angle_brackets (const char *str) | |
331 | { | |
332 | static char *result = NULL; | |
333 | ||
334 | xfree (result); | |
88c15c34 | 335 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
336 | return result; |
337 | } | |
96d887e8 | 338 | |
4c4b4cd2 PH |
339 | static char * |
340 | ada_get_gdb_completer_word_break_characters (void) | |
341 | { | |
342 | return ada_completer_word_break_characters; | |
343 | } | |
344 | ||
e79af960 JB |
345 | /* Print an array element index using the Ada syntax. */ |
346 | ||
347 | static void | |
348 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 349 | const struct value_print_options *options) |
e79af960 | 350 | { |
79a45b7d | 351 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
352 | fprintf_filtered (stream, " => "); |
353 | } | |
354 | ||
4c4b4cd2 PH |
355 | /* Read the string located at ADDR from the inferior and store the |
356 | result into BUF. */ | |
357 | ||
358 | static void | |
14f9c5c9 AS |
359 | extract_string (CORE_ADDR addr, char *buf) |
360 | { | |
d2e4a39e | 361 | int char_index = 0; |
14f9c5c9 | 362 | |
4c4b4cd2 PH |
363 | /* Loop, reading one byte at a time, until we reach the '\000' |
364 | end-of-string marker. */ | |
d2e4a39e AS |
365 | do |
366 | { | |
367 | target_read_memory (addr + char_index * sizeof (char), | |
4c4b4cd2 | 368 | buf + char_index * sizeof (char), sizeof (char)); |
d2e4a39e AS |
369 | char_index++; |
370 | } | |
371 | while (buf[char_index - 1] != '\000'); | |
14f9c5c9 AS |
372 | } |
373 | ||
f27cf670 | 374 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 375 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 376 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 377 | |
f27cf670 AS |
378 | void * |
379 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 380 | { |
d2e4a39e AS |
381 | if (*size < min_size) |
382 | { | |
383 | *size *= 2; | |
384 | if (*size < min_size) | |
4c4b4cd2 | 385 | *size = min_size; |
f27cf670 | 386 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 387 | } |
f27cf670 | 388 | return vect; |
14f9c5c9 AS |
389 | } |
390 | ||
391 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 392 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
393 | |
394 | static int | |
ebf56fd3 | 395 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
396 | { |
397 | int len = strlen (target); | |
d2e4a39e | 398 | return |
4c4b4cd2 PH |
399 | (strncmp (field_name, target, len) == 0 |
400 | && (field_name[len] == '\0' | |
401 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
402 | && strcmp (field_name + strlen (field_name) - 6, |
403 | "___XVN") != 0))); | |
14f9c5c9 AS |
404 | } |
405 | ||
406 | ||
872c8b51 JB |
407 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
408 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
409 | and return its index. This function also handles fields whose name | |
410 | have ___ suffixes because the compiler sometimes alters their name | |
411 | by adding such a suffix to represent fields with certain constraints. | |
412 | If the field could not be found, return a negative number if | |
413 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
414 | |
415 | int | |
416 | ada_get_field_index (const struct type *type, const char *field_name, | |
417 | int maybe_missing) | |
418 | { | |
419 | int fieldno; | |
872c8b51 JB |
420 | struct type *struct_type = check_typedef ((struct type *) type); |
421 | ||
422 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
423 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
424 | return fieldno; |
425 | ||
426 | if (!maybe_missing) | |
323e0a4a | 427 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 428 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
429 | |
430 | return -1; | |
431 | } | |
432 | ||
433 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
434 | |
435 | int | |
d2e4a39e | 436 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
437 | { |
438 | if (name == NULL) | |
439 | return 0; | |
d2e4a39e | 440 | else |
14f9c5c9 | 441 | { |
d2e4a39e | 442 | const char *p = strstr (name, "___"); |
14f9c5c9 | 443 | if (p == NULL) |
4c4b4cd2 | 444 | return strlen (name); |
14f9c5c9 | 445 | else |
4c4b4cd2 | 446 | return p - name; |
14f9c5c9 AS |
447 | } |
448 | } | |
449 | ||
4c4b4cd2 PH |
450 | /* Return non-zero if SUFFIX is a suffix of STR. |
451 | Return zero if STR is null. */ | |
452 | ||
14f9c5c9 | 453 | static int |
d2e4a39e | 454 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
455 | { |
456 | int len1, len2; | |
457 | if (str == NULL) | |
458 | return 0; | |
459 | len1 = strlen (str); | |
460 | len2 = strlen (suffix); | |
4c4b4cd2 | 461 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
462 | } |
463 | ||
4c4b4cd2 PH |
464 | /* The contents of value VAL, treated as a value of type TYPE. The |
465 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 466 | |
d2e4a39e | 467 | static struct value * |
4c4b4cd2 | 468 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 469 | { |
61ee279c | 470 | type = ada_check_typedef (type); |
df407dfe | 471 | if (value_type (val) == type) |
4c4b4cd2 | 472 | return val; |
d2e4a39e | 473 | else |
14f9c5c9 | 474 | { |
4c4b4cd2 PH |
475 | struct value *result; |
476 | ||
477 | /* Make sure that the object size is not unreasonable before | |
478 | trying to allocate some memory for it. */ | |
714e53ab | 479 | check_size (type); |
4c4b4cd2 PH |
480 | |
481 | result = allocate_value (type); | |
74bcbdf3 | 482 | set_value_component_location (result, val); |
9bbda503 AC |
483 | set_value_bitsize (result, value_bitsize (val)); |
484 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 485 | set_value_address (result, value_address (val)); |
d69fe07e | 486 | if (value_lazy (val) |
df407dfe | 487 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) |
dfa52d88 | 488 | set_value_lazy (result, 1); |
d2e4a39e | 489 | else |
0fd88904 | 490 | memcpy (value_contents_raw (result), value_contents (val), |
4c4b4cd2 | 491 | TYPE_LENGTH (type)); |
14f9c5c9 AS |
492 | return result; |
493 | } | |
494 | } | |
495 | ||
fc1a4b47 AC |
496 | static const gdb_byte * |
497 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
498 | { |
499 | if (valaddr == NULL) | |
500 | return NULL; | |
501 | else | |
502 | return valaddr + offset; | |
503 | } | |
504 | ||
505 | static CORE_ADDR | |
ebf56fd3 | 506 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
507 | { |
508 | if (address == 0) | |
509 | return 0; | |
d2e4a39e | 510 | else |
14f9c5c9 AS |
511 | return address + offset; |
512 | } | |
513 | ||
4c4b4cd2 PH |
514 | /* Issue a warning (as for the definition of warning in utils.c, but |
515 | with exactly one argument rather than ...), unless the limit on the | |
516 | number of warnings has passed during the evaluation of the current | |
517 | expression. */ | |
a2249542 | 518 | |
77109804 AC |
519 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
520 | provided by "complaint". */ | |
521 | static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2); | |
522 | ||
14f9c5c9 | 523 | static void |
a2249542 | 524 | lim_warning (const char *format, ...) |
14f9c5c9 | 525 | { |
a2249542 MK |
526 | va_list args; |
527 | va_start (args, format); | |
528 | ||
4c4b4cd2 PH |
529 | warnings_issued += 1; |
530 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
531 | vwarning (format, args); |
532 | ||
533 | va_end (args); | |
4c4b4cd2 PH |
534 | } |
535 | ||
714e53ab PH |
536 | /* Issue an error if the size of an object of type T is unreasonable, |
537 | i.e. if it would be a bad idea to allocate a value of this type in | |
538 | GDB. */ | |
539 | ||
540 | static void | |
541 | check_size (const struct type *type) | |
542 | { | |
543 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 544 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
545 | } |
546 | ||
547 | ||
c3e5cd34 PH |
548 | /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from |
549 | gdbtypes.h, but some of the necessary definitions in that file | |
550 | seem to have gone missing. */ | |
551 | ||
552 | /* Maximum value of a SIZE-byte signed integer type. */ | |
4c4b4cd2 | 553 | static LONGEST |
c3e5cd34 | 554 | max_of_size (int size) |
4c4b4cd2 | 555 | { |
76a01679 JB |
556 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
557 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
558 | } |
559 | ||
c3e5cd34 | 560 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 561 | static LONGEST |
c3e5cd34 | 562 | min_of_size (int size) |
4c4b4cd2 | 563 | { |
c3e5cd34 | 564 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
565 | } |
566 | ||
c3e5cd34 | 567 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 568 | static ULONGEST |
c3e5cd34 | 569 | umax_of_size (int size) |
4c4b4cd2 | 570 | { |
76a01679 JB |
571 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
572 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
573 | } |
574 | ||
c3e5cd34 PH |
575 | /* Maximum value of integral type T, as a signed quantity. */ |
576 | static LONGEST | |
577 | max_of_type (struct type *t) | |
4c4b4cd2 | 578 | { |
c3e5cd34 PH |
579 | if (TYPE_UNSIGNED (t)) |
580 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
581 | else | |
582 | return max_of_size (TYPE_LENGTH (t)); | |
583 | } | |
584 | ||
585 | /* Minimum value of integral type T, as a signed quantity. */ | |
586 | static LONGEST | |
587 | min_of_type (struct type *t) | |
588 | { | |
589 | if (TYPE_UNSIGNED (t)) | |
590 | return 0; | |
591 | else | |
592 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
593 | } |
594 | ||
595 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 596 | static LONGEST |
4c4b4cd2 PH |
597 | discrete_type_high_bound (struct type *type) |
598 | { | |
76a01679 | 599 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
600 | { |
601 | case TYPE_CODE_RANGE: | |
690cc4eb | 602 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 603 | case TYPE_CODE_ENUM: |
690cc4eb PH |
604 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
605 | case TYPE_CODE_BOOL: | |
606 | return 1; | |
607 | case TYPE_CODE_CHAR: | |
76a01679 | 608 | case TYPE_CODE_INT: |
690cc4eb | 609 | return max_of_type (type); |
4c4b4cd2 | 610 | default: |
323e0a4a | 611 | error (_("Unexpected type in discrete_type_high_bound.")); |
4c4b4cd2 PH |
612 | } |
613 | } | |
614 | ||
615 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 616 | static LONGEST |
4c4b4cd2 PH |
617 | discrete_type_low_bound (struct type *type) |
618 | { | |
76a01679 | 619 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
620 | { |
621 | case TYPE_CODE_RANGE: | |
690cc4eb | 622 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 623 | case TYPE_CODE_ENUM: |
690cc4eb PH |
624 | return TYPE_FIELD_BITPOS (type, 0); |
625 | case TYPE_CODE_BOOL: | |
626 | return 0; | |
627 | case TYPE_CODE_CHAR: | |
76a01679 | 628 | case TYPE_CODE_INT: |
690cc4eb | 629 | return min_of_type (type); |
4c4b4cd2 | 630 | default: |
323e0a4a | 631 | error (_("Unexpected type in discrete_type_low_bound.")); |
4c4b4cd2 PH |
632 | } |
633 | } | |
634 | ||
635 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 636 | non-range scalar type. */ |
4c4b4cd2 PH |
637 | |
638 | static struct type * | |
639 | base_type (struct type *type) | |
640 | { | |
641 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
642 | { | |
76a01679 JB |
643 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
644 | return type; | |
4c4b4cd2 PH |
645 | type = TYPE_TARGET_TYPE (type); |
646 | } | |
647 | return type; | |
14f9c5c9 | 648 | } |
4c4b4cd2 | 649 | \f |
76a01679 | 650 | |
4c4b4cd2 | 651 | /* Language Selection */ |
14f9c5c9 AS |
652 | |
653 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
654 | (the main program is in Ada iif the adainit symbol is found). | |
655 | ||
4c4b4cd2 | 656 | MAIN_PST is not used. */ |
d2e4a39e | 657 | |
14f9c5c9 | 658 | enum language |
d2e4a39e | 659 | ada_update_initial_language (enum language lang, |
4c4b4cd2 | 660 | struct partial_symtab *main_pst) |
14f9c5c9 | 661 | { |
d2e4a39e | 662 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
663 | (struct objfile *) NULL) != NULL) |
664 | return language_ada; | |
14f9c5c9 AS |
665 | |
666 | return lang; | |
667 | } | |
96d887e8 PH |
668 | |
669 | /* If the main procedure is written in Ada, then return its name. | |
670 | The result is good until the next call. Return NULL if the main | |
671 | procedure doesn't appear to be in Ada. */ | |
672 | ||
673 | char * | |
674 | ada_main_name (void) | |
675 | { | |
676 | struct minimal_symbol *msym; | |
f9bc20b9 | 677 | static char *main_program_name = NULL; |
6c038f32 | 678 | |
96d887e8 PH |
679 | /* For Ada, the name of the main procedure is stored in a specific |
680 | string constant, generated by the binder. Look for that symbol, | |
681 | extract its address, and then read that string. If we didn't find | |
682 | that string, then most probably the main procedure is not written | |
683 | in Ada. */ | |
684 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
685 | ||
686 | if (msym != NULL) | |
687 | { | |
f9bc20b9 JB |
688 | CORE_ADDR main_program_name_addr; |
689 | int err_code; | |
690 | ||
96d887e8 PH |
691 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
692 | if (main_program_name_addr == 0) | |
323e0a4a | 693 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 694 | |
f9bc20b9 JB |
695 | xfree (main_program_name); |
696 | target_read_string (main_program_name_addr, &main_program_name, | |
697 | 1024, &err_code); | |
698 | ||
699 | if (err_code != 0) | |
700 | return NULL; | |
96d887e8 PH |
701 | return main_program_name; |
702 | } | |
703 | ||
704 | /* The main procedure doesn't seem to be in Ada. */ | |
705 | return NULL; | |
706 | } | |
14f9c5c9 | 707 | \f |
4c4b4cd2 | 708 | /* Symbols */ |
d2e4a39e | 709 | |
4c4b4cd2 PH |
710 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
711 | of NULLs. */ | |
14f9c5c9 | 712 | |
d2e4a39e AS |
713 | const struct ada_opname_map ada_opname_table[] = { |
714 | {"Oadd", "\"+\"", BINOP_ADD}, | |
715 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
716 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
717 | {"Odivide", "\"/\"", BINOP_DIV}, | |
718 | {"Omod", "\"mod\"", BINOP_MOD}, | |
719 | {"Orem", "\"rem\"", BINOP_REM}, | |
720 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
721 | {"Olt", "\"<\"", BINOP_LESS}, | |
722 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
723 | {"Ogt", "\">\"", BINOP_GTR}, | |
724 | {"Oge", "\">=\"", BINOP_GEQ}, | |
725 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
726 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
727 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
728 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
729 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
730 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
731 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
732 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
733 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
734 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
735 | {NULL, NULL} | |
14f9c5c9 AS |
736 | }; |
737 | ||
4c4b4cd2 PH |
738 | /* The "encoded" form of DECODED, according to GNAT conventions. |
739 | The result is valid until the next call to ada_encode. */ | |
740 | ||
14f9c5c9 | 741 | char * |
4c4b4cd2 | 742 | ada_encode (const char *decoded) |
14f9c5c9 | 743 | { |
4c4b4cd2 PH |
744 | static char *encoding_buffer = NULL; |
745 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 746 | const char *p; |
14f9c5c9 | 747 | int k; |
d2e4a39e | 748 | |
4c4b4cd2 | 749 | if (decoded == NULL) |
14f9c5c9 AS |
750 | return NULL; |
751 | ||
4c4b4cd2 PH |
752 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
753 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
754 | |
755 | k = 0; | |
4c4b4cd2 | 756 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 757 | { |
cdc7bb92 | 758 | if (*p == '.') |
4c4b4cd2 PH |
759 | { |
760 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
761 | k += 2; | |
762 | } | |
14f9c5c9 | 763 | else if (*p == '"') |
4c4b4cd2 PH |
764 | { |
765 | const struct ada_opname_map *mapping; | |
766 | ||
767 | for (mapping = ada_opname_table; | |
1265e4aa JB |
768 | mapping->encoded != NULL |
769 | && strncmp (mapping->decoded, p, | |
770 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
771 | ; |
772 | if (mapping->encoded == NULL) | |
323e0a4a | 773 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
774 | strcpy (encoding_buffer + k, mapping->encoded); |
775 | k += strlen (mapping->encoded); | |
776 | break; | |
777 | } | |
d2e4a39e | 778 | else |
4c4b4cd2 PH |
779 | { |
780 | encoding_buffer[k] = *p; | |
781 | k += 1; | |
782 | } | |
14f9c5c9 AS |
783 | } |
784 | ||
4c4b4cd2 PH |
785 | encoding_buffer[k] = '\0'; |
786 | return encoding_buffer; | |
14f9c5c9 AS |
787 | } |
788 | ||
789 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
790 | quotes, unfolded, but with the quotes stripped away. Result good |
791 | to next call. */ | |
792 | ||
d2e4a39e AS |
793 | char * |
794 | ada_fold_name (const char *name) | |
14f9c5c9 | 795 | { |
d2e4a39e | 796 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
797 | static size_t fold_buffer_size = 0; |
798 | ||
799 | int len = strlen (name); | |
d2e4a39e | 800 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
801 | |
802 | if (name[0] == '\'') | |
803 | { | |
d2e4a39e AS |
804 | strncpy (fold_buffer, name + 1, len - 2); |
805 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
806 | } |
807 | else | |
808 | { | |
809 | int i; | |
810 | for (i = 0; i <= len; i += 1) | |
4c4b4cd2 | 811 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
812 | } |
813 | ||
814 | return fold_buffer; | |
815 | } | |
816 | ||
529cad9c PH |
817 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
818 | ||
819 | static int | |
820 | is_lower_alphanum (const char c) | |
821 | { | |
822 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
823 | } | |
824 | ||
29480c32 JB |
825 | /* Remove either of these suffixes: |
826 | . .{DIGIT}+ | |
827 | . ${DIGIT}+ | |
828 | . ___{DIGIT}+ | |
829 | . __{DIGIT}+. | |
830 | These are suffixes introduced by the compiler for entities such as | |
831 | nested subprogram for instance, in order to avoid name clashes. | |
832 | They do not serve any purpose for the debugger. */ | |
833 | ||
834 | static void | |
835 | ada_remove_trailing_digits (const char *encoded, int *len) | |
836 | { | |
837 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
838 | { | |
839 | int i = *len - 2; | |
840 | while (i > 0 && isdigit (encoded[i])) | |
841 | i--; | |
842 | if (i >= 0 && encoded[i] == '.') | |
843 | *len = i; | |
844 | else if (i >= 0 && encoded[i] == '$') | |
845 | *len = i; | |
846 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
847 | *len = i - 2; | |
848 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
849 | *len = i - 1; | |
850 | } | |
851 | } | |
852 | ||
853 | /* Remove the suffix introduced by the compiler for protected object | |
854 | subprograms. */ | |
855 | ||
856 | static void | |
857 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
858 | { | |
859 | /* Remove trailing N. */ | |
860 | ||
861 | /* Protected entry subprograms are broken into two | |
862 | separate subprograms: The first one is unprotected, and has | |
863 | a 'N' suffix; the second is the protected version, and has | |
864 | the 'P' suffix. The second calls the first one after handling | |
865 | the protection. Since the P subprograms are internally generated, | |
866 | we leave these names undecoded, giving the user a clue that this | |
867 | entity is internal. */ | |
868 | ||
869 | if (*len > 1 | |
870 | && encoded[*len - 1] == 'N' | |
871 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
872 | *len = *len - 1; | |
873 | } | |
874 | ||
875 | /* If ENCODED follows the GNAT entity encoding conventions, then return | |
876 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
877 | replaced by ENCODED. | |
14f9c5c9 | 878 | |
4c4b4cd2 | 879 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 880 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
881 | is returned. */ |
882 | ||
883 | const char * | |
884 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
885 | { |
886 | int i, j; | |
887 | int len0; | |
d2e4a39e | 888 | const char *p; |
4c4b4cd2 | 889 | char *decoded; |
14f9c5c9 | 890 | int at_start_name; |
4c4b4cd2 PH |
891 | static char *decoding_buffer = NULL; |
892 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 893 | |
29480c32 JB |
894 | /* The name of the Ada main procedure starts with "_ada_". |
895 | This prefix is not part of the decoded name, so skip this part | |
896 | if we see this prefix. */ | |
4c4b4cd2 PH |
897 | if (strncmp (encoded, "_ada_", 5) == 0) |
898 | encoded += 5; | |
14f9c5c9 | 899 | |
29480c32 JB |
900 | /* If the name starts with '_', then it is not a properly encoded |
901 | name, so do not attempt to decode it. Similarly, if the name | |
902 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 903 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
904 | goto Suppress; |
905 | ||
4c4b4cd2 | 906 | len0 = strlen (encoded); |
4c4b4cd2 | 907 | |
29480c32 JB |
908 | ada_remove_trailing_digits (encoded, &len0); |
909 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 910 | |
4c4b4cd2 PH |
911 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
912 | the suffix is located before the current "end" of ENCODED. We want | |
913 | to avoid re-matching parts of ENCODED that have previously been | |
914 | marked as discarded (by decrementing LEN0). */ | |
915 | p = strstr (encoded, "___"); | |
916 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
917 | { |
918 | if (p[3] == 'X') | |
4c4b4cd2 | 919 | len0 = p - encoded; |
14f9c5c9 | 920 | else |
4c4b4cd2 | 921 | goto Suppress; |
14f9c5c9 | 922 | } |
4c4b4cd2 | 923 | |
29480c32 JB |
924 | /* Remove any trailing TKB suffix. It tells us that this symbol |
925 | is for the body of a task, but that information does not actually | |
926 | appear in the decoded name. */ | |
927 | ||
4c4b4cd2 | 928 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 929 | len0 -= 3; |
76a01679 | 930 | |
29480c32 JB |
931 | /* Remove trailing "B" suffixes. */ |
932 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
933 | ||
4c4b4cd2 | 934 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
935 | len0 -= 1; |
936 | ||
4c4b4cd2 | 937 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 938 | |
4c4b4cd2 PH |
939 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
940 | decoded = decoding_buffer; | |
14f9c5c9 | 941 | |
29480c32 JB |
942 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
943 | ||
4c4b4cd2 | 944 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 945 | { |
4c4b4cd2 PH |
946 | i = len0 - 2; |
947 | while ((i >= 0 && isdigit (encoded[i])) | |
948 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
949 | i -= 1; | |
950 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
951 | len0 = i - 1; | |
952 | else if (encoded[i] == '$') | |
953 | len0 = i; | |
d2e4a39e | 954 | } |
14f9c5c9 | 955 | |
29480c32 JB |
956 | /* The first few characters that are not alphabetic are not part |
957 | of any encoding we use, so we can copy them over verbatim. */ | |
958 | ||
4c4b4cd2 PH |
959 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
960 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
961 | |
962 | at_start_name = 1; | |
963 | while (i < len0) | |
964 | { | |
29480c32 | 965 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
966 | if (at_start_name && encoded[i] == 'O') |
967 | { | |
968 | int k; | |
969 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) | |
970 | { | |
971 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
972 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
973 | op_len - 1) == 0) | |
974 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
975 | { |
976 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
977 | at_start_name = 0; | |
978 | i += op_len; | |
979 | j += strlen (ada_opname_table[k].decoded); | |
980 | break; | |
981 | } | |
982 | } | |
983 | if (ada_opname_table[k].encoded != NULL) | |
984 | continue; | |
985 | } | |
14f9c5c9 AS |
986 | at_start_name = 0; |
987 | ||
529cad9c PH |
988 | /* Replace "TK__" with "__", which will eventually be translated |
989 | into "." (just below). */ | |
990 | ||
4c4b4cd2 PH |
991 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
992 | i += 2; | |
529cad9c | 993 | |
29480c32 JB |
994 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
995 | be translated into "." (just below). These are internal names | |
996 | generated for anonymous blocks inside which our symbol is nested. */ | |
997 | ||
998 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
999 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1000 | && isdigit (encoded [i+4])) | |
1001 | { | |
1002 | int k = i + 5; | |
1003 | ||
1004 | while (k < len0 && isdigit (encoded[k])) | |
1005 | k++; /* Skip any extra digit. */ | |
1006 | ||
1007 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1008 | is indeed followed by "__". */ | |
1009 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1010 | i = k; | |
1011 | } | |
1012 | ||
529cad9c PH |
1013 | /* Remove _E{DIGITS}+[sb] */ |
1014 | ||
1015 | /* Just as for protected object subprograms, there are 2 categories | |
1016 | of subprograms created by the compiler for each entry. The first | |
1017 | one implements the actual entry code, and has a suffix following | |
1018 | the convention above; the second one implements the barrier and | |
1019 | uses the same convention as above, except that the 'E' is replaced | |
1020 | by a 'B'. | |
1021 | ||
1022 | Just as above, we do not decode the name of barrier functions | |
1023 | to give the user a clue that the code he is debugging has been | |
1024 | internally generated. */ | |
1025 | ||
1026 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1027 | && isdigit (encoded[i+2])) | |
1028 | { | |
1029 | int k = i + 3; | |
1030 | ||
1031 | while (k < len0 && isdigit (encoded[k])) | |
1032 | k++; | |
1033 | ||
1034 | if (k < len0 | |
1035 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1036 | { | |
1037 | k++; | |
1038 | /* Just as an extra precaution, make sure that if this | |
1039 | suffix is followed by anything else, it is a '_'. | |
1040 | Otherwise, we matched this sequence by accident. */ | |
1041 | if (k == len0 | |
1042 | || (k < len0 && encoded[k] == '_')) | |
1043 | i = k; | |
1044 | } | |
1045 | } | |
1046 | ||
1047 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1048 | the GNAT front-end in protected object subprograms. */ | |
1049 | ||
1050 | if (i < len0 + 3 | |
1051 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1052 | { | |
1053 | /* Backtrack a bit up until we reach either the begining of | |
1054 | the encoded name, or "__". Make sure that we only find | |
1055 | digits or lowercase characters. */ | |
1056 | const char *ptr = encoded + i - 1; | |
1057 | ||
1058 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1059 | ptr--; | |
1060 | if (ptr < encoded | |
1061 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1062 | i++; | |
1063 | } | |
1064 | ||
4c4b4cd2 PH |
1065 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1066 | { | |
29480c32 JB |
1067 | /* This is a X[bn]* sequence not separated from the previous |
1068 | part of the name with a non-alpha-numeric character (in other | |
1069 | words, immediately following an alpha-numeric character), then | |
1070 | verify that it is placed at the end of the encoded name. If | |
1071 | not, then the encoding is not valid and we should abort the | |
1072 | decoding. Otherwise, just skip it, it is used in body-nested | |
1073 | package names. */ | |
4c4b4cd2 PH |
1074 | do |
1075 | i += 1; | |
1076 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1077 | if (i < len0) | |
1078 | goto Suppress; | |
1079 | } | |
cdc7bb92 | 1080 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1081 | { |
29480c32 | 1082 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1083 | decoded[j] = '.'; |
1084 | at_start_name = 1; | |
1085 | i += 2; | |
1086 | j += 1; | |
1087 | } | |
14f9c5c9 | 1088 | else |
4c4b4cd2 | 1089 | { |
29480c32 JB |
1090 | /* It's a character part of the decoded name, so just copy it |
1091 | over. */ | |
4c4b4cd2 PH |
1092 | decoded[j] = encoded[i]; |
1093 | i += 1; | |
1094 | j += 1; | |
1095 | } | |
14f9c5c9 | 1096 | } |
4c4b4cd2 | 1097 | decoded[j] = '\000'; |
14f9c5c9 | 1098 | |
29480c32 JB |
1099 | /* Decoded names should never contain any uppercase character. |
1100 | Double-check this, and abort the decoding if we find one. */ | |
1101 | ||
4c4b4cd2 PH |
1102 | for (i = 0; decoded[i] != '\0'; i += 1) |
1103 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1104 | goto Suppress; |
1105 | ||
4c4b4cd2 PH |
1106 | if (strcmp (decoded, encoded) == 0) |
1107 | return encoded; | |
1108 | else | |
1109 | return decoded; | |
14f9c5c9 AS |
1110 | |
1111 | Suppress: | |
4c4b4cd2 PH |
1112 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1113 | decoded = decoding_buffer; | |
1114 | if (encoded[0] == '<') | |
1115 | strcpy (decoded, encoded); | |
14f9c5c9 | 1116 | else |
88c15c34 | 1117 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1118 | return decoded; |
1119 | ||
1120 | } | |
1121 | ||
1122 | /* Table for keeping permanent unique copies of decoded names. Once | |
1123 | allocated, names in this table are never released. While this is a | |
1124 | storage leak, it should not be significant unless there are massive | |
1125 | changes in the set of decoded names in successive versions of a | |
1126 | symbol table loaded during a single session. */ | |
1127 | static struct htab *decoded_names_store; | |
1128 | ||
1129 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1130 | in the language-specific part of GSYMBOL, if it has not been | |
1131 | previously computed. Tries to save the decoded name in the same | |
1132 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1133 | in any case, the decoded symbol has a lifetime at least that of | |
1134 | GSYMBOL). | |
1135 | The GSYMBOL parameter is "mutable" in the C++ sense: logically | |
1136 | const, but nevertheless modified to a semantically equivalent form | |
1137 | when a decoded name is cached in it. | |
76a01679 | 1138 | */ |
4c4b4cd2 | 1139 | |
76a01679 JB |
1140 | char * |
1141 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1142 | { |
76a01679 | 1143 | char **resultp = |
4c4b4cd2 PH |
1144 | (char **) &gsymbol->language_specific.cplus_specific.demangled_name; |
1145 | if (*resultp == NULL) | |
1146 | { | |
1147 | const char *decoded = ada_decode (gsymbol->name); | |
714835d5 | 1148 | if (gsymbol->obj_section != NULL) |
76a01679 | 1149 | { |
714835d5 UW |
1150 | struct objfile *objf = gsymbol->obj_section->objfile; |
1151 | *resultp = obsavestring (decoded, strlen (decoded), | |
1152 | &objf->objfile_obstack); | |
76a01679 | 1153 | } |
4c4b4cd2 | 1154 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1155 | case, we put the result on the heap. Since we only decode |
1156 | when needed, we hope this usually does not cause a | |
1157 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1158 | if (*resultp == NULL) |
76a01679 JB |
1159 | { |
1160 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1161 | decoded, INSERT); | |
1162 | if (*slot == NULL) | |
1163 | *slot = xstrdup (decoded); | |
1164 | *resultp = *slot; | |
1165 | } | |
4c4b4cd2 | 1166 | } |
14f9c5c9 | 1167 | |
4c4b4cd2 PH |
1168 | return *resultp; |
1169 | } | |
76a01679 | 1170 | |
2c0b251b | 1171 | static char * |
76a01679 | 1172 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1173 | { |
1174 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1175 | } |
1176 | ||
1177 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1178 | suffixes that encode debugging information or leading _ada_ on |
1179 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1180 | information that is ignored). If WILD, then NAME need only match a | |
1181 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1182 | either argument is NULL. */ | |
14f9c5c9 | 1183 | |
2c0b251b | 1184 | static int |
d2e4a39e | 1185 | ada_match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1186 | { |
1187 | if (sym_name == NULL || name == NULL) | |
1188 | return 0; | |
1189 | else if (wild) | |
1190 | return wild_match (name, strlen (name), sym_name); | |
d2e4a39e AS |
1191 | else |
1192 | { | |
1193 | int len_name = strlen (name); | |
4c4b4cd2 PH |
1194 | return (strncmp (sym_name, name, len_name) == 0 |
1195 | && is_name_suffix (sym_name + len_name)) | |
1196 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1197 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1198 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1199 | } |
14f9c5c9 | 1200 | } |
14f9c5c9 | 1201 | \f |
d2e4a39e | 1202 | |
4c4b4cd2 | 1203 | /* Arrays */ |
14f9c5c9 | 1204 | |
4c4b4cd2 | 1205 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1206 | |
d2e4a39e AS |
1207 | static char *bound_name[] = { |
1208 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1209 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1210 | }; | |
1211 | ||
1212 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1213 | ||
4c4b4cd2 | 1214 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1215 | |
4c4b4cd2 | 1216 | /* Like modify_field, but allows bitpos > wordlength. */ |
14f9c5c9 AS |
1217 | |
1218 | static void | |
ebf56fd3 | 1219 | modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize) |
14f9c5c9 | 1220 | { |
4c4b4cd2 | 1221 | modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize); |
14f9c5c9 AS |
1222 | } |
1223 | ||
1224 | ||
4c4b4cd2 PH |
1225 | /* The desc_* routines return primitive portions of array descriptors |
1226 | (fat pointers). */ | |
14f9c5c9 AS |
1227 | |
1228 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1229 | level of indirection, if needed. */ |
1230 | ||
d2e4a39e AS |
1231 | static struct type * |
1232 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1233 | { |
1234 | if (type == NULL) | |
1235 | return NULL; | |
61ee279c | 1236 | type = ada_check_typedef (type); |
1265e4aa JB |
1237 | if (type != NULL |
1238 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1239 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1240 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1241 | else |
1242 | return type; | |
1243 | } | |
1244 | ||
4c4b4cd2 PH |
1245 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1246 | ||
14f9c5c9 | 1247 | static int |
d2e4a39e | 1248 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1249 | { |
d2e4a39e | 1250 | return |
14f9c5c9 AS |
1251 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1252 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1253 | } | |
1254 | ||
4c4b4cd2 PH |
1255 | /* The descriptor type for thin pointer type TYPE. */ |
1256 | ||
d2e4a39e AS |
1257 | static struct type * |
1258 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1259 | { |
d2e4a39e | 1260 | struct type *base_type = desc_base_type (type); |
14f9c5c9 AS |
1261 | if (base_type == NULL) |
1262 | return NULL; | |
1263 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1264 | return base_type; | |
d2e4a39e | 1265 | else |
14f9c5c9 | 1266 | { |
d2e4a39e | 1267 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
14f9c5c9 | 1268 | if (alt_type == NULL) |
4c4b4cd2 | 1269 | return base_type; |
14f9c5c9 | 1270 | else |
4c4b4cd2 | 1271 | return alt_type; |
14f9c5c9 AS |
1272 | } |
1273 | } | |
1274 | ||
4c4b4cd2 PH |
1275 | /* A pointer to the array data for thin-pointer value VAL. */ |
1276 | ||
d2e4a39e AS |
1277 | static struct value * |
1278 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1279 | { |
df407dfe | 1280 | struct type *type = value_type (val); |
556bdfd4 UW |
1281 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
1282 | data_type = lookup_pointer_type (data_type); | |
1283 | ||
14f9c5c9 | 1284 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1285 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1286 | else |
42ae5230 | 1287 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1288 | } |
1289 | ||
4c4b4cd2 PH |
1290 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1291 | ||
14f9c5c9 | 1292 | static int |
d2e4a39e | 1293 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1294 | { |
1295 | type = desc_base_type (type); | |
1296 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1297 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1298 | } |
1299 | ||
4c4b4cd2 PH |
1300 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1301 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1302 | |
d2e4a39e AS |
1303 | static struct type * |
1304 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1305 | { |
d2e4a39e | 1306 | struct type *r; |
14f9c5c9 AS |
1307 | |
1308 | type = desc_base_type (type); | |
1309 | ||
1310 | if (type == NULL) | |
1311 | return NULL; | |
1312 | else if (is_thin_pntr (type)) | |
1313 | { | |
1314 | type = thin_descriptor_type (type); | |
1315 | if (type == NULL) | |
4c4b4cd2 | 1316 | return NULL; |
14f9c5c9 AS |
1317 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1318 | if (r != NULL) | |
61ee279c | 1319 | return ada_check_typedef (r); |
14f9c5c9 AS |
1320 | } |
1321 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1322 | { | |
1323 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1324 | if (r != NULL) | |
61ee279c | 1325 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1326 | } |
1327 | return NULL; | |
1328 | } | |
1329 | ||
1330 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1331 | one, a pointer to its bounds data. Otherwise NULL. */ |
1332 | ||
d2e4a39e AS |
1333 | static struct value * |
1334 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1335 | { |
df407dfe | 1336 | struct type *type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1337 | if (is_thin_pntr (type)) |
14f9c5c9 | 1338 | { |
d2e4a39e | 1339 | struct type *bounds_type = |
4c4b4cd2 | 1340 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1341 | LONGEST addr; |
1342 | ||
4cdfadb1 | 1343 | if (bounds_type == NULL) |
323e0a4a | 1344 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1345 | |
1346 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1347 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1348 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1349 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1350 | addr = value_as_long (arr); |
d2e4a39e | 1351 | else |
42ae5230 | 1352 | addr = value_address (arr); |
14f9c5c9 | 1353 | |
d2e4a39e | 1354 | return |
4c4b4cd2 PH |
1355 | value_from_longest (lookup_pointer_type (bounds_type), |
1356 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1357 | } |
1358 | ||
1359 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1360 | return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, |
323e0a4a | 1361 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1362 | else |
1363 | return NULL; | |
1364 | } | |
1365 | ||
4c4b4cd2 PH |
1366 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1367 | position of the field containing the address of the bounds data. */ | |
1368 | ||
14f9c5c9 | 1369 | static int |
d2e4a39e | 1370 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1371 | { |
1372 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1373 | } | |
1374 | ||
1375 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1376 | size of the field containing the address of the bounds data. */ |
1377 | ||
14f9c5c9 | 1378 | static int |
d2e4a39e | 1379 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1380 | { |
1381 | type = desc_base_type (type); | |
1382 | ||
d2e4a39e | 1383 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1384 | return TYPE_FIELD_BITSIZE (type, 1); |
1385 | else | |
61ee279c | 1386 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1387 | } |
1388 | ||
4c4b4cd2 | 1389 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1390 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1391 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1392 | data. */ | |
4c4b4cd2 | 1393 | |
d2e4a39e | 1394 | static struct type * |
556bdfd4 | 1395 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1396 | { |
1397 | type = desc_base_type (type); | |
1398 | ||
4c4b4cd2 | 1399 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1400 | if (is_thin_pntr (type)) |
556bdfd4 | 1401 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1402 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1403 | { |
1404 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1405 | ||
1406 | if (data_type | |
1407 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
1408 | return TYPE_TARGET_TYPE (data_type); | |
1409 | } | |
1410 | ||
1411 | return NULL; | |
14f9c5c9 AS |
1412 | } |
1413 | ||
1414 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1415 | its array data. */ | |
4c4b4cd2 | 1416 | |
d2e4a39e AS |
1417 | static struct value * |
1418 | desc_data (struct value *arr) | |
14f9c5c9 | 1419 | { |
df407dfe | 1420 | struct type *type = value_type (arr); |
14f9c5c9 AS |
1421 | if (is_thin_pntr (type)) |
1422 | return thin_data_pntr (arr); | |
1423 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1424 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1425 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1426 | else |
1427 | return NULL; | |
1428 | } | |
1429 | ||
1430 | ||
1431 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1432 | position of the field containing the address of the data. */ |
1433 | ||
14f9c5c9 | 1434 | static int |
d2e4a39e | 1435 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1436 | { |
1437 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1438 | } | |
1439 | ||
1440 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1441 | size of the field containing the address of the data. */ |
1442 | ||
14f9c5c9 | 1443 | static int |
d2e4a39e | 1444 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1445 | { |
1446 | type = desc_base_type (type); | |
1447 | ||
1448 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1449 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1450 | else |
14f9c5c9 AS |
1451 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1452 | } | |
1453 | ||
4c4b4cd2 | 1454 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1455 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1456 | bound, if WHICH is 1. The first bound is I=1. */ |
1457 | ||
d2e4a39e AS |
1458 | static struct value * |
1459 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1460 | { |
d2e4a39e | 1461 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1462 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1463 | } |
1464 | ||
1465 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1466 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1467 | bound, if WHICH is 1. The first bound is I=1. */ |
1468 | ||
14f9c5c9 | 1469 | static int |
d2e4a39e | 1470 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1471 | { |
d2e4a39e | 1472 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1473 | } |
1474 | ||
1475 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1476 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1477 | bound, if WHICH is 1. The first bound is I=1. */ |
1478 | ||
76a01679 | 1479 | static int |
d2e4a39e | 1480 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1481 | { |
1482 | type = desc_base_type (type); | |
1483 | ||
d2e4a39e AS |
1484 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1485 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1486 | else | |
1487 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1488 | } |
1489 | ||
1490 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1491 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1492 | ||
d2e4a39e AS |
1493 | static struct type * |
1494 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1495 | { |
1496 | type = desc_base_type (type); | |
1497 | ||
1498 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1499 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1500 | else | |
14f9c5c9 AS |
1501 | return NULL; |
1502 | } | |
1503 | ||
4c4b4cd2 PH |
1504 | /* The number of index positions in the array-bounds type TYPE. |
1505 | Return 0 if TYPE is NULL. */ | |
1506 | ||
14f9c5c9 | 1507 | static int |
d2e4a39e | 1508 | desc_arity (struct type *type) |
14f9c5c9 AS |
1509 | { |
1510 | type = desc_base_type (type); | |
1511 | ||
1512 | if (type != NULL) | |
1513 | return TYPE_NFIELDS (type) / 2; | |
1514 | return 0; | |
1515 | } | |
1516 | ||
4c4b4cd2 PH |
1517 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1518 | an array descriptor type (representing an unconstrained array | |
1519 | type). */ | |
1520 | ||
76a01679 JB |
1521 | static int |
1522 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1523 | { |
1524 | if (type == NULL) | |
1525 | return 0; | |
61ee279c | 1526 | type = ada_check_typedef (type); |
4c4b4cd2 | 1527 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1528 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1529 | } |
1530 | ||
52ce6436 PH |
1531 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
1532 | * to one. */ | |
1533 | ||
2c0b251b | 1534 | static int |
52ce6436 PH |
1535 | ada_is_array_type (struct type *type) |
1536 | { | |
1537 | while (type != NULL | |
1538 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1539 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1540 | type = TYPE_TARGET_TYPE (type); | |
1541 | return ada_is_direct_array_type (type); | |
1542 | } | |
1543 | ||
4c4b4cd2 | 1544 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1545 | |
14f9c5c9 | 1546 | int |
4c4b4cd2 | 1547 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1548 | { |
1549 | if (type == NULL) | |
1550 | return 0; | |
61ee279c | 1551 | type = ada_check_typedef (type); |
14f9c5c9 | 1552 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1553 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1554 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1555 | } |
1556 | ||
4c4b4cd2 PH |
1557 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1558 | ||
14f9c5c9 | 1559 | int |
4c4b4cd2 | 1560 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1561 | { |
556bdfd4 | 1562 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1563 | |
1564 | if (type == NULL) | |
1565 | return 0; | |
61ee279c | 1566 | type = ada_check_typedef (type); |
556bdfd4 UW |
1567 | return (data_type != NULL |
1568 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1569 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1570 | } |
1571 | ||
1572 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1573 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1574 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1575 | is still needed. */ |
1576 | ||
14f9c5c9 | 1577 | int |
ebf56fd3 | 1578 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1579 | { |
d2e4a39e | 1580 | return |
14f9c5c9 AS |
1581 | type != NULL |
1582 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1583 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1584 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1585 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1586 | } |
1587 | ||
1588 | ||
4c4b4cd2 | 1589 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1590 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1591 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1592 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1593 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1594 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1595 | a descriptor. */ |
d2e4a39e AS |
1596 | struct type * |
1597 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1598 | { |
df407dfe AC |
1599 | if (ada_is_packed_array_type (value_type (arr))) |
1600 | return decode_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1601 | |
df407dfe AC |
1602 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1603 | return value_type (arr); | |
d2e4a39e AS |
1604 | |
1605 | if (!bounds) | |
1606 | return | |
556bdfd4 | 1607 | ada_check_typedef (desc_data_target_type (value_type (arr))); |
14f9c5c9 AS |
1608 | else |
1609 | { | |
d2e4a39e | 1610 | struct type *elt_type; |
14f9c5c9 | 1611 | int arity; |
d2e4a39e | 1612 | struct value *descriptor; |
df407dfe | 1613 | struct objfile *objf = TYPE_OBJFILE (value_type (arr)); |
14f9c5c9 | 1614 | |
df407dfe AC |
1615 | elt_type = ada_array_element_type (value_type (arr), -1); |
1616 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1617 | |
d2e4a39e | 1618 | if (elt_type == NULL || arity == 0) |
df407dfe | 1619 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1620 | |
1621 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1622 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1623 | return NULL; |
d2e4a39e | 1624 | while (arity > 0) |
4c4b4cd2 PH |
1625 | { |
1626 | struct type *range_type = alloc_type (objf); | |
1627 | struct type *array_type = alloc_type (objf); | |
1628 | struct value *low = desc_one_bound (descriptor, arity, 0); | |
1629 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
1630 | arity -= 1; | |
1631 | ||
df407dfe | 1632 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1633 | longest_to_int (value_as_long (low)), |
1634 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 PH |
1635 | elt_type = create_array_type (array_type, elt_type, range_type); |
1636 | } | |
14f9c5c9 AS |
1637 | |
1638 | return lookup_pointer_type (elt_type); | |
1639 | } | |
1640 | } | |
1641 | ||
1642 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1643 | Otherwise, returns either a standard GDB array with bounds set |
1644 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1645 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1646 | ||
d2e4a39e AS |
1647 | struct value * |
1648 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1649 | { |
df407dfe | 1650 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1651 | { |
d2e4a39e | 1652 | struct type *arrType = ada_type_of_array (arr, 1); |
14f9c5c9 | 1653 | if (arrType == NULL) |
4c4b4cd2 | 1654 | return NULL; |
14f9c5c9 AS |
1655 | return value_cast (arrType, value_copy (desc_data (arr))); |
1656 | } | |
df407dfe | 1657 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 AS |
1658 | return decode_packed_array (arr); |
1659 | else | |
1660 | return arr; | |
1661 | } | |
1662 | ||
1663 | /* If ARR does not represent an array, returns ARR unchanged. | |
1664 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1665 | be ARR itself if it already is in the proper form). */ |
1666 | ||
1667 | static struct value * | |
d2e4a39e | 1668 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1669 | { |
df407dfe | 1670 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1671 | { |
d2e4a39e | 1672 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
14f9c5c9 | 1673 | if (arrVal == NULL) |
323e0a4a | 1674 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1675 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1676 | return value_ind (arrVal); |
1677 | } | |
df407dfe | 1678 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 | 1679 | return decode_packed_array (arr); |
d2e4a39e | 1680 | else |
14f9c5c9 AS |
1681 | return arr; |
1682 | } | |
1683 | ||
1684 | /* If TYPE represents a GNAT array type, return it translated to an | |
1685 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1686 | packing). For other types, is the identity. */ |
1687 | ||
d2e4a39e AS |
1688 | struct type * |
1689 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1690 | { |
17280b9f UW |
1691 | if (ada_is_packed_array_type (type)) |
1692 | return decode_packed_array_type (type); | |
1693 | ||
1694 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1695 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1696 | |
1697 | return type; | |
14f9c5c9 AS |
1698 | } |
1699 | ||
4c4b4cd2 PH |
1700 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1701 | ||
14f9c5c9 | 1702 | int |
d2e4a39e | 1703 | ada_is_packed_array_type (struct type *type) |
14f9c5c9 AS |
1704 | { |
1705 | if (type == NULL) | |
1706 | return 0; | |
4c4b4cd2 | 1707 | type = desc_base_type (type); |
61ee279c | 1708 | type = ada_check_typedef (type); |
d2e4a39e | 1709 | return |
14f9c5c9 AS |
1710 | ada_type_name (type) != NULL |
1711 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1712 | } | |
1713 | ||
1714 | /* Given that TYPE is a standard GDB array type with all bounds filled | |
1715 | in, and that the element size of its ultimate scalar constituents | |
1716 | (that is, either its elements, or, if it is an array of arrays, its | |
1717 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1718 | but with the bit sizes of its elements (and those of any | |
1719 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1720 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1721 | in bits. */ | |
1722 | ||
d2e4a39e AS |
1723 | static struct type * |
1724 | packed_array_type (struct type *type, long *elt_bits) | |
14f9c5c9 | 1725 | { |
d2e4a39e AS |
1726 | struct type *new_elt_type; |
1727 | struct type *new_type; | |
14f9c5c9 AS |
1728 | LONGEST low_bound, high_bound; |
1729 | ||
61ee279c | 1730 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1731 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1732 | return type; | |
1733 | ||
1734 | new_type = alloc_type (TYPE_OBJFILE (type)); | |
61ee279c | 1735 | new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 1736 | elt_bits); |
262452ec | 1737 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
1738 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
1739 | TYPE_NAME (new_type) = ada_type_name (type); | |
1740 | ||
262452ec | 1741 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 1742 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
1743 | low_bound = high_bound = 0; |
1744 | if (high_bound < low_bound) | |
1745 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 1746 | else |
14f9c5c9 AS |
1747 | { |
1748 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 1749 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 1750 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
1751 | } |
1752 | ||
876cecd0 | 1753 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
1754 | return new_type; |
1755 | } | |
1756 | ||
4c4b4cd2 PH |
1757 | /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */ |
1758 | ||
d2e4a39e AS |
1759 | static struct type * |
1760 | decode_packed_array_type (struct type *type) | |
1761 | { | |
4c4b4cd2 | 1762 | struct symbol *sym; |
d2e4a39e | 1763 | struct block **blocks; |
727e3d2e JB |
1764 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
1765 | char *name; | |
1766 | char *tail; | |
d2e4a39e | 1767 | struct type *shadow_type; |
14f9c5c9 AS |
1768 | long bits; |
1769 | int i, n; | |
1770 | ||
727e3d2e JB |
1771 | if (!raw_name) |
1772 | raw_name = ada_type_name (desc_base_type (type)); | |
1773 | ||
1774 | if (!raw_name) | |
1775 | return NULL; | |
1776 | ||
1777 | name = (char *) alloca (strlen (raw_name) + 1); | |
1778 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
1779 | type = desc_base_type (type); |
1780 | ||
14f9c5c9 AS |
1781 | memcpy (name, raw_name, tail - raw_name); |
1782 | name[tail - raw_name] = '\000'; | |
1783 | ||
4c4b4cd2 PH |
1784 | sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN); |
1785 | if (sym == NULL || SYMBOL_TYPE (sym) == NULL) | |
14f9c5c9 | 1786 | { |
323e0a4a | 1787 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
1788 | return NULL; |
1789 | } | |
4c4b4cd2 | 1790 | shadow_type = SYMBOL_TYPE (sym); |
cb249c71 | 1791 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
1792 | |
1793 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
1794 | { | |
323e0a4a | 1795 | lim_warning (_("could not understand bounds information on packed array")); |
14f9c5c9 AS |
1796 | return NULL; |
1797 | } | |
d2e4a39e | 1798 | |
14f9c5c9 AS |
1799 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) |
1800 | { | |
4c4b4cd2 | 1801 | lim_warning |
323e0a4a | 1802 | (_("could not understand bit size information on packed array")); |
14f9c5c9 AS |
1803 | return NULL; |
1804 | } | |
d2e4a39e | 1805 | |
14f9c5c9 AS |
1806 | return packed_array_type (shadow_type, &bits); |
1807 | } | |
1808 | ||
4c4b4cd2 | 1809 | /* Given that ARR is a struct value *indicating a GNAT packed array, |
14f9c5c9 AS |
1810 | returns a simple array that denotes that array. Its type is a |
1811 | standard GDB array type except that the BITSIZEs of the array | |
1812 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 1813 | type length is set appropriately. */ |
14f9c5c9 | 1814 | |
d2e4a39e AS |
1815 | static struct value * |
1816 | decode_packed_array (struct value *arr) | |
14f9c5c9 | 1817 | { |
4c4b4cd2 | 1818 | struct type *type; |
14f9c5c9 | 1819 | |
4c4b4cd2 | 1820 | arr = ada_coerce_ref (arr); |
284614f0 JB |
1821 | |
1822 | /* If our value is a pointer, then dererence it. Make sure that | |
1823 | this operation does not cause the target type to be fixed, as | |
1824 | this would indirectly cause this array to be decoded. The rest | |
1825 | of the routine assumes that the array hasn't been decoded yet, | |
1826 | so we use the basic "value_ind" routine to perform the dereferencing, | |
1827 | as opposed to using "ada_value_ind". */ | |
df407dfe | 1828 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
284614f0 | 1829 | arr = value_ind (arr); |
4c4b4cd2 | 1830 | |
df407dfe | 1831 | type = decode_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
1832 | if (type == NULL) |
1833 | { | |
323e0a4a | 1834 | error (_("can't unpack array")); |
14f9c5c9 AS |
1835 | return NULL; |
1836 | } | |
61ee279c | 1837 | |
32c9a795 MD |
1838 | if (gdbarch_bits_big_endian (current_gdbarch) |
1839 | && ada_is_modular_type (value_type (arr))) | |
61ee279c PH |
1840 | { |
1841 | /* This is a (right-justified) modular type representing a packed | |
1842 | array with no wrapper. In order to interpret the value through | |
1843 | the (left-justified) packed array type we just built, we must | |
1844 | first left-justify it. */ | |
1845 | int bit_size, bit_pos; | |
1846 | ULONGEST mod; | |
1847 | ||
df407dfe | 1848 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
1849 | bit_size = 0; |
1850 | while (mod > 0) | |
1851 | { | |
1852 | bit_size += 1; | |
1853 | mod >>= 1; | |
1854 | } | |
df407dfe | 1855 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
1856 | arr = ada_value_primitive_packed_val (arr, NULL, |
1857 | bit_pos / HOST_CHAR_BIT, | |
1858 | bit_pos % HOST_CHAR_BIT, | |
1859 | bit_size, | |
1860 | type); | |
1861 | } | |
1862 | ||
4c4b4cd2 | 1863 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
1864 | } |
1865 | ||
1866 | ||
1867 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 1868 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 1869 | |
d2e4a39e AS |
1870 | static struct value * |
1871 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
1872 | { |
1873 | int i; | |
1874 | int bits, elt_off, bit_off; | |
1875 | long elt_total_bit_offset; | |
d2e4a39e AS |
1876 | struct type *elt_type; |
1877 | struct value *v; | |
14f9c5c9 AS |
1878 | |
1879 | bits = 0; | |
1880 | elt_total_bit_offset = 0; | |
df407dfe | 1881 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1882 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 1883 | { |
d2e4a39e | 1884 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1885 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
1886 | error | |
323e0a4a | 1887 | (_("attempt to do packed indexing of something other than a packed array")); |
14f9c5c9 | 1888 | else |
4c4b4cd2 PH |
1889 | { |
1890 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
1891 | LONGEST lowerbound, upperbound; | |
1892 | LONGEST idx; | |
1893 | ||
1894 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
1895 | { | |
323e0a4a | 1896 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
1897 | lowerbound = upperbound = 0; |
1898 | } | |
1899 | ||
3cb382c9 | 1900 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 1901 | if (idx < lowerbound || idx > upperbound) |
323e0a4a | 1902 | lim_warning (_("packed array index %ld out of bounds"), (long) idx); |
4c4b4cd2 PH |
1903 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
1904 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 1905 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 1906 | } |
14f9c5c9 AS |
1907 | } |
1908 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
1909 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
1910 | |
1911 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 1912 | bits, elt_type); |
14f9c5c9 AS |
1913 | return v; |
1914 | } | |
1915 | ||
4c4b4cd2 | 1916 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
1917 | |
1918 | static int | |
d2e4a39e | 1919 | has_negatives (struct type *type) |
14f9c5c9 | 1920 | { |
d2e4a39e AS |
1921 | switch (TYPE_CODE (type)) |
1922 | { | |
1923 | default: | |
1924 | return 0; | |
1925 | case TYPE_CODE_INT: | |
1926 | return !TYPE_UNSIGNED (type); | |
1927 | case TYPE_CODE_RANGE: | |
1928 | return TYPE_LOW_BOUND (type) < 0; | |
1929 | } | |
14f9c5c9 | 1930 | } |
d2e4a39e | 1931 | |
14f9c5c9 AS |
1932 | |
1933 | /* Create a new value of type TYPE from the contents of OBJ starting | |
1934 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
1935 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
4c4b4cd2 PH |
1936 | assigning through the result will set the field fetched from. |
1937 | VALADDR is ignored unless OBJ is NULL, in which case, | |
1938 | VALADDR+OFFSET must address the start of storage containing the | |
1939 | packed value. The value returned in this case is never an lval. | |
1940 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 1941 | |
d2e4a39e | 1942 | struct value * |
fc1a4b47 | 1943 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 1944 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 1945 | struct type *type) |
14f9c5c9 | 1946 | { |
d2e4a39e | 1947 | struct value *v; |
4c4b4cd2 PH |
1948 | int src, /* Index into the source area */ |
1949 | targ, /* Index into the target area */ | |
1950 | srcBitsLeft, /* Number of source bits left to move */ | |
1951 | nsrc, ntarg, /* Number of source and target bytes */ | |
1952 | unusedLS, /* Number of bits in next significant | |
1953 | byte of source that are unused */ | |
1954 | accumSize; /* Number of meaningful bits in accum */ | |
1955 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 1956 | unsigned char *unpacked; |
4c4b4cd2 | 1957 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
1958 | unsigned char sign; |
1959 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
1960 | /* Transmit bytes from least to most significant; delta is the direction |
1961 | the indices move. */ | |
32c9a795 | 1962 | int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1; |
14f9c5c9 | 1963 | |
61ee279c | 1964 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1965 | |
1966 | if (obj == NULL) | |
1967 | { | |
1968 | v = allocate_value (type); | |
d2e4a39e | 1969 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 1970 | } |
9214ee5f | 1971 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
1972 | { |
1973 | v = value_at (type, | |
42ae5230 | 1974 | value_address (obj) + offset); |
d2e4a39e | 1975 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 1976 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 1977 | } |
d2e4a39e | 1978 | else |
14f9c5c9 AS |
1979 | { |
1980 | v = allocate_value (type); | |
0fd88904 | 1981 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 1982 | } |
d2e4a39e AS |
1983 | |
1984 | if (obj != NULL) | |
14f9c5c9 | 1985 | { |
42ae5230 | 1986 | CORE_ADDR new_addr; |
74bcbdf3 | 1987 | set_value_component_location (v, obj); |
42ae5230 | 1988 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
1989 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
1990 | set_value_bitsize (v, bit_size); | |
df407dfe | 1991 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 1992 | { |
42ae5230 | 1993 | ++new_addr; |
9bbda503 | 1994 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 1995 | } |
42ae5230 | 1996 | set_value_address (v, new_addr); |
14f9c5c9 AS |
1997 | } |
1998 | else | |
9bbda503 | 1999 | set_value_bitsize (v, bit_size); |
0fd88904 | 2000 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2001 | |
2002 | srcBitsLeft = bit_size; | |
2003 | nsrc = len; | |
2004 | ntarg = TYPE_LENGTH (type); | |
2005 | sign = 0; | |
2006 | if (bit_size == 0) | |
2007 | { | |
2008 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2009 | return v; | |
2010 | } | |
32c9a795 | 2011 | else if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 | 2012 | { |
d2e4a39e | 2013 | src = len - 1; |
1265e4aa JB |
2014 | if (has_negatives (type) |
2015 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2016 | sign = ~0; |
d2e4a39e AS |
2017 | |
2018 | unusedLS = | |
4c4b4cd2 PH |
2019 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2020 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2021 | |
2022 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2023 | { |
2024 | case TYPE_CODE_ARRAY: | |
2025 | case TYPE_CODE_UNION: | |
2026 | case TYPE_CODE_STRUCT: | |
2027 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2028 | accumSize = | |
2029 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2030 | /* ... And are placed at the beginning (most-significant) bytes | |
2031 | of the target. */ | |
529cad9c | 2032 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2033 | ntarg = targ + 1; |
4c4b4cd2 PH |
2034 | break; |
2035 | default: | |
2036 | accumSize = 0; | |
2037 | targ = TYPE_LENGTH (type) - 1; | |
2038 | break; | |
2039 | } | |
14f9c5c9 | 2040 | } |
d2e4a39e | 2041 | else |
14f9c5c9 AS |
2042 | { |
2043 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2044 | ||
2045 | src = targ = 0; | |
2046 | unusedLS = bit_offset; | |
2047 | accumSize = 0; | |
2048 | ||
d2e4a39e | 2049 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2050 | sign = ~0; |
14f9c5c9 | 2051 | } |
d2e4a39e | 2052 | |
14f9c5c9 AS |
2053 | accum = 0; |
2054 | while (nsrc > 0) | |
2055 | { | |
2056 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2057 | part of the value. */ |
d2e4a39e | 2058 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2059 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2060 | 1; | |
2061 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2062 | unsigned int signMask = sign & ~unusedMSMask; |
d2e4a39e | 2063 | accum |= |
4c4b4cd2 | 2064 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2065 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2066 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2067 | { |
2068 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2069 | accumSize -= HOST_CHAR_BIT; | |
2070 | accum >>= HOST_CHAR_BIT; | |
2071 | ntarg -= 1; | |
2072 | targ += delta; | |
2073 | } | |
14f9c5c9 AS |
2074 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2075 | unusedLS = 0; | |
2076 | nsrc -= 1; | |
2077 | src += delta; | |
2078 | } | |
2079 | while (ntarg > 0) | |
2080 | { | |
2081 | accum |= sign << accumSize; | |
2082 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2083 | accumSize -= HOST_CHAR_BIT; | |
2084 | accum >>= HOST_CHAR_BIT; | |
2085 | ntarg -= 1; | |
2086 | targ += delta; | |
2087 | } | |
2088 | ||
2089 | return v; | |
2090 | } | |
d2e4a39e | 2091 | |
14f9c5c9 AS |
2092 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2093 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2094 | not overlap. */ |
14f9c5c9 | 2095 | static void |
fc1a4b47 | 2096 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
0fd88904 | 2097 | int src_offset, int n) |
14f9c5c9 AS |
2098 | { |
2099 | unsigned int accum, mask; | |
2100 | int accum_bits, chunk_size; | |
2101 | ||
2102 | target += targ_offset / HOST_CHAR_BIT; | |
2103 | targ_offset %= HOST_CHAR_BIT; | |
2104 | source += src_offset / HOST_CHAR_BIT; | |
2105 | src_offset %= HOST_CHAR_BIT; | |
32c9a795 | 2106 | if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 AS |
2107 | { |
2108 | accum = (unsigned char) *source; | |
2109 | source += 1; | |
2110 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2111 | ||
d2e4a39e | 2112 | while (n > 0) |
4c4b4cd2 PH |
2113 | { |
2114 | int unused_right; | |
2115 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; | |
2116 | accum_bits += HOST_CHAR_BIT; | |
2117 | source += 1; | |
2118 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2119 | if (chunk_size > n) | |
2120 | chunk_size = n; | |
2121 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2122 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2123 | *target = | |
2124 | (*target & ~mask) | |
2125 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2126 | n -= chunk_size; | |
2127 | accum_bits -= chunk_size; | |
2128 | target += 1; | |
2129 | targ_offset = 0; | |
2130 | } | |
14f9c5c9 AS |
2131 | } |
2132 | else | |
2133 | { | |
2134 | accum = (unsigned char) *source >> src_offset; | |
2135 | source += 1; | |
2136 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2137 | ||
d2e4a39e | 2138 | while (n > 0) |
4c4b4cd2 PH |
2139 | { |
2140 | accum = accum + ((unsigned char) *source << accum_bits); | |
2141 | accum_bits += HOST_CHAR_BIT; | |
2142 | source += 1; | |
2143 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2144 | if (chunk_size > n) | |
2145 | chunk_size = n; | |
2146 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2147 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2148 | n -= chunk_size; | |
2149 | accum_bits -= chunk_size; | |
2150 | accum >>= chunk_size; | |
2151 | target += 1; | |
2152 | targ_offset = 0; | |
2153 | } | |
14f9c5c9 AS |
2154 | } |
2155 | } | |
2156 | ||
14f9c5c9 AS |
2157 | /* Store the contents of FROMVAL into the location of TOVAL. |
2158 | Return a new value with the location of TOVAL and contents of | |
2159 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2160 | floating-point or non-scalar types. */ |
14f9c5c9 | 2161 | |
d2e4a39e AS |
2162 | static struct value * |
2163 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2164 | { |
df407dfe AC |
2165 | struct type *type = value_type (toval); |
2166 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2167 | |
52ce6436 PH |
2168 | toval = ada_coerce_ref (toval); |
2169 | fromval = ada_coerce_ref (fromval); | |
2170 | ||
2171 | if (ada_is_direct_array_type (value_type (toval))) | |
2172 | toval = ada_coerce_to_simple_array (toval); | |
2173 | if (ada_is_direct_array_type (value_type (fromval))) | |
2174 | fromval = ada_coerce_to_simple_array (fromval); | |
2175 | ||
88e3b34b | 2176 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2177 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2178 | |
d2e4a39e | 2179 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2180 | && bits > 0 |
d2e4a39e | 2181 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2182 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2183 | { |
df407dfe AC |
2184 | int len = (value_bitpos (toval) |
2185 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2186 | int from_size; |
d2e4a39e AS |
2187 | char *buffer = (char *) alloca (len); |
2188 | struct value *val; | |
42ae5230 | 2189 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2190 | |
2191 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2192 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2193 | |
52ce6436 | 2194 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2195 | from_size = value_bitsize (fromval); |
2196 | if (from_size == 0) | |
2197 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
32c9a795 | 2198 | if (gdbarch_bits_big_endian (current_gdbarch)) |
df407dfe | 2199 | move_bits (buffer, value_bitpos (toval), |
aced2898 | 2200 | value_contents (fromval), from_size - bits, bits); |
14f9c5c9 | 2201 | else |
0fd88904 | 2202 | move_bits (buffer, value_bitpos (toval), value_contents (fromval), |
4c4b4cd2 | 2203 | 0, bits); |
52ce6436 PH |
2204 | write_memory (to_addr, buffer, len); |
2205 | if (deprecated_memory_changed_hook) | |
2206 | deprecated_memory_changed_hook (to_addr, len); | |
2207 | ||
14f9c5c9 | 2208 | val = value_copy (toval); |
0fd88904 | 2209 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2210 | TYPE_LENGTH (type)); |
04624583 | 2211 | deprecated_set_value_type (val, type); |
d2e4a39e | 2212 | |
14f9c5c9 AS |
2213 | return val; |
2214 | } | |
2215 | ||
2216 | return value_assign (toval, fromval); | |
2217 | } | |
2218 | ||
2219 | ||
52ce6436 PH |
2220 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2221 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2222 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2223 | * COMPONENT, and not the inferior's memory. The current contents | |
2224 | * of COMPONENT are ignored. */ | |
2225 | static void | |
2226 | value_assign_to_component (struct value *container, struct value *component, | |
2227 | struct value *val) | |
2228 | { | |
2229 | LONGEST offset_in_container = | |
42ae5230 | 2230 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2231 | int bit_offset_in_container = |
2232 | value_bitpos (component) - value_bitpos (container); | |
2233 | int bits; | |
2234 | ||
2235 | val = value_cast (value_type (component), val); | |
2236 | ||
2237 | if (value_bitsize (component) == 0) | |
2238 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2239 | else | |
2240 | bits = value_bitsize (component); | |
2241 | ||
32c9a795 | 2242 | if (gdbarch_bits_big_endian (current_gdbarch)) |
52ce6436 PH |
2243 | move_bits (value_contents_writeable (container) + offset_in_container, |
2244 | value_bitpos (container) + bit_offset_in_container, | |
2245 | value_contents (val), | |
2246 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
2247 | bits); | |
2248 | else | |
2249 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2250 | value_bitpos (container) + bit_offset_in_container, | |
2251 | value_contents (val), 0, bits); | |
2252 | } | |
2253 | ||
4c4b4cd2 PH |
2254 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2255 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2256 | thereto. */ |
2257 | ||
d2e4a39e AS |
2258 | struct value * |
2259 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2260 | { |
2261 | int k; | |
d2e4a39e AS |
2262 | struct value *elt; |
2263 | struct type *elt_type; | |
14f9c5c9 AS |
2264 | |
2265 | elt = ada_coerce_to_simple_array (arr); | |
2266 | ||
df407dfe | 2267 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2268 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2269 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2270 | return value_subscript_packed (elt, arity, ind); | |
2271 | ||
2272 | for (k = 0; k < arity; k += 1) | |
2273 | { | |
2274 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2275 | error (_("too many subscripts (%d expected)"), k); |
3cb382c9 | 2276 | elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k])); |
14f9c5c9 AS |
2277 | } |
2278 | return elt; | |
2279 | } | |
2280 | ||
2281 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2282 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2283 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2284 | |
2c0b251b | 2285 | static struct value * |
d2e4a39e | 2286 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2287 | struct value **ind) |
14f9c5c9 AS |
2288 | { |
2289 | int k; | |
2290 | ||
2291 | for (k = 0; k < arity; k += 1) | |
2292 | { | |
2293 | LONGEST lwb, upb; | |
d2e4a39e | 2294 | struct value *idx; |
14f9c5c9 AS |
2295 | |
2296 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2297 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2298 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2299 | value_copy (arr)); |
14f9c5c9 | 2300 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
3cb382c9 | 2301 | idx = value_pos_atr (builtin_type_int32, ind[k]); |
4c4b4cd2 | 2302 | if (lwb != 0) |
89eef114 UW |
2303 | idx = value_binop (idx, value_from_longest (value_type (idx), lwb), |
2304 | BINOP_SUB); | |
2305 | ||
2306 | arr = value_ptradd (arr, idx); | |
14f9c5c9 AS |
2307 | type = TYPE_TARGET_TYPE (type); |
2308 | } | |
2309 | ||
2310 | return value_ind (arr); | |
2311 | } | |
2312 | ||
0b5d8877 | 2313 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2314 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2315 | elements starting at index LOW. The lower bound of this array is LOW, as | |
2316 | per Ada rules. */ | |
0b5d8877 | 2317 | static struct value * |
f5938064 JG |
2318 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2319 | int low, int high) | |
0b5d8877 | 2320 | { |
6c038f32 | 2321 | CORE_ADDR base = value_as_address (array_ptr) |
0b5d8877 PH |
2322 | + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))) |
2323 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); | |
6c038f32 PH |
2324 | struct type *index_type = |
2325 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2326 | low, high); |
6c038f32 | 2327 | struct type *slice_type = |
0b5d8877 | 2328 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
f5938064 | 2329 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2330 | } |
2331 | ||
2332 | ||
2333 | static struct value * | |
2334 | ada_value_slice (struct value *array, int low, int high) | |
2335 | { | |
df407dfe | 2336 | struct type *type = value_type (array); |
6c038f32 | 2337 | struct type *index_type = |
0b5d8877 | 2338 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2339 | struct type *slice_type = |
0b5d8877 | 2340 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
6c038f32 | 2341 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2342 | } |
2343 | ||
14f9c5c9 AS |
2344 | /* If type is a record type in the form of a standard GNAT array |
2345 | descriptor, returns the number of dimensions for type. If arr is a | |
2346 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2347 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2348 | |
2349 | int | |
d2e4a39e | 2350 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2351 | { |
2352 | int arity; | |
2353 | ||
2354 | if (type == NULL) | |
2355 | return 0; | |
2356 | ||
2357 | type = desc_base_type (type); | |
2358 | ||
2359 | arity = 0; | |
d2e4a39e | 2360 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2361 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2362 | else |
2363 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2364 | { |
4c4b4cd2 | 2365 | arity += 1; |
61ee279c | 2366 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2367 | } |
d2e4a39e | 2368 | |
14f9c5c9 AS |
2369 | return arity; |
2370 | } | |
2371 | ||
2372 | /* If TYPE is a record type in the form of a standard GNAT array | |
2373 | descriptor or a simple array type, returns the element type for | |
2374 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2375 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2376 | |
d2e4a39e AS |
2377 | struct type * |
2378 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2379 | { |
2380 | type = desc_base_type (type); | |
2381 | ||
d2e4a39e | 2382 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2383 | { |
2384 | int k; | |
d2e4a39e | 2385 | struct type *p_array_type; |
14f9c5c9 | 2386 | |
556bdfd4 | 2387 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2388 | |
2389 | k = ada_array_arity (type); | |
2390 | if (k == 0) | |
4c4b4cd2 | 2391 | return NULL; |
d2e4a39e | 2392 | |
4c4b4cd2 | 2393 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2394 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2395 | k = nindices; |
d2e4a39e | 2396 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2397 | { |
61ee279c | 2398 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2399 | k -= 1; |
2400 | } | |
14f9c5c9 AS |
2401 | return p_array_type; |
2402 | } | |
2403 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2404 | { | |
2405 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2406 | { |
2407 | type = TYPE_TARGET_TYPE (type); | |
2408 | nindices -= 1; | |
2409 | } | |
14f9c5c9 AS |
2410 | return type; |
2411 | } | |
2412 | ||
2413 | return NULL; | |
2414 | } | |
2415 | ||
4c4b4cd2 PH |
2416 | /* The type of nth index in arrays of given type (n numbering from 1). |
2417 | Does not examine memory. */ | |
14f9c5c9 | 2418 | |
d2e4a39e AS |
2419 | struct type * |
2420 | ada_index_type (struct type *type, int n) | |
14f9c5c9 | 2421 | { |
4c4b4cd2 PH |
2422 | struct type *result_type; |
2423 | ||
14f9c5c9 AS |
2424 | type = desc_base_type (type); |
2425 | ||
2426 | if (n > ada_array_arity (type)) | |
2427 | return NULL; | |
2428 | ||
4c4b4cd2 | 2429 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2430 | { |
2431 | int i; | |
2432 | ||
2433 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2434 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2435 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2436 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2437 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 JB |
2438 | perhaps stabsread.c would make more sense. */ |
2439 | if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF) | |
6d84d3d8 | 2440 | result_type = builtin_type_int32; |
14f9c5c9 | 2441 | |
4c4b4cd2 | 2442 | return result_type; |
14f9c5c9 | 2443 | } |
d2e4a39e | 2444 | else |
14f9c5c9 AS |
2445 | return desc_index_type (desc_bounds_type (type), n); |
2446 | } | |
2447 | ||
2448 | /* Given that arr is an array type, returns the lower bound of the | |
2449 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 PH |
2450 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
2451 | array-descriptor type. If TYPEP is non-null, *TYPEP is set to the | |
2452 | bounds type. It works for other arrays with bounds supplied by | |
2453 | run-time quantities other than discriminants. */ | |
14f9c5c9 | 2454 | |
abb68b3e | 2455 | static LONGEST |
d2e4a39e | 2456 | ada_array_bound_from_type (struct type * arr_type, int n, int which, |
4c4b4cd2 | 2457 | struct type ** typep) |
14f9c5c9 | 2458 | { |
262452ec JK |
2459 | struct type *type, *index_type_desc, *index_type; |
2460 | LONGEST retval; | |
2461 | ||
2462 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 AS |
2463 | |
2464 | if (ada_is_packed_array_type (arr_type)) | |
2465 | arr_type = decode_packed_array_type (arr_type); | |
2466 | ||
4c4b4cd2 | 2467 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
14f9c5c9 AS |
2468 | { |
2469 | if (typep != NULL) | |
6d84d3d8 | 2470 | *typep = builtin_type_int32; |
d2e4a39e | 2471 | return (LONGEST) - which; |
14f9c5c9 AS |
2472 | } |
2473 | ||
2474 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2475 | type = TYPE_TARGET_TYPE (arr_type); | |
2476 | else | |
2477 | type = arr_type; | |
2478 | ||
2479 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
262452ec JK |
2480 | if (index_type_desc != NULL) |
2481 | index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1), | |
2482 | NULL, TYPE_OBJFILE (arr_type)); | |
2483 | else | |
14f9c5c9 | 2484 | { |
d2e4a39e | 2485 | while (n > 1) |
4c4b4cd2 PH |
2486 | { |
2487 | type = TYPE_TARGET_TYPE (type); | |
2488 | n -= 1; | |
2489 | } | |
14f9c5c9 | 2490 | |
abb68b3e | 2491 | index_type = TYPE_INDEX_TYPE (type); |
14f9c5c9 | 2492 | } |
262452ec JK |
2493 | |
2494 | switch (TYPE_CODE (index_type)) | |
14f9c5c9 | 2495 | { |
262452ec JK |
2496 | case TYPE_CODE_RANGE: |
2497 | retval = which == 0 ? TYPE_LOW_BOUND (index_type) | |
2498 | : TYPE_HIGH_BOUND (index_type); | |
2499 | break; | |
2500 | case TYPE_CODE_ENUM: | |
2501 | retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0) | |
2502 | : TYPE_FIELD_BITPOS (index_type, | |
2503 | TYPE_NFIELDS (index_type) - 1); | |
2504 | break; | |
2505 | default: | |
2506 | internal_error (__FILE__, __LINE__, _("invalid type code of index type")); | |
2507 | } | |
abb68b3e | 2508 | |
262452ec JK |
2509 | if (typep != NULL) |
2510 | *typep = index_type; | |
abb68b3e | 2511 | |
262452ec | 2512 | return retval; |
14f9c5c9 AS |
2513 | } |
2514 | ||
2515 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2516 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2517 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2518 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2519 | |
d2e4a39e | 2520 | struct value * |
4dc81987 | 2521 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2522 | { |
df407dfe | 2523 | struct type *arr_type = value_type (arr); |
14f9c5c9 AS |
2524 | |
2525 | if (ada_is_packed_array_type (arr_type)) | |
2526 | return ada_array_bound (decode_packed_array (arr), n, which); | |
4c4b4cd2 | 2527 | else if (ada_is_simple_array_type (arr_type)) |
14f9c5c9 | 2528 | { |
d2e4a39e | 2529 | struct type *type; |
14f9c5c9 AS |
2530 | LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type); |
2531 | return value_from_longest (type, v); | |
2532 | } | |
2533 | else | |
2534 | return desc_one_bound (desc_bounds (arr), n, which); | |
2535 | } | |
2536 | ||
2537 | /* Given that arr is an array value, returns the length of the | |
2538 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2539 | supplied by run-time quantities other than discriminants. |
2540 | Does not work for arrays indexed by enumeration types with representation | |
2541 | clauses at the moment. */ | |
14f9c5c9 | 2542 | |
2c0b251b | 2543 | static struct value * |
d2e4a39e | 2544 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2545 | { |
df407dfe | 2546 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2547 | |
2548 | if (ada_is_packed_array_type (arr_type)) | |
2549 | return ada_array_length (decode_packed_array (arr), n); | |
2550 | ||
4c4b4cd2 | 2551 | if (ada_is_simple_array_type (arr_type)) |
14f9c5c9 | 2552 | { |
d2e4a39e | 2553 | struct type *type; |
14f9c5c9 | 2554 | LONGEST v = |
4c4b4cd2 PH |
2555 | ada_array_bound_from_type (arr_type, n, 1, &type) - |
2556 | ada_array_bound_from_type (arr_type, n, 0, NULL) + 1; | |
14f9c5c9 AS |
2557 | return value_from_longest (type, v); |
2558 | } | |
2559 | else | |
d2e4a39e | 2560 | return |
030b4912 | 2561 | value_from_longest (builtin_type_int32, |
4c4b4cd2 PH |
2562 | value_as_long (desc_one_bound (desc_bounds (arr), |
2563 | n, 1)) | |
2564 | - value_as_long (desc_one_bound (desc_bounds (arr), | |
2565 | n, 0)) + 1); | |
2566 | } | |
2567 | ||
2568 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2569 | with bounds LOW to LOW-1. */ | |
2570 | ||
2571 | static struct value * | |
2572 | empty_array (struct type *arr_type, int low) | |
2573 | { | |
6c038f32 | 2574 | struct type *index_type = |
0b5d8877 PH |
2575 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2576 | low, low - 1); | |
2577 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
2578 | return allocate_value (create_array_type (NULL, elt_type, index_type)); | |
14f9c5c9 | 2579 | } |
14f9c5c9 | 2580 | \f |
d2e4a39e | 2581 | |
4c4b4cd2 | 2582 | /* Name resolution */ |
14f9c5c9 | 2583 | |
4c4b4cd2 PH |
2584 | /* The "decoded" name for the user-definable Ada operator corresponding |
2585 | to OP. */ | |
14f9c5c9 | 2586 | |
d2e4a39e | 2587 | static const char * |
4c4b4cd2 | 2588 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2589 | { |
2590 | int i; | |
2591 | ||
4c4b4cd2 | 2592 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2593 | { |
2594 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2595 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2596 | } |
323e0a4a | 2597 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2598 | } |
2599 | ||
2600 | ||
4c4b4cd2 PH |
2601 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2602 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2603 | undefined namespace) and converts operators that are | |
2604 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2605 | non-null, it provides a preferred result type [at the moment, only |
2606 | type void has any effect---causing procedures to be preferred over | |
2607 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2608 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2609 | |
4c4b4cd2 PH |
2610 | static void |
2611 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 AS |
2612 | { |
2613 | int pc; | |
2614 | pc = 0; | |
4c4b4cd2 | 2615 | resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL); |
14f9c5c9 AS |
2616 | } |
2617 | ||
4c4b4cd2 PH |
2618 | /* Resolve the operator of the subexpression beginning at |
2619 | position *POS of *EXPP. "Resolving" consists of replacing | |
2620 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2621 | with their resolutions, replacing built-in operators with | |
2622 | function calls to user-defined operators, where appropriate, and, | |
2623 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2624 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2625 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2626 | |
d2e4a39e | 2627 | static struct value * |
4c4b4cd2 | 2628 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2629 | struct type *context_type) |
14f9c5c9 AS |
2630 | { |
2631 | int pc = *pos; | |
2632 | int i; | |
4c4b4cd2 | 2633 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2634 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2635 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2636 | int nargs; /* Number of operands. */ | |
52ce6436 | 2637 | int oplen; |
14f9c5c9 AS |
2638 | |
2639 | argvec = NULL; | |
2640 | nargs = 0; | |
2641 | exp = *expp; | |
2642 | ||
52ce6436 PH |
2643 | /* Pass one: resolve operands, saving their types and updating *pos, |
2644 | if needed. */ | |
14f9c5c9 AS |
2645 | switch (op) |
2646 | { | |
4c4b4cd2 PH |
2647 | case OP_FUNCALL: |
2648 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2649 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2650 | *pos += 7; | |
4c4b4cd2 PH |
2651 | else |
2652 | { | |
2653 | *pos += 3; | |
2654 | resolve_subexp (expp, pos, 0, NULL); | |
2655 | } | |
2656 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2657 | break; |
2658 | ||
14f9c5c9 | 2659 | case UNOP_ADDR: |
4c4b4cd2 PH |
2660 | *pos += 1; |
2661 | resolve_subexp (expp, pos, 0, NULL); | |
2662 | break; | |
2663 | ||
52ce6436 PH |
2664 | case UNOP_QUAL: |
2665 | *pos += 3; | |
17466c1a | 2666 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2667 | break; |
2668 | ||
52ce6436 | 2669 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2670 | case OP_ATR_SIZE: |
2671 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2672 | case OP_ATR_FIRST: |
2673 | case OP_ATR_LAST: | |
2674 | case OP_ATR_LENGTH: | |
2675 | case OP_ATR_POS: | |
2676 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2677 | case OP_ATR_MIN: |
2678 | case OP_ATR_MAX: | |
52ce6436 PH |
2679 | case TERNOP_IN_RANGE: |
2680 | case BINOP_IN_BOUNDS: | |
2681 | case UNOP_IN_RANGE: | |
2682 | case OP_AGGREGATE: | |
2683 | case OP_OTHERS: | |
2684 | case OP_CHOICES: | |
2685 | case OP_POSITIONAL: | |
2686 | case OP_DISCRETE_RANGE: | |
2687 | case OP_NAME: | |
2688 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2689 | *pos += oplen; | |
14f9c5c9 AS |
2690 | break; |
2691 | ||
2692 | case BINOP_ASSIGN: | |
2693 | { | |
4c4b4cd2 PH |
2694 | struct value *arg1; |
2695 | ||
2696 | *pos += 1; | |
2697 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2698 | if (arg1 == NULL) | |
2699 | resolve_subexp (expp, pos, 1, NULL); | |
2700 | else | |
df407dfe | 2701 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2702 | break; |
14f9c5c9 AS |
2703 | } |
2704 | ||
4c4b4cd2 | 2705 | case UNOP_CAST: |
4c4b4cd2 PH |
2706 | *pos += 3; |
2707 | nargs = 1; | |
2708 | break; | |
14f9c5c9 | 2709 | |
4c4b4cd2 PH |
2710 | case BINOP_ADD: |
2711 | case BINOP_SUB: | |
2712 | case BINOP_MUL: | |
2713 | case BINOP_DIV: | |
2714 | case BINOP_REM: | |
2715 | case BINOP_MOD: | |
2716 | case BINOP_EXP: | |
2717 | case BINOP_CONCAT: | |
2718 | case BINOP_LOGICAL_AND: | |
2719 | case BINOP_LOGICAL_OR: | |
2720 | case BINOP_BITWISE_AND: | |
2721 | case BINOP_BITWISE_IOR: | |
2722 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2723 | |
4c4b4cd2 PH |
2724 | case BINOP_EQUAL: |
2725 | case BINOP_NOTEQUAL: | |
2726 | case BINOP_LESS: | |
2727 | case BINOP_GTR: | |
2728 | case BINOP_LEQ: | |
2729 | case BINOP_GEQ: | |
14f9c5c9 | 2730 | |
4c4b4cd2 PH |
2731 | case BINOP_REPEAT: |
2732 | case BINOP_SUBSCRIPT: | |
2733 | case BINOP_COMMA: | |
40c8aaa9 JB |
2734 | *pos += 1; |
2735 | nargs = 2; | |
2736 | break; | |
14f9c5c9 | 2737 | |
4c4b4cd2 PH |
2738 | case UNOP_NEG: |
2739 | case UNOP_PLUS: | |
2740 | case UNOP_LOGICAL_NOT: | |
2741 | case UNOP_ABS: | |
2742 | case UNOP_IND: | |
2743 | *pos += 1; | |
2744 | nargs = 1; | |
2745 | break; | |
14f9c5c9 | 2746 | |
4c4b4cd2 PH |
2747 | case OP_LONG: |
2748 | case OP_DOUBLE: | |
2749 | case OP_VAR_VALUE: | |
2750 | *pos += 4; | |
2751 | break; | |
14f9c5c9 | 2752 | |
4c4b4cd2 PH |
2753 | case OP_TYPE: |
2754 | case OP_BOOL: | |
2755 | case OP_LAST: | |
4c4b4cd2 PH |
2756 | case OP_INTERNALVAR: |
2757 | *pos += 3; | |
2758 | break; | |
14f9c5c9 | 2759 | |
4c4b4cd2 PH |
2760 | case UNOP_MEMVAL: |
2761 | *pos += 3; | |
2762 | nargs = 1; | |
2763 | break; | |
2764 | ||
67f3407f DJ |
2765 | case OP_REGISTER: |
2766 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2767 | break; | |
2768 | ||
4c4b4cd2 PH |
2769 | case STRUCTOP_STRUCT: |
2770 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2771 | nargs = 1; | |
2772 | break; | |
2773 | ||
4c4b4cd2 | 2774 | case TERNOP_SLICE: |
4c4b4cd2 PH |
2775 | *pos += 1; |
2776 | nargs = 3; | |
2777 | break; | |
2778 | ||
52ce6436 | 2779 | case OP_STRING: |
14f9c5c9 | 2780 | break; |
4c4b4cd2 PH |
2781 | |
2782 | default: | |
323e0a4a | 2783 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
2784 | } |
2785 | ||
76a01679 | 2786 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
2787 | for (i = 0; i < nargs; i += 1) |
2788 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
2789 | argvec[i] = NULL; | |
2790 | exp = *expp; | |
2791 | ||
2792 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
2793 | switch (op) |
2794 | { | |
2795 | default: | |
2796 | break; | |
2797 | ||
14f9c5c9 | 2798 | case OP_VAR_VALUE: |
4c4b4cd2 | 2799 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
2800 | { |
2801 | struct ada_symbol_info *candidates; | |
2802 | int n_candidates; | |
2803 | ||
2804 | n_candidates = | |
2805 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
2806 | (exp->elts[pc + 2].symbol), | |
2807 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
2808 | &candidates); | |
2809 | ||
2810 | if (n_candidates > 1) | |
2811 | { | |
2812 | /* Types tend to get re-introduced locally, so if there | |
2813 | are any local symbols that are not types, first filter | |
2814 | out all types. */ | |
2815 | int j; | |
2816 | for (j = 0; j < n_candidates; j += 1) | |
2817 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
2818 | { | |
2819 | case LOC_REGISTER: | |
2820 | case LOC_ARG: | |
2821 | case LOC_REF_ARG: | |
76a01679 JB |
2822 | case LOC_REGPARM_ADDR: |
2823 | case LOC_LOCAL: | |
76a01679 | 2824 | case LOC_COMPUTED: |
76a01679 JB |
2825 | goto FoundNonType; |
2826 | default: | |
2827 | break; | |
2828 | } | |
2829 | FoundNonType: | |
2830 | if (j < n_candidates) | |
2831 | { | |
2832 | j = 0; | |
2833 | while (j < n_candidates) | |
2834 | { | |
2835 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
2836 | { | |
2837 | candidates[j] = candidates[n_candidates - 1]; | |
2838 | n_candidates -= 1; | |
2839 | } | |
2840 | else | |
2841 | j += 1; | |
2842 | } | |
2843 | } | |
2844 | } | |
2845 | ||
2846 | if (n_candidates == 0) | |
323e0a4a | 2847 | error (_("No definition found for %s"), |
76a01679 JB |
2848 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2849 | else if (n_candidates == 1) | |
2850 | i = 0; | |
2851 | else if (deprocedure_p | |
2852 | && !is_nonfunction (candidates, n_candidates)) | |
2853 | { | |
06d5cf63 JB |
2854 | i = ada_resolve_function |
2855 | (candidates, n_candidates, NULL, 0, | |
2856 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
2857 | context_type); | |
76a01679 | 2858 | if (i < 0) |
323e0a4a | 2859 | error (_("Could not find a match for %s"), |
76a01679 JB |
2860 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2861 | } | |
2862 | else | |
2863 | { | |
323e0a4a | 2864 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
2865 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2866 | user_select_syms (candidates, n_candidates, 1); | |
2867 | i = 0; | |
2868 | } | |
2869 | ||
2870 | exp->elts[pc + 1].block = candidates[i].block; | |
2871 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
2872 | if (innermost_block == NULL |
2873 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
2874 | innermost_block = candidates[i].block; |
2875 | } | |
2876 | ||
2877 | if (deprocedure_p | |
2878 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
2879 | == TYPE_CODE_FUNC)) | |
2880 | { | |
2881 | replace_operator_with_call (expp, pc, 0, 0, | |
2882 | exp->elts[pc + 2].symbol, | |
2883 | exp->elts[pc + 1].block); | |
2884 | exp = *expp; | |
2885 | } | |
14f9c5c9 AS |
2886 | break; |
2887 | ||
2888 | case OP_FUNCALL: | |
2889 | { | |
4c4b4cd2 | 2890 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 2891 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
2892 | { |
2893 | struct ada_symbol_info *candidates; | |
2894 | int n_candidates; | |
2895 | ||
2896 | n_candidates = | |
76a01679 JB |
2897 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
2898 | (exp->elts[pc + 5].symbol), | |
2899 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
2900 | &candidates); | |
4c4b4cd2 PH |
2901 | if (n_candidates == 1) |
2902 | i = 0; | |
2903 | else | |
2904 | { | |
06d5cf63 JB |
2905 | i = ada_resolve_function |
2906 | (candidates, n_candidates, | |
2907 | argvec, nargs, | |
2908 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
2909 | context_type); | |
4c4b4cd2 | 2910 | if (i < 0) |
323e0a4a | 2911 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
2912 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
2913 | } | |
2914 | ||
2915 | exp->elts[pc + 4].block = candidates[i].block; | |
2916 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
2917 | if (innermost_block == NULL |
2918 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
2919 | innermost_block = candidates[i].block; |
2920 | } | |
14f9c5c9 AS |
2921 | } |
2922 | break; | |
2923 | case BINOP_ADD: | |
2924 | case BINOP_SUB: | |
2925 | case BINOP_MUL: | |
2926 | case BINOP_DIV: | |
2927 | case BINOP_REM: | |
2928 | case BINOP_MOD: | |
2929 | case BINOP_CONCAT: | |
2930 | case BINOP_BITWISE_AND: | |
2931 | case BINOP_BITWISE_IOR: | |
2932 | case BINOP_BITWISE_XOR: | |
2933 | case BINOP_EQUAL: | |
2934 | case BINOP_NOTEQUAL: | |
2935 | case BINOP_LESS: | |
2936 | case BINOP_GTR: | |
2937 | case BINOP_LEQ: | |
2938 | case BINOP_GEQ: | |
2939 | case BINOP_EXP: | |
2940 | case UNOP_NEG: | |
2941 | case UNOP_PLUS: | |
2942 | case UNOP_LOGICAL_NOT: | |
2943 | case UNOP_ABS: | |
2944 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
2945 | { |
2946 | struct ada_symbol_info *candidates; | |
2947 | int n_candidates; | |
2948 | ||
2949 | n_candidates = | |
2950 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
2951 | (struct block *) NULL, VAR_DOMAIN, | |
2952 | &candidates); | |
2953 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 2954 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
2955 | if (i < 0) |
2956 | break; | |
2957 | ||
76a01679 JB |
2958 | replace_operator_with_call (expp, pc, nargs, 1, |
2959 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
2960 | exp = *expp; |
2961 | } | |
14f9c5c9 | 2962 | break; |
4c4b4cd2 PH |
2963 | |
2964 | case OP_TYPE: | |
b3dbf008 | 2965 | case OP_REGISTER: |
4c4b4cd2 | 2966 | return NULL; |
14f9c5c9 AS |
2967 | } |
2968 | ||
2969 | *pos = pc; | |
2970 | return evaluate_subexp_type (exp, pos); | |
2971 | } | |
2972 | ||
2973 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 PH |
2974 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
2975 | a non-pointer. A type of 'void' (which is never a valid expression type) | |
2976 | by convention matches anything. */ | |
14f9c5c9 | 2977 | /* The term "match" here is rather loose. The match is heuristic and |
4c4b4cd2 | 2978 | liberal. FIXME: TOO liberal, in fact. */ |
14f9c5c9 AS |
2979 | |
2980 | static int | |
4dc81987 | 2981 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 2982 | { |
61ee279c PH |
2983 | ftype = ada_check_typedef (ftype); |
2984 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
2985 | |
2986 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
2987 | ftype = TYPE_TARGET_TYPE (ftype); | |
2988 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
2989 | atype = TYPE_TARGET_TYPE (atype); | |
2990 | ||
d2e4a39e | 2991 | if (TYPE_CODE (ftype) == TYPE_CODE_VOID |
14f9c5c9 AS |
2992 | || TYPE_CODE (atype) == TYPE_CODE_VOID) |
2993 | return 1; | |
2994 | ||
d2e4a39e | 2995 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
2996 | { |
2997 | default: | |
2998 | return 1; | |
2999 | case TYPE_CODE_PTR: | |
3000 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3001 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3002 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3003 | else |
1265e4aa JB |
3004 | return (may_deref |
3005 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3006 | case TYPE_CODE_INT: |
3007 | case TYPE_CODE_ENUM: | |
3008 | case TYPE_CODE_RANGE: | |
3009 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3010 | { |
3011 | case TYPE_CODE_INT: | |
3012 | case TYPE_CODE_ENUM: | |
3013 | case TYPE_CODE_RANGE: | |
3014 | return 1; | |
3015 | default: | |
3016 | return 0; | |
3017 | } | |
14f9c5c9 AS |
3018 | |
3019 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3020 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3021 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3022 | |
3023 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3024 | if (ada_is_array_descriptor_type (ftype)) |
3025 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3026 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3027 | else |
4c4b4cd2 PH |
3028 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3029 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3030 | |
3031 | case TYPE_CODE_UNION: | |
3032 | case TYPE_CODE_FLT: | |
3033 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3034 | } | |
3035 | } | |
3036 | ||
3037 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3038 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3039 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3040 | argument function. */ |
14f9c5c9 AS |
3041 | |
3042 | static int | |
d2e4a39e | 3043 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3044 | { |
3045 | int i; | |
d2e4a39e | 3046 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3047 | |
1265e4aa JB |
3048 | if (SYMBOL_CLASS (func) == LOC_CONST |
3049 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3050 | return (n_actuals == 0); |
3051 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3052 | return 0; | |
3053 | ||
3054 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3055 | return 0; | |
3056 | ||
3057 | for (i = 0; i < n_actuals; i += 1) | |
3058 | { | |
4c4b4cd2 | 3059 | if (actuals[i] == NULL) |
76a01679 JB |
3060 | return 0; |
3061 | else | |
3062 | { | |
61ee279c | 3063 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i)); |
df407dfe | 3064 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3065 | |
76a01679 JB |
3066 | if (!ada_type_match (ftype, atype, 1)) |
3067 | return 0; | |
3068 | } | |
14f9c5c9 AS |
3069 | } |
3070 | return 1; | |
3071 | } | |
3072 | ||
3073 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3074 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3075 | FUNC_TYPE is not a valid function type with a non-null return type | |
3076 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3077 | ||
3078 | static int | |
d2e4a39e | 3079 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3080 | { |
d2e4a39e | 3081 | struct type *return_type; |
14f9c5c9 AS |
3082 | |
3083 | if (func_type == NULL) | |
3084 | return 1; | |
3085 | ||
4c4b4cd2 PH |
3086 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3087 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3088 | else | |
3089 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3090 | if (return_type == NULL) |
3091 | return 1; | |
3092 | ||
4c4b4cd2 | 3093 | context_type = base_type (context_type); |
14f9c5c9 AS |
3094 | |
3095 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3096 | return context_type == NULL || return_type == context_type; | |
3097 | else if (context_type == NULL) | |
3098 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3099 | else | |
3100 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3101 | } | |
3102 | ||
3103 | ||
4c4b4cd2 | 3104 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3105 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3106 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3107 | that returns that type, then eliminate matches that don't. If | |
3108 | CONTEXT_TYPE is void and there is at least one match that does not | |
3109 | return void, eliminate all matches that do. | |
3110 | ||
14f9c5c9 AS |
3111 | Asks the user if there is more than one match remaining. Returns -1 |
3112 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3113 | solely for messages. May re-arrange and modify SYMS in |
3114 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3115 | |
4c4b4cd2 PH |
3116 | static int |
3117 | ada_resolve_function (struct ada_symbol_info syms[], | |
3118 | int nsyms, struct value **args, int nargs, | |
3119 | const char *name, struct type *context_type) | |
14f9c5c9 AS |
3120 | { |
3121 | int k; | |
4c4b4cd2 | 3122 | int m; /* Number of hits */ |
d2e4a39e AS |
3123 | struct type *fallback; |
3124 | struct type *return_type; | |
14f9c5c9 AS |
3125 | |
3126 | return_type = context_type; | |
3127 | if (context_type == NULL) | |
3128 | fallback = builtin_type_void; | |
3129 | else | |
3130 | fallback = NULL; | |
3131 | ||
d2e4a39e | 3132 | m = 0; |
14f9c5c9 AS |
3133 | while (1) |
3134 | { | |
3135 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3136 | { |
61ee279c | 3137 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3138 | |
3139 | if (ada_args_match (syms[k].sym, args, nargs) | |
3140 | && return_match (type, return_type)) | |
3141 | { | |
3142 | syms[m] = syms[k]; | |
3143 | m += 1; | |
3144 | } | |
3145 | } | |
14f9c5c9 | 3146 | if (m > 0 || return_type == fallback) |
4c4b4cd2 | 3147 | break; |
14f9c5c9 | 3148 | else |
4c4b4cd2 | 3149 | return_type = fallback; |
14f9c5c9 AS |
3150 | } |
3151 | ||
3152 | if (m == 0) | |
3153 | return -1; | |
3154 | else if (m > 1) | |
3155 | { | |
323e0a4a | 3156 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3157 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3158 | return 0; |
3159 | } | |
3160 | return 0; | |
3161 | } | |
3162 | ||
4c4b4cd2 PH |
3163 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3164 | in a listing of choices during disambiguation (see sort_choices, below). | |
3165 | The idea is that overloadings of a subprogram name from the | |
3166 | same package should sort in their source order. We settle for ordering | |
3167 | such symbols by their trailing number (__N or $N). */ | |
3168 | ||
14f9c5c9 | 3169 | static int |
4c4b4cd2 | 3170 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3171 | { |
3172 | if (N1 == NULL) | |
3173 | return 0; | |
3174 | else if (N0 == NULL) | |
3175 | return 1; | |
3176 | else | |
3177 | { | |
3178 | int k0, k1; | |
d2e4a39e | 3179 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3180 | ; |
d2e4a39e | 3181 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3182 | ; |
d2e4a39e | 3183 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3184 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3185 | { | |
3186 | int n0, n1; | |
3187 | n0 = k0; | |
3188 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3189 | n0 -= 1; | |
3190 | n1 = k1; | |
3191 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3192 | n1 -= 1; | |
3193 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3194 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3195 | } | |
14f9c5c9 AS |
3196 | return (strcmp (N0, N1) < 0); |
3197 | } | |
3198 | } | |
d2e4a39e | 3199 | |
4c4b4cd2 PH |
3200 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3201 | encoded names. */ | |
3202 | ||
d2e4a39e | 3203 | static void |
4c4b4cd2 | 3204 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3205 | { |
4c4b4cd2 | 3206 | int i; |
d2e4a39e | 3207 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3208 | { |
4c4b4cd2 | 3209 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3210 | int j; |
3211 | ||
d2e4a39e | 3212 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3213 | { |
3214 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3215 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3216 | break; | |
3217 | syms[j + 1] = syms[j]; | |
3218 | } | |
d2e4a39e | 3219 | syms[j + 1] = sym; |
14f9c5c9 AS |
3220 | } |
3221 | } | |
3222 | ||
4c4b4cd2 PH |
3223 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3224 | by asking the user (if necessary), returning the number selected, | |
3225 | and setting the first elements of SYMS items. Error if no symbols | |
3226 | selected. */ | |
14f9c5c9 AS |
3227 | |
3228 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3229 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3230 | |
3231 | int | |
4c4b4cd2 | 3232 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3233 | { |
3234 | int i; | |
d2e4a39e | 3235 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3236 | int n_chosen; |
3237 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3238 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3239 | |
3240 | if (max_results < 1) | |
323e0a4a | 3241 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3242 | if (nsyms <= 1) |
3243 | return nsyms; | |
3244 | ||
717d2f5a JB |
3245 | if (select_mode == multiple_symbols_cancel) |
3246 | error (_("\ | |
3247 | canceled because the command is ambiguous\n\ | |
3248 | See set/show multiple-symbol.")); | |
3249 | ||
3250 | /* If select_mode is "all", then return all possible symbols. | |
3251 | Only do that if more than one symbol can be selected, of course. | |
3252 | Otherwise, display the menu as usual. */ | |
3253 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3254 | return nsyms; | |
3255 | ||
323e0a4a | 3256 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3257 | if (max_results > 1) |
323e0a4a | 3258 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3259 | |
4c4b4cd2 | 3260 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3261 | |
3262 | for (i = 0; i < nsyms; i += 1) | |
3263 | { | |
4c4b4cd2 PH |
3264 | if (syms[i].sym == NULL) |
3265 | continue; | |
3266 | ||
3267 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3268 | { | |
76a01679 JB |
3269 | struct symtab_and_line sal = |
3270 | find_function_start_sal (syms[i].sym, 1); | |
323e0a4a AC |
3271 | if (sal.symtab == NULL) |
3272 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3273 | i + first_choice, | |
3274 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3275 | sal.line); | |
3276 | else | |
3277 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3278 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3279 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3280 | continue; |
3281 | } | |
d2e4a39e | 3282 | else |
4c4b4cd2 PH |
3283 | { |
3284 | int is_enumeral = | |
3285 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3286 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3287 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3288 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3289 | |
3290 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3291 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3292 | i + first_choice, |
3293 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3294 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3295 | else if (is_enumeral |
3296 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3297 | { |
a3f17187 | 3298 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3299 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3300 | gdb_stdout, -1, 0); | |
323e0a4a | 3301 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3302 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3303 | } | |
3304 | else if (symtab != NULL) | |
3305 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3306 | ? _("[%d] %s in %s (enumeral)\n") |
3307 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3308 | i + first_choice, |
3309 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3310 | symtab->filename); | |
3311 | else | |
3312 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3313 | ? _("[%d] %s (enumeral)\n") |
3314 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3315 | i + first_choice, |
3316 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3317 | } | |
14f9c5c9 | 3318 | } |
d2e4a39e | 3319 | |
14f9c5c9 | 3320 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3321 | "overload-choice"); |
14f9c5c9 AS |
3322 | |
3323 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3324 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3325 | |
3326 | return n_chosen; | |
3327 | } | |
3328 | ||
3329 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3330 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3331 | order in CHOICES[0 .. N-1], and return N. |
3332 | ||
3333 | The user types choices as a sequence of numbers on one line | |
3334 | separated by blanks, encoding them as follows: | |
3335 | ||
4c4b4cd2 | 3336 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3337 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3338 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3339 | ||
4c4b4cd2 | 3340 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3341 | |
3342 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3343 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3344 | |
3345 | int | |
d2e4a39e | 3346 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3347 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3348 | { |
d2e4a39e | 3349 | char *args; |
0bcd0149 | 3350 | char *prompt; |
14f9c5c9 AS |
3351 | int n_chosen; |
3352 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3353 | |
14f9c5c9 AS |
3354 | prompt = getenv ("PS2"); |
3355 | if (prompt == NULL) | |
0bcd0149 | 3356 | prompt = "> "; |
14f9c5c9 | 3357 | |
0bcd0149 | 3358 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3359 | |
14f9c5c9 | 3360 | if (args == NULL) |
323e0a4a | 3361 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3362 | |
3363 | n_chosen = 0; | |
76a01679 | 3364 | |
4c4b4cd2 PH |
3365 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3366 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3367 | while (1) |
3368 | { | |
d2e4a39e | 3369 | char *args2; |
14f9c5c9 AS |
3370 | int choice, j; |
3371 | ||
3372 | while (isspace (*args)) | |
4c4b4cd2 | 3373 | args += 1; |
14f9c5c9 | 3374 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3375 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3376 | else if (*args == '\0') |
4c4b4cd2 | 3377 | break; |
14f9c5c9 AS |
3378 | |
3379 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3380 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3381 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3382 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3383 | args = args2; |
3384 | ||
d2e4a39e | 3385 | if (choice == 0) |
323e0a4a | 3386 | error (_("cancelled")); |
14f9c5c9 AS |
3387 | |
3388 | if (choice < first_choice) | |
4c4b4cd2 PH |
3389 | { |
3390 | n_chosen = n_choices; | |
3391 | for (j = 0; j < n_choices; j += 1) | |
3392 | choices[j] = j; | |
3393 | break; | |
3394 | } | |
14f9c5c9 AS |
3395 | choice -= first_choice; |
3396 | ||
d2e4a39e | 3397 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3398 | { |
3399 | } | |
14f9c5c9 AS |
3400 | |
3401 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3402 | { |
3403 | int k; | |
3404 | for (k = n_chosen - 1; k > j; k -= 1) | |
3405 | choices[k + 1] = choices[k]; | |
3406 | choices[j + 1] = choice; | |
3407 | n_chosen += 1; | |
3408 | } | |
14f9c5c9 AS |
3409 | } |
3410 | ||
3411 | if (n_chosen > max_results) | |
323e0a4a | 3412 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3413 | |
14f9c5c9 AS |
3414 | return n_chosen; |
3415 | } | |
3416 | ||
4c4b4cd2 PH |
3417 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3418 | on the function identified by SYM and BLOCK, and taking NARGS | |
3419 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3420 | |
3421 | static void | |
d2e4a39e | 3422 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3423 | int oplen, struct symbol *sym, |
3424 | struct block *block) | |
14f9c5c9 AS |
3425 | { |
3426 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3427 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3428 | struct expression *newexp = (struct expression *) |
14f9c5c9 | 3429 | xmalloc (sizeof (struct expression) |
4c4b4cd2 | 3430 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3431 | struct expression *exp = *expp; |
14f9c5c9 AS |
3432 | |
3433 | newexp->nelts = exp->nelts + 7 - oplen; | |
3434 | newexp->language_defn = exp->language_defn; | |
3435 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3436 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3437 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3438 | |
3439 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3440 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3441 | ||
3442 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3443 | newexp->elts[pc + 4].block = block; | |
3444 | newexp->elts[pc + 5].symbol = sym; | |
3445 | ||
3446 | *expp = newexp; | |
aacb1f0a | 3447 | xfree (exp); |
d2e4a39e | 3448 | } |
14f9c5c9 AS |
3449 | |
3450 | /* Type-class predicates */ | |
3451 | ||
4c4b4cd2 PH |
3452 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3453 | or FLOAT). */ | |
14f9c5c9 AS |
3454 | |
3455 | static int | |
d2e4a39e | 3456 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3457 | { |
3458 | if (type == NULL) | |
3459 | return 0; | |
d2e4a39e AS |
3460 | else |
3461 | { | |
3462 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3463 | { |
3464 | case TYPE_CODE_INT: | |
3465 | case TYPE_CODE_FLT: | |
3466 | return 1; | |
3467 | case TYPE_CODE_RANGE: | |
3468 | return (type == TYPE_TARGET_TYPE (type) | |
3469 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3470 | default: | |
3471 | return 0; | |
3472 | } | |
d2e4a39e | 3473 | } |
14f9c5c9 AS |
3474 | } |
3475 | ||
4c4b4cd2 | 3476 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3477 | |
3478 | static int | |
d2e4a39e | 3479 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3480 | { |
3481 | if (type == NULL) | |
3482 | return 0; | |
d2e4a39e AS |
3483 | else |
3484 | { | |
3485 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3486 | { |
3487 | case TYPE_CODE_INT: | |
3488 | return 1; | |
3489 | case TYPE_CODE_RANGE: | |
3490 | return (type == TYPE_TARGET_TYPE (type) | |
3491 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3492 | default: | |
3493 | return 0; | |
3494 | } | |
d2e4a39e | 3495 | } |
14f9c5c9 AS |
3496 | } |
3497 | ||
4c4b4cd2 | 3498 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3499 | |
3500 | static int | |
d2e4a39e | 3501 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3502 | { |
3503 | if (type == NULL) | |
3504 | return 0; | |
d2e4a39e AS |
3505 | else |
3506 | { | |
3507 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3508 | { |
3509 | case TYPE_CODE_INT: | |
3510 | case TYPE_CODE_RANGE: | |
3511 | case TYPE_CODE_ENUM: | |
3512 | case TYPE_CODE_FLT: | |
3513 | return 1; | |
3514 | default: | |
3515 | return 0; | |
3516 | } | |
d2e4a39e | 3517 | } |
14f9c5c9 AS |
3518 | } |
3519 | ||
4c4b4cd2 | 3520 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3521 | |
3522 | static int | |
d2e4a39e | 3523 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3524 | { |
3525 | if (type == NULL) | |
3526 | return 0; | |
d2e4a39e AS |
3527 | else |
3528 | { | |
3529 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3530 | { |
3531 | case TYPE_CODE_INT: | |
3532 | case TYPE_CODE_RANGE: | |
3533 | case TYPE_CODE_ENUM: | |
3534 | return 1; | |
3535 | default: | |
3536 | return 0; | |
3537 | } | |
d2e4a39e | 3538 | } |
14f9c5c9 AS |
3539 | } |
3540 | ||
4c4b4cd2 PH |
3541 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3542 | a user-defined function. Errs on the side of pre-defined operators | |
3543 | (i.e., result 0). */ | |
14f9c5c9 AS |
3544 | |
3545 | static int | |
d2e4a39e | 3546 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3547 | { |
76a01679 | 3548 | struct type *type0 = |
df407dfe | 3549 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3550 | struct type *type1 = |
df407dfe | 3551 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3552 | |
4c4b4cd2 PH |
3553 | if (type0 == NULL) |
3554 | return 0; | |
3555 | ||
14f9c5c9 AS |
3556 | switch (op) |
3557 | { | |
3558 | default: | |
3559 | return 0; | |
3560 | ||
3561 | case BINOP_ADD: | |
3562 | case BINOP_SUB: | |
3563 | case BINOP_MUL: | |
3564 | case BINOP_DIV: | |
d2e4a39e | 3565 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3566 | |
3567 | case BINOP_REM: | |
3568 | case BINOP_MOD: | |
3569 | case BINOP_BITWISE_AND: | |
3570 | case BINOP_BITWISE_IOR: | |
3571 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3572 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3573 | |
3574 | case BINOP_EQUAL: | |
3575 | case BINOP_NOTEQUAL: | |
3576 | case BINOP_LESS: | |
3577 | case BINOP_GTR: | |
3578 | case BINOP_LEQ: | |
3579 | case BINOP_GEQ: | |
d2e4a39e | 3580 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3581 | |
3582 | case BINOP_CONCAT: | |
ee90b9ab | 3583 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3584 | |
3585 | case BINOP_EXP: | |
d2e4a39e | 3586 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3587 | |
3588 | case UNOP_NEG: | |
3589 | case UNOP_PLUS: | |
3590 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3591 | case UNOP_ABS: |
3592 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3593 | |
3594 | } | |
3595 | } | |
3596 | \f | |
4c4b4cd2 | 3597 | /* Renaming */ |
14f9c5c9 | 3598 | |
aeb5907d JB |
3599 | /* NOTES: |
3600 | ||
3601 | 1. In the following, we assume that a renaming type's name may | |
3602 | have an ___XD suffix. It would be nice if this went away at some | |
3603 | point. | |
3604 | 2. We handle both the (old) purely type-based representation of | |
3605 | renamings and the (new) variable-based encoding. At some point, | |
3606 | it is devoutly to be hoped that the former goes away | |
3607 | (FIXME: hilfinger-2007-07-09). | |
3608 | 3. Subprogram renamings are not implemented, although the XRS | |
3609 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3610 | ||
3611 | /* If SYM encodes a renaming, | |
3612 | ||
3613 | <renaming> renames <renamed entity>, | |
3614 | ||
3615 | sets *LEN to the length of the renamed entity's name, | |
3616 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3617 | the string describing the subcomponent selected from the renamed | |
3618 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming | |
3619 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR | |
3620 | are undefined). Otherwise, returns a value indicating the category | |
3621 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3622 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3623 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3624 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3625 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3626 | may be NULL, in which case they are not assigned. | |
3627 | ||
3628 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3629 | ||
3630 | enum ada_renaming_category | |
3631 | ada_parse_renaming (struct symbol *sym, | |
3632 | const char **renamed_entity, int *len, | |
3633 | const char **renaming_expr) | |
3634 | { | |
3635 | enum ada_renaming_category kind; | |
3636 | const char *info; | |
3637 | const char *suffix; | |
3638 | ||
3639 | if (sym == NULL) | |
3640 | return ADA_NOT_RENAMING; | |
3641 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3642 | { |
aeb5907d JB |
3643 | default: |
3644 | return ADA_NOT_RENAMING; | |
3645 | case LOC_TYPEDEF: | |
3646 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3647 | renamed_entity, len, renaming_expr); | |
3648 | case LOC_LOCAL: | |
3649 | case LOC_STATIC: | |
3650 | case LOC_COMPUTED: | |
3651 | case LOC_OPTIMIZED_OUT: | |
3652 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3653 | if (info == NULL) | |
3654 | return ADA_NOT_RENAMING; | |
3655 | switch (info[5]) | |
3656 | { | |
3657 | case '_': | |
3658 | kind = ADA_OBJECT_RENAMING; | |
3659 | info += 6; | |
3660 | break; | |
3661 | case 'E': | |
3662 | kind = ADA_EXCEPTION_RENAMING; | |
3663 | info += 7; | |
3664 | break; | |
3665 | case 'P': | |
3666 | kind = ADA_PACKAGE_RENAMING; | |
3667 | info += 7; | |
3668 | break; | |
3669 | case 'S': | |
3670 | kind = ADA_SUBPROGRAM_RENAMING; | |
3671 | info += 7; | |
3672 | break; | |
3673 | default: | |
3674 | return ADA_NOT_RENAMING; | |
3675 | } | |
14f9c5c9 | 3676 | } |
4c4b4cd2 | 3677 | |
aeb5907d JB |
3678 | if (renamed_entity != NULL) |
3679 | *renamed_entity = info; | |
3680 | suffix = strstr (info, "___XE"); | |
3681 | if (suffix == NULL || suffix == info) | |
3682 | return ADA_NOT_RENAMING; | |
3683 | if (len != NULL) | |
3684 | *len = strlen (info) - strlen (suffix); | |
3685 | suffix += 5; | |
3686 | if (renaming_expr != NULL) | |
3687 | *renaming_expr = suffix; | |
3688 | return kind; | |
3689 | } | |
3690 | ||
3691 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3692 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3693 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3694 | ADA_NOT_RENAMING otherwise. */ | |
3695 | static enum ada_renaming_category | |
3696 | parse_old_style_renaming (struct type *type, | |
3697 | const char **renamed_entity, int *len, | |
3698 | const char **renaming_expr) | |
3699 | { | |
3700 | enum ada_renaming_category kind; | |
3701 | const char *name; | |
3702 | const char *info; | |
3703 | const char *suffix; | |
14f9c5c9 | 3704 | |
aeb5907d JB |
3705 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3706 | || TYPE_NFIELDS (type) != 1) | |
3707 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3708 | |
aeb5907d JB |
3709 | name = type_name_no_tag (type); |
3710 | if (name == NULL) | |
3711 | return ADA_NOT_RENAMING; | |
3712 | ||
3713 | name = strstr (name, "___XR"); | |
3714 | if (name == NULL) | |
3715 | return ADA_NOT_RENAMING; | |
3716 | switch (name[5]) | |
3717 | { | |
3718 | case '\0': | |
3719 | case '_': | |
3720 | kind = ADA_OBJECT_RENAMING; | |
3721 | break; | |
3722 | case 'E': | |
3723 | kind = ADA_EXCEPTION_RENAMING; | |
3724 | break; | |
3725 | case 'P': | |
3726 | kind = ADA_PACKAGE_RENAMING; | |
3727 | break; | |
3728 | case 'S': | |
3729 | kind = ADA_SUBPROGRAM_RENAMING; | |
3730 | break; | |
3731 | default: | |
3732 | return ADA_NOT_RENAMING; | |
3733 | } | |
14f9c5c9 | 3734 | |
aeb5907d JB |
3735 | info = TYPE_FIELD_NAME (type, 0); |
3736 | if (info == NULL) | |
3737 | return ADA_NOT_RENAMING; | |
3738 | if (renamed_entity != NULL) | |
3739 | *renamed_entity = info; | |
3740 | suffix = strstr (info, "___XE"); | |
3741 | if (renaming_expr != NULL) | |
3742 | *renaming_expr = suffix + 5; | |
3743 | if (suffix == NULL || suffix == info) | |
3744 | return ADA_NOT_RENAMING; | |
3745 | if (len != NULL) | |
3746 | *len = suffix - info; | |
3747 | return kind; | |
3748 | } | |
52ce6436 | 3749 | |
14f9c5c9 | 3750 | \f |
d2e4a39e | 3751 | |
4c4b4cd2 | 3752 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3753 | |
4c4b4cd2 PH |
3754 | /* Return an lvalue containing the value VAL. This is the identity on |
3755 | lvalues, and otherwise has the side-effect of pushing a copy of VAL | |
3756 | on the stack, using and updating *SP as the stack pointer, and | |
42ae5230 | 3757 | returning an lvalue whose value_address points to the copy. */ |
14f9c5c9 | 3758 | |
d2e4a39e | 3759 | static struct value * |
4c4b4cd2 | 3760 | ensure_lval (struct value *val, CORE_ADDR *sp) |
14f9c5c9 | 3761 | { |
c3e5cd34 PH |
3762 | if (! VALUE_LVAL (val)) |
3763 | { | |
df407dfe | 3764 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
c3e5cd34 PH |
3765 | |
3766 | /* The following is taken from the structure-return code in | |
3767 | call_function_by_hand. FIXME: Therefore, some refactoring seems | |
3768 | indicated. */ | |
4d1e7dd1 | 3769 | if (gdbarch_inner_than (current_gdbarch, 1, 2)) |
c3e5cd34 | 3770 | { |
42ae5230 | 3771 | /* Stack grows downward. Align SP and value_address (val) after |
c3e5cd34 PH |
3772 | reserving sufficient space. */ |
3773 | *sp -= len; | |
3774 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3775 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
42ae5230 | 3776 | set_value_address (val, *sp); |
c3e5cd34 PH |
3777 | } |
3778 | else | |
3779 | { | |
3780 | /* Stack grows upward. Align the frame, allocate space, and | |
3781 | then again, re-align the frame. */ | |
3782 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3783 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
42ae5230 | 3784 | set_value_address (val, *sp); |
c3e5cd34 PH |
3785 | *sp += len; |
3786 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3787 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3788 | } | |
a84a8a0d | 3789 | VALUE_LVAL (val) = lval_memory; |
14f9c5c9 | 3790 | |
42ae5230 | 3791 | write_memory (value_address (val), value_contents_raw (val), len); |
c3e5cd34 | 3792 | } |
14f9c5c9 AS |
3793 | |
3794 | return val; | |
3795 | } | |
3796 | ||
3797 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3798 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3799 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 3800 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 3801 | |
a93c0eb6 JB |
3802 | struct value * |
3803 | ada_convert_actual (struct value *actual, struct type *formal_type0, | |
3804 | CORE_ADDR *sp) | |
14f9c5c9 | 3805 | { |
df407dfe | 3806 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 3807 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
3808 | struct type *formal_target = |
3809 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 3810 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
3811 | struct type *actual_target = |
3812 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 3813 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 3814 | |
4c4b4cd2 | 3815 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 AS |
3816 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
3817 | return make_array_descriptor (formal_type, actual, sp); | |
a84a8a0d JB |
3818 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
3819 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 3820 | { |
a84a8a0d | 3821 | struct value *result; |
14f9c5c9 | 3822 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3823 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 3824 | result = desc_data (actual); |
14f9c5c9 | 3825 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
3826 | { |
3827 | if (VALUE_LVAL (actual) != lval_memory) | |
3828 | { | |
3829 | struct value *val; | |
df407dfe | 3830 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 3831 | val = allocate_value (actual_type); |
990a07ab | 3832 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 3833 | (char *) value_contents (actual), |
4c4b4cd2 PH |
3834 | TYPE_LENGTH (actual_type)); |
3835 | actual = ensure_lval (val, sp); | |
3836 | } | |
a84a8a0d | 3837 | result = value_addr (actual); |
4c4b4cd2 | 3838 | } |
a84a8a0d JB |
3839 | else |
3840 | return actual; | |
3841 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
3842 | } |
3843 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3844 | return ada_value_ind (actual); | |
3845 | ||
3846 | return actual; | |
3847 | } | |
3848 | ||
3849 | ||
4c4b4cd2 PH |
3850 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
3851 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 3852 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
3853 | to-descriptor type rather than a descriptor type), a struct value * |
3854 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 3855 | |
d2e4a39e AS |
3856 | static struct value * |
3857 | make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp) | |
14f9c5c9 | 3858 | { |
d2e4a39e AS |
3859 | struct type *bounds_type = desc_bounds_type (type); |
3860 | struct type *desc_type = desc_base_type (type); | |
3861 | struct value *descriptor = allocate_value (desc_type); | |
3862 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 3863 | int i; |
d2e4a39e | 3864 | |
df407dfe | 3865 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) |
14f9c5c9 | 3866 | { |
0fd88904 | 3867 | modify_general_field (value_contents_writeable (bounds), |
4c4b4cd2 PH |
3868 | value_as_long (ada_array_bound (arr, i, 0)), |
3869 | desc_bound_bitpos (bounds_type, i, 0), | |
3870 | desc_bound_bitsize (bounds_type, i, 0)); | |
0fd88904 | 3871 | modify_general_field (value_contents_writeable (bounds), |
4c4b4cd2 PH |
3872 | value_as_long (ada_array_bound (arr, i, 1)), |
3873 | desc_bound_bitpos (bounds_type, i, 1), | |
3874 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 3875 | } |
d2e4a39e | 3876 | |
4c4b4cd2 | 3877 | bounds = ensure_lval (bounds, sp); |
d2e4a39e | 3878 | |
0fd88904 | 3879 | modify_general_field (value_contents_writeable (descriptor), |
42ae5230 | 3880 | value_address (ensure_lval (arr, sp)), |
76a01679 JB |
3881 | fat_pntr_data_bitpos (desc_type), |
3882 | fat_pntr_data_bitsize (desc_type)); | |
4c4b4cd2 | 3883 | |
0fd88904 | 3884 | modify_general_field (value_contents_writeable (descriptor), |
42ae5230 | 3885 | value_address (bounds), |
4c4b4cd2 PH |
3886 | fat_pntr_bounds_bitpos (desc_type), |
3887 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 3888 | |
4c4b4cd2 | 3889 | descriptor = ensure_lval (descriptor, sp); |
14f9c5c9 AS |
3890 | |
3891 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3892 | return value_addr (descriptor); | |
3893 | else | |
3894 | return descriptor; | |
3895 | } | |
14f9c5c9 | 3896 | \f |
963a6417 PH |
3897 | /* Dummy definitions for an experimental caching module that is not |
3898 | * used in the public sources. */ | |
96d887e8 | 3899 | |
96d887e8 PH |
3900 | static int |
3901 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 3902 | struct symbol **sym, struct block **block) |
96d887e8 PH |
3903 | { |
3904 | return 0; | |
3905 | } | |
3906 | ||
3907 | static void | |
3908 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 3909 | struct block *block) |
96d887e8 PH |
3910 | { |
3911 | } | |
4c4b4cd2 PH |
3912 | \f |
3913 | /* Symbol Lookup */ | |
3914 | ||
3915 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
3916 | given DOMAIN, visible from lexical block BLOCK. */ | |
3917 | ||
3918 | static struct symbol * | |
3919 | standard_lookup (const char *name, const struct block *block, | |
3920 | domain_enum domain) | |
3921 | { | |
3922 | struct symbol *sym; | |
4c4b4cd2 | 3923 | |
2570f2b7 | 3924 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 3925 | return sym; |
2570f2b7 UW |
3926 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
3927 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
3928 | return sym; |
3929 | } | |
3930 | ||
3931 | ||
3932 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
3933 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
3934 | since they contend in overloading in the same way. */ | |
3935 | static int | |
3936 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
3937 | { | |
3938 | int i; | |
3939 | ||
3940 | for (i = 0; i < n; i += 1) | |
3941 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
3942 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
3943 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
3944 | return 1; |
3945 | ||
3946 | return 0; | |
3947 | } | |
3948 | ||
3949 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 3950 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
3951 | |
3952 | static int | |
d2e4a39e | 3953 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 3954 | { |
d2e4a39e | 3955 | if (type0 == type1) |
14f9c5c9 | 3956 | return 1; |
d2e4a39e | 3957 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
3958 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
3959 | return 0; | |
d2e4a39e | 3960 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
3961 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
3962 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 3963 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 3964 | return 1; |
d2e4a39e | 3965 | |
14f9c5c9 AS |
3966 | return 0; |
3967 | } | |
3968 | ||
3969 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 3970 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
3971 | |
3972 | static int | |
d2e4a39e | 3973 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
3974 | { |
3975 | if (sym0 == sym1) | |
3976 | return 1; | |
176620f1 | 3977 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
3978 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
3979 | return 0; | |
3980 | ||
d2e4a39e | 3981 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
3982 | { |
3983 | case LOC_UNDEF: | |
3984 | return 1; | |
3985 | case LOC_TYPEDEF: | |
3986 | { | |
4c4b4cd2 PH |
3987 | struct type *type0 = SYMBOL_TYPE (sym0); |
3988 | struct type *type1 = SYMBOL_TYPE (sym1); | |
3989 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
3990 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
3991 | int len0 = strlen (name0); | |
3992 | return | |
3993 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
3994 | && (equiv_types (type0, type1) | |
3995 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
3996 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
3997 | } |
3998 | case LOC_CONST: | |
3999 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4000 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4001 | default: |
4002 | return 0; | |
14f9c5c9 AS |
4003 | } |
4004 | } | |
4005 | ||
4c4b4cd2 PH |
4006 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4007 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4008 | |
4009 | static void | |
76a01679 JB |
4010 | add_defn_to_vec (struct obstack *obstackp, |
4011 | struct symbol *sym, | |
2570f2b7 | 4012 | struct block *block) |
14f9c5c9 AS |
4013 | { |
4014 | int i; | |
4015 | size_t tmp; | |
4c4b4cd2 | 4016 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4017 | |
529cad9c PH |
4018 | /* Do not try to complete stub types, as the debugger is probably |
4019 | already scanning all symbols matching a certain name at the | |
4020 | time when this function is called. Trying to replace the stub | |
4021 | type by its associated full type will cause us to restart a scan | |
4022 | which may lead to an infinite recursion. Instead, the client | |
4023 | collecting the matching symbols will end up collecting several | |
4024 | matches, with at least one of them complete. It can then filter | |
4025 | out the stub ones if needed. */ | |
4026 | ||
4c4b4cd2 PH |
4027 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4028 | { | |
4029 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4030 | return; | |
4031 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4032 | { | |
4033 | prevDefns[i].sym = sym; | |
4034 | prevDefns[i].block = block; | |
4c4b4cd2 | 4035 | return; |
76a01679 | 4036 | } |
4c4b4cd2 PH |
4037 | } |
4038 | ||
4039 | { | |
4040 | struct ada_symbol_info info; | |
4041 | ||
4042 | info.sym = sym; | |
4043 | info.block = block; | |
4c4b4cd2 PH |
4044 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4045 | } | |
4046 | } | |
4047 | ||
4048 | /* Number of ada_symbol_info structures currently collected in | |
4049 | current vector in *OBSTACKP. */ | |
4050 | ||
76a01679 JB |
4051 | static int |
4052 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4053 | { |
4054 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4055 | } | |
4056 | ||
4057 | /* Vector of ada_symbol_info structures currently collected in current | |
4058 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4059 | its final address. */ | |
4060 | ||
76a01679 | 4061 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4062 | defns_collected (struct obstack *obstackp, int finish) |
4063 | { | |
4064 | if (finish) | |
4065 | return obstack_finish (obstackp); | |
4066 | else | |
4067 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4068 | } | |
4069 | ||
96d887e8 PH |
4070 | /* Look, in partial_symtab PST, for symbol NAME in given namespace. |
4071 | Check the global symbols if GLOBAL, the static symbols if not. | |
4072 | Do wild-card match if WILD. */ | |
4c4b4cd2 | 4073 | |
96d887e8 PH |
4074 | static struct partial_symbol * |
4075 | ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name, | |
4076 | int global, domain_enum namespace, int wild) | |
4c4b4cd2 | 4077 | { |
96d887e8 PH |
4078 | struct partial_symbol **start; |
4079 | int name_len = strlen (name); | |
4080 | int length = (global ? pst->n_global_syms : pst->n_static_syms); | |
4081 | int i; | |
4c4b4cd2 | 4082 | |
96d887e8 | 4083 | if (length == 0) |
4c4b4cd2 | 4084 | { |
96d887e8 | 4085 | return (NULL); |
4c4b4cd2 PH |
4086 | } |
4087 | ||
96d887e8 PH |
4088 | start = (global ? |
4089 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
4090 | pst->objfile->static_psymbols.list + pst->statics_offset); | |
4c4b4cd2 | 4091 | |
96d887e8 | 4092 | if (wild) |
4c4b4cd2 | 4093 | { |
96d887e8 PH |
4094 | for (i = 0; i < length; i += 1) |
4095 | { | |
4096 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4097 | |
5eeb2539 AR |
4098 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4099 | SYMBOL_DOMAIN (psym), namespace) | |
1265e4aa | 4100 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym))) |
96d887e8 PH |
4101 | return psym; |
4102 | } | |
4103 | return NULL; | |
4c4b4cd2 | 4104 | } |
96d887e8 PH |
4105 | else |
4106 | { | |
4107 | if (global) | |
4108 | { | |
4109 | int U; | |
4110 | i = 0; | |
4111 | U = length - 1; | |
4112 | while (U - i > 4) | |
4113 | { | |
4114 | int M = (U + i) >> 1; | |
4115 | struct partial_symbol *psym = start[M]; | |
4116 | if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0]) | |
4117 | i = M + 1; | |
4118 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0]) | |
4119 | U = M - 1; | |
4120 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0) | |
4121 | i = M + 1; | |
4122 | else | |
4123 | U = M; | |
4124 | } | |
4125 | } | |
4126 | else | |
4127 | i = 0; | |
4c4b4cd2 | 4128 | |
96d887e8 PH |
4129 | while (i < length) |
4130 | { | |
4131 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4132 | |
5eeb2539 AR |
4133 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4134 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4135 | { |
4136 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len); | |
4c4b4cd2 | 4137 | |
96d887e8 PH |
4138 | if (cmp < 0) |
4139 | { | |
4140 | if (global) | |
4141 | break; | |
4142 | } | |
4143 | else if (cmp == 0 | |
4144 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4145 | + name_len)) |
96d887e8 PH |
4146 | return psym; |
4147 | } | |
4148 | i += 1; | |
4149 | } | |
4c4b4cd2 | 4150 | |
96d887e8 PH |
4151 | if (global) |
4152 | { | |
4153 | int U; | |
4154 | i = 0; | |
4155 | U = length - 1; | |
4156 | while (U - i > 4) | |
4157 | { | |
4158 | int M = (U + i) >> 1; | |
4159 | struct partial_symbol *psym = start[M]; | |
4160 | if (SYMBOL_LINKAGE_NAME (psym)[0] < '_') | |
4161 | i = M + 1; | |
4162 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_') | |
4163 | U = M - 1; | |
4164 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0) | |
4165 | i = M + 1; | |
4166 | else | |
4167 | U = M; | |
4168 | } | |
4169 | } | |
4170 | else | |
4171 | i = 0; | |
4c4b4cd2 | 4172 | |
96d887e8 PH |
4173 | while (i < length) |
4174 | { | |
4175 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4176 | |
5eeb2539 AR |
4177 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4178 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4179 | { |
4180 | int cmp; | |
4c4b4cd2 | 4181 | |
96d887e8 PH |
4182 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0]; |
4183 | if (cmp == 0) | |
4184 | { | |
4185 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5); | |
4186 | if (cmp == 0) | |
4187 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5, | |
76a01679 | 4188 | name_len); |
96d887e8 | 4189 | } |
4c4b4cd2 | 4190 | |
96d887e8 PH |
4191 | if (cmp < 0) |
4192 | { | |
4193 | if (global) | |
4194 | break; | |
4195 | } | |
4196 | else if (cmp == 0 | |
4197 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4198 | + name_len + 5)) |
96d887e8 PH |
4199 | return psym; |
4200 | } | |
4201 | i += 1; | |
4202 | } | |
4203 | } | |
4204 | return NULL; | |
4c4b4cd2 PH |
4205 | } |
4206 | ||
96d887e8 PH |
4207 | /* Return a minimal symbol matching NAME according to Ada decoding |
4208 | rules. Returns NULL if there is no such minimal symbol. Names | |
4209 | prefixed with "standard__" are handled specially: "standard__" is | |
4210 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4211 | |
96d887e8 PH |
4212 | struct minimal_symbol * |
4213 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4214 | { |
4c4b4cd2 | 4215 | struct objfile *objfile; |
96d887e8 PH |
4216 | struct minimal_symbol *msymbol; |
4217 | int wild_match; | |
4c4b4cd2 | 4218 | |
96d887e8 | 4219 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4220 | { |
96d887e8 | 4221 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4222 | wild_match = 0; |
4c4b4cd2 PH |
4223 | } |
4224 | else | |
96d887e8 | 4225 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4226 | |
96d887e8 PH |
4227 | ALL_MSYMBOLS (objfile, msymbol) |
4228 | { | |
4229 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) | |
4230 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4231 | return msymbol; | |
4232 | } | |
4c4b4cd2 | 4233 | |
96d887e8 PH |
4234 | return NULL; |
4235 | } | |
4c4b4cd2 | 4236 | |
96d887e8 PH |
4237 | /* For all subprograms that statically enclose the subprogram of the |
4238 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4239 | and their blocks to the list of data in OBSTACKP, as for | |
4240 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4241 | wildcard prefix. */ | |
4c4b4cd2 | 4242 | |
96d887e8 PH |
4243 | static void |
4244 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4245 | const char *name, domain_enum namespace, |
96d887e8 PH |
4246 | int wild_match) |
4247 | { | |
96d887e8 | 4248 | } |
14f9c5c9 | 4249 | |
96d887e8 PH |
4250 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4251 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4252 | |
96d887e8 PH |
4253 | static int |
4254 | is_nondebugging_type (struct type *type) | |
4255 | { | |
4256 | char *name = ada_type_name (type); | |
4257 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); | |
4258 | } | |
4c4b4cd2 | 4259 | |
96d887e8 PH |
4260 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4261 | duplicate other symbols in the list (The only case I know of where | |
4262 | this happens is when object files containing stabs-in-ecoff are | |
4263 | linked with files containing ordinary ecoff debugging symbols (or no | |
4264 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4265 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4266 | |
96d887e8 PH |
4267 | static int |
4268 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4269 | { | |
4270 | int i, j; | |
4c4b4cd2 | 4271 | |
96d887e8 PH |
4272 | i = 0; |
4273 | while (i < nsyms) | |
4274 | { | |
339c13b6 JB |
4275 | int remove = 0; |
4276 | ||
4277 | /* If two symbols have the same name and one of them is a stub type, | |
4278 | the get rid of the stub. */ | |
4279 | ||
4280 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4281 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4282 | { | |
4283 | for (j = 0; j < nsyms; j++) | |
4284 | { | |
4285 | if (j != i | |
4286 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4287 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4288 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4289 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4290 | remove = 1; | |
4291 | } | |
4292 | } | |
4293 | ||
4294 | /* Two symbols with the same name, same class and same address | |
4295 | should be identical. */ | |
4296 | ||
4297 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4298 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4299 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4300 | { | |
4301 | for (j = 0; j < nsyms; j += 1) | |
4302 | { | |
4303 | if (i != j | |
4304 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4305 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4306 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4307 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4308 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4309 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4310 | remove = 1; |
4c4b4cd2 | 4311 | } |
4c4b4cd2 | 4312 | } |
339c13b6 JB |
4313 | |
4314 | if (remove) | |
4315 | { | |
4316 | for (j = i + 1; j < nsyms; j += 1) | |
4317 | syms[j - 1] = syms[j]; | |
4318 | nsyms -= 1; | |
4319 | } | |
4320 | ||
96d887e8 | 4321 | i += 1; |
14f9c5c9 | 4322 | } |
96d887e8 | 4323 | return nsyms; |
14f9c5c9 AS |
4324 | } |
4325 | ||
96d887e8 PH |
4326 | /* Given a type that corresponds to a renaming entity, use the type name |
4327 | to extract the scope (package name or function name, fully qualified, | |
4328 | and following the GNAT encoding convention) where this renaming has been | |
4329 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4330 | |
96d887e8 PH |
4331 | static char * |
4332 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4333 | { |
96d887e8 PH |
4334 | /* The renaming types adhere to the following convention: |
4335 | <scope>__<rename>___<XR extension>. | |
4336 | So, to extract the scope, we search for the "___XR" extension, | |
4337 | and then backtrack until we find the first "__". */ | |
76a01679 | 4338 | |
96d887e8 PH |
4339 | const char *name = type_name_no_tag (renaming_type); |
4340 | char *suffix = strstr (name, "___XR"); | |
4341 | char *last; | |
4342 | int scope_len; | |
4343 | char *scope; | |
14f9c5c9 | 4344 | |
96d887e8 PH |
4345 | /* Now, backtrack a bit until we find the first "__". Start looking |
4346 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4347 | |
96d887e8 PH |
4348 | for (last = suffix - 3; last > name; last--) |
4349 | if (last[0] == '_' && last[1] == '_') | |
4350 | break; | |
76a01679 | 4351 | |
96d887e8 | 4352 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4353 | |
96d887e8 PH |
4354 | scope_len = last - name; |
4355 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4356 | |
96d887e8 PH |
4357 | strncpy (scope, name, scope_len); |
4358 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4359 | |
96d887e8 | 4360 | return scope; |
4c4b4cd2 PH |
4361 | } |
4362 | ||
96d887e8 | 4363 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4364 | |
96d887e8 PH |
4365 | static int |
4366 | is_package_name (const char *name) | |
4c4b4cd2 | 4367 | { |
96d887e8 PH |
4368 | /* Here, We take advantage of the fact that no symbols are generated |
4369 | for packages, while symbols are generated for each function. | |
4370 | So the condition for NAME represent a package becomes equivalent | |
4371 | to NAME not existing in our list of symbols. There is only one | |
4372 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4373 | |
96d887e8 | 4374 | char *fun_name; |
76a01679 | 4375 | |
96d887e8 PH |
4376 | /* If it is a function that has not been defined at library level, |
4377 | then we should be able to look it up in the symbols. */ | |
4378 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4379 | return 0; | |
14f9c5c9 | 4380 | |
96d887e8 PH |
4381 | /* Library-level function names start with "_ada_". See if function |
4382 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4383 | |
96d887e8 | 4384 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4385 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4386 | if (strstr (name, "__") != NULL) |
4387 | return 0; | |
4c4b4cd2 | 4388 | |
b435e160 | 4389 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4390 | |
96d887e8 PH |
4391 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4392 | } | |
14f9c5c9 | 4393 | |
96d887e8 | 4394 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4395 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4396 | |
96d887e8 | 4397 | static int |
aeb5907d | 4398 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4399 | { |
aeb5907d JB |
4400 | char *scope; |
4401 | ||
4402 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4403 | return 0; | |
4404 | ||
4405 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4406 | |
96d887e8 | 4407 | make_cleanup (xfree, scope); |
14f9c5c9 | 4408 | |
96d887e8 PH |
4409 | /* If the rename has been defined in a package, then it is visible. */ |
4410 | if (is_package_name (scope)) | |
aeb5907d | 4411 | return 0; |
14f9c5c9 | 4412 | |
96d887e8 PH |
4413 | /* Check that the rename is in the current function scope by checking |
4414 | that its name starts with SCOPE. */ | |
76a01679 | 4415 | |
96d887e8 PH |
4416 | /* If the function name starts with "_ada_", it means that it is |
4417 | a library-level function. Strip this prefix before doing the | |
4418 | comparison, as the encoding for the renaming does not contain | |
4419 | this prefix. */ | |
4420 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4421 | function_name += 5; | |
f26caa11 | 4422 | |
aeb5907d | 4423 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4424 | } |
4425 | ||
aeb5907d JB |
4426 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4427 | is not visible from the function associated with CURRENT_BLOCK or | |
4428 | that is superfluous due to the presence of more specific renaming | |
4429 | information. Places surviving symbols in the initial entries of | |
4430 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4431 | |
4432 | Rationale: | |
aeb5907d JB |
4433 | First, in cases where an object renaming is implemented as a |
4434 | reference variable, GNAT may produce both the actual reference | |
4435 | variable and the renaming encoding. In this case, we discard the | |
4436 | latter. | |
4437 | ||
4438 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4439 | entity. Unfortunately, STABS currently does not support the definition |
4440 | of types that are local to a given lexical block, so all renamings types | |
4441 | are emitted at library level. As a consequence, if an application | |
4442 | contains two renaming entities using the same name, and a user tries to | |
4443 | print the value of one of these entities, the result of the ada symbol | |
4444 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4445 | |
96d887e8 PH |
4446 | This function partially covers for this limitation by attempting to |
4447 | remove from the SYMS list renaming symbols that should be visible | |
4448 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4449 | method with the current information available. The implementation | |
4450 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4451 | ||
4452 | - When the user tries to print a rename in a function while there | |
4453 | is another rename entity defined in a package: Normally, the | |
4454 | rename in the function has precedence over the rename in the | |
4455 | package, so the latter should be removed from the list. This is | |
4456 | currently not the case. | |
4457 | ||
4458 | - This function will incorrectly remove valid renames if | |
4459 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4460 | has been changed by an "Export" pragma. As a consequence, | |
4461 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4462 | |
14f9c5c9 | 4463 | static int |
aeb5907d JB |
4464 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4465 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4466 | { |
4467 | struct symbol *current_function; | |
4468 | char *current_function_name; | |
4469 | int i; | |
aeb5907d JB |
4470 | int is_new_style_renaming; |
4471 | ||
4472 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4473 | a simple variable foo in the same block, discard the latter. | |
4474 | First, zero out such symbols, then compress. */ | |
4475 | is_new_style_renaming = 0; | |
4476 | for (i = 0; i < nsyms; i += 1) | |
4477 | { | |
4478 | struct symbol *sym = syms[i].sym; | |
4479 | struct block *block = syms[i].block; | |
4480 | const char *name; | |
4481 | const char *suffix; | |
4482 | ||
4483 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4484 | continue; | |
4485 | name = SYMBOL_LINKAGE_NAME (sym); | |
4486 | suffix = strstr (name, "___XR"); | |
4487 | ||
4488 | if (suffix != NULL) | |
4489 | { | |
4490 | int name_len = suffix - name; | |
4491 | int j; | |
4492 | is_new_style_renaming = 1; | |
4493 | for (j = 0; j < nsyms; j += 1) | |
4494 | if (i != j && syms[j].sym != NULL | |
4495 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4496 | name_len) == 0 | |
4497 | && block == syms[j].block) | |
4498 | syms[j].sym = NULL; | |
4499 | } | |
4500 | } | |
4501 | if (is_new_style_renaming) | |
4502 | { | |
4503 | int j, k; | |
4504 | ||
4505 | for (j = k = 0; j < nsyms; j += 1) | |
4506 | if (syms[j].sym != NULL) | |
4507 | { | |
4508 | syms[k] = syms[j]; | |
4509 | k += 1; | |
4510 | } | |
4511 | return k; | |
4512 | } | |
4c4b4cd2 PH |
4513 | |
4514 | /* Extract the function name associated to CURRENT_BLOCK. | |
4515 | Abort if unable to do so. */ | |
76a01679 | 4516 | |
4c4b4cd2 PH |
4517 | if (current_block == NULL) |
4518 | return nsyms; | |
76a01679 | 4519 | |
7f0df278 | 4520 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4521 | if (current_function == NULL) |
4522 | return nsyms; | |
4523 | ||
4524 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4525 | if (current_function_name == NULL) | |
4526 | return nsyms; | |
4527 | ||
4528 | /* Check each of the symbols, and remove it from the list if it is | |
4529 | a type corresponding to a renaming that is out of the scope of | |
4530 | the current block. */ | |
4531 | ||
4532 | i = 0; | |
4533 | while (i < nsyms) | |
4534 | { | |
aeb5907d JB |
4535 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4536 | == ADA_OBJECT_RENAMING | |
4537 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4538 | { |
4539 | int j; | |
aeb5907d | 4540 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4541 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4542 | nsyms -= 1; |
4543 | } | |
4544 | else | |
4545 | i += 1; | |
4546 | } | |
4547 | ||
4548 | return nsyms; | |
4549 | } | |
4550 | ||
339c13b6 JB |
4551 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4552 | whose name and domain match NAME and DOMAIN respectively. | |
4553 | If no match was found, then extend the search to "enclosing" | |
4554 | routines (in other words, if we're inside a nested function, | |
4555 | search the symbols defined inside the enclosing functions). | |
4556 | ||
4557 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4558 | ||
4559 | static void | |
4560 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4561 | struct block *block, domain_enum domain, | |
4562 | int wild_match) | |
4563 | { | |
4564 | int block_depth = 0; | |
4565 | ||
4566 | while (block != NULL) | |
4567 | { | |
4568 | block_depth += 1; | |
4569 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4570 | ||
4571 | /* If we found a non-function match, assume that's the one. */ | |
4572 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4573 | num_defns_collected (obstackp))) | |
4574 | return; | |
4575 | ||
4576 | block = BLOCK_SUPERBLOCK (block); | |
4577 | } | |
4578 | ||
4579 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4580 | enclosing subprogram. */ | |
4581 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4582 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4583 | } | |
4584 | ||
4585 | /* Add to OBSTACKP all non-local symbols whose name and domain match | |
4586 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4587 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4588 | ||
4589 | static void | |
4590 | ada_add_non_local_symbols (struct obstack *obstackp, const char *name, | |
4591 | domain_enum domain, int global, | |
4592 | int wild_match) | |
4593 | { | |
4594 | struct objfile *objfile; | |
4595 | struct partial_symtab *ps; | |
4596 | ||
4597 | ALL_PSYMTABS (objfile, ps) | |
4598 | { | |
4599 | QUIT; | |
4600 | if (ps->readin | |
4601 | || ada_lookup_partial_symbol (ps, name, global, domain, wild_match)) | |
4602 | { | |
4603 | struct symtab *s = PSYMTAB_TO_SYMTAB (ps); | |
4604 | const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK; | |
4605 | ||
4606 | if (s == NULL || !s->primary) | |
4607 | continue; | |
4608 | ada_add_block_symbols (obstackp, | |
4609 | BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind), | |
4610 | name, domain, objfile, wild_match); | |
4611 | } | |
4612 | } | |
4613 | } | |
4614 | ||
4c4b4cd2 PH |
4615 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4616 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4617 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4618 | indicating the symbols found and the blocks and symbol tables (if |
4619 | any) in which they were found. This vector are transient---good only to | |
4620 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4621 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4622 | is the one match returned (no other matches in that or | |
4623 | enclosing blocks is returned). If there are any matches in or | |
4624 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4625 | search extends to global and file-scope (static) symbol tables. | |
4626 | Names prefixed with "standard__" are handled specially: "standard__" | |
4627 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4628 | |
4629 | int | |
4c4b4cd2 | 4630 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4631 | domain_enum namespace, |
4632 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4633 | { |
4634 | struct symbol *sym; | |
14f9c5c9 | 4635 | struct block *block; |
4c4b4cd2 | 4636 | const char *name; |
4c4b4cd2 | 4637 | int wild_match; |
14f9c5c9 | 4638 | int cacheIfUnique; |
4c4b4cd2 | 4639 | int ndefns; |
14f9c5c9 | 4640 | |
4c4b4cd2 PH |
4641 | obstack_free (&symbol_list_obstack, NULL); |
4642 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4643 | |
14f9c5c9 AS |
4644 | cacheIfUnique = 0; |
4645 | ||
4646 | /* Search specified block and its superiors. */ | |
4647 | ||
4c4b4cd2 PH |
4648 | wild_match = (strstr (name0, "__") == NULL); |
4649 | name = name0; | |
76a01679 JB |
4650 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4651 | needed, but adding const will | |
4652 | have a cascade effect. */ | |
339c13b6 JB |
4653 | |
4654 | /* Special case: If the user specifies a symbol name inside package | |
4655 | Standard, do a non-wild matching of the symbol name without | |
4656 | the "standard__" prefix. This was primarily introduced in order | |
4657 | to allow the user to specifically access the standard exceptions | |
4658 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4659 | is ambiguous (due to the user defining its own Constraint_Error | |
4660 | entity inside its program). */ | |
4c4b4cd2 PH |
4661 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4662 | { | |
4663 | wild_match = 0; | |
4664 | block = NULL; | |
4665 | name = name0 + sizeof ("standard__") - 1; | |
4666 | } | |
4667 | ||
339c13b6 | 4668 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 4669 | |
339c13b6 JB |
4670 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
4671 | wild_match); | |
4c4b4cd2 | 4672 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4673 | goto done; |
d2e4a39e | 4674 | |
339c13b6 JB |
4675 | /* No non-global symbols found. Check our cache to see if we have |
4676 | already performed this search before. If we have, then return | |
4677 | the same result. */ | |
4678 | ||
14f9c5c9 | 4679 | cacheIfUnique = 1; |
2570f2b7 | 4680 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4681 | { |
4682 | if (sym != NULL) | |
2570f2b7 | 4683 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4684 | goto done; |
4685 | } | |
14f9c5c9 | 4686 | |
339c13b6 JB |
4687 | /* Search symbols from all global blocks. */ |
4688 | ||
4689 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1, | |
4690 | wild_match); | |
d2e4a39e | 4691 | |
4c4b4cd2 | 4692 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 4693 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 4694 | |
4c4b4cd2 | 4695 | if (num_defns_collected (&symbol_list_obstack) == 0) |
339c13b6 JB |
4696 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0, |
4697 | wild_match); | |
14f9c5c9 | 4698 | |
4c4b4cd2 PH |
4699 | done: |
4700 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4701 | *results = defns_collected (&symbol_list_obstack, 1); | |
4702 | ||
4703 | ndefns = remove_extra_symbols (*results, ndefns); | |
4704 | ||
d2e4a39e | 4705 | if (ndefns == 0) |
2570f2b7 | 4706 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4707 | |
4c4b4cd2 | 4708 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4709 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4710 | |
aeb5907d | 4711 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4712 | |
14f9c5c9 AS |
4713 | return ndefns; |
4714 | } | |
4715 | ||
d2e4a39e | 4716 | struct symbol * |
aeb5907d | 4717 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4718 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4719 | { |
4c4b4cd2 | 4720 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4721 | int n_candidates; |
4722 | ||
aeb5907d | 4723 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4724 | |
4725 | if (n_candidates == 0) | |
4726 | return NULL; | |
4c4b4cd2 | 4727 | |
aeb5907d JB |
4728 | if (block_found != NULL) |
4729 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4730 | |
21b556f4 | 4731 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4732 | } |
4733 | ||
4734 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4735 | scope and in global scopes, or NULL if none. NAME is folded and | |
4736 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
4737 | choosing the first symbol if there are multiple choices. | |
4738 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol | |
4739 | table in which the symbol was found (in both cases, these | |
4740 | assignments occur only if the pointers are non-null). */ | |
4741 | struct symbol * | |
4742 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4743 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4744 | { |
4745 | if (is_a_field_of_this != NULL) | |
4746 | *is_a_field_of_this = 0; | |
4747 | ||
4748 | return | |
4749 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4750 | block0, namespace, NULL); |
4c4b4cd2 | 4751 | } |
14f9c5c9 | 4752 | |
4c4b4cd2 PH |
4753 | static struct symbol * |
4754 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 JB |
4755 | const char *linkage_name, |
4756 | const struct block *block, | |
21b556f4 | 4757 | const domain_enum domain) |
4c4b4cd2 PH |
4758 | { |
4759 | if (linkage_name == NULL) | |
4760 | linkage_name = name; | |
76a01679 | 4761 | return ada_lookup_symbol (linkage_name, block_static_block (block), domain, |
21b556f4 | 4762 | NULL); |
14f9c5c9 AS |
4763 | } |
4764 | ||
4765 | ||
4c4b4cd2 PH |
4766 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4767 | that is to be ignored for matching purposes. Suffixes of parallel | |
4768 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4769 | are given by any of the regular expressions: |
4c4b4cd2 | 4770 | |
babe1480 JB |
4771 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4772 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4773 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4774 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4775 | |
4776 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4777 | match is performed. This sequence is used to differentiate homonyms, | |
4778 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4779 | |
14f9c5c9 | 4780 | static int |
d2e4a39e | 4781 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4782 | { |
4783 | int k; | |
4c4b4cd2 PH |
4784 | const char *matching; |
4785 | const int len = strlen (str); | |
4786 | ||
babe1480 JB |
4787 | /* Skip optional leading __[0-9]+. */ |
4788 | ||
4c4b4cd2 PH |
4789 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4790 | { | |
babe1480 JB |
4791 | str += 3; |
4792 | while (isdigit (str[0])) | |
4793 | str += 1; | |
4c4b4cd2 | 4794 | } |
babe1480 JB |
4795 | |
4796 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4797 | |
babe1480 | 4798 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 4799 | { |
babe1480 | 4800 | matching = str + 1; |
4c4b4cd2 PH |
4801 | while (isdigit (matching[0])) |
4802 | matching += 1; | |
4803 | if (matching[0] == '\0') | |
4804 | return 1; | |
4805 | } | |
4806 | ||
4807 | /* ___[0-9]+ */ | |
babe1480 | 4808 | |
4c4b4cd2 PH |
4809 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
4810 | { | |
4811 | matching = str + 3; | |
4812 | while (isdigit (matching[0])) | |
4813 | matching += 1; | |
4814 | if (matching[0] == '\0') | |
4815 | return 1; | |
4816 | } | |
4817 | ||
529cad9c PH |
4818 | #if 0 |
4819 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
4820 | with a N at the end. Unfortunately, the compiler uses the same | |
4821 | convention for other internal types it creates. So treating | |
4822 | all entity names that end with an "N" as a name suffix causes | |
4823 | some regressions. For instance, consider the case of an enumerated | |
4824 | type. To support the 'Image attribute, it creates an array whose | |
4825 | name ends with N. | |
4826 | Having a single character like this as a suffix carrying some | |
4827 | information is a bit risky. Perhaps we should change the encoding | |
4828 | to be something like "_N" instead. In the meantime, do not do | |
4829 | the following check. */ | |
4830 | /* Protected Object Subprograms */ | |
4831 | if (len == 1 && str [0] == 'N') | |
4832 | return 1; | |
4833 | #endif | |
4834 | ||
4835 | /* _E[0-9]+[bs]$ */ | |
4836 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
4837 | { | |
4838 | matching = str + 3; | |
4839 | while (isdigit (matching[0])) | |
4840 | matching += 1; | |
4841 | if ((matching[0] == 'b' || matching[0] == 's') | |
4842 | && matching [1] == '\0') | |
4843 | return 1; | |
4844 | } | |
4845 | ||
4c4b4cd2 PH |
4846 | /* ??? We should not modify STR directly, as we are doing below. This |
4847 | is fine in this case, but may become problematic later if we find | |
4848 | that this alternative did not work, and want to try matching | |
4849 | another one from the begining of STR. Since we modified it, we | |
4850 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
4851 | if (str[0] == 'X') |
4852 | { | |
4853 | str += 1; | |
d2e4a39e | 4854 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
4855 | { |
4856 | if (str[0] != 'n' && str[0] != 'b') | |
4857 | return 0; | |
4858 | str += 1; | |
4859 | } | |
14f9c5c9 | 4860 | } |
babe1480 | 4861 | |
14f9c5c9 AS |
4862 | if (str[0] == '\000') |
4863 | return 1; | |
babe1480 | 4864 | |
d2e4a39e | 4865 | if (str[0] == '_') |
14f9c5c9 AS |
4866 | { |
4867 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 4868 | return 0; |
d2e4a39e | 4869 | if (str[2] == '_') |
4c4b4cd2 | 4870 | { |
61ee279c PH |
4871 | if (strcmp (str + 3, "JM") == 0) |
4872 | return 1; | |
4873 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
4874 | the LJM suffix in favor of the JM one. But we will | |
4875 | still accept LJM as a valid suffix for a reasonable | |
4876 | amount of time, just to allow ourselves to debug programs | |
4877 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
4878 | if (strcmp (str + 3, "LJM") == 0) |
4879 | return 1; | |
4880 | if (str[3] != 'X') | |
4881 | return 0; | |
1265e4aa JB |
4882 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
4883 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
4884 | return 1; |
4885 | if (str[4] == 'R' && str[5] != 'T') | |
4886 | return 1; | |
4887 | return 0; | |
4888 | } | |
4889 | if (!isdigit (str[2])) | |
4890 | return 0; | |
4891 | for (k = 3; str[k] != '\0'; k += 1) | |
4892 | if (!isdigit (str[k]) && str[k] != '_') | |
4893 | return 0; | |
14f9c5c9 AS |
4894 | return 1; |
4895 | } | |
4c4b4cd2 | 4896 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 4897 | { |
4c4b4cd2 PH |
4898 | for (k = 2; str[k] != '\0'; k += 1) |
4899 | if (!isdigit (str[k]) && str[k] != '_') | |
4900 | return 0; | |
14f9c5c9 AS |
4901 | return 1; |
4902 | } | |
4903 | return 0; | |
4904 | } | |
d2e4a39e | 4905 | |
aeb5907d JB |
4906 | /* Return non-zero if the string starting at NAME and ending before |
4907 | NAME_END contains no capital letters. */ | |
529cad9c PH |
4908 | |
4909 | static int | |
4910 | is_valid_name_for_wild_match (const char *name0) | |
4911 | { | |
4912 | const char *decoded_name = ada_decode (name0); | |
4913 | int i; | |
4914 | ||
5823c3ef JB |
4915 | /* If the decoded name starts with an angle bracket, it means that |
4916 | NAME0 does not follow the GNAT encoding format. It should then | |
4917 | not be allowed as a possible wild match. */ | |
4918 | if (decoded_name[0] == '<') | |
4919 | return 0; | |
4920 | ||
529cad9c PH |
4921 | for (i=0; decoded_name[i] != '\0'; i++) |
4922 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
4923 | return 0; | |
4924 | ||
4925 | return 1; | |
4926 | } | |
4927 | ||
4c4b4cd2 PH |
4928 | /* True if NAME represents a name of the form A1.A2....An, n>=1 and |
4929 | PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores | |
4930 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
4931 | true). */ | |
4932 | ||
14f9c5c9 | 4933 | static int |
4c4b4cd2 | 4934 | wild_match (const char *patn0, int patn_len, const char *name0) |
14f9c5c9 | 4935 | { |
5823c3ef JB |
4936 | char* match; |
4937 | const char* start; | |
4938 | start = name0; | |
4939 | while (1) | |
14f9c5c9 | 4940 | { |
5823c3ef JB |
4941 | match = strstr (start, patn0); |
4942 | if (match == NULL) | |
4943 | return 0; | |
4944 | if ((match == name0 | |
4945 | || match[-1] == '.' | |
4946 | || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_') | |
4947 | || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0)) | |
4948 | && is_name_suffix (match + patn_len)) | |
4949 | return (match == name0 || is_valid_name_for_wild_match (name0)); | |
4950 | start = match + 1; | |
96d887e8 | 4951 | } |
96d887e8 PH |
4952 | } |
4953 | ||
96d887e8 PH |
4954 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
4955 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
4956 | (if necessary). If WILD, treat as NAME with a wildcard prefix. | |
4957 | OBJFILE is the section containing BLOCK. | |
4958 | SYMTAB is recorded with each symbol added. */ | |
4959 | ||
4960 | static void | |
4961 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 4962 | struct block *block, const char *name, |
96d887e8 | 4963 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 4964 | int wild) |
96d887e8 PH |
4965 | { |
4966 | struct dict_iterator iter; | |
4967 | int name_len = strlen (name); | |
4968 | /* A matching argument symbol, if any. */ | |
4969 | struct symbol *arg_sym; | |
4970 | /* Set true when we find a matching non-argument symbol. */ | |
4971 | int found_sym; | |
4972 | struct symbol *sym; | |
4973 | ||
4974 | arg_sym = NULL; | |
4975 | found_sym = 0; | |
4976 | if (wild) | |
4977 | { | |
4978 | struct symbol *sym; | |
4979 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 4980 | { |
5eeb2539 AR |
4981 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
4982 | SYMBOL_DOMAIN (sym), domain) | |
1265e4aa | 4983 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym))) |
76a01679 | 4984 | { |
2a2d4dc3 AS |
4985 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
4986 | continue; | |
4987 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4988 | arg_sym = sym; | |
4989 | else | |
4990 | { | |
76a01679 JB |
4991 | found_sym = 1; |
4992 | add_defn_to_vec (obstackp, | |
4993 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 4994 | block); |
76a01679 JB |
4995 | } |
4996 | } | |
4997 | } | |
96d887e8 PH |
4998 | } |
4999 | else | |
5000 | { | |
5001 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5002 | { |
5eeb2539 AR |
5003 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5004 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5005 | { |
5006 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); | |
5007 | if (cmp == 0 | |
5008 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) | |
5009 | { | |
2a2d4dc3 AS |
5010 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5011 | { | |
5012 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5013 | arg_sym = sym; | |
5014 | else | |
5015 | { | |
5016 | found_sym = 1; | |
5017 | add_defn_to_vec (obstackp, | |
5018 | fixup_symbol_section (sym, objfile), | |
5019 | block); | |
5020 | } | |
5021 | } | |
76a01679 JB |
5022 | } |
5023 | } | |
5024 | } | |
96d887e8 PH |
5025 | } |
5026 | ||
5027 | if (!found_sym && arg_sym != NULL) | |
5028 | { | |
76a01679 JB |
5029 | add_defn_to_vec (obstackp, |
5030 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5031 | block); |
96d887e8 PH |
5032 | } |
5033 | ||
5034 | if (!wild) | |
5035 | { | |
5036 | arg_sym = NULL; | |
5037 | found_sym = 0; | |
5038 | ||
5039 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5040 | { |
5eeb2539 AR |
5041 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5042 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5043 | { |
5044 | int cmp; | |
5045 | ||
5046 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5047 | if (cmp == 0) | |
5048 | { | |
5049 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5050 | if (cmp == 0) | |
5051 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5052 | name_len); | |
5053 | } | |
5054 | ||
5055 | if (cmp == 0 | |
5056 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5057 | { | |
2a2d4dc3 AS |
5058 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5059 | { | |
5060 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5061 | arg_sym = sym; | |
5062 | else | |
5063 | { | |
5064 | found_sym = 1; | |
5065 | add_defn_to_vec (obstackp, | |
5066 | fixup_symbol_section (sym, objfile), | |
5067 | block); | |
5068 | } | |
5069 | } | |
76a01679 JB |
5070 | } |
5071 | } | |
76a01679 | 5072 | } |
96d887e8 PH |
5073 | |
5074 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5075 | They aren't parameters, right? */ | |
5076 | if (!found_sym && arg_sym != NULL) | |
5077 | { | |
5078 | add_defn_to_vec (obstackp, | |
76a01679 | 5079 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5080 | block); |
96d887e8 PH |
5081 | } |
5082 | } | |
5083 | } | |
5084 | \f | |
41d27058 JB |
5085 | |
5086 | /* Symbol Completion */ | |
5087 | ||
5088 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5089 | name in a form that's appropriate for the completion. The result | |
5090 | does not need to be deallocated, but is only good until the next call. | |
5091 | ||
5092 | TEXT_LEN is equal to the length of TEXT. | |
5093 | Perform a wild match if WILD_MATCH is set. | |
5094 | ENCODED should be set if TEXT represents the start of a symbol name | |
5095 | in its encoded form. */ | |
5096 | ||
5097 | static const char * | |
5098 | symbol_completion_match (const char *sym_name, | |
5099 | const char *text, int text_len, | |
5100 | int wild_match, int encoded) | |
5101 | { | |
5102 | char *result; | |
5103 | const int verbatim_match = (text[0] == '<'); | |
5104 | int match = 0; | |
5105 | ||
5106 | if (verbatim_match) | |
5107 | { | |
5108 | /* Strip the leading angle bracket. */ | |
5109 | text = text + 1; | |
5110 | text_len--; | |
5111 | } | |
5112 | ||
5113 | /* First, test against the fully qualified name of the symbol. */ | |
5114 | ||
5115 | if (strncmp (sym_name, text, text_len) == 0) | |
5116 | match = 1; | |
5117 | ||
5118 | if (match && !encoded) | |
5119 | { | |
5120 | /* One needed check before declaring a positive match is to verify | |
5121 | that iff we are doing a verbatim match, the decoded version | |
5122 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5123 | is not a suitable completion. */ | |
5124 | const char *sym_name_copy = sym_name; | |
5125 | int has_angle_bracket; | |
5126 | ||
5127 | sym_name = ada_decode (sym_name); | |
5128 | has_angle_bracket = (sym_name[0] == '<'); | |
5129 | match = (has_angle_bracket == verbatim_match); | |
5130 | sym_name = sym_name_copy; | |
5131 | } | |
5132 | ||
5133 | if (match && !verbatim_match) | |
5134 | { | |
5135 | /* When doing non-verbatim match, another check that needs to | |
5136 | be done is to verify that the potentially matching symbol name | |
5137 | does not include capital letters, because the ada-mode would | |
5138 | not be able to understand these symbol names without the | |
5139 | angle bracket notation. */ | |
5140 | const char *tmp; | |
5141 | ||
5142 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5143 | if (*tmp != '\0') | |
5144 | match = 0; | |
5145 | } | |
5146 | ||
5147 | /* Second: Try wild matching... */ | |
5148 | ||
5149 | if (!match && wild_match) | |
5150 | { | |
5151 | /* Since we are doing wild matching, this means that TEXT | |
5152 | may represent an unqualified symbol name. We therefore must | |
5153 | also compare TEXT against the unqualified name of the symbol. */ | |
5154 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5155 | ||
5156 | if (strncmp (sym_name, text, text_len) == 0) | |
5157 | match = 1; | |
5158 | } | |
5159 | ||
5160 | /* Finally: If we found a mach, prepare the result to return. */ | |
5161 | ||
5162 | if (!match) | |
5163 | return NULL; | |
5164 | ||
5165 | if (verbatim_match) | |
5166 | sym_name = add_angle_brackets (sym_name); | |
5167 | ||
5168 | if (!encoded) | |
5169 | sym_name = ada_decode (sym_name); | |
5170 | ||
5171 | return sym_name; | |
5172 | } | |
5173 | ||
2ba95b9b JB |
5174 | typedef char *char_ptr; |
5175 | DEF_VEC_P (char_ptr); | |
5176 | ||
41d27058 JB |
5177 | /* A companion function to ada_make_symbol_completion_list(). |
5178 | Check if SYM_NAME represents a symbol which name would be suitable | |
5179 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5180 | it is appended at the end of the given string vector SV. | |
5181 | ||
5182 | ORIG_TEXT is the string original string from the user command | |
5183 | that needs to be completed. WORD is the entire command on which | |
5184 | completion should be performed. These two parameters are used to | |
5185 | determine which part of the symbol name should be added to the | |
5186 | completion vector. | |
5187 | if WILD_MATCH is set, then wild matching is performed. | |
5188 | ENCODED should be set if TEXT represents a symbol name in its | |
5189 | encoded formed (in which case the completion should also be | |
5190 | encoded). */ | |
5191 | ||
5192 | static void | |
d6565258 | 5193 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5194 | const char *sym_name, |
5195 | const char *text, int text_len, | |
5196 | const char *orig_text, const char *word, | |
5197 | int wild_match, int encoded) | |
5198 | { | |
5199 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5200 | wild_match, encoded); | |
5201 | char *completion; | |
5202 | ||
5203 | if (match == NULL) | |
5204 | return; | |
5205 | ||
5206 | /* We found a match, so add the appropriate completion to the given | |
5207 | string vector. */ | |
5208 | ||
5209 | if (word == orig_text) | |
5210 | { | |
5211 | completion = xmalloc (strlen (match) + 5); | |
5212 | strcpy (completion, match); | |
5213 | } | |
5214 | else if (word > orig_text) | |
5215 | { | |
5216 | /* Return some portion of sym_name. */ | |
5217 | completion = xmalloc (strlen (match) + 5); | |
5218 | strcpy (completion, match + (word - orig_text)); | |
5219 | } | |
5220 | else | |
5221 | { | |
5222 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5223 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5224 | strncpy (completion, word, orig_text - word); | |
5225 | completion[orig_text - word] = '\0'; | |
5226 | strcat (completion, match); | |
5227 | } | |
5228 | ||
d6565258 | 5229 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5230 | } |
5231 | ||
5232 | /* Return a list of possible symbol names completing TEXT0. The list | |
5233 | is NULL terminated. WORD is the entire command on which completion | |
5234 | is made. */ | |
5235 | ||
5236 | static char ** | |
5237 | ada_make_symbol_completion_list (char *text0, char *word) | |
5238 | { | |
5239 | char *text; | |
5240 | int text_len; | |
5241 | int wild_match; | |
5242 | int encoded; | |
2ba95b9b | 5243 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5244 | struct symbol *sym; |
5245 | struct symtab *s; | |
5246 | struct partial_symtab *ps; | |
5247 | struct minimal_symbol *msymbol; | |
5248 | struct objfile *objfile; | |
5249 | struct block *b, *surrounding_static_block = 0; | |
5250 | int i; | |
5251 | struct dict_iterator iter; | |
5252 | ||
5253 | if (text0[0] == '<') | |
5254 | { | |
5255 | text = xstrdup (text0); | |
5256 | make_cleanup (xfree, text); | |
5257 | text_len = strlen (text); | |
5258 | wild_match = 0; | |
5259 | encoded = 1; | |
5260 | } | |
5261 | else | |
5262 | { | |
5263 | text = xstrdup (ada_encode (text0)); | |
5264 | make_cleanup (xfree, text); | |
5265 | text_len = strlen (text); | |
5266 | for (i = 0; i < text_len; i++) | |
5267 | text[i] = tolower (text[i]); | |
5268 | ||
5269 | encoded = (strstr (text0, "__") != NULL); | |
5270 | /* If the name contains a ".", then the user is entering a fully | |
5271 | qualified entity name, and the match must not be done in wild | |
5272 | mode. Similarly, if the user wants to complete what looks like | |
5273 | an encoded name, the match must not be done in wild mode. */ | |
5274 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5275 | } | |
5276 | ||
5277 | /* First, look at the partial symtab symbols. */ | |
5278 | ALL_PSYMTABS (objfile, ps) | |
5279 | { | |
5280 | struct partial_symbol **psym; | |
5281 | ||
5282 | /* If the psymtab's been read in we'll get it when we search | |
5283 | through the blockvector. */ | |
5284 | if (ps->readin) | |
5285 | continue; | |
5286 | ||
5287 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
5288 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
5289 | + ps->n_global_syms); psym++) | |
5290 | { | |
5291 | QUIT; | |
d6565258 | 5292 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5293 | text, text_len, text0, word, |
5294 | wild_match, encoded); | |
5295 | } | |
5296 | ||
5297 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
5298 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
5299 | + ps->n_static_syms); psym++) | |
5300 | { | |
5301 | QUIT; | |
d6565258 | 5302 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5303 | text, text_len, text0, word, |
5304 | wild_match, encoded); | |
5305 | } | |
5306 | } | |
5307 | ||
5308 | /* At this point scan through the misc symbol vectors and add each | |
5309 | symbol you find to the list. Eventually we want to ignore | |
5310 | anything that isn't a text symbol (everything else will be | |
5311 | handled by the psymtab code above). */ | |
5312 | ||
5313 | ALL_MSYMBOLS (objfile, msymbol) | |
5314 | { | |
5315 | QUIT; | |
d6565258 | 5316 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5317 | text, text_len, text0, word, wild_match, encoded); |
5318 | } | |
5319 | ||
5320 | /* Search upwards from currently selected frame (so that we can | |
5321 | complete on local vars. */ | |
5322 | ||
5323 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5324 | { | |
5325 | if (!BLOCK_SUPERBLOCK (b)) | |
5326 | surrounding_static_block = b; /* For elmin of dups */ | |
5327 | ||
5328 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5329 | { | |
d6565258 | 5330 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5331 | text, text_len, text0, word, |
5332 | wild_match, encoded); | |
5333 | } | |
5334 | } | |
5335 | ||
5336 | /* Go through the symtabs and check the externs and statics for | |
5337 | symbols which match. */ | |
5338 | ||
5339 | ALL_SYMTABS (objfile, s) | |
5340 | { | |
5341 | QUIT; | |
5342 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5343 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5344 | { | |
d6565258 | 5345 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5346 | text, text_len, text0, word, |
5347 | wild_match, encoded); | |
5348 | } | |
5349 | } | |
5350 | ||
5351 | ALL_SYMTABS (objfile, s) | |
5352 | { | |
5353 | QUIT; | |
5354 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5355 | /* Don't do this block twice. */ | |
5356 | if (b == surrounding_static_block) | |
5357 | continue; | |
5358 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5359 | { | |
d6565258 | 5360 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5361 | text, text_len, text0, word, |
5362 | wild_match, encoded); | |
5363 | } | |
5364 | } | |
5365 | ||
5366 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5367 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5368 | |
2ba95b9b JB |
5369 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5370 | return the copy. It's unfortunate that we have to make a copy | |
5371 | of an array that we're about to destroy, but there is nothing much | |
5372 | we can do about it. Fortunately, it's typically not a very large | |
5373 | array. */ | |
5374 | { | |
5375 | const size_t completions_size = | |
5376 | VEC_length (char_ptr, completions) * sizeof (char *); | |
5377 | char **result = malloc (completions_size); | |
5378 | ||
5379 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5380 | ||
5381 | VEC_free (char_ptr, completions); | |
5382 | return result; | |
5383 | } | |
41d27058 JB |
5384 | } |
5385 | ||
963a6417 | 5386 | /* Field Access */ |
96d887e8 | 5387 | |
73fb9985 JB |
5388 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5389 | for tagged types. */ | |
5390 | ||
5391 | static int | |
5392 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5393 | { | |
5394 | char *name; | |
5395 | ||
5396 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5397 | return 0; | |
5398 | ||
5399 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5400 | if (name == NULL) | |
5401 | return 0; | |
5402 | ||
5403 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5404 | } | |
5405 | ||
963a6417 PH |
5406 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5407 | to be invisible to users. */ | |
96d887e8 | 5408 | |
963a6417 PH |
5409 | int |
5410 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5411 | { |
963a6417 PH |
5412 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5413 | return 1; | |
73fb9985 JB |
5414 | |
5415 | /* Check the name of that field. */ | |
5416 | { | |
5417 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5418 | ||
5419 | /* Anonymous field names should not be printed. | |
5420 | brobecker/2007-02-20: I don't think this can actually happen | |
5421 | but we don't want to print the value of annonymous fields anyway. */ | |
5422 | if (name == NULL) | |
5423 | return 1; | |
5424 | ||
5425 | /* A field named "_parent" is internally generated by GNAT for | |
5426 | tagged types, and should not be printed either. */ | |
5427 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5428 | return 1; | |
5429 | } | |
5430 | ||
5431 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5432 | if (ada_is_tagged_type (type, 1) | |
5433 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5434 | return 1; | |
5435 | ||
5436 | /* Not a special field, so it should not be ignored. */ | |
5437 | return 0; | |
963a6417 | 5438 | } |
96d887e8 | 5439 | |
963a6417 PH |
5440 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
5441 | pointer or reference type whose ultimate target has a tag field. */ | |
96d887e8 | 5442 | |
963a6417 PH |
5443 | int |
5444 | ada_is_tagged_type (struct type *type, int refok) | |
5445 | { | |
5446 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5447 | } | |
96d887e8 | 5448 | |
963a6417 | 5449 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5450 | |
963a6417 PH |
5451 | int |
5452 | ada_is_tag_type (struct type *type) | |
5453 | { | |
5454 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5455 | return 0; | |
5456 | else | |
96d887e8 | 5457 | { |
963a6417 PH |
5458 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5459 | return (name != NULL | |
5460 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5461 | } |
96d887e8 PH |
5462 | } |
5463 | ||
963a6417 | 5464 | /* The type of the tag on VAL. */ |
76a01679 | 5465 | |
963a6417 PH |
5466 | struct type * |
5467 | ada_tag_type (struct value *val) | |
96d887e8 | 5468 | { |
df407dfe | 5469 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5470 | } |
96d887e8 | 5471 | |
963a6417 | 5472 | /* The value of the tag on VAL. */ |
96d887e8 | 5473 | |
963a6417 PH |
5474 | struct value * |
5475 | ada_value_tag (struct value *val) | |
5476 | { | |
03ee6b2e | 5477 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5478 | } |
5479 | ||
963a6417 PH |
5480 | /* The value of the tag on the object of type TYPE whose contents are |
5481 | saved at VALADDR, if it is non-null, or is at memory address | |
5482 | ADDRESS. */ | |
96d887e8 | 5483 | |
963a6417 | 5484 | static struct value * |
10a2c479 | 5485 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5486 | const gdb_byte *valaddr, |
963a6417 | 5487 | CORE_ADDR address) |
96d887e8 | 5488 | { |
963a6417 PH |
5489 | int tag_byte_offset, dummy1, dummy2; |
5490 | struct type *tag_type; | |
5491 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, | |
52ce6436 | 5492 | NULL, NULL, NULL)) |
96d887e8 | 5493 | { |
fc1a4b47 | 5494 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5495 | ? NULL |
5496 | : valaddr + tag_byte_offset); | |
963a6417 | 5497 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5498 | |
963a6417 | 5499 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5500 | } |
963a6417 PH |
5501 | return NULL; |
5502 | } | |
96d887e8 | 5503 | |
963a6417 PH |
5504 | static struct type * |
5505 | type_from_tag (struct value *tag) | |
5506 | { | |
5507 | const char *type_name = ada_tag_name (tag); | |
5508 | if (type_name != NULL) | |
5509 | return ada_find_any_type (ada_encode (type_name)); | |
5510 | return NULL; | |
5511 | } | |
96d887e8 | 5512 | |
963a6417 PH |
5513 | struct tag_args |
5514 | { | |
5515 | struct value *tag; | |
5516 | char *name; | |
5517 | }; | |
4c4b4cd2 | 5518 | |
529cad9c PH |
5519 | |
5520 | static int ada_tag_name_1 (void *); | |
5521 | static int ada_tag_name_2 (struct tag_args *); | |
5522 | ||
4c4b4cd2 PH |
5523 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
5524 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. | |
5525 | The value stored in ARGS->name is valid until the next call to | |
5526 | ada_tag_name_1. */ | |
5527 | ||
5528 | static int | |
5529 | ada_tag_name_1 (void *args0) | |
5530 | { | |
5531 | struct tag_args *args = (struct tag_args *) args0; | |
5532 | static char name[1024]; | |
76a01679 | 5533 | char *p; |
4c4b4cd2 PH |
5534 | struct value *val; |
5535 | args->name = NULL; | |
03ee6b2e | 5536 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5537 | if (val == NULL) |
5538 | return ada_tag_name_2 (args); | |
03ee6b2e | 5539 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5540 | if (val == NULL) |
5541 | return 0; | |
5542 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5543 | for (p = name; *p != '\0'; p += 1) | |
5544 | if (isalpha (*p)) | |
5545 | *p = tolower (*p); | |
5546 | args->name = name; | |
5547 | return 0; | |
5548 | } | |
5549 | ||
5550 | /* Utility function for ada_tag_name_1 that tries the second | |
5551 | representation for the dispatch table (in which there is no | |
5552 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
5553 | the tsd pointer is stored just before the dispatch table. */ | |
5554 | ||
5555 | static int | |
5556 | ada_tag_name_2 (struct tag_args *args) | |
5557 | { | |
5558 | struct type *info_type; | |
5559 | static char name[1024]; | |
5560 | char *p; | |
5561 | struct value *val, *valp; | |
5562 | ||
5563 | args->name = NULL; | |
5564 | info_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5565 | if (info_type == NULL) | |
5566 | return 0; | |
5567 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5568 | valp = value_cast (info_type, args->tag); | |
5569 | if (valp == NULL) | |
5570 | return 0; | |
89eef114 UW |
5571 | val = value_ind (value_ptradd (valp, |
5572 | value_from_longest (builtin_type_int8, -1))); | |
4c4b4cd2 PH |
5573 | if (val == NULL) |
5574 | return 0; | |
03ee6b2e | 5575 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5576 | if (val == NULL) |
5577 | return 0; | |
5578 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5579 | for (p = name; *p != '\0'; p += 1) | |
5580 | if (isalpha (*p)) | |
5581 | *p = tolower (*p); | |
5582 | args->name = name; | |
5583 | return 0; | |
5584 | } | |
5585 | ||
5586 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
5587 | * a C string. */ | |
5588 | ||
5589 | const char * | |
5590 | ada_tag_name (struct value *tag) | |
5591 | { | |
5592 | struct tag_args args; | |
df407dfe | 5593 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5594 | return NULL; |
76a01679 | 5595 | args.tag = tag; |
4c4b4cd2 PH |
5596 | args.name = NULL; |
5597 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5598 | return args.name; | |
5599 | } | |
5600 | ||
5601 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5602 | |
d2e4a39e | 5603 | struct type * |
ebf56fd3 | 5604 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5605 | { |
5606 | int i; | |
5607 | ||
61ee279c | 5608 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5609 | |
5610 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5611 | return NULL; | |
5612 | ||
5613 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5614 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5615 | { |
5616 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5617 | ||
5618 | /* If the _parent field is a pointer, then dereference it. */ | |
5619 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5620 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5621 | /* If there is a parallel XVS type, get the actual base type. */ | |
5622 | parent_type = ada_get_base_type (parent_type); | |
5623 | ||
5624 | return ada_check_typedef (parent_type); | |
5625 | } | |
14f9c5c9 AS |
5626 | |
5627 | return NULL; | |
5628 | } | |
5629 | ||
4c4b4cd2 PH |
5630 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5631 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5632 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5633 | |
5634 | int | |
ebf56fd3 | 5635 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5636 | { |
61ee279c | 5637 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
4c4b4cd2 PH |
5638 | return (name != NULL |
5639 | && (strncmp (name, "PARENT", 6) == 0 | |
5640 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5641 | } |
5642 | ||
4c4b4cd2 | 5643 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5644 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5645 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5646 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5647 | structures. */ |
14f9c5c9 AS |
5648 | |
5649 | int | |
ebf56fd3 | 5650 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5651 | { |
d2e4a39e AS |
5652 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5653 | return (name != NULL | |
4c4b4cd2 PH |
5654 | && (strncmp (name, "PARENT", 6) == 0 |
5655 | || strcmp (name, "REP") == 0 | |
5656 | || strncmp (name, "_parent", 7) == 0 | |
5657 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5658 | } |
5659 | ||
4c4b4cd2 PH |
5660 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5661 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5662 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5663 | |
5664 | int | |
ebf56fd3 | 5665 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5666 | { |
d2e4a39e | 5667 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
14f9c5c9 | 5668 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5669 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5670 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5671 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5672 | } |
5673 | ||
5674 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5675 | whose discriminants are contained in the record type OUTER_TYPE, |
14f9c5c9 AS |
5676 | returns the type of the controlling discriminant for the variant. */ |
5677 | ||
d2e4a39e | 5678 | struct type * |
ebf56fd3 | 5679 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5680 | { |
d2e4a39e | 5681 | char *name = ada_variant_discrim_name (var_type); |
76a01679 | 5682 | struct type *type = |
4c4b4cd2 | 5683 | ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 | 5684 | if (type == NULL) |
6d84d3d8 | 5685 | return builtin_type_int32; |
14f9c5c9 AS |
5686 | else |
5687 | return type; | |
5688 | } | |
5689 | ||
4c4b4cd2 | 5690 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5691 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5692 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5693 | |
5694 | int | |
ebf56fd3 | 5695 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5696 | { |
d2e4a39e | 5697 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5698 | return (name != NULL && name[0] == 'O'); |
5699 | } | |
5700 | ||
5701 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5702 | returns the name of the discriminant controlling the variant. |
5703 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5704 | |
d2e4a39e | 5705 | char * |
ebf56fd3 | 5706 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5707 | { |
d2e4a39e | 5708 | static char *result = NULL; |
14f9c5c9 | 5709 | static size_t result_len = 0; |
d2e4a39e AS |
5710 | struct type *type; |
5711 | const char *name; | |
5712 | const char *discrim_end; | |
5713 | const char *discrim_start; | |
14f9c5c9 AS |
5714 | |
5715 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5716 | type = TYPE_TARGET_TYPE (type0); | |
5717 | else | |
5718 | type = type0; | |
5719 | ||
5720 | name = ada_type_name (type); | |
5721 | ||
5722 | if (name == NULL || name[0] == '\000') | |
5723 | return ""; | |
5724 | ||
5725 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5726 | discrim_end -= 1) | |
5727 | { | |
4c4b4cd2 PH |
5728 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
5729 | break; | |
14f9c5c9 AS |
5730 | } |
5731 | if (discrim_end == name) | |
5732 | return ""; | |
5733 | ||
d2e4a39e | 5734 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
5735 | discrim_start -= 1) |
5736 | { | |
d2e4a39e | 5737 | if (discrim_start == name + 1) |
4c4b4cd2 | 5738 | return ""; |
76a01679 | 5739 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
5740 | && strncmp (discrim_start - 3, "___", 3) == 0) |
5741 | || discrim_start[-1] == '.') | |
5742 | break; | |
14f9c5c9 AS |
5743 | } |
5744 | ||
5745 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5746 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 5747 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
5748 | return result; |
5749 | } | |
5750 | ||
4c4b4cd2 PH |
5751 | /* Scan STR for a subtype-encoded number, beginning at position K. |
5752 | Put the position of the character just past the number scanned in | |
5753 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
5754 | Return 1 if there was a valid number at the given position, and 0 | |
5755 | otherwise. A "subtype-encoded" number consists of the absolute value | |
5756 | in decimal, followed by the letter 'm' to indicate a negative number. | |
5757 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
5758 | |
5759 | int | |
d2e4a39e | 5760 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
5761 | { |
5762 | ULONGEST RU; | |
5763 | ||
d2e4a39e | 5764 | if (!isdigit (str[k])) |
14f9c5c9 AS |
5765 | return 0; |
5766 | ||
4c4b4cd2 | 5767 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 5768 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 5769 | LONGEST. */ |
14f9c5c9 AS |
5770 | RU = 0; |
5771 | while (isdigit (str[k])) | |
5772 | { | |
d2e4a39e | 5773 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
5774 | k += 1; |
5775 | } | |
5776 | ||
d2e4a39e | 5777 | if (str[k] == 'm') |
14f9c5c9 AS |
5778 | { |
5779 | if (R != NULL) | |
4c4b4cd2 | 5780 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
5781 | k += 1; |
5782 | } | |
5783 | else if (R != NULL) | |
5784 | *R = (LONGEST) RU; | |
5785 | ||
4c4b4cd2 | 5786 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
5787 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
5788 | number representable as a LONGEST (although either would probably work | |
5789 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 5790 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
5791 | |
5792 | if (new_k != NULL) | |
5793 | *new_k = k; | |
5794 | return 1; | |
5795 | } | |
5796 | ||
4c4b4cd2 PH |
5797 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
5798 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
5799 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 5800 | |
d2e4a39e | 5801 | int |
ebf56fd3 | 5802 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 5803 | { |
d2e4a39e | 5804 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5805 | int p; |
5806 | ||
5807 | p = 0; | |
5808 | while (1) | |
5809 | { | |
d2e4a39e | 5810 | switch (name[p]) |
4c4b4cd2 PH |
5811 | { |
5812 | case '\0': | |
5813 | return 0; | |
5814 | case 'S': | |
5815 | { | |
5816 | LONGEST W; | |
5817 | if (!ada_scan_number (name, p + 1, &W, &p)) | |
5818 | return 0; | |
5819 | if (val == W) | |
5820 | return 1; | |
5821 | break; | |
5822 | } | |
5823 | case 'R': | |
5824 | { | |
5825 | LONGEST L, U; | |
5826 | if (!ada_scan_number (name, p + 1, &L, &p) | |
5827 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
5828 | return 0; | |
5829 | if (val >= L && val <= U) | |
5830 | return 1; | |
5831 | break; | |
5832 | } | |
5833 | case 'O': | |
5834 | return 1; | |
5835 | default: | |
5836 | return 0; | |
5837 | } | |
5838 | } | |
5839 | } | |
5840 | ||
5841 | /* FIXME: Lots of redundancy below. Try to consolidate. */ | |
5842 | ||
5843 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
5844 | ARG_TYPE, extract and return the value of one of its (non-static) | |
5845 | fields. FIELDNO says which field. Differs from value_primitive_field | |
5846 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 5847 | |
4c4b4cd2 | 5848 | static struct value * |
d2e4a39e | 5849 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 5850 | struct type *arg_type) |
14f9c5c9 | 5851 | { |
14f9c5c9 AS |
5852 | struct type *type; |
5853 | ||
61ee279c | 5854 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
5855 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
5856 | ||
4c4b4cd2 | 5857 | /* Handle packed fields. */ |
14f9c5c9 AS |
5858 | |
5859 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
5860 | { | |
5861 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
5862 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 5863 | |
0fd88904 | 5864 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
5865 | offset + bit_pos / 8, |
5866 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
5867 | } |
5868 | else | |
5869 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
5870 | } | |
5871 | ||
52ce6436 PH |
5872 | /* Find field with name NAME in object of type TYPE. If found, |
5873 | set the following for each argument that is non-null: | |
5874 | - *FIELD_TYPE_P to the field's type; | |
5875 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
5876 | an object of that type; | |
5877 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
5878 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
5879 | 0 otherwise; | |
5880 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
5881 | fields up to but not including the desired field, or by the total | |
5882 | number of fields if not found. A NULL value of NAME never | |
5883 | matches; the function just counts visible fields in this case. | |
5884 | ||
5885 | Returns 1 if found, 0 otherwise. */ | |
5886 | ||
4c4b4cd2 | 5887 | static int |
76a01679 JB |
5888 | find_struct_field (char *name, struct type *type, int offset, |
5889 | struct type **field_type_p, | |
52ce6436 PH |
5890 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
5891 | int *index_p) | |
4c4b4cd2 PH |
5892 | { |
5893 | int i; | |
5894 | ||
61ee279c | 5895 | type = ada_check_typedef (type); |
76a01679 | 5896 | |
52ce6436 PH |
5897 | if (field_type_p != NULL) |
5898 | *field_type_p = NULL; | |
5899 | if (byte_offset_p != NULL) | |
d5d6fca5 | 5900 | *byte_offset_p = 0; |
52ce6436 PH |
5901 | if (bit_offset_p != NULL) |
5902 | *bit_offset_p = 0; | |
5903 | if (bit_size_p != NULL) | |
5904 | *bit_size_p = 0; | |
5905 | ||
5906 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
5907 | { |
5908 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
5909 | int fld_offset = offset + bit_pos / 8; | |
5910 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 5911 | |
4c4b4cd2 PH |
5912 | if (t_field_name == NULL) |
5913 | continue; | |
5914 | ||
52ce6436 | 5915 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
5916 | { |
5917 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
52ce6436 PH |
5918 | if (field_type_p != NULL) |
5919 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
5920 | if (byte_offset_p != NULL) | |
5921 | *byte_offset_p = fld_offset; | |
5922 | if (bit_offset_p != NULL) | |
5923 | *bit_offset_p = bit_pos % 8; | |
5924 | if (bit_size_p != NULL) | |
5925 | *bit_size_p = bit_size; | |
76a01679 JB |
5926 | return 1; |
5927 | } | |
4c4b4cd2 PH |
5928 | else if (ada_is_wrapper_field (type, i)) |
5929 | { | |
52ce6436 PH |
5930 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
5931 | field_type_p, byte_offset_p, bit_offset_p, | |
5932 | bit_size_p, index_p)) | |
76a01679 JB |
5933 | return 1; |
5934 | } | |
4c4b4cd2 PH |
5935 | else if (ada_is_variant_part (type, i)) |
5936 | { | |
52ce6436 PH |
5937 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
5938 | fixed type?? */ | |
4c4b4cd2 | 5939 | int j; |
52ce6436 PH |
5940 | struct type *field_type |
5941 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 5942 | |
52ce6436 | 5943 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 5944 | { |
76a01679 JB |
5945 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
5946 | fld_offset | |
5947 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
5948 | field_type_p, byte_offset_p, | |
52ce6436 | 5949 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 5950 | return 1; |
4c4b4cd2 PH |
5951 | } |
5952 | } | |
52ce6436 PH |
5953 | else if (index_p != NULL) |
5954 | *index_p += 1; | |
4c4b4cd2 PH |
5955 | } |
5956 | return 0; | |
5957 | } | |
5958 | ||
52ce6436 | 5959 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 5960 | |
52ce6436 PH |
5961 | static int |
5962 | num_visible_fields (struct type *type) | |
5963 | { | |
5964 | int n; | |
5965 | n = 0; | |
5966 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
5967 | return n; | |
5968 | } | |
14f9c5c9 | 5969 | |
4c4b4cd2 | 5970 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
5971 | and search in it assuming it has (class) type TYPE. |
5972 | If found, return value, else return NULL. | |
5973 | ||
4c4b4cd2 | 5974 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 5975 | |
4c4b4cd2 | 5976 | static struct value * |
d2e4a39e | 5977 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 5978 | struct type *type) |
14f9c5c9 AS |
5979 | { |
5980 | int i; | |
61ee279c | 5981 | type = ada_check_typedef (type); |
14f9c5c9 | 5982 | |
52ce6436 | 5983 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
5984 | { |
5985 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
5986 | ||
5987 | if (t_field_name == NULL) | |
4c4b4cd2 | 5988 | continue; |
14f9c5c9 AS |
5989 | |
5990 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 5991 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
5992 | |
5993 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 5994 | { |
06d5cf63 JB |
5995 | struct value *v = /* Do not let indent join lines here. */ |
5996 | ada_search_struct_field (name, arg, | |
5997 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
5998 | TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 PH |
5999 | if (v != NULL) |
6000 | return v; | |
6001 | } | |
14f9c5c9 AS |
6002 | |
6003 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6004 | { |
52ce6436 | 6005 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6006 | int j; |
61ee279c | 6007 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6008 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6009 | ||
52ce6436 | 6010 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6011 | { |
06d5cf63 JB |
6012 | struct value *v = ada_search_struct_field /* Force line break. */ |
6013 | (name, arg, | |
6014 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6015 | TYPE_FIELD_TYPE (field_type, j)); | |
4c4b4cd2 PH |
6016 | if (v != NULL) |
6017 | return v; | |
6018 | } | |
6019 | } | |
14f9c5c9 AS |
6020 | } |
6021 | return NULL; | |
6022 | } | |
d2e4a39e | 6023 | |
52ce6436 PH |
6024 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6025 | int, struct type *); | |
6026 | ||
6027 | ||
6028 | /* Return field #INDEX in ARG, where the index is that returned by | |
6029 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6030 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
6031 | * If found, return value, else return NULL. */ | |
6032 | ||
6033 | static struct value * | |
6034 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6035 | struct type *type) | |
6036 | { | |
6037 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6038 | } | |
6039 | ||
6040 | ||
6041 | /* Auxiliary function for ada_index_struct_field. Like | |
6042 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
6043 | * *INDEX_P. */ | |
6044 | ||
6045 | static struct value * | |
6046 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6047 | struct type *type) | |
6048 | { | |
6049 | int i; | |
6050 | type = ada_check_typedef (type); | |
6051 | ||
6052 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6053 | { | |
6054 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6055 | continue; | |
6056 | else if (ada_is_wrapper_field (type, i)) | |
6057 | { | |
6058 | struct value *v = /* Do not let indent join lines here. */ | |
6059 | ada_index_struct_field_1 (index_p, arg, | |
6060 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6061 | TYPE_FIELD_TYPE (type, i)); | |
6062 | if (v != NULL) | |
6063 | return v; | |
6064 | } | |
6065 | ||
6066 | else if (ada_is_variant_part (type, i)) | |
6067 | { | |
6068 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
6069 | find_struct_field. */ | |
6070 | error (_("Cannot assign this kind of variant record")); | |
6071 | } | |
6072 | else if (*index_p == 0) | |
6073 | return ada_value_primitive_field (arg, offset, i, type); | |
6074 | else | |
6075 | *index_p -= 1; | |
6076 | } | |
6077 | return NULL; | |
6078 | } | |
6079 | ||
4c4b4cd2 PH |
6080 | /* Given ARG, a value of type (pointer or reference to a)* |
6081 | structure/union, extract the component named NAME from the ultimate | |
6082 | target structure/union and return it as a value with its | |
f5938064 | 6083 | appropriate type. |
14f9c5c9 | 6084 | |
4c4b4cd2 PH |
6085 | The routine searches for NAME among all members of the structure itself |
6086 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6087 | (e.g., '_parent'). |
6088 | ||
03ee6b2e PH |
6089 | If NO_ERR, then simply return NULL in case of error, rather than |
6090 | calling error. */ | |
14f9c5c9 | 6091 | |
d2e4a39e | 6092 | struct value * |
03ee6b2e | 6093 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6094 | { |
4c4b4cd2 | 6095 | struct type *t, *t1; |
d2e4a39e | 6096 | struct value *v; |
14f9c5c9 | 6097 | |
4c4b4cd2 | 6098 | v = NULL; |
df407dfe | 6099 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6100 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6101 | { | |
6102 | t1 = TYPE_TARGET_TYPE (t); | |
6103 | if (t1 == NULL) | |
03ee6b2e | 6104 | goto BadValue; |
61ee279c | 6105 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6106 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6107 | { |
994b9211 | 6108 | arg = coerce_ref (arg); |
76a01679 JB |
6109 | t = t1; |
6110 | } | |
4c4b4cd2 | 6111 | } |
14f9c5c9 | 6112 | |
4c4b4cd2 PH |
6113 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6114 | { | |
6115 | t1 = TYPE_TARGET_TYPE (t); | |
6116 | if (t1 == NULL) | |
03ee6b2e | 6117 | goto BadValue; |
61ee279c | 6118 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6119 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6120 | { |
6121 | arg = value_ind (arg); | |
6122 | t = t1; | |
6123 | } | |
4c4b4cd2 | 6124 | else |
76a01679 | 6125 | break; |
4c4b4cd2 | 6126 | } |
14f9c5c9 | 6127 | |
4c4b4cd2 | 6128 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6129 | goto BadValue; |
14f9c5c9 | 6130 | |
4c4b4cd2 PH |
6131 | if (t1 == t) |
6132 | v = ada_search_struct_field (name, arg, 0, t); | |
6133 | else | |
6134 | { | |
6135 | int bit_offset, bit_size, byte_offset; | |
6136 | struct type *field_type; | |
6137 | CORE_ADDR address; | |
6138 | ||
76a01679 JB |
6139 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6140 | address = value_as_address (arg); | |
4c4b4cd2 | 6141 | else |
0fd88904 | 6142 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6143 | |
1ed6ede0 | 6144 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6145 | if (find_struct_field (name, t1, 0, |
6146 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6147 | &bit_size, NULL)) |
76a01679 JB |
6148 | { |
6149 | if (bit_size != 0) | |
6150 | { | |
714e53ab PH |
6151 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6152 | arg = ada_coerce_ref (arg); | |
6153 | else | |
6154 | arg = ada_value_ind (arg); | |
76a01679 JB |
6155 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6156 | bit_offset, bit_size, | |
6157 | field_type); | |
6158 | } | |
6159 | else | |
f5938064 | 6160 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6161 | } |
6162 | } | |
6163 | ||
03ee6b2e PH |
6164 | if (v != NULL || no_err) |
6165 | return v; | |
6166 | else | |
323e0a4a | 6167 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6168 | |
03ee6b2e PH |
6169 | BadValue: |
6170 | if (no_err) | |
6171 | return NULL; | |
6172 | else | |
6173 | error (_("Attempt to extract a component of a value that is not a record.")); | |
14f9c5c9 AS |
6174 | } |
6175 | ||
6176 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6177 | If DISPP is non-null, add its byte displacement from the beginning of a |
6178 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6179 | work for packed fields). |
6180 | ||
6181 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6182 | followed by "___". |
14f9c5c9 | 6183 | |
4c4b4cd2 PH |
6184 | TYPE can be either a struct or union. If REFOK, TYPE may also |
6185 | be a (pointer or reference)+ to a struct or union, and the | |
6186 | ultimate target type will be searched. | |
14f9c5c9 AS |
6187 | |
6188 | Looks recursively into variant clauses and parent types. | |
6189 | ||
4c4b4cd2 PH |
6190 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6191 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6192 | |
4c4b4cd2 | 6193 | static struct type * |
76a01679 JB |
6194 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6195 | int noerr, int *dispp) | |
14f9c5c9 AS |
6196 | { |
6197 | int i; | |
6198 | ||
6199 | if (name == NULL) | |
6200 | goto BadName; | |
6201 | ||
76a01679 | 6202 | if (refok && type != NULL) |
4c4b4cd2 PH |
6203 | while (1) |
6204 | { | |
61ee279c | 6205 | type = ada_check_typedef (type); |
76a01679 JB |
6206 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6207 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6208 | break; | |
6209 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6210 | } |
14f9c5c9 | 6211 | |
76a01679 | 6212 | if (type == NULL |
1265e4aa JB |
6213 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6214 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6215 | { |
4c4b4cd2 | 6216 | if (noerr) |
76a01679 | 6217 | return NULL; |
4c4b4cd2 | 6218 | else |
76a01679 JB |
6219 | { |
6220 | target_terminal_ours (); | |
6221 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6222 | if (type == NULL) |
6223 | error (_("Type (null) is not a structure or union type")); | |
6224 | else | |
6225 | { | |
6226 | /* XXX: type_sprint */ | |
6227 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6228 | type_print (type, "", gdb_stderr, -1); | |
6229 | error (_(" is not a structure or union type")); | |
6230 | } | |
76a01679 | 6231 | } |
14f9c5c9 AS |
6232 | } |
6233 | ||
6234 | type = to_static_fixed_type (type); | |
6235 | ||
6236 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6237 | { | |
6238 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6239 | struct type *t; | |
6240 | int disp; | |
d2e4a39e | 6241 | |
14f9c5c9 | 6242 | if (t_field_name == NULL) |
4c4b4cd2 | 6243 | continue; |
14f9c5c9 AS |
6244 | |
6245 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6246 | { |
6247 | if (dispp != NULL) | |
6248 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6249 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6250 | } |
14f9c5c9 AS |
6251 | |
6252 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6253 | { |
6254 | disp = 0; | |
6255 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6256 | 0, 1, &disp); | |
6257 | if (t != NULL) | |
6258 | { | |
6259 | if (dispp != NULL) | |
6260 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6261 | return t; | |
6262 | } | |
6263 | } | |
14f9c5c9 AS |
6264 | |
6265 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6266 | { |
6267 | int j; | |
61ee279c | 6268 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6269 | |
6270 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6271 | { | |
b1f33ddd JB |
6272 | /* FIXME pnh 2008/01/26: We check for a field that is |
6273 | NOT wrapped in a struct, since the compiler sometimes | |
6274 | generates these for unchecked variant types. Revisit | |
6275 | if the compiler changes this practice. */ | |
6276 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); | |
4c4b4cd2 | 6277 | disp = 0; |
b1f33ddd JB |
6278 | if (v_field_name != NULL |
6279 | && field_name_match (v_field_name, name)) | |
6280 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6281 | else | |
6282 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
6283 | name, 0, 1, &disp); | |
6284 | ||
4c4b4cd2 PH |
6285 | if (t != NULL) |
6286 | { | |
6287 | if (dispp != NULL) | |
6288 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6289 | return t; | |
6290 | } | |
6291 | } | |
6292 | } | |
14f9c5c9 AS |
6293 | |
6294 | } | |
6295 | ||
6296 | BadName: | |
d2e4a39e | 6297 | if (!noerr) |
14f9c5c9 AS |
6298 | { |
6299 | target_terminal_ours (); | |
6300 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6301 | if (name == NULL) |
6302 | { | |
6303 | /* XXX: type_sprint */ | |
6304 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6305 | type_print (type, "", gdb_stderr, -1); | |
6306 | error (_(" has no component named <null>")); | |
6307 | } | |
6308 | else | |
6309 | { | |
6310 | /* XXX: type_sprint */ | |
6311 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6312 | type_print (type, "", gdb_stderr, -1); | |
6313 | error (_(" has no component named %s"), name); | |
6314 | } | |
14f9c5c9 AS |
6315 | } |
6316 | ||
6317 | return NULL; | |
6318 | } | |
6319 | ||
b1f33ddd JB |
6320 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6321 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6322 | represents an unchecked union (that is, the variant part of a | |
6323 | record that is named in an Unchecked_Union pragma). */ | |
6324 | ||
6325 | static int | |
6326 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6327 | { | |
6328 | char *discrim_name = ada_variant_discrim_name (var_type); | |
6329 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) | |
6330 | == NULL); | |
6331 | } | |
6332 | ||
6333 | ||
14f9c5c9 AS |
6334 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6335 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6336 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6337 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6338 | |
d2e4a39e | 6339 | int |
ebf56fd3 | 6340 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6341 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6342 | { |
6343 | int others_clause; | |
6344 | int i; | |
d2e4a39e | 6345 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6346 | struct value *outer; |
6347 | struct value *discrim; | |
14f9c5c9 AS |
6348 | LONGEST discrim_val; |
6349 | ||
0c281816 JB |
6350 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6351 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6352 | if (discrim == NULL) | |
14f9c5c9 | 6353 | return -1; |
0c281816 | 6354 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6355 | |
6356 | others_clause = -1; | |
6357 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6358 | { | |
6359 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6360 | others_clause = i; |
14f9c5c9 | 6361 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6362 | return i; |
14f9c5c9 AS |
6363 | } |
6364 | ||
6365 | return others_clause; | |
6366 | } | |
d2e4a39e | 6367 | \f |
14f9c5c9 AS |
6368 | |
6369 | ||
4c4b4cd2 | 6370 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6371 | |
6372 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6373 | (i.e., a size that is not statically recorded in the debugging | |
6374 | data) does not accurately reflect the size or layout of the value. | |
6375 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6376 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6377 | |
6378 | /* There is a subtle and tricky problem here. In general, we cannot | |
6379 | determine the size of dynamic records without its data. However, | |
6380 | the 'struct value' data structure, which GDB uses to represent | |
6381 | quantities in the inferior process (the target), requires the size | |
6382 | of the type at the time of its allocation in order to reserve space | |
6383 | for GDB's internal copy of the data. That's why the | |
6384 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6385 | rather than struct value*s. |
14f9c5c9 AS |
6386 | |
6387 | However, GDB's internal history variables ($1, $2, etc.) are | |
6388 | struct value*s containing internal copies of the data that are not, in | |
6389 | general, the same as the data at their corresponding addresses in | |
6390 | the target. Fortunately, the types we give to these values are all | |
6391 | conventional, fixed-size types (as per the strategy described | |
6392 | above), so that we don't usually have to perform the | |
6393 | 'to_fixed_xxx_type' conversions to look at their values. | |
6394 | Unfortunately, there is one exception: if one of the internal | |
6395 | history variables is an array whose elements are unconstrained | |
6396 | records, then we will need to create distinct fixed types for each | |
6397 | element selected. */ | |
6398 | ||
6399 | /* The upshot of all of this is that many routines take a (type, host | |
6400 | address, target address) triple as arguments to represent a value. | |
6401 | The host address, if non-null, is supposed to contain an internal | |
6402 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6403 | target at the target address. */ |
14f9c5c9 AS |
6404 | |
6405 | /* Assuming that VAL0 represents a pointer value, the result of | |
6406 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6407 | dynamic-sized types. */ |
14f9c5c9 | 6408 | |
d2e4a39e AS |
6409 | struct value * |
6410 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6411 | { |
d2e4a39e | 6412 | struct value *val = unwrap_value (value_ind (val0)); |
4c4b4cd2 | 6413 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6414 | } |
6415 | ||
6416 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6417 | qualifiers on VAL0. */ |
6418 | ||
d2e4a39e AS |
6419 | static struct value * |
6420 | ada_coerce_ref (struct value *val0) | |
6421 | { | |
df407dfe | 6422 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6423 | { |
6424 | struct value *val = val0; | |
994b9211 | 6425 | val = coerce_ref (val); |
d2e4a39e | 6426 | val = unwrap_value (val); |
4c4b4cd2 | 6427 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6428 | } |
6429 | else | |
14f9c5c9 AS |
6430 | return val0; |
6431 | } | |
6432 | ||
6433 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6434 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6435 | |
6436 | static unsigned int | |
ebf56fd3 | 6437 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6438 | { |
6439 | return (off + alignment - 1) & ~(alignment - 1); | |
6440 | } | |
6441 | ||
4c4b4cd2 | 6442 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6443 | |
6444 | static unsigned int | |
ebf56fd3 | 6445 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6446 | { |
d2e4a39e | 6447 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6448 | int len; |
14f9c5c9 AS |
6449 | int align_offset; |
6450 | ||
64a1bf19 JB |
6451 | /* The field name should never be null, unless the debugging information |
6452 | is somehow malformed. In this case, we assume the field does not | |
6453 | require any alignment. */ | |
6454 | if (name == NULL) | |
6455 | return 1; | |
6456 | ||
6457 | len = strlen (name); | |
6458 | ||
4c4b4cd2 PH |
6459 | if (!isdigit (name[len - 1])) |
6460 | return 1; | |
14f9c5c9 | 6461 | |
d2e4a39e | 6462 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6463 | align_offset = len - 2; |
6464 | else | |
6465 | align_offset = len - 1; | |
6466 | ||
4c4b4cd2 | 6467 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6468 | return TARGET_CHAR_BIT; |
6469 | ||
4c4b4cd2 PH |
6470 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6471 | } | |
6472 | ||
6473 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6474 | ||
6475 | struct symbol * | |
6476 | ada_find_any_symbol (const char *name) | |
6477 | { | |
6478 | struct symbol *sym; | |
6479 | ||
6480 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6481 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6482 | return sym; | |
6483 | ||
6484 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6485 | return sym; | |
14f9c5c9 AS |
6486 | } |
6487 | ||
dddfab26 UW |
6488 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6489 | solely for types defined by debug info, it will not search the GDB | |
6490 | primitive types. */ | |
4c4b4cd2 | 6491 | |
d2e4a39e | 6492 | struct type * |
ebf56fd3 | 6493 | ada_find_any_type (const char *name) |
14f9c5c9 | 6494 | { |
4c4b4cd2 | 6495 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6496 | |
14f9c5c9 | 6497 | if (sym != NULL) |
dddfab26 | 6498 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6499 | |
dddfab26 | 6500 | return NULL; |
14f9c5c9 AS |
6501 | } |
6502 | ||
aeb5907d JB |
6503 | /* Given NAME and an associated BLOCK, search all symbols for |
6504 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6505 | associated to NAME. Return this symbol if found, return |
6506 | NULL otherwise. */ | |
6507 | ||
6508 | struct symbol * | |
6509 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6510 | { |
6511 | struct symbol *sym; | |
6512 | ||
6513 | sym = find_old_style_renaming_symbol (name, block); | |
6514 | ||
6515 | if (sym != NULL) | |
6516 | return sym; | |
6517 | ||
6518 | /* Not right yet. FIXME pnh 7/20/2007. */ | |
6519 | sym = ada_find_any_symbol (name); | |
6520 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6521 | return sym; | |
6522 | else | |
6523 | return NULL; | |
6524 | } | |
6525 | ||
6526 | static struct symbol * | |
6527 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6528 | { |
7f0df278 | 6529 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6530 | char *rename; |
6531 | ||
6532 | if (function_sym != NULL) | |
6533 | { | |
6534 | /* If the symbol is defined inside a function, NAME is not fully | |
6535 | qualified. This means we need to prepend the function name | |
6536 | as well as adding the ``___XR'' suffix to build the name of | |
6537 | the associated renaming symbol. */ | |
6538 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6539 | /* Function names sometimes contain suffixes used |
6540 | for instance to qualify nested subprograms. When building | |
6541 | the XR type name, we need to make sure that this suffix is | |
6542 | not included. So do not include any suffix in the function | |
6543 | name length below. */ | |
6544 | const int function_name_len = ada_name_prefix_len (function_name); | |
76a01679 JB |
6545 | const int rename_len = function_name_len + 2 /* "__" */ |
6546 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6547 | |
529cad9c PH |
6548 | /* Strip the suffix if necessary. */ |
6549 | function_name[function_name_len] = '\0'; | |
6550 | ||
4c4b4cd2 PH |
6551 | /* Library-level functions are a special case, as GNAT adds |
6552 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6553 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6554 | have this prefix, so we need to skip this prefix if present. */ |
6555 | if (function_name_len > 5 /* "_ada_" */ | |
6556 | && strstr (function_name, "_ada_") == function_name) | |
6557 | function_name = function_name + 5; | |
6558 | ||
6559 | rename = (char *) alloca (rename_len * sizeof (char)); | |
88c15c34 PM |
6560 | xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR", |
6561 | function_name, name); | |
4c4b4cd2 PH |
6562 | } |
6563 | else | |
6564 | { | |
6565 | const int rename_len = strlen (name) + 6; | |
6566 | rename = (char *) alloca (rename_len * sizeof (char)); | |
88c15c34 | 6567 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
6568 | } |
6569 | ||
6570 | return ada_find_any_symbol (rename); | |
6571 | } | |
6572 | ||
14f9c5c9 | 6573 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6574 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6575 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6576 | otherwise return 0. */ |
6577 | ||
14f9c5c9 | 6578 | int |
d2e4a39e | 6579 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6580 | { |
6581 | if (type1 == NULL) | |
6582 | return 1; | |
6583 | else if (type0 == NULL) | |
6584 | return 0; | |
6585 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6586 | return 1; | |
6587 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6588 | return 0; | |
4c4b4cd2 PH |
6589 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6590 | return 1; | |
14f9c5c9 AS |
6591 | else if (ada_is_packed_array_type (type0)) |
6592 | return 1; | |
4c4b4cd2 PH |
6593 | else if (ada_is_array_descriptor_type (type0) |
6594 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6595 | return 1; |
aeb5907d JB |
6596 | else |
6597 | { | |
6598 | const char *type0_name = type_name_no_tag (type0); | |
6599 | const char *type1_name = type_name_no_tag (type1); | |
6600 | ||
6601 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6602 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6603 | return 1; | |
6604 | } | |
14f9c5c9 AS |
6605 | return 0; |
6606 | } | |
6607 | ||
6608 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6609 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6610 | ||
d2e4a39e AS |
6611 | char * |
6612 | ada_type_name (struct type *type) | |
14f9c5c9 | 6613 | { |
d2e4a39e | 6614 | if (type == NULL) |
14f9c5c9 AS |
6615 | return NULL; |
6616 | else if (TYPE_NAME (type) != NULL) | |
6617 | return TYPE_NAME (type); | |
6618 | else | |
6619 | return TYPE_TAG_NAME (type); | |
6620 | } | |
6621 | ||
6622 | /* Find a parallel type to TYPE whose name is formed by appending | |
4c4b4cd2 | 6623 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6624 | |
d2e4a39e | 6625 | struct type * |
ebf56fd3 | 6626 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6627 | { |
d2e4a39e | 6628 | static char *name; |
14f9c5c9 | 6629 | static size_t name_len = 0; |
14f9c5c9 | 6630 | int len; |
d2e4a39e AS |
6631 | char *typename = ada_type_name (type); |
6632 | ||
14f9c5c9 AS |
6633 | if (typename == NULL) |
6634 | return NULL; | |
6635 | ||
6636 | len = strlen (typename); | |
6637 | ||
d2e4a39e | 6638 | GROW_VECT (name, name_len, len + strlen (suffix) + 1); |
14f9c5c9 AS |
6639 | |
6640 | strcpy (name, typename); | |
6641 | strcpy (name + len, suffix); | |
6642 | ||
6643 | return ada_find_any_type (name); | |
6644 | } | |
6645 | ||
6646 | ||
6647 | /* If TYPE is a variable-size record type, return the corresponding template | |
4c4b4cd2 | 6648 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 6649 | |
d2e4a39e AS |
6650 | static struct type * |
6651 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 6652 | { |
61ee279c | 6653 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6654 | |
6655 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 6656 | || ada_type_name (type) == NULL) |
14f9c5c9 | 6657 | return NULL; |
d2e4a39e | 6658 | else |
14f9c5c9 AS |
6659 | { |
6660 | int len = strlen (ada_type_name (type)); | |
4c4b4cd2 PH |
6661 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
6662 | return type; | |
14f9c5c9 | 6663 | else |
4c4b4cd2 | 6664 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
6665 | } |
6666 | } | |
6667 | ||
6668 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 6669 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 6670 | |
d2e4a39e AS |
6671 | static int |
6672 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
6673 | { |
6674 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
d2e4a39e | 6675 | return name != NULL |
14f9c5c9 AS |
6676 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
6677 | && strstr (name, "___XVL") != NULL; | |
6678 | } | |
6679 | ||
4c4b4cd2 PH |
6680 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
6681 | represent a variant record type. */ | |
14f9c5c9 | 6682 | |
d2e4a39e | 6683 | static int |
4c4b4cd2 | 6684 | variant_field_index (struct type *type) |
14f9c5c9 AS |
6685 | { |
6686 | int f; | |
6687 | ||
4c4b4cd2 PH |
6688 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
6689 | return -1; | |
6690 | ||
6691 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
6692 | { | |
6693 | if (ada_is_variant_part (type, f)) | |
6694 | return f; | |
6695 | } | |
6696 | return -1; | |
14f9c5c9 AS |
6697 | } |
6698 | ||
4c4b4cd2 PH |
6699 | /* A record type with no fields. */ |
6700 | ||
d2e4a39e AS |
6701 | static struct type * |
6702 | empty_record (struct objfile *objfile) | |
14f9c5c9 | 6703 | { |
d2e4a39e | 6704 | struct type *type = alloc_type (objfile); |
14f9c5c9 AS |
6705 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
6706 | TYPE_NFIELDS (type) = 0; | |
6707 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 6708 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
6709 | TYPE_NAME (type) = "<empty>"; |
6710 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
6711 | TYPE_LENGTH (type) = 0; |
6712 | return type; | |
6713 | } | |
6714 | ||
6715 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
6716 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
6717 | the beginning of this section) VAL according to GNAT conventions. | |
6718 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 6719 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
6720 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
6721 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 6722 | of the variant. |
14f9c5c9 | 6723 | |
4c4b4cd2 PH |
6724 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
6725 | length are not statically known are discarded. As a consequence, | |
6726 | VALADDR, ADDRESS and DVAL0 are ignored. | |
6727 | ||
6728 | NOTE: Limitations: For now, we assume that dynamic fields and | |
6729 | variants occupy whole numbers of bytes. However, they need not be | |
6730 | byte-aligned. */ | |
6731 | ||
6732 | struct type * | |
10a2c479 | 6733 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 6734 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
6735 | CORE_ADDR address, struct value *dval0, |
6736 | int keep_dynamic_fields) | |
14f9c5c9 | 6737 | { |
d2e4a39e AS |
6738 | struct value *mark = value_mark (); |
6739 | struct value *dval; | |
6740 | struct type *rtype; | |
14f9c5c9 | 6741 | int nfields, bit_len; |
4c4b4cd2 | 6742 | int variant_field; |
14f9c5c9 | 6743 | long off; |
4c4b4cd2 | 6744 | int fld_bit_len, bit_incr; |
14f9c5c9 AS |
6745 | int f; |
6746 | ||
4c4b4cd2 PH |
6747 | /* Compute the number of fields in this record type that are going |
6748 | to be processed: unless keep_dynamic_fields, this includes only | |
6749 | fields whose position and length are static will be processed. */ | |
6750 | if (keep_dynamic_fields) | |
6751 | nfields = TYPE_NFIELDS (type); | |
6752 | else | |
6753 | { | |
6754 | nfields = 0; | |
76a01679 | 6755 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
6756 | && !ada_is_variant_part (type, nfields) |
6757 | && !is_dynamic_field (type, nfields)) | |
6758 | nfields++; | |
6759 | } | |
6760 | ||
14f9c5c9 AS |
6761 | rtype = alloc_type (TYPE_OBJFILE (type)); |
6762 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
6763 | INIT_CPLUS_SPECIFIC (rtype); | |
6764 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 6765 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
6766 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
6767 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6768 | TYPE_NAME (rtype) = ada_type_name (type); | |
6769 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 6770 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 6771 | |
d2e4a39e AS |
6772 | off = 0; |
6773 | bit_len = 0; | |
4c4b4cd2 PH |
6774 | variant_field = -1; |
6775 | ||
14f9c5c9 AS |
6776 | for (f = 0; f < nfields; f += 1) |
6777 | { | |
6c038f32 PH |
6778 | off = align_value (off, field_alignment (type, f)) |
6779 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 6780 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 6781 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 6782 | |
d2e4a39e | 6783 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
6784 | { |
6785 | variant_field = f; | |
6786 | fld_bit_len = bit_incr = 0; | |
6787 | } | |
14f9c5c9 | 6788 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 6789 | { |
284614f0 JB |
6790 | const gdb_byte *field_valaddr = valaddr; |
6791 | CORE_ADDR field_address = address; | |
6792 | struct type *field_type = | |
6793 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
6794 | ||
4c4b4cd2 | 6795 | if (dval0 == NULL) |
b5304971 JG |
6796 | { |
6797 | /* rtype's length is computed based on the run-time | |
6798 | value of discriminants. If the discriminants are not | |
6799 | initialized, the type size may be completely bogus and | |
6800 | GDB may fail to allocate a value for it. So check the | |
6801 | size first before creating the value. */ | |
6802 | check_size (rtype); | |
6803 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6804 | } | |
4c4b4cd2 PH |
6805 | else |
6806 | dval = dval0; | |
6807 | ||
284614f0 JB |
6808 | /* If the type referenced by this field is an aligner type, we need |
6809 | to unwrap that aligner type, because its size might not be set. | |
6810 | Keeping the aligner type would cause us to compute the wrong | |
6811 | size for this field, impacting the offset of the all the fields | |
6812 | that follow this one. */ | |
6813 | if (ada_is_aligner_type (field_type)) | |
6814 | { | |
6815 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
6816 | ||
6817 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
6818 | field_address = cond_offset_target (field_address, field_offset); | |
6819 | field_type = ada_aligned_type (field_type); | |
6820 | } | |
6821 | ||
6822 | field_valaddr = cond_offset_host (field_valaddr, | |
6823 | off / TARGET_CHAR_BIT); | |
6824 | field_address = cond_offset_target (field_address, | |
6825 | off / TARGET_CHAR_BIT); | |
6826 | ||
6827 | /* Get the fixed type of the field. Note that, in this case, | |
6828 | we do not want to get the real type out of the tag: if | |
6829 | the current field is the parent part of a tagged record, | |
6830 | we will get the tag of the object. Clearly wrong: the real | |
6831 | type of the parent is not the real type of the child. We | |
6832 | would end up in an infinite loop. */ | |
6833 | field_type = ada_get_base_type (field_type); | |
6834 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
6835 | field_address, dval, 0); | |
6836 | ||
6837 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 PH |
6838 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
6839 | bit_incr = fld_bit_len = | |
6840 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
6841 | } | |
14f9c5c9 | 6842 | else |
4c4b4cd2 PH |
6843 | { |
6844 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
6845 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
6846 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
6847 | bit_incr = fld_bit_len = | |
6848 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
6849 | else | |
6850 | bit_incr = fld_bit_len = | |
6851 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT; | |
6852 | } | |
14f9c5c9 | 6853 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 6854 | bit_len = off + fld_bit_len; |
14f9c5c9 | 6855 | off += bit_incr; |
4c4b4cd2 PH |
6856 | TYPE_LENGTH (rtype) = |
6857 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 6858 | } |
4c4b4cd2 PH |
6859 | |
6860 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 6861 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
6862 | the record. This can happen in the presence of representation |
6863 | clauses. */ | |
6864 | if (variant_field >= 0) | |
6865 | { | |
6866 | struct type *branch_type; | |
6867 | ||
6868 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
6869 | ||
6870 | if (dval0 == NULL) | |
6871 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6872 | else | |
6873 | dval = dval0; | |
6874 | ||
6875 | branch_type = | |
6876 | to_fixed_variant_branch_type | |
6877 | (TYPE_FIELD_TYPE (type, variant_field), | |
6878 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
6879 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
6880 | if (branch_type == NULL) | |
6881 | { | |
6882 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
6883 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
6884 | TYPE_NFIELDS (rtype) -= 1; | |
6885 | } | |
6886 | else | |
6887 | { | |
6888 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
6889 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
6890 | fld_bit_len = | |
6891 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
6892 | TARGET_CHAR_BIT; | |
6893 | if (off + fld_bit_len > bit_len) | |
6894 | bit_len = off + fld_bit_len; | |
6895 | TYPE_LENGTH (rtype) = | |
6896 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
6897 | } | |
6898 | } | |
6899 | ||
714e53ab PH |
6900 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
6901 | should contain the alignment of that record, which should be a strictly | |
6902 | positive value. If null or negative, then something is wrong, most | |
6903 | probably in the debug info. In that case, we don't round up the size | |
6904 | of the resulting type. If this record is not part of another structure, | |
6905 | the current RTYPE length might be good enough for our purposes. */ | |
6906 | if (TYPE_LENGTH (type) <= 0) | |
6907 | { | |
323e0a4a AC |
6908 | if (TYPE_NAME (rtype)) |
6909 | warning (_("Invalid type size for `%s' detected: %d."), | |
6910 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
6911 | else | |
6912 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
6913 | TYPE_LENGTH (type)); | |
714e53ab PH |
6914 | } |
6915 | else | |
6916 | { | |
6917 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
6918 | TYPE_LENGTH (type)); | |
6919 | } | |
14f9c5c9 AS |
6920 | |
6921 | value_free_to_mark (mark); | |
d2e4a39e | 6922 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 6923 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
6924 | return rtype; |
6925 | } | |
6926 | ||
4c4b4cd2 PH |
6927 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
6928 | of 1. */ | |
14f9c5c9 | 6929 | |
d2e4a39e | 6930 | static struct type * |
fc1a4b47 | 6931 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
6932 | CORE_ADDR address, struct value *dval0) |
6933 | { | |
6934 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
6935 | address, dval0, 1); | |
6936 | } | |
6937 | ||
6938 | /* An ordinary record type in which ___XVL-convention fields and | |
6939 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
6940 | static approximations, containing all possible fields. Uses | |
6941 | no runtime values. Useless for use in values, but that's OK, | |
6942 | since the results are used only for type determinations. Works on both | |
6943 | structs and unions. Representation note: to save space, we memorize | |
6944 | the result of this function in the TYPE_TARGET_TYPE of the | |
6945 | template type. */ | |
6946 | ||
6947 | static struct type * | |
6948 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
6949 | { |
6950 | struct type *type; | |
6951 | int nfields; | |
6952 | int f; | |
6953 | ||
4c4b4cd2 PH |
6954 | if (TYPE_TARGET_TYPE (type0) != NULL) |
6955 | return TYPE_TARGET_TYPE (type0); | |
6956 | ||
6957 | nfields = TYPE_NFIELDS (type0); | |
6958 | type = type0; | |
14f9c5c9 AS |
6959 | |
6960 | for (f = 0; f < nfields; f += 1) | |
6961 | { | |
61ee279c | 6962 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 6963 | struct type *new_type; |
14f9c5c9 | 6964 | |
4c4b4cd2 PH |
6965 | if (is_dynamic_field (type0, f)) |
6966 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 6967 | else |
f192137b | 6968 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
6969 | if (type == type0 && new_type != field_type) |
6970 | { | |
6971 | TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0)); | |
6972 | TYPE_CODE (type) = TYPE_CODE (type0); | |
6973 | INIT_CPLUS_SPECIFIC (type); | |
6974 | TYPE_NFIELDS (type) = nfields; | |
6975 | TYPE_FIELDS (type) = (struct field *) | |
6976 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
6977 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
6978 | sizeof (struct field) * nfields); | |
6979 | TYPE_NAME (type) = ada_type_name (type0); | |
6980 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 6981 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
6982 | TYPE_LENGTH (type) = 0; |
6983 | } | |
6984 | TYPE_FIELD_TYPE (type, f) = new_type; | |
6985 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 6986 | } |
14f9c5c9 AS |
6987 | return type; |
6988 | } | |
6989 | ||
4c4b4cd2 | 6990 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
6991 | whose address in memory is ADDRESS, returns a revision of TYPE, |
6992 | which should be a non-dynamic-sized record, in which the variant | |
6993 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
6994 | for discriminant values in DVAL0, which can be NULL if the record |
6995 | contains the necessary discriminant values. */ | |
6996 | ||
d2e4a39e | 6997 | static struct type * |
fc1a4b47 | 6998 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 6999 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7000 | { |
d2e4a39e | 7001 | struct value *mark = value_mark (); |
4c4b4cd2 | 7002 | struct value *dval; |
d2e4a39e | 7003 | struct type *rtype; |
14f9c5c9 AS |
7004 | struct type *branch_type; |
7005 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7006 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7007 | |
4c4b4cd2 | 7008 | if (variant_field == -1) |
14f9c5c9 AS |
7009 | return type; |
7010 | ||
4c4b4cd2 PH |
7011 | if (dval0 == NULL) |
7012 | dval = value_from_contents_and_address (type, valaddr, address); | |
7013 | else | |
7014 | dval = dval0; | |
7015 | ||
14f9c5c9 AS |
7016 | rtype = alloc_type (TYPE_OBJFILE (type)); |
7017 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
4c4b4cd2 PH |
7018 | INIT_CPLUS_SPECIFIC (rtype); |
7019 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7020 | TYPE_FIELDS (rtype) = |
7021 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7022 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7023 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7024 | TYPE_NAME (rtype) = ada_type_name (type); |
7025 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7026 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7027 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7028 | ||
4c4b4cd2 PH |
7029 | branch_type = to_fixed_variant_branch_type |
7030 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7031 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7032 | TYPE_FIELD_BITPOS (type, variant_field) |
7033 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7034 | cond_offset_target (address, |
4c4b4cd2 PH |
7035 | TYPE_FIELD_BITPOS (type, variant_field) |
7036 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7037 | if (branch_type == NULL) |
14f9c5c9 | 7038 | { |
4c4b4cd2 PH |
7039 | int f; |
7040 | for (f = variant_field + 1; f < nfields; f += 1) | |
7041 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7042 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7043 | } |
7044 | else | |
7045 | { | |
4c4b4cd2 PH |
7046 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7047 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7048 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7049 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7050 | } |
4c4b4cd2 | 7051 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7052 | |
4c4b4cd2 | 7053 | value_free_to_mark (mark); |
14f9c5c9 AS |
7054 | return rtype; |
7055 | } | |
7056 | ||
7057 | /* An ordinary record type (with fixed-length fields) that describes | |
7058 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7059 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7060 | should be in DVAL, a record value; it may be NULL if the object |
7061 | at ADDR itself contains any necessary discriminant values. | |
7062 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7063 | values from the record are needed. Except in the case that DVAL, | |
7064 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7065 | unchecked) is replaced by a particular branch of the variant. | |
7066 | ||
7067 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7068 | is questionable and may be removed. It can arise during the | |
7069 | processing of an unconstrained-array-of-record type where all the | |
7070 | variant branches have exactly the same size. This is because in | |
7071 | such cases, the compiler does not bother to use the XVS convention | |
7072 | when encoding the record. I am currently dubious of this | |
7073 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7074 | |
d2e4a39e | 7075 | static struct type * |
fc1a4b47 | 7076 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7077 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7078 | { |
d2e4a39e | 7079 | struct type *templ_type; |
14f9c5c9 | 7080 | |
876cecd0 | 7081 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7082 | return type0; |
7083 | ||
d2e4a39e | 7084 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7085 | |
7086 | if (templ_type != NULL) | |
7087 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7088 | else if (variant_field_index (type0) >= 0) |
7089 | { | |
7090 | if (dval == NULL && valaddr == NULL && address == 0) | |
7091 | return type0; | |
7092 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7093 | dval); | |
7094 | } | |
14f9c5c9 AS |
7095 | else |
7096 | { | |
876cecd0 | 7097 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7098 | return type0; |
7099 | } | |
7100 | ||
7101 | } | |
7102 | ||
7103 | /* An ordinary record type (with fixed-length fields) that describes | |
7104 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7105 | union type. Any necessary discriminants' values should be in DVAL, | |
7106 | a record value. That is, this routine selects the appropriate | |
7107 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd JB |
7108 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
7109 | it represents a variant subject to a pragma Unchecked_Union. */ | |
14f9c5c9 | 7110 | |
d2e4a39e | 7111 | static struct type * |
fc1a4b47 | 7112 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7113 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7114 | { |
7115 | int which; | |
d2e4a39e AS |
7116 | struct type *templ_type; |
7117 | struct type *var_type; | |
14f9c5c9 AS |
7118 | |
7119 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7120 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7121 | else |
14f9c5c9 AS |
7122 | var_type = var_type0; |
7123 | ||
7124 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7125 | ||
7126 | if (templ_type != NULL) | |
7127 | var_type = templ_type; | |
7128 | ||
b1f33ddd JB |
7129 | if (is_unchecked_variant (var_type, value_type (dval))) |
7130 | return var_type0; | |
d2e4a39e AS |
7131 | which = |
7132 | ada_which_variant_applies (var_type, | |
0fd88904 | 7133 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7134 | |
7135 | if (which < 0) | |
7136 | return empty_record (TYPE_OBJFILE (var_type)); | |
7137 | else if (is_dynamic_field (var_type, which)) | |
4c4b4cd2 | 7138 | return to_fixed_record_type |
d2e4a39e AS |
7139 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7140 | valaddr, address, dval); | |
4c4b4cd2 | 7141 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7142 | return |
7143 | to_fixed_record_type | |
7144 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7145 | else |
7146 | return TYPE_FIELD_TYPE (var_type, which); | |
7147 | } | |
7148 | ||
7149 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7150 | at ADDR, and that DVAL describes a record containing any | |
7151 | discriminants used in TYPE0, returns a type for the value that | |
7152 | contains no dynamic components (that is, no components whose sizes | |
7153 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7154 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7155 | varsize_limit. */ |
14f9c5c9 | 7156 | |
d2e4a39e AS |
7157 | static struct type * |
7158 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7159 | int ignore_too_big) |
14f9c5c9 | 7160 | { |
d2e4a39e AS |
7161 | struct type *index_type_desc; |
7162 | struct type *result; | |
284614f0 | 7163 | int packed_array_p; |
14f9c5c9 | 7164 | |
284614f0 | 7165 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7166 | return type0; |
14f9c5c9 | 7167 | |
284614f0 JB |
7168 | packed_array_p = ada_is_packed_array_type (type0); |
7169 | if (packed_array_p) | |
7170 | type0 = decode_packed_array_type (type0); | |
7171 | ||
14f9c5c9 AS |
7172 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
7173 | if (index_type_desc == NULL) | |
7174 | { | |
61ee279c | 7175 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
14f9c5c9 | 7176 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7177 | depend on the contents of the array in properly constructed |
7178 | debugging data. */ | |
529cad9c PH |
7179 | /* Create a fixed version of the array element type. |
7180 | We're not providing the address of an element here, | |
e1d5a0d2 | 7181 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7182 | the conversion. This should not be a problem, since arrays of |
7183 | unconstrained objects are not allowed. In particular, all | |
7184 | the elements of an array of a tagged type should all be of | |
7185 | the same type specified in the debugging info. No need to | |
7186 | consult the object tag. */ | |
1ed6ede0 | 7187 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7188 | |
284614f0 JB |
7189 | /* Make sure we always create a new array type when dealing with |
7190 | packed array types, since we're going to fix-up the array | |
7191 | type length and element bitsize a little further down. */ | |
7192 | if (elt_type0 == elt_type && !packed_array_p) | |
4c4b4cd2 | 7193 | result = type0; |
14f9c5c9 | 7194 | else |
4c4b4cd2 PH |
7195 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), |
7196 | elt_type, TYPE_INDEX_TYPE (type0)); | |
14f9c5c9 AS |
7197 | } |
7198 | else | |
7199 | { | |
7200 | int i; | |
7201 | struct type *elt_type0; | |
7202 | ||
7203 | elt_type0 = type0; | |
7204 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7205 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7206 | |
7207 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7208 | depend on the contents of the array in properly constructed |
7209 | debugging data. */ | |
529cad9c PH |
7210 | /* Create a fixed version of the array element type. |
7211 | We're not providing the address of an element here, | |
e1d5a0d2 | 7212 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7213 | the conversion. This should not be a problem, since arrays of |
7214 | unconstrained objects are not allowed. In particular, all | |
7215 | the elements of an array of a tagged type should all be of | |
7216 | the same type specified in the debugging info. No need to | |
7217 | consult the object tag. */ | |
1ed6ede0 JB |
7218 | result = |
7219 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
14f9c5c9 | 7220 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7221 | { |
7222 | struct type *range_type = | |
7223 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), | |
7224 | dval, TYPE_OBJFILE (type0)); | |
7225 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), | |
7226 | result, range_type); | |
7227 | } | |
d2e4a39e | 7228 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7229 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7230 | } |
7231 | ||
284614f0 JB |
7232 | if (packed_array_p) |
7233 | { | |
7234 | /* So far, the resulting type has been created as if the original | |
7235 | type was a regular (non-packed) array type. As a result, the | |
7236 | bitsize of the array elements needs to be set again, and the array | |
7237 | length needs to be recomputed based on that bitsize. */ | |
7238 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7239 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7240 | ||
7241 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7242 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7243 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7244 | TYPE_LENGTH (result)++; | |
7245 | } | |
7246 | ||
876cecd0 | 7247 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7248 | return result; |
d2e4a39e | 7249 | } |
14f9c5c9 AS |
7250 | |
7251 | ||
7252 | /* A standard type (containing no dynamically sized components) | |
7253 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7254 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7255 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7256 | ADDRESS or in VALADDR contains these discriminants. |
7257 | ||
1ed6ede0 JB |
7258 | If CHECK_TAG is not null, in the case of tagged types, this function |
7259 | attempts to locate the object's tag and use it to compute the actual | |
7260 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7261 | location of the tag, and therefore compute the tagged type's actual type. | |
7262 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7263 | |
f192137b JB |
7264 | static struct type * |
7265 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7266 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7267 | { |
61ee279c | 7268 | type = ada_check_typedef (type); |
d2e4a39e AS |
7269 | switch (TYPE_CODE (type)) |
7270 | { | |
7271 | default: | |
14f9c5c9 | 7272 | return type; |
d2e4a39e | 7273 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7274 | { |
76a01679 | 7275 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7276 | struct type *fixed_record_type = |
7277 | to_fixed_record_type (type, valaddr, address, NULL); | |
529cad9c PH |
7278 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7279 | then we can determine its tag, and compute the object's actual | |
1ed6ede0 JB |
7280 | type from there. Note that we have to use the fixed record |
7281 | type (the parent part of the record may have dynamic fields | |
7282 | and the way the location of _tag is expressed may depend on | |
7283 | them). */ | |
529cad9c | 7284 | |
1ed6ede0 | 7285 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7286 | { |
7287 | struct type *real_type = | |
1ed6ede0 JB |
7288 | type_from_tag (value_tag_from_contents_and_address |
7289 | (fixed_record_type, | |
7290 | valaddr, | |
7291 | address)); | |
76a01679 | 7292 | if (real_type != NULL) |
1ed6ede0 | 7293 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7294 | } |
4af88198 JB |
7295 | |
7296 | /* Check to see if there is a parallel ___XVZ variable. | |
7297 | If there is, then it provides the actual size of our type. */ | |
7298 | else if (ada_type_name (fixed_record_type) != NULL) | |
7299 | { | |
7300 | char *name = ada_type_name (fixed_record_type); | |
7301 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7302 | int xvz_found = 0; | |
7303 | LONGEST size; | |
7304 | ||
88c15c34 | 7305 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7306 | size = get_int_var_value (xvz_name, &xvz_found); |
7307 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7308 | { | |
7309 | fixed_record_type = copy_type (fixed_record_type); | |
7310 | TYPE_LENGTH (fixed_record_type) = size; | |
7311 | ||
7312 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7313 | observed this when the debugging info is STABS, and | |
7314 | apparently it is something that is hard to fix. | |
7315 | ||
7316 | In practice, we don't need the actual type definition | |
7317 | at all, because the presence of the XVZ variable allows us | |
7318 | to assume that there must be a XVS type as well, which we | |
7319 | should be able to use later, when we need the actual type | |
7320 | definition. | |
7321 | ||
7322 | In the meantime, pretend that the "fixed" type we are | |
7323 | returning is NOT a stub, because this can cause trouble | |
7324 | when using this type to create new types targeting it. | |
7325 | Indeed, the associated creation routines often check | |
7326 | whether the target type is a stub and will try to replace | |
7327 | it, thus using a type with the wrong size. This, in turn, | |
7328 | might cause the new type to have the wrong size too. | |
7329 | Consider the case of an array, for instance, where the size | |
7330 | of the array is computed from the number of elements in | |
7331 | our array multiplied by the size of its element. */ | |
7332 | TYPE_STUB (fixed_record_type) = 0; | |
7333 | } | |
7334 | } | |
1ed6ede0 | 7335 | return fixed_record_type; |
4c4b4cd2 | 7336 | } |
d2e4a39e | 7337 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7338 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7339 | case TYPE_CODE_UNION: |
7340 | if (dval == NULL) | |
4c4b4cd2 | 7341 | return type; |
d2e4a39e | 7342 | else |
4c4b4cd2 | 7343 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7344 | } |
14f9c5c9 AS |
7345 | } |
7346 | ||
f192137b JB |
7347 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7348 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
7349 | ada_to_fixed_type_1 would return the type referenced by TYPE. */ | |
7350 | ||
7351 | struct type * | |
7352 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7353 | CORE_ADDR address, struct value *dval, int check_tag) | |
7354 | ||
7355 | { | |
7356 | struct type *fixed_type = | |
7357 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7358 | ||
7359 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7360 | && TYPE_TARGET_TYPE (type) == fixed_type) | |
7361 | return type; | |
7362 | ||
7363 | return fixed_type; | |
7364 | } | |
7365 | ||
14f9c5c9 | 7366 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7367 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7368 | |
d2e4a39e AS |
7369 | static struct type * |
7370 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7371 | { |
d2e4a39e | 7372 | struct type *type; |
14f9c5c9 AS |
7373 | |
7374 | if (type0 == NULL) | |
7375 | return NULL; | |
7376 | ||
876cecd0 | 7377 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7378 | return type0; |
7379 | ||
61ee279c | 7380 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7381 | |
14f9c5c9 AS |
7382 | switch (TYPE_CODE (type0)) |
7383 | { | |
7384 | default: | |
7385 | return type0; | |
7386 | case TYPE_CODE_STRUCT: | |
7387 | type = dynamic_template_type (type0); | |
d2e4a39e | 7388 | if (type != NULL) |
4c4b4cd2 PH |
7389 | return template_to_static_fixed_type (type); |
7390 | else | |
7391 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7392 | case TYPE_CODE_UNION: |
7393 | type = ada_find_parallel_type (type0, "___XVU"); | |
7394 | if (type != NULL) | |
4c4b4cd2 PH |
7395 | return template_to_static_fixed_type (type); |
7396 | else | |
7397 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7398 | } |
7399 | } | |
7400 | ||
4c4b4cd2 PH |
7401 | /* A static approximation of TYPE with all type wrappers removed. */ |
7402 | ||
d2e4a39e AS |
7403 | static struct type * |
7404 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7405 | { |
7406 | if (ada_is_aligner_type (type)) | |
7407 | { | |
61ee279c | 7408 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7409 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7410 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7411 | |
7412 | return static_unwrap_type (type1); | |
7413 | } | |
d2e4a39e | 7414 | else |
14f9c5c9 | 7415 | { |
d2e4a39e AS |
7416 | struct type *raw_real_type = ada_get_base_type (type); |
7417 | if (raw_real_type == type) | |
4c4b4cd2 | 7418 | return type; |
14f9c5c9 | 7419 | else |
4c4b4cd2 | 7420 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7421 | } |
7422 | } | |
7423 | ||
7424 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7425 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7426 | type Foo; |
7427 | type FooP is access Foo; | |
7428 | V: FooP; | |
7429 | type Foo is array ...; | |
4c4b4cd2 | 7430 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7431 | cross-references to such types, we instead substitute for FooP a |
7432 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7433 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7434 | |
7435 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7436 | exists, otherwise TYPE. */ |
7437 | ||
d2e4a39e | 7438 | struct type * |
61ee279c | 7439 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7440 | { |
727e3d2e JB |
7441 | if (type == NULL) |
7442 | return NULL; | |
7443 | ||
14f9c5c9 AS |
7444 | CHECK_TYPEDEF (type); |
7445 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7446 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7447 | || TYPE_TAG_NAME (type) == NULL) |
7448 | return type; | |
d2e4a39e | 7449 | else |
14f9c5c9 | 7450 | { |
d2e4a39e AS |
7451 | char *name = TYPE_TAG_NAME (type); |
7452 | struct type *type1 = ada_find_any_type (name); | |
14f9c5c9 AS |
7453 | return (type1 == NULL) ? type : type1; |
7454 | } | |
7455 | } | |
7456 | ||
7457 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7458 | type TYPE0, but with a standard (static-sized) type that correctly | |
7459 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7460 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7461 | creation of struct values]. */ |
14f9c5c9 | 7462 | |
4c4b4cd2 PH |
7463 | static struct value * |
7464 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7465 | struct value *val0) | |
14f9c5c9 | 7466 | { |
1ed6ede0 | 7467 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
14f9c5c9 AS |
7468 | if (type == type0 && val0 != NULL) |
7469 | return val0; | |
d2e4a39e | 7470 | else |
4c4b4cd2 PH |
7471 | return value_from_contents_and_address (type, 0, address); |
7472 | } | |
7473 | ||
7474 | /* A value representing VAL, but with a standard (static-sized) type | |
7475 | that correctly describes it. Does not necessarily create a new | |
7476 | value. */ | |
7477 | ||
7478 | static struct value * | |
7479 | ada_to_fixed_value (struct value *val) | |
7480 | { | |
df407dfe | 7481 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 7482 | value_address (val), |
4c4b4cd2 | 7483 | val); |
14f9c5c9 AS |
7484 | } |
7485 | ||
4c4b4cd2 | 7486 | /* A value representing VAL, but with a standard (static-sized) type |
14f9c5c9 AS |
7487 | chosen to approximate the real type of VAL as well as possible, but |
7488 | without consulting any runtime values. For Ada dynamic-sized | |
4c4b4cd2 | 7489 | types, therefore, the type of the result is likely to be inaccurate. */ |
14f9c5c9 | 7490 | |
2c0b251b | 7491 | static struct value * |
d2e4a39e | 7492 | ada_to_static_fixed_value (struct value *val) |
14f9c5c9 | 7493 | { |
d2e4a39e | 7494 | struct type *type = |
df407dfe AC |
7495 | to_static_fixed_type (static_unwrap_type (value_type (val))); |
7496 | if (type == value_type (val)) | |
14f9c5c9 AS |
7497 | return val; |
7498 | else | |
4c4b4cd2 | 7499 | return coerce_unspec_val_to_type (val, type); |
14f9c5c9 | 7500 | } |
d2e4a39e | 7501 | \f |
14f9c5c9 | 7502 | |
14f9c5c9 AS |
7503 | /* Attributes */ |
7504 | ||
4c4b4cd2 PH |
7505 | /* Table mapping attribute numbers to names. |
7506 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7507 | |
d2e4a39e | 7508 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7509 | "<?>", |
7510 | ||
d2e4a39e | 7511 | "first", |
14f9c5c9 AS |
7512 | "last", |
7513 | "length", | |
7514 | "image", | |
14f9c5c9 AS |
7515 | "max", |
7516 | "min", | |
4c4b4cd2 PH |
7517 | "modulus", |
7518 | "pos", | |
7519 | "size", | |
7520 | "tag", | |
14f9c5c9 | 7521 | "val", |
14f9c5c9 AS |
7522 | 0 |
7523 | }; | |
7524 | ||
d2e4a39e | 7525 | const char * |
4c4b4cd2 | 7526 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7527 | { |
4c4b4cd2 PH |
7528 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7529 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7530 | else |
7531 | return attribute_names[0]; | |
7532 | } | |
7533 | ||
4c4b4cd2 | 7534 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7535 | |
4c4b4cd2 PH |
7536 | static LONGEST |
7537 | pos_atr (struct value *arg) | |
14f9c5c9 | 7538 | { |
24209737 PH |
7539 | struct value *val = coerce_ref (arg); |
7540 | struct type *type = value_type (val); | |
14f9c5c9 | 7541 | |
d2e4a39e | 7542 | if (!discrete_type_p (type)) |
323e0a4a | 7543 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7544 | |
7545 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7546 | { | |
7547 | int i; | |
24209737 | 7548 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7549 | |
d2e4a39e | 7550 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7551 | { |
7552 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7553 | return i; | |
7554 | } | |
323e0a4a | 7555 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7556 | } |
7557 | else | |
24209737 | 7558 | return value_as_long (val); |
4c4b4cd2 PH |
7559 | } |
7560 | ||
7561 | static struct value * | |
3cb382c9 | 7562 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 7563 | { |
3cb382c9 | 7564 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
7565 | } |
7566 | ||
4c4b4cd2 | 7567 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 7568 | |
d2e4a39e AS |
7569 | static struct value * |
7570 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 7571 | { |
d2e4a39e | 7572 | if (!discrete_type_p (type)) |
323e0a4a | 7573 | error (_("'VAL only defined on discrete types")); |
df407dfe | 7574 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 7575 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
7576 | |
7577 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7578 | { | |
7579 | long pos = value_as_long (arg); | |
7580 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) | |
323e0a4a | 7581 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 7582 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
7583 | } |
7584 | else | |
7585 | return value_from_longest (type, value_as_long (arg)); | |
7586 | } | |
14f9c5c9 | 7587 | \f |
d2e4a39e | 7588 | |
4c4b4cd2 | 7589 | /* Evaluation */ |
14f9c5c9 | 7590 | |
4c4b4cd2 PH |
7591 | /* True if TYPE appears to be an Ada character type. |
7592 | [At the moment, this is true only for Character and Wide_Character; | |
7593 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 7594 | |
d2e4a39e AS |
7595 | int |
7596 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 7597 | { |
7b9f71f2 JB |
7598 | const char *name; |
7599 | ||
7600 | /* If the type code says it's a character, then assume it really is, | |
7601 | and don't check any further. */ | |
7602 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
7603 | return 1; | |
7604 | ||
7605 | /* Otherwise, assume it's a character type iff it is a discrete type | |
7606 | with a known character type name. */ | |
7607 | name = ada_type_name (type); | |
7608 | return (name != NULL | |
7609 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7610 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
7611 | && (strcmp (name, "character") == 0 | |
7612 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 7613 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 7614 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
7615 | } |
7616 | ||
4c4b4cd2 | 7617 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
7618 | |
7619 | int | |
ebf56fd3 | 7620 | ada_is_string_type (struct type *type) |
14f9c5c9 | 7621 | { |
61ee279c | 7622 | type = ada_check_typedef (type); |
d2e4a39e | 7623 | if (type != NULL |
14f9c5c9 | 7624 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
7625 | && (ada_is_simple_array_type (type) |
7626 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
7627 | && ada_array_arity (type) == 1) |
7628 | { | |
7629 | struct type *elttype = ada_array_element_type (type, 1); | |
7630 | ||
7631 | return ada_is_character_type (elttype); | |
7632 | } | |
d2e4a39e | 7633 | else |
14f9c5c9 AS |
7634 | return 0; |
7635 | } | |
7636 | ||
7637 | ||
7638 | /* True if TYPE is a struct type introduced by the compiler to force the | |
7639 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 7640 | distinctive name. */ |
14f9c5c9 AS |
7641 | |
7642 | int | |
ebf56fd3 | 7643 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 7644 | { |
61ee279c | 7645 | type = ada_check_typedef (type); |
714e53ab PH |
7646 | |
7647 | /* If we can find a parallel XVS type, then the XVS type should | |
7648 | be used instead of this type. And hence, this is not an aligner | |
7649 | type. */ | |
7650 | if (ada_find_parallel_type (type, "___XVS") != NULL) | |
7651 | return 0; | |
7652 | ||
14f9c5c9 | 7653 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
7654 | && TYPE_NFIELDS (type) == 1 |
7655 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
7656 | } |
7657 | ||
7658 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 7659 | the parallel type. */ |
14f9c5c9 | 7660 | |
d2e4a39e AS |
7661 | struct type * |
7662 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 7663 | { |
d2e4a39e AS |
7664 | struct type *real_type_namer; |
7665 | struct type *raw_real_type; | |
14f9c5c9 AS |
7666 | |
7667 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
7668 | return raw_type; | |
7669 | ||
284614f0 JB |
7670 | if (ada_is_aligner_type (raw_type)) |
7671 | /* The encoding specifies that we should always use the aligner type. | |
7672 | So, even if this aligner type has an associated XVS type, we should | |
7673 | simply ignore it. | |
7674 | ||
7675 | According to the compiler gurus, an XVS type parallel to an aligner | |
7676 | type may exist because of a stabs limitation. In stabs, aligner | |
7677 | types are empty because the field has a variable-sized type, and | |
7678 | thus cannot actually be used as an aligner type. As a result, | |
7679 | we need the associated parallel XVS type to decode the type. | |
7680 | Since the policy in the compiler is to not change the internal | |
7681 | representation based on the debugging info format, we sometimes | |
7682 | end up having a redundant XVS type parallel to the aligner type. */ | |
7683 | return raw_type; | |
7684 | ||
14f9c5c9 | 7685 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 7686 | if (real_type_namer == NULL |
14f9c5c9 AS |
7687 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
7688 | || TYPE_NFIELDS (real_type_namer) != 1) | |
7689 | return raw_type; | |
7690 | ||
7691 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
d2e4a39e | 7692 | if (raw_real_type == NULL) |
14f9c5c9 AS |
7693 | return raw_type; |
7694 | else | |
7695 | return raw_real_type; | |
d2e4a39e | 7696 | } |
14f9c5c9 | 7697 | |
4c4b4cd2 | 7698 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 7699 | |
d2e4a39e AS |
7700 | struct type * |
7701 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
7702 | { |
7703 | if (ada_is_aligner_type (type)) | |
7704 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
7705 | else | |
7706 | return ada_get_base_type (type); | |
7707 | } | |
7708 | ||
7709 | ||
7710 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 7711 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 7712 | |
fc1a4b47 AC |
7713 | const gdb_byte * |
7714 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 7715 | { |
d2e4a39e | 7716 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 7717 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
7718 | valaddr + |
7719 | TYPE_FIELD_BITPOS (type, | |
7720 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
7721 | else |
7722 | return valaddr; | |
7723 | } | |
7724 | ||
4c4b4cd2 PH |
7725 | |
7726 | ||
14f9c5c9 | 7727 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 7728 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
7729 | const char * |
7730 | ada_enum_name (const char *name) | |
14f9c5c9 | 7731 | { |
4c4b4cd2 PH |
7732 | static char *result; |
7733 | static size_t result_len = 0; | |
d2e4a39e | 7734 | char *tmp; |
14f9c5c9 | 7735 | |
4c4b4cd2 PH |
7736 | /* First, unqualify the enumeration name: |
7737 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
7738 | all the preceeding characters, the unqualified name starts |
7739 | right after that dot. | |
4c4b4cd2 | 7740 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
7741 | translates dots into "__". Search forward for double underscores, |
7742 | but stop searching when we hit an overloading suffix, which is | |
7743 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 7744 | |
c3e5cd34 PH |
7745 | tmp = strrchr (name, '.'); |
7746 | if (tmp != NULL) | |
4c4b4cd2 PH |
7747 | name = tmp + 1; |
7748 | else | |
14f9c5c9 | 7749 | { |
4c4b4cd2 PH |
7750 | while ((tmp = strstr (name, "__")) != NULL) |
7751 | { | |
7752 | if (isdigit (tmp[2])) | |
7753 | break; | |
7754 | else | |
7755 | name = tmp + 2; | |
7756 | } | |
14f9c5c9 AS |
7757 | } |
7758 | ||
7759 | if (name[0] == 'Q') | |
7760 | { | |
14f9c5c9 AS |
7761 | int v; |
7762 | if (name[1] == 'U' || name[1] == 'W') | |
4c4b4cd2 PH |
7763 | { |
7764 | if (sscanf (name + 2, "%x", &v) != 1) | |
7765 | return name; | |
7766 | } | |
14f9c5c9 | 7767 | else |
4c4b4cd2 | 7768 | return name; |
14f9c5c9 | 7769 | |
4c4b4cd2 | 7770 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 7771 | if (isascii (v) && isprint (v)) |
88c15c34 | 7772 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 7773 | else if (name[1] == 'U') |
88c15c34 | 7774 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 7775 | else |
88c15c34 | 7776 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
7777 | |
7778 | return result; | |
7779 | } | |
d2e4a39e | 7780 | else |
4c4b4cd2 | 7781 | { |
c3e5cd34 PH |
7782 | tmp = strstr (name, "__"); |
7783 | if (tmp == NULL) | |
7784 | tmp = strstr (name, "$"); | |
7785 | if (tmp != NULL) | |
4c4b4cd2 PH |
7786 | { |
7787 | GROW_VECT (result, result_len, tmp - name + 1); | |
7788 | strncpy (result, name, tmp - name); | |
7789 | result[tmp - name] = '\0'; | |
7790 | return result; | |
7791 | } | |
7792 | ||
7793 | return name; | |
7794 | } | |
14f9c5c9 AS |
7795 | } |
7796 | ||
14f9c5c9 AS |
7797 | /* Evaluate the subexpression of EXP starting at *POS as for |
7798 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 7799 | expression. */ |
14f9c5c9 | 7800 | |
d2e4a39e AS |
7801 | static struct value * |
7802 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 7803 | { |
4b27a620 | 7804 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
7805 | } |
7806 | ||
7807 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 7808 | value it wraps. */ |
14f9c5c9 | 7809 | |
d2e4a39e AS |
7810 | static struct value * |
7811 | unwrap_value (struct value *val) | |
14f9c5c9 | 7812 | { |
df407dfe | 7813 | struct type *type = ada_check_typedef (value_type (val)); |
14f9c5c9 AS |
7814 | if (ada_is_aligner_type (type)) |
7815 | { | |
de4d072f | 7816 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 7817 | struct type *val_type = ada_check_typedef (value_type (v)); |
14f9c5c9 | 7818 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 7819 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
7820 | |
7821 | return unwrap_value (v); | |
7822 | } | |
d2e4a39e | 7823 | else |
14f9c5c9 | 7824 | { |
d2e4a39e | 7825 | struct type *raw_real_type = |
61ee279c | 7826 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 7827 | |
14f9c5c9 | 7828 | if (type == raw_real_type) |
4c4b4cd2 | 7829 | return val; |
14f9c5c9 | 7830 | |
d2e4a39e | 7831 | return |
4c4b4cd2 PH |
7832 | coerce_unspec_val_to_type |
7833 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 7834 | value_address (val), |
1ed6ede0 | 7835 | NULL, 1)); |
14f9c5c9 AS |
7836 | } |
7837 | } | |
d2e4a39e AS |
7838 | |
7839 | static struct value * | |
7840 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
7841 | { |
7842 | LONGEST val; | |
7843 | ||
df407dfe | 7844 | if (type == value_type (arg)) |
14f9c5c9 | 7845 | return arg; |
df407dfe | 7846 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 7847 | val = ada_float_to_fixed (type, |
df407dfe | 7848 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7849 | value_as_long (arg))); |
d2e4a39e | 7850 | else |
14f9c5c9 | 7851 | { |
a53b7a21 | 7852 | DOUBLEST argd = value_as_double (arg); |
14f9c5c9 AS |
7853 | val = ada_float_to_fixed (type, argd); |
7854 | } | |
7855 | ||
7856 | return value_from_longest (type, val); | |
7857 | } | |
7858 | ||
d2e4a39e | 7859 | static struct value * |
a53b7a21 | 7860 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 7861 | { |
df407dfe | 7862 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7863 | value_as_long (arg)); |
a53b7a21 | 7864 | return value_from_double (type, val); |
14f9c5c9 AS |
7865 | } |
7866 | ||
4c4b4cd2 PH |
7867 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
7868 | return the converted value. */ | |
7869 | ||
d2e4a39e AS |
7870 | static struct value * |
7871 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 7872 | { |
df407dfe | 7873 | struct type *type2 = value_type (val); |
14f9c5c9 AS |
7874 | if (type == type2) |
7875 | return val; | |
7876 | ||
61ee279c PH |
7877 | type2 = ada_check_typedef (type2); |
7878 | type = ada_check_typedef (type); | |
14f9c5c9 | 7879 | |
d2e4a39e AS |
7880 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
7881 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
7882 | { |
7883 | val = ada_value_ind (val); | |
df407dfe | 7884 | type2 = value_type (val); |
14f9c5c9 AS |
7885 | } |
7886 | ||
d2e4a39e | 7887 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
7888 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
7889 | { | |
7890 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
7891 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
7892 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 7893 | error (_("Incompatible types in assignment")); |
04624583 | 7894 | deprecated_set_value_type (val, type); |
14f9c5c9 | 7895 | } |
d2e4a39e | 7896 | return val; |
14f9c5c9 AS |
7897 | } |
7898 | ||
4c4b4cd2 PH |
7899 | static struct value * |
7900 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
7901 | { | |
7902 | struct value *val; | |
7903 | struct type *type1, *type2; | |
7904 | LONGEST v, v1, v2; | |
7905 | ||
994b9211 AC |
7906 | arg1 = coerce_ref (arg1); |
7907 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
7908 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
7909 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 7910 | |
76a01679 JB |
7911 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
7912 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
7913 | return value_binop (arg1, arg2, op); |
7914 | ||
76a01679 | 7915 | switch (op) |
4c4b4cd2 PH |
7916 | { |
7917 | case BINOP_MOD: | |
7918 | case BINOP_DIV: | |
7919 | case BINOP_REM: | |
7920 | break; | |
7921 | default: | |
7922 | return value_binop (arg1, arg2, op); | |
7923 | } | |
7924 | ||
7925 | v2 = value_as_long (arg2); | |
7926 | if (v2 == 0) | |
323e0a4a | 7927 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
7928 | |
7929 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
7930 | return value_binop (arg1, arg2, op); | |
7931 | ||
7932 | v1 = value_as_long (arg1); | |
7933 | switch (op) | |
7934 | { | |
7935 | case BINOP_DIV: | |
7936 | v = v1 / v2; | |
76a01679 JB |
7937 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
7938 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
7939 | break; |
7940 | case BINOP_REM: | |
7941 | v = v1 % v2; | |
76a01679 JB |
7942 | if (v * v1 < 0) |
7943 | v -= v2; | |
4c4b4cd2 PH |
7944 | break; |
7945 | default: | |
7946 | /* Should not reach this point. */ | |
7947 | v = 0; | |
7948 | } | |
7949 | ||
7950 | val = allocate_value (type1); | |
990a07ab | 7951 | store_unsigned_integer (value_contents_raw (val), |
df407dfe | 7952 | TYPE_LENGTH (value_type (val)), v); |
4c4b4cd2 PH |
7953 | return val; |
7954 | } | |
7955 | ||
7956 | static int | |
7957 | ada_value_equal (struct value *arg1, struct value *arg2) | |
7958 | { | |
df407dfe AC |
7959 | if (ada_is_direct_array_type (value_type (arg1)) |
7960 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 7961 | { |
f58b38bf JB |
7962 | /* Automatically dereference any array reference before |
7963 | we attempt to perform the comparison. */ | |
7964 | arg1 = ada_coerce_ref (arg1); | |
7965 | arg2 = ada_coerce_ref (arg2); | |
7966 | ||
4c4b4cd2 PH |
7967 | arg1 = ada_coerce_to_simple_array (arg1); |
7968 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
7969 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
7970 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 7971 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 7972 | /* FIXME: The following works only for types whose |
76a01679 JB |
7973 | representations use all bits (no padding or undefined bits) |
7974 | and do not have user-defined equality. */ | |
7975 | return | |
df407dfe | 7976 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 7977 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 7978 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
7979 | } |
7980 | return value_equal (arg1, arg2); | |
7981 | } | |
7982 | ||
52ce6436 PH |
7983 | /* Total number of component associations in the aggregate starting at |
7984 | index PC in EXP. Assumes that index PC is the start of an | |
7985 | OP_AGGREGATE. */ | |
7986 | ||
7987 | static int | |
7988 | num_component_specs (struct expression *exp, int pc) | |
7989 | { | |
7990 | int n, m, i; | |
7991 | m = exp->elts[pc + 1].longconst; | |
7992 | pc += 3; | |
7993 | n = 0; | |
7994 | for (i = 0; i < m; i += 1) | |
7995 | { | |
7996 | switch (exp->elts[pc].opcode) | |
7997 | { | |
7998 | default: | |
7999 | n += 1; | |
8000 | break; | |
8001 | case OP_CHOICES: | |
8002 | n += exp->elts[pc + 1].longconst; | |
8003 | break; | |
8004 | } | |
8005 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8006 | } | |
8007 | return n; | |
8008 | } | |
8009 | ||
8010 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8011 | component of LHS (a simple array or a record), updating *POS past | |
8012 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8013 | not modify the inferior's memory, nor does it modify LHS (unless | |
8014 | LHS == CONTAINER). */ | |
8015 | ||
8016 | static void | |
8017 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8018 | struct expression *exp, int *pos) | |
8019 | { | |
8020 | struct value *mark = value_mark (); | |
8021 | struct value *elt; | |
8022 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) | |
8023 | { | |
6d84d3d8 | 8024 | struct value *index_val = value_from_longest (builtin_type_int32, index); |
52ce6436 PH |
8025 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8026 | } | |
8027 | else | |
8028 | { | |
8029 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8030 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8031 | } | |
8032 | ||
8033 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8034 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8035 | else | |
8036 | value_assign_to_component (container, elt, | |
8037 | ada_evaluate_subexp (NULL, exp, pos, | |
8038 | EVAL_NORMAL)); | |
8039 | ||
8040 | value_free_to_mark (mark); | |
8041 | } | |
8042 | ||
8043 | /* Assuming that LHS represents an lvalue having a record or array | |
8044 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8045 | of that aggregate's value to LHS, advancing *POS past the | |
8046 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8047 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8048 | the inferior's memory, nor does it modify the contents of | |
8049 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ | |
8050 | ||
8051 | static struct value * | |
8052 | assign_aggregate (struct value *container, | |
8053 | struct value *lhs, struct expression *exp, | |
8054 | int *pos, enum noside noside) | |
8055 | { | |
8056 | struct type *lhs_type; | |
8057 | int n = exp->elts[*pos+1].longconst; | |
8058 | LONGEST low_index, high_index; | |
8059 | int num_specs; | |
8060 | LONGEST *indices; | |
8061 | int max_indices, num_indices; | |
8062 | int is_array_aggregate; | |
8063 | int i; | |
8064 | struct value *mark = value_mark (); | |
8065 | ||
8066 | *pos += 3; | |
8067 | if (noside != EVAL_NORMAL) | |
8068 | { | |
8069 | int i; | |
8070 | for (i = 0; i < n; i += 1) | |
8071 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8072 | return container; | |
8073 | } | |
8074 | ||
8075 | container = ada_coerce_ref (container); | |
8076 | if (ada_is_direct_array_type (value_type (container))) | |
8077 | container = ada_coerce_to_simple_array (container); | |
8078 | lhs = ada_coerce_ref (lhs); | |
8079 | if (!deprecated_value_modifiable (lhs)) | |
8080 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8081 | ||
8082 | lhs_type = value_type (lhs); | |
8083 | if (ada_is_direct_array_type (lhs_type)) | |
8084 | { | |
8085 | lhs = ada_coerce_to_simple_array (lhs); | |
8086 | lhs_type = value_type (lhs); | |
8087 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8088 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8089 | is_array_aggregate = 1; | |
8090 | } | |
8091 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8092 | { | |
8093 | low_index = 0; | |
8094 | high_index = num_visible_fields (lhs_type) - 1; | |
8095 | is_array_aggregate = 0; | |
8096 | } | |
8097 | else | |
8098 | error (_("Left-hand side must be array or record.")); | |
8099 | ||
8100 | num_specs = num_component_specs (exp, *pos - 3); | |
8101 | max_indices = 4 * num_specs + 4; | |
8102 | indices = alloca (max_indices * sizeof (indices[0])); | |
8103 | indices[0] = indices[1] = low_index - 1; | |
8104 | indices[2] = indices[3] = high_index + 1; | |
8105 | num_indices = 4; | |
8106 | ||
8107 | for (i = 0; i < n; i += 1) | |
8108 | { | |
8109 | switch (exp->elts[*pos].opcode) | |
8110 | { | |
8111 | case OP_CHOICES: | |
8112 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8113 | &num_indices, max_indices, | |
8114 | low_index, high_index); | |
8115 | break; | |
8116 | case OP_POSITIONAL: | |
8117 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8118 | &num_indices, max_indices, | |
8119 | low_index, high_index); | |
8120 | break; | |
8121 | case OP_OTHERS: | |
8122 | if (i != n-1) | |
8123 | error (_("Misplaced 'others' clause")); | |
8124 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8125 | num_indices, low_index, high_index); | |
8126 | break; | |
8127 | default: | |
8128 | error (_("Internal error: bad aggregate clause")); | |
8129 | } | |
8130 | } | |
8131 | ||
8132 | return container; | |
8133 | } | |
8134 | ||
8135 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8136 | construct at *POS, updating *POS past the construct, given that | |
8137 | the positions are relative to lower bound LOW, where HIGH is the | |
8138 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8139 | updating *NUM_INDICES as needed. CONTAINER is as for | |
8140 | assign_aggregate. */ | |
8141 | static void | |
8142 | aggregate_assign_positional (struct value *container, | |
8143 | struct value *lhs, struct expression *exp, | |
8144 | int *pos, LONGEST *indices, int *num_indices, | |
8145 | int max_indices, LONGEST low, LONGEST high) | |
8146 | { | |
8147 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8148 | ||
8149 | if (ind - 1 == high) | |
e1d5a0d2 | 8150 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8151 | if (ind <= high) |
8152 | { | |
8153 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8154 | *pos += 3; | |
8155 | assign_component (container, lhs, ind, exp, pos); | |
8156 | } | |
8157 | else | |
8158 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8159 | } | |
8160 | ||
8161 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8162 | construct at *POS, updating *POS past the construct, given that | |
8163 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8164 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
8165 | needed. CONTAINER is as for assign_aggregate. */ | |
8166 | static void | |
8167 | aggregate_assign_from_choices (struct value *container, | |
8168 | struct value *lhs, struct expression *exp, | |
8169 | int *pos, LONGEST *indices, int *num_indices, | |
8170 | int max_indices, LONGEST low, LONGEST high) | |
8171 | { | |
8172 | int j; | |
8173 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8174 | int choice_pos, expr_pc; | |
8175 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8176 | ||
8177 | choice_pos = *pos += 3; | |
8178 | ||
8179 | for (j = 0; j < n_choices; j += 1) | |
8180 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8181 | expr_pc = *pos; | |
8182 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8183 | ||
8184 | for (j = 0; j < n_choices; j += 1) | |
8185 | { | |
8186 | LONGEST lower, upper; | |
8187 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
8188 | if (op == OP_DISCRETE_RANGE) | |
8189 | { | |
8190 | choice_pos += 1; | |
8191 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8192 | EVAL_NORMAL)); | |
8193 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8194 | EVAL_NORMAL)); | |
8195 | } | |
8196 | else if (is_array) | |
8197 | { | |
8198 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8199 | EVAL_NORMAL)); | |
8200 | upper = lower; | |
8201 | } | |
8202 | else | |
8203 | { | |
8204 | int ind; | |
8205 | char *name; | |
8206 | switch (op) | |
8207 | { | |
8208 | case OP_NAME: | |
8209 | name = &exp->elts[choice_pos + 2].string; | |
8210 | break; | |
8211 | case OP_VAR_VALUE: | |
8212 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8213 | break; | |
8214 | default: | |
8215 | error (_("Invalid record component association.")); | |
8216 | } | |
8217 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8218 | ind = 0; | |
8219 | if (! find_struct_field (name, value_type (lhs), 0, | |
8220 | NULL, NULL, NULL, NULL, &ind)) | |
8221 | error (_("Unknown component name: %s."), name); | |
8222 | lower = upper = ind; | |
8223 | } | |
8224 | ||
8225 | if (lower <= upper && (lower < low || upper > high)) | |
8226 | error (_("Index in component association out of bounds.")); | |
8227 | ||
8228 | add_component_interval (lower, upper, indices, num_indices, | |
8229 | max_indices); | |
8230 | while (lower <= upper) | |
8231 | { | |
8232 | int pos1; | |
8233 | pos1 = expr_pc; | |
8234 | assign_component (container, lhs, lower, exp, &pos1); | |
8235 | lower += 1; | |
8236 | } | |
8237 | } | |
8238 | } | |
8239 | ||
8240 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8241 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8242 | have not been previously assigned. The index intervals already assigned | |
8243 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
8244 | OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ | |
8245 | static void | |
8246 | aggregate_assign_others (struct value *container, | |
8247 | struct value *lhs, struct expression *exp, | |
8248 | int *pos, LONGEST *indices, int num_indices, | |
8249 | LONGEST low, LONGEST high) | |
8250 | { | |
8251 | int i; | |
8252 | int expr_pc = *pos+1; | |
8253 | ||
8254 | for (i = 0; i < num_indices - 2; i += 2) | |
8255 | { | |
8256 | LONGEST ind; | |
8257 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) | |
8258 | { | |
8259 | int pos; | |
8260 | pos = expr_pc; | |
8261 | assign_component (container, lhs, ind, exp, &pos); | |
8262 | } | |
8263 | } | |
8264 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8265 | } | |
8266 | ||
8267 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8268 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8269 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8270 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8271 | static void | |
8272 | add_component_interval (LONGEST low, LONGEST high, | |
8273 | LONGEST* indices, int *size, int max_size) | |
8274 | { | |
8275 | int i, j; | |
8276 | for (i = 0; i < *size; i += 2) { | |
8277 | if (high >= indices[i] && low <= indices[i + 1]) | |
8278 | { | |
8279 | int kh; | |
8280 | for (kh = i + 2; kh < *size; kh += 2) | |
8281 | if (high < indices[kh]) | |
8282 | break; | |
8283 | if (low < indices[i]) | |
8284 | indices[i] = low; | |
8285 | indices[i + 1] = indices[kh - 1]; | |
8286 | if (high > indices[i + 1]) | |
8287 | indices[i + 1] = high; | |
8288 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8289 | *size -= kh - i - 2; | |
8290 | return; | |
8291 | } | |
8292 | else if (high < indices[i]) | |
8293 | break; | |
8294 | } | |
8295 | ||
8296 | if (*size == max_size) | |
8297 | error (_("Internal error: miscounted aggregate components.")); | |
8298 | *size += 2; | |
8299 | for (j = *size-1; j >= i+2; j -= 1) | |
8300 | indices[j] = indices[j - 2]; | |
8301 | indices[i] = low; | |
8302 | indices[i + 1] = high; | |
8303 | } | |
8304 | ||
6e48bd2c JB |
8305 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8306 | is different. */ | |
8307 | ||
8308 | static struct value * | |
8309 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8310 | { | |
8311 | if (type == ada_check_typedef (value_type (arg2))) | |
8312 | return arg2; | |
8313 | ||
8314 | if (ada_is_fixed_point_type (type)) | |
8315 | return (cast_to_fixed (type, arg2)); | |
8316 | ||
8317 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8318 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8319 | |
8320 | return value_cast (type, arg2); | |
8321 | } | |
8322 | ||
284614f0 JB |
8323 | /* Evaluating Ada expressions, and printing their result. |
8324 | ------------------------------------------------------ | |
8325 | ||
8326 | We usually evaluate an Ada expression in order to print its value. | |
8327 | We also evaluate an expression in order to print its type, which | |
8328 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8329 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8330 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8331 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8332 | similar. | |
8333 | ||
8334 | Evaluating expressions is a little more complicated for Ada entities | |
8335 | than it is for entities in languages such as C. The main reason for | |
8336 | this is that Ada provides types whose definition might be dynamic. | |
8337 | One example of such types is variant records. Or another example | |
8338 | would be an array whose bounds can only be known at run time. | |
8339 | ||
8340 | The following description is a general guide as to what should be | |
8341 | done (and what should NOT be done) in order to evaluate an expression | |
8342 | involving such types, and when. This does not cover how the semantic | |
8343 | information is encoded by GNAT as this is covered separatly. For the | |
8344 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8345 | in the GNAT sources. | |
8346 | ||
8347 | Ideally, we should embed each part of this description next to its | |
8348 | associated code. Unfortunately, the amount of code is so vast right | |
8349 | now that it's hard to see whether the code handling a particular | |
8350 | situation might be duplicated or not. One day, when the code is | |
8351 | cleaned up, this guide might become redundant with the comments | |
8352 | inserted in the code, and we might want to remove it. | |
8353 | ||
8354 | When evaluating Ada expressions, the tricky issue is that they may | |
8355 | reference entities whose type contents and size are not statically | |
8356 | known. Consider for instance a variant record: | |
8357 | ||
8358 | type Rec (Empty : Boolean := True) is record | |
8359 | case Empty is | |
8360 | when True => null; | |
8361 | when False => Value : Integer; | |
8362 | end case; | |
8363 | end record; | |
8364 | Yes : Rec := (Empty => False, Value => 1); | |
8365 | No : Rec := (empty => True); | |
8366 | ||
8367 | The size and contents of that record depends on the value of the | |
8368 | descriminant (Rec.Empty). At this point, neither the debugging | |
8369 | information nor the associated type structure in GDB are able to | |
8370 | express such dynamic types. So what the debugger does is to create | |
8371 | "fixed" versions of the type that applies to the specific object. | |
8372 | We also informally refer to this opperation as "fixing" an object, | |
8373 | which means creating its associated fixed type. | |
8374 | ||
8375 | Example: when printing the value of variable "Yes" above, its fixed | |
8376 | type would look like this: | |
8377 | ||
8378 | type Rec is record | |
8379 | Empty : Boolean; | |
8380 | Value : Integer; | |
8381 | end record; | |
8382 | ||
8383 | On the other hand, if we printed the value of "No", its fixed type | |
8384 | would become: | |
8385 | ||
8386 | type Rec is record | |
8387 | Empty : Boolean; | |
8388 | end record; | |
8389 | ||
8390 | Things become a little more complicated when trying to fix an entity | |
8391 | with a dynamic type that directly contains another dynamic type, | |
8392 | such as an array of variant records, for instance. There are | |
8393 | two possible cases: Arrays, and records. | |
8394 | ||
8395 | Arrays are a little simpler to handle, because the same amount of | |
8396 | memory is allocated for each element of the array, even if the amount | |
8397 | of space used by each element changes from element to element. | |
8398 | Consider for instance the following array of type Rec: | |
8399 | ||
8400 | type Rec_Array is array (1 .. 2) of Rec; | |
8401 | ||
8402 | The type structure in GDB describes an array in terms of its | |
8403 | bounds, and the type of its elements. By design, all elements | |
8404 | in the array have the same type. So we cannot use a fixed type | |
8405 | for the array elements in this case, since the fixed type depends | |
8406 | on the actual value of each element. | |
8407 | ||
8408 | Fortunately, what happens in practice is that each element of | |
8409 | the array has the same size, which is the maximum size that | |
8410 | might be needed in order to hold an object of the element type. | |
8411 | And the compiler shows it in the debugging information by wrapping | |
8412 | the array element inside a private PAD type. This type should not | |
8413 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
8414 | that we also use the adjective "aligner" in our code to designate | |
8415 | these wrapper types. | |
8416 | ||
8417 | These wrapper types should have a constant size, which is the size | |
8418 | of each element of the array. In the case when the size is statically | |
8419 | known, the PAD type will already have the right size, and the array | |
8420 | element type should remain unfixed. But there are cases when | |
8421 | this size is not statically known. For instance, assuming that | |
8422 | "Five" is an integer variable: | |
8423 | ||
8424 | type Dynamic is array (1 .. Five) of Integer; | |
8425 | type Wrapper (Has_Length : Boolean := False) is record | |
8426 | Data : Dynamic; | |
8427 | case Has_Length is | |
8428 | when True => Length : Integer; | |
8429 | when False => null; | |
8430 | end case; | |
8431 | end record; | |
8432 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
8433 | ||
8434 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
8435 | Data => (others => 17), | |
8436 | Length => 1)); | |
8437 | ||
8438 | ||
8439 | The debugging info would describe variable Hello as being an | |
8440 | array of a PAD type. The size of that PAD type is not statically | |
8441 | known, but can be determined using a parallel XVZ variable. | |
8442 | In that case, a copy of the PAD type with the correct size should | |
8443 | be used for the fixed array. | |
8444 | ||
8445 | However, things are slightly different in the case of dynamic | |
8446 | record types. In this case, in order to compute the associated | |
8447 | fixed type, we need to determine the size and offset of each of | |
8448 | its components. This, in turn, requires us to compute the fixed | |
8449 | type of each of these components. | |
8450 | ||
8451 | Consider for instance the example: | |
8452 | ||
8453 | type Bounded_String (Max_Size : Natural) is record | |
8454 | Str : String (1 .. Max_Size); | |
8455 | Length : Natural; | |
8456 | end record; | |
8457 | My_String : Bounded_String (Max_Size => 10); | |
8458 | ||
8459 | In that case, the position of field "Length" depends on the size | |
8460 | of field Str, which itself depends on the value of the Max_Size | |
8461 | discriminant. In order to fix the type of variable My_String, | |
8462 | we need to fix the type of field Str. Therefore, fixing a variant | |
8463 | record requires us to fix each of its components. | |
8464 | ||
8465 | However, if a component does not have a dynamic size, the component | |
8466 | should not be fixed. In particular, fields that use a PAD type | |
8467 | should not fixed. Here is an example where this might happen | |
8468 | (assuming type Rec above): | |
8469 | ||
8470 | type Container (Big : Boolean) is record | |
8471 | First : Rec; | |
8472 | After : Integer; | |
8473 | case Big is | |
8474 | when True => Another : Integer; | |
8475 | when False => null; | |
8476 | end case; | |
8477 | end record; | |
8478 | My_Container : Container := (Big => False, | |
8479 | First => (Empty => True), | |
8480 | After => 42); | |
8481 | ||
8482 | In that example, the compiler creates a PAD type for component First, | |
8483 | whose size is constant, and then positions the component After just | |
8484 | right after it. The offset of component After is therefore constant | |
8485 | in this case. | |
8486 | ||
8487 | The debugger computes the position of each field based on an algorithm | |
8488 | that uses, among other things, the actual position and size of the field | |
8489 | preceding it. Let's now imagine that the user is trying to print the | |
8490 | value of My_Container. If the type fixing was recursive, we would | |
8491 | end up computing the offset of field After based on the size of the | |
8492 | fixed version of field First. And since in our example First has | |
8493 | only one actual field, the size of the fixed type is actually smaller | |
8494 | than the amount of space allocated to that field, and thus we would | |
8495 | compute the wrong offset of field After. | |
8496 | ||
8497 | Unfortunately, we need to watch out for dynamic components of variant | |
8498 | records (identified by the ___XVL suffix in the component name). | |
8499 | Even if the target type is a PAD type, the size of that type might | |
8500 | not be statically known. So the PAD type needs to be unwrapped and | |
8501 | the resulting type needs to be fixed. Otherwise, we might end up | |
8502 | with the wrong size for our component. This can be observed with | |
8503 | the following type declarations: | |
8504 | ||
8505 | type Octal is new Integer range 0 .. 7; | |
8506 | type Octal_Array is array (Positive range <>) of Octal; | |
8507 | pragma Pack (Octal_Array); | |
8508 | ||
8509 | type Octal_Buffer (Size : Positive) is record | |
8510 | Buffer : Octal_Array (1 .. Size); | |
8511 | Length : Integer; | |
8512 | end record; | |
8513 | ||
8514 | In that case, Buffer is a PAD type whose size is unset and needs | |
8515 | to be computed by fixing the unwrapped type. | |
8516 | ||
8517 | Lastly, when should the sub-elements of a type that remained unfixed | |
8518 | thus far, be actually fixed? | |
8519 | ||
8520 | The answer is: Only when referencing that element. For instance | |
8521 | when selecting one component of a record, this specific component | |
8522 | should be fixed at that point in time. Or when printing the value | |
8523 | of a record, each component should be fixed before its value gets | |
8524 | printed. Similarly for arrays, the element of the array should be | |
8525 | fixed when printing each element of the array, or when extracting | |
8526 | one element out of that array. On the other hand, fixing should | |
8527 | not be performed on the elements when taking a slice of an array! | |
8528 | ||
8529 | Note that one of the side-effects of miscomputing the offset and | |
8530 | size of each field is that we end up also miscomputing the size | |
8531 | of the containing type. This can have adverse results when computing | |
8532 | the value of an entity. GDB fetches the value of an entity based | |
8533 | on the size of its type, and thus a wrong size causes GDB to fetch | |
8534 | the wrong amount of memory. In the case where the computed size is | |
8535 | too small, GDB fetches too little data to print the value of our | |
8536 | entiry. Results in this case as unpredicatble, as we usually read | |
8537 | past the buffer containing the data =:-o. */ | |
8538 | ||
8539 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
8540 | for the Ada language. */ | |
8541 | ||
52ce6436 | 8542 | static struct value * |
ebf56fd3 | 8543 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 8544 | int *pos, enum noside noside) |
14f9c5c9 AS |
8545 | { |
8546 | enum exp_opcode op; | |
14f9c5c9 AS |
8547 | int tem, tem2, tem3; |
8548 | int pc; | |
8549 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
8550 | struct type *type; | |
52ce6436 | 8551 | int nargs, oplen; |
d2e4a39e | 8552 | struct value **argvec; |
14f9c5c9 | 8553 | |
d2e4a39e AS |
8554 | pc = *pos; |
8555 | *pos += 1; | |
14f9c5c9 AS |
8556 | op = exp->elts[pc].opcode; |
8557 | ||
d2e4a39e | 8558 | switch (op) |
14f9c5c9 AS |
8559 | { |
8560 | default: | |
8561 | *pos -= 1; | |
6e48bd2c JB |
8562 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8563 | arg1 = unwrap_value (arg1); | |
8564 | ||
8565 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
8566 | then we need to perform the conversion manually, because | |
8567 | evaluate_subexp_standard doesn't do it. This conversion is | |
8568 | necessary in Ada because the different kinds of float/fixed | |
8569 | types in Ada have different representations. | |
8570 | ||
8571 | Similarly, we need to perform the conversion from OP_LONG | |
8572 | ourselves. */ | |
8573 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
8574 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
8575 | ||
8576 | return arg1; | |
4c4b4cd2 PH |
8577 | |
8578 | case OP_STRING: | |
8579 | { | |
76a01679 JB |
8580 | struct value *result; |
8581 | *pos -= 1; | |
8582 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8583 | /* The result type will have code OP_STRING, bashed there from | |
8584 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
8585 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
8586 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 8587 | return result; |
4c4b4cd2 | 8588 | } |
14f9c5c9 AS |
8589 | |
8590 | case UNOP_CAST: | |
8591 | (*pos) += 2; | |
8592 | type = exp->elts[pc + 1].type; | |
8593 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
8594 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8595 | goto nosideret; |
6e48bd2c | 8596 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
8597 | return arg1; |
8598 | ||
4c4b4cd2 PH |
8599 | case UNOP_QUAL: |
8600 | (*pos) += 2; | |
8601 | type = exp->elts[pc + 1].type; | |
8602 | return ada_evaluate_subexp (type, exp, pos, noside); | |
8603 | ||
14f9c5c9 AS |
8604 | case BINOP_ASSIGN: |
8605 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
8606 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
8607 | { | |
8608 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
8609 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
8610 | return arg1; | |
8611 | return ada_value_assign (arg1, arg1); | |
8612 | } | |
003f3813 JB |
8613 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
8614 | except if the lhs of our assignment is a convenience variable. | |
8615 | In the case of assigning to a convenience variable, the lhs | |
8616 | should be exactly the result of the evaluation of the rhs. */ | |
8617 | type = value_type (arg1); | |
8618 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
8619 | type = NULL; | |
8620 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 8621 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8622 | return arg1; |
df407dfe AC |
8623 | if (ada_is_fixed_point_type (value_type (arg1))) |
8624 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
8625 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 8626 | error |
323e0a4a | 8627 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 8628 | else |
df407dfe | 8629 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 8630 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
8631 | |
8632 | case BINOP_ADD: | |
8633 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8634 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8635 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8636 | goto nosideret; |
2ac8a782 JB |
8637 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8638 | return (value_from_longest | |
8639 | (value_type (arg1), | |
8640 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
8641 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8642 | || ada_is_fixed_point_type (value_type (arg2))) | |
8643 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8644 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
8645 | /* Do the addition, and cast the result to the type of the first |
8646 | argument. We cannot cast the result to a reference type, so if | |
8647 | ARG1 is a reference type, find its underlying type. */ | |
8648 | type = value_type (arg1); | |
8649 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8650 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8651 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8652 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
8653 | |
8654 | case BINOP_SUB: | |
8655 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8656 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8657 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8658 | goto nosideret; |
2ac8a782 JB |
8659 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8660 | return (value_from_longest | |
8661 | (value_type (arg1), | |
8662 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
8663 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8664 | || ada_is_fixed_point_type (value_type (arg2))) | |
8665 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8666 | error (_("Operands of fixed-point subtraction must have the same type")); |
b7789565 JB |
8667 | /* Do the substraction, and cast the result to the type of the first |
8668 | argument. We cannot cast the result to a reference type, so if | |
8669 | ARG1 is a reference type, find its underlying type. */ | |
8670 | type = value_type (arg1); | |
8671 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8672 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8673 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8674 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
8675 | |
8676 | case BINOP_MUL: | |
8677 | case BINOP_DIV: | |
e1578042 JB |
8678 | case BINOP_REM: |
8679 | case BINOP_MOD: | |
14f9c5c9 AS |
8680 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
8681 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8682 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8683 | goto nosideret; |
e1578042 | 8684 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
8685 | { |
8686 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8687 | return value_zero (value_type (arg1), not_lval); | |
8688 | } | |
14f9c5c9 | 8689 | else |
4c4b4cd2 | 8690 | { |
a53b7a21 | 8691 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 8692 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 8693 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 8694 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 8695 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 8696 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
8697 | return ada_value_binop (arg1, arg2, op); |
8698 | } | |
8699 | ||
4c4b4cd2 PH |
8700 | case BINOP_EQUAL: |
8701 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 8702 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 8703 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 8704 | if (noside == EVAL_SKIP) |
76a01679 | 8705 | goto nosideret; |
4c4b4cd2 | 8706 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 8707 | tem = 0; |
4c4b4cd2 | 8708 | else |
f44316fa UW |
8709 | { |
8710 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8711 | tem = ada_value_equal (arg1, arg2); | |
8712 | } | |
4c4b4cd2 | 8713 | if (op == BINOP_NOTEQUAL) |
76a01679 | 8714 | tem = !tem; |
fbb06eb1 UW |
8715 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8716 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
8717 | |
8718 | case UNOP_NEG: | |
8719 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8720 | if (noside == EVAL_SKIP) | |
8721 | goto nosideret; | |
df407dfe AC |
8722 | else if (ada_is_fixed_point_type (value_type (arg1))) |
8723 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 8724 | else |
f44316fa UW |
8725 | { |
8726 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
8727 | return value_neg (arg1); | |
8728 | } | |
4c4b4cd2 | 8729 | |
2330c6c6 JB |
8730 | case BINOP_LOGICAL_AND: |
8731 | case BINOP_LOGICAL_OR: | |
8732 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
8733 | { |
8734 | struct value *val; | |
8735 | ||
8736 | *pos -= 1; | |
8737 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
8738 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8739 | return value_cast (type, val); | |
000d5124 | 8740 | } |
2330c6c6 JB |
8741 | |
8742 | case BINOP_BITWISE_AND: | |
8743 | case BINOP_BITWISE_IOR: | |
8744 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
8745 | { |
8746 | struct value *val; | |
8747 | ||
8748 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
8749 | *pos = pc; | |
8750 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8751 | ||
8752 | return value_cast (value_type (arg1), val); | |
8753 | } | |
2330c6c6 | 8754 | |
14f9c5c9 AS |
8755 | case OP_VAR_VALUE: |
8756 | *pos -= 1; | |
6799def4 | 8757 | |
14f9c5c9 | 8758 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
8759 | { |
8760 | *pos += 4; | |
8761 | goto nosideret; | |
8762 | } | |
8763 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
8764 | /* Only encountered when an unresolved symbol occurs in a |
8765 | context other than a function call, in which case, it is | |
52ce6436 | 8766 | invalid. */ |
323e0a4a | 8767 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 8768 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 8769 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8770 | { |
0c1f74cf JB |
8771 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
8772 | if (ada_is_tagged_type (type, 0)) | |
8773 | { | |
8774 | /* Tagged types are a little special in the fact that the real | |
8775 | type is dynamic and can only be determined by inspecting the | |
8776 | object's tag. This means that we need to get the object's | |
8777 | value first (EVAL_NORMAL) and then extract the actual object | |
8778 | type from its tag. | |
8779 | ||
8780 | Note that we cannot skip the final step where we extract | |
8781 | the object type from its tag, because the EVAL_NORMAL phase | |
8782 | results in dynamic components being resolved into fixed ones. | |
8783 | This can cause problems when trying to print the type | |
8784 | description of tagged types whose parent has a dynamic size: | |
8785 | We use the type name of the "_parent" component in order | |
8786 | to print the name of the ancestor type in the type description. | |
8787 | If that component had a dynamic size, the resolution into | |
8788 | a fixed type would result in the loss of that type name, | |
8789 | thus preventing us from printing the name of the ancestor | |
8790 | type in the type description. */ | |
b79819ba JB |
8791 | struct type *actual_type; |
8792 | ||
0c1f74cf | 8793 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
8794 | actual_type = type_from_tag (ada_value_tag (arg1)); |
8795 | if (actual_type == NULL) | |
8796 | /* If, for some reason, we were unable to determine | |
8797 | the actual type from the tag, then use the static | |
8798 | approximation that we just computed as a fallback. | |
8799 | This can happen if the debugging information is | |
8800 | incomplete, for instance. */ | |
8801 | actual_type = type; | |
8802 | ||
8803 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
8804 | } |
8805 | ||
4c4b4cd2 PH |
8806 | *pos += 4; |
8807 | return value_zero | |
8808 | (to_static_fixed_type | |
8809 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
8810 | not_lval); | |
8811 | } | |
d2e4a39e | 8812 | else |
4c4b4cd2 | 8813 | { |
284614f0 JB |
8814 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8815 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
8816 | return ada_to_fixed_value (arg1); |
8817 | } | |
8818 | ||
8819 | case OP_FUNCALL: | |
8820 | (*pos) += 2; | |
8821 | ||
8822 | /* Allocate arg vector, including space for the function to be | |
8823 | called in argvec[0] and a terminating NULL. */ | |
8824 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8825 | argvec = | |
8826 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
8827 | ||
8828 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 8829 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 8830 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
8831 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
8832 | else | |
8833 | { | |
8834 | for (tem = 0; tem <= nargs; tem += 1) | |
8835 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8836 | argvec[tem] = 0; | |
8837 | ||
8838 | if (noside == EVAL_SKIP) | |
8839 | goto nosideret; | |
8840 | } | |
8841 | ||
df407dfe | 8842 | if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0])))) |
4c4b4cd2 | 8843 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
8844 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
8845 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
8846 | /* This is a packed array that has already been fixed, and | |
8847 | therefore already coerced to a simple array. Nothing further | |
8848 | to do. */ | |
8849 | ; | |
df407dfe AC |
8850 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
8851 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 8852 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
8853 | argvec[0] = value_addr (argvec[0]); |
8854 | ||
df407dfe | 8855 | type = ada_check_typedef (value_type (argvec[0])); |
4c4b4cd2 PH |
8856 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
8857 | { | |
61ee279c | 8858 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
8859 | { |
8860 | case TYPE_CODE_FUNC: | |
61ee279c | 8861 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8862 | break; |
8863 | case TYPE_CODE_ARRAY: | |
8864 | break; | |
8865 | case TYPE_CODE_STRUCT: | |
8866 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
8867 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 8868 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8869 | break; |
8870 | default: | |
323e0a4a | 8871 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 8872 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
8873 | break; |
8874 | } | |
8875 | } | |
8876 | ||
8877 | switch (TYPE_CODE (type)) | |
8878 | { | |
8879 | case TYPE_CODE_FUNC: | |
8880 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8881 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
8882 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
8883 | case TYPE_CODE_STRUCT: | |
8884 | { | |
8885 | int arity; | |
8886 | ||
4c4b4cd2 PH |
8887 | arity = ada_array_arity (type); |
8888 | type = ada_array_element_type (type, nargs); | |
8889 | if (type == NULL) | |
323e0a4a | 8890 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 8891 | if (arity != nargs) |
323e0a4a | 8892 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 8893 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 8894 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8895 | return |
8896 | unwrap_value (ada_value_subscript | |
8897 | (argvec[0], nargs, argvec + 1)); | |
8898 | } | |
8899 | case TYPE_CODE_ARRAY: | |
8900 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8901 | { | |
8902 | type = ada_array_element_type (type, nargs); | |
8903 | if (type == NULL) | |
323e0a4a | 8904 | error (_("element type of array unknown")); |
4c4b4cd2 | 8905 | else |
0a07e705 | 8906 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8907 | } |
8908 | return | |
8909 | unwrap_value (ada_value_subscript | |
8910 | (ada_coerce_to_simple_array (argvec[0]), | |
8911 | nargs, argvec + 1)); | |
8912 | case TYPE_CODE_PTR: /* Pointer to array */ | |
8913 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
8914 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8915 | { | |
8916 | type = ada_array_element_type (type, nargs); | |
8917 | if (type == NULL) | |
323e0a4a | 8918 | error (_("element type of array unknown")); |
4c4b4cd2 | 8919 | else |
0a07e705 | 8920 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8921 | } |
8922 | return | |
8923 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
8924 | nargs, argvec + 1)); | |
8925 | ||
8926 | default: | |
e1d5a0d2 PH |
8927 | error (_("Attempt to index or call something other than an " |
8928 | "array or function")); | |
4c4b4cd2 PH |
8929 | } |
8930 | ||
8931 | case TERNOP_SLICE: | |
8932 | { | |
8933 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8934 | struct value *low_bound_val = | |
8935 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
8936 | struct value *high_bound_val = |
8937 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8938 | LONGEST low_bound; | |
8939 | LONGEST high_bound; | |
994b9211 AC |
8940 | low_bound_val = coerce_ref (low_bound_val); |
8941 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
8942 | low_bound = pos_atr (low_bound_val); |
8943 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 8944 | |
4c4b4cd2 PH |
8945 | if (noside == EVAL_SKIP) |
8946 | goto nosideret; | |
8947 | ||
4c4b4cd2 PH |
8948 | /* If this is a reference to an aligner type, then remove all |
8949 | the aligners. */ | |
df407dfe AC |
8950 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8951 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
8952 | TYPE_TARGET_TYPE (value_type (array)) = | |
8953 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 8954 | |
df407dfe | 8955 | if (ada_is_packed_array_type (value_type (array))) |
323e0a4a | 8956 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
8957 | |
8958 | /* If this is a reference to an array or an array lvalue, | |
8959 | convert to a pointer. */ | |
df407dfe AC |
8960 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8961 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
8962 | && VALUE_LVAL (array) == lval_memory)) |
8963 | array = value_addr (array); | |
8964 | ||
1265e4aa | 8965 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 8966 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 8967 | (value_type (array)))) |
0b5d8877 | 8968 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
8969 | |
8970 | array = ada_coerce_to_simple_array_ptr (array); | |
8971 | ||
714e53ab PH |
8972 | /* If we have more than one level of pointer indirection, |
8973 | dereference the value until we get only one level. */ | |
df407dfe AC |
8974 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
8975 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
8976 | == TYPE_CODE_PTR)) |
8977 | array = value_ind (array); | |
8978 | ||
8979 | /* Make sure we really do have an array type before going further, | |
8980 | to avoid a SEGV when trying to get the index type or the target | |
8981 | type later down the road if the debug info generated by | |
8982 | the compiler is incorrect or incomplete. */ | |
df407dfe | 8983 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 8984 | error (_("cannot take slice of non-array")); |
714e53ab | 8985 | |
df407dfe | 8986 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 8987 | { |
0b5d8877 | 8988 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 8989 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
8990 | low_bound); |
8991 | else | |
8992 | { | |
8993 | struct type *arr_type0 = | |
df407dfe | 8994 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 8995 | NULL, 1); |
f5938064 JG |
8996 | return ada_value_slice_from_ptr (array, arr_type0, |
8997 | longest_to_int (low_bound), | |
8998 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
8999 | } |
9000 | } | |
9001 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9002 | return array; | |
9003 | else if (high_bound < low_bound) | |
df407dfe | 9004 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9005 | else |
529cad9c PH |
9006 | return ada_value_slice (array, longest_to_int (low_bound), |
9007 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9008 | } |
14f9c5c9 | 9009 | |
4c4b4cd2 PH |
9010 | case UNOP_IN_RANGE: |
9011 | (*pos) += 2; | |
9012 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9013 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9014 | |
14f9c5c9 | 9015 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9016 | goto nosideret; |
14f9c5c9 | 9017 | |
4c4b4cd2 PH |
9018 | switch (TYPE_CODE (type)) |
9019 | { | |
9020 | default: | |
e1d5a0d2 PH |
9021 | lim_warning (_("Membership test incompletely implemented; " |
9022 | "always returns true")); | |
fbb06eb1 UW |
9023 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9024 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9025 | |
9026 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9027 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9028 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9029 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9030 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9031 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9032 | return | |
9033 | value_from_longest (type, | |
4c4b4cd2 PH |
9034 | (value_less (arg1, arg3) |
9035 | || value_equal (arg1, arg3)) | |
9036 | && (value_less (arg2, arg1) | |
9037 | || value_equal (arg2, arg1))); | |
9038 | } | |
9039 | ||
9040 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9041 | (*pos) += 2; |
4c4b4cd2 PH |
9042 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9043 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9044 | |
4c4b4cd2 PH |
9045 | if (noside == EVAL_SKIP) |
9046 | goto nosideret; | |
14f9c5c9 | 9047 | |
4c4b4cd2 | 9048 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9049 | { |
9050 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9051 | return value_zero (type, not_lval); | |
9052 | } | |
14f9c5c9 | 9053 | |
4c4b4cd2 | 9054 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9055 | |
df407dfe | 9056 | if (tem < 1 || tem > ada_array_arity (value_type (arg2))) |
323e0a4a | 9057 | error (_("invalid dimension number to 'range")); |
14f9c5c9 | 9058 | |
4c4b4cd2 PH |
9059 | arg3 = ada_array_bound (arg2, tem, 1); |
9060 | arg2 = ada_array_bound (arg2, tem, 0); | |
d2e4a39e | 9061 | |
f44316fa UW |
9062 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9063 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9064 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9065 | return |
fbb06eb1 | 9066 | value_from_longest (type, |
4c4b4cd2 PH |
9067 | (value_less (arg1, arg3) |
9068 | || value_equal (arg1, arg3)) | |
9069 | && (value_less (arg2, arg1) | |
9070 | || value_equal (arg2, arg1))); | |
9071 | ||
9072 | case TERNOP_IN_RANGE: | |
9073 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9074 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9075 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9076 | ||
9077 | if (noside == EVAL_SKIP) | |
9078 | goto nosideret; | |
9079 | ||
f44316fa UW |
9080 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9081 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9082 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9083 | return |
fbb06eb1 | 9084 | value_from_longest (type, |
4c4b4cd2 PH |
9085 | (value_less (arg1, arg3) |
9086 | || value_equal (arg1, arg3)) | |
9087 | && (value_less (arg2, arg1) | |
9088 | || value_equal (arg2, arg1))); | |
9089 | ||
9090 | case OP_ATR_FIRST: | |
9091 | case OP_ATR_LAST: | |
9092 | case OP_ATR_LENGTH: | |
9093 | { | |
76a01679 JB |
9094 | struct type *type_arg; |
9095 | if (exp->elts[*pos].opcode == OP_TYPE) | |
9096 | { | |
9097 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9098 | arg1 = NULL; | |
5bc23cb3 | 9099 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9100 | } |
9101 | else | |
9102 | { | |
9103 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9104 | type_arg = NULL; | |
9105 | } | |
9106 | ||
9107 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9108 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9109 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9110 | *pos += 4; | |
9111 | ||
9112 | if (noside == EVAL_SKIP) | |
9113 | goto nosideret; | |
9114 | ||
9115 | if (type_arg == NULL) | |
9116 | { | |
9117 | arg1 = ada_coerce_ref (arg1); | |
9118 | ||
df407dfe | 9119 | if (ada_is_packed_array_type (value_type (arg1))) |
76a01679 JB |
9120 | arg1 = ada_coerce_to_simple_array (arg1); |
9121 | ||
df407dfe | 9122 | if (tem < 1 || tem > ada_array_arity (value_type (arg1))) |
323e0a4a | 9123 | error (_("invalid dimension number to '%s"), |
76a01679 JB |
9124 | ada_attribute_name (op)); |
9125 | ||
9126 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9127 | { | |
df407dfe | 9128 | type = ada_index_type (value_type (arg1), tem); |
76a01679 JB |
9129 | if (type == NULL) |
9130 | error | |
323e0a4a | 9131 | (_("attempt to take bound of something that is not an array")); |
76a01679 JB |
9132 | return allocate_value (type); |
9133 | } | |
9134 | ||
9135 | switch (op) | |
9136 | { | |
9137 | default: /* Should never happen. */ | |
323e0a4a | 9138 | error (_("unexpected attribute encountered")); |
76a01679 JB |
9139 | case OP_ATR_FIRST: |
9140 | return ada_array_bound (arg1, tem, 0); | |
9141 | case OP_ATR_LAST: | |
9142 | return ada_array_bound (arg1, tem, 1); | |
9143 | case OP_ATR_LENGTH: | |
9144 | return ada_array_length (arg1, tem); | |
9145 | } | |
9146 | } | |
9147 | else if (discrete_type_p (type_arg)) | |
9148 | { | |
9149 | struct type *range_type; | |
9150 | char *name = ada_type_name (type_arg); | |
9151 | range_type = NULL; | |
9152 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
9153 | range_type = | |
9154 | to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg)); | |
9155 | if (range_type == NULL) | |
9156 | range_type = type_arg; | |
9157 | switch (op) | |
9158 | { | |
9159 | default: | |
323e0a4a | 9160 | error (_("unexpected attribute encountered")); |
76a01679 | 9161 | case OP_ATR_FIRST: |
690cc4eb PH |
9162 | return value_from_longest |
9163 | (range_type, discrete_type_low_bound (range_type)); | |
76a01679 | 9164 | case OP_ATR_LAST: |
690cc4eb PH |
9165 | return value_from_longest |
9166 | (range_type, discrete_type_high_bound (range_type)); | |
76a01679 | 9167 | case OP_ATR_LENGTH: |
323e0a4a | 9168 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9169 | } |
9170 | } | |
9171 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9172 | error (_("unimplemented type attribute")); |
76a01679 JB |
9173 | else |
9174 | { | |
9175 | LONGEST low, high; | |
9176 | ||
9177 | if (ada_is_packed_array_type (type_arg)) | |
9178 | type_arg = decode_packed_array_type (type_arg); | |
9179 | ||
9180 | if (tem < 1 || tem > ada_array_arity (type_arg)) | |
323e0a4a | 9181 | error (_("invalid dimension number to '%s"), |
76a01679 JB |
9182 | ada_attribute_name (op)); |
9183 | ||
9184 | type = ada_index_type (type_arg, tem); | |
9185 | if (type == NULL) | |
9186 | error | |
323e0a4a | 9187 | (_("attempt to take bound of something that is not an array")); |
76a01679 JB |
9188 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9189 | return allocate_value (type); | |
9190 | ||
9191 | switch (op) | |
9192 | { | |
9193 | default: | |
323e0a4a | 9194 | error (_("unexpected attribute encountered")); |
76a01679 JB |
9195 | case OP_ATR_FIRST: |
9196 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
9197 | return value_from_longest (type, low); | |
9198 | case OP_ATR_LAST: | |
9199 | high = ada_array_bound_from_type (type_arg, tem, 1, &type); | |
9200 | return value_from_longest (type, high); | |
9201 | case OP_ATR_LENGTH: | |
9202 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
9203 | high = ada_array_bound_from_type (type_arg, tem, 1, NULL); | |
9204 | return value_from_longest (type, high - low + 1); | |
9205 | } | |
9206 | } | |
14f9c5c9 AS |
9207 | } |
9208 | ||
4c4b4cd2 PH |
9209 | case OP_ATR_TAG: |
9210 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9211 | if (noside == EVAL_SKIP) | |
76a01679 | 9212 | goto nosideret; |
4c4b4cd2 PH |
9213 | |
9214 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9215 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9216 | |
9217 | return ada_value_tag (arg1); | |
9218 | ||
9219 | case OP_ATR_MIN: | |
9220 | case OP_ATR_MAX: | |
9221 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9222 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9223 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9224 | if (noside == EVAL_SKIP) | |
76a01679 | 9225 | goto nosideret; |
d2e4a39e | 9226 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9227 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9228 | else |
f44316fa UW |
9229 | { |
9230 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9231 | return value_binop (arg1, arg2, | |
9232 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9233 | } | |
14f9c5c9 | 9234 | |
4c4b4cd2 PH |
9235 | case OP_ATR_MODULUS: |
9236 | { | |
31dedfee | 9237 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 | 9238 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
4c4b4cd2 | 9239 | |
76a01679 JB |
9240 | if (noside == EVAL_SKIP) |
9241 | goto nosideret; | |
4c4b4cd2 | 9242 | |
76a01679 | 9243 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9244 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9245 | |
76a01679 JB |
9246 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9247 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9248 | } |
9249 | ||
9250 | ||
9251 | case OP_ATR_POS: | |
9252 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9253 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9254 | if (noside == EVAL_SKIP) | |
76a01679 | 9255 | goto nosideret; |
3cb382c9 UW |
9256 | type = builtin_type (exp->gdbarch)->builtin_int; |
9257 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9258 | return value_zero (type, not_lval); | |
14f9c5c9 | 9259 | else |
3cb382c9 | 9260 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9261 | |
4c4b4cd2 PH |
9262 | case OP_ATR_SIZE: |
9263 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9264 | type = value_type (arg1); |
9265 | ||
9266 | /* If the argument is a reference, then dereference its type, since | |
9267 | the user is really asking for the size of the actual object, | |
9268 | not the size of the pointer. */ | |
9269 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9270 | type = TYPE_TARGET_TYPE (type); | |
9271 | ||
4c4b4cd2 | 9272 | if (noside == EVAL_SKIP) |
76a01679 | 9273 | goto nosideret; |
4c4b4cd2 | 9274 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
6d2e05aa | 9275 | return value_zero (builtin_type_int32, not_lval); |
4c4b4cd2 | 9276 | else |
6d2e05aa | 9277 | return value_from_longest (builtin_type_int32, |
8c1c099f | 9278 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9279 | |
9280 | case OP_ATR_VAL: | |
9281 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9282 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9283 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9284 | if (noside == EVAL_SKIP) |
76a01679 | 9285 | goto nosideret; |
4c4b4cd2 | 9286 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9287 | return value_zero (type, not_lval); |
4c4b4cd2 | 9288 | else |
76a01679 | 9289 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9290 | |
9291 | case BINOP_EXP: | |
9292 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9293 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9294 | if (noside == EVAL_SKIP) | |
9295 | goto nosideret; | |
9296 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9297 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9298 | else |
f44316fa UW |
9299 | { |
9300 | /* For integer exponentiation operations, | |
9301 | only promote the first argument. */ | |
9302 | if (is_integral_type (value_type (arg2))) | |
9303 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9304 | else | |
9305 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9306 | ||
9307 | return value_binop (arg1, arg2, op); | |
9308 | } | |
4c4b4cd2 PH |
9309 | |
9310 | case UNOP_PLUS: | |
9311 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9312 | if (noside == EVAL_SKIP) | |
9313 | goto nosideret; | |
9314 | else | |
9315 | return arg1; | |
9316 | ||
9317 | case UNOP_ABS: | |
9318 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9319 | if (noside == EVAL_SKIP) | |
9320 | goto nosideret; | |
f44316fa | 9321 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9322 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9323 | return value_neg (arg1); |
14f9c5c9 | 9324 | else |
4c4b4cd2 | 9325 | return arg1; |
14f9c5c9 AS |
9326 | |
9327 | case UNOP_IND: | |
6b0d7253 | 9328 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9329 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9330 | goto nosideret; |
df407dfe | 9331 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9332 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9333 | { |
9334 | if (ada_is_array_descriptor_type (type)) | |
9335 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9336 | { | |
9337 | struct type *arrType = ada_type_of_array (arg1, 0); | |
9338 | if (arrType == NULL) | |
323e0a4a | 9339 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9340 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9341 | } |
9342 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9343 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9344 | /* In C you can dereference an array to get the 1st elt. */ | |
9345 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9346 | { |
9347 | type = to_static_fixed_type | |
9348 | (ada_aligned_type | |
9349 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9350 | check_size (type); | |
9351 | return value_zero (type, lval_memory); | |
9352 | } | |
4c4b4cd2 | 9353 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
9354 | { |
9355 | /* GDB allows dereferencing an int. */ | |
9356 | if (expect_type == NULL) | |
9357 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9358 | lval_memory); | |
9359 | else | |
9360 | { | |
9361 | expect_type = | |
9362 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
9363 | return value_zero (expect_type, lval_memory); | |
9364 | } | |
9365 | } | |
4c4b4cd2 | 9366 | else |
323e0a4a | 9367 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9368 | } |
76a01679 | 9369 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9370 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9371 | |
96967637 JB |
9372 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
9373 | /* GDB allows dereferencing an int. If we were given | |
9374 | the expect_type, then use that as the target type. | |
9375 | Otherwise, assume that the target type is an int. */ | |
9376 | { | |
9377 | if (expect_type != NULL) | |
9378 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
9379 | arg1)); | |
9380 | else | |
9381 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9382 | (CORE_ADDR) value_as_address (arg1)); | |
9383 | } | |
6b0d7253 | 9384 | |
4c4b4cd2 PH |
9385 | if (ada_is_array_descriptor_type (type)) |
9386 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9387 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9388 | else |
4c4b4cd2 | 9389 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9390 | |
9391 | case STRUCTOP_STRUCT: | |
9392 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9393 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9394 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9395 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9396 | goto nosideret; |
14f9c5c9 | 9397 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9398 | { |
df407dfe | 9399 | struct type *type1 = value_type (arg1); |
76a01679 JB |
9400 | if (ada_is_tagged_type (type1, 1)) |
9401 | { | |
9402 | type = ada_lookup_struct_elt_type (type1, | |
9403 | &exp->elts[pc + 2].string, | |
9404 | 1, 1, NULL); | |
9405 | if (type == NULL) | |
9406 | /* In this case, we assume that the field COULD exist | |
9407 | in some extension of the type. Return an object of | |
9408 | "type" void, which will match any formal | |
9409 | (see ada_type_match). */ | |
9410 | return value_zero (builtin_type_void, lval_memory); | |
9411 | } | |
9412 | else | |
9413 | type = | |
9414 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9415 | 0, NULL); | |
9416 | ||
9417 | return value_zero (ada_aligned_type (type), lval_memory); | |
9418 | } | |
14f9c5c9 | 9419 | else |
284614f0 JB |
9420 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
9421 | arg1 = unwrap_value (arg1); | |
9422 | return ada_to_fixed_value (arg1); | |
9423 | ||
14f9c5c9 | 9424 | case OP_TYPE: |
4c4b4cd2 PH |
9425 | /* The value is not supposed to be used. This is here to make it |
9426 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9427 | (*pos) += 2; |
9428 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9429 | goto nosideret; |
14f9c5c9 | 9430 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9431 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9432 | else |
323e0a4a | 9433 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9434 | |
9435 | case OP_AGGREGATE: | |
9436 | case OP_CHOICES: | |
9437 | case OP_OTHERS: | |
9438 | case OP_DISCRETE_RANGE: | |
9439 | case OP_POSITIONAL: | |
9440 | case OP_NAME: | |
9441 | if (noside == EVAL_NORMAL) | |
9442 | switch (op) | |
9443 | { | |
9444 | case OP_NAME: | |
9445 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9446 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9447 | case OP_AGGREGATE: |
9448 | error (_("Aggregates only allowed on the right of an assignment")); | |
9449 | default: | |
e1d5a0d2 | 9450 | internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); |
52ce6436 PH |
9451 | } |
9452 | ||
9453 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9454 | *pos += oplen - 1; | |
9455 | for (tem = 0; tem < nargs; tem += 1) | |
9456 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9457 | goto nosideret; | |
14f9c5c9 AS |
9458 | } |
9459 | ||
9460 | nosideret: | |
cb18ec49 | 9461 | return value_from_longest (builtin_type_int8, (LONGEST) 1); |
14f9c5c9 | 9462 | } |
14f9c5c9 | 9463 | \f |
d2e4a39e | 9464 | |
4c4b4cd2 | 9465 | /* Fixed point */ |
14f9c5c9 AS |
9466 | |
9467 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9468 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9469 | Otherwise, return NULL. */ |
14f9c5c9 | 9470 | |
d2e4a39e | 9471 | static const char * |
ebf56fd3 | 9472 | fixed_type_info (struct type *type) |
14f9c5c9 | 9473 | { |
d2e4a39e | 9474 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
9475 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
9476 | ||
d2e4a39e AS |
9477 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
9478 | { | |
14f9c5c9 AS |
9479 | const char *tail = strstr (name, "___XF_"); |
9480 | if (tail == NULL) | |
4c4b4cd2 | 9481 | return NULL; |
d2e4a39e | 9482 | else |
4c4b4cd2 | 9483 | return tail + 5; |
14f9c5c9 AS |
9484 | } |
9485 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
9486 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
9487 | else | |
9488 | return NULL; | |
9489 | } | |
9490 | ||
4c4b4cd2 | 9491 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
9492 | |
9493 | int | |
ebf56fd3 | 9494 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
9495 | { |
9496 | return fixed_type_info (type) != NULL; | |
9497 | } | |
9498 | ||
4c4b4cd2 PH |
9499 | /* Return non-zero iff TYPE represents a System.Address type. */ |
9500 | ||
9501 | int | |
9502 | ada_is_system_address_type (struct type *type) | |
9503 | { | |
9504 | return (TYPE_NAME (type) | |
9505 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
9506 | } | |
9507 | ||
14f9c5c9 AS |
9508 | /* Assuming that TYPE is the representation of an Ada fixed-point |
9509 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 9510 | delta cannot be determined. */ |
14f9c5c9 AS |
9511 | |
9512 | DOUBLEST | |
ebf56fd3 | 9513 | ada_delta (struct type *type) |
14f9c5c9 AS |
9514 | { |
9515 | const char *encoding = fixed_type_info (type); | |
facc390f | 9516 | DOUBLEST num, den; |
14f9c5c9 | 9517 | |
facc390f JB |
9518 | /* Strictly speaking, num and den are encoded as integer. However, |
9519 | they may not fit into a long, and they will have to be converted | |
9520 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9521 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9522 | &num, &den) < 2) | |
14f9c5c9 | 9523 | return -1.0; |
d2e4a39e | 9524 | else |
facc390f | 9525 | return num / den; |
14f9c5c9 AS |
9526 | } |
9527 | ||
9528 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 9529 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
9530 | |
9531 | static DOUBLEST | |
ebf56fd3 | 9532 | scaling_factor (struct type *type) |
14f9c5c9 AS |
9533 | { |
9534 | const char *encoding = fixed_type_info (type); | |
facc390f | 9535 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 9536 | int n; |
d2e4a39e | 9537 | |
facc390f JB |
9538 | /* Strictly speaking, num's and den's are encoded as integer. However, |
9539 | they may not fit into a long, and they will have to be converted | |
9540 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9541 | n = sscanf (encoding, | |
9542 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
9543 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9544 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
9545 | |
9546 | if (n < 2) | |
9547 | return 1.0; | |
9548 | else if (n == 4) | |
facc390f | 9549 | return num1 / den1; |
d2e4a39e | 9550 | else |
facc390f | 9551 | return num0 / den0; |
14f9c5c9 AS |
9552 | } |
9553 | ||
9554 | ||
9555 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 9556 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
9557 | |
9558 | DOUBLEST | |
ebf56fd3 | 9559 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 9560 | { |
d2e4a39e | 9561 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
9562 | } |
9563 | ||
4c4b4cd2 PH |
9564 | /* The representation of a fixed-point value of type TYPE |
9565 | corresponding to the value X. */ | |
14f9c5c9 AS |
9566 | |
9567 | LONGEST | |
ebf56fd3 | 9568 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
9569 | { |
9570 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
9571 | } | |
9572 | ||
9573 | ||
4c4b4cd2 | 9574 | /* VAX floating formats */ |
14f9c5c9 AS |
9575 | |
9576 | /* Non-zero iff TYPE represents one of the special VAX floating-point | |
4c4b4cd2 PH |
9577 | types. */ |
9578 | ||
14f9c5c9 | 9579 | int |
d2e4a39e | 9580 | ada_is_vax_floating_type (struct type *type) |
14f9c5c9 | 9581 | { |
d2e4a39e | 9582 | int name_len = |
14f9c5c9 | 9583 | (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type)); |
d2e4a39e | 9584 | return |
14f9c5c9 | 9585 | name_len > 6 |
d2e4a39e | 9586 | && (TYPE_CODE (type) == TYPE_CODE_INT |
4c4b4cd2 PH |
9587 | || TYPE_CODE (type) == TYPE_CODE_RANGE) |
9588 | && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0; | |
14f9c5c9 AS |
9589 | } |
9590 | ||
9591 | /* The type of special VAX floating-point type this is, assuming | |
4c4b4cd2 PH |
9592 | ada_is_vax_floating_point. */ |
9593 | ||
14f9c5c9 | 9594 | int |
d2e4a39e | 9595 | ada_vax_float_type_suffix (struct type *type) |
14f9c5c9 | 9596 | { |
d2e4a39e | 9597 | return ada_type_name (type)[strlen (ada_type_name (type)) - 1]; |
14f9c5c9 AS |
9598 | } |
9599 | ||
4c4b4cd2 | 9600 | /* A value representing the special debugging function that outputs |
14f9c5c9 | 9601 | VAX floating-point values of the type represented by TYPE. Assumes |
4c4b4cd2 PH |
9602 | ada_is_vax_floating_type (TYPE). */ |
9603 | ||
d2e4a39e AS |
9604 | struct value * |
9605 | ada_vax_float_print_function (struct type *type) | |
9606 | { | |
9607 | switch (ada_vax_float_type_suffix (type)) | |
9608 | { | |
9609 | case 'F': | |
9610 | return get_var_value ("DEBUG_STRING_F", 0); | |
9611 | case 'D': | |
9612 | return get_var_value ("DEBUG_STRING_D", 0); | |
9613 | case 'G': | |
9614 | return get_var_value ("DEBUG_STRING_G", 0); | |
9615 | default: | |
323e0a4a | 9616 | error (_("invalid VAX floating-point type")); |
d2e4a39e | 9617 | } |
14f9c5c9 | 9618 | } |
14f9c5c9 | 9619 | \f |
d2e4a39e | 9620 | |
4c4b4cd2 | 9621 | /* Range types */ |
14f9c5c9 AS |
9622 | |
9623 | /* Scan STR beginning at position K for a discriminant name, and | |
9624 | return the value of that discriminant field of DVAL in *PX. If | |
9625 | PNEW_K is not null, put the position of the character beyond the | |
9626 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 9627 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
9628 | |
9629 | static int | |
07d8f827 | 9630 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 9631 | int *pnew_k) |
14f9c5c9 AS |
9632 | { |
9633 | static char *bound_buffer = NULL; | |
9634 | static size_t bound_buffer_len = 0; | |
9635 | char *bound; | |
9636 | char *pend; | |
d2e4a39e | 9637 | struct value *bound_val; |
14f9c5c9 AS |
9638 | |
9639 | if (dval == NULL || str == NULL || str[k] == '\0') | |
9640 | return 0; | |
9641 | ||
d2e4a39e | 9642 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
9643 | if (pend == NULL) |
9644 | { | |
d2e4a39e | 9645 | bound = str + k; |
14f9c5c9 AS |
9646 | k += strlen (bound); |
9647 | } | |
d2e4a39e | 9648 | else |
14f9c5c9 | 9649 | { |
d2e4a39e | 9650 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 9651 | bound = bound_buffer; |
d2e4a39e AS |
9652 | strncpy (bound_buffer, str + k, pend - (str + k)); |
9653 | bound[pend - (str + k)] = '\0'; | |
9654 | k = pend - str; | |
14f9c5c9 | 9655 | } |
d2e4a39e | 9656 | |
df407dfe | 9657 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
9658 | if (bound_val == NULL) |
9659 | return 0; | |
9660 | ||
9661 | *px = value_as_long (bound_val); | |
9662 | if (pnew_k != NULL) | |
9663 | *pnew_k = k; | |
9664 | return 1; | |
9665 | } | |
9666 | ||
9667 | /* Value of variable named NAME in the current environment. If | |
9668 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
9669 | otherwise causes an error with message ERR_MSG. */ |
9670 | ||
d2e4a39e AS |
9671 | static struct value * |
9672 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 9673 | { |
4c4b4cd2 | 9674 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
9675 | int nsyms; |
9676 | ||
4c4b4cd2 PH |
9677 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
9678 | &syms); | |
14f9c5c9 AS |
9679 | |
9680 | if (nsyms != 1) | |
9681 | { | |
9682 | if (err_msg == NULL) | |
4c4b4cd2 | 9683 | return 0; |
14f9c5c9 | 9684 | else |
8a3fe4f8 | 9685 | error (("%s"), err_msg); |
14f9c5c9 AS |
9686 | } |
9687 | ||
4c4b4cd2 | 9688 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 9689 | } |
d2e4a39e | 9690 | |
14f9c5c9 | 9691 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
9692 | no such variable found, returns 0, and sets *FLAG to 0. If |
9693 | successful, sets *FLAG to 1. */ | |
9694 | ||
14f9c5c9 | 9695 | LONGEST |
4c4b4cd2 | 9696 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 9697 | { |
4c4b4cd2 | 9698 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 9699 | |
14f9c5c9 AS |
9700 | if (var_val == 0) |
9701 | { | |
9702 | if (flag != NULL) | |
4c4b4cd2 | 9703 | *flag = 0; |
14f9c5c9 AS |
9704 | return 0; |
9705 | } | |
9706 | else | |
9707 | { | |
9708 | if (flag != NULL) | |
4c4b4cd2 | 9709 | *flag = 1; |
14f9c5c9 AS |
9710 | return value_as_long (var_val); |
9711 | } | |
9712 | } | |
d2e4a39e | 9713 | |
14f9c5c9 AS |
9714 | |
9715 | /* Return a range type whose base type is that of the range type named | |
9716 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 9717 | from NAME according to the GNAT range encoding conventions. |
14f9c5c9 AS |
9718 | Extract discriminant values, if needed, from DVAL. If a new type |
9719 | must be created, allocate in OBJFILE's space. The bounds | |
9720 | information, in general, is encoded in NAME, the base type given in | |
4c4b4cd2 | 9721 | the named range type. */ |
14f9c5c9 | 9722 | |
d2e4a39e | 9723 | static struct type * |
ebf56fd3 | 9724 | to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile) |
14f9c5c9 AS |
9725 | { |
9726 | struct type *raw_type = ada_find_any_type (name); | |
9727 | struct type *base_type; | |
d2e4a39e | 9728 | char *subtype_info; |
14f9c5c9 | 9729 | |
dddfab26 UW |
9730 | /* Also search primitive types if type symbol could not be found. */ |
9731 | if (raw_type == NULL) | |
9732 | raw_type = language_lookup_primitive_type_by_name | |
9733 | (language_def (language_ada), current_gdbarch, name); | |
9734 | ||
14f9c5c9 | 9735 | if (raw_type == NULL) |
6d84d3d8 | 9736 | base_type = builtin_type_int32; |
14f9c5c9 AS |
9737 | else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
9738 | base_type = TYPE_TARGET_TYPE (raw_type); | |
9739 | else | |
9740 | base_type = raw_type; | |
9741 | ||
9742 | subtype_info = strstr (name, "___XD"); | |
9743 | if (subtype_info == NULL) | |
690cc4eb PH |
9744 | { |
9745 | LONGEST L = discrete_type_low_bound (raw_type); | |
9746 | LONGEST U = discrete_type_high_bound (raw_type); | |
9747 | if (L < INT_MIN || U > INT_MAX) | |
9748 | return raw_type; | |
9749 | else | |
9750 | return create_range_type (alloc_type (objfile), raw_type, | |
9751 | discrete_type_low_bound (raw_type), | |
9752 | discrete_type_high_bound (raw_type)); | |
9753 | } | |
14f9c5c9 AS |
9754 | else |
9755 | { | |
9756 | static char *name_buf = NULL; | |
9757 | static size_t name_len = 0; | |
9758 | int prefix_len = subtype_info - name; | |
9759 | LONGEST L, U; | |
9760 | struct type *type; | |
9761 | char *bounds_str; | |
9762 | int n; | |
9763 | ||
9764 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
9765 | strncpy (name_buf, name, prefix_len); | |
9766 | name_buf[prefix_len] = '\0'; | |
9767 | ||
9768 | subtype_info += 5; | |
9769 | bounds_str = strchr (subtype_info, '_'); | |
9770 | n = 1; | |
9771 | ||
d2e4a39e | 9772 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
9773 | { |
9774 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
9775 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
9776 | return raw_type; | |
9777 | if (bounds_str[n] == '_') | |
9778 | n += 2; | |
9779 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
9780 | n += 1; | |
9781 | subtype_info += 1; | |
9782 | } | |
d2e4a39e | 9783 | else |
4c4b4cd2 PH |
9784 | { |
9785 | int ok; | |
9786 | strcpy (name_buf + prefix_len, "___L"); | |
9787 | L = get_int_var_value (name_buf, &ok); | |
9788 | if (!ok) | |
9789 | { | |
323e0a4a | 9790 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
9791 | L = 1; |
9792 | } | |
9793 | } | |
14f9c5c9 | 9794 | |
d2e4a39e | 9795 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
9796 | { |
9797 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
9798 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
9799 | return raw_type; | |
9800 | } | |
d2e4a39e | 9801 | else |
4c4b4cd2 PH |
9802 | { |
9803 | int ok; | |
9804 | strcpy (name_buf + prefix_len, "___U"); | |
9805 | U = get_int_var_value (name_buf, &ok); | |
9806 | if (!ok) | |
9807 | { | |
323e0a4a | 9808 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
9809 | U = L; |
9810 | } | |
9811 | } | |
14f9c5c9 | 9812 | |
d2e4a39e | 9813 | if (objfile == NULL) |
4c4b4cd2 | 9814 | objfile = TYPE_OBJFILE (base_type); |
14f9c5c9 | 9815 | type = create_range_type (alloc_type (objfile), base_type, L, U); |
d2e4a39e | 9816 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
9817 | return type; |
9818 | } | |
9819 | } | |
9820 | ||
4c4b4cd2 PH |
9821 | /* True iff NAME is the name of a range type. */ |
9822 | ||
14f9c5c9 | 9823 | int |
d2e4a39e | 9824 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
9825 | { |
9826 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 9827 | } |
14f9c5c9 | 9828 | \f |
d2e4a39e | 9829 | |
4c4b4cd2 PH |
9830 | /* Modular types */ |
9831 | ||
9832 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 9833 | |
14f9c5c9 | 9834 | int |
d2e4a39e | 9835 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 9836 | { |
4c4b4cd2 | 9837 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
9838 | |
9839 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 9840 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 9841 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
9842 | } |
9843 | ||
0056e4d5 JB |
9844 | /* Try to determine the lower and upper bounds of the given modular type |
9845 | using the type name only. Return non-zero and set L and U as the lower | |
9846 | and upper bounds (respectively) if successful. */ | |
9847 | ||
9848 | int | |
9849 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
9850 | { | |
9851 | char *name = ada_type_name (type); | |
9852 | char *suffix; | |
9853 | int k; | |
9854 | LONGEST U; | |
9855 | ||
9856 | if (name == NULL) | |
9857 | return 0; | |
9858 | ||
9859 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
9860 | we are looking for static bounds, which means an __XDLU suffix. | |
9861 | Moreover, we know that the lower bound of modular types is always | |
9862 | zero, so the actual suffix should start with "__XDLU_0__", and | |
9863 | then be followed by the upper bound value. */ | |
9864 | suffix = strstr (name, "__XDLU_0__"); | |
9865 | if (suffix == NULL) | |
9866 | return 0; | |
9867 | k = 10; | |
9868 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
9869 | return 0; | |
9870 | ||
9871 | *modulus = (ULONGEST) U + 1; | |
9872 | return 1; | |
9873 | } | |
9874 | ||
4c4b4cd2 PH |
9875 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
9876 | ||
61ee279c | 9877 | ULONGEST |
0056e4d5 | 9878 | ada_modulus (struct type *type) |
14f9c5c9 | 9879 | { |
0056e4d5 JB |
9880 | ULONGEST modulus; |
9881 | ||
9882 | /* Normally, the modulus of a modular type is equal to the value of | |
9883 | its upper bound + 1. However, the upper bound is currently stored | |
9884 | as an int, which is not always big enough to hold the actual bound | |
9885 | value. To workaround this, try to take advantage of the encoding | |
9886 | that GNAT uses with with discrete types. To avoid some unnecessary | |
9887 | parsing, we do this only when the size of TYPE is greater than | |
9888 | the size of the field holding the bound. */ | |
9889 | if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type)) | |
9890 | && ada_modulus_from_name (type, &modulus)) | |
9891 | return modulus; | |
9892 | ||
d37209fd | 9893 | return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 9894 | } |
d2e4a39e | 9895 | \f |
f7f9143b JB |
9896 | |
9897 | /* Ada exception catchpoint support: | |
9898 | --------------------------------- | |
9899 | ||
9900 | We support 3 kinds of exception catchpoints: | |
9901 | . catchpoints on Ada exceptions | |
9902 | . catchpoints on unhandled Ada exceptions | |
9903 | . catchpoints on failed assertions | |
9904 | ||
9905 | Exceptions raised during failed assertions, or unhandled exceptions | |
9906 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
9907 | However, we can easily differentiate these two special cases, and having | |
9908 | the option to distinguish these two cases from the rest can be useful | |
9909 | to zero-in on certain situations. | |
9910 | ||
9911 | Exception catchpoints are a specialized form of breakpoint, | |
9912 | since they rely on inserting breakpoints inside known routines | |
9913 | of the GNAT runtime. The implementation therefore uses a standard | |
9914 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
9915 | of breakpoint_ops. | |
9916 | ||
0259addd JB |
9917 | Support in the runtime for exception catchpoints have been changed |
9918 | a few times already, and these changes affect the implementation | |
9919 | of these catchpoints. In order to be able to support several | |
9920 | variants of the runtime, we use a sniffer that will determine | |
9921 | the runtime variant used by the program being debugged. | |
9922 | ||
f7f9143b JB |
9923 | At this time, we do not support the use of conditions on Ada exception |
9924 | catchpoints. The COND and COND_STRING fields are therefore set | |
9925 | to NULL (most of the time, see below). | |
9926 | ||
9927 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
9928 | ||
9929 | When a user specifies the name of a specific exception in the case | |
9930 | of catchpoints on Ada exceptions, we store the name of that exception | |
9931 | in the EXP_STRING. We then translate this request into an actual | |
9932 | condition stored in COND_STRING, and then parse it into an expression | |
9933 | stored in COND. */ | |
9934 | ||
9935 | /* The different types of catchpoints that we introduced for catching | |
9936 | Ada exceptions. */ | |
9937 | ||
9938 | enum exception_catchpoint_kind | |
9939 | { | |
9940 | ex_catch_exception, | |
9941 | ex_catch_exception_unhandled, | |
9942 | ex_catch_assert | |
9943 | }; | |
9944 | ||
3d0b0fa3 JB |
9945 | /* Ada's standard exceptions. */ |
9946 | ||
9947 | static char *standard_exc[] = { | |
9948 | "constraint_error", | |
9949 | "program_error", | |
9950 | "storage_error", | |
9951 | "tasking_error" | |
9952 | }; | |
9953 | ||
0259addd JB |
9954 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
9955 | ||
9956 | /* A structure that describes how to support exception catchpoints | |
9957 | for a given executable. */ | |
9958 | ||
9959 | struct exception_support_info | |
9960 | { | |
9961 | /* The name of the symbol to break on in order to insert | |
9962 | a catchpoint on exceptions. */ | |
9963 | const char *catch_exception_sym; | |
9964 | ||
9965 | /* The name of the symbol to break on in order to insert | |
9966 | a catchpoint on unhandled exceptions. */ | |
9967 | const char *catch_exception_unhandled_sym; | |
9968 | ||
9969 | /* The name of the symbol to break on in order to insert | |
9970 | a catchpoint on failed assertions. */ | |
9971 | const char *catch_assert_sym; | |
9972 | ||
9973 | /* Assuming that the inferior just triggered an unhandled exception | |
9974 | catchpoint, this function is responsible for returning the address | |
9975 | in inferior memory where the name of that exception is stored. | |
9976 | Return zero if the address could not be computed. */ | |
9977 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
9978 | }; | |
9979 | ||
9980 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
9981 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
9982 | ||
9983 | /* The following exception support info structure describes how to | |
9984 | implement exception catchpoints with the latest version of the | |
9985 | Ada runtime (as of 2007-03-06). */ | |
9986 | ||
9987 | static const struct exception_support_info default_exception_support_info = | |
9988 | { | |
9989 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
9990 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9991 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9992 | ada_unhandled_exception_name_addr | |
9993 | }; | |
9994 | ||
9995 | /* The following exception support info structure describes how to | |
9996 | implement exception catchpoints with a slightly older version | |
9997 | of the Ada runtime. */ | |
9998 | ||
9999 | static const struct exception_support_info exception_support_info_fallback = | |
10000 | { | |
10001 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10002 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10003 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10004 | ada_unhandled_exception_name_addr_from_raise | |
10005 | }; | |
10006 | ||
10007 | /* For each executable, we sniff which exception info structure to use | |
10008 | and cache it in the following global variable. */ | |
10009 | ||
10010 | static const struct exception_support_info *exception_info = NULL; | |
10011 | ||
10012 | /* Inspect the Ada runtime and determine which exception info structure | |
10013 | should be used to provide support for exception catchpoints. | |
10014 | ||
10015 | This function will always set exception_info, or raise an error. */ | |
10016 | ||
10017 | static void | |
10018 | ada_exception_support_info_sniffer (void) | |
10019 | { | |
10020 | struct symbol *sym; | |
10021 | ||
10022 | /* If the exception info is already known, then no need to recompute it. */ | |
10023 | if (exception_info != NULL) | |
10024 | return; | |
10025 | ||
10026 | /* Check the latest (default) exception support info. */ | |
10027 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
10028 | NULL, VAR_DOMAIN); | |
10029 | if (sym != NULL) | |
10030 | { | |
10031 | exception_info = &default_exception_support_info; | |
10032 | return; | |
10033 | } | |
10034 | ||
10035 | /* Try our fallback exception suport info. */ | |
10036 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
10037 | NULL, VAR_DOMAIN); | |
10038 | if (sym != NULL) | |
10039 | { | |
10040 | exception_info = &exception_support_info_fallback; | |
10041 | return; | |
10042 | } | |
10043 | ||
10044 | /* Sometimes, it is normal for us to not be able to find the routine | |
10045 | we are looking for. This happens when the program is linked with | |
10046 | the shared version of the GNAT runtime, and the program has not been | |
10047 | started yet. Inform the user of these two possible causes if | |
10048 | applicable. */ | |
10049 | ||
10050 | if (ada_update_initial_language (language_unknown, NULL) != language_ada) | |
10051 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); | |
10052 | ||
10053 | /* If the symbol does not exist, then check that the program is | |
10054 | already started, to make sure that shared libraries have been | |
10055 | loaded. If it is not started, this may mean that the symbol is | |
10056 | in a shared library. */ | |
10057 | ||
10058 | if (ptid_get_pid (inferior_ptid) == 0) | |
10059 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10060 | ||
10061 | /* At this point, we know that we are debugging an Ada program and | |
10062 | that the inferior has been started, but we still are not able to | |
10063 | find the run-time symbols. That can mean that we are in | |
10064 | configurable run time mode, or that a-except as been optimized | |
10065 | out by the linker... In any case, at this point it is not worth | |
10066 | supporting this feature. */ | |
10067 | ||
10068 | error (_("Cannot insert catchpoints in this configuration.")); | |
10069 | } | |
10070 | ||
10071 | /* An observer of "executable_changed" events. | |
10072 | Its role is to clear certain cached values that need to be recomputed | |
10073 | each time a new executable is loaded by GDB. */ | |
10074 | ||
10075 | static void | |
781b42b0 | 10076 | ada_executable_changed_observer (void) |
0259addd JB |
10077 | { |
10078 | /* If the executable changed, then it is possible that the Ada runtime | |
10079 | is different. So we need to invalidate the exception support info | |
10080 | cache. */ | |
10081 | exception_info = NULL; | |
10082 | } | |
10083 | ||
f7f9143b JB |
10084 | /* Return the name of the function at PC, NULL if could not find it. |
10085 | This function only checks the debugging information, not the symbol | |
10086 | table. */ | |
10087 | ||
10088 | static char * | |
10089 | function_name_from_pc (CORE_ADDR pc) | |
10090 | { | |
10091 | char *func_name; | |
10092 | ||
10093 | if (!find_pc_partial_function (pc, &func_name, NULL, NULL)) | |
10094 | return NULL; | |
10095 | ||
10096 | return func_name; | |
10097 | } | |
10098 | ||
10099 | /* True iff FRAME is very likely to be that of a function that is | |
10100 | part of the runtime system. This is all very heuristic, but is | |
10101 | intended to be used as advice as to what frames are uninteresting | |
10102 | to most users. */ | |
10103 | ||
10104 | static int | |
10105 | is_known_support_routine (struct frame_info *frame) | |
10106 | { | |
4ed6b5be | 10107 | struct symtab_and_line sal; |
f7f9143b JB |
10108 | char *func_name; |
10109 | int i; | |
f7f9143b | 10110 | |
4ed6b5be JB |
10111 | /* If this code does not have any debugging information (no symtab), |
10112 | This cannot be any user code. */ | |
f7f9143b | 10113 | |
4ed6b5be | 10114 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10115 | if (sal.symtab == NULL) |
10116 | return 1; | |
10117 | ||
4ed6b5be JB |
10118 | /* If there is a symtab, but the associated source file cannot be |
10119 | located, then assume this is not user code: Selecting a frame | |
10120 | for which we cannot display the code would not be very helpful | |
10121 | for the user. This should also take care of case such as VxWorks | |
10122 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10123 | |
9bbc9174 | 10124 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10125 | return 1; |
10126 | ||
4ed6b5be JB |
10127 | /* Check the unit filename againt the Ada runtime file naming. |
10128 | We also check the name of the objfile against the name of some | |
10129 | known system libraries that sometimes come with debugging info | |
10130 | too. */ | |
10131 | ||
f7f9143b JB |
10132 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10133 | { | |
10134 | re_comp (known_runtime_file_name_patterns[i]); | |
10135 | if (re_exec (sal.symtab->filename)) | |
10136 | return 1; | |
4ed6b5be JB |
10137 | if (sal.symtab->objfile != NULL |
10138 | && re_exec (sal.symtab->objfile->name)) | |
10139 | return 1; | |
f7f9143b JB |
10140 | } |
10141 | ||
4ed6b5be | 10142 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10143 | |
4ed6b5be | 10144 | func_name = function_name_from_pc (get_frame_address_in_block (frame)); |
f7f9143b JB |
10145 | if (func_name == NULL) |
10146 | return 1; | |
10147 | ||
10148 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10149 | { | |
10150 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10151 | if (re_exec (func_name)) | |
10152 | return 1; | |
10153 | } | |
10154 | ||
10155 | return 0; | |
10156 | } | |
10157 | ||
10158 | /* Find the first frame that contains debugging information and that is not | |
10159 | part of the Ada run-time, starting from FI and moving upward. */ | |
10160 | ||
0ef643c8 | 10161 | void |
f7f9143b JB |
10162 | ada_find_printable_frame (struct frame_info *fi) |
10163 | { | |
10164 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10165 | { | |
10166 | if (!is_known_support_routine (fi)) | |
10167 | { | |
10168 | select_frame (fi); | |
10169 | break; | |
10170 | } | |
10171 | } | |
10172 | ||
10173 | } | |
10174 | ||
10175 | /* Assuming that the inferior just triggered an unhandled exception | |
10176 | catchpoint, return the address in inferior memory where the name | |
10177 | of the exception is stored. | |
10178 | ||
10179 | Return zero if the address could not be computed. */ | |
10180 | ||
10181 | static CORE_ADDR | |
10182 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10183 | { |
10184 | return parse_and_eval_address ("e.full_name"); | |
10185 | } | |
10186 | ||
10187 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10188 | should be used when the inferior uses an older version of the runtime, | |
10189 | where the exception name needs to be extracted from a specific frame | |
10190 | several frames up in the callstack. */ | |
10191 | ||
10192 | static CORE_ADDR | |
10193 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10194 | { |
10195 | int frame_level; | |
10196 | struct frame_info *fi; | |
10197 | ||
10198 | /* To determine the name of this exception, we need to select | |
10199 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10200 | at least 3 levels up, so we simply skip the first 3 frames | |
10201 | without checking the name of their associated function. */ | |
10202 | fi = get_current_frame (); | |
10203 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10204 | if (fi != NULL) | |
10205 | fi = get_prev_frame (fi); | |
10206 | ||
10207 | while (fi != NULL) | |
10208 | { | |
10209 | const char *func_name = | |
10210 | function_name_from_pc (get_frame_address_in_block (fi)); | |
10211 | if (func_name != NULL | |
0259addd | 10212 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10213 | break; /* We found the frame we were looking for... */ |
10214 | fi = get_prev_frame (fi); | |
10215 | } | |
10216 | ||
10217 | if (fi == NULL) | |
10218 | return 0; | |
10219 | ||
10220 | select_frame (fi); | |
10221 | return parse_and_eval_address ("id.full_name"); | |
10222 | } | |
10223 | ||
10224 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10225 | (of any type), return the address in inferior memory where the name | |
10226 | of the exception is stored, if applicable. | |
10227 | ||
10228 | Return zero if the address could not be computed, or if not relevant. */ | |
10229 | ||
10230 | static CORE_ADDR | |
10231 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10232 | struct breakpoint *b) | |
10233 | { | |
10234 | switch (ex) | |
10235 | { | |
10236 | case ex_catch_exception: | |
10237 | return (parse_and_eval_address ("e.full_name")); | |
10238 | break; | |
10239 | ||
10240 | case ex_catch_exception_unhandled: | |
0259addd | 10241 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10242 | break; |
10243 | ||
10244 | case ex_catch_assert: | |
10245 | return 0; /* Exception name is not relevant in this case. */ | |
10246 | break; | |
10247 | ||
10248 | default: | |
10249 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10250 | break; | |
10251 | } | |
10252 | ||
10253 | return 0; /* Should never be reached. */ | |
10254 | } | |
10255 | ||
10256 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10257 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10258 | When an error is intercepted, a warning with the error message is printed, | |
10259 | and zero is returned. */ | |
10260 | ||
10261 | static CORE_ADDR | |
10262 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10263 | struct breakpoint *b) | |
10264 | { | |
10265 | struct gdb_exception e; | |
10266 | CORE_ADDR result = 0; | |
10267 | ||
10268 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10269 | { | |
10270 | result = ada_exception_name_addr_1 (ex, b); | |
10271 | } | |
10272 | ||
10273 | if (e.reason < 0) | |
10274 | { | |
10275 | warning (_("failed to get exception name: %s"), e.message); | |
10276 | return 0; | |
10277 | } | |
10278 | ||
10279 | return result; | |
10280 | } | |
10281 | ||
10282 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
10283 | for all exception catchpoint kinds. */ | |
10284 | ||
10285 | static enum print_stop_action | |
10286 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10287 | { | |
10288 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10289 | char exception_name[256]; | |
10290 | ||
10291 | if (addr != 0) | |
10292 | { | |
10293 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10294 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10295 | } | |
10296 | ||
10297 | ada_find_printable_frame (get_current_frame ()); | |
10298 | ||
10299 | annotate_catchpoint (b->number); | |
10300 | switch (ex) | |
10301 | { | |
10302 | case ex_catch_exception: | |
10303 | if (addr != 0) | |
10304 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10305 | b->number, exception_name); | |
10306 | else | |
10307 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10308 | break; | |
10309 | case ex_catch_exception_unhandled: | |
10310 | if (addr != 0) | |
10311 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10312 | b->number, exception_name); | |
10313 | else | |
10314 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10315 | b->number); | |
10316 | break; | |
10317 | case ex_catch_assert: | |
10318 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10319 | b->number); | |
10320 | break; | |
10321 | } | |
10322 | ||
10323 | return PRINT_SRC_AND_LOC; | |
10324 | } | |
10325 | ||
10326 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10327 | for all exception catchpoint kinds. */ | |
10328 | ||
10329 | static void | |
10330 | print_one_exception (enum exception_catchpoint_kind ex, | |
10331 | struct breakpoint *b, CORE_ADDR *last_addr) | |
10332 | { | |
79a45b7d TT |
10333 | struct value_print_options opts; |
10334 | ||
10335 | get_user_print_options (&opts); | |
10336 | if (opts.addressprint) | |
f7f9143b JB |
10337 | { |
10338 | annotate_field (4); | |
10339 | ui_out_field_core_addr (uiout, "addr", b->loc->address); | |
10340 | } | |
10341 | ||
10342 | annotate_field (5); | |
10343 | *last_addr = b->loc->address; | |
10344 | switch (ex) | |
10345 | { | |
10346 | case ex_catch_exception: | |
10347 | if (b->exp_string != NULL) | |
10348 | { | |
10349 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10350 | ||
10351 | ui_out_field_string (uiout, "what", msg); | |
10352 | xfree (msg); | |
10353 | } | |
10354 | else | |
10355 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10356 | ||
10357 | break; | |
10358 | ||
10359 | case ex_catch_exception_unhandled: | |
10360 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10361 | break; | |
10362 | ||
10363 | case ex_catch_assert: | |
10364 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10365 | break; | |
10366 | ||
10367 | default: | |
10368 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10369 | break; | |
10370 | } | |
10371 | } | |
10372 | ||
10373 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10374 | for all exception catchpoint kinds. */ | |
10375 | ||
10376 | static void | |
10377 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10378 | struct breakpoint *b) | |
10379 | { | |
10380 | switch (ex) | |
10381 | { | |
10382 | case ex_catch_exception: | |
10383 | if (b->exp_string != NULL) | |
10384 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10385 | b->number, b->exp_string); | |
10386 | else | |
10387 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10388 | ||
10389 | break; | |
10390 | ||
10391 | case ex_catch_exception_unhandled: | |
10392 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10393 | b->number); | |
10394 | break; | |
10395 | ||
10396 | case ex_catch_assert: | |
10397 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10398 | break; | |
10399 | ||
10400 | default: | |
10401 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10402 | break; | |
10403 | } | |
10404 | } | |
10405 | ||
10406 | /* Virtual table for "catch exception" breakpoints. */ | |
10407 | ||
10408 | static enum print_stop_action | |
10409 | print_it_catch_exception (struct breakpoint *b) | |
10410 | { | |
10411 | return print_it_exception (ex_catch_exception, b); | |
10412 | } | |
10413 | ||
10414 | static void | |
10415 | print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr) | |
10416 | { | |
10417 | print_one_exception (ex_catch_exception, b, last_addr); | |
10418 | } | |
10419 | ||
10420 | static void | |
10421 | print_mention_catch_exception (struct breakpoint *b) | |
10422 | { | |
10423 | print_mention_exception (ex_catch_exception, b); | |
10424 | } | |
10425 | ||
10426 | static struct breakpoint_ops catch_exception_breakpoint_ops = | |
10427 | { | |
ce78b96d JB |
10428 | NULL, /* insert */ |
10429 | NULL, /* remove */ | |
10430 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10431 | print_it_catch_exception, |
10432 | print_one_catch_exception, | |
10433 | print_mention_catch_exception | |
10434 | }; | |
10435 | ||
10436 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10437 | ||
10438 | static enum print_stop_action | |
10439 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10440 | { | |
10441 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10442 | } | |
10443 | ||
10444 | static void | |
10445 | print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr) | |
10446 | { | |
10447 | print_one_exception (ex_catch_exception_unhandled, b, last_addr); | |
10448 | } | |
10449 | ||
10450 | static void | |
10451 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10452 | { | |
10453 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10454 | } | |
10455 | ||
10456 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { | |
ce78b96d JB |
10457 | NULL, /* insert */ |
10458 | NULL, /* remove */ | |
10459 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10460 | print_it_catch_exception_unhandled, |
10461 | print_one_catch_exception_unhandled, | |
10462 | print_mention_catch_exception_unhandled | |
10463 | }; | |
10464 | ||
10465 | /* Virtual table for "catch assert" breakpoints. */ | |
10466 | ||
10467 | static enum print_stop_action | |
10468 | print_it_catch_assert (struct breakpoint *b) | |
10469 | { | |
10470 | return print_it_exception (ex_catch_assert, b); | |
10471 | } | |
10472 | ||
10473 | static void | |
10474 | print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr) | |
10475 | { | |
10476 | print_one_exception (ex_catch_assert, b, last_addr); | |
10477 | } | |
10478 | ||
10479 | static void | |
10480 | print_mention_catch_assert (struct breakpoint *b) | |
10481 | { | |
10482 | print_mention_exception (ex_catch_assert, b); | |
10483 | } | |
10484 | ||
10485 | static struct breakpoint_ops catch_assert_breakpoint_ops = { | |
ce78b96d JB |
10486 | NULL, /* insert */ |
10487 | NULL, /* remove */ | |
10488 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10489 | print_it_catch_assert, |
10490 | print_one_catch_assert, | |
10491 | print_mention_catch_assert | |
10492 | }; | |
10493 | ||
10494 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
10495 | ||
10496 | int | |
10497 | ada_exception_catchpoint_p (struct breakpoint *b) | |
10498 | { | |
10499 | return (b->ops == &catch_exception_breakpoint_ops | |
10500 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
10501 | || b->ops == &catch_assert_breakpoint_ops); | |
10502 | } | |
10503 | ||
f7f9143b JB |
10504 | /* Return a newly allocated copy of the first space-separated token |
10505 | in ARGSP, and then adjust ARGSP to point immediately after that | |
10506 | token. | |
10507 | ||
10508 | Return NULL if ARGPS does not contain any more tokens. */ | |
10509 | ||
10510 | static char * | |
10511 | ada_get_next_arg (char **argsp) | |
10512 | { | |
10513 | char *args = *argsp; | |
10514 | char *end; | |
10515 | char *result; | |
10516 | ||
10517 | /* Skip any leading white space. */ | |
10518 | ||
10519 | while (isspace (*args)) | |
10520 | args++; | |
10521 | ||
10522 | if (args[0] == '\0') | |
10523 | return NULL; /* No more arguments. */ | |
10524 | ||
10525 | /* Find the end of the current argument. */ | |
10526 | ||
10527 | end = args; | |
10528 | while (*end != '\0' && !isspace (*end)) | |
10529 | end++; | |
10530 | ||
10531 | /* Adjust ARGSP to point to the start of the next argument. */ | |
10532 | ||
10533 | *argsp = end; | |
10534 | ||
10535 | /* Make a copy of the current argument and return it. */ | |
10536 | ||
10537 | result = xmalloc (end - args + 1); | |
10538 | strncpy (result, args, end - args); | |
10539 | result[end - args] = '\0'; | |
10540 | ||
10541 | return result; | |
10542 | } | |
10543 | ||
10544 | /* Split the arguments specified in a "catch exception" command. | |
10545 | Set EX to the appropriate catchpoint type. | |
10546 | Set EXP_STRING to the name of the specific exception if | |
10547 | specified by the user. */ | |
10548 | ||
10549 | static void | |
10550 | catch_ada_exception_command_split (char *args, | |
10551 | enum exception_catchpoint_kind *ex, | |
10552 | char **exp_string) | |
10553 | { | |
10554 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
10555 | char *exception_name; | |
10556 | ||
10557 | exception_name = ada_get_next_arg (&args); | |
10558 | make_cleanup (xfree, exception_name); | |
10559 | ||
10560 | /* Check that we do not have any more arguments. Anything else | |
10561 | is unexpected. */ | |
10562 | ||
10563 | while (isspace (*args)) | |
10564 | args++; | |
10565 | ||
10566 | if (args[0] != '\0') | |
10567 | error (_("Junk at end of expression")); | |
10568 | ||
10569 | discard_cleanups (old_chain); | |
10570 | ||
10571 | if (exception_name == NULL) | |
10572 | { | |
10573 | /* Catch all exceptions. */ | |
10574 | *ex = ex_catch_exception; | |
10575 | *exp_string = NULL; | |
10576 | } | |
10577 | else if (strcmp (exception_name, "unhandled") == 0) | |
10578 | { | |
10579 | /* Catch unhandled exceptions. */ | |
10580 | *ex = ex_catch_exception_unhandled; | |
10581 | *exp_string = NULL; | |
10582 | } | |
10583 | else | |
10584 | { | |
10585 | /* Catch a specific exception. */ | |
10586 | *ex = ex_catch_exception; | |
10587 | *exp_string = exception_name; | |
10588 | } | |
10589 | } | |
10590 | ||
10591 | /* Return the name of the symbol on which we should break in order to | |
10592 | implement a catchpoint of the EX kind. */ | |
10593 | ||
10594 | static const char * | |
10595 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
10596 | { | |
0259addd JB |
10597 | gdb_assert (exception_info != NULL); |
10598 | ||
f7f9143b JB |
10599 | switch (ex) |
10600 | { | |
10601 | case ex_catch_exception: | |
0259addd | 10602 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
10603 | break; |
10604 | case ex_catch_exception_unhandled: | |
0259addd | 10605 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
10606 | break; |
10607 | case ex_catch_assert: | |
0259addd | 10608 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
10609 | break; |
10610 | default: | |
10611 | internal_error (__FILE__, __LINE__, | |
10612 | _("unexpected catchpoint kind (%d)"), ex); | |
10613 | } | |
10614 | } | |
10615 | ||
10616 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
10617 | of the EX kind. */ | |
10618 | ||
10619 | static struct breakpoint_ops * | |
4b9eee8c | 10620 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
10621 | { |
10622 | switch (ex) | |
10623 | { | |
10624 | case ex_catch_exception: | |
10625 | return (&catch_exception_breakpoint_ops); | |
10626 | break; | |
10627 | case ex_catch_exception_unhandled: | |
10628 | return (&catch_exception_unhandled_breakpoint_ops); | |
10629 | break; | |
10630 | case ex_catch_assert: | |
10631 | return (&catch_assert_breakpoint_ops); | |
10632 | break; | |
10633 | default: | |
10634 | internal_error (__FILE__, __LINE__, | |
10635 | _("unexpected catchpoint kind (%d)"), ex); | |
10636 | } | |
10637 | } | |
10638 | ||
10639 | /* Return the condition that will be used to match the current exception | |
10640 | being raised with the exception that the user wants to catch. This | |
10641 | assumes that this condition is used when the inferior just triggered | |
10642 | an exception catchpoint. | |
10643 | ||
10644 | The string returned is a newly allocated string that needs to be | |
10645 | deallocated later. */ | |
10646 | ||
10647 | static char * | |
10648 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
10649 | { | |
3d0b0fa3 JB |
10650 | int i; |
10651 | ||
10652 | /* The standard exceptions are a special case. They are defined in | |
10653 | runtime units that have been compiled without debugging info; if | |
10654 | EXP_STRING is the not-fully-qualified name of a standard | |
10655 | exception (e.g. "constraint_error") then, during the evaluation | |
10656 | of the condition expression, the symbol lookup on this name would | |
10657 | *not* return this standard exception. The catchpoint condition | |
10658 | may then be set only on user-defined exceptions which have the | |
10659 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
10660 | ||
10661 | To avoid this unexcepted behavior, these standard exceptions are | |
10662 | systematically prefixed by "standard". This means that "catch | |
10663 | exception constraint_error" is rewritten into "catch exception | |
10664 | standard.constraint_error". | |
10665 | ||
10666 | If an exception named contraint_error is defined in another package of | |
10667 | the inferior program, then the only way to specify this exception as a | |
10668 | breakpoint condition is to use its fully-qualified named: | |
10669 | e.g. my_package.constraint_error. */ | |
10670 | ||
10671 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
10672 | { | |
10673 | if (strcmp (standard_exc [i], exp_string) == 0) | |
10674 | { | |
10675 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
10676 | exp_string); | |
10677 | } | |
10678 | } | |
f7f9143b JB |
10679 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); |
10680 | } | |
10681 | ||
10682 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
10683 | ||
10684 | static struct expression * | |
10685 | ada_parse_catchpoint_condition (char *cond_string, | |
10686 | struct symtab_and_line sal) | |
10687 | { | |
10688 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
10689 | } | |
10690 | ||
10691 | /* Return the symtab_and_line that should be used to insert an exception | |
10692 | catchpoint of the TYPE kind. | |
10693 | ||
10694 | EX_STRING should contain the name of a specific exception | |
10695 | that the catchpoint should catch, or NULL otherwise. | |
10696 | ||
10697 | The idea behind all the remaining parameters is that their names match | |
10698 | the name of certain fields in the breakpoint structure that are used to | |
10699 | handle exception catchpoints. This function returns the value to which | |
10700 | these fields should be set, depending on the type of catchpoint we need | |
10701 | to create. | |
10702 | ||
10703 | If COND and COND_STRING are both non-NULL, any value they might | |
10704 | hold will be free'ed, and then replaced by newly allocated ones. | |
10705 | These parameters are left untouched otherwise. */ | |
10706 | ||
10707 | static struct symtab_and_line | |
10708 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
10709 | char **addr_string, char **cond_string, | |
10710 | struct expression **cond, struct breakpoint_ops **ops) | |
10711 | { | |
10712 | const char *sym_name; | |
10713 | struct symbol *sym; | |
10714 | struct symtab_and_line sal; | |
10715 | ||
0259addd JB |
10716 | /* First, find out which exception support info to use. */ |
10717 | ada_exception_support_info_sniffer (); | |
10718 | ||
10719 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
10720 | the Ada exceptions requested by the user. */ |
10721 | ||
10722 | sym_name = ada_exception_sym_name (ex); | |
10723 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
10724 | ||
10725 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10726 | that should be compiled with debugging information. As a result, we | |
10727 | expect to find that symbol in the symtabs. If we don't find it, then | |
10728 | the target most likely does not support Ada exceptions, or we cannot | |
10729 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
10730 | loaded yet. */ | |
10731 | ||
10732 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
10733 | in such a way that no debugging information is produced for the symbol | |
10734 | we are looking for. In this case, we could search the minimal symbols | |
10735 | as a fall-back mechanism. This would still be operating in degraded | |
10736 | mode, however, as we would still be missing the debugging information | |
10737 | that is needed in order to extract the name of the exception being | |
10738 | raised (this name is printed in the catchpoint message, and is also | |
10739 | used when trying to catch a specific exception). We do not handle | |
10740 | this case for now. */ | |
10741 | ||
10742 | if (sym == NULL) | |
0259addd | 10743 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
10744 | |
10745 | /* Make sure that the symbol we found corresponds to a function. */ | |
10746 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10747 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10748 | sym_name, SYMBOL_CLASS (sym)); | |
10749 | ||
10750 | sal = find_function_start_sal (sym, 1); | |
10751 | ||
10752 | /* Set ADDR_STRING. */ | |
10753 | ||
10754 | *addr_string = xstrdup (sym_name); | |
10755 | ||
10756 | /* Set the COND and COND_STRING (if not NULL). */ | |
10757 | ||
10758 | if (cond_string != NULL && cond != NULL) | |
10759 | { | |
10760 | if (*cond_string != NULL) | |
10761 | { | |
10762 | xfree (*cond_string); | |
10763 | *cond_string = NULL; | |
10764 | } | |
10765 | if (*cond != NULL) | |
10766 | { | |
10767 | xfree (*cond); | |
10768 | *cond = NULL; | |
10769 | } | |
10770 | if (exp_string != NULL) | |
10771 | { | |
10772 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
10773 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
10774 | } | |
10775 | } | |
10776 | ||
10777 | /* Set OPS. */ | |
4b9eee8c | 10778 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
10779 | |
10780 | return sal; | |
10781 | } | |
10782 | ||
10783 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
10784 | ||
10785 | Set TYPE to the appropriate exception catchpoint type. | |
10786 | If the user asked the catchpoint to catch only a specific | |
10787 | exception, then save the exception name in ADDR_STRING. | |
10788 | ||
10789 | See ada_exception_sal for a description of all the remaining | |
10790 | function arguments of this function. */ | |
10791 | ||
10792 | struct symtab_and_line | |
10793 | ada_decode_exception_location (char *args, char **addr_string, | |
10794 | char **exp_string, char **cond_string, | |
10795 | struct expression **cond, | |
10796 | struct breakpoint_ops **ops) | |
10797 | { | |
10798 | enum exception_catchpoint_kind ex; | |
10799 | ||
10800 | catch_ada_exception_command_split (args, &ex, exp_string); | |
10801 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
10802 | cond, ops); | |
10803 | } | |
10804 | ||
10805 | struct symtab_and_line | |
10806 | ada_decode_assert_location (char *args, char **addr_string, | |
10807 | struct breakpoint_ops **ops) | |
10808 | { | |
10809 | /* Check that no argument where provided at the end of the command. */ | |
10810 | ||
10811 | if (args != NULL) | |
10812 | { | |
10813 | while (isspace (*args)) | |
10814 | args++; | |
10815 | if (*args != '\0') | |
10816 | error (_("Junk at end of arguments.")); | |
10817 | } | |
10818 | ||
10819 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
10820 | ops); | |
10821 | } | |
10822 | ||
4c4b4cd2 PH |
10823 | /* Operators */ |
10824 | /* Information about operators given special treatment in functions | |
10825 | below. */ | |
10826 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
10827 | ||
10828 | #define ADA_OPERATORS \ | |
10829 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
10830 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
10831 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
10832 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
10833 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
10834 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
10835 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
10836 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
10837 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
10838 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
10839 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
10840 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
10841 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
10842 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
10843 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
10844 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
10845 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
10846 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
10847 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
10848 | |
10849 | static void | |
10850 | ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp) | |
10851 | { | |
10852 | switch (exp->elts[pc - 1].opcode) | |
10853 | { | |
76a01679 | 10854 | default: |
4c4b4cd2 PH |
10855 | operator_length_standard (exp, pc, oplenp, argsp); |
10856 | break; | |
10857 | ||
10858 | #define OP_DEFN(op, len, args, binop) \ | |
10859 | case op: *oplenp = len; *argsp = args; break; | |
10860 | ADA_OPERATORS; | |
10861 | #undef OP_DEFN | |
52ce6436 PH |
10862 | |
10863 | case OP_AGGREGATE: | |
10864 | *oplenp = 3; | |
10865 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
10866 | break; | |
10867 | ||
10868 | case OP_CHOICES: | |
10869 | *oplenp = 3; | |
10870 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
10871 | break; | |
4c4b4cd2 PH |
10872 | } |
10873 | } | |
10874 | ||
10875 | static char * | |
10876 | ada_op_name (enum exp_opcode opcode) | |
10877 | { | |
10878 | switch (opcode) | |
10879 | { | |
76a01679 | 10880 | default: |
4c4b4cd2 | 10881 | return op_name_standard (opcode); |
52ce6436 | 10882 | |
4c4b4cd2 PH |
10883 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
10884 | ADA_OPERATORS; | |
10885 | #undef OP_DEFN | |
52ce6436 PH |
10886 | |
10887 | case OP_AGGREGATE: | |
10888 | return "OP_AGGREGATE"; | |
10889 | case OP_CHOICES: | |
10890 | return "OP_CHOICES"; | |
10891 | case OP_NAME: | |
10892 | return "OP_NAME"; | |
4c4b4cd2 PH |
10893 | } |
10894 | } | |
10895 | ||
10896 | /* As for operator_length, but assumes PC is pointing at the first | |
10897 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 10898 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
10899 | |
10900 | static void | |
76a01679 JB |
10901 | ada_forward_operator_length (struct expression *exp, int pc, |
10902 | int *oplenp, int *argsp) | |
4c4b4cd2 | 10903 | { |
76a01679 | 10904 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
10905 | { |
10906 | default: | |
10907 | *oplenp = *argsp = 0; | |
10908 | break; | |
52ce6436 | 10909 | |
4c4b4cd2 PH |
10910 | #define OP_DEFN(op, len, args, binop) \ |
10911 | case op: *oplenp = len; *argsp = args; break; | |
10912 | ADA_OPERATORS; | |
10913 | #undef OP_DEFN | |
52ce6436 PH |
10914 | |
10915 | case OP_AGGREGATE: | |
10916 | *oplenp = 3; | |
10917 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
10918 | break; | |
10919 | ||
10920 | case OP_CHOICES: | |
10921 | *oplenp = 3; | |
10922 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
10923 | break; | |
10924 | ||
10925 | case OP_STRING: | |
10926 | case OP_NAME: | |
10927 | { | |
10928 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
10929 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); | |
10930 | *argsp = 0; | |
10931 | break; | |
10932 | } | |
4c4b4cd2 PH |
10933 | } |
10934 | } | |
10935 | ||
10936 | static int | |
10937 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
10938 | { | |
10939 | enum exp_opcode op = exp->elts[elt].opcode; | |
10940 | int oplen, nargs; | |
10941 | int pc = elt; | |
10942 | int i; | |
76a01679 | 10943 | |
4c4b4cd2 PH |
10944 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
10945 | ||
76a01679 | 10946 | switch (op) |
4c4b4cd2 | 10947 | { |
76a01679 | 10948 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
10949 | case OP_ATR_FIRST: |
10950 | case OP_ATR_LAST: | |
10951 | case OP_ATR_LENGTH: | |
10952 | case OP_ATR_IMAGE: | |
10953 | case OP_ATR_MAX: | |
10954 | case OP_ATR_MIN: | |
10955 | case OP_ATR_MODULUS: | |
10956 | case OP_ATR_POS: | |
10957 | case OP_ATR_SIZE: | |
10958 | case OP_ATR_TAG: | |
10959 | case OP_ATR_VAL: | |
10960 | break; | |
10961 | ||
10962 | case UNOP_IN_RANGE: | |
10963 | case UNOP_QUAL: | |
323e0a4a AC |
10964 | /* XXX: gdb_sprint_host_address, type_sprint */ |
10965 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
10966 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
10967 | fprintf_filtered (stream, " ("); | |
10968 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
10969 | fprintf_filtered (stream, ")"); | |
10970 | break; | |
10971 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
10972 | fprintf_filtered (stream, " (%d)", |
10973 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
10974 | break; |
10975 | case TERNOP_IN_RANGE: | |
10976 | break; | |
10977 | ||
52ce6436 PH |
10978 | case OP_AGGREGATE: |
10979 | case OP_OTHERS: | |
10980 | case OP_DISCRETE_RANGE: | |
10981 | case OP_POSITIONAL: | |
10982 | case OP_CHOICES: | |
10983 | break; | |
10984 | ||
10985 | case OP_NAME: | |
10986 | case OP_STRING: | |
10987 | { | |
10988 | char *name = &exp->elts[elt + 2].string; | |
10989 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
10990 | fprintf_filtered (stream, "Text: `%.*s'", len, name); | |
10991 | break; | |
10992 | } | |
10993 | ||
4c4b4cd2 PH |
10994 | default: |
10995 | return dump_subexp_body_standard (exp, stream, elt); | |
10996 | } | |
10997 | ||
10998 | elt += oplen; | |
10999 | for (i = 0; i < nargs; i += 1) | |
11000 | elt = dump_subexp (exp, stream, elt); | |
11001 | ||
11002 | return elt; | |
11003 | } | |
11004 | ||
11005 | /* The Ada extension of print_subexp (q.v.). */ | |
11006 | ||
76a01679 JB |
11007 | static void |
11008 | ada_print_subexp (struct expression *exp, int *pos, | |
11009 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 11010 | { |
52ce6436 | 11011 | int oplen, nargs, i; |
4c4b4cd2 PH |
11012 | int pc = *pos; |
11013 | enum exp_opcode op = exp->elts[pc].opcode; | |
11014 | ||
11015 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11016 | ||
52ce6436 | 11017 | *pos += oplen; |
4c4b4cd2 PH |
11018 | switch (op) |
11019 | { | |
11020 | default: | |
52ce6436 | 11021 | *pos -= oplen; |
4c4b4cd2 PH |
11022 | print_subexp_standard (exp, pos, stream, prec); |
11023 | return; | |
11024 | ||
11025 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
11026 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
11027 | return; | |
11028 | ||
11029 | case BINOP_IN_BOUNDS: | |
323e0a4a | 11030 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11031 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11032 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 11033 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11034 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 11035 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
11036 | fprintf_filtered (stream, "(%ld)", |
11037 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
11038 | return; |
11039 | ||
11040 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 11041 | if (prec >= PREC_EQUAL) |
76a01679 | 11042 | fputs_filtered ("(", stream); |
323e0a4a | 11043 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11044 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11045 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11046 | print_subexp (exp, pos, stream, PREC_EQUAL); |
11047 | fputs_filtered (" .. ", stream); | |
11048 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
11049 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
11050 | fputs_filtered (")", stream); |
11051 | return; | |
4c4b4cd2 PH |
11052 | |
11053 | case OP_ATR_FIRST: | |
11054 | case OP_ATR_LAST: | |
11055 | case OP_ATR_LENGTH: | |
11056 | case OP_ATR_IMAGE: | |
11057 | case OP_ATR_MAX: | |
11058 | case OP_ATR_MIN: | |
11059 | case OP_ATR_MODULUS: | |
11060 | case OP_ATR_POS: | |
11061 | case OP_ATR_SIZE: | |
11062 | case OP_ATR_TAG: | |
11063 | case OP_ATR_VAL: | |
4c4b4cd2 | 11064 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
11065 | { |
11066 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
11067 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
11068 | *pos += 3; | |
11069 | } | |
4c4b4cd2 | 11070 | else |
76a01679 | 11071 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
11072 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
11073 | if (nargs > 1) | |
76a01679 JB |
11074 | { |
11075 | int tem; | |
11076 | for (tem = 1; tem < nargs; tem += 1) | |
11077 | { | |
11078 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
11079 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
11080 | } | |
11081 | fputs_filtered (")", stream); | |
11082 | } | |
4c4b4cd2 | 11083 | return; |
14f9c5c9 | 11084 | |
4c4b4cd2 | 11085 | case UNOP_QUAL: |
4c4b4cd2 PH |
11086 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
11087 | fputs_filtered ("'(", stream); | |
11088 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
11089 | fputs_filtered (")", stream); | |
11090 | return; | |
14f9c5c9 | 11091 | |
4c4b4cd2 | 11092 | case UNOP_IN_RANGE: |
323e0a4a | 11093 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11094 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11095 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11096 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
11097 | return; | |
52ce6436 PH |
11098 | |
11099 | case OP_DISCRETE_RANGE: | |
11100 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11101 | fputs_filtered ("..", stream); | |
11102 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11103 | return; | |
11104 | ||
11105 | case OP_OTHERS: | |
11106 | fputs_filtered ("others => ", stream); | |
11107 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11108 | return; | |
11109 | ||
11110 | case OP_CHOICES: | |
11111 | for (i = 0; i < nargs-1; i += 1) | |
11112 | { | |
11113 | if (i > 0) | |
11114 | fputs_filtered ("|", stream); | |
11115 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11116 | } | |
11117 | fputs_filtered (" => ", stream); | |
11118 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11119 | return; | |
11120 | ||
11121 | case OP_POSITIONAL: | |
11122 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11123 | return; | |
11124 | ||
11125 | case OP_AGGREGATE: | |
11126 | fputs_filtered ("(", stream); | |
11127 | for (i = 0; i < nargs; i += 1) | |
11128 | { | |
11129 | if (i > 0) | |
11130 | fputs_filtered (", ", stream); | |
11131 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11132 | } | |
11133 | fputs_filtered (")", stream); | |
11134 | return; | |
4c4b4cd2 PH |
11135 | } |
11136 | } | |
14f9c5c9 AS |
11137 | |
11138 | /* Table mapping opcodes into strings for printing operators | |
11139 | and precedences of the operators. */ | |
11140 | ||
d2e4a39e AS |
11141 | static const struct op_print ada_op_print_tab[] = { |
11142 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
11143 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
11144 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
11145 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
11146 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
11147 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
11148 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
11149 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
11150 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
11151 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
11152 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
11153 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
11154 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
11155 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
11156 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
11157 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
11158 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
11159 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
11160 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
11161 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
11162 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
11163 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
11164 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
11165 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
11166 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
11167 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
11168 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
11169 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
11170 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
11171 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
11172 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 11173 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
11174 | }; |
11175 | \f | |
72d5681a PH |
11176 | enum ada_primitive_types { |
11177 | ada_primitive_type_int, | |
11178 | ada_primitive_type_long, | |
11179 | ada_primitive_type_short, | |
11180 | ada_primitive_type_char, | |
11181 | ada_primitive_type_float, | |
11182 | ada_primitive_type_double, | |
11183 | ada_primitive_type_void, | |
11184 | ada_primitive_type_long_long, | |
11185 | ada_primitive_type_long_double, | |
11186 | ada_primitive_type_natural, | |
11187 | ada_primitive_type_positive, | |
11188 | ada_primitive_type_system_address, | |
11189 | nr_ada_primitive_types | |
11190 | }; | |
6c038f32 PH |
11191 | |
11192 | static void | |
d4a9a881 | 11193 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
11194 | struct language_arch_info *lai) |
11195 | { | |
d4a9a881 | 11196 | const struct builtin_type *builtin = builtin_type (gdbarch); |
72d5681a | 11197 | lai->primitive_type_vector |
d4a9a881 | 11198 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a PH |
11199 | struct type *); |
11200 | lai->primitive_type_vector [ada_primitive_type_int] = | |
9a76efb6 | 11201 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11202 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11203 | 0, "integer", (struct objfile *) NULL); |
72d5681a | 11204 | lai->primitive_type_vector [ada_primitive_type_long] = |
9a76efb6 | 11205 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11206 | gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11207 | 0, "long_integer", (struct objfile *) NULL); |
72d5681a | 11208 | lai->primitive_type_vector [ada_primitive_type_short] = |
9a76efb6 | 11209 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11210 | gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11211 | 0, "short_integer", (struct objfile *) NULL); |
61ee279c PH |
11212 | lai->string_char_type = |
11213 | lai->primitive_type_vector [ada_primitive_type_char] = | |
6c038f32 PH |
11214 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, |
11215 | 0, "character", (struct objfile *) NULL); | |
72d5681a | 11216 | lai->primitive_type_vector [ada_primitive_type_float] = |
ea06eb3d | 11217 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11218 | gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT, |
6c038f32 | 11219 | 0, "float", (struct objfile *) NULL); |
72d5681a | 11220 | lai->primitive_type_vector [ada_primitive_type_double] = |
ea06eb3d | 11221 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11222 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11223 | 0, "long_float", (struct objfile *) NULL); |
72d5681a | 11224 | lai->primitive_type_vector [ada_primitive_type_long_long] = |
9a76efb6 | 11225 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11226 | gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11227 | 0, "long_long_integer", (struct objfile *) NULL); |
72d5681a | 11228 | lai->primitive_type_vector [ada_primitive_type_long_double] = |
ea06eb3d | 11229 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11230 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11231 | 0, "long_long_float", (struct objfile *) NULL); |
72d5681a | 11232 | lai->primitive_type_vector [ada_primitive_type_natural] = |
9a76efb6 | 11233 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11234 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11235 | 0, "natural", (struct objfile *) NULL); |
72d5681a | 11236 | lai->primitive_type_vector [ada_primitive_type_positive] = |
9a76efb6 | 11237 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11238 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11239 | 0, "positive", (struct objfile *) NULL); |
72d5681a | 11240 | lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void; |
6c038f32 | 11241 | |
72d5681a | 11242 | lai->primitive_type_vector [ada_primitive_type_system_address] = |
6c038f32 PH |
11243 | lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void", |
11244 | (struct objfile *) NULL)); | |
72d5681a PH |
11245 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
11246 | = "system__address"; | |
fbb06eb1 | 11247 | |
47e729a8 | 11248 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 11249 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 11250 | } |
6c038f32 PH |
11251 | \f |
11252 | /* Language vector */ | |
11253 | ||
11254 | /* Not really used, but needed in the ada_language_defn. */ | |
11255 | ||
11256 | static void | |
6c7a06a3 | 11257 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 11258 | { |
6c7a06a3 | 11259 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
11260 | } |
11261 | ||
11262 | static int | |
11263 | parse (void) | |
11264 | { | |
11265 | warnings_issued = 0; | |
11266 | return ada_parse (); | |
11267 | } | |
11268 | ||
11269 | static const struct exp_descriptor ada_exp_descriptor = { | |
11270 | ada_print_subexp, | |
11271 | ada_operator_length, | |
11272 | ada_op_name, | |
11273 | ada_dump_subexp_body, | |
11274 | ada_evaluate_subexp | |
11275 | }; | |
11276 | ||
11277 | const struct language_defn ada_language_defn = { | |
11278 | "ada", /* Language name */ | |
11279 | language_ada, | |
6c038f32 PH |
11280 | range_check_off, |
11281 | type_check_off, | |
11282 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
11283 | that's not quite what this means. */ | |
6c038f32 | 11284 | array_row_major, |
9a044a89 | 11285 | macro_expansion_no, |
6c038f32 PH |
11286 | &ada_exp_descriptor, |
11287 | parse, | |
11288 | ada_error, | |
11289 | resolve, | |
11290 | ada_printchar, /* Print a character constant */ | |
11291 | ada_printstr, /* Function to print string constant */ | |
11292 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 11293 | ada_print_type, /* Print a type using appropriate syntax */ |
5c6ce71d | 11294 | default_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
11295 | ada_val_print, /* Print a value using appropriate syntax */ |
11296 | ada_value_print, /* Print a top-level value */ | |
11297 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 11298 | NULL, /* name_of_this */ |
6c038f32 PH |
11299 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
11300 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
11301 | ada_la_decode, /* Language specific symbol demangler */ | |
11302 | NULL, /* Language specific class_name_from_physname */ | |
11303 | ada_op_print_tab, /* expression operators for printing */ | |
11304 | 0, /* c-style arrays */ | |
11305 | 1, /* String lower bound */ | |
6c038f32 | 11306 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 11307 | ada_make_symbol_completion_list, |
72d5681a | 11308 | ada_language_arch_info, |
e79af960 | 11309 | ada_print_array_index, |
41f1b697 | 11310 | default_pass_by_reference, |
ae6a3a4c | 11311 | c_get_string, |
6c038f32 PH |
11312 | LANG_MAGIC |
11313 | }; | |
11314 | ||
2c0b251b PA |
11315 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
11316 | extern initialize_file_ftype _initialize_ada_language; | |
11317 | ||
d2e4a39e | 11318 | void |
6c038f32 | 11319 | _initialize_ada_language (void) |
14f9c5c9 | 11320 | { |
6c038f32 PH |
11321 | add_language (&ada_language_defn); |
11322 | ||
11323 | varsize_limit = 65536; | |
6c038f32 PH |
11324 | |
11325 | obstack_init (&symbol_list_obstack); | |
11326 | ||
11327 | decoded_names_store = htab_create_alloc | |
11328 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
11329 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
11330 | |
11331 | observer_attach_executable_changed (ada_executable_changed_observer); | |
14f9c5c9 | 11332 | } |