]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Handle PPC64 function descriptor in Ada decoding
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
39e7af3e 544/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 545
39e7af3e 546static std::string
41d27058
JB
547add_angle_brackets (const char *str)
548{
39e7af3e 549 return string_printf ("<%s>", str);
41d27058 550}
96d887e8 551
67cb5b2d 552static const char *
4c4b4cd2
PH
553ada_get_gdb_completer_word_break_characters (void)
554{
555 return ada_completer_word_break_characters;
556}
557
e79af960
JB
558/* Print an array element index using the Ada syntax. */
559
560static void
561ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 562 const struct value_print_options *options)
e79af960 563{
79a45b7d 564 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
565 fprintf_filtered (stream, " => ");
566}
567
f27cf670 568/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 570 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 571
f27cf670
AS
572void *
573grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 574{
d2e4a39e
AS
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
4c4b4cd2 579 *size = min_size;
f27cf670 580 vect = xrealloc (vect, *size * element_size);
d2e4a39e 581 }
f27cf670 582 return vect;
14f9c5c9
AS
583}
584
585/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 586 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
587
588static int
ebf56fd3 589field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
590{
591 int len = strlen (target);
5b4ee69b 592
d2e4a39e 593 return
4c4b4cd2
PH
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
61012eef 596 || (startswith (field_name + len, "___")
76a01679
JB
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
14f9c5c9
AS
599}
600
601
872c8b51
JB
602/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
609
610int
611ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613{
614 int fieldno;
872c8b51
JB
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
619 return fieldno;
620
621 if (!maybe_missing)
323e0a4a 622 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 623 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
624
625 return -1;
626}
627
628/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
629
630int
d2e4a39e 631ada_name_prefix_len (const char *name)
14f9c5c9
AS
632{
633 if (name == NULL)
634 return 0;
d2e4a39e 635 else
14f9c5c9 636 {
d2e4a39e 637 const char *p = strstr (name, "___");
5b4ee69b 638
14f9c5c9 639 if (p == NULL)
4c4b4cd2 640 return strlen (name);
14f9c5c9 641 else
4c4b4cd2 642 return p - name;
14f9c5c9
AS
643 }
644}
645
4c4b4cd2
PH
646/* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
14f9c5c9 649static int
d2e4a39e 650is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
651{
652 int len1, len2;
5b4ee69b 653
14f9c5c9
AS
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
4c4b4cd2 658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
659}
660
4c4b4cd2
PH
661/* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
14f9c5c9 663
d2e4a39e 664static struct value *
4c4b4cd2 665coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 666{
61ee279c 667 type = ada_check_typedef (type);
df407dfe 668 if (value_type (val) == type)
4c4b4cd2 669 return val;
d2e4a39e 670 else
14f9c5c9 671 {
4c4b4cd2
PH
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
c1b5a1a6 676 ada_ensure_varsize_limit (type);
4c4b4cd2 677
41e8491f
JK
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
9a0dc9e3 684 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 685 }
74bcbdf3 686 set_value_component_location (result, val);
9bbda503
AC
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
42ae5230 689 set_value_address (result, value_address (val));
14f9c5c9
AS
690 return result;
691 }
692}
693
fc1a4b47
AC
694static const gdb_byte *
695cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
696{
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701}
702
703static CORE_ADDR
ebf56fd3 704cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
705{
706 if (address == 0)
707 return 0;
d2e4a39e 708 else
14f9c5c9
AS
709 return address + offset;
710}
711
4c4b4cd2
PH
712/* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
a2249542 716
77109804
AC
717/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
a0b31db1 719static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 720
14f9c5c9 721static void
a2249542 722lim_warning (const char *format, ...)
14f9c5c9 723{
a2249542 724 va_list args;
a2249542 725
5b4ee69b 726 va_start (args, format);
4c4b4cd2
PH
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
a2249542
MK
729 vwarning (format, args);
730
731 va_end (args);
4c4b4cd2
PH
732}
733
714e53ab
PH
734/* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
c1b5a1a6
JB
738void
739ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
740{
741 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 742 error (_("object size is larger than varsize-limit"));
714e53ab
PH
743}
744
0963b4bd 745/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 746static LONGEST
c3e5cd34 747max_of_size (int size)
4c4b4cd2 748{
76a01679 749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 750
76a01679 751 return top_bit | (top_bit - 1);
4c4b4cd2
PH
752}
753
0963b4bd 754/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 755static LONGEST
c3e5cd34 756min_of_size (int size)
4c4b4cd2 757{
c3e5cd34 758 return -max_of_size (size) - 1;
4c4b4cd2
PH
759}
760
0963b4bd 761/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 762static ULONGEST
c3e5cd34 763umax_of_size (int size)
4c4b4cd2 764{
76a01679 765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 766
76a01679 767 return top_bit | (top_bit - 1);
4c4b4cd2
PH
768}
769
0963b4bd 770/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
771static LONGEST
772max_of_type (struct type *t)
4c4b4cd2 773{
c3e5cd34
PH
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778}
779
0963b4bd 780/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
781static LONGEST
782min_of_type (struct type *t)
783{
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
788}
789
790/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_HIGH_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return max_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
808 }
809}
810
14e75d8e 811/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
812LONGEST
813ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 814{
c3345124 815 type = resolve_dynamic_type (type, NULL, 0);
76a01679 816 switch (TYPE_CODE (type))
4c4b4cd2
PH
817 {
818 case TYPE_CODE_RANGE:
690cc4eb 819 return TYPE_LOW_BOUND (type);
4c4b4cd2 820 case TYPE_CODE_ENUM:
14e75d8e 821 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
76a01679 825 case TYPE_CODE_INT:
690cc4eb 826 return min_of_type (type);
4c4b4cd2 827 default:
43bbcdc2 828 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
829 }
830}
831
832/* The identity on non-range types. For range types, the underlying
76a01679 833 non-range scalar type. */
4c4b4cd2
PH
834
835static struct type *
18af8284 836get_base_type (struct type *type)
4c4b4cd2
PH
837{
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
76a01679
JB
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
4c4b4cd2
PH
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
14f9c5c9 845}
41246937
JB
846
847/* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852struct value *
853ada_get_decoded_value (struct value *value)
854{
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870}
871
872/* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877struct type *
878ada_get_decoded_type (struct type *type)
879{
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884}
885
4c4b4cd2 886\f
76a01679 887
4c4b4cd2 888 /* Language Selection */
14f9c5c9
AS
889
890/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 891 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 892
14f9c5c9 893enum language
ccefe4c4 894ada_update_initial_language (enum language lang)
14f9c5c9 895{
d2e4a39e 896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 897 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 898 return language_ada;
14f9c5c9
AS
899
900 return lang;
901}
96d887e8
PH
902
903/* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907char *
908ada_main_name (void)
909{
3b7344d5 910 struct bound_minimal_symbol msym;
e83e4e24 911 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 912
96d887e8
PH
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
3b7344d5 920 if (msym.minsym != NULL)
96d887e8 921 {
f9bc20b9
JB
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
77e371c0 925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 926 if (main_program_name_addr == 0)
323e0a4a 927 error (_("Invalid address for Ada main program name."));
96d887e8 928
f9bc20b9
JB
929 target_read_string (main_program_name_addr, &main_program_name,
930 1024, &err_code);
931
932 if (err_code != 0)
933 return NULL;
e83e4e24 934 return main_program_name.get ();
96d887e8
PH
935 }
936
937 /* The main procedure doesn't seem to be in Ada. */
938 return NULL;
939}
14f9c5c9 940\f
4c4b4cd2 941 /* Symbols */
d2e4a39e 942
4c4b4cd2
PH
943/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
944 of NULLs. */
14f9c5c9 945
d2e4a39e
AS
946const struct ada_opname_map ada_opname_table[] = {
947 {"Oadd", "\"+\"", BINOP_ADD},
948 {"Osubtract", "\"-\"", BINOP_SUB},
949 {"Omultiply", "\"*\"", BINOP_MUL},
950 {"Odivide", "\"/\"", BINOP_DIV},
951 {"Omod", "\"mod\"", BINOP_MOD},
952 {"Orem", "\"rem\"", BINOP_REM},
953 {"Oexpon", "\"**\"", BINOP_EXP},
954 {"Olt", "\"<\"", BINOP_LESS},
955 {"Ole", "\"<=\"", BINOP_LEQ},
956 {"Ogt", "\">\"", BINOP_GTR},
957 {"Oge", "\">=\"", BINOP_GEQ},
958 {"Oeq", "\"=\"", BINOP_EQUAL},
959 {"One", "\"/=\"", BINOP_NOTEQUAL},
960 {"Oand", "\"and\"", BINOP_BITWISE_AND},
961 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
962 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
963 {"Oconcat", "\"&\"", BINOP_CONCAT},
964 {"Oabs", "\"abs\"", UNOP_ABS},
965 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
966 {"Oadd", "\"+\"", UNOP_PLUS},
967 {"Osubtract", "\"-\"", UNOP_NEG},
968 {NULL, NULL}
14f9c5c9
AS
969};
970
b5ec771e
PA
971/* The "encoded" form of DECODED, according to GNAT conventions. The
972 result is valid until the next call to ada_encode. If
973 THROW_ERRORS, throw an error if invalid operator name is found.
974 Otherwise, return NULL in that case. */
4c4b4cd2 975
b5ec771e
PA
976static char *
977ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 978{
4c4b4cd2
PH
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
d2e4a39e 981 const char *p;
14f9c5c9 982 int k;
d2e4a39e 983
4c4b4cd2 984 if (decoded == NULL)
14f9c5c9
AS
985 return NULL;
986
4c4b4cd2
PH
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
14f9c5c9
AS
989
990 k = 0;
4c4b4cd2 991 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 992 {
cdc7bb92 993 if (*p == '.')
4c4b4cd2
PH
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
14f9c5c9 998 else if (*p == '"')
4c4b4cd2
PH
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1265e4aa 1003 mapping->encoded != NULL
61012eef 1004 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1005 ;
1006 if (mapping->encoded == NULL)
b5ec771e
PA
1007 {
1008 if (throw_errors)
1009 error (_("invalid Ada operator name: %s"), p);
1010 else
1011 return NULL;
1012 }
4c4b4cd2
PH
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
d2e4a39e 1017 else
4c4b4cd2
PH
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
14f9c5c9
AS
1022 }
1023
4c4b4cd2
PH
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
14f9c5c9
AS
1026}
1027
b5ec771e
PA
1028/* The "encoded" form of DECODED, according to GNAT conventions.
1029 The result is valid until the next call to ada_encode. */
1030
1031char *
1032ada_encode (const char *decoded)
1033{
1034 return ada_encode_1 (decoded, true);
1035}
1036
14f9c5c9 1037/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1038 quotes, unfolded, but with the quotes stripped away. Result good
1039 to next call. */
1040
d2e4a39e
AS
1041char *
1042ada_fold_name (const char *name)
14f9c5c9 1043{
d2e4a39e 1044 static char *fold_buffer = NULL;
14f9c5c9
AS
1045 static size_t fold_buffer_size = 0;
1046
1047 int len = strlen (name);
d2e4a39e 1048 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1049
1050 if (name[0] == '\'')
1051 {
d2e4a39e
AS
1052 strncpy (fold_buffer, name + 1, len - 2);
1053 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1054 }
1055 else
1056 {
1057 int i;
5b4ee69b 1058
14f9c5c9 1059 for (i = 0; i <= len; i += 1)
4c4b4cd2 1060 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1061 }
1062
1063 return fold_buffer;
1064}
1065
529cad9c
PH
1066/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1067
1068static int
1069is_lower_alphanum (const char c)
1070{
1071 return (isdigit (c) || (isalpha (c) && islower (c)));
1072}
1073
c90092fe
JB
1074/* ENCODED is the linkage name of a symbol and LEN contains its length.
1075 This function saves in LEN the length of that same symbol name but
1076 without either of these suffixes:
29480c32
JB
1077 . .{DIGIT}+
1078 . ${DIGIT}+
1079 . ___{DIGIT}+
1080 . __{DIGIT}+.
c90092fe 1081
29480c32
JB
1082 These are suffixes introduced by the compiler for entities such as
1083 nested subprogram for instance, in order to avoid name clashes.
1084 They do not serve any purpose for the debugger. */
1085
1086static void
1087ada_remove_trailing_digits (const char *encoded, int *len)
1088{
1089 if (*len > 1 && isdigit (encoded[*len - 1]))
1090 {
1091 int i = *len - 2;
5b4ee69b 1092
29480c32
JB
1093 while (i > 0 && isdigit (encoded[i]))
1094 i--;
1095 if (i >= 0 && encoded[i] == '.')
1096 *len = i;
1097 else if (i >= 0 && encoded[i] == '$')
1098 *len = i;
61012eef 1099 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1100 *len = i - 2;
61012eef 1101 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1102 *len = i - 1;
1103 }
1104}
1105
1106/* Remove the suffix introduced by the compiler for protected object
1107 subprograms. */
1108
1109static void
1110ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1111{
1112 /* Remove trailing N. */
1113
1114 /* Protected entry subprograms are broken into two
1115 separate subprograms: The first one is unprotected, and has
1116 a 'N' suffix; the second is the protected version, and has
0963b4bd 1117 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1118 the protection. Since the P subprograms are internally generated,
1119 we leave these names undecoded, giving the user a clue that this
1120 entity is internal. */
1121
1122 if (*len > 1
1123 && encoded[*len - 1] == 'N'
1124 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1125 *len = *len - 1;
1126}
1127
69fadcdf
JB
1128/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1129
1130static void
1131ada_remove_Xbn_suffix (const char *encoded, int *len)
1132{
1133 int i = *len - 1;
1134
1135 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1136 i--;
1137
1138 if (encoded[i] != 'X')
1139 return;
1140
1141 if (i == 0)
1142 return;
1143
1144 if (isalnum (encoded[i-1]))
1145 *len = i;
1146}
1147
29480c32
JB
1148/* If ENCODED follows the GNAT entity encoding conventions, then return
1149 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1150 replaced by ENCODED.
14f9c5c9 1151
4c4b4cd2 1152 The resulting string is valid until the next call of ada_decode.
29480c32 1153 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1154 is returned. */
1155
1156const char *
1157ada_decode (const char *encoded)
14f9c5c9
AS
1158{
1159 int i, j;
1160 int len0;
d2e4a39e 1161 const char *p;
4c4b4cd2 1162 char *decoded;
14f9c5c9 1163 int at_start_name;
4c4b4cd2
PH
1164 static char *decoding_buffer = NULL;
1165 static size_t decoding_buffer_size = 0;
d2e4a39e 1166
0d81f350
JG
1167 /* With function descriptors on PPC64, the value of a symbol named
1168 ".FN", if it exists, is the entry point of the function "FN". */
1169 if (encoded[0] == '.')
1170 encoded += 1;
1171
29480c32
JB
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
61012eef 1175 if (startswith (encoded, "_ada_"))
4c4b4cd2 1176 encoded += 5;
14f9c5c9 1177
29480c32
JB
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
4c4b4cd2 1181 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1182 goto Suppress;
1183
4c4b4cd2 1184 len0 = strlen (encoded);
4c4b4cd2 1185
29480c32
JB
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1188
4c4b4cd2
PH
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1195 {
1196 if (p[3] == 'X')
4c4b4cd2 1197 len0 = p - encoded;
14f9c5c9 1198 else
4c4b4cd2 1199 goto Suppress;
14f9c5c9 1200 }
4c4b4cd2 1201
29480c32
JB
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
61012eef 1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1207 len0 -= 3;
76a01679 1208
a10967fa
JB
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
61012eef 1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1214 len0 -= 2;
1215
29480c32
JB
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
61012eef 1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1220 len0 -= 1;
1221
4c4b4cd2 1222 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1223
4c4b4cd2
PH
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
14f9c5c9 1226
29480c32
JB
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
4c4b4cd2 1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1230 {
4c4b4cd2
PH
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
d2e4a39e 1239 }
14f9c5c9 1240
29480c32
JB
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
4c4b4cd2
PH
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
14f9c5c9
AS
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
29480c32 1250 /* Is this a symbol function? */
4c4b4cd2
PH
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
5b4ee69b 1254
4c4b4cd2
PH
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
14f9c5c9
AS
1272 at_start_name = 0;
1273
529cad9c
PH
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
61012eef 1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1278 i += 2;
529cad9c 1279
29480c32
JB
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
529cad9c
PH
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1302 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
4c4b4cd2
PH
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
29480c32
JB
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
4c4b4cd2
PH
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
cdc7bb92 1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1367 {
29480c32 1368 /* Replace '__' by '.'. */
4c4b4cd2
PH
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
14f9c5c9 1374 else
4c4b4cd2 1375 {
29480c32
JB
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
4c4b4cd2
PH
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
14f9c5c9 1382 }
4c4b4cd2 1383 decoded[j] = '\000';
14f9c5c9 1384
29480c32
JB
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
4c4b4cd2
PH
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1390 goto Suppress;
1391
4c4b4cd2
PH
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
14f9c5c9
AS
1396
1397Suppress:
4c4b4cd2
PH
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
14f9c5c9 1402 else
88c15c34 1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1404 return decoded;
1405
1406}
1407
1408/* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413static struct htab *decoded_names_store;
1414
1415/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1420 GSYMBOL).
4c4b4cd2
PH
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1423 when a decoded name is cached in it. */
4c4b4cd2 1424
45e6c716 1425const char *
f85f34ed 1426ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1427{
f85f34ed
TT
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
615b3f62 1430 &gsymbol->language_specific.demangled_name;
5b4ee69b 1431
f85f34ed 1432 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1435 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1436
f85f34ed 1437 gsymbol->ada_mangled = 1;
5b4ee69b 1438
f85f34ed 1439 if (obstack != NULL)
224c3ddb
SM
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1442 else
76a01679 1443 {
f85f34ed
TT
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
76a01679
JB
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
5b4ee69b 1451
76a01679
JB
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
4c4b4cd2 1456 }
14f9c5c9 1457
4c4b4cd2
PH
1458 return *resultp;
1459}
76a01679 1460
2c0b251b 1461static char *
76a01679 1462ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1463{
1464 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1465}
1466
8b302db8
TT
1467/* Implement la_sniff_from_mangled_name for Ada. */
1468
1469static int
1470ada_sniff_from_mangled_name (const char *mangled, char **out)
1471{
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504}
1505
14f9c5c9 1506\f
d2e4a39e 1507
4c4b4cd2 1508 /* Arrays */
14f9c5c9 1509
28c85d6c
JB
1510/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533void
1534ada_fixup_array_indexes_type (struct type *index_desc_type)
1535{
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
0d5cff50 1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563}
1564
4c4b4cd2 1565/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1566
a121b7c1 1567static const char *bound_name[] = {
d2e4a39e 1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570};
1571
1572/* Maximum number of array dimensions we are prepared to handle. */
1573
4c4b4cd2 1574#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1575
14f9c5c9 1576
4c4b4cd2
PH
1577/* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
14f9c5c9
AS
1579
1580/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1581 level of indirection, if needed. */
1582
d2e4a39e
AS
1583static struct type *
1584desc_base_type (struct type *type)
14f9c5c9
AS
1585{
1586 if (type == NULL)
1587 return NULL;
61ee279c 1588 type = ada_check_typedef (type);
720d1a40
JB
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1265e4aa
JB
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1596 else
1597 return type;
1598}
1599
4c4b4cd2
PH
1600/* True iff TYPE indicates a "thin" array pointer type. */
1601
14f9c5c9 1602static int
d2e4a39e 1603is_thin_pntr (struct type *type)
14f9c5c9 1604{
d2e4a39e 1605 return
14f9c5c9
AS
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608}
1609
4c4b4cd2
PH
1610/* The descriptor type for thin pointer type TYPE. */
1611
d2e4a39e
AS
1612static struct type *
1613thin_descriptor_type (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 struct type *base_type = desc_base_type (type);
5b4ee69b 1616
14f9c5c9
AS
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
d2e4a39e 1621 else
14f9c5c9 1622 {
d2e4a39e 1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1624
14f9c5c9 1625 if (alt_type == NULL)
4c4b4cd2 1626 return base_type;
14f9c5c9 1627 else
4c4b4cd2 1628 return alt_type;
14f9c5c9
AS
1629 }
1630}
1631
4c4b4cd2
PH
1632/* A pointer to the array data for thin-pointer value VAL. */
1633
d2e4a39e
AS
1634static struct value *
1635thin_data_pntr (struct value *val)
14f9c5c9 1636{
828292f2 1637 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1639
556bdfd4
UW
1640 data_type = lookup_pointer_type (data_type);
1641
14f9c5c9 1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1643 return value_cast (data_type, value_copy (val));
d2e4a39e 1644 else
42ae5230 1645 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1646}
1647
4c4b4cd2
PH
1648/* True iff TYPE indicates a "thick" array pointer type. */
1649
14f9c5c9 1650static int
d2e4a39e 1651is_thick_pntr (struct type *type)
14f9c5c9
AS
1652{
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1660
d2e4a39e
AS
1661static struct type *
1662desc_bounds_type (struct type *type)
14f9c5c9 1663{
d2e4a39e 1664 struct type *r;
14f9c5c9
AS
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
4c4b4cd2 1674 return NULL;
14f9c5c9
AS
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
61ee279c 1677 return ada_check_typedef (r);
14f9c5c9
AS
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
61ee279c 1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1684 }
1685 return NULL;
1686}
1687
1688/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
d2e4a39e
AS
1691static struct value *
1692desc_bounds (struct value *arr)
14f9c5c9 1693{
df407dfe 1694 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1695
d2e4a39e 1696 if (is_thin_pntr (type))
14f9c5c9 1697 {
d2e4a39e 1698 struct type *bounds_type =
4c4b4cd2 1699 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1700 LONGEST addr;
1701
4cdfadb1 1702 if (bounds_type == NULL)
323e0a4a 1703 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1704
1705 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1706 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1707 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1709 addr = value_as_long (arr);
d2e4a39e 1710 else
42ae5230 1711 addr = value_address (arr);
14f9c5c9 1712
d2e4a39e 1713 return
4c4b4cd2
PH
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1716 }
1717
1718 else if (is_thick_pntr (type))
05e522ef
JB
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
14f9c5c9
AS
1739 else
1740 return NULL;
1741}
1742
4c4b4cd2
PH
1743/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
14f9c5c9 1746static int
d2e4a39e 1747fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1748{
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750}
1751
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1753 size of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1757{
1758 type = desc_base_type (type);
1759
d2e4a39e 1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
61ee279c 1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1764}
1765
4c4b4cd2 1766/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
4c4b4cd2 1770
d2e4a39e 1771static struct type *
556bdfd4 1772desc_data_target_type (struct type *type)
14f9c5c9
AS
1773{
1774 type = desc_base_type (type);
1775
4c4b4cd2 1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1777 if (is_thin_pntr (type))
556bdfd4 1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1779 else if (is_thick_pntr (type))
556bdfd4
UW
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1786 }
1787
1788 return NULL;
14f9c5c9
AS
1789}
1790
1791/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
4c4b4cd2 1793
d2e4a39e
AS
1794static struct value *
1795desc_data (struct value *arr)
14f9c5c9 1796{
df407dfe 1797 struct type *type = value_type (arr);
5b4ee69b 1798
14f9c5c9
AS
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
d2e4a39e 1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1803 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1804 else
1805 return NULL;
1806}
1807
1808
1809/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1810 position of the field containing the address of the data. */
1811
14f9c5c9 1812static int
d2e4a39e 1813fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1814{
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816}
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 size of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1828 else
14f9c5c9
AS
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830}
1831
4c4b4cd2 1832/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
d2e4a39e
AS
1836static struct value *
1837desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1838{
d2e4a39e 1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1840 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1841}
1842
1843/* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
14f9c5c9 1847static int
d2e4a39e 1848desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
76a01679 1857static int
d2e4a39e 1858desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
d2e4a39e
AS
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1866}
1867
1868/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
d2e4a39e
AS
1871static struct type *
1872desc_index_type (struct type *type, int i)
14f9c5c9
AS
1873{
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
14f9c5c9
AS
1879 return NULL;
1880}
1881
4c4b4cd2
PH
1882/* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
14f9c5c9 1885static int
d2e4a39e 1886desc_arity (struct type *type)
14f9c5c9
AS
1887{
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893}
1894
4c4b4cd2
PH
1895/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
76a01679
JB
1899static int
1900ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1901{
1902 if (type == NULL)
1903 return 0;
61ee279c 1904 type = ada_check_typedef (type);
4c4b4cd2 1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1906 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1907}
1908
52ce6436 1909/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1910 * to one. */
52ce6436 1911
2c0b251b 1912static int
52ce6436
PH
1913ada_is_array_type (struct type *type)
1914{
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920}
1921
4c4b4cd2 1922/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1923
14f9c5c9 1924int
4c4b4cd2 1925ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1926{
1927 if (type == NULL)
1928 return 0;
61ee279c 1929 type = ada_check_typedef (type);
14f9c5c9 1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1934}
1935
4c4b4cd2
PH
1936/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
14f9c5c9 1938int
4c4b4cd2 1939ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1940{
556bdfd4 1941 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1942
1943 if (type == NULL)
1944 return 0;
61ee279c 1945 type = ada_check_typedef (type);
556bdfd4
UW
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1949}
1950
1951/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1952 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1953 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1954 is still needed. */
1955
14f9c5c9 1956int
ebf56fd3 1957ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1958{
d2e4a39e 1959 return
14f9c5c9
AS
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1965}
1966
1967
4c4b4cd2 1968/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1969 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1971 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1974 a descriptor. */
d2e4a39e
AS
1975struct type *
1976ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1977{
ad82864c
JB
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1980
df407dfe
AC
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
d2e4a39e
AS
1983
1984 if (!bounds)
ad82864c
JB
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
14f9c5c9
AS
1995 else
1996 {
d2e4a39e 1997 struct type *elt_type;
14f9c5c9 1998 int arity;
d2e4a39e 1999 struct value *descriptor;
14f9c5c9 2000
df407dfe
AC
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
14f9c5c9 2003
d2e4a39e 2004 if (elt_type == NULL || arity == 0)
df407dfe 2005 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2006
2007 descriptor = desc_bounds (arr);
d2e4a39e 2008 if (value_as_long (descriptor) == 0)
4c4b4cd2 2009 return NULL;
d2e4a39e 2010 while (arity > 0)
4c4b4cd2 2011 {
e9bb382b
UW
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2016
5b4ee69b 2017 arity -= 1;
0c9c3474
SA
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
4c4b4cd2 2021 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
4c4b4cd2 2043 }
14f9c5c9
AS
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047}
2048
2049/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
d2e4a39e
AS
2054struct value *
2055ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2056{
df407dfe 2057 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2058 {
d2e4a39e 2059 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2060
14f9c5c9 2061 if (arrType == NULL)
4c4b4cd2 2062 return NULL;
14f9c5c9
AS
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
ad82864c
JB
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2067 else
2068 return arr;
2069}
2070
2071/* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2073 be ARR itself if it already is in the proper form). */
2074
720d1a40 2075struct value *
d2e4a39e 2076ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2077{
df407dfe 2078 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2079 {
d2e4a39e 2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2081
14f9c5c9 2082 if (arrVal == NULL)
323e0a4a 2083 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2085 return value_ind (arrVal);
2086 }
ad82864c
JB
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
d2e4a39e 2089 else
14f9c5c9
AS
2090 return arr;
2091}
2092
2093/* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2095 packing). For other types, is the identity. */
2096
d2e4a39e
AS
2097struct type *
2098ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2099{
ad82864c
JB
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
17280b9f
UW
2102
2103 if (ada_is_array_descriptor_type (type))
556bdfd4 2104 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2105
2106 return type;
14f9c5c9
AS
2107}
2108
4c4b4cd2
PH
2109/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
ad82864c
JB
2111static int
2112ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2113{
2114 if (type == NULL)
2115 return 0;
4c4b4cd2 2116 type = desc_base_type (type);
61ee279c 2117 type = ada_check_typedef (type);
d2e4a39e 2118 return
14f9c5c9
AS
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121}
2122
ad82864c
JB
2123/* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126int
2127ada_is_constrained_packed_array_type (struct type *type)
2128{
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131}
2132
2133/* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136static int
2137ada_is_unconstrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141}
2142
2143/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146static long
2147decode_packed_array_bitsize (struct type *type)
2148{
0d5cff50
DE
2149 const char *raw_name;
2150 const char *tail;
ad82864c
JB
2151 long bits;
2152
720d1a40
JB
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
720d1a40 2167 gdb_assert (tail != NULL);
ad82864c
JB
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177}
2178
14f9c5c9
AS
2179/* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
4c4b4cd2 2195
d2e4a39e 2196static struct type *
ad82864c 2197constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2198{
d2e4a39e
AS
2199 struct type *new_elt_type;
2200 struct type *new_type;
99b1c762
JB
2201 struct type *index_type_desc;
2202 struct type *index_type;
14f9c5c9
AS
2203 LONGEST low_bound, high_bound;
2204
61ee279c 2205 type = ada_check_typedef (type);
14f9c5c9
AS
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
99b1c762
JB
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
e9bb382b 2216 new_type = alloc_type_copy (type);
ad82864c
JB
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
99b1c762 2220 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
4a46959e
JB
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2230 else
14f9c5c9
AS
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2233 TYPE_LENGTH (new_type) =
4c4b4cd2 2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2235 }
2236
876cecd0 2237 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2238 return new_type;
2239}
2240
ad82864c
JB
2241/* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2243
d2e4a39e 2244static struct type *
ad82864c 2245decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2246{
0d5cff50 2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2248 char *name;
0d5cff50 2249 const char *tail;
d2e4a39e 2250 struct type *shadow_type;
14f9c5c9 2251 long bits;
14f9c5c9 2252
727e3d2e
JB
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2261 type = desc_base_type (type);
2262
14f9c5c9
AS
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
b4ba55a1
JB
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
14f9c5c9 2269 {
323e0a4a 2270 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2271 return NULL;
2272 }
f168693b 2273 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
0963b4bd
MS
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
14f9c5c9
AS
2279 return NULL;
2280 }
d2e4a39e 2281
ad82864c
JB
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2284}
2285
ad82864c
JB
2286/* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
4c4b4cd2 2290 type length is set appropriately. */
14f9c5c9 2291
d2e4a39e 2292static struct value *
ad82864c 2293decode_constrained_packed_array (struct value *arr)
14f9c5c9 2294{
4c4b4cd2 2295 struct type *type;
14f9c5c9 2296
11aa919a
PMR
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
828292f2 2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2306 arr = value_ind (arr);
4c4b4cd2 2307
ad82864c 2308 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2309 if (type == NULL)
2310 {
323e0a4a 2311 error (_("can't unpack array"));
14f9c5c9
AS
2312 return NULL;
2313 }
61ee279c 2314
50810684 2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2316 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
df407dfe 2325 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
df407dfe 2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
4c4b4cd2 2340 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2341}
2342
2343
2344/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2345 given in IND. ARR must be a simple array. */
14f9c5c9 2346
d2e4a39e
AS
2347static struct value *
2348value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2349{
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
d2e4a39e
AS
2353 struct type *elt_type;
2354 struct value *v;
14f9c5c9
AS
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
df407dfe 2358 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2359 for (i = 0; i < arity; i += 1)
14f9c5c9 2360 {
d2e4a39e 2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
0963b4bd
MS
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
14f9c5c9 2366 else
4c4b4cd2
PH
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
323e0a4a 2374 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2375 lowerbound = upperbound = 0;
2376 }
2377
3cb382c9 2378 idx = pos_atr (ind[i]);
4c4b4cd2 2379 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
4c4b4cd2
PH
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2385 }
14f9c5c9
AS
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2391 bits, elt_type);
14f9c5c9
AS
2392 return v;
2393}
2394
4c4b4cd2 2395/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2396
2397static int
d2e4a39e 2398has_negatives (struct type *type)
14f9c5c9 2399{
d2e4a39e
AS
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
14f9c5c9 2409}
d2e4a39e 2410
f93fca70 2411/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2413 the unpacked buffer.
14f9c5c9 2414
5b639dea
JB
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
f93fca70
JB
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
14f9c5c9 2420
f93fca70 2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2422
f93fca70
JB
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425static void
2426ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430{
a1c95e6b
JB
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
a1c95e6b
JB
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
4c4b4cd2 2441 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2442 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2443 unsigned char sign;
a1c95e6b 2444
4c4b4cd2
PH
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
f93fca70 2447 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2448
5b639dea
JB
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
14f9c5c9 2455 srcBitsLeft = bit_size;
086ca51f 2456 src_bytes_left = src_len;
f93fca70 2457 unpacked_bytes_left = unpacked_len;
14f9c5c9 2458 sign = 0;
f93fca70
JB
2459
2460 if (is_big_endian)
14f9c5c9 2461 {
086ca51f 2462 src_idx = src_len - 1;
f93fca70
JB
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2465 sign = ~0;
d2e4a39e
AS
2466
2467 unusedLS =
4c4b4cd2
PH
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
14f9c5c9 2470
f93fca70
JB
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
4c4b4cd2
PH
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
086ca51f
JB
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2485 }
14f9c5c9 2486 }
d2e4a39e 2487 else
14f9c5c9
AS
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
086ca51f 2491 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
f93fca70 2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2496 sign = ~0;
14f9c5c9 2497 }
d2e4a39e 2498
14f9c5c9 2499 accum = 0;
086ca51f 2500 while (src_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2503 part of the value. */
d2e4a39e 2504 unsigned int unusedMSMask =
4c4b4cd2
PH
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
14f9c5c9 2508 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2509
d2e4a39e 2510 accum |=
086ca51f 2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2512 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2513 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2514 {
db297a65 2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
4c4b4cd2 2520 }
14f9c5c9
AS
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
086ca51f
JB
2523 src_bytes_left -= 1;
2524 src_idx += delta;
14f9c5c9 2525 }
086ca51f 2526 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2527 {
2528 accum |= sign << accumSize;
db297a65 2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2530 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2531 if (accumSize < 0)
2532 accumSize = 0;
14f9c5c9 2533 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
14f9c5c9 2536 }
f93fca70
JB
2537}
2538
2539/* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548struct value *
2549ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552{
2553 struct value *v;
bfb1c796 2554 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2555 gdb_byte *unpacked;
220475ed 2556 const int is_scalar = is_scalar_type (type);
d0a9e810 2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2558 gdb::byte_vector staging;
f93fca70
JB
2559
2560 type = ada_check_typedef (type);
2561
d0a9e810 2562 if (obj == NULL)
bfb1c796 2563 src = valaddr + offset;
d0a9e810 2564 else
bfb1c796 2565 src = value_contents (obj) + offset;
d0a9e810
JB
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
d0a9e810
JB
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2580 staging.data (), staging.size (),
d0a9e810
JB
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
d5722aa2 2583 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
d0a9e810
JB
2595 }
2596
f93fca70
JB
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
bfb1c796 2600 src = valaddr + offset;
f93fca70
JB
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
0cafa88c 2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2605 gdb_byte *buf;
0cafa88c 2606
f93fca70 2607 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
f93fca70
JB
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
bfb1c796 2615 src = value_contents (obj) + offset;
f93fca70
JB
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
bfb1c796 2638 unpacked = value_contents_writeable (v);
f93fca70
JB
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
d5722aa2 2646 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2647 {
d0a9e810
JB
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
d5722aa2 2651 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2652 }
d0a9e810
JB
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2657
14f9c5c9
AS
2658 return v;
2659}
d2e4a39e 2660
14f9c5c9
AS
2661/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2663 not overlap. */
14f9c5c9 2664static void
fc1a4b47 2665move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2666 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2667{
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
50810684 2675 if (bits_big_endian_p)
14f9c5c9
AS
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
d2e4a39e 2681 while (n > 0)
4c4b4cd2
PH
2682 {
2683 int unused_right;
5b4ee69b 2684
4c4b4cd2
PH
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
14f9c5c9
AS
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
d2e4a39e 2708 while (n > 0)
4c4b4cd2
PH
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
14f9c5c9
AS
2724 }
2725}
2726
14f9c5c9
AS
2727/* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2730 floating-point or non-scalar types. */
14f9c5c9 2731
d2e4a39e
AS
2732static struct value *
2733ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2734{
df407dfe
AC
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
14f9c5c9 2737
52ce6436
PH
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
88e3b34b 2746 if (!deprecated_value_modifiable (toval))
323e0a4a 2747 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2748
d2e4a39e 2749 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2750 && bits > 0
d2e4a39e 2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2753 {
df407dfe
AC
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2756 int from_size;
224c3ddb 2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2758 struct value *val;
42ae5230 2759 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2762 fromval = value_cast (type, fromval);
14f9c5c9 2763
52ce6436 2764 read_memory (to_addr, buffer, len);
aced2898
PH
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2769 move_bits (buffer, value_bitpos (toval),
50810684 2770 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2771 else
50810684
UW
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
972daa01 2774 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2775
14f9c5c9 2776 val = value_copy (toval);
0fd88904 2777 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2778 TYPE_LENGTH (type));
04624583 2779 deprecated_set_value_type (val, type);
d2e4a39e 2780
14f9c5c9
AS
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785}
2786
2787
7c512744
JB
2788/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
52ce6436
PH
2799static void
2800value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802{
2803 LONGEST offset_in_container =
42ae5230 2804 (LONGEST) (value_address (component) - value_address (container));
7c512744 2805 int bit_offset_in_container =
52ce6436
PH
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
7c512744 2808
52ce6436
PH
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
50810684 2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2817 {
2818 int src_offset;
2819
2820 if (is_scalar_type (check_typedef (value_type (component))))
2821 src_offset
2822 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2823 else
2824 src_offset = 0;
2825 move_bits (value_contents_writeable (container) + offset_in_container,
2826 value_bitpos (container) + bit_offset_in_container,
2827 value_contents (val), src_offset, bits, 1);
2828 }
52ce6436 2829 else
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2831 value_bitpos (container) + bit_offset_in_container,
50810684 2832 value_contents (val), 0, bits, 0);
7c512744
JB
2833}
2834
4c4b4cd2
PH
2835/* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2837 thereto. */
2838
d2e4a39e
AS
2839struct value *
2840ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2841{
2842 int k;
d2e4a39e
AS
2843 struct value *elt;
2844 struct type *elt_type;
14f9c5c9
AS
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
df407dfe 2848 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2856 error (_("too many subscripts (%d expected)"), k);
2497b498 2857 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2858 }
2859 return elt;
2860}
2861
deede10c
JB
2862/* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
14f9c5c9 2873
2c0b251b 2874static struct value *
deede10c 2875ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2876{
2877 int k;
919e6dbe 2878 struct value *array_ind = ada_value_ind (arr);
deede10c 2879 struct type *type
919e6dbe
PMR
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
aa715135 2889 struct value *lwb_value;
14f9c5c9
AS
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2892 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2894 value_copy (arr));
14f9c5c9 2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902}
2903
0b5d8877 2904/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
0b5d8877 2908static struct value *
f5938064
JG
2909ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
0b5d8877 2911{
b0dd7688 2912 struct type *type0 = ada_check_typedef (type);
aa715135 2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2914 struct type *index_type
aa715135 2915 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2916 struct type *slice_type = create_array_type_with_stride
2917 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2918 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2919 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2920 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2921 LONGEST base_low_pos, low_pos;
2922 CORE_ADDR base;
2923
2924 if (!discrete_position (base_index_type, low, &low_pos)
2925 || !discrete_position (base_index_type, base_low, &base_low_pos))
2926 {
2927 warning (_("unable to get positions in slice, use bounds instead"));
2928 low_pos = low;
2929 base_low_pos = base_low;
2930 }
5b4ee69b 2931
aa715135
JG
2932 base = value_as_address (array_ptr)
2933 + ((low_pos - base_low_pos)
2934 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2935 return value_at_lazy (slice_type, base);
0b5d8877
PH
2936}
2937
2938
2939static struct value *
2940ada_value_slice (struct value *array, int low, int high)
2941{
b0dd7688 2942 struct type *type = ada_check_typedef (value_type (array));
aa715135 2943 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2944 struct type *index_type
2945 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2946 struct type *slice_type = create_array_type_with_stride
2947 (NULL, TYPE_TARGET_TYPE (type), index_type,
2948 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2949 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2950 LONGEST low_pos, high_pos;
5b4ee69b 2951
aa715135
JG
2952 if (!discrete_position (base_index_type, low, &low_pos)
2953 || !discrete_position (base_index_type, high, &high_pos))
2954 {
2955 warning (_("unable to get positions in slice, use bounds instead"));
2956 low_pos = low;
2957 high_pos = high;
2958 }
2959
2960 return value_cast (slice_type,
2961 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2962}
2963
14f9c5c9
AS
2964/* If type is a record type in the form of a standard GNAT array
2965 descriptor, returns the number of dimensions for type. If arr is a
2966 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2967 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2968
2969int
d2e4a39e 2970ada_array_arity (struct type *type)
14f9c5c9
AS
2971{
2972 int arity;
2973
2974 if (type == NULL)
2975 return 0;
2976
2977 type = desc_base_type (type);
2978
2979 arity = 0;
d2e4a39e 2980 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2981 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2982 else
2983 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2984 {
4c4b4cd2 2985 arity += 1;
61ee279c 2986 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2987 }
d2e4a39e 2988
14f9c5c9
AS
2989 return arity;
2990}
2991
2992/* If TYPE is a record type in the form of a standard GNAT array
2993 descriptor or a simple array type, returns the element type for
2994 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2995 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2996
d2e4a39e
AS
2997struct type *
2998ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2999{
3000 type = desc_base_type (type);
3001
d2e4a39e 3002 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3003 {
3004 int k;
d2e4a39e 3005 struct type *p_array_type;
14f9c5c9 3006
556bdfd4 3007 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3008
3009 k = ada_array_arity (type);
3010 if (k == 0)
4c4b4cd2 3011 return NULL;
d2e4a39e 3012
4c4b4cd2 3013 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3014 if (nindices >= 0 && k > nindices)
4c4b4cd2 3015 k = nindices;
d2e4a39e 3016 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3017 {
61ee279c 3018 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3019 k -= 1;
3020 }
14f9c5c9
AS
3021 return p_array_type;
3022 }
3023 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3024 {
3025 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3026 {
3027 type = TYPE_TARGET_TYPE (type);
3028 nindices -= 1;
3029 }
14f9c5c9
AS
3030 return type;
3031 }
3032
3033 return NULL;
3034}
3035
4c4b4cd2 3036/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3037 Does not examine memory. Throws an error if N is invalid or TYPE
3038 is not an array type. NAME is the name of the Ada attribute being
3039 evaluated ('range, 'first, 'last, or 'length); it is used in building
3040 the error message. */
14f9c5c9 3041
1eea4ebd
UW
3042static struct type *
3043ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3044{
4c4b4cd2
PH
3045 struct type *result_type;
3046
14f9c5c9
AS
3047 type = desc_base_type (type);
3048
1eea4ebd
UW
3049 if (n < 0 || n > ada_array_arity (type))
3050 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3051
4c4b4cd2 3052 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3053 {
3054 int i;
3055
3056 for (i = 1; i < n; i += 1)
4c4b4cd2 3057 type = TYPE_TARGET_TYPE (type);
262452ec 3058 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3059 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3060 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3061 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3062 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3063 result_type = NULL;
14f9c5c9 3064 }
d2e4a39e 3065 else
1eea4ebd
UW
3066 {
3067 result_type = desc_index_type (desc_bounds_type (type), n);
3068 if (result_type == NULL)
3069 error (_("attempt to take bound of something that is not an array"));
3070 }
3071
3072 return result_type;
14f9c5c9
AS
3073}
3074
3075/* Given that arr is an array type, returns the lower bound of the
3076 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3077 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3078 array-descriptor type. It works for other arrays with bounds supplied
3079 by run-time quantities other than discriminants. */
14f9c5c9 3080
abb68b3e 3081static LONGEST
fb5e3d5c 3082ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3083{
8a48ac95 3084 struct type *type, *index_type_desc, *index_type;
1ce677a4 3085 int i;
262452ec
JK
3086
3087 gdb_assert (which == 0 || which == 1);
14f9c5c9 3088
ad82864c
JB
3089 if (ada_is_constrained_packed_array_type (arr_type))
3090 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3091
4c4b4cd2 3092 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3093 return (LONGEST) - which;
14f9c5c9
AS
3094
3095 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3096 type = TYPE_TARGET_TYPE (arr_type);
3097 else
3098 type = arr_type;
3099
bafffb51
JB
3100 if (TYPE_FIXED_INSTANCE (type))
3101 {
3102 /* The array has already been fixed, so we do not need to
3103 check the parallel ___XA type again. That encoding has
3104 already been applied, so ignore it now. */
3105 index_type_desc = NULL;
3106 }
3107 else
3108 {
3109 index_type_desc = ada_find_parallel_type (type, "___XA");
3110 ada_fixup_array_indexes_type (index_type_desc);
3111 }
3112
262452ec 3113 if (index_type_desc != NULL)
28c85d6c
JB
3114 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3115 NULL);
262452ec 3116 else
8a48ac95
JB
3117 {
3118 struct type *elt_type = check_typedef (type);
3119
3120 for (i = 1; i < n; i++)
3121 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3122
3123 index_type = TYPE_INDEX_TYPE (elt_type);
3124 }
262452ec 3125
43bbcdc2
PH
3126 return
3127 (LONGEST) (which == 0
3128 ? ada_discrete_type_low_bound (index_type)
3129 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3130}
3131
3132/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3133 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3134 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3135 supplied by run-time quantities other than discriminants. */
14f9c5c9 3136
1eea4ebd 3137static LONGEST
4dc81987 3138ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3139{
eb479039
JB
3140 struct type *arr_type;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
14f9c5c9 3145
ad82864c
JB
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3148 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3149 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3150 else
1eea4ebd 3151 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3152}
3153
3154/* Given that arr is an array value, returns the length of the
3155 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3156 supplied by run-time quantities other than discriminants.
3157 Does not work for arrays indexed by enumeration types with representation
3158 clauses at the moment. */
14f9c5c9 3159
1eea4ebd 3160static LONGEST
d2e4a39e 3161ada_array_length (struct value *arr, int n)
14f9c5c9 3162{
aa715135
JG
3163 struct type *arr_type, *index_type;
3164 int low, high;
eb479039
JB
3165
3166 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3167 arr = value_ind (arr);
3168 arr_type = value_enclosing_type (arr);
14f9c5c9 3169
ad82864c
JB
3170 if (ada_is_constrained_packed_array_type (arr_type))
3171 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3172
4c4b4cd2 3173 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3174 {
3175 low = ada_array_bound_from_type (arr_type, n, 0);
3176 high = ada_array_bound_from_type (arr_type, n, 1);
3177 }
14f9c5c9 3178 else
aa715135
JG
3179 {
3180 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3181 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3182 }
3183
f168693b 3184 arr_type = check_typedef (arr_type);
7150d33c 3185 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3186 if (index_type != NULL)
3187 {
3188 struct type *base_type;
3189 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3190 base_type = TYPE_TARGET_TYPE (index_type);
3191 else
3192 base_type = index_type;
3193
3194 low = pos_atr (value_from_longest (base_type, low));
3195 high = pos_atr (value_from_longest (base_type, high));
3196 }
3197 return high - low + 1;
4c4b4cd2
PH
3198}
3199
3200/* An empty array whose type is that of ARR_TYPE (an array type),
3201 with bounds LOW to LOW-1. */
3202
3203static struct value *
3204empty_array (struct type *arr_type, int low)
3205{
b0dd7688 3206 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3207 struct type *index_type
3208 = create_static_range_type
3209 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3210 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3211
0b5d8877 3212 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3213}
14f9c5c9 3214\f
d2e4a39e 3215
4c4b4cd2 3216 /* Name resolution */
14f9c5c9 3217
4c4b4cd2
PH
3218/* The "decoded" name for the user-definable Ada operator corresponding
3219 to OP. */
14f9c5c9 3220
d2e4a39e 3221static const char *
4c4b4cd2 3222ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3223{
3224 int i;
3225
4c4b4cd2 3226 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3227 {
3228 if (ada_opname_table[i].op == op)
4c4b4cd2 3229 return ada_opname_table[i].decoded;
14f9c5c9 3230 }
323e0a4a 3231 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3232}
3233
3234
4c4b4cd2
PH
3235/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3236 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3237 undefined namespace) and converts operators that are
3238 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3239 non-null, it provides a preferred result type [at the moment, only
3240 type void has any effect---causing procedures to be preferred over
3241 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3242 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3243
4c4b4cd2 3244static void
e9d9f57e 3245resolve (expression_up *expp, int void_context_p)
14f9c5c9 3246{
30b15541
UW
3247 struct type *context_type = NULL;
3248 int pc = 0;
3249
3250 if (void_context_p)
3251 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3252
3253 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3254}
3255
4c4b4cd2
PH
3256/* Resolve the operator of the subexpression beginning at
3257 position *POS of *EXPP. "Resolving" consists of replacing
3258 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3259 with their resolutions, replacing built-in operators with
3260 function calls to user-defined operators, where appropriate, and,
3261 when DEPROCEDURE_P is non-zero, converting function-valued variables
3262 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3263 are as in ada_resolve, above. */
14f9c5c9 3264
d2e4a39e 3265static struct value *
e9d9f57e 3266resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3267 struct type *context_type)
14f9c5c9
AS
3268{
3269 int pc = *pos;
3270 int i;
4c4b4cd2 3271 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3272 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3273 struct value **argvec; /* Vector of operand types (alloca'ed). */
3274 int nargs; /* Number of operands. */
52ce6436 3275 int oplen;
14f9c5c9
AS
3276
3277 argvec = NULL;
3278 nargs = 0;
e9d9f57e 3279 exp = expp->get ();
14f9c5c9 3280
52ce6436
PH
3281 /* Pass one: resolve operands, saving their types and updating *pos,
3282 if needed. */
14f9c5c9
AS
3283 switch (op)
3284 {
4c4b4cd2
PH
3285 case OP_FUNCALL:
3286 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3287 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3288 *pos += 7;
4c4b4cd2
PH
3289 else
3290 {
3291 *pos += 3;
3292 resolve_subexp (expp, pos, 0, NULL);
3293 }
3294 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3295 break;
3296
14f9c5c9 3297 case UNOP_ADDR:
4c4b4cd2
PH
3298 *pos += 1;
3299 resolve_subexp (expp, pos, 0, NULL);
3300 break;
3301
52ce6436
PH
3302 case UNOP_QUAL:
3303 *pos += 3;
17466c1a 3304 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3305 break;
3306
52ce6436 3307 case OP_ATR_MODULUS:
4c4b4cd2
PH
3308 case OP_ATR_SIZE:
3309 case OP_ATR_TAG:
4c4b4cd2
PH
3310 case OP_ATR_FIRST:
3311 case OP_ATR_LAST:
3312 case OP_ATR_LENGTH:
3313 case OP_ATR_POS:
3314 case OP_ATR_VAL:
4c4b4cd2
PH
3315 case OP_ATR_MIN:
3316 case OP_ATR_MAX:
52ce6436
PH
3317 case TERNOP_IN_RANGE:
3318 case BINOP_IN_BOUNDS:
3319 case UNOP_IN_RANGE:
3320 case OP_AGGREGATE:
3321 case OP_OTHERS:
3322 case OP_CHOICES:
3323 case OP_POSITIONAL:
3324 case OP_DISCRETE_RANGE:
3325 case OP_NAME:
3326 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3327 *pos += oplen;
14f9c5c9
AS
3328 break;
3329
3330 case BINOP_ASSIGN:
3331 {
4c4b4cd2
PH
3332 struct value *arg1;
3333
3334 *pos += 1;
3335 arg1 = resolve_subexp (expp, pos, 0, NULL);
3336 if (arg1 == NULL)
3337 resolve_subexp (expp, pos, 1, NULL);
3338 else
df407dfe 3339 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3340 break;
14f9c5c9
AS
3341 }
3342
4c4b4cd2 3343 case UNOP_CAST:
4c4b4cd2
PH
3344 *pos += 3;
3345 nargs = 1;
3346 break;
14f9c5c9 3347
4c4b4cd2
PH
3348 case BINOP_ADD:
3349 case BINOP_SUB:
3350 case BINOP_MUL:
3351 case BINOP_DIV:
3352 case BINOP_REM:
3353 case BINOP_MOD:
3354 case BINOP_EXP:
3355 case BINOP_CONCAT:
3356 case BINOP_LOGICAL_AND:
3357 case BINOP_LOGICAL_OR:
3358 case BINOP_BITWISE_AND:
3359 case BINOP_BITWISE_IOR:
3360 case BINOP_BITWISE_XOR:
14f9c5c9 3361
4c4b4cd2
PH
3362 case BINOP_EQUAL:
3363 case BINOP_NOTEQUAL:
3364 case BINOP_LESS:
3365 case BINOP_GTR:
3366 case BINOP_LEQ:
3367 case BINOP_GEQ:
14f9c5c9 3368
4c4b4cd2
PH
3369 case BINOP_REPEAT:
3370 case BINOP_SUBSCRIPT:
3371 case BINOP_COMMA:
40c8aaa9
JB
3372 *pos += 1;
3373 nargs = 2;
3374 break;
14f9c5c9 3375
4c4b4cd2
PH
3376 case UNOP_NEG:
3377 case UNOP_PLUS:
3378 case UNOP_LOGICAL_NOT:
3379 case UNOP_ABS:
3380 case UNOP_IND:
3381 *pos += 1;
3382 nargs = 1;
3383 break;
14f9c5c9 3384
4c4b4cd2 3385 case OP_LONG:
edd079d9 3386 case OP_FLOAT:
4c4b4cd2 3387 case OP_VAR_VALUE:
74ea4be4 3388 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3389 *pos += 4;
3390 break;
14f9c5c9 3391
4c4b4cd2
PH
3392 case OP_TYPE:
3393 case OP_BOOL:
3394 case OP_LAST:
4c4b4cd2
PH
3395 case OP_INTERNALVAR:
3396 *pos += 3;
3397 break;
14f9c5c9 3398
4c4b4cd2
PH
3399 case UNOP_MEMVAL:
3400 *pos += 3;
3401 nargs = 1;
3402 break;
3403
67f3407f
DJ
3404 case OP_REGISTER:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 break;
3407
4c4b4cd2
PH
3408 case STRUCTOP_STRUCT:
3409 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3410 nargs = 1;
3411 break;
3412
4c4b4cd2 3413 case TERNOP_SLICE:
4c4b4cd2
PH
3414 *pos += 1;
3415 nargs = 3;
3416 break;
3417
52ce6436 3418 case OP_STRING:
14f9c5c9 3419 break;
4c4b4cd2
PH
3420
3421 default:
323e0a4a 3422 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3423 }
3424
8d749320 3425 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3426 for (i = 0; i < nargs; i += 1)
3427 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3428 argvec[i] = NULL;
e9d9f57e 3429 exp = expp->get ();
4c4b4cd2
PH
3430
3431 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3432 switch (op)
3433 {
3434 default:
3435 break;
3436
14f9c5c9 3437 case OP_VAR_VALUE:
4c4b4cd2 3438 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3439 {
54d343a2 3440 std::vector<struct block_symbol> candidates;
76a01679
JB
3441 int n_candidates;
3442
3443 n_candidates =
3444 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3445 (exp->elts[pc + 2].symbol),
3446 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3447 &candidates);
76a01679
JB
3448
3449 if (n_candidates > 1)
3450 {
3451 /* Types tend to get re-introduced locally, so if there
3452 are any local symbols that are not types, first filter
3453 out all types. */
3454 int j;
3455 for (j = 0; j < n_candidates; j += 1)
d12307c1 3456 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3457 {
3458 case LOC_REGISTER:
3459 case LOC_ARG:
3460 case LOC_REF_ARG:
76a01679
JB
3461 case LOC_REGPARM_ADDR:
3462 case LOC_LOCAL:
76a01679 3463 case LOC_COMPUTED:
76a01679
JB
3464 goto FoundNonType;
3465 default:
3466 break;
3467 }
3468 FoundNonType:
3469 if (j < n_candidates)
3470 {
3471 j = 0;
3472 while (j < n_candidates)
3473 {
d12307c1 3474 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3475 {
3476 candidates[j] = candidates[n_candidates - 1];
3477 n_candidates -= 1;
3478 }
3479 else
3480 j += 1;
3481 }
3482 }
3483 }
3484
3485 if (n_candidates == 0)
323e0a4a 3486 error (_("No definition found for %s"),
76a01679
JB
3487 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3488 else if (n_candidates == 1)
3489 i = 0;
3490 else if (deprocedure_p
54d343a2 3491 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3492 {
06d5cf63 3493 i = ada_resolve_function
54d343a2 3494 (candidates.data (), n_candidates, NULL, 0,
06d5cf63
JB
3495 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3496 context_type);
76a01679 3497 if (i < 0)
323e0a4a 3498 error (_("Could not find a match for %s"),
76a01679
JB
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 }
3501 else
3502 {
323e0a4a 3503 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3504 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3505 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3506 i = 0;
3507 }
3508
3509 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3510 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3511 innermost_block.update (candidates[i]);
76a01679
JB
3512 }
3513
3514 if (deprocedure_p
3515 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3516 == TYPE_CODE_FUNC))
3517 {
3518 replace_operator_with_call (expp, pc, 0, 0,
3519 exp->elts[pc + 2].symbol,
3520 exp->elts[pc + 1].block);
e9d9f57e 3521 exp = expp->get ();
76a01679 3522 }
14f9c5c9
AS
3523 break;
3524
3525 case OP_FUNCALL:
3526 {
4c4b4cd2 3527 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3528 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3529 {
54d343a2 3530 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3531 int n_candidates;
3532
3533 n_candidates =
76a01679
JB
3534 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3535 (exp->elts[pc + 5].symbol),
3536 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3537 &candidates);
ec6a20c2 3538
4c4b4cd2
PH
3539 if (n_candidates == 1)
3540 i = 0;
3541 else
3542 {
06d5cf63 3543 i = ada_resolve_function
54d343a2 3544 (candidates.data (), n_candidates,
06d5cf63
JB
3545 argvec, nargs,
3546 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3547 context_type);
4c4b4cd2 3548 if (i < 0)
323e0a4a 3549 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3550 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3551 }
3552
3553 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3554 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3555 innermost_block.update (candidates[i]);
4c4b4cd2 3556 }
14f9c5c9
AS
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3581 {
54d343a2 3582 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3583 int n_candidates;
3584
3585 n_candidates =
b5ec771e 3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3587 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3588 &candidates);
ec6a20c2 3589
54d343a2
TT
3590 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3591 nargs, ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3592 if (i < 0)
3593 break;
3594
d12307c1
PMR
3595 replace_operator_with_call (expp, pc, nargs, 1,
3596 candidates[i].symbol,
3597 candidates[i].block);
e9d9f57e 3598 exp = expp->get ();
4c4b4cd2 3599 }
14f9c5c9 3600 break;
4c4b4cd2
PH
3601
3602 case OP_TYPE:
b3dbf008 3603 case OP_REGISTER:
4c4b4cd2 3604 return NULL;
14f9c5c9
AS
3605 }
3606
3607 *pos = pc;
ced9779b
JB
3608 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3609 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3610 exp->elts[pc + 1].objfile,
3611 exp->elts[pc + 2].msymbol);
3612 else
3613 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3614}
3615
3616/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3617 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3618 a non-pointer. */
14f9c5c9 3619/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3620 liberal. */
14f9c5c9
AS
3621
3622static int
4dc81987 3623ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3624{
61ee279c
PH
3625 ftype = ada_check_typedef (ftype);
3626 atype = ada_check_typedef (atype);
14f9c5c9
AS
3627
3628 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3629 ftype = TYPE_TARGET_TYPE (ftype);
3630 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3631 atype = TYPE_TARGET_TYPE (atype);
3632
d2e4a39e 3633 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3634 {
3635 default:
5b3d5b7d 3636 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3637 case TYPE_CODE_PTR:
3638 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3639 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3640 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3641 else
1265e4aa
JB
3642 return (may_deref
3643 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3644 case TYPE_CODE_INT:
3645 case TYPE_CODE_ENUM:
3646 case TYPE_CODE_RANGE:
3647 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3648 {
3649 case TYPE_CODE_INT:
3650 case TYPE_CODE_ENUM:
3651 case TYPE_CODE_RANGE:
3652 return 1;
3653 default:
3654 return 0;
3655 }
14f9c5c9
AS
3656
3657 case TYPE_CODE_ARRAY:
d2e4a39e 3658 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3659 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3660
3661 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3662 if (ada_is_array_descriptor_type (ftype))
3663 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3664 || ada_is_array_descriptor_type (atype));
14f9c5c9 3665 else
4c4b4cd2
PH
3666 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3667 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3668
3669 case TYPE_CODE_UNION:
3670 case TYPE_CODE_FLT:
3671 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3672 }
3673}
3674
3675/* Return non-zero if the formals of FUNC "sufficiently match" the
3676 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3677 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3678 argument function. */
14f9c5c9
AS
3679
3680static int
d2e4a39e 3681ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3682{
3683 int i;
d2e4a39e 3684 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3685
1265e4aa
JB
3686 if (SYMBOL_CLASS (func) == LOC_CONST
3687 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3688 return (n_actuals == 0);
3689 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3690 return 0;
3691
3692 if (TYPE_NFIELDS (func_type) != n_actuals)
3693 return 0;
3694
3695 for (i = 0; i < n_actuals; i += 1)
3696 {
4c4b4cd2 3697 if (actuals[i] == NULL)
76a01679
JB
3698 return 0;
3699 else
3700 {
5b4ee69b
MS
3701 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3702 i));
df407dfe 3703 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3704
76a01679
JB
3705 if (!ada_type_match (ftype, atype, 1))
3706 return 0;
3707 }
14f9c5c9
AS
3708 }
3709 return 1;
3710}
3711
3712/* False iff function type FUNC_TYPE definitely does not produce a value
3713 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3714 FUNC_TYPE is not a valid function type with a non-null return type
3715 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3716
3717static int
d2e4a39e 3718return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3719{
d2e4a39e 3720 struct type *return_type;
14f9c5c9
AS
3721
3722 if (func_type == NULL)
3723 return 1;
3724
4c4b4cd2 3725 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3726 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3727 else
18af8284 3728 return_type = get_base_type (func_type);
14f9c5c9
AS
3729 if (return_type == NULL)
3730 return 1;
3731
18af8284 3732 context_type = get_base_type (context_type);
14f9c5c9
AS
3733
3734 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3735 return context_type == NULL || return_type == context_type;
3736 else if (context_type == NULL)
3737 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3738 else
3739 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3740}
3741
3742
4c4b4cd2 3743/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3744 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3745 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3746 that returns that type, then eliminate matches that don't. If
3747 CONTEXT_TYPE is void and there is at least one match that does not
3748 return void, eliminate all matches that do.
3749
14f9c5c9
AS
3750 Asks the user if there is more than one match remaining. Returns -1
3751 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3752 solely for messages. May re-arrange and modify SYMS in
3753 the process; the index returned is for the modified vector. */
14f9c5c9 3754
4c4b4cd2 3755static int
d12307c1 3756ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3757 int nsyms, struct value **args, int nargs,
3758 const char *name, struct type *context_type)
14f9c5c9 3759{
30b15541 3760 int fallback;
14f9c5c9 3761 int k;
4c4b4cd2 3762 int m; /* Number of hits */
14f9c5c9 3763
d2e4a39e 3764 m = 0;
30b15541
UW
3765 /* In the first pass of the loop, we only accept functions matching
3766 context_type. If none are found, we add a second pass of the loop
3767 where every function is accepted. */
3768 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3769 {
3770 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3771 {
d12307c1 3772 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3773
d12307c1 3774 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3775 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3776 {
3777 syms[m] = syms[k];
3778 m += 1;
3779 }
3780 }
14f9c5c9
AS
3781 }
3782
dc5c8746
PMR
3783 /* If we got multiple matches, ask the user which one to use. Don't do this
3784 interactive thing during completion, though, as the purpose of the
3785 completion is providing a list of all possible matches. Prompting the
3786 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3787 if (m == 0)
3788 return -1;
dc5c8746 3789 else if (m > 1 && !parse_completion)
14f9c5c9 3790 {
323e0a4a 3791 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3792 user_select_syms (syms, m, 1);
14f9c5c9
AS
3793 return 0;
3794 }
3795 return 0;
3796}
3797
4c4b4cd2
PH
3798/* Returns true (non-zero) iff decoded name N0 should appear before N1
3799 in a listing of choices during disambiguation (see sort_choices, below).
3800 The idea is that overloadings of a subprogram name from the
3801 same package should sort in their source order. We settle for ordering
3802 such symbols by their trailing number (__N or $N). */
3803
14f9c5c9 3804static int
0d5cff50 3805encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3806{
3807 if (N1 == NULL)
3808 return 0;
3809 else if (N0 == NULL)
3810 return 1;
3811 else
3812 {
3813 int k0, k1;
5b4ee69b 3814
d2e4a39e 3815 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3816 ;
d2e4a39e 3817 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3818 ;
d2e4a39e 3819 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3820 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3821 {
3822 int n0, n1;
5b4ee69b 3823
4c4b4cd2
PH
3824 n0 = k0;
3825 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3826 n0 -= 1;
3827 n1 = k1;
3828 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3829 n1 -= 1;
3830 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3831 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3832 }
14f9c5c9
AS
3833 return (strcmp (N0, N1) < 0);
3834 }
3835}
d2e4a39e 3836
4c4b4cd2
PH
3837/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3838 encoded names. */
3839
d2e4a39e 3840static void
d12307c1 3841sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3842{
4c4b4cd2 3843 int i;
5b4ee69b 3844
d2e4a39e 3845 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3846 {
d12307c1 3847 struct block_symbol sym = syms[i];
14f9c5c9
AS
3848 int j;
3849
d2e4a39e 3850 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3851 {
d12307c1
PMR
3852 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3853 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3854 break;
3855 syms[j + 1] = syms[j];
3856 }
d2e4a39e 3857 syms[j + 1] = sym;
14f9c5c9
AS
3858 }
3859}
3860
d72413e6
PMR
3861/* Whether GDB should display formals and return types for functions in the
3862 overloads selection menu. */
3863static int print_signatures = 1;
3864
3865/* Print the signature for SYM on STREAM according to the FLAGS options. For
3866 all but functions, the signature is just the name of the symbol. For
3867 functions, this is the name of the function, the list of types for formals
3868 and the return type (if any). */
3869
3870static void
3871ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3872 const struct type_print_options *flags)
3873{
3874 struct type *type = SYMBOL_TYPE (sym);
3875
3876 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3877 if (!print_signatures
3878 || type == NULL
3879 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3880 return;
3881
3882 if (TYPE_NFIELDS (type) > 0)
3883 {
3884 int i;
3885
3886 fprintf_filtered (stream, " (");
3887 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3888 {
3889 if (i > 0)
3890 fprintf_filtered (stream, "; ");
3891 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3892 flags);
3893 }
3894 fprintf_filtered (stream, ")");
3895 }
3896 if (TYPE_TARGET_TYPE (type) != NULL
3897 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3898 {
3899 fprintf_filtered (stream, " return ");
3900 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3901 }
3902}
3903
4c4b4cd2
PH
3904/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3905 by asking the user (if necessary), returning the number selected,
3906 and setting the first elements of SYMS items. Error if no symbols
3907 selected. */
14f9c5c9
AS
3908
3909/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3910 to be re-integrated one of these days. */
14f9c5c9
AS
3911
3912int
d12307c1 3913user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3914{
3915 int i;
8d749320 3916 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3917 int n_chosen;
3918 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3919 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3920
3921 if (max_results < 1)
323e0a4a 3922 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3923 if (nsyms <= 1)
3924 return nsyms;
3925
717d2f5a
JB
3926 if (select_mode == multiple_symbols_cancel)
3927 error (_("\
3928canceled because the command is ambiguous\n\
3929See set/show multiple-symbol."));
3930
3931 /* If select_mode is "all", then return all possible symbols.
3932 Only do that if more than one symbol can be selected, of course.
3933 Otherwise, display the menu as usual. */
3934 if (select_mode == multiple_symbols_all && max_results > 1)
3935 return nsyms;
3936
323e0a4a 3937 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3938 if (max_results > 1)
323e0a4a 3939 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3940
4c4b4cd2 3941 sort_choices (syms, nsyms);
14f9c5c9
AS
3942
3943 for (i = 0; i < nsyms; i += 1)
3944 {
d12307c1 3945 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3946 continue;
3947
d12307c1 3948 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3949 {
76a01679 3950 struct symtab_and_line sal =
d12307c1 3951 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3952
d72413e6
PMR
3953 printf_unfiltered ("[%d] ", i + first_choice);
3954 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3955 &type_print_raw_options);
323e0a4a 3956 if (sal.symtab == NULL)
d72413e6 3957 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3958 sal.line);
3959 else
d72413e6 3960 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3961 symtab_to_filename_for_display (sal.symtab),
3962 sal.line);
4c4b4cd2
PH
3963 continue;
3964 }
d2e4a39e 3965 else
4c4b4cd2
PH
3966 {
3967 int is_enumeral =
d12307c1
PMR
3968 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3969 && SYMBOL_TYPE (syms[i].symbol) != NULL
3970 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3971 struct symtab *symtab = NULL;
3972
d12307c1
PMR
3973 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3974 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3975
d12307c1 3976 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3977 {
3978 printf_unfiltered ("[%d] ", i + first_choice);
3979 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3980 &type_print_raw_options);
3981 printf_unfiltered (_(" at %s:%d\n"),
3982 symtab_to_filename_for_display (symtab),
3983 SYMBOL_LINE (syms[i].symbol));
3984 }
76a01679 3985 else if (is_enumeral
d12307c1 3986 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3987 {
a3f17187 3988 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3989 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3990 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3991 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3992 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3993 }
d72413e6
PMR
3994 else
3995 {
3996 printf_unfiltered ("[%d] ", i + first_choice);
3997 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3998 &type_print_raw_options);
3999
4000 if (symtab != NULL)
4001 printf_unfiltered (is_enumeral
4002 ? _(" in %s (enumeral)\n")
4003 : _(" at %s:?\n"),
4004 symtab_to_filename_for_display (symtab));
4005 else
4006 printf_unfiltered (is_enumeral
4007 ? _(" (enumeral)\n")
4008 : _(" at ?\n"));
4009 }
4c4b4cd2 4010 }
14f9c5c9 4011 }
d2e4a39e 4012
14f9c5c9 4013 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4014 "overload-choice");
14f9c5c9
AS
4015
4016 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4017 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4018
4019 return n_chosen;
4020}
4021
4022/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4023 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4024 order in CHOICES[0 .. N-1], and return N.
4025
4026 The user types choices as a sequence of numbers on one line
4027 separated by blanks, encoding them as follows:
4028
4c4b4cd2 4029 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4030 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4031 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4032
4c4b4cd2 4033 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4034
4035 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4036 prompts (for use with the -f switch). */
14f9c5c9
AS
4037
4038int
d2e4a39e 4039get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4040 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4041{
d2e4a39e 4042 char *args;
a121b7c1 4043 const char *prompt;
14f9c5c9
AS
4044 int n_chosen;
4045 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4046
14f9c5c9
AS
4047 prompt = getenv ("PS2");
4048 if (prompt == NULL)
0bcd0149 4049 prompt = "> ";
14f9c5c9 4050
89fbedf3 4051 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4052
14f9c5c9 4053 if (args == NULL)
323e0a4a 4054 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4055
4056 n_chosen = 0;
76a01679 4057
4c4b4cd2
PH
4058 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4059 order, as given in args. Choices are validated. */
14f9c5c9
AS
4060 while (1)
4061 {
d2e4a39e 4062 char *args2;
14f9c5c9
AS
4063 int choice, j;
4064
0fcd72ba 4065 args = skip_spaces (args);
14f9c5c9 4066 if (*args == '\0' && n_chosen == 0)
323e0a4a 4067 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4068 else if (*args == '\0')
4c4b4cd2 4069 break;
14f9c5c9
AS
4070
4071 choice = strtol (args, &args2, 10);
d2e4a39e 4072 if (args == args2 || choice < 0
4c4b4cd2 4073 || choice > n_choices + first_choice - 1)
323e0a4a 4074 error (_("Argument must be choice number"));
14f9c5c9
AS
4075 args = args2;
4076
d2e4a39e 4077 if (choice == 0)
323e0a4a 4078 error (_("cancelled"));
14f9c5c9
AS
4079
4080 if (choice < first_choice)
4c4b4cd2
PH
4081 {
4082 n_chosen = n_choices;
4083 for (j = 0; j < n_choices; j += 1)
4084 choices[j] = j;
4085 break;
4086 }
14f9c5c9
AS
4087 choice -= first_choice;
4088
d2e4a39e 4089 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4090 {
4091 }
14f9c5c9
AS
4092
4093 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4094 {
4095 int k;
5b4ee69b 4096
4c4b4cd2
PH
4097 for (k = n_chosen - 1; k > j; k -= 1)
4098 choices[k + 1] = choices[k];
4099 choices[j + 1] = choice;
4100 n_chosen += 1;
4101 }
14f9c5c9
AS
4102 }
4103
4104 if (n_chosen > max_results)
323e0a4a 4105 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4106
14f9c5c9
AS
4107 return n_chosen;
4108}
4109
4c4b4cd2
PH
4110/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4111 on the function identified by SYM and BLOCK, and taking NARGS
4112 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4113
4114static void
e9d9f57e 4115replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4116 int oplen, struct symbol *sym,
270140bd 4117 const struct block *block)
14f9c5c9
AS
4118{
4119 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4120 symbol, -oplen for operator being replaced). */
d2e4a39e 4121 struct expression *newexp = (struct expression *)
8c1a34e7 4122 xzalloc (sizeof (struct expression)
4c4b4cd2 4123 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4124 struct expression *exp = expp->get ();
14f9c5c9
AS
4125
4126 newexp->nelts = exp->nelts + 7 - oplen;
4127 newexp->language_defn = exp->language_defn;
3489610d 4128 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4129 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4130 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4131 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4132
4133 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4134 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4135
4136 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4137 newexp->elts[pc + 4].block = block;
4138 newexp->elts[pc + 5].symbol = sym;
4139
e9d9f57e 4140 expp->reset (newexp);
d2e4a39e 4141}
14f9c5c9
AS
4142
4143/* Type-class predicates */
4144
4c4b4cd2
PH
4145/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4146 or FLOAT). */
14f9c5c9
AS
4147
4148static int
d2e4a39e 4149numeric_type_p (struct type *type)
14f9c5c9
AS
4150{
4151 if (type == NULL)
4152 return 0;
d2e4a39e
AS
4153 else
4154 {
4155 switch (TYPE_CODE (type))
4c4b4cd2
PH
4156 {
4157 case TYPE_CODE_INT:
4158 case TYPE_CODE_FLT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
d2e4a39e 4166 }
14f9c5c9
AS
4167}
4168
4c4b4cd2 4169/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4170
4171static int
d2e4a39e 4172integer_type_p (struct type *type)
14f9c5c9
AS
4173{
4174 if (type == NULL)
4175 return 0;
d2e4a39e
AS
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4c4b4cd2
PH
4179 {
4180 case TYPE_CODE_INT:
4181 return 1;
4182 case TYPE_CODE_RANGE:
4183 return (type == TYPE_TARGET_TYPE (type)
4184 || integer_type_p (TYPE_TARGET_TYPE (type)));
4185 default:
4186 return 0;
4187 }
d2e4a39e 4188 }
14f9c5c9
AS
4189}
4190
4c4b4cd2 4191/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4192
4193static int
d2e4a39e 4194scalar_type_p (struct type *type)
14f9c5c9
AS
4195{
4196 if (type == NULL)
4197 return 0;
d2e4a39e
AS
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4c4b4cd2
PH
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_FLT:
4206 return 1;
4207 default:
4208 return 0;
4209 }
d2e4a39e 4210 }
14f9c5c9
AS
4211}
4212
4c4b4cd2 4213/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4214
4215static int
d2e4a39e 4216discrete_type_p (struct type *type)
14f9c5c9
AS
4217{
4218 if (type == NULL)
4219 return 0;
d2e4a39e
AS
4220 else
4221 {
4222 switch (TYPE_CODE (type))
4c4b4cd2
PH
4223 {
4224 case TYPE_CODE_INT:
4225 case TYPE_CODE_RANGE:
4226 case TYPE_CODE_ENUM:
872f0337 4227 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4228 return 1;
4229 default:
4230 return 0;
4231 }
d2e4a39e 4232 }
14f9c5c9
AS
4233}
4234
4c4b4cd2
PH
4235/* Returns non-zero if OP with operands in the vector ARGS could be
4236 a user-defined function. Errs on the side of pre-defined operators
4237 (i.e., result 0). */
14f9c5c9
AS
4238
4239static int
d2e4a39e 4240possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4241{
76a01679 4242 struct type *type0 =
df407dfe 4243 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4244 struct type *type1 =
df407dfe 4245 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4246
4c4b4cd2
PH
4247 if (type0 == NULL)
4248 return 0;
4249
14f9c5c9
AS
4250 switch (op)
4251 {
4252 default:
4253 return 0;
4254
4255 case BINOP_ADD:
4256 case BINOP_SUB:
4257 case BINOP_MUL:
4258 case BINOP_DIV:
d2e4a39e 4259 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4260
4261 case BINOP_REM:
4262 case BINOP_MOD:
4263 case BINOP_BITWISE_AND:
4264 case BINOP_BITWISE_IOR:
4265 case BINOP_BITWISE_XOR:
d2e4a39e 4266 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4267
4268 case BINOP_EQUAL:
4269 case BINOP_NOTEQUAL:
4270 case BINOP_LESS:
4271 case BINOP_GTR:
4272 case BINOP_LEQ:
4273 case BINOP_GEQ:
d2e4a39e 4274 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4275
4276 case BINOP_CONCAT:
ee90b9ab 4277 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4278
4279 case BINOP_EXP:
d2e4a39e 4280 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4281
4282 case UNOP_NEG:
4283 case UNOP_PLUS:
4284 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4285 case UNOP_ABS:
4286 return (!numeric_type_p (type0));
14f9c5c9
AS
4287
4288 }
4289}
4290\f
4c4b4cd2 4291 /* Renaming */
14f9c5c9 4292
aeb5907d
JB
4293/* NOTES:
4294
4295 1. In the following, we assume that a renaming type's name may
4296 have an ___XD suffix. It would be nice if this went away at some
4297 point.
4298 2. We handle both the (old) purely type-based representation of
4299 renamings and the (new) variable-based encoding. At some point,
4300 it is devoutly to be hoped that the former goes away
4301 (FIXME: hilfinger-2007-07-09).
4302 3. Subprogram renamings are not implemented, although the XRS
4303 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304
4305/* If SYM encodes a renaming,
4306
4307 <renaming> renames <renamed entity>,
4308
4309 sets *LEN to the length of the renamed entity's name,
4310 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4311 the string describing the subcomponent selected from the renamed
0963b4bd 4312 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4313 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4314 are undefined). Otherwise, returns a value indicating the category
4315 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4316 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4317 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4318 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4319 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4320 may be NULL, in which case they are not assigned.
4321
4322 [Currently, however, GCC does not generate subprogram renamings.] */
4323
4324enum ada_renaming_category
4325ada_parse_renaming (struct symbol *sym,
4326 const char **renamed_entity, int *len,
4327 const char **renaming_expr)
4328{
4329 enum ada_renaming_category kind;
4330 const char *info;
4331 const char *suffix;
4332
4333 if (sym == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (SYMBOL_CLASS (sym))
14f9c5c9 4336 {
aeb5907d
JB
4337 default:
4338 return ADA_NOT_RENAMING;
4339 case LOC_TYPEDEF:
4340 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4341 renamed_entity, len, renaming_expr);
4342 case LOC_LOCAL:
4343 case LOC_STATIC:
4344 case LOC_COMPUTED:
4345 case LOC_OPTIMIZED_OUT:
4346 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 if (info == NULL)
4348 return ADA_NOT_RENAMING;
4349 switch (info[5])
4350 {
4351 case '_':
4352 kind = ADA_OBJECT_RENAMING;
4353 info += 6;
4354 break;
4355 case 'E':
4356 kind = ADA_EXCEPTION_RENAMING;
4357 info += 7;
4358 break;
4359 case 'P':
4360 kind = ADA_PACKAGE_RENAMING;
4361 info += 7;
4362 break;
4363 case 'S':
4364 kind = ADA_SUBPROGRAM_RENAMING;
4365 info += 7;
4366 break;
4367 default:
4368 return ADA_NOT_RENAMING;
4369 }
14f9c5c9 4370 }
4c4b4cd2 4371
aeb5907d
JB
4372 if (renamed_entity != NULL)
4373 *renamed_entity = info;
4374 suffix = strstr (info, "___XE");
4375 if (suffix == NULL || suffix == info)
4376 return ADA_NOT_RENAMING;
4377 if (len != NULL)
4378 *len = strlen (info) - strlen (suffix);
4379 suffix += 5;
4380 if (renaming_expr != NULL)
4381 *renaming_expr = suffix;
4382 return kind;
4383}
4384
4385/* Assuming TYPE encodes a renaming according to the old encoding in
4386 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4387 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4388 ADA_NOT_RENAMING otherwise. */
4389static enum ada_renaming_category
4390parse_old_style_renaming (struct type *type,
4391 const char **renamed_entity, int *len,
4392 const char **renaming_expr)
4393{
4394 enum ada_renaming_category kind;
4395 const char *name;
4396 const char *info;
4397 const char *suffix;
14f9c5c9 4398
aeb5907d
JB
4399 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4400 || TYPE_NFIELDS (type) != 1)
4401 return ADA_NOT_RENAMING;
14f9c5c9 4402
a737d952 4403 name = TYPE_NAME (type);
aeb5907d
JB
4404 if (name == NULL)
4405 return ADA_NOT_RENAMING;
4406
4407 name = strstr (name, "___XR");
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410 switch (name[5])
4411 {
4412 case '\0':
4413 case '_':
4414 kind = ADA_OBJECT_RENAMING;
4415 break;
4416 case 'E':
4417 kind = ADA_EXCEPTION_RENAMING;
4418 break;
4419 case 'P':
4420 kind = ADA_PACKAGE_RENAMING;
4421 break;
4422 case 'S':
4423 kind = ADA_SUBPROGRAM_RENAMING;
4424 break;
4425 default:
4426 return ADA_NOT_RENAMING;
4427 }
14f9c5c9 4428
aeb5907d
JB
4429 info = TYPE_FIELD_NAME (type, 0);
4430 if (info == NULL)
4431 return ADA_NOT_RENAMING;
4432 if (renamed_entity != NULL)
4433 *renamed_entity = info;
4434 suffix = strstr (info, "___XE");
4435 if (renaming_expr != NULL)
4436 *renaming_expr = suffix + 5;
4437 if (suffix == NULL || suffix == info)
4438 return ADA_NOT_RENAMING;
4439 if (len != NULL)
4440 *len = suffix - info;
4441 return kind;
a5ee536b
JB
4442}
4443
4444/* Compute the value of the given RENAMING_SYM, which is expected to
4445 be a symbol encoding a renaming expression. BLOCK is the block
4446 used to evaluate the renaming. */
52ce6436 4447
a5ee536b
JB
4448static struct value *
4449ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4450 const struct block *block)
a5ee536b 4451{
bbc13ae3 4452 const char *sym_name;
a5ee536b 4453
bbc13ae3 4454 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4455 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4456 return evaluate_expression (expr.get ());
a5ee536b 4457}
14f9c5c9 4458\f
d2e4a39e 4459
4c4b4cd2 4460 /* Evaluation: Function Calls */
14f9c5c9 4461
4c4b4cd2 4462/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4463 lvalues, and otherwise has the side-effect of allocating memory
4464 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4465
d2e4a39e 4466static struct value *
40bc484c 4467ensure_lval (struct value *val)
14f9c5c9 4468{
40bc484c
JB
4469 if (VALUE_LVAL (val) == not_lval
4470 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4471 {
df407dfe 4472 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4473 const CORE_ADDR addr =
4474 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4475
a84a8a0d 4476 VALUE_LVAL (val) = lval_memory;
1a088441 4477 set_value_address (val, addr);
40bc484c 4478 write_memory (addr, value_contents (val), len);
c3e5cd34 4479 }
14f9c5c9
AS
4480
4481 return val;
4482}
4483
4484/* Return the value ACTUAL, converted to be an appropriate value for a
4485 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4486 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4487 values not residing in memory, updating it as needed. */
14f9c5c9 4488
a93c0eb6 4489struct value *
40bc484c 4490ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4491{
df407dfe 4492 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4493 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4494 struct type *formal_target =
4495 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4496 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4497 struct type *actual_target =
4498 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4499 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4500
4c4b4cd2 4501 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4502 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4503 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4504 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4505 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4506 {
a84a8a0d 4507 struct value *result;
5b4ee69b 4508
14f9c5c9 4509 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4510 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4511 result = desc_data (actual);
cb923fcc 4512 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4513 {
4514 if (VALUE_LVAL (actual) != lval_memory)
4515 {
4516 struct value *val;
5b4ee69b 4517
df407dfe 4518 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4519 val = allocate_value (actual_type);
990a07ab 4520 memcpy ((char *) value_contents_raw (val),
0fd88904 4521 (char *) value_contents (actual),
4c4b4cd2 4522 TYPE_LENGTH (actual_type));
40bc484c 4523 actual = ensure_lval (val);
4c4b4cd2 4524 }
a84a8a0d 4525 result = value_addr (actual);
4c4b4cd2 4526 }
a84a8a0d
JB
4527 else
4528 return actual;
b1af9e97 4529 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4530 }
4531 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4532 return ada_value_ind (actual);
8344af1e
JB
4533 else if (ada_is_aligner_type (formal_type))
4534 {
4535 /* We need to turn this parameter into an aligner type
4536 as well. */
4537 struct value *aligner = allocate_value (formal_type);
4538 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539
4540 value_assign_to_component (aligner, component, actual);
4541 return aligner;
4542 }
14f9c5c9
AS
4543
4544 return actual;
4545}
4546
438c98a1
JB
4547/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4548 type TYPE. This is usually an inefficient no-op except on some targets
4549 (such as AVR) where the representation of a pointer and an address
4550 differs. */
4551
4552static CORE_ADDR
4553value_pointer (struct value *value, struct type *type)
4554{
4555 struct gdbarch *gdbarch = get_type_arch (type);
4556 unsigned len = TYPE_LENGTH (type);
224c3ddb 4557 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4558 CORE_ADDR addr;
4559
4560 addr = value_address (value);
4561 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4562 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4563 return addr;
4564}
4565
14f9c5c9 4566
4c4b4cd2
PH
4567/* Push a descriptor of type TYPE for array value ARR on the stack at
4568 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4569 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4570 to-descriptor type rather than a descriptor type), a struct value *
4571 representing a pointer to this descriptor. */
14f9c5c9 4572
d2e4a39e 4573static struct value *
40bc484c 4574make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4575{
d2e4a39e
AS
4576 struct type *bounds_type = desc_bounds_type (type);
4577 struct type *desc_type = desc_base_type (type);
4578 struct value *descriptor = allocate_value (desc_type);
4579 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4580 int i;
d2e4a39e 4581
0963b4bd
MS
4582 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4583 i > 0; i -= 1)
14f9c5c9 4584 {
19f220c3
JK
4585 modify_field (value_type (bounds), value_contents_writeable (bounds),
4586 ada_array_bound (arr, i, 0),
4587 desc_bound_bitpos (bounds_type, i, 0),
4588 desc_bound_bitsize (bounds_type, i, 0));
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 1),
4591 desc_bound_bitpos (bounds_type, i, 1),
4592 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4593 }
d2e4a39e 4594
40bc484c 4595 bounds = ensure_lval (bounds);
d2e4a39e 4596
19f220c3
JK
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (ensure_lval (arr),
4600 TYPE_FIELD_TYPE (desc_type, 0)),
4601 fat_pntr_data_bitpos (desc_type),
4602 fat_pntr_data_bitsize (desc_type));
4603
4604 modify_field (value_type (descriptor),
4605 value_contents_writeable (descriptor),
4606 value_pointer (bounds,
4607 TYPE_FIELD_TYPE (desc_type, 1)),
4608 fat_pntr_bounds_bitpos (desc_type),
4609 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4610
40bc484c 4611 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4612
4613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4614 return value_addr (descriptor);
4615 else
4616 return descriptor;
4617}
14f9c5c9 4618\f
3d9434b5
JB
4619 /* Symbol Cache Module */
4620
3d9434b5 4621/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4622 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4623 on the type of entity being printed, the cache can make it as much
4624 as an order of magnitude faster than without it.
4625
4626 The descriptive type DWARF extension has significantly reduced
4627 the need for this cache, at least when DWARF is being used. However,
4628 even in this case, some expensive name-based symbol searches are still
4629 sometimes necessary - to find an XVZ variable, mostly. */
4630
ee01b665 4631/* Initialize the contents of SYM_CACHE. */
3d9434b5 4632
ee01b665
JB
4633static void
4634ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635{
4636 obstack_init (&sym_cache->cache_space);
4637 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4638}
3d9434b5 4639
ee01b665
JB
4640/* Free the memory used by SYM_CACHE. */
4641
4642static void
4643ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4644{
ee01b665
JB
4645 obstack_free (&sym_cache->cache_space, NULL);
4646 xfree (sym_cache);
4647}
3d9434b5 4648
ee01b665
JB
4649/* Return the symbol cache associated to the given program space PSPACE.
4650 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4651
ee01b665
JB
4652static struct ada_symbol_cache *
4653ada_get_symbol_cache (struct program_space *pspace)
4654{
4655 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4656
66c168ae 4657 if (pspace_data->sym_cache == NULL)
ee01b665 4658 {
66c168ae
JB
4659 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4660 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4661 }
4662
66c168ae 4663 return pspace_data->sym_cache;
ee01b665 4664}
3d9434b5
JB
4665
4666/* Clear all entries from the symbol cache. */
4667
4668static void
4669ada_clear_symbol_cache (void)
4670{
ee01b665
JB
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673
4674 obstack_free (&sym_cache->cache_space, NULL);
4675 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4676}
4677
fe978cb0 4678/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4679 Return it if found, or NULL otherwise. */
4680
4681static struct cache_entry **
fe978cb0 4682find_entry (const char *name, domain_enum domain)
3d9434b5 4683{
ee01b665
JB
4684 struct ada_symbol_cache *sym_cache
4685 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4686 int h = msymbol_hash (name) % HASH_SIZE;
4687 struct cache_entry **e;
4688
ee01b665 4689 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4690 {
fe978cb0 4691 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4692 return e;
4693 }
4694 return NULL;
4695}
4696
fe978cb0 4697/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4698 Return 1 if found, 0 otherwise.
4699
4700 If an entry was found and SYM is not NULL, set *SYM to the entry's
4701 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4702
96d887e8 4703static int
fe978cb0 4704lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4705 struct symbol **sym, const struct block **block)
96d887e8 4706{
fe978cb0 4707 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4708
4709 if (e == NULL)
4710 return 0;
4711 if (sym != NULL)
4712 *sym = (*e)->sym;
4713 if (block != NULL)
4714 *block = (*e)->block;
4715 return 1;
96d887e8
PH
4716}
4717
3d9434b5 4718/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4719 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4720
96d887e8 4721static void
fe978cb0 4722cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4723 const struct block *block)
96d887e8 4724{
ee01b665
JB
4725 struct ada_symbol_cache *sym_cache
4726 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4727 int h;
4728 char *copy;
4729 struct cache_entry *e;
4730
1994afbf
DE
4731 /* Symbols for builtin types don't have a block.
4732 For now don't cache such symbols. */
4733 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4734 return;
4735
3d9434b5
JB
4736 /* If the symbol is a local symbol, then do not cache it, as a search
4737 for that symbol depends on the context. To determine whether
4738 the symbol is local or not, we check the block where we found it
4739 against the global and static blocks of its associated symtab. */
4740 if (sym
08be3fe3 4741 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4742 GLOBAL_BLOCK) != block
08be3fe3 4743 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4744 STATIC_BLOCK) != block)
3d9434b5
JB
4745 return;
4746
4747 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4748 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
224c3ddb
SM
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4753 strcpy (copy, name);
4754 e->sym = sym;
fe978cb0 4755 e->domain = domain;
3d9434b5 4756 e->block = block;
96d887e8 4757}
4c4b4cd2
PH
4758\f
4759 /* Symbol Lookup */
4760
b5ec771e
PA
4761/* Return the symbol name match type that should be used used when
4762 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4765 for Ada lookups. */
c0431670 4766
b5ec771e
PA
4767static symbol_name_match_type
4768name_match_type_from_name (const char *lookup_name)
c0431670 4769{
b5ec771e
PA
4770 return (strstr (lookup_name, "__") == NULL
4771 ? symbol_name_match_type::WILD
4772 : symbol_name_match_type::FULL);
c0431670
JB
4773}
4774
4c4b4cd2
PH
4775/* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778static struct symbol *
4779standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781{
acbd605d 4782 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4783 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4784
d12307c1
PMR
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
2570f2b7 4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4c4b4cd2
PH
4790}
4791
4792
4793/* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796static int
d12307c1 4797is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4798{
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
d12307c1
PMR
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4805 return 1;
4806
4807 return 0;
4808}
4809
4810/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4811 struct types. Otherwise, they may not. */
14f9c5c9
AS
4812
4813static int
d2e4a39e 4814equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4815{
d2e4a39e 4816 if (type0 == type1)
14f9c5c9 4817 return 1;
d2e4a39e 4818 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
d2e4a39e 4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4825 return 1;
d2e4a39e 4826
14f9c5c9
AS
4827 return 0;
4828}
4829
4830/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4831 no more defined than that of SYM1. */
14f9c5c9
AS
4832
4833static int
d2e4a39e 4834lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4835{
4836 if (sym0 == sym1)
4837 return 1;
176620f1 4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
d2e4a39e 4842 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4c4b4cd2
PH
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4852 int len0 = strlen (name0);
5b4ee69b 4853
4c4b4cd2
PH
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4858 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4863 default:
4864 return 0;
14f9c5c9
AS
4865 }
4866}
4867
d12307c1 4868/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4870
4871static void
76a01679
JB
4872add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
f0c5f9b2 4874 const struct block *block)
14f9c5c9
AS
4875{
4876 int i;
d12307c1 4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4878
529cad9c
PH
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4c4b4cd2
PH
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
d12307c1 4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4891 return;
d12307c1 4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4893 {
d12307c1 4894 prevDefns[i].symbol = sym;
4c4b4cd2 4895 prevDefns[i].block = block;
4c4b4cd2 4896 return;
76a01679 4897 }
4c4b4cd2
PH
4898 }
4899
4900 {
d12307c1 4901 struct block_symbol info;
4c4b4cd2 4902
d12307c1 4903 info.symbol = sym;
4c4b4cd2 4904 info.block = block;
d12307c1 4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4906 }
4907}
4908
d12307c1
PMR
4909/* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4c4b4cd2 4911
76a01679
JB
4912static int
4913num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4914{
d12307c1 4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4916}
4917
d12307c1
PMR
4918/* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4920
d12307c1 4921static struct block_symbol *
4c4b4cd2
PH
4922defns_collected (struct obstack *obstackp, int finish)
4923{
4924 if (finish)
224c3ddb 4925 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4926 else
d12307c1 4927 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4928}
4929
7c7b6655
TT
4930/* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4c4b4cd2 4935
7c7b6655 4936struct bound_minimal_symbol
96d887e8 4937ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4938{
7c7b6655 4939 struct bound_minimal_symbol result;
4c4b4cd2 4940 struct objfile *objfile;
96d887e8 4941 struct minimal_symbol *msymbol;
4c4b4cd2 4942
7c7b6655
TT
4943 memset (&result, 0, sizeof (result));
4944
b5ec771e
PA
4945 symbol_name_match_type match_type = name_match_type_from_name (name);
4946 lookup_name_info lookup_name (name, match_type);
4947
4948 symbol_name_matcher_ftype *match_name
4949 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4950
96d887e8
PH
4951 ALL_MSYMBOLS (objfile, msymbol)
4952 {
b5ec771e 4953 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4954 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4955 {
4956 result.minsym = msymbol;
4957 result.objfile = objfile;
4958 break;
4959 }
96d887e8 4960 }
4c4b4cd2 4961
7c7b6655 4962 return result;
96d887e8 4963}
4c4b4cd2 4964
96d887e8
PH
4965/* For all subprograms that statically enclose the subprogram of the
4966 selected frame, add symbols matching identifier NAME in DOMAIN
4967 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4968 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4969 with a wildcard prefix. */
4c4b4cd2 4970
96d887e8
PH
4971static void
4972add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4973 const lookup_name_info &lookup_name,
4974 domain_enum domain)
96d887e8 4975{
96d887e8 4976}
14f9c5c9 4977
96d887e8
PH
4978/* True if TYPE is definitely an artificial type supplied to a symbol
4979 for which no debugging information was given in the symbol file. */
14f9c5c9 4980
96d887e8
PH
4981static int
4982is_nondebugging_type (struct type *type)
4983{
0d5cff50 4984 const char *name = ada_type_name (type);
5b4ee69b 4985
96d887e8
PH
4986 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4987}
4c4b4cd2 4988
8f17729f
JB
4989/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4990 that are deemed "identical" for practical purposes.
4991
4992 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4993 types and that their number of enumerals is identical (in other
4994 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4995
4996static int
4997ada_identical_enum_types_p (struct type *type1, struct type *type2)
4998{
4999 int i;
5000
5001 /* The heuristic we use here is fairly conservative. We consider
5002 that 2 enumerate types are identical if they have the same
5003 number of enumerals and that all enumerals have the same
5004 underlying value and name. */
5005
5006 /* All enums in the type should have an identical underlying value. */
5007 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5008 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5009 return 0;
5010
5011 /* All enumerals should also have the same name (modulo any numerical
5012 suffix). */
5013 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 {
0d5cff50
DE
5015 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5016 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5017 int len_1 = strlen (name_1);
5018 int len_2 = strlen (name_2);
5019
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5021 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 if (len_1 != len_2
5023 || strncmp (TYPE_FIELD_NAME (type1, i),
5024 TYPE_FIELD_NAME (type2, i),
5025 len_1) != 0)
5026 return 0;
5027 }
5028
5029 return 1;
5030}
5031
5032/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5033 that are deemed "identical" for practical purposes. Sometimes,
5034 enumerals are not strictly identical, but their types are so similar
5035 that they can be considered identical.
5036
5037 For instance, consider the following code:
5038
5039 type Color is (Black, Red, Green, Blue, White);
5040 type RGB_Color is new Color range Red .. Blue;
5041
5042 Type RGB_Color is a subrange of an implicit type which is a copy
5043 of type Color. If we call that implicit type RGB_ColorB ("B" is
5044 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5045 As a result, when an expression references any of the enumeral
5046 by name (Eg. "print green"), the expression is technically
5047 ambiguous and the user should be asked to disambiguate. But
5048 doing so would only hinder the user, since it wouldn't matter
5049 what choice he makes, the outcome would always be the same.
5050 So, for practical purposes, we consider them as the same. */
5051
5052static int
54d343a2 5053symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5054{
5055 int i;
5056
5057 /* Before performing a thorough comparison check of each type,
5058 we perform a series of inexpensive checks. We expect that these
5059 checks will quickly fail in the vast majority of cases, and thus
5060 help prevent the unnecessary use of a more expensive comparison.
5061 Said comparison also expects us to make some of these checks
5062 (see ada_identical_enum_types_p). */
5063
5064 /* Quick check: All symbols should have an enum type. */
54d343a2 5065 for (i = 0; i < syms.size (); i++)
d12307c1 5066 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5067 return 0;
5068
5069 /* Quick check: They should all have the same value. */
54d343a2 5070 for (i = 1; i < syms.size (); i++)
d12307c1 5071 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5072 return 0;
5073
5074 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5075 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5076 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5077 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5078 return 0;
5079
5080 /* All the sanity checks passed, so we might have a set of
5081 identical enumeration types. Perform a more complete
5082 comparison of the type of each symbol. */
54d343a2 5083 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5084 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5085 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5086 return 0;
5087
5088 return 1;
5089}
5090
54d343a2 5091/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5092 duplicate other symbols in the list (The only case I know of where
5093 this happens is when object files containing stabs-in-ecoff are
5094 linked with files containing ordinary ecoff debugging symbols (or no
5095 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5096 Returns the number of items in the modified list. */
4c4b4cd2 5097
96d887e8 5098static int
54d343a2 5099remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5100{
5101 int i, j;
4c4b4cd2 5102
8f17729f
JB
5103 /* We should never be called with less than 2 symbols, as there
5104 cannot be any extra symbol in that case. But it's easy to
5105 handle, since we have nothing to do in that case. */
54d343a2
TT
5106 if (syms->size () < 2)
5107 return syms->size ();
8f17729f 5108
96d887e8 5109 i = 0;
54d343a2 5110 while (i < syms->size ())
96d887e8 5111 {
a35ddb44 5112 int remove_p = 0;
339c13b6
JB
5113
5114 /* If two symbols have the same name and one of them is a stub type,
5115 the get rid of the stub. */
5116
54d343a2
TT
5117 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5118 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5119 {
54d343a2 5120 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5121 {
5122 if (j != i
54d343a2
TT
5123 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5124 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5125 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5126 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5127 remove_p = 1;
339c13b6
JB
5128 }
5129 }
5130
5131 /* Two symbols with the same name, same class and same address
5132 should be identical. */
5133
54d343a2
TT
5134 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5135 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5136 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5137 {
54d343a2 5138 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5139 {
5140 if (i != j
54d343a2
TT
5141 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5142 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5143 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5144 && SYMBOL_CLASS ((*syms)[i].symbol)
5145 == SYMBOL_CLASS ((*syms)[j].symbol)
5146 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5147 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5148 remove_p = 1;
4c4b4cd2 5149 }
4c4b4cd2 5150 }
339c13b6 5151
a35ddb44 5152 if (remove_p)
54d343a2 5153 syms->erase (syms->begin () + i);
339c13b6 5154
96d887e8 5155 i += 1;
14f9c5c9 5156 }
8f17729f
JB
5157
5158 /* If all the remaining symbols are identical enumerals, then
5159 just keep the first one and discard the rest.
5160
5161 Unlike what we did previously, we do not discard any entry
5162 unless they are ALL identical. This is because the symbol
5163 comparison is not a strict comparison, but rather a practical
5164 comparison. If all symbols are considered identical, then
5165 we can just go ahead and use the first one and discard the rest.
5166 But if we cannot reduce the list to a single element, we have
5167 to ask the user to disambiguate anyways. And if we have to
5168 present a multiple-choice menu, it's less confusing if the list
5169 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5170 if (symbols_are_identical_enums (*syms))
5171 syms->resize (1);
8f17729f 5172
54d343a2 5173 return syms->size ();
14f9c5c9
AS
5174}
5175
96d887e8
PH
5176/* Given a type that corresponds to a renaming entity, use the type name
5177 to extract the scope (package name or function name, fully qualified,
5178 and following the GNAT encoding convention) where this renaming has been
49d83361 5179 defined. */
4c4b4cd2 5180
49d83361 5181static std::string
96d887e8 5182xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5183{
96d887e8 5184 /* The renaming types adhere to the following convention:
0963b4bd 5185 <scope>__<rename>___<XR extension>.
96d887e8
PH
5186 So, to extract the scope, we search for the "___XR" extension,
5187 and then backtrack until we find the first "__". */
76a01679 5188
a737d952 5189 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5190 const char *suffix = strstr (name, "___XR");
5191 const char *last;
14f9c5c9 5192
96d887e8
PH
5193 /* Now, backtrack a bit until we find the first "__". Start looking
5194 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5195
96d887e8
PH
5196 for (last = suffix - 3; last > name; last--)
5197 if (last[0] == '_' && last[1] == '_')
5198 break;
76a01679 5199
96d887e8 5200 /* Make a copy of scope and return it. */
49d83361 5201 return std::string (name, last);
4c4b4cd2
PH
5202}
5203
96d887e8 5204/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5205
96d887e8
PH
5206static int
5207is_package_name (const char *name)
4c4b4cd2 5208{
96d887e8
PH
5209 /* Here, We take advantage of the fact that no symbols are generated
5210 for packages, while symbols are generated for each function.
5211 So the condition for NAME represent a package becomes equivalent
5212 to NAME not existing in our list of symbols. There is only one
5213 small complication with library-level functions (see below). */
4c4b4cd2 5214
96d887e8
PH
5215 /* If it is a function that has not been defined at library level,
5216 then we should be able to look it up in the symbols. */
5217 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5218 return 0;
14f9c5c9 5219
96d887e8
PH
5220 /* Library-level function names start with "_ada_". See if function
5221 "_ada_" followed by NAME can be found. */
14f9c5c9 5222
96d887e8 5223 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5224 functions names cannot contain "__" in them. */
96d887e8
PH
5225 if (strstr (name, "__") != NULL)
5226 return 0;
4c4b4cd2 5227
528e1572 5228 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5229
528e1572 5230 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5231}
14f9c5c9 5232
96d887e8 5233/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5234 not visible from FUNCTION_NAME. */
14f9c5c9 5235
96d887e8 5236static int
0d5cff50 5237old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5238{
aeb5907d
JB
5239 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5240 return 0;
5241
49d83361 5242 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5243
96d887e8 5244 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5245 if (is_package_name (scope.c_str ()))
5246 return 0;
14f9c5c9 5247
96d887e8
PH
5248 /* Check that the rename is in the current function scope by checking
5249 that its name starts with SCOPE. */
76a01679 5250
96d887e8
PH
5251 /* If the function name starts with "_ada_", it means that it is
5252 a library-level function. Strip this prefix before doing the
5253 comparison, as the encoding for the renaming does not contain
5254 this prefix. */
61012eef 5255 if (startswith (function_name, "_ada_"))
96d887e8 5256 function_name += 5;
f26caa11 5257
49d83361 5258 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5259}
5260
aeb5907d
JB
5261/* Remove entries from SYMS that corresponds to a renaming entity that
5262 is not visible from the function associated with CURRENT_BLOCK or
5263 that is superfluous due to the presence of more specific renaming
5264 information. Places surviving symbols in the initial entries of
5265 SYMS and returns the number of surviving symbols.
96d887e8
PH
5266
5267 Rationale:
aeb5907d
JB
5268 First, in cases where an object renaming is implemented as a
5269 reference variable, GNAT may produce both the actual reference
5270 variable and the renaming encoding. In this case, we discard the
5271 latter.
5272
5273 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5274 entity. Unfortunately, STABS currently does not support the definition
5275 of types that are local to a given lexical block, so all renamings types
5276 are emitted at library level. As a consequence, if an application
5277 contains two renaming entities using the same name, and a user tries to
5278 print the value of one of these entities, the result of the ada symbol
5279 lookup will also contain the wrong renaming type.
f26caa11 5280
96d887e8
PH
5281 This function partially covers for this limitation by attempting to
5282 remove from the SYMS list renaming symbols that should be visible
5283 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5284 method with the current information available. The implementation
5285 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5286
5287 - When the user tries to print a rename in a function while there
5288 is another rename entity defined in a package: Normally, the
5289 rename in the function has precedence over the rename in the
5290 package, so the latter should be removed from the list. This is
5291 currently not the case.
5292
5293 - This function will incorrectly remove valid renames if
5294 the CURRENT_BLOCK corresponds to a function which symbol name
5295 has been changed by an "Export" pragma. As a consequence,
5296 the user will be unable to print such rename entities. */
4c4b4cd2 5297
14f9c5c9 5298static int
54d343a2
TT
5299remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5300 const struct block *current_block)
4c4b4cd2
PH
5301{
5302 struct symbol *current_function;
0d5cff50 5303 const char *current_function_name;
4c4b4cd2 5304 int i;
aeb5907d
JB
5305 int is_new_style_renaming;
5306
5307 /* If there is both a renaming foo___XR... encoded as a variable and
5308 a simple variable foo in the same block, discard the latter.
0963b4bd 5309 First, zero out such symbols, then compress. */
aeb5907d 5310 is_new_style_renaming = 0;
54d343a2 5311 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5312 {
54d343a2
TT
5313 struct symbol *sym = (*syms)[i].symbol;
5314 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5315 const char *name;
5316 const char *suffix;
5317
5318 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5319 continue;
5320 name = SYMBOL_LINKAGE_NAME (sym);
5321 suffix = strstr (name, "___XR");
5322
5323 if (suffix != NULL)
5324 {
5325 int name_len = suffix - name;
5326 int j;
5b4ee69b 5327
aeb5907d 5328 is_new_style_renaming = 1;
54d343a2
TT
5329 for (j = 0; j < syms->size (); j += 1)
5330 if (i != j && (*syms)[j].symbol != NULL
5331 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5332 name_len) == 0
54d343a2
TT
5333 && block == (*syms)[j].block)
5334 (*syms)[j].symbol = NULL;
aeb5907d
JB
5335 }
5336 }
5337 if (is_new_style_renaming)
5338 {
5339 int j, k;
5340
54d343a2
TT
5341 for (j = k = 0; j < syms->size (); j += 1)
5342 if ((*syms)[j].symbol != NULL)
aeb5907d 5343 {
54d343a2 5344 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5345 k += 1;
5346 }
5347 return k;
5348 }
4c4b4cd2
PH
5349
5350 /* Extract the function name associated to CURRENT_BLOCK.
5351 Abort if unable to do so. */
76a01679 5352
4c4b4cd2 5353 if (current_block == NULL)
54d343a2 5354 return syms->size ();
76a01679 5355
7f0df278 5356 current_function = block_linkage_function (current_block);
4c4b4cd2 5357 if (current_function == NULL)
54d343a2 5358 return syms->size ();
4c4b4cd2
PH
5359
5360 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5361 if (current_function_name == NULL)
54d343a2 5362 return syms->size ();
4c4b4cd2
PH
5363
5364 /* Check each of the symbols, and remove it from the list if it is
5365 a type corresponding to a renaming that is out of the scope of
5366 the current block. */
5367
5368 i = 0;
54d343a2 5369 while (i < syms->size ())
4c4b4cd2 5370 {
54d343a2 5371 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5372 == ADA_OBJECT_RENAMING
54d343a2
TT
5373 && old_renaming_is_invisible ((*syms)[i].symbol,
5374 current_function_name))
5375 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5376 else
5377 i += 1;
5378 }
5379
54d343a2 5380 return syms->size ();
4c4b4cd2
PH
5381}
5382
339c13b6
JB
5383/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5384 whose name and domain match NAME and DOMAIN respectively.
5385 If no match was found, then extend the search to "enclosing"
5386 routines (in other words, if we're inside a nested function,
5387 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5388 If WILD_MATCH_P is nonzero, perform the naming matching in
5389 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5390
5391 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5392
5393static void
b5ec771e
PA
5394ada_add_local_symbols (struct obstack *obstackp,
5395 const lookup_name_info &lookup_name,
5396 const struct block *block, domain_enum domain)
339c13b6
JB
5397{
5398 int block_depth = 0;
5399
5400 while (block != NULL)
5401 {
5402 block_depth += 1;
b5ec771e 5403 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5404
5405 /* If we found a non-function match, assume that's the one. */
5406 if (is_nonfunction (defns_collected (obstackp, 0),
5407 num_defns_collected (obstackp)))
5408 return;
5409
5410 block = BLOCK_SUPERBLOCK (block);
5411 }
5412
5413 /* If no luck so far, try to find NAME as a local symbol in some lexically
5414 enclosing subprogram. */
5415 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5416 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5417}
5418
ccefe4c4 5419/* An object of this type is used as the user_data argument when
40658b94 5420 calling the map_matching_symbols method. */
ccefe4c4 5421
40658b94 5422struct match_data
ccefe4c4 5423{
40658b94 5424 struct objfile *objfile;
ccefe4c4 5425 struct obstack *obstackp;
40658b94
PH
5426 struct symbol *arg_sym;
5427 int found_sym;
ccefe4c4
TT
5428};
5429
22cee43f 5430/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5431 to a list of symbols. DATA0 is a pointer to a struct match_data *
5432 containing the obstack that collects the symbol list, the file that SYM
5433 must come from, a flag indicating whether a non-argument symbol has
5434 been found in the current block, and the last argument symbol
5435 passed in SYM within the current block (if any). When SYM is null,
5436 marking the end of a block, the argument symbol is added if no
5437 other has been found. */
ccefe4c4 5438
40658b94
PH
5439static int
5440aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5441{
40658b94
PH
5442 struct match_data *data = (struct match_data *) data0;
5443
5444 if (sym == NULL)
5445 {
5446 if (!data->found_sym && data->arg_sym != NULL)
5447 add_defn_to_vec (data->obstackp,
5448 fixup_symbol_section (data->arg_sym, data->objfile),
5449 block);
5450 data->found_sym = 0;
5451 data->arg_sym = NULL;
5452 }
5453 else
5454 {
5455 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5456 return 0;
5457 else if (SYMBOL_IS_ARGUMENT (sym))
5458 data->arg_sym = sym;
5459 else
5460 {
5461 data->found_sym = 1;
5462 add_defn_to_vec (data->obstackp,
5463 fixup_symbol_section (sym, data->objfile),
5464 block);
5465 }
5466 }
5467 return 0;
5468}
5469
b5ec771e
PA
5470/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5471 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5472 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5473
5474static int
5475ada_add_block_renamings (struct obstack *obstackp,
5476 const struct block *block,
b5ec771e
PA
5477 const lookup_name_info &lookup_name,
5478 domain_enum domain)
22cee43f
PMR
5479{
5480 struct using_direct *renaming;
5481 int defns_mark = num_defns_collected (obstackp);
5482
b5ec771e
PA
5483 symbol_name_matcher_ftype *name_match
5484 = ada_get_symbol_name_matcher (lookup_name);
5485
22cee43f
PMR
5486 for (renaming = block_using (block);
5487 renaming != NULL;
5488 renaming = renaming->next)
5489 {
5490 const char *r_name;
22cee43f
PMR
5491
5492 /* Avoid infinite recursions: skip this renaming if we are actually
5493 already traversing it.
5494
5495 Currently, symbol lookup in Ada don't use the namespace machinery from
5496 C++/Fortran support: skip namespace imports that use them. */
5497 if (renaming->searched
5498 || (renaming->import_src != NULL
5499 && renaming->import_src[0] != '\0')
5500 || (renaming->import_dest != NULL
5501 && renaming->import_dest[0] != '\0'))
5502 continue;
5503 renaming->searched = 1;
5504
5505 /* TODO: here, we perform another name-based symbol lookup, which can
5506 pull its own multiple overloads. In theory, we should be able to do
5507 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5508 not a simple name. But in order to do this, we would need to enhance
5509 the DWARF reader to associate a symbol to this renaming, instead of a
5510 name. So, for now, we do something simpler: re-use the C++/Fortran
5511 namespace machinery. */
5512 r_name = (renaming->alias != NULL
5513 ? renaming->alias
5514 : renaming->declaration);
b5ec771e
PA
5515 if (name_match (r_name, lookup_name, NULL))
5516 {
5517 lookup_name_info decl_lookup_name (renaming->declaration,
5518 lookup_name.match_type ());
5519 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5520 1, NULL);
5521 }
22cee43f
PMR
5522 renaming->searched = 0;
5523 }
5524 return num_defns_collected (obstackp) != defns_mark;
5525}
5526
db230ce3
JB
5527/* Implements compare_names, but only applying the comparision using
5528 the given CASING. */
5b4ee69b 5529
40658b94 5530static int
db230ce3
JB
5531compare_names_with_case (const char *string1, const char *string2,
5532 enum case_sensitivity casing)
40658b94
PH
5533{
5534 while (*string1 != '\0' && *string2 != '\0')
5535 {
db230ce3
JB
5536 char c1, c2;
5537
40658b94
PH
5538 if (isspace (*string1) || isspace (*string2))
5539 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5540
5541 if (casing == case_sensitive_off)
5542 {
5543 c1 = tolower (*string1);
5544 c2 = tolower (*string2);
5545 }
5546 else
5547 {
5548 c1 = *string1;
5549 c2 = *string2;
5550 }
5551 if (c1 != c2)
40658b94 5552 break;
db230ce3 5553
40658b94
PH
5554 string1 += 1;
5555 string2 += 1;
5556 }
db230ce3 5557
40658b94
PH
5558 switch (*string1)
5559 {
5560 case '(':
5561 return strcmp_iw_ordered (string1, string2);
5562 case '_':
5563 if (*string2 == '\0')
5564 {
052874e8 5565 if (is_name_suffix (string1))
40658b94
PH
5566 return 0;
5567 else
1a1d5513 5568 return 1;
40658b94 5569 }
dbb8534f 5570 /* FALLTHROUGH */
40658b94
PH
5571 default:
5572 if (*string2 == '(')
5573 return strcmp_iw_ordered (string1, string2);
5574 else
db230ce3
JB
5575 {
5576 if (casing == case_sensitive_off)
5577 return tolower (*string1) - tolower (*string2);
5578 else
5579 return *string1 - *string2;
5580 }
40658b94 5581 }
ccefe4c4
TT
5582}
5583
db230ce3
JB
5584/* Compare STRING1 to STRING2, with results as for strcmp.
5585 Compatible with strcmp_iw_ordered in that...
5586
5587 strcmp_iw_ordered (STRING1, STRING2) <= 0
5588
5589 ... implies...
5590
5591 compare_names (STRING1, STRING2) <= 0
5592
5593 (they may differ as to what symbols compare equal). */
5594
5595static int
5596compare_names (const char *string1, const char *string2)
5597{
5598 int result;
5599
5600 /* Similar to what strcmp_iw_ordered does, we need to perform
5601 a case-insensitive comparison first, and only resort to
5602 a second, case-sensitive, comparison if the first one was
5603 not sufficient to differentiate the two strings. */
5604
5605 result = compare_names_with_case (string1, string2, case_sensitive_off);
5606 if (result == 0)
5607 result = compare_names_with_case (string1, string2, case_sensitive_on);
5608
5609 return result;
5610}
5611
b5ec771e
PA
5612/* Convenience function to get at the Ada encoded lookup name for
5613 LOOKUP_NAME, as a C string. */
5614
5615static const char *
5616ada_lookup_name (const lookup_name_info &lookup_name)
5617{
5618 return lookup_name.ada ().lookup_name ().c_str ();
5619}
5620
339c13b6 5621/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5622 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5623 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5624 symbols otherwise. */
339c13b6
JB
5625
5626static void
b5ec771e
PA
5627add_nonlocal_symbols (struct obstack *obstackp,
5628 const lookup_name_info &lookup_name,
5629 domain_enum domain, int global)
339c13b6
JB
5630{
5631 struct objfile *objfile;
22cee43f 5632 struct compunit_symtab *cu;
40658b94 5633 struct match_data data;
339c13b6 5634
6475f2fe 5635 memset (&data, 0, sizeof data);
ccefe4c4 5636 data.obstackp = obstackp;
339c13b6 5637
b5ec771e
PA
5638 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5639
ccefe4c4 5640 ALL_OBJFILES (objfile)
40658b94
PH
5641 {
5642 data.objfile = objfile;
5643
5644 if (is_wild_match)
b5ec771e
PA
5645 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5646 domain, global,
4186eb54 5647 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5648 symbol_name_match_type::WILD,
5649 NULL);
40658b94 5650 else
b5ec771e
PA
5651 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5652 domain, global,
4186eb54 5653 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5654 symbol_name_match_type::FULL,
5655 compare_names);
22cee43f
PMR
5656
5657 ALL_OBJFILE_COMPUNITS (objfile, cu)
5658 {
5659 const struct block *global_block
5660 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5661
b5ec771e
PA
5662 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5663 domain))
22cee43f
PMR
5664 data.found_sym = 1;
5665 }
40658b94
PH
5666 }
5667
5668 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5669 {
b5ec771e
PA
5670 const char *name = ada_lookup_name (lookup_name);
5671 std::string name1 = std::string ("<_ada_") + name + '>';
5672
40658b94
PH
5673 ALL_OBJFILES (objfile)
5674 {
40658b94 5675 data.objfile = objfile;
b5ec771e
PA
5676 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5677 domain, global,
0963b4bd
MS
5678 aux_add_nonlocal_symbols,
5679 &data,
b5ec771e
PA
5680 symbol_name_match_type::FULL,
5681 compare_names);
40658b94
PH
5682 }
5683 }
339c13b6
JB
5684}
5685
b5ec771e
PA
5686/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5687 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5688 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5689
22cee43f
PMR
5690 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5691 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5692 is the one match returned (no other matches in that or
d9680e73 5693 enclosing blocks is returned). If there are any matches in or
22cee43f 5694 surrounding BLOCK, then these alone are returned.
4eeaa230 5695
b5ec771e
PA
5696 Names prefixed with "standard__" are handled specially:
5697 "standard__" is first stripped off (by the lookup_name
5698 constructor), and only static and global symbols are searched.
14f9c5c9 5699
22cee43f
PMR
5700 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5701 to lookup global symbols. */
5702
5703static void
5704ada_add_all_symbols (struct obstack *obstackp,
5705 const struct block *block,
b5ec771e 5706 const lookup_name_info &lookup_name,
22cee43f
PMR
5707 domain_enum domain,
5708 int full_search,
5709 int *made_global_lookup_p)
14f9c5c9
AS
5710{
5711 struct symbol *sym;
14f9c5c9 5712
22cee43f
PMR
5713 if (made_global_lookup_p)
5714 *made_global_lookup_p = 0;
339c13b6
JB
5715
5716 /* Special case: If the user specifies a symbol name inside package
5717 Standard, do a non-wild matching of the symbol name without
5718 the "standard__" prefix. This was primarily introduced in order
5719 to allow the user to specifically access the standard exceptions
5720 using, for instance, Standard.Constraint_Error when Constraint_Error
5721 is ambiguous (due to the user defining its own Constraint_Error
5722 entity inside its program). */
b5ec771e
PA
5723 if (lookup_name.ada ().standard_p ())
5724 block = NULL;
4c4b4cd2 5725
339c13b6 5726 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5727
4eeaa230
DE
5728 if (block != NULL)
5729 {
5730 if (full_search)
b5ec771e 5731 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5732 else
5733 {
5734 /* In the !full_search case we're are being called by
5735 ada_iterate_over_symbols, and we don't want to search
5736 superblocks. */
b5ec771e 5737 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5738 }
22cee43f
PMR
5739 if (num_defns_collected (obstackp) > 0 || !full_search)
5740 return;
4eeaa230 5741 }
d2e4a39e 5742
339c13b6
JB
5743 /* No non-global symbols found. Check our cache to see if we have
5744 already performed this search before. If we have, then return
5745 the same result. */
5746
b5ec771e
PA
5747 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5748 domain, &sym, &block))
4c4b4cd2
PH
5749 {
5750 if (sym != NULL)
b5ec771e 5751 add_defn_to_vec (obstackp, sym, block);
22cee43f 5752 return;
4c4b4cd2 5753 }
14f9c5c9 5754
22cee43f
PMR
5755 if (made_global_lookup_p)
5756 *made_global_lookup_p = 1;
b1eedac9 5757
339c13b6
JB
5758 /* Search symbols from all global blocks. */
5759
b5ec771e 5760 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5761
4c4b4cd2 5762 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5763 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5764
22cee43f 5765 if (num_defns_collected (obstackp) == 0)
b5ec771e 5766 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5767}
5768
b5ec771e
PA
5769/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5770 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5771 matches.
54d343a2
TT
5772 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5773 found and the blocks and symbol tables (if any) in which they were
5774 found.
22cee43f
PMR
5775
5776 When full_search is non-zero, any non-function/non-enumeral
5777 symbol match within the nest of blocks whose innermost member is BLOCK,
5778 is the one match returned (no other matches in that or
5779 enclosing blocks is returned). If there are any matches in or
5780 surrounding BLOCK, then these alone are returned.
5781
5782 Names prefixed with "standard__" are handled specially: "standard__"
5783 is first stripped off, and only static and global symbols are searched. */
5784
5785static int
b5ec771e
PA
5786ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5787 const struct block *block,
22cee43f 5788 domain_enum domain,
54d343a2 5789 std::vector<struct block_symbol> *results,
22cee43f
PMR
5790 int full_search)
5791{
22cee43f
PMR
5792 int syms_from_global_search;
5793 int ndefns;
ec6a20c2 5794 auto_obstack obstack;
22cee43f 5795
ec6a20c2 5796 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5797 domain, full_search, &syms_from_global_search);
14f9c5c9 5798
ec6a20c2
JB
5799 ndefns = num_defns_collected (&obstack);
5800
54d343a2
TT
5801 struct block_symbol *base = defns_collected (&obstack, 1);
5802 for (int i = 0; i < ndefns; ++i)
5803 results->push_back (base[i]);
4c4b4cd2 5804
54d343a2 5805 ndefns = remove_extra_symbols (results);
4c4b4cd2 5806
b1eedac9 5807 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5808 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5809
b1eedac9 5810 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5811 cache_symbol (ada_lookup_name (lookup_name), domain,
5812 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5813
54d343a2 5814 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5815
14f9c5c9
AS
5816 return ndefns;
5817}
5818
b5ec771e 5819/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5820 in global scopes, returning the number of matches, and filling *RESULTS
5821 with (SYM,BLOCK) tuples.
ec6a20c2 5822
4eeaa230
DE
5823 See ada_lookup_symbol_list_worker for further details. */
5824
5825int
b5ec771e 5826ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5827 domain_enum domain,
5828 std::vector<struct block_symbol> *results)
4eeaa230 5829{
b5ec771e
PA
5830 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5831 lookup_name_info lookup_name (name, name_match_type);
5832
5833 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5834}
5835
5836/* Implementation of the la_iterate_over_symbols method. */
5837
5838static void
14bc53a8 5839ada_iterate_over_symbols
b5ec771e
PA
5840 (const struct block *block, const lookup_name_info &name,
5841 domain_enum domain,
14bc53a8 5842 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5843{
5844 int ndefs, i;
54d343a2 5845 std::vector<struct block_symbol> results;
4eeaa230
DE
5846
5847 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5848
4eeaa230
DE
5849 for (i = 0; i < ndefs; ++i)
5850 {
7e41c8db 5851 if (!callback (&results[i]))
4eeaa230
DE
5852 break;
5853 }
5854}
5855
4e5c77fe
JB
5856/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5857 to 1, but choosing the first symbol found if there are multiple
5858 choices.
5859
5e2336be
JB
5860 The result is stored in *INFO, which must be non-NULL.
5861 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5862
5863void
5864ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5865 domain_enum domain,
d12307c1 5866 struct block_symbol *info)
14f9c5c9 5867{
b5ec771e
PA
5868 /* Since we already have an encoded name, wrap it in '<>' to force a
5869 verbatim match. Otherwise, if the name happens to not look like
5870 an encoded name (because it doesn't include a "__"),
5871 ada_lookup_name_info would re-encode/fold it again, and that
5872 would e.g., incorrectly lowercase object renaming names like
5873 "R28b" -> "r28b". */
5874 std::string verbatim = std::string ("<") + name + '>';
5875
5e2336be 5876 gdb_assert (info != NULL);
f98fc17b 5877 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5878}
aeb5907d
JB
5879
5880/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5881 scope and in global scopes, or NULL if none. NAME is folded and
5882 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5883 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5884 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5885
d12307c1 5886struct block_symbol
aeb5907d 5887ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5888 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5889{
5890 if (is_a_field_of_this != NULL)
5891 *is_a_field_of_this = 0;
5892
54d343a2 5893 std::vector<struct block_symbol> candidates;
f98fc17b 5894 int n_candidates;
f98fc17b
PA
5895
5896 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5897
5898 if (n_candidates == 0)
54d343a2 5899 return {};
f98fc17b
PA
5900
5901 block_symbol info = candidates[0];
5902 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5903 return info;
4c4b4cd2 5904}
14f9c5c9 5905
d12307c1 5906static struct block_symbol
f606139a
DE
5907ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5908 const char *name,
76a01679 5909 const struct block *block,
21b556f4 5910 const domain_enum domain)
4c4b4cd2 5911{
d12307c1 5912 struct block_symbol sym;
04dccad0
JB
5913
5914 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5915 if (sym.symbol != NULL)
04dccad0
JB
5916 return sym;
5917
5918 /* If we haven't found a match at this point, try the primitive
5919 types. In other languages, this search is performed before
5920 searching for global symbols in order to short-circuit that
5921 global-symbol search if it happens that the name corresponds
5922 to a primitive type. But we cannot do the same in Ada, because
5923 it is perfectly legitimate for a program to declare a type which
5924 has the same name as a standard type. If looking up a type in
5925 that situation, we have traditionally ignored the primitive type
5926 in favor of user-defined types. This is why, unlike most other
5927 languages, we search the primitive types this late and only after
5928 having searched the global symbols without success. */
5929
5930 if (domain == VAR_DOMAIN)
5931 {
5932 struct gdbarch *gdbarch;
5933
5934 if (block == NULL)
5935 gdbarch = target_gdbarch ();
5936 else
5937 gdbarch = block_gdbarch (block);
d12307c1
PMR
5938 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5939 if (sym.symbol != NULL)
04dccad0
JB
5940 return sym;
5941 }
5942
d12307c1 5943 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5944}
5945
5946
4c4b4cd2
PH
5947/* True iff STR is a possible encoded suffix of a normal Ada name
5948 that is to be ignored for matching purposes. Suffixes of parallel
5949 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5950 are given by any of the regular expressions:
4c4b4cd2 5951
babe1480
JB
5952 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5953 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5954 TKB [subprogram suffix for task bodies]
babe1480 5955 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5956 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5957
5958 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5959 match is performed. This sequence is used to differentiate homonyms,
5960 is an optional part of a valid name suffix. */
4c4b4cd2 5961
14f9c5c9 5962static int
d2e4a39e 5963is_name_suffix (const char *str)
14f9c5c9
AS
5964{
5965 int k;
4c4b4cd2
PH
5966 const char *matching;
5967 const int len = strlen (str);
5968
babe1480
JB
5969 /* Skip optional leading __[0-9]+. */
5970
4c4b4cd2
PH
5971 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5972 {
babe1480
JB
5973 str += 3;
5974 while (isdigit (str[0]))
5975 str += 1;
4c4b4cd2 5976 }
babe1480
JB
5977
5978 /* [.$][0-9]+ */
4c4b4cd2 5979
babe1480 5980 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5981 {
babe1480 5982 matching = str + 1;
4c4b4cd2
PH
5983 while (isdigit (matching[0]))
5984 matching += 1;
5985 if (matching[0] == '\0')
5986 return 1;
5987 }
5988
5989 /* ___[0-9]+ */
babe1480 5990
4c4b4cd2
PH
5991 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5992 {
5993 matching = str + 3;
5994 while (isdigit (matching[0]))
5995 matching += 1;
5996 if (matching[0] == '\0')
5997 return 1;
5998 }
5999
9ac7f98e
JB
6000 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6001
6002 if (strcmp (str, "TKB") == 0)
6003 return 1;
6004
529cad9c
PH
6005#if 0
6006 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6007 with a N at the end. Unfortunately, the compiler uses the same
6008 convention for other internal types it creates. So treating
529cad9c 6009 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6010 some regressions. For instance, consider the case of an enumerated
6011 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6012 name ends with N.
6013 Having a single character like this as a suffix carrying some
0963b4bd 6014 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6015 to be something like "_N" instead. In the meantime, do not do
6016 the following check. */
6017 /* Protected Object Subprograms */
6018 if (len == 1 && str [0] == 'N')
6019 return 1;
6020#endif
6021
6022 /* _E[0-9]+[bs]$ */
6023 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6024 {
6025 matching = str + 3;
6026 while (isdigit (matching[0]))
6027 matching += 1;
6028 if ((matching[0] == 'b' || matching[0] == 's')
6029 && matching [1] == '\0')
6030 return 1;
6031 }
6032
4c4b4cd2
PH
6033 /* ??? We should not modify STR directly, as we are doing below. This
6034 is fine in this case, but may become problematic later if we find
6035 that this alternative did not work, and want to try matching
6036 another one from the begining of STR. Since we modified it, we
6037 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6038 if (str[0] == 'X')
6039 {
6040 str += 1;
d2e4a39e 6041 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6042 {
6043 if (str[0] != 'n' && str[0] != 'b')
6044 return 0;
6045 str += 1;
6046 }
14f9c5c9 6047 }
babe1480 6048
14f9c5c9
AS
6049 if (str[0] == '\000')
6050 return 1;
babe1480 6051
d2e4a39e 6052 if (str[0] == '_')
14f9c5c9
AS
6053 {
6054 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6055 return 0;
d2e4a39e 6056 if (str[2] == '_')
4c4b4cd2 6057 {
61ee279c
PH
6058 if (strcmp (str + 3, "JM") == 0)
6059 return 1;
6060 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6061 the LJM suffix in favor of the JM one. But we will
6062 still accept LJM as a valid suffix for a reasonable
6063 amount of time, just to allow ourselves to debug programs
6064 compiled using an older version of GNAT. */
4c4b4cd2
PH
6065 if (strcmp (str + 3, "LJM") == 0)
6066 return 1;
6067 if (str[3] != 'X')
6068 return 0;
1265e4aa
JB
6069 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6070 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6071 return 1;
6072 if (str[4] == 'R' && str[5] != 'T')
6073 return 1;
6074 return 0;
6075 }
6076 if (!isdigit (str[2]))
6077 return 0;
6078 for (k = 3; str[k] != '\0'; k += 1)
6079 if (!isdigit (str[k]) && str[k] != '_')
6080 return 0;
14f9c5c9
AS
6081 return 1;
6082 }
4c4b4cd2 6083 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6084 {
4c4b4cd2
PH
6085 for (k = 2; str[k] != '\0'; k += 1)
6086 if (!isdigit (str[k]) && str[k] != '_')
6087 return 0;
14f9c5c9
AS
6088 return 1;
6089 }
6090 return 0;
6091}
d2e4a39e 6092
aeb5907d
JB
6093/* Return non-zero if the string starting at NAME and ending before
6094 NAME_END contains no capital letters. */
529cad9c
PH
6095
6096static int
6097is_valid_name_for_wild_match (const char *name0)
6098{
6099 const char *decoded_name = ada_decode (name0);
6100 int i;
6101
5823c3ef
JB
6102 /* If the decoded name starts with an angle bracket, it means that
6103 NAME0 does not follow the GNAT encoding format. It should then
6104 not be allowed as a possible wild match. */
6105 if (decoded_name[0] == '<')
6106 return 0;
6107
529cad9c
PH
6108 for (i=0; decoded_name[i] != '\0'; i++)
6109 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6110 return 0;
6111
6112 return 1;
6113}
6114
73589123
PH
6115/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6116 that could start a simple name. Assumes that *NAMEP points into
6117 the string beginning at NAME0. */
4c4b4cd2 6118
14f9c5c9 6119static int
73589123 6120advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6121{
73589123 6122 const char *name = *namep;
5b4ee69b 6123
5823c3ef 6124 while (1)
14f9c5c9 6125 {
aa27d0b3 6126 int t0, t1;
73589123
PH
6127
6128 t0 = *name;
6129 if (t0 == '_')
6130 {
6131 t1 = name[1];
6132 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6133 {
6134 name += 1;
61012eef 6135 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6136 break;
6137 else
6138 name += 1;
6139 }
aa27d0b3
JB
6140 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6141 || name[2] == target0))
73589123
PH
6142 {
6143 name += 2;
6144 break;
6145 }
6146 else
6147 return 0;
6148 }
6149 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6150 name += 1;
6151 else
5823c3ef 6152 return 0;
73589123
PH
6153 }
6154
6155 *namep = name;
6156 return 1;
6157}
6158
b5ec771e
PA
6159/* Return true iff NAME encodes a name of the form prefix.PATN.
6160 Ignores any informational suffixes of NAME (i.e., for which
6161 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6162 simple name. */
73589123 6163
b5ec771e 6164static bool
73589123
PH
6165wild_match (const char *name, const char *patn)
6166{
22e048c9 6167 const char *p;
73589123
PH
6168 const char *name0 = name;
6169
6170 while (1)
6171 {
6172 const char *match = name;
6173
6174 if (*name == *patn)
6175 {
6176 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6177 if (*p != *name)
6178 break;
6179 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6180 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6181
6182 if (name[-1] == '_')
6183 name -= 1;
6184 }
6185 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6186 return false;
96d887e8 6187 }
96d887e8
PH
6188}
6189
b5ec771e
PA
6190/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6191 any trailing suffixes that encode debugging information or leading
6192 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6193 information that is ignored). */
40658b94 6194
b5ec771e 6195static bool
c4d840bd
PH
6196full_match (const char *sym_name, const char *search_name)
6197{
b5ec771e
PA
6198 size_t search_name_len = strlen (search_name);
6199
6200 if (strncmp (sym_name, search_name, search_name_len) == 0
6201 && is_name_suffix (sym_name + search_name_len))
6202 return true;
6203
6204 if (startswith (sym_name, "_ada_")
6205 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6206 && is_name_suffix (sym_name + search_name_len + 5))
6207 return true;
c4d840bd 6208
b5ec771e
PA
6209 return false;
6210}
c4d840bd 6211
b5ec771e
PA
6212/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6213 *defn_symbols, updating the list of symbols in OBSTACKP (if
6214 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6215
6216static void
6217ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6218 const struct block *block,
6219 const lookup_name_info &lookup_name,
6220 domain_enum domain, struct objfile *objfile)
96d887e8 6221{
8157b174 6222 struct block_iterator iter;
96d887e8
PH
6223 /* A matching argument symbol, if any. */
6224 struct symbol *arg_sym;
6225 /* Set true when we find a matching non-argument symbol. */
6226 int found_sym;
6227 struct symbol *sym;
6228
6229 arg_sym = NULL;
6230 found_sym = 0;
b5ec771e
PA
6231 for (sym = block_iter_match_first (block, lookup_name, &iter);
6232 sym != NULL;
6233 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6234 {
b5ec771e
PA
6235 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6236 SYMBOL_DOMAIN (sym), domain))
6237 {
6238 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6239 {
6240 if (SYMBOL_IS_ARGUMENT (sym))
6241 arg_sym = sym;
6242 else
6243 {
6244 found_sym = 1;
6245 add_defn_to_vec (obstackp,
6246 fixup_symbol_section (sym, objfile),
6247 block);
6248 }
6249 }
6250 }
96d887e8
PH
6251 }
6252
22cee43f
PMR
6253 /* Handle renamings. */
6254
b5ec771e 6255 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6256 found_sym = 1;
6257
96d887e8
PH
6258 if (!found_sym && arg_sym != NULL)
6259 {
76a01679
JB
6260 add_defn_to_vec (obstackp,
6261 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6262 block);
96d887e8
PH
6263 }
6264
b5ec771e 6265 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6266 {
6267 arg_sym = NULL;
6268 found_sym = 0;
b5ec771e
PA
6269 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6270 const char *name = ada_lookup_name.c_str ();
6271 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6272
6273 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6274 {
4186eb54
KS
6275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6276 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6277 {
6278 int cmp;
6279
6280 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6281 if (cmp == 0)
6282 {
61012eef 6283 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6284 if (cmp == 0)
6285 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6286 name_len);
6287 }
6288
6289 if (cmp == 0
6290 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6291 {
2a2d4dc3
AS
6292 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6293 {
6294 if (SYMBOL_IS_ARGUMENT (sym))
6295 arg_sym = sym;
6296 else
6297 {
6298 found_sym = 1;
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (sym, objfile),
6301 block);
6302 }
6303 }
76a01679
JB
6304 }
6305 }
76a01679 6306 }
96d887e8
PH
6307
6308 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6309 They aren't parameters, right? */
6310 if (!found_sym && arg_sym != NULL)
6311 {
6312 add_defn_to_vec (obstackp,
76a01679 6313 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6314 block);
96d887e8
PH
6315 }
6316 }
6317}
6318\f
41d27058
JB
6319
6320 /* Symbol Completion */
6321
b5ec771e 6322/* See symtab.h. */
41d27058 6323
b5ec771e
PA
6324bool
6325ada_lookup_name_info::matches
6326 (const char *sym_name,
6327 symbol_name_match_type match_type,
a207cff2 6328 completion_match_result *comp_match_res) const
41d27058 6329{
b5ec771e
PA
6330 bool match = false;
6331 const char *text = m_encoded_name.c_str ();
6332 size_t text_len = m_encoded_name.size ();
41d27058
JB
6333
6334 /* First, test against the fully qualified name of the symbol. */
6335
6336 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6337 match = true;
41d27058 6338
b5ec771e 6339 if (match && !m_encoded_p)
41d27058
JB
6340 {
6341 /* One needed check before declaring a positive match is to verify
6342 that iff we are doing a verbatim match, the decoded version
6343 of the symbol name starts with '<'. Otherwise, this symbol name
6344 is not a suitable completion. */
6345 const char *sym_name_copy = sym_name;
b5ec771e 6346 bool has_angle_bracket;
41d27058
JB
6347
6348 sym_name = ada_decode (sym_name);
6349 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6350 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6351 sym_name = sym_name_copy;
6352 }
6353
b5ec771e 6354 if (match && !m_verbatim_p)
41d27058
JB
6355 {
6356 /* When doing non-verbatim match, another check that needs to
6357 be done is to verify that the potentially matching symbol name
6358 does not include capital letters, because the ada-mode would
6359 not be able to understand these symbol names without the
6360 angle bracket notation. */
6361 const char *tmp;
6362
6363 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6364 if (*tmp != '\0')
b5ec771e 6365 match = false;
41d27058
JB
6366 }
6367
6368 /* Second: Try wild matching... */
6369
b5ec771e 6370 if (!match && m_wild_match_p)
41d27058
JB
6371 {
6372 /* Since we are doing wild matching, this means that TEXT
6373 may represent an unqualified symbol name. We therefore must
6374 also compare TEXT against the unqualified name of the symbol. */
6375 sym_name = ada_unqualified_name (ada_decode (sym_name));
6376
6377 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6378 match = true;
41d27058
JB
6379 }
6380
b5ec771e 6381 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6382
6383 if (!match)
b5ec771e 6384 return false;
41d27058 6385
a207cff2 6386 if (comp_match_res != NULL)
b5ec771e 6387 {
a207cff2 6388 std::string &match_str = comp_match_res->match.storage ();
41d27058 6389
b5ec771e 6390 if (!m_encoded_p)
a207cff2 6391 match_str = ada_decode (sym_name);
b5ec771e
PA
6392 else
6393 {
6394 if (m_verbatim_p)
6395 match_str = add_angle_brackets (sym_name);
6396 else
6397 match_str = sym_name;
41d27058 6398
b5ec771e 6399 }
a207cff2
PA
6400
6401 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6402 }
6403
b5ec771e 6404 return true;
41d27058
JB
6405}
6406
b5ec771e 6407/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6408 WORD is the entire command on which completion is made. */
41d27058 6409
eb3ff9a5
PA
6410static void
6411ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6412 complete_symbol_mode mode,
b5ec771e
PA
6413 symbol_name_match_type name_match_type,
6414 const char *text, const char *word,
eb3ff9a5 6415 enum type_code code)
41d27058 6416{
41d27058 6417 struct symbol *sym;
43f3e411 6418 struct compunit_symtab *s;
41d27058
JB
6419 struct minimal_symbol *msymbol;
6420 struct objfile *objfile;
3977b71f 6421 const struct block *b, *surrounding_static_block = 0;
8157b174 6422 struct block_iterator iter;
41d27058 6423
2f68a895
TT
6424 gdb_assert (code == TYPE_CODE_UNDEF);
6425
1b026119 6426 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6427
6428 /* First, look at the partial symtab symbols. */
14bc53a8 6429 expand_symtabs_matching (NULL,
b5ec771e
PA
6430 lookup_name,
6431 NULL,
14bc53a8
PA
6432 NULL,
6433 ALL_DOMAIN);
41d27058
JB
6434
6435 /* At this point scan through the misc symbol vectors and add each
6436 symbol you find to the list. Eventually we want to ignore
6437 anything that isn't a text symbol (everything else will be
6438 handled by the psymtab code above). */
6439
6440 ALL_MSYMBOLS (objfile, msymbol)
6441 {
6442 QUIT;
b5ec771e 6443
f9d67a22
PA
6444 if (completion_skip_symbol (mode, msymbol))
6445 continue;
6446
d4c2a405
PA
6447 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6448
6449 /* Ada minimal symbols won't have their language set to Ada. If
6450 we let completion_list_add_name compare using the
6451 default/C-like matcher, then when completing e.g., symbols in a
6452 package named "pck", we'd match internal Ada symbols like
6453 "pckS", which are invalid in an Ada expression, unless you wrap
6454 them in '<' '>' to request a verbatim match.
6455
6456 Unfortunately, some Ada encoded names successfully demangle as
6457 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6458 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6459 with the wrong language set. Paper over that issue here. */
6460 if (symbol_language == language_auto
6461 || symbol_language == language_cplus)
6462 symbol_language = language_ada;
6463
b5ec771e 6464 completion_list_add_name (tracker,
d4c2a405 6465 symbol_language,
b5ec771e 6466 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6467 lookup_name, text, word);
41d27058
JB
6468 }
6469
6470 /* Search upwards from currently selected frame (so that we can
6471 complete on local vars. */
6472
6473 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6474 {
6475 if (!BLOCK_SUPERBLOCK (b))
6476 surrounding_static_block = b; /* For elmin of dups */
6477
6478 ALL_BLOCK_SYMBOLS (b, iter, sym)
6479 {
f9d67a22
PA
6480 if (completion_skip_symbol (mode, sym))
6481 continue;
6482
b5ec771e
PA
6483 completion_list_add_name (tracker,
6484 SYMBOL_LANGUAGE (sym),
6485 SYMBOL_LINKAGE_NAME (sym),
1b026119 6486 lookup_name, text, word);
41d27058
JB
6487 }
6488 }
6489
6490 /* Go through the symtabs and check the externs and statics for
43f3e411 6491 symbols which match. */
41d27058 6492
43f3e411 6493 ALL_COMPUNITS (objfile, s)
41d27058
JB
6494 {
6495 QUIT;
43f3e411 6496 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6497 ALL_BLOCK_SYMBOLS (b, iter, sym)
6498 {
f9d67a22
PA
6499 if (completion_skip_symbol (mode, sym))
6500 continue;
6501
b5ec771e
PA
6502 completion_list_add_name (tracker,
6503 SYMBOL_LANGUAGE (sym),
6504 SYMBOL_LINKAGE_NAME (sym),
1b026119 6505 lookup_name, text, word);
41d27058
JB
6506 }
6507 }
6508
43f3e411 6509 ALL_COMPUNITS (objfile, s)
41d27058
JB
6510 {
6511 QUIT;
43f3e411 6512 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6513 /* Don't do this block twice. */
6514 if (b == surrounding_static_block)
6515 continue;
6516 ALL_BLOCK_SYMBOLS (b, iter, sym)
6517 {
f9d67a22
PA
6518 if (completion_skip_symbol (mode, sym))
6519 continue;
6520
b5ec771e
PA
6521 completion_list_add_name (tracker,
6522 SYMBOL_LANGUAGE (sym),
6523 SYMBOL_LINKAGE_NAME (sym),
1b026119 6524 lookup_name, text, word);
41d27058
JB
6525 }
6526 }
41d27058
JB
6527}
6528
963a6417 6529 /* Field Access */
96d887e8 6530
73fb9985
JB
6531/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6532 for tagged types. */
6533
6534static int
6535ada_is_dispatch_table_ptr_type (struct type *type)
6536{
0d5cff50 6537 const char *name;
73fb9985
JB
6538
6539 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6540 return 0;
6541
6542 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6543 if (name == NULL)
6544 return 0;
6545
6546 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6547}
6548
ac4a2da4
JG
6549/* Return non-zero if TYPE is an interface tag. */
6550
6551static int
6552ada_is_interface_tag (struct type *type)
6553{
6554 const char *name = TYPE_NAME (type);
6555
6556 if (name == NULL)
6557 return 0;
6558
6559 return (strcmp (name, "ada__tags__interface_tag") == 0);
6560}
6561
963a6417
PH
6562/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6563 to be invisible to users. */
96d887e8 6564
963a6417
PH
6565int
6566ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6567{
963a6417
PH
6568 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6569 return 1;
ffde82bf 6570
73fb9985
JB
6571 /* Check the name of that field. */
6572 {
6573 const char *name = TYPE_FIELD_NAME (type, field_num);
6574
6575 /* Anonymous field names should not be printed.
6576 brobecker/2007-02-20: I don't think this can actually happen
6577 but we don't want to print the value of annonymous fields anyway. */
6578 if (name == NULL)
6579 return 1;
6580
ffde82bf
JB
6581 /* Normally, fields whose name start with an underscore ("_")
6582 are fields that have been internally generated by the compiler,
6583 and thus should not be printed. The "_parent" field is special,
6584 however: This is a field internally generated by the compiler
6585 for tagged types, and it contains the components inherited from
6586 the parent type. This field should not be printed as is, but
6587 should not be ignored either. */
61012eef 6588 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6589 return 1;
6590 }
6591
ac4a2da4
JG
6592 /* If this is the dispatch table of a tagged type or an interface tag,
6593 then ignore. */
73fb9985 6594 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6595 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6596 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6597 return 1;
6598
6599 /* Not a special field, so it should not be ignored. */
6600 return 0;
963a6417 6601}
96d887e8 6602
963a6417 6603/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6604 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6605
963a6417
PH
6606int
6607ada_is_tagged_type (struct type *type, int refok)
6608{
988f6b3d 6609 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6610}
96d887e8 6611
963a6417 6612/* True iff TYPE represents the type of X'Tag */
96d887e8 6613
963a6417
PH
6614int
6615ada_is_tag_type (struct type *type)
6616{
460efde1
JB
6617 type = ada_check_typedef (type);
6618
963a6417
PH
6619 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6620 return 0;
6621 else
96d887e8 6622 {
963a6417 6623 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6624
963a6417
PH
6625 return (name != NULL
6626 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6627 }
96d887e8
PH
6628}
6629
963a6417 6630/* The type of the tag on VAL. */
76a01679 6631
963a6417
PH
6632struct type *
6633ada_tag_type (struct value *val)
96d887e8 6634{
988f6b3d 6635 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6636}
96d887e8 6637
b50d69b5
JG
6638/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6639 retired at Ada 05). */
6640
6641static int
6642is_ada95_tag (struct value *tag)
6643{
6644 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6645}
6646
963a6417 6647/* The value of the tag on VAL. */
96d887e8 6648
963a6417
PH
6649struct value *
6650ada_value_tag (struct value *val)
6651{
03ee6b2e 6652 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6653}
6654
963a6417
PH
6655/* The value of the tag on the object of type TYPE whose contents are
6656 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6657 ADDRESS. */
96d887e8 6658
963a6417 6659static struct value *
10a2c479 6660value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6661 const gdb_byte *valaddr,
963a6417 6662 CORE_ADDR address)
96d887e8 6663{
b5385fc0 6664 int tag_byte_offset;
963a6417 6665 struct type *tag_type;
5b4ee69b 6666
963a6417 6667 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6668 NULL, NULL, NULL))
96d887e8 6669 {
fc1a4b47 6670 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6671 ? NULL
6672 : valaddr + tag_byte_offset);
963a6417 6673 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6674
963a6417 6675 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6676 }
963a6417
PH
6677 return NULL;
6678}
96d887e8 6679
963a6417
PH
6680static struct type *
6681type_from_tag (struct value *tag)
6682{
6683 const char *type_name = ada_tag_name (tag);
5b4ee69b 6684
963a6417
PH
6685 if (type_name != NULL)
6686 return ada_find_any_type (ada_encode (type_name));
6687 return NULL;
6688}
96d887e8 6689
b50d69b5
JG
6690/* Given a value OBJ of a tagged type, return a value of this
6691 type at the base address of the object. The base address, as
6692 defined in Ada.Tags, it is the address of the primary tag of
6693 the object, and therefore where the field values of its full
6694 view can be fetched. */
6695
6696struct value *
6697ada_tag_value_at_base_address (struct value *obj)
6698{
b50d69b5
JG
6699 struct value *val;
6700 LONGEST offset_to_top = 0;
6701 struct type *ptr_type, *obj_type;
6702 struct value *tag;
6703 CORE_ADDR base_address;
6704
6705 obj_type = value_type (obj);
6706
6707 /* It is the responsability of the caller to deref pointers. */
6708
6709 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6710 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6711 return obj;
6712
6713 tag = ada_value_tag (obj);
6714 if (!tag)
6715 return obj;
6716
6717 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6718
6719 if (is_ada95_tag (tag))
6720 return obj;
6721
08f49010
XR
6722 ptr_type = language_lookup_primitive_type
6723 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6724 ptr_type = lookup_pointer_type (ptr_type);
6725 val = value_cast (ptr_type, tag);
6726 if (!val)
6727 return obj;
6728
6729 /* It is perfectly possible that an exception be raised while
6730 trying to determine the base address, just like for the tag;
6731 see ada_tag_name for more details. We do not print the error
6732 message for the same reason. */
6733
492d29ea 6734 TRY
b50d69b5
JG
6735 {
6736 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6737 }
6738
492d29ea
PA
6739 CATCH (e, RETURN_MASK_ERROR)
6740 {
6741 return obj;
6742 }
6743 END_CATCH
b50d69b5
JG
6744
6745 /* If offset is null, nothing to do. */
6746
6747 if (offset_to_top == 0)
6748 return obj;
6749
6750 /* -1 is a special case in Ada.Tags; however, what should be done
6751 is not quite clear from the documentation. So do nothing for
6752 now. */
6753
6754 if (offset_to_top == -1)
6755 return obj;
6756
08f49010
XR
6757 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6758 from the base address. This was however incompatible with
6759 C++ dispatch table: C++ uses a *negative* value to *add*
6760 to the base address. Ada's convention has therefore been
6761 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6762 use the same convention. Here, we support both cases by
6763 checking the sign of OFFSET_TO_TOP. */
6764
6765 if (offset_to_top > 0)
6766 offset_to_top = -offset_to_top;
6767
6768 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6769 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6770
6771 /* Make sure that we have a proper tag at the new address.
6772 Otherwise, offset_to_top is bogus (which can happen when
6773 the object is not initialized yet). */
6774
6775 if (!tag)
6776 return obj;
6777
6778 obj_type = type_from_tag (tag);
6779
6780 if (!obj_type)
6781 return obj;
6782
6783 return value_from_contents_and_address (obj_type, NULL, base_address);
6784}
6785
1b611343
JB
6786/* Return the "ada__tags__type_specific_data" type. */
6787
6788static struct type *
6789ada_get_tsd_type (struct inferior *inf)
963a6417 6790{
1b611343 6791 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6792
1b611343
JB
6793 if (data->tsd_type == 0)
6794 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6795 return data->tsd_type;
6796}
529cad9c 6797
1b611343
JB
6798/* Return the TSD (type-specific data) associated to the given TAG.
6799 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6800
1b611343 6801 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6802
1b611343
JB
6803static struct value *
6804ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6805{
4c4b4cd2 6806 struct value *val;
1b611343 6807 struct type *type;
5b4ee69b 6808
1b611343
JB
6809 /* First option: The TSD is simply stored as a field of our TAG.
6810 Only older versions of GNAT would use this format, but we have
6811 to test it first, because there are no visible markers for
6812 the current approach except the absence of that field. */
529cad9c 6813
1b611343
JB
6814 val = ada_value_struct_elt (tag, "tsd", 1);
6815 if (val)
6816 return val;
e802dbe0 6817
1b611343
JB
6818 /* Try the second representation for the dispatch table (in which
6819 there is no explicit 'tsd' field in the referent of the tag pointer,
6820 and instead the tsd pointer is stored just before the dispatch
6821 table. */
e802dbe0 6822
1b611343
JB
6823 type = ada_get_tsd_type (current_inferior());
6824 if (type == NULL)
6825 return NULL;
6826 type = lookup_pointer_type (lookup_pointer_type (type));
6827 val = value_cast (type, tag);
6828 if (val == NULL)
6829 return NULL;
6830 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6831}
6832
1b611343
JB
6833/* Given the TSD of a tag (type-specific data), return a string
6834 containing the name of the associated type.
6835
6836 The returned value is good until the next call. May return NULL
6837 if we are unable to determine the tag name. */
6838
6839static char *
6840ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6841{
529cad9c
PH
6842 static char name[1024];
6843 char *p;
1b611343 6844 struct value *val;
529cad9c 6845
1b611343 6846 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6847 if (val == NULL)
1b611343 6848 return NULL;
4c4b4cd2
PH
6849 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6850 for (p = name; *p != '\0'; p += 1)
6851 if (isalpha (*p))
6852 *p = tolower (*p);
1b611343 6853 return name;
4c4b4cd2
PH
6854}
6855
6856/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6857 a C string.
6858
6859 Return NULL if the TAG is not an Ada tag, or if we were unable to
6860 determine the name of that tag. The result is good until the next
6861 call. */
4c4b4cd2
PH
6862
6863const char *
6864ada_tag_name (struct value *tag)
6865{
1b611343 6866 char *name = NULL;
5b4ee69b 6867
df407dfe 6868 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6869 return NULL;
1b611343
JB
6870
6871 /* It is perfectly possible that an exception be raised while trying
6872 to determine the TAG's name, even under normal circumstances:
6873 The associated variable may be uninitialized or corrupted, for
6874 instance. We do not let any exception propagate past this point.
6875 instead we return NULL.
6876
6877 We also do not print the error message either (which often is very
6878 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6879 the caller print a more meaningful message if necessary. */
492d29ea 6880 TRY
1b611343
JB
6881 {
6882 struct value *tsd = ada_get_tsd_from_tag (tag);
6883
6884 if (tsd != NULL)
6885 name = ada_tag_name_from_tsd (tsd);
6886 }
492d29ea
PA
6887 CATCH (e, RETURN_MASK_ERROR)
6888 {
6889 }
6890 END_CATCH
1b611343
JB
6891
6892 return name;
4c4b4cd2
PH
6893}
6894
6895/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6896
d2e4a39e 6897struct type *
ebf56fd3 6898ada_parent_type (struct type *type)
14f9c5c9
AS
6899{
6900 int i;
6901
61ee279c 6902 type = ada_check_typedef (type);
14f9c5c9
AS
6903
6904 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6905 return NULL;
6906
6907 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6908 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6909 {
6910 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6911
6912 /* If the _parent field is a pointer, then dereference it. */
6913 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6914 parent_type = TYPE_TARGET_TYPE (parent_type);
6915 /* If there is a parallel XVS type, get the actual base type. */
6916 parent_type = ada_get_base_type (parent_type);
6917
6918 return ada_check_typedef (parent_type);
6919 }
14f9c5c9
AS
6920
6921 return NULL;
6922}
6923
4c4b4cd2
PH
6924/* True iff field number FIELD_NUM of structure type TYPE contains the
6925 parent-type (inherited) fields of a derived type. Assumes TYPE is
6926 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6927
6928int
ebf56fd3 6929ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6930{
61ee279c 6931 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6932
4c4b4cd2 6933 return (name != NULL
61012eef
GB
6934 && (startswith (name, "PARENT")
6935 || startswith (name, "_parent")));
14f9c5c9
AS
6936}
6937
4c4b4cd2 6938/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6939 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6940 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6941 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6942 structures. */
14f9c5c9
AS
6943
6944int
ebf56fd3 6945ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6946{
d2e4a39e 6947 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6948
dddc0e16
JB
6949 if (name != NULL && strcmp (name, "RETVAL") == 0)
6950 {
6951 /* This happens in functions with "out" or "in out" parameters
6952 which are passed by copy. For such functions, GNAT describes
6953 the function's return type as being a struct where the return
6954 value is in a field called RETVAL, and where the other "out"
6955 or "in out" parameters are fields of that struct. This is not
6956 a wrapper. */
6957 return 0;
6958 }
6959
d2e4a39e 6960 return (name != NULL
61012eef 6961 && (startswith (name, "PARENT")
4c4b4cd2 6962 || strcmp (name, "REP") == 0
61012eef 6963 || startswith (name, "_parent")
4c4b4cd2 6964 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6965}
6966
4c4b4cd2
PH
6967/* True iff field number FIELD_NUM of structure or union type TYPE
6968 is a variant wrapper. Assumes TYPE is a structure type with at least
6969 FIELD_NUM+1 fields. */
14f9c5c9
AS
6970
6971int
ebf56fd3 6972ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6973{
d2e4a39e 6974 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6975
14f9c5c9 6976 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6977 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6978 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6979 == TYPE_CODE_UNION)));
14f9c5c9
AS
6980}
6981
6982/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6983 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6984 returns the type of the controlling discriminant for the variant.
6985 May return NULL if the type could not be found. */
14f9c5c9 6986
d2e4a39e 6987struct type *
ebf56fd3 6988ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6989{
a121b7c1 6990 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6991
988f6b3d 6992 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6993}
6994
4c4b4cd2 6995/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6996 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6997 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6998
6999int
ebf56fd3 7000ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7001{
d2e4a39e 7002 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7003
14f9c5c9
AS
7004 return (name != NULL && name[0] == 'O');
7005}
7006
7007/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7008 returns the name of the discriminant controlling the variant.
7009 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7010
a121b7c1 7011const char *
ebf56fd3 7012ada_variant_discrim_name (struct type *type0)
14f9c5c9 7013{
d2e4a39e 7014 static char *result = NULL;
14f9c5c9 7015 static size_t result_len = 0;
d2e4a39e
AS
7016 struct type *type;
7017 const char *name;
7018 const char *discrim_end;
7019 const char *discrim_start;
14f9c5c9
AS
7020
7021 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7022 type = TYPE_TARGET_TYPE (type0);
7023 else
7024 type = type0;
7025
7026 name = ada_type_name (type);
7027
7028 if (name == NULL || name[0] == '\000')
7029 return "";
7030
7031 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7032 discrim_end -= 1)
7033 {
61012eef 7034 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7035 break;
14f9c5c9
AS
7036 }
7037 if (discrim_end == name)
7038 return "";
7039
d2e4a39e 7040 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7041 discrim_start -= 1)
7042 {
d2e4a39e 7043 if (discrim_start == name + 1)
4c4b4cd2 7044 return "";
76a01679 7045 if ((discrim_start > name + 3
61012eef 7046 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7047 || discrim_start[-1] == '.')
7048 break;
14f9c5c9
AS
7049 }
7050
7051 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7052 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7053 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7054 return result;
7055}
7056
4c4b4cd2
PH
7057/* Scan STR for a subtype-encoded number, beginning at position K.
7058 Put the position of the character just past the number scanned in
7059 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7060 Return 1 if there was a valid number at the given position, and 0
7061 otherwise. A "subtype-encoded" number consists of the absolute value
7062 in decimal, followed by the letter 'm' to indicate a negative number.
7063 Assumes 0m does not occur. */
14f9c5c9
AS
7064
7065int
d2e4a39e 7066ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7067{
7068 ULONGEST RU;
7069
d2e4a39e 7070 if (!isdigit (str[k]))
14f9c5c9
AS
7071 return 0;
7072
4c4b4cd2 7073 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7074 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7075 LONGEST. */
14f9c5c9
AS
7076 RU = 0;
7077 while (isdigit (str[k]))
7078 {
d2e4a39e 7079 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7080 k += 1;
7081 }
7082
d2e4a39e 7083 if (str[k] == 'm')
14f9c5c9
AS
7084 {
7085 if (R != NULL)
4c4b4cd2 7086 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7087 k += 1;
7088 }
7089 else if (R != NULL)
7090 *R = (LONGEST) RU;
7091
4c4b4cd2 7092 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7093 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7094 number representable as a LONGEST (although either would probably work
7095 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7096 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7097
7098 if (new_k != NULL)
7099 *new_k = k;
7100 return 1;
7101}
7102
4c4b4cd2
PH
7103/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7104 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7105 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7106
d2e4a39e 7107int
ebf56fd3 7108ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7109{
d2e4a39e 7110 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7111 int p;
7112
7113 p = 0;
7114 while (1)
7115 {
d2e4a39e 7116 switch (name[p])
4c4b4cd2
PH
7117 {
7118 case '\0':
7119 return 0;
7120 case 'S':
7121 {
7122 LONGEST W;
5b4ee69b 7123
4c4b4cd2
PH
7124 if (!ada_scan_number (name, p + 1, &W, &p))
7125 return 0;
7126 if (val == W)
7127 return 1;
7128 break;
7129 }
7130 case 'R':
7131 {
7132 LONGEST L, U;
5b4ee69b 7133
4c4b4cd2
PH
7134 if (!ada_scan_number (name, p + 1, &L, &p)
7135 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7136 return 0;
7137 if (val >= L && val <= U)
7138 return 1;
7139 break;
7140 }
7141 case 'O':
7142 return 1;
7143 default:
7144 return 0;
7145 }
7146 }
7147}
7148
0963b4bd 7149/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7150
7151/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7152 ARG_TYPE, extract and return the value of one of its (non-static)
7153 fields. FIELDNO says which field. Differs from value_primitive_field
7154 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7155
4c4b4cd2 7156static struct value *
d2e4a39e 7157ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7158 struct type *arg_type)
14f9c5c9 7159{
14f9c5c9
AS
7160 struct type *type;
7161
61ee279c 7162 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7163 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7164
4c4b4cd2 7165 /* Handle packed fields. */
14f9c5c9
AS
7166
7167 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7168 {
7169 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7170 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7171
0fd88904 7172 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7173 offset + bit_pos / 8,
7174 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7175 }
7176 else
7177 return value_primitive_field (arg1, offset, fieldno, arg_type);
7178}
7179
52ce6436
PH
7180/* Find field with name NAME in object of type TYPE. If found,
7181 set the following for each argument that is non-null:
7182 - *FIELD_TYPE_P to the field's type;
7183 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7184 an object of that type;
7185 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7186 - *BIT_SIZE_P to its size in bits if the field is packed, and
7187 0 otherwise;
7188 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7189 fields up to but not including the desired field, or by the total
7190 number of fields if not found. A NULL value of NAME never
7191 matches; the function just counts visible fields in this case.
7192
828d5846
XR
7193 Notice that we need to handle when a tagged record hierarchy
7194 has some components with the same name, like in this scenario:
7195
7196 type Top_T is tagged record
7197 N : Integer := 1;
7198 U : Integer := 974;
7199 A : Integer := 48;
7200 end record;
7201
7202 type Middle_T is new Top.Top_T with record
7203 N : Character := 'a';
7204 C : Integer := 3;
7205 end record;
7206
7207 type Bottom_T is new Middle.Middle_T with record
7208 N : Float := 4.0;
7209 C : Character := '5';
7210 X : Integer := 6;
7211 A : Character := 'J';
7212 end record;
7213
7214 Let's say we now have a variable declared and initialized as follow:
7215
7216 TC : Top_A := new Bottom_T;
7217
7218 And then we use this variable to call this function
7219
7220 procedure Assign (Obj: in out Top_T; TV : Integer);
7221
7222 as follow:
7223
7224 Assign (Top_T (B), 12);
7225
7226 Now, we're in the debugger, and we're inside that procedure
7227 then and we want to print the value of obj.c:
7228
7229 Usually, the tagged record or one of the parent type owns the
7230 component to print and there's no issue but in this particular
7231 case, what does it mean to ask for Obj.C? Since the actual
7232 type for object is type Bottom_T, it could mean two things: type
7233 component C from the Middle_T view, but also component C from
7234 Bottom_T. So in that "undefined" case, when the component is
7235 not found in the non-resolved type (which includes all the
7236 components of the parent type), then resolve it and see if we
7237 get better luck once expanded.
7238
7239 In the case of homonyms in the derived tagged type, we don't
7240 guaranty anything, and pick the one that's easiest for us
7241 to program.
7242
0963b4bd 7243 Returns 1 if found, 0 otherwise. */
52ce6436 7244
4c4b4cd2 7245static int
0d5cff50 7246find_struct_field (const char *name, struct type *type, int offset,
76a01679 7247 struct type **field_type_p,
52ce6436
PH
7248 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7249 int *index_p)
4c4b4cd2
PH
7250{
7251 int i;
828d5846 7252 int parent_offset = -1;
4c4b4cd2 7253
61ee279c 7254 type = ada_check_typedef (type);
76a01679 7255
52ce6436
PH
7256 if (field_type_p != NULL)
7257 *field_type_p = NULL;
7258 if (byte_offset_p != NULL)
d5d6fca5 7259 *byte_offset_p = 0;
52ce6436
PH
7260 if (bit_offset_p != NULL)
7261 *bit_offset_p = 0;
7262 if (bit_size_p != NULL)
7263 *bit_size_p = 0;
7264
7265 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7266 {
7267 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7268 int fld_offset = offset + bit_pos / 8;
0d5cff50 7269 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7270
4c4b4cd2
PH
7271 if (t_field_name == NULL)
7272 continue;
7273
828d5846
XR
7274 else if (ada_is_parent_field (type, i))
7275 {
7276 /* This is a field pointing us to the parent type of a tagged
7277 type. As hinted in this function's documentation, we give
7278 preference to fields in the current record first, so what
7279 we do here is just record the index of this field before
7280 we skip it. If it turns out we couldn't find our field
7281 in the current record, then we'll get back to it and search
7282 inside it whether the field might exist in the parent. */
7283
7284 parent_offset = i;
7285 continue;
7286 }
7287
52ce6436 7288 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7289 {
7290 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7291
52ce6436
PH
7292 if (field_type_p != NULL)
7293 *field_type_p = TYPE_FIELD_TYPE (type, i);
7294 if (byte_offset_p != NULL)
7295 *byte_offset_p = fld_offset;
7296 if (bit_offset_p != NULL)
7297 *bit_offset_p = bit_pos % 8;
7298 if (bit_size_p != NULL)
7299 *bit_size_p = bit_size;
76a01679
JB
7300 return 1;
7301 }
4c4b4cd2
PH
7302 else if (ada_is_wrapper_field (type, i))
7303 {
52ce6436
PH
7304 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7305 field_type_p, byte_offset_p, bit_offset_p,
7306 bit_size_p, index_p))
76a01679
JB
7307 return 1;
7308 }
4c4b4cd2
PH
7309 else if (ada_is_variant_part (type, i))
7310 {
52ce6436
PH
7311 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7312 fixed type?? */
4c4b4cd2 7313 int j;
52ce6436
PH
7314 struct type *field_type
7315 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7316
52ce6436 7317 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7318 {
76a01679
JB
7319 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7320 fld_offset
7321 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7322 field_type_p, byte_offset_p,
52ce6436 7323 bit_offset_p, bit_size_p, index_p))
76a01679 7324 return 1;
4c4b4cd2
PH
7325 }
7326 }
52ce6436
PH
7327 else if (index_p != NULL)
7328 *index_p += 1;
4c4b4cd2 7329 }
828d5846
XR
7330
7331 /* Field not found so far. If this is a tagged type which
7332 has a parent, try finding that field in the parent now. */
7333
7334 if (parent_offset != -1)
7335 {
7336 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7337 int fld_offset = offset + bit_pos / 8;
7338
7339 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7340 fld_offset, field_type_p, byte_offset_p,
7341 bit_offset_p, bit_size_p, index_p))
7342 return 1;
7343 }
7344
4c4b4cd2
PH
7345 return 0;
7346}
7347
0963b4bd 7348/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7349
52ce6436
PH
7350static int
7351num_visible_fields (struct type *type)
7352{
7353 int n;
5b4ee69b 7354
52ce6436
PH
7355 n = 0;
7356 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7357 return n;
7358}
14f9c5c9 7359
4c4b4cd2 7360/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7361 and search in it assuming it has (class) type TYPE.
7362 If found, return value, else return NULL.
7363
828d5846
XR
7364 Searches recursively through wrapper fields (e.g., '_parent').
7365
7366 In the case of homonyms in the tagged types, please refer to the
7367 long explanation in find_struct_field's function documentation. */
14f9c5c9 7368
4c4b4cd2 7369static struct value *
108d56a4 7370ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7371 struct type *type)
14f9c5c9
AS
7372{
7373 int i;
828d5846 7374 int parent_offset = -1;
14f9c5c9 7375
5b4ee69b 7376 type = ada_check_typedef (type);
52ce6436 7377 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7378 {
0d5cff50 7379 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7380
7381 if (t_field_name == NULL)
4c4b4cd2 7382 continue;
14f9c5c9 7383
828d5846
XR
7384 else if (ada_is_parent_field (type, i))
7385 {
7386 /* This is a field pointing us to the parent type of a tagged
7387 type. As hinted in this function's documentation, we give
7388 preference to fields in the current record first, so what
7389 we do here is just record the index of this field before
7390 we skip it. If it turns out we couldn't find our field
7391 in the current record, then we'll get back to it and search
7392 inside it whether the field might exist in the parent. */
7393
7394 parent_offset = i;
7395 continue;
7396 }
7397
14f9c5c9 7398 else if (field_name_match (t_field_name, name))
4c4b4cd2 7399 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7400
7401 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7402 {
0963b4bd 7403 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7404 ada_search_struct_field (name, arg,
7405 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7406 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7407
4c4b4cd2
PH
7408 if (v != NULL)
7409 return v;
7410 }
14f9c5c9
AS
7411
7412 else if (ada_is_variant_part (type, i))
4c4b4cd2 7413 {
0963b4bd 7414 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7415 int j;
5b4ee69b
MS
7416 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7417 i));
4c4b4cd2
PH
7418 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7419
52ce6436 7420 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7421 {
0963b4bd
MS
7422 struct value *v = ada_search_struct_field /* Force line
7423 break. */
06d5cf63
JB
7424 (name, arg,
7425 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7426 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7427
4c4b4cd2
PH
7428 if (v != NULL)
7429 return v;
7430 }
7431 }
14f9c5c9 7432 }
828d5846
XR
7433
7434 /* Field not found so far. If this is a tagged type which
7435 has a parent, try finding that field in the parent now. */
7436
7437 if (parent_offset != -1)
7438 {
7439 struct value *v = ada_search_struct_field (
7440 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7441 TYPE_FIELD_TYPE (type, parent_offset));
7442
7443 if (v != NULL)
7444 return v;
7445 }
7446
14f9c5c9
AS
7447 return NULL;
7448}
d2e4a39e 7449
52ce6436
PH
7450static struct value *ada_index_struct_field_1 (int *, struct value *,
7451 int, struct type *);
7452
7453
7454/* Return field #INDEX in ARG, where the index is that returned by
7455 * find_struct_field through its INDEX_P argument. Adjust the address
7456 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7457 * If found, return value, else return NULL. */
52ce6436
PH
7458
7459static struct value *
7460ada_index_struct_field (int index, struct value *arg, int offset,
7461 struct type *type)
7462{
7463 return ada_index_struct_field_1 (&index, arg, offset, type);
7464}
7465
7466
7467/* Auxiliary function for ada_index_struct_field. Like
7468 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7469 * *INDEX_P. */
52ce6436
PH
7470
7471static struct value *
7472ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7473 struct type *type)
7474{
7475 int i;
7476 type = ada_check_typedef (type);
7477
7478 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7479 {
7480 if (TYPE_FIELD_NAME (type, i) == NULL)
7481 continue;
7482 else if (ada_is_wrapper_field (type, i))
7483 {
0963b4bd 7484 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7485 ada_index_struct_field_1 (index_p, arg,
7486 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7487 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7488
52ce6436
PH
7489 if (v != NULL)
7490 return v;
7491 }
7492
7493 else if (ada_is_variant_part (type, i))
7494 {
7495 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7496 find_struct_field. */
52ce6436
PH
7497 error (_("Cannot assign this kind of variant record"));
7498 }
7499 else if (*index_p == 0)
7500 return ada_value_primitive_field (arg, offset, i, type);
7501 else
7502 *index_p -= 1;
7503 }
7504 return NULL;
7505}
7506
4c4b4cd2
PH
7507/* Given ARG, a value of type (pointer or reference to a)*
7508 structure/union, extract the component named NAME from the ultimate
7509 target structure/union and return it as a value with its
f5938064 7510 appropriate type.
14f9c5c9 7511
4c4b4cd2
PH
7512 The routine searches for NAME among all members of the structure itself
7513 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7514 (e.g., '_parent').
7515
03ee6b2e
PH
7516 If NO_ERR, then simply return NULL in case of error, rather than
7517 calling error. */
14f9c5c9 7518
d2e4a39e 7519struct value *
a121b7c1 7520ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7521{
4c4b4cd2 7522 struct type *t, *t1;
d2e4a39e 7523 struct value *v;
14f9c5c9 7524
4c4b4cd2 7525 v = NULL;
df407dfe 7526 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7527 if (TYPE_CODE (t) == TYPE_CODE_REF)
7528 {
7529 t1 = TYPE_TARGET_TYPE (t);
7530 if (t1 == NULL)
03ee6b2e 7531 goto BadValue;
61ee279c 7532 t1 = ada_check_typedef (t1);
4c4b4cd2 7533 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7534 {
994b9211 7535 arg = coerce_ref (arg);
76a01679
JB
7536 t = t1;
7537 }
4c4b4cd2 7538 }
14f9c5c9 7539
4c4b4cd2
PH
7540 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7541 {
7542 t1 = TYPE_TARGET_TYPE (t);
7543 if (t1 == NULL)
03ee6b2e 7544 goto BadValue;
61ee279c 7545 t1 = ada_check_typedef (t1);
4c4b4cd2 7546 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7547 {
7548 arg = value_ind (arg);
7549 t = t1;
7550 }
4c4b4cd2 7551 else
76a01679 7552 break;
4c4b4cd2 7553 }
14f9c5c9 7554
4c4b4cd2 7555 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7556 goto BadValue;
14f9c5c9 7557
4c4b4cd2
PH
7558 if (t1 == t)
7559 v = ada_search_struct_field (name, arg, 0, t);
7560 else
7561 {
7562 int bit_offset, bit_size, byte_offset;
7563 struct type *field_type;
7564 CORE_ADDR address;
7565
76a01679 7566 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7567 address = value_address (ada_value_ind (arg));
4c4b4cd2 7568 else
b50d69b5 7569 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7570
828d5846
XR
7571 /* Check to see if this is a tagged type. We also need to handle
7572 the case where the type is a reference to a tagged type, but
7573 we have to be careful to exclude pointers to tagged types.
7574 The latter should be shown as usual (as a pointer), whereas
7575 a reference should mostly be transparent to the user. */
7576
7577 if (ada_is_tagged_type (t1, 0)
7578 || (TYPE_CODE (t1) == TYPE_CODE_REF
7579 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7580 {
7581 /* We first try to find the searched field in the current type.
7582 If not found then let's look in the fixed type. */
7583
7584 if (!find_struct_field (name, t1, 0,
7585 &field_type, &byte_offset, &bit_offset,
7586 &bit_size, NULL))
7587 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7588 address, NULL, 1);
7589 }
7590 else
7591 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7592 address, NULL, 1);
7593
76a01679
JB
7594 if (find_struct_field (name, t1, 0,
7595 &field_type, &byte_offset, &bit_offset,
52ce6436 7596 &bit_size, NULL))
76a01679
JB
7597 {
7598 if (bit_size != 0)
7599 {
714e53ab
PH
7600 if (TYPE_CODE (t) == TYPE_CODE_REF)
7601 arg = ada_coerce_ref (arg);
7602 else
7603 arg = ada_value_ind (arg);
76a01679
JB
7604 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7605 bit_offset, bit_size,
7606 field_type);
7607 }
7608 else
f5938064 7609 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7610 }
7611 }
7612
03ee6b2e
PH
7613 if (v != NULL || no_err)
7614 return v;
7615 else
323e0a4a 7616 error (_("There is no member named %s."), name);
14f9c5c9 7617
03ee6b2e
PH
7618 BadValue:
7619 if (no_err)
7620 return NULL;
7621 else
0963b4bd
MS
7622 error (_("Attempt to extract a component of "
7623 "a value that is not a record."));
14f9c5c9
AS
7624}
7625
3b4de39c 7626/* Return a string representation of type TYPE. */
99bbb428 7627
3b4de39c 7628static std::string
99bbb428
PA
7629type_as_string (struct type *type)
7630{
d7e74731 7631 string_file tmp_stream;
99bbb428 7632
d7e74731 7633 type_print (type, "", &tmp_stream, -1);
99bbb428 7634
d7e74731 7635 return std::move (tmp_stream.string ());
99bbb428
PA
7636}
7637
14f9c5c9 7638/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7639 If DISPP is non-null, add its byte displacement from the beginning of a
7640 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7641 work for packed fields).
7642
7643 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7644 followed by "___".
14f9c5c9 7645
0963b4bd 7646 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7647 be a (pointer or reference)+ to a struct or union, and the
7648 ultimate target type will be searched.
14f9c5c9
AS
7649
7650 Looks recursively into variant clauses and parent types.
7651
828d5846
XR
7652 In the case of homonyms in the tagged types, please refer to the
7653 long explanation in find_struct_field's function documentation.
7654
4c4b4cd2
PH
7655 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7656 TYPE is not a type of the right kind. */
14f9c5c9 7657
4c4b4cd2 7658static struct type *
a121b7c1 7659ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7660 int noerr)
14f9c5c9
AS
7661{
7662 int i;
828d5846 7663 int parent_offset = -1;
14f9c5c9
AS
7664
7665 if (name == NULL)
7666 goto BadName;
7667
76a01679 7668 if (refok && type != NULL)
4c4b4cd2
PH
7669 while (1)
7670 {
61ee279c 7671 type = ada_check_typedef (type);
76a01679
JB
7672 if (TYPE_CODE (type) != TYPE_CODE_PTR
7673 && TYPE_CODE (type) != TYPE_CODE_REF)
7674 break;
7675 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7676 }
14f9c5c9 7677
76a01679 7678 if (type == NULL
1265e4aa
JB
7679 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7680 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7681 {
4c4b4cd2 7682 if (noerr)
76a01679 7683 return NULL;
99bbb428 7684
3b4de39c
PA
7685 error (_("Type %s is not a structure or union type"),
7686 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7687 }
7688
7689 type = to_static_fixed_type (type);
7690
7691 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7692 {
0d5cff50 7693 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7694 struct type *t;
d2e4a39e 7695
14f9c5c9 7696 if (t_field_name == NULL)
4c4b4cd2 7697 continue;
14f9c5c9 7698
828d5846
XR
7699 else if (ada_is_parent_field (type, i))
7700 {
7701 /* This is a field pointing us to the parent type of a tagged
7702 type. As hinted in this function's documentation, we give
7703 preference to fields in the current record first, so what
7704 we do here is just record the index of this field before
7705 we skip it. If it turns out we couldn't find our field
7706 in the current record, then we'll get back to it and search
7707 inside it whether the field might exist in the parent. */
7708
7709 parent_offset = i;
7710 continue;
7711 }
7712
14f9c5c9 7713 else if (field_name_match (t_field_name, name))
988f6b3d 7714 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7715
7716 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7717 {
4c4b4cd2 7718 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7719 0, 1);
4c4b4cd2 7720 if (t != NULL)
988f6b3d 7721 return t;
4c4b4cd2 7722 }
14f9c5c9
AS
7723
7724 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7725 {
7726 int j;
5b4ee69b
MS
7727 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7728 i));
4c4b4cd2
PH
7729
7730 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7731 {
b1f33ddd
JB
7732 /* FIXME pnh 2008/01/26: We check for a field that is
7733 NOT wrapped in a struct, since the compiler sometimes
7734 generates these for unchecked variant types. Revisit
0963b4bd 7735 if the compiler changes this practice. */
0d5cff50 7736 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7737
b1f33ddd
JB
7738 if (v_field_name != NULL
7739 && field_name_match (v_field_name, name))
460efde1 7740 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7741 else
0963b4bd
MS
7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7743 j),
988f6b3d 7744 name, 0, 1);
b1f33ddd 7745
4c4b4cd2 7746 if (t != NULL)
988f6b3d 7747 return t;
4c4b4cd2
PH
7748 }
7749 }
14f9c5c9
AS
7750
7751 }
7752
828d5846
XR
7753 /* Field not found so far. If this is a tagged type which
7754 has a parent, try finding that field in the parent now. */
7755
7756 if (parent_offset != -1)
7757 {
7758 struct type *t;
7759
7760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7761 name, 0, 1);
7762 if (t != NULL)
7763 return t;
7764 }
7765
14f9c5c9 7766BadName:
d2e4a39e 7767 if (!noerr)
14f9c5c9 7768 {
2b2798cc 7769 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7770
7771 error (_("Type %s has no component named %s"),
3b4de39c 7772 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7773 }
7774
7775 return NULL;
7776}
7777
b1f33ddd
JB
7778/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7779 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7780 represents an unchecked union (that is, the variant part of a
0963b4bd 7781 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7782
7783static int
7784is_unchecked_variant (struct type *var_type, struct type *outer_type)
7785{
a121b7c1 7786 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7787
988f6b3d 7788 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7789}
7790
7791
14f9c5c9
AS
7792/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7793 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7794 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7795 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7796
d2e4a39e 7797int
ebf56fd3 7798ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7799 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7800{
7801 int others_clause;
7802 int i;
a121b7c1 7803 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7804 struct value *outer;
7805 struct value *discrim;
14f9c5c9
AS
7806 LONGEST discrim_val;
7807
012370f6
TT
7808 /* Using plain value_from_contents_and_address here causes problems
7809 because we will end up trying to resolve a type that is currently
7810 being constructed. */
7811 outer = value_from_contents_and_address_unresolved (outer_type,
7812 outer_valaddr, 0);
0c281816
JB
7813 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7814 if (discrim == NULL)
14f9c5c9 7815 return -1;
0c281816 7816 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7817
7818 others_clause = -1;
7819 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7820 {
7821 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7822 others_clause = i;
14f9c5c9 7823 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7824 return i;
14f9c5c9
AS
7825 }
7826
7827 return others_clause;
7828}
d2e4a39e 7829\f
14f9c5c9
AS
7830
7831
4c4b4cd2 7832 /* Dynamic-Sized Records */
14f9c5c9
AS
7833
7834/* Strategy: The type ostensibly attached to a value with dynamic size
7835 (i.e., a size that is not statically recorded in the debugging
7836 data) does not accurately reflect the size or layout of the value.
7837 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7838 conventional types that are constructed on the fly. */
14f9c5c9
AS
7839
7840/* There is a subtle and tricky problem here. In general, we cannot
7841 determine the size of dynamic records without its data. However,
7842 the 'struct value' data structure, which GDB uses to represent
7843 quantities in the inferior process (the target), requires the size
7844 of the type at the time of its allocation in order to reserve space
7845 for GDB's internal copy of the data. That's why the
7846 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7847 rather than struct value*s.
14f9c5c9
AS
7848
7849 However, GDB's internal history variables ($1, $2, etc.) are
7850 struct value*s containing internal copies of the data that are not, in
7851 general, the same as the data at their corresponding addresses in
7852 the target. Fortunately, the types we give to these values are all
7853 conventional, fixed-size types (as per the strategy described
7854 above), so that we don't usually have to perform the
7855 'to_fixed_xxx_type' conversions to look at their values.
7856 Unfortunately, there is one exception: if one of the internal
7857 history variables is an array whose elements are unconstrained
7858 records, then we will need to create distinct fixed types for each
7859 element selected. */
7860
7861/* The upshot of all of this is that many routines take a (type, host
7862 address, target address) triple as arguments to represent a value.
7863 The host address, if non-null, is supposed to contain an internal
7864 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7865 target at the target address. */
14f9c5c9
AS
7866
7867/* Assuming that VAL0 represents a pointer value, the result of
7868 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7869 dynamic-sized types. */
14f9c5c9 7870
d2e4a39e
AS
7871struct value *
7872ada_value_ind (struct value *val0)
14f9c5c9 7873{
c48db5ca 7874 struct value *val = value_ind (val0);
5b4ee69b 7875
b50d69b5
JG
7876 if (ada_is_tagged_type (value_type (val), 0))
7877 val = ada_tag_value_at_base_address (val);
7878
4c4b4cd2 7879 return ada_to_fixed_value (val);
14f9c5c9
AS
7880}
7881
7882/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7883 qualifiers on VAL0. */
7884
d2e4a39e
AS
7885static struct value *
7886ada_coerce_ref (struct value *val0)
7887{
df407dfe 7888 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7889 {
7890 struct value *val = val0;
5b4ee69b 7891
994b9211 7892 val = coerce_ref (val);
b50d69b5
JG
7893
7894 if (ada_is_tagged_type (value_type (val), 0))
7895 val = ada_tag_value_at_base_address (val);
7896
4c4b4cd2 7897 return ada_to_fixed_value (val);
d2e4a39e
AS
7898 }
7899 else
14f9c5c9
AS
7900 return val0;
7901}
7902
7903/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7904 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7905
7906static unsigned int
ebf56fd3 7907align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7908{
7909 return (off + alignment - 1) & ~(alignment - 1);
7910}
7911
4c4b4cd2 7912/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7913
7914static unsigned int
ebf56fd3 7915field_alignment (struct type *type, int f)
14f9c5c9 7916{
d2e4a39e 7917 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7918 int len;
14f9c5c9
AS
7919 int align_offset;
7920
64a1bf19
JB
7921 /* The field name should never be null, unless the debugging information
7922 is somehow malformed. In this case, we assume the field does not
7923 require any alignment. */
7924 if (name == NULL)
7925 return 1;
7926
7927 len = strlen (name);
7928
4c4b4cd2
PH
7929 if (!isdigit (name[len - 1]))
7930 return 1;
14f9c5c9 7931
d2e4a39e 7932 if (isdigit (name[len - 2]))
14f9c5c9
AS
7933 align_offset = len - 2;
7934 else
7935 align_offset = len - 1;
7936
61012eef 7937 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7938 return TARGET_CHAR_BIT;
7939
4c4b4cd2
PH
7940 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7941}
7942
852dff6c 7943/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7944
852dff6c
JB
7945static struct symbol *
7946ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7947{
7948 struct symbol *sym;
7949
7950 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7951 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7952 return sym;
7953
4186eb54
KS
7954 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7955 return sym;
14f9c5c9
AS
7956}
7957
dddfab26
UW
7958/* Find a type named NAME. Ignores ambiguity. This routine will look
7959 solely for types defined by debug info, it will not search the GDB
7960 primitive types. */
4c4b4cd2 7961
852dff6c 7962static struct type *
ebf56fd3 7963ada_find_any_type (const char *name)
14f9c5c9 7964{
852dff6c 7965 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7966
14f9c5c9 7967 if (sym != NULL)
dddfab26 7968 return SYMBOL_TYPE (sym);
14f9c5c9 7969
dddfab26 7970 return NULL;
14f9c5c9
AS
7971}
7972
739593e0
JB
7973/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7974 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7975 symbol, in which case it is returned. Otherwise, this looks for
7976 symbols whose name is that of NAME_SYM suffixed with "___XR".
7977 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7978
7979struct symbol *
270140bd 7980ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7981{
739593e0 7982 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7983 struct symbol *sym;
7984
739593e0
JB
7985 if (strstr (name, "___XR") != NULL)
7986 return name_sym;
7987
aeb5907d
JB
7988 sym = find_old_style_renaming_symbol (name, block);
7989
7990 if (sym != NULL)
7991 return sym;
7992
0963b4bd 7993 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7994 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7995 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7996 return sym;
7997 else
7998 return NULL;
7999}
8000
8001static struct symbol *
270140bd 8002find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8003{
7f0df278 8004 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8005 char *rename;
8006
8007 if (function_sym != NULL)
8008 {
8009 /* If the symbol is defined inside a function, NAME is not fully
8010 qualified. This means we need to prepend the function name
8011 as well as adding the ``___XR'' suffix to build the name of
8012 the associated renaming symbol. */
0d5cff50 8013 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8014 /* Function names sometimes contain suffixes used
8015 for instance to qualify nested subprograms. When building
8016 the XR type name, we need to make sure that this suffix is
8017 not included. So do not include any suffix in the function
8018 name length below. */
69fadcdf 8019 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8020 const int rename_len = function_name_len + 2 /* "__" */
8021 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8022
529cad9c 8023 /* Strip the suffix if necessary. */
69fadcdf
JB
8024 ada_remove_trailing_digits (function_name, &function_name_len);
8025 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8026 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8027
4c4b4cd2
PH
8028 /* Library-level functions are a special case, as GNAT adds
8029 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8030 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8031 have this prefix, so we need to skip this prefix if present. */
8032 if (function_name_len > 5 /* "_ada_" */
8033 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8034 {
8035 function_name += 5;
8036 function_name_len -= 5;
8037 }
4c4b4cd2
PH
8038
8039 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8040 strncpy (rename, function_name, function_name_len);
8041 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8042 "__%s___XR", name);
4c4b4cd2
PH
8043 }
8044 else
8045 {
8046 const int rename_len = strlen (name) + 6;
5b4ee69b 8047
4c4b4cd2 8048 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8049 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8050 }
8051
852dff6c 8052 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8053}
8054
14f9c5c9 8055/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8056 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8057 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8058 otherwise return 0. */
8059
14f9c5c9 8060int
d2e4a39e 8061ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8062{
8063 if (type1 == NULL)
8064 return 1;
8065 else if (type0 == NULL)
8066 return 0;
8067 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8068 return 1;
8069 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8070 return 0;
4c4b4cd2
PH
8071 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8072 return 1;
ad82864c 8073 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8074 return 1;
4c4b4cd2
PH
8075 else if (ada_is_array_descriptor_type (type0)
8076 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8077 return 1;
aeb5907d
JB
8078 else
8079 {
a737d952
TT
8080 const char *type0_name = TYPE_NAME (type0);
8081 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8082
8083 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8084 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8085 return 1;
8086 }
14f9c5c9
AS
8087 return 0;
8088}
8089
e86ca25f
TT
8090/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8091 null. */
4c4b4cd2 8092
0d5cff50 8093const char *
d2e4a39e 8094ada_type_name (struct type *type)
14f9c5c9 8095{
d2e4a39e 8096 if (type == NULL)
14f9c5c9 8097 return NULL;
e86ca25f 8098 return TYPE_NAME (type);
14f9c5c9
AS
8099}
8100
b4ba55a1
JB
8101/* Search the list of "descriptive" types associated to TYPE for a type
8102 whose name is NAME. */
8103
8104static struct type *
8105find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8106{
931e5bc3 8107 struct type *result, *tmp;
b4ba55a1 8108
c6044dd1
JB
8109 if (ada_ignore_descriptive_types_p)
8110 return NULL;
8111
b4ba55a1
JB
8112 /* If there no descriptive-type info, then there is no parallel type
8113 to be found. */
8114 if (!HAVE_GNAT_AUX_INFO (type))
8115 return NULL;
8116
8117 result = TYPE_DESCRIPTIVE_TYPE (type);
8118 while (result != NULL)
8119 {
0d5cff50 8120 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8121
8122 if (result_name == NULL)
8123 {
8124 warning (_("unexpected null name on descriptive type"));
8125 return NULL;
8126 }
8127
8128 /* If the names match, stop. */
8129 if (strcmp (result_name, name) == 0)
8130 break;
8131
8132 /* Otherwise, look at the next item on the list, if any. */
8133 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8134 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8135 else
8136 tmp = NULL;
8137
8138 /* If not found either, try after having resolved the typedef. */
8139 if (tmp != NULL)
8140 result = tmp;
b4ba55a1 8141 else
931e5bc3 8142 {
f168693b 8143 result = check_typedef (result);
931e5bc3
JG
8144 if (HAVE_GNAT_AUX_INFO (result))
8145 result = TYPE_DESCRIPTIVE_TYPE (result);
8146 else
8147 result = NULL;
8148 }
b4ba55a1
JB
8149 }
8150
8151 /* If we didn't find a match, see whether this is a packed array. With
8152 older compilers, the descriptive type information is either absent or
8153 irrelevant when it comes to packed arrays so the above lookup fails.
8154 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8155 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8156 return ada_find_any_type (name);
8157
8158 return result;
8159}
8160
8161/* Find a parallel type to TYPE with the specified NAME, using the
8162 descriptive type taken from the debugging information, if available,
8163 and otherwise using the (slower) name-based method. */
8164
8165static struct type *
8166ada_find_parallel_type_with_name (struct type *type, const char *name)
8167{
8168 struct type *result = NULL;
8169
8170 if (HAVE_GNAT_AUX_INFO (type))
8171 result = find_parallel_type_by_descriptive_type (type, name);
8172 else
8173 result = ada_find_any_type (name);
8174
8175 return result;
8176}
8177
8178/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8179 SUFFIX to the name of TYPE. */
14f9c5c9 8180
d2e4a39e 8181struct type *
ebf56fd3 8182ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8183{
0d5cff50 8184 char *name;
fe978cb0 8185 const char *type_name = ada_type_name (type);
14f9c5c9 8186 int len;
d2e4a39e 8187
fe978cb0 8188 if (type_name == NULL)
14f9c5c9
AS
8189 return NULL;
8190
fe978cb0 8191 len = strlen (type_name);
14f9c5c9 8192
b4ba55a1 8193 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8194
fe978cb0 8195 strcpy (name, type_name);
14f9c5c9
AS
8196 strcpy (name + len, suffix);
8197
b4ba55a1 8198 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8199}
8200
14f9c5c9 8201/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8202 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8203
d2e4a39e
AS
8204static struct type *
8205dynamic_template_type (struct type *type)
14f9c5c9 8206{
61ee279c 8207 type = ada_check_typedef (type);
14f9c5c9
AS
8208
8209 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8210 || ada_type_name (type) == NULL)
14f9c5c9 8211 return NULL;
d2e4a39e 8212 else
14f9c5c9
AS
8213 {
8214 int len = strlen (ada_type_name (type));
5b4ee69b 8215
4c4b4cd2
PH
8216 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8217 return type;
14f9c5c9 8218 else
4c4b4cd2 8219 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8220 }
8221}
8222
8223/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8224 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8225
d2e4a39e
AS
8226static int
8227is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8228{
8229 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8230
d2e4a39e 8231 return name != NULL
14f9c5c9
AS
8232 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8233 && strstr (name, "___XVL") != NULL;
8234}
8235
4c4b4cd2
PH
8236/* The index of the variant field of TYPE, or -1 if TYPE does not
8237 represent a variant record type. */
14f9c5c9 8238
d2e4a39e 8239static int
4c4b4cd2 8240variant_field_index (struct type *type)
14f9c5c9
AS
8241{
8242 int f;
8243
4c4b4cd2
PH
8244 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8245 return -1;
8246
8247 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8248 {
8249 if (ada_is_variant_part (type, f))
8250 return f;
8251 }
8252 return -1;
14f9c5c9
AS
8253}
8254
4c4b4cd2
PH
8255/* A record type with no fields. */
8256
d2e4a39e 8257static struct type *
fe978cb0 8258empty_record (struct type *templ)
14f9c5c9 8259{
fe978cb0 8260 struct type *type = alloc_type_copy (templ);
5b4ee69b 8261
14f9c5c9
AS
8262 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8263 TYPE_NFIELDS (type) = 0;
8264 TYPE_FIELDS (type) = NULL;
b1f33ddd 8265 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8266 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8267 TYPE_LENGTH (type) = 0;
8268 return type;
8269}
8270
8271/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8272 the value of type TYPE at VALADDR or ADDRESS (see comments at
8273 the beginning of this section) VAL according to GNAT conventions.
8274 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8275 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8276 an outer-level type (i.e., as opposed to a branch of a variant.) A
8277 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8278 of the variant.
14f9c5c9 8279
4c4b4cd2
PH
8280 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8281 length are not statically known are discarded. As a consequence,
8282 VALADDR, ADDRESS and DVAL0 are ignored.
8283
8284 NOTE: Limitations: For now, we assume that dynamic fields and
8285 variants occupy whole numbers of bytes. However, they need not be
8286 byte-aligned. */
8287
8288struct type *
10a2c479 8289ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8290 const gdb_byte *valaddr,
4c4b4cd2
PH
8291 CORE_ADDR address, struct value *dval0,
8292 int keep_dynamic_fields)
14f9c5c9 8293{
d2e4a39e
AS
8294 struct value *mark = value_mark ();
8295 struct value *dval;
8296 struct type *rtype;
14f9c5c9 8297 int nfields, bit_len;
4c4b4cd2 8298 int variant_field;
14f9c5c9 8299 long off;
d94e4f4f 8300 int fld_bit_len;
14f9c5c9
AS
8301 int f;
8302
4c4b4cd2
PH
8303 /* Compute the number of fields in this record type that are going
8304 to be processed: unless keep_dynamic_fields, this includes only
8305 fields whose position and length are static will be processed. */
8306 if (keep_dynamic_fields)
8307 nfields = TYPE_NFIELDS (type);
8308 else
8309 {
8310 nfields = 0;
76a01679 8311 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8312 && !ada_is_variant_part (type, nfields)
8313 && !is_dynamic_field (type, nfields))
8314 nfields++;
8315 }
8316
e9bb382b 8317 rtype = alloc_type_copy (type);
14f9c5c9
AS
8318 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8319 INIT_CPLUS_SPECIFIC (rtype);
8320 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8321 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8322 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8323 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8324 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8325 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8326
d2e4a39e
AS
8327 off = 0;
8328 bit_len = 0;
4c4b4cd2
PH
8329 variant_field = -1;
8330
14f9c5c9
AS
8331 for (f = 0; f < nfields; f += 1)
8332 {
6c038f32
PH
8333 off = align_value (off, field_alignment (type, f))
8334 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8335 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8336 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8337
d2e4a39e 8338 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8339 {
8340 variant_field = f;
d94e4f4f 8341 fld_bit_len = 0;
4c4b4cd2 8342 }
14f9c5c9 8343 else if (is_dynamic_field (type, f))
4c4b4cd2 8344 {
284614f0
JB
8345 const gdb_byte *field_valaddr = valaddr;
8346 CORE_ADDR field_address = address;
8347 struct type *field_type =
8348 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8349
4c4b4cd2 8350 if (dval0 == NULL)
b5304971
JG
8351 {
8352 /* rtype's length is computed based on the run-time
8353 value of discriminants. If the discriminants are not
8354 initialized, the type size may be completely bogus and
0963b4bd 8355 GDB may fail to allocate a value for it. So check the
b5304971 8356 size first before creating the value. */
c1b5a1a6 8357 ada_ensure_varsize_limit (rtype);
012370f6
TT
8358 /* Using plain value_from_contents_and_address here
8359 causes problems because we will end up trying to
8360 resolve a type that is currently being
8361 constructed. */
8362 dval = value_from_contents_and_address_unresolved (rtype,
8363 valaddr,
8364 address);
9f1f738a 8365 rtype = value_type (dval);
b5304971 8366 }
4c4b4cd2
PH
8367 else
8368 dval = dval0;
8369
284614f0
JB
8370 /* If the type referenced by this field is an aligner type, we need
8371 to unwrap that aligner type, because its size might not be set.
8372 Keeping the aligner type would cause us to compute the wrong
8373 size for this field, impacting the offset of the all the fields
8374 that follow this one. */
8375 if (ada_is_aligner_type (field_type))
8376 {
8377 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8378
8379 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8380 field_address = cond_offset_target (field_address, field_offset);
8381 field_type = ada_aligned_type (field_type);
8382 }
8383
8384 field_valaddr = cond_offset_host (field_valaddr,
8385 off / TARGET_CHAR_BIT);
8386 field_address = cond_offset_target (field_address,
8387 off / TARGET_CHAR_BIT);
8388
8389 /* Get the fixed type of the field. Note that, in this case,
8390 we do not want to get the real type out of the tag: if
8391 the current field is the parent part of a tagged record,
8392 we will get the tag of the object. Clearly wrong: the real
8393 type of the parent is not the real type of the child. We
8394 would end up in an infinite loop. */
8395 field_type = ada_get_base_type (field_type);
8396 field_type = ada_to_fixed_type (field_type, field_valaddr,
8397 field_address, dval, 0);
27f2a97b
JB
8398 /* If the field size is already larger than the maximum
8399 object size, then the record itself will necessarily
8400 be larger than the maximum object size. We need to make
8401 this check now, because the size might be so ridiculously
8402 large (due to an uninitialized variable in the inferior)
8403 that it would cause an overflow when adding it to the
8404 record size. */
c1b5a1a6 8405 ada_ensure_varsize_limit (field_type);
284614f0
JB
8406
8407 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8408 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8409 /* The multiplication can potentially overflow. But because
8410 the field length has been size-checked just above, and
8411 assuming that the maximum size is a reasonable value,
8412 an overflow should not happen in practice. So rather than
8413 adding overflow recovery code to this already complex code,
8414 we just assume that it's not going to happen. */
d94e4f4f 8415 fld_bit_len =
4c4b4cd2
PH
8416 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8417 }
14f9c5c9 8418 else
4c4b4cd2 8419 {
5ded5331
JB
8420 /* Note: If this field's type is a typedef, it is important
8421 to preserve the typedef layer.
8422
8423 Otherwise, we might be transforming a typedef to a fat
8424 pointer (encoding a pointer to an unconstrained array),
8425 into a basic fat pointer (encoding an unconstrained
8426 array). As both types are implemented using the same
8427 structure, the typedef is the only clue which allows us
8428 to distinguish between the two options. Stripping it
8429 would prevent us from printing this field appropriately. */
8430 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8431 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8432 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8433 fld_bit_len =
4c4b4cd2
PH
8434 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8435 else
5ded5331
JB
8436 {
8437 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8438
8439 /* We need to be careful of typedefs when computing
8440 the length of our field. If this is a typedef,
8441 get the length of the target type, not the length
8442 of the typedef. */
8443 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8444 field_type = ada_typedef_target_type (field_type);
8445
8446 fld_bit_len =
8447 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8448 }
4c4b4cd2 8449 }
14f9c5c9 8450 if (off + fld_bit_len > bit_len)
4c4b4cd2 8451 bit_len = off + fld_bit_len;
d94e4f4f 8452 off += fld_bit_len;
4c4b4cd2
PH
8453 TYPE_LENGTH (rtype) =
8454 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8455 }
4c4b4cd2
PH
8456
8457 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8458 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8459 the record. This can happen in the presence of representation
8460 clauses. */
8461 if (variant_field >= 0)
8462 {
8463 struct type *branch_type;
8464
8465 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8466
8467 if (dval0 == NULL)
9f1f738a 8468 {
012370f6
TT
8469 /* Using plain value_from_contents_and_address here causes
8470 problems because we will end up trying to resolve a type
8471 that is currently being constructed. */
8472 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8473 address);
9f1f738a
SA
8474 rtype = value_type (dval);
8475 }
4c4b4cd2
PH
8476 else
8477 dval = dval0;
8478
8479 branch_type =
8480 to_fixed_variant_branch_type
8481 (TYPE_FIELD_TYPE (type, variant_field),
8482 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8483 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8484 if (branch_type == NULL)
8485 {
8486 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8487 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8488 TYPE_NFIELDS (rtype) -= 1;
8489 }
8490 else
8491 {
8492 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8493 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8494 fld_bit_len =
8495 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8496 TARGET_CHAR_BIT;
8497 if (off + fld_bit_len > bit_len)
8498 bit_len = off + fld_bit_len;
8499 TYPE_LENGTH (rtype) =
8500 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8501 }
8502 }
8503
714e53ab
PH
8504 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8505 should contain the alignment of that record, which should be a strictly
8506 positive value. If null or negative, then something is wrong, most
8507 probably in the debug info. In that case, we don't round up the size
0963b4bd 8508 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8509 the current RTYPE length might be good enough for our purposes. */
8510 if (TYPE_LENGTH (type) <= 0)
8511 {
323e0a4a
AC
8512 if (TYPE_NAME (rtype))
8513 warning (_("Invalid type size for `%s' detected: %d."),
8514 TYPE_NAME (rtype), TYPE_LENGTH (type));
8515 else
8516 warning (_("Invalid type size for <unnamed> detected: %d."),
8517 TYPE_LENGTH (type));
714e53ab
PH
8518 }
8519 else
8520 {
8521 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8522 TYPE_LENGTH (type));
8523 }
14f9c5c9
AS
8524
8525 value_free_to_mark (mark);
d2e4a39e 8526 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8527 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8528 return rtype;
8529}
8530
4c4b4cd2
PH
8531/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8532 of 1. */
14f9c5c9 8533
d2e4a39e 8534static struct type *
fc1a4b47 8535template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8536 CORE_ADDR address, struct value *dval0)
8537{
8538 return ada_template_to_fixed_record_type_1 (type, valaddr,
8539 address, dval0, 1);
8540}
8541
8542/* An ordinary record type in which ___XVL-convention fields and
8543 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8544 static approximations, containing all possible fields. Uses
8545 no runtime values. Useless for use in values, but that's OK,
8546 since the results are used only for type determinations. Works on both
8547 structs and unions. Representation note: to save space, we memorize
8548 the result of this function in the TYPE_TARGET_TYPE of the
8549 template type. */
8550
8551static struct type *
8552template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8553{
8554 struct type *type;
8555 int nfields;
8556 int f;
8557
9e195661
PMR
8558 /* No need no do anything if the input type is already fixed. */
8559 if (TYPE_FIXED_INSTANCE (type0))
8560 return type0;
8561
8562 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8563 if (TYPE_TARGET_TYPE (type0) != NULL)
8564 return TYPE_TARGET_TYPE (type0);
8565
9e195661 8566 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8567 type = type0;
9e195661
PMR
8568 nfields = TYPE_NFIELDS (type0);
8569
8570 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8571 recompute all over next time. */
8572 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8573
8574 for (f = 0; f < nfields; f += 1)
8575 {
460efde1 8576 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8577 struct type *new_type;
14f9c5c9 8578
4c4b4cd2 8579 if (is_dynamic_field (type0, f))
460efde1
JB
8580 {
8581 field_type = ada_check_typedef (field_type);
8582 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8583 }
14f9c5c9 8584 else
f192137b 8585 new_type = static_unwrap_type (field_type);
9e195661
PMR
8586
8587 if (new_type != field_type)
8588 {
8589 /* Clone TYPE0 only the first time we get a new field type. */
8590 if (type == type0)
8591 {
8592 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8593 TYPE_CODE (type) = TYPE_CODE (type0);
8594 INIT_CPLUS_SPECIFIC (type);
8595 TYPE_NFIELDS (type) = nfields;
8596 TYPE_FIELDS (type) = (struct field *)
8597 TYPE_ALLOC (type, nfields * sizeof (struct field));
8598 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8599 sizeof (struct field) * nfields);
8600 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8601 TYPE_FIXED_INSTANCE (type) = 1;
8602 TYPE_LENGTH (type) = 0;
8603 }
8604 TYPE_FIELD_TYPE (type, f) = new_type;
8605 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8606 }
14f9c5c9 8607 }
9e195661 8608
14f9c5c9
AS
8609 return type;
8610}
8611
4c4b4cd2 8612/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8613 whose address in memory is ADDRESS, returns a revision of TYPE,
8614 which should be a non-dynamic-sized record, in which the variant
8615 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8616 for discriminant values in DVAL0, which can be NULL if the record
8617 contains the necessary discriminant values. */
8618
d2e4a39e 8619static struct type *
fc1a4b47 8620to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8621 CORE_ADDR address, struct value *dval0)
14f9c5c9 8622{
d2e4a39e 8623 struct value *mark = value_mark ();
4c4b4cd2 8624 struct value *dval;
d2e4a39e 8625 struct type *rtype;
14f9c5c9
AS
8626 struct type *branch_type;
8627 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8628 int variant_field = variant_field_index (type);
14f9c5c9 8629
4c4b4cd2 8630 if (variant_field == -1)
14f9c5c9
AS
8631 return type;
8632
4c4b4cd2 8633 if (dval0 == NULL)
9f1f738a
SA
8634 {
8635 dval = value_from_contents_and_address (type, valaddr, address);
8636 type = value_type (dval);
8637 }
4c4b4cd2
PH
8638 else
8639 dval = dval0;
8640
e9bb382b 8641 rtype = alloc_type_copy (type);
14f9c5c9 8642 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8643 INIT_CPLUS_SPECIFIC (rtype);
8644 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8645 TYPE_FIELDS (rtype) =
8646 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8647 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8648 sizeof (struct field) * nfields);
14f9c5c9 8649 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8650 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8651 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8652
4c4b4cd2
PH
8653 branch_type = to_fixed_variant_branch_type
8654 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8655 cond_offset_host (valaddr,
4c4b4cd2
PH
8656 TYPE_FIELD_BITPOS (type, variant_field)
8657 / TARGET_CHAR_BIT),
d2e4a39e 8658 cond_offset_target (address,
4c4b4cd2
PH
8659 TYPE_FIELD_BITPOS (type, variant_field)
8660 / TARGET_CHAR_BIT), dval);
d2e4a39e 8661 if (branch_type == NULL)
14f9c5c9 8662 {
4c4b4cd2 8663 int f;
5b4ee69b 8664
4c4b4cd2
PH
8665 for (f = variant_field + 1; f < nfields; f += 1)
8666 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8667 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8668 }
8669 else
8670 {
4c4b4cd2
PH
8671 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8672 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8673 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8674 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8675 }
4c4b4cd2 8676 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8677
4c4b4cd2 8678 value_free_to_mark (mark);
14f9c5c9
AS
8679 return rtype;
8680}
8681
8682/* An ordinary record type (with fixed-length fields) that describes
8683 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8684 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8685 should be in DVAL, a record value; it may be NULL if the object
8686 at ADDR itself contains any necessary discriminant values.
8687 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8688 values from the record are needed. Except in the case that DVAL,
8689 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8690 unchecked) is replaced by a particular branch of the variant.
8691
8692 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8693 is questionable and may be removed. It can arise during the
8694 processing of an unconstrained-array-of-record type where all the
8695 variant branches have exactly the same size. This is because in
8696 such cases, the compiler does not bother to use the XVS convention
8697 when encoding the record. I am currently dubious of this
8698 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8699
d2e4a39e 8700static struct type *
fc1a4b47 8701to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8702 CORE_ADDR address, struct value *dval)
14f9c5c9 8703{
d2e4a39e 8704 struct type *templ_type;
14f9c5c9 8705
876cecd0 8706 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8707 return type0;
8708
d2e4a39e 8709 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8710
8711 if (templ_type != NULL)
8712 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8713 else if (variant_field_index (type0) >= 0)
8714 {
8715 if (dval == NULL && valaddr == NULL && address == 0)
8716 return type0;
8717 return to_record_with_fixed_variant_part (type0, valaddr, address,
8718 dval);
8719 }
14f9c5c9
AS
8720 else
8721 {
876cecd0 8722 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8723 return type0;
8724 }
8725
8726}
8727
8728/* An ordinary record type (with fixed-length fields) that describes
8729 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8730 union type. Any necessary discriminants' values should be in DVAL,
8731 a record value. That is, this routine selects the appropriate
8732 branch of the union at ADDR according to the discriminant value
b1f33ddd 8733 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8734 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8735
d2e4a39e 8736static struct type *
fc1a4b47 8737to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8738 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8739{
8740 int which;
d2e4a39e
AS
8741 struct type *templ_type;
8742 struct type *var_type;
14f9c5c9
AS
8743
8744 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8745 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8746 else
14f9c5c9
AS
8747 var_type = var_type0;
8748
8749 templ_type = ada_find_parallel_type (var_type, "___XVU");
8750
8751 if (templ_type != NULL)
8752 var_type = templ_type;
8753
b1f33ddd
JB
8754 if (is_unchecked_variant (var_type, value_type (dval)))
8755 return var_type0;
d2e4a39e
AS
8756 which =
8757 ada_which_variant_applies (var_type,
0fd88904 8758 value_type (dval), value_contents (dval));
14f9c5c9
AS
8759
8760 if (which < 0)
e9bb382b 8761 return empty_record (var_type);
14f9c5c9 8762 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8763 return to_fixed_record_type
d2e4a39e
AS
8764 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8765 valaddr, address, dval);
4c4b4cd2 8766 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8767 return
8768 to_fixed_record_type
8769 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8770 else
8771 return TYPE_FIELD_TYPE (var_type, which);
8772}
8773
8908fca5
JB
8774/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8775 ENCODING_TYPE, a type following the GNAT conventions for discrete
8776 type encodings, only carries redundant information. */
8777
8778static int
8779ada_is_redundant_range_encoding (struct type *range_type,
8780 struct type *encoding_type)
8781{
108d56a4 8782 const char *bounds_str;
8908fca5
JB
8783 int n;
8784 LONGEST lo, hi;
8785
8786 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8787
005e2509
JB
8788 if (TYPE_CODE (get_base_type (range_type))
8789 != TYPE_CODE (get_base_type (encoding_type)))
8790 {
8791 /* The compiler probably used a simple base type to describe
8792 the range type instead of the range's actual base type,
8793 expecting us to get the real base type from the encoding
8794 anyway. In this situation, the encoding cannot be ignored
8795 as redundant. */
8796 return 0;
8797 }
8798
8908fca5
JB
8799 if (is_dynamic_type (range_type))
8800 return 0;
8801
8802 if (TYPE_NAME (encoding_type) == NULL)
8803 return 0;
8804
8805 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8806 if (bounds_str == NULL)
8807 return 0;
8808
8809 n = 8; /* Skip "___XDLU_". */
8810 if (!ada_scan_number (bounds_str, n, &lo, &n))
8811 return 0;
8812 if (TYPE_LOW_BOUND (range_type) != lo)
8813 return 0;
8814
8815 n += 2; /* Skip the "__" separator between the two bounds. */
8816 if (!ada_scan_number (bounds_str, n, &hi, &n))
8817 return 0;
8818 if (TYPE_HIGH_BOUND (range_type) != hi)
8819 return 0;
8820
8821 return 1;
8822}
8823
8824/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8825 a type following the GNAT encoding for describing array type
8826 indices, only carries redundant information. */
8827
8828static int
8829ada_is_redundant_index_type_desc (struct type *array_type,
8830 struct type *desc_type)
8831{
8832 struct type *this_layer = check_typedef (array_type);
8833 int i;
8834
8835 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8836 {
8837 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8838 TYPE_FIELD_TYPE (desc_type, i)))
8839 return 0;
8840 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8841 }
8842
8843 return 1;
8844}
8845
14f9c5c9
AS
8846/* Assuming that TYPE0 is an array type describing the type of a value
8847 at ADDR, and that DVAL describes a record containing any
8848 discriminants used in TYPE0, returns a type for the value that
8849 contains no dynamic components (that is, no components whose sizes
8850 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8851 true, gives an error message if the resulting type's size is over
4c4b4cd2 8852 varsize_limit. */
14f9c5c9 8853
d2e4a39e
AS
8854static struct type *
8855to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8856 int ignore_too_big)
14f9c5c9 8857{
d2e4a39e
AS
8858 struct type *index_type_desc;
8859 struct type *result;
ad82864c 8860 int constrained_packed_array_p;
931e5bc3 8861 static const char *xa_suffix = "___XA";
14f9c5c9 8862
b0dd7688 8863 type0 = ada_check_typedef (type0);
284614f0 8864 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8865 return type0;
14f9c5c9 8866
ad82864c
JB
8867 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8868 if (constrained_packed_array_p)
8869 type0 = decode_constrained_packed_array_type (type0);
284614f0 8870
931e5bc3
JG
8871 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8872
8873 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8874 encoding suffixed with 'P' may still be generated. If so,
8875 it should be used to find the XA type. */
8876
8877 if (index_type_desc == NULL)
8878 {
1da0522e 8879 const char *type_name = ada_type_name (type0);
931e5bc3 8880
1da0522e 8881 if (type_name != NULL)
931e5bc3 8882 {
1da0522e 8883 const int len = strlen (type_name);
931e5bc3
JG
8884 char *name = (char *) alloca (len + strlen (xa_suffix));
8885
1da0522e 8886 if (type_name[len - 1] == 'P')
931e5bc3 8887 {
1da0522e 8888 strcpy (name, type_name);
931e5bc3
JG
8889 strcpy (name + len - 1, xa_suffix);
8890 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8891 }
8892 }
8893 }
8894
28c85d6c 8895 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8896 if (index_type_desc != NULL
8897 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8898 {
8899 /* Ignore this ___XA parallel type, as it does not bring any
8900 useful information. This allows us to avoid creating fixed
8901 versions of the array's index types, which would be identical
8902 to the original ones. This, in turn, can also help avoid
8903 the creation of fixed versions of the array itself. */
8904 index_type_desc = NULL;
8905 }
8906
14f9c5c9
AS
8907 if (index_type_desc == NULL)
8908 {
61ee279c 8909 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8910
14f9c5c9 8911 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8912 depend on the contents of the array in properly constructed
8913 debugging data. */
529cad9c
PH
8914 /* Create a fixed version of the array element type.
8915 We're not providing the address of an element here,
e1d5a0d2 8916 and thus the actual object value cannot be inspected to do
529cad9c
PH
8917 the conversion. This should not be a problem, since arrays of
8918 unconstrained objects are not allowed. In particular, all
8919 the elements of an array of a tagged type should all be of
8920 the same type specified in the debugging info. No need to
8921 consult the object tag. */
1ed6ede0 8922 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8923
284614f0
JB
8924 /* Make sure we always create a new array type when dealing with
8925 packed array types, since we're going to fix-up the array
8926 type length and element bitsize a little further down. */
ad82864c 8927 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8928 result = type0;
14f9c5c9 8929 else
e9bb382b 8930 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8931 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8932 }
8933 else
8934 {
8935 int i;
8936 struct type *elt_type0;
8937
8938 elt_type0 = type0;
8939 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8940 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8941
8942 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8943 depend on the contents of the array in properly constructed
8944 debugging data. */
529cad9c
PH
8945 /* Create a fixed version of the array element type.
8946 We're not providing the address of an element here,
e1d5a0d2 8947 and thus the actual object value cannot be inspected to do
529cad9c
PH
8948 the conversion. This should not be a problem, since arrays of
8949 unconstrained objects are not allowed. In particular, all
8950 the elements of an array of a tagged type should all be of
8951 the same type specified in the debugging info. No need to
8952 consult the object tag. */
1ed6ede0
JB
8953 result =
8954 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8955
8956 elt_type0 = type0;
14f9c5c9 8957 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8958 {
8959 struct type *range_type =
28c85d6c 8960 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8961
e9bb382b 8962 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8963 result, range_type);
1ce677a4 8964 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8965 }
d2e4a39e 8966 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8967 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8968 }
8969
2e6fda7d
JB
8970 /* We want to preserve the type name. This can be useful when
8971 trying to get the type name of a value that has already been
8972 printed (for instance, if the user did "print VAR; whatis $". */
8973 TYPE_NAME (result) = TYPE_NAME (type0);
8974
ad82864c 8975 if (constrained_packed_array_p)
284614f0
JB
8976 {
8977 /* So far, the resulting type has been created as if the original
8978 type was a regular (non-packed) array type. As a result, the
8979 bitsize of the array elements needs to be set again, and the array
8980 length needs to be recomputed based on that bitsize. */
8981 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8982 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8983
8984 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8985 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8986 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8987 TYPE_LENGTH (result)++;
8988 }
8989
876cecd0 8990 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8991 return result;
d2e4a39e 8992}
14f9c5c9
AS
8993
8994
8995/* A standard type (containing no dynamically sized components)
8996 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8997 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8998 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8999 ADDRESS or in VALADDR contains these discriminants.
9000
1ed6ede0
JB
9001 If CHECK_TAG is not null, in the case of tagged types, this function
9002 attempts to locate the object's tag and use it to compute the actual
9003 type. However, when ADDRESS is null, we cannot use it to determine the
9004 location of the tag, and therefore compute the tagged type's actual type.
9005 So we return the tagged type without consulting the tag. */
529cad9c 9006
f192137b
JB
9007static struct type *
9008ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9009 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9010{
61ee279c 9011 type = ada_check_typedef (type);
d2e4a39e
AS
9012 switch (TYPE_CODE (type))
9013 {
9014 default:
14f9c5c9 9015 return type;
d2e4a39e 9016 case TYPE_CODE_STRUCT:
4c4b4cd2 9017 {
76a01679 9018 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9019 struct type *fixed_record_type =
9020 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9021
529cad9c
PH
9022 /* If STATIC_TYPE is a tagged type and we know the object's address,
9023 then we can determine its tag, and compute the object's actual
0963b4bd 9024 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9025 type (the parent part of the record may have dynamic fields
9026 and the way the location of _tag is expressed may depend on
9027 them). */
529cad9c 9028
1ed6ede0 9029 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9030 {
b50d69b5
JG
9031 struct value *tag =
9032 value_tag_from_contents_and_address
9033 (fixed_record_type,
9034 valaddr,
9035 address);
9036 struct type *real_type = type_from_tag (tag);
9037 struct value *obj =
9038 value_from_contents_and_address (fixed_record_type,
9039 valaddr,
9040 address);
9f1f738a 9041 fixed_record_type = value_type (obj);
76a01679 9042 if (real_type != NULL)
b50d69b5
JG
9043 return to_fixed_record_type
9044 (real_type, NULL,
9045 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9046 }
4af88198
JB
9047
9048 /* Check to see if there is a parallel ___XVZ variable.
9049 If there is, then it provides the actual size of our type. */
9050 else if (ada_type_name (fixed_record_type) != NULL)
9051 {
0d5cff50 9052 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9053 char *xvz_name
9054 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9055 bool xvz_found = false;
4af88198
JB
9056 LONGEST size;
9057
88c15c34 9058 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9059 TRY
9060 {
9061 xvz_found = get_int_var_value (xvz_name, size);
9062 }
9063 CATCH (except, RETURN_MASK_ERROR)
9064 {
9065 /* We found the variable, but somehow failed to read
9066 its value. Rethrow the same error, but with a little
9067 bit more information, to help the user understand
9068 what went wrong (Eg: the variable might have been
9069 optimized out). */
9070 throw_error (except.error,
9071 _("unable to read value of %s (%s)"),
9072 xvz_name, except.message);
9073 }
9074 END_CATCH
9075
9076 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9077 {
9078 fixed_record_type = copy_type (fixed_record_type);
9079 TYPE_LENGTH (fixed_record_type) = size;
9080
9081 /* The FIXED_RECORD_TYPE may have be a stub. We have
9082 observed this when the debugging info is STABS, and
9083 apparently it is something that is hard to fix.
9084
9085 In practice, we don't need the actual type definition
9086 at all, because the presence of the XVZ variable allows us
9087 to assume that there must be a XVS type as well, which we
9088 should be able to use later, when we need the actual type
9089 definition.
9090
9091 In the meantime, pretend that the "fixed" type we are
9092 returning is NOT a stub, because this can cause trouble
9093 when using this type to create new types targeting it.
9094 Indeed, the associated creation routines often check
9095 whether the target type is a stub and will try to replace
0963b4bd 9096 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9097 might cause the new type to have the wrong size too.
9098 Consider the case of an array, for instance, where the size
9099 of the array is computed from the number of elements in
9100 our array multiplied by the size of its element. */
9101 TYPE_STUB (fixed_record_type) = 0;
9102 }
9103 }
1ed6ede0 9104 return fixed_record_type;
4c4b4cd2 9105 }
d2e4a39e 9106 case TYPE_CODE_ARRAY:
4c4b4cd2 9107 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9108 case TYPE_CODE_UNION:
9109 if (dval == NULL)
4c4b4cd2 9110 return type;
d2e4a39e 9111 else
4c4b4cd2 9112 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9113 }
14f9c5c9
AS
9114}
9115
f192137b
JB
9116/* The same as ada_to_fixed_type_1, except that it preserves the type
9117 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9118
9119 The typedef layer needs be preserved in order to differentiate between
9120 arrays and array pointers when both types are implemented using the same
9121 fat pointer. In the array pointer case, the pointer is encoded as
9122 a typedef of the pointer type. For instance, considering:
9123
9124 type String_Access is access String;
9125 S1 : String_Access := null;
9126
9127 To the debugger, S1 is defined as a typedef of type String. But
9128 to the user, it is a pointer. So if the user tries to print S1,
9129 we should not dereference the array, but print the array address
9130 instead.
9131
9132 If we didn't preserve the typedef layer, we would lose the fact that
9133 the type is to be presented as a pointer (needs de-reference before
9134 being printed). And we would also use the source-level type name. */
f192137b
JB
9135
9136struct type *
9137ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9138 CORE_ADDR address, struct value *dval, int check_tag)
9139
9140{
9141 struct type *fixed_type =
9142 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9143
96dbd2c1
JB
9144 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9145 then preserve the typedef layer.
9146
9147 Implementation note: We can only check the main-type portion of
9148 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9149 from TYPE now returns a type that has the same instance flags
9150 as TYPE. For instance, if TYPE is a "typedef const", and its
9151 target type is a "struct", then the typedef elimination will return
9152 a "const" version of the target type. See check_typedef for more
9153 details about how the typedef layer elimination is done.
9154
9155 brobecker/2010-11-19: It seems to me that the only case where it is
9156 useful to preserve the typedef layer is when dealing with fat pointers.
9157 Perhaps, we could add a check for that and preserve the typedef layer
9158 only in that situation. But this seems unecessary so far, probably
9159 because we call check_typedef/ada_check_typedef pretty much everywhere.
9160 */
f192137b 9161 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9162 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9163 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9164 return type;
9165
9166 return fixed_type;
9167}
9168
14f9c5c9 9169/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9170 TYPE0, but based on no runtime data. */
14f9c5c9 9171
d2e4a39e
AS
9172static struct type *
9173to_static_fixed_type (struct type *type0)
14f9c5c9 9174{
d2e4a39e 9175 struct type *type;
14f9c5c9
AS
9176
9177 if (type0 == NULL)
9178 return NULL;
9179
876cecd0 9180 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9181 return type0;
9182
61ee279c 9183 type0 = ada_check_typedef (type0);
d2e4a39e 9184
14f9c5c9
AS
9185 switch (TYPE_CODE (type0))
9186 {
9187 default:
9188 return type0;
9189 case TYPE_CODE_STRUCT:
9190 type = dynamic_template_type (type0);
d2e4a39e 9191 if (type != NULL)
4c4b4cd2
PH
9192 return template_to_static_fixed_type (type);
9193 else
9194 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9195 case TYPE_CODE_UNION:
9196 type = ada_find_parallel_type (type0, "___XVU");
9197 if (type != NULL)
4c4b4cd2
PH
9198 return template_to_static_fixed_type (type);
9199 else
9200 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9201 }
9202}
9203
4c4b4cd2
PH
9204/* A static approximation of TYPE with all type wrappers removed. */
9205
d2e4a39e
AS
9206static struct type *
9207static_unwrap_type (struct type *type)
14f9c5c9
AS
9208{
9209 if (ada_is_aligner_type (type))
9210 {
61ee279c 9211 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9212 if (ada_type_name (type1) == NULL)
4c4b4cd2 9213 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9214
9215 return static_unwrap_type (type1);
9216 }
d2e4a39e 9217 else
14f9c5c9 9218 {
d2e4a39e 9219 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9220
d2e4a39e 9221 if (raw_real_type == type)
4c4b4cd2 9222 return type;
14f9c5c9 9223 else
4c4b4cd2 9224 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9225 }
9226}
9227
9228/* In some cases, incomplete and private types require
4c4b4cd2 9229 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9230 type Foo;
9231 type FooP is access Foo;
9232 V: FooP;
9233 type Foo is array ...;
4c4b4cd2 9234 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9235 cross-references to such types, we instead substitute for FooP a
9236 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9237 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9238
9239/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9240 exists, otherwise TYPE. */
9241
d2e4a39e 9242struct type *
61ee279c 9243ada_check_typedef (struct type *type)
14f9c5c9 9244{
727e3d2e
JB
9245 if (type == NULL)
9246 return NULL;
9247
720d1a40
JB
9248 /* If our type is a typedef type of a fat pointer, then we're done.
9249 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9250 what allows us to distinguish between fat pointers that represent
9251 array types, and fat pointers that represent array access types
9252 (in both cases, the compiler implements them as fat pointers). */
9253 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9254 && is_thick_pntr (ada_typedef_target_type (type)))
9255 return type;
9256
f168693b 9257 type = check_typedef (type);
14f9c5c9 9258 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9259 || !TYPE_STUB (type)
e86ca25f 9260 || TYPE_NAME (type) == NULL)
14f9c5c9 9261 return type;
d2e4a39e 9262 else
14f9c5c9 9263 {
e86ca25f 9264 const char *name = TYPE_NAME (type);
d2e4a39e 9265 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9266
05e522ef
JB
9267 if (type1 == NULL)
9268 return type;
9269
9270 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9271 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9272 types, only for the typedef-to-array types). If that's the case,
9273 strip the typedef layer. */
9274 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9275 type1 = ada_check_typedef (type1);
9276
9277 return type1;
14f9c5c9
AS
9278 }
9279}
9280
9281/* A value representing the data at VALADDR/ADDRESS as described by
9282 type TYPE0, but with a standard (static-sized) type that correctly
9283 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9284 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9285 creation of struct values]. */
14f9c5c9 9286
4c4b4cd2
PH
9287static struct value *
9288ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9289 struct value *val0)
14f9c5c9 9290{
1ed6ede0 9291 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9292
14f9c5c9
AS
9293 if (type == type0 && val0 != NULL)
9294 return val0;
cc0e770c
JB
9295
9296 if (VALUE_LVAL (val0) != lval_memory)
9297 {
9298 /* Our value does not live in memory; it could be a convenience
9299 variable, for instance. Create a not_lval value using val0's
9300 contents. */
9301 return value_from_contents (type, value_contents (val0));
9302 }
9303
9304 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9305}
9306
9307/* A value representing VAL, but with a standard (static-sized) type
9308 that correctly describes it. Does not necessarily create a new
9309 value. */
9310
0c3acc09 9311struct value *
4c4b4cd2
PH
9312ada_to_fixed_value (struct value *val)
9313{
c48db5ca
JB
9314 val = unwrap_value (val);
9315 val = ada_to_fixed_value_create (value_type (val),
9316 value_address (val),
9317 val);
9318 return val;
14f9c5c9 9319}
d2e4a39e 9320\f
14f9c5c9 9321
14f9c5c9
AS
9322/* Attributes */
9323
4c4b4cd2
PH
9324/* Table mapping attribute numbers to names.
9325 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9326
d2e4a39e 9327static const char *attribute_names[] = {
14f9c5c9
AS
9328 "<?>",
9329
d2e4a39e 9330 "first",
14f9c5c9
AS
9331 "last",
9332 "length",
9333 "image",
14f9c5c9
AS
9334 "max",
9335 "min",
4c4b4cd2
PH
9336 "modulus",
9337 "pos",
9338 "size",
9339 "tag",
14f9c5c9 9340 "val",
14f9c5c9
AS
9341 0
9342};
9343
d2e4a39e 9344const char *
4c4b4cd2 9345ada_attribute_name (enum exp_opcode n)
14f9c5c9 9346{
4c4b4cd2
PH
9347 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9348 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9349 else
9350 return attribute_names[0];
9351}
9352
4c4b4cd2 9353/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9354
4c4b4cd2
PH
9355static LONGEST
9356pos_atr (struct value *arg)
14f9c5c9 9357{
24209737
PH
9358 struct value *val = coerce_ref (arg);
9359 struct type *type = value_type (val);
aa715135 9360 LONGEST result;
14f9c5c9 9361
d2e4a39e 9362 if (!discrete_type_p (type))
323e0a4a 9363 error (_("'POS only defined on discrete types"));
14f9c5c9 9364
aa715135
JG
9365 if (!discrete_position (type, value_as_long (val), &result))
9366 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9367
aa715135 9368 return result;
4c4b4cd2
PH
9369}
9370
9371static struct value *
3cb382c9 9372value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9373{
3cb382c9 9374 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9375}
9376
4c4b4cd2 9377/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9378
d2e4a39e
AS
9379static struct value *
9380value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9381{
d2e4a39e 9382 if (!discrete_type_p (type))
323e0a4a 9383 error (_("'VAL only defined on discrete types"));
df407dfe 9384 if (!integer_type_p (value_type (arg)))
323e0a4a 9385 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9386
9387 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9388 {
9389 long pos = value_as_long (arg);
5b4ee69b 9390
14f9c5c9 9391 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9392 error (_("argument to 'VAL out of range"));
14e75d8e 9393 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9394 }
9395 else
9396 return value_from_longest (type, value_as_long (arg));
9397}
14f9c5c9 9398\f
d2e4a39e 9399
4c4b4cd2 9400 /* Evaluation */
14f9c5c9 9401
4c4b4cd2
PH
9402/* True if TYPE appears to be an Ada character type.
9403 [At the moment, this is true only for Character and Wide_Character;
9404 It is a heuristic test that could stand improvement]. */
14f9c5c9 9405
d2e4a39e
AS
9406int
9407ada_is_character_type (struct type *type)
14f9c5c9 9408{
7b9f71f2
JB
9409 const char *name;
9410
9411 /* If the type code says it's a character, then assume it really is,
9412 and don't check any further. */
9413 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9414 return 1;
9415
9416 /* Otherwise, assume it's a character type iff it is a discrete type
9417 with a known character type name. */
9418 name = ada_type_name (type);
9419 return (name != NULL
9420 && (TYPE_CODE (type) == TYPE_CODE_INT
9421 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9422 && (strcmp (name, "character") == 0
9423 || strcmp (name, "wide_character") == 0
5a517ebd 9424 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9425 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9426}
9427
4c4b4cd2 9428/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9429
9430int
ebf56fd3 9431ada_is_string_type (struct type *type)
14f9c5c9 9432{
61ee279c 9433 type = ada_check_typedef (type);
d2e4a39e 9434 if (type != NULL
14f9c5c9 9435 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9436 && (ada_is_simple_array_type (type)
9437 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9438 && ada_array_arity (type) == 1)
9439 {
9440 struct type *elttype = ada_array_element_type (type, 1);
9441
9442 return ada_is_character_type (elttype);
9443 }
d2e4a39e 9444 else
14f9c5c9
AS
9445 return 0;
9446}
9447
5bf03f13
JB
9448/* The compiler sometimes provides a parallel XVS type for a given
9449 PAD type. Normally, it is safe to follow the PAD type directly,
9450 but older versions of the compiler have a bug that causes the offset
9451 of its "F" field to be wrong. Following that field in that case
9452 would lead to incorrect results, but this can be worked around
9453 by ignoring the PAD type and using the associated XVS type instead.
9454
9455 Set to True if the debugger should trust the contents of PAD types.
9456 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9457static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9458
9459/* True if TYPE is a struct type introduced by the compiler to force the
9460 alignment of a value. Such types have a single field with a
4c4b4cd2 9461 distinctive name. */
14f9c5c9
AS
9462
9463int
ebf56fd3 9464ada_is_aligner_type (struct type *type)
14f9c5c9 9465{
61ee279c 9466 type = ada_check_typedef (type);
714e53ab 9467
5bf03f13 9468 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9469 return 0;
9470
14f9c5c9 9471 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9472 && TYPE_NFIELDS (type) == 1
9473 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9474}
9475
9476/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9477 the parallel type. */
14f9c5c9 9478
d2e4a39e
AS
9479struct type *
9480ada_get_base_type (struct type *raw_type)
14f9c5c9 9481{
d2e4a39e
AS
9482 struct type *real_type_namer;
9483 struct type *raw_real_type;
14f9c5c9
AS
9484
9485 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9486 return raw_type;
9487
284614f0
JB
9488 if (ada_is_aligner_type (raw_type))
9489 /* The encoding specifies that we should always use the aligner type.
9490 So, even if this aligner type has an associated XVS type, we should
9491 simply ignore it.
9492
9493 According to the compiler gurus, an XVS type parallel to an aligner
9494 type may exist because of a stabs limitation. In stabs, aligner
9495 types are empty because the field has a variable-sized type, and
9496 thus cannot actually be used as an aligner type. As a result,
9497 we need the associated parallel XVS type to decode the type.
9498 Since the policy in the compiler is to not change the internal
9499 representation based on the debugging info format, we sometimes
9500 end up having a redundant XVS type parallel to the aligner type. */
9501 return raw_type;
9502
14f9c5c9 9503 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9504 if (real_type_namer == NULL
14f9c5c9
AS
9505 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9506 || TYPE_NFIELDS (real_type_namer) != 1)
9507 return raw_type;
9508
f80d3ff2
JB
9509 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9510 {
9511 /* This is an older encoding form where the base type needs to be
9512 looked up by name. We prefer the newer enconding because it is
9513 more efficient. */
9514 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9515 if (raw_real_type == NULL)
9516 return raw_type;
9517 else
9518 return raw_real_type;
9519 }
9520
9521 /* The field in our XVS type is a reference to the base type. */
9522 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9523}
14f9c5c9 9524
4c4b4cd2 9525/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9526
d2e4a39e
AS
9527struct type *
9528ada_aligned_type (struct type *type)
14f9c5c9
AS
9529{
9530 if (ada_is_aligner_type (type))
9531 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9532 else
9533 return ada_get_base_type (type);
9534}
9535
9536
9537/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9538 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9539
fc1a4b47
AC
9540const gdb_byte *
9541ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9542{
d2e4a39e 9543 if (ada_is_aligner_type (type))
14f9c5c9 9544 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9545 valaddr +
9546 TYPE_FIELD_BITPOS (type,
9547 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9548 else
9549 return valaddr;
9550}
9551
4c4b4cd2
PH
9552
9553
14f9c5c9 9554/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9555 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9556const char *
9557ada_enum_name (const char *name)
14f9c5c9 9558{
4c4b4cd2
PH
9559 static char *result;
9560 static size_t result_len = 0;
e6a959d6 9561 const char *tmp;
14f9c5c9 9562
4c4b4cd2
PH
9563 /* First, unqualify the enumeration name:
9564 1. Search for the last '.' character. If we find one, then skip
177b42fe 9565 all the preceding characters, the unqualified name starts
76a01679 9566 right after that dot.
4c4b4cd2 9567 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9568 translates dots into "__". Search forward for double underscores,
9569 but stop searching when we hit an overloading suffix, which is
9570 of the form "__" followed by digits. */
4c4b4cd2 9571
c3e5cd34
PH
9572 tmp = strrchr (name, '.');
9573 if (tmp != NULL)
4c4b4cd2
PH
9574 name = tmp + 1;
9575 else
14f9c5c9 9576 {
4c4b4cd2
PH
9577 while ((tmp = strstr (name, "__")) != NULL)
9578 {
9579 if (isdigit (tmp[2]))
9580 break;
9581 else
9582 name = tmp + 2;
9583 }
14f9c5c9
AS
9584 }
9585
9586 if (name[0] == 'Q')
9587 {
14f9c5c9 9588 int v;
5b4ee69b 9589
14f9c5c9 9590 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9591 {
9592 if (sscanf (name + 2, "%x", &v) != 1)
9593 return name;
9594 }
14f9c5c9 9595 else
4c4b4cd2 9596 return name;
14f9c5c9 9597
4c4b4cd2 9598 GROW_VECT (result, result_len, 16);
14f9c5c9 9599 if (isascii (v) && isprint (v))
88c15c34 9600 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9601 else if (name[1] == 'U')
88c15c34 9602 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9603 else
88c15c34 9604 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9605
9606 return result;
9607 }
d2e4a39e 9608 else
4c4b4cd2 9609 {
c3e5cd34
PH
9610 tmp = strstr (name, "__");
9611 if (tmp == NULL)
9612 tmp = strstr (name, "$");
9613 if (tmp != NULL)
4c4b4cd2
PH
9614 {
9615 GROW_VECT (result, result_len, tmp - name + 1);
9616 strncpy (result, name, tmp - name);
9617 result[tmp - name] = '\0';
9618 return result;
9619 }
9620
9621 return name;
9622 }
14f9c5c9
AS
9623}
9624
14f9c5c9
AS
9625/* Evaluate the subexpression of EXP starting at *POS as for
9626 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9627 expression. */
14f9c5c9 9628
d2e4a39e
AS
9629static struct value *
9630evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9631{
4b27a620 9632 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9633}
9634
9635/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9636 value it wraps. */
14f9c5c9 9637
d2e4a39e
AS
9638static struct value *
9639unwrap_value (struct value *val)
14f9c5c9 9640{
df407dfe 9641 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9642
14f9c5c9
AS
9643 if (ada_is_aligner_type (type))
9644 {
de4d072f 9645 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9646 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9647
14f9c5c9 9648 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9649 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9650
9651 return unwrap_value (v);
9652 }
d2e4a39e 9653 else
14f9c5c9 9654 {
d2e4a39e 9655 struct type *raw_real_type =
61ee279c 9656 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9657
5bf03f13
JB
9658 /* If there is no parallel XVS or XVE type, then the value is
9659 already unwrapped. Return it without further modification. */
9660 if ((type == raw_real_type)
9661 && ada_find_parallel_type (type, "___XVE") == NULL)
9662 return val;
14f9c5c9 9663
d2e4a39e 9664 return
4c4b4cd2
PH
9665 coerce_unspec_val_to_type
9666 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9667 value_address (val),
1ed6ede0 9668 NULL, 1));
14f9c5c9
AS
9669 }
9670}
d2e4a39e
AS
9671
9672static struct value *
50eff16b 9673cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9674{
50eff16b
UW
9675 struct value *scale = ada_scaling_factor (value_type (arg));
9676 arg = value_cast (value_type (scale), arg);
14f9c5c9 9677
50eff16b
UW
9678 arg = value_binop (arg, scale, BINOP_MUL);
9679 return value_cast (type, arg);
14f9c5c9
AS
9680}
9681
d2e4a39e 9682static struct value *
50eff16b 9683cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9684{
50eff16b
UW
9685 if (type == value_type (arg))
9686 return arg;
5b4ee69b 9687
50eff16b
UW
9688 struct value *scale = ada_scaling_factor (type);
9689 if (ada_is_fixed_point_type (value_type (arg)))
9690 arg = cast_from_fixed (value_type (scale), arg);
9691 else
9692 arg = value_cast (value_type (scale), arg);
9693
9694 arg = value_binop (arg, scale, BINOP_DIV);
9695 return value_cast (type, arg);
14f9c5c9
AS
9696}
9697
d99dcf51
JB
9698/* Given two array types T1 and T2, return nonzero iff both arrays
9699 contain the same number of elements. */
9700
9701static int
9702ada_same_array_size_p (struct type *t1, struct type *t2)
9703{
9704 LONGEST lo1, hi1, lo2, hi2;
9705
9706 /* Get the array bounds in order to verify that the size of
9707 the two arrays match. */
9708 if (!get_array_bounds (t1, &lo1, &hi1)
9709 || !get_array_bounds (t2, &lo2, &hi2))
9710 error (_("unable to determine array bounds"));
9711
9712 /* To make things easier for size comparison, normalize a bit
9713 the case of empty arrays by making sure that the difference
9714 between upper bound and lower bound is always -1. */
9715 if (lo1 > hi1)
9716 hi1 = lo1 - 1;
9717 if (lo2 > hi2)
9718 hi2 = lo2 - 1;
9719
9720 return (hi1 - lo1 == hi2 - lo2);
9721}
9722
9723/* Assuming that VAL is an array of integrals, and TYPE represents
9724 an array with the same number of elements, but with wider integral
9725 elements, return an array "casted" to TYPE. In practice, this
9726 means that the returned array is built by casting each element
9727 of the original array into TYPE's (wider) element type. */
9728
9729static struct value *
9730ada_promote_array_of_integrals (struct type *type, struct value *val)
9731{
9732 struct type *elt_type = TYPE_TARGET_TYPE (type);
9733 LONGEST lo, hi;
9734 struct value *res;
9735 LONGEST i;
9736
9737 /* Verify that both val and type are arrays of scalars, and
9738 that the size of val's elements is smaller than the size
9739 of type's element. */
9740 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9741 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9742 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9743 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9744 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9745 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9746
9747 if (!get_array_bounds (type, &lo, &hi))
9748 error (_("unable to determine array bounds"));
9749
9750 res = allocate_value (type);
9751
9752 /* Promote each array element. */
9753 for (i = 0; i < hi - lo + 1; i++)
9754 {
9755 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9756
9757 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9758 value_contents_all (elt), TYPE_LENGTH (elt_type));
9759 }
9760
9761 return res;
9762}
9763
4c4b4cd2
PH
9764/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9765 return the converted value. */
9766
d2e4a39e
AS
9767static struct value *
9768coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9769{
df407dfe 9770 struct type *type2 = value_type (val);
5b4ee69b 9771
14f9c5c9
AS
9772 if (type == type2)
9773 return val;
9774
61ee279c
PH
9775 type2 = ada_check_typedef (type2);
9776 type = ada_check_typedef (type);
14f9c5c9 9777
d2e4a39e
AS
9778 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9779 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9780 {
9781 val = ada_value_ind (val);
df407dfe 9782 type2 = value_type (val);
14f9c5c9
AS
9783 }
9784
d2e4a39e 9785 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9786 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9787 {
d99dcf51
JB
9788 if (!ada_same_array_size_p (type, type2))
9789 error (_("cannot assign arrays of different length"));
9790
9791 if (is_integral_type (TYPE_TARGET_TYPE (type))
9792 && is_integral_type (TYPE_TARGET_TYPE (type2))
9793 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9794 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9795 {
9796 /* Allow implicit promotion of the array elements to
9797 a wider type. */
9798 return ada_promote_array_of_integrals (type, val);
9799 }
9800
9801 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9802 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9803 error (_("Incompatible types in assignment"));
04624583 9804 deprecated_set_value_type (val, type);
14f9c5c9 9805 }
d2e4a39e 9806 return val;
14f9c5c9
AS
9807}
9808
4c4b4cd2
PH
9809static struct value *
9810ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9811{
9812 struct value *val;
9813 struct type *type1, *type2;
9814 LONGEST v, v1, v2;
9815
994b9211
AC
9816 arg1 = coerce_ref (arg1);
9817 arg2 = coerce_ref (arg2);
18af8284
JB
9818 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9819 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9820
76a01679
JB
9821 if (TYPE_CODE (type1) != TYPE_CODE_INT
9822 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9823 return value_binop (arg1, arg2, op);
9824
76a01679 9825 switch (op)
4c4b4cd2
PH
9826 {
9827 case BINOP_MOD:
9828 case BINOP_DIV:
9829 case BINOP_REM:
9830 break;
9831 default:
9832 return value_binop (arg1, arg2, op);
9833 }
9834
9835 v2 = value_as_long (arg2);
9836 if (v2 == 0)
323e0a4a 9837 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9838
9839 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9840 return value_binop (arg1, arg2, op);
9841
9842 v1 = value_as_long (arg1);
9843 switch (op)
9844 {
9845 case BINOP_DIV:
9846 v = v1 / v2;
76a01679
JB
9847 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9848 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9849 break;
9850 case BINOP_REM:
9851 v = v1 % v2;
76a01679
JB
9852 if (v * v1 < 0)
9853 v -= v2;
4c4b4cd2
PH
9854 break;
9855 default:
9856 /* Should not reach this point. */
9857 v = 0;
9858 }
9859
9860 val = allocate_value (type1);
990a07ab 9861 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9862 TYPE_LENGTH (value_type (val)),
9863 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9864 return val;
9865}
9866
9867static int
9868ada_value_equal (struct value *arg1, struct value *arg2)
9869{
df407dfe
AC
9870 if (ada_is_direct_array_type (value_type (arg1))
9871 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9872 {
79e8fcaa
JB
9873 struct type *arg1_type, *arg2_type;
9874
f58b38bf
JB
9875 /* Automatically dereference any array reference before
9876 we attempt to perform the comparison. */
9877 arg1 = ada_coerce_ref (arg1);
9878 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9879
4c4b4cd2
PH
9880 arg1 = ada_coerce_to_simple_array (arg1);
9881 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9882
9883 arg1_type = ada_check_typedef (value_type (arg1));
9884 arg2_type = ada_check_typedef (value_type (arg2));
9885
9886 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9887 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9888 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9889 /* FIXME: The following works only for types whose
76a01679
JB
9890 representations use all bits (no padding or undefined bits)
9891 and do not have user-defined equality. */
79e8fcaa
JB
9892 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9893 && memcmp (value_contents (arg1), value_contents (arg2),
9894 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9895 }
9896 return value_equal (arg1, arg2);
9897}
9898
52ce6436
PH
9899/* Total number of component associations in the aggregate starting at
9900 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9901 OP_AGGREGATE. */
52ce6436
PH
9902
9903static int
9904num_component_specs (struct expression *exp, int pc)
9905{
9906 int n, m, i;
5b4ee69b 9907
52ce6436
PH
9908 m = exp->elts[pc + 1].longconst;
9909 pc += 3;
9910 n = 0;
9911 for (i = 0; i < m; i += 1)
9912 {
9913 switch (exp->elts[pc].opcode)
9914 {
9915 default:
9916 n += 1;
9917 break;
9918 case OP_CHOICES:
9919 n += exp->elts[pc + 1].longconst;
9920 break;
9921 }
9922 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9923 }
9924 return n;
9925}
9926
9927/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9928 component of LHS (a simple array or a record), updating *POS past
9929 the expression, assuming that LHS is contained in CONTAINER. Does
9930 not modify the inferior's memory, nor does it modify LHS (unless
9931 LHS == CONTAINER). */
9932
9933static void
9934assign_component (struct value *container, struct value *lhs, LONGEST index,
9935 struct expression *exp, int *pos)
9936{
9937 struct value *mark = value_mark ();
9938 struct value *elt;
0e2da9f0 9939 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9940
0e2da9f0 9941 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9942 {
22601c15
UW
9943 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9944 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9945
52ce6436
PH
9946 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9947 }
9948 else
9949 {
9950 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9951 elt = ada_to_fixed_value (elt);
52ce6436
PH
9952 }
9953
9954 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9955 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9956 else
9957 value_assign_to_component (container, elt,
9958 ada_evaluate_subexp (NULL, exp, pos,
9959 EVAL_NORMAL));
9960
9961 value_free_to_mark (mark);
9962}
9963
9964/* Assuming that LHS represents an lvalue having a record or array
9965 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9966 of that aggregate's value to LHS, advancing *POS past the
9967 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9968 lvalue containing LHS (possibly LHS itself). Does not modify
9969 the inferior's memory, nor does it modify the contents of
0963b4bd 9970 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9971
9972static struct value *
9973assign_aggregate (struct value *container,
9974 struct value *lhs, struct expression *exp,
9975 int *pos, enum noside noside)
9976{
9977 struct type *lhs_type;
9978 int n = exp->elts[*pos+1].longconst;
9979 LONGEST low_index, high_index;
9980 int num_specs;
9981 LONGEST *indices;
9982 int max_indices, num_indices;
52ce6436 9983 int i;
52ce6436
PH
9984
9985 *pos += 3;
9986 if (noside != EVAL_NORMAL)
9987 {
52ce6436
PH
9988 for (i = 0; i < n; i += 1)
9989 ada_evaluate_subexp (NULL, exp, pos, noside);
9990 return container;
9991 }
9992
9993 container = ada_coerce_ref (container);
9994 if (ada_is_direct_array_type (value_type (container)))
9995 container = ada_coerce_to_simple_array (container);
9996 lhs = ada_coerce_ref (lhs);
9997 if (!deprecated_value_modifiable (lhs))
9998 error (_("Left operand of assignment is not a modifiable lvalue."));
9999
0e2da9f0 10000 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10001 if (ada_is_direct_array_type (lhs_type))
10002 {
10003 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10004 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10005 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10006 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10007 }
10008 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10009 {
10010 low_index = 0;
10011 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10012 }
10013 else
10014 error (_("Left-hand side must be array or record."));
10015
10016 num_specs = num_component_specs (exp, *pos - 3);
10017 max_indices = 4 * num_specs + 4;
8d749320 10018 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10019 indices[0] = indices[1] = low_index - 1;
10020 indices[2] = indices[3] = high_index + 1;
10021 num_indices = 4;
10022
10023 for (i = 0; i < n; i += 1)
10024 {
10025 switch (exp->elts[*pos].opcode)
10026 {
1fbf5ada
JB
10027 case OP_CHOICES:
10028 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10029 &num_indices, max_indices,
10030 low_index, high_index);
10031 break;
10032 case OP_POSITIONAL:
10033 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10034 &num_indices, max_indices,
10035 low_index, high_index);
1fbf5ada
JB
10036 break;
10037 case OP_OTHERS:
10038 if (i != n-1)
10039 error (_("Misplaced 'others' clause"));
10040 aggregate_assign_others (container, lhs, exp, pos, indices,
10041 num_indices, low_index, high_index);
10042 break;
10043 default:
10044 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10045 }
10046 }
10047
10048 return container;
10049}
10050
10051/* Assign into the component of LHS indexed by the OP_POSITIONAL
10052 construct at *POS, updating *POS past the construct, given that
10053 the positions are relative to lower bound LOW, where HIGH is the
10054 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10055 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10056 assign_aggregate. */
52ce6436
PH
10057static void
10058aggregate_assign_positional (struct value *container,
10059 struct value *lhs, struct expression *exp,
10060 int *pos, LONGEST *indices, int *num_indices,
10061 int max_indices, LONGEST low, LONGEST high)
10062{
10063 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10064
10065 if (ind - 1 == high)
e1d5a0d2 10066 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10067 if (ind <= high)
10068 {
10069 add_component_interval (ind, ind, indices, num_indices, max_indices);
10070 *pos += 3;
10071 assign_component (container, lhs, ind, exp, pos);
10072 }
10073 else
10074 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10075}
10076
10077/* Assign into the components of LHS indexed by the OP_CHOICES
10078 construct at *POS, updating *POS past the construct, given that
10079 the allowable indices are LOW..HIGH. Record the indices assigned
10080 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10081 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10082static void
10083aggregate_assign_from_choices (struct value *container,
10084 struct value *lhs, struct expression *exp,
10085 int *pos, LONGEST *indices, int *num_indices,
10086 int max_indices, LONGEST low, LONGEST high)
10087{
10088 int j;
10089 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10090 int choice_pos, expr_pc;
10091 int is_array = ada_is_direct_array_type (value_type (lhs));
10092
10093 choice_pos = *pos += 3;
10094
10095 for (j = 0; j < n_choices; j += 1)
10096 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10097 expr_pc = *pos;
10098 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099
10100 for (j = 0; j < n_choices; j += 1)
10101 {
10102 LONGEST lower, upper;
10103 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10104
52ce6436
PH
10105 if (op == OP_DISCRETE_RANGE)
10106 {
10107 choice_pos += 1;
10108 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10109 EVAL_NORMAL));
10110 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10111 EVAL_NORMAL));
10112 }
10113 else if (is_array)
10114 {
10115 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10116 EVAL_NORMAL));
10117 upper = lower;
10118 }
10119 else
10120 {
10121 int ind;
0d5cff50 10122 const char *name;
5b4ee69b 10123
52ce6436
PH
10124 switch (op)
10125 {
10126 case OP_NAME:
10127 name = &exp->elts[choice_pos + 2].string;
10128 break;
10129 case OP_VAR_VALUE:
10130 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10131 break;
10132 default:
10133 error (_("Invalid record component association."));
10134 }
10135 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10136 ind = 0;
10137 if (! find_struct_field (name, value_type (lhs), 0,
10138 NULL, NULL, NULL, NULL, &ind))
10139 error (_("Unknown component name: %s."), name);
10140 lower = upper = ind;
10141 }
10142
10143 if (lower <= upper && (lower < low || upper > high))
10144 error (_("Index in component association out of bounds."));
10145
10146 add_component_interval (lower, upper, indices, num_indices,
10147 max_indices);
10148 while (lower <= upper)
10149 {
10150 int pos1;
5b4ee69b 10151
52ce6436
PH
10152 pos1 = expr_pc;
10153 assign_component (container, lhs, lower, exp, &pos1);
10154 lower += 1;
10155 }
10156 }
10157}
10158
10159/* Assign the value of the expression in the OP_OTHERS construct in
10160 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10161 have not been previously assigned. The index intervals already assigned
10162 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10163 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10164static void
10165aggregate_assign_others (struct value *container,
10166 struct value *lhs, struct expression *exp,
10167 int *pos, LONGEST *indices, int num_indices,
10168 LONGEST low, LONGEST high)
10169{
10170 int i;
5ce64950 10171 int expr_pc = *pos + 1;
52ce6436
PH
10172
10173 for (i = 0; i < num_indices - 2; i += 2)
10174 {
10175 LONGEST ind;
5b4ee69b 10176
52ce6436
PH
10177 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10178 {
5ce64950 10179 int localpos;
5b4ee69b 10180
5ce64950
MS
10181 localpos = expr_pc;
10182 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10183 }
10184 }
10185 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10186}
10187
10188/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10189 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10190 modifying *SIZE as needed. It is an error if *SIZE exceeds
10191 MAX_SIZE. The resulting intervals do not overlap. */
10192static void
10193add_component_interval (LONGEST low, LONGEST high,
10194 LONGEST* indices, int *size, int max_size)
10195{
10196 int i, j;
5b4ee69b 10197
52ce6436
PH
10198 for (i = 0; i < *size; i += 2) {
10199 if (high >= indices[i] && low <= indices[i + 1])
10200 {
10201 int kh;
5b4ee69b 10202
52ce6436
PH
10203 for (kh = i + 2; kh < *size; kh += 2)
10204 if (high < indices[kh])
10205 break;
10206 if (low < indices[i])
10207 indices[i] = low;
10208 indices[i + 1] = indices[kh - 1];
10209 if (high > indices[i + 1])
10210 indices[i + 1] = high;
10211 memcpy (indices + i + 2, indices + kh, *size - kh);
10212 *size -= kh - i - 2;
10213 return;
10214 }
10215 else if (high < indices[i])
10216 break;
10217 }
10218
10219 if (*size == max_size)
10220 error (_("Internal error: miscounted aggregate components."));
10221 *size += 2;
10222 for (j = *size-1; j >= i+2; j -= 1)
10223 indices[j] = indices[j - 2];
10224 indices[i] = low;
10225 indices[i + 1] = high;
10226}
10227
6e48bd2c
JB
10228/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10229 is different. */
10230
10231static struct value *
b7e22850 10232ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10233{
10234 if (type == ada_check_typedef (value_type (arg2)))
10235 return arg2;
10236
10237 if (ada_is_fixed_point_type (type))
10238 return (cast_to_fixed (type, arg2));
10239
10240 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10241 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10242
10243 return value_cast (type, arg2);
10244}
10245
284614f0
JB
10246/* Evaluating Ada expressions, and printing their result.
10247 ------------------------------------------------------
10248
21649b50
JB
10249 1. Introduction:
10250 ----------------
10251
284614f0
JB
10252 We usually evaluate an Ada expression in order to print its value.
10253 We also evaluate an expression in order to print its type, which
10254 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10255 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10256 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10257 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10258 similar.
10259
10260 Evaluating expressions is a little more complicated for Ada entities
10261 than it is for entities in languages such as C. The main reason for
10262 this is that Ada provides types whose definition might be dynamic.
10263 One example of such types is variant records. Or another example
10264 would be an array whose bounds can only be known at run time.
10265
10266 The following description is a general guide as to what should be
10267 done (and what should NOT be done) in order to evaluate an expression
10268 involving such types, and when. This does not cover how the semantic
10269 information is encoded by GNAT as this is covered separatly. For the
10270 document used as the reference for the GNAT encoding, see exp_dbug.ads
10271 in the GNAT sources.
10272
10273 Ideally, we should embed each part of this description next to its
10274 associated code. Unfortunately, the amount of code is so vast right
10275 now that it's hard to see whether the code handling a particular
10276 situation might be duplicated or not. One day, when the code is
10277 cleaned up, this guide might become redundant with the comments
10278 inserted in the code, and we might want to remove it.
10279
21649b50
JB
10280 2. ``Fixing'' an Entity, the Simple Case:
10281 -----------------------------------------
10282
284614f0
JB
10283 When evaluating Ada expressions, the tricky issue is that they may
10284 reference entities whose type contents and size are not statically
10285 known. Consider for instance a variant record:
10286
10287 type Rec (Empty : Boolean := True) is record
10288 case Empty is
10289 when True => null;
10290 when False => Value : Integer;
10291 end case;
10292 end record;
10293 Yes : Rec := (Empty => False, Value => 1);
10294 No : Rec := (empty => True);
10295
10296 The size and contents of that record depends on the value of the
10297 descriminant (Rec.Empty). At this point, neither the debugging
10298 information nor the associated type structure in GDB are able to
10299 express such dynamic types. So what the debugger does is to create
10300 "fixed" versions of the type that applies to the specific object.
10301 We also informally refer to this opperation as "fixing" an object,
10302 which means creating its associated fixed type.
10303
10304 Example: when printing the value of variable "Yes" above, its fixed
10305 type would look like this:
10306
10307 type Rec is record
10308 Empty : Boolean;
10309 Value : Integer;
10310 end record;
10311
10312 On the other hand, if we printed the value of "No", its fixed type
10313 would become:
10314
10315 type Rec is record
10316 Empty : Boolean;
10317 end record;
10318
10319 Things become a little more complicated when trying to fix an entity
10320 with a dynamic type that directly contains another dynamic type,
10321 such as an array of variant records, for instance. There are
10322 two possible cases: Arrays, and records.
10323
21649b50
JB
10324 3. ``Fixing'' Arrays:
10325 ---------------------
10326
10327 The type structure in GDB describes an array in terms of its bounds,
10328 and the type of its elements. By design, all elements in the array
10329 have the same type and we cannot represent an array of variant elements
10330 using the current type structure in GDB. When fixing an array,
10331 we cannot fix the array element, as we would potentially need one
10332 fixed type per element of the array. As a result, the best we can do
10333 when fixing an array is to produce an array whose bounds and size
10334 are correct (allowing us to read it from memory), but without having
10335 touched its element type. Fixing each element will be done later,
10336 when (if) necessary.
10337
10338 Arrays are a little simpler to handle than records, because the same
10339 amount of memory is allocated for each element of the array, even if
1b536f04 10340 the amount of space actually used by each element differs from element
21649b50 10341 to element. Consider for instance the following array of type Rec:
284614f0
JB
10342
10343 type Rec_Array is array (1 .. 2) of Rec;
10344
1b536f04
JB
10345 The actual amount of memory occupied by each element might be different
10346 from element to element, depending on the value of their discriminant.
21649b50 10347 But the amount of space reserved for each element in the array remains
1b536f04 10348 fixed regardless. So we simply need to compute that size using
21649b50
JB
10349 the debugging information available, from which we can then determine
10350 the array size (we multiply the number of elements of the array by
10351 the size of each element).
10352
10353 The simplest case is when we have an array of a constrained element
10354 type. For instance, consider the following type declarations:
10355
10356 type Bounded_String (Max_Size : Integer) is
10357 Length : Integer;
10358 Buffer : String (1 .. Max_Size);
10359 end record;
10360 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10361
10362 In this case, the compiler describes the array as an array of
10363 variable-size elements (identified by its XVS suffix) for which
10364 the size can be read in the parallel XVZ variable.
10365
10366 In the case of an array of an unconstrained element type, the compiler
10367 wraps the array element inside a private PAD type. This type should not
10368 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10369 that we also use the adjective "aligner" in our code to designate
10370 these wrapper types.
10371
1b536f04 10372 In some cases, the size allocated for each element is statically
21649b50
JB
10373 known. In that case, the PAD type already has the correct size,
10374 and the array element should remain unfixed.
10375
10376 But there are cases when this size is not statically known.
10377 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10378
10379 type Dynamic is array (1 .. Five) of Integer;
10380 type Wrapper (Has_Length : Boolean := False) is record
10381 Data : Dynamic;
10382 case Has_Length is
10383 when True => Length : Integer;
10384 when False => null;
10385 end case;
10386 end record;
10387 type Wrapper_Array is array (1 .. 2) of Wrapper;
10388
10389 Hello : Wrapper_Array := (others => (Has_Length => True,
10390 Data => (others => 17),
10391 Length => 1));
10392
10393
10394 The debugging info would describe variable Hello as being an
10395 array of a PAD type. The size of that PAD type is not statically
10396 known, but can be determined using a parallel XVZ variable.
10397 In that case, a copy of the PAD type with the correct size should
10398 be used for the fixed array.
10399
21649b50
JB
10400 3. ``Fixing'' record type objects:
10401 ----------------------------------
10402
10403 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10404 record types. In this case, in order to compute the associated
10405 fixed type, we need to determine the size and offset of each of
10406 its components. This, in turn, requires us to compute the fixed
10407 type of each of these components.
10408
10409 Consider for instance the example:
10410
10411 type Bounded_String (Max_Size : Natural) is record
10412 Str : String (1 .. Max_Size);
10413 Length : Natural;
10414 end record;
10415 My_String : Bounded_String (Max_Size => 10);
10416
10417 In that case, the position of field "Length" depends on the size
10418 of field Str, which itself depends on the value of the Max_Size
21649b50 10419 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10420 we need to fix the type of field Str. Therefore, fixing a variant
10421 record requires us to fix each of its components.
10422
10423 However, if a component does not have a dynamic size, the component
10424 should not be fixed. In particular, fields that use a PAD type
10425 should not fixed. Here is an example where this might happen
10426 (assuming type Rec above):
10427
10428 type Container (Big : Boolean) is record
10429 First : Rec;
10430 After : Integer;
10431 case Big is
10432 when True => Another : Integer;
10433 when False => null;
10434 end case;
10435 end record;
10436 My_Container : Container := (Big => False,
10437 First => (Empty => True),
10438 After => 42);
10439
10440 In that example, the compiler creates a PAD type for component First,
10441 whose size is constant, and then positions the component After just
10442 right after it. The offset of component After is therefore constant
10443 in this case.
10444
10445 The debugger computes the position of each field based on an algorithm
10446 that uses, among other things, the actual position and size of the field
21649b50
JB
10447 preceding it. Let's now imagine that the user is trying to print
10448 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10449 end up computing the offset of field After based on the size of the
10450 fixed version of field First. And since in our example First has
10451 only one actual field, the size of the fixed type is actually smaller
10452 than the amount of space allocated to that field, and thus we would
10453 compute the wrong offset of field After.
10454
21649b50
JB
10455 To make things more complicated, we need to watch out for dynamic
10456 components of variant records (identified by the ___XVL suffix in
10457 the component name). Even if the target type is a PAD type, the size
10458 of that type might not be statically known. So the PAD type needs
10459 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10460 we might end up with the wrong size for our component. This can be
10461 observed with the following type declarations:
284614f0
JB
10462
10463 type Octal is new Integer range 0 .. 7;
10464 type Octal_Array is array (Positive range <>) of Octal;
10465 pragma Pack (Octal_Array);
10466
10467 type Octal_Buffer (Size : Positive) is record
10468 Buffer : Octal_Array (1 .. Size);
10469 Length : Integer;
10470 end record;
10471
10472 In that case, Buffer is a PAD type whose size is unset and needs
10473 to be computed by fixing the unwrapped type.
10474
21649b50
JB
10475 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10476 ----------------------------------------------------------
10477
10478 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10479 thus far, be actually fixed?
10480
10481 The answer is: Only when referencing that element. For instance
10482 when selecting one component of a record, this specific component
10483 should be fixed at that point in time. Or when printing the value
10484 of a record, each component should be fixed before its value gets
10485 printed. Similarly for arrays, the element of the array should be
10486 fixed when printing each element of the array, or when extracting
10487 one element out of that array. On the other hand, fixing should
10488 not be performed on the elements when taking a slice of an array!
10489
31432a67 10490 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10491 size of each field is that we end up also miscomputing the size
10492 of the containing type. This can have adverse results when computing
10493 the value of an entity. GDB fetches the value of an entity based
10494 on the size of its type, and thus a wrong size causes GDB to fetch
10495 the wrong amount of memory. In the case where the computed size is
10496 too small, GDB fetches too little data to print the value of our
31432a67 10497 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10498 past the buffer containing the data =:-o. */
10499
ced9779b
JB
10500/* Evaluate a subexpression of EXP, at index *POS, and return a value
10501 for that subexpression cast to TO_TYPE. Advance *POS over the
10502 subexpression. */
10503
10504static value *
10505ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10506 enum noside noside, struct type *to_type)
10507{
10508 int pc = *pos;
10509
10510 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10511 || exp->elts[pc].opcode == OP_VAR_VALUE)
10512 {
10513 (*pos) += 4;
10514
10515 value *val;
10516 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10517 {
10518 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10519 return value_zero (to_type, not_lval);
10520
10521 val = evaluate_var_msym_value (noside,
10522 exp->elts[pc + 1].objfile,
10523 exp->elts[pc + 2].msymbol);
10524 }
10525 else
10526 val = evaluate_var_value (noside,
10527 exp->elts[pc + 1].block,
10528 exp->elts[pc + 2].symbol);
10529
10530 if (noside == EVAL_SKIP)
10531 return eval_skip_value (exp);
10532
10533 val = ada_value_cast (to_type, val);
10534
10535 /* Follow the Ada language semantics that do not allow taking
10536 an address of the result of a cast (view conversion in Ada). */
10537 if (VALUE_LVAL (val) == lval_memory)
10538 {
10539 if (value_lazy (val))
10540 value_fetch_lazy (val);
10541 VALUE_LVAL (val) = not_lval;
10542 }
10543 return val;
10544 }
10545
10546 value *val = evaluate_subexp (to_type, exp, pos, noside);
10547 if (noside == EVAL_SKIP)
10548 return eval_skip_value (exp);
10549 return ada_value_cast (to_type, val);
10550}
10551
284614f0
JB
10552/* Implement the evaluate_exp routine in the exp_descriptor structure
10553 for the Ada language. */
10554
52ce6436 10555static struct value *
ebf56fd3 10556ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10557 int *pos, enum noside noside)
14f9c5c9
AS
10558{
10559 enum exp_opcode op;
b5385fc0 10560 int tem;
14f9c5c9 10561 int pc;
5ec18f2b 10562 int preeval_pos;
14f9c5c9
AS
10563 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10564 struct type *type;
52ce6436 10565 int nargs, oplen;
d2e4a39e 10566 struct value **argvec;
14f9c5c9 10567
d2e4a39e
AS
10568 pc = *pos;
10569 *pos += 1;
14f9c5c9
AS
10570 op = exp->elts[pc].opcode;
10571
d2e4a39e 10572 switch (op)
14f9c5c9
AS
10573 {
10574 default:
10575 *pos -= 1;
6e48bd2c 10576 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10577
10578 if (noside == EVAL_NORMAL)
10579 arg1 = unwrap_value (arg1);
6e48bd2c 10580
edd079d9 10581 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10582 then we need to perform the conversion manually, because
10583 evaluate_subexp_standard doesn't do it. This conversion is
10584 necessary in Ada because the different kinds of float/fixed
10585 types in Ada have different representations.
10586
10587 Similarly, we need to perform the conversion from OP_LONG
10588 ourselves. */
edd079d9 10589 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10590 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10591
10592 return arg1;
4c4b4cd2
PH
10593
10594 case OP_STRING:
10595 {
76a01679 10596 struct value *result;
5b4ee69b 10597
76a01679
JB
10598 *pos -= 1;
10599 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10600 /* The result type will have code OP_STRING, bashed there from
10601 OP_ARRAY. Bash it back. */
df407dfe
AC
10602 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10603 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10604 return result;
4c4b4cd2 10605 }
14f9c5c9
AS
10606
10607 case UNOP_CAST:
10608 (*pos) += 2;
10609 type = exp->elts[pc + 1].type;
ced9779b 10610 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10611
4c4b4cd2
PH
10612 case UNOP_QUAL:
10613 (*pos) += 2;
10614 type = exp->elts[pc + 1].type;
10615 return ada_evaluate_subexp (type, exp, pos, noside);
10616
14f9c5c9
AS
10617 case BINOP_ASSIGN:
10618 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10619 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10620 {
10621 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10622 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10623 return arg1;
10624 return ada_value_assign (arg1, arg1);
10625 }
003f3813
JB
10626 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10627 except if the lhs of our assignment is a convenience variable.
10628 In the case of assigning to a convenience variable, the lhs
10629 should be exactly the result of the evaluation of the rhs. */
10630 type = value_type (arg1);
10631 if (VALUE_LVAL (arg1) == lval_internalvar)
10632 type = NULL;
10633 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10634 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10635 return arg1;
df407dfe
AC
10636 if (ada_is_fixed_point_type (value_type (arg1)))
10637 arg2 = cast_to_fixed (value_type (arg1), arg2);
10638 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10639 error
323e0a4a 10640 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10641 else
df407dfe 10642 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10643 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10644
10645 case BINOP_ADD:
10646 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10647 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10648 if (noside == EVAL_SKIP)
4c4b4cd2 10649 goto nosideret;
2ac8a782
JB
10650 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10651 return (value_from_longest
10652 (value_type (arg1),
10653 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10654 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10655 return (value_from_longest
10656 (value_type (arg2),
10657 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10658 if ((ada_is_fixed_point_type (value_type (arg1))
10659 || ada_is_fixed_point_type (value_type (arg2)))
10660 && value_type (arg1) != value_type (arg2))
323e0a4a 10661 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10662 /* Do the addition, and cast the result to the type of the first
10663 argument. We cannot cast the result to a reference type, so if
10664 ARG1 is a reference type, find its underlying type. */
10665 type = value_type (arg1);
10666 while (TYPE_CODE (type) == TYPE_CODE_REF)
10667 type = TYPE_TARGET_TYPE (type);
f44316fa 10668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10669 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10670
10671 case BINOP_SUB:
10672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10674 if (noside == EVAL_SKIP)
4c4b4cd2 10675 goto nosideret;
2ac8a782
JB
10676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10677 return (value_from_longest
10678 (value_type (arg1),
10679 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10680 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10681 return (value_from_longest
10682 (value_type (arg2),
10683 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10684 if ((ada_is_fixed_point_type (value_type (arg1))
10685 || ada_is_fixed_point_type (value_type (arg2)))
10686 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10687 error (_("Operands of fixed-point subtraction "
10688 "must have the same type"));
b7789565
JB
10689 /* Do the substraction, and cast the result to the type of the first
10690 argument. We cannot cast the result to a reference type, so if
10691 ARG1 is a reference type, find its underlying type. */
10692 type = value_type (arg1);
10693 while (TYPE_CODE (type) == TYPE_CODE_REF)
10694 type = TYPE_TARGET_TYPE (type);
f44316fa 10695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10696 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10697
10698 case BINOP_MUL:
10699 case BINOP_DIV:
e1578042
JB
10700 case BINOP_REM:
10701 case BINOP_MOD:
14f9c5c9
AS
10702 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10703 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10704 if (noside == EVAL_SKIP)
4c4b4cd2 10705 goto nosideret;
e1578042 10706 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10707 {
10708 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10709 return value_zero (value_type (arg1), not_lval);
10710 }
14f9c5c9 10711 else
4c4b4cd2 10712 {
a53b7a21 10713 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10714 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10715 arg1 = cast_from_fixed (type, arg1);
df407dfe 10716 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10717 arg2 = cast_from_fixed (type, arg2);
f44316fa 10718 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10719 return ada_value_binop (arg1, arg2, op);
10720 }
10721
4c4b4cd2
PH
10722 case BINOP_EQUAL:
10723 case BINOP_NOTEQUAL:
14f9c5c9 10724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10725 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10726 if (noside == EVAL_SKIP)
76a01679 10727 goto nosideret;
4c4b4cd2 10728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10729 tem = 0;
4c4b4cd2 10730 else
f44316fa
UW
10731 {
10732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10733 tem = ada_value_equal (arg1, arg2);
10734 }
4c4b4cd2 10735 if (op == BINOP_NOTEQUAL)
76a01679 10736 tem = !tem;
fbb06eb1
UW
10737 type = language_bool_type (exp->language_defn, exp->gdbarch);
10738 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10739
10740 case UNOP_NEG:
10741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10742 if (noside == EVAL_SKIP)
10743 goto nosideret;
df407dfe
AC
10744 else if (ada_is_fixed_point_type (value_type (arg1)))
10745 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10746 else
f44316fa
UW
10747 {
10748 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10749 return value_neg (arg1);
10750 }
4c4b4cd2 10751
2330c6c6
JB
10752 case BINOP_LOGICAL_AND:
10753 case BINOP_LOGICAL_OR:
10754 case UNOP_LOGICAL_NOT:
000d5124
JB
10755 {
10756 struct value *val;
10757
10758 *pos -= 1;
10759 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10760 type = language_bool_type (exp->language_defn, exp->gdbarch);
10761 return value_cast (type, val);
000d5124 10762 }
2330c6c6
JB
10763
10764 case BINOP_BITWISE_AND:
10765 case BINOP_BITWISE_IOR:
10766 case BINOP_BITWISE_XOR:
000d5124
JB
10767 {
10768 struct value *val;
10769
10770 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10771 *pos = pc;
10772 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10773
10774 return value_cast (value_type (arg1), val);
10775 }
2330c6c6 10776
14f9c5c9
AS
10777 case OP_VAR_VALUE:
10778 *pos -= 1;
6799def4 10779
14f9c5c9 10780 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10781 {
10782 *pos += 4;
10783 goto nosideret;
10784 }
da5c522f
JB
10785
10786 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10787 /* Only encountered when an unresolved symbol occurs in a
10788 context other than a function call, in which case, it is
52ce6436 10789 invalid. */
323e0a4a 10790 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10791 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10792
10793 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10794 {
0c1f74cf 10795 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10796 /* Check to see if this is a tagged type. We also need to handle
10797 the case where the type is a reference to a tagged type, but
10798 we have to be careful to exclude pointers to tagged types.
10799 The latter should be shown as usual (as a pointer), whereas
10800 a reference should mostly be transparent to the user. */
10801 if (ada_is_tagged_type (type, 0)
023db19c 10802 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10803 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10804 {
10805 /* Tagged types are a little special in the fact that the real
10806 type is dynamic and can only be determined by inspecting the
10807 object's tag. This means that we need to get the object's
10808 value first (EVAL_NORMAL) and then extract the actual object
10809 type from its tag.
10810
10811 Note that we cannot skip the final step where we extract
10812 the object type from its tag, because the EVAL_NORMAL phase
10813 results in dynamic components being resolved into fixed ones.
10814 This can cause problems when trying to print the type
10815 description of tagged types whose parent has a dynamic size:
10816 We use the type name of the "_parent" component in order
10817 to print the name of the ancestor type in the type description.
10818 If that component had a dynamic size, the resolution into
10819 a fixed type would result in the loss of that type name,
10820 thus preventing us from printing the name of the ancestor
10821 type in the type description. */
10822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10823
10824 if (TYPE_CODE (type) != TYPE_CODE_REF)
10825 {
10826 struct type *actual_type;
10827
10828 actual_type = type_from_tag (ada_value_tag (arg1));
10829 if (actual_type == NULL)
10830 /* If, for some reason, we were unable to determine
10831 the actual type from the tag, then use the static
10832 approximation that we just computed as a fallback.
10833 This can happen if the debugging information is
10834 incomplete, for instance. */
10835 actual_type = type;
10836 return value_zero (actual_type, not_lval);
10837 }
10838 else
10839 {
10840 /* In the case of a ref, ada_coerce_ref takes care
10841 of determining the actual type. But the evaluation
10842 should return a ref as it should be valid to ask
10843 for its address; so rebuild a ref after coerce. */
10844 arg1 = ada_coerce_ref (arg1);
a65cfae5 10845 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10846 }
10847 }
0c1f74cf 10848
84754697
JB
10849 /* Records and unions for which GNAT encodings have been
10850 generated need to be statically fixed as well.
10851 Otherwise, non-static fixing produces a type where
10852 all dynamic properties are removed, which prevents "ptype"
10853 from being able to completely describe the type.
10854 For instance, a case statement in a variant record would be
10855 replaced by the relevant components based on the actual
10856 value of the discriminants. */
10857 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10858 && dynamic_template_type (type) != NULL)
10859 || (TYPE_CODE (type) == TYPE_CODE_UNION
10860 && ada_find_parallel_type (type, "___XVU") != NULL))
10861 {
10862 *pos += 4;
10863 return value_zero (to_static_fixed_type (type), not_lval);
10864 }
4c4b4cd2 10865 }
da5c522f
JB
10866
10867 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10868 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10869
10870 case OP_FUNCALL:
10871 (*pos) += 2;
10872
10873 /* Allocate arg vector, including space for the function to be
10874 called in argvec[0] and a terminating NULL. */
10875 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10876 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10877
10878 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10879 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10880 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10881 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10882 else
10883 {
10884 for (tem = 0; tem <= nargs; tem += 1)
10885 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10886 argvec[tem] = 0;
10887
10888 if (noside == EVAL_SKIP)
10889 goto nosideret;
10890 }
10891
ad82864c
JB
10892 if (ada_is_constrained_packed_array_type
10893 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10894 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10895 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10896 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10897 /* This is a packed array that has already been fixed, and
10898 therefore already coerced to a simple array. Nothing further
10899 to do. */
10900 ;
e6c2c623
PMR
10901 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10902 {
10903 /* Make sure we dereference references so that all the code below
10904 feels like it's really handling the referenced value. Wrapping
10905 types (for alignment) may be there, so make sure we strip them as
10906 well. */
10907 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10908 }
10909 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10910 && VALUE_LVAL (argvec[0]) == lval_memory)
10911 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10912
df407dfe 10913 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10914
10915 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10916 them. So, if this is an array typedef (encoding use for array
10917 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10918 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10919 type = ada_typedef_target_type (type);
10920
4c4b4cd2
PH
10921 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10922 {
61ee279c 10923 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10924 {
10925 case TYPE_CODE_FUNC:
61ee279c 10926 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10927 break;
10928 case TYPE_CODE_ARRAY:
10929 break;
10930 case TYPE_CODE_STRUCT:
10931 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10932 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10933 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10934 break;
10935 default:
323e0a4a 10936 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10937 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10938 break;
10939 }
10940 }
10941
10942 switch (TYPE_CODE (type))
10943 {
10944 case TYPE_CODE_FUNC:
10945 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10946 {
7022349d
PA
10947 if (TYPE_TARGET_TYPE (type) == NULL)
10948 error_call_unknown_return_type (NULL);
10949 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10950 }
7022349d 10951 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10952 case TYPE_CODE_INTERNAL_FUNCTION:
10953 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10954 /* We don't know anything about what the internal
10955 function might return, but we have to return
10956 something. */
10957 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10958 not_lval);
10959 else
10960 return call_internal_function (exp->gdbarch, exp->language_defn,
10961 argvec[0], nargs, argvec + 1);
10962
4c4b4cd2
PH
10963 case TYPE_CODE_STRUCT:
10964 {
10965 int arity;
10966
4c4b4cd2
PH
10967 arity = ada_array_arity (type);
10968 type = ada_array_element_type (type, nargs);
10969 if (type == NULL)
323e0a4a 10970 error (_("cannot subscript or call a record"));
4c4b4cd2 10971 if (arity != nargs)
323e0a4a 10972 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10974 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10975 return
10976 unwrap_value (ada_value_subscript
10977 (argvec[0], nargs, argvec + 1));
10978 }
10979 case TYPE_CODE_ARRAY:
10980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10981 {
10982 type = ada_array_element_type (type, nargs);
10983 if (type == NULL)
323e0a4a 10984 error (_("element type of array unknown"));
4c4b4cd2 10985 else
0a07e705 10986 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10987 }
10988 return
10989 unwrap_value (ada_value_subscript
10990 (ada_coerce_to_simple_array (argvec[0]),
10991 nargs, argvec + 1));
10992 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10994 {
deede10c 10995 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10996 type = ada_array_element_type (type, nargs);
10997 if (type == NULL)
323e0a4a 10998 error (_("element type of array unknown"));
4c4b4cd2 10999 else
0a07e705 11000 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11001 }
11002 return
deede10c
JB
11003 unwrap_value (ada_value_ptr_subscript (argvec[0],
11004 nargs, argvec + 1));
4c4b4cd2
PH
11005
11006 default:
e1d5a0d2
PH
11007 error (_("Attempt to index or call something other than an "
11008 "array or function"));
4c4b4cd2
PH
11009 }
11010
11011 case TERNOP_SLICE:
11012 {
11013 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11014 struct value *low_bound_val =
11015 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11016 struct value *high_bound_val =
11017 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 LONGEST low_bound;
11019 LONGEST high_bound;
5b4ee69b 11020
994b9211
AC
11021 low_bound_val = coerce_ref (low_bound_val);
11022 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11023 low_bound = value_as_long (low_bound_val);
11024 high_bound = value_as_long (high_bound_val);
963a6417 11025
4c4b4cd2
PH
11026 if (noside == EVAL_SKIP)
11027 goto nosideret;
11028
4c4b4cd2
PH
11029 /* If this is a reference to an aligner type, then remove all
11030 the aligners. */
df407dfe
AC
11031 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11032 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11033 TYPE_TARGET_TYPE (value_type (array)) =
11034 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11035
ad82864c 11036 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11037 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11038
11039 /* If this is a reference to an array or an array lvalue,
11040 convert to a pointer. */
df407dfe
AC
11041 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11042 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11043 && VALUE_LVAL (array) == lval_memory))
11044 array = value_addr (array);
11045
1265e4aa 11046 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11047 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11048 (value_type (array))))
0b5d8877 11049 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11050
11051 array = ada_coerce_to_simple_array_ptr (array);
11052
714e53ab
PH
11053 /* If we have more than one level of pointer indirection,
11054 dereference the value until we get only one level. */
df407dfe
AC
11055 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11056 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11057 == TYPE_CODE_PTR))
11058 array = value_ind (array);
11059
11060 /* Make sure we really do have an array type before going further,
11061 to avoid a SEGV when trying to get the index type or the target
11062 type later down the road if the debug info generated by
11063 the compiler is incorrect or incomplete. */
df407dfe 11064 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11065 error (_("cannot take slice of non-array"));
714e53ab 11066
828292f2
JB
11067 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11068 == TYPE_CODE_PTR)
4c4b4cd2 11069 {
828292f2
JB
11070 struct type *type0 = ada_check_typedef (value_type (array));
11071
0b5d8877 11072 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11073 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11074 else
11075 {
11076 struct type *arr_type0 =
828292f2 11077 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11078
f5938064
JG
11079 return ada_value_slice_from_ptr (array, arr_type0,
11080 longest_to_int (low_bound),
11081 longest_to_int (high_bound));
4c4b4cd2
PH
11082 }
11083 }
11084 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11085 return array;
11086 else if (high_bound < low_bound)
df407dfe 11087 return empty_array (value_type (array), low_bound);
4c4b4cd2 11088 else
529cad9c
PH
11089 return ada_value_slice (array, longest_to_int (low_bound),
11090 longest_to_int (high_bound));
4c4b4cd2 11091 }
14f9c5c9 11092
4c4b4cd2
PH
11093 case UNOP_IN_RANGE:
11094 (*pos) += 2;
11095 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11096 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11097
14f9c5c9 11098 if (noside == EVAL_SKIP)
4c4b4cd2 11099 goto nosideret;
14f9c5c9 11100
4c4b4cd2
PH
11101 switch (TYPE_CODE (type))
11102 {
11103 default:
e1d5a0d2
PH
11104 lim_warning (_("Membership test incompletely implemented; "
11105 "always returns true"));
fbb06eb1
UW
11106 type = language_bool_type (exp->language_defn, exp->gdbarch);
11107 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11108
11109 case TYPE_CODE_RANGE:
030b4912
UW
11110 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11111 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11112 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11113 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11114 type = language_bool_type (exp->language_defn, exp->gdbarch);
11115 return
11116 value_from_longest (type,
4c4b4cd2
PH
11117 (value_less (arg1, arg3)
11118 || value_equal (arg1, arg3))
11119 && (value_less (arg2, arg1)
11120 || value_equal (arg2, arg1)));
11121 }
11122
11123 case BINOP_IN_BOUNDS:
14f9c5c9 11124 (*pos) += 2;
4c4b4cd2
PH
11125 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11126 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11127
4c4b4cd2
PH
11128 if (noside == EVAL_SKIP)
11129 goto nosideret;
14f9c5c9 11130
4c4b4cd2 11131 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11132 {
11133 type = language_bool_type (exp->language_defn, exp->gdbarch);
11134 return value_zero (type, not_lval);
11135 }
14f9c5c9 11136
4c4b4cd2 11137 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11138
1eea4ebd
UW
11139 type = ada_index_type (value_type (arg2), tem, "range");
11140 if (!type)
11141 type = value_type (arg1);
14f9c5c9 11142
1eea4ebd
UW
11143 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11144 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11145
f44316fa
UW
11146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11148 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11149 return
fbb06eb1 11150 value_from_longest (type,
4c4b4cd2
PH
11151 (value_less (arg1, arg3)
11152 || value_equal (arg1, arg3))
11153 && (value_less (arg2, arg1)
11154 || value_equal (arg2, arg1)));
11155
11156 case TERNOP_IN_RANGE:
11157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11160
11161 if (noside == EVAL_SKIP)
11162 goto nosideret;
11163
f44316fa
UW
11164 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11166 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11167 return
fbb06eb1 11168 value_from_longest (type,
4c4b4cd2
PH
11169 (value_less (arg1, arg3)
11170 || value_equal (arg1, arg3))
11171 && (value_less (arg2, arg1)
11172 || value_equal (arg2, arg1)));
11173
11174 case OP_ATR_FIRST:
11175 case OP_ATR_LAST:
11176 case OP_ATR_LENGTH:
11177 {
76a01679 11178 struct type *type_arg;
5b4ee69b 11179
76a01679
JB
11180 if (exp->elts[*pos].opcode == OP_TYPE)
11181 {
11182 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11183 arg1 = NULL;
5bc23cb3 11184 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11185 }
11186 else
11187 {
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 type_arg = NULL;
11190 }
11191
11192 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11193 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11194 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11195 *pos += 4;
11196
11197 if (noside == EVAL_SKIP)
11198 goto nosideret;
11199
11200 if (type_arg == NULL)
11201 {
11202 arg1 = ada_coerce_ref (arg1);
11203
ad82864c 11204 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11205 arg1 = ada_coerce_to_simple_array (arg1);
11206
aa4fb036 11207 if (op == OP_ATR_LENGTH)
1eea4ebd 11208 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11209 else
11210 {
11211 type = ada_index_type (value_type (arg1), tem,
11212 ada_attribute_name (op));
11213 if (type == NULL)
11214 type = builtin_type (exp->gdbarch)->builtin_int;
11215 }
76a01679
JB
11216
11217 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11218 return allocate_value (type);
76a01679
JB
11219
11220 switch (op)
11221 {
11222 default: /* Should never happen. */
323e0a4a 11223 error (_("unexpected attribute encountered"));
76a01679 11224 case OP_ATR_FIRST:
1eea4ebd
UW
11225 return value_from_longest
11226 (type, ada_array_bound (arg1, tem, 0));
76a01679 11227 case OP_ATR_LAST:
1eea4ebd
UW
11228 return value_from_longest
11229 (type, ada_array_bound (arg1, tem, 1));
76a01679 11230 case OP_ATR_LENGTH:
1eea4ebd
UW
11231 return value_from_longest
11232 (type, ada_array_length (arg1, tem));
76a01679
JB
11233 }
11234 }
11235 else if (discrete_type_p (type_arg))
11236 {
11237 struct type *range_type;
0d5cff50 11238 const char *name = ada_type_name (type_arg);
5b4ee69b 11239
76a01679
JB
11240 range_type = NULL;
11241 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11242 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11243 if (range_type == NULL)
11244 range_type = type_arg;
11245 switch (op)
11246 {
11247 default:
323e0a4a 11248 error (_("unexpected attribute encountered"));
76a01679 11249 case OP_ATR_FIRST:
690cc4eb 11250 return value_from_longest
43bbcdc2 11251 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11252 case OP_ATR_LAST:
690cc4eb 11253 return value_from_longest
43bbcdc2 11254 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11255 case OP_ATR_LENGTH:
323e0a4a 11256 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11257 }
11258 }
11259 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11260 error (_("unimplemented type attribute"));
76a01679
JB
11261 else
11262 {
11263 LONGEST low, high;
11264
ad82864c
JB
11265 if (ada_is_constrained_packed_array_type (type_arg))
11266 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11267
aa4fb036 11268 if (op == OP_ATR_LENGTH)
1eea4ebd 11269 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11270 else
11271 {
11272 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11273 if (type == NULL)
11274 type = builtin_type (exp->gdbarch)->builtin_int;
11275 }
1eea4ebd 11276
76a01679
JB
11277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11278 return allocate_value (type);
11279
11280 switch (op)
11281 {
11282 default:
323e0a4a 11283 error (_("unexpected attribute encountered"));
76a01679 11284 case OP_ATR_FIRST:
1eea4ebd 11285 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11286 return value_from_longest (type, low);
11287 case OP_ATR_LAST:
1eea4ebd 11288 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11289 return value_from_longest (type, high);
11290 case OP_ATR_LENGTH:
1eea4ebd
UW
11291 low = ada_array_bound_from_type (type_arg, tem, 0);
11292 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11293 return value_from_longest (type, high - low + 1);
11294 }
11295 }
14f9c5c9
AS
11296 }
11297
4c4b4cd2
PH
11298 case OP_ATR_TAG:
11299 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11300 if (noside == EVAL_SKIP)
76a01679 11301 goto nosideret;
4c4b4cd2
PH
11302
11303 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11304 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11305
11306 return ada_value_tag (arg1);
11307
11308 case OP_ATR_MIN:
11309 case OP_ATR_MAX:
11310 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11312 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11313 if (noside == EVAL_SKIP)
76a01679 11314 goto nosideret;
d2e4a39e 11315 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11316 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11317 else
f44316fa
UW
11318 {
11319 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11320 return value_binop (arg1, arg2,
11321 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11322 }
14f9c5c9 11323
4c4b4cd2
PH
11324 case OP_ATR_MODULUS:
11325 {
31dedfee 11326 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11327
5b4ee69b 11328 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11329 if (noside == EVAL_SKIP)
11330 goto nosideret;
4c4b4cd2 11331
76a01679 11332 if (!ada_is_modular_type (type_arg))
323e0a4a 11333 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11334
76a01679
JB
11335 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11336 ada_modulus (type_arg));
4c4b4cd2
PH
11337 }
11338
11339
11340 case OP_ATR_POS:
11341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11343 if (noside == EVAL_SKIP)
76a01679 11344 goto nosideret;
3cb382c9
UW
11345 type = builtin_type (exp->gdbarch)->builtin_int;
11346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11347 return value_zero (type, not_lval);
14f9c5c9 11348 else
3cb382c9 11349 return value_pos_atr (type, arg1);
14f9c5c9 11350
4c4b4cd2
PH
11351 case OP_ATR_SIZE:
11352 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11353 type = value_type (arg1);
11354
11355 /* If the argument is a reference, then dereference its type, since
11356 the user is really asking for the size of the actual object,
11357 not the size of the pointer. */
11358 if (TYPE_CODE (type) == TYPE_CODE_REF)
11359 type = TYPE_TARGET_TYPE (type);
11360
4c4b4cd2 11361 if (noside == EVAL_SKIP)
76a01679 11362 goto nosideret;
4c4b4cd2 11363 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11364 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11365 else
22601c15 11366 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11367 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11368
11369 case OP_ATR_VAL:
11370 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11372 type = exp->elts[pc + 2].type;
14f9c5c9 11373 if (noside == EVAL_SKIP)
76a01679 11374 goto nosideret;
4c4b4cd2 11375 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11376 return value_zero (type, not_lval);
4c4b4cd2 11377 else
76a01679 11378 return value_val_atr (type, arg1);
4c4b4cd2
PH
11379
11380 case BINOP_EXP:
11381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11382 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11383 if (noside == EVAL_SKIP)
11384 goto nosideret;
11385 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11386 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11387 else
f44316fa
UW
11388 {
11389 /* For integer exponentiation operations,
11390 only promote the first argument. */
11391 if (is_integral_type (value_type (arg2)))
11392 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11393 else
11394 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11395
11396 return value_binop (arg1, arg2, op);
11397 }
4c4b4cd2
PH
11398
11399 case UNOP_PLUS:
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11401 if (noside == EVAL_SKIP)
11402 goto nosideret;
11403 else
11404 return arg1;
11405
11406 case UNOP_ABS:
11407 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11408 if (noside == EVAL_SKIP)
11409 goto nosideret;
f44316fa 11410 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11411 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11412 return value_neg (arg1);
14f9c5c9 11413 else
4c4b4cd2 11414 return arg1;
14f9c5c9
AS
11415
11416 case UNOP_IND:
5ec18f2b 11417 preeval_pos = *pos;
6b0d7253 11418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11419 if (noside == EVAL_SKIP)
4c4b4cd2 11420 goto nosideret;
df407dfe 11421 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11422 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11423 {
11424 if (ada_is_array_descriptor_type (type))
11425 /* GDB allows dereferencing GNAT array descriptors. */
11426 {
11427 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11428
4c4b4cd2 11429 if (arrType == NULL)
323e0a4a 11430 error (_("Attempt to dereference null array pointer."));
00a4c844 11431 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11432 }
11433 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11434 || TYPE_CODE (type) == TYPE_CODE_REF
11435 /* In C you can dereference an array to get the 1st elt. */
11436 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11437 {
5ec18f2b
JG
11438 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11439 only be determined by inspecting the object's tag.
11440 This means that we need to evaluate completely the
11441 expression in order to get its type. */
11442
023db19c
JB
11443 if ((TYPE_CODE (type) == TYPE_CODE_REF
11444 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11445 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11446 {
11447 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11448 EVAL_NORMAL);
11449 type = value_type (ada_value_ind (arg1));
11450 }
11451 else
11452 {
11453 type = to_static_fixed_type
11454 (ada_aligned_type
11455 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11456 }
c1b5a1a6 11457 ada_ensure_varsize_limit (type);
714e53ab
PH
11458 return value_zero (type, lval_memory);
11459 }
4c4b4cd2 11460 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11461 {
11462 /* GDB allows dereferencing an int. */
11463 if (expect_type == NULL)
11464 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11465 lval_memory);
11466 else
11467 {
11468 expect_type =
11469 to_static_fixed_type (ada_aligned_type (expect_type));
11470 return value_zero (expect_type, lval_memory);
11471 }
11472 }
4c4b4cd2 11473 else
323e0a4a 11474 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11475 }
0963b4bd 11476 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11477 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11478
96967637
JB
11479 if (TYPE_CODE (type) == TYPE_CODE_INT)
11480 /* GDB allows dereferencing an int. If we were given
11481 the expect_type, then use that as the target type.
11482 Otherwise, assume that the target type is an int. */
11483 {
11484 if (expect_type != NULL)
11485 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11486 arg1));
11487 else
11488 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11489 (CORE_ADDR) value_as_address (arg1));
11490 }
6b0d7253 11491
4c4b4cd2
PH
11492 if (ada_is_array_descriptor_type (type))
11493 /* GDB allows dereferencing GNAT array descriptors. */
11494 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11495 else
4c4b4cd2 11496 return ada_value_ind (arg1);
14f9c5c9
AS
11497
11498 case STRUCTOP_STRUCT:
11499 tem = longest_to_int (exp->elts[pc + 1].longconst);
11500 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11501 preeval_pos = *pos;
14f9c5c9
AS
11502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11503 if (noside == EVAL_SKIP)
4c4b4cd2 11504 goto nosideret;
14f9c5c9 11505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11506 {
df407dfe 11507 struct type *type1 = value_type (arg1);
5b4ee69b 11508
76a01679
JB
11509 if (ada_is_tagged_type (type1, 1))
11510 {
11511 type = ada_lookup_struct_elt_type (type1,
11512 &exp->elts[pc + 2].string,
988f6b3d 11513 1, 1);
5ec18f2b
JG
11514
11515 /* If the field is not found, check if it exists in the
11516 extension of this object's type. This means that we
11517 need to evaluate completely the expression. */
11518
76a01679 11519 if (type == NULL)
5ec18f2b
JG
11520 {
11521 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11522 EVAL_NORMAL);
11523 arg1 = ada_value_struct_elt (arg1,
11524 &exp->elts[pc + 2].string,
11525 0);
11526 arg1 = unwrap_value (arg1);
11527 type = value_type (ada_to_fixed_value (arg1));
11528 }
76a01679
JB
11529 }
11530 else
11531 type =
11532 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11533 0);
76a01679
JB
11534
11535 return value_zero (ada_aligned_type (type), lval_memory);
11536 }
14f9c5c9 11537 else
a579cd9a
MW
11538 {
11539 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11540 arg1 = unwrap_value (arg1);
11541 return ada_to_fixed_value (arg1);
11542 }
284614f0 11543
14f9c5c9 11544 case OP_TYPE:
4c4b4cd2
PH
11545 /* The value is not supposed to be used. This is here to make it
11546 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11547 (*pos) += 2;
11548 if (noside == EVAL_SKIP)
4c4b4cd2 11549 goto nosideret;
14f9c5c9 11550 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11551 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11552 else
323e0a4a 11553 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11554
11555 case OP_AGGREGATE:
11556 case OP_CHOICES:
11557 case OP_OTHERS:
11558 case OP_DISCRETE_RANGE:
11559 case OP_POSITIONAL:
11560 case OP_NAME:
11561 if (noside == EVAL_NORMAL)
11562 switch (op)
11563 {
11564 case OP_NAME:
11565 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11566 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11567 case OP_AGGREGATE:
11568 error (_("Aggregates only allowed on the right of an assignment"));
11569 default:
0963b4bd
MS
11570 internal_error (__FILE__, __LINE__,
11571 _("aggregate apparently mangled"));
52ce6436
PH
11572 }
11573
11574 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11575 *pos += oplen - 1;
11576 for (tem = 0; tem < nargs; tem += 1)
11577 ada_evaluate_subexp (NULL, exp, pos, noside);
11578 goto nosideret;
14f9c5c9
AS
11579 }
11580
11581nosideret:
ced9779b 11582 return eval_skip_value (exp);
14f9c5c9 11583}
14f9c5c9 11584\f
d2e4a39e 11585
4c4b4cd2 11586 /* Fixed point */
14f9c5c9
AS
11587
11588/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11589 type name that encodes the 'small and 'delta information.
4c4b4cd2 11590 Otherwise, return NULL. */
14f9c5c9 11591
d2e4a39e 11592static const char *
ebf56fd3 11593fixed_type_info (struct type *type)
14f9c5c9 11594{
d2e4a39e 11595 const char *name = ada_type_name (type);
14f9c5c9
AS
11596 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11597
d2e4a39e
AS
11598 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11599 {
14f9c5c9 11600 const char *tail = strstr (name, "___XF_");
5b4ee69b 11601
14f9c5c9 11602 if (tail == NULL)
4c4b4cd2 11603 return NULL;
d2e4a39e 11604 else
4c4b4cd2 11605 return tail + 5;
14f9c5c9
AS
11606 }
11607 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11608 return fixed_type_info (TYPE_TARGET_TYPE (type));
11609 else
11610 return NULL;
11611}
11612
4c4b4cd2 11613/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11614
11615int
ebf56fd3 11616ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11617{
11618 return fixed_type_info (type) != NULL;
11619}
11620
4c4b4cd2
PH
11621/* Return non-zero iff TYPE represents a System.Address type. */
11622
11623int
11624ada_is_system_address_type (struct type *type)
11625{
11626 return (TYPE_NAME (type)
11627 && strcmp (TYPE_NAME (type), "system__address") == 0);
11628}
11629
14f9c5c9 11630/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11631 type, return the target floating-point type to be used to represent
11632 of this type during internal computation. */
11633
11634static struct type *
11635ada_scaling_type (struct type *type)
11636{
11637 return builtin_type (get_type_arch (type))->builtin_long_double;
11638}
11639
11640/* Assuming that TYPE is the representation of an Ada fixed-point
11641 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11642 delta cannot be determined. */
14f9c5c9 11643
50eff16b 11644struct value *
ebf56fd3 11645ada_delta (struct type *type)
14f9c5c9
AS
11646{
11647 const char *encoding = fixed_type_info (type);
50eff16b
UW
11648 struct type *scale_type = ada_scaling_type (type);
11649
11650 long long num, den;
11651
11652 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11653 return nullptr;
d2e4a39e 11654 else
50eff16b
UW
11655 return value_binop (value_from_longest (scale_type, num),
11656 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11657}
11658
11659/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11660 factor ('SMALL value) associated with the type. */
14f9c5c9 11661
50eff16b
UW
11662struct value *
11663ada_scaling_factor (struct type *type)
14f9c5c9
AS
11664{
11665 const char *encoding = fixed_type_info (type);
50eff16b
UW
11666 struct type *scale_type = ada_scaling_type (type);
11667
11668 long long num0, den0, num1, den1;
14f9c5c9 11669 int n;
d2e4a39e 11670
50eff16b 11671 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11672 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11673
11674 if (n < 2)
50eff16b 11675 return value_from_longest (scale_type, 1);
14f9c5c9 11676 else if (n == 4)
50eff16b
UW
11677 return value_binop (value_from_longest (scale_type, num1),
11678 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11679 else
50eff16b
UW
11680 return value_binop (value_from_longest (scale_type, num0),
11681 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11682}
11683
14f9c5c9 11684\f
d2e4a39e 11685
4c4b4cd2 11686 /* Range types */
14f9c5c9
AS
11687
11688/* Scan STR beginning at position K for a discriminant name, and
11689 return the value of that discriminant field of DVAL in *PX. If
11690 PNEW_K is not null, put the position of the character beyond the
11691 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11692 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11693
11694static int
108d56a4 11695scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11696 int *pnew_k)
14f9c5c9
AS
11697{
11698 static char *bound_buffer = NULL;
11699 static size_t bound_buffer_len = 0;
5da1a4d3 11700 const char *pstart, *pend, *bound;
d2e4a39e 11701 struct value *bound_val;
14f9c5c9
AS
11702
11703 if (dval == NULL || str == NULL || str[k] == '\0')
11704 return 0;
11705
5da1a4d3
SM
11706 pstart = str + k;
11707 pend = strstr (pstart, "__");
14f9c5c9
AS
11708 if (pend == NULL)
11709 {
5da1a4d3 11710 bound = pstart;
14f9c5c9
AS
11711 k += strlen (bound);
11712 }
d2e4a39e 11713 else
14f9c5c9 11714 {
5da1a4d3
SM
11715 int len = pend - pstart;
11716
11717 /* Strip __ and beyond. */
11718 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11719 strncpy (bound_buffer, pstart, len);
11720 bound_buffer[len] = '\0';
11721
14f9c5c9 11722 bound = bound_buffer;
d2e4a39e 11723 k = pend - str;
14f9c5c9 11724 }
d2e4a39e 11725
df407dfe 11726 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11727 if (bound_val == NULL)
11728 return 0;
11729
11730 *px = value_as_long (bound_val);
11731 if (pnew_k != NULL)
11732 *pnew_k = k;
11733 return 1;
11734}
11735
11736/* Value of variable named NAME in the current environment. If
11737 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11738 otherwise causes an error with message ERR_MSG. */
11739
d2e4a39e 11740static struct value *
edb0c9cb 11741get_var_value (const char *name, const char *err_msg)
14f9c5c9 11742{
b5ec771e 11743 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11744
54d343a2 11745 std::vector<struct block_symbol> syms;
b5ec771e
PA
11746 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11747 get_selected_block (0),
11748 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11749
11750 if (nsyms != 1)
11751 {
11752 if (err_msg == NULL)
4c4b4cd2 11753 return 0;
14f9c5c9 11754 else
8a3fe4f8 11755 error (("%s"), err_msg);
14f9c5c9
AS
11756 }
11757
54d343a2 11758 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11759}
d2e4a39e 11760
edb0c9cb
PA
11761/* Value of integer variable named NAME in the current environment.
11762 If no such variable is found, returns false. Otherwise, sets VALUE
11763 to the variable's value and returns true. */
4c4b4cd2 11764
edb0c9cb
PA
11765bool
11766get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11767{
4c4b4cd2 11768 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11769
14f9c5c9 11770 if (var_val == 0)
edb0c9cb
PA
11771 return false;
11772
11773 value = value_as_long (var_val);
11774 return true;
14f9c5c9 11775}
d2e4a39e 11776
14f9c5c9
AS
11777
11778/* Return a range type whose base type is that of the range type named
11779 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11780 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11781 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11782 corresponding range type from debug information; fall back to using it
11783 if symbol lookup fails. If a new type must be created, allocate it
11784 like ORIG_TYPE was. The bounds information, in general, is encoded
11785 in NAME, the base type given in the named range type. */
14f9c5c9 11786
d2e4a39e 11787static struct type *
28c85d6c 11788to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11789{
0d5cff50 11790 const char *name;
14f9c5c9 11791 struct type *base_type;
108d56a4 11792 const char *subtype_info;
14f9c5c9 11793
28c85d6c
JB
11794 gdb_assert (raw_type != NULL);
11795 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11796
1ce677a4 11797 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11798 base_type = TYPE_TARGET_TYPE (raw_type);
11799 else
11800 base_type = raw_type;
11801
28c85d6c 11802 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11803 subtype_info = strstr (name, "___XD");
11804 if (subtype_info == NULL)
690cc4eb 11805 {
43bbcdc2
PH
11806 LONGEST L = ada_discrete_type_low_bound (raw_type);
11807 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11808
690cc4eb
PH
11809 if (L < INT_MIN || U > INT_MAX)
11810 return raw_type;
11811 else
0c9c3474
SA
11812 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11813 L, U);
690cc4eb 11814 }
14f9c5c9
AS
11815 else
11816 {
11817 static char *name_buf = NULL;
11818 static size_t name_len = 0;
11819 int prefix_len = subtype_info - name;
11820 LONGEST L, U;
11821 struct type *type;
108d56a4 11822 const char *bounds_str;
14f9c5c9
AS
11823 int n;
11824
11825 GROW_VECT (name_buf, name_len, prefix_len + 5);
11826 strncpy (name_buf, name, prefix_len);
11827 name_buf[prefix_len] = '\0';
11828
11829 subtype_info += 5;
11830 bounds_str = strchr (subtype_info, '_');
11831 n = 1;
11832
d2e4a39e 11833 if (*subtype_info == 'L')
4c4b4cd2
PH
11834 {
11835 if (!ada_scan_number (bounds_str, n, &L, &n)
11836 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11837 return raw_type;
11838 if (bounds_str[n] == '_')
11839 n += 2;
0963b4bd 11840 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11841 n += 1;
11842 subtype_info += 1;
11843 }
d2e4a39e 11844 else
4c4b4cd2 11845 {
4c4b4cd2 11846 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11847 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11848 {
323e0a4a 11849 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11850 L = 1;
11851 }
11852 }
14f9c5c9 11853
d2e4a39e 11854 if (*subtype_info == 'U')
4c4b4cd2
PH
11855 {
11856 if (!ada_scan_number (bounds_str, n, &U, &n)
11857 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11858 return raw_type;
11859 }
d2e4a39e 11860 else
4c4b4cd2 11861 {
4c4b4cd2 11862 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11863 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11864 {
323e0a4a 11865 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11866 U = L;
11867 }
11868 }
14f9c5c9 11869
0c9c3474
SA
11870 type = create_static_range_type (alloc_type_copy (raw_type),
11871 base_type, L, U);
f5a91472
JB
11872 /* create_static_range_type alters the resulting type's length
11873 to match the size of the base_type, which is not what we want.
11874 Set it back to the original range type's length. */
11875 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11876 TYPE_NAME (type) = name;
14f9c5c9
AS
11877 return type;
11878 }
11879}
11880
4c4b4cd2
PH
11881/* True iff NAME is the name of a range type. */
11882
14f9c5c9 11883int
d2e4a39e 11884ada_is_range_type_name (const char *name)
14f9c5c9
AS
11885{
11886 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11887}
14f9c5c9 11888\f
d2e4a39e 11889
4c4b4cd2
PH
11890 /* Modular types */
11891
11892/* True iff TYPE is an Ada modular type. */
14f9c5c9 11893
14f9c5c9 11894int
d2e4a39e 11895ada_is_modular_type (struct type *type)
14f9c5c9 11896{
18af8284 11897 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11898
11899 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11900 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11901 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11902}
11903
4c4b4cd2
PH
11904/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11905
61ee279c 11906ULONGEST
0056e4d5 11907ada_modulus (struct type *type)
14f9c5c9 11908{
43bbcdc2 11909 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11910}
d2e4a39e 11911\f
f7f9143b
JB
11912
11913/* Ada exception catchpoint support:
11914 ---------------------------------
11915
11916 We support 3 kinds of exception catchpoints:
11917 . catchpoints on Ada exceptions
11918 . catchpoints on unhandled Ada exceptions
11919 . catchpoints on failed assertions
11920
11921 Exceptions raised during failed assertions, or unhandled exceptions
11922 could perfectly be caught with the general catchpoint on Ada exceptions.
11923 However, we can easily differentiate these two special cases, and having
11924 the option to distinguish these two cases from the rest can be useful
11925 to zero-in on certain situations.
11926
11927 Exception catchpoints are a specialized form of breakpoint,
11928 since they rely on inserting breakpoints inside known routines
11929 of the GNAT runtime. The implementation therefore uses a standard
11930 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11931 of breakpoint_ops.
11932
0259addd
JB
11933 Support in the runtime for exception catchpoints have been changed
11934 a few times already, and these changes affect the implementation
11935 of these catchpoints. In order to be able to support several
11936 variants of the runtime, we use a sniffer that will determine
28010a5d 11937 the runtime variant used by the program being debugged. */
f7f9143b 11938
82eacd52
JB
11939/* Ada's standard exceptions.
11940
11941 The Ada 83 standard also defined Numeric_Error. But there so many
11942 situations where it was unclear from the Ada 83 Reference Manual
11943 (RM) whether Constraint_Error or Numeric_Error should be raised,
11944 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11945 Interpretation saying that anytime the RM says that Numeric_Error
11946 should be raised, the implementation may raise Constraint_Error.
11947 Ada 95 went one step further and pretty much removed Numeric_Error
11948 from the list of standard exceptions (it made it a renaming of
11949 Constraint_Error, to help preserve compatibility when compiling
11950 an Ada83 compiler). As such, we do not include Numeric_Error from
11951 this list of standard exceptions. */
3d0b0fa3 11952
a121b7c1 11953static const char *standard_exc[] = {
3d0b0fa3
JB
11954 "constraint_error",
11955 "program_error",
11956 "storage_error",
11957 "tasking_error"
11958};
11959
0259addd
JB
11960typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11961
11962/* A structure that describes how to support exception catchpoints
11963 for a given executable. */
11964
11965struct exception_support_info
11966{
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on exceptions. */
11969 const char *catch_exception_sym;
11970
11971 /* The name of the symbol to break on in order to insert
11972 a catchpoint on unhandled exceptions. */
11973 const char *catch_exception_unhandled_sym;
11974
11975 /* The name of the symbol to break on in order to insert
11976 a catchpoint on failed assertions. */
11977 const char *catch_assert_sym;
11978
9f757bf7
XR
11979 /* The name of the symbol to break on in order to insert
11980 a catchpoint on exception handling. */
11981 const char *catch_handlers_sym;
11982
0259addd
JB
11983 /* Assuming that the inferior just triggered an unhandled exception
11984 catchpoint, this function is responsible for returning the address
11985 in inferior memory where the name of that exception is stored.
11986 Return zero if the address could not be computed. */
11987 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11988};
11989
11990static CORE_ADDR ada_unhandled_exception_name_addr (void);
11991static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11992
11993/* The following exception support info structure describes how to
11994 implement exception catchpoints with the latest version of the
11995 Ada runtime (as of 2007-03-06). */
11996
11997static const struct exception_support_info default_exception_support_info =
11998{
11999 "__gnat_debug_raise_exception", /* catch_exception_sym */
12000 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12001 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12002 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12003 ada_unhandled_exception_name_addr
12004};
12005
12006/* The following exception support info structure describes how to
12007 implement exception catchpoints with a slightly older version
12008 of the Ada runtime. */
12009
12010static const struct exception_support_info exception_support_info_fallback =
12011{
12012 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12013 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12014 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12015 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12016 ada_unhandled_exception_name_addr_from_raise
12017};
12018
f17011e0
JB
12019/* Return nonzero if we can detect the exception support routines
12020 described in EINFO.
12021
12022 This function errors out if an abnormal situation is detected
12023 (for instance, if we find the exception support routines, but
12024 that support is found to be incomplete). */
12025
12026static int
12027ada_has_this_exception_support (const struct exception_support_info *einfo)
12028{
12029 struct symbol *sym;
12030
12031 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12032 that should be compiled with debugging information. As a result, we
12033 expect to find that symbol in the symtabs. */
12034
12035 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12036 if (sym == NULL)
a6af7abe
JB
12037 {
12038 /* Perhaps we did not find our symbol because the Ada runtime was
12039 compiled without debugging info, or simply stripped of it.
12040 It happens on some GNU/Linux distributions for instance, where
12041 users have to install a separate debug package in order to get
12042 the runtime's debugging info. In that situation, let the user
12043 know why we cannot insert an Ada exception catchpoint.
12044
12045 Note: Just for the purpose of inserting our Ada exception
12046 catchpoint, we could rely purely on the associated minimal symbol.
12047 But we would be operating in degraded mode anyway, since we are
12048 still lacking the debugging info needed later on to extract
12049 the name of the exception being raised (this name is printed in
12050 the catchpoint message, and is also used when trying to catch
12051 a specific exception). We do not handle this case for now. */
3b7344d5 12052 struct bound_minimal_symbol msym
1c8e84b0
JB
12053 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12054
3b7344d5 12055 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12056 error (_("Your Ada runtime appears to be missing some debugging "
12057 "information.\nCannot insert Ada exception catchpoint "
12058 "in this configuration."));
12059
12060 return 0;
12061 }
f17011e0
JB
12062
12063 /* Make sure that the symbol we found corresponds to a function. */
12064
12065 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12066 error (_("Symbol \"%s\" is not a function (class = %d)"),
12067 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12068
12069 return 1;
12070}
12071
0259addd
JB
12072/* Inspect the Ada runtime and determine which exception info structure
12073 should be used to provide support for exception catchpoints.
12074
3eecfa55
JB
12075 This function will always set the per-inferior exception_info,
12076 or raise an error. */
0259addd
JB
12077
12078static void
12079ada_exception_support_info_sniffer (void)
12080{
3eecfa55 12081 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12082
12083 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12084 if (data->exception_info != NULL)
0259addd
JB
12085 return;
12086
12087 /* Check the latest (default) exception support info. */
f17011e0 12088 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12089 {
3eecfa55 12090 data->exception_info = &default_exception_support_info;
0259addd
JB
12091 return;
12092 }
12093
12094 /* Try our fallback exception suport info. */
f17011e0 12095 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12096 {
3eecfa55 12097 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12098 return;
12099 }
12100
12101 /* Sometimes, it is normal for us to not be able to find the routine
12102 we are looking for. This happens when the program is linked with
12103 the shared version of the GNAT runtime, and the program has not been
12104 started yet. Inform the user of these two possible causes if
12105 applicable. */
12106
ccefe4c4 12107 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12108 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12109
12110 /* If the symbol does not exist, then check that the program is
12111 already started, to make sure that shared libraries have been
12112 loaded. If it is not started, this may mean that the symbol is
12113 in a shared library. */
12114
e99b03dc 12115 if (inferior_ptid.pid () == 0)
0259addd
JB
12116 error (_("Unable to insert catchpoint. Try to start the program first."));
12117
12118 /* At this point, we know that we are debugging an Ada program and
12119 that the inferior has been started, but we still are not able to
0963b4bd 12120 find the run-time symbols. That can mean that we are in
0259addd
JB
12121 configurable run time mode, or that a-except as been optimized
12122 out by the linker... In any case, at this point it is not worth
12123 supporting this feature. */
12124
7dda8cff 12125 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12126}
12127
f7f9143b
JB
12128/* True iff FRAME is very likely to be that of a function that is
12129 part of the runtime system. This is all very heuristic, but is
12130 intended to be used as advice as to what frames are uninteresting
12131 to most users. */
12132
12133static int
12134is_known_support_routine (struct frame_info *frame)
12135{
692465f1 12136 enum language func_lang;
f7f9143b 12137 int i;
f35a17b5 12138 const char *fullname;
f7f9143b 12139
4ed6b5be
JB
12140 /* If this code does not have any debugging information (no symtab),
12141 This cannot be any user code. */
f7f9143b 12142
51abb421 12143 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12144 if (sal.symtab == NULL)
12145 return 1;
12146
4ed6b5be
JB
12147 /* If there is a symtab, but the associated source file cannot be
12148 located, then assume this is not user code: Selecting a frame
12149 for which we cannot display the code would not be very helpful
12150 for the user. This should also take care of case such as VxWorks
12151 where the kernel has some debugging info provided for a few units. */
f7f9143b 12152
f35a17b5
JK
12153 fullname = symtab_to_fullname (sal.symtab);
12154 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12155 return 1;
12156
4ed6b5be
JB
12157 /* Check the unit filename againt the Ada runtime file naming.
12158 We also check the name of the objfile against the name of some
12159 known system libraries that sometimes come with debugging info
12160 too. */
12161
f7f9143b
JB
12162 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12163 {
12164 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12165 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12166 return 1;
eb822aa6
DE
12167 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12168 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12169 return 1;
f7f9143b
JB
12170 }
12171
4ed6b5be 12172 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12173
c6dc63a1
TT
12174 gdb::unique_xmalloc_ptr<char> func_name
12175 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12176 if (func_name == NULL)
12177 return 1;
12178
12179 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12180 {
12181 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12182 if (re_exec (func_name.get ()))
12183 return 1;
f7f9143b
JB
12184 }
12185
12186 return 0;
12187}
12188
12189/* Find the first frame that contains debugging information and that is not
12190 part of the Ada run-time, starting from FI and moving upward. */
12191
0ef643c8 12192void
f7f9143b
JB
12193ada_find_printable_frame (struct frame_info *fi)
12194{
12195 for (; fi != NULL; fi = get_prev_frame (fi))
12196 {
12197 if (!is_known_support_routine (fi))
12198 {
12199 select_frame (fi);
12200 break;
12201 }
12202 }
12203
12204}
12205
12206/* Assuming that the inferior just triggered an unhandled exception
12207 catchpoint, return the address in inferior memory where the name
12208 of the exception is stored.
12209
12210 Return zero if the address could not be computed. */
12211
12212static CORE_ADDR
12213ada_unhandled_exception_name_addr (void)
0259addd
JB
12214{
12215 return parse_and_eval_address ("e.full_name");
12216}
12217
12218/* Same as ada_unhandled_exception_name_addr, except that this function
12219 should be used when the inferior uses an older version of the runtime,
12220 where the exception name needs to be extracted from a specific frame
12221 several frames up in the callstack. */
12222
12223static CORE_ADDR
12224ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12225{
12226 int frame_level;
12227 struct frame_info *fi;
3eecfa55 12228 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12229
12230 /* To determine the name of this exception, we need to select
12231 the frame corresponding to RAISE_SYM_NAME. This frame is
12232 at least 3 levels up, so we simply skip the first 3 frames
12233 without checking the name of their associated function. */
12234 fi = get_current_frame ();
12235 for (frame_level = 0; frame_level < 3; frame_level += 1)
12236 if (fi != NULL)
12237 fi = get_prev_frame (fi);
12238
12239 while (fi != NULL)
12240 {
692465f1
JB
12241 enum language func_lang;
12242
c6dc63a1
TT
12243 gdb::unique_xmalloc_ptr<char> func_name
12244 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12245 if (func_name != NULL)
12246 {
c6dc63a1 12247 if (strcmp (func_name.get (),
55b87a52
KS
12248 data->exception_info->catch_exception_sym) == 0)
12249 break; /* We found the frame we were looking for... */
55b87a52 12250 }
fb44b1a7 12251 fi = get_prev_frame (fi);
f7f9143b
JB
12252 }
12253
12254 if (fi == NULL)
12255 return 0;
12256
12257 select_frame (fi);
12258 return parse_and_eval_address ("id.full_name");
12259}
12260
12261/* Assuming the inferior just triggered an Ada exception catchpoint
12262 (of any type), return the address in inferior memory where the name
12263 of the exception is stored, if applicable.
12264
45db7c09
PA
12265 Assumes the selected frame is the current frame.
12266
f7f9143b
JB
12267 Return zero if the address could not be computed, or if not relevant. */
12268
12269static CORE_ADDR
761269c8 12270ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12271 struct breakpoint *b)
12272{
3eecfa55
JB
12273 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12274
f7f9143b
JB
12275 switch (ex)
12276 {
761269c8 12277 case ada_catch_exception:
f7f9143b
JB
12278 return (parse_and_eval_address ("e.full_name"));
12279 break;
12280
761269c8 12281 case ada_catch_exception_unhandled:
3eecfa55 12282 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12283 break;
9f757bf7
XR
12284
12285 case ada_catch_handlers:
12286 return 0; /* The runtimes does not provide access to the exception
12287 name. */
12288 break;
12289
761269c8 12290 case ada_catch_assert:
f7f9143b
JB
12291 return 0; /* Exception name is not relevant in this case. */
12292 break;
12293
12294 default:
12295 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12296 break;
12297 }
12298
12299 return 0; /* Should never be reached. */
12300}
12301
e547c119
JB
12302/* Assuming the inferior is stopped at an exception catchpoint,
12303 return the message which was associated to the exception, if
12304 available. Return NULL if the message could not be retrieved.
12305
e547c119
JB
12306 Note: The exception message can be associated to an exception
12307 either through the use of the Raise_Exception function, or
12308 more simply (Ada 2005 and later), via:
12309
12310 raise Exception_Name with "exception message";
12311
12312 */
12313
6f46ac85 12314static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12315ada_exception_message_1 (void)
12316{
12317 struct value *e_msg_val;
e547c119 12318 int e_msg_len;
e547c119
JB
12319
12320 /* For runtimes that support this feature, the exception message
12321 is passed as an unbounded string argument called "message". */
12322 e_msg_val = parse_and_eval ("message");
12323 if (e_msg_val == NULL)
12324 return NULL; /* Exception message not supported. */
12325
12326 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12327 gdb_assert (e_msg_val != NULL);
12328 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12329
12330 /* If the message string is empty, then treat it as if there was
12331 no exception message. */
12332 if (e_msg_len <= 0)
12333 return NULL;
12334
6f46ac85
TT
12335 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12336 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12337 e_msg.get ()[e_msg_len] = '\0';
e547c119 12338
e547c119
JB
12339 return e_msg;
12340}
12341
12342/* Same as ada_exception_message_1, except that all exceptions are
12343 contained here (returning NULL instead). */
12344
6f46ac85 12345static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12346ada_exception_message (void)
12347{
6f46ac85 12348 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12349
12350 TRY
12351 {
12352 e_msg = ada_exception_message_1 ();
12353 }
12354 CATCH (e, RETURN_MASK_ERROR)
12355 {
6f46ac85 12356 e_msg.reset (nullptr);
e547c119
JB
12357 }
12358 END_CATCH
12359
12360 return e_msg;
12361}
12362
f7f9143b
JB
12363/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12364 any error that ada_exception_name_addr_1 might cause to be thrown.
12365 When an error is intercepted, a warning with the error message is printed,
12366 and zero is returned. */
12367
12368static CORE_ADDR
761269c8 12369ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12370 struct breakpoint *b)
12371{
f7f9143b
JB
12372 CORE_ADDR result = 0;
12373
492d29ea 12374 TRY
f7f9143b
JB
12375 {
12376 result = ada_exception_name_addr_1 (ex, b);
12377 }
12378
492d29ea 12379 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12380 {
12381 warning (_("failed to get exception name: %s"), e.message);
12382 return 0;
12383 }
492d29ea 12384 END_CATCH
f7f9143b
JB
12385
12386 return result;
12387}
12388
cb7de75e 12389static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12390 (const char *excep_string,
12391 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12392
12393/* Ada catchpoints.
12394
12395 In the case of catchpoints on Ada exceptions, the catchpoint will
12396 stop the target on every exception the program throws. When a user
12397 specifies the name of a specific exception, we translate this
12398 request into a condition expression (in text form), and then parse
12399 it into an expression stored in each of the catchpoint's locations.
12400 We then use this condition to check whether the exception that was
12401 raised is the one the user is interested in. If not, then the
12402 target is resumed again. We store the name of the requested
12403 exception, in order to be able to re-set the condition expression
12404 when symbols change. */
12405
12406/* An instance of this type is used to represent an Ada catchpoint
5625a286 12407 breakpoint location. */
28010a5d 12408
5625a286 12409class ada_catchpoint_location : public bp_location
28010a5d 12410{
5625a286
PA
12411public:
12412 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12413 : bp_location (ops, owner)
12414 {}
28010a5d
PA
12415
12416 /* The condition that checks whether the exception that was raised
12417 is the specific exception the user specified on catchpoint
12418 creation. */
4d01a485 12419 expression_up excep_cond_expr;
28010a5d
PA
12420};
12421
12422/* Implement the DTOR method in the bp_location_ops structure for all
12423 Ada exception catchpoint kinds. */
12424
12425static void
12426ada_catchpoint_location_dtor (struct bp_location *bl)
12427{
12428 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12429
4d01a485 12430 al->excep_cond_expr.reset ();
28010a5d
PA
12431}
12432
12433/* The vtable to be used in Ada catchpoint locations. */
12434
12435static const struct bp_location_ops ada_catchpoint_location_ops =
12436{
12437 ada_catchpoint_location_dtor
12438};
12439
c1fc2657 12440/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12441
c1fc2657 12442struct ada_catchpoint : public breakpoint
28010a5d 12443{
28010a5d 12444 /* The name of the specific exception the user specified. */
bc18fbb5 12445 std::string excep_string;
28010a5d
PA
12446};
12447
12448/* Parse the exception condition string in the context of each of the
12449 catchpoint's locations, and store them for later evaluation. */
12450
12451static void
9f757bf7
XR
12452create_excep_cond_exprs (struct ada_catchpoint *c,
12453 enum ada_exception_catchpoint_kind ex)
28010a5d 12454{
28010a5d 12455 struct bp_location *bl;
28010a5d
PA
12456
12457 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12458 if (c->excep_string.empty ())
28010a5d
PA
12459 return;
12460
12461 /* Same if there are no locations... */
c1fc2657 12462 if (c->loc == NULL)
28010a5d
PA
12463 return;
12464
12465 /* Compute the condition expression in text form, from the specific
12466 expection we want to catch. */
cb7de75e 12467 std::string cond_string
bc18fbb5 12468 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12469
12470 /* Iterate over all the catchpoint's locations, and parse an
12471 expression for each. */
c1fc2657 12472 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12473 {
12474 struct ada_catchpoint_location *ada_loc
12475 = (struct ada_catchpoint_location *) bl;
4d01a485 12476 expression_up exp;
28010a5d
PA
12477
12478 if (!bl->shlib_disabled)
12479 {
bbc13ae3 12480 const char *s;
28010a5d 12481
cb7de75e 12482 s = cond_string.c_str ();
492d29ea 12483 TRY
28010a5d 12484 {
036e657b
JB
12485 exp = parse_exp_1 (&s, bl->address,
12486 block_for_pc (bl->address),
12487 0);
28010a5d 12488 }
492d29ea 12489 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12490 {
12491 warning (_("failed to reevaluate internal exception condition "
12492 "for catchpoint %d: %s"),
c1fc2657 12493 c->number, e.message);
849f2b52 12494 }
492d29ea 12495 END_CATCH
28010a5d
PA
12496 }
12497
b22e99fd 12498 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12499 }
28010a5d
PA
12500}
12501
28010a5d
PA
12502/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12503 structure for all exception catchpoint kinds. */
12504
12505static struct bp_location *
761269c8 12506allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12507 struct breakpoint *self)
12508{
5625a286 12509 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12510}
12511
12512/* Implement the RE_SET method in the breakpoint_ops structure for all
12513 exception catchpoint kinds. */
12514
12515static void
761269c8 12516re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12517{
12518 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12519
12520 /* Call the base class's method. This updates the catchpoint's
12521 locations. */
2060206e 12522 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12523
12524 /* Reparse the exception conditional expressions. One for each
12525 location. */
9f757bf7 12526 create_excep_cond_exprs (c, ex);
28010a5d
PA
12527}
12528
12529/* Returns true if we should stop for this breakpoint hit. If the
12530 user specified a specific exception, we only want to cause a stop
12531 if the program thrown that exception. */
12532
12533static int
12534should_stop_exception (const struct bp_location *bl)
12535{
12536 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12537 const struct ada_catchpoint_location *ada_loc
12538 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12539 int stop;
12540
12541 /* With no specific exception, should always stop. */
bc18fbb5 12542 if (c->excep_string.empty ())
28010a5d
PA
12543 return 1;
12544
12545 if (ada_loc->excep_cond_expr == NULL)
12546 {
12547 /* We will have a NULL expression if back when we were creating
12548 the expressions, this location's had failed to parse. */
12549 return 1;
12550 }
12551
12552 stop = 1;
492d29ea 12553 TRY
28010a5d
PA
12554 {
12555 struct value *mark;
12556
12557 mark = value_mark ();
4d01a485 12558 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12559 value_free_to_mark (mark);
12560 }
492d29ea
PA
12561 CATCH (ex, RETURN_MASK_ALL)
12562 {
12563 exception_fprintf (gdb_stderr, ex,
12564 _("Error in testing exception condition:\n"));
12565 }
12566 END_CATCH
12567
28010a5d
PA
12568 return stop;
12569}
12570
12571/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12572 for all exception catchpoint kinds. */
12573
12574static void
761269c8 12575check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12576{
12577 bs->stop = should_stop_exception (bs->bp_location_at);
12578}
12579
f7f9143b
JB
12580/* Implement the PRINT_IT method in the breakpoint_ops structure
12581 for all exception catchpoint kinds. */
12582
12583static enum print_stop_action
761269c8 12584print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12585{
79a45e25 12586 struct ui_out *uiout = current_uiout;
348d480f
PA
12587 struct breakpoint *b = bs->breakpoint_at;
12588
956a9fb9 12589 annotate_catchpoint (b->number);
f7f9143b 12590
112e8700 12591 if (uiout->is_mi_like_p ())
f7f9143b 12592 {
112e8700 12593 uiout->field_string ("reason",
956a9fb9 12594 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12595 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12596 }
12597
112e8700
SM
12598 uiout->text (b->disposition == disp_del
12599 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12600 uiout->field_int ("bkptno", b->number);
12601 uiout->text (", ");
f7f9143b 12602
45db7c09
PA
12603 /* ada_exception_name_addr relies on the selected frame being the
12604 current frame. Need to do this here because this function may be
12605 called more than once when printing a stop, and below, we'll
12606 select the first frame past the Ada run-time (see
12607 ada_find_printable_frame). */
12608 select_frame (get_current_frame ());
12609
f7f9143b
JB
12610 switch (ex)
12611 {
761269c8
JB
12612 case ada_catch_exception:
12613 case ada_catch_exception_unhandled:
9f757bf7 12614 case ada_catch_handlers:
956a9fb9
JB
12615 {
12616 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12617 char exception_name[256];
12618
12619 if (addr != 0)
12620 {
c714b426
PA
12621 read_memory (addr, (gdb_byte *) exception_name,
12622 sizeof (exception_name) - 1);
956a9fb9
JB
12623 exception_name [sizeof (exception_name) - 1] = '\0';
12624 }
12625 else
12626 {
12627 /* For some reason, we were unable to read the exception
12628 name. This could happen if the Runtime was compiled
12629 without debugging info, for instance. In that case,
12630 just replace the exception name by the generic string
12631 "exception" - it will read as "an exception" in the
12632 notification we are about to print. */
967cff16 12633 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12634 }
12635 /* In the case of unhandled exception breakpoints, we print
12636 the exception name as "unhandled EXCEPTION_NAME", to make
12637 it clearer to the user which kind of catchpoint just got
12638 hit. We used ui_out_text to make sure that this extra
12639 info does not pollute the exception name in the MI case. */
761269c8 12640 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12641 uiout->text ("unhandled ");
12642 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12643 }
12644 break;
761269c8 12645 case ada_catch_assert:
956a9fb9
JB
12646 /* In this case, the name of the exception is not really
12647 important. Just print "failed assertion" to make it clearer
12648 that his program just hit an assertion-failure catchpoint.
12649 We used ui_out_text because this info does not belong in
12650 the MI output. */
112e8700 12651 uiout->text ("failed assertion");
956a9fb9 12652 break;
f7f9143b 12653 }
e547c119 12654
6f46ac85 12655 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12656 if (exception_message != NULL)
12657 {
e547c119 12658 uiout->text (" (");
6f46ac85 12659 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12660 uiout->text (")");
e547c119
JB
12661 }
12662
112e8700 12663 uiout->text (" at ");
956a9fb9 12664 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12665
12666 return PRINT_SRC_AND_LOC;
12667}
12668
12669/* Implement the PRINT_ONE method in the breakpoint_ops structure
12670 for all exception catchpoint kinds. */
12671
12672static void
761269c8 12673print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12674 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12675{
79a45e25 12676 struct ui_out *uiout = current_uiout;
28010a5d 12677 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12678 struct value_print_options opts;
12679
12680 get_user_print_options (&opts);
12681 if (opts.addressprint)
f7f9143b
JB
12682 {
12683 annotate_field (4);
112e8700 12684 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12685 }
12686
12687 annotate_field (5);
a6d9a66e 12688 *last_loc = b->loc;
f7f9143b
JB
12689 switch (ex)
12690 {
761269c8 12691 case ada_catch_exception:
bc18fbb5 12692 if (!c->excep_string.empty ())
f7f9143b 12693 {
bc18fbb5
TT
12694 std::string msg = string_printf (_("`%s' Ada exception"),
12695 c->excep_string.c_str ());
28010a5d 12696
112e8700 12697 uiout->field_string ("what", msg);
f7f9143b
JB
12698 }
12699 else
112e8700 12700 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12701
12702 break;
12703
761269c8 12704 case ada_catch_exception_unhandled:
112e8700 12705 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12706 break;
12707
9f757bf7 12708 case ada_catch_handlers:
bc18fbb5 12709 if (!c->excep_string.empty ())
9f757bf7
XR
12710 {
12711 uiout->field_fmt ("what",
12712 _("`%s' Ada exception handlers"),
bc18fbb5 12713 c->excep_string.c_str ());
9f757bf7
XR
12714 }
12715 else
12716 uiout->field_string ("what", "all Ada exceptions handlers");
12717 break;
12718
761269c8 12719 case ada_catch_assert:
112e8700 12720 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12721 break;
12722
12723 default:
12724 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12725 break;
12726 }
12727}
12728
12729/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12730 for all exception catchpoint kinds. */
12731
12732static void
761269c8 12733print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12734 struct breakpoint *b)
12735{
28010a5d 12736 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12737 struct ui_out *uiout = current_uiout;
28010a5d 12738
112e8700 12739 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12740 : _("Catchpoint "));
112e8700
SM
12741 uiout->field_int ("bkptno", b->number);
12742 uiout->text (": ");
00eb2c4a 12743
f7f9143b
JB
12744 switch (ex)
12745 {
761269c8 12746 case ada_catch_exception:
bc18fbb5 12747 if (!c->excep_string.empty ())
00eb2c4a 12748 {
862d101a 12749 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12750 c->excep_string.c_str ());
862d101a 12751 uiout->text (info.c_str ());
00eb2c4a 12752 }
f7f9143b 12753 else
112e8700 12754 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12755 break;
12756
761269c8 12757 case ada_catch_exception_unhandled:
112e8700 12758 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12759 break;
9f757bf7
XR
12760
12761 case ada_catch_handlers:
bc18fbb5 12762 if (!c->excep_string.empty ())
9f757bf7
XR
12763 {
12764 std::string info
12765 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12766 c->excep_string.c_str ());
9f757bf7
XR
12767 uiout->text (info.c_str ());
12768 }
12769 else
12770 uiout->text (_("all Ada exceptions handlers"));
12771 break;
12772
761269c8 12773 case ada_catch_assert:
112e8700 12774 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12775 break;
12776
12777 default:
12778 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12779 break;
12780 }
12781}
12782
6149aea9
PA
12783/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12784 for all exception catchpoint kinds. */
12785
12786static void
761269c8 12787print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12788 struct breakpoint *b, struct ui_file *fp)
12789{
28010a5d
PA
12790 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12791
6149aea9
PA
12792 switch (ex)
12793 {
761269c8 12794 case ada_catch_exception:
6149aea9 12795 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12796 if (!c->excep_string.empty ())
12797 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12798 break;
12799
761269c8 12800 case ada_catch_exception_unhandled:
78076abc 12801 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12802 break;
12803
9f757bf7
XR
12804 case ada_catch_handlers:
12805 fprintf_filtered (fp, "catch handlers");
12806 break;
12807
761269c8 12808 case ada_catch_assert:
6149aea9
PA
12809 fprintf_filtered (fp, "catch assert");
12810 break;
12811
12812 default:
12813 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12814 }
d9b3f62e 12815 print_recreate_thread (b, fp);
6149aea9
PA
12816}
12817
f7f9143b
JB
12818/* Virtual table for "catch exception" breakpoints. */
12819
28010a5d
PA
12820static struct bp_location *
12821allocate_location_catch_exception (struct breakpoint *self)
12822{
761269c8 12823 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12824}
12825
12826static void
12827re_set_catch_exception (struct breakpoint *b)
12828{
761269c8 12829 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12830}
12831
12832static void
12833check_status_catch_exception (bpstat bs)
12834{
761269c8 12835 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12836}
12837
f7f9143b 12838static enum print_stop_action
348d480f 12839print_it_catch_exception (bpstat bs)
f7f9143b 12840{
761269c8 12841 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12842}
12843
12844static void
a6d9a66e 12845print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12846{
761269c8 12847 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12848}
12849
12850static void
12851print_mention_catch_exception (struct breakpoint *b)
12852{
761269c8 12853 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12854}
12855
6149aea9
PA
12856static void
12857print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12858{
761269c8 12859 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12860}
12861
2060206e 12862static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12863
12864/* Virtual table for "catch exception unhandled" breakpoints. */
12865
28010a5d
PA
12866static struct bp_location *
12867allocate_location_catch_exception_unhandled (struct breakpoint *self)
12868{
761269c8 12869 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12870}
12871
12872static void
12873re_set_catch_exception_unhandled (struct breakpoint *b)
12874{
761269c8 12875 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12876}
12877
12878static void
12879check_status_catch_exception_unhandled (bpstat bs)
12880{
761269c8 12881 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12882}
12883
f7f9143b 12884static enum print_stop_action
348d480f 12885print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12886{
761269c8 12887 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12888}
12889
12890static void
a6d9a66e
UW
12891print_one_catch_exception_unhandled (struct breakpoint *b,
12892 struct bp_location **last_loc)
f7f9143b 12893{
761269c8 12894 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12895}
12896
12897static void
12898print_mention_catch_exception_unhandled (struct breakpoint *b)
12899{
761269c8 12900 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12901}
12902
6149aea9
PA
12903static void
12904print_recreate_catch_exception_unhandled (struct breakpoint *b,
12905 struct ui_file *fp)
12906{
761269c8 12907 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12908}
12909
2060206e 12910static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12911
12912/* Virtual table for "catch assert" breakpoints. */
12913
28010a5d
PA
12914static struct bp_location *
12915allocate_location_catch_assert (struct breakpoint *self)
12916{
761269c8 12917 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12918}
12919
12920static void
12921re_set_catch_assert (struct breakpoint *b)
12922{
761269c8 12923 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12924}
12925
12926static void
12927check_status_catch_assert (bpstat bs)
12928{
761269c8 12929 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12930}
12931
f7f9143b 12932static enum print_stop_action
348d480f 12933print_it_catch_assert (bpstat bs)
f7f9143b 12934{
761269c8 12935 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12936}
12937
12938static void
a6d9a66e 12939print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12940{
761269c8 12941 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12942}
12943
12944static void
12945print_mention_catch_assert (struct breakpoint *b)
12946{
761269c8 12947 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12948}
12949
6149aea9
PA
12950static void
12951print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12952{
761269c8 12953 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12954}
12955
2060206e 12956static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12957
9f757bf7
XR
12958/* Virtual table for "catch handlers" breakpoints. */
12959
12960static struct bp_location *
12961allocate_location_catch_handlers (struct breakpoint *self)
12962{
12963 return allocate_location_exception (ada_catch_handlers, self);
12964}
12965
12966static void
12967re_set_catch_handlers (struct breakpoint *b)
12968{
12969 re_set_exception (ada_catch_handlers, b);
12970}
12971
12972static void
12973check_status_catch_handlers (bpstat bs)
12974{
12975 check_status_exception (ada_catch_handlers, bs);
12976}
12977
12978static enum print_stop_action
12979print_it_catch_handlers (bpstat bs)
12980{
12981 return print_it_exception (ada_catch_handlers, bs);
12982}
12983
12984static void
12985print_one_catch_handlers (struct breakpoint *b,
12986 struct bp_location **last_loc)
12987{
12988 print_one_exception (ada_catch_handlers, b, last_loc);
12989}
12990
12991static void
12992print_mention_catch_handlers (struct breakpoint *b)
12993{
12994 print_mention_exception (ada_catch_handlers, b);
12995}
12996
12997static void
12998print_recreate_catch_handlers (struct breakpoint *b,
12999 struct ui_file *fp)
13000{
13001 print_recreate_exception (ada_catch_handlers, b, fp);
13002}
13003
13004static struct breakpoint_ops catch_handlers_breakpoint_ops;
13005
f7f9143b
JB
13006/* Split the arguments specified in a "catch exception" command.
13007 Set EX to the appropriate catchpoint type.
28010a5d 13008 Set EXCEP_STRING to the name of the specific exception if
5845583d 13009 specified by the user.
9f757bf7
XR
13010 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13011 "catch handlers" command. False otherwise.
5845583d
JB
13012 If a condition is found at the end of the arguments, the condition
13013 expression is stored in COND_STRING (memory must be deallocated
13014 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13015
13016static void
a121b7c1 13017catch_ada_exception_command_split (const char *args,
9f757bf7 13018 bool is_catch_handlers_cmd,
761269c8 13019 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13020 std::string *excep_string,
13021 std::string *cond_string)
f7f9143b 13022{
bc18fbb5 13023 std::string exception_name;
f7f9143b 13024
bc18fbb5
TT
13025 exception_name = extract_arg (&args);
13026 if (exception_name == "if")
5845583d
JB
13027 {
13028 /* This is not an exception name; this is the start of a condition
13029 expression for a catchpoint on all exceptions. So, "un-get"
13030 this token, and set exception_name to NULL. */
bc18fbb5 13031 exception_name.clear ();
5845583d
JB
13032 args -= 2;
13033 }
f7f9143b 13034
5845583d 13035 /* Check to see if we have a condition. */
f7f9143b 13036
f1735a53 13037 args = skip_spaces (args);
61012eef 13038 if (startswith (args, "if")
5845583d
JB
13039 && (isspace (args[2]) || args[2] == '\0'))
13040 {
13041 args += 2;
f1735a53 13042 args = skip_spaces (args);
5845583d
JB
13043
13044 if (args[0] == '\0')
13045 error (_("Condition missing after `if' keyword"));
bc18fbb5 13046 *cond_string = args;
5845583d
JB
13047
13048 args += strlen (args);
13049 }
13050
13051 /* Check that we do not have any more arguments. Anything else
13052 is unexpected. */
f7f9143b
JB
13053
13054 if (args[0] != '\0')
13055 error (_("Junk at end of expression"));
13056
9f757bf7
XR
13057 if (is_catch_handlers_cmd)
13058 {
13059 /* Catch handling of exceptions. */
13060 *ex = ada_catch_handlers;
13061 *excep_string = exception_name;
13062 }
bc18fbb5 13063 else if (exception_name.empty ())
f7f9143b
JB
13064 {
13065 /* Catch all exceptions. */
761269c8 13066 *ex = ada_catch_exception;
bc18fbb5 13067 excep_string->clear ();
f7f9143b 13068 }
bc18fbb5 13069 else if (exception_name == "unhandled")
f7f9143b
JB
13070 {
13071 /* Catch unhandled exceptions. */
761269c8 13072 *ex = ada_catch_exception_unhandled;
bc18fbb5 13073 excep_string->clear ();
f7f9143b
JB
13074 }
13075 else
13076 {
13077 /* Catch a specific exception. */
761269c8 13078 *ex = ada_catch_exception;
28010a5d 13079 *excep_string = exception_name;
f7f9143b
JB
13080 }
13081}
13082
13083/* Return the name of the symbol on which we should break in order to
13084 implement a catchpoint of the EX kind. */
13085
13086static const char *
761269c8 13087ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13088{
3eecfa55
JB
13089 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13090
13091 gdb_assert (data->exception_info != NULL);
0259addd 13092
f7f9143b
JB
13093 switch (ex)
13094 {
761269c8 13095 case ada_catch_exception:
3eecfa55 13096 return (data->exception_info->catch_exception_sym);
f7f9143b 13097 break;
761269c8 13098 case ada_catch_exception_unhandled:
3eecfa55 13099 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13100 break;
761269c8 13101 case ada_catch_assert:
3eecfa55 13102 return (data->exception_info->catch_assert_sym);
f7f9143b 13103 break;
9f757bf7
XR
13104 case ada_catch_handlers:
13105 return (data->exception_info->catch_handlers_sym);
13106 break;
f7f9143b
JB
13107 default:
13108 internal_error (__FILE__, __LINE__,
13109 _("unexpected catchpoint kind (%d)"), ex);
13110 }
13111}
13112
13113/* Return the breakpoint ops "virtual table" used for catchpoints
13114 of the EX kind. */
13115
c0a91b2b 13116static const struct breakpoint_ops *
761269c8 13117ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13118{
13119 switch (ex)
13120 {
761269c8 13121 case ada_catch_exception:
f7f9143b
JB
13122 return (&catch_exception_breakpoint_ops);
13123 break;
761269c8 13124 case ada_catch_exception_unhandled:
f7f9143b
JB
13125 return (&catch_exception_unhandled_breakpoint_ops);
13126 break;
761269c8 13127 case ada_catch_assert:
f7f9143b
JB
13128 return (&catch_assert_breakpoint_ops);
13129 break;
9f757bf7
XR
13130 case ada_catch_handlers:
13131 return (&catch_handlers_breakpoint_ops);
13132 break;
f7f9143b
JB
13133 default:
13134 internal_error (__FILE__, __LINE__,
13135 _("unexpected catchpoint kind (%d)"), ex);
13136 }
13137}
13138
13139/* Return the condition that will be used to match the current exception
13140 being raised with the exception that the user wants to catch. This
13141 assumes that this condition is used when the inferior just triggered
13142 an exception catchpoint.
cb7de75e 13143 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13144
cb7de75e 13145static std::string
9f757bf7
XR
13146ada_exception_catchpoint_cond_string (const char *excep_string,
13147 enum ada_exception_catchpoint_kind ex)
f7f9143b 13148{
3d0b0fa3 13149 int i;
9f757bf7 13150 bool is_standard_exc = false;
cb7de75e 13151 std::string result;
9f757bf7
XR
13152
13153 if (ex == ada_catch_handlers)
13154 {
13155 /* For exception handlers catchpoints, the condition string does
13156 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13157 result = ("long_integer (GNAT_GCC_exception_Access"
13158 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13159 }
13160 else
cb7de75e 13161 result = "long_integer (e)";
3d0b0fa3 13162
0963b4bd 13163 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13164 runtime units that have been compiled without debugging info; if
28010a5d 13165 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13166 exception (e.g. "constraint_error") then, during the evaluation
13167 of the condition expression, the symbol lookup on this name would
0963b4bd 13168 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13169 may then be set only on user-defined exceptions which have the
13170 same not-fully-qualified name (e.g. my_package.constraint_error).
13171
13172 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13173 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13174 exception constraint_error" is rewritten into "catch exception
13175 standard.constraint_error".
13176
13177 If an exception named contraint_error is defined in another package of
13178 the inferior program, then the only way to specify this exception as a
13179 breakpoint condition is to use its fully-qualified named:
13180 e.g. my_package.constraint_error. */
13181
13182 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13183 {
28010a5d 13184 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13185 {
9f757bf7
XR
13186 is_standard_exc = true;
13187 break;
3d0b0fa3
JB
13188 }
13189 }
9f757bf7 13190
cb7de75e
TT
13191 result += " = ";
13192
9f757bf7 13193 if (is_standard_exc)
cb7de75e 13194 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13195 else
cb7de75e 13196 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13197
9f757bf7 13198 return result;
f7f9143b
JB
13199}
13200
13201/* Return the symtab_and_line that should be used to insert an exception
13202 catchpoint of the TYPE kind.
13203
28010a5d
PA
13204 ADDR_STRING returns the name of the function where the real
13205 breakpoint that implements the catchpoints is set, depending on the
13206 type of catchpoint we need to create. */
f7f9143b
JB
13207
13208static struct symtab_and_line
bc18fbb5 13209ada_exception_sal (enum ada_exception_catchpoint_kind ex,
f2fc3015 13210 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13211{
13212 const char *sym_name;
13213 struct symbol *sym;
f7f9143b 13214
0259addd
JB
13215 /* First, find out which exception support info to use. */
13216 ada_exception_support_info_sniffer ();
13217
13218 /* Then lookup the function on which we will break in order to catch
f7f9143b 13219 the Ada exceptions requested by the user. */
f7f9143b
JB
13220 sym_name = ada_exception_sym_name (ex);
13221 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13222
57aff202
JB
13223 if (sym == NULL)
13224 error (_("Catchpoint symbol not found: %s"), sym_name);
13225
13226 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13227 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13228
13229 /* Set ADDR_STRING. */
f7f9143b
JB
13230 *addr_string = xstrdup (sym_name);
13231
f7f9143b 13232 /* Set OPS. */
4b9eee8c 13233 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13234
f17011e0 13235 return find_function_start_sal (sym, 1);
f7f9143b
JB
13236}
13237
b4a5b78b 13238/* Create an Ada exception catchpoint.
f7f9143b 13239
b4a5b78b 13240 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13241
bc18fbb5 13242 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13243 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13244 of the exception to which this catchpoint applies.
2df4d1d5 13245
bc18fbb5 13246 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13247
b4a5b78b
JB
13248 TEMPFLAG, if nonzero, means that the underlying breakpoint
13249 should be temporary.
28010a5d 13250
b4a5b78b 13251 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13252
349774ef 13253void
28010a5d 13254create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13255 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13256 const std::string &excep_string,
56ecd069 13257 const std::string &cond_string,
28010a5d 13258 int tempflag,
349774ef 13259 int disabled,
28010a5d
PA
13260 int from_tty)
13261{
f2fc3015 13262 const char *addr_string = NULL;
b4a5b78b 13263 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13264 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13265
b270e6f9
TT
13266 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13267 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13268 ops, tempflag, disabled, from_tty);
28010a5d 13269 c->excep_string = excep_string;
9f757bf7 13270 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13271 if (!cond_string.empty ())
13272 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13273 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13274}
13275
9ac4176b
PA
13276/* Implement the "catch exception" command. */
13277
13278static void
eb4c3f4a 13279catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13280 struct cmd_list_element *command)
13281{
a121b7c1 13282 const char *arg = arg_entry;
9ac4176b
PA
13283 struct gdbarch *gdbarch = get_current_arch ();
13284 int tempflag;
761269c8 13285 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13286 std::string excep_string;
56ecd069 13287 std::string cond_string;
9ac4176b
PA
13288
13289 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13290
13291 if (!arg)
13292 arg = "";
9f757bf7 13293 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13294 &cond_string);
9f757bf7
XR
13295 create_ada_exception_catchpoint (gdbarch, ex_kind,
13296 excep_string, cond_string,
13297 tempflag, 1 /* enabled */,
13298 from_tty);
13299}
13300
13301/* Implement the "catch handlers" command. */
13302
13303static void
13304catch_ada_handlers_command (const char *arg_entry, int from_tty,
13305 struct cmd_list_element *command)
13306{
13307 const char *arg = arg_entry;
13308 struct gdbarch *gdbarch = get_current_arch ();
13309 int tempflag;
13310 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13311 std::string excep_string;
56ecd069 13312 std::string cond_string;
9f757bf7
XR
13313
13314 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13315
13316 if (!arg)
13317 arg = "";
13318 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13319 &cond_string);
b4a5b78b
JB
13320 create_ada_exception_catchpoint (gdbarch, ex_kind,
13321 excep_string, cond_string,
349774ef
JB
13322 tempflag, 1 /* enabled */,
13323 from_tty);
9ac4176b
PA
13324}
13325
b4a5b78b 13326/* Split the arguments specified in a "catch assert" command.
5845583d 13327
b4a5b78b
JB
13328 ARGS contains the command's arguments (or the empty string if
13329 no arguments were passed).
5845583d
JB
13330
13331 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13332 (the memory needs to be deallocated after use). */
5845583d 13333
b4a5b78b 13334static void
56ecd069 13335catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13336{
f1735a53 13337 args = skip_spaces (args);
f7f9143b 13338
5845583d 13339 /* Check whether a condition was provided. */
61012eef 13340 if (startswith (args, "if")
5845583d 13341 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13342 {
5845583d 13343 args += 2;
f1735a53 13344 args = skip_spaces (args);
5845583d
JB
13345 if (args[0] == '\0')
13346 error (_("condition missing after `if' keyword"));
56ecd069 13347 cond_string.assign (args);
f7f9143b
JB
13348 }
13349
5845583d
JB
13350 /* Otherwise, there should be no other argument at the end of
13351 the command. */
13352 else if (args[0] != '\0')
13353 error (_("Junk at end of arguments."));
f7f9143b
JB
13354}
13355
9ac4176b
PA
13356/* Implement the "catch assert" command. */
13357
13358static void
eb4c3f4a 13359catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13360 struct cmd_list_element *command)
13361{
a121b7c1 13362 const char *arg = arg_entry;
9ac4176b
PA
13363 struct gdbarch *gdbarch = get_current_arch ();
13364 int tempflag;
56ecd069 13365 std::string cond_string;
9ac4176b
PA
13366
13367 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13368
13369 if (!arg)
13370 arg = "";
56ecd069 13371 catch_ada_assert_command_split (arg, cond_string);
761269c8 13372 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13373 "", cond_string,
349774ef
JB
13374 tempflag, 1 /* enabled */,
13375 from_tty);
9ac4176b 13376}
778865d3
JB
13377
13378/* Return non-zero if the symbol SYM is an Ada exception object. */
13379
13380static int
13381ada_is_exception_sym (struct symbol *sym)
13382{
a737d952 13383 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13384
13385 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13386 && SYMBOL_CLASS (sym) != LOC_BLOCK
13387 && SYMBOL_CLASS (sym) != LOC_CONST
13388 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13389 && type_name != NULL && strcmp (type_name, "exception") == 0);
13390}
13391
13392/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13393 Ada exception object. This matches all exceptions except the ones
13394 defined by the Ada language. */
13395
13396static int
13397ada_is_non_standard_exception_sym (struct symbol *sym)
13398{
13399 int i;
13400
13401 if (!ada_is_exception_sym (sym))
13402 return 0;
13403
13404 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13405 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13406 return 0; /* A standard exception. */
13407
13408 /* Numeric_Error is also a standard exception, so exclude it.
13409 See the STANDARD_EXC description for more details as to why
13410 this exception is not listed in that array. */
13411 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13412 return 0;
13413
13414 return 1;
13415}
13416
ab816a27 13417/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13418 objects.
13419
13420 The comparison is determined first by exception name, and then
13421 by exception address. */
13422
ab816a27 13423bool
cc536b21 13424ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13425{
778865d3
JB
13426 int result;
13427
ab816a27
TT
13428 result = strcmp (name, other.name);
13429 if (result < 0)
13430 return true;
13431 if (result == 0 && addr < other.addr)
13432 return true;
13433 return false;
13434}
778865d3 13435
ab816a27 13436bool
cc536b21 13437ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13438{
13439 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13440}
13441
13442/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13443 routine, but keeping the first SKIP elements untouched.
13444
13445 All duplicates are also removed. */
13446
13447static void
ab816a27 13448sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13449 int skip)
13450{
ab816a27
TT
13451 std::sort (exceptions->begin () + skip, exceptions->end ());
13452 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13453 exceptions->end ());
778865d3
JB
13454}
13455
778865d3
JB
13456/* Add all exceptions defined by the Ada standard whose name match
13457 a regular expression.
13458
13459 If PREG is not NULL, then this regexp_t object is used to
13460 perform the symbol name matching. Otherwise, no name-based
13461 filtering is performed.
13462
13463 EXCEPTIONS is a vector of exceptions to which matching exceptions
13464 gets pushed. */
13465
13466static void
2d7cc5c7 13467ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13468 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13469{
13470 int i;
13471
13472 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13473 {
13474 if (preg == NULL
2d7cc5c7 13475 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13476 {
13477 struct bound_minimal_symbol msymbol
13478 = ada_lookup_simple_minsym (standard_exc[i]);
13479
13480 if (msymbol.minsym != NULL)
13481 {
13482 struct ada_exc_info info
77e371c0 13483 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13484
ab816a27 13485 exceptions->push_back (info);
778865d3
JB
13486 }
13487 }
13488 }
13489}
13490
13491/* Add all Ada exceptions defined locally and accessible from the given
13492 FRAME.
13493
13494 If PREG is not NULL, then this regexp_t object is used to
13495 perform the symbol name matching. Otherwise, no name-based
13496 filtering is performed.
13497
13498 EXCEPTIONS is a vector of exceptions to which matching exceptions
13499 gets pushed. */
13500
13501static void
2d7cc5c7
PA
13502ada_add_exceptions_from_frame (compiled_regex *preg,
13503 struct frame_info *frame,
ab816a27 13504 std::vector<ada_exc_info> *exceptions)
778865d3 13505{
3977b71f 13506 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13507
13508 while (block != 0)
13509 {
13510 struct block_iterator iter;
13511 struct symbol *sym;
13512
13513 ALL_BLOCK_SYMBOLS (block, iter, sym)
13514 {
13515 switch (SYMBOL_CLASS (sym))
13516 {
13517 case LOC_TYPEDEF:
13518 case LOC_BLOCK:
13519 case LOC_CONST:
13520 break;
13521 default:
13522 if (ada_is_exception_sym (sym))
13523 {
13524 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13525 SYMBOL_VALUE_ADDRESS (sym)};
13526
ab816a27 13527 exceptions->push_back (info);
778865d3
JB
13528 }
13529 }
13530 }
13531 if (BLOCK_FUNCTION (block) != NULL)
13532 break;
13533 block = BLOCK_SUPERBLOCK (block);
13534 }
13535}
13536
14bc53a8
PA
13537/* Return true if NAME matches PREG or if PREG is NULL. */
13538
13539static bool
2d7cc5c7 13540name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13541{
13542 return (preg == NULL
2d7cc5c7 13543 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13544}
13545
778865d3
JB
13546/* Add all exceptions defined globally whose name name match
13547 a regular expression, excluding standard exceptions.
13548
13549 The reason we exclude standard exceptions is that they need
13550 to be handled separately: Standard exceptions are defined inside
13551 a runtime unit which is normally not compiled with debugging info,
13552 and thus usually do not show up in our symbol search. However,
13553 if the unit was in fact built with debugging info, we need to
13554 exclude them because they would duplicate the entry we found
13555 during the special loop that specifically searches for those
13556 standard exceptions.
13557
13558 If PREG is not NULL, then this regexp_t object is used to
13559 perform the symbol name matching. Otherwise, no name-based
13560 filtering is performed.
13561
13562 EXCEPTIONS is a vector of exceptions to which matching exceptions
13563 gets pushed. */
13564
13565static void
2d7cc5c7 13566ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13567 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13568{
13569 struct objfile *objfile;
43f3e411 13570 struct compunit_symtab *s;
778865d3 13571
14bc53a8
PA
13572 /* In Ada, the symbol "search name" is a linkage name, whereas the
13573 regular expression used to do the matching refers to the natural
13574 name. So match against the decoded name. */
13575 expand_symtabs_matching (NULL,
b5ec771e 13576 lookup_name_info::match_any (),
14bc53a8
PA
13577 [&] (const char *search_name)
13578 {
13579 const char *decoded = ada_decode (search_name);
13580 return name_matches_regex (decoded, preg);
13581 },
13582 NULL,
13583 VARIABLES_DOMAIN);
778865d3 13584
43f3e411 13585 ALL_COMPUNITS (objfile, s)
778865d3 13586 {
43f3e411 13587 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13588 int i;
13589
13590 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13591 {
13592 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13593 struct block_iterator iter;
13594 struct symbol *sym;
13595
13596 ALL_BLOCK_SYMBOLS (b, iter, sym)
13597 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13598 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13599 {
13600 struct ada_exc_info info
13601 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13602
ab816a27 13603 exceptions->push_back (info);
778865d3
JB
13604 }
13605 }
13606 }
13607}
13608
13609/* Implements ada_exceptions_list with the regular expression passed
13610 as a regex_t, rather than a string.
13611
13612 If not NULL, PREG is used to filter out exceptions whose names
13613 do not match. Otherwise, all exceptions are listed. */
13614
ab816a27 13615static std::vector<ada_exc_info>
2d7cc5c7 13616ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13617{
ab816a27 13618 std::vector<ada_exc_info> result;
778865d3
JB
13619 int prev_len;
13620
13621 /* First, list the known standard exceptions. These exceptions
13622 need to be handled separately, as they are usually defined in
13623 runtime units that have been compiled without debugging info. */
13624
13625 ada_add_standard_exceptions (preg, &result);
13626
13627 /* Next, find all exceptions whose scope is local and accessible
13628 from the currently selected frame. */
13629
13630 if (has_stack_frames ())
13631 {
ab816a27 13632 prev_len = result.size ();
778865d3
JB
13633 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13634 &result);
ab816a27 13635 if (result.size () > prev_len)
778865d3
JB
13636 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13637 }
13638
13639 /* Add all exceptions whose scope is global. */
13640
ab816a27 13641 prev_len = result.size ();
778865d3 13642 ada_add_global_exceptions (preg, &result);
ab816a27 13643 if (result.size () > prev_len)
778865d3
JB
13644 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13645
778865d3
JB
13646 return result;
13647}
13648
13649/* Return a vector of ada_exc_info.
13650
13651 If REGEXP is NULL, all exceptions are included in the result.
13652 Otherwise, it should contain a valid regular expression,
13653 and only the exceptions whose names match that regular expression
13654 are included in the result.
13655
13656 The exceptions are sorted in the following order:
13657 - Standard exceptions (defined by the Ada language), in
13658 alphabetical order;
13659 - Exceptions only visible from the current frame, in
13660 alphabetical order;
13661 - Exceptions whose scope is global, in alphabetical order. */
13662
ab816a27 13663std::vector<ada_exc_info>
778865d3
JB
13664ada_exceptions_list (const char *regexp)
13665{
2d7cc5c7
PA
13666 if (regexp == NULL)
13667 return ada_exceptions_list_1 (NULL);
778865d3 13668
2d7cc5c7
PA
13669 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13670 return ada_exceptions_list_1 (&reg);
778865d3
JB
13671}
13672
13673/* Implement the "info exceptions" command. */
13674
13675static void
1d12d88f 13676info_exceptions_command (const char *regexp, int from_tty)
778865d3 13677{
778865d3 13678 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13679
ab816a27 13680 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13681
13682 if (regexp != NULL)
13683 printf_filtered
13684 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13685 else
13686 printf_filtered (_("All defined Ada exceptions:\n"));
13687
ab816a27
TT
13688 for (const ada_exc_info &info : exceptions)
13689 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13690}
13691
4c4b4cd2
PH
13692 /* Operators */
13693/* Information about operators given special treatment in functions
13694 below. */
13695/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13696
13697#define ADA_OPERATORS \
13698 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13699 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13700 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13701 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13702 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13703 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13704 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13705 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13706 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13707 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13708 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13709 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13710 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13711 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13712 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13713 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13714 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13715 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13716 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13717
13718static void
554794dc
SDJ
13719ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13720 int *argsp)
4c4b4cd2
PH
13721{
13722 switch (exp->elts[pc - 1].opcode)
13723 {
76a01679 13724 default:
4c4b4cd2
PH
13725 operator_length_standard (exp, pc, oplenp, argsp);
13726 break;
13727
13728#define OP_DEFN(op, len, args, binop) \
13729 case op: *oplenp = len; *argsp = args; break;
13730 ADA_OPERATORS;
13731#undef OP_DEFN
52ce6436
PH
13732
13733 case OP_AGGREGATE:
13734 *oplenp = 3;
13735 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13736 break;
13737
13738 case OP_CHOICES:
13739 *oplenp = 3;
13740 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13741 break;
4c4b4cd2
PH
13742 }
13743}
13744
c0201579
JK
13745/* Implementation of the exp_descriptor method operator_check. */
13746
13747static int
13748ada_operator_check (struct expression *exp, int pos,
13749 int (*objfile_func) (struct objfile *objfile, void *data),
13750 void *data)
13751{
13752 const union exp_element *const elts = exp->elts;
13753 struct type *type = NULL;
13754
13755 switch (elts[pos].opcode)
13756 {
13757 case UNOP_IN_RANGE:
13758 case UNOP_QUAL:
13759 type = elts[pos + 1].type;
13760 break;
13761
13762 default:
13763 return operator_check_standard (exp, pos, objfile_func, data);
13764 }
13765
13766 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13767
13768 if (type && TYPE_OBJFILE (type)
13769 && (*objfile_func) (TYPE_OBJFILE (type), data))
13770 return 1;
13771
13772 return 0;
13773}
13774
a121b7c1 13775static const char *
4c4b4cd2
PH
13776ada_op_name (enum exp_opcode opcode)
13777{
13778 switch (opcode)
13779 {
76a01679 13780 default:
4c4b4cd2 13781 return op_name_standard (opcode);
52ce6436 13782
4c4b4cd2
PH
13783#define OP_DEFN(op, len, args, binop) case op: return #op;
13784 ADA_OPERATORS;
13785#undef OP_DEFN
52ce6436
PH
13786
13787 case OP_AGGREGATE:
13788 return "OP_AGGREGATE";
13789 case OP_CHOICES:
13790 return "OP_CHOICES";
13791 case OP_NAME:
13792 return "OP_NAME";
4c4b4cd2
PH
13793 }
13794}
13795
13796/* As for operator_length, but assumes PC is pointing at the first
13797 element of the operator, and gives meaningful results only for the
52ce6436 13798 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13799
13800static void
76a01679
JB
13801ada_forward_operator_length (struct expression *exp, int pc,
13802 int *oplenp, int *argsp)
4c4b4cd2 13803{
76a01679 13804 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13805 {
13806 default:
13807 *oplenp = *argsp = 0;
13808 break;
52ce6436 13809
4c4b4cd2
PH
13810#define OP_DEFN(op, len, args, binop) \
13811 case op: *oplenp = len; *argsp = args; break;
13812 ADA_OPERATORS;
13813#undef OP_DEFN
52ce6436
PH
13814
13815 case OP_AGGREGATE:
13816 *oplenp = 3;
13817 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13818 break;
13819
13820 case OP_CHOICES:
13821 *oplenp = 3;
13822 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13823 break;
13824
13825 case OP_STRING:
13826 case OP_NAME:
13827 {
13828 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13829
52ce6436
PH
13830 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13831 *argsp = 0;
13832 break;
13833 }
4c4b4cd2
PH
13834 }
13835}
13836
13837static int
13838ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13839{
13840 enum exp_opcode op = exp->elts[elt].opcode;
13841 int oplen, nargs;
13842 int pc = elt;
13843 int i;
76a01679 13844
4c4b4cd2
PH
13845 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13846
76a01679 13847 switch (op)
4c4b4cd2 13848 {
76a01679 13849 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13850 case OP_ATR_FIRST:
13851 case OP_ATR_LAST:
13852 case OP_ATR_LENGTH:
13853 case OP_ATR_IMAGE:
13854 case OP_ATR_MAX:
13855 case OP_ATR_MIN:
13856 case OP_ATR_MODULUS:
13857 case OP_ATR_POS:
13858 case OP_ATR_SIZE:
13859 case OP_ATR_TAG:
13860 case OP_ATR_VAL:
13861 break;
13862
13863 case UNOP_IN_RANGE:
13864 case UNOP_QUAL:
323e0a4a
AC
13865 /* XXX: gdb_sprint_host_address, type_sprint */
13866 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13867 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13868 fprintf_filtered (stream, " (");
13869 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13870 fprintf_filtered (stream, ")");
13871 break;
13872 case BINOP_IN_BOUNDS:
52ce6436
PH
13873 fprintf_filtered (stream, " (%d)",
13874 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13875 break;
13876 case TERNOP_IN_RANGE:
13877 break;
13878
52ce6436
PH
13879 case OP_AGGREGATE:
13880 case OP_OTHERS:
13881 case OP_DISCRETE_RANGE:
13882 case OP_POSITIONAL:
13883 case OP_CHOICES:
13884 break;
13885
13886 case OP_NAME:
13887 case OP_STRING:
13888 {
13889 char *name = &exp->elts[elt + 2].string;
13890 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13891
52ce6436
PH
13892 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13893 break;
13894 }
13895
4c4b4cd2
PH
13896 default:
13897 return dump_subexp_body_standard (exp, stream, elt);
13898 }
13899
13900 elt += oplen;
13901 for (i = 0; i < nargs; i += 1)
13902 elt = dump_subexp (exp, stream, elt);
13903
13904 return elt;
13905}
13906
13907/* The Ada extension of print_subexp (q.v.). */
13908
76a01679
JB
13909static void
13910ada_print_subexp (struct expression *exp, int *pos,
13911 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13912{
52ce6436 13913 int oplen, nargs, i;
4c4b4cd2
PH
13914 int pc = *pos;
13915 enum exp_opcode op = exp->elts[pc].opcode;
13916
13917 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13918
52ce6436 13919 *pos += oplen;
4c4b4cd2
PH
13920 switch (op)
13921 {
13922 default:
52ce6436 13923 *pos -= oplen;
4c4b4cd2
PH
13924 print_subexp_standard (exp, pos, stream, prec);
13925 return;
13926
13927 case OP_VAR_VALUE:
4c4b4cd2
PH
13928 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13929 return;
13930
13931 case BINOP_IN_BOUNDS:
323e0a4a 13932 /* XXX: sprint_subexp */
4c4b4cd2 13933 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13934 fputs_filtered (" in ", stream);
4c4b4cd2 13935 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13936 fputs_filtered ("'range", stream);
4c4b4cd2 13937 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13938 fprintf_filtered (stream, "(%ld)",
13939 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13940 return;
13941
13942 case TERNOP_IN_RANGE:
4c4b4cd2 13943 if (prec >= PREC_EQUAL)
76a01679 13944 fputs_filtered ("(", stream);
323e0a4a 13945 /* XXX: sprint_subexp */
4c4b4cd2 13946 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13947 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13948 print_subexp (exp, pos, stream, PREC_EQUAL);
13949 fputs_filtered (" .. ", stream);
13950 print_subexp (exp, pos, stream, PREC_EQUAL);
13951 if (prec >= PREC_EQUAL)
76a01679
JB
13952 fputs_filtered (")", stream);
13953 return;
4c4b4cd2
PH
13954
13955 case OP_ATR_FIRST:
13956 case OP_ATR_LAST:
13957 case OP_ATR_LENGTH:
13958 case OP_ATR_IMAGE:
13959 case OP_ATR_MAX:
13960 case OP_ATR_MIN:
13961 case OP_ATR_MODULUS:
13962 case OP_ATR_POS:
13963 case OP_ATR_SIZE:
13964 case OP_ATR_TAG:
13965 case OP_ATR_VAL:
4c4b4cd2 13966 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13967 {
13968 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13969 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13970 &type_print_raw_options);
76a01679
JB
13971 *pos += 3;
13972 }
4c4b4cd2 13973 else
76a01679 13974 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13975 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13976 if (nargs > 1)
76a01679
JB
13977 {
13978 int tem;
5b4ee69b 13979
76a01679
JB
13980 for (tem = 1; tem < nargs; tem += 1)
13981 {
13982 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13983 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13984 }
13985 fputs_filtered (")", stream);
13986 }
4c4b4cd2 13987 return;
14f9c5c9 13988
4c4b4cd2 13989 case UNOP_QUAL:
4c4b4cd2
PH
13990 type_print (exp->elts[pc + 1].type, "", stream, 0);
13991 fputs_filtered ("'(", stream);
13992 print_subexp (exp, pos, stream, PREC_PREFIX);
13993 fputs_filtered (")", stream);
13994 return;
14f9c5c9 13995
4c4b4cd2 13996 case UNOP_IN_RANGE:
323e0a4a 13997 /* XXX: sprint_subexp */
4c4b4cd2 13998 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13999 fputs_filtered (" in ", stream);
79d43c61
TT
14000 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14001 &type_print_raw_options);
4c4b4cd2 14002 return;
52ce6436
PH
14003
14004 case OP_DISCRETE_RANGE:
14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
14006 fputs_filtered ("..", stream);
14007 print_subexp (exp, pos, stream, PREC_SUFFIX);
14008 return;
14009
14010 case OP_OTHERS:
14011 fputs_filtered ("others => ", stream);
14012 print_subexp (exp, pos, stream, PREC_SUFFIX);
14013 return;
14014
14015 case OP_CHOICES:
14016 for (i = 0; i < nargs-1; i += 1)
14017 {
14018 if (i > 0)
14019 fputs_filtered ("|", stream);
14020 print_subexp (exp, pos, stream, PREC_SUFFIX);
14021 }
14022 fputs_filtered (" => ", stream);
14023 print_subexp (exp, pos, stream, PREC_SUFFIX);
14024 return;
14025
14026 case OP_POSITIONAL:
14027 print_subexp (exp, pos, stream, PREC_SUFFIX);
14028 return;
14029
14030 case OP_AGGREGATE:
14031 fputs_filtered ("(", stream);
14032 for (i = 0; i < nargs; i += 1)
14033 {
14034 if (i > 0)
14035 fputs_filtered (", ", stream);
14036 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 }
14038 fputs_filtered (")", stream);
14039 return;
4c4b4cd2
PH
14040 }
14041}
14f9c5c9
AS
14042
14043/* Table mapping opcodes into strings for printing operators
14044 and precedences of the operators. */
14045
d2e4a39e
AS
14046static const struct op_print ada_op_print_tab[] = {
14047 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14048 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14049 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14050 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14051 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14052 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14053 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14054 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14055 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14056 {">=", BINOP_GEQ, PREC_ORDER, 0},
14057 {">", BINOP_GTR, PREC_ORDER, 0},
14058 {"<", BINOP_LESS, PREC_ORDER, 0},
14059 {">>", BINOP_RSH, PREC_SHIFT, 0},
14060 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14061 {"+", BINOP_ADD, PREC_ADD, 0},
14062 {"-", BINOP_SUB, PREC_ADD, 0},
14063 {"&", BINOP_CONCAT, PREC_ADD, 0},
14064 {"*", BINOP_MUL, PREC_MUL, 0},
14065 {"/", BINOP_DIV, PREC_MUL, 0},
14066 {"rem", BINOP_REM, PREC_MUL, 0},
14067 {"mod", BINOP_MOD, PREC_MUL, 0},
14068 {"**", BINOP_EXP, PREC_REPEAT, 0},
14069 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14070 {"-", UNOP_NEG, PREC_PREFIX, 0},
14071 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14072 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14073 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14074 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14075 {".all", UNOP_IND, PREC_SUFFIX, 1},
14076 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14077 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14078 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14079};
14080\f
72d5681a
PH
14081enum ada_primitive_types {
14082 ada_primitive_type_int,
14083 ada_primitive_type_long,
14084 ada_primitive_type_short,
14085 ada_primitive_type_char,
14086 ada_primitive_type_float,
14087 ada_primitive_type_double,
14088 ada_primitive_type_void,
14089 ada_primitive_type_long_long,
14090 ada_primitive_type_long_double,
14091 ada_primitive_type_natural,
14092 ada_primitive_type_positive,
14093 ada_primitive_type_system_address,
08f49010 14094 ada_primitive_type_storage_offset,
72d5681a
PH
14095 nr_ada_primitive_types
14096};
6c038f32
PH
14097
14098static void
d4a9a881 14099ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14100 struct language_arch_info *lai)
14101{
d4a9a881 14102 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14103
72d5681a 14104 lai->primitive_type_vector
d4a9a881 14105 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14106 struct type *);
e9bb382b
UW
14107
14108 lai->primitive_type_vector [ada_primitive_type_int]
14109 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14110 0, "integer");
14111 lai->primitive_type_vector [ada_primitive_type_long]
14112 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14113 0, "long_integer");
14114 lai->primitive_type_vector [ada_primitive_type_short]
14115 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14116 0, "short_integer");
14117 lai->string_char_type
14118 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14119 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14120 lai->primitive_type_vector [ada_primitive_type_float]
14121 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14122 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14123 lai->primitive_type_vector [ada_primitive_type_double]
14124 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14125 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14126 lai->primitive_type_vector [ada_primitive_type_long_long]
14127 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14128 0, "long_long_integer");
14129 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14130 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14131 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14132 lai->primitive_type_vector [ada_primitive_type_natural]
14133 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14134 0, "natural");
14135 lai->primitive_type_vector [ada_primitive_type_positive]
14136 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14137 0, "positive");
14138 lai->primitive_type_vector [ada_primitive_type_void]
14139 = builtin->builtin_void;
14140
14141 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14142 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14143 "void"));
72d5681a
PH
14144 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14145 = "system__address";
fbb06eb1 14146
08f49010
XR
14147 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14148 type. This is a signed integral type whose size is the same as
14149 the size of addresses. */
14150 {
14151 unsigned int addr_length = TYPE_LENGTH
14152 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14153
14154 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14155 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14156 "storage_offset");
14157 }
14158
47e729a8 14159 lai->bool_type_symbol = NULL;
fbb06eb1 14160 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14161}
6c038f32
PH
14162\f
14163 /* Language vector */
14164
14165/* Not really used, but needed in the ada_language_defn. */
14166
14167static void
6c7a06a3 14168emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14169{
6c7a06a3 14170 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14171}
14172
14173static int
410a0ff2 14174parse (struct parser_state *ps)
6c038f32
PH
14175{
14176 warnings_issued = 0;
410a0ff2 14177 return ada_parse (ps);
6c038f32
PH
14178}
14179
14180static const struct exp_descriptor ada_exp_descriptor = {
14181 ada_print_subexp,
14182 ada_operator_length,
c0201579 14183 ada_operator_check,
6c038f32
PH
14184 ada_op_name,
14185 ada_dump_subexp_body,
14186 ada_evaluate_subexp
14187};
14188
b5ec771e
PA
14189/* symbol_name_matcher_ftype adapter for wild_match. */
14190
14191static bool
14192do_wild_match (const char *symbol_search_name,
14193 const lookup_name_info &lookup_name,
a207cff2 14194 completion_match_result *comp_match_res)
b5ec771e
PA
14195{
14196 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14197}
14198
14199/* symbol_name_matcher_ftype adapter for full_match. */
14200
14201static bool
14202do_full_match (const char *symbol_search_name,
14203 const lookup_name_info &lookup_name,
a207cff2 14204 completion_match_result *comp_match_res)
b5ec771e
PA
14205{
14206 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14207}
14208
14209/* Build the Ada lookup name for LOOKUP_NAME. */
14210
14211ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14212{
14213 const std::string &user_name = lookup_name.name ();
14214
14215 if (user_name[0] == '<')
14216 {
14217 if (user_name.back () == '>')
14218 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14219 else
14220 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14221 m_encoded_p = true;
14222 m_verbatim_p = true;
14223 m_wild_match_p = false;
14224 m_standard_p = false;
14225 }
14226 else
14227 {
14228 m_verbatim_p = false;
14229
14230 m_encoded_p = user_name.find ("__") != std::string::npos;
14231
14232 if (!m_encoded_p)
14233 {
14234 const char *folded = ada_fold_name (user_name.c_str ());
14235 const char *encoded = ada_encode_1 (folded, false);
14236 if (encoded != NULL)
14237 m_encoded_name = encoded;
14238 else
14239 m_encoded_name = user_name;
14240 }
14241 else
14242 m_encoded_name = user_name;
14243
14244 /* Handle the 'package Standard' special case. See description
14245 of m_standard_p. */
14246 if (startswith (m_encoded_name.c_str (), "standard__"))
14247 {
14248 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14249 m_standard_p = true;
14250 }
14251 else
14252 m_standard_p = false;
74ccd7f5 14253
b5ec771e
PA
14254 /* If the name contains a ".", then the user is entering a fully
14255 qualified entity name, and the match must not be done in wild
14256 mode. Similarly, if the user wants to complete what looks
14257 like an encoded name, the match must not be done in wild
14258 mode. Also, in the standard__ special case always do
14259 non-wild matching. */
14260 m_wild_match_p
14261 = (lookup_name.match_type () != symbol_name_match_type::FULL
14262 && !m_encoded_p
14263 && !m_standard_p
14264 && user_name.find ('.') == std::string::npos);
14265 }
14266}
14267
14268/* symbol_name_matcher_ftype method for Ada. This only handles
14269 completion mode. */
14270
14271static bool
14272ada_symbol_name_matches (const char *symbol_search_name,
14273 const lookup_name_info &lookup_name,
a207cff2 14274 completion_match_result *comp_match_res)
74ccd7f5 14275{
b5ec771e
PA
14276 return lookup_name.ada ().matches (symbol_search_name,
14277 lookup_name.match_type (),
a207cff2 14278 comp_match_res);
b5ec771e
PA
14279}
14280
de63c46b
PA
14281/* A name matcher that matches the symbol name exactly, with
14282 strcmp. */
14283
14284static bool
14285literal_symbol_name_matcher (const char *symbol_search_name,
14286 const lookup_name_info &lookup_name,
14287 completion_match_result *comp_match_res)
14288{
14289 const std::string &name = lookup_name.name ();
14290
14291 int cmp = (lookup_name.completion_mode ()
14292 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14293 : strcmp (symbol_search_name, name.c_str ()));
14294 if (cmp == 0)
14295 {
14296 if (comp_match_res != NULL)
14297 comp_match_res->set_match (symbol_search_name);
14298 return true;
14299 }
14300 else
14301 return false;
14302}
14303
b5ec771e
PA
14304/* Implement the "la_get_symbol_name_matcher" language_defn method for
14305 Ada. */
14306
14307static symbol_name_matcher_ftype *
14308ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14309{
de63c46b
PA
14310 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14311 return literal_symbol_name_matcher;
14312
b5ec771e
PA
14313 if (lookup_name.completion_mode ())
14314 return ada_symbol_name_matches;
74ccd7f5 14315 else
b5ec771e
PA
14316 {
14317 if (lookup_name.ada ().wild_match_p ())
14318 return do_wild_match;
14319 else
14320 return do_full_match;
14321 }
74ccd7f5
JB
14322}
14323
a5ee536b
JB
14324/* Implement the "la_read_var_value" language_defn method for Ada. */
14325
14326static struct value *
63e43d3a
PMR
14327ada_read_var_value (struct symbol *var, const struct block *var_block,
14328 struct frame_info *frame)
a5ee536b 14329{
3977b71f 14330 const struct block *frame_block = NULL;
a5ee536b
JB
14331 struct symbol *renaming_sym = NULL;
14332
14333 /* The only case where default_read_var_value is not sufficient
14334 is when VAR is a renaming... */
14335 if (frame)
14336 frame_block = get_frame_block (frame, NULL);
14337 if (frame_block)
14338 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14339 if (renaming_sym != NULL)
14340 return ada_read_renaming_var_value (renaming_sym, frame_block);
14341
14342 /* This is a typical case where we expect the default_read_var_value
14343 function to work. */
63e43d3a 14344 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14345}
14346
56618e20
TT
14347static const char *ada_extensions[] =
14348{
14349 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14350};
14351
47e77640 14352extern const struct language_defn ada_language_defn = {
6c038f32 14353 "ada", /* Language name */
6abde28f 14354 "Ada",
6c038f32 14355 language_ada,
6c038f32 14356 range_check_off,
6c038f32
PH
14357 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14358 that's not quite what this means. */
6c038f32 14359 array_row_major,
9a044a89 14360 macro_expansion_no,
56618e20 14361 ada_extensions,
6c038f32
PH
14362 &ada_exp_descriptor,
14363 parse,
6c038f32
PH
14364 resolve,
14365 ada_printchar, /* Print a character constant */
14366 ada_printstr, /* Function to print string constant */
14367 emit_char, /* Function to print single char (not used) */
6c038f32 14368 ada_print_type, /* Print a type using appropriate syntax */
be942545 14369 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14370 ada_val_print, /* Print a value using appropriate syntax */
14371 ada_value_print, /* Print a top-level value */
a5ee536b 14372 ada_read_var_value, /* la_read_var_value */
6c038f32 14373 NULL, /* Language specific skip_trampoline */
2b2d9e11 14374 NULL, /* name_of_this */
59cc4834 14375 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14376 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14377 basic_lookup_transparent_type, /* lookup_transparent_type */
14378 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14379 ada_sniff_from_mangled_name,
0963b4bd
MS
14380 NULL, /* Language specific
14381 class_name_from_physname */
6c038f32
PH
14382 ada_op_print_tab, /* expression operators for printing */
14383 0, /* c-style arrays */
14384 1, /* String lower bound */
6c038f32 14385 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14386 ada_collect_symbol_completion_matches,
72d5681a 14387 ada_language_arch_info,
e79af960 14388 ada_print_array_index,
41f1b697 14389 default_pass_by_reference,
ae6a3a4c 14390 c_get_string,
43cc5389 14391 c_watch_location_expression,
b5ec771e 14392 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14393 ada_iterate_over_symbols,
5ffa0793 14394 default_search_name_hash,
a53b64ea 14395 &ada_varobj_ops,
bb2ec1b3
TT
14396 NULL,
14397 NULL,
6c038f32
PH
14398 LANG_MAGIC
14399};
14400
5bf03f13
JB
14401/* Command-list for the "set/show ada" prefix command. */
14402static struct cmd_list_element *set_ada_list;
14403static struct cmd_list_element *show_ada_list;
14404
14405/* Implement the "set ada" prefix command. */
14406
14407static void
981a3fb3 14408set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14409{
14410 printf_unfiltered (_(\
14411"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14412 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14413}
14414
14415/* Implement the "show ada" prefix command. */
14416
14417static void
981a3fb3 14418show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14419{
14420 cmd_show_list (show_ada_list, from_tty, "");
14421}
14422
2060206e
PA
14423static void
14424initialize_ada_catchpoint_ops (void)
14425{
14426 struct breakpoint_ops *ops;
14427
14428 initialize_breakpoint_ops ();
14429
14430 ops = &catch_exception_breakpoint_ops;
14431 *ops = bkpt_breakpoint_ops;
2060206e
PA
14432 ops->allocate_location = allocate_location_catch_exception;
14433 ops->re_set = re_set_catch_exception;
14434 ops->check_status = check_status_catch_exception;
14435 ops->print_it = print_it_catch_exception;
14436 ops->print_one = print_one_catch_exception;
14437 ops->print_mention = print_mention_catch_exception;
14438 ops->print_recreate = print_recreate_catch_exception;
14439
14440 ops = &catch_exception_unhandled_breakpoint_ops;
14441 *ops = bkpt_breakpoint_ops;
2060206e
PA
14442 ops->allocate_location = allocate_location_catch_exception_unhandled;
14443 ops->re_set = re_set_catch_exception_unhandled;
14444 ops->check_status = check_status_catch_exception_unhandled;
14445 ops->print_it = print_it_catch_exception_unhandled;
14446 ops->print_one = print_one_catch_exception_unhandled;
14447 ops->print_mention = print_mention_catch_exception_unhandled;
14448 ops->print_recreate = print_recreate_catch_exception_unhandled;
14449
14450 ops = &catch_assert_breakpoint_ops;
14451 *ops = bkpt_breakpoint_ops;
2060206e
PA
14452 ops->allocate_location = allocate_location_catch_assert;
14453 ops->re_set = re_set_catch_assert;
14454 ops->check_status = check_status_catch_assert;
14455 ops->print_it = print_it_catch_assert;
14456 ops->print_one = print_one_catch_assert;
14457 ops->print_mention = print_mention_catch_assert;
14458 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14459
14460 ops = &catch_handlers_breakpoint_ops;
14461 *ops = bkpt_breakpoint_ops;
14462 ops->allocate_location = allocate_location_catch_handlers;
14463 ops->re_set = re_set_catch_handlers;
14464 ops->check_status = check_status_catch_handlers;
14465 ops->print_it = print_it_catch_handlers;
14466 ops->print_one = print_one_catch_handlers;
14467 ops->print_mention = print_mention_catch_handlers;
14468 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14469}
14470
3d9434b5
JB
14471/* This module's 'new_objfile' observer. */
14472
14473static void
14474ada_new_objfile_observer (struct objfile *objfile)
14475{
14476 ada_clear_symbol_cache ();
14477}
14478
14479/* This module's 'free_objfile' observer. */
14480
14481static void
14482ada_free_objfile_observer (struct objfile *objfile)
14483{
14484 ada_clear_symbol_cache ();
14485}
14486
d2e4a39e 14487void
6c038f32 14488_initialize_ada_language (void)
14f9c5c9 14489{
2060206e
PA
14490 initialize_ada_catchpoint_ops ();
14491
5bf03f13
JB
14492 add_prefix_cmd ("ada", no_class, set_ada_command,
14493 _("Prefix command for changing Ada-specfic settings"),
14494 &set_ada_list, "set ada ", 0, &setlist);
14495
14496 add_prefix_cmd ("ada", no_class, show_ada_command,
14497 _("Generic command for showing Ada-specific settings."),
14498 &show_ada_list, "show ada ", 0, &showlist);
14499
14500 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14501 &trust_pad_over_xvs, _("\
14502Enable or disable an optimization trusting PAD types over XVS types"), _("\
14503Show whether an optimization trusting PAD types over XVS types is activated"),
14504 _("\
14505This is related to the encoding used by the GNAT compiler. The debugger\n\
14506should normally trust the contents of PAD types, but certain older versions\n\
14507of GNAT have a bug that sometimes causes the information in the PAD type\n\
14508to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14509work around this bug. It is always safe to turn this option \"off\", but\n\
14510this incurs a slight performance penalty, so it is recommended to NOT change\n\
14511this option to \"off\" unless necessary."),
14512 NULL, NULL, &set_ada_list, &show_ada_list);
14513
d72413e6
PMR
14514 add_setshow_boolean_cmd ("print-signatures", class_vars,
14515 &print_signatures, _("\
14516Enable or disable the output of formal and return types for functions in the \
14517overloads selection menu"), _("\
14518Show whether the output of formal and return types for functions in the \
14519overloads selection menu is activated"),
14520 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14521
9ac4176b
PA
14522 add_catch_command ("exception", _("\
14523Catch Ada exceptions, when raised.\n\
14524With an argument, catch only exceptions with the given name."),
14525 catch_ada_exception_command,
14526 NULL,
14527 CATCH_PERMANENT,
14528 CATCH_TEMPORARY);
9f757bf7
XR
14529
14530 add_catch_command ("handlers", _("\
14531Catch Ada exceptions, when handled.\n\
14532With an argument, catch only exceptions with the given name."),
14533 catch_ada_handlers_command,
14534 NULL,
14535 CATCH_PERMANENT,
14536 CATCH_TEMPORARY);
9ac4176b
PA
14537 add_catch_command ("assert", _("\
14538Catch failed Ada assertions, when raised.\n\
14539With an argument, catch only exceptions with the given name."),
14540 catch_assert_command,
14541 NULL,
14542 CATCH_PERMANENT,
14543 CATCH_TEMPORARY);
14544
6c038f32 14545 varsize_limit = 65536;
3fcded8f
JB
14546 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14547 &varsize_limit, _("\
14548Set the maximum number of bytes allowed in a variable-size object."), _("\
14549Show the maximum number of bytes allowed in a variable-size object."), _("\
14550Attempts to access an object whose size is not a compile-time constant\n\
14551and exceeds this limit will cause an error."),
14552 NULL, NULL, &setlist, &showlist);
6c038f32 14553
778865d3
JB
14554 add_info ("exceptions", info_exceptions_command,
14555 _("\
14556List all Ada exception names.\n\
14557If a regular expression is passed as an argument, only those matching\n\
14558the regular expression are listed."));
14559
c6044dd1
JB
14560 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14561 _("Set Ada maintenance-related variables."),
14562 &maint_set_ada_cmdlist, "maintenance set ada ",
14563 0/*allow-unknown*/, &maintenance_set_cmdlist);
14564
14565 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14566 _("Show Ada maintenance-related variables"),
14567 &maint_show_ada_cmdlist, "maintenance show ada ",
14568 0/*allow-unknown*/, &maintenance_show_cmdlist);
14569
14570 add_setshow_boolean_cmd
14571 ("ignore-descriptive-types", class_maintenance,
14572 &ada_ignore_descriptive_types_p,
14573 _("Set whether descriptive types generated by GNAT should be ignored."),
14574 _("Show whether descriptive types generated by GNAT should be ignored."),
14575 _("\
14576When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14577DWARF attribute."),
14578 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14579
459a2e4c
TT
14580 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14581 NULL, xcalloc, xfree);
6b69afc4 14582
3d9434b5 14583 /* The ada-lang observers. */
76727919
TT
14584 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14585 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14586 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14587
14588 /* Setup various context-specific data. */
e802dbe0 14589 ada_inferior_data
8e260fc0 14590 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14591 ada_pspace_data_handle
14592 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14593}