]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Constify variables in ada-lang.c
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
401 data = inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
419 data = inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
462 data = program_space_data (pspace, ada_pspace_data_handle);
463 if (data == NULL)
464 {
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
467 }
468
469 return data;
470}
471
472/* The cleanup callback for this module's per-program-space data. */
473
474static void
475ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476{
477 struct ada_pspace_data *pspace_data = data;
478
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
481 xfree (pspace_data);
482}
483
4c4b4cd2
PH
484 /* Utilities */
485
720d1a40 486/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 487 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
488
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
497
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
501
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
508
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
512
513static struct type *
514ada_typedef_target_type (struct type *type)
515{
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
518 return type;
519}
520
41d27058
JB
521/* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
524
525static const char *
526ada_unqualified_name (const char *decoded_name)
527{
2b0f535a
JB
528 const char *result;
529
530 /* If the decoded name starts with '<', it means that the encoded
531 name does not follow standard naming conventions, and thus that
532 it is not your typical Ada symbol name. Trying to unqualify it
533 is therefore pointless and possibly erroneous. */
534 if (decoded_name[0] == '<')
535 return decoded_name;
536
537 result = strrchr (decoded_name, '.');
41d27058
JB
538 if (result != NULL)
539 result++; /* Skip the dot... */
540 else
541 result = decoded_name;
542
543 return result;
544}
545
546/* Return a string starting with '<', followed by STR, and '>'.
547 The result is good until the next call. */
548
549static char *
550add_angle_brackets (const char *str)
551{
552 static char *result = NULL;
553
554 xfree (result);
88c15c34 555 result = xstrprintf ("<%s>", str);
41d27058
JB
556 return result;
557}
96d887e8 558
4c4b4cd2
PH
559static char *
560ada_get_gdb_completer_word_break_characters (void)
561{
562 return ada_completer_word_break_characters;
563}
564
e79af960
JB
565/* Print an array element index using the Ada syntax. */
566
567static void
568ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 569 const struct value_print_options *options)
e79af960 570{
79a45b7d 571 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
572 fprintf_filtered (stream, " => ");
573}
574
f27cf670 575/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 576 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 577 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 578
f27cf670
AS
579void *
580grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 581{
d2e4a39e
AS
582 if (*size < min_size)
583 {
584 *size *= 2;
585 if (*size < min_size)
4c4b4cd2 586 *size = min_size;
f27cf670 587 vect = xrealloc (vect, *size * element_size);
d2e4a39e 588 }
f27cf670 589 return vect;
14f9c5c9
AS
590}
591
592/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 593 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
594
595static int
ebf56fd3 596field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
597{
598 int len = strlen (target);
5b4ee69b 599
d2e4a39e 600 return
4c4b4cd2
PH
601 (strncmp (field_name, target, len) == 0
602 && (field_name[len] == '\0'
61012eef 603 || (startswith (field_name + len, "___")
76a01679
JB
604 && strcmp (field_name + strlen (field_name) - 6,
605 "___XVN") != 0)));
14f9c5c9
AS
606}
607
608
872c8b51
JB
609/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
610 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
611 and return its index. This function also handles fields whose name
612 have ___ suffixes because the compiler sometimes alters their name
613 by adding such a suffix to represent fields with certain constraints.
614 If the field could not be found, return a negative number if
615 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
616
617int
618ada_get_field_index (const struct type *type, const char *field_name,
619 int maybe_missing)
620{
621 int fieldno;
872c8b51
JB
622 struct type *struct_type = check_typedef ((struct type *) type);
623
624 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
625 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
626 return fieldno;
627
628 if (!maybe_missing)
323e0a4a 629 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 630 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
631
632 return -1;
633}
634
635/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
636
637int
d2e4a39e 638ada_name_prefix_len (const char *name)
14f9c5c9
AS
639{
640 if (name == NULL)
641 return 0;
d2e4a39e 642 else
14f9c5c9 643 {
d2e4a39e 644 const char *p = strstr (name, "___");
5b4ee69b 645
14f9c5c9 646 if (p == NULL)
4c4b4cd2 647 return strlen (name);
14f9c5c9 648 else
4c4b4cd2 649 return p - name;
14f9c5c9
AS
650 }
651}
652
4c4b4cd2
PH
653/* Return non-zero if SUFFIX is a suffix of STR.
654 Return zero if STR is null. */
655
14f9c5c9 656static int
d2e4a39e 657is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
658{
659 int len1, len2;
5b4ee69b 660
14f9c5c9
AS
661 if (str == NULL)
662 return 0;
663 len1 = strlen (str);
664 len2 = strlen (suffix);
4c4b4cd2 665 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
666}
667
4c4b4cd2
PH
668/* The contents of value VAL, treated as a value of type TYPE. The
669 result is an lval in memory if VAL is. */
14f9c5c9 670
d2e4a39e 671static struct value *
4c4b4cd2 672coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 673{
61ee279c 674 type = ada_check_typedef (type);
df407dfe 675 if (value_type (val) == type)
4c4b4cd2 676 return val;
d2e4a39e 677 else
14f9c5c9 678 {
4c4b4cd2
PH
679 struct value *result;
680
681 /* Make sure that the object size is not unreasonable before
682 trying to allocate some memory for it. */
c1b5a1a6 683 ada_ensure_varsize_limit (type);
4c4b4cd2 684
41e8491f
JK
685 if (value_lazy (val)
686 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
687 result = allocate_value_lazy (type);
688 else
689 {
690 result = allocate_value (type);
9a0dc9e3 691 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 692 }
74bcbdf3 693 set_value_component_location (result, val);
9bbda503
AC
694 set_value_bitsize (result, value_bitsize (val));
695 set_value_bitpos (result, value_bitpos (val));
42ae5230 696 set_value_address (result, value_address (val));
14f9c5c9
AS
697 return result;
698 }
699}
700
fc1a4b47
AC
701static const gdb_byte *
702cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
703{
704 if (valaddr == NULL)
705 return NULL;
706 else
707 return valaddr + offset;
708}
709
710static CORE_ADDR
ebf56fd3 711cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
712{
713 if (address == 0)
714 return 0;
d2e4a39e 715 else
14f9c5c9
AS
716 return address + offset;
717}
718
4c4b4cd2
PH
719/* Issue a warning (as for the definition of warning in utils.c, but
720 with exactly one argument rather than ...), unless the limit on the
721 number of warnings has passed during the evaluation of the current
722 expression. */
a2249542 723
77109804
AC
724/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
725 provided by "complaint". */
a0b31db1 726static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 727
14f9c5c9 728static void
a2249542 729lim_warning (const char *format, ...)
14f9c5c9 730{
a2249542 731 va_list args;
a2249542 732
5b4ee69b 733 va_start (args, format);
4c4b4cd2
PH
734 warnings_issued += 1;
735 if (warnings_issued <= warning_limit)
a2249542
MK
736 vwarning (format, args);
737
738 va_end (args);
4c4b4cd2
PH
739}
740
714e53ab
PH
741/* Issue an error if the size of an object of type T is unreasonable,
742 i.e. if it would be a bad idea to allocate a value of this type in
743 GDB. */
744
c1b5a1a6
JB
745void
746ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
747{
748 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 749 error (_("object size is larger than varsize-limit"));
714e53ab
PH
750}
751
0963b4bd 752/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 753static LONGEST
c3e5cd34 754max_of_size (int size)
4c4b4cd2 755{
76a01679 756 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 757
76a01679 758 return top_bit | (top_bit - 1);
4c4b4cd2
PH
759}
760
0963b4bd 761/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 762static LONGEST
c3e5cd34 763min_of_size (int size)
4c4b4cd2 764{
c3e5cd34 765 return -max_of_size (size) - 1;
4c4b4cd2
PH
766}
767
0963b4bd 768/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 769static ULONGEST
c3e5cd34 770umax_of_size (int size)
4c4b4cd2 771{
76a01679 772 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 773
76a01679 774 return top_bit | (top_bit - 1);
4c4b4cd2
PH
775}
776
0963b4bd 777/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
778static LONGEST
779max_of_type (struct type *t)
4c4b4cd2 780{
c3e5cd34
PH
781 if (TYPE_UNSIGNED (t))
782 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
783 else
784 return max_of_size (TYPE_LENGTH (t));
785}
786
0963b4bd 787/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
788static LONGEST
789min_of_type (struct type *t)
790{
791 if (TYPE_UNSIGNED (t))
792 return 0;
793 else
794 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
795}
796
797/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
798LONGEST
799ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 800{
c3345124 801 type = resolve_dynamic_type (type, NULL, 0);
76a01679 802 switch (TYPE_CODE (type))
4c4b4cd2
PH
803 {
804 case TYPE_CODE_RANGE:
690cc4eb 805 return TYPE_HIGH_BOUND (type);
4c4b4cd2 806 case TYPE_CODE_ENUM:
14e75d8e 807 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
808 case TYPE_CODE_BOOL:
809 return 1;
810 case TYPE_CODE_CHAR:
76a01679 811 case TYPE_CODE_INT:
690cc4eb 812 return max_of_type (type);
4c4b4cd2 813 default:
43bbcdc2 814 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
815 }
816}
817
14e75d8e 818/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
819LONGEST
820ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 821{
c3345124 822 type = resolve_dynamic_type (type, NULL, 0);
76a01679 823 switch (TYPE_CODE (type))
4c4b4cd2
PH
824 {
825 case TYPE_CODE_RANGE:
690cc4eb 826 return TYPE_LOW_BOUND (type);
4c4b4cd2 827 case TYPE_CODE_ENUM:
14e75d8e 828 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
829 case TYPE_CODE_BOOL:
830 return 0;
831 case TYPE_CODE_CHAR:
76a01679 832 case TYPE_CODE_INT:
690cc4eb 833 return min_of_type (type);
4c4b4cd2 834 default:
43bbcdc2 835 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
836 }
837}
838
839/* The identity on non-range types. For range types, the underlying
76a01679 840 non-range scalar type. */
4c4b4cd2
PH
841
842static struct type *
18af8284 843get_base_type (struct type *type)
4c4b4cd2
PH
844{
845 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
846 {
76a01679
JB
847 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
848 return type;
4c4b4cd2
PH
849 type = TYPE_TARGET_TYPE (type);
850 }
851 return type;
14f9c5c9 852}
41246937
JB
853
854/* Return a decoded version of the given VALUE. This means returning
855 a value whose type is obtained by applying all the GNAT-specific
856 encondings, making the resulting type a static but standard description
857 of the initial type. */
858
859struct value *
860ada_get_decoded_value (struct value *value)
861{
862 struct type *type = ada_check_typedef (value_type (value));
863
864 if (ada_is_array_descriptor_type (type)
865 || (ada_is_constrained_packed_array_type (type)
866 && TYPE_CODE (type) != TYPE_CODE_PTR))
867 {
868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
869 value = ada_coerce_to_simple_array_ptr (value);
870 else
871 value = ada_coerce_to_simple_array (value);
872 }
873 else
874 value = ada_to_fixed_value (value);
875
876 return value;
877}
878
879/* Same as ada_get_decoded_value, but with the given TYPE.
880 Because there is no associated actual value for this type,
881 the resulting type might be a best-effort approximation in
882 the case of dynamic types. */
883
884struct type *
885ada_get_decoded_type (struct type *type)
886{
887 type = to_static_fixed_type (type);
888 if (ada_is_constrained_packed_array_type (type))
889 type = ada_coerce_to_simple_array_type (type);
890 return type;
891}
892
4c4b4cd2 893\f
76a01679 894
4c4b4cd2 895 /* Language Selection */
14f9c5c9
AS
896
897/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 898 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 899
14f9c5c9 900enum language
ccefe4c4 901ada_update_initial_language (enum language lang)
14f9c5c9 902{
d2e4a39e 903 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 904 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 905 return language_ada;
14f9c5c9
AS
906
907 return lang;
908}
96d887e8
PH
909
910/* If the main procedure is written in Ada, then return its name.
911 The result is good until the next call. Return NULL if the main
912 procedure doesn't appear to be in Ada. */
913
914char *
915ada_main_name (void)
916{
3b7344d5 917 struct bound_minimal_symbol msym;
f9bc20b9 918 static char *main_program_name = NULL;
6c038f32 919
96d887e8
PH
920 /* For Ada, the name of the main procedure is stored in a specific
921 string constant, generated by the binder. Look for that symbol,
922 extract its address, and then read that string. If we didn't find
923 that string, then most probably the main procedure is not written
924 in Ada. */
925 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
926
3b7344d5 927 if (msym.minsym != NULL)
96d887e8 928 {
f9bc20b9
JB
929 CORE_ADDR main_program_name_addr;
930 int err_code;
931
77e371c0 932 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 933 if (main_program_name_addr == 0)
323e0a4a 934 error (_("Invalid address for Ada main program name."));
96d887e8 935
f9bc20b9
JB
936 xfree (main_program_name);
937 target_read_string (main_program_name_addr, &main_program_name,
938 1024, &err_code);
939
940 if (err_code != 0)
941 return NULL;
96d887e8
PH
942 return main_program_name;
943 }
944
945 /* The main procedure doesn't seem to be in Ada. */
946 return NULL;
947}
14f9c5c9 948\f
4c4b4cd2 949 /* Symbols */
d2e4a39e 950
4c4b4cd2
PH
951/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
952 of NULLs. */
14f9c5c9 953
d2e4a39e
AS
954const struct ada_opname_map ada_opname_table[] = {
955 {"Oadd", "\"+\"", BINOP_ADD},
956 {"Osubtract", "\"-\"", BINOP_SUB},
957 {"Omultiply", "\"*\"", BINOP_MUL},
958 {"Odivide", "\"/\"", BINOP_DIV},
959 {"Omod", "\"mod\"", BINOP_MOD},
960 {"Orem", "\"rem\"", BINOP_REM},
961 {"Oexpon", "\"**\"", BINOP_EXP},
962 {"Olt", "\"<\"", BINOP_LESS},
963 {"Ole", "\"<=\"", BINOP_LEQ},
964 {"Ogt", "\">\"", BINOP_GTR},
965 {"Oge", "\">=\"", BINOP_GEQ},
966 {"Oeq", "\"=\"", BINOP_EQUAL},
967 {"One", "\"/=\"", BINOP_NOTEQUAL},
968 {"Oand", "\"and\"", BINOP_BITWISE_AND},
969 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
970 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
971 {"Oconcat", "\"&\"", BINOP_CONCAT},
972 {"Oabs", "\"abs\"", UNOP_ABS},
973 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
974 {"Oadd", "\"+\"", UNOP_PLUS},
975 {"Osubtract", "\"-\"", UNOP_NEG},
976 {NULL, NULL}
14f9c5c9
AS
977};
978
4c4b4cd2
PH
979/* The "encoded" form of DECODED, according to GNAT conventions.
980 The result is valid until the next call to ada_encode. */
981
14f9c5c9 982char *
4c4b4cd2 983ada_encode (const char *decoded)
14f9c5c9 984{
4c4b4cd2
PH
985 static char *encoding_buffer = NULL;
986 static size_t encoding_buffer_size = 0;
d2e4a39e 987 const char *p;
14f9c5c9 988 int k;
d2e4a39e 989
4c4b4cd2 990 if (decoded == NULL)
14f9c5c9
AS
991 return NULL;
992
4c4b4cd2
PH
993 GROW_VECT (encoding_buffer, encoding_buffer_size,
994 2 * strlen (decoded) + 10);
14f9c5c9
AS
995
996 k = 0;
4c4b4cd2 997 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 998 {
cdc7bb92 999 if (*p == '.')
4c4b4cd2
PH
1000 {
1001 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1002 k += 2;
1003 }
14f9c5c9 1004 else if (*p == '"')
4c4b4cd2
PH
1005 {
1006 const struct ada_opname_map *mapping;
1007
1008 for (mapping = ada_opname_table;
1265e4aa 1009 mapping->encoded != NULL
61012eef 1010 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1011 ;
1012 if (mapping->encoded == NULL)
323e0a4a 1013 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1014 strcpy (encoding_buffer + k, mapping->encoded);
1015 k += strlen (mapping->encoded);
1016 break;
1017 }
d2e4a39e 1018 else
4c4b4cd2
PH
1019 {
1020 encoding_buffer[k] = *p;
1021 k += 1;
1022 }
14f9c5c9
AS
1023 }
1024
4c4b4cd2
PH
1025 encoding_buffer[k] = '\0';
1026 return encoding_buffer;
14f9c5c9
AS
1027}
1028
1029/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1030 quotes, unfolded, but with the quotes stripped away. Result good
1031 to next call. */
1032
d2e4a39e
AS
1033char *
1034ada_fold_name (const char *name)
14f9c5c9 1035{
d2e4a39e 1036 static char *fold_buffer = NULL;
14f9c5c9
AS
1037 static size_t fold_buffer_size = 0;
1038
1039 int len = strlen (name);
d2e4a39e 1040 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1041
1042 if (name[0] == '\'')
1043 {
d2e4a39e
AS
1044 strncpy (fold_buffer, name + 1, len - 2);
1045 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1046 }
1047 else
1048 {
1049 int i;
5b4ee69b 1050
14f9c5c9 1051 for (i = 0; i <= len; i += 1)
4c4b4cd2 1052 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1053 }
1054
1055 return fold_buffer;
1056}
1057
529cad9c
PH
1058/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1059
1060static int
1061is_lower_alphanum (const char c)
1062{
1063 return (isdigit (c) || (isalpha (c) && islower (c)));
1064}
1065
c90092fe
JB
1066/* ENCODED is the linkage name of a symbol and LEN contains its length.
1067 This function saves in LEN the length of that same symbol name but
1068 without either of these suffixes:
29480c32
JB
1069 . .{DIGIT}+
1070 . ${DIGIT}+
1071 . ___{DIGIT}+
1072 . __{DIGIT}+.
c90092fe 1073
29480c32
JB
1074 These are suffixes introduced by the compiler for entities such as
1075 nested subprogram for instance, in order to avoid name clashes.
1076 They do not serve any purpose for the debugger. */
1077
1078static void
1079ada_remove_trailing_digits (const char *encoded, int *len)
1080{
1081 if (*len > 1 && isdigit (encoded[*len - 1]))
1082 {
1083 int i = *len - 2;
5b4ee69b 1084
29480c32
JB
1085 while (i > 0 && isdigit (encoded[i]))
1086 i--;
1087 if (i >= 0 && encoded[i] == '.')
1088 *len = i;
1089 else if (i >= 0 && encoded[i] == '$')
1090 *len = i;
61012eef 1091 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1092 *len = i - 2;
61012eef 1093 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1094 *len = i - 1;
1095 }
1096}
1097
1098/* Remove the suffix introduced by the compiler for protected object
1099 subprograms. */
1100
1101static void
1102ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1103{
1104 /* Remove trailing N. */
1105
1106 /* Protected entry subprograms are broken into two
1107 separate subprograms: The first one is unprotected, and has
1108 a 'N' suffix; the second is the protected version, and has
0963b4bd 1109 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1110 the protection. Since the P subprograms are internally generated,
1111 we leave these names undecoded, giving the user a clue that this
1112 entity is internal. */
1113
1114 if (*len > 1
1115 && encoded[*len - 1] == 'N'
1116 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1117 *len = *len - 1;
1118}
1119
69fadcdf
JB
1120/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1121
1122static void
1123ada_remove_Xbn_suffix (const char *encoded, int *len)
1124{
1125 int i = *len - 1;
1126
1127 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1128 i--;
1129
1130 if (encoded[i] != 'X')
1131 return;
1132
1133 if (i == 0)
1134 return;
1135
1136 if (isalnum (encoded[i-1]))
1137 *len = i;
1138}
1139
29480c32
JB
1140/* If ENCODED follows the GNAT entity encoding conventions, then return
1141 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1142 replaced by ENCODED.
14f9c5c9 1143
4c4b4cd2 1144 The resulting string is valid until the next call of ada_decode.
29480c32 1145 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1146 is returned. */
1147
1148const char *
1149ada_decode (const char *encoded)
14f9c5c9
AS
1150{
1151 int i, j;
1152 int len0;
d2e4a39e 1153 const char *p;
4c4b4cd2 1154 char *decoded;
14f9c5c9 1155 int at_start_name;
4c4b4cd2
PH
1156 static char *decoding_buffer = NULL;
1157 static size_t decoding_buffer_size = 0;
d2e4a39e 1158
29480c32
JB
1159 /* The name of the Ada main procedure starts with "_ada_".
1160 This prefix is not part of the decoded name, so skip this part
1161 if we see this prefix. */
61012eef 1162 if (startswith (encoded, "_ada_"))
4c4b4cd2 1163 encoded += 5;
14f9c5c9 1164
29480c32
JB
1165 /* If the name starts with '_', then it is not a properly encoded
1166 name, so do not attempt to decode it. Similarly, if the name
1167 starts with '<', the name should not be decoded. */
4c4b4cd2 1168 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1169 goto Suppress;
1170
4c4b4cd2 1171 len0 = strlen (encoded);
4c4b4cd2 1172
29480c32
JB
1173 ada_remove_trailing_digits (encoded, &len0);
1174 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1175
4c4b4cd2
PH
1176 /* Remove the ___X.* suffix if present. Do not forget to verify that
1177 the suffix is located before the current "end" of ENCODED. We want
1178 to avoid re-matching parts of ENCODED that have previously been
1179 marked as discarded (by decrementing LEN0). */
1180 p = strstr (encoded, "___");
1181 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1182 {
1183 if (p[3] == 'X')
4c4b4cd2 1184 len0 = p - encoded;
14f9c5c9 1185 else
4c4b4cd2 1186 goto Suppress;
14f9c5c9 1187 }
4c4b4cd2 1188
29480c32
JB
1189 /* Remove any trailing TKB suffix. It tells us that this symbol
1190 is for the body of a task, but that information does not actually
1191 appear in the decoded name. */
1192
61012eef 1193 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1194 len0 -= 3;
76a01679 1195
a10967fa
JB
1196 /* Remove any trailing TB suffix. The TB suffix is slightly different
1197 from the TKB suffix because it is used for non-anonymous task
1198 bodies. */
1199
61012eef 1200 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1201 len0 -= 2;
1202
29480c32
JB
1203 /* Remove trailing "B" suffixes. */
1204 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1205
61012eef 1206 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1207 len0 -= 1;
1208
4c4b4cd2 1209 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1210
4c4b4cd2
PH
1211 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212 decoded = decoding_buffer;
14f9c5c9 1213
29480c32
JB
1214 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1215
4c4b4cd2 1216 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1217 {
4c4b4cd2
PH
1218 i = len0 - 2;
1219 while ((i >= 0 && isdigit (encoded[i]))
1220 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221 i -= 1;
1222 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223 len0 = i - 1;
1224 else if (encoded[i] == '$')
1225 len0 = i;
d2e4a39e 1226 }
14f9c5c9 1227
29480c32
JB
1228 /* The first few characters that are not alphabetic are not part
1229 of any encoding we use, so we can copy them over verbatim. */
1230
4c4b4cd2
PH
1231 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232 decoded[j] = encoded[i];
14f9c5c9
AS
1233
1234 at_start_name = 1;
1235 while (i < len0)
1236 {
29480c32 1237 /* Is this a symbol function? */
4c4b4cd2
PH
1238 if (at_start_name && encoded[i] == 'O')
1239 {
1240 int k;
5b4ee69b 1241
4c4b4cd2
PH
1242 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243 {
1244 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1245 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246 op_len - 1) == 0)
1247 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1248 {
1249 strcpy (decoded + j, ada_opname_table[k].decoded);
1250 at_start_name = 0;
1251 i += op_len;
1252 j += strlen (ada_opname_table[k].decoded);
1253 break;
1254 }
1255 }
1256 if (ada_opname_table[k].encoded != NULL)
1257 continue;
1258 }
14f9c5c9
AS
1259 at_start_name = 0;
1260
529cad9c
PH
1261 /* Replace "TK__" with "__", which will eventually be translated
1262 into "." (just below). */
1263
61012eef 1264 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1265 i += 2;
529cad9c 1266
29480c32
JB
1267 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268 be translated into "." (just below). These are internal names
1269 generated for anonymous blocks inside which our symbol is nested. */
1270
1271 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273 && isdigit (encoded [i+4]))
1274 {
1275 int k = i + 5;
1276
1277 while (k < len0 && isdigit (encoded[k]))
1278 k++; /* Skip any extra digit. */
1279
1280 /* Double-check that the "__B_{DIGITS}+" sequence we found
1281 is indeed followed by "__". */
1282 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1283 i = k;
1284 }
1285
529cad9c
PH
1286 /* Remove _E{DIGITS}+[sb] */
1287
1288 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1289 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1290 one implements the actual entry code, and has a suffix following
1291 the convention above; the second one implements the barrier and
1292 uses the same convention as above, except that the 'E' is replaced
1293 by a 'B'.
1294
1295 Just as above, we do not decode the name of barrier functions
1296 to give the user a clue that the code he is debugging has been
1297 internally generated. */
1298
1299 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300 && isdigit (encoded[i+2]))
1301 {
1302 int k = i + 3;
1303
1304 while (k < len0 && isdigit (encoded[k]))
1305 k++;
1306
1307 if (k < len0
1308 && (encoded[k] == 'b' || encoded[k] == 's'))
1309 {
1310 k++;
1311 /* Just as an extra precaution, make sure that if this
1312 suffix is followed by anything else, it is a '_'.
1313 Otherwise, we matched this sequence by accident. */
1314 if (k == len0
1315 || (k < len0 && encoded[k] == '_'))
1316 i = k;
1317 }
1318 }
1319
1320 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1321 the GNAT front-end in protected object subprograms. */
1322
1323 if (i < len0 + 3
1324 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325 {
1326 /* Backtrack a bit up until we reach either the begining of
1327 the encoded name, or "__". Make sure that we only find
1328 digits or lowercase characters. */
1329 const char *ptr = encoded + i - 1;
1330
1331 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1332 ptr--;
1333 if (ptr < encoded
1334 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1335 i++;
1336 }
1337
4c4b4cd2
PH
1338 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339 {
29480c32
JB
1340 /* This is a X[bn]* sequence not separated from the previous
1341 part of the name with a non-alpha-numeric character (in other
1342 words, immediately following an alpha-numeric character), then
1343 verify that it is placed at the end of the encoded name. If
1344 not, then the encoding is not valid and we should abort the
1345 decoding. Otherwise, just skip it, it is used in body-nested
1346 package names. */
4c4b4cd2
PH
1347 do
1348 i += 1;
1349 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1350 if (i < len0)
1351 goto Suppress;
1352 }
cdc7bb92 1353 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1354 {
29480c32 1355 /* Replace '__' by '.'. */
4c4b4cd2
PH
1356 decoded[j] = '.';
1357 at_start_name = 1;
1358 i += 2;
1359 j += 1;
1360 }
14f9c5c9 1361 else
4c4b4cd2 1362 {
29480c32
JB
1363 /* It's a character part of the decoded name, so just copy it
1364 over. */
4c4b4cd2
PH
1365 decoded[j] = encoded[i];
1366 i += 1;
1367 j += 1;
1368 }
14f9c5c9 1369 }
4c4b4cd2 1370 decoded[j] = '\000';
14f9c5c9 1371
29480c32
JB
1372 /* Decoded names should never contain any uppercase character.
1373 Double-check this, and abort the decoding if we find one. */
1374
4c4b4cd2
PH
1375 for (i = 0; decoded[i] != '\0'; i += 1)
1376 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1377 goto Suppress;
1378
4c4b4cd2
PH
1379 if (strcmp (decoded, encoded) == 0)
1380 return encoded;
1381 else
1382 return decoded;
14f9c5c9
AS
1383
1384Suppress:
4c4b4cd2
PH
1385 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386 decoded = decoding_buffer;
1387 if (encoded[0] == '<')
1388 strcpy (decoded, encoded);
14f9c5c9 1389 else
88c15c34 1390 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1391 return decoded;
1392
1393}
1394
1395/* Table for keeping permanent unique copies of decoded names. Once
1396 allocated, names in this table are never released. While this is a
1397 storage leak, it should not be significant unless there are massive
1398 changes in the set of decoded names in successive versions of a
1399 symbol table loaded during a single session. */
1400static struct htab *decoded_names_store;
1401
1402/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403 in the language-specific part of GSYMBOL, if it has not been
1404 previously computed. Tries to save the decoded name in the same
1405 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1407 GSYMBOL).
4c4b4cd2
PH
1408 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1410 when a decoded name is cached in it. */
4c4b4cd2 1411
45e6c716 1412const char *
f85f34ed 1413ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1414{
f85f34ed
TT
1415 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416 const char **resultp =
1417 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1418
f85f34ed 1419 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1420 {
1421 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1422 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1423
f85f34ed 1424 gsymbol->ada_mangled = 1;
5b4ee69b 1425
f85f34ed
TT
1426 if (obstack != NULL)
1427 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1428 else
76a01679 1429 {
f85f34ed
TT
1430 /* Sometimes, we can't find a corresponding objfile, in
1431 which case, we put the result on the heap. Since we only
1432 decode when needed, we hope this usually does not cause a
1433 significant memory leak (FIXME). */
1434
76a01679
JB
1435 char **slot = (char **) htab_find_slot (decoded_names_store,
1436 decoded, INSERT);
5b4ee69b 1437
76a01679
JB
1438 if (*slot == NULL)
1439 *slot = xstrdup (decoded);
1440 *resultp = *slot;
1441 }
4c4b4cd2 1442 }
14f9c5c9 1443
4c4b4cd2
PH
1444 return *resultp;
1445}
76a01679 1446
2c0b251b 1447static char *
76a01679 1448ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1449{
1450 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1451}
1452
1453/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1454 suffixes that encode debugging information or leading _ada_ on
1455 SYM_NAME (see is_name_suffix commentary for the debugging
1456 information that is ignored). If WILD, then NAME need only match a
1457 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1458 either argument is NULL. */
14f9c5c9 1459
2c0b251b 1460static int
40658b94 1461match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1462{
1463 if (sym_name == NULL || name == NULL)
1464 return 0;
1465 else if (wild)
73589123 1466 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1467 else
1468 {
1469 int len_name = strlen (name);
5b4ee69b 1470
4c4b4cd2
PH
1471 return (strncmp (sym_name, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name))
61012eef 1473 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1474 && strncmp (sym_name + 5, name, len_name) == 0
1475 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1476 }
14f9c5c9 1477}
14f9c5c9 1478\f
d2e4a39e 1479
4c4b4cd2 1480 /* Arrays */
14f9c5c9 1481
28c85d6c
JB
1482/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1483 generated by the GNAT compiler to describe the index type used
1484 for each dimension of an array, check whether it follows the latest
1485 known encoding. If not, fix it up to conform to the latest encoding.
1486 Otherwise, do nothing. This function also does nothing if
1487 INDEX_DESC_TYPE is NULL.
1488
1489 The GNAT encoding used to describle the array index type evolved a bit.
1490 Initially, the information would be provided through the name of each
1491 field of the structure type only, while the type of these fields was
1492 described as unspecified and irrelevant. The debugger was then expected
1493 to perform a global type lookup using the name of that field in order
1494 to get access to the full index type description. Because these global
1495 lookups can be very expensive, the encoding was later enhanced to make
1496 the global lookup unnecessary by defining the field type as being
1497 the full index type description.
1498
1499 The purpose of this routine is to allow us to support older versions
1500 of the compiler by detecting the use of the older encoding, and by
1501 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1502 we essentially replace each field's meaningless type by the associated
1503 index subtype). */
1504
1505void
1506ada_fixup_array_indexes_type (struct type *index_desc_type)
1507{
1508 int i;
1509
1510 if (index_desc_type == NULL)
1511 return;
1512 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1513
1514 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1515 to check one field only, no need to check them all). If not, return
1516 now.
1517
1518 If our INDEX_DESC_TYPE was generated using the older encoding,
1519 the field type should be a meaningless integer type whose name
1520 is not equal to the field name. */
1521 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1522 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1523 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1524 return;
1525
1526 /* Fixup each field of INDEX_DESC_TYPE. */
1527 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1528 {
0d5cff50 1529 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1530 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1531
1532 if (raw_type)
1533 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1534 }
1535}
1536
4c4b4cd2 1537/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1538
d2e4a39e
AS
1539static char *bound_name[] = {
1540 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1541 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1542};
1543
1544/* Maximum number of array dimensions we are prepared to handle. */
1545
4c4b4cd2 1546#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1547
14f9c5c9 1548
4c4b4cd2
PH
1549/* The desc_* routines return primitive portions of array descriptors
1550 (fat pointers). */
14f9c5c9
AS
1551
1552/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1553 level of indirection, if needed. */
1554
d2e4a39e
AS
1555static struct type *
1556desc_base_type (struct type *type)
14f9c5c9
AS
1557{
1558 if (type == NULL)
1559 return NULL;
61ee279c 1560 type = ada_check_typedef (type);
720d1a40
JB
1561 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1562 type = ada_typedef_target_type (type);
1563
1265e4aa
JB
1564 if (type != NULL
1565 && (TYPE_CODE (type) == TYPE_CODE_PTR
1566 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1567 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1568 else
1569 return type;
1570}
1571
4c4b4cd2
PH
1572/* True iff TYPE indicates a "thin" array pointer type. */
1573
14f9c5c9 1574static int
d2e4a39e 1575is_thin_pntr (struct type *type)
14f9c5c9 1576{
d2e4a39e 1577 return
14f9c5c9
AS
1578 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1579 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1580}
1581
4c4b4cd2
PH
1582/* The descriptor type for thin pointer type TYPE. */
1583
d2e4a39e
AS
1584static struct type *
1585thin_descriptor_type (struct type *type)
14f9c5c9 1586{
d2e4a39e 1587 struct type *base_type = desc_base_type (type);
5b4ee69b 1588
14f9c5c9
AS
1589 if (base_type == NULL)
1590 return NULL;
1591 if (is_suffix (ada_type_name (base_type), "___XVE"))
1592 return base_type;
d2e4a39e 1593 else
14f9c5c9 1594 {
d2e4a39e 1595 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1596
14f9c5c9 1597 if (alt_type == NULL)
4c4b4cd2 1598 return base_type;
14f9c5c9 1599 else
4c4b4cd2 1600 return alt_type;
14f9c5c9
AS
1601 }
1602}
1603
4c4b4cd2
PH
1604/* A pointer to the array data for thin-pointer value VAL. */
1605
d2e4a39e
AS
1606static struct value *
1607thin_data_pntr (struct value *val)
14f9c5c9 1608{
828292f2 1609 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1610 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1611
556bdfd4
UW
1612 data_type = lookup_pointer_type (data_type);
1613
14f9c5c9 1614 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1615 return value_cast (data_type, value_copy (val));
d2e4a39e 1616 else
42ae5230 1617 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1618}
1619
4c4b4cd2
PH
1620/* True iff TYPE indicates a "thick" array pointer type. */
1621
14f9c5c9 1622static int
d2e4a39e 1623is_thick_pntr (struct type *type)
14f9c5c9
AS
1624{
1625 type = desc_base_type (type);
1626 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1627 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1628}
1629
4c4b4cd2
PH
1630/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1631 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1632
d2e4a39e
AS
1633static struct type *
1634desc_bounds_type (struct type *type)
14f9c5c9 1635{
d2e4a39e 1636 struct type *r;
14f9c5c9
AS
1637
1638 type = desc_base_type (type);
1639
1640 if (type == NULL)
1641 return NULL;
1642 else if (is_thin_pntr (type))
1643 {
1644 type = thin_descriptor_type (type);
1645 if (type == NULL)
4c4b4cd2 1646 return NULL;
14f9c5c9
AS
1647 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1648 if (r != NULL)
61ee279c 1649 return ada_check_typedef (r);
14f9c5c9
AS
1650 }
1651 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1652 {
1653 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1654 if (r != NULL)
61ee279c 1655 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1656 }
1657 return NULL;
1658}
1659
1660/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1661 one, a pointer to its bounds data. Otherwise NULL. */
1662
d2e4a39e
AS
1663static struct value *
1664desc_bounds (struct value *arr)
14f9c5c9 1665{
df407dfe 1666 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1667
d2e4a39e 1668 if (is_thin_pntr (type))
14f9c5c9 1669 {
d2e4a39e 1670 struct type *bounds_type =
4c4b4cd2 1671 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1672 LONGEST addr;
1673
4cdfadb1 1674 if (bounds_type == NULL)
323e0a4a 1675 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1676
1677 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1678 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1679 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1680 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1681 addr = value_as_long (arr);
d2e4a39e 1682 else
42ae5230 1683 addr = value_address (arr);
14f9c5c9 1684
d2e4a39e 1685 return
4c4b4cd2
PH
1686 value_from_longest (lookup_pointer_type (bounds_type),
1687 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1688 }
1689
1690 else if (is_thick_pntr (type))
05e522ef
JB
1691 {
1692 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1693 _("Bad GNAT array descriptor"));
1694 struct type *p_bounds_type = value_type (p_bounds);
1695
1696 if (p_bounds_type
1697 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1698 {
1699 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1700
1701 if (TYPE_STUB (target_type))
1702 p_bounds = value_cast (lookup_pointer_type
1703 (ada_check_typedef (target_type)),
1704 p_bounds);
1705 }
1706 else
1707 error (_("Bad GNAT array descriptor"));
1708
1709 return p_bounds;
1710 }
14f9c5c9
AS
1711 else
1712 return NULL;
1713}
1714
4c4b4cd2
PH
1715/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1716 position of the field containing the address of the bounds data. */
1717
14f9c5c9 1718static int
d2e4a39e 1719fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1720{
1721 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1722}
1723
1724/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1725 size of the field containing the address of the bounds data. */
1726
14f9c5c9 1727static int
d2e4a39e 1728fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1729{
1730 type = desc_base_type (type);
1731
d2e4a39e 1732 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1733 return TYPE_FIELD_BITSIZE (type, 1);
1734 else
61ee279c 1735 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1736}
1737
4c4b4cd2 1738/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1739 pointer to one, the type of its array data (a array-with-no-bounds type);
1740 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1741 data. */
4c4b4cd2 1742
d2e4a39e 1743static struct type *
556bdfd4 1744desc_data_target_type (struct type *type)
14f9c5c9
AS
1745{
1746 type = desc_base_type (type);
1747
4c4b4cd2 1748 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1749 if (is_thin_pntr (type))
556bdfd4 1750 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1751 else if (is_thick_pntr (type))
556bdfd4
UW
1752 {
1753 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1754
1755 if (data_type
1756 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1757 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1758 }
1759
1760 return NULL;
14f9c5c9
AS
1761}
1762
1763/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1764 its array data. */
4c4b4cd2 1765
d2e4a39e
AS
1766static struct value *
1767desc_data (struct value *arr)
14f9c5c9 1768{
df407dfe 1769 struct type *type = value_type (arr);
5b4ee69b 1770
14f9c5c9
AS
1771 if (is_thin_pntr (type))
1772 return thin_data_pntr (arr);
1773 else if (is_thick_pntr (type))
d2e4a39e 1774 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1775 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1776 else
1777 return NULL;
1778}
1779
1780
1781/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1782 position of the field containing the address of the data. */
1783
14f9c5c9 1784static int
d2e4a39e 1785fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1786{
1787 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1788}
1789
1790/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1791 size of the field containing the address of the data. */
1792
14f9c5c9 1793static int
d2e4a39e 1794fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1795{
1796 type = desc_base_type (type);
1797
1798 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1799 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1800 else
14f9c5c9
AS
1801 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1802}
1803
4c4b4cd2 1804/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1805 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1806 bound, if WHICH is 1. The first bound is I=1. */
1807
d2e4a39e
AS
1808static struct value *
1809desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1810{
d2e4a39e 1811 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1812 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1813}
1814
1815/* If BOUNDS is an array-bounds structure type, return the bit position
1816 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1817 bound, if WHICH is 1. The first bound is I=1. */
1818
14f9c5c9 1819static int
d2e4a39e 1820desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1821{
d2e4a39e 1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1823}
1824
1825/* If BOUNDS is an array-bounds structure type, return the bit field size
1826 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1827 bound, if WHICH is 1. The first bound is I=1. */
1828
76a01679 1829static int
d2e4a39e 1830desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1831{
1832 type = desc_base_type (type);
1833
d2e4a39e
AS
1834 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1835 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1836 else
1837 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1838}
1839
1840/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1841 Ith bound (numbering from 1). Otherwise, NULL. */
1842
d2e4a39e
AS
1843static struct type *
1844desc_index_type (struct type *type, int i)
14f9c5c9
AS
1845{
1846 type = desc_base_type (type);
1847
1848 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1849 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1850 else
14f9c5c9
AS
1851 return NULL;
1852}
1853
4c4b4cd2
PH
1854/* The number of index positions in the array-bounds type TYPE.
1855 Return 0 if TYPE is NULL. */
1856
14f9c5c9 1857static int
d2e4a39e 1858desc_arity (struct type *type)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
1862 if (type != NULL)
1863 return TYPE_NFIELDS (type) / 2;
1864 return 0;
1865}
1866
4c4b4cd2
PH
1867/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1868 an array descriptor type (representing an unconstrained array
1869 type). */
1870
76a01679
JB
1871static int
1872ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1873{
1874 if (type == NULL)
1875 return 0;
61ee279c 1876 type = ada_check_typedef (type);
4c4b4cd2 1877 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1878 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1879}
1880
52ce6436 1881/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1882 * to one. */
52ce6436 1883
2c0b251b 1884static int
52ce6436
PH
1885ada_is_array_type (struct type *type)
1886{
1887 while (type != NULL
1888 && (TYPE_CODE (type) == TYPE_CODE_PTR
1889 || TYPE_CODE (type) == TYPE_CODE_REF))
1890 type = TYPE_TARGET_TYPE (type);
1891 return ada_is_direct_array_type (type);
1892}
1893
4c4b4cd2 1894/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1895
14f9c5c9 1896int
4c4b4cd2 1897ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1898{
1899 if (type == NULL)
1900 return 0;
61ee279c 1901 type = ada_check_typedef (type);
14f9c5c9 1902 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1903 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1904 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1905 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1906}
1907
4c4b4cd2
PH
1908/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1909
14f9c5c9 1910int
4c4b4cd2 1911ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1912{
556bdfd4 1913 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1914
1915 if (type == NULL)
1916 return 0;
61ee279c 1917 type = ada_check_typedef (type);
556bdfd4
UW
1918 return (data_type != NULL
1919 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1920 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1921}
1922
1923/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1924 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1925 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1926 is still needed. */
1927
14f9c5c9 1928int
ebf56fd3 1929ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1930{
d2e4a39e 1931 return
14f9c5c9
AS
1932 type != NULL
1933 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1934 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1935 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1936 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1937}
1938
1939
4c4b4cd2 1940/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1941 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1942 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1943 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1944 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1945 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1946 a descriptor. */
d2e4a39e
AS
1947struct type *
1948ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1949{
ad82864c
JB
1950 if (ada_is_constrained_packed_array_type (value_type (arr)))
1951 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1952
df407dfe
AC
1953 if (!ada_is_array_descriptor_type (value_type (arr)))
1954 return value_type (arr);
d2e4a39e
AS
1955
1956 if (!bounds)
ad82864c
JB
1957 {
1958 struct type *array_type =
1959 ada_check_typedef (desc_data_target_type (value_type (arr)));
1960
1961 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1962 TYPE_FIELD_BITSIZE (array_type, 0) =
1963 decode_packed_array_bitsize (value_type (arr));
1964
1965 return array_type;
1966 }
14f9c5c9
AS
1967 else
1968 {
d2e4a39e 1969 struct type *elt_type;
14f9c5c9 1970 int arity;
d2e4a39e 1971 struct value *descriptor;
14f9c5c9 1972
df407dfe
AC
1973 elt_type = ada_array_element_type (value_type (arr), -1);
1974 arity = ada_array_arity (value_type (arr));
14f9c5c9 1975
d2e4a39e 1976 if (elt_type == NULL || arity == 0)
df407dfe 1977 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1978
1979 descriptor = desc_bounds (arr);
d2e4a39e 1980 if (value_as_long (descriptor) == 0)
4c4b4cd2 1981 return NULL;
d2e4a39e 1982 while (arity > 0)
4c4b4cd2 1983 {
e9bb382b
UW
1984 struct type *range_type = alloc_type_copy (value_type (arr));
1985 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1986 struct value *low = desc_one_bound (descriptor, arity, 0);
1987 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1988
5b4ee69b 1989 arity -= 1;
0c9c3474
SA
1990 create_static_range_type (range_type, value_type (low),
1991 longest_to_int (value_as_long (low)),
1992 longest_to_int (value_as_long (high)));
4c4b4cd2 1993 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1994
1995 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1996 {
1997 /* We need to store the element packed bitsize, as well as
1998 recompute the array size, because it was previously
1999 computed based on the unpacked element size. */
2000 LONGEST lo = value_as_long (low);
2001 LONGEST hi = value_as_long (high);
2002
2003 TYPE_FIELD_BITSIZE (elt_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005 /* If the array has no element, then the size is already
2006 zero, and does not need to be recomputed. */
2007 if (lo < hi)
2008 {
2009 int array_bitsize =
2010 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2011
2012 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2013 }
2014 }
4c4b4cd2 2015 }
14f9c5c9
AS
2016
2017 return lookup_pointer_type (elt_type);
2018 }
2019}
2020
2021/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2022 Otherwise, returns either a standard GDB array with bounds set
2023 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2024 GDB array. Returns NULL if ARR is a null fat pointer. */
2025
d2e4a39e
AS
2026struct value *
2027ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2028{
df407dfe 2029 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2030 {
d2e4a39e 2031 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2032
14f9c5c9 2033 if (arrType == NULL)
4c4b4cd2 2034 return NULL;
14f9c5c9
AS
2035 return value_cast (arrType, value_copy (desc_data (arr)));
2036 }
ad82864c
JB
2037 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2038 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2039 else
2040 return arr;
2041}
2042
2043/* If ARR does not represent an array, returns ARR unchanged.
2044 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2045 be ARR itself if it already is in the proper form). */
2046
720d1a40 2047struct value *
d2e4a39e 2048ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2049{
df407dfe 2050 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2051 {
d2e4a39e 2052 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2053
14f9c5c9 2054 if (arrVal == NULL)
323e0a4a 2055 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2056 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2057 return value_ind (arrVal);
2058 }
ad82864c
JB
2059 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2060 return decode_constrained_packed_array (arr);
d2e4a39e 2061 else
14f9c5c9
AS
2062 return arr;
2063}
2064
2065/* If TYPE represents a GNAT array type, return it translated to an
2066 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2067 packing). For other types, is the identity. */
2068
d2e4a39e
AS
2069struct type *
2070ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2071{
ad82864c
JB
2072 if (ada_is_constrained_packed_array_type (type))
2073 return decode_constrained_packed_array_type (type);
17280b9f
UW
2074
2075 if (ada_is_array_descriptor_type (type))
556bdfd4 2076 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2077
2078 return type;
14f9c5c9
AS
2079}
2080
4c4b4cd2
PH
2081/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2082
ad82864c
JB
2083static int
2084ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2085{
2086 if (type == NULL)
2087 return 0;
4c4b4cd2 2088 type = desc_base_type (type);
61ee279c 2089 type = ada_check_typedef (type);
d2e4a39e 2090 return
14f9c5c9
AS
2091 ada_type_name (type) != NULL
2092 && strstr (ada_type_name (type), "___XP") != NULL;
2093}
2094
ad82864c
JB
2095/* Non-zero iff TYPE represents a standard GNAT constrained
2096 packed-array type. */
2097
2098int
2099ada_is_constrained_packed_array_type (struct type *type)
2100{
2101 return ada_is_packed_array_type (type)
2102 && !ada_is_array_descriptor_type (type);
2103}
2104
2105/* Non-zero iff TYPE represents an array descriptor for a
2106 unconstrained packed-array type. */
2107
2108static int
2109ada_is_unconstrained_packed_array_type (struct type *type)
2110{
2111 return ada_is_packed_array_type (type)
2112 && ada_is_array_descriptor_type (type);
2113}
2114
2115/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2116 return the size of its elements in bits. */
2117
2118static long
2119decode_packed_array_bitsize (struct type *type)
2120{
0d5cff50
DE
2121 const char *raw_name;
2122 const char *tail;
ad82864c
JB
2123 long bits;
2124
720d1a40
JB
2125 /* Access to arrays implemented as fat pointers are encoded as a typedef
2126 of the fat pointer type. We need the name of the fat pointer type
2127 to do the decoding, so strip the typedef layer. */
2128 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2129 type = ada_typedef_target_type (type);
2130
2131 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2132 if (!raw_name)
2133 raw_name = ada_type_name (desc_base_type (type));
2134
2135 if (!raw_name)
2136 return 0;
2137
2138 tail = strstr (raw_name, "___XP");
720d1a40 2139 gdb_assert (tail != NULL);
ad82864c
JB
2140
2141 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2142 {
2143 lim_warning
2144 (_("could not understand bit size information on packed array"));
2145 return 0;
2146 }
2147
2148 return bits;
2149}
2150
14f9c5c9
AS
2151/* Given that TYPE is a standard GDB array type with all bounds filled
2152 in, and that the element size of its ultimate scalar constituents
2153 (that is, either its elements, or, if it is an array of arrays, its
2154 elements' elements, etc.) is *ELT_BITS, return an identical type,
2155 but with the bit sizes of its elements (and those of any
2156 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2157 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2158 in bits.
2159
2160 Note that, for arrays whose index type has an XA encoding where
2161 a bound references a record discriminant, getting that discriminant,
2162 and therefore the actual value of that bound, is not possible
2163 because none of the given parameters gives us access to the record.
2164 This function assumes that it is OK in the context where it is being
2165 used to return an array whose bounds are still dynamic and where
2166 the length is arbitrary. */
4c4b4cd2 2167
d2e4a39e 2168static struct type *
ad82864c 2169constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2170{
d2e4a39e
AS
2171 struct type *new_elt_type;
2172 struct type *new_type;
99b1c762
JB
2173 struct type *index_type_desc;
2174 struct type *index_type;
14f9c5c9
AS
2175 LONGEST low_bound, high_bound;
2176
61ee279c 2177 type = ada_check_typedef (type);
14f9c5c9
AS
2178 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2179 return type;
2180
99b1c762
JB
2181 index_type_desc = ada_find_parallel_type (type, "___XA");
2182 if (index_type_desc)
2183 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2184 NULL);
2185 else
2186 index_type = TYPE_INDEX_TYPE (type);
2187
e9bb382b 2188 new_type = alloc_type_copy (type);
ad82864c
JB
2189 new_elt_type =
2190 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2191 elt_bits);
99b1c762 2192 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2193 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2194 TYPE_NAME (new_type) = ada_type_name (type);
2195
4a46959e
JB
2196 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2197 && is_dynamic_type (check_typedef (index_type)))
2198 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2199 low_bound = high_bound = 0;
2200 if (high_bound < low_bound)
2201 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2202 else
14f9c5c9
AS
2203 {
2204 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2205 TYPE_LENGTH (new_type) =
4c4b4cd2 2206 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2207 }
2208
876cecd0 2209 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2210 return new_type;
2211}
2212
ad82864c
JB
2213/* The array type encoded by TYPE, where
2214 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2215
d2e4a39e 2216static struct type *
ad82864c 2217decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2218{
0d5cff50 2219 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2220 char *name;
0d5cff50 2221 const char *tail;
d2e4a39e 2222 struct type *shadow_type;
14f9c5c9 2223 long bits;
14f9c5c9 2224
727e3d2e
JB
2225 if (!raw_name)
2226 raw_name = ada_type_name (desc_base_type (type));
2227
2228 if (!raw_name)
2229 return NULL;
2230
2231 name = (char *) alloca (strlen (raw_name) + 1);
2232 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2233 type = desc_base_type (type);
2234
14f9c5c9
AS
2235 memcpy (name, raw_name, tail - raw_name);
2236 name[tail - raw_name] = '\000';
2237
b4ba55a1
JB
2238 shadow_type = ada_find_parallel_type_with_name (type, name);
2239
2240 if (shadow_type == NULL)
14f9c5c9 2241 {
323e0a4a 2242 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2243 return NULL;
2244 }
f168693b 2245 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2246
2247 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2248 {
0963b4bd
MS
2249 lim_warning (_("could not understand bounds "
2250 "information on packed array"));
14f9c5c9
AS
2251 return NULL;
2252 }
d2e4a39e 2253
ad82864c
JB
2254 bits = decode_packed_array_bitsize (type);
2255 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2256}
2257
ad82864c
JB
2258/* Given that ARR is a struct value *indicating a GNAT constrained packed
2259 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2260 standard GDB array type except that the BITSIZEs of the array
2261 target types are set to the number of bits in each element, and the
4c4b4cd2 2262 type length is set appropriately. */
14f9c5c9 2263
d2e4a39e 2264static struct value *
ad82864c 2265decode_constrained_packed_array (struct value *arr)
14f9c5c9 2266{
4c4b4cd2 2267 struct type *type;
14f9c5c9 2268
11aa919a
PMR
2269 /* If our value is a pointer, then dereference it. Likewise if
2270 the value is a reference. Make sure that this operation does not
2271 cause the target type to be fixed, as this would indirectly cause
2272 this array to be decoded. The rest of the routine assumes that
2273 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2274 and "value_ind" routines to perform the dereferencing, as opposed
2275 to using "ada_coerce_ref" or "ada_value_ind". */
2276 arr = coerce_ref (arr);
828292f2 2277 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2278 arr = value_ind (arr);
4c4b4cd2 2279
ad82864c 2280 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2281 if (type == NULL)
2282 {
323e0a4a 2283 error (_("can't unpack array"));
14f9c5c9
AS
2284 return NULL;
2285 }
61ee279c 2286
50810684 2287 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2288 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2289 {
2290 /* This is a (right-justified) modular type representing a packed
2291 array with no wrapper. In order to interpret the value through
2292 the (left-justified) packed array type we just built, we must
2293 first left-justify it. */
2294 int bit_size, bit_pos;
2295 ULONGEST mod;
2296
df407dfe 2297 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2298 bit_size = 0;
2299 while (mod > 0)
2300 {
2301 bit_size += 1;
2302 mod >>= 1;
2303 }
df407dfe 2304 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2305 arr = ada_value_primitive_packed_val (arr, NULL,
2306 bit_pos / HOST_CHAR_BIT,
2307 bit_pos % HOST_CHAR_BIT,
2308 bit_size,
2309 type);
2310 }
2311
4c4b4cd2 2312 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2313}
2314
2315
2316/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2317 given in IND. ARR must be a simple array. */
14f9c5c9 2318
d2e4a39e
AS
2319static struct value *
2320value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2321{
2322 int i;
2323 int bits, elt_off, bit_off;
2324 long elt_total_bit_offset;
d2e4a39e
AS
2325 struct type *elt_type;
2326 struct value *v;
14f9c5c9
AS
2327
2328 bits = 0;
2329 elt_total_bit_offset = 0;
df407dfe 2330 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2331 for (i = 0; i < arity; i += 1)
14f9c5c9 2332 {
d2e4a39e 2333 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2334 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2335 error
0963b4bd
MS
2336 (_("attempt to do packed indexing of "
2337 "something other than a packed array"));
14f9c5c9 2338 else
4c4b4cd2
PH
2339 {
2340 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2341 LONGEST lowerbound, upperbound;
2342 LONGEST idx;
2343
2344 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2345 {
323e0a4a 2346 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2347 lowerbound = upperbound = 0;
2348 }
2349
3cb382c9 2350 idx = pos_atr (ind[i]);
4c4b4cd2 2351 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2352 lim_warning (_("packed array index %ld out of bounds"),
2353 (long) idx);
4c4b4cd2
PH
2354 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2355 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2356 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2357 }
14f9c5c9
AS
2358 }
2359 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2360 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2361
2362 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2363 bits, elt_type);
14f9c5c9
AS
2364 return v;
2365}
2366
4c4b4cd2 2367/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2368
2369static int
d2e4a39e 2370has_negatives (struct type *type)
14f9c5c9 2371{
d2e4a39e
AS
2372 switch (TYPE_CODE (type))
2373 {
2374 default:
2375 return 0;
2376 case TYPE_CODE_INT:
2377 return !TYPE_UNSIGNED (type);
2378 case TYPE_CODE_RANGE:
2379 return TYPE_LOW_BOUND (type) < 0;
2380 }
14f9c5c9 2381}
d2e4a39e 2382
14f9c5c9
AS
2383
2384/* Create a new value of type TYPE from the contents of OBJ starting
2385 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2386 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2387 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2388 VALADDR is ignored unless OBJ is NULL, in which case,
2389 VALADDR+OFFSET must address the start of storage containing the
2390 packed value. The value returned in this case is never an lval.
2391 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2392
d2e4a39e 2393struct value *
fc1a4b47 2394ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2395 long offset, int bit_offset, int bit_size,
4c4b4cd2 2396 struct type *type)
14f9c5c9 2397{
d2e4a39e 2398 struct value *v;
4c4b4cd2
PH
2399 int src, /* Index into the source area */
2400 targ, /* Index into the target area */
2401 srcBitsLeft, /* Number of source bits left to move */
2402 nsrc, ntarg, /* Number of source and target bytes */
2403 unusedLS, /* Number of bits in next significant
2404 byte of source that are unused */
2405 accumSize; /* Number of meaningful bits in accum */
2406 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2407 unsigned char *unpacked;
4c4b4cd2 2408 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2409 unsigned char sign;
2410 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2411 /* Transmit bytes from least to most significant; delta is the direction
2412 the indices move. */
50810684 2413 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2414
61ee279c 2415 type = ada_check_typedef (type);
14f9c5c9
AS
2416
2417 if (obj == NULL)
2418 {
2419 v = allocate_value (type);
d2e4a39e 2420 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2421 }
9214ee5f 2422 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2423 {
ca34b84f 2424 v = value_at (type, value_address (obj) + offset);
9f1f738a 2425 type = value_type (v);
fc958966
JB
2426 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2427 {
2428 /* This can happen in the case of an array of dynamic objects,
2429 where the size of each element changes from element to element.
2430 In that case, we're initially given the array stride, but
2431 after resolving the element type, we find that its size is
2432 less than this stride. In that case, adjust bit_size to
2433 match TYPE's length, and recompute LEN accordingly. */
2434 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2435 len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 }
d2e4a39e 2437 bytes = (unsigned char *) alloca (len);
ca34b84f 2438 read_memory (value_address (v), bytes, len);
14f9c5c9 2439 }
d2e4a39e 2440 else
14f9c5c9
AS
2441 {
2442 v = allocate_value (type);
0fd88904 2443 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2444 }
d2e4a39e
AS
2445
2446 if (obj != NULL)
14f9c5c9 2447 {
53ba8333 2448 long new_offset = offset;
5b4ee69b 2449
74bcbdf3 2450 set_value_component_location (v, obj);
9bbda503
AC
2451 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2452 set_value_bitsize (v, bit_size);
df407dfe 2453 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2454 {
53ba8333 2455 ++new_offset;
9bbda503 2456 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2457 }
53ba8333
JB
2458 set_value_offset (v, new_offset);
2459
2460 /* Also set the parent value. This is needed when trying to
2461 assign a new value (in inferior memory). */
2462 set_value_parent (v, obj);
14f9c5c9
AS
2463 }
2464 else
9bbda503 2465 set_value_bitsize (v, bit_size);
0fd88904 2466 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2467
2468 srcBitsLeft = bit_size;
2469 nsrc = len;
2470 ntarg = TYPE_LENGTH (type);
2471 sign = 0;
2472 if (bit_size == 0)
2473 {
2474 memset (unpacked, 0, TYPE_LENGTH (type));
2475 return v;
2476 }
50810684 2477 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2478 {
d2e4a39e 2479 src = len - 1;
1265e4aa
JB
2480 if (has_negatives (type)
2481 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2482 sign = ~0;
d2e4a39e
AS
2483
2484 unusedLS =
4c4b4cd2
PH
2485 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2486 % HOST_CHAR_BIT;
14f9c5c9
AS
2487
2488 switch (TYPE_CODE (type))
4c4b4cd2
PH
2489 {
2490 case TYPE_CODE_ARRAY:
2491 case TYPE_CODE_UNION:
2492 case TYPE_CODE_STRUCT:
2493 /* Non-scalar values must be aligned at a byte boundary... */
2494 accumSize =
2495 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2496 /* ... And are placed at the beginning (most-significant) bytes
2497 of the target. */
529cad9c 2498 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2499 ntarg = targ + 1;
4c4b4cd2
PH
2500 break;
2501 default:
2502 accumSize = 0;
2503 targ = TYPE_LENGTH (type) - 1;
2504 break;
2505 }
14f9c5c9 2506 }
d2e4a39e 2507 else
14f9c5c9
AS
2508 {
2509 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2510
2511 src = targ = 0;
2512 unusedLS = bit_offset;
2513 accumSize = 0;
2514
d2e4a39e 2515 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2516 sign = ~0;
14f9c5c9 2517 }
d2e4a39e 2518
14f9c5c9
AS
2519 accum = 0;
2520 while (nsrc > 0)
2521 {
2522 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2523 part of the value. */
d2e4a39e 2524 unsigned int unusedMSMask =
4c4b4cd2
PH
2525 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2526 1;
2527 /* Sign-extend bits for this byte. */
14f9c5c9 2528 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2529
d2e4a39e 2530 accum |=
4c4b4cd2 2531 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2532 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2533 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2534 {
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
14f9c5c9
AS
2541 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2542 unusedLS = 0;
2543 nsrc -= 1;
2544 src += delta;
2545 }
2546 while (ntarg > 0)
2547 {
2548 accum |= sign << accumSize;
2549 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2550 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2551 if (accumSize < 0)
2552 accumSize = 0;
14f9c5c9
AS
2553 accum >>= HOST_CHAR_BIT;
2554 ntarg -= 1;
2555 targ += delta;
2556 }
2557
2478d075
JB
2558 if (is_dynamic_type (value_type (v)))
2559 v = value_from_contents_and_address (value_type (v), value_contents (v),
2560 0);
14f9c5c9
AS
2561 return v;
2562}
d2e4a39e 2563
14f9c5c9
AS
2564/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2565 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2566 not overlap. */
14f9c5c9 2567static void
fc1a4b47 2568move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2569 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2570{
2571 unsigned int accum, mask;
2572 int accum_bits, chunk_size;
2573
2574 target += targ_offset / HOST_CHAR_BIT;
2575 targ_offset %= HOST_CHAR_BIT;
2576 source += src_offset / HOST_CHAR_BIT;
2577 src_offset %= HOST_CHAR_BIT;
50810684 2578 if (bits_big_endian_p)
14f9c5c9
AS
2579 {
2580 accum = (unsigned char) *source;
2581 source += 1;
2582 accum_bits = HOST_CHAR_BIT - src_offset;
2583
d2e4a39e 2584 while (n > 0)
4c4b4cd2
PH
2585 {
2586 int unused_right;
5b4ee69b 2587
4c4b4cd2
PH
2588 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2589 accum_bits += HOST_CHAR_BIT;
2590 source += 1;
2591 chunk_size = HOST_CHAR_BIT - targ_offset;
2592 if (chunk_size > n)
2593 chunk_size = n;
2594 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2595 mask = ((1 << chunk_size) - 1) << unused_right;
2596 *target =
2597 (*target & ~mask)
2598 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2599 n -= chunk_size;
2600 accum_bits -= chunk_size;
2601 target += 1;
2602 targ_offset = 0;
2603 }
14f9c5c9
AS
2604 }
2605 else
2606 {
2607 accum = (unsigned char) *source >> src_offset;
2608 source += 1;
2609 accum_bits = HOST_CHAR_BIT - src_offset;
2610
d2e4a39e 2611 while (n > 0)
4c4b4cd2
PH
2612 {
2613 accum = accum + ((unsigned char) *source << accum_bits);
2614 accum_bits += HOST_CHAR_BIT;
2615 source += 1;
2616 chunk_size = HOST_CHAR_BIT - targ_offset;
2617 if (chunk_size > n)
2618 chunk_size = n;
2619 mask = ((1 << chunk_size) - 1) << targ_offset;
2620 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2621 n -= chunk_size;
2622 accum_bits -= chunk_size;
2623 accum >>= chunk_size;
2624 target += 1;
2625 targ_offset = 0;
2626 }
14f9c5c9
AS
2627 }
2628}
2629
14f9c5c9
AS
2630/* Store the contents of FROMVAL into the location of TOVAL.
2631 Return a new value with the location of TOVAL and contents of
2632 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2633 floating-point or non-scalar types. */
14f9c5c9 2634
d2e4a39e
AS
2635static struct value *
2636ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2637{
df407dfe
AC
2638 struct type *type = value_type (toval);
2639 int bits = value_bitsize (toval);
14f9c5c9 2640
52ce6436
PH
2641 toval = ada_coerce_ref (toval);
2642 fromval = ada_coerce_ref (fromval);
2643
2644 if (ada_is_direct_array_type (value_type (toval)))
2645 toval = ada_coerce_to_simple_array (toval);
2646 if (ada_is_direct_array_type (value_type (fromval)))
2647 fromval = ada_coerce_to_simple_array (fromval);
2648
88e3b34b 2649 if (!deprecated_value_modifiable (toval))
323e0a4a 2650 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2651
d2e4a39e 2652 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2653 && bits > 0
d2e4a39e 2654 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2655 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2656 {
df407dfe
AC
2657 int len = (value_bitpos (toval)
2658 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2659 int from_size;
948f8e3d 2660 gdb_byte *buffer = alloca (len);
d2e4a39e 2661 struct value *val;
42ae5230 2662 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2663
2664 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2665 fromval = value_cast (type, fromval);
14f9c5c9 2666
52ce6436 2667 read_memory (to_addr, buffer, len);
aced2898
PH
2668 from_size = value_bitsize (fromval);
2669 if (from_size == 0)
2670 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2671 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2672 move_bits (buffer, value_bitpos (toval),
50810684 2673 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2674 else
50810684
UW
2675 move_bits (buffer, value_bitpos (toval),
2676 value_contents (fromval), 0, bits, 0);
972daa01 2677 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2678
14f9c5c9 2679 val = value_copy (toval);
0fd88904 2680 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2681 TYPE_LENGTH (type));
04624583 2682 deprecated_set_value_type (val, type);
d2e4a39e 2683
14f9c5c9
AS
2684 return val;
2685 }
2686
2687 return value_assign (toval, fromval);
2688}
2689
2690
7c512744
JB
2691/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2692 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2693 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2694 COMPONENT, and not the inferior's memory. The current contents
2695 of COMPONENT are ignored.
2696
2697 Although not part of the initial design, this function also works
2698 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2699 had a null address, and COMPONENT had an address which is equal to
2700 its offset inside CONTAINER. */
2701
52ce6436
PH
2702static void
2703value_assign_to_component (struct value *container, struct value *component,
2704 struct value *val)
2705{
2706 LONGEST offset_in_container =
42ae5230 2707 (LONGEST) (value_address (component) - value_address (container));
7c512744 2708 int bit_offset_in_container =
52ce6436
PH
2709 value_bitpos (component) - value_bitpos (container);
2710 int bits;
7c512744 2711
52ce6436
PH
2712 val = value_cast (value_type (component), val);
2713
2714 if (value_bitsize (component) == 0)
2715 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2716 else
2717 bits = value_bitsize (component);
2718
50810684 2719 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2720 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2721 value_bitpos (container) + bit_offset_in_container,
2722 value_contents (val),
2723 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2724 bits, 1);
52ce6436 2725 else
7c512744 2726 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2727 value_bitpos (container) + bit_offset_in_container,
50810684 2728 value_contents (val), 0, bits, 0);
7c512744
JB
2729}
2730
4c4b4cd2
PH
2731/* The value of the element of array ARR at the ARITY indices given in IND.
2732 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2733 thereto. */
2734
d2e4a39e
AS
2735struct value *
2736ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2737{
2738 int k;
d2e4a39e
AS
2739 struct value *elt;
2740 struct type *elt_type;
14f9c5c9
AS
2741
2742 elt = ada_coerce_to_simple_array (arr);
2743
df407dfe 2744 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2745 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2746 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2747 return value_subscript_packed (elt, arity, ind);
2748
2749 for (k = 0; k < arity; k += 1)
2750 {
2751 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2752 error (_("too many subscripts (%d expected)"), k);
2497b498 2753 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2754 }
2755 return elt;
2756}
2757
deede10c
JB
2758/* Assuming ARR is a pointer to a GDB array, the value of the element
2759 of *ARR at the ARITY indices given in IND.
2760 Does not read the entire array into memory. */
14f9c5c9 2761
2c0b251b 2762static struct value *
deede10c 2763ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2764{
2765 int k;
deede10c
JB
2766 struct type *type
2767 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2768
2769 for (k = 0; k < arity; k += 1)
2770 {
2771 LONGEST lwb, upb;
aa715135 2772 struct value *lwb_value;
14f9c5c9
AS
2773
2774 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2775 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2776 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2777 value_copy (arr));
14f9c5c9 2778 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2779 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2780 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2781 type = TYPE_TARGET_TYPE (type);
2782 }
2783
2784 return value_ind (arr);
2785}
2786
0b5d8877 2787/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2788 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2789 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2790 this array is LOW, as per Ada rules. */
0b5d8877 2791static struct value *
f5938064
JG
2792ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2793 int low, int high)
0b5d8877 2794{
b0dd7688 2795 struct type *type0 = ada_check_typedef (type);
aa715135 2796 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2797 struct type *index_type
aa715135 2798 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2799 struct type *slice_type =
b0dd7688 2800 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2801 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2802 LONGEST base_low_pos, low_pos;
2803 CORE_ADDR base;
2804
2805 if (!discrete_position (base_index_type, low, &low_pos)
2806 || !discrete_position (base_index_type, base_low, &base_low_pos))
2807 {
2808 warning (_("unable to get positions in slice, use bounds instead"));
2809 low_pos = low;
2810 base_low_pos = base_low;
2811 }
5b4ee69b 2812
aa715135
JG
2813 base = value_as_address (array_ptr)
2814 + ((low_pos - base_low_pos)
2815 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2816 return value_at_lazy (slice_type, base);
0b5d8877
PH
2817}
2818
2819
2820static struct value *
2821ada_value_slice (struct value *array, int low, int high)
2822{
b0dd7688 2823 struct type *type = ada_check_typedef (value_type (array));
aa715135 2824 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2825 struct type *index_type
2826 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2827 struct type *slice_type =
0b5d8877 2828 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2829 LONGEST low_pos, high_pos;
5b4ee69b 2830
aa715135
JG
2831 if (!discrete_position (base_index_type, low, &low_pos)
2832 || !discrete_position (base_index_type, high, &high_pos))
2833 {
2834 warning (_("unable to get positions in slice, use bounds instead"));
2835 low_pos = low;
2836 high_pos = high;
2837 }
2838
2839 return value_cast (slice_type,
2840 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2841}
2842
14f9c5c9
AS
2843/* If type is a record type in the form of a standard GNAT array
2844 descriptor, returns the number of dimensions for type. If arr is a
2845 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2846 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2847
2848int
d2e4a39e 2849ada_array_arity (struct type *type)
14f9c5c9
AS
2850{
2851 int arity;
2852
2853 if (type == NULL)
2854 return 0;
2855
2856 type = desc_base_type (type);
2857
2858 arity = 0;
d2e4a39e 2859 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2860 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2861 else
2862 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2863 {
4c4b4cd2 2864 arity += 1;
61ee279c 2865 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2866 }
d2e4a39e 2867
14f9c5c9
AS
2868 return arity;
2869}
2870
2871/* If TYPE is a record type in the form of a standard GNAT array
2872 descriptor or a simple array type, returns the element type for
2873 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2874 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2875
d2e4a39e
AS
2876struct type *
2877ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2878{
2879 type = desc_base_type (type);
2880
d2e4a39e 2881 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2882 {
2883 int k;
d2e4a39e 2884 struct type *p_array_type;
14f9c5c9 2885
556bdfd4 2886 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2887
2888 k = ada_array_arity (type);
2889 if (k == 0)
4c4b4cd2 2890 return NULL;
d2e4a39e 2891
4c4b4cd2 2892 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2893 if (nindices >= 0 && k > nindices)
4c4b4cd2 2894 k = nindices;
d2e4a39e 2895 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2896 {
61ee279c 2897 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2898 k -= 1;
2899 }
14f9c5c9
AS
2900 return p_array_type;
2901 }
2902 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2903 {
2904 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2905 {
2906 type = TYPE_TARGET_TYPE (type);
2907 nindices -= 1;
2908 }
14f9c5c9
AS
2909 return type;
2910 }
2911
2912 return NULL;
2913}
2914
4c4b4cd2 2915/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2916 Does not examine memory. Throws an error if N is invalid or TYPE
2917 is not an array type. NAME is the name of the Ada attribute being
2918 evaluated ('range, 'first, 'last, or 'length); it is used in building
2919 the error message. */
14f9c5c9 2920
1eea4ebd
UW
2921static struct type *
2922ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2923{
4c4b4cd2
PH
2924 struct type *result_type;
2925
14f9c5c9
AS
2926 type = desc_base_type (type);
2927
1eea4ebd
UW
2928 if (n < 0 || n > ada_array_arity (type))
2929 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2930
4c4b4cd2 2931 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2932 {
2933 int i;
2934
2935 for (i = 1; i < n; i += 1)
4c4b4cd2 2936 type = TYPE_TARGET_TYPE (type);
262452ec 2937 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2938 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2939 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2940 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2941 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2942 result_type = NULL;
14f9c5c9 2943 }
d2e4a39e 2944 else
1eea4ebd
UW
2945 {
2946 result_type = desc_index_type (desc_bounds_type (type), n);
2947 if (result_type == NULL)
2948 error (_("attempt to take bound of something that is not an array"));
2949 }
2950
2951 return result_type;
14f9c5c9
AS
2952}
2953
2954/* Given that arr is an array type, returns the lower bound of the
2955 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2956 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2957 array-descriptor type. It works for other arrays with bounds supplied
2958 by run-time quantities other than discriminants. */
14f9c5c9 2959
abb68b3e 2960static LONGEST
fb5e3d5c 2961ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2962{
8a48ac95 2963 struct type *type, *index_type_desc, *index_type;
1ce677a4 2964 int i;
262452ec
JK
2965
2966 gdb_assert (which == 0 || which == 1);
14f9c5c9 2967
ad82864c
JB
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2970
4c4b4cd2 2971 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2972 return (LONGEST) - which;
14f9c5c9
AS
2973
2974 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2975 type = TYPE_TARGET_TYPE (arr_type);
2976 else
2977 type = arr_type;
2978
bafffb51
JB
2979 if (TYPE_FIXED_INSTANCE (type))
2980 {
2981 /* The array has already been fixed, so we do not need to
2982 check the parallel ___XA type again. That encoding has
2983 already been applied, so ignore it now. */
2984 index_type_desc = NULL;
2985 }
2986 else
2987 {
2988 index_type_desc = ada_find_parallel_type (type, "___XA");
2989 ada_fixup_array_indexes_type (index_type_desc);
2990 }
2991
262452ec 2992 if (index_type_desc != NULL)
28c85d6c
JB
2993 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2994 NULL);
262452ec 2995 else
8a48ac95
JB
2996 {
2997 struct type *elt_type = check_typedef (type);
2998
2999 for (i = 1; i < n; i++)
3000 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3001
3002 index_type = TYPE_INDEX_TYPE (elt_type);
3003 }
262452ec 3004
43bbcdc2
PH
3005 return
3006 (LONGEST) (which == 0
3007 ? ada_discrete_type_low_bound (index_type)
3008 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3009}
3010
3011/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3012 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3013 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3014 supplied by run-time quantities other than discriminants. */
14f9c5c9 3015
1eea4ebd 3016static LONGEST
4dc81987 3017ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3018{
eb479039
JB
3019 struct type *arr_type;
3020
3021 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3022 arr = value_ind (arr);
3023 arr_type = value_enclosing_type (arr);
14f9c5c9 3024
ad82864c
JB
3025 if (ada_is_constrained_packed_array_type (arr_type))
3026 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3027 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3028 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3029 else
1eea4ebd 3030 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3031}
3032
3033/* Given that arr is an array value, returns the length of the
3034 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3035 supplied by run-time quantities other than discriminants.
3036 Does not work for arrays indexed by enumeration types with representation
3037 clauses at the moment. */
14f9c5c9 3038
1eea4ebd 3039static LONGEST
d2e4a39e 3040ada_array_length (struct value *arr, int n)
14f9c5c9 3041{
aa715135
JG
3042 struct type *arr_type, *index_type;
3043 int low, high;
eb479039
JB
3044
3045 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3046 arr = value_ind (arr);
3047 arr_type = value_enclosing_type (arr);
14f9c5c9 3048
ad82864c
JB
3049 if (ada_is_constrained_packed_array_type (arr_type))
3050 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3051
4c4b4cd2 3052 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3053 {
3054 low = ada_array_bound_from_type (arr_type, n, 0);
3055 high = ada_array_bound_from_type (arr_type, n, 1);
3056 }
14f9c5c9 3057 else
aa715135
JG
3058 {
3059 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3060 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3061 }
3062
f168693b 3063 arr_type = check_typedef (arr_type);
aa715135
JG
3064 index_type = TYPE_INDEX_TYPE (arr_type);
3065 if (index_type != NULL)
3066 {
3067 struct type *base_type;
3068 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3069 base_type = TYPE_TARGET_TYPE (index_type);
3070 else
3071 base_type = index_type;
3072
3073 low = pos_atr (value_from_longest (base_type, low));
3074 high = pos_atr (value_from_longest (base_type, high));
3075 }
3076 return high - low + 1;
4c4b4cd2
PH
3077}
3078
3079/* An empty array whose type is that of ARR_TYPE (an array type),
3080 with bounds LOW to LOW-1. */
3081
3082static struct value *
3083empty_array (struct type *arr_type, int low)
3084{
b0dd7688 3085 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3086 struct type *index_type
3087 = create_static_range_type
3088 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3089 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3090
0b5d8877 3091 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3092}
14f9c5c9 3093\f
d2e4a39e 3094
4c4b4cd2 3095 /* Name resolution */
14f9c5c9 3096
4c4b4cd2
PH
3097/* The "decoded" name for the user-definable Ada operator corresponding
3098 to OP. */
14f9c5c9 3099
d2e4a39e 3100static const char *
4c4b4cd2 3101ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3102{
3103 int i;
3104
4c4b4cd2 3105 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3106 {
3107 if (ada_opname_table[i].op == op)
4c4b4cd2 3108 return ada_opname_table[i].decoded;
14f9c5c9 3109 }
323e0a4a 3110 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3111}
3112
3113
4c4b4cd2
PH
3114/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3115 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3116 undefined namespace) and converts operators that are
3117 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3118 non-null, it provides a preferred result type [at the moment, only
3119 type void has any effect---causing procedures to be preferred over
3120 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3121 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3122
4c4b4cd2
PH
3123static void
3124resolve (struct expression **expp, int void_context_p)
14f9c5c9 3125{
30b15541
UW
3126 struct type *context_type = NULL;
3127 int pc = 0;
3128
3129 if (void_context_p)
3130 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3131
3132 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3133}
3134
4c4b4cd2
PH
3135/* Resolve the operator of the subexpression beginning at
3136 position *POS of *EXPP. "Resolving" consists of replacing
3137 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3138 with their resolutions, replacing built-in operators with
3139 function calls to user-defined operators, where appropriate, and,
3140 when DEPROCEDURE_P is non-zero, converting function-valued variables
3141 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3142 are as in ada_resolve, above. */
14f9c5c9 3143
d2e4a39e 3144static struct value *
4c4b4cd2 3145resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3146 struct type *context_type)
14f9c5c9
AS
3147{
3148 int pc = *pos;
3149 int i;
4c4b4cd2 3150 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3151 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3152 struct value **argvec; /* Vector of operand types (alloca'ed). */
3153 int nargs; /* Number of operands. */
52ce6436 3154 int oplen;
14f9c5c9
AS
3155
3156 argvec = NULL;
3157 nargs = 0;
3158 exp = *expp;
3159
52ce6436
PH
3160 /* Pass one: resolve operands, saving their types and updating *pos,
3161 if needed. */
14f9c5c9
AS
3162 switch (op)
3163 {
4c4b4cd2
PH
3164 case OP_FUNCALL:
3165 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3166 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3167 *pos += 7;
4c4b4cd2
PH
3168 else
3169 {
3170 *pos += 3;
3171 resolve_subexp (expp, pos, 0, NULL);
3172 }
3173 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3174 break;
3175
14f9c5c9 3176 case UNOP_ADDR:
4c4b4cd2
PH
3177 *pos += 1;
3178 resolve_subexp (expp, pos, 0, NULL);
3179 break;
3180
52ce6436
PH
3181 case UNOP_QUAL:
3182 *pos += 3;
17466c1a 3183 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3184 break;
3185
52ce6436 3186 case OP_ATR_MODULUS:
4c4b4cd2
PH
3187 case OP_ATR_SIZE:
3188 case OP_ATR_TAG:
4c4b4cd2
PH
3189 case OP_ATR_FIRST:
3190 case OP_ATR_LAST:
3191 case OP_ATR_LENGTH:
3192 case OP_ATR_POS:
3193 case OP_ATR_VAL:
4c4b4cd2
PH
3194 case OP_ATR_MIN:
3195 case OP_ATR_MAX:
52ce6436
PH
3196 case TERNOP_IN_RANGE:
3197 case BINOP_IN_BOUNDS:
3198 case UNOP_IN_RANGE:
3199 case OP_AGGREGATE:
3200 case OP_OTHERS:
3201 case OP_CHOICES:
3202 case OP_POSITIONAL:
3203 case OP_DISCRETE_RANGE:
3204 case OP_NAME:
3205 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3206 *pos += oplen;
14f9c5c9
AS
3207 break;
3208
3209 case BINOP_ASSIGN:
3210 {
4c4b4cd2
PH
3211 struct value *arg1;
3212
3213 *pos += 1;
3214 arg1 = resolve_subexp (expp, pos, 0, NULL);
3215 if (arg1 == NULL)
3216 resolve_subexp (expp, pos, 1, NULL);
3217 else
df407dfe 3218 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3219 break;
14f9c5c9
AS
3220 }
3221
4c4b4cd2 3222 case UNOP_CAST:
4c4b4cd2
PH
3223 *pos += 3;
3224 nargs = 1;
3225 break;
14f9c5c9 3226
4c4b4cd2
PH
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_EXP:
3234 case BINOP_CONCAT:
3235 case BINOP_LOGICAL_AND:
3236 case BINOP_LOGICAL_OR:
3237 case BINOP_BITWISE_AND:
3238 case BINOP_BITWISE_IOR:
3239 case BINOP_BITWISE_XOR:
14f9c5c9 3240
4c4b4cd2
PH
3241 case BINOP_EQUAL:
3242 case BINOP_NOTEQUAL:
3243 case BINOP_LESS:
3244 case BINOP_GTR:
3245 case BINOP_LEQ:
3246 case BINOP_GEQ:
14f9c5c9 3247
4c4b4cd2
PH
3248 case BINOP_REPEAT:
3249 case BINOP_SUBSCRIPT:
3250 case BINOP_COMMA:
40c8aaa9
JB
3251 *pos += 1;
3252 nargs = 2;
3253 break;
14f9c5c9 3254
4c4b4cd2
PH
3255 case UNOP_NEG:
3256 case UNOP_PLUS:
3257 case UNOP_LOGICAL_NOT:
3258 case UNOP_ABS:
3259 case UNOP_IND:
3260 *pos += 1;
3261 nargs = 1;
3262 break;
14f9c5c9 3263
4c4b4cd2
PH
3264 case OP_LONG:
3265 case OP_DOUBLE:
3266 case OP_VAR_VALUE:
3267 *pos += 4;
3268 break;
14f9c5c9 3269
4c4b4cd2
PH
3270 case OP_TYPE:
3271 case OP_BOOL:
3272 case OP_LAST:
4c4b4cd2
PH
3273 case OP_INTERNALVAR:
3274 *pos += 3;
3275 break;
14f9c5c9 3276
4c4b4cd2
PH
3277 case UNOP_MEMVAL:
3278 *pos += 3;
3279 nargs = 1;
3280 break;
3281
67f3407f
DJ
3282 case OP_REGISTER:
3283 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3284 break;
3285
4c4b4cd2
PH
3286 case STRUCTOP_STRUCT:
3287 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3288 nargs = 1;
3289 break;
3290
4c4b4cd2 3291 case TERNOP_SLICE:
4c4b4cd2
PH
3292 *pos += 1;
3293 nargs = 3;
3294 break;
3295
52ce6436 3296 case OP_STRING:
14f9c5c9 3297 break;
4c4b4cd2
PH
3298
3299 default:
323e0a4a 3300 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3301 }
3302
8d749320 3303 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3304 for (i = 0; i < nargs; i += 1)
3305 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3306 argvec[i] = NULL;
3307 exp = *expp;
3308
3309 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3310 switch (op)
3311 {
3312 default:
3313 break;
3314
14f9c5c9 3315 case OP_VAR_VALUE:
4c4b4cd2 3316 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3317 {
d12307c1 3318 struct block_symbol *candidates;
76a01679
JB
3319 int n_candidates;
3320
3321 n_candidates =
3322 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3323 (exp->elts[pc + 2].symbol),
3324 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3325 &candidates);
76a01679
JB
3326
3327 if (n_candidates > 1)
3328 {
3329 /* Types tend to get re-introduced locally, so if there
3330 are any local symbols that are not types, first filter
3331 out all types. */
3332 int j;
3333 for (j = 0; j < n_candidates; j += 1)
d12307c1 3334 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3335 {
3336 case LOC_REGISTER:
3337 case LOC_ARG:
3338 case LOC_REF_ARG:
76a01679
JB
3339 case LOC_REGPARM_ADDR:
3340 case LOC_LOCAL:
76a01679 3341 case LOC_COMPUTED:
76a01679
JB
3342 goto FoundNonType;
3343 default:
3344 break;
3345 }
3346 FoundNonType:
3347 if (j < n_candidates)
3348 {
3349 j = 0;
3350 while (j < n_candidates)
3351 {
d12307c1 3352 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3353 {
3354 candidates[j] = candidates[n_candidates - 1];
3355 n_candidates -= 1;
3356 }
3357 else
3358 j += 1;
3359 }
3360 }
3361 }
3362
3363 if (n_candidates == 0)
323e0a4a 3364 error (_("No definition found for %s"),
76a01679
JB
3365 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3366 else if (n_candidates == 1)
3367 i = 0;
3368 else if (deprocedure_p
3369 && !is_nonfunction (candidates, n_candidates))
3370 {
06d5cf63
JB
3371 i = ada_resolve_function
3372 (candidates, n_candidates, NULL, 0,
3373 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3374 context_type);
76a01679 3375 if (i < 0)
323e0a4a 3376 error (_("Could not find a match for %s"),
76a01679
JB
3377 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3378 }
3379 else
3380 {
323e0a4a 3381 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3382 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3383 user_select_syms (candidates, n_candidates, 1);
3384 i = 0;
3385 }
3386
3387 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3388 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3389 if (innermost_block == NULL
3390 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3391 innermost_block = candidates[i].block;
3392 }
3393
3394 if (deprocedure_p
3395 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3396 == TYPE_CODE_FUNC))
3397 {
3398 replace_operator_with_call (expp, pc, 0, 0,
3399 exp->elts[pc + 2].symbol,
3400 exp->elts[pc + 1].block);
3401 exp = *expp;
3402 }
14f9c5c9
AS
3403 break;
3404
3405 case OP_FUNCALL:
3406 {
4c4b4cd2 3407 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3408 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3409 {
d12307c1 3410 struct block_symbol *candidates;
4c4b4cd2
PH
3411 int n_candidates;
3412
3413 n_candidates =
76a01679
JB
3414 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3415 (exp->elts[pc + 5].symbol),
3416 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3417 &candidates);
4c4b4cd2
PH
3418 if (n_candidates == 1)
3419 i = 0;
3420 else
3421 {
06d5cf63
JB
3422 i = ada_resolve_function
3423 (candidates, n_candidates,
3424 argvec, nargs,
3425 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3426 context_type);
4c4b4cd2 3427 if (i < 0)
323e0a4a 3428 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3429 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3430 }
3431
3432 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3433 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3434 if (innermost_block == NULL
3435 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3436 innermost_block = candidates[i].block;
3437 }
14f9c5c9
AS
3438 }
3439 break;
3440 case BINOP_ADD:
3441 case BINOP_SUB:
3442 case BINOP_MUL:
3443 case BINOP_DIV:
3444 case BINOP_REM:
3445 case BINOP_MOD:
3446 case BINOP_CONCAT:
3447 case BINOP_BITWISE_AND:
3448 case BINOP_BITWISE_IOR:
3449 case BINOP_BITWISE_XOR:
3450 case BINOP_EQUAL:
3451 case BINOP_NOTEQUAL:
3452 case BINOP_LESS:
3453 case BINOP_GTR:
3454 case BINOP_LEQ:
3455 case BINOP_GEQ:
3456 case BINOP_EXP:
3457 case UNOP_NEG:
3458 case UNOP_PLUS:
3459 case UNOP_LOGICAL_NOT:
3460 case UNOP_ABS:
3461 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3462 {
d12307c1 3463 struct block_symbol *candidates;
4c4b4cd2
PH
3464 int n_candidates;
3465
3466 n_candidates =
3467 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3468 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3469 &candidates);
4c4b4cd2 3470 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3471 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3472 if (i < 0)
3473 break;
3474
d12307c1
PMR
3475 replace_operator_with_call (expp, pc, nargs, 1,
3476 candidates[i].symbol,
3477 candidates[i].block);
4c4b4cd2
PH
3478 exp = *expp;
3479 }
14f9c5c9 3480 break;
4c4b4cd2
PH
3481
3482 case OP_TYPE:
b3dbf008 3483 case OP_REGISTER:
4c4b4cd2 3484 return NULL;
14f9c5c9
AS
3485 }
3486
3487 *pos = pc;
3488 return evaluate_subexp_type (exp, pos);
3489}
3490
3491/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3492 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3493 a non-pointer. */
14f9c5c9 3494/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3495 liberal. */
14f9c5c9
AS
3496
3497static int
4dc81987 3498ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3499{
61ee279c
PH
3500 ftype = ada_check_typedef (ftype);
3501 atype = ada_check_typedef (atype);
14f9c5c9
AS
3502
3503 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3504 ftype = TYPE_TARGET_TYPE (ftype);
3505 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3506 atype = TYPE_TARGET_TYPE (atype);
3507
d2e4a39e 3508 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3509 {
3510 default:
5b3d5b7d 3511 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3512 case TYPE_CODE_PTR:
3513 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3514 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3515 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3516 else
1265e4aa
JB
3517 return (may_deref
3518 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3519 case TYPE_CODE_INT:
3520 case TYPE_CODE_ENUM:
3521 case TYPE_CODE_RANGE:
3522 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3523 {
3524 case TYPE_CODE_INT:
3525 case TYPE_CODE_ENUM:
3526 case TYPE_CODE_RANGE:
3527 return 1;
3528 default:
3529 return 0;
3530 }
14f9c5c9
AS
3531
3532 case TYPE_CODE_ARRAY:
d2e4a39e 3533 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3534 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3535
3536 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3537 if (ada_is_array_descriptor_type (ftype))
3538 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3539 || ada_is_array_descriptor_type (atype));
14f9c5c9 3540 else
4c4b4cd2
PH
3541 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3542 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3543
3544 case TYPE_CODE_UNION:
3545 case TYPE_CODE_FLT:
3546 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3547 }
3548}
3549
3550/* Return non-zero if the formals of FUNC "sufficiently match" the
3551 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3552 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3553 argument function. */
14f9c5c9
AS
3554
3555static int
d2e4a39e 3556ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3557{
3558 int i;
d2e4a39e 3559 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3560
1265e4aa
JB
3561 if (SYMBOL_CLASS (func) == LOC_CONST
3562 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3563 return (n_actuals == 0);
3564 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3565 return 0;
3566
3567 if (TYPE_NFIELDS (func_type) != n_actuals)
3568 return 0;
3569
3570 for (i = 0; i < n_actuals; i += 1)
3571 {
4c4b4cd2 3572 if (actuals[i] == NULL)
76a01679
JB
3573 return 0;
3574 else
3575 {
5b4ee69b
MS
3576 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3577 i));
df407dfe 3578 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3579
76a01679
JB
3580 if (!ada_type_match (ftype, atype, 1))
3581 return 0;
3582 }
14f9c5c9
AS
3583 }
3584 return 1;
3585}
3586
3587/* False iff function type FUNC_TYPE definitely does not produce a value
3588 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3589 FUNC_TYPE is not a valid function type with a non-null return type
3590 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3591
3592static int
d2e4a39e 3593return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3594{
d2e4a39e 3595 struct type *return_type;
14f9c5c9
AS
3596
3597 if (func_type == NULL)
3598 return 1;
3599
4c4b4cd2 3600 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3601 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3602 else
18af8284 3603 return_type = get_base_type (func_type);
14f9c5c9
AS
3604 if (return_type == NULL)
3605 return 1;
3606
18af8284 3607 context_type = get_base_type (context_type);
14f9c5c9
AS
3608
3609 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3610 return context_type == NULL || return_type == context_type;
3611 else if (context_type == NULL)
3612 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3613 else
3614 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3615}
3616
3617
4c4b4cd2 3618/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3619 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3620 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3621 that returns that type, then eliminate matches that don't. If
3622 CONTEXT_TYPE is void and there is at least one match that does not
3623 return void, eliminate all matches that do.
3624
14f9c5c9
AS
3625 Asks the user if there is more than one match remaining. Returns -1
3626 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3627 solely for messages. May re-arrange and modify SYMS in
3628 the process; the index returned is for the modified vector. */
14f9c5c9 3629
4c4b4cd2 3630static int
d12307c1 3631ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3632 int nsyms, struct value **args, int nargs,
3633 const char *name, struct type *context_type)
14f9c5c9 3634{
30b15541 3635 int fallback;
14f9c5c9 3636 int k;
4c4b4cd2 3637 int m; /* Number of hits */
14f9c5c9 3638
d2e4a39e 3639 m = 0;
30b15541
UW
3640 /* In the first pass of the loop, we only accept functions matching
3641 context_type. If none are found, we add a second pass of the loop
3642 where every function is accepted. */
3643 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3644 {
3645 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3646 {
d12307c1 3647 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3648
d12307c1 3649 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3650 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3651 {
3652 syms[m] = syms[k];
3653 m += 1;
3654 }
3655 }
14f9c5c9
AS
3656 }
3657
dc5c8746
PMR
3658 /* If we got multiple matches, ask the user which one to use. Don't do this
3659 interactive thing during completion, though, as the purpose of the
3660 completion is providing a list of all possible matches. Prompting the
3661 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3662 if (m == 0)
3663 return -1;
dc5c8746 3664 else if (m > 1 && !parse_completion)
14f9c5c9 3665 {
323e0a4a 3666 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3667 user_select_syms (syms, m, 1);
14f9c5c9
AS
3668 return 0;
3669 }
3670 return 0;
3671}
3672
4c4b4cd2
PH
3673/* Returns true (non-zero) iff decoded name N0 should appear before N1
3674 in a listing of choices during disambiguation (see sort_choices, below).
3675 The idea is that overloadings of a subprogram name from the
3676 same package should sort in their source order. We settle for ordering
3677 such symbols by their trailing number (__N or $N). */
3678
14f9c5c9 3679static int
0d5cff50 3680encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3681{
3682 if (N1 == NULL)
3683 return 0;
3684 else if (N0 == NULL)
3685 return 1;
3686 else
3687 {
3688 int k0, k1;
5b4ee69b 3689
d2e4a39e 3690 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3691 ;
d2e4a39e 3692 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3693 ;
d2e4a39e 3694 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3695 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3696 {
3697 int n0, n1;
5b4ee69b 3698
4c4b4cd2
PH
3699 n0 = k0;
3700 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3701 n0 -= 1;
3702 n1 = k1;
3703 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3704 n1 -= 1;
3705 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3706 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3707 }
14f9c5c9
AS
3708 return (strcmp (N0, N1) < 0);
3709 }
3710}
d2e4a39e 3711
4c4b4cd2
PH
3712/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3713 encoded names. */
3714
d2e4a39e 3715static void
d12307c1 3716sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3717{
4c4b4cd2 3718 int i;
5b4ee69b 3719
d2e4a39e 3720 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3721 {
d12307c1 3722 struct block_symbol sym = syms[i];
14f9c5c9
AS
3723 int j;
3724
d2e4a39e 3725 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3726 {
d12307c1
PMR
3727 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3728 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3729 break;
3730 syms[j + 1] = syms[j];
3731 }
d2e4a39e 3732 syms[j + 1] = sym;
14f9c5c9
AS
3733 }
3734}
3735
4c4b4cd2
PH
3736/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3737 by asking the user (if necessary), returning the number selected,
3738 and setting the first elements of SYMS items. Error if no symbols
3739 selected. */
14f9c5c9
AS
3740
3741/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3742 to be re-integrated one of these days. */
14f9c5c9
AS
3743
3744int
d12307c1 3745user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3746{
3747 int i;
8d749320 3748 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3749 int n_chosen;
3750 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3751 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3752
3753 if (max_results < 1)
323e0a4a 3754 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3755 if (nsyms <= 1)
3756 return nsyms;
3757
717d2f5a
JB
3758 if (select_mode == multiple_symbols_cancel)
3759 error (_("\
3760canceled because the command is ambiguous\n\
3761See set/show multiple-symbol."));
3762
3763 /* If select_mode is "all", then return all possible symbols.
3764 Only do that if more than one symbol can be selected, of course.
3765 Otherwise, display the menu as usual. */
3766 if (select_mode == multiple_symbols_all && max_results > 1)
3767 return nsyms;
3768
323e0a4a 3769 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3770 if (max_results > 1)
323e0a4a 3771 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3772
4c4b4cd2 3773 sort_choices (syms, nsyms);
14f9c5c9
AS
3774
3775 for (i = 0; i < nsyms; i += 1)
3776 {
d12307c1 3777 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3778 continue;
3779
d12307c1 3780 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3781 {
76a01679 3782 struct symtab_and_line sal =
d12307c1 3783 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3784
323e0a4a
AC
3785 if (sal.symtab == NULL)
3786 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3787 i + first_choice,
d12307c1 3788 SYMBOL_PRINT_NAME (syms[i].symbol),
323e0a4a
AC
3789 sal.line);
3790 else
3791 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
d12307c1 3792 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821
JK
3793 symtab_to_filename_for_display (sal.symtab),
3794 sal.line);
4c4b4cd2
PH
3795 continue;
3796 }
d2e4a39e 3797 else
4c4b4cd2
PH
3798 {
3799 int is_enumeral =
d12307c1
PMR
3800 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3801 && SYMBOL_TYPE (syms[i].symbol) != NULL
3802 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3803 struct symtab *symtab = NULL;
3804
d12307c1
PMR
3805 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3806 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3807
d12307c1 3808 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
323e0a4a 3809 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2 3810 i + first_choice,
d12307c1 3811 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3812 symtab_to_filename_for_display (symtab),
d12307c1 3813 SYMBOL_LINE (syms[i].symbol));
76a01679 3814 else if (is_enumeral
d12307c1 3815 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3816 {
a3f17187 3817 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3818 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3819 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3820 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3821 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2
PH
3822 }
3823 else if (symtab != NULL)
3824 printf_unfiltered (is_enumeral
323e0a4a
AC
3825 ? _("[%d] %s in %s (enumeral)\n")
3826 : _("[%d] %s at %s:?\n"),
4c4b4cd2 3827 i + first_choice,
d12307c1 3828 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3829 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3830 else
3831 printf_unfiltered (is_enumeral
323e0a4a
AC
3832 ? _("[%d] %s (enumeral)\n")
3833 : _("[%d] %s at ?\n"),
4c4b4cd2 3834 i + first_choice,
d12307c1 3835 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3836 }
14f9c5c9 3837 }
d2e4a39e 3838
14f9c5c9 3839 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3840 "overload-choice");
14f9c5c9
AS
3841
3842 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3843 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3844
3845 return n_chosen;
3846}
3847
3848/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3849 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3850 order in CHOICES[0 .. N-1], and return N.
3851
3852 The user types choices as a sequence of numbers on one line
3853 separated by blanks, encoding them as follows:
3854
4c4b4cd2 3855 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3856 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3857 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3858
4c4b4cd2 3859 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3860
3861 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3862 prompts (for use with the -f switch). */
14f9c5c9
AS
3863
3864int
d2e4a39e 3865get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3866 int is_all_choice, char *annotation_suffix)
14f9c5c9 3867{
d2e4a39e 3868 char *args;
0bcd0149 3869 char *prompt;
14f9c5c9
AS
3870 int n_chosen;
3871 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3872
14f9c5c9
AS
3873 prompt = getenv ("PS2");
3874 if (prompt == NULL)
0bcd0149 3875 prompt = "> ";
14f9c5c9 3876
0bcd0149 3877 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3878
14f9c5c9 3879 if (args == NULL)
323e0a4a 3880 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3881
3882 n_chosen = 0;
76a01679 3883
4c4b4cd2
PH
3884 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3885 order, as given in args. Choices are validated. */
14f9c5c9
AS
3886 while (1)
3887 {
d2e4a39e 3888 char *args2;
14f9c5c9
AS
3889 int choice, j;
3890
0fcd72ba 3891 args = skip_spaces (args);
14f9c5c9 3892 if (*args == '\0' && n_chosen == 0)
323e0a4a 3893 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3894 else if (*args == '\0')
4c4b4cd2 3895 break;
14f9c5c9
AS
3896
3897 choice = strtol (args, &args2, 10);
d2e4a39e 3898 if (args == args2 || choice < 0
4c4b4cd2 3899 || choice > n_choices + first_choice - 1)
323e0a4a 3900 error (_("Argument must be choice number"));
14f9c5c9
AS
3901 args = args2;
3902
d2e4a39e 3903 if (choice == 0)
323e0a4a 3904 error (_("cancelled"));
14f9c5c9
AS
3905
3906 if (choice < first_choice)
4c4b4cd2
PH
3907 {
3908 n_chosen = n_choices;
3909 for (j = 0; j < n_choices; j += 1)
3910 choices[j] = j;
3911 break;
3912 }
14f9c5c9
AS
3913 choice -= first_choice;
3914
d2e4a39e 3915 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3916 {
3917 }
14f9c5c9
AS
3918
3919 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3920 {
3921 int k;
5b4ee69b 3922
4c4b4cd2
PH
3923 for (k = n_chosen - 1; k > j; k -= 1)
3924 choices[k + 1] = choices[k];
3925 choices[j + 1] = choice;
3926 n_chosen += 1;
3927 }
14f9c5c9
AS
3928 }
3929
3930 if (n_chosen > max_results)
323e0a4a 3931 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3932
14f9c5c9
AS
3933 return n_chosen;
3934}
3935
4c4b4cd2
PH
3936/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3937 on the function identified by SYM and BLOCK, and taking NARGS
3938 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3939
3940static void
d2e4a39e 3941replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3942 int oplen, struct symbol *sym,
270140bd 3943 const struct block *block)
14f9c5c9
AS
3944{
3945 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3946 symbol, -oplen for operator being replaced). */
d2e4a39e 3947 struct expression *newexp = (struct expression *)
8c1a34e7 3948 xzalloc (sizeof (struct expression)
4c4b4cd2 3949 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3950 struct expression *exp = *expp;
14f9c5c9
AS
3951
3952 newexp->nelts = exp->nelts + 7 - oplen;
3953 newexp->language_defn = exp->language_defn;
3489610d 3954 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3955 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3956 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3957 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3958
3959 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3960 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3961
3962 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3963 newexp->elts[pc + 4].block = block;
3964 newexp->elts[pc + 5].symbol = sym;
3965
3966 *expp = newexp;
aacb1f0a 3967 xfree (exp);
d2e4a39e 3968}
14f9c5c9
AS
3969
3970/* Type-class predicates */
3971
4c4b4cd2
PH
3972/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3973 or FLOAT). */
14f9c5c9
AS
3974
3975static int
d2e4a39e 3976numeric_type_p (struct type *type)
14f9c5c9
AS
3977{
3978 if (type == NULL)
3979 return 0;
d2e4a39e
AS
3980 else
3981 {
3982 switch (TYPE_CODE (type))
4c4b4cd2
PH
3983 {
3984 case TYPE_CODE_INT:
3985 case TYPE_CODE_FLT:
3986 return 1;
3987 case TYPE_CODE_RANGE:
3988 return (type == TYPE_TARGET_TYPE (type)
3989 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3990 default:
3991 return 0;
3992 }
d2e4a39e 3993 }
14f9c5c9
AS
3994}
3995
4c4b4cd2 3996/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3997
3998static int
d2e4a39e 3999integer_type_p (struct type *type)
14f9c5c9
AS
4000{
4001 if (type == NULL)
4002 return 0;
d2e4a39e
AS
4003 else
4004 {
4005 switch (TYPE_CODE (type))
4c4b4cd2
PH
4006 {
4007 case TYPE_CODE_INT:
4008 return 1;
4009 case TYPE_CODE_RANGE:
4010 return (type == TYPE_TARGET_TYPE (type)
4011 || integer_type_p (TYPE_TARGET_TYPE (type)));
4012 default:
4013 return 0;
4014 }
d2e4a39e 4015 }
14f9c5c9
AS
4016}
4017
4c4b4cd2 4018/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4019
4020static int
d2e4a39e 4021scalar_type_p (struct type *type)
14f9c5c9
AS
4022{
4023 if (type == NULL)
4024 return 0;
d2e4a39e
AS
4025 else
4026 {
4027 switch (TYPE_CODE (type))
4c4b4cd2
PH
4028 {
4029 case TYPE_CODE_INT:
4030 case TYPE_CODE_RANGE:
4031 case TYPE_CODE_ENUM:
4032 case TYPE_CODE_FLT:
4033 return 1;
4034 default:
4035 return 0;
4036 }
d2e4a39e 4037 }
14f9c5c9
AS
4038}
4039
4c4b4cd2 4040/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4041
4042static int
d2e4a39e 4043discrete_type_p (struct type *type)
14f9c5c9
AS
4044{
4045 if (type == NULL)
4046 return 0;
d2e4a39e
AS
4047 else
4048 {
4049 switch (TYPE_CODE (type))
4c4b4cd2
PH
4050 {
4051 case TYPE_CODE_INT:
4052 case TYPE_CODE_RANGE:
4053 case TYPE_CODE_ENUM:
872f0337 4054 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4055 return 1;
4056 default:
4057 return 0;
4058 }
d2e4a39e 4059 }
14f9c5c9
AS
4060}
4061
4c4b4cd2
PH
4062/* Returns non-zero if OP with operands in the vector ARGS could be
4063 a user-defined function. Errs on the side of pre-defined operators
4064 (i.e., result 0). */
14f9c5c9
AS
4065
4066static int
d2e4a39e 4067possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4068{
76a01679 4069 struct type *type0 =
df407dfe 4070 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4071 struct type *type1 =
df407dfe 4072 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4073
4c4b4cd2
PH
4074 if (type0 == NULL)
4075 return 0;
4076
14f9c5c9
AS
4077 switch (op)
4078 {
4079 default:
4080 return 0;
4081
4082 case BINOP_ADD:
4083 case BINOP_SUB:
4084 case BINOP_MUL:
4085 case BINOP_DIV:
d2e4a39e 4086 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4087
4088 case BINOP_REM:
4089 case BINOP_MOD:
4090 case BINOP_BITWISE_AND:
4091 case BINOP_BITWISE_IOR:
4092 case BINOP_BITWISE_XOR:
d2e4a39e 4093 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4094
4095 case BINOP_EQUAL:
4096 case BINOP_NOTEQUAL:
4097 case BINOP_LESS:
4098 case BINOP_GTR:
4099 case BINOP_LEQ:
4100 case BINOP_GEQ:
d2e4a39e 4101 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4102
4103 case BINOP_CONCAT:
ee90b9ab 4104 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4105
4106 case BINOP_EXP:
d2e4a39e 4107 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4108
4109 case UNOP_NEG:
4110 case UNOP_PLUS:
4111 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4112 case UNOP_ABS:
4113 return (!numeric_type_p (type0));
14f9c5c9
AS
4114
4115 }
4116}
4117\f
4c4b4cd2 4118 /* Renaming */
14f9c5c9 4119
aeb5907d
JB
4120/* NOTES:
4121
4122 1. In the following, we assume that a renaming type's name may
4123 have an ___XD suffix. It would be nice if this went away at some
4124 point.
4125 2. We handle both the (old) purely type-based representation of
4126 renamings and the (new) variable-based encoding. At some point,
4127 it is devoutly to be hoped that the former goes away
4128 (FIXME: hilfinger-2007-07-09).
4129 3. Subprogram renamings are not implemented, although the XRS
4130 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4131
4132/* If SYM encodes a renaming,
4133
4134 <renaming> renames <renamed entity>,
4135
4136 sets *LEN to the length of the renamed entity's name,
4137 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4138 the string describing the subcomponent selected from the renamed
0963b4bd 4139 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4140 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4141 are undefined). Otherwise, returns a value indicating the category
4142 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4143 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4144 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4145 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4146 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4147 may be NULL, in which case they are not assigned.
4148
4149 [Currently, however, GCC does not generate subprogram renamings.] */
4150
4151enum ada_renaming_category
4152ada_parse_renaming (struct symbol *sym,
4153 const char **renamed_entity, int *len,
4154 const char **renaming_expr)
4155{
4156 enum ada_renaming_category kind;
4157 const char *info;
4158 const char *suffix;
4159
4160 if (sym == NULL)
4161 return ADA_NOT_RENAMING;
4162 switch (SYMBOL_CLASS (sym))
14f9c5c9 4163 {
aeb5907d
JB
4164 default:
4165 return ADA_NOT_RENAMING;
4166 case LOC_TYPEDEF:
4167 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4168 renamed_entity, len, renaming_expr);
4169 case LOC_LOCAL:
4170 case LOC_STATIC:
4171 case LOC_COMPUTED:
4172 case LOC_OPTIMIZED_OUT:
4173 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4174 if (info == NULL)
4175 return ADA_NOT_RENAMING;
4176 switch (info[5])
4177 {
4178 case '_':
4179 kind = ADA_OBJECT_RENAMING;
4180 info += 6;
4181 break;
4182 case 'E':
4183 kind = ADA_EXCEPTION_RENAMING;
4184 info += 7;
4185 break;
4186 case 'P':
4187 kind = ADA_PACKAGE_RENAMING;
4188 info += 7;
4189 break;
4190 case 'S':
4191 kind = ADA_SUBPROGRAM_RENAMING;
4192 info += 7;
4193 break;
4194 default:
4195 return ADA_NOT_RENAMING;
4196 }
14f9c5c9 4197 }
4c4b4cd2 4198
aeb5907d
JB
4199 if (renamed_entity != NULL)
4200 *renamed_entity = info;
4201 suffix = strstr (info, "___XE");
4202 if (suffix == NULL || suffix == info)
4203 return ADA_NOT_RENAMING;
4204 if (len != NULL)
4205 *len = strlen (info) - strlen (suffix);
4206 suffix += 5;
4207 if (renaming_expr != NULL)
4208 *renaming_expr = suffix;
4209 return kind;
4210}
4211
4212/* Assuming TYPE encodes a renaming according to the old encoding in
4213 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4214 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4215 ADA_NOT_RENAMING otherwise. */
4216static enum ada_renaming_category
4217parse_old_style_renaming (struct type *type,
4218 const char **renamed_entity, int *len,
4219 const char **renaming_expr)
4220{
4221 enum ada_renaming_category kind;
4222 const char *name;
4223 const char *info;
4224 const char *suffix;
14f9c5c9 4225
aeb5907d
JB
4226 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4227 || TYPE_NFIELDS (type) != 1)
4228 return ADA_NOT_RENAMING;
14f9c5c9 4229
aeb5907d
JB
4230 name = type_name_no_tag (type);
4231 if (name == NULL)
4232 return ADA_NOT_RENAMING;
4233
4234 name = strstr (name, "___XR");
4235 if (name == NULL)
4236 return ADA_NOT_RENAMING;
4237 switch (name[5])
4238 {
4239 case '\0':
4240 case '_':
4241 kind = ADA_OBJECT_RENAMING;
4242 break;
4243 case 'E':
4244 kind = ADA_EXCEPTION_RENAMING;
4245 break;
4246 case 'P':
4247 kind = ADA_PACKAGE_RENAMING;
4248 break;
4249 case 'S':
4250 kind = ADA_SUBPROGRAM_RENAMING;
4251 break;
4252 default:
4253 return ADA_NOT_RENAMING;
4254 }
14f9c5c9 4255
aeb5907d
JB
4256 info = TYPE_FIELD_NAME (type, 0);
4257 if (info == NULL)
4258 return ADA_NOT_RENAMING;
4259 if (renamed_entity != NULL)
4260 *renamed_entity = info;
4261 suffix = strstr (info, "___XE");
4262 if (renaming_expr != NULL)
4263 *renaming_expr = suffix + 5;
4264 if (suffix == NULL || suffix == info)
4265 return ADA_NOT_RENAMING;
4266 if (len != NULL)
4267 *len = suffix - info;
4268 return kind;
a5ee536b
JB
4269}
4270
4271/* Compute the value of the given RENAMING_SYM, which is expected to
4272 be a symbol encoding a renaming expression. BLOCK is the block
4273 used to evaluate the renaming. */
52ce6436 4274
a5ee536b
JB
4275static struct value *
4276ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4277 const struct block *block)
a5ee536b 4278{
bbc13ae3 4279 const char *sym_name;
a5ee536b
JB
4280 struct expression *expr;
4281 struct value *value;
4282 struct cleanup *old_chain = NULL;
4283
bbc13ae3 4284 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4285 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4286 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4287 value = evaluate_expression (expr);
4288
4289 do_cleanups (old_chain);
4290 return value;
4291}
14f9c5c9 4292\f
d2e4a39e 4293
4c4b4cd2 4294 /* Evaluation: Function Calls */
14f9c5c9 4295
4c4b4cd2 4296/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4297 lvalues, and otherwise has the side-effect of allocating memory
4298 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4299
d2e4a39e 4300static struct value *
40bc484c 4301ensure_lval (struct value *val)
14f9c5c9 4302{
40bc484c
JB
4303 if (VALUE_LVAL (val) == not_lval
4304 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4305 {
df407dfe 4306 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4307 const CORE_ADDR addr =
4308 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4309
40bc484c 4310 set_value_address (val, addr);
a84a8a0d 4311 VALUE_LVAL (val) = lval_memory;
40bc484c 4312 write_memory (addr, value_contents (val), len);
c3e5cd34 4313 }
14f9c5c9
AS
4314
4315 return val;
4316}
4317
4318/* Return the value ACTUAL, converted to be an appropriate value for a
4319 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4320 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4321 values not residing in memory, updating it as needed. */
14f9c5c9 4322
a93c0eb6 4323struct value *
40bc484c 4324ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4325{
df407dfe 4326 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4327 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4328 struct type *formal_target =
4329 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4330 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4331 struct type *actual_target =
4332 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4333 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4334
4c4b4cd2 4335 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4336 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4337 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4338 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4339 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4340 {
a84a8a0d 4341 struct value *result;
5b4ee69b 4342
14f9c5c9 4343 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4344 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4345 result = desc_data (actual);
14f9c5c9 4346 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4347 {
4348 if (VALUE_LVAL (actual) != lval_memory)
4349 {
4350 struct value *val;
5b4ee69b 4351
df407dfe 4352 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4353 val = allocate_value (actual_type);
990a07ab 4354 memcpy ((char *) value_contents_raw (val),
0fd88904 4355 (char *) value_contents (actual),
4c4b4cd2 4356 TYPE_LENGTH (actual_type));
40bc484c 4357 actual = ensure_lval (val);
4c4b4cd2 4358 }
a84a8a0d 4359 result = value_addr (actual);
4c4b4cd2 4360 }
a84a8a0d
JB
4361 else
4362 return actual;
b1af9e97 4363 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4364 }
4365 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4366 return ada_value_ind (actual);
8344af1e
JB
4367 else if (ada_is_aligner_type (formal_type))
4368 {
4369 /* We need to turn this parameter into an aligner type
4370 as well. */
4371 struct value *aligner = allocate_value (formal_type);
4372 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4373
4374 value_assign_to_component (aligner, component, actual);
4375 return aligner;
4376 }
14f9c5c9
AS
4377
4378 return actual;
4379}
4380
438c98a1
JB
4381/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4382 type TYPE. This is usually an inefficient no-op except on some targets
4383 (such as AVR) where the representation of a pointer and an address
4384 differs. */
4385
4386static CORE_ADDR
4387value_pointer (struct value *value, struct type *type)
4388{
4389 struct gdbarch *gdbarch = get_type_arch (type);
4390 unsigned len = TYPE_LENGTH (type);
4391 gdb_byte *buf = alloca (len);
4392 CORE_ADDR addr;
4393
4394 addr = value_address (value);
4395 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4396 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4397 return addr;
4398}
4399
14f9c5c9 4400
4c4b4cd2
PH
4401/* Push a descriptor of type TYPE for array value ARR on the stack at
4402 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4403 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4404 to-descriptor type rather than a descriptor type), a struct value *
4405 representing a pointer to this descriptor. */
14f9c5c9 4406
d2e4a39e 4407static struct value *
40bc484c 4408make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4409{
d2e4a39e
AS
4410 struct type *bounds_type = desc_bounds_type (type);
4411 struct type *desc_type = desc_base_type (type);
4412 struct value *descriptor = allocate_value (desc_type);
4413 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4414 int i;
d2e4a39e 4415
0963b4bd
MS
4416 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4417 i > 0; i -= 1)
14f9c5c9 4418 {
19f220c3
JK
4419 modify_field (value_type (bounds), value_contents_writeable (bounds),
4420 ada_array_bound (arr, i, 0),
4421 desc_bound_bitpos (bounds_type, i, 0),
4422 desc_bound_bitsize (bounds_type, i, 0));
4423 modify_field (value_type (bounds), value_contents_writeable (bounds),
4424 ada_array_bound (arr, i, 1),
4425 desc_bound_bitpos (bounds_type, i, 1),
4426 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4427 }
d2e4a39e 4428
40bc484c 4429 bounds = ensure_lval (bounds);
d2e4a39e 4430
19f220c3
JK
4431 modify_field (value_type (descriptor),
4432 value_contents_writeable (descriptor),
4433 value_pointer (ensure_lval (arr),
4434 TYPE_FIELD_TYPE (desc_type, 0)),
4435 fat_pntr_data_bitpos (desc_type),
4436 fat_pntr_data_bitsize (desc_type));
4437
4438 modify_field (value_type (descriptor),
4439 value_contents_writeable (descriptor),
4440 value_pointer (bounds,
4441 TYPE_FIELD_TYPE (desc_type, 1)),
4442 fat_pntr_bounds_bitpos (desc_type),
4443 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4444
40bc484c 4445 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4446
4447 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4448 return value_addr (descriptor);
4449 else
4450 return descriptor;
4451}
14f9c5c9 4452\f
3d9434b5
JB
4453 /* Symbol Cache Module */
4454
3d9434b5 4455/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4456 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4457 on the type of entity being printed, the cache can make it as much
4458 as an order of magnitude faster than without it.
4459
4460 The descriptive type DWARF extension has significantly reduced
4461 the need for this cache, at least when DWARF is being used. However,
4462 even in this case, some expensive name-based symbol searches are still
4463 sometimes necessary - to find an XVZ variable, mostly. */
4464
ee01b665 4465/* Initialize the contents of SYM_CACHE. */
3d9434b5 4466
ee01b665
JB
4467static void
4468ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4469{
4470 obstack_init (&sym_cache->cache_space);
4471 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4472}
3d9434b5 4473
ee01b665
JB
4474/* Free the memory used by SYM_CACHE. */
4475
4476static void
4477ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4478{
ee01b665
JB
4479 obstack_free (&sym_cache->cache_space, NULL);
4480 xfree (sym_cache);
4481}
3d9434b5 4482
ee01b665
JB
4483/* Return the symbol cache associated to the given program space PSPACE.
4484 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4485
ee01b665
JB
4486static struct ada_symbol_cache *
4487ada_get_symbol_cache (struct program_space *pspace)
4488{
4489 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4490
66c168ae 4491 if (pspace_data->sym_cache == NULL)
ee01b665 4492 {
66c168ae
JB
4493 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4494 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4495 }
4496
66c168ae 4497 return pspace_data->sym_cache;
ee01b665 4498}
3d9434b5
JB
4499
4500/* Clear all entries from the symbol cache. */
4501
4502static void
4503ada_clear_symbol_cache (void)
4504{
ee01b665
JB
4505 struct ada_symbol_cache *sym_cache
4506 = ada_get_symbol_cache (current_program_space);
4507
4508 obstack_free (&sym_cache->cache_space, NULL);
4509 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4510}
4511
fe978cb0 4512/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4513 Return it if found, or NULL otherwise. */
4514
4515static struct cache_entry **
fe978cb0 4516find_entry (const char *name, domain_enum domain)
3d9434b5 4517{
ee01b665
JB
4518 struct ada_symbol_cache *sym_cache
4519 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4520 int h = msymbol_hash (name) % HASH_SIZE;
4521 struct cache_entry **e;
4522
ee01b665 4523 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4524 {
fe978cb0 4525 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4526 return e;
4527 }
4528 return NULL;
4529}
4530
fe978cb0 4531/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4532 Return 1 if found, 0 otherwise.
4533
4534 If an entry was found and SYM is not NULL, set *SYM to the entry's
4535 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4536
96d887e8 4537static int
fe978cb0 4538lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4539 struct symbol **sym, const struct block **block)
96d887e8 4540{
fe978cb0 4541 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4542
4543 if (e == NULL)
4544 return 0;
4545 if (sym != NULL)
4546 *sym = (*e)->sym;
4547 if (block != NULL)
4548 *block = (*e)->block;
4549 return 1;
96d887e8
PH
4550}
4551
3d9434b5 4552/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4553 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4554
96d887e8 4555static void
fe978cb0 4556cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4557 const struct block *block)
96d887e8 4558{
ee01b665
JB
4559 struct ada_symbol_cache *sym_cache
4560 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4561 int h;
4562 char *copy;
4563 struct cache_entry *e;
4564
1994afbf
DE
4565 /* Symbols for builtin types don't have a block.
4566 For now don't cache such symbols. */
4567 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4568 return;
4569
3d9434b5
JB
4570 /* If the symbol is a local symbol, then do not cache it, as a search
4571 for that symbol depends on the context. To determine whether
4572 the symbol is local or not, we check the block where we found it
4573 against the global and static blocks of its associated symtab. */
4574 if (sym
08be3fe3 4575 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4576 GLOBAL_BLOCK) != block
08be3fe3 4577 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4578 STATIC_BLOCK) != block)
3d9434b5
JB
4579 return;
4580
4581 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4582 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4583 sizeof (*e));
4584 e->next = sym_cache->root[h];
4585 sym_cache->root[h] = e;
4586 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4587 strcpy (copy, name);
4588 e->sym = sym;
fe978cb0 4589 e->domain = domain;
3d9434b5 4590 e->block = block;
96d887e8 4591}
4c4b4cd2
PH
4592\f
4593 /* Symbol Lookup */
4594
c0431670
JB
4595/* Return nonzero if wild matching should be used when searching for
4596 all symbols matching LOOKUP_NAME.
4597
4598 LOOKUP_NAME is expected to be a symbol name after transformation
4599 for Ada lookups (see ada_name_for_lookup). */
4600
4601static int
4602should_use_wild_match (const char *lookup_name)
4603{
4604 return (strstr (lookup_name, "__") == NULL);
4605}
4606
4c4b4cd2
PH
4607/* Return the result of a standard (literal, C-like) lookup of NAME in
4608 given DOMAIN, visible from lexical block BLOCK. */
4609
4610static struct symbol *
4611standard_lookup (const char *name, const struct block *block,
4612 domain_enum domain)
4613{
acbd605d 4614 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4615 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4616
d12307c1
PMR
4617 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4618 return sym.symbol;
2570f2b7 4619 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4620 cache_symbol (name, domain, sym.symbol, sym.block);
4621 return sym.symbol;
4c4b4cd2
PH
4622}
4623
4624
4625/* Non-zero iff there is at least one non-function/non-enumeral symbol
4626 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4627 since they contend in overloading in the same way. */
4628static int
d12307c1 4629is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4630{
4631 int i;
4632
4633 for (i = 0; i < n; i += 1)
d12307c1
PMR
4634 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4635 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4636 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4637 return 1;
4638
4639 return 0;
4640}
4641
4642/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4643 struct types. Otherwise, they may not. */
14f9c5c9
AS
4644
4645static int
d2e4a39e 4646equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4647{
d2e4a39e 4648 if (type0 == type1)
14f9c5c9 4649 return 1;
d2e4a39e 4650 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4651 || TYPE_CODE (type0) != TYPE_CODE (type1))
4652 return 0;
d2e4a39e 4653 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4654 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4655 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4656 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4657 return 1;
d2e4a39e 4658
14f9c5c9
AS
4659 return 0;
4660}
4661
4662/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4663 no more defined than that of SYM1. */
14f9c5c9
AS
4664
4665static int
d2e4a39e 4666lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4667{
4668 if (sym0 == sym1)
4669 return 1;
176620f1 4670 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4671 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4672 return 0;
4673
d2e4a39e 4674 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4675 {
4676 case LOC_UNDEF:
4677 return 1;
4678 case LOC_TYPEDEF:
4679 {
4c4b4cd2
PH
4680 struct type *type0 = SYMBOL_TYPE (sym0);
4681 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4682 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4683 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4684 int len0 = strlen (name0);
5b4ee69b 4685
4c4b4cd2
PH
4686 return
4687 TYPE_CODE (type0) == TYPE_CODE (type1)
4688 && (equiv_types (type0, type1)
4689 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4690 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4691 }
4692 case LOC_CONST:
4693 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4694 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4695 default:
4696 return 0;
14f9c5c9
AS
4697 }
4698}
4699
d12307c1 4700/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4701 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4702
4703static void
76a01679
JB
4704add_defn_to_vec (struct obstack *obstackp,
4705 struct symbol *sym,
f0c5f9b2 4706 const struct block *block)
14f9c5c9
AS
4707{
4708 int i;
d12307c1 4709 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4710
529cad9c
PH
4711 /* Do not try to complete stub types, as the debugger is probably
4712 already scanning all symbols matching a certain name at the
4713 time when this function is called. Trying to replace the stub
4714 type by its associated full type will cause us to restart a scan
4715 which may lead to an infinite recursion. Instead, the client
4716 collecting the matching symbols will end up collecting several
4717 matches, with at least one of them complete. It can then filter
4718 out the stub ones if needed. */
4719
4c4b4cd2
PH
4720 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4721 {
d12307c1 4722 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4723 return;
d12307c1 4724 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4725 {
d12307c1 4726 prevDefns[i].symbol = sym;
4c4b4cd2 4727 prevDefns[i].block = block;
4c4b4cd2 4728 return;
76a01679 4729 }
4c4b4cd2
PH
4730 }
4731
4732 {
d12307c1 4733 struct block_symbol info;
4c4b4cd2 4734
d12307c1 4735 info.symbol = sym;
4c4b4cd2 4736 info.block = block;
d12307c1 4737 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4738 }
4739}
4740
d12307c1
PMR
4741/* Number of block_symbol structures currently collected in current vector in
4742 OBSTACKP. */
4c4b4cd2 4743
76a01679
JB
4744static int
4745num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4746{
d12307c1 4747 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4748}
4749
d12307c1
PMR
4750/* Vector of block_symbol structures currently collected in current vector in
4751 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4752
d12307c1 4753static struct block_symbol *
4c4b4cd2
PH
4754defns_collected (struct obstack *obstackp, int finish)
4755{
4756 if (finish)
4757 return obstack_finish (obstackp);
4758 else
d12307c1 4759 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4760}
4761
7c7b6655
TT
4762/* Return a bound minimal symbol matching NAME according to Ada
4763 decoding rules. Returns an invalid symbol if there is no such
4764 minimal symbol. Names prefixed with "standard__" are handled
4765 specially: "standard__" is first stripped off, and only static and
4766 global symbols are searched. */
4c4b4cd2 4767
7c7b6655 4768struct bound_minimal_symbol
96d887e8 4769ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4770{
7c7b6655 4771 struct bound_minimal_symbol result;
4c4b4cd2 4772 struct objfile *objfile;
96d887e8 4773 struct minimal_symbol *msymbol;
dc4024cd 4774 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4775
7c7b6655
TT
4776 memset (&result, 0, sizeof (result));
4777
c0431670
JB
4778 /* Special case: If the user specifies a symbol name inside package
4779 Standard, do a non-wild matching of the symbol name without
4780 the "standard__" prefix. This was primarily introduced in order
4781 to allow the user to specifically access the standard exceptions
4782 using, for instance, Standard.Constraint_Error when Constraint_Error
4783 is ambiguous (due to the user defining its own Constraint_Error
4784 entity inside its program). */
61012eef 4785 if (startswith (name, "standard__"))
c0431670 4786 name += sizeof ("standard__") - 1;
4c4b4cd2 4787
96d887e8
PH
4788 ALL_MSYMBOLS (objfile, msymbol)
4789 {
efd66ac6 4790 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4791 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4792 {
4793 result.minsym = msymbol;
4794 result.objfile = objfile;
4795 break;
4796 }
96d887e8 4797 }
4c4b4cd2 4798
7c7b6655 4799 return result;
96d887e8 4800}
4c4b4cd2 4801
96d887e8
PH
4802/* For all subprograms that statically enclose the subprogram of the
4803 selected frame, add symbols matching identifier NAME in DOMAIN
4804 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4805 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4806 with a wildcard prefix. */
4c4b4cd2 4807
96d887e8
PH
4808static void
4809add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4810 const char *name, domain_enum domain,
48b78332 4811 int wild_match_p)
96d887e8 4812{
96d887e8 4813}
14f9c5c9 4814
96d887e8
PH
4815/* True if TYPE is definitely an artificial type supplied to a symbol
4816 for which no debugging information was given in the symbol file. */
14f9c5c9 4817
96d887e8
PH
4818static int
4819is_nondebugging_type (struct type *type)
4820{
0d5cff50 4821 const char *name = ada_type_name (type);
5b4ee69b 4822
96d887e8
PH
4823 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4824}
4c4b4cd2 4825
8f17729f
JB
4826/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4827 that are deemed "identical" for practical purposes.
4828
4829 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4830 types and that their number of enumerals is identical (in other
4831 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4832
4833static int
4834ada_identical_enum_types_p (struct type *type1, struct type *type2)
4835{
4836 int i;
4837
4838 /* The heuristic we use here is fairly conservative. We consider
4839 that 2 enumerate types are identical if they have the same
4840 number of enumerals and that all enumerals have the same
4841 underlying value and name. */
4842
4843 /* All enums in the type should have an identical underlying value. */
4844 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4845 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4846 return 0;
4847
4848 /* All enumerals should also have the same name (modulo any numerical
4849 suffix). */
4850 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4851 {
0d5cff50
DE
4852 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4853 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4854 int len_1 = strlen (name_1);
4855 int len_2 = strlen (name_2);
4856
4857 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4858 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4859 if (len_1 != len_2
4860 || strncmp (TYPE_FIELD_NAME (type1, i),
4861 TYPE_FIELD_NAME (type2, i),
4862 len_1) != 0)
4863 return 0;
4864 }
4865
4866 return 1;
4867}
4868
4869/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4870 that are deemed "identical" for practical purposes. Sometimes,
4871 enumerals are not strictly identical, but their types are so similar
4872 that they can be considered identical.
4873
4874 For instance, consider the following code:
4875
4876 type Color is (Black, Red, Green, Blue, White);
4877 type RGB_Color is new Color range Red .. Blue;
4878
4879 Type RGB_Color is a subrange of an implicit type which is a copy
4880 of type Color. If we call that implicit type RGB_ColorB ("B" is
4881 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4882 As a result, when an expression references any of the enumeral
4883 by name (Eg. "print green"), the expression is technically
4884 ambiguous and the user should be asked to disambiguate. But
4885 doing so would only hinder the user, since it wouldn't matter
4886 what choice he makes, the outcome would always be the same.
4887 So, for practical purposes, we consider them as the same. */
4888
4889static int
d12307c1 4890symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
4891{
4892 int i;
4893
4894 /* Before performing a thorough comparison check of each type,
4895 we perform a series of inexpensive checks. We expect that these
4896 checks will quickly fail in the vast majority of cases, and thus
4897 help prevent the unnecessary use of a more expensive comparison.
4898 Said comparison also expects us to make some of these checks
4899 (see ada_identical_enum_types_p). */
4900
4901 /* Quick check: All symbols should have an enum type. */
4902 for (i = 0; i < nsyms; i++)
d12307c1 4903 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4904 return 0;
4905
4906 /* Quick check: They should all have the same value. */
4907 for (i = 1; i < nsyms; i++)
d12307c1 4908 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4909 return 0;
4910
4911 /* Quick check: They should all have the same number of enumerals. */
4912 for (i = 1; i < nsyms; i++)
d12307c1
PMR
4913 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4914 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4915 return 0;
4916
4917 /* All the sanity checks passed, so we might have a set of
4918 identical enumeration types. Perform a more complete
4919 comparison of the type of each symbol. */
4920 for (i = 1; i < nsyms; i++)
d12307c1
PMR
4921 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4922 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4923 return 0;
4924
4925 return 1;
4926}
4927
96d887e8
PH
4928/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4929 duplicate other symbols in the list (The only case I know of where
4930 this happens is when object files containing stabs-in-ecoff are
4931 linked with files containing ordinary ecoff debugging symbols (or no
4932 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4933 Returns the number of items in the modified list. */
4c4b4cd2 4934
96d887e8 4935static int
d12307c1 4936remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
4937{
4938 int i, j;
4c4b4cd2 4939
8f17729f
JB
4940 /* We should never be called with less than 2 symbols, as there
4941 cannot be any extra symbol in that case. But it's easy to
4942 handle, since we have nothing to do in that case. */
4943 if (nsyms < 2)
4944 return nsyms;
4945
96d887e8
PH
4946 i = 0;
4947 while (i < nsyms)
4948 {
a35ddb44 4949 int remove_p = 0;
339c13b6
JB
4950
4951 /* If two symbols have the same name and one of them is a stub type,
4952 the get rid of the stub. */
4953
d12307c1
PMR
4954 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
4955 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
4956 {
4957 for (j = 0; j < nsyms; j++)
4958 {
4959 if (j != i
d12307c1
PMR
4960 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
4961 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4962 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4963 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 4964 remove_p = 1;
339c13b6
JB
4965 }
4966 }
4967
4968 /* Two symbols with the same name, same class and same address
4969 should be identical. */
4970
d12307c1
PMR
4971 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
4972 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
4973 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
4974 {
4975 for (j = 0; j < nsyms; j += 1)
4976 {
4977 if (i != j
d12307c1
PMR
4978 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4979 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4980 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
4981 && SYMBOL_CLASS (syms[i].symbol)
4982 == SYMBOL_CLASS (syms[j].symbol)
4983 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
4984 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 4985 remove_p = 1;
4c4b4cd2 4986 }
4c4b4cd2 4987 }
339c13b6 4988
a35ddb44 4989 if (remove_p)
339c13b6
JB
4990 {
4991 for (j = i + 1; j < nsyms; j += 1)
4992 syms[j - 1] = syms[j];
4993 nsyms -= 1;
4994 }
4995
96d887e8 4996 i += 1;
14f9c5c9 4997 }
8f17729f
JB
4998
4999 /* If all the remaining symbols are identical enumerals, then
5000 just keep the first one and discard the rest.
5001
5002 Unlike what we did previously, we do not discard any entry
5003 unless they are ALL identical. This is because the symbol
5004 comparison is not a strict comparison, but rather a practical
5005 comparison. If all symbols are considered identical, then
5006 we can just go ahead and use the first one and discard the rest.
5007 But if we cannot reduce the list to a single element, we have
5008 to ask the user to disambiguate anyways. And if we have to
5009 present a multiple-choice menu, it's less confusing if the list
5010 isn't missing some choices that were identical and yet distinct. */
5011 if (symbols_are_identical_enums (syms, nsyms))
5012 nsyms = 1;
5013
96d887e8 5014 return nsyms;
14f9c5c9
AS
5015}
5016
96d887e8
PH
5017/* Given a type that corresponds to a renaming entity, use the type name
5018 to extract the scope (package name or function name, fully qualified,
5019 and following the GNAT encoding convention) where this renaming has been
5020 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5021
96d887e8
PH
5022static char *
5023xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5024{
96d887e8 5025 /* The renaming types adhere to the following convention:
0963b4bd 5026 <scope>__<rename>___<XR extension>.
96d887e8
PH
5027 So, to extract the scope, we search for the "___XR" extension,
5028 and then backtrack until we find the first "__". */
76a01679 5029
96d887e8 5030 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5031 const char *suffix = strstr (name, "___XR");
5032 const char *last;
96d887e8
PH
5033 int scope_len;
5034 char *scope;
14f9c5c9 5035
96d887e8
PH
5036 /* Now, backtrack a bit until we find the first "__". Start looking
5037 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5038
96d887e8
PH
5039 for (last = suffix - 3; last > name; last--)
5040 if (last[0] == '_' && last[1] == '_')
5041 break;
76a01679 5042
96d887e8 5043 /* Make a copy of scope and return it. */
14f9c5c9 5044
96d887e8
PH
5045 scope_len = last - name;
5046 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5047
96d887e8
PH
5048 strncpy (scope, name, scope_len);
5049 scope[scope_len] = '\0';
4c4b4cd2 5050
96d887e8 5051 return scope;
4c4b4cd2
PH
5052}
5053
96d887e8 5054/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5055
96d887e8
PH
5056static int
5057is_package_name (const char *name)
4c4b4cd2 5058{
96d887e8
PH
5059 /* Here, We take advantage of the fact that no symbols are generated
5060 for packages, while symbols are generated for each function.
5061 So the condition for NAME represent a package becomes equivalent
5062 to NAME not existing in our list of symbols. There is only one
5063 small complication with library-level functions (see below). */
4c4b4cd2 5064
96d887e8 5065 char *fun_name;
76a01679 5066
96d887e8
PH
5067 /* If it is a function that has not been defined at library level,
5068 then we should be able to look it up in the symbols. */
5069 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5070 return 0;
14f9c5c9 5071
96d887e8
PH
5072 /* Library-level function names start with "_ada_". See if function
5073 "_ada_" followed by NAME can be found. */
14f9c5c9 5074
96d887e8 5075 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5076 functions names cannot contain "__" in them. */
96d887e8
PH
5077 if (strstr (name, "__") != NULL)
5078 return 0;
4c4b4cd2 5079
b435e160 5080 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5081
96d887e8
PH
5082 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5083}
14f9c5c9 5084
96d887e8 5085/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5086 not visible from FUNCTION_NAME. */
14f9c5c9 5087
96d887e8 5088static int
0d5cff50 5089old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5090{
aeb5907d 5091 char *scope;
1509e573 5092 struct cleanup *old_chain;
aeb5907d
JB
5093
5094 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5095 return 0;
5096
5097 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5098 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5099
96d887e8
PH
5100 /* If the rename has been defined in a package, then it is visible. */
5101 if (is_package_name (scope))
1509e573
JB
5102 {
5103 do_cleanups (old_chain);
5104 return 0;
5105 }
14f9c5c9 5106
96d887e8
PH
5107 /* Check that the rename is in the current function scope by checking
5108 that its name starts with SCOPE. */
76a01679 5109
96d887e8
PH
5110 /* If the function name starts with "_ada_", it means that it is
5111 a library-level function. Strip this prefix before doing the
5112 comparison, as the encoding for the renaming does not contain
5113 this prefix. */
61012eef 5114 if (startswith (function_name, "_ada_"))
96d887e8 5115 function_name += 5;
f26caa11 5116
1509e573 5117 {
61012eef 5118 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5119
5120 do_cleanups (old_chain);
5121 return is_invisible;
5122 }
f26caa11
PH
5123}
5124
aeb5907d
JB
5125/* Remove entries from SYMS that corresponds to a renaming entity that
5126 is not visible from the function associated with CURRENT_BLOCK or
5127 that is superfluous due to the presence of more specific renaming
5128 information. Places surviving symbols in the initial entries of
5129 SYMS and returns the number of surviving symbols.
96d887e8
PH
5130
5131 Rationale:
aeb5907d
JB
5132 First, in cases where an object renaming is implemented as a
5133 reference variable, GNAT may produce both the actual reference
5134 variable and the renaming encoding. In this case, we discard the
5135 latter.
5136
5137 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5138 entity. Unfortunately, STABS currently does not support the definition
5139 of types that are local to a given lexical block, so all renamings types
5140 are emitted at library level. As a consequence, if an application
5141 contains two renaming entities using the same name, and a user tries to
5142 print the value of one of these entities, the result of the ada symbol
5143 lookup will also contain the wrong renaming type.
f26caa11 5144
96d887e8
PH
5145 This function partially covers for this limitation by attempting to
5146 remove from the SYMS list renaming symbols that should be visible
5147 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5148 method with the current information available. The implementation
5149 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5150
5151 - When the user tries to print a rename in a function while there
5152 is another rename entity defined in a package: Normally, the
5153 rename in the function has precedence over the rename in the
5154 package, so the latter should be removed from the list. This is
5155 currently not the case.
5156
5157 - This function will incorrectly remove valid renames if
5158 the CURRENT_BLOCK corresponds to a function which symbol name
5159 has been changed by an "Export" pragma. As a consequence,
5160 the user will be unable to print such rename entities. */
4c4b4cd2 5161
14f9c5c9 5162static int
d12307c1 5163remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5164 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5165{
5166 struct symbol *current_function;
0d5cff50 5167 const char *current_function_name;
4c4b4cd2 5168 int i;
aeb5907d
JB
5169 int is_new_style_renaming;
5170
5171 /* If there is both a renaming foo___XR... encoded as a variable and
5172 a simple variable foo in the same block, discard the latter.
0963b4bd 5173 First, zero out such symbols, then compress. */
aeb5907d
JB
5174 is_new_style_renaming = 0;
5175 for (i = 0; i < nsyms; i += 1)
5176 {
d12307c1 5177 struct symbol *sym = syms[i].symbol;
270140bd 5178 const struct block *block = syms[i].block;
aeb5907d
JB
5179 const char *name;
5180 const char *suffix;
5181
5182 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5183 continue;
5184 name = SYMBOL_LINKAGE_NAME (sym);
5185 suffix = strstr (name, "___XR");
5186
5187 if (suffix != NULL)
5188 {
5189 int name_len = suffix - name;
5190 int j;
5b4ee69b 5191
aeb5907d
JB
5192 is_new_style_renaming = 1;
5193 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5194 if (i != j && syms[j].symbol != NULL
5195 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5196 name_len) == 0
5197 && block == syms[j].block)
d12307c1 5198 syms[j].symbol = NULL;
aeb5907d
JB
5199 }
5200 }
5201 if (is_new_style_renaming)
5202 {
5203 int j, k;
5204
5205 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5206 if (syms[j].symbol != NULL)
aeb5907d
JB
5207 {
5208 syms[k] = syms[j];
5209 k += 1;
5210 }
5211 return k;
5212 }
4c4b4cd2
PH
5213
5214 /* Extract the function name associated to CURRENT_BLOCK.
5215 Abort if unable to do so. */
76a01679 5216
4c4b4cd2
PH
5217 if (current_block == NULL)
5218 return nsyms;
76a01679 5219
7f0df278 5220 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5221 if (current_function == NULL)
5222 return nsyms;
5223
5224 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5225 if (current_function_name == NULL)
5226 return nsyms;
5227
5228 /* Check each of the symbols, and remove it from the list if it is
5229 a type corresponding to a renaming that is out of the scope of
5230 the current block. */
5231
5232 i = 0;
5233 while (i < nsyms)
5234 {
d12307c1 5235 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5236 == ADA_OBJECT_RENAMING
d12307c1 5237 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5238 {
5239 int j;
5b4ee69b 5240
aeb5907d 5241 for (j = i + 1; j < nsyms; j += 1)
76a01679 5242 syms[j - 1] = syms[j];
4c4b4cd2
PH
5243 nsyms -= 1;
5244 }
5245 else
5246 i += 1;
5247 }
5248
5249 return nsyms;
5250}
5251
339c13b6
JB
5252/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5253 whose name and domain match NAME and DOMAIN respectively.
5254 If no match was found, then extend the search to "enclosing"
5255 routines (in other words, if we're inside a nested function,
5256 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5257 If WILD_MATCH_P is nonzero, perform the naming matching in
5258 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5259
5260 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5261
5262static void
5263ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5264 const struct block *block, domain_enum domain,
d0a8ab18 5265 int wild_match_p)
339c13b6
JB
5266{
5267 int block_depth = 0;
5268
5269 while (block != NULL)
5270 {
5271 block_depth += 1;
d0a8ab18
JB
5272 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5273 wild_match_p);
339c13b6
JB
5274
5275 /* If we found a non-function match, assume that's the one. */
5276 if (is_nonfunction (defns_collected (obstackp, 0),
5277 num_defns_collected (obstackp)))
5278 return;
5279
5280 block = BLOCK_SUPERBLOCK (block);
5281 }
5282
5283 /* If no luck so far, try to find NAME as a local symbol in some lexically
5284 enclosing subprogram. */
5285 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5286 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5287}
5288
ccefe4c4 5289/* An object of this type is used as the user_data argument when
40658b94 5290 calling the map_matching_symbols method. */
ccefe4c4 5291
40658b94 5292struct match_data
ccefe4c4 5293{
40658b94 5294 struct objfile *objfile;
ccefe4c4 5295 struct obstack *obstackp;
40658b94
PH
5296 struct symbol *arg_sym;
5297 int found_sym;
ccefe4c4
TT
5298};
5299
22cee43f 5300/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5301 to a list of symbols. DATA0 is a pointer to a struct match_data *
5302 containing the obstack that collects the symbol list, the file that SYM
5303 must come from, a flag indicating whether a non-argument symbol has
5304 been found in the current block, and the last argument symbol
5305 passed in SYM within the current block (if any). When SYM is null,
5306 marking the end of a block, the argument symbol is added if no
5307 other has been found. */
ccefe4c4 5308
40658b94
PH
5309static int
5310aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5311{
40658b94
PH
5312 struct match_data *data = (struct match_data *) data0;
5313
5314 if (sym == NULL)
5315 {
5316 if (!data->found_sym && data->arg_sym != NULL)
5317 add_defn_to_vec (data->obstackp,
5318 fixup_symbol_section (data->arg_sym, data->objfile),
5319 block);
5320 data->found_sym = 0;
5321 data->arg_sym = NULL;
5322 }
5323 else
5324 {
5325 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5326 return 0;
5327 else if (SYMBOL_IS_ARGUMENT (sym))
5328 data->arg_sym = sym;
5329 else
5330 {
5331 data->found_sym = 1;
5332 add_defn_to_vec (data->obstackp,
5333 fixup_symbol_section (sym, data->objfile),
5334 block);
5335 }
5336 }
5337 return 0;
5338}
5339
22cee43f
PMR
5340/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5341 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5342 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5343 function "wild_match" for more information). Return whether we found such
5344 symbols. */
5345
5346static int
5347ada_add_block_renamings (struct obstack *obstackp,
5348 const struct block *block,
5349 const char *name,
5350 domain_enum domain,
5351 int wild_match_p)
5352{
5353 struct using_direct *renaming;
5354 int defns_mark = num_defns_collected (obstackp);
5355
5356 for (renaming = block_using (block);
5357 renaming != NULL;
5358 renaming = renaming->next)
5359 {
5360 const char *r_name;
5361 int name_match;
5362
5363 /* Avoid infinite recursions: skip this renaming if we are actually
5364 already traversing it.
5365
5366 Currently, symbol lookup in Ada don't use the namespace machinery from
5367 C++/Fortran support: skip namespace imports that use them. */
5368 if (renaming->searched
5369 || (renaming->import_src != NULL
5370 && renaming->import_src[0] != '\0')
5371 || (renaming->import_dest != NULL
5372 && renaming->import_dest[0] != '\0'))
5373 continue;
5374 renaming->searched = 1;
5375
5376 /* TODO: here, we perform another name-based symbol lookup, which can
5377 pull its own multiple overloads. In theory, we should be able to do
5378 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5379 not a simple name. But in order to do this, we would need to enhance
5380 the DWARF reader to associate a symbol to this renaming, instead of a
5381 name. So, for now, we do something simpler: re-use the C++/Fortran
5382 namespace machinery. */
5383 r_name = (renaming->alias != NULL
5384 ? renaming->alias
5385 : renaming->declaration);
5386 name_match
5387 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5388 if (name_match == 0)
5389 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5390 1, NULL);
5391 renaming->searched = 0;
5392 }
5393 return num_defns_collected (obstackp) != defns_mark;
5394}
5395
db230ce3
JB
5396/* Implements compare_names, but only applying the comparision using
5397 the given CASING. */
5b4ee69b 5398
40658b94 5399static int
db230ce3
JB
5400compare_names_with_case (const char *string1, const char *string2,
5401 enum case_sensitivity casing)
40658b94
PH
5402{
5403 while (*string1 != '\0' && *string2 != '\0')
5404 {
db230ce3
JB
5405 char c1, c2;
5406
40658b94
PH
5407 if (isspace (*string1) || isspace (*string2))
5408 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5409
5410 if (casing == case_sensitive_off)
5411 {
5412 c1 = tolower (*string1);
5413 c2 = tolower (*string2);
5414 }
5415 else
5416 {
5417 c1 = *string1;
5418 c2 = *string2;
5419 }
5420 if (c1 != c2)
40658b94 5421 break;
db230ce3 5422
40658b94
PH
5423 string1 += 1;
5424 string2 += 1;
5425 }
db230ce3 5426
40658b94
PH
5427 switch (*string1)
5428 {
5429 case '(':
5430 return strcmp_iw_ordered (string1, string2);
5431 case '_':
5432 if (*string2 == '\0')
5433 {
052874e8 5434 if (is_name_suffix (string1))
40658b94
PH
5435 return 0;
5436 else
1a1d5513 5437 return 1;
40658b94 5438 }
dbb8534f 5439 /* FALLTHROUGH */
40658b94
PH
5440 default:
5441 if (*string2 == '(')
5442 return strcmp_iw_ordered (string1, string2);
5443 else
db230ce3
JB
5444 {
5445 if (casing == case_sensitive_off)
5446 return tolower (*string1) - tolower (*string2);
5447 else
5448 return *string1 - *string2;
5449 }
40658b94 5450 }
ccefe4c4
TT
5451}
5452
db230ce3
JB
5453/* Compare STRING1 to STRING2, with results as for strcmp.
5454 Compatible with strcmp_iw_ordered in that...
5455
5456 strcmp_iw_ordered (STRING1, STRING2) <= 0
5457
5458 ... implies...
5459
5460 compare_names (STRING1, STRING2) <= 0
5461
5462 (they may differ as to what symbols compare equal). */
5463
5464static int
5465compare_names (const char *string1, const char *string2)
5466{
5467 int result;
5468
5469 /* Similar to what strcmp_iw_ordered does, we need to perform
5470 a case-insensitive comparison first, and only resort to
5471 a second, case-sensitive, comparison if the first one was
5472 not sufficient to differentiate the two strings. */
5473
5474 result = compare_names_with_case (string1, string2, case_sensitive_off);
5475 if (result == 0)
5476 result = compare_names_with_case (string1, string2, case_sensitive_on);
5477
5478 return result;
5479}
5480
339c13b6
JB
5481/* Add to OBSTACKP all non-local symbols whose name and domain match
5482 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5483 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5484
5485static void
40658b94
PH
5486add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5487 domain_enum domain, int global,
5488 int is_wild_match)
339c13b6
JB
5489{
5490 struct objfile *objfile;
22cee43f 5491 struct compunit_symtab *cu;
40658b94 5492 struct match_data data;
339c13b6 5493
6475f2fe 5494 memset (&data, 0, sizeof data);
ccefe4c4 5495 data.obstackp = obstackp;
339c13b6 5496
ccefe4c4 5497 ALL_OBJFILES (objfile)
40658b94
PH
5498 {
5499 data.objfile = objfile;
5500
5501 if (is_wild_match)
4186eb54
KS
5502 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5503 aux_add_nonlocal_symbols, &data,
5504 wild_match, NULL);
40658b94 5505 else
4186eb54
KS
5506 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5507 aux_add_nonlocal_symbols, &data,
5508 full_match, compare_names);
22cee43f
PMR
5509
5510 ALL_OBJFILE_COMPUNITS (objfile, cu)
5511 {
5512 const struct block *global_block
5513 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5514
5515 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5516 is_wild_match))
5517 data.found_sym = 1;
5518 }
40658b94
PH
5519 }
5520
5521 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5522 {
5523 ALL_OBJFILES (objfile)
5524 {
5525 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5526 strcpy (name1, "_ada_");
5527 strcpy (name1 + sizeof ("_ada_") - 1, name);
5528 data.objfile = objfile;
ade7ed9e
DE
5529 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5530 global,
0963b4bd
MS
5531 aux_add_nonlocal_symbols,
5532 &data,
40658b94
PH
5533 full_match, compare_names);
5534 }
5535 }
339c13b6
JB
5536}
5537
22cee43f 5538/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5539 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5540 matches. Add these to OBSTACKP.
4eeaa230 5541
22cee43f
PMR
5542 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5543 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5544 is the one match returned (no other matches in that or
d9680e73 5545 enclosing blocks is returned). If there are any matches in or
22cee43f 5546 surrounding BLOCK, then these alone are returned.
4eeaa230 5547
9f88c959 5548 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5549 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5550
22cee43f
PMR
5551 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5552 to lookup global symbols. */
5553
5554static void
5555ada_add_all_symbols (struct obstack *obstackp,
5556 const struct block *block,
5557 const char *name,
5558 domain_enum domain,
5559 int full_search,
5560 int *made_global_lookup_p)
14f9c5c9
AS
5561{
5562 struct symbol *sym;
22cee43f 5563 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5564
22cee43f
PMR
5565 if (made_global_lookup_p)
5566 *made_global_lookup_p = 0;
339c13b6
JB
5567
5568 /* Special case: If the user specifies a symbol name inside package
5569 Standard, do a non-wild matching of the symbol name without
5570 the "standard__" prefix. This was primarily introduced in order
5571 to allow the user to specifically access the standard exceptions
5572 using, for instance, Standard.Constraint_Error when Constraint_Error
5573 is ambiguous (due to the user defining its own Constraint_Error
5574 entity inside its program). */
22cee43f 5575 if (startswith (name, "standard__"))
4c4b4cd2 5576 {
4c4b4cd2 5577 block = NULL;
22cee43f 5578 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5579 }
5580
339c13b6 5581 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5582
4eeaa230
DE
5583 if (block != NULL)
5584 {
5585 if (full_search)
22cee43f 5586 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5587 else
5588 {
5589 /* In the !full_search case we're are being called by
5590 ada_iterate_over_symbols, and we don't want to search
5591 superblocks. */
22cee43f
PMR
5592 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5593 wild_match_p);
4eeaa230 5594 }
22cee43f
PMR
5595 if (num_defns_collected (obstackp) > 0 || !full_search)
5596 return;
4eeaa230 5597 }
d2e4a39e 5598
339c13b6
JB
5599 /* No non-global symbols found. Check our cache to see if we have
5600 already performed this search before. If we have, then return
5601 the same result. */
5602
22cee43f 5603 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5604 {
5605 if (sym != NULL)
22cee43f
PMR
5606 add_defn_to_vec (obstackp, sym, block);
5607 return;
4c4b4cd2 5608 }
14f9c5c9 5609
22cee43f
PMR
5610 if (made_global_lookup_p)
5611 *made_global_lookup_p = 1;
b1eedac9 5612
339c13b6
JB
5613 /* Search symbols from all global blocks. */
5614
22cee43f 5615 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5616
4c4b4cd2 5617 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5618 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5619
22cee43f
PMR
5620 if (num_defns_collected (obstackp) == 0)
5621 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5622}
5623
5624/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5625 non-zero, enclosing scope and in global scopes, returning the number of
5626 matches.
5627 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5628 indicating the symbols found and the blocks and symbol tables (if
5629 any) in which they were found. This vector is transient---good only to
5630 the next call of ada_lookup_symbol_list.
5631
5632 When full_search is non-zero, any non-function/non-enumeral
5633 symbol match within the nest of blocks whose innermost member is BLOCK,
5634 is the one match returned (no other matches in that or
5635 enclosing blocks is returned). If there are any matches in or
5636 surrounding BLOCK, then these alone are returned.
5637
5638 Names prefixed with "standard__" are handled specially: "standard__"
5639 is first stripped off, and only static and global symbols are searched. */
5640
5641static int
5642ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5643 domain_enum domain,
5644 struct block_symbol **results,
5645 int full_search)
5646{
5647 const int wild_match_p = should_use_wild_match (name);
5648 int syms_from_global_search;
5649 int ndefns;
5650
5651 obstack_free (&symbol_list_obstack, NULL);
5652 obstack_init (&symbol_list_obstack);
5653 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5654 full_search, &syms_from_global_search);
14f9c5c9 5655
4c4b4cd2
PH
5656 ndefns = num_defns_collected (&symbol_list_obstack);
5657 *results = defns_collected (&symbol_list_obstack, 1);
5658
5659 ndefns = remove_extra_symbols (*results, ndefns);
5660
b1eedac9 5661 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5662 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5663
b1eedac9 5664 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5665 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5666
22cee43f 5667 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5668 return ndefns;
5669}
5670
4eeaa230
DE
5671/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5672 in global scopes, returning the number of matches, and setting *RESULTS
5673 to a vector of (SYM,BLOCK) tuples.
5674 See ada_lookup_symbol_list_worker for further details. */
5675
5676int
5677ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5678 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5679{
5680 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5681}
5682
5683/* Implementation of the la_iterate_over_symbols method. */
5684
5685static void
5686ada_iterate_over_symbols (const struct block *block,
5687 const char *name, domain_enum domain,
5688 symbol_found_callback_ftype *callback,
5689 void *data)
5690{
5691 int ndefs, i;
d12307c1 5692 struct block_symbol *results;
4eeaa230
DE
5693
5694 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5695 for (i = 0; i < ndefs; ++i)
5696 {
d12307c1 5697 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5698 break;
5699 }
5700}
5701
f8eba3c6
TT
5702/* If NAME is the name of an entity, return a string that should
5703 be used to look that entity up in Ada units. This string should
5704 be deallocated after use using xfree.
5705
5706 NAME can have any form that the "break" or "print" commands might
5707 recognize. In other words, it does not have to be the "natural"
5708 name, or the "encoded" name. */
5709
5710char *
5711ada_name_for_lookup (const char *name)
5712{
5713 char *canon;
5714 int nlen = strlen (name);
5715
5716 if (name[0] == '<' && name[nlen - 1] == '>')
5717 {
5718 canon = xmalloc (nlen - 1);
5719 memcpy (canon, name + 1, nlen - 2);
5720 canon[nlen - 2] = '\0';
5721 }
5722 else
5723 canon = xstrdup (ada_encode (ada_fold_name (name)));
5724 return canon;
5725}
5726
4e5c77fe
JB
5727/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5728 to 1, but choosing the first symbol found if there are multiple
5729 choices.
5730
5e2336be
JB
5731 The result is stored in *INFO, which must be non-NULL.
5732 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5733
5734void
5735ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5736 domain_enum domain,
d12307c1 5737 struct block_symbol *info)
14f9c5c9 5738{
d12307c1 5739 struct block_symbol *candidates;
14f9c5c9
AS
5740 int n_candidates;
5741
5e2336be 5742 gdb_assert (info != NULL);
d12307c1 5743 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5744
fe978cb0 5745 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5746 if (n_candidates == 0)
4e5c77fe 5747 return;
4c4b4cd2 5748
5e2336be 5749 *info = candidates[0];
d12307c1 5750 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5751}
aeb5907d
JB
5752
5753/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5754 scope and in global scopes, or NULL if none. NAME is folded and
5755 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5756 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5757 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5758
d12307c1 5759struct block_symbol
aeb5907d 5760ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5761 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5762{
d12307c1 5763 struct block_symbol info;
4e5c77fe 5764
aeb5907d
JB
5765 if (is_a_field_of_this != NULL)
5766 *is_a_field_of_this = 0;
5767
4e5c77fe 5768 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5769 block0, domain, &info);
d12307c1 5770 return info;
4c4b4cd2 5771}
14f9c5c9 5772
d12307c1 5773static struct block_symbol
f606139a
DE
5774ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5775 const char *name,
76a01679 5776 const struct block *block,
21b556f4 5777 const domain_enum domain)
4c4b4cd2 5778{
d12307c1 5779 struct block_symbol sym;
04dccad0
JB
5780
5781 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5782 if (sym.symbol != NULL)
04dccad0
JB
5783 return sym;
5784
5785 /* If we haven't found a match at this point, try the primitive
5786 types. In other languages, this search is performed before
5787 searching for global symbols in order to short-circuit that
5788 global-symbol search if it happens that the name corresponds
5789 to a primitive type. But we cannot do the same in Ada, because
5790 it is perfectly legitimate for a program to declare a type which
5791 has the same name as a standard type. If looking up a type in
5792 that situation, we have traditionally ignored the primitive type
5793 in favor of user-defined types. This is why, unlike most other
5794 languages, we search the primitive types this late and only after
5795 having searched the global symbols without success. */
5796
5797 if (domain == VAR_DOMAIN)
5798 {
5799 struct gdbarch *gdbarch;
5800
5801 if (block == NULL)
5802 gdbarch = target_gdbarch ();
5803 else
5804 gdbarch = block_gdbarch (block);
d12307c1
PMR
5805 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5806 if (sym.symbol != NULL)
04dccad0
JB
5807 return sym;
5808 }
5809
d12307c1 5810 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5811}
5812
5813
4c4b4cd2
PH
5814/* True iff STR is a possible encoded suffix of a normal Ada name
5815 that is to be ignored for matching purposes. Suffixes of parallel
5816 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5817 are given by any of the regular expressions:
4c4b4cd2 5818
babe1480
JB
5819 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5820 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5821 TKB [subprogram suffix for task bodies]
babe1480 5822 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5823 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5824
5825 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5826 match is performed. This sequence is used to differentiate homonyms,
5827 is an optional part of a valid name suffix. */
4c4b4cd2 5828
14f9c5c9 5829static int
d2e4a39e 5830is_name_suffix (const char *str)
14f9c5c9
AS
5831{
5832 int k;
4c4b4cd2
PH
5833 const char *matching;
5834 const int len = strlen (str);
5835
babe1480
JB
5836 /* Skip optional leading __[0-9]+. */
5837
4c4b4cd2
PH
5838 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5839 {
babe1480
JB
5840 str += 3;
5841 while (isdigit (str[0]))
5842 str += 1;
4c4b4cd2 5843 }
babe1480
JB
5844
5845 /* [.$][0-9]+ */
4c4b4cd2 5846
babe1480 5847 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5848 {
babe1480 5849 matching = str + 1;
4c4b4cd2
PH
5850 while (isdigit (matching[0]))
5851 matching += 1;
5852 if (matching[0] == '\0')
5853 return 1;
5854 }
5855
5856 /* ___[0-9]+ */
babe1480 5857
4c4b4cd2
PH
5858 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5859 {
5860 matching = str + 3;
5861 while (isdigit (matching[0]))
5862 matching += 1;
5863 if (matching[0] == '\0')
5864 return 1;
5865 }
5866
9ac7f98e
JB
5867 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5868
5869 if (strcmp (str, "TKB") == 0)
5870 return 1;
5871
529cad9c
PH
5872#if 0
5873 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5874 with a N at the end. Unfortunately, the compiler uses the same
5875 convention for other internal types it creates. So treating
529cad9c 5876 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5877 some regressions. For instance, consider the case of an enumerated
5878 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5879 name ends with N.
5880 Having a single character like this as a suffix carrying some
0963b4bd 5881 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5882 to be something like "_N" instead. In the meantime, do not do
5883 the following check. */
5884 /* Protected Object Subprograms */
5885 if (len == 1 && str [0] == 'N')
5886 return 1;
5887#endif
5888
5889 /* _E[0-9]+[bs]$ */
5890 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5891 {
5892 matching = str + 3;
5893 while (isdigit (matching[0]))
5894 matching += 1;
5895 if ((matching[0] == 'b' || matching[0] == 's')
5896 && matching [1] == '\0')
5897 return 1;
5898 }
5899
4c4b4cd2
PH
5900 /* ??? We should not modify STR directly, as we are doing below. This
5901 is fine in this case, but may become problematic later if we find
5902 that this alternative did not work, and want to try matching
5903 another one from the begining of STR. Since we modified it, we
5904 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5905 if (str[0] == 'X')
5906 {
5907 str += 1;
d2e4a39e 5908 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5909 {
5910 if (str[0] != 'n' && str[0] != 'b')
5911 return 0;
5912 str += 1;
5913 }
14f9c5c9 5914 }
babe1480 5915
14f9c5c9
AS
5916 if (str[0] == '\000')
5917 return 1;
babe1480 5918
d2e4a39e 5919 if (str[0] == '_')
14f9c5c9
AS
5920 {
5921 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5922 return 0;
d2e4a39e 5923 if (str[2] == '_')
4c4b4cd2 5924 {
61ee279c
PH
5925 if (strcmp (str + 3, "JM") == 0)
5926 return 1;
5927 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5928 the LJM suffix in favor of the JM one. But we will
5929 still accept LJM as a valid suffix for a reasonable
5930 amount of time, just to allow ourselves to debug programs
5931 compiled using an older version of GNAT. */
4c4b4cd2
PH
5932 if (strcmp (str + 3, "LJM") == 0)
5933 return 1;
5934 if (str[3] != 'X')
5935 return 0;
1265e4aa
JB
5936 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5937 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5938 return 1;
5939 if (str[4] == 'R' && str[5] != 'T')
5940 return 1;
5941 return 0;
5942 }
5943 if (!isdigit (str[2]))
5944 return 0;
5945 for (k = 3; str[k] != '\0'; k += 1)
5946 if (!isdigit (str[k]) && str[k] != '_')
5947 return 0;
14f9c5c9
AS
5948 return 1;
5949 }
4c4b4cd2 5950 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5951 {
4c4b4cd2
PH
5952 for (k = 2; str[k] != '\0'; k += 1)
5953 if (!isdigit (str[k]) && str[k] != '_')
5954 return 0;
14f9c5c9
AS
5955 return 1;
5956 }
5957 return 0;
5958}
d2e4a39e 5959
aeb5907d
JB
5960/* Return non-zero if the string starting at NAME and ending before
5961 NAME_END contains no capital letters. */
529cad9c
PH
5962
5963static int
5964is_valid_name_for_wild_match (const char *name0)
5965{
5966 const char *decoded_name = ada_decode (name0);
5967 int i;
5968
5823c3ef
JB
5969 /* If the decoded name starts with an angle bracket, it means that
5970 NAME0 does not follow the GNAT encoding format. It should then
5971 not be allowed as a possible wild match. */
5972 if (decoded_name[0] == '<')
5973 return 0;
5974
529cad9c
PH
5975 for (i=0; decoded_name[i] != '\0'; i++)
5976 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5977 return 0;
5978
5979 return 1;
5980}
5981
73589123
PH
5982/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5983 that could start a simple name. Assumes that *NAMEP points into
5984 the string beginning at NAME0. */
4c4b4cd2 5985
14f9c5c9 5986static int
73589123 5987advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5988{
73589123 5989 const char *name = *namep;
5b4ee69b 5990
5823c3ef 5991 while (1)
14f9c5c9 5992 {
aa27d0b3 5993 int t0, t1;
73589123
PH
5994
5995 t0 = *name;
5996 if (t0 == '_')
5997 {
5998 t1 = name[1];
5999 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6000 {
6001 name += 1;
61012eef 6002 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6003 break;
6004 else
6005 name += 1;
6006 }
aa27d0b3
JB
6007 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6008 || name[2] == target0))
73589123
PH
6009 {
6010 name += 2;
6011 break;
6012 }
6013 else
6014 return 0;
6015 }
6016 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6017 name += 1;
6018 else
5823c3ef 6019 return 0;
73589123
PH
6020 }
6021
6022 *namep = name;
6023 return 1;
6024}
6025
6026/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6027 informational suffixes of NAME (i.e., for which is_name_suffix is
6028 true). Assumes that PATN is a lower-cased Ada simple name. */
6029
6030static int
6031wild_match (const char *name, const char *patn)
6032{
22e048c9 6033 const char *p;
73589123
PH
6034 const char *name0 = name;
6035
6036 while (1)
6037 {
6038 const char *match = name;
6039
6040 if (*name == *patn)
6041 {
6042 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6043 if (*p != *name)
6044 break;
6045 if (*p == '\0' && is_name_suffix (name))
6046 return match != name0 && !is_valid_name_for_wild_match (name0);
6047
6048 if (name[-1] == '_')
6049 name -= 1;
6050 }
6051 if (!advance_wild_match (&name, name0, *patn))
6052 return 1;
96d887e8 6053 }
96d887e8
PH
6054}
6055
40658b94
PH
6056/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6057 informational suffix. */
6058
c4d840bd
PH
6059static int
6060full_match (const char *sym_name, const char *search_name)
6061{
40658b94 6062 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6063}
6064
6065
96d887e8
PH
6066/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6067 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6068 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6069 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6070
6071static void
6072ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6073 const struct block *block, const char *name,
96d887e8 6074 domain_enum domain, struct objfile *objfile,
2570f2b7 6075 int wild)
96d887e8 6076{
8157b174 6077 struct block_iterator iter;
96d887e8
PH
6078 int name_len = strlen (name);
6079 /* A matching argument symbol, if any. */
6080 struct symbol *arg_sym;
6081 /* Set true when we find a matching non-argument symbol. */
6082 int found_sym;
6083 struct symbol *sym;
6084
6085 arg_sym = NULL;
6086 found_sym = 0;
6087 if (wild)
6088 {
8157b174
TT
6089 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6090 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6091 {
4186eb54
KS
6092 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6093 SYMBOL_DOMAIN (sym), domain)
73589123 6094 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6095 {
2a2d4dc3
AS
6096 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6097 continue;
6098 else if (SYMBOL_IS_ARGUMENT (sym))
6099 arg_sym = sym;
6100 else
6101 {
76a01679
JB
6102 found_sym = 1;
6103 add_defn_to_vec (obstackp,
6104 fixup_symbol_section (sym, objfile),
2570f2b7 6105 block);
76a01679
JB
6106 }
6107 }
6108 }
96d887e8
PH
6109 }
6110 else
6111 {
8157b174
TT
6112 for (sym = block_iter_match_first (block, name, full_match, &iter);
6113 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6114 {
4186eb54
KS
6115 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6116 SYMBOL_DOMAIN (sym), domain))
76a01679 6117 {
c4d840bd
PH
6118 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6119 {
6120 if (SYMBOL_IS_ARGUMENT (sym))
6121 arg_sym = sym;
6122 else
2a2d4dc3 6123 {
c4d840bd
PH
6124 found_sym = 1;
6125 add_defn_to_vec (obstackp,
6126 fixup_symbol_section (sym, objfile),
6127 block);
2a2d4dc3 6128 }
c4d840bd 6129 }
76a01679
JB
6130 }
6131 }
96d887e8
PH
6132 }
6133
22cee43f
PMR
6134 /* Handle renamings. */
6135
6136 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6137 found_sym = 1;
6138
96d887e8
PH
6139 if (!found_sym && arg_sym != NULL)
6140 {
76a01679
JB
6141 add_defn_to_vec (obstackp,
6142 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6143 block);
96d887e8
PH
6144 }
6145
6146 if (!wild)
6147 {
6148 arg_sym = NULL;
6149 found_sym = 0;
6150
6151 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6152 {
4186eb54
KS
6153 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6154 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6155 {
6156 int cmp;
6157
6158 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6159 if (cmp == 0)
6160 {
61012eef 6161 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6162 if (cmp == 0)
6163 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6164 name_len);
6165 }
6166
6167 if (cmp == 0
6168 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6169 {
2a2d4dc3
AS
6170 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6171 {
6172 if (SYMBOL_IS_ARGUMENT (sym))
6173 arg_sym = sym;
6174 else
6175 {
6176 found_sym = 1;
6177 add_defn_to_vec (obstackp,
6178 fixup_symbol_section (sym, objfile),
6179 block);
6180 }
6181 }
76a01679
JB
6182 }
6183 }
76a01679 6184 }
96d887e8
PH
6185
6186 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6187 They aren't parameters, right? */
6188 if (!found_sym && arg_sym != NULL)
6189 {
6190 add_defn_to_vec (obstackp,
76a01679 6191 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6192 block);
96d887e8
PH
6193 }
6194 }
6195}
6196\f
41d27058
JB
6197
6198 /* Symbol Completion */
6199
6200/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6201 name in a form that's appropriate for the completion. The result
6202 does not need to be deallocated, but is only good until the next call.
6203
6204 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6205 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6206 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6207 in its encoded form. */
6208
6209static const char *
6210symbol_completion_match (const char *sym_name,
6211 const char *text, int text_len,
6ea35997 6212 int wild_match_p, int encoded_p)
41d27058 6213{
41d27058
JB
6214 const int verbatim_match = (text[0] == '<');
6215 int match = 0;
6216
6217 if (verbatim_match)
6218 {
6219 /* Strip the leading angle bracket. */
6220 text = text + 1;
6221 text_len--;
6222 }
6223
6224 /* First, test against the fully qualified name of the symbol. */
6225
6226 if (strncmp (sym_name, text, text_len) == 0)
6227 match = 1;
6228
6ea35997 6229 if (match && !encoded_p)
41d27058
JB
6230 {
6231 /* One needed check before declaring a positive match is to verify
6232 that iff we are doing a verbatim match, the decoded version
6233 of the symbol name starts with '<'. Otherwise, this symbol name
6234 is not a suitable completion. */
6235 const char *sym_name_copy = sym_name;
6236 int has_angle_bracket;
6237
6238 sym_name = ada_decode (sym_name);
6239 has_angle_bracket = (sym_name[0] == '<');
6240 match = (has_angle_bracket == verbatim_match);
6241 sym_name = sym_name_copy;
6242 }
6243
6244 if (match && !verbatim_match)
6245 {
6246 /* When doing non-verbatim match, another check that needs to
6247 be done is to verify that the potentially matching symbol name
6248 does not include capital letters, because the ada-mode would
6249 not be able to understand these symbol names without the
6250 angle bracket notation. */
6251 const char *tmp;
6252
6253 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6254 if (*tmp != '\0')
6255 match = 0;
6256 }
6257
6258 /* Second: Try wild matching... */
6259
e701b3c0 6260 if (!match && wild_match_p)
41d27058
JB
6261 {
6262 /* Since we are doing wild matching, this means that TEXT
6263 may represent an unqualified symbol name. We therefore must
6264 also compare TEXT against the unqualified name of the symbol. */
6265 sym_name = ada_unqualified_name (ada_decode (sym_name));
6266
6267 if (strncmp (sym_name, text, text_len) == 0)
6268 match = 1;
6269 }
6270
6271 /* Finally: If we found a mach, prepare the result to return. */
6272
6273 if (!match)
6274 return NULL;
6275
6276 if (verbatim_match)
6277 sym_name = add_angle_brackets (sym_name);
6278
6ea35997 6279 if (!encoded_p)
41d27058
JB
6280 sym_name = ada_decode (sym_name);
6281
6282 return sym_name;
6283}
6284
6285/* A companion function to ada_make_symbol_completion_list().
6286 Check if SYM_NAME represents a symbol which name would be suitable
6287 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6288 it is appended at the end of the given string vector SV.
6289
6290 ORIG_TEXT is the string original string from the user command
6291 that needs to be completed. WORD is the entire command on which
6292 completion should be performed. These two parameters are used to
6293 determine which part of the symbol name should be added to the
6294 completion vector.
c0af1706 6295 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6296 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6297 encoded formed (in which case the completion should also be
6298 encoded). */
6299
6300static void
d6565258 6301symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6302 const char *sym_name,
6303 const char *text, int text_len,
6304 const char *orig_text, const char *word,
cb8e9b97 6305 int wild_match_p, int encoded_p)
41d27058
JB
6306{
6307 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6308 wild_match_p, encoded_p);
41d27058
JB
6309 char *completion;
6310
6311 if (match == NULL)
6312 return;
6313
6314 /* We found a match, so add the appropriate completion to the given
6315 string vector. */
6316
6317 if (word == orig_text)
6318 {
6319 completion = xmalloc (strlen (match) + 5);
6320 strcpy (completion, match);
6321 }
6322 else if (word > orig_text)
6323 {
6324 /* Return some portion of sym_name. */
6325 completion = xmalloc (strlen (match) + 5);
6326 strcpy (completion, match + (word - orig_text));
6327 }
6328 else
6329 {
6330 /* Return some of ORIG_TEXT plus sym_name. */
6331 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6332 strncpy (completion, word, orig_text - word);
6333 completion[orig_text - word] = '\0';
6334 strcat (completion, match);
6335 }
6336
d6565258 6337 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6338}
6339
ccefe4c4 6340/* An object of this type is passed as the user_data argument to the
bb4142cf 6341 expand_symtabs_matching method. */
ccefe4c4
TT
6342struct add_partial_datum
6343{
6344 VEC(char_ptr) **completions;
6f937416 6345 const char *text;
ccefe4c4 6346 int text_len;
6f937416
PA
6347 const char *text0;
6348 const char *word;
ccefe4c4
TT
6349 int wild_match;
6350 int encoded;
6351};
6352
bb4142cf
DE
6353/* A callback for expand_symtabs_matching. */
6354
7b08b9eb 6355static int
bb4142cf 6356ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6357{
6358 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6359
6360 return symbol_completion_match (name, data->text, data->text_len,
6361 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6362}
6363
49c4e619
TT
6364/* Return a list of possible symbol names completing TEXT0. WORD is
6365 the entire command on which completion is made. */
41d27058 6366
49c4e619 6367static VEC (char_ptr) *
6f937416
PA
6368ada_make_symbol_completion_list (const char *text0, const char *word,
6369 enum type_code code)
41d27058
JB
6370{
6371 char *text;
6372 int text_len;
b1ed564a
JB
6373 int wild_match_p;
6374 int encoded_p;
2ba95b9b 6375 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6376 struct symbol *sym;
43f3e411 6377 struct compunit_symtab *s;
41d27058
JB
6378 struct minimal_symbol *msymbol;
6379 struct objfile *objfile;
3977b71f 6380 const struct block *b, *surrounding_static_block = 0;
41d27058 6381 int i;
8157b174 6382 struct block_iterator iter;
b8fea896 6383 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6384
2f68a895
TT
6385 gdb_assert (code == TYPE_CODE_UNDEF);
6386
41d27058
JB
6387 if (text0[0] == '<')
6388 {
6389 text = xstrdup (text0);
6390 make_cleanup (xfree, text);
6391 text_len = strlen (text);
b1ed564a
JB
6392 wild_match_p = 0;
6393 encoded_p = 1;
41d27058
JB
6394 }
6395 else
6396 {
6397 text = xstrdup (ada_encode (text0));
6398 make_cleanup (xfree, text);
6399 text_len = strlen (text);
6400 for (i = 0; i < text_len; i++)
6401 text[i] = tolower (text[i]);
6402
b1ed564a 6403 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6404 /* If the name contains a ".", then the user is entering a fully
6405 qualified entity name, and the match must not be done in wild
6406 mode. Similarly, if the user wants to complete what looks like
6407 an encoded name, the match must not be done in wild mode. */
b1ed564a 6408 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6409 }
6410
6411 /* First, look at the partial symtab symbols. */
41d27058 6412 {
ccefe4c4
TT
6413 struct add_partial_datum data;
6414
6415 data.completions = &completions;
6416 data.text = text;
6417 data.text_len = text_len;
6418 data.text0 = text0;
6419 data.word = word;
b1ed564a
JB
6420 data.wild_match = wild_match_p;
6421 data.encoded = encoded_p;
276d885b
GB
6422 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6423 ALL_DOMAIN, &data);
41d27058
JB
6424 }
6425
6426 /* At this point scan through the misc symbol vectors and add each
6427 symbol you find to the list. Eventually we want to ignore
6428 anything that isn't a text symbol (everything else will be
6429 handled by the psymtab code above). */
6430
6431 ALL_MSYMBOLS (objfile, msymbol)
6432 {
6433 QUIT;
efd66ac6 6434 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6435 text, text_len, text0, word, wild_match_p,
6436 encoded_p);
41d27058
JB
6437 }
6438
6439 /* Search upwards from currently selected frame (so that we can
6440 complete on local vars. */
6441
6442 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6443 {
6444 if (!BLOCK_SUPERBLOCK (b))
6445 surrounding_static_block = b; /* For elmin of dups */
6446
6447 ALL_BLOCK_SYMBOLS (b, iter, sym)
6448 {
d6565258 6449 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6450 text, text_len, text0, word,
b1ed564a 6451 wild_match_p, encoded_p);
41d27058
JB
6452 }
6453 }
6454
6455 /* Go through the symtabs and check the externs and statics for
43f3e411 6456 symbols which match. */
41d27058 6457
43f3e411 6458 ALL_COMPUNITS (objfile, s)
41d27058
JB
6459 {
6460 QUIT;
43f3e411 6461 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6462 ALL_BLOCK_SYMBOLS (b, iter, sym)
6463 {
d6565258 6464 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6465 text, text_len, text0, word,
b1ed564a 6466 wild_match_p, encoded_p);
41d27058
JB
6467 }
6468 }
6469
43f3e411 6470 ALL_COMPUNITS (objfile, s)
41d27058
JB
6471 {
6472 QUIT;
43f3e411 6473 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6474 /* Don't do this block twice. */
6475 if (b == surrounding_static_block)
6476 continue;
6477 ALL_BLOCK_SYMBOLS (b, iter, sym)
6478 {
d6565258 6479 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6480 text, text_len, text0, word,
b1ed564a 6481 wild_match_p, encoded_p);
41d27058
JB
6482 }
6483 }
6484
b8fea896 6485 do_cleanups (old_chain);
49c4e619 6486 return completions;
41d27058
JB
6487}
6488
963a6417 6489 /* Field Access */
96d887e8 6490
73fb9985
JB
6491/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6492 for tagged types. */
6493
6494static int
6495ada_is_dispatch_table_ptr_type (struct type *type)
6496{
0d5cff50 6497 const char *name;
73fb9985
JB
6498
6499 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6500 return 0;
6501
6502 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6503 if (name == NULL)
6504 return 0;
6505
6506 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6507}
6508
ac4a2da4
JG
6509/* Return non-zero if TYPE is an interface tag. */
6510
6511static int
6512ada_is_interface_tag (struct type *type)
6513{
6514 const char *name = TYPE_NAME (type);
6515
6516 if (name == NULL)
6517 return 0;
6518
6519 return (strcmp (name, "ada__tags__interface_tag") == 0);
6520}
6521
963a6417
PH
6522/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6523 to be invisible to users. */
96d887e8 6524
963a6417
PH
6525int
6526ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6527{
963a6417
PH
6528 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6529 return 1;
ffde82bf 6530
73fb9985
JB
6531 /* Check the name of that field. */
6532 {
6533 const char *name = TYPE_FIELD_NAME (type, field_num);
6534
6535 /* Anonymous field names should not be printed.
6536 brobecker/2007-02-20: I don't think this can actually happen
6537 but we don't want to print the value of annonymous fields anyway. */
6538 if (name == NULL)
6539 return 1;
6540
ffde82bf
JB
6541 /* Normally, fields whose name start with an underscore ("_")
6542 are fields that have been internally generated by the compiler,
6543 and thus should not be printed. The "_parent" field is special,
6544 however: This is a field internally generated by the compiler
6545 for tagged types, and it contains the components inherited from
6546 the parent type. This field should not be printed as is, but
6547 should not be ignored either. */
61012eef 6548 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6549 return 1;
6550 }
6551
ac4a2da4
JG
6552 /* If this is the dispatch table of a tagged type or an interface tag,
6553 then ignore. */
73fb9985 6554 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6555 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6556 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6557 return 1;
6558
6559 /* Not a special field, so it should not be ignored. */
6560 return 0;
963a6417 6561}
96d887e8 6562
963a6417 6563/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6564 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6565
963a6417
PH
6566int
6567ada_is_tagged_type (struct type *type, int refok)
6568{
6569 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6570}
96d887e8 6571
963a6417 6572/* True iff TYPE represents the type of X'Tag */
96d887e8 6573
963a6417
PH
6574int
6575ada_is_tag_type (struct type *type)
6576{
460efde1
JB
6577 type = ada_check_typedef (type);
6578
963a6417
PH
6579 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6580 return 0;
6581 else
96d887e8 6582 {
963a6417 6583 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6584
963a6417
PH
6585 return (name != NULL
6586 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6587 }
96d887e8
PH
6588}
6589
963a6417 6590/* The type of the tag on VAL. */
76a01679 6591
963a6417
PH
6592struct type *
6593ada_tag_type (struct value *val)
96d887e8 6594{
df407dfe 6595 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6596}
96d887e8 6597
b50d69b5
JG
6598/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6599 retired at Ada 05). */
6600
6601static int
6602is_ada95_tag (struct value *tag)
6603{
6604 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6605}
6606
963a6417 6607/* The value of the tag on VAL. */
96d887e8 6608
963a6417
PH
6609struct value *
6610ada_value_tag (struct value *val)
6611{
03ee6b2e 6612 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6613}
6614
963a6417
PH
6615/* The value of the tag on the object of type TYPE whose contents are
6616 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6617 ADDRESS. */
96d887e8 6618
963a6417 6619static struct value *
10a2c479 6620value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6621 const gdb_byte *valaddr,
963a6417 6622 CORE_ADDR address)
96d887e8 6623{
b5385fc0 6624 int tag_byte_offset;
963a6417 6625 struct type *tag_type;
5b4ee69b 6626
963a6417 6627 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6628 NULL, NULL, NULL))
96d887e8 6629 {
fc1a4b47 6630 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6631 ? NULL
6632 : valaddr + tag_byte_offset);
963a6417 6633 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6634
963a6417 6635 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6636 }
963a6417
PH
6637 return NULL;
6638}
96d887e8 6639
963a6417
PH
6640static struct type *
6641type_from_tag (struct value *tag)
6642{
6643 const char *type_name = ada_tag_name (tag);
5b4ee69b 6644
963a6417
PH
6645 if (type_name != NULL)
6646 return ada_find_any_type (ada_encode (type_name));
6647 return NULL;
6648}
96d887e8 6649
b50d69b5
JG
6650/* Given a value OBJ of a tagged type, return a value of this
6651 type at the base address of the object. The base address, as
6652 defined in Ada.Tags, it is the address of the primary tag of
6653 the object, and therefore where the field values of its full
6654 view can be fetched. */
6655
6656struct value *
6657ada_tag_value_at_base_address (struct value *obj)
6658{
b50d69b5
JG
6659 struct value *val;
6660 LONGEST offset_to_top = 0;
6661 struct type *ptr_type, *obj_type;
6662 struct value *tag;
6663 CORE_ADDR base_address;
6664
6665 obj_type = value_type (obj);
6666
6667 /* It is the responsability of the caller to deref pointers. */
6668
6669 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6670 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6671 return obj;
6672
6673 tag = ada_value_tag (obj);
6674 if (!tag)
6675 return obj;
6676
6677 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6678
6679 if (is_ada95_tag (tag))
6680 return obj;
6681
6682 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6683 ptr_type = lookup_pointer_type (ptr_type);
6684 val = value_cast (ptr_type, tag);
6685 if (!val)
6686 return obj;
6687
6688 /* It is perfectly possible that an exception be raised while
6689 trying to determine the base address, just like for the tag;
6690 see ada_tag_name for more details. We do not print the error
6691 message for the same reason. */
6692
492d29ea 6693 TRY
b50d69b5
JG
6694 {
6695 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6696 }
6697
492d29ea
PA
6698 CATCH (e, RETURN_MASK_ERROR)
6699 {
6700 return obj;
6701 }
6702 END_CATCH
b50d69b5
JG
6703
6704 /* If offset is null, nothing to do. */
6705
6706 if (offset_to_top == 0)
6707 return obj;
6708
6709 /* -1 is a special case in Ada.Tags; however, what should be done
6710 is not quite clear from the documentation. So do nothing for
6711 now. */
6712
6713 if (offset_to_top == -1)
6714 return obj;
6715
6716 base_address = value_address (obj) - offset_to_top;
6717 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6718
6719 /* Make sure that we have a proper tag at the new address.
6720 Otherwise, offset_to_top is bogus (which can happen when
6721 the object is not initialized yet). */
6722
6723 if (!tag)
6724 return obj;
6725
6726 obj_type = type_from_tag (tag);
6727
6728 if (!obj_type)
6729 return obj;
6730
6731 return value_from_contents_and_address (obj_type, NULL, base_address);
6732}
6733
1b611343
JB
6734/* Return the "ada__tags__type_specific_data" type. */
6735
6736static struct type *
6737ada_get_tsd_type (struct inferior *inf)
963a6417 6738{
1b611343 6739 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6740
1b611343
JB
6741 if (data->tsd_type == 0)
6742 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6743 return data->tsd_type;
6744}
529cad9c 6745
1b611343
JB
6746/* Return the TSD (type-specific data) associated to the given TAG.
6747 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6748
1b611343 6749 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6750
1b611343
JB
6751static struct value *
6752ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6753{
4c4b4cd2 6754 struct value *val;
1b611343 6755 struct type *type;
5b4ee69b 6756
1b611343
JB
6757 /* First option: The TSD is simply stored as a field of our TAG.
6758 Only older versions of GNAT would use this format, but we have
6759 to test it first, because there are no visible markers for
6760 the current approach except the absence of that field. */
529cad9c 6761
1b611343
JB
6762 val = ada_value_struct_elt (tag, "tsd", 1);
6763 if (val)
6764 return val;
e802dbe0 6765
1b611343
JB
6766 /* Try the second representation for the dispatch table (in which
6767 there is no explicit 'tsd' field in the referent of the tag pointer,
6768 and instead the tsd pointer is stored just before the dispatch
6769 table. */
e802dbe0 6770
1b611343
JB
6771 type = ada_get_tsd_type (current_inferior());
6772 if (type == NULL)
6773 return NULL;
6774 type = lookup_pointer_type (lookup_pointer_type (type));
6775 val = value_cast (type, tag);
6776 if (val == NULL)
6777 return NULL;
6778 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6779}
6780
1b611343
JB
6781/* Given the TSD of a tag (type-specific data), return a string
6782 containing the name of the associated type.
6783
6784 The returned value is good until the next call. May return NULL
6785 if we are unable to determine the tag name. */
6786
6787static char *
6788ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6789{
529cad9c
PH
6790 static char name[1024];
6791 char *p;
1b611343 6792 struct value *val;
529cad9c 6793
1b611343 6794 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6795 if (val == NULL)
1b611343 6796 return NULL;
4c4b4cd2
PH
6797 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6798 for (p = name; *p != '\0'; p += 1)
6799 if (isalpha (*p))
6800 *p = tolower (*p);
1b611343 6801 return name;
4c4b4cd2
PH
6802}
6803
6804/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6805 a C string.
6806
6807 Return NULL if the TAG is not an Ada tag, or if we were unable to
6808 determine the name of that tag. The result is good until the next
6809 call. */
4c4b4cd2
PH
6810
6811const char *
6812ada_tag_name (struct value *tag)
6813{
1b611343 6814 char *name = NULL;
5b4ee69b 6815
df407dfe 6816 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6817 return NULL;
1b611343
JB
6818
6819 /* It is perfectly possible that an exception be raised while trying
6820 to determine the TAG's name, even under normal circumstances:
6821 The associated variable may be uninitialized or corrupted, for
6822 instance. We do not let any exception propagate past this point.
6823 instead we return NULL.
6824
6825 We also do not print the error message either (which often is very
6826 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6827 the caller print a more meaningful message if necessary. */
492d29ea 6828 TRY
1b611343
JB
6829 {
6830 struct value *tsd = ada_get_tsd_from_tag (tag);
6831
6832 if (tsd != NULL)
6833 name = ada_tag_name_from_tsd (tsd);
6834 }
492d29ea
PA
6835 CATCH (e, RETURN_MASK_ERROR)
6836 {
6837 }
6838 END_CATCH
1b611343
JB
6839
6840 return name;
4c4b4cd2
PH
6841}
6842
6843/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6844
d2e4a39e 6845struct type *
ebf56fd3 6846ada_parent_type (struct type *type)
14f9c5c9
AS
6847{
6848 int i;
6849
61ee279c 6850 type = ada_check_typedef (type);
14f9c5c9
AS
6851
6852 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6853 return NULL;
6854
6855 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6856 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6857 {
6858 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6859
6860 /* If the _parent field is a pointer, then dereference it. */
6861 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6862 parent_type = TYPE_TARGET_TYPE (parent_type);
6863 /* If there is a parallel XVS type, get the actual base type. */
6864 parent_type = ada_get_base_type (parent_type);
6865
6866 return ada_check_typedef (parent_type);
6867 }
14f9c5c9
AS
6868
6869 return NULL;
6870}
6871
4c4b4cd2
PH
6872/* True iff field number FIELD_NUM of structure type TYPE contains the
6873 parent-type (inherited) fields of a derived type. Assumes TYPE is
6874 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6875
6876int
ebf56fd3 6877ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6878{
61ee279c 6879 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6880
4c4b4cd2 6881 return (name != NULL
61012eef
GB
6882 && (startswith (name, "PARENT")
6883 || startswith (name, "_parent")));
14f9c5c9
AS
6884}
6885
4c4b4cd2 6886/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6887 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6888 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6889 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6890 structures. */
14f9c5c9
AS
6891
6892int
ebf56fd3 6893ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6894{
d2e4a39e 6895 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6896
d2e4a39e 6897 return (name != NULL
61012eef 6898 && (startswith (name, "PARENT")
4c4b4cd2 6899 || strcmp (name, "REP") == 0
61012eef 6900 || startswith (name, "_parent")
4c4b4cd2 6901 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6902}
6903
4c4b4cd2
PH
6904/* True iff field number FIELD_NUM of structure or union type TYPE
6905 is a variant wrapper. Assumes TYPE is a structure type with at least
6906 FIELD_NUM+1 fields. */
14f9c5c9
AS
6907
6908int
ebf56fd3 6909ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6910{
d2e4a39e 6911 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6912
14f9c5c9 6913 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6914 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6915 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6916 == TYPE_CODE_UNION)));
14f9c5c9
AS
6917}
6918
6919/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6920 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6921 returns the type of the controlling discriminant for the variant.
6922 May return NULL if the type could not be found. */
14f9c5c9 6923
d2e4a39e 6924struct type *
ebf56fd3 6925ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6926{
d2e4a39e 6927 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6928
7c964f07 6929 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6930}
6931
4c4b4cd2 6932/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6933 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6934 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6935
6936int
ebf56fd3 6937ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6938{
d2e4a39e 6939 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6940
14f9c5c9
AS
6941 return (name != NULL && name[0] == 'O');
6942}
6943
6944/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6945 returns the name of the discriminant controlling the variant.
6946 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6947
d2e4a39e 6948char *
ebf56fd3 6949ada_variant_discrim_name (struct type *type0)
14f9c5c9 6950{
d2e4a39e 6951 static char *result = NULL;
14f9c5c9 6952 static size_t result_len = 0;
d2e4a39e
AS
6953 struct type *type;
6954 const char *name;
6955 const char *discrim_end;
6956 const char *discrim_start;
14f9c5c9
AS
6957
6958 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6959 type = TYPE_TARGET_TYPE (type0);
6960 else
6961 type = type0;
6962
6963 name = ada_type_name (type);
6964
6965 if (name == NULL || name[0] == '\000')
6966 return "";
6967
6968 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6969 discrim_end -= 1)
6970 {
61012eef 6971 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6972 break;
14f9c5c9
AS
6973 }
6974 if (discrim_end == name)
6975 return "";
6976
d2e4a39e 6977 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6978 discrim_start -= 1)
6979 {
d2e4a39e 6980 if (discrim_start == name + 1)
4c4b4cd2 6981 return "";
76a01679 6982 if ((discrim_start > name + 3
61012eef 6983 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6984 || discrim_start[-1] == '.')
6985 break;
14f9c5c9
AS
6986 }
6987
6988 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6989 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6990 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6991 return result;
6992}
6993
4c4b4cd2
PH
6994/* Scan STR for a subtype-encoded number, beginning at position K.
6995 Put the position of the character just past the number scanned in
6996 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6997 Return 1 if there was a valid number at the given position, and 0
6998 otherwise. A "subtype-encoded" number consists of the absolute value
6999 in decimal, followed by the letter 'm' to indicate a negative number.
7000 Assumes 0m does not occur. */
14f9c5c9
AS
7001
7002int
d2e4a39e 7003ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7004{
7005 ULONGEST RU;
7006
d2e4a39e 7007 if (!isdigit (str[k]))
14f9c5c9
AS
7008 return 0;
7009
4c4b4cd2 7010 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7011 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7012 LONGEST. */
14f9c5c9
AS
7013 RU = 0;
7014 while (isdigit (str[k]))
7015 {
d2e4a39e 7016 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7017 k += 1;
7018 }
7019
d2e4a39e 7020 if (str[k] == 'm')
14f9c5c9
AS
7021 {
7022 if (R != NULL)
4c4b4cd2 7023 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7024 k += 1;
7025 }
7026 else if (R != NULL)
7027 *R = (LONGEST) RU;
7028
4c4b4cd2 7029 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7030 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7031 number representable as a LONGEST (although either would probably work
7032 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7033 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7034
7035 if (new_k != NULL)
7036 *new_k = k;
7037 return 1;
7038}
7039
4c4b4cd2
PH
7040/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7041 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7042 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7043
d2e4a39e 7044int
ebf56fd3 7045ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7046{
d2e4a39e 7047 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7048 int p;
7049
7050 p = 0;
7051 while (1)
7052 {
d2e4a39e 7053 switch (name[p])
4c4b4cd2
PH
7054 {
7055 case '\0':
7056 return 0;
7057 case 'S':
7058 {
7059 LONGEST W;
5b4ee69b 7060
4c4b4cd2
PH
7061 if (!ada_scan_number (name, p + 1, &W, &p))
7062 return 0;
7063 if (val == W)
7064 return 1;
7065 break;
7066 }
7067 case 'R':
7068 {
7069 LONGEST L, U;
5b4ee69b 7070
4c4b4cd2
PH
7071 if (!ada_scan_number (name, p + 1, &L, &p)
7072 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7073 return 0;
7074 if (val >= L && val <= U)
7075 return 1;
7076 break;
7077 }
7078 case 'O':
7079 return 1;
7080 default:
7081 return 0;
7082 }
7083 }
7084}
7085
0963b4bd 7086/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7087
7088/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7089 ARG_TYPE, extract and return the value of one of its (non-static)
7090 fields. FIELDNO says which field. Differs from value_primitive_field
7091 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7092
4c4b4cd2 7093static struct value *
d2e4a39e 7094ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7095 struct type *arg_type)
14f9c5c9 7096{
14f9c5c9
AS
7097 struct type *type;
7098
61ee279c 7099 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7100 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7101
4c4b4cd2 7102 /* Handle packed fields. */
14f9c5c9
AS
7103
7104 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7105 {
7106 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7107 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7108
0fd88904 7109 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7110 offset + bit_pos / 8,
7111 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7112 }
7113 else
7114 return value_primitive_field (arg1, offset, fieldno, arg_type);
7115}
7116
52ce6436
PH
7117/* Find field with name NAME in object of type TYPE. If found,
7118 set the following for each argument that is non-null:
7119 - *FIELD_TYPE_P to the field's type;
7120 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7121 an object of that type;
7122 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7123 - *BIT_SIZE_P to its size in bits if the field is packed, and
7124 0 otherwise;
7125 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7126 fields up to but not including the desired field, or by the total
7127 number of fields if not found. A NULL value of NAME never
7128 matches; the function just counts visible fields in this case.
7129
0963b4bd 7130 Returns 1 if found, 0 otherwise. */
52ce6436 7131
4c4b4cd2 7132static int
0d5cff50 7133find_struct_field (const char *name, struct type *type, int offset,
76a01679 7134 struct type **field_type_p,
52ce6436
PH
7135 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7136 int *index_p)
4c4b4cd2
PH
7137{
7138 int i;
7139
61ee279c 7140 type = ada_check_typedef (type);
76a01679 7141
52ce6436
PH
7142 if (field_type_p != NULL)
7143 *field_type_p = NULL;
7144 if (byte_offset_p != NULL)
d5d6fca5 7145 *byte_offset_p = 0;
52ce6436
PH
7146 if (bit_offset_p != NULL)
7147 *bit_offset_p = 0;
7148 if (bit_size_p != NULL)
7149 *bit_size_p = 0;
7150
7151 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7152 {
7153 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7154 int fld_offset = offset + bit_pos / 8;
0d5cff50 7155 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7156
4c4b4cd2
PH
7157 if (t_field_name == NULL)
7158 continue;
7159
52ce6436 7160 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7161 {
7162 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7163
52ce6436
PH
7164 if (field_type_p != NULL)
7165 *field_type_p = TYPE_FIELD_TYPE (type, i);
7166 if (byte_offset_p != NULL)
7167 *byte_offset_p = fld_offset;
7168 if (bit_offset_p != NULL)
7169 *bit_offset_p = bit_pos % 8;
7170 if (bit_size_p != NULL)
7171 *bit_size_p = bit_size;
76a01679
JB
7172 return 1;
7173 }
4c4b4cd2
PH
7174 else if (ada_is_wrapper_field (type, i))
7175 {
52ce6436
PH
7176 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7177 field_type_p, byte_offset_p, bit_offset_p,
7178 bit_size_p, index_p))
76a01679
JB
7179 return 1;
7180 }
4c4b4cd2
PH
7181 else if (ada_is_variant_part (type, i))
7182 {
52ce6436
PH
7183 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7184 fixed type?? */
4c4b4cd2 7185 int j;
52ce6436
PH
7186 struct type *field_type
7187 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7188
52ce6436 7189 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7190 {
76a01679
JB
7191 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7192 fld_offset
7193 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7194 field_type_p, byte_offset_p,
52ce6436 7195 bit_offset_p, bit_size_p, index_p))
76a01679 7196 return 1;
4c4b4cd2
PH
7197 }
7198 }
52ce6436
PH
7199 else if (index_p != NULL)
7200 *index_p += 1;
4c4b4cd2
PH
7201 }
7202 return 0;
7203}
7204
0963b4bd 7205/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7206
52ce6436
PH
7207static int
7208num_visible_fields (struct type *type)
7209{
7210 int n;
5b4ee69b 7211
52ce6436
PH
7212 n = 0;
7213 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7214 return n;
7215}
14f9c5c9 7216
4c4b4cd2 7217/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7218 and search in it assuming it has (class) type TYPE.
7219 If found, return value, else return NULL.
7220
4c4b4cd2 7221 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7222
4c4b4cd2 7223static struct value *
108d56a4 7224ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7225 struct type *type)
14f9c5c9
AS
7226{
7227 int i;
14f9c5c9 7228
5b4ee69b 7229 type = ada_check_typedef (type);
52ce6436 7230 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7231 {
0d5cff50 7232 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7233
7234 if (t_field_name == NULL)
4c4b4cd2 7235 continue;
14f9c5c9
AS
7236
7237 else if (field_name_match (t_field_name, name))
4c4b4cd2 7238 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7239
7240 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7241 {
0963b4bd 7242 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7243 ada_search_struct_field (name, arg,
7244 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7245 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7246
4c4b4cd2
PH
7247 if (v != NULL)
7248 return v;
7249 }
14f9c5c9
AS
7250
7251 else if (ada_is_variant_part (type, i))
4c4b4cd2 7252 {
0963b4bd 7253 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7254 int j;
5b4ee69b
MS
7255 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7256 i));
4c4b4cd2
PH
7257 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7258
52ce6436 7259 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7260 {
0963b4bd
MS
7261 struct value *v = ada_search_struct_field /* Force line
7262 break. */
06d5cf63
JB
7263 (name, arg,
7264 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7265 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7266
4c4b4cd2
PH
7267 if (v != NULL)
7268 return v;
7269 }
7270 }
14f9c5c9
AS
7271 }
7272 return NULL;
7273}
d2e4a39e 7274
52ce6436
PH
7275static struct value *ada_index_struct_field_1 (int *, struct value *,
7276 int, struct type *);
7277
7278
7279/* Return field #INDEX in ARG, where the index is that returned by
7280 * find_struct_field through its INDEX_P argument. Adjust the address
7281 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7282 * If found, return value, else return NULL. */
52ce6436
PH
7283
7284static struct value *
7285ada_index_struct_field (int index, struct value *arg, int offset,
7286 struct type *type)
7287{
7288 return ada_index_struct_field_1 (&index, arg, offset, type);
7289}
7290
7291
7292/* Auxiliary function for ada_index_struct_field. Like
7293 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7294 * *INDEX_P. */
52ce6436
PH
7295
7296static struct value *
7297ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7298 struct type *type)
7299{
7300 int i;
7301 type = ada_check_typedef (type);
7302
7303 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7304 {
7305 if (TYPE_FIELD_NAME (type, i) == NULL)
7306 continue;
7307 else if (ada_is_wrapper_field (type, i))
7308 {
0963b4bd 7309 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7310 ada_index_struct_field_1 (index_p, arg,
7311 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7312 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7313
52ce6436
PH
7314 if (v != NULL)
7315 return v;
7316 }
7317
7318 else if (ada_is_variant_part (type, i))
7319 {
7320 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7321 find_struct_field. */
52ce6436
PH
7322 error (_("Cannot assign this kind of variant record"));
7323 }
7324 else if (*index_p == 0)
7325 return ada_value_primitive_field (arg, offset, i, type);
7326 else
7327 *index_p -= 1;
7328 }
7329 return NULL;
7330}
7331
4c4b4cd2
PH
7332/* Given ARG, a value of type (pointer or reference to a)*
7333 structure/union, extract the component named NAME from the ultimate
7334 target structure/union and return it as a value with its
f5938064 7335 appropriate type.
14f9c5c9 7336
4c4b4cd2
PH
7337 The routine searches for NAME among all members of the structure itself
7338 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7339 (e.g., '_parent').
7340
03ee6b2e
PH
7341 If NO_ERR, then simply return NULL in case of error, rather than
7342 calling error. */
14f9c5c9 7343
d2e4a39e 7344struct value *
03ee6b2e 7345ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7346{
4c4b4cd2 7347 struct type *t, *t1;
d2e4a39e 7348 struct value *v;
14f9c5c9 7349
4c4b4cd2 7350 v = NULL;
df407dfe 7351 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7352 if (TYPE_CODE (t) == TYPE_CODE_REF)
7353 {
7354 t1 = TYPE_TARGET_TYPE (t);
7355 if (t1 == NULL)
03ee6b2e 7356 goto BadValue;
61ee279c 7357 t1 = ada_check_typedef (t1);
4c4b4cd2 7358 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7359 {
994b9211 7360 arg = coerce_ref (arg);
76a01679
JB
7361 t = t1;
7362 }
4c4b4cd2 7363 }
14f9c5c9 7364
4c4b4cd2
PH
7365 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7366 {
7367 t1 = TYPE_TARGET_TYPE (t);
7368 if (t1 == NULL)
03ee6b2e 7369 goto BadValue;
61ee279c 7370 t1 = ada_check_typedef (t1);
4c4b4cd2 7371 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7372 {
7373 arg = value_ind (arg);
7374 t = t1;
7375 }
4c4b4cd2 7376 else
76a01679 7377 break;
4c4b4cd2 7378 }
14f9c5c9 7379
4c4b4cd2 7380 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7381 goto BadValue;
14f9c5c9 7382
4c4b4cd2
PH
7383 if (t1 == t)
7384 v = ada_search_struct_field (name, arg, 0, t);
7385 else
7386 {
7387 int bit_offset, bit_size, byte_offset;
7388 struct type *field_type;
7389 CORE_ADDR address;
7390
76a01679 7391 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7392 address = value_address (ada_value_ind (arg));
4c4b4cd2 7393 else
b50d69b5 7394 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7395
1ed6ede0 7396 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7397 if (find_struct_field (name, t1, 0,
7398 &field_type, &byte_offset, &bit_offset,
52ce6436 7399 &bit_size, NULL))
76a01679
JB
7400 {
7401 if (bit_size != 0)
7402 {
714e53ab
PH
7403 if (TYPE_CODE (t) == TYPE_CODE_REF)
7404 arg = ada_coerce_ref (arg);
7405 else
7406 arg = ada_value_ind (arg);
76a01679
JB
7407 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7408 bit_offset, bit_size,
7409 field_type);
7410 }
7411 else
f5938064 7412 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7413 }
7414 }
7415
03ee6b2e
PH
7416 if (v != NULL || no_err)
7417 return v;
7418 else
323e0a4a 7419 error (_("There is no member named %s."), name);
14f9c5c9 7420
03ee6b2e
PH
7421 BadValue:
7422 if (no_err)
7423 return NULL;
7424 else
0963b4bd
MS
7425 error (_("Attempt to extract a component of "
7426 "a value that is not a record."));
14f9c5c9
AS
7427}
7428
7429/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7430 If DISPP is non-null, add its byte displacement from the beginning of a
7431 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7432 work for packed fields).
7433
7434 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7435 followed by "___".
14f9c5c9 7436
0963b4bd 7437 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7438 be a (pointer or reference)+ to a struct or union, and the
7439 ultimate target type will be searched.
14f9c5c9
AS
7440
7441 Looks recursively into variant clauses and parent types.
7442
4c4b4cd2
PH
7443 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7444 TYPE is not a type of the right kind. */
14f9c5c9 7445
4c4b4cd2 7446static struct type *
76a01679
JB
7447ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7448 int noerr, int *dispp)
14f9c5c9
AS
7449{
7450 int i;
7451
7452 if (name == NULL)
7453 goto BadName;
7454
76a01679 7455 if (refok && type != NULL)
4c4b4cd2
PH
7456 while (1)
7457 {
61ee279c 7458 type = ada_check_typedef (type);
76a01679
JB
7459 if (TYPE_CODE (type) != TYPE_CODE_PTR
7460 && TYPE_CODE (type) != TYPE_CODE_REF)
7461 break;
7462 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7463 }
14f9c5c9 7464
76a01679 7465 if (type == NULL
1265e4aa
JB
7466 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7467 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7468 {
4c4b4cd2 7469 if (noerr)
76a01679 7470 return NULL;
4c4b4cd2 7471 else
76a01679
JB
7472 {
7473 target_terminal_ours ();
7474 gdb_flush (gdb_stdout);
323e0a4a
AC
7475 if (type == NULL)
7476 error (_("Type (null) is not a structure or union type"));
7477 else
7478 {
7479 /* XXX: type_sprint */
7480 fprintf_unfiltered (gdb_stderr, _("Type "));
7481 type_print (type, "", gdb_stderr, -1);
7482 error (_(" is not a structure or union type"));
7483 }
76a01679 7484 }
14f9c5c9
AS
7485 }
7486
7487 type = to_static_fixed_type (type);
7488
7489 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7490 {
0d5cff50 7491 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7492 struct type *t;
7493 int disp;
d2e4a39e 7494
14f9c5c9 7495 if (t_field_name == NULL)
4c4b4cd2 7496 continue;
14f9c5c9
AS
7497
7498 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7499 {
7500 if (dispp != NULL)
7501 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7502 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7503 }
14f9c5c9
AS
7504
7505 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7506 {
7507 disp = 0;
7508 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7509 0, 1, &disp);
7510 if (t != NULL)
7511 {
7512 if (dispp != NULL)
7513 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7514 return t;
7515 }
7516 }
14f9c5c9
AS
7517
7518 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7519 {
7520 int j;
5b4ee69b
MS
7521 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7522 i));
4c4b4cd2
PH
7523
7524 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7525 {
b1f33ddd
JB
7526 /* FIXME pnh 2008/01/26: We check for a field that is
7527 NOT wrapped in a struct, since the compiler sometimes
7528 generates these for unchecked variant types. Revisit
0963b4bd 7529 if the compiler changes this practice. */
0d5cff50 7530 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7531 disp = 0;
b1f33ddd
JB
7532 if (v_field_name != NULL
7533 && field_name_match (v_field_name, name))
460efde1 7534 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7535 else
0963b4bd
MS
7536 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7537 j),
b1f33ddd
JB
7538 name, 0, 1, &disp);
7539
4c4b4cd2
PH
7540 if (t != NULL)
7541 {
7542 if (dispp != NULL)
7543 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7544 return t;
7545 }
7546 }
7547 }
14f9c5c9
AS
7548
7549 }
7550
7551BadName:
d2e4a39e 7552 if (!noerr)
14f9c5c9
AS
7553 {
7554 target_terminal_ours ();
7555 gdb_flush (gdb_stdout);
323e0a4a
AC
7556 if (name == NULL)
7557 {
7558 /* XXX: type_sprint */
7559 fprintf_unfiltered (gdb_stderr, _("Type "));
7560 type_print (type, "", gdb_stderr, -1);
7561 error (_(" has no component named <null>"));
7562 }
7563 else
7564 {
7565 /* XXX: type_sprint */
7566 fprintf_unfiltered (gdb_stderr, _("Type "));
7567 type_print (type, "", gdb_stderr, -1);
7568 error (_(" has no component named %s"), name);
7569 }
14f9c5c9
AS
7570 }
7571
7572 return NULL;
7573}
7574
b1f33ddd
JB
7575/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7576 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7577 represents an unchecked union (that is, the variant part of a
0963b4bd 7578 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7579
7580static int
7581is_unchecked_variant (struct type *var_type, struct type *outer_type)
7582{
7583 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7584
b1f33ddd
JB
7585 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7586 == NULL);
7587}
7588
7589
14f9c5c9
AS
7590/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7591 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7592 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7593 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7594
d2e4a39e 7595int
ebf56fd3 7596ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7597 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7598{
7599 int others_clause;
7600 int i;
d2e4a39e 7601 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7602 struct value *outer;
7603 struct value *discrim;
14f9c5c9
AS
7604 LONGEST discrim_val;
7605
012370f6
TT
7606 /* Using plain value_from_contents_and_address here causes problems
7607 because we will end up trying to resolve a type that is currently
7608 being constructed. */
7609 outer = value_from_contents_and_address_unresolved (outer_type,
7610 outer_valaddr, 0);
0c281816
JB
7611 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7612 if (discrim == NULL)
14f9c5c9 7613 return -1;
0c281816 7614 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7615
7616 others_clause = -1;
7617 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7618 {
7619 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7620 others_clause = i;
14f9c5c9 7621 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7622 return i;
14f9c5c9
AS
7623 }
7624
7625 return others_clause;
7626}
d2e4a39e 7627\f
14f9c5c9
AS
7628
7629
4c4b4cd2 7630 /* Dynamic-Sized Records */
14f9c5c9
AS
7631
7632/* Strategy: The type ostensibly attached to a value with dynamic size
7633 (i.e., a size that is not statically recorded in the debugging
7634 data) does not accurately reflect the size or layout of the value.
7635 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7636 conventional types that are constructed on the fly. */
14f9c5c9
AS
7637
7638/* There is a subtle and tricky problem here. In general, we cannot
7639 determine the size of dynamic records without its data. However,
7640 the 'struct value' data structure, which GDB uses to represent
7641 quantities in the inferior process (the target), requires the size
7642 of the type at the time of its allocation in order to reserve space
7643 for GDB's internal copy of the data. That's why the
7644 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7645 rather than struct value*s.
14f9c5c9
AS
7646
7647 However, GDB's internal history variables ($1, $2, etc.) are
7648 struct value*s containing internal copies of the data that are not, in
7649 general, the same as the data at their corresponding addresses in
7650 the target. Fortunately, the types we give to these values are all
7651 conventional, fixed-size types (as per the strategy described
7652 above), so that we don't usually have to perform the
7653 'to_fixed_xxx_type' conversions to look at their values.
7654 Unfortunately, there is one exception: if one of the internal
7655 history variables is an array whose elements are unconstrained
7656 records, then we will need to create distinct fixed types for each
7657 element selected. */
7658
7659/* The upshot of all of this is that many routines take a (type, host
7660 address, target address) triple as arguments to represent a value.
7661 The host address, if non-null, is supposed to contain an internal
7662 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7663 target at the target address. */
14f9c5c9
AS
7664
7665/* Assuming that VAL0 represents a pointer value, the result of
7666 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7667 dynamic-sized types. */
14f9c5c9 7668
d2e4a39e
AS
7669struct value *
7670ada_value_ind (struct value *val0)
14f9c5c9 7671{
c48db5ca 7672 struct value *val = value_ind (val0);
5b4ee69b 7673
b50d69b5
JG
7674 if (ada_is_tagged_type (value_type (val), 0))
7675 val = ada_tag_value_at_base_address (val);
7676
4c4b4cd2 7677 return ada_to_fixed_value (val);
14f9c5c9
AS
7678}
7679
7680/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7681 qualifiers on VAL0. */
7682
d2e4a39e
AS
7683static struct value *
7684ada_coerce_ref (struct value *val0)
7685{
df407dfe 7686 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7687 {
7688 struct value *val = val0;
5b4ee69b 7689
994b9211 7690 val = coerce_ref (val);
b50d69b5
JG
7691
7692 if (ada_is_tagged_type (value_type (val), 0))
7693 val = ada_tag_value_at_base_address (val);
7694
4c4b4cd2 7695 return ada_to_fixed_value (val);
d2e4a39e
AS
7696 }
7697 else
14f9c5c9
AS
7698 return val0;
7699}
7700
7701/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7702 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7703
7704static unsigned int
ebf56fd3 7705align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7706{
7707 return (off + alignment - 1) & ~(alignment - 1);
7708}
7709
4c4b4cd2 7710/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7711
7712static unsigned int
ebf56fd3 7713field_alignment (struct type *type, int f)
14f9c5c9 7714{
d2e4a39e 7715 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7716 int len;
14f9c5c9
AS
7717 int align_offset;
7718
64a1bf19
JB
7719 /* The field name should never be null, unless the debugging information
7720 is somehow malformed. In this case, we assume the field does not
7721 require any alignment. */
7722 if (name == NULL)
7723 return 1;
7724
7725 len = strlen (name);
7726
4c4b4cd2
PH
7727 if (!isdigit (name[len - 1]))
7728 return 1;
14f9c5c9 7729
d2e4a39e 7730 if (isdigit (name[len - 2]))
14f9c5c9
AS
7731 align_offset = len - 2;
7732 else
7733 align_offset = len - 1;
7734
61012eef 7735 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7736 return TARGET_CHAR_BIT;
7737
4c4b4cd2
PH
7738 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7739}
7740
852dff6c 7741/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7742
852dff6c
JB
7743static struct symbol *
7744ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7745{
7746 struct symbol *sym;
7747
7748 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7749 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7750 return sym;
7751
4186eb54
KS
7752 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7753 return sym;
14f9c5c9
AS
7754}
7755
dddfab26
UW
7756/* Find a type named NAME. Ignores ambiguity. This routine will look
7757 solely for types defined by debug info, it will not search the GDB
7758 primitive types. */
4c4b4cd2 7759
852dff6c 7760static struct type *
ebf56fd3 7761ada_find_any_type (const char *name)
14f9c5c9 7762{
852dff6c 7763 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7764
14f9c5c9 7765 if (sym != NULL)
dddfab26 7766 return SYMBOL_TYPE (sym);
14f9c5c9 7767
dddfab26 7768 return NULL;
14f9c5c9
AS
7769}
7770
739593e0
JB
7771/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7772 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7773 symbol, in which case it is returned. Otherwise, this looks for
7774 symbols whose name is that of NAME_SYM suffixed with "___XR".
7775 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7776
7777struct symbol *
270140bd 7778ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7779{
739593e0 7780 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7781 struct symbol *sym;
7782
739593e0
JB
7783 if (strstr (name, "___XR") != NULL)
7784 return name_sym;
7785
aeb5907d
JB
7786 sym = find_old_style_renaming_symbol (name, block);
7787
7788 if (sym != NULL)
7789 return sym;
7790
0963b4bd 7791 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7792 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7793 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7794 return sym;
7795 else
7796 return NULL;
7797}
7798
7799static struct symbol *
270140bd 7800find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7801{
7f0df278 7802 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7803 char *rename;
7804
7805 if (function_sym != NULL)
7806 {
7807 /* If the symbol is defined inside a function, NAME is not fully
7808 qualified. This means we need to prepend the function name
7809 as well as adding the ``___XR'' suffix to build the name of
7810 the associated renaming symbol. */
0d5cff50 7811 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7812 /* Function names sometimes contain suffixes used
7813 for instance to qualify nested subprograms. When building
7814 the XR type name, we need to make sure that this suffix is
7815 not included. So do not include any suffix in the function
7816 name length below. */
69fadcdf 7817 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7818 const int rename_len = function_name_len + 2 /* "__" */
7819 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7820
529cad9c 7821 /* Strip the suffix if necessary. */
69fadcdf
JB
7822 ada_remove_trailing_digits (function_name, &function_name_len);
7823 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7824 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7825
4c4b4cd2
PH
7826 /* Library-level functions are a special case, as GNAT adds
7827 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7828 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7829 have this prefix, so we need to skip this prefix if present. */
7830 if (function_name_len > 5 /* "_ada_" */
7831 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7832 {
7833 function_name += 5;
7834 function_name_len -= 5;
7835 }
4c4b4cd2
PH
7836
7837 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7838 strncpy (rename, function_name, function_name_len);
7839 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7840 "__%s___XR", name);
4c4b4cd2
PH
7841 }
7842 else
7843 {
7844 const int rename_len = strlen (name) + 6;
5b4ee69b 7845
4c4b4cd2 7846 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7847 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7848 }
7849
852dff6c 7850 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7851}
7852
14f9c5c9 7853/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7854 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7855 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7856 otherwise return 0. */
7857
14f9c5c9 7858int
d2e4a39e 7859ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7860{
7861 if (type1 == NULL)
7862 return 1;
7863 else if (type0 == NULL)
7864 return 0;
7865 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7866 return 1;
7867 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7868 return 0;
4c4b4cd2
PH
7869 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7870 return 1;
ad82864c 7871 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7872 return 1;
4c4b4cd2
PH
7873 else if (ada_is_array_descriptor_type (type0)
7874 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7875 return 1;
aeb5907d
JB
7876 else
7877 {
7878 const char *type0_name = type_name_no_tag (type0);
7879 const char *type1_name = type_name_no_tag (type1);
7880
7881 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7882 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7883 return 1;
7884 }
14f9c5c9
AS
7885 return 0;
7886}
7887
7888/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7889 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7890
0d5cff50 7891const char *
d2e4a39e 7892ada_type_name (struct type *type)
14f9c5c9 7893{
d2e4a39e 7894 if (type == NULL)
14f9c5c9
AS
7895 return NULL;
7896 else if (TYPE_NAME (type) != NULL)
7897 return TYPE_NAME (type);
7898 else
7899 return TYPE_TAG_NAME (type);
7900}
7901
b4ba55a1
JB
7902/* Search the list of "descriptive" types associated to TYPE for a type
7903 whose name is NAME. */
7904
7905static struct type *
7906find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7907{
931e5bc3 7908 struct type *result, *tmp;
b4ba55a1 7909
c6044dd1
JB
7910 if (ada_ignore_descriptive_types_p)
7911 return NULL;
7912
b4ba55a1
JB
7913 /* If there no descriptive-type info, then there is no parallel type
7914 to be found. */
7915 if (!HAVE_GNAT_AUX_INFO (type))
7916 return NULL;
7917
7918 result = TYPE_DESCRIPTIVE_TYPE (type);
7919 while (result != NULL)
7920 {
0d5cff50 7921 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7922
7923 if (result_name == NULL)
7924 {
7925 warning (_("unexpected null name on descriptive type"));
7926 return NULL;
7927 }
7928
7929 /* If the names match, stop. */
7930 if (strcmp (result_name, name) == 0)
7931 break;
7932
7933 /* Otherwise, look at the next item on the list, if any. */
7934 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7935 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7936 else
7937 tmp = NULL;
7938
7939 /* If not found either, try after having resolved the typedef. */
7940 if (tmp != NULL)
7941 result = tmp;
b4ba55a1 7942 else
931e5bc3 7943 {
f168693b 7944 result = check_typedef (result);
931e5bc3
JG
7945 if (HAVE_GNAT_AUX_INFO (result))
7946 result = TYPE_DESCRIPTIVE_TYPE (result);
7947 else
7948 result = NULL;
7949 }
b4ba55a1
JB
7950 }
7951
7952 /* If we didn't find a match, see whether this is a packed array. With
7953 older compilers, the descriptive type information is either absent or
7954 irrelevant when it comes to packed arrays so the above lookup fails.
7955 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7956 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7957 return ada_find_any_type (name);
7958
7959 return result;
7960}
7961
7962/* Find a parallel type to TYPE with the specified NAME, using the
7963 descriptive type taken from the debugging information, if available,
7964 and otherwise using the (slower) name-based method. */
7965
7966static struct type *
7967ada_find_parallel_type_with_name (struct type *type, const char *name)
7968{
7969 struct type *result = NULL;
7970
7971 if (HAVE_GNAT_AUX_INFO (type))
7972 result = find_parallel_type_by_descriptive_type (type, name);
7973 else
7974 result = ada_find_any_type (name);
7975
7976 return result;
7977}
7978
7979/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7980 SUFFIX to the name of TYPE. */
14f9c5c9 7981
d2e4a39e 7982struct type *
ebf56fd3 7983ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7984{
0d5cff50 7985 char *name;
fe978cb0 7986 const char *type_name = ada_type_name (type);
14f9c5c9 7987 int len;
d2e4a39e 7988
fe978cb0 7989 if (type_name == NULL)
14f9c5c9
AS
7990 return NULL;
7991
fe978cb0 7992 len = strlen (type_name);
14f9c5c9 7993
b4ba55a1 7994 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7995
fe978cb0 7996 strcpy (name, type_name);
14f9c5c9
AS
7997 strcpy (name + len, suffix);
7998
b4ba55a1 7999 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8000}
8001
14f9c5c9 8002/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8003 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8004
d2e4a39e
AS
8005static struct type *
8006dynamic_template_type (struct type *type)
14f9c5c9 8007{
61ee279c 8008 type = ada_check_typedef (type);
14f9c5c9
AS
8009
8010 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8011 || ada_type_name (type) == NULL)
14f9c5c9 8012 return NULL;
d2e4a39e 8013 else
14f9c5c9
AS
8014 {
8015 int len = strlen (ada_type_name (type));
5b4ee69b 8016
4c4b4cd2
PH
8017 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8018 return type;
14f9c5c9 8019 else
4c4b4cd2 8020 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8021 }
8022}
8023
8024/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8025 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8026
d2e4a39e
AS
8027static int
8028is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8029{
8030 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8031
d2e4a39e 8032 return name != NULL
14f9c5c9
AS
8033 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8034 && strstr (name, "___XVL") != NULL;
8035}
8036
4c4b4cd2
PH
8037/* The index of the variant field of TYPE, or -1 if TYPE does not
8038 represent a variant record type. */
14f9c5c9 8039
d2e4a39e 8040static int
4c4b4cd2 8041variant_field_index (struct type *type)
14f9c5c9
AS
8042{
8043 int f;
8044
4c4b4cd2
PH
8045 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8046 return -1;
8047
8048 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8049 {
8050 if (ada_is_variant_part (type, f))
8051 return f;
8052 }
8053 return -1;
14f9c5c9
AS
8054}
8055
4c4b4cd2
PH
8056/* A record type with no fields. */
8057
d2e4a39e 8058static struct type *
fe978cb0 8059empty_record (struct type *templ)
14f9c5c9 8060{
fe978cb0 8061 struct type *type = alloc_type_copy (templ);
5b4ee69b 8062
14f9c5c9
AS
8063 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8064 TYPE_NFIELDS (type) = 0;
8065 TYPE_FIELDS (type) = NULL;
b1f33ddd 8066 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8067 TYPE_NAME (type) = "<empty>";
8068 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8069 TYPE_LENGTH (type) = 0;
8070 return type;
8071}
8072
8073/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8074 the value of type TYPE at VALADDR or ADDRESS (see comments at
8075 the beginning of this section) VAL according to GNAT conventions.
8076 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8077 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8078 an outer-level type (i.e., as opposed to a branch of a variant.) A
8079 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8080 of the variant.
14f9c5c9 8081
4c4b4cd2
PH
8082 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8083 length are not statically known are discarded. As a consequence,
8084 VALADDR, ADDRESS and DVAL0 are ignored.
8085
8086 NOTE: Limitations: For now, we assume that dynamic fields and
8087 variants occupy whole numbers of bytes. However, they need not be
8088 byte-aligned. */
8089
8090struct type *
10a2c479 8091ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8092 const gdb_byte *valaddr,
4c4b4cd2
PH
8093 CORE_ADDR address, struct value *dval0,
8094 int keep_dynamic_fields)
14f9c5c9 8095{
d2e4a39e
AS
8096 struct value *mark = value_mark ();
8097 struct value *dval;
8098 struct type *rtype;
14f9c5c9 8099 int nfields, bit_len;
4c4b4cd2 8100 int variant_field;
14f9c5c9 8101 long off;
d94e4f4f 8102 int fld_bit_len;
14f9c5c9
AS
8103 int f;
8104
4c4b4cd2
PH
8105 /* Compute the number of fields in this record type that are going
8106 to be processed: unless keep_dynamic_fields, this includes only
8107 fields whose position and length are static will be processed. */
8108 if (keep_dynamic_fields)
8109 nfields = TYPE_NFIELDS (type);
8110 else
8111 {
8112 nfields = 0;
76a01679 8113 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8114 && !ada_is_variant_part (type, nfields)
8115 && !is_dynamic_field (type, nfields))
8116 nfields++;
8117 }
8118
e9bb382b 8119 rtype = alloc_type_copy (type);
14f9c5c9
AS
8120 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8121 INIT_CPLUS_SPECIFIC (rtype);
8122 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8123 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8124 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8125 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8126 TYPE_NAME (rtype) = ada_type_name (type);
8127 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8128 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8129
d2e4a39e
AS
8130 off = 0;
8131 bit_len = 0;
4c4b4cd2
PH
8132 variant_field = -1;
8133
14f9c5c9
AS
8134 for (f = 0; f < nfields; f += 1)
8135 {
6c038f32
PH
8136 off = align_value (off, field_alignment (type, f))
8137 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8138 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8139 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8140
d2e4a39e 8141 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8142 {
8143 variant_field = f;
d94e4f4f 8144 fld_bit_len = 0;
4c4b4cd2 8145 }
14f9c5c9 8146 else if (is_dynamic_field (type, f))
4c4b4cd2 8147 {
284614f0
JB
8148 const gdb_byte *field_valaddr = valaddr;
8149 CORE_ADDR field_address = address;
8150 struct type *field_type =
8151 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8152
4c4b4cd2 8153 if (dval0 == NULL)
b5304971
JG
8154 {
8155 /* rtype's length is computed based on the run-time
8156 value of discriminants. If the discriminants are not
8157 initialized, the type size may be completely bogus and
0963b4bd 8158 GDB may fail to allocate a value for it. So check the
b5304971 8159 size first before creating the value. */
c1b5a1a6 8160 ada_ensure_varsize_limit (rtype);
012370f6
TT
8161 /* Using plain value_from_contents_and_address here
8162 causes problems because we will end up trying to
8163 resolve a type that is currently being
8164 constructed. */
8165 dval = value_from_contents_and_address_unresolved (rtype,
8166 valaddr,
8167 address);
9f1f738a 8168 rtype = value_type (dval);
b5304971 8169 }
4c4b4cd2
PH
8170 else
8171 dval = dval0;
8172
284614f0
JB
8173 /* If the type referenced by this field is an aligner type, we need
8174 to unwrap that aligner type, because its size might not be set.
8175 Keeping the aligner type would cause us to compute the wrong
8176 size for this field, impacting the offset of the all the fields
8177 that follow this one. */
8178 if (ada_is_aligner_type (field_type))
8179 {
8180 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8181
8182 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8183 field_address = cond_offset_target (field_address, field_offset);
8184 field_type = ada_aligned_type (field_type);
8185 }
8186
8187 field_valaddr = cond_offset_host (field_valaddr,
8188 off / TARGET_CHAR_BIT);
8189 field_address = cond_offset_target (field_address,
8190 off / TARGET_CHAR_BIT);
8191
8192 /* Get the fixed type of the field. Note that, in this case,
8193 we do not want to get the real type out of the tag: if
8194 the current field is the parent part of a tagged record,
8195 we will get the tag of the object. Clearly wrong: the real
8196 type of the parent is not the real type of the child. We
8197 would end up in an infinite loop. */
8198 field_type = ada_get_base_type (field_type);
8199 field_type = ada_to_fixed_type (field_type, field_valaddr,
8200 field_address, dval, 0);
27f2a97b
JB
8201 /* If the field size is already larger than the maximum
8202 object size, then the record itself will necessarily
8203 be larger than the maximum object size. We need to make
8204 this check now, because the size might be so ridiculously
8205 large (due to an uninitialized variable in the inferior)
8206 that it would cause an overflow when adding it to the
8207 record size. */
c1b5a1a6 8208 ada_ensure_varsize_limit (field_type);
284614f0
JB
8209
8210 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8211 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8212 /* The multiplication can potentially overflow. But because
8213 the field length has been size-checked just above, and
8214 assuming that the maximum size is a reasonable value,
8215 an overflow should not happen in practice. So rather than
8216 adding overflow recovery code to this already complex code,
8217 we just assume that it's not going to happen. */
d94e4f4f 8218 fld_bit_len =
4c4b4cd2
PH
8219 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8220 }
14f9c5c9 8221 else
4c4b4cd2 8222 {
5ded5331
JB
8223 /* Note: If this field's type is a typedef, it is important
8224 to preserve the typedef layer.
8225
8226 Otherwise, we might be transforming a typedef to a fat
8227 pointer (encoding a pointer to an unconstrained array),
8228 into a basic fat pointer (encoding an unconstrained
8229 array). As both types are implemented using the same
8230 structure, the typedef is the only clue which allows us
8231 to distinguish between the two options. Stripping it
8232 would prevent us from printing this field appropriately. */
8233 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8234 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8235 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8236 fld_bit_len =
4c4b4cd2
PH
8237 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8238 else
5ded5331
JB
8239 {
8240 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8241
8242 /* We need to be careful of typedefs when computing
8243 the length of our field. If this is a typedef,
8244 get the length of the target type, not the length
8245 of the typedef. */
8246 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8247 field_type = ada_typedef_target_type (field_type);
8248
8249 fld_bit_len =
8250 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8251 }
4c4b4cd2 8252 }
14f9c5c9 8253 if (off + fld_bit_len > bit_len)
4c4b4cd2 8254 bit_len = off + fld_bit_len;
d94e4f4f 8255 off += fld_bit_len;
4c4b4cd2
PH
8256 TYPE_LENGTH (rtype) =
8257 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8258 }
4c4b4cd2
PH
8259
8260 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8261 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8262 the record. This can happen in the presence of representation
8263 clauses. */
8264 if (variant_field >= 0)
8265 {
8266 struct type *branch_type;
8267
8268 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8269
8270 if (dval0 == NULL)
9f1f738a 8271 {
012370f6
TT
8272 /* Using plain value_from_contents_and_address here causes
8273 problems because we will end up trying to resolve a type
8274 that is currently being constructed. */
8275 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8276 address);
9f1f738a
SA
8277 rtype = value_type (dval);
8278 }
4c4b4cd2
PH
8279 else
8280 dval = dval0;
8281
8282 branch_type =
8283 to_fixed_variant_branch_type
8284 (TYPE_FIELD_TYPE (type, variant_field),
8285 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8286 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8287 if (branch_type == NULL)
8288 {
8289 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8290 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8291 TYPE_NFIELDS (rtype) -= 1;
8292 }
8293 else
8294 {
8295 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8296 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8297 fld_bit_len =
8298 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8299 TARGET_CHAR_BIT;
8300 if (off + fld_bit_len > bit_len)
8301 bit_len = off + fld_bit_len;
8302 TYPE_LENGTH (rtype) =
8303 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8304 }
8305 }
8306
714e53ab
PH
8307 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8308 should contain the alignment of that record, which should be a strictly
8309 positive value. If null or negative, then something is wrong, most
8310 probably in the debug info. In that case, we don't round up the size
0963b4bd 8311 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8312 the current RTYPE length might be good enough for our purposes. */
8313 if (TYPE_LENGTH (type) <= 0)
8314 {
323e0a4a
AC
8315 if (TYPE_NAME (rtype))
8316 warning (_("Invalid type size for `%s' detected: %d."),
8317 TYPE_NAME (rtype), TYPE_LENGTH (type));
8318 else
8319 warning (_("Invalid type size for <unnamed> detected: %d."),
8320 TYPE_LENGTH (type));
714e53ab
PH
8321 }
8322 else
8323 {
8324 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8325 TYPE_LENGTH (type));
8326 }
14f9c5c9
AS
8327
8328 value_free_to_mark (mark);
d2e4a39e 8329 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8330 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8331 return rtype;
8332}
8333
4c4b4cd2
PH
8334/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8335 of 1. */
14f9c5c9 8336
d2e4a39e 8337static struct type *
fc1a4b47 8338template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8339 CORE_ADDR address, struct value *dval0)
8340{
8341 return ada_template_to_fixed_record_type_1 (type, valaddr,
8342 address, dval0, 1);
8343}
8344
8345/* An ordinary record type in which ___XVL-convention fields and
8346 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8347 static approximations, containing all possible fields. Uses
8348 no runtime values. Useless for use in values, but that's OK,
8349 since the results are used only for type determinations. Works on both
8350 structs and unions. Representation note: to save space, we memorize
8351 the result of this function in the TYPE_TARGET_TYPE of the
8352 template type. */
8353
8354static struct type *
8355template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8356{
8357 struct type *type;
8358 int nfields;
8359 int f;
8360
9e195661
PMR
8361 /* No need no do anything if the input type is already fixed. */
8362 if (TYPE_FIXED_INSTANCE (type0))
8363 return type0;
8364
8365 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8366 if (TYPE_TARGET_TYPE (type0) != NULL)
8367 return TYPE_TARGET_TYPE (type0);
8368
9e195661 8369 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8370 type = type0;
9e195661
PMR
8371 nfields = TYPE_NFIELDS (type0);
8372
8373 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8374 recompute all over next time. */
8375 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8376
8377 for (f = 0; f < nfields; f += 1)
8378 {
460efde1 8379 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8380 struct type *new_type;
14f9c5c9 8381
4c4b4cd2 8382 if (is_dynamic_field (type0, f))
460efde1
JB
8383 {
8384 field_type = ada_check_typedef (field_type);
8385 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8386 }
14f9c5c9 8387 else
f192137b 8388 new_type = static_unwrap_type (field_type);
9e195661
PMR
8389
8390 if (new_type != field_type)
8391 {
8392 /* Clone TYPE0 only the first time we get a new field type. */
8393 if (type == type0)
8394 {
8395 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8396 TYPE_CODE (type) = TYPE_CODE (type0);
8397 INIT_CPLUS_SPECIFIC (type);
8398 TYPE_NFIELDS (type) = nfields;
8399 TYPE_FIELDS (type) = (struct field *)
8400 TYPE_ALLOC (type, nfields * sizeof (struct field));
8401 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8402 sizeof (struct field) * nfields);
8403 TYPE_NAME (type) = ada_type_name (type0);
8404 TYPE_TAG_NAME (type) = NULL;
8405 TYPE_FIXED_INSTANCE (type) = 1;
8406 TYPE_LENGTH (type) = 0;
8407 }
8408 TYPE_FIELD_TYPE (type, f) = new_type;
8409 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8410 }
14f9c5c9 8411 }
9e195661 8412
14f9c5c9
AS
8413 return type;
8414}
8415
4c4b4cd2 8416/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8417 whose address in memory is ADDRESS, returns a revision of TYPE,
8418 which should be a non-dynamic-sized record, in which the variant
8419 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8420 for discriminant values in DVAL0, which can be NULL if the record
8421 contains the necessary discriminant values. */
8422
d2e4a39e 8423static struct type *
fc1a4b47 8424to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8425 CORE_ADDR address, struct value *dval0)
14f9c5c9 8426{
d2e4a39e 8427 struct value *mark = value_mark ();
4c4b4cd2 8428 struct value *dval;
d2e4a39e 8429 struct type *rtype;
14f9c5c9
AS
8430 struct type *branch_type;
8431 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8432 int variant_field = variant_field_index (type);
14f9c5c9 8433
4c4b4cd2 8434 if (variant_field == -1)
14f9c5c9
AS
8435 return type;
8436
4c4b4cd2 8437 if (dval0 == NULL)
9f1f738a
SA
8438 {
8439 dval = value_from_contents_and_address (type, valaddr, address);
8440 type = value_type (dval);
8441 }
4c4b4cd2
PH
8442 else
8443 dval = dval0;
8444
e9bb382b 8445 rtype = alloc_type_copy (type);
14f9c5c9 8446 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8447 INIT_CPLUS_SPECIFIC (rtype);
8448 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8449 TYPE_FIELDS (rtype) =
8450 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8451 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8452 sizeof (struct field) * nfields);
14f9c5c9
AS
8453 TYPE_NAME (rtype) = ada_type_name (type);
8454 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8455 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8456 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8457
4c4b4cd2
PH
8458 branch_type = to_fixed_variant_branch_type
8459 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8460 cond_offset_host (valaddr,
4c4b4cd2
PH
8461 TYPE_FIELD_BITPOS (type, variant_field)
8462 / TARGET_CHAR_BIT),
d2e4a39e 8463 cond_offset_target (address,
4c4b4cd2
PH
8464 TYPE_FIELD_BITPOS (type, variant_field)
8465 / TARGET_CHAR_BIT), dval);
d2e4a39e 8466 if (branch_type == NULL)
14f9c5c9 8467 {
4c4b4cd2 8468 int f;
5b4ee69b 8469
4c4b4cd2
PH
8470 for (f = variant_field + 1; f < nfields; f += 1)
8471 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8472 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8473 }
8474 else
8475 {
4c4b4cd2
PH
8476 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8477 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8478 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8479 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8480 }
4c4b4cd2 8481 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8482
4c4b4cd2 8483 value_free_to_mark (mark);
14f9c5c9
AS
8484 return rtype;
8485}
8486
8487/* An ordinary record type (with fixed-length fields) that describes
8488 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8489 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8490 should be in DVAL, a record value; it may be NULL if the object
8491 at ADDR itself contains any necessary discriminant values.
8492 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8493 values from the record are needed. Except in the case that DVAL,
8494 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8495 unchecked) is replaced by a particular branch of the variant.
8496
8497 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8498 is questionable and may be removed. It can arise during the
8499 processing of an unconstrained-array-of-record type where all the
8500 variant branches have exactly the same size. This is because in
8501 such cases, the compiler does not bother to use the XVS convention
8502 when encoding the record. I am currently dubious of this
8503 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8504
d2e4a39e 8505static struct type *
fc1a4b47 8506to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8507 CORE_ADDR address, struct value *dval)
14f9c5c9 8508{
d2e4a39e 8509 struct type *templ_type;
14f9c5c9 8510
876cecd0 8511 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8512 return type0;
8513
d2e4a39e 8514 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8515
8516 if (templ_type != NULL)
8517 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8518 else if (variant_field_index (type0) >= 0)
8519 {
8520 if (dval == NULL && valaddr == NULL && address == 0)
8521 return type0;
8522 return to_record_with_fixed_variant_part (type0, valaddr, address,
8523 dval);
8524 }
14f9c5c9
AS
8525 else
8526 {
876cecd0 8527 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8528 return type0;
8529 }
8530
8531}
8532
8533/* An ordinary record type (with fixed-length fields) that describes
8534 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8535 union type. Any necessary discriminants' values should be in DVAL,
8536 a record value. That is, this routine selects the appropriate
8537 branch of the union at ADDR according to the discriminant value
b1f33ddd 8538 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8539 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8540
d2e4a39e 8541static struct type *
fc1a4b47 8542to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8543 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8544{
8545 int which;
d2e4a39e
AS
8546 struct type *templ_type;
8547 struct type *var_type;
14f9c5c9
AS
8548
8549 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8550 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8551 else
14f9c5c9
AS
8552 var_type = var_type0;
8553
8554 templ_type = ada_find_parallel_type (var_type, "___XVU");
8555
8556 if (templ_type != NULL)
8557 var_type = templ_type;
8558
b1f33ddd
JB
8559 if (is_unchecked_variant (var_type, value_type (dval)))
8560 return var_type0;
d2e4a39e
AS
8561 which =
8562 ada_which_variant_applies (var_type,
0fd88904 8563 value_type (dval), value_contents (dval));
14f9c5c9
AS
8564
8565 if (which < 0)
e9bb382b 8566 return empty_record (var_type);
14f9c5c9 8567 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8568 return to_fixed_record_type
d2e4a39e
AS
8569 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8570 valaddr, address, dval);
4c4b4cd2 8571 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8572 return
8573 to_fixed_record_type
8574 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8575 else
8576 return TYPE_FIELD_TYPE (var_type, which);
8577}
8578
8908fca5
JB
8579/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8580 ENCODING_TYPE, a type following the GNAT conventions for discrete
8581 type encodings, only carries redundant information. */
8582
8583static int
8584ada_is_redundant_range_encoding (struct type *range_type,
8585 struct type *encoding_type)
8586{
8587 struct type *fixed_range_type;
108d56a4 8588 const char *bounds_str;
8908fca5
JB
8589 int n;
8590 LONGEST lo, hi;
8591
8592 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8593
005e2509
JB
8594 if (TYPE_CODE (get_base_type (range_type))
8595 != TYPE_CODE (get_base_type (encoding_type)))
8596 {
8597 /* The compiler probably used a simple base type to describe
8598 the range type instead of the range's actual base type,
8599 expecting us to get the real base type from the encoding
8600 anyway. In this situation, the encoding cannot be ignored
8601 as redundant. */
8602 return 0;
8603 }
8604
8908fca5
JB
8605 if (is_dynamic_type (range_type))
8606 return 0;
8607
8608 if (TYPE_NAME (encoding_type) == NULL)
8609 return 0;
8610
8611 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8612 if (bounds_str == NULL)
8613 return 0;
8614
8615 n = 8; /* Skip "___XDLU_". */
8616 if (!ada_scan_number (bounds_str, n, &lo, &n))
8617 return 0;
8618 if (TYPE_LOW_BOUND (range_type) != lo)
8619 return 0;
8620
8621 n += 2; /* Skip the "__" separator between the two bounds. */
8622 if (!ada_scan_number (bounds_str, n, &hi, &n))
8623 return 0;
8624 if (TYPE_HIGH_BOUND (range_type) != hi)
8625 return 0;
8626
8627 return 1;
8628}
8629
8630/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8631 a type following the GNAT encoding for describing array type
8632 indices, only carries redundant information. */
8633
8634static int
8635ada_is_redundant_index_type_desc (struct type *array_type,
8636 struct type *desc_type)
8637{
8638 struct type *this_layer = check_typedef (array_type);
8639 int i;
8640
8641 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8642 {
8643 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8644 TYPE_FIELD_TYPE (desc_type, i)))
8645 return 0;
8646 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8647 }
8648
8649 return 1;
8650}
8651
14f9c5c9
AS
8652/* Assuming that TYPE0 is an array type describing the type of a value
8653 at ADDR, and that DVAL describes a record containing any
8654 discriminants used in TYPE0, returns a type for the value that
8655 contains no dynamic components (that is, no components whose sizes
8656 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8657 true, gives an error message if the resulting type's size is over
4c4b4cd2 8658 varsize_limit. */
14f9c5c9 8659
d2e4a39e
AS
8660static struct type *
8661to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8662 int ignore_too_big)
14f9c5c9 8663{
d2e4a39e
AS
8664 struct type *index_type_desc;
8665 struct type *result;
ad82864c 8666 int constrained_packed_array_p;
931e5bc3 8667 static const char *xa_suffix = "___XA";
14f9c5c9 8668
b0dd7688 8669 type0 = ada_check_typedef (type0);
284614f0 8670 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8671 return type0;
14f9c5c9 8672
ad82864c
JB
8673 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8674 if (constrained_packed_array_p)
8675 type0 = decode_constrained_packed_array_type (type0);
284614f0 8676
931e5bc3
JG
8677 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8678
8679 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8680 encoding suffixed with 'P' may still be generated. If so,
8681 it should be used to find the XA type. */
8682
8683 if (index_type_desc == NULL)
8684 {
1da0522e 8685 const char *type_name = ada_type_name (type0);
931e5bc3 8686
1da0522e 8687 if (type_name != NULL)
931e5bc3 8688 {
1da0522e 8689 const int len = strlen (type_name);
931e5bc3
JG
8690 char *name = (char *) alloca (len + strlen (xa_suffix));
8691
1da0522e 8692 if (type_name[len - 1] == 'P')
931e5bc3 8693 {
1da0522e 8694 strcpy (name, type_name);
931e5bc3
JG
8695 strcpy (name + len - 1, xa_suffix);
8696 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8697 }
8698 }
8699 }
8700
28c85d6c 8701 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8702 if (index_type_desc != NULL
8703 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8704 {
8705 /* Ignore this ___XA parallel type, as it does not bring any
8706 useful information. This allows us to avoid creating fixed
8707 versions of the array's index types, which would be identical
8708 to the original ones. This, in turn, can also help avoid
8709 the creation of fixed versions of the array itself. */
8710 index_type_desc = NULL;
8711 }
8712
14f9c5c9
AS
8713 if (index_type_desc == NULL)
8714 {
61ee279c 8715 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8716
14f9c5c9 8717 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8718 depend on the contents of the array in properly constructed
8719 debugging data. */
529cad9c
PH
8720 /* Create a fixed version of the array element type.
8721 We're not providing the address of an element here,
e1d5a0d2 8722 and thus the actual object value cannot be inspected to do
529cad9c
PH
8723 the conversion. This should not be a problem, since arrays of
8724 unconstrained objects are not allowed. In particular, all
8725 the elements of an array of a tagged type should all be of
8726 the same type specified in the debugging info. No need to
8727 consult the object tag. */
1ed6ede0 8728 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8729
284614f0
JB
8730 /* Make sure we always create a new array type when dealing with
8731 packed array types, since we're going to fix-up the array
8732 type length and element bitsize a little further down. */
ad82864c 8733 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8734 result = type0;
14f9c5c9 8735 else
e9bb382b 8736 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8737 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8738 }
8739 else
8740 {
8741 int i;
8742 struct type *elt_type0;
8743
8744 elt_type0 = type0;
8745 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8746 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8747
8748 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8749 depend on the contents of the array in properly constructed
8750 debugging data. */
529cad9c
PH
8751 /* Create a fixed version of the array element type.
8752 We're not providing the address of an element here,
e1d5a0d2 8753 and thus the actual object value cannot be inspected to do
529cad9c
PH
8754 the conversion. This should not be a problem, since arrays of
8755 unconstrained objects are not allowed. In particular, all
8756 the elements of an array of a tagged type should all be of
8757 the same type specified in the debugging info. No need to
8758 consult the object tag. */
1ed6ede0
JB
8759 result =
8760 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8761
8762 elt_type0 = type0;
14f9c5c9 8763 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8764 {
8765 struct type *range_type =
28c85d6c 8766 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8767
e9bb382b 8768 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8769 result, range_type);
1ce677a4 8770 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8771 }
d2e4a39e 8772 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8773 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8774 }
8775
2e6fda7d
JB
8776 /* We want to preserve the type name. This can be useful when
8777 trying to get the type name of a value that has already been
8778 printed (for instance, if the user did "print VAR; whatis $". */
8779 TYPE_NAME (result) = TYPE_NAME (type0);
8780
ad82864c 8781 if (constrained_packed_array_p)
284614f0
JB
8782 {
8783 /* So far, the resulting type has been created as if the original
8784 type was a regular (non-packed) array type. As a result, the
8785 bitsize of the array elements needs to be set again, and the array
8786 length needs to be recomputed based on that bitsize. */
8787 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8788 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8789
8790 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8791 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8792 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8793 TYPE_LENGTH (result)++;
8794 }
8795
876cecd0 8796 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8797 return result;
d2e4a39e 8798}
14f9c5c9
AS
8799
8800
8801/* A standard type (containing no dynamically sized components)
8802 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8803 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8804 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8805 ADDRESS or in VALADDR contains these discriminants.
8806
1ed6ede0
JB
8807 If CHECK_TAG is not null, in the case of tagged types, this function
8808 attempts to locate the object's tag and use it to compute the actual
8809 type. However, when ADDRESS is null, we cannot use it to determine the
8810 location of the tag, and therefore compute the tagged type's actual type.
8811 So we return the tagged type without consulting the tag. */
529cad9c 8812
f192137b
JB
8813static struct type *
8814ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8815 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8816{
61ee279c 8817 type = ada_check_typedef (type);
d2e4a39e
AS
8818 switch (TYPE_CODE (type))
8819 {
8820 default:
14f9c5c9 8821 return type;
d2e4a39e 8822 case TYPE_CODE_STRUCT:
4c4b4cd2 8823 {
76a01679 8824 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8825 struct type *fixed_record_type =
8826 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8827
529cad9c
PH
8828 /* If STATIC_TYPE is a tagged type and we know the object's address,
8829 then we can determine its tag, and compute the object's actual
0963b4bd 8830 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8831 type (the parent part of the record may have dynamic fields
8832 and the way the location of _tag is expressed may depend on
8833 them). */
529cad9c 8834
1ed6ede0 8835 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8836 {
b50d69b5
JG
8837 struct value *tag =
8838 value_tag_from_contents_and_address
8839 (fixed_record_type,
8840 valaddr,
8841 address);
8842 struct type *real_type = type_from_tag (tag);
8843 struct value *obj =
8844 value_from_contents_and_address (fixed_record_type,
8845 valaddr,
8846 address);
9f1f738a 8847 fixed_record_type = value_type (obj);
76a01679 8848 if (real_type != NULL)
b50d69b5
JG
8849 return to_fixed_record_type
8850 (real_type, NULL,
8851 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8852 }
4af88198
JB
8853
8854 /* Check to see if there is a parallel ___XVZ variable.
8855 If there is, then it provides the actual size of our type. */
8856 else if (ada_type_name (fixed_record_type) != NULL)
8857 {
0d5cff50 8858 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8859 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8860 int xvz_found = 0;
8861 LONGEST size;
8862
88c15c34 8863 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8864 size = get_int_var_value (xvz_name, &xvz_found);
8865 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8866 {
8867 fixed_record_type = copy_type (fixed_record_type);
8868 TYPE_LENGTH (fixed_record_type) = size;
8869
8870 /* The FIXED_RECORD_TYPE may have be a stub. We have
8871 observed this when the debugging info is STABS, and
8872 apparently it is something that is hard to fix.
8873
8874 In practice, we don't need the actual type definition
8875 at all, because the presence of the XVZ variable allows us
8876 to assume that there must be a XVS type as well, which we
8877 should be able to use later, when we need the actual type
8878 definition.
8879
8880 In the meantime, pretend that the "fixed" type we are
8881 returning is NOT a stub, because this can cause trouble
8882 when using this type to create new types targeting it.
8883 Indeed, the associated creation routines often check
8884 whether the target type is a stub and will try to replace
0963b4bd 8885 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8886 might cause the new type to have the wrong size too.
8887 Consider the case of an array, for instance, where the size
8888 of the array is computed from the number of elements in
8889 our array multiplied by the size of its element. */
8890 TYPE_STUB (fixed_record_type) = 0;
8891 }
8892 }
1ed6ede0 8893 return fixed_record_type;
4c4b4cd2 8894 }
d2e4a39e 8895 case TYPE_CODE_ARRAY:
4c4b4cd2 8896 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8897 case TYPE_CODE_UNION:
8898 if (dval == NULL)
4c4b4cd2 8899 return type;
d2e4a39e 8900 else
4c4b4cd2 8901 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8902 }
14f9c5c9
AS
8903}
8904
f192137b
JB
8905/* The same as ada_to_fixed_type_1, except that it preserves the type
8906 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8907
8908 The typedef layer needs be preserved in order to differentiate between
8909 arrays and array pointers when both types are implemented using the same
8910 fat pointer. In the array pointer case, the pointer is encoded as
8911 a typedef of the pointer type. For instance, considering:
8912
8913 type String_Access is access String;
8914 S1 : String_Access := null;
8915
8916 To the debugger, S1 is defined as a typedef of type String. But
8917 to the user, it is a pointer. So if the user tries to print S1,
8918 we should not dereference the array, but print the array address
8919 instead.
8920
8921 If we didn't preserve the typedef layer, we would lose the fact that
8922 the type is to be presented as a pointer (needs de-reference before
8923 being printed). And we would also use the source-level type name. */
f192137b
JB
8924
8925struct type *
8926ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8927 CORE_ADDR address, struct value *dval, int check_tag)
8928
8929{
8930 struct type *fixed_type =
8931 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8932
96dbd2c1
JB
8933 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8934 then preserve the typedef layer.
8935
8936 Implementation note: We can only check the main-type portion of
8937 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8938 from TYPE now returns a type that has the same instance flags
8939 as TYPE. For instance, if TYPE is a "typedef const", and its
8940 target type is a "struct", then the typedef elimination will return
8941 a "const" version of the target type. See check_typedef for more
8942 details about how the typedef layer elimination is done.
8943
8944 brobecker/2010-11-19: It seems to me that the only case where it is
8945 useful to preserve the typedef layer is when dealing with fat pointers.
8946 Perhaps, we could add a check for that and preserve the typedef layer
8947 only in that situation. But this seems unecessary so far, probably
8948 because we call check_typedef/ada_check_typedef pretty much everywhere.
8949 */
f192137b 8950 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8951 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8952 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8953 return type;
8954
8955 return fixed_type;
8956}
8957
14f9c5c9 8958/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8959 TYPE0, but based on no runtime data. */
14f9c5c9 8960
d2e4a39e
AS
8961static struct type *
8962to_static_fixed_type (struct type *type0)
14f9c5c9 8963{
d2e4a39e 8964 struct type *type;
14f9c5c9
AS
8965
8966 if (type0 == NULL)
8967 return NULL;
8968
876cecd0 8969 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8970 return type0;
8971
61ee279c 8972 type0 = ada_check_typedef (type0);
d2e4a39e 8973
14f9c5c9
AS
8974 switch (TYPE_CODE (type0))
8975 {
8976 default:
8977 return type0;
8978 case TYPE_CODE_STRUCT:
8979 type = dynamic_template_type (type0);
d2e4a39e 8980 if (type != NULL)
4c4b4cd2
PH
8981 return template_to_static_fixed_type (type);
8982 else
8983 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8984 case TYPE_CODE_UNION:
8985 type = ada_find_parallel_type (type0, "___XVU");
8986 if (type != NULL)
4c4b4cd2
PH
8987 return template_to_static_fixed_type (type);
8988 else
8989 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8990 }
8991}
8992
4c4b4cd2
PH
8993/* A static approximation of TYPE with all type wrappers removed. */
8994
d2e4a39e
AS
8995static struct type *
8996static_unwrap_type (struct type *type)
14f9c5c9
AS
8997{
8998 if (ada_is_aligner_type (type))
8999 {
61ee279c 9000 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9001 if (ada_type_name (type1) == NULL)
4c4b4cd2 9002 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9003
9004 return static_unwrap_type (type1);
9005 }
d2e4a39e 9006 else
14f9c5c9 9007 {
d2e4a39e 9008 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9009
d2e4a39e 9010 if (raw_real_type == type)
4c4b4cd2 9011 return type;
14f9c5c9 9012 else
4c4b4cd2 9013 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9014 }
9015}
9016
9017/* In some cases, incomplete and private types require
4c4b4cd2 9018 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9019 type Foo;
9020 type FooP is access Foo;
9021 V: FooP;
9022 type Foo is array ...;
4c4b4cd2 9023 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9024 cross-references to such types, we instead substitute for FooP a
9025 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9026 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9027
9028/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9029 exists, otherwise TYPE. */
9030
d2e4a39e 9031struct type *
61ee279c 9032ada_check_typedef (struct type *type)
14f9c5c9 9033{
727e3d2e
JB
9034 if (type == NULL)
9035 return NULL;
9036
720d1a40
JB
9037 /* If our type is a typedef type of a fat pointer, then we're done.
9038 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9039 what allows us to distinguish between fat pointers that represent
9040 array types, and fat pointers that represent array access types
9041 (in both cases, the compiler implements them as fat pointers). */
9042 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9043 && is_thick_pntr (ada_typedef_target_type (type)))
9044 return type;
9045
f168693b 9046 type = check_typedef (type);
14f9c5c9 9047 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9048 || !TYPE_STUB (type)
14f9c5c9
AS
9049 || TYPE_TAG_NAME (type) == NULL)
9050 return type;
d2e4a39e 9051 else
14f9c5c9 9052 {
0d5cff50 9053 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9054 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9055
05e522ef
JB
9056 if (type1 == NULL)
9057 return type;
9058
9059 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9060 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9061 types, only for the typedef-to-array types). If that's the case,
9062 strip the typedef layer. */
9063 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9064 type1 = ada_check_typedef (type1);
9065
9066 return type1;
14f9c5c9
AS
9067 }
9068}
9069
9070/* A value representing the data at VALADDR/ADDRESS as described by
9071 type TYPE0, but with a standard (static-sized) type that correctly
9072 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9073 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9074 creation of struct values]. */
14f9c5c9 9075
4c4b4cd2
PH
9076static struct value *
9077ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9078 struct value *val0)
14f9c5c9 9079{
1ed6ede0 9080 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9081
14f9c5c9
AS
9082 if (type == type0 && val0 != NULL)
9083 return val0;
d2e4a39e 9084 else
4c4b4cd2
PH
9085 return value_from_contents_and_address (type, 0, address);
9086}
9087
9088/* A value representing VAL, but with a standard (static-sized) type
9089 that correctly describes it. Does not necessarily create a new
9090 value. */
9091
0c3acc09 9092struct value *
4c4b4cd2
PH
9093ada_to_fixed_value (struct value *val)
9094{
c48db5ca
JB
9095 val = unwrap_value (val);
9096 val = ada_to_fixed_value_create (value_type (val),
9097 value_address (val),
9098 val);
9099 return val;
14f9c5c9 9100}
d2e4a39e 9101\f
14f9c5c9 9102
14f9c5c9
AS
9103/* Attributes */
9104
4c4b4cd2
PH
9105/* Table mapping attribute numbers to names.
9106 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9107
d2e4a39e 9108static const char *attribute_names[] = {
14f9c5c9
AS
9109 "<?>",
9110
d2e4a39e 9111 "first",
14f9c5c9
AS
9112 "last",
9113 "length",
9114 "image",
14f9c5c9
AS
9115 "max",
9116 "min",
4c4b4cd2
PH
9117 "modulus",
9118 "pos",
9119 "size",
9120 "tag",
14f9c5c9 9121 "val",
14f9c5c9
AS
9122 0
9123};
9124
d2e4a39e 9125const char *
4c4b4cd2 9126ada_attribute_name (enum exp_opcode n)
14f9c5c9 9127{
4c4b4cd2
PH
9128 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9129 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9130 else
9131 return attribute_names[0];
9132}
9133
4c4b4cd2 9134/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9135
4c4b4cd2
PH
9136static LONGEST
9137pos_atr (struct value *arg)
14f9c5c9 9138{
24209737
PH
9139 struct value *val = coerce_ref (arg);
9140 struct type *type = value_type (val);
aa715135 9141 LONGEST result;
14f9c5c9 9142
d2e4a39e 9143 if (!discrete_type_p (type))
323e0a4a 9144 error (_("'POS only defined on discrete types"));
14f9c5c9 9145
aa715135
JG
9146 if (!discrete_position (type, value_as_long (val), &result))
9147 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9148
aa715135 9149 return result;
4c4b4cd2
PH
9150}
9151
9152static struct value *
3cb382c9 9153value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9154{
3cb382c9 9155 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9156}
9157
4c4b4cd2 9158/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9159
d2e4a39e
AS
9160static struct value *
9161value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9162{
d2e4a39e 9163 if (!discrete_type_p (type))
323e0a4a 9164 error (_("'VAL only defined on discrete types"));
df407dfe 9165 if (!integer_type_p (value_type (arg)))
323e0a4a 9166 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9167
9168 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9169 {
9170 long pos = value_as_long (arg);
5b4ee69b 9171
14f9c5c9 9172 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9173 error (_("argument to 'VAL out of range"));
14e75d8e 9174 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9175 }
9176 else
9177 return value_from_longest (type, value_as_long (arg));
9178}
14f9c5c9 9179\f
d2e4a39e 9180
4c4b4cd2 9181 /* Evaluation */
14f9c5c9 9182
4c4b4cd2
PH
9183/* True if TYPE appears to be an Ada character type.
9184 [At the moment, this is true only for Character and Wide_Character;
9185 It is a heuristic test that could stand improvement]. */
14f9c5c9 9186
d2e4a39e
AS
9187int
9188ada_is_character_type (struct type *type)
14f9c5c9 9189{
7b9f71f2
JB
9190 const char *name;
9191
9192 /* If the type code says it's a character, then assume it really is,
9193 and don't check any further. */
9194 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9195 return 1;
9196
9197 /* Otherwise, assume it's a character type iff it is a discrete type
9198 with a known character type name. */
9199 name = ada_type_name (type);
9200 return (name != NULL
9201 && (TYPE_CODE (type) == TYPE_CODE_INT
9202 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9203 && (strcmp (name, "character") == 0
9204 || strcmp (name, "wide_character") == 0
5a517ebd 9205 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9206 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9207}
9208
4c4b4cd2 9209/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9210
9211int
ebf56fd3 9212ada_is_string_type (struct type *type)
14f9c5c9 9213{
61ee279c 9214 type = ada_check_typedef (type);
d2e4a39e 9215 if (type != NULL
14f9c5c9 9216 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9217 && (ada_is_simple_array_type (type)
9218 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9219 && ada_array_arity (type) == 1)
9220 {
9221 struct type *elttype = ada_array_element_type (type, 1);
9222
9223 return ada_is_character_type (elttype);
9224 }
d2e4a39e 9225 else
14f9c5c9
AS
9226 return 0;
9227}
9228
5bf03f13
JB
9229/* The compiler sometimes provides a parallel XVS type for a given
9230 PAD type. Normally, it is safe to follow the PAD type directly,
9231 but older versions of the compiler have a bug that causes the offset
9232 of its "F" field to be wrong. Following that field in that case
9233 would lead to incorrect results, but this can be worked around
9234 by ignoring the PAD type and using the associated XVS type instead.
9235
9236 Set to True if the debugger should trust the contents of PAD types.
9237 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9238static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9239
9240/* True if TYPE is a struct type introduced by the compiler to force the
9241 alignment of a value. Such types have a single field with a
4c4b4cd2 9242 distinctive name. */
14f9c5c9
AS
9243
9244int
ebf56fd3 9245ada_is_aligner_type (struct type *type)
14f9c5c9 9246{
61ee279c 9247 type = ada_check_typedef (type);
714e53ab 9248
5bf03f13 9249 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9250 return 0;
9251
14f9c5c9 9252 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9253 && TYPE_NFIELDS (type) == 1
9254 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9255}
9256
9257/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9258 the parallel type. */
14f9c5c9 9259
d2e4a39e
AS
9260struct type *
9261ada_get_base_type (struct type *raw_type)
14f9c5c9 9262{
d2e4a39e
AS
9263 struct type *real_type_namer;
9264 struct type *raw_real_type;
14f9c5c9
AS
9265
9266 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9267 return raw_type;
9268
284614f0
JB
9269 if (ada_is_aligner_type (raw_type))
9270 /* The encoding specifies that we should always use the aligner type.
9271 So, even if this aligner type has an associated XVS type, we should
9272 simply ignore it.
9273
9274 According to the compiler gurus, an XVS type parallel to an aligner
9275 type may exist because of a stabs limitation. In stabs, aligner
9276 types are empty because the field has a variable-sized type, and
9277 thus cannot actually be used as an aligner type. As a result,
9278 we need the associated parallel XVS type to decode the type.
9279 Since the policy in the compiler is to not change the internal
9280 representation based on the debugging info format, we sometimes
9281 end up having a redundant XVS type parallel to the aligner type. */
9282 return raw_type;
9283
14f9c5c9 9284 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9285 if (real_type_namer == NULL
14f9c5c9
AS
9286 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9287 || TYPE_NFIELDS (real_type_namer) != 1)
9288 return raw_type;
9289
f80d3ff2
JB
9290 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9291 {
9292 /* This is an older encoding form where the base type needs to be
9293 looked up by name. We prefer the newer enconding because it is
9294 more efficient. */
9295 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9296 if (raw_real_type == NULL)
9297 return raw_type;
9298 else
9299 return raw_real_type;
9300 }
9301
9302 /* The field in our XVS type is a reference to the base type. */
9303 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9304}
14f9c5c9 9305
4c4b4cd2 9306/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9307
d2e4a39e
AS
9308struct type *
9309ada_aligned_type (struct type *type)
14f9c5c9
AS
9310{
9311 if (ada_is_aligner_type (type))
9312 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9313 else
9314 return ada_get_base_type (type);
9315}
9316
9317
9318/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9319 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9320
fc1a4b47
AC
9321const gdb_byte *
9322ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9323{
d2e4a39e 9324 if (ada_is_aligner_type (type))
14f9c5c9 9325 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9326 valaddr +
9327 TYPE_FIELD_BITPOS (type,
9328 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9329 else
9330 return valaddr;
9331}
9332
4c4b4cd2
PH
9333
9334
14f9c5c9 9335/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9336 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9337const char *
9338ada_enum_name (const char *name)
14f9c5c9 9339{
4c4b4cd2
PH
9340 static char *result;
9341 static size_t result_len = 0;
d2e4a39e 9342 char *tmp;
14f9c5c9 9343
4c4b4cd2
PH
9344 /* First, unqualify the enumeration name:
9345 1. Search for the last '.' character. If we find one, then skip
177b42fe 9346 all the preceding characters, the unqualified name starts
76a01679 9347 right after that dot.
4c4b4cd2 9348 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9349 translates dots into "__". Search forward for double underscores,
9350 but stop searching when we hit an overloading suffix, which is
9351 of the form "__" followed by digits. */
4c4b4cd2 9352
c3e5cd34
PH
9353 tmp = strrchr (name, '.');
9354 if (tmp != NULL)
4c4b4cd2
PH
9355 name = tmp + 1;
9356 else
14f9c5c9 9357 {
4c4b4cd2
PH
9358 while ((tmp = strstr (name, "__")) != NULL)
9359 {
9360 if (isdigit (tmp[2]))
9361 break;
9362 else
9363 name = tmp + 2;
9364 }
14f9c5c9
AS
9365 }
9366
9367 if (name[0] == 'Q')
9368 {
14f9c5c9 9369 int v;
5b4ee69b 9370
14f9c5c9 9371 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9372 {
9373 if (sscanf (name + 2, "%x", &v) != 1)
9374 return name;
9375 }
14f9c5c9 9376 else
4c4b4cd2 9377 return name;
14f9c5c9 9378
4c4b4cd2 9379 GROW_VECT (result, result_len, 16);
14f9c5c9 9380 if (isascii (v) && isprint (v))
88c15c34 9381 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9382 else if (name[1] == 'U')
88c15c34 9383 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9384 else
88c15c34 9385 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9386
9387 return result;
9388 }
d2e4a39e 9389 else
4c4b4cd2 9390 {
c3e5cd34
PH
9391 tmp = strstr (name, "__");
9392 if (tmp == NULL)
9393 tmp = strstr (name, "$");
9394 if (tmp != NULL)
4c4b4cd2
PH
9395 {
9396 GROW_VECT (result, result_len, tmp - name + 1);
9397 strncpy (result, name, tmp - name);
9398 result[tmp - name] = '\0';
9399 return result;
9400 }
9401
9402 return name;
9403 }
14f9c5c9
AS
9404}
9405
14f9c5c9
AS
9406/* Evaluate the subexpression of EXP starting at *POS as for
9407 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9408 expression. */
14f9c5c9 9409
d2e4a39e
AS
9410static struct value *
9411evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9412{
4b27a620 9413 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9414}
9415
9416/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9417 value it wraps. */
14f9c5c9 9418
d2e4a39e
AS
9419static struct value *
9420unwrap_value (struct value *val)
14f9c5c9 9421{
df407dfe 9422 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9423
14f9c5c9
AS
9424 if (ada_is_aligner_type (type))
9425 {
de4d072f 9426 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9427 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9428
14f9c5c9 9429 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9430 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9431
9432 return unwrap_value (v);
9433 }
d2e4a39e 9434 else
14f9c5c9 9435 {
d2e4a39e 9436 struct type *raw_real_type =
61ee279c 9437 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9438
5bf03f13
JB
9439 /* If there is no parallel XVS or XVE type, then the value is
9440 already unwrapped. Return it without further modification. */
9441 if ((type == raw_real_type)
9442 && ada_find_parallel_type (type, "___XVE") == NULL)
9443 return val;
14f9c5c9 9444
d2e4a39e 9445 return
4c4b4cd2
PH
9446 coerce_unspec_val_to_type
9447 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9448 value_address (val),
1ed6ede0 9449 NULL, 1));
14f9c5c9
AS
9450 }
9451}
d2e4a39e
AS
9452
9453static struct value *
9454cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9455{
9456 LONGEST val;
9457
df407dfe 9458 if (type == value_type (arg))
14f9c5c9 9459 return arg;
df407dfe 9460 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9461 val = ada_float_to_fixed (type,
df407dfe 9462 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9463 value_as_long (arg)));
d2e4a39e 9464 else
14f9c5c9 9465 {
a53b7a21 9466 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9467
14f9c5c9
AS
9468 val = ada_float_to_fixed (type, argd);
9469 }
9470
9471 return value_from_longest (type, val);
9472}
9473
d2e4a39e 9474static struct value *
a53b7a21 9475cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9476{
df407dfe 9477 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9478 value_as_long (arg));
5b4ee69b 9479
a53b7a21 9480 return value_from_double (type, val);
14f9c5c9
AS
9481}
9482
d99dcf51
JB
9483/* Given two array types T1 and T2, return nonzero iff both arrays
9484 contain the same number of elements. */
9485
9486static int
9487ada_same_array_size_p (struct type *t1, struct type *t2)
9488{
9489 LONGEST lo1, hi1, lo2, hi2;
9490
9491 /* Get the array bounds in order to verify that the size of
9492 the two arrays match. */
9493 if (!get_array_bounds (t1, &lo1, &hi1)
9494 || !get_array_bounds (t2, &lo2, &hi2))
9495 error (_("unable to determine array bounds"));
9496
9497 /* To make things easier for size comparison, normalize a bit
9498 the case of empty arrays by making sure that the difference
9499 between upper bound and lower bound is always -1. */
9500 if (lo1 > hi1)
9501 hi1 = lo1 - 1;
9502 if (lo2 > hi2)
9503 hi2 = lo2 - 1;
9504
9505 return (hi1 - lo1 == hi2 - lo2);
9506}
9507
9508/* Assuming that VAL is an array of integrals, and TYPE represents
9509 an array with the same number of elements, but with wider integral
9510 elements, return an array "casted" to TYPE. In practice, this
9511 means that the returned array is built by casting each element
9512 of the original array into TYPE's (wider) element type. */
9513
9514static struct value *
9515ada_promote_array_of_integrals (struct type *type, struct value *val)
9516{
9517 struct type *elt_type = TYPE_TARGET_TYPE (type);
9518 LONGEST lo, hi;
9519 struct value *res;
9520 LONGEST i;
9521
9522 /* Verify that both val and type are arrays of scalars, and
9523 that the size of val's elements is smaller than the size
9524 of type's element. */
9525 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9526 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9527 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9528 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9529 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9530 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9531
9532 if (!get_array_bounds (type, &lo, &hi))
9533 error (_("unable to determine array bounds"));
9534
9535 res = allocate_value (type);
9536
9537 /* Promote each array element. */
9538 for (i = 0; i < hi - lo + 1; i++)
9539 {
9540 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9541
9542 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9543 value_contents_all (elt), TYPE_LENGTH (elt_type));
9544 }
9545
9546 return res;
9547}
9548
4c4b4cd2
PH
9549/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9550 return the converted value. */
9551
d2e4a39e
AS
9552static struct value *
9553coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9554{
df407dfe 9555 struct type *type2 = value_type (val);
5b4ee69b 9556
14f9c5c9
AS
9557 if (type == type2)
9558 return val;
9559
61ee279c
PH
9560 type2 = ada_check_typedef (type2);
9561 type = ada_check_typedef (type);
14f9c5c9 9562
d2e4a39e
AS
9563 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9564 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9565 {
9566 val = ada_value_ind (val);
df407dfe 9567 type2 = value_type (val);
14f9c5c9
AS
9568 }
9569
d2e4a39e 9570 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9571 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9572 {
d99dcf51
JB
9573 if (!ada_same_array_size_p (type, type2))
9574 error (_("cannot assign arrays of different length"));
9575
9576 if (is_integral_type (TYPE_TARGET_TYPE (type))
9577 && is_integral_type (TYPE_TARGET_TYPE (type2))
9578 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9579 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9580 {
9581 /* Allow implicit promotion of the array elements to
9582 a wider type. */
9583 return ada_promote_array_of_integrals (type, val);
9584 }
9585
9586 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9587 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9588 error (_("Incompatible types in assignment"));
04624583 9589 deprecated_set_value_type (val, type);
14f9c5c9 9590 }
d2e4a39e 9591 return val;
14f9c5c9
AS
9592}
9593
4c4b4cd2
PH
9594static struct value *
9595ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9596{
9597 struct value *val;
9598 struct type *type1, *type2;
9599 LONGEST v, v1, v2;
9600
994b9211
AC
9601 arg1 = coerce_ref (arg1);
9602 arg2 = coerce_ref (arg2);
18af8284
JB
9603 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9604 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9605
76a01679
JB
9606 if (TYPE_CODE (type1) != TYPE_CODE_INT
9607 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9608 return value_binop (arg1, arg2, op);
9609
76a01679 9610 switch (op)
4c4b4cd2
PH
9611 {
9612 case BINOP_MOD:
9613 case BINOP_DIV:
9614 case BINOP_REM:
9615 break;
9616 default:
9617 return value_binop (arg1, arg2, op);
9618 }
9619
9620 v2 = value_as_long (arg2);
9621 if (v2 == 0)
323e0a4a 9622 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9623
9624 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9625 return value_binop (arg1, arg2, op);
9626
9627 v1 = value_as_long (arg1);
9628 switch (op)
9629 {
9630 case BINOP_DIV:
9631 v = v1 / v2;
76a01679
JB
9632 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9633 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9634 break;
9635 case BINOP_REM:
9636 v = v1 % v2;
76a01679
JB
9637 if (v * v1 < 0)
9638 v -= v2;
4c4b4cd2
PH
9639 break;
9640 default:
9641 /* Should not reach this point. */
9642 v = 0;
9643 }
9644
9645 val = allocate_value (type1);
990a07ab 9646 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9647 TYPE_LENGTH (value_type (val)),
9648 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9649 return val;
9650}
9651
9652static int
9653ada_value_equal (struct value *arg1, struct value *arg2)
9654{
df407dfe
AC
9655 if (ada_is_direct_array_type (value_type (arg1))
9656 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9657 {
f58b38bf
JB
9658 /* Automatically dereference any array reference before
9659 we attempt to perform the comparison. */
9660 arg1 = ada_coerce_ref (arg1);
9661 arg2 = ada_coerce_ref (arg2);
9662
4c4b4cd2
PH
9663 arg1 = ada_coerce_to_simple_array (arg1);
9664 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9665 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9666 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9667 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9668 /* FIXME: The following works only for types whose
76a01679
JB
9669 representations use all bits (no padding or undefined bits)
9670 and do not have user-defined equality. */
9671 return
df407dfe 9672 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9673 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9674 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9675 }
9676 return value_equal (arg1, arg2);
9677}
9678
52ce6436
PH
9679/* Total number of component associations in the aggregate starting at
9680 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9681 OP_AGGREGATE. */
52ce6436
PH
9682
9683static int
9684num_component_specs (struct expression *exp, int pc)
9685{
9686 int n, m, i;
5b4ee69b 9687
52ce6436
PH
9688 m = exp->elts[pc + 1].longconst;
9689 pc += 3;
9690 n = 0;
9691 for (i = 0; i < m; i += 1)
9692 {
9693 switch (exp->elts[pc].opcode)
9694 {
9695 default:
9696 n += 1;
9697 break;
9698 case OP_CHOICES:
9699 n += exp->elts[pc + 1].longconst;
9700 break;
9701 }
9702 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9703 }
9704 return n;
9705}
9706
9707/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9708 component of LHS (a simple array or a record), updating *POS past
9709 the expression, assuming that LHS is contained in CONTAINER. Does
9710 not modify the inferior's memory, nor does it modify LHS (unless
9711 LHS == CONTAINER). */
9712
9713static void
9714assign_component (struct value *container, struct value *lhs, LONGEST index,
9715 struct expression *exp, int *pos)
9716{
9717 struct value *mark = value_mark ();
9718 struct value *elt;
5b4ee69b 9719
52ce6436
PH
9720 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9721 {
22601c15
UW
9722 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9723 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9724
52ce6436
PH
9725 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9726 }
9727 else
9728 {
9729 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9730 elt = ada_to_fixed_value (elt);
52ce6436
PH
9731 }
9732
9733 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9734 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9735 else
9736 value_assign_to_component (container, elt,
9737 ada_evaluate_subexp (NULL, exp, pos,
9738 EVAL_NORMAL));
9739
9740 value_free_to_mark (mark);
9741}
9742
9743/* Assuming that LHS represents an lvalue having a record or array
9744 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9745 of that aggregate's value to LHS, advancing *POS past the
9746 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9747 lvalue containing LHS (possibly LHS itself). Does not modify
9748 the inferior's memory, nor does it modify the contents of
0963b4bd 9749 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9750
9751static struct value *
9752assign_aggregate (struct value *container,
9753 struct value *lhs, struct expression *exp,
9754 int *pos, enum noside noside)
9755{
9756 struct type *lhs_type;
9757 int n = exp->elts[*pos+1].longconst;
9758 LONGEST low_index, high_index;
9759 int num_specs;
9760 LONGEST *indices;
9761 int max_indices, num_indices;
52ce6436 9762 int i;
52ce6436
PH
9763
9764 *pos += 3;
9765 if (noside != EVAL_NORMAL)
9766 {
52ce6436
PH
9767 for (i = 0; i < n; i += 1)
9768 ada_evaluate_subexp (NULL, exp, pos, noside);
9769 return container;
9770 }
9771
9772 container = ada_coerce_ref (container);
9773 if (ada_is_direct_array_type (value_type (container)))
9774 container = ada_coerce_to_simple_array (container);
9775 lhs = ada_coerce_ref (lhs);
9776 if (!deprecated_value_modifiable (lhs))
9777 error (_("Left operand of assignment is not a modifiable lvalue."));
9778
9779 lhs_type = value_type (lhs);
9780 if (ada_is_direct_array_type (lhs_type))
9781 {
9782 lhs = ada_coerce_to_simple_array (lhs);
9783 lhs_type = value_type (lhs);
9784 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9785 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9786 }
9787 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9788 {
9789 low_index = 0;
9790 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9791 }
9792 else
9793 error (_("Left-hand side must be array or record."));
9794
9795 num_specs = num_component_specs (exp, *pos - 3);
9796 max_indices = 4 * num_specs + 4;
8d749320 9797 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9798 indices[0] = indices[1] = low_index - 1;
9799 indices[2] = indices[3] = high_index + 1;
9800 num_indices = 4;
9801
9802 for (i = 0; i < n; i += 1)
9803 {
9804 switch (exp->elts[*pos].opcode)
9805 {
1fbf5ada
JB
9806 case OP_CHOICES:
9807 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9808 &num_indices, max_indices,
9809 low_index, high_index);
9810 break;
9811 case OP_POSITIONAL:
9812 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9813 &num_indices, max_indices,
9814 low_index, high_index);
1fbf5ada
JB
9815 break;
9816 case OP_OTHERS:
9817 if (i != n-1)
9818 error (_("Misplaced 'others' clause"));
9819 aggregate_assign_others (container, lhs, exp, pos, indices,
9820 num_indices, low_index, high_index);
9821 break;
9822 default:
9823 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9824 }
9825 }
9826
9827 return container;
9828}
9829
9830/* Assign into the component of LHS indexed by the OP_POSITIONAL
9831 construct at *POS, updating *POS past the construct, given that
9832 the positions are relative to lower bound LOW, where HIGH is the
9833 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9834 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9835 assign_aggregate. */
52ce6436
PH
9836static void
9837aggregate_assign_positional (struct value *container,
9838 struct value *lhs, struct expression *exp,
9839 int *pos, LONGEST *indices, int *num_indices,
9840 int max_indices, LONGEST low, LONGEST high)
9841{
9842 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9843
9844 if (ind - 1 == high)
e1d5a0d2 9845 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9846 if (ind <= high)
9847 {
9848 add_component_interval (ind, ind, indices, num_indices, max_indices);
9849 *pos += 3;
9850 assign_component (container, lhs, ind, exp, pos);
9851 }
9852 else
9853 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9854}
9855
9856/* Assign into the components of LHS indexed by the OP_CHOICES
9857 construct at *POS, updating *POS past the construct, given that
9858 the allowable indices are LOW..HIGH. Record the indices assigned
9859 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9860 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9861static void
9862aggregate_assign_from_choices (struct value *container,
9863 struct value *lhs, struct expression *exp,
9864 int *pos, LONGEST *indices, int *num_indices,
9865 int max_indices, LONGEST low, LONGEST high)
9866{
9867 int j;
9868 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9869 int choice_pos, expr_pc;
9870 int is_array = ada_is_direct_array_type (value_type (lhs));
9871
9872 choice_pos = *pos += 3;
9873
9874 for (j = 0; j < n_choices; j += 1)
9875 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9876 expr_pc = *pos;
9877 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9878
9879 for (j = 0; j < n_choices; j += 1)
9880 {
9881 LONGEST lower, upper;
9882 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9883
52ce6436
PH
9884 if (op == OP_DISCRETE_RANGE)
9885 {
9886 choice_pos += 1;
9887 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9888 EVAL_NORMAL));
9889 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9890 EVAL_NORMAL));
9891 }
9892 else if (is_array)
9893 {
9894 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9895 EVAL_NORMAL));
9896 upper = lower;
9897 }
9898 else
9899 {
9900 int ind;
0d5cff50 9901 const char *name;
5b4ee69b 9902
52ce6436
PH
9903 switch (op)
9904 {
9905 case OP_NAME:
9906 name = &exp->elts[choice_pos + 2].string;
9907 break;
9908 case OP_VAR_VALUE:
9909 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9910 break;
9911 default:
9912 error (_("Invalid record component association."));
9913 }
9914 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9915 ind = 0;
9916 if (! find_struct_field (name, value_type (lhs), 0,
9917 NULL, NULL, NULL, NULL, &ind))
9918 error (_("Unknown component name: %s."), name);
9919 lower = upper = ind;
9920 }
9921
9922 if (lower <= upper && (lower < low || upper > high))
9923 error (_("Index in component association out of bounds."));
9924
9925 add_component_interval (lower, upper, indices, num_indices,
9926 max_indices);
9927 while (lower <= upper)
9928 {
9929 int pos1;
5b4ee69b 9930
52ce6436
PH
9931 pos1 = expr_pc;
9932 assign_component (container, lhs, lower, exp, &pos1);
9933 lower += 1;
9934 }
9935 }
9936}
9937
9938/* Assign the value of the expression in the OP_OTHERS construct in
9939 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9940 have not been previously assigned. The index intervals already assigned
9941 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9942 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9943static void
9944aggregate_assign_others (struct value *container,
9945 struct value *lhs, struct expression *exp,
9946 int *pos, LONGEST *indices, int num_indices,
9947 LONGEST low, LONGEST high)
9948{
9949 int i;
5ce64950 9950 int expr_pc = *pos + 1;
52ce6436
PH
9951
9952 for (i = 0; i < num_indices - 2; i += 2)
9953 {
9954 LONGEST ind;
5b4ee69b 9955
52ce6436
PH
9956 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9957 {
5ce64950 9958 int localpos;
5b4ee69b 9959
5ce64950
MS
9960 localpos = expr_pc;
9961 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9962 }
9963 }
9964 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9965}
9966
9967/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9968 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9969 modifying *SIZE as needed. It is an error if *SIZE exceeds
9970 MAX_SIZE. The resulting intervals do not overlap. */
9971static void
9972add_component_interval (LONGEST low, LONGEST high,
9973 LONGEST* indices, int *size, int max_size)
9974{
9975 int i, j;
5b4ee69b 9976
52ce6436
PH
9977 for (i = 0; i < *size; i += 2) {
9978 if (high >= indices[i] && low <= indices[i + 1])
9979 {
9980 int kh;
5b4ee69b 9981
52ce6436
PH
9982 for (kh = i + 2; kh < *size; kh += 2)
9983 if (high < indices[kh])
9984 break;
9985 if (low < indices[i])
9986 indices[i] = low;
9987 indices[i + 1] = indices[kh - 1];
9988 if (high > indices[i + 1])
9989 indices[i + 1] = high;
9990 memcpy (indices + i + 2, indices + kh, *size - kh);
9991 *size -= kh - i - 2;
9992 return;
9993 }
9994 else if (high < indices[i])
9995 break;
9996 }
9997
9998 if (*size == max_size)
9999 error (_("Internal error: miscounted aggregate components."));
10000 *size += 2;
10001 for (j = *size-1; j >= i+2; j -= 1)
10002 indices[j] = indices[j - 2];
10003 indices[i] = low;
10004 indices[i + 1] = high;
10005}
10006
6e48bd2c
JB
10007/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10008 is different. */
10009
10010static struct value *
10011ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10012{
10013 if (type == ada_check_typedef (value_type (arg2)))
10014 return arg2;
10015
10016 if (ada_is_fixed_point_type (type))
10017 return (cast_to_fixed (type, arg2));
10018
10019 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10020 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10021
10022 return value_cast (type, arg2);
10023}
10024
284614f0
JB
10025/* Evaluating Ada expressions, and printing their result.
10026 ------------------------------------------------------
10027
21649b50
JB
10028 1. Introduction:
10029 ----------------
10030
284614f0
JB
10031 We usually evaluate an Ada expression in order to print its value.
10032 We also evaluate an expression in order to print its type, which
10033 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10034 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10035 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10036 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10037 similar.
10038
10039 Evaluating expressions is a little more complicated for Ada entities
10040 than it is for entities in languages such as C. The main reason for
10041 this is that Ada provides types whose definition might be dynamic.
10042 One example of such types is variant records. Or another example
10043 would be an array whose bounds can only be known at run time.
10044
10045 The following description is a general guide as to what should be
10046 done (and what should NOT be done) in order to evaluate an expression
10047 involving such types, and when. This does not cover how the semantic
10048 information is encoded by GNAT as this is covered separatly. For the
10049 document used as the reference for the GNAT encoding, see exp_dbug.ads
10050 in the GNAT sources.
10051
10052 Ideally, we should embed each part of this description next to its
10053 associated code. Unfortunately, the amount of code is so vast right
10054 now that it's hard to see whether the code handling a particular
10055 situation might be duplicated or not. One day, when the code is
10056 cleaned up, this guide might become redundant with the comments
10057 inserted in the code, and we might want to remove it.
10058
21649b50
JB
10059 2. ``Fixing'' an Entity, the Simple Case:
10060 -----------------------------------------
10061
284614f0
JB
10062 When evaluating Ada expressions, the tricky issue is that they may
10063 reference entities whose type contents and size are not statically
10064 known. Consider for instance a variant record:
10065
10066 type Rec (Empty : Boolean := True) is record
10067 case Empty is
10068 when True => null;
10069 when False => Value : Integer;
10070 end case;
10071 end record;
10072 Yes : Rec := (Empty => False, Value => 1);
10073 No : Rec := (empty => True);
10074
10075 The size and contents of that record depends on the value of the
10076 descriminant (Rec.Empty). At this point, neither the debugging
10077 information nor the associated type structure in GDB are able to
10078 express such dynamic types. So what the debugger does is to create
10079 "fixed" versions of the type that applies to the specific object.
10080 We also informally refer to this opperation as "fixing" an object,
10081 which means creating its associated fixed type.
10082
10083 Example: when printing the value of variable "Yes" above, its fixed
10084 type would look like this:
10085
10086 type Rec is record
10087 Empty : Boolean;
10088 Value : Integer;
10089 end record;
10090
10091 On the other hand, if we printed the value of "No", its fixed type
10092 would become:
10093
10094 type Rec is record
10095 Empty : Boolean;
10096 end record;
10097
10098 Things become a little more complicated when trying to fix an entity
10099 with a dynamic type that directly contains another dynamic type,
10100 such as an array of variant records, for instance. There are
10101 two possible cases: Arrays, and records.
10102
21649b50
JB
10103 3. ``Fixing'' Arrays:
10104 ---------------------
10105
10106 The type structure in GDB describes an array in terms of its bounds,
10107 and the type of its elements. By design, all elements in the array
10108 have the same type and we cannot represent an array of variant elements
10109 using the current type structure in GDB. When fixing an array,
10110 we cannot fix the array element, as we would potentially need one
10111 fixed type per element of the array. As a result, the best we can do
10112 when fixing an array is to produce an array whose bounds and size
10113 are correct (allowing us to read it from memory), but without having
10114 touched its element type. Fixing each element will be done later,
10115 when (if) necessary.
10116
10117 Arrays are a little simpler to handle than records, because the same
10118 amount of memory is allocated for each element of the array, even if
1b536f04 10119 the amount of space actually used by each element differs from element
21649b50 10120 to element. Consider for instance the following array of type Rec:
284614f0
JB
10121
10122 type Rec_Array is array (1 .. 2) of Rec;
10123
1b536f04
JB
10124 The actual amount of memory occupied by each element might be different
10125 from element to element, depending on the value of their discriminant.
21649b50 10126 But the amount of space reserved for each element in the array remains
1b536f04 10127 fixed regardless. So we simply need to compute that size using
21649b50
JB
10128 the debugging information available, from which we can then determine
10129 the array size (we multiply the number of elements of the array by
10130 the size of each element).
10131
10132 The simplest case is when we have an array of a constrained element
10133 type. For instance, consider the following type declarations:
10134
10135 type Bounded_String (Max_Size : Integer) is
10136 Length : Integer;
10137 Buffer : String (1 .. Max_Size);
10138 end record;
10139 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10140
10141 In this case, the compiler describes the array as an array of
10142 variable-size elements (identified by its XVS suffix) for which
10143 the size can be read in the parallel XVZ variable.
10144
10145 In the case of an array of an unconstrained element type, the compiler
10146 wraps the array element inside a private PAD type. This type should not
10147 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10148 that we also use the adjective "aligner" in our code to designate
10149 these wrapper types.
10150
1b536f04 10151 In some cases, the size allocated for each element is statically
21649b50
JB
10152 known. In that case, the PAD type already has the correct size,
10153 and the array element should remain unfixed.
10154
10155 But there are cases when this size is not statically known.
10156 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10157
10158 type Dynamic is array (1 .. Five) of Integer;
10159 type Wrapper (Has_Length : Boolean := False) is record
10160 Data : Dynamic;
10161 case Has_Length is
10162 when True => Length : Integer;
10163 when False => null;
10164 end case;
10165 end record;
10166 type Wrapper_Array is array (1 .. 2) of Wrapper;
10167
10168 Hello : Wrapper_Array := (others => (Has_Length => True,
10169 Data => (others => 17),
10170 Length => 1));
10171
10172
10173 The debugging info would describe variable Hello as being an
10174 array of a PAD type. The size of that PAD type is not statically
10175 known, but can be determined using a parallel XVZ variable.
10176 In that case, a copy of the PAD type with the correct size should
10177 be used for the fixed array.
10178
21649b50
JB
10179 3. ``Fixing'' record type objects:
10180 ----------------------------------
10181
10182 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10183 record types. In this case, in order to compute the associated
10184 fixed type, we need to determine the size and offset of each of
10185 its components. This, in turn, requires us to compute the fixed
10186 type of each of these components.
10187
10188 Consider for instance the example:
10189
10190 type Bounded_String (Max_Size : Natural) is record
10191 Str : String (1 .. Max_Size);
10192 Length : Natural;
10193 end record;
10194 My_String : Bounded_String (Max_Size => 10);
10195
10196 In that case, the position of field "Length" depends on the size
10197 of field Str, which itself depends on the value of the Max_Size
21649b50 10198 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10199 we need to fix the type of field Str. Therefore, fixing a variant
10200 record requires us to fix each of its components.
10201
10202 However, if a component does not have a dynamic size, the component
10203 should not be fixed. In particular, fields that use a PAD type
10204 should not fixed. Here is an example where this might happen
10205 (assuming type Rec above):
10206
10207 type Container (Big : Boolean) is record
10208 First : Rec;
10209 After : Integer;
10210 case Big is
10211 when True => Another : Integer;
10212 when False => null;
10213 end case;
10214 end record;
10215 My_Container : Container := (Big => False,
10216 First => (Empty => True),
10217 After => 42);
10218
10219 In that example, the compiler creates a PAD type for component First,
10220 whose size is constant, and then positions the component After just
10221 right after it. The offset of component After is therefore constant
10222 in this case.
10223
10224 The debugger computes the position of each field based on an algorithm
10225 that uses, among other things, the actual position and size of the field
21649b50
JB
10226 preceding it. Let's now imagine that the user is trying to print
10227 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10228 end up computing the offset of field After based on the size of the
10229 fixed version of field First. And since in our example First has
10230 only one actual field, the size of the fixed type is actually smaller
10231 than the amount of space allocated to that field, and thus we would
10232 compute the wrong offset of field After.
10233
21649b50
JB
10234 To make things more complicated, we need to watch out for dynamic
10235 components of variant records (identified by the ___XVL suffix in
10236 the component name). Even if the target type is a PAD type, the size
10237 of that type might not be statically known. So the PAD type needs
10238 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10239 we might end up with the wrong size for our component. This can be
10240 observed with the following type declarations:
284614f0
JB
10241
10242 type Octal is new Integer range 0 .. 7;
10243 type Octal_Array is array (Positive range <>) of Octal;
10244 pragma Pack (Octal_Array);
10245
10246 type Octal_Buffer (Size : Positive) is record
10247 Buffer : Octal_Array (1 .. Size);
10248 Length : Integer;
10249 end record;
10250
10251 In that case, Buffer is a PAD type whose size is unset and needs
10252 to be computed by fixing the unwrapped type.
10253
21649b50
JB
10254 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10255 ----------------------------------------------------------
10256
10257 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10258 thus far, be actually fixed?
10259
10260 The answer is: Only when referencing that element. For instance
10261 when selecting one component of a record, this specific component
10262 should be fixed at that point in time. Or when printing the value
10263 of a record, each component should be fixed before its value gets
10264 printed. Similarly for arrays, the element of the array should be
10265 fixed when printing each element of the array, or when extracting
10266 one element out of that array. On the other hand, fixing should
10267 not be performed on the elements when taking a slice of an array!
10268
10269 Note that one of the side-effects of miscomputing the offset and
10270 size of each field is that we end up also miscomputing the size
10271 of the containing type. This can have adverse results when computing
10272 the value of an entity. GDB fetches the value of an entity based
10273 on the size of its type, and thus a wrong size causes GDB to fetch
10274 the wrong amount of memory. In the case where the computed size is
10275 too small, GDB fetches too little data to print the value of our
10276 entiry. Results in this case as unpredicatble, as we usually read
10277 past the buffer containing the data =:-o. */
10278
10279/* Implement the evaluate_exp routine in the exp_descriptor structure
10280 for the Ada language. */
10281
52ce6436 10282static struct value *
ebf56fd3 10283ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10284 int *pos, enum noside noside)
14f9c5c9
AS
10285{
10286 enum exp_opcode op;
b5385fc0 10287 int tem;
14f9c5c9 10288 int pc;
5ec18f2b 10289 int preeval_pos;
14f9c5c9
AS
10290 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10291 struct type *type;
52ce6436 10292 int nargs, oplen;
d2e4a39e 10293 struct value **argvec;
14f9c5c9 10294
d2e4a39e
AS
10295 pc = *pos;
10296 *pos += 1;
14f9c5c9
AS
10297 op = exp->elts[pc].opcode;
10298
d2e4a39e 10299 switch (op)
14f9c5c9
AS
10300 {
10301 default:
10302 *pos -= 1;
6e48bd2c 10303 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10304
10305 if (noside == EVAL_NORMAL)
10306 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10307
10308 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10309 then we need to perform the conversion manually, because
10310 evaluate_subexp_standard doesn't do it. This conversion is
10311 necessary in Ada because the different kinds of float/fixed
10312 types in Ada have different representations.
10313
10314 Similarly, we need to perform the conversion from OP_LONG
10315 ourselves. */
10316 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10317 arg1 = ada_value_cast (expect_type, arg1, noside);
10318
10319 return arg1;
4c4b4cd2
PH
10320
10321 case OP_STRING:
10322 {
76a01679 10323 struct value *result;
5b4ee69b 10324
76a01679
JB
10325 *pos -= 1;
10326 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10327 /* The result type will have code OP_STRING, bashed there from
10328 OP_ARRAY. Bash it back. */
df407dfe
AC
10329 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10330 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10331 return result;
4c4b4cd2 10332 }
14f9c5c9
AS
10333
10334 case UNOP_CAST:
10335 (*pos) += 2;
10336 type = exp->elts[pc + 1].type;
10337 arg1 = evaluate_subexp (type, exp, pos, noside);
10338 if (noside == EVAL_SKIP)
4c4b4cd2 10339 goto nosideret;
6e48bd2c 10340 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10341 return arg1;
10342
4c4b4cd2
PH
10343 case UNOP_QUAL:
10344 (*pos) += 2;
10345 type = exp->elts[pc + 1].type;
10346 return ada_evaluate_subexp (type, exp, pos, noside);
10347
14f9c5c9
AS
10348 case BINOP_ASSIGN:
10349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10350 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10351 {
10352 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10353 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10354 return arg1;
10355 return ada_value_assign (arg1, arg1);
10356 }
003f3813
JB
10357 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10358 except if the lhs of our assignment is a convenience variable.
10359 In the case of assigning to a convenience variable, the lhs
10360 should be exactly the result of the evaluation of the rhs. */
10361 type = value_type (arg1);
10362 if (VALUE_LVAL (arg1) == lval_internalvar)
10363 type = NULL;
10364 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10365 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10366 return arg1;
df407dfe
AC
10367 if (ada_is_fixed_point_type (value_type (arg1)))
10368 arg2 = cast_to_fixed (value_type (arg1), arg2);
10369 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10370 error
323e0a4a 10371 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10372 else
df407dfe 10373 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10374 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10375
10376 case BINOP_ADD:
10377 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10378 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10379 if (noside == EVAL_SKIP)
4c4b4cd2 10380 goto nosideret;
2ac8a782
JB
10381 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10382 return (value_from_longest
10383 (value_type (arg1),
10384 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10385 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10386 return (value_from_longest
10387 (value_type (arg2),
10388 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10389 if ((ada_is_fixed_point_type (value_type (arg1))
10390 || ada_is_fixed_point_type (value_type (arg2)))
10391 && value_type (arg1) != value_type (arg2))
323e0a4a 10392 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10393 /* Do the addition, and cast the result to the type of the first
10394 argument. We cannot cast the result to a reference type, so if
10395 ARG1 is a reference type, find its underlying type. */
10396 type = value_type (arg1);
10397 while (TYPE_CODE (type) == TYPE_CODE_REF)
10398 type = TYPE_TARGET_TYPE (type);
f44316fa 10399 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10400 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10401
10402 case BINOP_SUB:
10403 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10404 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10405 if (noside == EVAL_SKIP)
4c4b4cd2 10406 goto nosideret;
2ac8a782
JB
10407 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10408 return (value_from_longest
10409 (value_type (arg1),
10410 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10411 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10412 return (value_from_longest
10413 (value_type (arg2),
10414 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10415 if ((ada_is_fixed_point_type (value_type (arg1))
10416 || ada_is_fixed_point_type (value_type (arg2)))
10417 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10418 error (_("Operands of fixed-point subtraction "
10419 "must have the same type"));
b7789565
JB
10420 /* Do the substraction, and cast the result to the type of the first
10421 argument. We cannot cast the result to a reference type, so if
10422 ARG1 is a reference type, find its underlying type. */
10423 type = value_type (arg1);
10424 while (TYPE_CODE (type) == TYPE_CODE_REF)
10425 type = TYPE_TARGET_TYPE (type);
f44316fa 10426 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10427 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10428
10429 case BINOP_MUL:
10430 case BINOP_DIV:
e1578042
JB
10431 case BINOP_REM:
10432 case BINOP_MOD:
14f9c5c9
AS
10433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10434 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10435 if (noside == EVAL_SKIP)
4c4b4cd2 10436 goto nosideret;
e1578042 10437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10438 {
10439 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10440 return value_zero (value_type (arg1), not_lval);
10441 }
14f9c5c9 10442 else
4c4b4cd2 10443 {
a53b7a21 10444 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10445 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10446 arg1 = cast_from_fixed (type, arg1);
df407dfe 10447 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10448 arg2 = cast_from_fixed (type, arg2);
f44316fa 10449 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10450 return ada_value_binop (arg1, arg2, op);
10451 }
10452
4c4b4cd2
PH
10453 case BINOP_EQUAL:
10454 case BINOP_NOTEQUAL:
14f9c5c9 10455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10456 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10457 if (noside == EVAL_SKIP)
76a01679 10458 goto nosideret;
4c4b4cd2 10459 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10460 tem = 0;
4c4b4cd2 10461 else
f44316fa
UW
10462 {
10463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10464 tem = ada_value_equal (arg1, arg2);
10465 }
4c4b4cd2 10466 if (op == BINOP_NOTEQUAL)
76a01679 10467 tem = !tem;
fbb06eb1
UW
10468 type = language_bool_type (exp->language_defn, exp->gdbarch);
10469 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10470
10471 case UNOP_NEG:
10472 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10473 if (noside == EVAL_SKIP)
10474 goto nosideret;
df407dfe
AC
10475 else if (ada_is_fixed_point_type (value_type (arg1)))
10476 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10477 else
f44316fa
UW
10478 {
10479 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10480 return value_neg (arg1);
10481 }
4c4b4cd2 10482
2330c6c6
JB
10483 case BINOP_LOGICAL_AND:
10484 case BINOP_LOGICAL_OR:
10485 case UNOP_LOGICAL_NOT:
000d5124
JB
10486 {
10487 struct value *val;
10488
10489 *pos -= 1;
10490 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10491 type = language_bool_type (exp->language_defn, exp->gdbarch);
10492 return value_cast (type, val);
000d5124 10493 }
2330c6c6
JB
10494
10495 case BINOP_BITWISE_AND:
10496 case BINOP_BITWISE_IOR:
10497 case BINOP_BITWISE_XOR:
000d5124
JB
10498 {
10499 struct value *val;
10500
10501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10502 *pos = pc;
10503 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10504
10505 return value_cast (value_type (arg1), val);
10506 }
2330c6c6 10507
14f9c5c9
AS
10508 case OP_VAR_VALUE:
10509 *pos -= 1;
6799def4 10510
14f9c5c9 10511 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10512 {
10513 *pos += 4;
10514 goto nosideret;
10515 }
da5c522f
JB
10516
10517 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10518 /* Only encountered when an unresolved symbol occurs in a
10519 context other than a function call, in which case, it is
52ce6436 10520 invalid. */
323e0a4a 10521 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10522 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10523
10524 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10525 {
0c1f74cf 10526 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10527 /* Check to see if this is a tagged type. We also need to handle
10528 the case where the type is a reference to a tagged type, but
10529 we have to be careful to exclude pointers to tagged types.
10530 The latter should be shown as usual (as a pointer), whereas
10531 a reference should mostly be transparent to the user. */
10532 if (ada_is_tagged_type (type, 0)
023db19c 10533 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10534 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10535 {
10536 /* Tagged types are a little special in the fact that the real
10537 type is dynamic and can only be determined by inspecting the
10538 object's tag. This means that we need to get the object's
10539 value first (EVAL_NORMAL) and then extract the actual object
10540 type from its tag.
10541
10542 Note that we cannot skip the final step where we extract
10543 the object type from its tag, because the EVAL_NORMAL phase
10544 results in dynamic components being resolved into fixed ones.
10545 This can cause problems when trying to print the type
10546 description of tagged types whose parent has a dynamic size:
10547 We use the type name of the "_parent" component in order
10548 to print the name of the ancestor type in the type description.
10549 If that component had a dynamic size, the resolution into
10550 a fixed type would result in the loss of that type name,
10551 thus preventing us from printing the name of the ancestor
10552 type in the type description. */
10553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10554
10555 if (TYPE_CODE (type) != TYPE_CODE_REF)
10556 {
10557 struct type *actual_type;
10558
10559 actual_type = type_from_tag (ada_value_tag (arg1));
10560 if (actual_type == NULL)
10561 /* If, for some reason, we were unable to determine
10562 the actual type from the tag, then use the static
10563 approximation that we just computed as a fallback.
10564 This can happen if the debugging information is
10565 incomplete, for instance. */
10566 actual_type = type;
10567 return value_zero (actual_type, not_lval);
10568 }
10569 else
10570 {
10571 /* In the case of a ref, ada_coerce_ref takes care
10572 of determining the actual type. But the evaluation
10573 should return a ref as it should be valid to ask
10574 for its address; so rebuild a ref after coerce. */
10575 arg1 = ada_coerce_ref (arg1);
10576 return value_ref (arg1);
10577 }
10578 }
0c1f74cf 10579
84754697
JB
10580 /* Records and unions for which GNAT encodings have been
10581 generated need to be statically fixed as well.
10582 Otherwise, non-static fixing produces a type where
10583 all dynamic properties are removed, which prevents "ptype"
10584 from being able to completely describe the type.
10585 For instance, a case statement in a variant record would be
10586 replaced by the relevant components based on the actual
10587 value of the discriminants. */
10588 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10589 && dynamic_template_type (type) != NULL)
10590 || (TYPE_CODE (type) == TYPE_CODE_UNION
10591 && ada_find_parallel_type (type, "___XVU") != NULL))
10592 {
10593 *pos += 4;
10594 return value_zero (to_static_fixed_type (type), not_lval);
10595 }
4c4b4cd2 10596 }
da5c522f
JB
10597
10598 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10599 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10600
10601 case OP_FUNCALL:
10602 (*pos) += 2;
10603
10604 /* Allocate arg vector, including space for the function to be
10605 called in argvec[0] and a terminating NULL. */
10606 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10607 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10608
10609 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10610 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10611 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10612 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10613 else
10614 {
10615 for (tem = 0; tem <= nargs; tem += 1)
10616 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10617 argvec[tem] = 0;
10618
10619 if (noside == EVAL_SKIP)
10620 goto nosideret;
10621 }
10622
ad82864c
JB
10623 if (ada_is_constrained_packed_array_type
10624 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10625 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10626 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10627 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10628 /* This is a packed array that has already been fixed, and
10629 therefore already coerced to a simple array. Nothing further
10630 to do. */
10631 ;
df407dfe
AC
10632 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10633 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10634 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10635 argvec[0] = value_addr (argvec[0]);
10636
df407dfe 10637 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10638
10639 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10640 them. So, if this is an array typedef (encoding use for array
10641 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10642 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10643 type = ada_typedef_target_type (type);
10644
4c4b4cd2
PH
10645 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10646 {
61ee279c 10647 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10648 {
10649 case TYPE_CODE_FUNC:
61ee279c 10650 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10651 break;
10652 case TYPE_CODE_ARRAY:
10653 break;
10654 case TYPE_CODE_STRUCT:
10655 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10656 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10657 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10658 break;
10659 default:
323e0a4a 10660 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10661 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10662 break;
10663 }
10664 }
10665
10666 switch (TYPE_CODE (type))
10667 {
10668 case TYPE_CODE_FUNC:
10669 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10670 {
10671 struct type *rtype = TYPE_TARGET_TYPE (type);
10672
10673 if (TYPE_GNU_IFUNC (type))
10674 return allocate_value (TYPE_TARGET_TYPE (rtype));
10675 return allocate_value (rtype);
10676 }
4c4b4cd2 10677 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10678 case TYPE_CODE_INTERNAL_FUNCTION:
10679 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10680 /* We don't know anything about what the internal
10681 function might return, but we have to return
10682 something. */
10683 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10684 not_lval);
10685 else
10686 return call_internal_function (exp->gdbarch, exp->language_defn,
10687 argvec[0], nargs, argvec + 1);
10688
4c4b4cd2
PH
10689 case TYPE_CODE_STRUCT:
10690 {
10691 int arity;
10692
4c4b4cd2
PH
10693 arity = ada_array_arity (type);
10694 type = ada_array_element_type (type, nargs);
10695 if (type == NULL)
323e0a4a 10696 error (_("cannot subscript or call a record"));
4c4b4cd2 10697 if (arity != nargs)
323e0a4a 10698 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10700 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10701 return
10702 unwrap_value (ada_value_subscript
10703 (argvec[0], nargs, argvec + 1));
10704 }
10705 case TYPE_CODE_ARRAY:
10706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10707 {
10708 type = ada_array_element_type (type, nargs);
10709 if (type == NULL)
323e0a4a 10710 error (_("element type of array unknown"));
4c4b4cd2 10711 else
0a07e705 10712 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10713 }
10714 return
10715 unwrap_value (ada_value_subscript
10716 (ada_coerce_to_simple_array (argvec[0]),
10717 nargs, argvec + 1));
10718 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10720 {
deede10c 10721 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10722 type = ada_array_element_type (type, nargs);
10723 if (type == NULL)
323e0a4a 10724 error (_("element type of array unknown"));
4c4b4cd2 10725 else
0a07e705 10726 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10727 }
10728 return
deede10c
JB
10729 unwrap_value (ada_value_ptr_subscript (argvec[0],
10730 nargs, argvec + 1));
4c4b4cd2
PH
10731
10732 default:
e1d5a0d2
PH
10733 error (_("Attempt to index or call something other than an "
10734 "array or function"));
4c4b4cd2
PH
10735 }
10736
10737 case TERNOP_SLICE:
10738 {
10739 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 struct value *low_bound_val =
10741 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10742 struct value *high_bound_val =
10743 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 LONGEST low_bound;
10745 LONGEST high_bound;
5b4ee69b 10746
994b9211
AC
10747 low_bound_val = coerce_ref (low_bound_val);
10748 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10749 low_bound = value_as_long (low_bound_val);
10750 high_bound = value_as_long (high_bound_val);
963a6417 10751
4c4b4cd2
PH
10752 if (noside == EVAL_SKIP)
10753 goto nosideret;
10754
4c4b4cd2
PH
10755 /* If this is a reference to an aligner type, then remove all
10756 the aligners. */
df407dfe
AC
10757 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10758 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10759 TYPE_TARGET_TYPE (value_type (array)) =
10760 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10761
ad82864c 10762 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10763 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10764
10765 /* If this is a reference to an array or an array lvalue,
10766 convert to a pointer. */
df407dfe
AC
10767 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10768 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10769 && VALUE_LVAL (array) == lval_memory))
10770 array = value_addr (array);
10771
1265e4aa 10772 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10773 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10774 (value_type (array))))
0b5d8877 10775 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10776
10777 array = ada_coerce_to_simple_array_ptr (array);
10778
714e53ab
PH
10779 /* If we have more than one level of pointer indirection,
10780 dereference the value until we get only one level. */
df407dfe
AC
10781 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10782 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10783 == TYPE_CODE_PTR))
10784 array = value_ind (array);
10785
10786 /* Make sure we really do have an array type before going further,
10787 to avoid a SEGV when trying to get the index type or the target
10788 type later down the road if the debug info generated by
10789 the compiler is incorrect or incomplete. */
df407dfe 10790 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10791 error (_("cannot take slice of non-array"));
714e53ab 10792
828292f2
JB
10793 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10794 == TYPE_CODE_PTR)
4c4b4cd2 10795 {
828292f2
JB
10796 struct type *type0 = ada_check_typedef (value_type (array));
10797
0b5d8877 10798 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10799 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10800 else
10801 {
10802 struct type *arr_type0 =
828292f2 10803 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10804
f5938064
JG
10805 return ada_value_slice_from_ptr (array, arr_type0,
10806 longest_to_int (low_bound),
10807 longest_to_int (high_bound));
4c4b4cd2
PH
10808 }
10809 }
10810 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10811 return array;
10812 else if (high_bound < low_bound)
df407dfe 10813 return empty_array (value_type (array), low_bound);
4c4b4cd2 10814 else
529cad9c
PH
10815 return ada_value_slice (array, longest_to_int (low_bound),
10816 longest_to_int (high_bound));
4c4b4cd2 10817 }
14f9c5c9 10818
4c4b4cd2
PH
10819 case UNOP_IN_RANGE:
10820 (*pos) += 2;
10821 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10822 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10823
14f9c5c9 10824 if (noside == EVAL_SKIP)
4c4b4cd2 10825 goto nosideret;
14f9c5c9 10826
4c4b4cd2
PH
10827 switch (TYPE_CODE (type))
10828 {
10829 default:
e1d5a0d2
PH
10830 lim_warning (_("Membership test incompletely implemented; "
10831 "always returns true"));
fbb06eb1
UW
10832 type = language_bool_type (exp->language_defn, exp->gdbarch);
10833 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10834
10835 case TYPE_CODE_RANGE:
030b4912
UW
10836 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10837 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10839 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10840 type = language_bool_type (exp->language_defn, exp->gdbarch);
10841 return
10842 value_from_longest (type,
4c4b4cd2
PH
10843 (value_less (arg1, arg3)
10844 || value_equal (arg1, arg3))
10845 && (value_less (arg2, arg1)
10846 || value_equal (arg2, arg1)));
10847 }
10848
10849 case BINOP_IN_BOUNDS:
14f9c5c9 10850 (*pos) += 2;
4c4b4cd2
PH
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10853
4c4b4cd2
PH
10854 if (noside == EVAL_SKIP)
10855 goto nosideret;
14f9c5c9 10856
4c4b4cd2 10857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10858 {
10859 type = language_bool_type (exp->language_defn, exp->gdbarch);
10860 return value_zero (type, not_lval);
10861 }
14f9c5c9 10862
4c4b4cd2 10863 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10864
1eea4ebd
UW
10865 type = ada_index_type (value_type (arg2), tem, "range");
10866 if (!type)
10867 type = value_type (arg1);
14f9c5c9 10868
1eea4ebd
UW
10869 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10870 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10871
f44316fa
UW
10872 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10873 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10874 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10875 return
fbb06eb1 10876 value_from_longest (type,
4c4b4cd2
PH
10877 (value_less (arg1, arg3)
10878 || value_equal (arg1, arg3))
10879 && (value_less (arg2, arg1)
10880 || value_equal (arg2, arg1)));
10881
10882 case TERNOP_IN_RANGE:
10883 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10884 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10885 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10886
10887 if (noside == EVAL_SKIP)
10888 goto nosideret;
10889
f44316fa
UW
10890 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10891 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10892 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10893 return
fbb06eb1 10894 value_from_longest (type,
4c4b4cd2
PH
10895 (value_less (arg1, arg3)
10896 || value_equal (arg1, arg3))
10897 && (value_less (arg2, arg1)
10898 || value_equal (arg2, arg1)));
10899
10900 case OP_ATR_FIRST:
10901 case OP_ATR_LAST:
10902 case OP_ATR_LENGTH:
10903 {
76a01679 10904 struct type *type_arg;
5b4ee69b 10905
76a01679
JB
10906 if (exp->elts[*pos].opcode == OP_TYPE)
10907 {
10908 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10909 arg1 = NULL;
5bc23cb3 10910 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10911 }
10912 else
10913 {
10914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10915 type_arg = NULL;
10916 }
10917
10918 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10919 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10920 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10921 *pos += 4;
10922
10923 if (noside == EVAL_SKIP)
10924 goto nosideret;
10925
10926 if (type_arg == NULL)
10927 {
10928 arg1 = ada_coerce_ref (arg1);
10929
ad82864c 10930 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10931 arg1 = ada_coerce_to_simple_array (arg1);
10932
aa4fb036 10933 if (op == OP_ATR_LENGTH)
1eea4ebd 10934 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10935 else
10936 {
10937 type = ada_index_type (value_type (arg1), tem,
10938 ada_attribute_name (op));
10939 if (type == NULL)
10940 type = builtin_type (exp->gdbarch)->builtin_int;
10941 }
76a01679
JB
10942
10943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10944 return allocate_value (type);
76a01679
JB
10945
10946 switch (op)
10947 {
10948 default: /* Should never happen. */
323e0a4a 10949 error (_("unexpected attribute encountered"));
76a01679 10950 case OP_ATR_FIRST:
1eea4ebd
UW
10951 return value_from_longest
10952 (type, ada_array_bound (arg1, tem, 0));
76a01679 10953 case OP_ATR_LAST:
1eea4ebd
UW
10954 return value_from_longest
10955 (type, ada_array_bound (arg1, tem, 1));
76a01679 10956 case OP_ATR_LENGTH:
1eea4ebd
UW
10957 return value_from_longest
10958 (type, ada_array_length (arg1, tem));
76a01679
JB
10959 }
10960 }
10961 else if (discrete_type_p (type_arg))
10962 {
10963 struct type *range_type;
0d5cff50 10964 const char *name = ada_type_name (type_arg);
5b4ee69b 10965
76a01679
JB
10966 range_type = NULL;
10967 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10968 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10969 if (range_type == NULL)
10970 range_type = type_arg;
10971 switch (op)
10972 {
10973 default:
323e0a4a 10974 error (_("unexpected attribute encountered"));
76a01679 10975 case OP_ATR_FIRST:
690cc4eb 10976 return value_from_longest
43bbcdc2 10977 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10978 case OP_ATR_LAST:
690cc4eb 10979 return value_from_longest
43bbcdc2 10980 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10981 case OP_ATR_LENGTH:
323e0a4a 10982 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10983 }
10984 }
10985 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10986 error (_("unimplemented type attribute"));
76a01679
JB
10987 else
10988 {
10989 LONGEST low, high;
10990
ad82864c
JB
10991 if (ada_is_constrained_packed_array_type (type_arg))
10992 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10993
aa4fb036 10994 if (op == OP_ATR_LENGTH)
1eea4ebd 10995 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10996 else
10997 {
10998 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10999 if (type == NULL)
11000 type = builtin_type (exp->gdbarch)->builtin_int;
11001 }
1eea4ebd 11002
76a01679
JB
11003 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11004 return allocate_value (type);
11005
11006 switch (op)
11007 {
11008 default:
323e0a4a 11009 error (_("unexpected attribute encountered"));
76a01679 11010 case OP_ATR_FIRST:
1eea4ebd 11011 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11012 return value_from_longest (type, low);
11013 case OP_ATR_LAST:
1eea4ebd 11014 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11015 return value_from_longest (type, high);
11016 case OP_ATR_LENGTH:
1eea4ebd
UW
11017 low = ada_array_bound_from_type (type_arg, tem, 0);
11018 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11019 return value_from_longest (type, high - low + 1);
11020 }
11021 }
14f9c5c9
AS
11022 }
11023
4c4b4cd2
PH
11024 case OP_ATR_TAG:
11025 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026 if (noside == EVAL_SKIP)
76a01679 11027 goto nosideret;
4c4b4cd2
PH
11028
11029 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11030 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11031
11032 return ada_value_tag (arg1);
11033
11034 case OP_ATR_MIN:
11035 case OP_ATR_MAX:
11036 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11037 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11038 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11039 if (noside == EVAL_SKIP)
76a01679 11040 goto nosideret;
d2e4a39e 11041 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11042 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11043 else
f44316fa
UW
11044 {
11045 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11046 return value_binop (arg1, arg2,
11047 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11048 }
14f9c5c9 11049
4c4b4cd2
PH
11050 case OP_ATR_MODULUS:
11051 {
31dedfee 11052 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11053
5b4ee69b 11054 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11055 if (noside == EVAL_SKIP)
11056 goto nosideret;
4c4b4cd2 11057
76a01679 11058 if (!ada_is_modular_type (type_arg))
323e0a4a 11059 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11060
76a01679
JB
11061 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11062 ada_modulus (type_arg));
4c4b4cd2
PH
11063 }
11064
11065
11066 case OP_ATR_POS:
11067 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11068 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11069 if (noside == EVAL_SKIP)
76a01679 11070 goto nosideret;
3cb382c9
UW
11071 type = builtin_type (exp->gdbarch)->builtin_int;
11072 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11073 return value_zero (type, not_lval);
14f9c5c9 11074 else
3cb382c9 11075 return value_pos_atr (type, arg1);
14f9c5c9 11076
4c4b4cd2
PH
11077 case OP_ATR_SIZE:
11078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11079 type = value_type (arg1);
11080
11081 /* If the argument is a reference, then dereference its type, since
11082 the user is really asking for the size of the actual object,
11083 not the size of the pointer. */
11084 if (TYPE_CODE (type) == TYPE_CODE_REF)
11085 type = TYPE_TARGET_TYPE (type);
11086
4c4b4cd2 11087 if (noside == EVAL_SKIP)
76a01679 11088 goto nosideret;
4c4b4cd2 11089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11090 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11091 else
22601c15 11092 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11093 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11094
11095 case OP_ATR_VAL:
11096 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11098 type = exp->elts[pc + 2].type;
14f9c5c9 11099 if (noside == EVAL_SKIP)
76a01679 11100 goto nosideret;
4c4b4cd2 11101 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11102 return value_zero (type, not_lval);
4c4b4cd2 11103 else
76a01679 11104 return value_val_atr (type, arg1);
4c4b4cd2
PH
11105
11106 case BINOP_EXP:
11107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11108 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11109 if (noside == EVAL_SKIP)
11110 goto nosideret;
11111 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11112 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11113 else
f44316fa
UW
11114 {
11115 /* For integer exponentiation operations,
11116 only promote the first argument. */
11117 if (is_integral_type (value_type (arg2)))
11118 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11119 else
11120 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11121
11122 return value_binop (arg1, arg2, op);
11123 }
4c4b4cd2
PH
11124
11125 case UNOP_PLUS:
11126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11127 if (noside == EVAL_SKIP)
11128 goto nosideret;
11129 else
11130 return arg1;
11131
11132 case UNOP_ABS:
11133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11134 if (noside == EVAL_SKIP)
11135 goto nosideret;
f44316fa 11136 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11137 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11138 return value_neg (arg1);
14f9c5c9 11139 else
4c4b4cd2 11140 return arg1;
14f9c5c9
AS
11141
11142 case UNOP_IND:
5ec18f2b 11143 preeval_pos = *pos;
6b0d7253 11144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11145 if (noside == EVAL_SKIP)
4c4b4cd2 11146 goto nosideret;
df407dfe 11147 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11148 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11149 {
11150 if (ada_is_array_descriptor_type (type))
11151 /* GDB allows dereferencing GNAT array descriptors. */
11152 {
11153 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11154
4c4b4cd2 11155 if (arrType == NULL)
323e0a4a 11156 error (_("Attempt to dereference null array pointer."));
00a4c844 11157 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11158 }
11159 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11160 || TYPE_CODE (type) == TYPE_CODE_REF
11161 /* In C you can dereference an array to get the 1st elt. */
11162 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11163 {
5ec18f2b
JG
11164 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11165 only be determined by inspecting the object's tag.
11166 This means that we need to evaluate completely the
11167 expression in order to get its type. */
11168
023db19c
JB
11169 if ((TYPE_CODE (type) == TYPE_CODE_REF
11170 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11171 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11172 {
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11174 EVAL_NORMAL);
11175 type = value_type (ada_value_ind (arg1));
11176 }
11177 else
11178 {
11179 type = to_static_fixed_type
11180 (ada_aligned_type
11181 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11182 }
c1b5a1a6 11183 ada_ensure_varsize_limit (type);
714e53ab
PH
11184 return value_zero (type, lval_memory);
11185 }
4c4b4cd2 11186 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11187 {
11188 /* GDB allows dereferencing an int. */
11189 if (expect_type == NULL)
11190 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11191 lval_memory);
11192 else
11193 {
11194 expect_type =
11195 to_static_fixed_type (ada_aligned_type (expect_type));
11196 return value_zero (expect_type, lval_memory);
11197 }
11198 }
4c4b4cd2 11199 else
323e0a4a 11200 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11201 }
0963b4bd 11202 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11203 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11204
96967637
JB
11205 if (TYPE_CODE (type) == TYPE_CODE_INT)
11206 /* GDB allows dereferencing an int. If we were given
11207 the expect_type, then use that as the target type.
11208 Otherwise, assume that the target type is an int. */
11209 {
11210 if (expect_type != NULL)
11211 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11212 arg1));
11213 else
11214 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11215 (CORE_ADDR) value_as_address (arg1));
11216 }
6b0d7253 11217
4c4b4cd2
PH
11218 if (ada_is_array_descriptor_type (type))
11219 /* GDB allows dereferencing GNAT array descriptors. */
11220 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11221 else
4c4b4cd2 11222 return ada_value_ind (arg1);
14f9c5c9
AS
11223
11224 case STRUCTOP_STRUCT:
11225 tem = longest_to_int (exp->elts[pc + 1].longconst);
11226 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11227 preeval_pos = *pos;
14f9c5c9
AS
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
4c4b4cd2 11230 goto nosideret;
14f9c5c9 11231 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11232 {
df407dfe 11233 struct type *type1 = value_type (arg1);
5b4ee69b 11234
76a01679
JB
11235 if (ada_is_tagged_type (type1, 1))
11236 {
11237 type = ada_lookup_struct_elt_type (type1,
11238 &exp->elts[pc + 2].string,
11239 1, 1, NULL);
5ec18f2b
JG
11240
11241 /* If the field is not found, check if it exists in the
11242 extension of this object's type. This means that we
11243 need to evaluate completely the expression. */
11244
76a01679 11245 if (type == NULL)
5ec18f2b
JG
11246 {
11247 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11248 EVAL_NORMAL);
11249 arg1 = ada_value_struct_elt (arg1,
11250 &exp->elts[pc + 2].string,
11251 0);
11252 arg1 = unwrap_value (arg1);
11253 type = value_type (ada_to_fixed_value (arg1));
11254 }
76a01679
JB
11255 }
11256 else
11257 type =
11258 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11259 0, NULL);
11260
11261 return value_zero (ada_aligned_type (type), lval_memory);
11262 }
14f9c5c9 11263 else
284614f0
JB
11264 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11265 arg1 = unwrap_value (arg1);
11266 return ada_to_fixed_value (arg1);
11267
14f9c5c9 11268 case OP_TYPE:
4c4b4cd2
PH
11269 /* The value is not supposed to be used. This is here to make it
11270 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11271 (*pos) += 2;
11272 if (noside == EVAL_SKIP)
4c4b4cd2 11273 goto nosideret;
14f9c5c9 11274 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11275 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11276 else
323e0a4a 11277 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11278
11279 case OP_AGGREGATE:
11280 case OP_CHOICES:
11281 case OP_OTHERS:
11282 case OP_DISCRETE_RANGE:
11283 case OP_POSITIONAL:
11284 case OP_NAME:
11285 if (noside == EVAL_NORMAL)
11286 switch (op)
11287 {
11288 case OP_NAME:
11289 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11290 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11291 case OP_AGGREGATE:
11292 error (_("Aggregates only allowed on the right of an assignment"));
11293 default:
0963b4bd
MS
11294 internal_error (__FILE__, __LINE__,
11295 _("aggregate apparently mangled"));
52ce6436
PH
11296 }
11297
11298 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11299 *pos += oplen - 1;
11300 for (tem = 0; tem < nargs; tem += 1)
11301 ada_evaluate_subexp (NULL, exp, pos, noside);
11302 goto nosideret;
14f9c5c9
AS
11303 }
11304
11305nosideret:
22601c15 11306 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11307}
14f9c5c9 11308\f
d2e4a39e 11309
4c4b4cd2 11310 /* Fixed point */
14f9c5c9
AS
11311
11312/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11313 type name that encodes the 'small and 'delta information.
4c4b4cd2 11314 Otherwise, return NULL. */
14f9c5c9 11315
d2e4a39e 11316static const char *
ebf56fd3 11317fixed_type_info (struct type *type)
14f9c5c9 11318{
d2e4a39e 11319 const char *name = ada_type_name (type);
14f9c5c9
AS
11320 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11321
d2e4a39e
AS
11322 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11323 {
14f9c5c9 11324 const char *tail = strstr (name, "___XF_");
5b4ee69b 11325
14f9c5c9 11326 if (tail == NULL)
4c4b4cd2 11327 return NULL;
d2e4a39e 11328 else
4c4b4cd2 11329 return tail + 5;
14f9c5c9
AS
11330 }
11331 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11332 return fixed_type_info (TYPE_TARGET_TYPE (type));
11333 else
11334 return NULL;
11335}
11336
4c4b4cd2 11337/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11338
11339int
ebf56fd3 11340ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11341{
11342 return fixed_type_info (type) != NULL;
11343}
11344
4c4b4cd2
PH
11345/* Return non-zero iff TYPE represents a System.Address type. */
11346
11347int
11348ada_is_system_address_type (struct type *type)
11349{
11350 return (TYPE_NAME (type)
11351 && strcmp (TYPE_NAME (type), "system__address") == 0);
11352}
11353
14f9c5c9
AS
11354/* Assuming that TYPE is the representation of an Ada fixed-point
11355 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11356 delta cannot be determined. */
14f9c5c9
AS
11357
11358DOUBLEST
ebf56fd3 11359ada_delta (struct type *type)
14f9c5c9
AS
11360{
11361 const char *encoding = fixed_type_info (type);
facc390f 11362 DOUBLEST num, den;
14f9c5c9 11363
facc390f
JB
11364 /* Strictly speaking, num and den are encoded as integer. However,
11365 they may not fit into a long, and they will have to be converted
11366 to DOUBLEST anyway. So scan them as DOUBLEST. */
11367 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11368 &num, &den) < 2)
14f9c5c9 11369 return -1.0;
d2e4a39e 11370 else
facc390f 11371 return num / den;
14f9c5c9
AS
11372}
11373
11374/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11375 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11376
11377static DOUBLEST
ebf56fd3 11378scaling_factor (struct type *type)
14f9c5c9
AS
11379{
11380 const char *encoding = fixed_type_info (type);
facc390f 11381 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11382 int n;
d2e4a39e 11383
facc390f
JB
11384 /* Strictly speaking, num's and den's are encoded as integer. However,
11385 they may not fit into a long, and they will have to be converted
11386 to DOUBLEST anyway. So scan them as DOUBLEST. */
11387 n = sscanf (encoding,
11388 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11389 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11390 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11391
11392 if (n < 2)
11393 return 1.0;
11394 else if (n == 4)
facc390f 11395 return num1 / den1;
d2e4a39e 11396 else
facc390f 11397 return num0 / den0;
14f9c5c9
AS
11398}
11399
11400
11401/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11402 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11403
11404DOUBLEST
ebf56fd3 11405ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11406{
d2e4a39e 11407 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11408}
11409
4c4b4cd2
PH
11410/* The representation of a fixed-point value of type TYPE
11411 corresponding to the value X. */
14f9c5c9
AS
11412
11413LONGEST
ebf56fd3 11414ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11415{
11416 return (LONGEST) (x / scaling_factor (type) + 0.5);
11417}
11418
14f9c5c9 11419\f
d2e4a39e 11420
4c4b4cd2 11421 /* Range types */
14f9c5c9
AS
11422
11423/* Scan STR beginning at position K for a discriminant name, and
11424 return the value of that discriminant field of DVAL in *PX. If
11425 PNEW_K is not null, put the position of the character beyond the
11426 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11427 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11428
11429static int
108d56a4 11430scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11431 int *pnew_k)
14f9c5c9
AS
11432{
11433 static char *bound_buffer = NULL;
11434 static size_t bound_buffer_len = 0;
108d56a4 11435 const char *pend, *bound;
d2e4a39e 11436 struct value *bound_val;
14f9c5c9
AS
11437
11438 if (dval == NULL || str == NULL || str[k] == '\0')
11439 return 0;
11440
d2e4a39e 11441 pend = strstr (str + k, "__");
14f9c5c9
AS
11442 if (pend == NULL)
11443 {
d2e4a39e 11444 bound = str + k;
14f9c5c9
AS
11445 k += strlen (bound);
11446 }
d2e4a39e 11447 else
14f9c5c9 11448 {
d2e4a39e 11449 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11450 bound = bound_buffer;
d2e4a39e 11451 strncpy (bound_buffer, str + k, pend - (str + k));
108d56a4 11452 bound_buffer[pend - (str + k)] = '\0';
d2e4a39e 11453 k = pend - str;
14f9c5c9 11454 }
d2e4a39e 11455
df407dfe 11456 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11457 if (bound_val == NULL)
11458 return 0;
11459
11460 *px = value_as_long (bound_val);
11461 if (pnew_k != NULL)
11462 *pnew_k = k;
11463 return 1;
11464}
11465
11466/* Value of variable named NAME in the current environment. If
11467 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11468 otherwise causes an error with message ERR_MSG. */
11469
d2e4a39e
AS
11470static struct value *
11471get_var_value (char *name, char *err_msg)
14f9c5c9 11472{
d12307c1 11473 struct block_symbol *syms;
14f9c5c9
AS
11474 int nsyms;
11475
4c4b4cd2 11476 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11477 &syms);
14f9c5c9
AS
11478
11479 if (nsyms != 1)
11480 {
11481 if (err_msg == NULL)
4c4b4cd2 11482 return 0;
14f9c5c9 11483 else
8a3fe4f8 11484 error (("%s"), err_msg);
14f9c5c9
AS
11485 }
11486
d12307c1 11487 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11488}
d2e4a39e 11489
14f9c5c9 11490/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11491 no such variable found, returns 0, and sets *FLAG to 0. If
11492 successful, sets *FLAG to 1. */
11493
14f9c5c9 11494LONGEST
4c4b4cd2 11495get_int_var_value (char *name, int *flag)
14f9c5c9 11496{
4c4b4cd2 11497 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11498
14f9c5c9
AS
11499 if (var_val == 0)
11500 {
11501 if (flag != NULL)
4c4b4cd2 11502 *flag = 0;
14f9c5c9
AS
11503 return 0;
11504 }
11505 else
11506 {
11507 if (flag != NULL)
4c4b4cd2 11508 *flag = 1;
14f9c5c9
AS
11509 return value_as_long (var_val);
11510 }
11511}
d2e4a39e 11512
14f9c5c9
AS
11513
11514/* Return a range type whose base type is that of the range type named
11515 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11516 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11517 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11518 corresponding range type from debug information; fall back to using it
11519 if symbol lookup fails. If a new type must be created, allocate it
11520 like ORIG_TYPE was. The bounds information, in general, is encoded
11521 in NAME, the base type given in the named range type. */
14f9c5c9 11522
d2e4a39e 11523static struct type *
28c85d6c 11524to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11525{
0d5cff50 11526 const char *name;
14f9c5c9 11527 struct type *base_type;
108d56a4 11528 const char *subtype_info;
14f9c5c9 11529
28c85d6c
JB
11530 gdb_assert (raw_type != NULL);
11531 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11532
1ce677a4 11533 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11534 base_type = TYPE_TARGET_TYPE (raw_type);
11535 else
11536 base_type = raw_type;
11537
28c85d6c 11538 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11539 subtype_info = strstr (name, "___XD");
11540 if (subtype_info == NULL)
690cc4eb 11541 {
43bbcdc2
PH
11542 LONGEST L = ada_discrete_type_low_bound (raw_type);
11543 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11544
690cc4eb
PH
11545 if (L < INT_MIN || U > INT_MAX)
11546 return raw_type;
11547 else
0c9c3474
SA
11548 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11549 L, U);
690cc4eb 11550 }
14f9c5c9
AS
11551 else
11552 {
11553 static char *name_buf = NULL;
11554 static size_t name_len = 0;
11555 int prefix_len = subtype_info - name;
11556 LONGEST L, U;
11557 struct type *type;
108d56a4 11558 const char *bounds_str;
14f9c5c9
AS
11559 int n;
11560
11561 GROW_VECT (name_buf, name_len, prefix_len + 5);
11562 strncpy (name_buf, name, prefix_len);
11563 name_buf[prefix_len] = '\0';
11564
11565 subtype_info += 5;
11566 bounds_str = strchr (subtype_info, '_');
11567 n = 1;
11568
d2e4a39e 11569 if (*subtype_info == 'L')
4c4b4cd2
PH
11570 {
11571 if (!ada_scan_number (bounds_str, n, &L, &n)
11572 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11573 return raw_type;
11574 if (bounds_str[n] == '_')
11575 n += 2;
0963b4bd 11576 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11577 n += 1;
11578 subtype_info += 1;
11579 }
d2e4a39e 11580 else
4c4b4cd2
PH
11581 {
11582 int ok;
5b4ee69b 11583
4c4b4cd2
PH
11584 strcpy (name_buf + prefix_len, "___L");
11585 L = get_int_var_value (name_buf, &ok);
11586 if (!ok)
11587 {
323e0a4a 11588 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11589 L = 1;
11590 }
11591 }
14f9c5c9 11592
d2e4a39e 11593 if (*subtype_info == 'U')
4c4b4cd2
PH
11594 {
11595 if (!ada_scan_number (bounds_str, n, &U, &n)
11596 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11597 return raw_type;
11598 }
d2e4a39e 11599 else
4c4b4cd2
PH
11600 {
11601 int ok;
5b4ee69b 11602
4c4b4cd2
PH
11603 strcpy (name_buf + prefix_len, "___U");
11604 U = get_int_var_value (name_buf, &ok);
11605 if (!ok)
11606 {
323e0a4a 11607 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11608 U = L;
11609 }
11610 }
14f9c5c9 11611
0c9c3474
SA
11612 type = create_static_range_type (alloc_type_copy (raw_type),
11613 base_type, L, U);
d2e4a39e 11614 TYPE_NAME (type) = name;
14f9c5c9
AS
11615 return type;
11616 }
11617}
11618
4c4b4cd2
PH
11619/* True iff NAME is the name of a range type. */
11620
14f9c5c9 11621int
d2e4a39e 11622ada_is_range_type_name (const char *name)
14f9c5c9
AS
11623{
11624 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11625}
14f9c5c9 11626\f
d2e4a39e 11627
4c4b4cd2
PH
11628 /* Modular types */
11629
11630/* True iff TYPE is an Ada modular type. */
14f9c5c9 11631
14f9c5c9 11632int
d2e4a39e 11633ada_is_modular_type (struct type *type)
14f9c5c9 11634{
18af8284 11635 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11636
11637 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11638 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11639 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11640}
11641
4c4b4cd2
PH
11642/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11643
61ee279c 11644ULONGEST
0056e4d5 11645ada_modulus (struct type *type)
14f9c5c9 11646{
43bbcdc2 11647 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11648}
d2e4a39e 11649\f
f7f9143b
JB
11650
11651/* Ada exception catchpoint support:
11652 ---------------------------------
11653
11654 We support 3 kinds of exception catchpoints:
11655 . catchpoints on Ada exceptions
11656 . catchpoints on unhandled Ada exceptions
11657 . catchpoints on failed assertions
11658
11659 Exceptions raised during failed assertions, or unhandled exceptions
11660 could perfectly be caught with the general catchpoint on Ada exceptions.
11661 However, we can easily differentiate these two special cases, and having
11662 the option to distinguish these two cases from the rest can be useful
11663 to zero-in on certain situations.
11664
11665 Exception catchpoints are a specialized form of breakpoint,
11666 since they rely on inserting breakpoints inside known routines
11667 of the GNAT runtime. The implementation therefore uses a standard
11668 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11669 of breakpoint_ops.
11670
0259addd
JB
11671 Support in the runtime for exception catchpoints have been changed
11672 a few times already, and these changes affect the implementation
11673 of these catchpoints. In order to be able to support several
11674 variants of the runtime, we use a sniffer that will determine
28010a5d 11675 the runtime variant used by the program being debugged. */
f7f9143b 11676
82eacd52
JB
11677/* Ada's standard exceptions.
11678
11679 The Ada 83 standard also defined Numeric_Error. But there so many
11680 situations where it was unclear from the Ada 83 Reference Manual
11681 (RM) whether Constraint_Error or Numeric_Error should be raised,
11682 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11683 Interpretation saying that anytime the RM says that Numeric_Error
11684 should be raised, the implementation may raise Constraint_Error.
11685 Ada 95 went one step further and pretty much removed Numeric_Error
11686 from the list of standard exceptions (it made it a renaming of
11687 Constraint_Error, to help preserve compatibility when compiling
11688 an Ada83 compiler). As such, we do not include Numeric_Error from
11689 this list of standard exceptions. */
3d0b0fa3
JB
11690
11691static char *standard_exc[] = {
11692 "constraint_error",
11693 "program_error",
11694 "storage_error",
11695 "tasking_error"
11696};
11697
0259addd
JB
11698typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11699
11700/* A structure that describes how to support exception catchpoints
11701 for a given executable. */
11702
11703struct exception_support_info
11704{
11705 /* The name of the symbol to break on in order to insert
11706 a catchpoint on exceptions. */
11707 const char *catch_exception_sym;
11708
11709 /* The name of the symbol to break on in order to insert
11710 a catchpoint on unhandled exceptions. */
11711 const char *catch_exception_unhandled_sym;
11712
11713 /* The name of the symbol to break on in order to insert
11714 a catchpoint on failed assertions. */
11715 const char *catch_assert_sym;
11716
11717 /* Assuming that the inferior just triggered an unhandled exception
11718 catchpoint, this function is responsible for returning the address
11719 in inferior memory where the name of that exception is stored.
11720 Return zero if the address could not be computed. */
11721 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11722};
11723
11724static CORE_ADDR ada_unhandled_exception_name_addr (void);
11725static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11726
11727/* The following exception support info structure describes how to
11728 implement exception catchpoints with the latest version of the
11729 Ada runtime (as of 2007-03-06). */
11730
11731static const struct exception_support_info default_exception_support_info =
11732{
11733 "__gnat_debug_raise_exception", /* catch_exception_sym */
11734 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11735 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11736 ada_unhandled_exception_name_addr
11737};
11738
11739/* The following exception support info structure describes how to
11740 implement exception catchpoints with a slightly older version
11741 of the Ada runtime. */
11742
11743static const struct exception_support_info exception_support_info_fallback =
11744{
11745 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11746 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11747 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11748 ada_unhandled_exception_name_addr_from_raise
11749};
11750
f17011e0
JB
11751/* Return nonzero if we can detect the exception support routines
11752 described in EINFO.
11753
11754 This function errors out if an abnormal situation is detected
11755 (for instance, if we find the exception support routines, but
11756 that support is found to be incomplete). */
11757
11758static int
11759ada_has_this_exception_support (const struct exception_support_info *einfo)
11760{
11761 struct symbol *sym;
11762
11763 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11764 that should be compiled with debugging information. As a result, we
11765 expect to find that symbol in the symtabs. */
11766
11767 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11768 if (sym == NULL)
a6af7abe
JB
11769 {
11770 /* Perhaps we did not find our symbol because the Ada runtime was
11771 compiled without debugging info, or simply stripped of it.
11772 It happens on some GNU/Linux distributions for instance, where
11773 users have to install a separate debug package in order to get
11774 the runtime's debugging info. In that situation, let the user
11775 know why we cannot insert an Ada exception catchpoint.
11776
11777 Note: Just for the purpose of inserting our Ada exception
11778 catchpoint, we could rely purely on the associated minimal symbol.
11779 But we would be operating in degraded mode anyway, since we are
11780 still lacking the debugging info needed later on to extract
11781 the name of the exception being raised (this name is printed in
11782 the catchpoint message, and is also used when trying to catch
11783 a specific exception). We do not handle this case for now. */
3b7344d5 11784 struct bound_minimal_symbol msym
1c8e84b0
JB
11785 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11786
3b7344d5 11787 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11788 error (_("Your Ada runtime appears to be missing some debugging "
11789 "information.\nCannot insert Ada exception catchpoint "
11790 "in this configuration."));
11791
11792 return 0;
11793 }
f17011e0
JB
11794
11795 /* Make sure that the symbol we found corresponds to a function. */
11796
11797 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11798 error (_("Symbol \"%s\" is not a function (class = %d)"),
11799 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11800
11801 return 1;
11802}
11803
0259addd
JB
11804/* Inspect the Ada runtime and determine which exception info structure
11805 should be used to provide support for exception catchpoints.
11806
3eecfa55
JB
11807 This function will always set the per-inferior exception_info,
11808 or raise an error. */
0259addd
JB
11809
11810static void
11811ada_exception_support_info_sniffer (void)
11812{
3eecfa55 11813 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11814
11815 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11816 if (data->exception_info != NULL)
0259addd
JB
11817 return;
11818
11819 /* Check the latest (default) exception support info. */
f17011e0 11820 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11821 {
3eecfa55 11822 data->exception_info = &default_exception_support_info;
0259addd
JB
11823 return;
11824 }
11825
11826 /* Try our fallback exception suport info. */
f17011e0 11827 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11828 {
3eecfa55 11829 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11830 return;
11831 }
11832
11833 /* Sometimes, it is normal for us to not be able to find the routine
11834 we are looking for. This happens when the program is linked with
11835 the shared version of the GNAT runtime, and the program has not been
11836 started yet. Inform the user of these two possible causes if
11837 applicable. */
11838
ccefe4c4 11839 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11840 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11841
11842 /* If the symbol does not exist, then check that the program is
11843 already started, to make sure that shared libraries have been
11844 loaded. If it is not started, this may mean that the symbol is
11845 in a shared library. */
11846
11847 if (ptid_get_pid (inferior_ptid) == 0)
11848 error (_("Unable to insert catchpoint. Try to start the program first."));
11849
11850 /* At this point, we know that we are debugging an Ada program and
11851 that the inferior has been started, but we still are not able to
0963b4bd 11852 find the run-time symbols. That can mean that we are in
0259addd
JB
11853 configurable run time mode, or that a-except as been optimized
11854 out by the linker... In any case, at this point it is not worth
11855 supporting this feature. */
11856
7dda8cff 11857 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11858}
11859
f7f9143b
JB
11860/* True iff FRAME is very likely to be that of a function that is
11861 part of the runtime system. This is all very heuristic, but is
11862 intended to be used as advice as to what frames are uninteresting
11863 to most users. */
11864
11865static int
11866is_known_support_routine (struct frame_info *frame)
11867{
4ed6b5be 11868 struct symtab_and_line sal;
55b87a52 11869 char *func_name;
692465f1 11870 enum language func_lang;
f7f9143b 11871 int i;
f35a17b5 11872 const char *fullname;
f7f9143b 11873
4ed6b5be
JB
11874 /* If this code does not have any debugging information (no symtab),
11875 This cannot be any user code. */
f7f9143b 11876
4ed6b5be 11877 find_frame_sal (frame, &sal);
f7f9143b
JB
11878 if (sal.symtab == NULL)
11879 return 1;
11880
4ed6b5be
JB
11881 /* If there is a symtab, but the associated source file cannot be
11882 located, then assume this is not user code: Selecting a frame
11883 for which we cannot display the code would not be very helpful
11884 for the user. This should also take care of case such as VxWorks
11885 where the kernel has some debugging info provided for a few units. */
f7f9143b 11886
f35a17b5
JK
11887 fullname = symtab_to_fullname (sal.symtab);
11888 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11889 return 1;
11890
4ed6b5be
JB
11891 /* Check the unit filename againt the Ada runtime file naming.
11892 We also check the name of the objfile against the name of some
11893 known system libraries that sometimes come with debugging info
11894 too. */
11895
f7f9143b
JB
11896 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11897 {
11898 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11899 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11900 return 1;
eb822aa6
DE
11901 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11902 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11903 return 1;
f7f9143b
JB
11904 }
11905
4ed6b5be 11906 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11907
e9e07ba6 11908 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11909 if (func_name == NULL)
11910 return 1;
11911
11912 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11913 {
11914 re_comp (known_auxiliary_function_name_patterns[i]);
11915 if (re_exec (func_name))
55b87a52
KS
11916 {
11917 xfree (func_name);
11918 return 1;
11919 }
f7f9143b
JB
11920 }
11921
55b87a52 11922 xfree (func_name);
f7f9143b
JB
11923 return 0;
11924}
11925
11926/* Find the first frame that contains debugging information and that is not
11927 part of the Ada run-time, starting from FI and moving upward. */
11928
0ef643c8 11929void
f7f9143b
JB
11930ada_find_printable_frame (struct frame_info *fi)
11931{
11932 for (; fi != NULL; fi = get_prev_frame (fi))
11933 {
11934 if (!is_known_support_routine (fi))
11935 {
11936 select_frame (fi);
11937 break;
11938 }
11939 }
11940
11941}
11942
11943/* Assuming that the inferior just triggered an unhandled exception
11944 catchpoint, return the address in inferior memory where the name
11945 of the exception is stored.
11946
11947 Return zero if the address could not be computed. */
11948
11949static CORE_ADDR
11950ada_unhandled_exception_name_addr (void)
0259addd
JB
11951{
11952 return parse_and_eval_address ("e.full_name");
11953}
11954
11955/* Same as ada_unhandled_exception_name_addr, except that this function
11956 should be used when the inferior uses an older version of the runtime,
11957 where the exception name needs to be extracted from a specific frame
11958 several frames up in the callstack. */
11959
11960static CORE_ADDR
11961ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11962{
11963 int frame_level;
11964 struct frame_info *fi;
3eecfa55 11965 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11966 struct cleanup *old_chain;
f7f9143b
JB
11967
11968 /* To determine the name of this exception, we need to select
11969 the frame corresponding to RAISE_SYM_NAME. This frame is
11970 at least 3 levels up, so we simply skip the first 3 frames
11971 without checking the name of their associated function. */
11972 fi = get_current_frame ();
11973 for (frame_level = 0; frame_level < 3; frame_level += 1)
11974 if (fi != NULL)
11975 fi = get_prev_frame (fi);
11976
55b87a52 11977 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11978 while (fi != NULL)
11979 {
55b87a52 11980 char *func_name;
692465f1
JB
11981 enum language func_lang;
11982
e9e07ba6 11983 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11984 if (func_name != NULL)
11985 {
11986 make_cleanup (xfree, func_name);
11987
11988 if (strcmp (func_name,
11989 data->exception_info->catch_exception_sym) == 0)
11990 break; /* We found the frame we were looking for... */
11991 fi = get_prev_frame (fi);
11992 }
f7f9143b 11993 }
55b87a52 11994 do_cleanups (old_chain);
f7f9143b
JB
11995
11996 if (fi == NULL)
11997 return 0;
11998
11999 select_frame (fi);
12000 return parse_and_eval_address ("id.full_name");
12001}
12002
12003/* Assuming the inferior just triggered an Ada exception catchpoint
12004 (of any type), return the address in inferior memory where the name
12005 of the exception is stored, if applicable.
12006
12007 Return zero if the address could not be computed, or if not relevant. */
12008
12009static CORE_ADDR
761269c8 12010ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12011 struct breakpoint *b)
12012{
3eecfa55
JB
12013 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12014
f7f9143b
JB
12015 switch (ex)
12016 {
761269c8 12017 case ada_catch_exception:
f7f9143b
JB
12018 return (parse_and_eval_address ("e.full_name"));
12019 break;
12020
761269c8 12021 case ada_catch_exception_unhandled:
3eecfa55 12022 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12023 break;
12024
761269c8 12025 case ada_catch_assert:
f7f9143b
JB
12026 return 0; /* Exception name is not relevant in this case. */
12027 break;
12028
12029 default:
12030 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12031 break;
12032 }
12033
12034 return 0; /* Should never be reached. */
12035}
12036
12037/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12038 any error that ada_exception_name_addr_1 might cause to be thrown.
12039 When an error is intercepted, a warning with the error message is printed,
12040 and zero is returned. */
12041
12042static CORE_ADDR
761269c8 12043ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12044 struct breakpoint *b)
12045{
f7f9143b
JB
12046 CORE_ADDR result = 0;
12047
492d29ea 12048 TRY
f7f9143b
JB
12049 {
12050 result = ada_exception_name_addr_1 (ex, b);
12051 }
12052
492d29ea 12053 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12054 {
12055 warning (_("failed to get exception name: %s"), e.message);
12056 return 0;
12057 }
492d29ea 12058 END_CATCH
f7f9143b
JB
12059
12060 return result;
12061}
12062
28010a5d
PA
12063static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12064
12065/* Ada catchpoints.
12066
12067 In the case of catchpoints on Ada exceptions, the catchpoint will
12068 stop the target on every exception the program throws. When a user
12069 specifies the name of a specific exception, we translate this
12070 request into a condition expression (in text form), and then parse
12071 it into an expression stored in each of the catchpoint's locations.
12072 We then use this condition to check whether the exception that was
12073 raised is the one the user is interested in. If not, then the
12074 target is resumed again. We store the name of the requested
12075 exception, in order to be able to re-set the condition expression
12076 when symbols change. */
12077
12078/* An instance of this type is used to represent an Ada catchpoint
12079 breakpoint location. It includes a "struct bp_location" as a kind
12080 of base class; users downcast to "struct bp_location *" when
12081 needed. */
12082
12083struct ada_catchpoint_location
12084{
12085 /* The base class. */
12086 struct bp_location base;
12087
12088 /* The condition that checks whether the exception that was raised
12089 is the specific exception the user specified on catchpoint
12090 creation. */
12091 struct expression *excep_cond_expr;
12092};
12093
12094/* Implement the DTOR method in the bp_location_ops structure for all
12095 Ada exception catchpoint kinds. */
12096
12097static void
12098ada_catchpoint_location_dtor (struct bp_location *bl)
12099{
12100 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12101
12102 xfree (al->excep_cond_expr);
12103}
12104
12105/* The vtable to be used in Ada catchpoint locations. */
12106
12107static const struct bp_location_ops ada_catchpoint_location_ops =
12108{
12109 ada_catchpoint_location_dtor
12110};
12111
12112/* An instance of this type is used to represent an Ada catchpoint.
12113 It includes a "struct breakpoint" as a kind of base class; users
12114 downcast to "struct breakpoint *" when needed. */
12115
12116struct ada_catchpoint
12117{
12118 /* The base class. */
12119 struct breakpoint base;
12120
12121 /* The name of the specific exception the user specified. */
12122 char *excep_string;
12123};
12124
12125/* Parse the exception condition string in the context of each of the
12126 catchpoint's locations, and store them for later evaluation. */
12127
12128static void
12129create_excep_cond_exprs (struct ada_catchpoint *c)
12130{
12131 struct cleanup *old_chain;
12132 struct bp_location *bl;
12133 char *cond_string;
12134
12135 /* Nothing to do if there's no specific exception to catch. */
12136 if (c->excep_string == NULL)
12137 return;
12138
12139 /* Same if there are no locations... */
12140 if (c->base.loc == NULL)
12141 return;
12142
12143 /* Compute the condition expression in text form, from the specific
12144 expection we want to catch. */
12145 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12146 old_chain = make_cleanup (xfree, cond_string);
12147
12148 /* Iterate over all the catchpoint's locations, and parse an
12149 expression for each. */
12150 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12151 {
12152 struct ada_catchpoint_location *ada_loc
12153 = (struct ada_catchpoint_location *) bl;
12154 struct expression *exp = NULL;
12155
12156 if (!bl->shlib_disabled)
12157 {
bbc13ae3 12158 const char *s;
28010a5d
PA
12159
12160 s = cond_string;
492d29ea 12161 TRY
28010a5d 12162 {
1bb9788d
TT
12163 exp = parse_exp_1 (&s, bl->address,
12164 block_for_pc (bl->address), 0);
28010a5d 12165 }
492d29ea 12166 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12167 {
12168 warning (_("failed to reevaluate internal exception condition "
12169 "for catchpoint %d: %s"),
12170 c->base.number, e.message);
12171 /* There is a bug in GCC on sparc-solaris when building with
12172 optimization which causes EXP to change unexpectedly
12173 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12174 The problem should be fixed starting with GCC 4.9.
12175 In the meantime, work around it by forcing EXP back
12176 to NULL. */
12177 exp = NULL;
12178 }
492d29ea 12179 END_CATCH
28010a5d
PA
12180 }
12181
12182 ada_loc->excep_cond_expr = exp;
12183 }
12184
12185 do_cleanups (old_chain);
12186}
12187
12188/* Implement the DTOR method in the breakpoint_ops structure for all
12189 exception catchpoint kinds. */
12190
12191static void
761269c8 12192dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12193{
12194 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12195
12196 xfree (c->excep_string);
348d480f 12197
2060206e 12198 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12199}
12200
12201/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12202 structure for all exception catchpoint kinds. */
12203
12204static struct bp_location *
761269c8 12205allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12206 struct breakpoint *self)
12207{
12208 struct ada_catchpoint_location *loc;
12209
12210 loc = XNEW (struct ada_catchpoint_location);
12211 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12212 loc->excep_cond_expr = NULL;
12213 return &loc->base;
12214}
12215
12216/* Implement the RE_SET method in the breakpoint_ops structure for all
12217 exception catchpoint kinds. */
12218
12219static void
761269c8 12220re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12221{
12222 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12223
12224 /* Call the base class's method. This updates the catchpoint's
12225 locations. */
2060206e 12226 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12227
12228 /* Reparse the exception conditional expressions. One for each
12229 location. */
12230 create_excep_cond_exprs (c);
12231}
12232
12233/* Returns true if we should stop for this breakpoint hit. If the
12234 user specified a specific exception, we only want to cause a stop
12235 if the program thrown that exception. */
12236
12237static int
12238should_stop_exception (const struct bp_location *bl)
12239{
12240 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12241 const struct ada_catchpoint_location *ada_loc
12242 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12243 int stop;
12244
12245 /* With no specific exception, should always stop. */
12246 if (c->excep_string == NULL)
12247 return 1;
12248
12249 if (ada_loc->excep_cond_expr == NULL)
12250 {
12251 /* We will have a NULL expression if back when we were creating
12252 the expressions, this location's had failed to parse. */
12253 return 1;
12254 }
12255
12256 stop = 1;
492d29ea 12257 TRY
28010a5d
PA
12258 {
12259 struct value *mark;
12260
12261 mark = value_mark ();
12262 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12263 value_free_to_mark (mark);
12264 }
492d29ea
PA
12265 CATCH (ex, RETURN_MASK_ALL)
12266 {
12267 exception_fprintf (gdb_stderr, ex,
12268 _("Error in testing exception condition:\n"));
12269 }
12270 END_CATCH
12271
28010a5d
PA
12272 return stop;
12273}
12274
12275/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12276 for all exception catchpoint kinds. */
12277
12278static void
761269c8 12279check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12280{
12281 bs->stop = should_stop_exception (bs->bp_location_at);
12282}
12283
f7f9143b
JB
12284/* Implement the PRINT_IT method in the breakpoint_ops structure
12285 for all exception catchpoint kinds. */
12286
12287static enum print_stop_action
761269c8 12288print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12289{
79a45e25 12290 struct ui_out *uiout = current_uiout;
348d480f
PA
12291 struct breakpoint *b = bs->breakpoint_at;
12292
956a9fb9 12293 annotate_catchpoint (b->number);
f7f9143b 12294
956a9fb9 12295 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12296 {
956a9fb9
JB
12297 ui_out_field_string (uiout, "reason",
12298 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12299 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12300 }
12301
00eb2c4a
JB
12302 ui_out_text (uiout,
12303 b->disposition == disp_del ? "\nTemporary catchpoint "
12304 : "\nCatchpoint ");
956a9fb9
JB
12305 ui_out_field_int (uiout, "bkptno", b->number);
12306 ui_out_text (uiout, ", ");
f7f9143b 12307
f7f9143b
JB
12308 switch (ex)
12309 {
761269c8
JB
12310 case ada_catch_exception:
12311 case ada_catch_exception_unhandled:
956a9fb9
JB
12312 {
12313 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12314 char exception_name[256];
12315
12316 if (addr != 0)
12317 {
c714b426
PA
12318 read_memory (addr, (gdb_byte *) exception_name,
12319 sizeof (exception_name) - 1);
956a9fb9
JB
12320 exception_name [sizeof (exception_name) - 1] = '\0';
12321 }
12322 else
12323 {
12324 /* For some reason, we were unable to read the exception
12325 name. This could happen if the Runtime was compiled
12326 without debugging info, for instance. In that case,
12327 just replace the exception name by the generic string
12328 "exception" - it will read as "an exception" in the
12329 notification we are about to print. */
967cff16 12330 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12331 }
12332 /* In the case of unhandled exception breakpoints, we print
12333 the exception name as "unhandled EXCEPTION_NAME", to make
12334 it clearer to the user which kind of catchpoint just got
12335 hit. We used ui_out_text to make sure that this extra
12336 info does not pollute the exception name in the MI case. */
761269c8 12337 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12338 ui_out_text (uiout, "unhandled ");
12339 ui_out_field_string (uiout, "exception-name", exception_name);
12340 }
12341 break;
761269c8 12342 case ada_catch_assert:
956a9fb9
JB
12343 /* In this case, the name of the exception is not really
12344 important. Just print "failed assertion" to make it clearer
12345 that his program just hit an assertion-failure catchpoint.
12346 We used ui_out_text because this info does not belong in
12347 the MI output. */
12348 ui_out_text (uiout, "failed assertion");
12349 break;
f7f9143b 12350 }
956a9fb9
JB
12351 ui_out_text (uiout, " at ");
12352 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12353
12354 return PRINT_SRC_AND_LOC;
12355}
12356
12357/* Implement the PRINT_ONE method in the breakpoint_ops structure
12358 for all exception catchpoint kinds. */
12359
12360static void
761269c8 12361print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12362 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12363{
79a45e25 12364 struct ui_out *uiout = current_uiout;
28010a5d 12365 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12366 struct value_print_options opts;
12367
12368 get_user_print_options (&opts);
12369 if (opts.addressprint)
f7f9143b
JB
12370 {
12371 annotate_field (4);
5af949e3 12372 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12373 }
12374
12375 annotate_field (5);
a6d9a66e 12376 *last_loc = b->loc;
f7f9143b
JB
12377 switch (ex)
12378 {
761269c8 12379 case ada_catch_exception:
28010a5d 12380 if (c->excep_string != NULL)
f7f9143b 12381 {
28010a5d
PA
12382 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12383
f7f9143b
JB
12384 ui_out_field_string (uiout, "what", msg);
12385 xfree (msg);
12386 }
12387 else
12388 ui_out_field_string (uiout, "what", "all Ada exceptions");
12389
12390 break;
12391
761269c8 12392 case ada_catch_exception_unhandled:
f7f9143b
JB
12393 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12394 break;
12395
761269c8 12396 case ada_catch_assert:
f7f9143b
JB
12397 ui_out_field_string (uiout, "what", "failed Ada assertions");
12398 break;
12399
12400 default:
12401 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12402 break;
12403 }
12404}
12405
12406/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12407 for all exception catchpoint kinds. */
12408
12409static void
761269c8 12410print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12411 struct breakpoint *b)
12412{
28010a5d 12413 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12414 struct ui_out *uiout = current_uiout;
28010a5d 12415
00eb2c4a
JB
12416 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12417 : _("Catchpoint "));
12418 ui_out_field_int (uiout, "bkptno", b->number);
12419 ui_out_text (uiout, ": ");
12420
f7f9143b
JB
12421 switch (ex)
12422 {
761269c8 12423 case ada_catch_exception:
28010a5d 12424 if (c->excep_string != NULL)
00eb2c4a
JB
12425 {
12426 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12427 struct cleanup *old_chain = make_cleanup (xfree, info);
12428
12429 ui_out_text (uiout, info);
12430 do_cleanups (old_chain);
12431 }
f7f9143b 12432 else
00eb2c4a 12433 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12434 break;
12435
761269c8 12436 case ada_catch_exception_unhandled:
00eb2c4a 12437 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12438 break;
12439
761269c8 12440 case ada_catch_assert:
00eb2c4a 12441 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12442 break;
12443
12444 default:
12445 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12446 break;
12447 }
12448}
12449
6149aea9
PA
12450/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12451 for all exception catchpoint kinds. */
12452
12453static void
761269c8 12454print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12455 struct breakpoint *b, struct ui_file *fp)
12456{
28010a5d
PA
12457 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12458
6149aea9
PA
12459 switch (ex)
12460 {
761269c8 12461 case ada_catch_exception:
6149aea9 12462 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12463 if (c->excep_string != NULL)
12464 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12465 break;
12466
761269c8 12467 case ada_catch_exception_unhandled:
78076abc 12468 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12469 break;
12470
761269c8 12471 case ada_catch_assert:
6149aea9
PA
12472 fprintf_filtered (fp, "catch assert");
12473 break;
12474
12475 default:
12476 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12477 }
d9b3f62e 12478 print_recreate_thread (b, fp);
6149aea9
PA
12479}
12480
f7f9143b
JB
12481/* Virtual table for "catch exception" breakpoints. */
12482
28010a5d
PA
12483static void
12484dtor_catch_exception (struct breakpoint *b)
12485{
761269c8 12486 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12487}
12488
12489static struct bp_location *
12490allocate_location_catch_exception (struct breakpoint *self)
12491{
761269c8 12492 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12493}
12494
12495static void
12496re_set_catch_exception (struct breakpoint *b)
12497{
761269c8 12498 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12499}
12500
12501static void
12502check_status_catch_exception (bpstat bs)
12503{
761269c8 12504 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12505}
12506
f7f9143b 12507static enum print_stop_action
348d480f 12508print_it_catch_exception (bpstat bs)
f7f9143b 12509{
761269c8 12510 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12511}
12512
12513static void
a6d9a66e 12514print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12515{
761269c8 12516 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12517}
12518
12519static void
12520print_mention_catch_exception (struct breakpoint *b)
12521{
761269c8 12522 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12523}
12524
6149aea9
PA
12525static void
12526print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12527{
761269c8 12528 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12529}
12530
2060206e 12531static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12532
12533/* Virtual table for "catch exception unhandled" breakpoints. */
12534
28010a5d
PA
12535static void
12536dtor_catch_exception_unhandled (struct breakpoint *b)
12537{
761269c8 12538 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12539}
12540
12541static struct bp_location *
12542allocate_location_catch_exception_unhandled (struct breakpoint *self)
12543{
761269c8 12544 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12545}
12546
12547static void
12548re_set_catch_exception_unhandled (struct breakpoint *b)
12549{
761269c8 12550 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12551}
12552
12553static void
12554check_status_catch_exception_unhandled (bpstat bs)
12555{
761269c8 12556 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12557}
12558
f7f9143b 12559static enum print_stop_action
348d480f 12560print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12561{
761269c8 12562 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12563}
12564
12565static void
a6d9a66e
UW
12566print_one_catch_exception_unhandled (struct breakpoint *b,
12567 struct bp_location **last_loc)
f7f9143b 12568{
761269c8 12569 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12570}
12571
12572static void
12573print_mention_catch_exception_unhandled (struct breakpoint *b)
12574{
761269c8 12575 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12576}
12577
6149aea9
PA
12578static void
12579print_recreate_catch_exception_unhandled (struct breakpoint *b,
12580 struct ui_file *fp)
12581{
761269c8 12582 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12583}
12584
2060206e 12585static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12586
12587/* Virtual table for "catch assert" breakpoints. */
12588
28010a5d
PA
12589static void
12590dtor_catch_assert (struct breakpoint *b)
12591{
761269c8 12592 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12593}
12594
12595static struct bp_location *
12596allocate_location_catch_assert (struct breakpoint *self)
12597{
761269c8 12598 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12599}
12600
12601static void
12602re_set_catch_assert (struct breakpoint *b)
12603{
761269c8 12604 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12605}
12606
12607static void
12608check_status_catch_assert (bpstat bs)
12609{
761269c8 12610 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12611}
12612
f7f9143b 12613static enum print_stop_action
348d480f 12614print_it_catch_assert (bpstat bs)
f7f9143b 12615{
761269c8 12616 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12617}
12618
12619static void
a6d9a66e 12620print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12621{
761269c8 12622 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12623}
12624
12625static void
12626print_mention_catch_assert (struct breakpoint *b)
12627{
761269c8 12628 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12629}
12630
6149aea9
PA
12631static void
12632print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12633{
761269c8 12634 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12635}
12636
2060206e 12637static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12638
f7f9143b
JB
12639/* Return a newly allocated copy of the first space-separated token
12640 in ARGSP, and then adjust ARGSP to point immediately after that
12641 token.
12642
12643 Return NULL if ARGPS does not contain any more tokens. */
12644
12645static char *
12646ada_get_next_arg (char **argsp)
12647{
12648 char *args = *argsp;
12649 char *end;
12650 char *result;
12651
0fcd72ba 12652 args = skip_spaces (args);
f7f9143b
JB
12653 if (args[0] == '\0')
12654 return NULL; /* No more arguments. */
12655
12656 /* Find the end of the current argument. */
12657
0fcd72ba 12658 end = skip_to_space (args);
f7f9143b
JB
12659
12660 /* Adjust ARGSP to point to the start of the next argument. */
12661
12662 *argsp = end;
12663
12664 /* Make a copy of the current argument and return it. */
12665
12666 result = xmalloc (end - args + 1);
12667 strncpy (result, args, end - args);
12668 result[end - args] = '\0';
12669
12670 return result;
12671}
12672
12673/* Split the arguments specified in a "catch exception" command.
12674 Set EX to the appropriate catchpoint type.
28010a5d 12675 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12676 specified by the user.
12677 If a condition is found at the end of the arguments, the condition
12678 expression is stored in COND_STRING (memory must be deallocated
12679 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12680
12681static void
12682catch_ada_exception_command_split (char *args,
761269c8 12683 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12684 char **excep_string,
12685 char **cond_string)
f7f9143b
JB
12686{
12687 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12688 char *exception_name;
5845583d 12689 char *cond = NULL;
f7f9143b
JB
12690
12691 exception_name = ada_get_next_arg (&args);
5845583d
JB
12692 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12693 {
12694 /* This is not an exception name; this is the start of a condition
12695 expression for a catchpoint on all exceptions. So, "un-get"
12696 this token, and set exception_name to NULL. */
12697 xfree (exception_name);
12698 exception_name = NULL;
12699 args -= 2;
12700 }
f7f9143b
JB
12701 make_cleanup (xfree, exception_name);
12702
5845583d 12703 /* Check to see if we have a condition. */
f7f9143b 12704
0fcd72ba 12705 args = skip_spaces (args);
61012eef 12706 if (startswith (args, "if")
5845583d
JB
12707 && (isspace (args[2]) || args[2] == '\0'))
12708 {
12709 args += 2;
12710 args = skip_spaces (args);
12711
12712 if (args[0] == '\0')
12713 error (_("Condition missing after `if' keyword"));
12714 cond = xstrdup (args);
12715 make_cleanup (xfree, cond);
12716
12717 args += strlen (args);
12718 }
12719
12720 /* Check that we do not have any more arguments. Anything else
12721 is unexpected. */
f7f9143b
JB
12722
12723 if (args[0] != '\0')
12724 error (_("Junk at end of expression"));
12725
12726 discard_cleanups (old_chain);
12727
12728 if (exception_name == NULL)
12729 {
12730 /* Catch all exceptions. */
761269c8 12731 *ex = ada_catch_exception;
28010a5d 12732 *excep_string = NULL;
f7f9143b
JB
12733 }
12734 else if (strcmp (exception_name, "unhandled") == 0)
12735 {
12736 /* Catch unhandled exceptions. */
761269c8 12737 *ex = ada_catch_exception_unhandled;
28010a5d 12738 *excep_string = NULL;
f7f9143b
JB
12739 }
12740 else
12741 {
12742 /* Catch a specific exception. */
761269c8 12743 *ex = ada_catch_exception;
28010a5d 12744 *excep_string = exception_name;
f7f9143b 12745 }
5845583d 12746 *cond_string = cond;
f7f9143b
JB
12747}
12748
12749/* Return the name of the symbol on which we should break in order to
12750 implement a catchpoint of the EX kind. */
12751
12752static const char *
761269c8 12753ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12754{
3eecfa55
JB
12755 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12756
12757 gdb_assert (data->exception_info != NULL);
0259addd 12758
f7f9143b
JB
12759 switch (ex)
12760 {
761269c8 12761 case ada_catch_exception:
3eecfa55 12762 return (data->exception_info->catch_exception_sym);
f7f9143b 12763 break;
761269c8 12764 case ada_catch_exception_unhandled:
3eecfa55 12765 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12766 break;
761269c8 12767 case ada_catch_assert:
3eecfa55 12768 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12769 break;
12770 default:
12771 internal_error (__FILE__, __LINE__,
12772 _("unexpected catchpoint kind (%d)"), ex);
12773 }
12774}
12775
12776/* Return the breakpoint ops "virtual table" used for catchpoints
12777 of the EX kind. */
12778
c0a91b2b 12779static const struct breakpoint_ops *
761269c8 12780ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12781{
12782 switch (ex)
12783 {
761269c8 12784 case ada_catch_exception:
f7f9143b
JB
12785 return (&catch_exception_breakpoint_ops);
12786 break;
761269c8 12787 case ada_catch_exception_unhandled:
f7f9143b
JB
12788 return (&catch_exception_unhandled_breakpoint_ops);
12789 break;
761269c8 12790 case ada_catch_assert:
f7f9143b
JB
12791 return (&catch_assert_breakpoint_ops);
12792 break;
12793 default:
12794 internal_error (__FILE__, __LINE__,
12795 _("unexpected catchpoint kind (%d)"), ex);
12796 }
12797}
12798
12799/* Return the condition that will be used to match the current exception
12800 being raised with the exception that the user wants to catch. This
12801 assumes that this condition is used when the inferior just triggered
12802 an exception catchpoint.
12803
12804 The string returned is a newly allocated string that needs to be
12805 deallocated later. */
12806
12807static char *
28010a5d 12808ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12809{
3d0b0fa3
JB
12810 int i;
12811
0963b4bd 12812 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12813 runtime units that have been compiled without debugging info; if
28010a5d 12814 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12815 exception (e.g. "constraint_error") then, during the evaluation
12816 of the condition expression, the symbol lookup on this name would
0963b4bd 12817 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12818 may then be set only on user-defined exceptions which have the
12819 same not-fully-qualified name (e.g. my_package.constraint_error).
12820
12821 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12822 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12823 exception constraint_error" is rewritten into "catch exception
12824 standard.constraint_error".
12825
12826 If an exception named contraint_error is defined in another package of
12827 the inferior program, then the only way to specify this exception as a
12828 breakpoint condition is to use its fully-qualified named:
12829 e.g. my_package.constraint_error. */
12830
12831 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12832 {
28010a5d 12833 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12834 {
12835 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12836 excep_string);
3d0b0fa3
JB
12837 }
12838 }
28010a5d 12839 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12840}
12841
12842/* Return the symtab_and_line that should be used to insert an exception
12843 catchpoint of the TYPE kind.
12844
28010a5d
PA
12845 EXCEP_STRING should contain the name of a specific exception that
12846 the catchpoint should catch, or NULL otherwise.
f7f9143b 12847
28010a5d
PA
12848 ADDR_STRING returns the name of the function where the real
12849 breakpoint that implements the catchpoints is set, depending on the
12850 type of catchpoint we need to create. */
f7f9143b
JB
12851
12852static struct symtab_and_line
761269c8 12853ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12854 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12855{
12856 const char *sym_name;
12857 struct symbol *sym;
f7f9143b 12858
0259addd
JB
12859 /* First, find out which exception support info to use. */
12860 ada_exception_support_info_sniffer ();
12861
12862 /* Then lookup the function on which we will break in order to catch
f7f9143b 12863 the Ada exceptions requested by the user. */
f7f9143b
JB
12864 sym_name = ada_exception_sym_name (ex);
12865 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12866
f17011e0
JB
12867 /* We can assume that SYM is not NULL at this stage. If the symbol
12868 did not exist, ada_exception_support_info_sniffer would have
12869 raised an exception.
f7f9143b 12870
f17011e0
JB
12871 Also, ada_exception_support_info_sniffer should have already
12872 verified that SYM is a function symbol. */
12873 gdb_assert (sym != NULL);
12874 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12875
12876 /* Set ADDR_STRING. */
f7f9143b
JB
12877 *addr_string = xstrdup (sym_name);
12878
f7f9143b 12879 /* Set OPS. */
4b9eee8c 12880 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12881
f17011e0 12882 return find_function_start_sal (sym, 1);
f7f9143b
JB
12883}
12884
b4a5b78b 12885/* Create an Ada exception catchpoint.
f7f9143b 12886
b4a5b78b 12887 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12888
2df4d1d5
JB
12889 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12890 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12891 of the exception to which this catchpoint applies. When not NULL,
12892 the string must be allocated on the heap, and its deallocation
12893 is no longer the responsibility of the caller.
12894
12895 COND_STRING, if not NULL, is the catchpoint condition. This string
12896 must be allocated on the heap, and its deallocation is no longer
12897 the responsibility of the caller.
f7f9143b 12898
b4a5b78b
JB
12899 TEMPFLAG, if nonzero, means that the underlying breakpoint
12900 should be temporary.
28010a5d 12901
b4a5b78b 12902 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12903
349774ef 12904void
28010a5d 12905create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12906 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12907 char *excep_string,
5845583d 12908 char *cond_string,
28010a5d 12909 int tempflag,
349774ef 12910 int disabled,
28010a5d
PA
12911 int from_tty)
12912{
12913 struct ada_catchpoint *c;
b4a5b78b
JB
12914 char *addr_string = NULL;
12915 const struct breakpoint_ops *ops = NULL;
12916 struct symtab_and_line sal
12917 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12918
12919 c = XNEW (struct ada_catchpoint);
12920 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12921 ops, tempflag, disabled, from_tty);
28010a5d
PA
12922 c->excep_string = excep_string;
12923 create_excep_cond_exprs (c);
5845583d
JB
12924 if (cond_string != NULL)
12925 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12926 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12927}
12928
9ac4176b
PA
12929/* Implement the "catch exception" command. */
12930
12931static void
12932catch_ada_exception_command (char *arg, int from_tty,
12933 struct cmd_list_element *command)
12934{
12935 struct gdbarch *gdbarch = get_current_arch ();
12936 int tempflag;
761269c8 12937 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12938 char *excep_string = NULL;
5845583d 12939 char *cond_string = NULL;
9ac4176b
PA
12940
12941 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12942
12943 if (!arg)
12944 arg = "";
b4a5b78b
JB
12945 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12946 &cond_string);
12947 create_ada_exception_catchpoint (gdbarch, ex_kind,
12948 excep_string, cond_string,
349774ef
JB
12949 tempflag, 1 /* enabled */,
12950 from_tty);
9ac4176b
PA
12951}
12952
b4a5b78b 12953/* Split the arguments specified in a "catch assert" command.
5845583d 12954
b4a5b78b
JB
12955 ARGS contains the command's arguments (or the empty string if
12956 no arguments were passed).
5845583d
JB
12957
12958 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12959 (the memory needs to be deallocated after use). */
5845583d 12960
b4a5b78b
JB
12961static void
12962catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12963{
5845583d 12964 args = skip_spaces (args);
f7f9143b 12965
5845583d 12966 /* Check whether a condition was provided. */
61012eef 12967 if (startswith (args, "if")
5845583d 12968 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12969 {
5845583d 12970 args += 2;
0fcd72ba 12971 args = skip_spaces (args);
5845583d
JB
12972 if (args[0] == '\0')
12973 error (_("condition missing after `if' keyword"));
12974 *cond_string = xstrdup (args);
f7f9143b
JB
12975 }
12976
5845583d
JB
12977 /* Otherwise, there should be no other argument at the end of
12978 the command. */
12979 else if (args[0] != '\0')
12980 error (_("Junk at end of arguments."));
f7f9143b
JB
12981}
12982
9ac4176b
PA
12983/* Implement the "catch assert" command. */
12984
12985static void
12986catch_assert_command (char *arg, int from_tty,
12987 struct cmd_list_element *command)
12988{
12989 struct gdbarch *gdbarch = get_current_arch ();
12990 int tempflag;
5845583d 12991 char *cond_string = NULL;
9ac4176b
PA
12992
12993 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12994
12995 if (!arg)
12996 arg = "";
b4a5b78b 12997 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12998 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12999 NULL, cond_string,
349774ef
JB
13000 tempflag, 1 /* enabled */,
13001 from_tty);
9ac4176b 13002}
778865d3
JB
13003
13004/* Return non-zero if the symbol SYM is an Ada exception object. */
13005
13006static int
13007ada_is_exception_sym (struct symbol *sym)
13008{
13009 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13010
13011 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13012 && SYMBOL_CLASS (sym) != LOC_BLOCK
13013 && SYMBOL_CLASS (sym) != LOC_CONST
13014 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13015 && type_name != NULL && strcmp (type_name, "exception") == 0);
13016}
13017
13018/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13019 Ada exception object. This matches all exceptions except the ones
13020 defined by the Ada language. */
13021
13022static int
13023ada_is_non_standard_exception_sym (struct symbol *sym)
13024{
13025 int i;
13026
13027 if (!ada_is_exception_sym (sym))
13028 return 0;
13029
13030 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13031 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13032 return 0; /* A standard exception. */
13033
13034 /* Numeric_Error is also a standard exception, so exclude it.
13035 See the STANDARD_EXC description for more details as to why
13036 this exception is not listed in that array. */
13037 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13038 return 0;
13039
13040 return 1;
13041}
13042
13043/* A helper function for qsort, comparing two struct ada_exc_info
13044 objects.
13045
13046 The comparison is determined first by exception name, and then
13047 by exception address. */
13048
13049static int
13050compare_ada_exception_info (const void *a, const void *b)
13051{
13052 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13053 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13054 int result;
13055
13056 result = strcmp (exc_a->name, exc_b->name);
13057 if (result != 0)
13058 return result;
13059
13060 if (exc_a->addr < exc_b->addr)
13061 return -1;
13062 if (exc_a->addr > exc_b->addr)
13063 return 1;
13064
13065 return 0;
13066}
13067
13068/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13069 routine, but keeping the first SKIP elements untouched.
13070
13071 All duplicates are also removed. */
13072
13073static void
13074sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13075 int skip)
13076{
13077 struct ada_exc_info *to_sort
13078 = VEC_address (ada_exc_info, *exceptions) + skip;
13079 int to_sort_len
13080 = VEC_length (ada_exc_info, *exceptions) - skip;
13081 int i, j;
13082
13083 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13084 compare_ada_exception_info);
13085
13086 for (i = 1, j = 1; i < to_sort_len; i++)
13087 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13088 to_sort[j++] = to_sort[i];
13089 to_sort_len = j;
13090 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13091}
13092
13093/* A function intended as the "name_matcher" callback in the struct
13094 quick_symbol_functions' expand_symtabs_matching method.
13095
13096 SEARCH_NAME is the symbol's search name.
13097
13098 If USER_DATA is not NULL, it is a pointer to a regext_t object
13099 used to match the symbol (by natural name). Otherwise, when USER_DATA
13100 is null, no filtering is performed, and all symbols are a positive
13101 match. */
13102
13103static int
13104ada_exc_search_name_matches (const char *search_name, void *user_data)
13105{
13106 regex_t *preg = user_data;
13107
13108 if (preg == NULL)
13109 return 1;
13110
13111 /* In Ada, the symbol "search name" is a linkage name, whereas
13112 the regular expression used to do the matching refers to
13113 the natural name. So match against the decoded name. */
13114 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13115}
13116
13117/* Add all exceptions defined by the Ada standard whose name match
13118 a regular expression.
13119
13120 If PREG is not NULL, then this regexp_t object is used to
13121 perform the symbol name matching. Otherwise, no name-based
13122 filtering is performed.
13123
13124 EXCEPTIONS is a vector of exceptions to which matching exceptions
13125 gets pushed. */
13126
13127static void
13128ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13129{
13130 int i;
13131
13132 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13133 {
13134 if (preg == NULL
13135 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13136 {
13137 struct bound_minimal_symbol msymbol
13138 = ada_lookup_simple_minsym (standard_exc[i]);
13139
13140 if (msymbol.minsym != NULL)
13141 {
13142 struct ada_exc_info info
77e371c0 13143 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13144
13145 VEC_safe_push (ada_exc_info, *exceptions, &info);
13146 }
13147 }
13148 }
13149}
13150
13151/* Add all Ada exceptions defined locally and accessible from the given
13152 FRAME.
13153
13154 If PREG is not NULL, then this regexp_t object is used to
13155 perform the symbol name matching. Otherwise, no name-based
13156 filtering is performed.
13157
13158 EXCEPTIONS is a vector of exceptions to which matching exceptions
13159 gets pushed. */
13160
13161static void
13162ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13163 VEC(ada_exc_info) **exceptions)
13164{
3977b71f 13165 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13166
13167 while (block != 0)
13168 {
13169 struct block_iterator iter;
13170 struct symbol *sym;
13171
13172 ALL_BLOCK_SYMBOLS (block, iter, sym)
13173 {
13174 switch (SYMBOL_CLASS (sym))
13175 {
13176 case LOC_TYPEDEF:
13177 case LOC_BLOCK:
13178 case LOC_CONST:
13179 break;
13180 default:
13181 if (ada_is_exception_sym (sym))
13182 {
13183 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13184 SYMBOL_VALUE_ADDRESS (sym)};
13185
13186 VEC_safe_push (ada_exc_info, *exceptions, &info);
13187 }
13188 }
13189 }
13190 if (BLOCK_FUNCTION (block) != NULL)
13191 break;
13192 block = BLOCK_SUPERBLOCK (block);
13193 }
13194}
13195
13196/* Add all exceptions defined globally whose name name match
13197 a regular expression, excluding standard exceptions.
13198
13199 The reason we exclude standard exceptions is that they need
13200 to be handled separately: Standard exceptions are defined inside
13201 a runtime unit which is normally not compiled with debugging info,
13202 and thus usually do not show up in our symbol search. However,
13203 if the unit was in fact built with debugging info, we need to
13204 exclude them because they would duplicate the entry we found
13205 during the special loop that specifically searches for those
13206 standard exceptions.
13207
13208 If PREG is not NULL, then this regexp_t object is used to
13209 perform the symbol name matching. Otherwise, no name-based
13210 filtering is performed.
13211
13212 EXCEPTIONS is a vector of exceptions to which matching exceptions
13213 gets pushed. */
13214
13215static void
13216ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13217{
13218 struct objfile *objfile;
43f3e411 13219 struct compunit_symtab *s;
778865d3 13220
276d885b 13221 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13222 VARIABLES_DOMAIN, preg);
778865d3 13223
43f3e411 13224 ALL_COMPUNITS (objfile, s)
778865d3 13225 {
43f3e411 13226 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13227 int i;
13228
13229 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13230 {
13231 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13232 struct block_iterator iter;
13233 struct symbol *sym;
13234
13235 ALL_BLOCK_SYMBOLS (b, iter, sym)
13236 if (ada_is_non_standard_exception_sym (sym)
13237 && (preg == NULL
13238 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13239 0, NULL, 0) == 0))
13240 {
13241 struct ada_exc_info info
13242 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13243
13244 VEC_safe_push (ada_exc_info, *exceptions, &info);
13245 }
13246 }
13247 }
13248}
13249
13250/* Implements ada_exceptions_list with the regular expression passed
13251 as a regex_t, rather than a string.
13252
13253 If not NULL, PREG is used to filter out exceptions whose names
13254 do not match. Otherwise, all exceptions are listed. */
13255
13256static VEC(ada_exc_info) *
13257ada_exceptions_list_1 (regex_t *preg)
13258{
13259 VEC(ada_exc_info) *result = NULL;
13260 struct cleanup *old_chain
13261 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13262 int prev_len;
13263
13264 /* First, list the known standard exceptions. These exceptions
13265 need to be handled separately, as they are usually defined in
13266 runtime units that have been compiled without debugging info. */
13267
13268 ada_add_standard_exceptions (preg, &result);
13269
13270 /* Next, find all exceptions whose scope is local and accessible
13271 from the currently selected frame. */
13272
13273 if (has_stack_frames ())
13274 {
13275 prev_len = VEC_length (ada_exc_info, result);
13276 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13277 &result);
13278 if (VEC_length (ada_exc_info, result) > prev_len)
13279 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13280 }
13281
13282 /* Add all exceptions whose scope is global. */
13283
13284 prev_len = VEC_length (ada_exc_info, result);
13285 ada_add_global_exceptions (preg, &result);
13286 if (VEC_length (ada_exc_info, result) > prev_len)
13287 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13288
13289 discard_cleanups (old_chain);
13290 return result;
13291}
13292
13293/* Return a vector of ada_exc_info.
13294
13295 If REGEXP is NULL, all exceptions are included in the result.
13296 Otherwise, it should contain a valid regular expression,
13297 and only the exceptions whose names match that regular expression
13298 are included in the result.
13299
13300 The exceptions are sorted in the following order:
13301 - Standard exceptions (defined by the Ada language), in
13302 alphabetical order;
13303 - Exceptions only visible from the current frame, in
13304 alphabetical order;
13305 - Exceptions whose scope is global, in alphabetical order. */
13306
13307VEC(ada_exc_info) *
13308ada_exceptions_list (const char *regexp)
13309{
13310 VEC(ada_exc_info) *result = NULL;
13311 struct cleanup *old_chain = NULL;
13312 regex_t reg;
13313
13314 if (regexp != NULL)
13315 old_chain = compile_rx_or_error (&reg, regexp,
13316 _("invalid regular expression"));
13317
13318 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13319
13320 if (old_chain != NULL)
13321 do_cleanups (old_chain);
13322 return result;
13323}
13324
13325/* Implement the "info exceptions" command. */
13326
13327static void
13328info_exceptions_command (char *regexp, int from_tty)
13329{
13330 VEC(ada_exc_info) *exceptions;
13331 struct cleanup *cleanup;
13332 struct gdbarch *gdbarch = get_current_arch ();
13333 int ix;
13334 struct ada_exc_info *info;
13335
13336 exceptions = ada_exceptions_list (regexp);
13337 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13338
13339 if (regexp != NULL)
13340 printf_filtered
13341 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13342 else
13343 printf_filtered (_("All defined Ada exceptions:\n"));
13344
13345 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13346 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13347
13348 do_cleanups (cleanup);
13349}
13350
4c4b4cd2
PH
13351 /* Operators */
13352/* Information about operators given special treatment in functions
13353 below. */
13354/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13355
13356#define ADA_OPERATORS \
13357 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13358 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13359 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13360 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13361 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13362 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13363 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13364 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13365 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13366 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13367 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13368 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13369 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13370 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13371 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13372 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13373 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13374 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13375 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13376
13377static void
554794dc
SDJ
13378ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13379 int *argsp)
4c4b4cd2
PH
13380{
13381 switch (exp->elts[pc - 1].opcode)
13382 {
76a01679 13383 default:
4c4b4cd2
PH
13384 operator_length_standard (exp, pc, oplenp, argsp);
13385 break;
13386
13387#define OP_DEFN(op, len, args, binop) \
13388 case op: *oplenp = len; *argsp = args; break;
13389 ADA_OPERATORS;
13390#undef OP_DEFN
52ce6436
PH
13391
13392 case OP_AGGREGATE:
13393 *oplenp = 3;
13394 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13395 break;
13396
13397 case OP_CHOICES:
13398 *oplenp = 3;
13399 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13400 break;
4c4b4cd2
PH
13401 }
13402}
13403
c0201579
JK
13404/* Implementation of the exp_descriptor method operator_check. */
13405
13406static int
13407ada_operator_check (struct expression *exp, int pos,
13408 int (*objfile_func) (struct objfile *objfile, void *data),
13409 void *data)
13410{
13411 const union exp_element *const elts = exp->elts;
13412 struct type *type = NULL;
13413
13414 switch (elts[pos].opcode)
13415 {
13416 case UNOP_IN_RANGE:
13417 case UNOP_QUAL:
13418 type = elts[pos + 1].type;
13419 break;
13420
13421 default:
13422 return operator_check_standard (exp, pos, objfile_func, data);
13423 }
13424
13425 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13426
13427 if (type && TYPE_OBJFILE (type)
13428 && (*objfile_func) (TYPE_OBJFILE (type), data))
13429 return 1;
13430
13431 return 0;
13432}
13433
4c4b4cd2
PH
13434static char *
13435ada_op_name (enum exp_opcode opcode)
13436{
13437 switch (opcode)
13438 {
76a01679 13439 default:
4c4b4cd2 13440 return op_name_standard (opcode);
52ce6436 13441
4c4b4cd2
PH
13442#define OP_DEFN(op, len, args, binop) case op: return #op;
13443 ADA_OPERATORS;
13444#undef OP_DEFN
52ce6436
PH
13445
13446 case OP_AGGREGATE:
13447 return "OP_AGGREGATE";
13448 case OP_CHOICES:
13449 return "OP_CHOICES";
13450 case OP_NAME:
13451 return "OP_NAME";
4c4b4cd2
PH
13452 }
13453}
13454
13455/* As for operator_length, but assumes PC is pointing at the first
13456 element of the operator, and gives meaningful results only for the
52ce6436 13457 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13458
13459static void
76a01679
JB
13460ada_forward_operator_length (struct expression *exp, int pc,
13461 int *oplenp, int *argsp)
4c4b4cd2 13462{
76a01679 13463 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13464 {
13465 default:
13466 *oplenp = *argsp = 0;
13467 break;
52ce6436 13468
4c4b4cd2
PH
13469#define OP_DEFN(op, len, args, binop) \
13470 case op: *oplenp = len; *argsp = args; break;
13471 ADA_OPERATORS;
13472#undef OP_DEFN
52ce6436
PH
13473
13474 case OP_AGGREGATE:
13475 *oplenp = 3;
13476 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13477 break;
13478
13479 case OP_CHOICES:
13480 *oplenp = 3;
13481 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13482 break;
13483
13484 case OP_STRING:
13485 case OP_NAME:
13486 {
13487 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13488
52ce6436
PH
13489 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13490 *argsp = 0;
13491 break;
13492 }
4c4b4cd2
PH
13493 }
13494}
13495
13496static int
13497ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13498{
13499 enum exp_opcode op = exp->elts[elt].opcode;
13500 int oplen, nargs;
13501 int pc = elt;
13502 int i;
76a01679 13503
4c4b4cd2
PH
13504 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13505
76a01679 13506 switch (op)
4c4b4cd2 13507 {
76a01679 13508 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13509 case OP_ATR_FIRST:
13510 case OP_ATR_LAST:
13511 case OP_ATR_LENGTH:
13512 case OP_ATR_IMAGE:
13513 case OP_ATR_MAX:
13514 case OP_ATR_MIN:
13515 case OP_ATR_MODULUS:
13516 case OP_ATR_POS:
13517 case OP_ATR_SIZE:
13518 case OP_ATR_TAG:
13519 case OP_ATR_VAL:
13520 break;
13521
13522 case UNOP_IN_RANGE:
13523 case UNOP_QUAL:
323e0a4a
AC
13524 /* XXX: gdb_sprint_host_address, type_sprint */
13525 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13526 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13527 fprintf_filtered (stream, " (");
13528 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13529 fprintf_filtered (stream, ")");
13530 break;
13531 case BINOP_IN_BOUNDS:
52ce6436
PH
13532 fprintf_filtered (stream, " (%d)",
13533 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13534 break;
13535 case TERNOP_IN_RANGE:
13536 break;
13537
52ce6436
PH
13538 case OP_AGGREGATE:
13539 case OP_OTHERS:
13540 case OP_DISCRETE_RANGE:
13541 case OP_POSITIONAL:
13542 case OP_CHOICES:
13543 break;
13544
13545 case OP_NAME:
13546 case OP_STRING:
13547 {
13548 char *name = &exp->elts[elt + 2].string;
13549 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13550
52ce6436
PH
13551 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13552 break;
13553 }
13554
4c4b4cd2
PH
13555 default:
13556 return dump_subexp_body_standard (exp, stream, elt);
13557 }
13558
13559 elt += oplen;
13560 for (i = 0; i < nargs; i += 1)
13561 elt = dump_subexp (exp, stream, elt);
13562
13563 return elt;
13564}
13565
13566/* The Ada extension of print_subexp (q.v.). */
13567
76a01679
JB
13568static void
13569ada_print_subexp (struct expression *exp, int *pos,
13570 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13571{
52ce6436 13572 int oplen, nargs, i;
4c4b4cd2
PH
13573 int pc = *pos;
13574 enum exp_opcode op = exp->elts[pc].opcode;
13575
13576 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13577
52ce6436 13578 *pos += oplen;
4c4b4cd2
PH
13579 switch (op)
13580 {
13581 default:
52ce6436 13582 *pos -= oplen;
4c4b4cd2
PH
13583 print_subexp_standard (exp, pos, stream, prec);
13584 return;
13585
13586 case OP_VAR_VALUE:
4c4b4cd2
PH
13587 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13588 return;
13589
13590 case BINOP_IN_BOUNDS:
323e0a4a 13591 /* XXX: sprint_subexp */
4c4b4cd2 13592 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13593 fputs_filtered (" in ", stream);
4c4b4cd2 13594 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13595 fputs_filtered ("'range", stream);
4c4b4cd2 13596 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13597 fprintf_filtered (stream, "(%ld)",
13598 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13599 return;
13600
13601 case TERNOP_IN_RANGE:
4c4b4cd2 13602 if (prec >= PREC_EQUAL)
76a01679 13603 fputs_filtered ("(", stream);
323e0a4a 13604 /* XXX: sprint_subexp */
4c4b4cd2 13605 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13606 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13607 print_subexp (exp, pos, stream, PREC_EQUAL);
13608 fputs_filtered (" .. ", stream);
13609 print_subexp (exp, pos, stream, PREC_EQUAL);
13610 if (prec >= PREC_EQUAL)
76a01679
JB
13611 fputs_filtered (")", stream);
13612 return;
4c4b4cd2
PH
13613
13614 case OP_ATR_FIRST:
13615 case OP_ATR_LAST:
13616 case OP_ATR_LENGTH:
13617 case OP_ATR_IMAGE:
13618 case OP_ATR_MAX:
13619 case OP_ATR_MIN:
13620 case OP_ATR_MODULUS:
13621 case OP_ATR_POS:
13622 case OP_ATR_SIZE:
13623 case OP_ATR_TAG:
13624 case OP_ATR_VAL:
4c4b4cd2 13625 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13626 {
13627 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13628 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13629 &type_print_raw_options);
76a01679
JB
13630 *pos += 3;
13631 }
4c4b4cd2 13632 else
76a01679 13633 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13634 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13635 if (nargs > 1)
76a01679
JB
13636 {
13637 int tem;
5b4ee69b 13638
76a01679
JB
13639 for (tem = 1; tem < nargs; tem += 1)
13640 {
13641 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13642 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13643 }
13644 fputs_filtered (")", stream);
13645 }
4c4b4cd2 13646 return;
14f9c5c9 13647
4c4b4cd2 13648 case UNOP_QUAL:
4c4b4cd2
PH
13649 type_print (exp->elts[pc + 1].type, "", stream, 0);
13650 fputs_filtered ("'(", stream);
13651 print_subexp (exp, pos, stream, PREC_PREFIX);
13652 fputs_filtered (")", stream);
13653 return;
14f9c5c9 13654
4c4b4cd2 13655 case UNOP_IN_RANGE:
323e0a4a 13656 /* XXX: sprint_subexp */
4c4b4cd2 13657 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13658 fputs_filtered (" in ", stream);
79d43c61
TT
13659 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13660 &type_print_raw_options);
4c4b4cd2 13661 return;
52ce6436
PH
13662
13663 case OP_DISCRETE_RANGE:
13664 print_subexp (exp, pos, stream, PREC_SUFFIX);
13665 fputs_filtered ("..", stream);
13666 print_subexp (exp, pos, stream, PREC_SUFFIX);
13667 return;
13668
13669 case OP_OTHERS:
13670 fputs_filtered ("others => ", stream);
13671 print_subexp (exp, pos, stream, PREC_SUFFIX);
13672 return;
13673
13674 case OP_CHOICES:
13675 for (i = 0; i < nargs-1; i += 1)
13676 {
13677 if (i > 0)
13678 fputs_filtered ("|", stream);
13679 print_subexp (exp, pos, stream, PREC_SUFFIX);
13680 }
13681 fputs_filtered (" => ", stream);
13682 print_subexp (exp, pos, stream, PREC_SUFFIX);
13683 return;
13684
13685 case OP_POSITIONAL:
13686 print_subexp (exp, pos, stream, PREC_SUFFIX);
13687 return;
13688
13689 case OP_AGGREGATE:
13690 fputs_filtered ("(", stream);
13691 for (i = 0; i < nargs; i += 1)
13692 {
13693 if (i > 0)
13694 fputs_filtered (", ", stream);
13695 print_subexp (exp, pos, stream, PREC_SUFFIX);
13696 }
13697 fputs_filtered (")", stream);
13698 return;
4c4b4cd2
PH
13699 }
13700}
14f9c5c9
AS
13701
13702/* Table mapping opcodes into strings for printing operators
13703 and precedences of the operators. */
13704
d2e4a39e
AS
13705static const struct op_print ada_op_print_tab[] = {
13706 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13707 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13708 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13709 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13710 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13711 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13712 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13713 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13714 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13715 {">=", BINOP_GEQ, PREC_ORDER, 0},
13716 {">", BINOP_GTR, PREC_ORDER, 0},
13717 {"<", BINOP_LESS, PREC_ORDER, 0},
13718 {">>", BINOP_RSH, PREC_SHIFT, 0},
13719 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13720 {"+", BINOP_ADD, PREC_ADD, 0},
13721 {"-", BINOP_SUB, PREC_ADD, 0},
13722 {"&", BINOP_CONCAT, PREC_ADD, 0},
13723 {"*", BINOP_MUL, PREC_MUL, 0},
13724 {"/", BINOP_DIV, PREC_MUL, 0},
13725 {"rem", BINOP_REM, PREC_MUL, 0},
13726 {"mod", BINOP_MOD, PREC_MUL, 0},
13727 {"**", BINOP_EXP, PREC_REPEAT, 0},
13728 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13729 {"-", UNOP_NEG, PREC_PREFIX, 0},
13730 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13731 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13732 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13733 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13734 {".all", UNOP_IND, PREC_SUFFIX, 1},
13735 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13736 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13737 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13738};
13739\f
72d5681a
PH
13740enum ada_primitive_types {
13741 ada_primitive_type_int,
13742 ada_primitive_type_long,
13743 ada_primitive_type_short,
13744 ada_primitive_type_char,
13745 ada_primitive_type_float,
13746 ada_primitive_type_double,
13747 ada_primitive_type_void,
13748 ada_primitive_type_long_long,
13749 ada_primitive_type_long_double,
13750 ada_primitive_type_natural,
13751 ada_primitive_type_positive,
13752 ada_primitive_type_system_address,
13753 nr_ada_primitive_types
13754};
6c038f32
PH
13755
13756static void
d4a9a881 13757ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13758 struct language_arch_info *lai)
13759{
d4a9a881 13760 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13761
72d5681a 13762 lai->primitive_type_vector
d4a9a881 13763 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13764 struct type *);
e9bb382b
UW
13765
13766 lai->primitive_type_vector [ada_primitive_type_int]
13767 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13768 0, "integer");
13769 lai->primitive_type_vector [ada_primitive_type_long]
13770 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13771 0, "long_integer");
13772 lai->primitive_type_vector [ada_primitive_type_short]
13773 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13774 0, "short_integer");
13775 lai->string_char_type
13776 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13777 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13778 lai->primitive_type_vector [ada_primitive_type_float]
13779 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13780 "float", NULL);
13781 lai->primitive_type_vector [ada_primitive_type_double]
13782 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13783 "long_float", NULL);
13784 lai->primitive_type_vector [ada_primitive_type_long_long]
13785 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13786 0, "long_long_integer");
13787 lai->primitive_type_vector [ada_primitive_type_long_double]
13788 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13789 "long_long_float", NULL);
13790 lai->primitive_type_vector [ada_primitive_type_natural]
13791 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13792 0, "natural");
13793 lai->primitive_type_vector [ada_primitive_type_positive]
13794 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13795 0, "positive");
13796 lai->primitive_type_vector [ada_primitive_type_void]
13797 = builtin->builtin_void;
13798
13799 lai->primitive_type_vector [ada_primitive_type_system_address]
13800 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13801 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13802 = "system__address";
fbb06eb1 13803
47e729a8 13804 lai->bool_type_symbol = NULL;
fbb06eb1 13805 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13806}
6c038f32
PH
13807\f
13808 /* Language vector */
13809
13810/* Not really used, but needed in the ada_language_defn. */
13811
13812static void
6c7a06a3 13813emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13814{
6c7a06a3 13815 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13816}
13817
13818static int
410a0ff2 13819parse (struct parser_state *ps)
6c038f32
PH
13820{
13821 warnings_issued = 0;
410a0ff2 13822 return ada_parse (ps);
6c038f32
PH
13823}
13824
13825static const struct exp_descriptor ada_exp_descriptor = {
13826 ada_print_subexp,
13827 ada_operator_length,
c0201579 13828 ada_operator_check,
6c038f32
PH
13829 ada_op_name,
13830 ada_dump_subexp_body,
13831 ada_evaluate_subexp
13832};
13833
1a119f36 13834/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13835 for Ada. */
13836
1a119f36
JB
13837static symbol_name_cmp_ftype
13838ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13839{
13840 if (should_use_wild_match (lookup_name))
13841 return wild_match;
13842 else
13843 return compare_names;
13844}
13845
a5ee536b
JB
13846/* Implement the "la_read_var_value" language_defn method for Ada. */
13847
13848static struct value *
63e43d3a
PMR
13849ada_read_var_value (struct symbol *var, const struct block *var_block,
13850 struct frame_info *frame)
a5ee536b 13851{
3977b71f 13852 const struct block *frame_block = NULL;
a5ee536b
JB
13853 struct symbol *renaming_sym = NULL;
13854
13855 /* The only case where default_read_var_value is not sufficient
13856 is when VAR is a renaming... */
13857 if (frame)
13858 frame_block = get_frame_block (frame, NULL);
13859 if (frame_block)
13860 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13861 if (renaming_sym != NULL)
13862 return ada_read_renaming_var_value (renaming_sym, frame_block);
13863
13864 /* This is a typical case where we expect the default_read_var_value
13865 function to work. */
63e43d3a 13866 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13867}
13868
6c038f32
PH
13869const struct language_defn ada_language_defn = {
13870 "ada", /* Language name */
6abde28f 13871 "Ada",
6c038f32 13872 language_ada,
6c038f32 13873 range_check_off,
6c038f32
PH
13874 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13875 that's not quite what this means. */
6c038f32 13876 array_row_major,
9a044a89 13877 macro_expansion_no,
6c038f32
PH
13878 &ada_exp_descriptor,
13879 parse,
13880 ada_error,
13881 resolve,
13882 ada_printchar, /* Print a character constant */
13883 ada_printstr, /* Function to print string constant */
13884 emit_char, /* Function to print single char (not used) */
6c038f32 13885 ada_print_type, /* Print a type using appropriate syntax */
be942545 13886 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13887 ada_val_print, /* Print a value using appropriate syntax */
13888 ada_value_print, /* Print a top-level value */
a5ee536b 13889 ada_read_var_value, /* la_read_var_value */
6c038f32 13890 NULL, /* Language specific skip_trampoline */
2b2d9e11 13891 NULL, /* name_of_this */
6c038f32
PH
13892 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13893 basic_lookup_transparent_type, /* lookup_transparent_type */
13894 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13895 NULL, /* Language specific
13896 class_name_from_physname */
6c038f32
PH
13897 ada_op_print_tab, /* expression operators for printing */
13898 0, /* c-style arrays */
13899 1, /* String lower bound */
6c038f32 13900 ada_get_gdb_completer_word_break_characters,
41d27058 13901 ada_make_symbol_completion_list,
72d5681a 13902 ada_language_arch_info,
e79af960 13903 ada_print_array_index,
41f1b697 13904 default_pass_by_reference,
ae6a3a4c 13905 c_get_string,
1a119f36 13906 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13907 ada_iterate_over_symbols,
a53b64ea 13908 &ada_varobj_ops,
bb2ec1b3
TT
13909 NULL,
13910 NULL,
6c038f32
PH
13911 LANG_MAGIC
13912};
13913
2c0b251b
PA
13914/* Provide a prototype to silence -Wmissing-prototypes. */
13915extern initialize_file_ftype _initialize_ada_language;
13916
5bf03f13
JB
13917/* Command-list for the "set/show ada" prefix command. */
13918static struct cmd_list_element *set_ada_list;
13919static struct cmd_list_element *show_ada_list;
13920
13921/* Implement the "set ada" prefix command. */
13922
13923static void
13924set_ada_command (char *arg, int from_tty)
13925{
13926 printf_unfiltered (_(\
13927"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13928 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13929}
13930
13931/* Implement the "show ada" prefix command. */
13932
13933static void
13934show_ada_command (char *args, int from_tty)
13935{
13936 cmd_show_list (show_ada_list, from_tty, "");
13937}
13938
2060206e
PA
13939static void
13940initialize_ada_catchpoint_ops (void)
13941{
13942 struct breakpoint_ops *ops;
13943
13944 initialize_breakpoint_ops ();
13945
13946 ops = &catch_exception_breakpoint_ops;
13947 *ops = bkpt_breakpoint_ops;
13948 ops->dtor = dtor_catch_exception;
13949 ops->allocate_location = allocate_location_catch_exception;
13950 ops->re_set = re_set_catch_exception;
13951 ops->check_status = check_status_catch_exception;
13952 ops->print_it = print_it_catch_exception;
13953 ops->print_one = print_one_catch_exception;
13954 ops->print_mention = print_mention_catch_exception;
13955 ops->print_recreate = print_recreate_catch_exception;
13956
13957 ops = &catch_exception_unhandled_breakpoint_ops;
13958 *ops = bkpt_breakpoint_ops;
13959 ops->dtor = dtor_catch_exception_unhandled;
13960 ops->allocate_location = allocate_location_catch_exception_unhandled;
13961 ops->re_set = re_set_catch_exception_unhandled;
13962 ops->check_status = check_status_catch_exception_unhandled;
13963 ops->print_it = print_it_catch_exception_unhandled;
13964 ops->print_one = print_one_catch_exception_unhandled;
13965 ops->print_mention = print_mention_catch_exception_unhandled;
13966 ops->print_recreate = print_recreate_catch_exception_unhandled;
13967
13968 ops = &catch_assert_breakpoint_ops;
13969 *ops = bkpt_breakpoint_ops;
13970 ops->dtor = dtor_catch_assert;
13971 ops->allocate_location = allocate_location_catch_assert;
13972 ops->re_set = re_set_catch_assert;
13973 ops->check_status = check_status_catch_assert;
13974 ops->print_it = print_it_catch_assert;
13975 ops->print_one = print_one_catch_assert;
13976 ops->print_mention = print_mention_catch_assert;
13977 ops->print_recreate = print_recreate_catch_assert;
13978}
13979
3d9434b5
JB
13980/* This module's 'new_objfile' observer. */
13981
13982static void
13983ada_new_objfile_observer (struct objfile *objfile)
13984{
13985 ada_clear_symbol_cache ();
13986}
13987
13988/* This module's 'free_objfile' observer. */
13989
13990static void
13991ada_free_objfile_observer (struct objfile *objfile)
13992{
13993 ada_clear_symbol_cache ();
13994}
13995
d2e4a39e 13996void
6c038f32 13997_initialize_ada_language (void)
14f9c5c9 13998{
6c038f32
PH
13999 add_language (&ada_language_defn);
14000
2060206e
PA
14001 initialize_ada_catchpoint_ops ();
14002
5bf03f13
JB
14003 add_prefix_cmd ("ada", no_class, set_ada_command,
14004 _("Prefix command for changing Ada-specfic settings"),
14005 &set_ada_list, "set ada ", 0, &setlist);
14006
14007 add_prefix_cmd ("ada", no_class, show_ada_command,
14008 _("Generic command for showing Ada-specific settings."),
14009 &show_ada_list, "show ada ", 0, &showlist);
14010
14011 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14012 &trust_pad_over_xvs, _("\
14013Enable or disable an optimization trusting PAD types over XVS types"), _("\
14014Show whether an optimization trusting PAD types over XVS types is activated"),
14015 _("\
14016This is related to the encoding used by the GNAT compiler. The debugger\n\
14017should normally trust the contents of PAD types, but certain older versions\n\
14018of GNAT have a bug that sometimes causes the information in the PAD type\n\
14019to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14020work around this bug. It is always safe to turn this option \"off\", but\n\
14021this incurs a slight performance penalty, so it is recommended to NOT change\n\
14022this option to \"off\" unless necessary."),
14023 NULL, NULL, &set_ada_list, &show_ada_list);
14024
9ac4176b
PA
14025 add_catch_command ("exception", _("\
14026Catch Ada exceptions, when raised.\n\
14027With an argument, catch only exceptions with the given name."),
14028 catch_ada_exception_command,
14029 NULL,
14030 CATCH_PERMANENT,
14031 CATCH_TEMPORARY);
14032 add_catch_command ("assert", _("\
14033Catch failed Ada assertions, when raised.\n\
14034With an argument, catch only exceptions with the given name."),
14035 catch_assert_command,
14036 NULL,
14037 CATCH_PERMANENT,
14038 CATCH_TEMPORARY);
14039
6c038f32 14040 varsize_limit = 65536;
6c038f32 14041
778865d3
JB
14042 add_info ("exceptions", info_exceptions_command,
14043 _("\
14044List all Ada exception names.\n\
14045If a regular expression is passed as an argument, only those matching\n\
14046the regular expression are listed."));
14047
c6044dd1
JB
14048 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14049 _("Set Ada maintenance-related variables."),
14050 &maint_set_ada_cmdlist, "maintenance set ada ",
14051 0/*allow-unknown*/, &maintenance_set_cmdlist);
14052
14053 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14054 _("Show Ada maintenance-related variables"),
14055 &maint_show_ada_cmdlist, "maintenance show ada ",
14056 0/*allow-unknown*/, &maintenance_show_cmdlist);
14057
14058 add_setshow_boolean_cmd
14059 ("ignore-descriptive-types", class_maintenance,
14060 &ada_ignore_descriptive_types_p,
14061 _("Set whether descriptive types generated by GNAT should be ignored."),
14062 _("Show whether descriptive types generated by GNAT should be ignored."),
14063 _("\
14064When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14065DWARF attribute."),
14066 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14067
6c038f32
PH
14068 obstack_init (&symbol_list_obstack);
14069
14070 decoded_names_store = htab_create_alloc
14071 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14072 NULL, xcalloc, xfree);
6b69afc4 14073
3d9434b5
JB
14074 /* The ada-lang observers. */
14075 observer_attach_new_objfile (ada_new_objfile_observer);
14076 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14077 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14078
14079 /* Setup various context-specific data. */
e802dbe0 14080 ada_inferior_data
8e260fc0 14081 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14082 ada_pspace_data_handle
14083 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14084}