]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix use-after-free in number_or_range_parser
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
544/* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547static char *
548add_angle_brackets (const char *str)
549{
550 static char *result = NULL;
551
552 xfree (result);
88c15c34 553 result = xstrprintf ("<%s>", str);
41d27058
JB
554 return result;
555}
96d887e8 556
67cb5b2d 557static const char *
4c4b4cd2
PH
558ada_get_gdb_completer_word_break_characters (void)
559{
560 return ada_completer_word_break_characters;
561}
562
e79af960
JB
563/* Print an array element index using the Ada syntax. */
564
565static void
566ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 567 const struct value_print_options *options)
e79af960 568{
79a45b7d 569 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
570 fprintf_filtered (stream, " => ");
571}
572
f27cf670 573/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 575 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 576
f27cf670
AS
577void *
578grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 579{
d2e4a39e
AS
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
4c4b4cd2 584 *size = min_size;
f27cf670 585 vect = xrealloc (vect, *size * element_size);
d2e4a39e 586 }
f27cf670 587 return vect;
14f9c5c9
AS
588}
589
590/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 591 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
592
593static int
ebf56fd3 594field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
595{
596 int len = strlen (target);
5b4ee69b 597
d2e4a39e 598 return
4c4b4cd2
PH
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
61012eef 601 || (startswith (field_name + len, "___")
76a01679
JB
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
14f9c5c9
AS
604}
605
606
872c8b51
JB
607/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
614
615int
616ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618{
619 int fieldno;
872c8b51
JB
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
624 return fieldno;
625
626 if (!maybe_missing)
323e0a4a 627 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 628 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
629
630 return -1;
631}
632
633/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
634
635int
d2e4a39e 636ada_name_prefix_len (const char *name)
14f9c5c9
AS
637{
638 if (name == NULL)
639 return 0;
d2e4a39e 640 else
14f9c5c9 641 {
d2e4a39e 642 const char *p = strstr (name, "___");
5b4ee69b 643
14f9c5c9 644 if (p == NULL)
4c4b4cd2 645 return strlen (name);
14f9c5c9 646 else
4c4b4cd2 647 return p - name;
14f9c5c9
AS
648 }
649}
650
4c4b4cd2
PH
651/* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
14f9c5c9 654static int
d2e4a39e 655is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
656{
657 int len1, len2;
5b4ee69b 658
14f9c5c9
AS
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
4c4b4cd2 663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
664}
665
4c4b4cd2
PH
666/* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
14f9c5c9 668
d2e4a39e 669static struct value *
4c4b4cd2 670coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 671{
61ee279c 672 type = ada_check_typedef (type);
df407dfe 673 if (value_type (val) == type)
4c4b4cd2 674 return val;
d2e4a39e 675 else
14f9c5c9 676 {
4c4b4cd2
PH
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
c1b5a1a6 681 ada_ensure_varsize_limit (type);
4c4b4cd2 682
41e8491f
JK
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
9a0dc9e3 689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 690 }
74bcbdf3 691 set_value_component_location (result, val);
9bbda503
AC
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
42ae5230 694 set_value_address (result, value_address (val));
14f9c5c9
AS
695 return result;
696 }
697}
698
fc1a4b47
AC
699static const gdb_byte *
700cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
701{
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706}
707
708static CORE_ADDR
ebf56fd3 709cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
710{
711 if (address == 0)
712 return 0;
d2e4a39e 713 else
14f9c5c9
AS
714 return address + offset;
715}
716
4c4b4cd2
PH
717/* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
a2249542 721
77109804
AC
722/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
a0b31db1 724static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 725
14f9c5c9 726static void
a2249542 727lim_warning (const char *format, ...)
14f9c5c9 728{
a2249542 729 va_list args;
a2249542 730
5b4ee69b 731 va_start (args, format);
4c4b4cd2
PH
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
a2249542
MK
734 vwarning (format, args);
735
736 va_end (args);
4c4b4cd2
PH
737}
738
714e53ab
PH
739/* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
c1b5a1a6
JB
743void
744ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
745{
746 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 747 error (_("object size is larger than varsize-limit"));
714e53ab
PH
748}
749
0963b4bd 750/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 751static LONGEST
c3e5cd34 752max_of_size (int size)
4c4b4cd2 753{
76a01679 754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 755
76a01679 756 return top_bit | (top_bit - 1);
4c4b4cd2
PH
757}
758
0963b4bd 759/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 760static LONGEST
c3e5cd34 761min_of_size (int size)
4c4b4cd2 762{
c3e5cd34 763 return -max_of_size (size) - 1;
4c4b4cd2
PH
764}
765
0963b4bd 766/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 767static ULONGEST
c3e5cd34 768umax_of_size (int size)
4c4b4cd2 769{
76a01679 770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 771
76a01679 772 return top_bit | (top_bit - 1);
4c4b4cd2
PH
773}
774
0963b4bd 775/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
776static LONGEST
777max_of_type (struct type *t)
4c4b4cd2 778{
c3e5cd34
PH
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783}
784
0963b4bd 785/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
786static LONGEST
787min_of_type (struct type *t)
788{
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
793}
794
795/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
796LONGEST
797ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 798{
c3345124 799 type = resolve_dynamic_type (type, NULL, 0);
76a01679 800 switch (TYPE_CODE (type))
4c4b4cd2
PH
801 {
802 case TYPE_CODE_RANGE:
690cc4eb 803 return TYPE_HIGH_BOUND (type);
4c4b4cd2 804 case TYPE_CODE_ENUM:
14e75d8e 805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
76a01679 809 case TYPE_CODE_INT:
690cc4eb 810 return max_of_type (type);
4c4b4cd2 811 default:
43bbcdc2 812 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
813 }
814}
815
14e75d8e 816/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
817LONGEST
818ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 819{
c3345124 820 type = resolve_dynamic_type (type, NULL, 0);
76a01679 821 switch (TYPE_CODE (type))
4c4b4cd2
PH
822 {
823 case TYPE_CODE_RANGE:
690cc4eb 824 return TYPE_LOW_BOUND (type);
4c4b4cd2 825 case TYPE_CODE_ENUM:
14e75d8e 826 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
76a01679 830 case TYPE_CODE_INT:
690cc4eb 831 return min_of_type (type);
4c4b4cd2 832 default:
43bbcdc2 833 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
834 }
835}
836
837/* The identity on non-range types. For range types, the underlying
76a01679 838 non-range scalar type. */
4c4b4cd2
PH
839
840static struct type *
18af8284 841get_base_type (struct type *type)
4c4b4cd2
PH
842{
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
76a01679
JB
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
4c4b4cd2
PH
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
14f9c5c9 850}
41246937
JB
851
852/* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857struct value *
858ada_get_decoded_value (struct value *value)
859{
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875}
876
877/* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882struct type *
883ada_get_decoded_type (struct type *type)
884{
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889}
890
4c4b4cd2 891\f
76a01679 892
4c4b4cd2 893 /* Language Selection */
14f9c5c9
AS
894
895/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 896 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 897
14f9c5c9 898enum language
ccefe4c4 899ada_update_initial_language (enum language lang)
14f9c5c9 900{
d2e4a39e 901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 902 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 903 return language_ada;
14f9c5c9
AS
904
905 return lang;
906}
96d887e8
PH
907
908/* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912char *
913ada_main_name (void)
914{
3b7344d5 915 struct bound_minimal_symbol msym;
e83e4e24 916 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 917
96d887e8
PH
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
3b7344d5 925 if (msym.minsym != NULL)
96d887e8 926 {
f9bc20b9
JB
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
77e371c0 930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 931 if (main_program_name_addr == 0)
323e0a4a 932 error (_("Invalid address for Ada main program name."));
96d887e8 933
f9bc20b9
JB
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
e83e4e24 939 return main_program_name.get ();
96d887e8
PH
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944}
14f9c5c9 945\f
4c4b4cd2 946 /* Symbols */
d2e4a39e 947
4c4b4cd2
PH
948/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
14f9c5c9 950
d2e4a39e
AS
951const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
14f9c5c9
AS
974};
975
b5ec771e
PA
976/* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
4c4b4cd2 980
b5ec771e
PA
981static char *
982ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 983{
4c4b4cd2
PH
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
d2e4a39e 986 const char *p;
14f9c5c9 987 int k;
d2e4a39e 988
4c4b4cd2 989 if (decoded == NULL)
14f9c5c9
AS
990 return NULL;
991
4c4b4cd2
PH
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
14f9c5c9
AS
994
995 k = 0;
4c4b4cd2 996 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 997 {
cdc7bb92 998 if (*p == '.')
4c4b4cd2
PH
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
14f9c5c9 1003 else if (*p == '"')
4c4b4cd2
PH
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1265e4aa 1008 mapping->encoded != NULL
61012eef 1009 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1010 ;
1011 if (mapping->encoded == NULL)
b5ec771e
PA
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
4c4b4cd2
PH
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
d2e4a39e 1022 else
4c4b4cd2
PH
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
14f9c5c9
AS
1027 }
1028
4c4b4cd2
PH
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
14f9c5c9
AS
1031}
1032
b5ec771e
PA
1033/* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036char *
1037ada_encode (const char *decoded)
1038{
1039 return ada_encode_1 (decoded, true);
1040}
1041
14f9c5c9 1042/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
d2e4a39e
AS
1046char *
1047ada_fold_name (const char *name)
14f9c5c9 1048{
d2e4a39e 1049 static char *fold_buffer = NULL;
14f9c5c9
AS
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
d2e4a39e 1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1054
1055 if (name[0] == '\'')
1056 {
d2e4a39e
AS
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1059 }
1060 else
1061 {
1062 int i;
5b4ee69b 1063
14f9c5c9 1064 for (i = 0; i <= len; i += 1)
4c4b4cd2 1065 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1066 }
1067
1068 return fold_buffer;
1069}
1070
529cad9c
PH
1071/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073static int
1074is_lower_alphanum (const char c)
1075{
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077}
1078
c90092fe
JB
1079/* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
29480c32
JB
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
c90092fe 1086
29480c32
JB
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091static void
1092ada_remove_trailing_digits (const char *encoded, int *len)
1093{
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
5b4ee69b 1097
29480c32
JB
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
61012eef 1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1105 *len = i - 2;
61012eef 1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1107 *len = i - 1;
1108 }
1109}
1110
1111/* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114static void
1115ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116{
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
0963b4bd 1122 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131}
1132
69fadcdf
JB
1133/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135static void
1136ada_remove_Xbn_suffix (const char *encoded, int *len)
1137{
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151}
1152
29480c32
JB
1153/* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
14f9c5c9 1156
4c4b4cd2 1157 The resulting string is valid until the next call of ada_decode.
29480c32 1158 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1159 is returned. */
1160
1161const char *
1162ada_decode (const char *encoded)
14f9c5c9
AS
1163{
1164 int i, j;
1165 int len0;
d2e4a39e 1166 const char *p;
4c4b4cd2 1167 char *decoded;
14f9c5c9 1168 int at_start_name;
4c4b4cd2
PH
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
d2e4a39e 1171
29480c32
JB
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
61012eef 1175 if (startswith (encoded, "_ada_"))
4c4b4cd2 1176 encoded += 5;
14f9c5c9 1177
29480c32
JB
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
4c4b4cd2 1181 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1182 goto Suppress;
1183
4c4b4cd2 1184 len0 = strlen (encoded);
4c4b4cd2 1185
29480c32
JB
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1188
4c4b4cd2
PH
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1195 {
1196 if (p[3] == 'X')
4c4b4cd2 1197 len0 = p - encoded;
14f9c5c9 1198 else
4c4b4cd2 1199 goto Suppress;
14f9c5c9 1200 }
4c4b4cd2 1201
29480c32
JB
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
61012eef 1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1207 len0 -= 3;
76a01679 1208
a10967fa
JB
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
61012eef 1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1214 len0 -= 2;
1215
29480c32
JB
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
61012eef 1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1220 len0 -= 1;
1221
4c4b4cd2 1222 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1223
4c4b4cd2
PH
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
14f9c5c9 1226
29480c32
JB
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
4c4b4cd2 1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1230 {
4c4b4cd2
PH
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
d2e4a39e 1239 }
14f9c5c9 1240
29480c32
JB
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
4c4b4cd2
PH
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
14f9c5c9
AS
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
29480c32 1250 /* Is this a symbol function? */
4c4b4cd2
PH
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
5b4ee69b 1254
4c4b4cd2
PH
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
14f9c5c9
AS
1272 at_start_name = 0;
1273
529cad9c
PH
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
61012eef 1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1278 i += 2;
529cad9c 1279
29480c32
JB
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
529cad9c
PH
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1302 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
4c4b4cd2
PH
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
29480c32
JB
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
4c4b4cd2
PH
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
cdc7bb92 1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1367 {
29480c32 1368 /* Replace '__' by '.'. */
4c4b4cd2
PH
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
14f9c5c9 1374 else
4c4b4cd2 1375 {
29480c32
JB
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
4c4b4cd2
PH
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
14f9c5c9 1382 }
4c4b4cd2 1383 decoded[j] = '\000';
14f9c5c9 1384
29480c32
JB
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
4c4b4cd2
PH
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1390 goto Suppress;
1391
4c4b4cd2
PH
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
14f9c5c9
AS
1396
1397Suppress:
4c4b4cd2
PH
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
14f9c5c9 1402 else
88c15c34 1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1404 return decoded;
1405
1406}
1407
1408/* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413static struct htab *decoded_names_store;
1414
1415/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1420 GSYMBOL).
4c4b4cd2
PH
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1423 when a decoded name is cached in it. */
4c4b4cd2 1424
45e6c716 1425const char *
f85f34ed 1426ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1427{
f85f34ed
TT
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
615b3f62 1430 &gsymbol->language_specific.demangled_name;
5b4ee69b 1431
f85f34ed 1432 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1435 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1436
f85f34ed 1437 gsymbol->ada_mangled = 1;
5b4ee69b 1438
f85f34ed 1439 if (obstack != NULL)
224c3ddb
SM
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1442 else
76a01679 1443 {
f85f34ed
TT
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
76a01679
JB
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
5b4ee69b 1451
76a01679
JB
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
4c4b4cd2 1456 }
14f9c5c9 1457
4c4b4cd2
PH
1458 return *resultp;
1459}
76a01679 1460
2c0b251b 1461static char *
76a01679 1462ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1463{
1464 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1465}
1466
8b302db8
TT
1467/* Implement la_sniff_from_mangled_name for Ada. */
1468
1469static int
1470ada_sniff_from_mangled_name (const char *mangled, char **out)
1471{
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504}
1505
14f9c5c9 1506\f
d2e4a39e 1507
4c4b4cd2 1508 /* Arrays */
14f9c5c9 1509
28c85d6c
JB
1510/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533void
1534ada_fixup_array_indexes_type (struct type *index_desc_type)
1535{
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
0d5cff50 1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563}
1564
4c4b4cd2 1565/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1566
a121b7c1 1567static const char *bound_name[] = {
d2e4a39e 1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570};
1571
1572/* Maximum number of array dimensions we are prepared to handle. */
1573
4c4b4cd2 1574#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1575
14f9c5c9 1576
4c4b4cd2
PH
1577/* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
14f9c5c9
AS
1579
1580/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1581 level of indirection, if needed. */
1582
d2e4a39e
AS
1583static struct type *
1584desc_base_type (struct type *type)
14f9c5c9
AS
1585{
1586 if (type == NULL)
1587 return NULL;
61ee279c 1588 type = ada_check_typedef (type);
720d1a40
JB
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1265e4aa
JB
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1596 else
1597 return type;
1598}
1599
4c4b4cd2
PH
1600/* True iff TYPE indicates a "thin" array pointer type. */
1601
14f9c5c9 1602static int
d2e4a39e 1603is_thin_pntr (struct type *type)
14f9c5c9 1604{
d2e4a39e 1605 return
14f9c5c9
AS
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608}
1609
4c4b4cd2
PH
1610/* The descriptor type for thin pointer type TYPE. */
1611
d2e4a39e
AS
1612static struct type *
1613thin_descriptor_type (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 struct type *base_type = desc_base_type (type);
5b4ee69b 1616
14f9c5c9
AS
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
d2e4a39e 1621 else
14f9c5c9 1622 {
d2e4a39e 1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1624
14f9c5c9 1625 if (alt_type == NULL)
4c4b4cd2 1626 return base_type;
14f9c5c9 1627 else
4c4b4cd2 1628 return alt_type;
14f9c5c9
AS
1629 }
1630}
1631
4c4b4cd2
PH
1632/* A pointer to the array data for thin-pointer value VAL. */
1633
d2e4a39e
AS
1634static struct value *
1635thin_data_pntr (struct value *val)
14f9c5c9 1636{
828292f2 1637 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1639
556bdfd4
UW
1640 data_type = lookup_pointer_type (data_type);
1641
14f9c5c9 1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1643 return value_cast (data_type, value_copy (val));
d2e4a39e 1644 else
42ae5230 1645 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1646}
1647
4c4b4cd2
PH
1648/* True iff TYPE indicates a "thick" array pointer type. */
1649
14f9c5c9 1650static int
d2e4a39e 1651is_thick_pntr (struct type *type)
14f9c5c9
AS
1652{
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1660
d2e4a39e
AS
1661static struct type *
1662desc_bounds_type (struct type *type)
14f9c5c9 1663{
d2e4a39e 1664 struct type *r;
14f9c5c9
AS
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
4c4b4cd2 1674 return NULL;
14f9c5c9
AS
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
61ee279c 1677 return ada_check_typedef (r);
14f9c5c9
AS
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
61ee279c 1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1684 }
1685 return NULL;
1686}
1687
1688/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
d2e4a39e
AS
1691static struct value *
1692desc_bounds (struct value *arr)
14f9c5c9 1693{
df407dfe 1694 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1695
d2e4a39e 1696 if (is_thin_pntr (type))
14f9c5c9 1697 {
d2e4a39e 1698 struct type *bounds_type =
4c4b4cd2 1699 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1700 LONGEST addr;
1701
4cdfadb1 1702 if (bounds_type == NULL)
323e0a4a 1703 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1704
1705 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1706 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1707 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1709 addr = value_as_long (arr);
d2e4a39e 1710 else
42ae5230 1711 addr = value_address (arr);
14f9c5c9 1712
d2e4a39e 1713 return
4c4b4cd2
PH
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1716 }
1717
1718 else if (is_thick_pntr (type))
05e522ef
JB
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
14f9c5c9
AS
1739 else
1740 return NULL;
1741}
1742
4c4b4cd2
PH
1743/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
14f9c5c9 1746static int
d2e4a39e 1747fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1748{
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750}
1751
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1753 size of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1757{
1758 type = desc_base_type (type);
1759
d2e4a39e 1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
61ee279c 1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1764}
1765
4c4b4cd2 1766/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
4c4b4cd2 1770
d2e4a39e 1771static struct type *
556bdfd4 1772desc_data_target_type (struct type *type)
14f9c5c9
AS
1773{
1774 type = desc_base_type (type);
1775
4c4b4cd2 1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1777 if (is_thin_pntr (type))
556bdfd4 1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1779 else if (is_thick_pntr (type))
556bdfd4
UW
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1786 }
1787
1788 return NULL;
14f9c5c9
AS
1789}
1790
1791/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
4c4b4cd2 1793
d2e4a39e
AS
1794static struct value *
1795desc_data (struct value *arr)
14f9c5c9 1796{
df407dfe 1797 struct type *type = value_type (arr);
5b4ee69b 1798
14f9c5c9
AS
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
d2e4a39e 1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1803 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1804 else
1805 return NULL;
1806}
1807
1808
1809/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1810 position of the field containing the address of the data. */
1811
14f9c5c9 1812static int
d2e4a39e 1813fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1814{
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816}
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 size of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1828 else
14f9c5c9
AS
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830}
1831
4c4b4cd2 1832/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
d2e4a39e
AS
1836static struct value *
1837desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1838{
d2e4a39e 1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1840 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1841}
1842
1843/* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
14f9c5c9 1847static int
d2e4a39e 1848desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
76a01679 1857static int
d2e4a39e 1858desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
d2e4a39e
AS
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1866}
1867
1868/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
d2e4a39e
AS
1871static struct type *
1872desc_index_type (struct type *type, int i)
14f9c5c9
AS
1873{
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
14f9c5c9
AS
1879 return NULL;
1880}
1881
4c4b4cd2
PH
1882/* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
14f9c5c9 1885static int
d2e4a39e 1886desc_arity (struct type *type)
14f9c5c9
AS
1887{
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893}
1894
4c4b4cd2
PH
1895/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
76a01679
JB
1899static int
1900ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1901{
1902 if (type == NULL)
1903 return 0;
61ee279c 1904 type = ada_check_typedef (type);
4c4b4cd2 1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1906 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1907}
1908
52ce6436 1909/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1910 * to one. */
52ce6436 1911
2c0b251b 1912static int
52ce6436
PH
1913ada_is_array_type (struct type *type)
1914{
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920}
1921
4c4b4cd2 1922/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1923
14f9c5c9 1924int
4c4b4cd2 1925ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1926{
1927 if (type == NULL)
1928 return 0;
61ee279c 1929 type = ada_check_typedef (type);
14f9c5c9 1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1934}
1935
4c4b4cd2
PH
1936/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
14f9c5c9 1938int
4c4b4cd2 1939ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1940{
556bdfd4 1941 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1942
1943 if (type == NULL)
1944 return 0;
61ee279c 1945 type = ada_check_typedef (type);
556bdfd4
UW
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1949}
1950
1951/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1952 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1953 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1954 is still needed. */
1955
14f9c5c9 1956int
ebf56fd3 1957ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1958{
d2e4a39e 1959 return
14f9c5c9
AS
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1965}
1966
1967
4c4b4cd2 1968/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1969 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1971 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1974 a descriptor. */
d2e4a39e
AS
1975struct type *
1976ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1977{
ad82864c
JB
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1980
df407dfe
AC
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
d2e4a39e
AS
1983
1984 if (!bounds)
ad82864c
JB
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
14f9c5c9
AS
1995 else
1996 {
d2e4a39e 1997 struct type *elt_type;
14f9c5c9 1998 int arity;
d2e4a39e 1999 struct value *descriptor;
14f9c5c9 2000
df407dfe
AC
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
14f9c5c9 2003
d2e4a39e 2004 if (elt_type == NULL || arity == 0)
df407dfe 2005 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2006
2007 descriptor = desc_bounds (arr);
d2e4a39e 2008 if (value_as_long (descriptor) == 0)
4c4b4cd2 2009 return NULL;
d2e4a39e 2010 while (arity > 0)
4c4b4cd2 2011 {
e9bb382b
UW
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2016
5b4ee69b 2017 arity -= 1;
0c9c3474
SA
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
4c4b4cd2 2021 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
4c4b4cd2 2043 }
14f9c5c9
AS
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047}
2048
2049/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
d2e4a39e
AS
2054struct value *
2055ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2056{
df407dfe 2057 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2058 {
d2e4a39e 2059 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2060
14f9c5c9 2061 if (arrType == NULL)
4c4b4cd2 2062 return NULL;
14f9c5c9
AS
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
ad82864c
JB
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2067 else
2068 return arr;
2069}
2070
2071/* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2073 be ARR itself if it already is in the proper form). */
2074
720d1a40 2075struct value *
d2e4a39e 2076ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2077{
df407dfe 2078 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2079 {
d2e4a39e 2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2081
14f9c5c9 2082 if (arrVal == NULL)
323e0a4a 2083 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2085 return value_ind (arrVal);
2086 }
ad82864c
JB
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
d2e4a39e 2089 else
14f9c5c9
AS
2090 return arr;
2091}
2092
2093/* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2095 packing). For other types, is the identity. */
2096
d2e4a39e
AS
2097struct type *
2098ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2099{
ad82864c
JB
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
17280b9f
UW
2102
2103 if (ada_is_array_descriptor_type (type))
556bdfd4 2104 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2105
2106 return type;
14f9c5c9
AS
2107}
2108
4c4b4cd2
PH
2109/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
ad82864c
JB
2111static int
2112ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2113{
2114 if (type == NULL)
2115 return 0;
4c4b4cd2 2116 type = desc_base_type (type);
61ee279c 2117 type = ada_check_typedef (type);
d2e4a39e 2118 return
14f9c5c9
AS
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121}
2122
ad82864c
JB
2123/* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126int
2127ada_is_constrained_packed_array_type (struct type *type)
2128{
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131}
2132
2133/* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136static int
2137ada_is_unconstrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141}
2142
2143/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146static long
2147decode_packed_array_bitsize (struct type *type)
2148{
0d5cff50
DE
2149 const char *raw_name;
2150 const char *tail;
ad82864c
JB
2151 long bits;
2152
720d1a40
JB
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
720d1a40 2167 gdb_assert (tail != NULL);
ad82864c
JB
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177}
2178
14f9c5c9
AS
2179/* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
4c4b4cd2 2195
d2e4a39e 2196static struct type *
ad82864c 2197constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2198{
d2e4a39e
AS
2199 struct type *new_elt_type;
2200 struct type *new_type;
99b1c762
JB
2201 struct type *index_type_desc;
2202 struct type *index_type;
14f9c5c9
AS
2203 LONGEST low_bound, high_bound;
2204
61ee279c 2205 type = ada_check_typedef (type);
14f9c5c9
AS
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
99b1c762
JB
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
e9bb382b 2216 new_type = alloc_type_copy (type);
ad82864c
JB
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
99b1c762 2220 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
4a46959e
JB
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2230 else
14f9c5c9
AS
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2233 TYPE_LENGTH (new_type) =
4c4b4cd2 2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2235 }
2236
876cecd0 2237 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2238 return new_type;
2239}
2240
ad82864c
JB
2241/* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2243
d2e4a39e 2244static struct type *
ad82864c 2245decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2246{
0d5cff50 2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2248 char *name;
0d5cff50 2249 const char *tail;
d2e4a39e 2250 struct type *shadow_type;
14f9c5c9 2251 long bits;
14f9c5c9 2252
727e3d2e
JB
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2261 type = desc_base_type (type);
2262
14f9c5c9
AS
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
b4ba55a1
JB
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
14f9c5c9 2269 {
323e0a4a 2270 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2271 return NULL;
2272 }
f168693b 2273 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
0963b4bd
MS
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
14f9c5c9
AS
2279 return NULL;
2280 }
d2e4a39e 2281
ad82864c
JB
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2284}
2285
ad82864c
JB
2286/* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
4c4b4cd2 2290 type length is set appropriately. */
14f9c5c9 2291
d2e4a39e 2292static struct value *
ad82864c 2293decode_constrained_packed_array (struct value *arr)
14f9c5c9 2294{
4c4b4cd2 2295 struct type *type;
14f9c5c9 2296
11aa919a
PMR
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
828292f2 2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2306 arr = value_ind (arr);
4c4b4cd2 2307
ad82864c 2308 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2309 if (type == NULL)
2310 {
323e0a4a 2311 error (_("can't unpack array"));
14f9c5c9
AS
2312 return NULL;
2313 }
61ee279c 2314
50810684 2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2316 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
df407dfe 2325 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
df407dfe 2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
4c4b4cd2 2340 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2341}
2342
2343
2344/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2345 given in IND. ARR must be a simple array. */
14f9c5c9 2346
d2e4a39e
AS
2347static struct value *
2348value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2349{
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
d2e4a39e
AS
2353 struct type *elt_type;
2354 struct value *v;
14f9c5c9
AS
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
df407dfe 2358 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2359 for (i = 0; i < arity; i += 1)
14f9c5c9 2360 {
d2e4a39e 2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
0963b4bd
MS
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
14f9c5c9 2366 else
4c4b4cd2
PH
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
323e0a4a 2374 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2375 lowerbound = upperbound = 0;
2376 }
2377
3cb382c9 2378 idx = pos_atr (ind[i]);
4c4b4cd2 2379 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
4c4b4cd2
PH
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2385 }
14f9c5c9
AS
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2391 bits, elt_type);
14f9c5c9
AS
2392 return v;
2393}
2394
4c4b4cd2 2395/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2396
2397static int
d2e4a39e 2398has_negatives (struct type *type)
14f9c5c9 2399{
d2e4a39e
AS
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
14f9c5c9 2409}
d2e4a39e 2410
f93fca70 2411/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2413 the unpacked buffer.
14f9c5c9 2414
5b639dea
JB
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
f93fca70
JB
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
14f9c5c9 2420
f93fca70 2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2422
f93fca70
JB
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425static void
2426ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430{
a1c95e6b
JB
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
a1c95e6b
JB
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
4c4b4cd2 2441 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2442 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2443 unsigned char sign;
a1c95e6b 2444
4c4b4cd2
PH
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
f93fca70 2447 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2448
5b639dea
JB
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
14f9c5c9 2455 srcBitsLeft = bit_size;
086ca51f 2456 src_bytes_left = src_len;
f93fca70 2457 unpacked_bytes_left = unpacked_len;
14f9c5c9 2458 sign = 0;
f93fca70
JB
2459
2460 if (is_big_endian)
14f9c5c9 2461 {
086ca51f 2462 src_idx = src_len - 1;
f93fca70
JB
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2465 sign = ~0;
d2e4a39e
AS
2466
2467 unusedLS =
4c4b4cd2
PH
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
14f9c5c9 2470
f93fca70
JB
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
4c4b4cd2
PH
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
086ca51f
JB
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2485 }
14f9c5c9 2486 }
d2e4a39e 2487 else
14f9c5c9
AS
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
086ca51f 2491 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
f93fca70 2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2496 sign = ~0;
14f9c5c9 2497 }
d2e4a39e 2498
14f9c5c9 2499 accum = 0;
086ca51f 2500 while (src_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2503 part of the value. */
d2e4a39e 2504 unsigned int unusedMSMask =
4c4b4cd2
PH
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
14f9c5c9 2508 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2509
d2e4a39e 2510 accum |=
086ca51f 2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2512 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2513 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2514 {
db297a65 2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
4c4b4cd2 2520 }
14f9c5c9
AS
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
086ca51f
JB
2523 src_bytes_left -= 1;
2524 src_idx += delta;
14f9c5c9 2525 }
086ca51f 2526 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2527 {
2528 accum |= sign << accumSize;
db297a65 2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2530 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2531 if (accumSize < 0)
2532 accumSize = 0;
14f9c5c9 2533 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
14f9c5c9 2536 }
f93fca70
JB
2537}
2538
2539/* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548struct value *
2549ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552{
2553 struct value *v;
bfb1c796 2554 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2555 gdb_byte *unpacked;
220475ed 2556 const int is_scalar = is_scalar_type (type);
d0a9e810 2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2558 gdb::byte_vector staging;
f93fca70
JB
2559
2560 type = ada_check_typedef (type);
2561
d0a9e810 2562 if (obj == NULL)
bfb1c796 2563 src = valaddr + offset;
d0a9e810 2564 else
bfb1c796 2565 src = value_contents (obj) + offset;
d0a9e810
JB
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
d0a9e810
JB
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2580 staging.data (), staging.size (),
d0a9e810
JB
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
d5722aa2 2583 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
d0a9e810
JB
2595 }
2596
f93fca70
JB
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
bfb1c796 2600 src = valaddr + offset;
f93fca70
JB
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
0cafa88c 2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2605 gdb_byte *buf;
0cafa88c 2606
f93fca70 2607 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
f93fca70
JB
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
bfb1c796 2615 src = value_contents (obj) + offset;
f93fca70
JB
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
bfb1c796 2638 unpacked = value_contents_writeable (v);
f93fca70
JB
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
d5722aa2 2646 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2647 {
d0a9e810
JB
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
d5722aa2 2651 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2652 }
d0a9e810
JB
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2657
14f9c5c9
AS
2658 return v;
2659}
d2e4a39e 2660
14f9c5c9
AS
2661/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2663 not overlap. */
14f9c5c9 2664static void
fc1a4b47 2665move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2666 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2667{
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
50810684 2675 if (bits_big_endian_p)
14f9c5c9
AS
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
d2e4a39e 2681 while (n > 0)
4c4b4cd2
PH
2682 {
2683 int unused_right;
5b4ee69b 2684
4c4b4cd2
PH
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
14f9c5c9
AS
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
d2e4a39e 2708 while (n > 0)
4c4b4cd2
PH
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
14f9c5c9
AS
2724 }
2725}
2726
14f9c5c9
AS
2727/* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2730 floating-point or non-scalar types. */
14f9c5c9 2731
d2e4a39e
AS
2732static struct value *
2733ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2734{
df407dfe
AC
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
14f9c5c9 2737
52ce6436
PH
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
88e3b34b 2746 if (!deprecated_value_modifiable (toval))
323e0a4a 2747 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2748
d2e4a39e 2749 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2750 && bits > 0
d2e4a39e 2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2753 {
df407dfe
AC
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2756 int from_size;
224c3ddb 2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2758 struct value *val;
42ae5230 2759 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2762 fromval = value_cast (type, fromval);
14f9c5c9 2763
52ce6436 2764 read_memory (to_addr, buffer, len);
aced2898
PH
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2769 move_bits (buffer, value_bitpos (toval),
50810684 2770 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2771 else
50810684
UW
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
972daa01 2774 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2775
14f9c5c9 2776 val = value_copy (toval);
0fd88904 2777 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2778 TYPE_LENGTH (type));
04624583 2779 deprecated_set_value_type (val, type);
d2e4a39e 2780
14f9c5c9
AS
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785}
2786
2787
7c512744
JB
2788/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
52ce6436
PH
2799static void
2800value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802{
2803 LONGEST offset_in_container =
42ae5230 2804 (LONGEST) (value_address (component) - value_address (container));
7c512744 2805 int bit_offset_in_container =
52ce6436
PH
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
7c512744 2808
52ce6436
PH
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
50810684 2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2817 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2821 bits, 1);
52ce6436 2822 else
7c512744 2823 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2824 value_bitpos (container) + bit_offset_in_container,
50810684 2825 value_contents (val), 0, bits, 0);
7c512744
JB
2826}
2827
4c4b4cd2
PH
2828/* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2830 thereto. */
2831
d2e4a39e
AS
2832struct value *
2833ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2834{
2835 int k;
d2e4a39e
AS
2836 struct value *elt;
2837 struct type *elt_type;
14f9c5c9
AS
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
df407dfe 2841 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2849 error (_("too many subscripts (%d expected)"), k);
2497b498 2850 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2851 }
2852 return elt;
2853}
2854
deede10c
JB
2855/* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
14f9c5c9 2866
2c0b251b 2867static struct value *
deede10c 2868ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2869{
2870 int k;
919e6dbe 2871 struct value *array_ind = ada_value_ind (arr);
deede10c 2872 struct type *type
919e6dbe
PMR
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
aa715135 2882 struct value *lwb_value;
14f9c5c9
AS
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2885 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2887 value_copy (arr));
14f9c5c9 2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895}
2896
0b5d8877 2897/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
0b5d8877 2901static struct value *
f5938064
JG
2902ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
0b5d8877 2904{
b0dd7688 2905 struct type *type0 = ada_check_typedef (type);
aa715135 2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2907 struct type *index_type
aa715135 2908 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
5b4ee69b 2924
aa715135
JG
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2928 return value_at_lazy (slice_type, base);
0b5d8877
PH
2929}
2930
2931
2932static struct value *
2933ada_value_slice (struct value *array, int low, int high)
2934{
b0dd7688 2935 struct type *type = ada_check_typedef (value_type (array));
aa715135 2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2943 LONGEST low_pos, high_pos;
5b4ee69b 2944
aa715135
JG
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2955}
2956
14f9c5c9
AS
2957/* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2960 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2961
2962int
d2e4a39e 2963ada_array_arity (struct type *type)
14f9c5c9
AS
2964{
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
d2e4a39e 2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2974 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2977 {
4c4b4cd2 2978 arity += 1;
61ee279c 2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2980 }
d2e4a39e 2981
14f9c5c9
AS
2982 return arity;
2983}
2984
2985/* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2988 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2989
d2e4a39e
AS
2990struct type *
2991ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2992{
2993 type = desc_base_type (type);
2994
d2e4a39e 2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2996 {
2997 int k;
d2e4a39e 2998 struct type *p_array_type;
14f9c5c9 2999
556bdfd4 3000 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
4c4b4cd2 3004 return NULL;
d2e4a39e 3005
4c4b4cd2 3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3007 if (nindices >= 0 && k > nindices)
4c4b4cd2 3008 k = nindices;
d2e4a39e 3009 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3010 {
61ee279c 3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3012 k -= 1;
3013 }
14f9c5c9
AS
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
14f9c5c9
AS
3023 return type;
3024 }
3025
3026 return NULL;
3027}
3028
4c4b4cd2 3029/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
14f9c5c9 3034
1eea4ebd
UW
3035static struct type *
3036ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3037{
4c4b4cd2
PH
3038 struct type *result_type;
3039
14f9c5c9
AS
3040 type = desc_base_type (type);
3041
1eea4ebd
UW
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3044
4c4b4cd2 3045 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
4c4b4cd2 3050 type = TYPE_TARGET_TYPE (type);
262452ec 3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3054 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
14f9c5c9 3057 }
d2e4a39e 3058 else
1eea4ebd
UW
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
14f9c5c9 3073
abb68b3e 3074static LONGEST
fb5e3d5c 3075ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3076{
8a48ac95 3077 struct type *type, *index_type_desc, *index_type;
1ce677a4 3078 int i;
262452ec
JK
3079
3080 gdb_assert (which == 0 || which == 1);
14f9c5c9 3081
ad82864c
JB
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3084
4c4b4cd2 3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3086 return (LONGEST) - which;
14f9c5c9
AS
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
bafffb51
JB
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
262452ec 3106 if (index_type_desc != NULL)
28c85d6c
JB
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
262452ec 3109 else
8a48ac95
JB
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
262452ec 3118
43bbcdc2
PH
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3123}
3124
3125/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3128 supplied by run-time quantities other than discriminants. */
14f9c5c9 3129
1eea4ebd 3130static LONGEST
4dc81987 3131ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3132{
eb479039
JB
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
14f9c5c9 3138
ad82864c
JB
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3141 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3142 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3143 else
1eea4ebd 3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3145}
3146
3147/* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
14f9c5c9 3152
1eea4ebd 3153static LONGEST
d2e4a39e 3154ada_array_length (struct value *arr, int n)
14f9c5c9 3155{
aa715135
JG
3156 struct type *arr_type, *index_type;
3157 int low, high;
eb479039
JB
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
14f9c5c9 3162
ad82864c
JB
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3165
4c4b4cd2 3166 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
14f9c5c9 3171 else
aa715135
JG
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
f168693b 3177 arr_type = check_typedef (arr_type);
7150d33c 3178 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
4c4b4cd2
PH
3191}
3192
3193/* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196static struct value *
3197empty_array (struct type *arr_type, int low)
3198{
b0dd7688 3199 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3204
0b5d8877 3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3206}
14f9c5c9 3207\f
d2e4a39e 3208
4c4b4cd2 3209 /* Name resolution */
14f9c5c9 3210
4c4b4cd2
PH
3211/* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
14f9c5c9 3213
d2e4a39e 3214static const char *
4c4b4cd2 3215ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3216{
3217 int i;
3218
4c4b4cd2 3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3220 {
3221 if (ada_opname_table[i].op == op)
4c4b4cd2 3222 return ada_opname_table[i].decoded;
14f9c5c9 3223 }
323e0a4a 3224 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3225}
3226
3227
4c4b4cd2
PH
3228/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3235 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3236
4c4b4cd2 3237static void
e9d9f57e 3238resolve (expression_up *expp, int void_context_p)
14f9c5c9 3239{
30b15541
UW
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3247}
3248
4c4b4cd2
PH
3249/* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
14f9c5c9 3257
d2e4a39e 3258static struct value *
e9d9f57e 3259resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3260 struct type *context_type)
14f9c5c9
AS
3261{
3262 int pc = *pos;
3263 int i;
4c4b4cd2 3264 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
52ce6436 3268 int oplen;
14f9c5c9
AS
3269
3270 argvec = NULL;
3271 nargs = 0;
e9d9f57e 3272 exp = expp->get ();
14f9c5c9 3273
52ce6436
PH
3274 /* Pass one: resolve operands, saving their types and updating *pos,
3275 if needed. */
14f9c5c9
AS
3276 switch (op)
3277 {
4c4b4cd2
PH
3278 case OP_FUNCALL:
3279 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3280 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3281 *pos += 7;
4c4b4cd2
PH
3282 else
3283 {
3284 *pos += 3;
3285 resolve_subexp (expp, pos, 0, NULL);
3286 }
3287 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3288 break;
3289
14f9c5c9 3290 case UNOP_ADDR:
4c4b4cd2
PH
3291 *pos += 1;
3292 resolve_subexp (expp, pos, 0, NULL);
3293 break;
3294
52ce6436
PH
3295 case UNOP_QUAL:
3296 *pos += 3;
17466c1a 3297 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3298 break;
3299
52ce6436 3300 case OP_ATR_MODULUS:
4c4b4cd2
PH
3301 case OP_ATR_SIZE:
3302 case OP_ATR_TAG:
4c4b4cd2
PH
3303 case OP_ATR_FIRST:
3304 case OP_ATR_LAST:
3305 case OP_ATR_LENGTH:
3306 case OP_ATR_POS:
3307 case OP_ATR_VAL:
4c4b4cd2
PH
3308 case OP_ATR_MIN:
3309 case OP_ATR_MAX:
52ce6436
PH
3310 case TERNOP_IN_RANGE:
3311 case BINOP_IN_BOUNDS:
3312 case UNOP_IN_RANGE:
3313 case OP_AGGREGATE:
3314 case OP_OTHERS:
3315 case OP_CHOICES:
3316 case OP_POSITIONAL:
3317 case OP_DISCRETE_RANGE:
3318 case OP_NAME:
3319 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3320 *pos += oplen;
14f9c5c9
AS
3321 break;
3322
3323 case BINOP_ASSIGN:
3324 {
4c4b4cd2
PH
3325 struct value *arg1;
3326
3327 *pos += 1;
3328 arg1 = resolve_subexp (expp, pos, 0, NULL);
3329 if (arg1 == NULL)
3330 resolve_subexp (expp, pos, 1, NULL);
3331 else
df407dfe 3332 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3333 break;
14f9c5c9
AS
3334 }
3335
4c4b4cd2 3336 case UNOP_CAST:
4c4b4cd2
PH
3337 *pos += 3;
3338 nargs = 1;
3339 break;
14f9c5c9 3340
4c4b4cd2
PH
3341 case BINOP_ADD:
3342 case BINOP_SUB:
3343 case BINOP_MUL:
3344 case BINOP_DIV:
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_EXP:
3348 case BINOP_CONCAT:
3349 case BINOP_LOGICAL_AND:
3350 case BINOP_LOGICAL_OR:
3351 case BINOP_BITWISE_AND:
3352 case BINOP_BITWISE_IOR:
3353 case BINOP_BITWISE_XOR:
14f9c5c9 3354
4c4b4cd2
PH
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
14f9c5c9 3361
4c4b4cd2
PH
3362 case BINOP_REPEAT:
3363 case BINOP_SUBSCRIPT:
3364 case BINOP_COMMA:
40c8aaa9
JB
3365 *pos += 1;
3366 nargs = 2;
3367 break;
14f9c5c9 3368
4c4b4cd2
PH
3369 case UNOP_NEG:
3370 case UNOP_PLUS:
3371 case UNOP_LOGICAL_NOT:
3372 case UNOP_ABS:
3373 case UNOP_IND:
3374 *pos += 1;
3375 nargs = 1;
3376 break;
14f9c5c9 3377
4c4b4cd2 3378 case OP_LONG:
edd079d9 3379 case OP_FLOAT:
4c4b4cd2 3380 case OP_VAR_VALUE:
74ea4be4 3381 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3382 *pos += 4;
3383 break;
14f9c5c9 3384
4c4b4cd2
PH
3385 case OP_TYPE:
3386 case OP_BOOL:
3387 case OP_LAST:
4c4b4cd2
PH
3388 case OP_INTERNALVAR:
3389 *pos += 3;
3390 break;
14f9c5c9 3391
4c4b4cd2
PH
3392 case UNOP_MEMVAL:
3393 *pos += 3;
3394 nargs = 1;
3395 break;
3396
67f3407f
DJ
3397 case OP_REGISTER:
3398 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3399 break;
3400
4c4b4cd2
PH
3401 case STRUCTOP_STRUCT:
3402 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3403 nargs = 1;
3404 break;
3405
4c4b4cd2 3406 case TERNOP_SLICE:
4c4b4cd2
PH
3407 *pos += 1;
3408 nargs = 3;
3409 break;
3410
52ce6436 3411 case OP_STRING:
14f9c5c9 3412 break;
4c4b4cd2
PH
3413
3414 default:
323e0a4a 3415 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3416 }
3417
8d749320 3418 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3419 for (i = 0; i < nargs; i += 1)
3420 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3421 argvec[i] = NULL;
e9d9f57e 3422 exp = expp->get ();
4c4b4cd2
PH
3423
3424 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3425 switch (op)
3426 {
3427 default:
3428 break;
3429
14f9c5c9 3430 case OP_VAR_VALUE:
4c4b4cd2 3431 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3432 {
54d343a2 3433 std::vector<struct block_symbol> candidates;
76a01679
JB
3434 int n_candidates;
3435
3436 n_candidates =
3437 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3438 (exp->elts[pc + 2].symbol),
3439 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3440 &candidates);
76a01679
JB
3441
3442 if (n_candidates > 1)
3443 {
3444 /* Types tend to get re-introduced locally, so if there
3445 are any local symbols that are not types, first filter
3446 out all types. */
3447 int j;
3448 for (j = 0; j < n_candidates; j += 1)
d12307c1 3449 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3450 {
3451 case LOC_REGISTER:
3452 case LOC_ARG:
3453 case LOC_REF_ARG:
76a01679
JB
3454 case LOC_REGPARM_ADDR:
3455 case LOC_LOCAL:
76a01679 3456 case LOC_COMPUTED:
76a01679
JB
3457 goto FoundNonType;
3458 default:
3459 break;
3460 }
3461 FoundNonType:
3462 if (j < n_candidates)
3463 {
3464 j = 0;
3465 while (j < n_candidates)
3466 {
d12307c1 3467 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3468 {
3469 candidates[j] = candidates[n_candidates - 1];
3470 n_candidates -= 1;
3471 }
3472 else
3473 j += 1;
3474 }
3475 }
3476 }
3477
3478 if (n_candidates == 0)
323e0a4a 3479 error (_("No definition found for %s"),
76a01679
JB
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 else if (n_candidates == 1)
3482 i = 0;
3483 else if (deprocedure_p
54d343a2 3484 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3485 {
06d5cf63 3486 i = ada_resolve_function
54d343a2 3487 (candidates.data (), n_candidates, NULL, 0,
06d5cf63
JB
3488 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3489 context_type);
76a01679 3490 if (i < 0)
323e0a4a 3491 error (_("Could not find a match for %s"),
76a01679
JB
3492 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3493 }
3494 else
3495 {
323e0a4a 3496 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3497 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3498 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3499 i = 0;
3500 }
3501
3502 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3503 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3504 innermost_block.update (candidates[i]);
76a01679
JB
3505 }
3506
3507 if (deprocedure_p
3508 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3509 == TYPE_CODE_FUNC))
3510 {
3511 replace_operator_with_call (expp, pc, 0, 0,
3512 exp->elts[pc + 2].symbol,
3513 exp->elts[pc + 1].block);
e9d9f57e 3514 exp = expp->get ();
76a01679 3515 }
14f9c5c9
AS
3516 break;
3517
3518 case OP_FUNCALL:
3519 {
4c4b4cd2 3520 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3521 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3522 {
54d343a2 3523 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3524 int n_candidates;
3525
3526 n_candidates =
76a01679
JB
3527 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3528 (exp->elts[pc + 5].symbol),
3529 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3530 &candidates);
ec6a20c2 3531
4c4b4cd2
PH
3532 if (n_candidates == 1)
3533 i = 0;
3534 else
3535 {
06d5cf63 3536 i = ada_resolve_function
54d343a2 3537 (candidates.data (), n_candidates,
06d5cf63
JB
3538 argvec, nargs,
3539 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3540 context_type);
4c4b4cd2 3541 if (i < 0)
323e0a4a 3542 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3543 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3544 }
3545
3546 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3547 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3548 innermost_block.update (candidates[i]);
4c4b4cd2 3549 }
14f9c5c9
AS
3550 }
3551 break;
3552 case BINOP_ADD:
3553 case BINOP_SUB:
3554 case BINOP_MUL:
3555 case BINOP_DIV:
3556 case BINOP_REM:
3557 case BINOP_MOD:
3558 case BINOP_CONCAT:
3559 case BINOP_BITWISE_AND:
3560 case BINOP_BITWISE_IOR:
3561 case BINOP_BITWISE_XOR:
3562 case BINOP_EQUAL:
3563 case BINOP_NOTEQUAL:
3564 case BINOP_LESS:
3565 case BINOP_GTR:
3566 case BINOP_LEQ:
3567 case BINOP_GEQ:
3568 case BINOP_EXP:
3569 case UNOP_NEG:
3570 case UNOP_PLUS:
3571 case UNOP_LOGICAL_NOT:
3572 case UNOP_ABS:
3573 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3574 {
54d343a2 3575 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3576 int n_candidates;
3577
3578 n_candidates =
b5ec771e 3579 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3580 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3581 &candidates);
ec6a20c2 3582
54d343a2
TT
3583 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3584 nargs, ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3585 if (i < 0)
3586 break;
3587
d12307c1
PMR
3588 replace_operator_with_call (expp, pc, nargs, 1,
3589 candidates[i].symbol,
3590 candidates[i].block);
e9d9f57e 3591 exp = expp->get ();
4c4b4cd2 3592 }
14f9c5c9 3593 break;
4c4b4cd2
PH
3594
3595 case OP_TYPE:
b3dbf008 3596 case OP_REGISTER:
4c4b4cd2 3597 return NULL;
14f9c5c9
AS
3598 }
3599
3600 *pos = pc;
ced9779b
JB
3601 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3602 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3603 exp->elts[pc + 1].objfile,
3604 exp->elts[pc + 2].msymbol);
3605 else
3606 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3607}
3608
3609/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3611 a non-pointer. */
14f9c5c9 3612/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3613 liberal. */
14f9c5c9
AS
3614
3615static int
4dc81987 3616ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3617{
61ee279c
PH
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
14f9c5c9
AS
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
d2e4a39e 3626 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3627 {
3628 default:
5b3d5b7d 3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3634 else
1265e4aa
JB
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
14f9c5c9
AS
3649
3650 case TYPE_CODE_ARRAY:
d2e4a39e 3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3652 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3653
3654 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
14f9c5c9 3658 else
4c4b4cd2
PH
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666}
3667
3668/* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3671 argument function. */
14f9c5c9
AS
3672
3673static int
d2e4a39e 3674ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3675{
3676 int i;
d2e4a39e 3677 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3678
1265e4aa
JB
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
4c4b4cd2 3690 if (actuals[i] == NULL)
76a01679
JB
3691 return 0;
3692 else
3693 {
5b4ee69b
MS
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
df407dfe 3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3697
76a01679
JB
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
14f9c5c9
AS
3701 }
3702 return 1;
3703}
3704
3705/* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710static int
d2e4a39e 3711return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3712{
d2e4a39e 3713 struct type *return_type;
14f9c5c9
AS
3714
3715 if (func_type == NULL)
3716 return 1;
3717
4c4b4cd2 3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3720 else
18af8284 3721 return_type = get_base_type (func_type);
14f9c5c9
AS
3722 if (return_type == NULL)
3723 return 1;
3724
18af8284 3725 context_type = get_base_type (context_type);
14f9c5c9
AS
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733}
3734
3735
4c4b4cd2 3736/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3737 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
14f9c5c9
AS
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
14f9c5c9 3747
4c4b4cd2 3748static int
d12307c1 3749ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
14f9c5c9 3752{
30b15541 3753 int fallback;
14f9c5c9 3754 int k;
4c4b4cd2 3755 int m; /* Number of hits */
14f9c5c9 3756
d2e4a39e 3757 m = 0;
30b15541
UW
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3762 {
3763 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3764 {
d12307c1 3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3766
d12307c1 3767 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3768 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
14f9c5c9
AS
3774 }
3775
dc5c8746
PMR
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3780 if (m == 0)
3781 return -1;
dc5c8746 3782 else if (m > 1 && !parse_completion)
14f9c5c9 3783 {
323e0a4a 3784 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3785 user_select_syms (syms, m, 1);
14f9c5c9
AS
3786 return 0;
3787 }
3788 return 0;
3789}
3790
4c4b4cd2
PH
3791/* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
14f9c5c9 3797static int
0d5cff50 3798encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3799{
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
5b4ee69b 3807
d2e4a39e 3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3809 ;
d2e4a39e 3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3811 ;
d2e4a39e 3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
5b4ee69b 3816
4c4b4cd2
PH
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
14f9c5c9
AS
3826 return (strcmp (N0, N1) < 0);
3827 }
3828}
d2e4a39e 3829
4c4b4cd2
PH
3830/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
d2e4a39e 3833static void
d12307c1 3834sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3835{
4c4b4cd2 3836 int i;
5b4ee69b 3837
d2e4a39e 3838 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3839 {
d12307c1 3840 struct block_symbol sym = syms[i];
14f9c5c9
AS
3841 int j;
3842
d2e4a39e 3843 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3844 {
d12307c1
PMR
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
d2e4a39e 3850 syms[j + 1] = sym;
14f9c5c9
AS
3851 }
3852}
3853
d72413e6
PMR
3854/* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856static int print_signatures = 1;
3857
3858/* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863static void
3864ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866{
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895}
3896
4c4b4cd2
PH
3897/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
14f9c5c9
AS
3901
3902/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3903 to be re-integrated one of these days. */
14f9c5c9
AS
3904
3905int
d12307c1 3906user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3907{
3908 int i;
8d749320 3909 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3912 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3913
3914 if (max_results < 1)
323e0a4a 3915 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3916 if (nsyms <= 1)
3917 return nsyms;
3918
717d2f5a
JB
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921canceled because the command is ambiguous\n\
3922See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
323e0a4a 3930 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3931 if (max_results > 1)
323e0a4a 3932 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3933
4c4b4cd2 3934 sort_choices (syms, nsyms);
14f9c5c9
AS
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
d12307c1 3938 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3939 continue;
3940
d12307c1 3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3942 {
76a01679 3943 struct symtab_and_line sal =
d12307c1 3944 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3945
d72413e6
PMR
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
323e0a4a 3949 if (sal.symtab == NULL)
d72413e6 3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3951 sal.line);
3952 else
d72413e6 3953 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
4c4b4cd2
PH
3956 continue;
3957 }
d2e4a39e 3958 else
4c4b4cd2
PH
3959 {
3960 int is_enumeral =
d12307c1
PMR
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3964 struct symtab *symtab = NULL;
3965
d12307c1
PMR
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3968
d12307c1 3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
76a01679 3978 else if (is_enumeral
d12307c1 3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3980 {
a3f17187 3981 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3983 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3985 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3986 }
d72413e6
PMR
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4c4b4cd2 4003 }
14f9c5c9 4004 }
d2e4a39e 4005
14f9c5c9 4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4007 "overload-choice");
14f9c5c9
AS
4008
4009 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4010 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4011
4012 return n_chosen;
4013}
4014
4015/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4016 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4c4b4cd2 4022 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4c4b4cd2 4026 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4029 prompts (for use with the -f switch). */
14f9c5c9
AS
4030
4031int
d2e4a39e 4032get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4033 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4034{
d2e4a39e 4035 char *args;
a121b7c1 4036 const char *prompt;
14f9c5c9
AS
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4039
14f9c5c9
AS
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
0bcd0149 4042 prompt = "> ";
14f9c5c9 4043
0bcd0149 4044 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4045
14f9c5c9 4046 if (args == NULL)
323e0a4a 4047 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4048
4049 n_chosen = 0;
76a01679 4050
4c4b4cd2
PH
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
14f9c5c9
AS
4053 while (1)
4054 {
d2e4a39e 4055 char *args2;
14f9c5c9
AS
4056 int choice, j;
4057
0fcd72ba 4058 args = skip_spaces (args);
14f9c5c9 4059 if (*args == '\0' && n_chosen == 0)
323e0a4a 4060 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4061 else if (*args == '\0')
4c4b4cd2 4062 break;
14f9c5c9
AS
4063
4064 choice = strtol (args, &args2, 10);
d2e4a39e 4065 if (args == args2 || choice < 0
4c4b4cd2 4066 || choice > n_choices + first_choice - 1)
323e0a4a 4067 error (_("Argument must be choice number"));
14f9c5c9
AS
4068 args = args2;
4069
d2e4a39e 4070 if (choice == 0)
323e0a4a 4071 error (_("cancelled"));
14f9c5c9
AS
4072
4073 if (choice < first_choice)
4c4b4cd2
PH
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
14f9c5c9
AS
4080 choice -= first_choice;
4081
d2e4a39e 4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4083 {
4084 }
14f9c5c9
AS
4085
4086 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4087 {
4088 int k;
5b4ee69b 4089
4c4b4cd2
PH
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
14f9c5c9
AS
4095 }
4096
4097 if (n_chosen > max_results)
323e0a4a 4098 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4099
14f9c5c9
AS
4100 return n_chosen;
4101}
4102
4c4b4cd2
PH
4103/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4106
4107static void
e9d9f57e 4108replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4109 int oplen, struct symbol *sym,
270140bd 4110 const struct block *block)
14f9c5c9
AS
4111{
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4113 symbol, -oplen for operator being replaced). */
d2e4a39e 4114 struct expression *newexp = (struct expression *)
8c1a34e7 4115 xzalloc (sizeof (struct expression)
4c4b4cd2 4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4117 struct expression *exp = expp->get ();
14f9c5c9
AS
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
3489610d 4121 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
e9d9f57e 4133 expp->reset (newexp);
d2e4a39e 4134}
14f9c5c9
AS
4135
4136/* Type-class predicates */
4137
4c4b4cd2
PH
4138/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4139 or FLOAT). */
14f9c5c9
AS
4140
4141static int
d2e4a39e 4142numeric_type_p (struct type *type)
14f9c5c9
AS
4143{
4144 if (type == NULL)
4145 return 0;
d2e4a39e
AS
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4c4b4cd2
PH
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_FLT:
4152 return 1;
4153 case TYPE_CODE_RANGE:
4154 return (type == TYPE_TARGET_TYPE (type)
4155 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4156 default:
4157 return 0;
4158 }
d2e4a39e 4159 }
14f9c5c9
AS
4160}
4161
4c4b4cd2 4162/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4163
4164static int
d2e4a39e 4165integer_type_p (struct type *type)
14f9c5c9
AS
4166{
4167 if (type == NULL)
4168 return 0;
d2e4a39e
AS
4169 else
4170 {
4171 switch (TYPE_CODE (type))
4c4b4cd2
PH
4172 {
4173 case TYPE_CODE_INT:
4174 return 1;
4175 case TYPE_CODE_RANGE:
4176 return (type == TYPE_TARGET_TYPE (type)
4177 || integer_type_p (TYPE_TARGET_TYPE (type)));
4178 default:
4179 return 0;
4180 }
d2e4a39e 4181 }
14f9c5c9
AS
4182}
4183
4c4b4cd2 4184/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4185
4186static int
d2e4a39e 4187scalar_type_p (struct type *type)
14f9c5c9
AS
4188{
4189 if (type == NULL)
4190 return 0;
d2e4a39e
AS
4191 else
4192 {
4193 switch (TYPE_CODE (type))
4c4b4cd2
PH
4194 {
4195 case TYPE_CODE_INT:
4196 case TYPE_CODE_RANGE:
4197 case TYPE_CODE_ENUM:
4198 case TYPE_CODE_FLT:
4199 return 1;
4200 default:
4201 return 0;
4202 }
d2e4a39e 4203 }
14f9c5c9
AS
4204}
4205
4c4b4cd2 4206/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4207
4208static int
d2e4a39e 4209discrete_type_p (struct type *type)
14f9c5c9
AS
4210{
4211 if (type == NULL)
4212 return 0;
d2e4a39e
AS
4213 else
4214 {
4215 switch (TYPE_CODE (type))
4c4b4cd2
PH
4216 {
4217 case TYPE_CODE_INT:
4218 case TYPE_CODE_RANGE:
4219 case TYPE_CODE_ENUM:
872f0337 4220 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4221 return 1;
4222 default:
4223 return 0;
4224 }
d2e4a39e 4225 }
14f9c5c9
AS
4226}
4227
4c4b4cd2
PH
4228/* Returns non-zero if OP with operands in the vector ARGS could be
4229 a user-defined function. Errs on the side of pre-defined operators
4230 (i.e., result 0). */
14f9c5c9
AS
4231
4232static int
d2e4a39e 4233possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4234{
76a01679 4235 struct type *type0 =
df407dfe 4236 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4237 struct type *type1 =
df407dfe 4238 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4239
4c4b4cd2
PH
4240 if (type0 == NULL)
4241 return 0;
4242
14f9c5c9
AS
4243 switch (op)
4244 {
4245 default:
4246 return 0;
4247
4248 case BINOP_ADD:
4249 case BINOP_SUB:
4250 case BINOP_MUL:
4251 case BINOP_DIV:
d2e4a39e 4252 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4253
4254 case BINOP_REM:
4255 case BINOP_MOD:
4256 case BINOP_BITWISE_AND:
4257 case BINOP_BITWISE_IOR:
4258 case BINOP_BITWISE_XOR:
d2e4a39e 4259 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4260
4261 case BINOP_EQUAL:
4262 case BINOP_NOTEQUAL:
4263 case BINOP_LESS:
4264 case BINOP_GTR:
4265 case BINOP_LEQ:
4266 case BINOP_GEQ:
d2e4a39e 4267 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4268
4269 case BINOP_CONCAT:
ee90b9ab 4270 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4271
4272 case BINOP_EXP:
d2e4a39e 4273 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4274
4275 case UNOP_NEG:
4276 case UNOP_PLUS:
4277 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4278 case UNOP_ABS:
4279 return (!numeric_type_p (type0));
14f9c5c9
AS
4280
4281 }
4282}
4283\f
4c4b4cd2 4284 /* Renaming */
14f9c5c9 4285
aeb5907d
JB
4286/* NOTES:
4287
4288 1. In the following, we assume that a renaming type's name may
4289 have an ___XD suffix. It would be nice if this went away at some
4290 point.
4291 2. We handle both the (old) purely type-based representation of
4292 renamings and the (new) variable-based encoding. At some point,
4293 it is devoutly to be hoped that the former goes away
4294 (FIXME: hilfinger-2007-07-09).
4295 3. Subprogram renamings are not implemented, although the XRS
4296 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4297
4298/* If SYM encodes a renaming,
4299
4300 <renaming> renames <renamed entity>,
4301
4302 sets *LEN to the length of the renamed entity's name,
4303 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4304 the string describing the subcomponent selected from the renamed
0963b4bd 4305 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4306 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4307 are undefined). Otherwise, returns a value indicating the category
4308 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4309 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4310 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4311 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4312 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4313 may be NULL, in which case they are not assigned.
4314
4315 [Currently, however, GCC does not generate subprogram renamings.] */
4316
4317enum ada_renaming_category
4318ada_parse_renaming (struct symbol *sym,
4319 const char **renamed_entity, int *len,
4320 const char **renaming_expr)
4321{
4322 enum ada_renaming_category kind;
4323 const char *info;
4324 const char *suffix;
4325
4326 if (sym == NULL)
4327 return ADA_NOT_RENAMING;
4328 switch (SYMBOL_CLASS (sym))
14f9c5c9 4329 {
aeb5907d
JB
4330 default:
4331 return ADA_NOT_RENAMING;
4332 case LOC_TYPEDEF:
4333 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4334 renamed_entity, len, renaming_expr);
4335 case LOC_LOCAL:
4336 case LOC_STATIC:
4337 case LOC_COMPUTED:
4338 case LOC_OPTIMIZED_OUT:
4339 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4340 if (info == NULL)
4341 return ADA_NOT_RENAMING;
4342 switch (info[5])
4343 {
4344 case '_':
4345 kind = ADA_OBJECT_RENAMING;
4346 info += 6;
4347 break;
4348 case 'E':
4349 kind = ADA_EXCEPTION_RENAMING;
4350 info += 7;
4351 break;
4352 case 'P':
4353 kind = ADA_PACKAGE_RENAMING;
4354 info += 7;
4355 break;
4356 case 'S':
4357 kind = ADA_SUBPROGRAM_RENAMING;
4358 info += 7;
4359 break;
4360 default:
4361 return ADA_NOT_RENAMING;
4362 }
14f9c5c9 4363 }
4c4b4cd2 4364
aeb5907d
JB
4365 if (renamed_entity != NULL)
4366 *renamed_entity = info;
4367 suffix = strstr (info, "___XE");
4368 if (suffix == NULL || suffix == info)
4369 return ADA_NOT_RENAMING;
4370 if (len != NULL)
4371 *len = strlen (info) - strlen (suffix);
4372 suffix += 5;
4373 if (renaming_expr != NULL)
4374 *renaming_expr = suffix;
4375 return kind;
4376}
4377
4378/* Assuming TYPE encodes a renaming according to the old encoding in
4379 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4380 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4381 ADA_NOT_RENAMING otherwise. */
4382static enum ada_renaming_category
4383parse_old_style_renaming (struct type *type,
4384 const char **renamed_entity, int *len,
4385 const char **renaming_expr)
4386{
4387 enum ada_renaming_category kind;
4388 const char *name;
4389 const char *info;
4390 const char *suffix;
14f9c5c9 4391
aeb5907d
JB
4392 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4393 || TYPE_NFIELDS (type) != 1)
4394 return ADA_NOT_RENAMING;
14f9c5c9 4395
a737d952 4396 name = TYPE_NAME (type);
aeb5907d
JB
4397 if (name == NULL)
4398 return ADA_NOT_RENAMING;
4399
4400 name = strstr (name, "___XR");
4401 if (name == NULL)
4402 return ADA_NOT_RENAMING;
4403 switch (name[5])
4404 {
4405 case '\0':
4406 case '_':
4407 kind = ADA_OBJECT_RENAMING;
4408 break;
4409 case 'E':
4410 kind = ADA_EXCEPTION_RENAMING;
4411 break;
4412 case 'P':
4413 kind = ADA_PACKAGE_RENAMING;
4414 break;
4415 case 'S':
4416 kind = ADA_SUBPROGRAM_RENAMING;
4417 break;
4418 default:
4419 return ADA_NOT_RENAMING;
4420 }
14f9c5c9 4421
aeb5907d
JB
4422 info = TYPE_FIELD_NAME (type, 0);
4423 if (info == NULL)
4424 return ADA_NOT_RENAMING;
4425 if (renamed_entity != NULL)
4426 *renamed_entity = info;
4427 suffix = strstr (info, "___XE");
4428 if (renaming_expr != NULL)
4429 *renaming_expr = suffix + 5;
4430 if (suffix == NULL || suffix == info)
4431 return ADA_NOT_RENAMING;
4432 if (len != NULL)
4433 *len = suffix - info;
4434 return kind;
a5ee536b
JB
4435}
4436
4437/* Compute the value of the given RENAMING_SYM, which is expected to
4438 be a symbol encoding a renaming expression. BLOCK is the block
4439 used to evaluate the renaming. */
52ce6436 4440
a5ee536b
JB
4441static struct value *
4442ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4443 const struct block *block)
a5ee536b 4444{
bbc13ae3 4445 const char *sym_name;
a5ee536b 4446
bbc13ae3 4447 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4448 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4449 return evaluate_expression (expr.get ());
a5ee536b 4450}
14f9c5c9 4451\f
d2e4a39e 4452
4c4b4cd2 4453 /* Evaluation: Function Calls */
14f9c5c9 4454
4c4b4cd2 4455/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4456 lvalues, and otherwise has the side-effect of allocating memory
4457 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4458
d2e4a39e 4459static struct value *
40bc484c 4460ensure_lval (struct value *val)
14f9c5c9 4461{
40bc484c
JB
4462 if (VALUE_LVAL (val) == not_lval
4463 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4464 {
df407dfe 4465 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4466 const CORE_ADDR addr =
4467 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4468
a84a8a0d 4469 VALUE_LVAL (val) = lval_memory;
1a088441 4470 set_value_address (val, addr);
40bc484c 4471 write_memory (addr, value_contents (val), len);
c3e5cd34 4472 }
14f9c5c9
AS
4473
4474 return val;
4475}
4476
4477/* Return the value ACTUAL, converted to be an appropriate value for a
4478 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4479 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4480 values not residing in memory, updating it as needed. */
14f9c5c9 4481
a93c0eb6 4482struct value *
40bc484c 4483ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4484{
df407dfe 4485 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4486 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4487 struct type *formal_target =
4488 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4489 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4490 struct type *actual_target =
4491 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4492 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4493
4c4b4cd2 4494 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4495 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4496 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4497 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4498 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4499 {
a84a8a0d 4500 struct value *result;
5b4ee69b 4501
14f9c5c9 4502 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4503 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4504 result = desc_data (actual);
cb923fcc 4505 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4506 {
4507 if (VALUE_LVAL (actual) != lval_memory)
4508 {
4509 struct value *val;
5b4ee69b 4510
df407dfe 4511 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4512 val = allocate_value (actual_type);
990a07ab 4513 memcpy ((char *) value_contents_raw (val),
0fd88904 4514 (char *) value_contents (actual),
4c4b4cd2 4515 TYPE_LENGTH (actual_type));
40bc484c 4516 actual = ensure_lval (val);
4c4b4cd2 4517 }
a84a8a0d 4518 result = value_addr (actual);
4c4b4cd2 4519 }
a84a8a0d
JB
4520 else
4521 return actual;
b1af9e97 4522 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4523 }
4524 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4525 return ada_value_ind (actual);
8344af1e
JB
4526 else if (ada_is_aligner_type (formal_type))
4527 {
4528 /* We need to turn this parameter into an aligner type
4529 as well. */
4530 struct value *aligner = allocate_value (formal_type);
4531 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4532
4533 value_assign_to_component (aligner, component, actual);
4534 return aligner;
4535 }
14f9c5c9
AS
4536
4537 return actual;
4538}
4539
438c98a1
JB
4540/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4541 type TYPE. This is usually an inefficient no-op except on some targets
4542 (such as AVR) where the representation of a pointer and an address
4543 differs. */
4544
4545static CORE_ADDR
4546value_pointer (struct value *value, struct type *type)
4547{
4548 struct gdbarch *gdbarch = get_type_arch (type);
4549 unsigned len = TYPE_LENGTH (type);
224c3ddb 4550 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4551 CORE_ADDR addr;
4552
4553 addr = value_address (value);
4554 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4555 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4556 return addr;
4557}
4558
14f9c5c9 4559
4c4b4cd2
PH
4560/* Push a descriptor of type TYPE for array value ARR on the stack at
4561 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4562 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4563 to-descriptor type rather than a descriptor type), a struct value *
4564 representing a pointer to this descriptor. */
14f9c5c9 4565
d2e4a39e 4566static struct value *
40bc484c 4567make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4568{
d2e4a39e
AS
4569 struct type *bounds_type = desc_bounds_type (type);
4570 struct type *desc_type = desc_base_type (type);
4571 struct value *descriptor = allocate_value (desc_type);
4572 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4573 int i;
d2e4a39e 4574
0963b4bd
MS
4575 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4576 i > 0; i -= 1)
14f9c5c9 4577 {
19f220c3
JK
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 0),
4580 desc_bound_bitpos (bounds_type, i, 0),
4581 desc_bound_bitsize (bounds_type, i, 0));
4582 modify_field (value_type (bounds), value_contents_writeable (bounds),
4583 ada_array_bound (arr, i, 1),
4584 desc_bound_bitpos (bounds_type, i, 1),
4585 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4586 }
d2e4a39e 4587
40bc484c 4588 bounds = ensure_lval (bounds);
d2e4a39e 4589
19f220c3
JK
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (ensure_lval (arr),
4593 TYPE_FIELD_TYPE (desc_type, 0)),
4594 fat_pntr_data_bitpos (desc_type),
4595 fat_pntr_data_bitsize (desc_type));
4596
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (bounds,
4600 TYPE_FIELD_TYPE (desc_type, 1)),
4601 fat_pntr_bounds_bitpos (desc_type),
4602 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4603
40bc484c 4604 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4605
4606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4607 return value_addr (descriptor);
4608 else
4609 return descriptor;
4610}
14f9c5c9 4611\f
3d9434b5
JB
4612 /* Symbol Cache Module */
4613
3d9434b5 4614/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4615 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4616 on the type of entity being printed, the cache can make it as much
4617 as an order of magnitude faster than without it.
4618
4619 The descriptive type DWARF extension has significantly reduced
4620 the need for this cache, at least when DWARF is being used. However,
4621 even in this case, some expensive name-based symbol searches are still
4622 sometimes necessary - to find an XVZ variable, mostly. */
4623
ee01b665 4624/* Initialize the contents of SYM_CACHE. */
3d9434b5 4625
ee01b665
JB
4626static void
4627ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4628{
4629 obstack_init (&sym_cache->cache_space);
4630 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4631}
3d9434b5 4632
ee01b665
JB
4633/* Free the memory used by SYM_CACHE. */
4634
4635static void
4636ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4637{
ee01b665
JB
4638 obstack_free (&sym_cache->cache_space, NULL);
4639 xfree (sym_cache);
4640}
3d9434b5 4641
ee01b665
JB
4642/* Return the symbol cache associated to the given program space PSPACE.
4643 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4644
ee01b665
JB
4645static struct ada_symbol_cache *
4646ada_get_symbol_cache (struct program_space *pspace)
4647{
4648 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4649
66c168ae 4650 if (pspace_data->sym_cache == NULL)
ee01b665 4651 {
66c168ae
JB
4652 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4653 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4654 }
4655
66c168ae 4656 return pspace_data->sym_cache;
ee01b665 4657}
3d9434b5
JB
4658
4659/* Clear all entries from the symbol cache. */
4660
4661static void
4662ada_clear_symbol_cache (void)
4663{
ee01b665
JB
4664 struct ada_symbol_cache *sym_cache
4665 = ada_get_symbol_cache (current_program_space);
4666
4667 obstack_free (&sym_cache->cache_space, NULL);
4668 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4669}
4670
fe978cb0 4671/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4672 Return it if found, or NULL otherwise. */
4673
4674static struct cache_entry **
fe978cb0 4675find_entry (const char *name, domain_enum domain)
3d9434b5 4676{
ee01b665
JB
4677 struct ada_symbol_cache *sym_cache
4678 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4679 int h = msymbol_hash (name) % HASH_SIZE;
4680 struct cache_entry **e;
4681
ee01b665 4682 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4683 {
fe978cb0 4684 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4685 return e;
4686 }
4687 return NULL;
4688}
4689
fe978cb0 4690/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4691 Return 1 if found, 0 otherwise.
4692
4693 If an entry was found and SYM is not NULL, set *SYM to the entry's
4694 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4695
96d887e8 4696static int
fe978cb0 4697lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4698 struct symbol **sym, const struct block **block)
96d887e8 4699{
fe978cb0 4700 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4701
4702 if (e == NULL)
4703 return 0;
4704 if (sym != NULL)
4705 *sym = (*e)->sym;
4706 if (block != NULL)
4707 *block = (*e)->block;
4708 return 1;
96d887e8
PH
4709}
4710
3d9434b5 4711/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4712 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4713
96d887e8 4714static void
fe978cb0 4715cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4716 const struct block *block)
96d887e8 4717{
ee01b665
JB
4718 struct ada_symbol_cache *sym_cache
4719 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4720 int h;
4721 char *copy;
4722 struct cache_entry *e;
4723
1994afbf
DE
4724 /* Symbols for builtin types don't have a block.
4725 For now don't cache such symbols. */
4726 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4727 return;
4728
3d9434b5
JB
4729 /* If the symbol is a local symbol, then do not cache it, as a search
4730 for that symbol depends on the context. To determine whether
4731 the symbol is local or not, we check the block where we found it
4732 against the global and static blocks of its associated symtab. */
4733 if (sym
08be3fe3 4734 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4735 GLOBAL_BLOCK) != block
08be3fe3 4736 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4737 STATIC_BLOCK) != block)
3d9434b5
JB
4738 return;
4739
4740 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4741 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4742 e->next = sym_cache->root[h];
4743 sym_cache->root[h] = e;
224c3ddb
SM
4744 e->name = copy
4745 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4746 strcpy (copy, name);
4747 e->sym = sym;
fe978cb0 4748 e->domain = domain;
3d9434b5 4749 e->block = block;
96d887e8 4750}
4c4b4cd2
PH
4751\f
4752 /* Symbol Lookup */
4753
b5ec771e
PA
4754/* Return the symbol name match type that should be used used when
4755 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4756
4757 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4758 for Ada lookups. */
c0431670 4759
b5ec771e
PA
4760static symbol_name_match_type
4761name_match_type_from_name (const char *lookup_name)
c0431670 4762{
b5ec771e
PA
4763 return (strstr (lookup_name, "__") == NULL
4764 ? symbol_name_match_type::WILD
4765 : symbol_name_match_type::FULL);
c0431670
JB
4766}
4767
4c4b4cd2
PH
4768/* Return the result of a standard (literal, C-like) lookup of NAME in
4769 given DOMAIN, visible from lexical block BLOCK. */
4770
4771static struct symbol *
4772standard_lookup (const char *name, const struct block *block,
4773 domain_enum domain)
4774{
acbd605d 4775 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4776 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4777
d12307c1
PMR
4778 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4779 return sym.symbol;
2570f2b7 4780 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4781 cache_symbol (name, domain, sym.symbol, sym.block);
4782 return sym.symbol;
4c4b4cd2
PH
4783}
4784
4785
4786/* Non-zero iff there is at least one non-function/non-enumeral symbol
4787 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4788 since they contend in overloading in the same way. */
4789static int
d12307c1 4790is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4791{
4792 int i;
4793
4794 for (i = 0; i < n; i += 1)
d12307c1
PMR
4795 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4796 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4797 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4798 return 1;
4799
4800 return 0;
4801}
4802
4803/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4804 struct types. Otherwise, they may not. */
14f9c5c9
AS
4805
4806static int
d2e4a39e 4807equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4808{
d2e4a39e 4809 if (type0 == type1)
14f9c5c9 4810 return 1;
d2e4a39e 4811 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4812 || TYPE_CODE (type0) != TYPE_CODE (type1))
4813 return 0;
d2e4a39e 4814 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4815 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4816 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4817 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4818 return 1;
d2e4a39e 4819
14f9c5c9
AS
4820 return 0;
4821}
4822
4823/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4824 no more defined than that of SYM1. */
14f9c5c9
AS
4825
4826static int
d2e4a39e 4827lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4828{
4829 if (sym0 == sym1)
4830 return 1;
176620f1 4831 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4832 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4833 return 0;
4834
d2e4a39e 4835 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4836 {
4837 case LOC_UNDEF:
4838 return 1;
4839 case LOC_TYPEDEF:
4840 {
4c4b4cd2
PH
4841 struct type *type0 = SYMBOL_TYPE (sym0);
4842 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4843 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4844 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4845 int len0 = strlen (name0);
5b4ee69b 4846
4c4b4cd2
PH
4847 return
4848 TYPE_CODE (type0) == TYPE_CODE (type1)
4849 && (equiv_types (type0, type1)
4850 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4851 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4852 }
4853 case LOC_CONST:
4854 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4855 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4856 default:
4857 return 0;
14f9c5c9
AS
4858 }
4859}
4860
d12307c1 4861/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4862 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4863
4864static void
76a01679
JB
4865add_defn_to_vec (struct obstack *obstackp,
4866 struct symbol *sym,
f0c5f9b2 4867 const struct block *block)
14f9c5c9
AS
4868{
4869 int i;
d12307c1 4870 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4871
529cad9c
PH
4872 /* Do not try to complete stub types, as the debugger is probably
4873 already scanning all symbols matching a certain name at the
4874 time when this function is called. Trying to replace the stub
4875 type by its associated full type will cause us to restart a scan
4876 which may lead to an infinite recursion. Instead, the client
4877 collecting the matching symbols will end up collecting several
4878 matches, with at least one of them complete. It can then filter
4879 out the stub ones if needed. */
4880
4c4b4cd2
PH
4881 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4882 {
d12307c1 4883 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4884 return;
d12307c1 4885 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4886 {
d12307c1 4887 prevDefns[i].symbol = sym;
4c4b4cd2 4888 prevDefns[i].block = block;
4c4b4cd2 4889 return;
76a01679 4890 }
4c4b4cd2
PH
4891 }
4892
4893 {
d12307c1 4894 struct block_symbol info;
4c4b4cd2 4895
d12307c1 4896 info.symbol = sym;
4c4b4cd2 4897 info.block = block;
d12307c1 4898 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4899 }
4900}
4901
d12307c1
PMR
4902/* Number of block_symbol structures currently collected in current vector in
4903 OBSTACKP. */
4c4b4cd2 4904
76a01679
JB
4905static int
4906num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4907{
d12307c1 4908 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4909}
4910
d12307c1
PMR
4911/* Vector of block_symbol structures currently collected in current vector in
4912 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4913
d12307c1 4914static struct block_symbol *
4c4b4cd2
PH
4915defns_collected (struct obstack *obstackp, int finish)
4916{
4917 if (finish)
224c3ddb 4918 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4919 else
d12307c1 4920 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4921}
4922
7c7b6655
TT
4923/* Return a bound minimal symbol matching NAME according to Ada
4924 decoding rules. Returns an invalid symbol if there is no such
4925 minimal symbol. Names prefixed with "standard__" are handled
4926 specially: "standard__" is first stripped off, and only static and
4927 global symbols are searched. */
4c4b4cd2 4928
7c7b6655 4929struct bound_minimal_symbol
96d887e8 4930ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4931{
7c7b6655 4932 struct bound_minimal_symbol result;
4c4b4cd2 4933 struct objfile *objfile;
96d887e8 4934 struct minimal_symbol *msymbol;
4c4b4cd2 4935
7c7b6655
TT
4936 memset (&result, 0, sizeof (result));
4937
b5ec771e
PA
4938 symbol_name_match_type match_type = name_match_type_from_name (name);
4939 lookup_name_info lookup_name (name, match_type);
4940
4941 symbol_name_matcher_ftype *match_name
4942 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4943
96d887e8
PH
4944 ALL_MSYMBOLS (objfile, msymbol)
4945 {
b5ec771e 4946 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4947 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4948 {
4949 result.minsym = msymbol;
4950 result.objfile = objfile;
4951 break;
4952 }
96d887e8 4953 }
4c4b4cd2 4954
7c7b6655 4955 return result;
96d887e8 4956}
4c4b4cd2 4957
96d887e8
PH
4958/* For all subprograms that statically enclose the subprogram of the
4959 selected frame, add symbols matching identifier NAME in DOMAIN
4960 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4961 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4962 with a wildcard prefix. */
4c4b4cd2 4963
96d887e8
PH
4964static void
4965add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4966 const lookup_name_info &lookup_name,
4967 domain_enum domain)
96d887e8 4968{
96d887e8 4969}
14f9c5c9 4970
96d887e8
PH
4971/* True if TYPE is definitely an artificial type supplied to a symbol
4972 for which no debugging information was given in the symbol file. */
14f9c5c9 4973
96d887e8
PH
4974static int
4975is_nondebugging_type (struct type *type)
4976{
0d5cff50 4977 const char *name = ada_type_name (type);
5b4ee69b 4978
96d887e8
PH
4979 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4980}
4c4b4cd2 4981
8f17729f
JB
4982/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4983 that are deemed "identical" for practical purposes.
4984
4985 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4986 types and that their number of enumerals is identical (in other
4987 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4988
4989static int
4990ada_identical_enum_types_p (struct type *type1, struct type *type2)
4991{
4992 int i;
4993
4994 /* The heuristic we use here is fairly conservative. We consider
4995 that 2 enumerate types are identical if they have the same
4996 number of enumerals and that all enumerals have the same
4997 underlying value and name. */
4998
4999 /* All enums in the type should have an identical underlying value. */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5001 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5002 return 0;
5003
5004 /* All enumerals should also have the same name (modulo any numerical
5005 suffix). */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 {
0d5cff50
DE
5008 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5009 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5010 int len_1 = strlen (name_1);
5011 int len_2 = strlen (name_2);
5012
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5014 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5015 if (len_1 != len_2
5016 || strncmp (TYPE_FIELD_NAME (type1, i),
5017 TYPE_FIELD_NAME (type2, i),
5018 len_1) != 0)
5019 return 0;
5020 }
5021
5022 return 1;
5023}
5024
5025/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5026 that are deemed "identical" for practical purposes. Sometimes,
5027 enumerals are not strictly identical, but their types are so similar
5028 that they can be considered identical.
5029
5030 For instance, consider the following code:
5031
5032 type Color is (Black, Red, Green, Blue, White);
5033 type RGB_Color is new Color range Red .. Blue;
5034
5035 Type RGB_Color is a subrange of an implicit type which is a copy
5036 of type Color. If we call that implicit type RGB_ColorB ("B" is
5037 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5038 As a result, when an expression references any of the enumeral
5039 by name (Eg. "print green"), the expression is technically
5040 ambiguous and the user should be asked to disambiguate. But
5041 doing so would only hinder the user, since it wouldn't matter
5042 what choice he makes, the outcome would always be the same.
5043 So, for practical purposes, we consider them as the same. */
5044
5045static int
54d343a2 5046symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5047{
5048 int i;
5049
5050 /* Before performing a thorough comparison check of each type,
5051 we perform a series of inexpensive checks. We expect that these
5052 checks will quickly fail in the vast majority of cases, and thus
5053 help prevent the unnecessary use of a more expensive comparison.
5054 Said comparison also expects us to make some of these checks
5055 (see ada_identical_enum_types_p). */
5056
5057 /* Quick check: All symbols should have an enum type. */
54d343a2 5058 for (i = 0; i < syms.size (); i++)
d12307c1 5059 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5060 return 0;
5061
5062 /* Quick check: They should all have the same value. */
54d343a2 5063 for (i = 1; i < syms.size (); i++)
d12307c1 5064 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5065 return 0;
5066
5067 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5068 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5069 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5070 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5071 return 0;
5072
5073 /* All the sanity checks passed, so we might have a set of
5074 identical enumeration types. Perform a more complete
5075 comparison of the type of each symbol. */
54d343a2 5076 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5077 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5078 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5079 return 0;
5080
5081 return 1;
5082}
5083
54d343a2 5084/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5085 duplicate other symbols in the list (The only case I know of where
5086 this happens is when object files containing stabs-in-ecoff are
5087 linked with files containing ordinary ecoff debugging symbols (or no
5088 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5089 Returns the number of items in the modified list. */
4c4b4cd2 5090
96d887e8 5091static int
54d343a2 5092remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5093{
5094 int i, j;
4c4b4cd2 5095
8f17729f
JB
5096 /* We should never be called with less than 2 symbols, as there
5097 cannot be any extra symbol in that case. But it's easy to
5098 handle, since we have nothing to do in that case. */
54d343a2
TT
5099 if (syms->size () < 2)
5100 return syms->size ();
8f17729f 5101
96d887e8 5102 i = 0;
54d343a2 5103 while (i < syms->size ())
96d887e8 5104 {
a35ddb44 5105 int remove_p = 0;
339c13b6
JB
5106
5107 /* If two symbols have the same name and one of them is a stub type,
5108 the get rid of the stub. */
5109
54d343a2
TT
5110 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5112 {
54d343a2 5113 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5114 {
5115 if (j != i
54d343a2
TT
5116 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5120 remove_p = 1;
339c13b6
JB
5121 }
5122 }
5123
5124 /* Two symbols with the same name, same class and same address
5125 should be identical. */
5126
54d343a2
TT
5127 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5128 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5129 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5130 {
54d343a2 5131 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5132 {
5133 if (i != j
54d343a2
TT
5134 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5135 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5136 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5137 && SYMBOL_CLASS ((*syms)[i].symbol)
5138 == SYMBOL_CLASS ((*syms)[j].symbol)
5139 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5140 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5141 remove_p = 1;
4c4b4cd2 5142 }
4c4b4cd2 5143 }
339c13b6 5144
a35ddb44 5145 if (remove_p)
54d343a2 5146 syms->erase (syms->begin () + i);
339c13b6 5147
96d887e8 5148 i += 1;
14f9c5c9 5149 }
8f17729f
JB
5150
5151 /* If all the remaining symbols are identical enumerals, then
5152 just keep the first one and discard the rest.
5153
5154 Unlike what we did previously, we do not discard any entry
5155 unless they are ALL identical. This is because the symbol
5156 comparison is not a strict comparison, but rather a practical
5157 comparison. If all symbols are considered identical, then
5158 we can just go ahead and use the first one and discard the rest.
5159 But if we cannot reduce the list to a single element, we have
5160 to ask the user to disambiguate anyways. And if we have to
5161 present a multiple-choice menu, it's less confusing if the list
5162 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5163 if (symbols_are_identical_enums (*syms))
5164 syms->resize (1);
8f17729f 5165
54d343a2 5166 return syms->size ();
14f9c5c9
AS
5167}
5168
96d887e8
PH
5169/* Given a type that corresponds to a renaming entity, use the type name
5170 to extract the scope (package name or function name, fully qualified,
5171 and following the GNAT encoding convention) where this renaming has been
49d83361 5172 defined. */
4c4b4cd2 5173
49d83361 5174static std::string
96d887e8 5175xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5176{
96d887e8 5177 /* The renaming types adhere to the following convention:
0963b4bd 5178 <scope>__<rename>___<XR extension>.
96d887e8
PH
5179 So, to extract the scope, we search for the "___XR" extension,
5180 and then backtrack until we find the first "__". */
76a01679 5181
a737d952 5182 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5183 const char *suffix = strstr (name, "___XR");
5184 const char *last;
14f9c5c9 5185
96d887e8
PH
5186 /* Now, backtrack a bit until we find the first "__". Start looking
5187 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5188
96d887e8
PH
5189 for (last = suffix - 3; last > name; last--)
5190 if (last[0] == '_' && last[1] == '_')
5191 break;
76a01679 5192
96d887e8 5193 /* Make a copy of scope and return it. */
49d83361 5194 return std::string (name, last);
4c4b4cd2
PH
5195}
5196
96d887e8 5197/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5198
96d887e8
PH
5199static int
5200is_package_name (const char *name)
4c4b4cd2 5201{
96d887e8
PH
5202 /* Here, We take advantage of the fact that no symbols are generated
5203 for packages, while symbols are generated for each function.
5204 So the condition for NAME represent a package becomes equivalent
5205 to NAME not existing in our list of symbols. There is only one
5206 small complication with library-level functions (see below). */
4c4b4cd2 5207
96d887e8
PH
5208 /* If it is a function that has not been defined at library level,
5209 then we should be able to look it up in the symbols. */
5210 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5211 return 0;
14f9c5c9 5212
96d887e8
PH
5213 /* Library-level function names start with "_ada_". See if function
5214 "_ada_" followed by NAME can be found. */
14f9c5c9 5215
96d887e8 5216 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5217 functions names cannot contain "__" in them. */
96d887e8
PH
5218 if (strstr (name, "__") != NULL)
5219 return 0;
4c4b4cd2 5220
528e1572 5221 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5222
528e1572 5223 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5224}
14f9c5c9 5225
96d887e8 5226/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5227 not visible from FUNCTION_NAME. */
14f9c5c9 5228
96d887e8 5229static int
0d5cff50 5230old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5231{
aeb5907d
JB
5232 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5233 return 0;
5234
49d83361 5235 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5236
96d887e8 5237 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5238 if (is_package_name (scope.c_str ()))
5239 return 0;
14f9c5c9 5240
96d887e8
PH
5241 /* Check that the rename is in the current function scope by checking
5242 that its name starts with SCOPE. */
76a01679 5243
96d887e8
PH
5244 /* If the function name starts with "_ada_", it means that it is
5245 a library-level function. Strip this prefix before doing the
5246 comparison, as the encoding for the renaming does not contain
5247 this prefix. */
61012eef 5248 if (startswith (function_name, "_ada_"))
96d887e8 5249 function_name += 5;
f26caa11 5250
49d83361 5251 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5252}
5253
aeb5907d
JB
5254/* Remove entries from SYMS that corresponds to a renaming entity that
5255 is not visible from the function associated with CURRENT_BLOCK or
5256 that is superfluous due to the presence of more specific renaming
5257 information. Places surviving symbols in the initial entries of
5258 SYMS and returns the number of surviving symbols.
96d887e8
PH
5259
5260 Rationale:
aeb5907d
JB
5261 First, in cases where an object renaming is implemented as a
5262 reference variable, GNAT may produce both the actual reference
5263 variable and the renaming encoding. In this case, we discard the
5264 latter.
5265
5266 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5267 entity. Unfortunately, STABS currently does not support the definition
5268 of types that are local to a given lexical block, so all renamings types
5269 are emitted at library level. As a consequence, if an application
5270 contains two renaming entities using the same name, and a user tries to
5271 print the value of one of these entities, the result of the ada symbol
5272 lookup will also contain the wrong renaming type.
f26caa11 5273
96d887e8
PH
5274 This function partially covers for this limitation by attempting to
5275 remove from the SYMS list renaming symbols that should be visible
5276 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5277 method with the current information available. The implementation
5278 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5279
5280 - When the user tries to print a rename in a function while there
5281 is another rename entity defined in a package: Normally, the
5282 rename in the function has precedence over the rename in the
5283 package, so the latter should be removed from the list. This is
5284 currently not the case.
5285
5286 - This function will incorrectly remove valid renames if
5287 the CURRENT_BLOCK corresponds to a function which symbol name
5288 has been changed by an "Export" pragma. As a consequence,
5289 the user will be unable to print such rename entities. */
4c4b4cd2 5290
14f9c5c9 5291static int
54d343a2
TT
5292remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5293 const struct block *current_block)
4c4b4cd2
PH
5294{
5295 struct symbol *current_function;
0d5cff50 5296 const char *current_function_name;
4c4b4cd2 5297 int i;
aeb5907d
JB
5298 int is_new_style_renaming;
5299
5300 /* If there is both a renaming foo___XR... encoded as a variable and
5301 a simple variable foo in the same block, discard the latter.
0963b4bd 5302 First, zero out such symbols, then compress. */
aeb5907d 5303 is_new_style_renaming = 0;
54d343a2 5304 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5305 {
54d343a2
TT
5306 struct symbol *sym = (*syms)[i].symbol;
5307 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5308 const char *name;
5309 const char *suffix;
5310
5311 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5312 continue;
5313 name = SYMBOL_LINKAGE_NAME (sym);
5314 suffix = strstr (name, "___XR");
5315
5316 if (suffix != NULL)
5317 {
5318 int name_len = suffix - name;
5319 int j;
5b4ee69b 5320
aeb5907d 5321 is_new_style_renaming = 1;
54d343a2
TT
5322 for (j = 0; j < syms->size (); j += 1)
5323 if (i != j && (*syms)[j].symbol != NULL
5324 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5325 name_len) == 0
54d343a2
TT
5326 && block == (*syms)[j].block)
5327 (*syms)[j].symbol = NULL;
aeb5907d
JB
5328 }
5329 }
5330 if (is_new_style_renaming)
5331 {
5332 int j, k;
5333
54d343a2
TT
5334 for (j = k = 0; j < syms->size (); j += 1)
5335 if ((*syms)[j].symbol != NULL)
aeb5907d 5336 {
54d343a2 5337 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5338 k += 1;
5339 }
5340 return k;
5341 }
4c4b4cd2
PH
5342
5343 /* Extract the function name associated to CURRENT_BLOCK.
5344 Abort if unable to do so. */
76a01679 5345
4c4b4cd2 5346 if (current_block == NULL)
54d343a2 5347 return syms->size ();
76a01679 5348
7f0df278 5349 current_function = block_linkage_function (current_block);
4c4b4cd2 5350 if (current_function == NULL)
54d343a2 5351 return syms->size ();
4c4b4cd2
PH
5352
5353 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5354 if (current_function_name == NULL)
54d343a2 5355 return syms->size ();
4c4b4cd2
PH
5356
5357 /* Check each of the symbols, and remove it from the list if it is
5358 a type corresponding to a renaming that is out of the scope of
5359 the current block. */
5360
5361 i = 0;
54d343a2 5362 while (i < syms->size ())
4c4b4cd2 5363 {
54d343a2 5364 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5365 == ADA_OBJECT_RENAMING
54d343a2
TT
5366 && old_renaming_is_invisible ((*syms)[i].symbol,
5367 current_function_name))
5368 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5369 else
5370 i += 1;
5371 }
5372
54d343a2 5373 return syms->size ();
4c4b4cd2
PH
5374}
5375
339c13b6
JB
5376/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5377 whose name and domain match NAME and DOMAIN respectively.
5378 If no match was found, then extend the search to "enclosing"
5379 routines (in other words, if we're inside a nested function,
5380 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5381 If WILD_MATCH_P is nonzero, perform the naming matching in
5382 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5383
5384 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5385
5386static void
b5ec771e
PA
5387ada_add_local_symbols (struct obstack *obstackp,
5388 const lookup_name_info &lookup_name,
5389 const struct block *block, domain_enum domain)
339c13b6
JB
5390{
5391 int block_depth = 0;
5392
5393 while (block != NULL)
5394 {
5395 block_depth += 1;
b5ec771e 5396 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5397
5398 /* If we found a non-function match, assume that's the one. */
5399 if (is_nonfunction (defns_collected (obstackp, 0),
5400 num_defns_collected (obstackp)))
5401 return;
5402
5403 block = BLOCK_SUPERBLOCK (block);
5404 }
5405
5406 /* If no luck so far, try to find NAME as a local symbol in some lexically
5407 enclosing subprogram. */
5408 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5409 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5410}
5411
ccefe4c4 5412/* An object of this type is used as the user_data argument when
40658b94 5413 calling the map_matching_symbols method. */
ccefe4c4 5414
40658b94 5415struct match_data
ccefe4c4 5416{
40658b94 5417 struct objfile *objfile;
ccefe4c4 5418 struct obstack *obstackp;
40658b94
PH
5419 struct symbol *arg_sym;
5420 int found_sym;
ccefe4c4
TT
5421};
5422
22cee43f 5423/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5424 to a list of symbols. DATA0 is a pointer to a struct match_data *
5425 containing the obstack that collects the symbol list, the file that SYM
5426 must come from, a flag indicating whether a non-argument symbol has
5427 been found in the current block, and the last argument symbol
5428 passed in SYM within the current block (if any). When SYM is null,
5429 marking the end of a block, the argument symbol is added if no
5430 other has been found. */
ccefe4c4 5431
40658b94
PH
5432static int
5433aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5434{
40658b94
PH
5435 struct match_data *data = (struct match_data *) data0;
5436
5437 if (sym == NULL)
5438 {
5439 if (!data->found_sym && data->arg_sym != NULL)
5440 add_defn_to_vec (data->obstackp,
5441 fixup_symbol_section (data->arg_sym, data->objfile),
5442 block);
5443 data->found_sym = 0;
5444 data->arg_sym = NULL;
5445 }
5446 else
5447 {
5448 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5449 return 0;
5450 else if (SYMBOL_IS_ARGUMENT (sym))
5451 data->arg_sym = sym;
5452 else
5453 {
5454 data->found_sym = 1;
5455 add_defn_to_vec (data->obstackp,
5456 fixup_symbol_section (sym, data->objfile),
5457 block);
5458 }
5459 }
5460 return 0;
5461}
5462
b5ec771e
PA
5463/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5464 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5465 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5466
5467static int
5468ada_add_block_renamings (struct obstack *obstackp,
5469 const struct block *block,
b5ec771e
PA
5470 const lookup_name_info &lookup_name,
5471 domain_enum domain)
22cee43f
PMR
5472{
5473 struct using_direct *renaming;
5474 int defns_mark = num_defns_collected (obstackp);
5475
b5ec771e
PA
5476 symbol_name_matcher_ftype *name_match
5477 = ada_get_symbol_name_matcher (lookup_name);
5478
22cee43f
PMR
5479 for (renaming = block_using (block);
5480 renaming != NULL;
5481 renaming = renaming->next)
5482 {
5483 const char *r_name;
22cee43f
PMR
5484
5485 /* Avoid infinite recursions: skip this renaming if we are actually
5486 already traversing it.
5487
5488 Currently, symbol lookup in Ada don't use the namespace machinery from
5489 C++/Fortran support: skip namespace imports that use them. */
5490 if (renaming->searched
5491 || (renaming->import_src != NULL
5492 && renaming->import_src[0] != '\0')
5493 || (renaming->import_dest != NULL
5494 && renaming->import_dest[0] != '\0'))
5495 continue;
5496 renaming->searched = 1;
5497
5498 /* TODO: here, we perform another name-based symbol lookup, which can
5499 pull its own multiple overloads. In theory, we should be able to do
5500 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5501 not a simple name. But in order to do this, we would need to enhance
5502 the DWARF reader to associate a symbol to this renaming, instead of a
5503 name. So, for now, we do something simpler: re-use the C++/Fortran
5504 namespace machinery. */
5505 r_name = (renaming->alias != NULL
5506 ? renaming->alias
5507 : renaming->declaration);
b5ec771e
PA
5508 if (name_match (r_name, lookup_name, NULL))
5509 {
5510 lookup_name_info decl_lookup_name (renaming->declaration,
5511 lookup_name.match_type ());
5512 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5513 1, NULL);
5514 }
22cee43f
PMR
5515 renaming->searched = 0;
5516 }
5517 return num_defns_collected (obstackp) != defns_mark;
5518}
5519
db230ce3
JB
5520/* Implements compare_names, but only applying the comparision using
5521 the given CASING. */
5b4ee69b 5522
40658b94 5523static int
db230ce3
JB
5524compare_names_with_case (const char *string1, const char *string2,
5525 enum case_sensitivity casing)
40658b94
PH
5526{
5527 while (*string1 != '\0' && *string2 != '\0')
5528 {
db230ce3
JB
5529 char c1, c2;
5530
40658b94
PH
5531 if (isspace (*string1) || isspace (*string2))
5532 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5533
5534 if (casing == case_sensitive_off)
5535 {
5536 c1 = tolower (*string1);
5537 c2 = tolower (*string2);
5538 }
5539 else
5540 {
5541 c1 = *string1;
5542 c2 = *string2;
5543 }
5544 if (c1 != c2)
40658b94 5545 break;
db230ce3 5546
40658b94
PH
5547 string1 += 1;
5548 string2 += 1;
5549 }
db230ce3 5550
40658b94
PH
5551 switch (*string1)
5552 {
5553 case '(':
5554 return strcmp_iw_ordered (string1, string2);
5555 case '_':
5556 if (*string2 == '\0')
5557 {
052874e8 5558 if (is_name_suffix (string1))
40658b94
PH
5559 return 0;
5560 else
1a1d5513 5561 return 1;
40658b94 5562 }
dbb8534f 5563 /* FALLTHROUGH */
40658b94
PH
5564 default:
5565 if (*string2 == '(')
5566 return strcmp_iw_ordered (string1, string2);
5567 else
db230ce3
JB
5568 {
5569 if (casing == case_sensitive_off)
5570 return tolower (*string1) - tolower (*string2);
5571 else
5572 return *string1 - *string2;
5573 }
40658b94 5574 }
ccefe4c4
TT
5575}
5576
db230ce3
JB
5577/* Compare STRING1 to STRING2, with results as for strcmp.
5578 Compatible with strcmp_iw_ordered in that...
5579
5580 strcmp_iw_ordered (STRING1, STRING2) <= 0
5581
5582 ... implies...
5583
5584 compare_names (STRING1, STRING2) <= 0
5585
5586 (they may differ as to what symbols compare equal). */
5587
5588static int
5589compare_names (const char *string1, const char *string2)
5590{
5591 int result;
5592
5593 /* Similar to what strcmp_iw_ordered does, we need to perform
5594 a case-insensitive comparison first, and only resort to
5595 a second, case-sensitive, comparison if the first one was
5596 not sufficient to differentiate the two strings. */
5597
5598 result = compare_names_with_case (string1, string2, case_sensitive_off);
5599 if (result == 0)
5600 result = compare_names_with_case (string1, string2, case_sensitive_on);
5601
5602 return result;
5603}
5604
b5ec771e
PA
5605/* Convenience function to get at the Ada encoded lookup name for
5606 LOOKUP_NAME, as a C string. */
5607
5608static const char *
5609ada_lookup_name (const lookup_name_info &lookup_name)
5610{
5611 return lookup_name.ada ().lookup_name ().c_str ();
5612}
5613
339c13b6 5614/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5615 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5616 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5617 symbols otherwise. */
339c13b6
JB
5618
5619static void
b5ec771e
PA
5620add_nonlocal_symbols (struct obstack *obstackp,
5621 const lookup_name_info &lookup_name,
5622 domain_enum domain, int global)
339c13b6
JB
5623{
5624 struct objfile *objfile;
22cee43f 5625 struct compunit_symtab *cu;
40658b94 5626 struct match_data data;
339c13b6 5627
6475f2fe 5628 memset (&data, 0, sizeof data);
ccefe4c4 5629 data.obstackp = obstackp;
339c13b6 5630
b5ec771e
PA
5631 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5632
ccefe4c4 5633 ALL_OBJFILES (objfile)
40658b94
PH
5634 {
5635 data.objfile = objfile;
5636
5637 if (is_wild_match)
b5ec771e
PA
5638 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5639 domain, global,
4186eb54 5640 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5641 symbol_name_match_type::WILD,
5642 NULL);
40658b94 5643 else
b5ec771e
PA
5644 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5645 domain, global,
4186eb54 5646 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5647 symbol_name_match_type::FULL,
5648 compare_names);
22cee43f
PMR
5649
5650 ALL_OBJFILE_COMPUNITS (objfile, cu)
5651 {
5652 const struct block *global_block
5653 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5654
b5ec771e
PA
5655 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5656 domain))
22cee43f
PMR
5657 data.found_sym = 1;
5658 }
40658b94
PH
5659 }
5660
5661 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5662 {
b5ec771e
PA
5663 const char *name = ada_lookup_name (lookup_name);
5664 std::string name1 = std::string ("<_ada_") + name + '>';
5665
40658b94
PH
5666 ALL_OBJFILES (objfile)
5667 {
40658b94 5668 data.objfile = objfile;
b5ec771e
PA
5669 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5670 domain, global,
0963b4bd
MS
5671 aux_add_nonlocal_symbols,
5672 &data,
b5ec771e
PA
5673 symbol_name_match_type::FULL,
5674 compare_names);
40658b94
PH
5675 }
5676 }
339c13b6
JB
5677}
5678
b5ec771e
PA
5679/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5680 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5681 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5682
22cee43f
PMR
5683 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5684 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5685 is the one match returned (no other matches in that or
d9680e73 5686 enclosing blocks is returned). If there are any matches in or
22cee43f 5687 surrounding BLOCK, then these alone are returned.
4eeaa230 5688
b5ec771e
PA
5689 Names prefixed with "standard__" are handled specially:
5690 "standard__" is first stripped off (by the lookup_name
5691 constructor), and only static and global symbols are searched.
14f9c5c9 5692
22cee43f
PMR
5693 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5694 to lookup global symbols. */
5695
5696static void
5697ada_add_all_symbols (struct obstack *obstackp,
5698 const struct block *block,
b5ec771e 5699 const lookup_name_info &lookup_name,
22cee43f
PMR
5700 domain_enum domain,
5701 int full_search,
5702 int *made_global_lookup_p)
14f9c5c9
AS
5703{
5704 struct symbol *sym;
14f9c5c9 5705
22cee43f
PMR
5706 if (made_global_lookup_p)
5707 *made_global_lookup_p = 0;
339c13b6
JB
5708
5709 /* Special case: If the user specifies a symbol name inside package
5710 Standard, do a non-wild matching of the symbol name without
5711 the "standard__" prefix. This was primarily introduced in order
5712 to allow the user to specifically access the standard exceptions
5713 using, for instance, Standard.Constraint_Error when Constraint_Error
5714 is ambiguous (due to the user defining its own Constraint_Error
5715 entity inside its program). */
b5ec771e
PA
5716 if (lookup_name.ada ().standard_p ())
5717 block = NULL;
4c4b4cd2 5718
339c13b6 5719 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5720
4eeaa230
DE
5721 if (block != NULL)
5722 {
5723 if (full_search)
b5ec771e 5724 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5725 else
5726 {
5727 /* In the !full_search case we're are being called by
5728 ada_iterate_over_symbols, and we don't want to search
5729 superblocks. */
b5ec771e 5730 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5731 }
22cee43f
PMR
5732 if (num_defns_collected (obstackp) > 0 || !full_search)
5733 return;
4eeaa230 5734 }
d2e4a39e 5735
339c13b6
JB
5736 /* No non-global symbols found. Check our cache to see if we have
5737 already performed this search before. If we have, then return
5738 the same result. */
5739
b5ec771e
PA
5740 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5741 domain, &sym, &block))
4c4b4cd2
PH
5742 {
5743 if (sym != NULL)
b5ec771e 5744 add_defn_to_vec (obstackp, sym, block);
22cee43f 5745 return;
4c4b4cd2 5746 }
14f9c5c9 5747
22cee43f
PMR
5748 if (made_global_lookup_p)
5749 *made_global_lookup_p = 1;
b1eedac9 5750
339c13b6
JB
5751 /* Search symbols from all global blocks. */
5752
b5ec771e 5753 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5754
4c4b4cd2 5755 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5756 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5757
22cee43f 5758 if (num_defns_collected (obstackp) == 0)
b5ec771e 5759 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5760}
5761
b5ec771e
PA
5762/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5763 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5764 matches.
54d343a2
TT
5765 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5766 found and the blocks and symbol tables (if any) in which they were
5767 found.
22cee43f
PMR
5768
5769 When full_search is non-zero, any non-function/non-enumeral
5770 symbol match within the nest of blocks whose innermost member is BLOCK,
5771 is the one match returned (no other matches in that or
5772 enclosing blocks is returned). If there are any matches in or
5773 surrounding BLOCK, then these alone are returned.
5774
5775 Names prefixed with "standard__" are handled specially: "standard__"
5776 is first stripped off, and only static and global symbols are searched. */
5777
5778static int
b5ec771e
PA
5779ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5780 const struct block *block,
22cee43f 5781 domain_enum domain,
54d343a2 5782 std::vector<struct block_symbol> *results,
22cee43f
PMR
5783 int full_search)
5784{
22cee43f
PMR
5785 int syms_from_global_search;
5786 int ndefns;
ec6a20c2 5787 auto_obstack obstack;
22cee43f 5788
ec6a20c2 5789 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5790 domain, full_search, &syms_from_global_search);
14f9c5c9 5791
ec6a20c2
JB
5792 ndefns = num_defns_collected (&obstack);
5793
54d343a2
TT
5794 struct block_symbol *base = defns_collected (&obstack, 1);
5795 for (int i = 0; i < ndefns; ++i)
5796 results->push_back (base[i]);
4c4b4cd2 5797
54d343a2 5798 ndefns = remove_extra_symbols (results);
4c4b4cd2 5799
b1eedac9 5800 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5801 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5802
b1eedac9 5803 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5804 cache_symbol (ada_lookup_name (lookup_name), domain,
5805 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5806
54d343a2 5807 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5808
14f9c5c9
AS
5809 return ndefns;
5810}
5811
b5ec771e 5812/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5813 in global scopes, returning the number of matches, and filling *RESULTS
5814 with (SYM,BLOCK) tuples.
ec6a20c2 5815
4eeaa230
DE
5816 See ada_lookup_symbol_list_worker for further details. */
5817
5818int
b5ec771e 5819ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5820 domain_enum domain,
5821 std::vector<struct block_symbol> *results)
4eeaa230 5822{
b5ec771e
PA
5823 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5824 lookup_name_info lookup_name (name, name_match_type);
5825
5826 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5827}
5828
5829/* Implementation of the la_iterate_over_symbols method. */
5830
5831static void
14bc53a8 5832ada_iterate_over_symbols
b5ec771e
PA
5833 (const struct block *block, const lookup_name_info &name,
5834 domain_enum domain,
14bc53a8 5835 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5836{
5837 int ndefs, i;
54d343a2 5838 std::vector<struct block_symbol> results;
4eeaa230
DE
5839
5840 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5841
4eeaa230
DE
5842 for (i = 0; i < ndefs; ++i)
5843 {
14bc53a8 5844 if (!callback (results[i].symbol))
4eeaa230
DE
5845 break;
5846 }
5847}
5848
4e5c77fe
JB
5849/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5850 to 1, but choosing the first symbol found if there are multiple
5851 choices.
5852
5e2336be
JB
5853 The result is stored in *INFO, which must be non-NULL.
5854 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5855
5856void
5857ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5858 domain_enum domain,
d12307c1 5859 struct block_symbol *info)
14f9c5c9 5860{
b5ec771e
PA
5861 /* Since we already have an encoded name, wrap it in '<>' to force a
5862 verbatim match. Otherwise, if the name happens to not look like
5863 an encoded name (because it doesn't include a "__"),
5864 ada_lookup_name_info would re-encode/fold it again, and that
5865 would e.g., incorrectly lowercase object renaming names like
5866 "R28b" -> "r28b". */
5867 std::string verbatim = std::string ("<") + name + '>';
5868
5e2336be 5869 gdb_assert (info != NULL);
f98fc17b 5870 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5871}
aeb5907d
JB
5872
5873/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5874 scope and in global scopes, or NULL if none. NAME is folded and
5875 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5876 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5877 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5878
d12307c1 5879struct block_symbol
aeb5907d 5880ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5881 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5882{
5883 if (is_a_field_of_this != NULL)
5884 *is_a_field_of_this = 0;
5885
54d343a2 5886 std::vector<struct block_symbol> candidates;
f98fc17b 5887 int n_candidates;
f98fc17b
PA
5888
5889 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5890
5891 if (n_candidates == 0)
54d343a2 5892 return {};
f98fc17b
PA
5893
5894 block_symbol info = candidates[0];
5895 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5896 return info;
4c4b4cd2 5897}
14f9c5c9 5898
d12307c1 5899static struct block_symbol
f606139a
DE
5900ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5901 const char *name,
76a01679 5902 const struct block *block,
21b556f4 5903 const domain_enum domain)
4c4b4cd2 5904{
d12307c1 5905 struct block_symbol sym;
04dccad0
JB
5906
5907 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5908 if (sym.symbol != NULL)
04dccad0
JB
5909 return sym;
5910
5911 /* If we haven't found a match at this point, try the primitive
5912 types. In other languages, this search is performed before
5913 searching for global symbols in order to short-circuit that
5914 global-symbol search if it happens that the name corresponds
5915 to a primitive type. But we cannot do the same in Ada, because
5916 it is perfectly legitimate for a program to declare a type which
5917 has the same name as a standard type. If looking up a type in
5918 that situation, we have traditionally ignored the primitive type
5919 in favor of user-defined types. This is why, unlike most other
5920 languages, we search the primitive types this late and only after
5921 having searched the global symbols without success. */
5922
5923 if (domain == VAR_DOMAIN)
5924 {
5925 struct gdbarch *gdbarch;
5926
5927 if (block == NULL)
5928 gdbarch = target_gdbarch ();
5929 else
5930 gdbarch = block_gdbarch (block);
d12307c1
PMR
5931 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5932 if (sym.symbol != NULL)
04dccad0
JB
5933 return sym;
5934 }
5935
d12307c1 5936 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5937}
5938
5939
4c4b4cd2
PH
5940/* True iff STR is a possible encoded suffix of a normal Ada name
5941 that is to be ignored for matching purposes. Suffixes of parallel
5942 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5943 are given by any of the regular expressions:
4c4b4cd2 5944
babe1480
JB
5945 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5946 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5947 TKB [subprogram suffix for task bodies]
babe1480 5948 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5949 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5950
5951 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5952 match is performed. This sequence is used to differentiate homonyms,
5953 is an optional part of a valid name suffix. */
4c4b4cd2 5954
14f9c5c9 5955static int
d2e4a39e 5956is_name_suffix (const char *str)
14f9c5c9
AS
5957{
5958 int k;
4c4b4cd2
PH
5959 const char *matching;
5960 const int len = strlen (str);
5961
babe1480
JB
5962 /* Skip optional leading __[0-9]+. */
5963
4c4b4cd2
PH
5964 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5965 {
babe1480
JB
5966 str += 3;
5967 while (isdigit (str[0]))
5968 str += 1;
4c4b4cd2 5969 }
babe1480
JB
5970
5971 /* [.$][0-9]+ */
4c4b4cd2 5972
babe1480 5973 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5974 {
babe1480 5975 matching = str + 1;
4c4b4cd2
PH
5976 while (isdigit (matching[0]))
5977 matching += 1;
5978 if (matching[0] == '\0')
5979 return 1;
5980 }
5981
5982 /* ___[0-9]+ */
babe1480 5983
4c4b4cd2
PH
5984 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5985 {
5986 matching = str + 3;
5987 while (isdigit (matching[0]))
5988 matching += 1;
5989 if (matching[0] == '\0')
5990 return 1;
5991 }
5992
9ac7f98e
JB
5993 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5994
5995 if (strcmp (str, "TKB") == 0)
5996 return 1;
5997
529cad9c
PH
5998#if 0
5999 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6000 with a N at the end. Unfortunately, the compiler uses the same
6001 convention for other internal types it creates. So treating
529cad9c 6002 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6003 some regressions. For instance, consider the case of an enumerated
6004 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6005 name ends with N.
6006 Having a single character like this as a suffix carrying some
0963b4bd 6007 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6008 to be something like "_N" instead. In the meantime, do not do
6009 the following check. */
6010 /* Protected Object Subprograms */
6011 if (len == 1 && str [0] == 'N')
6012 return 1;
6013#endif
6014
6015 /* _E[0-9]+[bs]$ */
6016 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6017 {
6018 matching = str + 3;
6019 while (isdigit (matching[0]))
6020 matching += 1;
6021 if ((matching[0] == 'b' || matching[0] == 's')
6022 && matching [1] == '\0')
6023 return 1;
6024 }
6025
4c4b4cd2
PH
6026 /* ??? We should not modify STR directly, as we are doing below. This
6027 is fine in this case, but may become problematic later if we find
6028 that this alternative did not work, and want to try matching
6029 another one from the begining of STR. Since we modified it, we
6030 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6031 if (str[0] == 'X')
6032 {
6033 str += 1;
d2e4a39e 6034 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6035 {
6036 if (str[0] != 'n' && str[0] != 'b')
6037 return 0;
6038 str += 1;
6039 }
14f9c5c9 6040 }
babe1480 6041
14f9c5c9
AS
6042 if (str[0] == '\000')
6043 return 1;
babe1480 6044
d2e4a39e 6045 if (str[0] == '_')
14f9c5c9
AS
6046 {
6047 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6048 return 0;
d2e4a39e 6049 if (str[2] == '_')
4c4b4cd2 6050 {
61ee279c
PH
6051 if (strcmp (str + 3, "JM") == 0)
6052 return 1;
6053 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6054 the LJM suffix in favor of the JM one. But we will
6055 still accept LJM as a valid suffix for a reasonable
6056 amount of time, just to allow ourselves to debug programs
6057 compiled using an older version of GNAT. */
4c4b4cd2
PH
6058 if (strcmp (str + 3, "LJM") == 0)
6059 return 1;
6060 if (str[3] != 'X')
6061 return 0;
1265e4aa
JB
6062 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6063 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6064 return 1;
6065 if (str[4] == 'R' && str[5] != 'T')
6066 return 1;
6067 return 0;
6068 }
6069 if (!isdigit (str[2]))
6070 return 0;
6071 for (k = 3; str[k] != '\0'; k += 1)
6072 if (!isdigit (str[k]) && str[k] != '_')
6073 return 0;
14f9c5c9
AS
6074 return 1;
6075 }
4c4b4cd2 6076 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6077 {
4c4b4cd2
PH
6078 for (k = 2; str[k] != '\0'; k += 1)
6079 if (!isdigit (str[k]) && str[k] != '_')
6080 return 0;
14f9c5c9
AS
6081 return 1;
6082 }
6083 return 0;
6084}
d2e4a39e 6085
aeb5907d
JB
6086/* Return non-zero if the string starting at NAME and ending before
6087 NAME_END contains no capital letters. */
529cad9c
PH
6088
6089static int
6090is_valid_name_for_wild_match (const char *name0)
6091{
6092 const char *decoded_name = ada_decode (name0);
6093 int i;
6094
5823c3ef
JB
6095 /* If the decoded name starts with an angle bracket, it means that
6096 NAME0 does not follow the GNAT encoding format. It should then
6097 not be allowed as a possible wild match. */
6098 if (decoded_name[0] == '<')
6099 return 0;
6100
529cad9c
PH
6101 for (i=0; decoded_name[i] != '\0'; i++)
6102 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6103 return 0;
6104
6105 return 1;
6106}
6107
73589123
PH
6108/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6109 that could start a simple name. Assumes that *NAMEP points into
6110 the string beginning at NAME0. */
4c4b4cd2 6111
14f9c5c9 6112static int
73589123 6113advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6114{
73589123 6115 const char *name = *namep;
5b4ee69b 6116
5823c3ef 6117 while (1)
14f9c5c9 6118 {
aa27d0b3 6119 int t0, t1;
73589123
PH
6120
6121 t0 = *name;
6122 if (t0 == '_')
6123 {
6124 t1 = name[1];
6125 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6126 {
6127 name += 1;
61012eef 6128 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6129 break;
6130 else
6131 name += 1;
6132 }
aa27d0b3
JB
6133 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6134 || name[2] == target0))
73589123
PH
6135 {
6136 name += 2;
6137 break;
6138 }
6139 else
6140 return 0;
6141 }
6142 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6143 name += 1;
6144 else
5823c3ef 6145 return 0;
73589123
PH
6146 }
6147
6148 *namep = name;
6149 return 1;
6150}
6151
b5ec771e
PA
6152/* Return true iff NAME encodes a name of the form prefix.PATN.
6153 Ignores any informational suffixes of NAME (i.e., for which
6154 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6155 simple name. */
73589123 6156
b5ec771e 6157static bool
73589123
PH
6158wild_match (const char *name, const char *patn)
6159{
22e048c9 6160 const char *p;
73589123
PH
6161 const char *name0 = name;
6162
6163 while (1)
6164 {
6165 const char *match = name;
6166
6167 if (*name == *patn)
6168 {
6169 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6170 if (*p != *name)
6171 break;
6172 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6173 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6174
6175 if (name[-1] == '_')
6176 name -= 1;
6177 }
6178 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6179 return false;
96d887e8 6180 }
96d887e8
PH
6181}
6182
b5ec771e
PA
6183/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6184 any trailing suffixes that encode debugging information or leading
6185 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6186 information that is ignored). */
40658b94 6187
b5ec771e 6188static bool
c4d840bd
PH
6189full_match (const char *sym_name, const char *search_name)
6190{
b5ec771e
PA
6191 size_t search_name_len = strlen (search_name);
6192
6193 if (strncmp (sym_name, search_name, search_name_len) == 0
6194 && is_name_suffix (sym_name + search_name_len))
6195 return true;
6196
6197 if (startswith (sym_name, "_ada_")
6198 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6199 && is_name_suffix (sym_name + search_name_len + 5))
6200 return true;
c4d840bd 6201
b5ec771e
PA
6202 return false;
6203}
c4d840bd 6204
b5ec771e
PA
6205/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6206 *defn_symbols, updating the list of symbols in OBSTACKP (if
6207 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6208
6209static void
6210ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6211 const struct block *block,
6212 const lookup_name_info &lookup_name,
6213 domain_enum domain, struct objfile *objfile)
96d887e8 6214{
8157b174 6215 struct block_iterator iter;
96d887e8
PH
6216 /* A matching argument symbol, if any. */
6217 struct symbol *arg_sym;
6218 /* Set true when we find a matching non-argument symbol. */
6219 int found_sym;
6220 struct symbol *sym;
6221
6222 arg_sym = NULL;
6223 found_sym = 0;
b5ec771e
PA
6224 for (sym = block_iter_match_first (block, lookup_name, &iter);
6225 sym != NULL;
6226 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6227 {
b5ec771e
PA
6228 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6229 SYMBOL_DOMAIN (sym), domain))
6230 {
6231 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6232 {
6233 if (SYMBOL_IS_ARGUMENT (sym))
6234 arg_sym = sym;
6235 else
6236 {
6237 found_sym = 1;
6238 add_defn_to_vec (obstackp,
6239 fixup_symbol_section (sym, objfile),
6240 block);
6241 }
6242 }
6243 }
96d887e8
PH
6244 }
6245
22cee43f
PMR
6246 /* Handle renamings. */
6247
b5ec771e 6248 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6249 found_sym = 1;
6250
96d887e8
PH
6251 if (!found_sym && arg_sym != NULL)
6252 {
76a01679
JB
6253 add_defn_to_vec (obstackp,
6254 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6255 block);
96d887e8
PH
6256 }
6257
b5ec771e 6258 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6259 {
6260 arg_sym = NULL;
6261 found_sym = 0;
b5ec771e
PA
6262 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6263 const char *name = ada_lookup_name.c_str ();
6264 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6265
6266 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6267 {
4186eb54
KS
6268 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6269 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6270 {
6271 int cmp;
6272
6273 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6274 if (cmp == 0)
6275 {
61012eef 6276 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6277 if (cmp == 0)
6278 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6279 name_len);
6280 }
6281
6282 if (cmp == 0
6283 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6284 {
2a2d4dc3
AS
6285 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6286 {
6287 if (SYMBOL_IS_ARGUMENT (sym))
6288 arg_sym = sym;
6289 else
6290 {
6291 found_sym = 1;
6292 add_defn_to_vec (obstackp,
6293 fixup_symbol_section (sym, objfile),
6294 block);
6295 }
6296 }
76a01679
JB
6297 }
6298 }
76a01679 6299 }
96d887e8
PH
6300
6301 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6302 They aren't parameters, right? */
6303 if (!found_sym && arg_sym != NULL)
6304 {
6305 add_defn_to_vec (obstackp,
76a01679 6306 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6307 block);
96d887e8
PH
6308 }
6309 }
6310}
6311\f
41d27058
JB
6312
6313 /* Symbol Completion */
6314
b5ec771e 6315/* See symtab.h. */
41d27058 6316
b5ec771e
PA
6317bool
6318ada_lookup_name_info::matches
6319 (const char *sym_name,
6320 symbol_name_match_type match_type,
a207cff2 6321 completion_match_result *comp_match_res) const
41d27058 6322{
b5ec771e
PA
6323 bool match = false;
6324 const char *text = m_encoded_name.c_str ();
6325 size_t text_len = m_encoded_name.size ();
41d27058
JB
6326
6327 /* First, test against the fully qualified name of the symbol. */
6328
6329 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6330 match = true;
41d27058 6331
b5ec771e 6332 if (match && !m_encoded_p)
41d27058
JB
6333 {
6334 /* One needed check before declaring a positive match is to verify
6335 that iff we are doing a verbatim match, the decoded version
6336 of the symbol name starts with '<'. Otherwise, this symbol name
6337 is not a suitable completion. */
6338 const char *sym_name_copy = sym_name;
b5ec771e 6339 bool has_angle_bracket;
41d27058
JB
6340
6341 sym_name = ada_decode (sym_name);
6342 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6343 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6344 sym_name = sym_name_copy;
6345 }
6346
b5ec771e 6347 if (match && !m_verbatim_p)
41d27058
JB
6348 {
6349 /* When doing non-verbatim match, another check that needs to
6350 be done is to verify that the potentially matching symbol name
6351 does not include capital letters, because the ada-mode would
6352 not be able to understand these symbol names without the
6353 angle bracket notation. */
6354 const char *tmp;
6355
6356 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6357 if (*tmp != '\0')
b5ec771e 6358 match = false;
41d27058
JB
6359 }
6360
6361 /* Second: Try wild matching... */
6362
b5ec771e 6363 if (!match && m_wild_match_p)
41d27058
JB
6364 {
6365 /* Since we are doing wild matching, this means that TEXT
6366 may represent an unqualified symbol name. We therefore must
6367 also compare TEXT against the unqualified name of the symbol. */
6368 sym_name = ada_unqualified_name (ada_decode (sym_name));
6369
6370 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6371 match = true;
41d27058
JB
6372 }
6373
b5ec771e 6374 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6375
6376 if (!match)
b5ec771e 6377 return false;
41d27058 6378
a207cff2 6379 if (comp_match_res != NULL)
b5ec771e 6380 {
a207cff2 6381 std::string &match_str = comp_match_res->match.storage ();
41d27058 6382
b5ec771e 6383 if (!m_encoded_p)
a207cff2 6384 match_str = ada_decode (sym_name);
b5ec771e
PA
6385 else
6386 {
6387 if (m_verbatim_p)
6388 match_str = add_angle_brackets (sym_name);
6389 else
6390 match_str = sym_name;
41d27058 6391
b5ec771e 6392 }
a207cff2
PA
6393
6394 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6395 }
6396
b5ec771e 6397 return true;
41d27058
JB
6398}
6399
b5ec771e 6400/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6401 WORD is the entire command on which completion is made. */
41d27058 6402
eb3ff9a5
PA
6403static void
6404ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6405 complete_symbol_mode mode,
b5ec771e
PA
6406 symbol_name_match_type name_match_type,
6407 const char *text, const char *word,
eb3ff9a5 6408 enum type_code code)
41d27058 6409{
41d27058 6410 struct symbol *sym;
43f3e411 6411 struct compunit_symtab *s;
41d27058
JB
6412 struct minimal_symbol *msymbol;
6413 struct objfile *objfile;
3977b71f 6414 const struct block *b, *surrounding_static_block = 0;
8157b174 6415 struct block_iterator iter;
41d27058 6416
2f68a895
TT
6417 gdb_assert (code == TYPE_CODE_UNDEF);
6418
1b026119 6419 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6420
6421 /* First, look at the partial symtab symbols. */
14bc53a8 6422 expand_symtabs_matching (NULL,
b5ec771e
PA
6423 lookup_name,
6424 NULL,
14bc53a8
PA
6425 NULL,
6426 ALL_DOMAIN);
41d27058
JB
6427
6428 /* At this point scan through the misc symbol vectors and add each
6429 symbol you find to the list. Eventually we want to ignore
6430 anything that isn't a text symbol (everything else will be
6431 handled by the psymtab code above). */
6432
6433 ALL_MSYMBOLS (objfile, msymbol)
6434 {
6435 QUIT;
b5ec771e 6436
f9d67a22
PA
6437 if (completion_skip_symbol (mode, msymbol))
6438 continue;
6439
d4c2a405
PA
6440 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6441
6442 /* Ada minimal symbols won't have their language set to Ada. If
6443 we let completion_list_add_name compare using the
6444 default/C-like matcher, then when completing e.g., symbols in a
6445 package named "pck", we'd match internal Ada symbols like
6446 "pckS", which are invalid in an Ada expression, unless you wrap
6447 them in '<' '>' to request a verbatim match.
6448
6449 Unfortunately, some Ada encoded names successfully demangle as
6450 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6451 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6452 with the wrong language set. Paper over that issue here. */
6453 if (symbol_language == language_auto
6454 || symbol_language == language_cplus)
6455 symbol_language = language_ada;
6456
b5ec771e 6457 completion_list_add_name (tracker,
d4c2a405 6458 symbol_language,
b5ec771e 6459 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6460 lookup_name, text, word);
41d27058
JB
6461 }
6462
6463 /* Search upwards from currently selected frame (so that we can
6464 complete on local vars. */
6465
6466 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6467 {
6468 if (!BLOCK_SUPERBLOCK (b))
6469 surrounding_static_block = b; /* For elmin of dups */
6470
6471 ALL_BLOCK_SYMBOLS (b, iter, sym)
6472 {
f9d67a22
PA
6473 if (completion_skip_symbol (mode, sym))
6474 continue;
6475
b5ec771e
PA
6476 completion_list_add_name (tracker,
6477 SYMBOL_LANGUAGE (sym),
6478 SYMBOL_LINKAGE_NAME (sym),
1b026119 6479 lookup_name, text, word);
41d27058
JB
6480 }
6481 }
6482
6483 /* Go through the symtabs and check the externs and statics for
43f3e411 6484 symbols which match. */
41d27058 6485
43f3e411 6486 ALL_COMPUNITS (objfile, s)
41d27058
JB
6487 {
6488 QUIT;
43f3e411 6489 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6490 ALL_BLOCK_SYMBOLS (b, iter, sym)
6491 {
f9d67a22
PA
6492 if (completion_skip_symbol (mode, sym))
6493 continue;
6494
b5ec771e
PA
6495 completion_list_add_name (tracker,
6496 SYMBOL_LANGUAGE (sym),
6497 SYMBOL_LINKAGE_NAME (sym),
1b026119 6498 lookup_name, text, word);
41d27058
JB
6499 }
6500 }
6501
43f3e411 6502 ALL_COMPUNITS (objfile, s)
41d27058
JB
6503 {
6504 QUIT;
43f3e411 6505 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6506 /* Don't do this block twice. */
6507 if (b == surrounding_static_block)
6508 continue;
6509 ALL_BLOCK_SYMBOLS (b, iter, sym)
6510 {
f9d67a22
PA
6511 if (completion_skip_symbol (mode, sym))
6512 continue;
6513
b5ec771e
PA
6514 completion_list_add_name (tracker,
6515 SYMBOL_LANGUAGE (sym),
6516 SYMBOL_LINKAGE_NAME (sym),
1b026119 6517 lookup_name, text, word);
41d27058
JB
6518 }
6519 }
41d27058
JB
6520}
6521
963a6417 6522 /* Field Access */
96d887e8 6523
73fb9985
JB
6524/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6525 for tagged types. */
6526
6527static int
6528ada_is_dispatch_table_ptr_type (struct type *type)
6529{
0d5cff50 6530 const char *name;
73fb9985
JB
6531
6532 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6533 return 0;
6534
6535 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6536 if (name == NULL)
6537 return 0;
6538
6539 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6540}
6541
ac4a2da4
JG
6542/* Return non-zero if TYPE is an interface tag. */
6543
6544static int
6545ada_is_interface_tag (struct type *type)
6546{
6547 const char *name = TYPE_NAME (type);
6548
6549 if (name == NULL)
6550 return 0;
6551
6552 return (strcmp (name, "ada__tags__interface_tag") == 0);
6553}
6554
963a6417
PH
6555/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6556 to be invisible to users. */
96d887e8 6557
963a6417
PH
6558int
6559ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6560{
963a6417
PH
6561 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6562 return 1;
ffde82bf 6563
73fb9985
JB
6564 /* Check the name of that field. */
6565 {
6566 const char *name = TYPE_FIELD_NAME (type, field_num);
6567
6568 /* Anonymous field names should not be printed.
6569 brobecker/2007-02-20: I don't think this can actually happen
6570 but we don't want to print the value of annonymous fields anyway. */
6571 if (name == NULL)
6572 return 1;
6573
ffde82bf
JB
6574 /* Normally, fields whose name start with an underscore ("_")
6575 are fields that have been internally generated by the compiler,
6576 and thus should not be printed. The "_parent" field is special,
6577 however: This is a field internally generated by the compiler
6578 for tagged types, and it contains the components inherited from
6579 the parent type. This field should not be printed as is, but
6580 should not be ignored either. */
61012eef 6581 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6582 return 1;
6583 }
6584
ac4a2da4
JG
6585 /* If this is the dispatch table of a tagged type or an interface tag,
6586 then ignore. */
73fb9985 6587 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6588 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6589 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6590 return 1;
6591
6592 /* Not a special field, so it should not be ignored. */
6593 return 0;
963a6417 6594}
96d887e8 6595
963a6417 6596/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6597 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6598
963a6417
PH
6599int
6600ada_is_tagged_type (struct type *type, int refok)
6601{
988f6b3d 6602 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6603}
96d887e8 6604
963a6417 6605/* True iff TYPE represents the type of X'Tag */
96d887e8 6606
963a6417
PH
6607int
6608ada_is_tag_type (struct type *type)
6609{
460efde1
JB
6610 type = ada_check_typedef (type);
6611
963a6417
PH
6612 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6613 return 0;
6614 else
96d887e8 6615 {
963a6417 6616 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6617
963a6417
PH
6618 return (name != NULL
6619 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6620 }
96d887e8
PH
6621}
6622
963a6417 6623/* The type of the tag on VAL. */
76a01679 6624
963a6417
PH
6625struct type *
6626ada_tag_type (struct value *val)
96d887e8 6627{
988f6b3d 6628 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6629}
96d887e8 6630
b50d69b5
JG
6631/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6632 retired at Ada 05). */
6633
6634static int
6635is_ada95_tag (struct value *tag)
6636{
6637 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6638}
6639
963a6417 6640/* The value of the tag on VAL. */
96d887e8 6641
963a6417
PH
6642struct value *
6643ada_value_tag (struct value *val)
6644{
03ee6b2e 6645 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6646}
6647
963a6417
PH
6648/* The value of the tag on the object of type TYPE whose contents are
6649 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6650 ADDRESS. */
96d887e8 6651
963a6417 6652static struct value *
10a2c479 6653value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6654 const gdb_byte *valaddr,
963a6417 6655 CORE_ADDR address)
96d887e8 6656{
b5385fc0 6657 int tag_byte_offset;
963a6417 6658 struct type *tag_type;
5b4ee69b 6659
963a6417 6660 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6661 NULL, NULL, NULL))
96d887e8 6662 {
fc1a4b47 6663 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6664 ? NULL
6665 : valaddr + tag_byte_offset);
963a6417 6666 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6667
963a6417 6668 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6669 }
963a6417
PH
6670 return NULL;
6671}
96d887e8 6672
963a6417
PH
6673static struct type *
6674type_from_tag (struct value *tag)
6675{
6676 const char *type_name = ada_tag_name (tag);
5b4ee69b 6677
963a6417
PH
6678 if (type_name != NULL)
6679 return ada_find_any_type (ada_encode (type_name));
6680 return NULL;
6681}
96d887e8 6682
b50d69b5
JG
6683/* Given a value OBJ of a tagged type, return a value of this
6684 type at the base address of the object. The base address, as
6685 defined in Ada.Tags, it is the address of the primary tag of
6686 the object, and therefore where the field values of its full
6687 view can be fetched. */
6688
6689struct value *
6690ada_tag_value_at_base_address (struct value *obj)
6691{
b50d69b5
JG
6692 struct value *val;
6693 LONGEST offset_to_top = 0;
6694 struct type *ptr_type, *obj_type;
6695 struct value *tag;
6696 CORE_ADDR base_address;
6697
6698 obj_type = value_type (obj);
6699
6700 /* It is the responsability of the caller to deref pointers. */
6701
6702 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6703 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6704 return obj;
6705
6706 tag = ada_value_tag (obj);
6707 if (!tag)
6708 return obj;
6709
6710 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6711
6712 if (is_ada95_tag (tag))
6713 return obj;
6714
08f49010
XR
6715 ptr_type = language_lookup_primitive_type
6716 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6717 ptr_type = lookup_pointer_type (ptr_type);
6718 val = value_cast (ptr_type, tag);
6719 if (!val)
6720 return obj;
6721
6722 /* It is perfectly possible that an exception be raised while
6723 trying to determine the base address, just like for the tag;
6724 see ada_tag_name for more details. We do not print the error
6725 message for the same reason. */
6726
492d29ea 6727 TRY
b50d69b5
JG
6728 {
6729 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6730 }
6731
492d29ea
PA
6732 CATCH (e, RETURN_MASK_ERROR)
6733 {
6734 return obj;
6735 }
6736 END_CATCH
b50d69b5
JG
6737
6738 /* If offset is null, nothing to do. */
6739
6740 if (offset_to_top == 0)
6741 return obj;
6742
6743 /* -1 is a special case in Ada.Tags; however, what should be done
6744 is not quite clear from the documentation. So do nothing for
6745 now. */
6746
6747 if (offset_to_top == -1)
6748 return obj;
6749
08f49010
XR
6750 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6751 from the base address. This was however incompatible with
6752 C++ dispatch table: C++ uses a *negative* value to *add*
6753 to the base address. Ada's convention has therefore been
6754 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6755 use the same convention. Here, we support both cases by
6756 checking the sign of OFFSET_TO_TOP. */
6757
6758 if (offset_to_top > 0)
6759 offset_to_top = -offset_to_top;
6760
6761 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6762 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6763
6764 /* Make sure that we have a proper tag at the new address.
6765 Otherwise, offset_to_top is bogus (which can happen when
6766 the object is not initialized yet). */
6767
6768 if (!tag)
6769 return obj;
6770
6771 obj_type = type_from_tag (tag);
6772
6773 if (!obj_type)
6774 return obj;
6775
6776 return value_from_contents_and_address (obj_type, NULL, base_address);
6777}
6778
1b611343
JB
6779/* Return the "ada__tags__type_specific_data" type. */
6780
6781static struct type *
6782ada_get_tsd_type (struct inferior *inf)
963a6417 6783{
1b611343 6784 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6785
1b611343
JB
6786 if (data->tsd_type == 0)
6787 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6788 return data->tsd_type;
6789}
529cad9c 6790
1b611343
JB
6791/* Return the TSD (type-specific data) associated to the given TAG.
6792 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6793
1b611343 6794 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6795
1b611343
JB
6796static struct value *
6797ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6798{
4c4b4cd2 6799 struct value *val;
1b611343 6800 struct type *type;
5b4ee69b 6801
1b611343
JB
6802 /* First option: The TSD is simply stored as a field of our TAG.
6803 Only older versions of GNAT would use this format, but we have
6804 to test it first, because there are no visible markers for
6805 the current approach except the absence of that field. */
529cad9c 6806
1b611343
JB
6807 val = ada_value_struct_elt (tag, "tsd", 1);
6808 if (val)
6809 return val;
e802dbe0 6810
1b611343
JB
6811 /* Try the second representation for the dispatch table (in which
6812 there is no explicit 'tsd' field in the referent of the tag pointer,
6813 and instead the tsd pointer is stored just before the dispatch
6814 table. */
e802dbe0 6815
1b611343
JB
6816 type = ada_get_tsd_type (current_inferior());
6817 if (type == NULL)
6818 return NULL;
6819 type = lookup_pointer_type (lookup_pointer_type (type));
6820 val = value_cast (type, tag);
6821 if (val == NULL)
6822 return NULL;
6823 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6824}
6825
1b611343
JB
6826/* Given the TSD of a tag (type-specific data), return a string
6827 containing the name of the associated type.
6828
6829 The returned value is good until the next call. May return NULL
6830 if we are unable to determine the tag name. */
6831
6832static char *
6833ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6834{
529cad9c
PH
6835 static char name[1024];
6836 char *p;
1b611343 6837 struct value *val;
529cad9c 6838
1b611343 6839 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6840 if (val == NULL)
1b611343 6841 return NULL;
4c4b4cd2
PH
6842 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6843 for (p = name; *p != '\0'; p += 1)
6844 if (isalpha (*p))
6845 *p = tolower (*p);
1b611343 6846 return name;
4c4b4cd2
PH
6847}
6848
6849/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6850 a C string.
6851
6852 Return NULL if the TAG is not an Ada tag, or if we were unable to
6853 determine the name of that tag. The result is good until the next
6854 call. */
4c4b4cd2
PH
6855
6856const char *
6857ada_tag_name (struct value *tag)
6858{
1b611343 6859 char *name = NULL;
5b4ee69b 6860
df407dfe 6861 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6862 return NULL;
1b611343
JB
6863
6864 /* It is perfectly possible that an exception be raised while trying
6865 to determine the TAG's name, even under normal circumstances:
6866 The associated variable may be uninitialized or corrupted, for
6867 instance. We do not let any exception propagate past this point.
6868 instead we return NULL.
6869
6870 We also do not print the error message either (which often is very
6871 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6872 the caller print a more meaningful message if necessary. */
492d29ea 6873 TRY
1b611343
JB
6874 {
6875 struct value *tsd = ada_get_tsd_from_tag (tag);
6876
6877 if (tsd != NULL)
6878 name = ada_tag_name_from_tsd (tsd);
6879 }
492d29ea
PA
6880 CATCH (e, RETURN_MASK_ERROR)
6881 {
6882 }
6883 END_CATCH
1b611343
JB
6884
6885 return name;
4c4b4cd2
PH
6886}
6887
6888/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6889
d2e4a39e 6890struct type *
ebf56fd3 6891ada_parent_type (struct type *type)
14f9c5c9
AS
6892{
6893 int i;
6894
61ee279c 6895 type = ada_check_typedef (type);
14f9c5c9
AS
6896
6897 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6898 return NULL;
6899
6900 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6901 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6902 {
6903 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6904
6905 /* If the _parent field is a pointer, then dereference it. */
6906 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6907 parent_type = TYPE_TARGET_TYPE (parent_type);
6908 /* If there is a parallel XVS type, get the actual base type. */
6909 parent_type = ada_get_base_type (parent_type);
6910
6911 return ada_check_typedef (parent_type);
6912 }
14f9c5c9
AS
6913
6914 return NULL;
6915}
6916
4c4b4cd2
PH
6917/* True iff field number FIELD_NUM of structure type TYPE contains the
6918 parent-type (inherited) fields of a derived type. Assumes TYPE is
6919 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6920
6921int
ebf56fd3 6922ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6923{
61ee279c 6924 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6925
4c4b4cd2 6926 return (name != NULL
61012eef
GB
6927 && (startswith (name, "PARENT")
6928 || startswith (name, "_parent")));
14f9c5c9
AS
6929}
6930
4c4b4cd2 6931/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6932 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6933 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6934 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6935 structures. */
14f9c5c9
AS
6936
6937int
ebf56fd3 6938ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6939{
d2e4a39e 6940 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6941
dddc0e16
JB
6942 if (name != NULL && strcmp (name, "RETVAL") == 0)
6943 {
6944 /* This happens in functions with "out" or "in out" parameters
6945 which are passed by copy. For such functions, GNAT describes
6946 the function's return type as being a struct where the return
6947 value is in a field called RETVAL, and where the other "out"
6948 or "in out" parameters are fields of that struct. This is not
6949 a wrapper. */
6950 return 0;
6951 }
6952
d2e4a39e 6953 return (name != NULL
61012eef 6954 && (startswith (name, "PARENT")
4c4b4cd2 6955 || strcmp (name, "REP") == 0
61012eef 6956 || startswith (name, "_parent")
4c4b4cd2 6957 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6958}
6959
4c4b4cd2
PH
6960/* True iff field number FIELD_NUM of structure or union type TYPE
6961 is a variant wrapper. Assumes TYPE is a structure type with at least
6962 FIELD_NUM+1 fields. */
14f9c5c9
AS
6963
6964int
ebf56fd3 6965ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6966{
d2e4a39e 6967 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6968
14f9c5c9 6969 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6970 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6971 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6972 == TYPE_CODE_UNION)));
14f9c5c9
AS
6973}
6974
6975/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6976 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6977 returns the type of the controlling discriminant for the variant.
6978 May return NULL if the type could not be found. */
14f9c5c9 6979
d2e4a39e 6980struct type *
ebf56fd3 6981ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6982{
a121b7c1 6983 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6984
988f6b3d 6985 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6986}
6987
4c4b4cd2 6988/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6989 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6990 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6991
6992int
ebf56fd3 6993ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6994{
d2e4a39e 6995 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6996
14f9c5c9
AS
6997 return (name != NULL && name[0] == 'O');
6998}
6999
7000/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7001 returns the name of the discriminant controlling the variant.
7002 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7003
a121b7c1 7004const char *
ebf56fd3 7005ada_variant_discrim_name (struct type *type0)
14f9c5c9 7006{
d2e4a39e 7007 static char *result = NULL;
14f9c5c9 7008 static size_t result_len = 0;
d2e4a39e
AS
7009 struct type *type;
7010 const char *name;
7011 const char *discrim_end;
7012 const char *discrim_start;
14f9c5c9
AS
7013
7014 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7015 type = TYPE_TARGET_TYPE (type0);
7016 else
7017 type = type0;
7018
7019 name = ada_type_name (type);
7020
7021 if (name == NULL || name[0] == '\000')
7022 return "";
7023
7024 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7025 discrim_end -= 1)
7026 {
61012eef 7027 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7028 break;
14f9c5c9
AS
7029 }
7030 if (discrim_end == name)
7031 return "";
7032
d2e4a39e 7033 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7034 discrim_start -= 1)
7035 {
d2e4a39e 7036 if (discrim_start == name + 1)
4c4b4cd2 7037 return "";
76a01679 7038 if ((discrim_start > name + 3
61012eef 7039 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7040 || discrim_start[-1] == '.')
7041 break;
14f9c5c9
AS
7042 }
7043
7044 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7045 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7046 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7047 return result;
7048}
7049
4c4b4cd2
PH
7050/* Scan STR for a subtype-encoded number, beginning at position K.
7051 Put the position of the character just past the number scanned in
7052 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7053 Return 1 if there was a valid number at the given position, and 0
7054 otherwise. A "subtype-encoded" number consists of the absolute value
7055 in decimal, followed by the letter 'm' to indicate a negative number.
7056 Assumes 0m does not occur. */
14f9c5c9
AS
7057
7058int
d2e4a39e 7059ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7060{
7061 ULONGEST RU;
7062
d2e4a39e 7063 if (!isdigit (str[k]))
14f9c5c9
AS
7064 return 0;
7065
4c4b4cd2 7066 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7067 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7068 LONGEST. */
14f9c5c9
AS
7069 RU = 0;
7070 while (isdigit (str[k]))
7071 {
d2e4a39e 7072 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7073 k += 1;
7074 }
7075
d2e4a39e 7076 if (str[k] == 'm')
14f9c5c9
AS
7077 {
7078 if (R != NULL)
4c4b4cd2 7079 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7080 k += 1;
7081 }
7082 else if (R != NULL)
7083 *R = (LONGEST) RU;
7084
4c4b4cd2 7085 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7086 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7087 number representable as a LONGEST (although either would probably work
7088 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7089 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7090
7091 if (new_k != NULL)
7092 *new_k = k;
7093 return 1;
7094}
7095
4c4b4cd2
PH
7096/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7097 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7098 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7099
d2e4a39e 7100int
ebf56fd3 7101ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7102{
d2e4a39e 7103 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7104 int p;
7105
7106 p = 0;
7107 while (1)
7108 {
d2e4a39e 7109 switch (name[p])
4c4b4cd2
PH
7110 {
7111 case '\0':
7112 return 0;
7113 case 'S':
7114 {
7115 LONGEST W;
5b4ee69b 7116
4c4b4cd2
PH
7117 if (!ada_scan_number (name, p + 1, &W, &p))
7118 return 0;
7119 if (val == W)
7120 return 1;
7121 break;
7122 }
7123 case 'R':
7124 {
7125 LONGEST L, U;
5b4ee69b 7126
4c4b4cd2
PH
7127 if (!ada_scan_number (name, p + 1, &L, &p)
7128 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7129 return 0;
7130 if (val >= L && val <= U)
7131 return 1;
7132 break;
7133 }
7134 case 'O':
7135 return 1;
7136 default:
7137 return 0;
7138 }
7139 }
7140}
7141
0963b4bd 7142/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7143
7144/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7145 ARG_TYPE, extract and return the value of one of its (non-static)
7146 fields. FIELDNO says which field. Differs from value_primitive_field
7147 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7148
4c4b4cd2 7149static struct value *
d2e4a39e 7150ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7151 struct type *arg_type)
14f9c5c9 7152{
14f9c5c9
AS
7153 struct type *type;
7154
61ee279c 7155 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7156 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7157
4c4b4cd2 7158 /* Handle packed fields. */
14f9c5c9
AS
7159
7160 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7161 {
7162 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7163 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7164
0fd88904 7165 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7166 offset + bit_pos / 8,
7167 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7168 }
7169 else
7170 return value_primitive_field (arg1, offset, fieldno, arg_type);
7171}
7172
52ce6436
PH
7173/* Find field with name NAME in object of type TYPE. If found,
7174 set the following for each argument that is non-null:
7175 - *FIELD_TYPE_P to the field's type;
7176 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7177 an object of that type;
7178 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7179 - *BIT_SIZE_P to its size in bits if the field is packed, and
7180 0 otherwise;
7181 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7182 fields up to but not including the desired field, or by the total
7183 number of fields if not found. A NULL value of NAME never
7184 matches; the function just counts visible fields in this case.
7185
828d5846
XR
7186 Notice that we need to handle when a tagged record hierarchy
7187 has some components with the same name, like in this scenario:
7188
7189 type Top_T is tagged record
7190 N : Integer := 1;
7191 U : Integer := 974;
7192 A : Integer := 48;
7193 end record;
7194
7195 type Middle_T is new Top.Top_T with record
7196 N : Character := 'a';
7197 C : Integer := 3;
7198 end record;
7199
7200 type Bottom_T is new Middle.Middle_T with record
7201 N : Float := 4.0;
7202 C : Character := '5';
7203 X : Integer := 6;
7204 A : Character := 'J';
7205 end record;
7206
7207 Let's say we now have a variable declared and initialized as follow:
7208
7209 TC : Top_A := new Bottom_T;
7210
7211 And then we use this variable to call this function
7212
7213 procedure Assign (Obj: in out Top_T; TV : Integer);
7214
7215 as follow:
7216
7217 Assign (Top_T (B), 12);
7218
7219 Now, we're in the debugger, and we're inside that procedure
7220 then and we want to print the value of obj.c:
7221
7222 Usually, the tagged record or one of the parent type owns the
7223 component to print and there's no issue but in this particular
7224 case, what does it mean to ask for Obj.C? Since the actual
7225 type for object is type Bottom_T, it could mean two things: type
7226 component C from the Middle_T view, but also component C from
7227 Bottom_T. So in that "undefined" case, when the component is
7228 not found in the non-resolved type (which includes all the
7229 components of the parent type), then resolve it and see if we
7230 get better luck once expanded.
7231
7232 In the case of homonyms in the derived tagged type, we don't
7233 guaranty anything, and pick the one that's easiest for us
7234 to program.
7235
0963b4bd 7236 Returns 1 if found, 0 otherwise. */
52ce6436 7237
4c4b4cd2 7238static int
0d5cff50 7239find_struct_field (const char *name, struct type *type, int offset,
76a01679 7240 struct type **field_type_p,
52ce6436
PH
7241 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7242 int *index_p)
4c4b4cd2
PH
7243{
7244 int i;
828d5846 7245 int parent_offset = -1;
4c4b4cd2 7246
61ee279c 7247 type = ada_check_typedef (type);
76a01679 7248
52ce6436
PH
7249 if (field_type_p != NULL)
7250 *field_type_p = NULL;
7251 if (byte_offset_p != NULL)
d5d6fca5 7252 *byte_offset_p = 0;
52ce6436
PH
7253 if (bit_offset_p != NULL)
7254 *bit_offset_p = 0;
7255 if (bit_size_p != NULL)
7256 *bit_size_p = 0;
7257
7258 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7259 {
7260 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7261 int fld_offset = offset + bit_pos / 8;
0d5cff50 7262 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7263
4c4b4cd2
PH
7264 if (t_field_name == NULL)
7265 continue;
7266
828d5846
XR
7267 else if (ada_is_parent_field (type, i))
7268 {
7269 /* This is a field pointing us to the parent type of a tagged
7270 type. As hinted in this function's documentation, we give
7271 preference to fields in the current record first, so what
7272 we do here is just record the index of this field before
7273 we skip it. If it turns out we couldn't find our field
7274 in the current record, then we'll get back to it and search
7275 inside it whether the field might exist in the parent. */
7276
7277 parent_offset = i;
7278 continue;
7279 }
7280
52ce6436 7281 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7282 {
7283 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7284
52ce6436
PH
7285 if (field_type_p != NULL)
7286 *field_type_p = TYPE_FIELD_TYPE (type, i);
7287 if (byte_offset_p != NULL)
7288 *byte_offset_p = fld_offset;
7289 if (bit_offset_p != NULL)
7290 *bit_offset_p = bit_pos % 8;
7291 if (bit_size_p != NULL)
7292 *bit_size_p = bit_size;
76a01679
JB
7293 return 1;
7294 }
4c4b4cd2
PH
7295 else if (ada_is_wrapper_field (type, i))
7296 {
52ce6436
PH
7297 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7298 field_type_p, byte_offset_p, bit_offset_p,
7299 bit_size_p, index_p))
76a01679
JB
7300 return 1;
7301 }
4c4b4cd2
PH
7302 else if (ada_is_variant_part (type, i))
7303 {
52ce6436
PH
7304 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7305 fixed type?? */
4c4b4cd2 7306 int j;
52ce6436
PH
7307 struct type *field_type
7308 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7309
52ce6436 7310 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7311 {
76a01679
JB
7312 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7313 fld_offset
7314 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7315 field_type_p, byte_offset_p,
52ce6436 7316 bit_offset_p, bit_size_p, index_p))
76a01679 7317 return 1;
4c4b4cd2
PH
7318 }
7319 }
52ce6436
PH
7320 else if (index_p != NULL)
7321 *index_p += 1;
4c4b4cd2 7322 }
828d5846
XR
7323
7324 /* Field not found so far. If this is a tagged type which
7325 has a parent, try finding that field in the parent now. */
7326
7327 if (parent_offset != -1)
7328 {
7329 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7330 int fld_offset = offset + bit_pos / 8;
7331
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7333 fld_offset, field_type_p, byte_offset_p,
7334 bit_offset_p, bit_size_p, index_p))
7335 return 1;
7336 }
7337
4c4b4cd2
PH
7338 return 0;
7339}
7340
0963b4bd 7341/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7342
52ce6436
PH
7343static int
7344num_visible_fields (struct type *type)
7345{
7346 int n;
5b4ee69b 7347
52ce6436
PH
7348 n = 0;
7349 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7350 return n;
7351}
14f9c5c9 7352
4c4b4cd2 7353/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7354 and search in it assuming it has (class) type TYPE.
7355 If found, return value, else return NULL.
7356
828d5846
XR
7357 Searches recursively through wrapper fields (e.g., '_parent').
7358
7359 In the case of homonyms in the tagged types, please refer to the
7360 long explanation in find_struct_field's function documentation. */
14f9c5c9 7361
4c4b4cd2 7362static struct value *
108d56a4 7363ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7364 struct type *type)
14f9c5c9
AS
7365{
7366 int i;
828d5846 7367 int parent_offset = -1;
14f9c5c9 7368
5b4ee69b 7369 type = ada_check_typedef (type);
52ce6436 7370 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7371 {
0d5cff50 7372 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7373
7374 if (t_field_name == NULL)
4c4b4cd2 7375 continue;
14f9c5c9 7376
828d5846
XR
7377 else if (ada_is_parent_field (type, i))
7378 {
7379 /* This is a field pointing us to the parent type of a tagged
7380 type. As hinted in this function's documentation, we give
7381 preference to fields in the current record first, so what
7382 we do here is just record the index of this field before
7383 we skip it. If it turns out we couldn't find our field
7384 in the current record, then we'll get back to it and search
7385 inside it whether the field might exist in the parent. */
7386
7387 parent_offset = i;
7388 continue;
7389 }
7390
14f9c5c9 7391 else if (field_name_match (t_field_name, name))
4c4b4cd2 7392 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7393
7394 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7395 {
0963b4bd 7396 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7397 ada_search_struct_field (name, arg,
7398 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7399 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7400
4c4b4cd2
PH
7401 if (v != NULL)
7402 return v;
7403 }
14f9c5c9
AS
7404
7405 else if (ada_is_variant_part (type, i))
4c4b4cd2 7406 {
0963b4bd 7407 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7408 int j;
5b4ee69b
MS
7409 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7410 i));
4c4b4cd2
PH
7411 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7412
52ce6436 7413 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7414 {
0963b4bd
MS
7415 struct value *v = ada_search_struct_field /* Force line
7416 break. */
06d5cf63
JB
7417 (name, arg,
7418 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7419 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7420
4c4b4cd2
PH
7421 if (v != NULL)
7422 return v;
7423 }
7424 }
14f9c5c9 7425 }
828d5846
XR
7426
7427 /* Field not found so far. If this is a tagged type which
7428 has a parent, try finding that field in the parent now. */
7429
7430 if (parent_offset != -1)
7431 {
7432 struct value *v = ada_search_struct_field (
7433 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7434 TYPE_FIELD_TYPE (type, parent_offset));
7435
7436 if (v != NULL)
7437 return v;
7438 }
7439
14f9c5c9
AS
7440 return NULL;
7441}
d2e4a39e 7442
52ce6436
PH
7443static struct value *ada_index_struct_field_1 (int *, struct value *,
7444 int, struct type *);
7445
7446
7447/* Return field #INDEX in ARG, where the index is that returned by
7448 * find_struct_field through its INDEX_P argument. Adjust the address
7449 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7450 * If found, return value, else return NULL. */
52ce6436
PH
7451
7452static struct value *
7453ada_index_struct_field (int index, struct value *arg, int offset,
7454 struct type *type)
7455{
7456 return ada_index_struct_field_1 (&index, arg, offset, type);
7457}
7458
7459
7460/* Auxiliary function for ada_index_struct_field. Like
7461 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7462 * *INDEX_P. */
52ce6436
PH
7463
7464static struct value *
7465ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7466 struct type *type)
7467{
7468 int i;
7469 type = ada_check_typedef (type);
7470
7471 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7472 {
7473 if (TYPE_FIELD_NAME (type, i) == NULL)
7474 continue;
7475 else if (ada_is_wrapper_field (type, i))
7476 {
0963b4bd 7477 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7478 ada_index_struct_field_1 (index_p, arg,
7479 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7480 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7481
52ce6436
PH
7482 if (v != NULL)
7483 return v;
7484 }
7485
7486 else if (ada_is_variant_part (type, i))
7487 {
7488 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7489 find_struct_field. */
52ce6436
PH
7490 error (_("Cannot assign this kind of variant record"));
7491 }
7492 else if (*index_p == 0)
7493 return ada_value_primitive_field (arg, offset, i, type);
7494 else
7495 *index_p -= 1;
7496 }
7497 return NULL;
7498}
7499
4c4b4cd2
PH
7500/* Given ARG, a value of type (pointer or reference to a)*
7501 structure/union, extract the component named NAME from the ultimate
7502 target structure/union and return it as a value with its
f5938064 7503 appropriate type.
14f9c5c9 7504
4c4b4cd2
PH
7505 The routine searches for NAME among all members of the structure itself
7506 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7507 (e.g., '_parent').
7508
03ee6b2e
PH
7509 If NO_ERR, then simply return NULL in case of error, rather than
7510 calling error. */
14f9c5c9 7511
d2e4a39e 7512struct value *
a121b7c1 7513ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7514{
4c4b4cd2 7515 struct type *t, *t1;
d2e4a39e 7516 struct value *v;
14f9c5c9 7517
4c4b4cd2 7518 v = NULL;
df407dfe 7519 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7520 if (TYPE_CODE (t) == TYPE_CODE_REF)
7521 {
7522 t1 = TYPE_TARGET_TYPE (t);
7523 if (t1 == NULL)
03ee6b2e 7524 goto BadValue;
61ee279c 7525 t1 = ada_check_typedef (t1);
4c4b4cd2 7526 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7527 {
994b9211 7528 arg = coerce_ref (arg);
76a01679
JB
7529 t = t1;
7530 }
4c4b4cd2 7531 }
14f9c5c9 7532
4c4b4cd2
PH
7533 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7534 {
7535 t1 = TYPE_TARGET_TYPE (t);
7536 if (t1 == NULL)
03ee6b2e 7537 goto BadValue;
61ee279c 7538 t1 = ada_check_typedef (t1);
4c4b4cd2 7539 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7540 {
7541 arg = value_ind (arg);
7542 t = t1;
7543 }
4c4b4cd2 7544 else
76a01679 7545 break;
4c4b4cd2 7546 }
14f9c5c9 7547
4c4b4cd2 7548 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7549 goto BadValue;
14f9c5c9 7550
4c4b4cd2
PH
7551 if (t1 == t)
7552 v = ada_search_struct_field (name, arg, 0, t);
7553 else
7554 {
7555 int bit_offset, bit_size, byte_offset;
7556 struct type *field_type;
7557 CORE_ADDR address;
7558
76a01679 7559 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7560 address = value_address (ada_value_ind (arg));
4c4b4cd2 7561 else
b50d69b5 7562 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7563
828d5846
XR
7564 /* Check to see if this is a tagged type. We also need to handle
7565 the case where the type is a reference to a tagged type, but
7566 we have to be careful to exclude pointers to tagged types.
7567 The latter should be shown as usual (as a pointer), whereas
7568 a reference should mostly be transparent to the user. */
7569
7570 if (ada_is_tagged_type (t1, 0)
7571 || (TYPE_CODE (t1) == TYPE_CODE_REF
7572 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7573 {
7574 /* We first try to find the searched field in the current type.
7575 If not found then let's look in the fixed type. */
7576
7577 if (!find_struct_field (name, t1, 0,
7578 &field_type, &byte_offset, &bit_offset,
7579 &bit_size, NULL))
7580 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7581 address, NULL, 1);
7582 }
7583 else
7584 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7585 address, NULL, 1);
7586
76a01679
JB
7587 if (find_struct_field (name, t1, 0,
7588 &field_type, &byte_offset, &bit_offset,
52ce6436 7589 &bit_size, NULL))
76a01679
JB
7590 {
7591 if (bit_size != 0)
7592 {
714e53ab
PH
7593 if (TYPE_CODE (t) == TYPE_CODE_REF)
7594 arg = ada_coerce_ref (arg);
7595 else
7596 arg = ada_value_ind (arg);
76a01679
JB
7597 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7598 bit_offset, bit_size,
7599 field_type);
7600 }
7601 else
f5938064 7602 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7603 }
7604 }
7605
03ee6b2e
PH
7606 if (v != NULL || no_err)
7607 return v;
7608 else
323e0a4a 7609 error (_("There is no member named %s."), name);
14f9c5c9 7610
03ee6b2e
PH
7611 BadValue:
7612 if (no_err)
7613 return NULL;
7614 else
0963b4bd
MS
7615 error (_("Attempt to extract a component of "
7616 "a value that is not a record."));
14f9c5c9
AS
7617}
7618
3b4de39c 7619/* Return a string representation of type TYPE. */
99bbb428 7620
3b4de39c 7621static std::string
99bbb428
PA
7622type_as_string (struct type *type)
7623{
d7e74731 7624 string_file tmp_stream;
99bbb428 7625
d7e74731 7626 type_print (type, "", &tmp_stream, -1);
99bbb428 7627
d7e74731 7628 return std::move (tmp_stream.string ());
99bbb428
PA
7629}
7630
14f9c5c9 7631/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7632 If DISPP is non-null, add its byte displacement from the beginning of a
7633 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7634 work for packed fields).
7635
7636 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7637 followed by "___".
14f9c5c9 7638
0963b4bd 7639 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7640 be a (pointer or reference)+ to a struct or union, and the
7641 ultimate target type will be searched.
14f9c5c9
AS
7642
7643 Looks recursively into variant clauses and parent types.
7644
828d5846
XR
7645 In the case of homonyms in the tagged types, please refer to the
7646 long explanation in find_struct_field's function documentation.
7647
4c4b4cd2
PH
7648 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7649 TYPE is not a type of the right kind. */
14f9c5c9 7650
4c4b4cd2 7651static struct type *
a121b7c1 7652ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7653 int noerr)
14f9c5c9
AS
7654{
7655 int i;
828d5846 7656 int parent_offset = -1;
14f9c5c9
AS
7657
7658 if (name == NULL)
7659 goto BadName;
7660
76a01679 7661 if (refok && type != NULL)
4c4b4cd2
PH
7662 while (1)
7663 {
61ee279c 7664 type = ada_check_typedef (type);
76a01679
JB
7665 if (TYPE_CODE (type) != TYPE_CODE_PTR
7666 && TYPE_CODE (type) != TYPE_CODE_REF)
7667 break;
7668 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7669 }
14f9c5c9 7670
76a01679 7671 if (type == NULL
1265e4aa
JB
7672 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7673 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7674 {
4c4b4cd2 7675 if (noerr)
76a01679 7676 return NULL;
99bbb428 7677
3b4de39c
PA
7678 error (_("Type %s is not a structure or union type"),
7679 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7680 }
7681
7682 type = to_static_fixed_type (type);
7683
7684 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7685 {
0d5cff50 7686 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7687 struct type *t;
d2e4a39e 7688
14f9c5c9 7689 if (t_field_name == NULL)
4c4b4cd2 7690 continue;
14f9c5c9 7691
828d5846
XR
7692 else if (ada_is_parent_field (type, i))
7693 {
7694 /* This is a field pointing us to the parent type of a tagged
7695 type. As hinted in this function's documentation, we give
7696 preference to fields in the current record first, so what
7697 we do here is just record the index of this field before
7698 we skip it. If it turns out we couldn't find our field
7699 in the current record, then we'll get back to it and search
7700 inside it whether the field might exist in the parent. */
7701
7702 parent_offset = i;
7703 continue;
7704 }
7705
14f9c5c9 7706 else if (field_name_match (t_field_name, name))
988f6b3d 7707 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7708
7709 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7710 {
4c4b4cd2 7711 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7712 0, 1);
4c4b4cd2 7713 if (t != NULL)
988f6b3d 7714 return t;
4c4b4cd2 7715 }
14f9c5c9
AS
7716
7717 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7718 {
7719 int j;
5b4ee69b
MS
7720 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7721 i));
4c4b4cd2
PH
7722
7723 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7724 {
b1f33ddd
JB
7725 /* FIXME pnh 2008/01/26: We check for a field that is
7726 NOT wrapped in a struct, since the compiler sometimes
7727 generates these for unchecked variant types. Revisit
0963b4bd 7728 if the compiler changes this practice. */
0d5cff50 7729 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7730
b1f33ddd
JB
7731 if (v_field_name != NULL
7732 && field_name_match (v_field_name, name))
460efde1 7733 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7734 else
0963b4bd
MS
7735 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7736 j),
988f6b3d 7737 name, 0, 1);
b1f33ddd 7738
4c4b4cd2 7739 if (t != NULL)
988f6b3d 7740 return t;
4c4b4cd2
PH
7741 }
7742 }
14f9c5c9
AS
7743
7744 }
7745
828d5846
XR
7746 /* Field not found so far. If this is a tagged type which
7747 has a parent, try finding that field in the parent now. */
7748
7749 if (parent_offset != -1)
7750 {
7751 struct type *t;
7752
7753 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7754 name, 0, 1);
7755 if (t != NULL)
7756 return t;
7757 }
7758
14f9c5c9 7759BadName:
d2e4a39e 7760 if (!noerr)
14f9c5c9 7761 {
2b2798cc 7762 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7763
7764 error (_("Type %s has no component named %s"),
3b4de39c 7765 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7766 }
7767
7768 return NULL;
7769}
7770
b1f33ddd
JB
7771/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7772 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7773 represents an unchecked union (that is, the variant part of a
0963b4bd 7774 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7775
7776static int
7777is_unchecked_variant (struct type *var_type, struct type *outer_type)
7778{
a121b7c1 7779 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7780
988f6b3d 7781 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7782}
7783
7784
14f9c5c9
AS
7785/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7786 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7787 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7788 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7789
d2e4a39e 7790int
ebf56fd3 7791ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7792 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7793{
7794 int others_clause;
7795 int i;
a121b7c1 7796 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7797 struct value *outer;
7798 struct value *discrim;
14f9c5c9
AS
7799 LONGEST discrim_val;
7800
012370f6
TT
7801 /* Using plain value_from_contents_and_address here causes problems
7802 because we will end up trying to resolve a type that is currently
7803 being constructed. */
7804 outer = value_from_contents_and_address_unresolved (outer_type,
7805 outer_valaddr, 0);
0c281816
JB
7806 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7807 if (discrim == NULL)
14f9c5c9 7808 return -1;
0c281816 7809 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7810
7811 others_clause = -1;
7812 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7813 {
7814 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7815 others_clause = i;
14f9c5c9 7816 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7817 return i;
14f9c5c9
AS
7818 }
7819
7820 return others_clause;
7821}
d2e4a39e 7822\f
14f9c5c9
AS
7823
7824
4c4b4cd2 7825 /* Dynamic-Sized Records */
14f9c5c9
AS
7826
7827/* Strategy: The type ostensibly attached to a value with dynamic size
7828 (i.e., a size that is not statically recorded in the debugging
7829 data) does not accurately reflect the size or layout of the value.
7830 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7831 conventional types that are constructed on the fly. */
14f9c5c9
AS
7832
7833/* There is a subtle and tricky problem here. In general, we cannot
7834 determine the size of dynamic records without its data. However,
7835 the 'struct value' data structure, which GDB uses to represent
7836 quantities in the inferior process (the target), requires the size
7837 of the type at the time of its allocation in order to reserve space
7838 for GDB's internal copy of the data. That's why the
7839 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7840 rather than struct value*s.
14f9c5c9
AS
7841
7842 However, GDB's internal history variables ($1, $2, etc.) are
7843 struct value*s containing internal copies of the data that are not, in
7844 general, the same as the data at their corresponding addresses in
7845 the target. Fortunately, the types we give to these values are all
7846 conventional, fixed-size types (as per the strategy described
7847 above), so that we don't usually have to perform the
7848 'to_fixed_xxx_type' conversions to look at their values.
7849 Unfortunately, there is one exception: if one of the internal
7850 history variables is an array whose elements are unconstrained
7851 records, then we will need to create distinct fixed types for each
7852 element selected. */
7853
7854/* The upshot of all of this is that many routines take a (type, host
7855 address, target address) triple as arguments to represent a value.
7856 The host address, if non-null, is supposed to contain an internal
7857 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7858 target at the target address. */
14f9c5c9
AS
7859
7860/* Assuming that VAL0 represents a pointer value, the result of
7861 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7862 dynamic-sized types. */
14f9c5c9 7863
d2e4a39e
AS
7864struct value *
7865ada_value_ind (struct value *val0)
14f9c5c9 7866{
c48db5ca 7867 struct value *val = value_ind (val0);
5b4ee69b 7868
b50d69b5
JG
7869 if (ada_is_tagged_type (value_type (val), 0))
7870 val = ada_tag_value_at_base_address (val);
7871
4c4b4cd2 7872 return ada_to_fixed_value (val);
14f9c5c9
AS
7873}
7874
7875/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7876 qualifiers on VAL0. */
7877
d2e4a39e
AS
7878static struct value *
7879ada_coerce_ref (struct value *val0)
7880{
df407dfe 7881 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7882 {
7883 struct value *val = val0;
5b4ee69b 7884
994b9211 7885 val = coerce_ref (val);
b50d69b5
JG
7886
7887 if (ada_is_tagged_type (value_type (val), 0))
7888 val = ada_tag_value_at_base_address (val);
7889
4c4b4cd2 7890 return ada_to_fixed_value (val);
d2e4a39e
AS
7891 }
7892 else
14f9c5c9
AS
7893 return val0;
7894}
7895
7896/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7897 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7898
7899static unsigned int
ebf56fd3 7900align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7901{
7902 return (off + alignment - 1) & ~(alignment - 1);
7903}
7904
4c4b4cd2 7905/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7906
7907static unsigned int
ebf56fd3 7908field_alignment (struct type *type, int f)
14f9c5c9 7909{
d2e4a39e 7910 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7911 int len;
14f9c5c9
AS
7912 int align_offset;
7913
64a1bf19
JB
7914 /* The field name should never be null, unless the debugging information
7915 is somehow malformed. In this case, we assume the field does not
7916 require any alignment. */
7917 if (name == NULL)
7918 return 1;
7919
7920 len = strlen (name);
7921
4c4b4cd2
PH
7922 if (!isdigit (name[len - 1]))
7923 return 1;
14f9c5c9 7924
d2e4a39e 7925 if (isdigit (name[len - 2]))
14f9c5c9
AS
7926 align_offset = len - 2;
7927 else
7928 align_offset = len - 1;
7929
61012eef 7930 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7931 return TARGET_CHAR_BIT;
7932
4c4b4cd2
PH
7933 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7934}
7935
852dff6c 7936/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7937
852dff6c
JB
7938static struct symbol *
7939ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7940{
7941 struct symbol *sym;
7942
7943 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7944 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7945 return sym;
7946
4186eb54
KS
7947 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7948 return sym;
14f9c5c9
AS
7949}
7950
dddfab26
UW
7951/* Find a type named NAME. Ignores ambiguity. This routine will look
7952 solely for types defined by debug info, it will not search the GDB
7953 primitive types. */
4c4b4cd2 7954
852dff6c 7955static struct type *
ebf56fd3 7956ada_find_any_type (const char *name)
14f9c5c9 7957{
852dff6c 7958 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7959
14f9c5c9 7960 if (sym != NULL)
dddfab26 7961 return SYMBOL_TYPE (sym);
14f9c5c9 7962
dddfab26 7963 return NULL;
14f9c5c9
AS
7964}
7965
739593e0
JB
7966/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7967 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7968 symbol, in which case it is returned. Otherwise, this looks for
7969 symbols whose name is that of NAME_SYM suffixed with "___XR".
7970 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7971
7972struct symbol *
270140bd 7973ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7974{
739593e0 7975 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7976 struct symbol *sym;
7977
739593e0
JB
7978 if (strstr (name, "___XR") != NULL)
7979 return name_sym;
7980
aeb5907d
JB
7981 sym = find_old_style_renaming_symbol (name, block);
7982
7983 if (sym != NULL)
7984 return sym;
7985
0963b4bd 7986 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7987 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7988 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7989 return sym;
7990 else
7991 return NULL;
7992}
7993
7994static struct symbol *
270140bd 7995find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7996{
7f0df278 7997 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7998 char *rename;
7999
8000 if (function_sym != NULL)
8001 {
8002 /* If the symbol is defined inside a function, NAME is not fully
8003 qualified. This means we need to prepend the function name
8004 as well as adding the ``___XR'' suffix to build the name of
8005 the associated renaming symbol. */
0d5cff50 8006 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8007 /* Function names sometimes contain suffixes used
8008 for instance to qualify nested subprograms. When building
8009 the XR type name, we need to make sure that this suffix is
8010 not included. So do not include any suffix in the function
8011 name length below. */
69fadcdf 8012 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8013 const int rename_len = function_name_len + 2 /* "__" */
8014 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8015
529cad9c 8016 /* Strip the suffix if necessary. */
69fadcdf
JB
8017 ada_remove_trailing_digits (function_name, &function_name_len);
8018 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8019 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8020
4c4b4cd2
PH
8021 /* Library-level functions are a special case, as GNAT adds
8022 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8023 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8024 have this prefix, so we need to skip this prefix if present. */
8025 if (function_name_len > 5 /* "_ada_" */
8026 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8027 {
8028 function_name += 5;
8029 function_name_len -= 5;
8030 }
4c4b4cd2
PH
8031
8032 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8033 strncpy (rename, function_name, function_name_len);
8034 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8035 "__%s___XR", name);
4c4b4cd2
PH
8036 }
8037 else
8038 {
8039 const int rename_len = strlen (name) + 6;
5b4ee69b 8040
4c4b4cd2 8041 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8042 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8043 }
8044
852dff6c 8045 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8046}
8047
14f9c5c9 8048/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8049 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8050 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8051 otherwise return 0. */
8052
14f9c5c9 8053int
d2e4a39e 8054ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8055{
8056 if (type1 == NULL)
8057 return 1;
8058 else if (type0 == NULL)
8059 return 0;
8060 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8061 return 1;
8062 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8063 return 0;
4c4b4cd2
PH
8064 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8065 return 1;
ad82864c 8066 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8067 return 1;
4c4b4cd2
PH
8068 else if (ada_is_array_descriptor_type (type0)
8069 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8070 return 1;
aeb5907d
JB
8071 else
8072 {
a737d952
TT
8073 const char *type0_name = TYPE_NAME (type0);
8074 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8075
8076 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8077 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8078 return 1;
8079 }
14f9c5c9
AS
8080 return 0;
8081}
8082
e86ca25f
TT
8083/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8084 null. */
4c4b4cd2 8085
0d5cff50 8086const char *
d2e4a39e 8087ada_type_name (struct type *type)
14f9c5c9 8088{
d2e4a39e 8089 if (type == NULL)
14f9c5c9 8090 return NULL;
e86ca25f 8091 return TYPE_NAME (type);
14f9c5c9
AS
8092}
8093
b4ba55a1
JB
8094/* Search the list of "descriptive" types associated to TYPE for a type
8095 whose name is NAME. */
8096
8097static struct type *
8098find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8099{
931e5bc3 8100 struct type *result, *tmp;
b4ba55a1 8101
c6044dd1
JB
8102 if (ada_ignore_descriptive_types_p)
8103 return NULL;
8104
b4ba55a1
JB
8105 /* If there no descriptive-type info, then there is no parallel type
8106 to be found. */
8107 if (!HAVE_GNAT_AUX_INFO (type))
8108 return NULL;
8109
8110 result = TYPE_DESCRIPTIVE_TYPE (type);
8111 while (result != NULL)
8112 {
0d5cff50 8113 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8114
8115 if (result_name == NULL)
8116 {
8117 warning (_("unexpected null name on descriptive type"));
8118 return NULL;
8119 }
8120
8121 /* If the names match, stop. */
8122 if (strcmp (result_name, name) == 0)
8123 break;
8124
8125 /* Otherwise, look at the next item on the list, if any. */
8126 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8127 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8128 else
8129 tmp = NULL;
8130
8131 /* If not found either, try after having resolved the typedef. */
8132 if (tmp != NULL)
8133 result = tmp;
b4ba55a1 8134 else
931e5bc3 8135 {
f168693b 8136 result = check_typedef (result);
931e5bc3
JG
8137 if (HAVE_GNAT_AUX_INFO (result))
8138 result = TYPE_DESCRIPTIVE_TYPE (result);
8139 else
8140 result = NULL;
8141 }
b4ba55a1
JB
8142 }
8143
8144 /* If we didn't find a match, see whether this is a packed array. With
8145 older compilers, the descriptive type information is either absent or
8146 irrelevant when it comes to packed arrays so the above lookup fails.
8147 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8148 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8149 return ada_find_any_type (name);
8150
8151 return result;
8152}
8153
8154/* Find a parallel type to TYPE with the specified NAME, using the
8155 descriptive type taken from the debugging information, if available,
8156 and otherwise using the (slower) name-based method. */
8157
8158static struct type *
8159ada_find_parallel_type_with_name (struct type *type, const char *name)
8160{
8161 struct type *result = NULL;
8162
8163 if (HAVE_GNAT_AUX_INFO (type))
8164 result = find_parallel_type_by_descriptive_type (type, name);
8165 else
8166 result = ada_find_any_type (name);
8167
8168 return result;
8169}
8170
8171/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8172 SUFFIX to the name of TYPE. */
14f9c5c9 8173
d2e4a39e 8174struct type *
ebf56fd3 8175ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8176{
0d5cff50 8177 char *name;
fe978cb0 8178 const char *type_name = ada_type_name (type);
14f9c5c9 8179 int len;
d2e4a39e 8180
fe978cb0 8181 if (type_name == NULL)
14f9c5c9
AS
8182 return NULL;
8183
fe978cb0 8184 len = strlen (type_name);
14f9c5c9 8185
b4ba55a1 8186 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8187
fe978cb0 8188 strcpy (name, type_name);
14f9c5c9
AS
8189 strcpy (name + len, suffix);
8190
b4ba55a1 8191 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8192}
8193
14f9c5c9 8194/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8195 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8196
d2e4a39e
AS
8197static struct type *
8198dynamic_template_type (struct type *type)
14f9c5c9 8199{
61ee279c 8200 type = ada_check_typedef (type);
14f9c5c9
AS
8201
8202 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8203 || ada_type_name (type) == NULL)
14f9c5c9 8204 return NULL;
d2e4a39e 8205 else
14f9c5c9
AS
8206 {
8207 int len = strlen (ada_type_name (type));
5b4ee69b 8208
4c4b4cd2
PH
8209 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8210 return type;
14f9c5c9 8211 else
4c4b4cd2 8212 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8213 }
8214}
8215
8216/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8217 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8218
d2e4a39e
AS
8219static int
8220is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8221{
8222 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8223
d2e4a39e 8224 return name != NULL
14f9c5c9
AS
8225 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8226 && strstr (name, "___XVL") != NULL;
8227}
8228
4c4b4cd2
PH
8229/* The index of the variant field of TYPE, or -1 if TYPE does not
8230 represent a variant record type. */
14f9c5c9 8231
d2e4a39e 8232static int
4c4b4cd2 8233variant_field_index (struct type *type)
14f9c5c9
AS
8234{
8235 int f;
8236
4c4b4cd2
PH
8237 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8238 return -1;
8239
8240 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8241 {
8242 if (ada_is_variant_part (type, f))
8243 return f;
8244 }
8245 return -1;
14f9c5c9
AS
8246}
8247
4c4b4cd2
PH
8248/* A record type with no fields. */
8249
d2e4a39e 8250static struct type *
fe978cb0 8251empty_record (struct type *templ)
14f9c5c9 8252{
fe978cb0 8253 struct type *type = alloc_type_copy (templ);
5b4ee69b 8254
14f9c5c9
AS
8255 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8256 TYPE_NFIELDS (type) = 0;
8257 TYPE_FIELDS (type) = NULL;
b1f33ddd 8258 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8259 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8260 TYPE_LENGTH (type) = 0;
8261 return type;
8262}
8263
8264/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8265 the value of type TYPE at VALADDR or ADDRESS (see comments at
8266 the beginning of this section) VAL according to GNAT conventions.
8267 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8268 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8269 an outer-level type (i.e., as opposed to a branch of a variant.) A
8270 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8271 of the variant.
14f9c5c9 8272
4c4b4cd2
PH
8273 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8274 length are not statically known are discarded. As a consequence,
8275 VALADDR, ADDRESS and DVAL0 are ignored.
8276
8277 NOTE: Limitations: For now, we assume that dynamic fields and
8278 variants occupy whole numbers of bytes. However, they need not be
8279 byte-aligned. */
8280
8281struct type *
10a2c479 8282ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8283 const gdb_byte *valaddr,
4c4b4cd2
PH
8284 CORE_ADDR address, struct value *dval0,
8285 int keep_dynamic_fields)
14f9c5c9 8286{
d2e4a39e
AS
8287 struct value *mark = value_mark ();
8288 struct value *dval;
8289 struct type *rtype;
14f9c5c9 8290 int nfields, bit_len;
4c4b4cd2 8291 int variant_field;
14f9c5c9 8292 long off;
d94e4f4f 8293 int fld_bit_len;
14f9c5c9
AS
8294 int f;
8295
4c4b4cd2
PH
8296 /* Compute the number of fields in this record type that are going
8297 to be processed: unless keep_dynamic_fields, this includes only
8298 fields whose position and length are static will be processed. */
8299 if (keep_dynamic_fields)
8300 nfields = TYPE_NFIELDS (type);
8301 else
8302 {
8303 nfields = 0;
76a01679 8304 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8305 && !ada_is_variant_part (type, nfields)
8306 && !is_dynamic_field (type, nfields))
8307 nfields++;
8308 }
8309
e9bb382b 8310 rtype = alloc_type_copy (type);
14f9c5c9
AS
8311 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8312 INIT_CPLUS_SPECIFIC (rtype);
8313 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8314 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8315 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8316 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8317 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8318 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8319
d2e4a39e
AS
8320 off = 0;
8321 bit_len = 0;
4c4b4cd2
PH
8322 variant_field = -1;
8323
14f9c5c9
AS
8324 for (f = 0; f < nfields; f += 1)
8325 {
6c038f32
PH
8326 off = align_value (off, field_alignment (type, f))
8327 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8328 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8329 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8330
d2e4a39e 8331 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8332 {
8333 variant_field = f;
d94e4f4f 8334 fld_bit_len = 0;
4c4b4cd2 8335 }
14f9c5c9 8336 else if (is_dynamic_field (type, f))
4c4b4cd2 8337 {
284614f0
JB
8338 const gdb_byte *field_valaddr = valaddr;
8339 CORE_ADDR field_address = address;
8340 struct type *field_type =
8341 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8342
4c4b4cd2 8343 if (dval0 == NULL)
b5304971
JG
8344 {
8345 /* rtype's length is computed based on the run-time
8346 value of discriminants. If the discriminants are not
8347 initialized, the type size may be completely bogus and
0963b4bd 8348 GDB may fail to allocate a value for it. So check the
b5304971 8349 size first before creating the value. */
c1b5a1a6 8350 ada_ensure_varsize_limit (rtype);
012370f6
TT
8351 /* Using plain value_from_contents_and_address here
8352 causes problems because we will end up trying to
8353 resolve a type that is currently being
8354 constructed. */
8355 dval = value_from_contents_and_address_unresolved (rtype,
8356 valaddr,
8357 address);
9f1f738a 8358 rtype = value_type (dval);
b5304971 8359 }
4c4b4cd2
PH
8360 else
8361 dval = dval0;
8362
284614f0
JB
8363 /* If the type referenced by this field is an aligner type, we need
8364 to unwrap that aligner type, because its size might not be set.
8365 Keeping the aligner type would cause us to compute the wrong
8366 size for this field, impacting the offset of the all the fields
8367 that follow this one. */
8368 if (ada_is_aligner_type (field_type))
8369 {
8370 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8371
8372 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8373 field_address = cond_offset_target (field_address, field_offset);
8374 field_type = ada_aligned_type (field_type);
8375 }
8376
8377 field_valaddr = cond_offset_host (field_valaddr,
8378 off / TARGET_CHAR_BIT);
8379 field_address = cond_offset_target (field_address,
8380 off / TARGET_CHAR_BIT);
8381
8382 /* Get the fixed type of the field. Note that, in this case,
8383 we do not want to get the real type out of the tag: if
8384 the current field is the parent part of a tagged record,
8385 we will get the tag of the object. Clearly wrong: the real
8386 type of the parent is not the real type of the child. We
8387 would end up in an infinite loop. */
8388 field_type = ada_get_base_type (field_type);
8389 field_type = ada_to_fixed_type (field_type, field_valaddr,
8390 field_address, dval, 0);
27f2a97b
JB
8391 /* If the field size is already larger than the maximum
8392 object size, then the record itself will necessarily
8393 be larger than the maximum object size. We need to make
8394 this check now, because the size might be so ridiculously
8395 large (due to an uninitialized variable in the inferior)
8396 that it would cause an overflow when adding it to the
8397 record size. */
c1b5a1a6 8398 ada_ensure_varsize_limit (field_type);
284614f0
JB
8399
8400 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8401 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8402 /* The multiplication can potentially overflow. But because
8403 the field length has been size-checked just above, and
8404 assuming that the maximum size is a reasonable value,
8405 an overflow should not happen in practice. So rather than
8406 adding overflow recovery code to this already complex code,
8407 we just assume that it's not going to happen. */
d94e4f4f 8408 fld_bit_len =
4c4b4cd2
PH
8409 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8410 }
14f9c5c9 8411 else
4c4b4cd2 8412 {
5ded5331
JB
8413 /* Note: If this field's type is a typedef, it is important
8414 to preserve the typedef layer.
8415
8416 Otherwise, we might be transforming a typedef to a fat
8417 pointer (encoding a pointer to an unconstrained array),
8418 into a basic fat pointer (encoding an unconstrained
8419 array). As both types are implemented using the same
8420 structure, the typedef is the only clue which allows us
8421 to distinguish between the two options. Stripping it
8422 would prevent us from printing this field appropriately. */
8423 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8424 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8425 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8426 fld_bit_len =
4c4b4cd2
PH
8427 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8428 else
5ded5331
JB
8429 {
8430 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8431
8432 /* We need to be careful of typedefs when computing
8433 the length of our field. If this is a typedef,
8434 get the length of the target type, not the length
8435 of the typedef. */
8436 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8437 field_type = ada_typedef_target_type (field_type);
8438
8439 fld_bit_len =
8440 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8441 }
4c4b4cd2 8442 }
14f9c5c9 8443 if (off + fld_bit_len > bit_len)
4c4b4cd2 8444 bit_len = off + fld_bit_len;
d94e4f4f 8445 off += fld_bit_len;
4c4b4cd2
PH
8446 TYPE_LENGTH (rtype) =
8447 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8448 }
4c4b4cd2
PH
8449
8450 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8451 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8452 the record. This can happen in the presence of representation
8453 clauses. */
8454 if (variant_field >= 0)
8455 {
8456 struct type *branch_type;
8457
8458 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8459
8460 if (dval0 == NULL)
9f1f738a 8461 {
012370f6
TT
8462 /* Using plain value_from_contents_and_address here causes
8463 problems because we will end up trying to resolve a type
8464 that is currently being constructed. */
8465 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8466 address);
9f1f738a
SA
8467 rtype = value_type (dval);
8468 }
4c4b4cd2
PH
8469 else
8470 dval = dval0;
8471
8472 branch_type =
8473 to_fixed_variant_branch_type
8474 (TYPE_FIELD_TYPE (type, variant_field),
8475 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8476 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8477 if (branch_type == NULL)
8478 {
8479 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8480 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8481 TYPE_NFIELDS (rtype) -= 1;
8482 }
8483 else
8484 {
8485 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8486 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8487 fld_bit_len =
8488 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8489 TARGET_CHAR_BIT;
8490 if (off + fld_bit_len > bit_len)
8491 bit_len = off + fld_bit_len;
8492 TYPE_LENGTH (rtype) =
8493 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8494 }
8495 }
8496
714e53ab
PH
8497 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8498 should contain the alignment of that record, which should be a strictly
8499 positive value. If null or negative, then something is wrong, most
8500 probably in the debug info. In that case, we don't round up the size
0963b4bd 8501 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8502 the current RTYPE length might be good enough for our purposes. */
8503 if (TYPE_LENGTH (type) <= 0)
8504 {
323e0a4a
AC
8505 if (TYPE_NAME (rtype))
8506 warning (_("Invalid type size for `%s' detected: %d."),
8507 TYPE_NAME (rtype), TYPE_LENGTH (type));
8508 else
8509 warning (_("Invalid type size for <unnamed> detected: %d."),
8510 TYPE_LENGTH (type));
714e53ab
PH
8511 }
8512 else
8513 {
8514 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8515 TYPE_LENGTH (type));
8516 }
14f9c5c9
AS
8517
8518 value_free_to_mark (mark);
d2e4a39e 8519 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8520 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8521 return rtype;
8522}
8523
4c4b4cd2
PH
8524/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8525 of 1. */
14f9c5c9 8526
d2e4a39e 8527static struct type *
fc1a4b47 8528template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8529 CORE_ADDR address, struct value *dval0)
8530{
8531 return ada_template_to_fixed_record_type_1 (type, valaddr,
8532 address, dval0, 1);
8533}
8534
8535/* An ordinary record type in which ___XVL-convention fields and
8536 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8537 static approximations, containing all possible fields. Uses
8538 no runtime values. Useless for use in values, but that's OK,
8539 since the results are used only for type determinations. Works on both
8540 structs and unions. Representation note: to save space, we memorize
8541 the result of this function in the TYPE_TARGET_TYPE of the
8542 template type. */
8543
8544static struct type *
8545template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8546{
8547 struct type *type;
8548 int nfields;
8549 int f;
8550
9e195661
PMR
8551 /* No need no do anything if the input type is already fixed. */
8552 if (TYPE_FIXED_INSTANCE (type0))
8553 return type0;
8554
8555 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8556 if (TYPE_TARGET_TYPE (type0) != NULL)
8557 return TYPE_TARGET_TYPE (type0);
8558
9e195661 8559 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8560 type = type0;
9e195661
PMR
8561 nfields = TYPE_NFIELDS (type0);
8562
8563 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8564 recompute all over next time. */
8565 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8566
8567 for (f = 0; f < nfields; f += 1)
8568 {
460efde1 8569 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8570 struct type *new_type;
14f9c5c9 8571
4c4b4cd2 8572 if (is_dynamic_field (type0, f))
460efde1
JB
8573 {
8574 field_type = ada_check_typedef (field_type);
8575 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8576 }
14f9c5c9 8577 else
f192137b 8578 new_type = static_unwrap_type (field_type);
9e195661
PMR
8579
8580 if (new_type != field_type)
8581 {
8582 /* Clone TYPE0 only the first time we get a new field type. */
8583 if (type == type0)
8584 {
8585 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8586 TYPE_CODE (type) = TYPE_CODE (type0);
8587 INIT_CPLUS_SPECIFIC (type);
8588 TYPE_NFIELDS (type) = nfields;
8589 TYPE_FIELDS (type) = (struct field *)
8590 TYPE_ALLOC (type, nfields * sizeof (struct field));
8591 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8592 sizeof (struct field) * nfields);
8593 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8594 TYPE_FIXED_INSTANCE (type) = 1;
8595 TYPE_LENGTH (type) = 0;
8596 }
8597 TYPE_FIELD_TYPE (type, f) = new_type;
8598 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8599 }
14f9c5c9 8600 }
9e195661 8601
14f9c5c9
AS
8602 return type;
8603}
8604
4c4b4cd2 8605/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8606 whose address in memory is ADDRESS, returns a revision of TYPE,
8607 which should be a non-dynamic-sized record, in which the variant
8608 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8609 for discriminant values in DVAL0, which can be NULL if the record
8610 contains the necessary discriminant values. */
8611
d2e4a39e 8612static struct type *
fc1a4b47 8613to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8614 CORE_ADDR address, struct value *dval0)
14f9c5c9 8615{
d2e4a39e 8616 struct value *mark = value_mark ();
4c4b4cd2 8617 struct value *dval;
d2e4a39e 8618 struct type *rtype;
14f9c5c9
AS
8619 struct type *branch_type;
8620 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8621 int variant_field = variant_field_index (type);
14f9c5c9 8622
4c4b4cd2 8623 if (variant_field == -1)
14f9c5c9
AS
8624 return type;
8625
4c4b4cd2 8626 if (dval0 == NULL)
9f1f738a
SA
8627 {
8628 dval = value_from_contents_and_address (type, valaddr, address);
8629 type = value_type (dval);
8630 }
4c4b4cd2
PH
8631 else
8632 dval = dval0;
8633
e9bb382b 8634 rtype = alloc_type_copy (type);
14f9c5c9 8635 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8636 INIT_CPLUS_SPECIFIC (rtype);
8637 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8638 TYPE_FIELDS (rtype) =
8639 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8640 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8641 sizeof (struct field) * nfields);
14f9c5c9 8642 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8643 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8644 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8645
4c4b4cd2
PH
8646 branch_type = to_fixed_variant_branch_type
8647 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8648 cond_offset_host (valaddr,
4c4b4cd2
PH
8649 TYPE_FIELD_BITPOS (type, variant_field)
8650 / TARGET_CHAR_BIT),
d2e4a39e 8651 cond_offset_target (address,
4c4b4cd2
PH
8652 TYPE_FIELD_BITPOS (type, variant_field)
8653 / TARGET_CHAR_BIT), dval);
d2e4a39e 8654 if (branch_type == NULL)
14f9c5c9 8655 {
4c4b4cd2 8656 int f;
5b4ee69b 8657
4c4b4cd2
PH
8658 for (f = variant_field + 1; f < nfields; f += 1)
8659 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8660 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8661 }
8662 else
8663 {
4c4b4cd2
PH
8664 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8665 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8666 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8667 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8668 }
4c4b4cd2 8669 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8670
4c4b4cd2 8671 value_free_to_mark (mark);
14f9c5c9
AS
8672 return rtype;
8673}
8674
8675/* An ordinary record type (with fixed-length fields) that describes
8676 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8677 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8678 should be in DVAL, a record value; it may be NULL if the object
8679 at ADDR itself contains any necessary discriminant values.
8680 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8681 values from the record are needed. Except in the case that DVAL,
8682 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8683 unchecked) is replaced by a particular branch of the variant.
8684
8685 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8686 is questionable and may be removed. It can arise during the
8687 processing of an unconstrained-array-of-record type where all the
8688 variant branches have exactly the same size. This is because in
8689 such cases, the compiler does not bother to use the XVS convention
8690 when encoding the record. I am currently dubious of this
8691 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8692
d2e4a39e 8693static struct type *
fc1a4b47 8694to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8695 CORE_ADDR address, struct value *dval)
14f9c5c9 8696{
d2e4a39e 8697 struct type *templ_type;
14f9c5c9 8698
876cecd0 8699 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8700 return type0;
8701
d2e4a39e 8702 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8703
8704 if (templ_type != NULL)
8705 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8706 else if (variant_field_index (type0) >= 0)
8707 {
8708 if (dval == NULL && valaddr == NULL && address == 0)
8709 return type0;
8710 return to_record_with_fixed_variant_part (type0, valaddr, address,
8711 dval);
8712 }
14f9c5c9
AS
8713 else
8714 {
876cecd0 8715 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8716 return type0;
8717 }
8718
8719}
8720
8721/* An ordinary record type (with fixed-length fields) that describes
8722 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8723 union type. Any necessary discriminants' values should be in DVAL,
8724 a record value. That is, this routine selects the appropriate
8725 branch of the union at ADDR according to the discriminant value
b1f33ddd 8726 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8727 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8728
d2e4a39e 8729static struct type *
fc1a4b47 8730to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8731 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8732{
8733 int which;
d2e4a39e
AS
8734 struct type *templ_type;
8735 struct type *var_type;
14f9c5c9
AS
8736
8737 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8738 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8739 else
14f9c5c9
AS
8740 var_type = var_type0;
8741
8742 templ_type = ada_find_parallel_type (var_type, "___XVU");
8743
8744 if (templ_type != NULL)
8745 var_type = templ_type;
8746
b1f33ddd
JB
8747 if (is_unchecked_variant (var_type, value_type (dval)))
8748 return var_type0;
d2e4a39e
AS
8749 which =
8750 ada_which_variant_applies (var_type,
0fd88904 8751 value_type (dval), value_contents (dval));
14f9c5c9
AS
8752
8753 if (which < 0)
e9bb382b 8754 return empty_record (var_type);
14f9c5c9 8755 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8756 return to_fixed_record_type
d2e4a39e
AS
8757 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8758 valaddr, address, dval);
4c4b4cd2 8759 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8760 return
8761 to_fixed_record_type
8762 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8763 else
8764 return TYPE_FIELD_TYPE (var_type, which);
8765}
8766
8908fca5
JB
8767/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8768 ENCODING_TYPE, a type following the GNAT conventions for discrete
8769 type encodings, only carries redundant information. */
8770
8771static int
8772ada_is_redundant_range_encoding (struct type *range_type,
8773 struct type *encoding_type)
8774{
108d56a4 8775 const char *bounds_str;
8908fca5
JB
8776 int n;
8777 LONGEST lo, hi;
8778
8779 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8780
005e2509
JB
8781 if (TYPE_CODE (get_base_type (range_type))
8782 != TYPE_CODE (get_base_type (encoding_type)))
8783 {
8784 /* The compiler probably used a simple base type to describe
8785 the range type instead of the range's actual base type,
8786 expecting us to get the real base type from the encoding
8787 anyway. In this situation, the encoding cannot be ignored
8788 as redundant. */
8789 return 0;
8790 }
8791
8908fca5
JB
8792 if (is_dynamic_type (range_type))
8793 return 0;
8794
8795 if (TYPE_NAME (encoding_type) == NULL)
8796 return 0;
8797
8798 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8799 if (bounds_str == NULL)
8800 return 0;
8801
8802 n = 8; /* Skip "___XDLU_". */
8803 if (!ada_scan_number (bounds_str, n, &lo, &n))
8804 return 0;
8805 if (TYPE_LOW_BOUND (range_type) != lo)
8806 return 0;
8807
8808 n += 2; /* Skip the "__" separator between the two bounds. */
8809 if (!ada_scan_number (bounds_str, n, &hi, &n))
8810 return 0;
8811 if (TYPE_HIGH_BOUND (range_type) != hi)
8812 return 0;
8813
8814 return 1;
8815}
8816
8817/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8818 a type following the GNAT encoding for describing array type
8819 indices, only carries redundant information. */
8820
8821static int
8822ada_is_redundant_index_type_desc (struct type *array_type,
8823 struct type *desc_type)
8824{
8825 struct type *this_layer = check_typedef (array_type);
8826 int i;
8827
8828 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8829 {
8830 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8831 TYPE_FIELD_TYPE (desc_type, i)))
8832 return 0;
8833 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8834 }
8835
8836 return 1;
8837}
8838
14f9c5c9
AS
8839/* Assuming that TYPE0 is an array type describing the type of a value
8840 at ADDR, and that DVAL describes a record containing any
8841 discriminants used in TYPE0, returns a type for the value that
8842 contains no dynamic components (that is, no components whose sizes
8843 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8844 true, gives an error message if the resulting type's size is over
4c4b4cd2 8845 varsize_limit. */
14f9c5c9 8846
d2e4a39e
AS
8847static struct type *
8848to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8849 int ignore_too_big)
14f9c5c9 8850{
d2e4a39e
AS
8851 struct type *index_type_desc;
8852 struct type *result;
ad82864c 8853 int constrained_packed_array_p;
931e5bc3 8854 static const char *xa_suffix = "___XA";
14f9c5c9 8855
b0dd7688 8856 type0 = ada_check_typedef (type0);
284614f0 8857 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8858 return type0;
14f9c5c9 8859
ad82864c
JB
8860 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8861 if (constrained_packed_array_p)
8862 type0 = decode_constrained_packed_array_type (type0);
284614f0 8863
931e5bc3
JG
8864 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8865
8866 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8867 encoding suffixed with 'P' may still be generated. If so,
8868 it should be used to find the XA type. */
8869
8870 if (index_type_desc == NULL)
8871 {
1da0522e 8872 const char *type_name = ada_type_name (type0);
931e5bc3 8873
1da0522e 8874 if (type_name != NULL)
931e5bc3 8875 {
1da0522e 8876 const int len = strlen (type_name);
931e5bc3
JG
8877 char *name = (char *) alloca (len + strlen (xa_suffix));
8878
1da0522e 8879 if (type_name[len - 1] == 'P')
931e5bc3 8880 {
1da0522e 8881 strcpy (name, type_name);
931e5bc3
JG
8882 strcpy (name + len - 1, xa_suffix);
8883 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8884 }
8885 }
8886 }
8887
28c85d6c 8888 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8889 if (index_type_desc != NULL
8890 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8891 {
8892 /* Ignore this ___XA parallel type, as it does not bring any
8893 useful information. This allows us to avoid creating fixed
8894 versions of the array's index types, which would be identical
8895 to the original ones. This, in turn, can also help avoid
8896 the creation of fixed versions of the array itself. */
8897 index_type_desc = NULL;
8898 }
8899
14f9c5c9
AS
8900 if (index_type_desc == NULL)
8901 {
61ee279c 8902 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8903
14f9c5c9 8904 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8905 depend on the contents of the array in properly constructed
8906 debugging data. */
529cad9c
PH
8907 /* Create a fixed version of the array element type.
8908 We're not providing the address of an element here,
e1d5a0d2 8909 and thus the actual object value cannot be inspected to do
529cad9c
PH
8910 the conversion. This should not be a problem, since arrays of
8911 unconstrained objects are not allowed. In particular, all
8912 the elements of an array of a tagged type should all be of
8913 the same type specified in the debugging info. No need to
8914 consult the object tag. */
1ed6ede0 8915 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8916
284614f0
JB
8917 /* Make sure we always create a new array type when dealing with
8918 packed array types, since we're going to fix-up the array
8919 type length and element bitsize a little further down. */
ad82864c 8920 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8921 result = type0;
14f9c5c9 8922 else
e9bb382b 8923 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8924 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8925 }
8926 else
8927 {
8928 int i;
8929 struct type *elt_type0;
8930
8931 elt_type0 = type0;
8932 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8933 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8934
8935 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8936 depend on the contents of the array in properly constructed
8937 debugging data. */
529cad9c
PH
8938 /* Create a fixed version of the array element type.
8939 We're not providing the address of an element here,
e1d5a0d2 8940 and thus the actual object value cannot be inspected to do
529cad9c
PH
8941 the conversion. This should not be a problem, since arrays of
8942 unconstrained objects are not allowed. In particular, all
8943 the elements of an array of a tagged type should all be of
8944 the same type specified in the debugging info. No need to
8945 consult the object tag. */
1ed6ede0
JB
8946 result =
8947 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8948
8949 elt_type0 = type0;
14f9c5c9 8950 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8951 {
8952 struct type *range_type =
28c85d6c 8953 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8954
e9bb382b 8955 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8956 result, range_type);
1ce677a4 8957 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8958 }
d2e4a39e 8959 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8960 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8961 }
8962
2e6fda7d
JB
8963 /* We want to preserve the type name. This can be useful when
8964 trying to get the type name of a value that has already been
8965 printed (for instance, if the user did "print VAR; whatis $". */
8966 TYPE_NAME (result) = TYPE_NAME (type0);
8967
ad82864c 8968 if (constrained_packed_array_p)
284614f0
JB
8969 {
8970 /* So far, the resulting type has been created as if the original
8971 type was a regular (non-packed) array type. As a result, the
8972 bitsize of the array elements needs to be set again, and the array
8973 length needs to be recomputed based on that bitsize. */
8974 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8975 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8976
8977 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8978 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8979 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8980 TYPE_LENGTH (result)++;
8981 }
8982
876cecd0 8983 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8984 return result;
d2e4a39e 8985}
14f9c5c9
AS
8986
8987
8988/* A standard type (containing no dynamically sized components)
8989 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8990 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8991 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8992 ADDRESS or in VALADDR contains these discriminants.
8993
1ed6ede0
JB
8994 If CHECK_TAG is not null, in the case of tagged types, this function
8995 attempts to locate the object's tag and use it to compute the actual
8996 type. However, when ADDRESS is null, we cannot use it to determine the
8997 location of the tag, and therefore compute the tagged type's actual type.
8998 So we return the tagged type without consulting the tag. */
529cad9c 8999
f192137b
JB
9000static struct type *
9001ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9002 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9003{
61ee279c 9004 type = ada_check_typedef (type);
d2e4a39e
AS
9005 switch (TYPE_CODE (type))
9006 {
9007 default:
14f9c5c9 9008 return type;
d2e4a39e 9009 case TYPE_CODE_STRUCT:
4c4b4cd2 9010 {
76a01679 9011 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9012 struct type *fixed_record_type =
9013 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9014
529cad9c
PH
9015 /* If STATIC_TYPE is a tagged type and we know the object's address,
9016 then we can determine its tag, and compute the object's actual
0963b4bd 9017 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9018 type (the parent part of the record may have dynamic fields
9019 and the way the location of _tag is expressed may depend on
9020 them). */
529cad9c 9021
1ed6ede0 9022 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9023 {
b50d69b5
JG
9024 struct value *tag =
9025 value_tag_from_contents_and_address
9026 (fixed_record_type,
9027 valaddr,
9028 address);
9029 struct type *real_type = type_from_tag (tag);
9030 struct value *obj =
9031 value_from_contents_and_address (fixed_record_type,
9032 valaddr,
9033 address);
9f1f738a 9034 fixed_record_type = value_type (obj);
76a01679 9035 if (real_type != NULL)
b50d69b5
JG
9036 return to_fixed_record_type
9037 (real_type, NULL,
9038 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9039 }
4af88198
JB
9040
9041 /* Check to see if there is a parallel ___XVZ variable.
9042 If there is, then it provides the actual size of our type. */
9043 else if (ada_type_name (fixed_record_type) != NULL)
9044 {
0d5cff50 9045 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9046 char *xvz_name
9047 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9048 bool xvz_found = false;
4af88198
JB
9049 LONGEST size;
9050
88c15c34 9051 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9052 TRY
9053 {
9054 xvz_found = get_int_var_value (xvz_name, size);
9055 }
9056 CATCH (except, RETURN_MASK_ERROR)
9057 {
9058 /* We found the variable, but somehow failed to read
9059 its value. Rethrow the same error, but with a little
9060 bit more information, to help the user understand
9061 what went wrong (Eg: the variable might have been
9062 optimized out). */
9063 throw_error (except.error,
9064 _("unable to read value of %s (%s)"),
9065 xvz_name, except.message);
9066 }
9067 END_CATCH
9068
9069 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9070 {
9071 fixed_record_type = copy_type (fixed_record_type);
9072 TYPE_LENGTH (fixed_record_type) = size;
9073
9074 /* The FIXED_RECORD_TYPE may have be a stub. We have
9075 observed this when the debugging info is STABS, and
9076 apparently it is something that is hard to fix.
9077
9078 In practice, we don't need the actual type definition
9079 at all, because the presence of the XVZ variable allows us
9080 to assume that there must be a XVS type as well, which we
9081 should be able to use later, when we need the actual type
9082 definition.
9083
9084 In the meantime, pretend that the "fixed" type we are
9085 returning is NOT a stub, because this can cause trouble
9086 when using this type to create new types targeting it.
9087 Indeed, the associated creation routines often check
9088 whether the target type is a stub and will try to replace
0963b4bd 9089 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9090 might cause the new type to have the wrong size too.
9091 Consider the case of an array, for instance, where the size
9092 of the array is computed from the number of elements in
9093 our array multiplied by the size of its element. */
9094 TYPE_STUB (fixed_record_type) = 0;
9095 }
9096 }
1ed6ede0 9097 return fixed_record_type;
4c4b4cd2 9098 }
d2e4a39e 9099 case TYPE_CODE_ARRAY:
4c4b4cd2 9100 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9101 case TYPE_CODE_UNION:
9102 if (dval == NULL)
4c4b4cd2 9103 return type;
d2e4a39e 9104 else
4c4b4cd2 9105 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9106 }
14f9c5c9
AS
9107}
9108
f192137b
JB
9109/* The same as ada_to_fixed_type_1, except that it preserves the type
9110 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9111
9112 The typedef layer needs be preserved in order to differentiate between
9113 arrays and array pointers when both types are implemented using the same
9114 fat pointer. In the array pointer case, the pointer is encoded as
9115 a typedef of the pointer type. For instance, considering:
9116
9117 type String_Access is access String;
9118 S1 : String_Access := null;
9119
9120 To the debugger, S1 is defined as a typedef of type String. But
9121 to the user, it is a pointer. So if the user tries to print S1,
9122 we should not dereference the array, but print the array address
9123 instead.
9124
9125 If we didn't preserve the typedef layer, we would lose the fact that
9126 the type is to be presented as a pointer (needs de-reference before
9127 being printed). And we would also use the source-level type name. */
f192137b
JB
9128
9129struct type *
9130ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9131 CORE_ADDR address, struct value *dval, int check_tag)
9132
9133{
9134 struct type *fixed_type =
9135 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9136
96dbd2c1
JB
9137 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9138 then preserve the typedef layer.
9139
9140 Implementation note: We can only check the main-type portion of
9141 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9142 from TYPE now returns a type that has the same instance flags
9143 as TYPE. For instance, if TYPE is a "typedef const", and its
9144 target type is a "struct", then the typedef elimination will return
9145 a "const" version of the target type. See check_typedef for more
9146 details about how the typedef layer elimination is done.
9147
9148 brobecker/2010-11-19: It seems to me that the only case where it is
9149 useful to preserve the typedef layer is when dealing with fat pointers.
9150 Perhaps, we could add a check for that and preserve the typedef layer
9151 only in that situation. But this seems unecessary so far, probably
9152 because we call check_typedef/ada_check_typedef pretty much everywhere.
9153 */
f192137b 9154 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9155 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9156 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9157 return type;
9158
9159 return fixed_type;
9160}
9161
14f9c5c9 9162/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9163 TYPE0, but based on no runtime data. */
14f9c5c9 9164
d2e4a39e
AS
9165static struct type *
9166to_static_fixed_type (struct type *type0)
14f9c5c9 9167{
d2e4a39e 9168 struct type *type;
14f9c5c9
AS
9169
9170 if (type0 == NULL)
9171 return NULL;
9172
876cecd0 9173 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9174 return type0;
9175
61ee279c 9176 type0 = ada_check_typedef (type0);
d2e4a39e 9177
14f9c5c9
AS
9178 switch (TYPE_CODE (type0))
9179 {
9180 default:
9181 return type0;
9182 case TYPE_CODE_STRUCT:
9183 type = dynamic_template_type (type0);
d2e4a39e 9184 if (type != NULL)
4c4b4cd2
PH
9185 return template_to_static_fixed_type (type);
9186 else
9187 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9188 case TYPE_CODE_UNION:
9189 type = ada_find_parallel_type (type0, "___XVU");
9190 if (type != NULL)
4c4b4cd2
PH
9191 return template_to_static_fixed_type (type);
9192 else
9193 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9194 }
9195}
9196
4c4b4cd2
PH
9197/* A static approximation of TYPE with all type wrappers removed. */
9198
d2e4a39e
AS
9199static struct type *
9200static_unwrap_type (struct type *type)
14f9c5c9
AS
9201{
9202 if (ada_is_aligner_type (type))
9203 {
61ee279c 9204 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9205 if (ada_type_name (type1) == NULL)
4c4b4cd2 9206 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9207
9208 return static_unwrap_type (type1);
9209 }
d2e4a39e 9210 else
14f9c5c9 9211 {
d2e4a39e 9212 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9213
d2e4a39e 9214 if (raw_real_type == type)
4c4b4cd2 9215 return type;
14f9c5c9 9216 else
4c4b4cd2 9217 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9218 }
9219}
9220
9221/* In some cases, incomplete and private types require
4c4b4cd2 9222 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9223 type Foo;
9224 type FooP is access Foo;
9225 V: FooP;
9226 type Foo is array ...;
4c4b4cd2 9227 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9228 cross-references to such types, we instead substitute for FooP a
9229 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9230 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9231
9232/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9233 exists, otherwise TYPE. */
9234
d2e4a39e 9235struct type *
61ee279c 9236ada_check_typedef (struct type *type)
14f9c5c9 9237{
727e3d2e
JB
9238 if (type == NULL)
9239 return NULL;
9240
720d1a40
JB
9241 /* If our type is a typedef type of a fat pointer, then we're done.
9242 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9243 what allows us to distinguish between fat pointers that represent
9244 array types, and fat pointers that represent array access types
9245 (in both cases, the compiler implements them as fat pointers). */
9246 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9247 && is_thick_pntr (ada_typedef_target_type (type)))
9248 return type;
9249
f168693b 9250 type = check_typedef (type);
14f9c5c9 9251 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9252 || !TYPE_STUB (type)
e86ca25f 9253 || TYPE_NAME (type) == NULL)
14f9c5c9 9254 return type;
d2e4a39e 9255 else
14f9c5c9 9256 {
e86ca25f 9257 const char *name = TYPE_NAME (type);
d2e4a39e 9258 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9259
05e522ef
JB
9260 if (type1 == NULL)
9261 return type;
9262
9263 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9264 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9265 types, only for the typedef-to-array types). If that's the case,
9266 strip the typedef layer. */
9267 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9268 type1 = ada_check_typedef (type1);
9269
9270 return type1;
14f9c5c9
AS
9271 }
9272}
9273
9274/* A value representing the data at VALADDR/ADDRESS as described by
9275 type TYPE0, but with a standard (static-sized) type that correctly
9276 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9277 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9278 creation of struct values]. */
14f9c5c9 9279
4c4b4cd2
PH
9280static struct value *
9281ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9282 struct value *val0)
14f9c5c9 9283{
1ed6ede0 9284 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9285
14f9c5c9
AS
9286 if (type == type0 && val0 != NULL)
9287 return val0;
cc0e770c
JB
9288
9289 if (VALUE_LVAL (val0) != lval_memory)
9290 {
9291 /* Our value does not live in memory; it could be a convenience
9292 variable, for instance. Create a not_lval value using val0's
9293 contents. */
9294 return value_from_contents (type, value_contents (val0));
9295 }
9296
9297 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9298}
9299
9300/* A value representing VAL, but with a standard (static-sized) type
9301 that correctly describes it. Does not necessarily create a new
9302 value. */
9303
0c3acc09 9304struct value *
4c4b4cd2
PH
9305ada_to_fixed_value (struct value *val)
9306{
c48db5ca
JB
9307 val = unwrap_value (val);
9308 val = ada_to_fixed_value_create (value_type (val),
9309 value_address (val),
9310 val);
9311 return val;
14f9c5c9 9312}
d2e4a39e 9313\f
14f9c5c9 9314
14f9c5c9
AS
9315/* Attributes */
9316
4c4b4cd2
PH
9317/* Table mapping attribute numbers to names.
9318 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9319
d2e4a39e 9320static const char *attribute_names[] = {
14f9c5c9
AS
9321 "<?>",
9322
d2e4a39e 9323 "first",
14f9c5c9
AS
9324 "last",
9325 "length",
9326 "image",
14f9c5c9
AS
9327 "max",
9328 "min",
4c4b4cd2
PH
9329 "modulus",
9330 "pos",
9331 "size",
9332 "tag",
14f9c5c9 9333 "val",
14f9c5c9
AS
9334 0
9335};
9336
d2e4a39e 9337const char *
4c4b4cd2 9338ada_attribute_name (enum exp_opcode n)
14f9c5c9 9339{
4c4b4cd2
PH
9340 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9341 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9342 else
9343 return attribute_names[0];
9344}
9345
4c4b4cd2 9346/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9347
4c4b4cd2
PH
9348static LONGEST
9349pos_atr (struct value *arg)
14f9c5c9 9350{
24209737
PH
9351 struct value *val = coerce_ref (arg);
9352 struct type *type = value_type (val);
aa715135 9353 LONGEST result;
14f9c5c9 9354
d2e4a39e 9355 if (!discrete_type_p (type))
323e0a4a 9356 error (_("'POS only defined on discrete types"));
14f9c5c9 9357
aa715135
JG
9358 if (!discrete_position (type, value_as_long (val), &result))
9359 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9360
aa715135 9361 return result;
4c4b4cd2
PH
9362}
9363
9364static struct value *
3cb382c9 9365value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9366{
3cb382c9 9367 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9368}
9369
4c4b4cd2 9370/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9371
d2e4a39e
AS
9372static struct value *
9373value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9374{
d2e4a39e 9375 if (!discrete_type_p (type))
323e0a4a 9376 error (_("'VAL only defined on discrete types"));
df407dfe 9377 if (!integer_type_p (value_type (arg)))
323e0a4a 9378 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9379
9380 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9381 {
9382 long pos = value_as_long (arg);
5b4ee69b 9383
14f9c5c9 9384 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9385 error (_("argument to 'VAL out of range"));
14e75d8e 9386 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9387 }
9388 else
9389 return value_from_longest (type, value_as_long (arg));
9390}
14f9c5c9 9391\f
d2e4a39e 9392
4c4b4cd2 9393 /* Evaluation */
14f9c5c9 9394
4c4b4cd2
PH
9395/* True if TYPE appears to be an Ada character type.
9396 [At the moment, this is true only for Character and Wide_Character;
9397 It is a heuristic test that could stand improvement]. */
14f9c5c9 9398
d2e4a39e
AS
9399int
9400ada_is_character_type (struct type *type)
14f9c5c9 9401{
7b9f71f2
JB
9402 const char *name;
9403
9404 /* If the type code says it's a character, then assume it really is,
9405 and don't check any further. */
9406 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9407 return 1;
9408
9409 /* Otherwise, assume it's a character type iff it is a discrete type
9410 with a known character type name. */
9411 name = ada_type_name (type);
9412 return (name != NULL
9413 && (TYPE_CODE (type) == TYPE_CODE_INT
9414 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9415 && (strcmp (name, "character") == 0
9416 || strcmp (name, "wide_character") == 0
5a517ebd 9417 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9418 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9419}
9420
4c4b4cd2 9421/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9422
9423int
ebf56fd3 9424ada_is_string_type (struct type *type)
14f9c5c9 9425{
61ee279c 9426 type = ada_check_typedef (type);
d2e4a39e 9427 if (type != NULL
14f9c5c9 9428 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9429 && (ada_is_simple_array_type (type)
9430 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9431 && ada_array_arity (type) == 1)
9432 {
9433 struct type *elttype = ada_array_element_type (type, 1);
9434
9435 return ada_is_character_type (elttype);
9436 }
d2e4a39e 9437 else
14f9c5c9
AS
9438 return 0;
9439}
9440
5bf03f13
JB
9441/* The compiler sometimes provides a parallel XVS type for a given
9442 PAD type. Normally, it is safe to follow the PAD type directly,
9443 but older versions of the compiler have a bug that causes the offset
9444 of its "F" field to be wrong. Following that field in that case
9445 would lead to incorrect results, but this can be worked around
9446 by ignoring the PAD type and using the associated XVS type instead.
9447
9448 Set to True if the debugger should trust the contents of PAD types.
9449 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9450static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9451
9452/* True if TYPE is a struct type introduced by the compiler to force the
9453 alignment of a value. Such types have a single field with a
4c4b4cd2 9454 distinctive name. */
14f9c5c9
AS
9455
9456int
ebf56fd3 9457ada_is_aligner_type (struct type *type)
14f9c5c9 9458{
61ee279c 9459 type = ada_check_typedef (type);
714e53ab 9460
5bf03f13 9461 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9462 return 0;
9463
14f9c5c9 9464 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9465 && TYPE_NFIELDS (type) == 1
9466 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9467}
9468
9469/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9470 the parallel type. */
14f9c5c9 9471
d2e4a39e
AS
9472struct type *
9473ada_get_base_type (struct type *raw_type)
14f9c5c9 9474{
d2e4a39e
AS
9475 struct type *real_type_namer;
9476 struct type *raw_real_type;
14f9c5c9
AS
9477
9478 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9479 return raw_type;
9480
284614f0
JB
9481 if (ada_is_aligner_type (raw_type))
9482 /* The encoding specifies that we should always use the aligner type.
9483 So, even if this aligner type has an associated XVS type, we should
9484 simply ignore it.
9485
9486 According to the compiler gurus, an XVS type parallel to an aligner
9487 type may exist because of a stabs limitation. In stabs, aligner
9488 types are empty because the field has a variable-sized type, and
9489 thus cannot actually be used as an aligner type. As a result,
9490 we need the associated parallel XVS type to decode the type.
9491 Since the policy in the compiler is to not change the internal
9492 representation based on the debugging info format, we sometimes
9493 end up having a redundant XVS type parallel to the aligner type. */
9494 return raw_type;
9495
14f9c5c9 9496 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9497 if (real_type_namer == NULL
14f9c5c9
AS
9498 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9499 || TYPE_NFIELDS (real_type_namer) != 1)
9500 return raw_type;
9501
f80d3ff2
JB
9502 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9503 {
9504 /* This is an older encoding form where the base type needs to be
9505 looked up by name. We prefer the newer enconding because it is
9506 more efficient. */
9507 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9508 if (raw_real_type == NULL)
9509 return raw_type;
9510 else
9511 return raw_real_type;
9512 }
9513
9514 /* The field in our XVS type is a reference to the base type. */
9515 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9516}
14f9c5c9 9517
4c4b4cd2 9518/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9519
d2e4a39e
AS
9520struct type *
9521ada_aligned_type (struct type *type)
14f9c5c9
AS
9522{
9523 if (ada_is_aligner_type (type))
9524 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9525 else
9526 return ada_get_base_type (type);
9527}
9528
9529
9530/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9531 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9532
fc1a4b47
AC
9533const gdb_byte *
9534ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9535{
d2e4a39e 9536 if (ada_is_aligner_type (type))
14f9c5c9 9537 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9538 valaddr +
9539 TYPE_FIELD_BITPOS (type,
9540 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9541 else
9542 return valaddr;
9543}
9544
4c4b4cd2
PH
9545
9546
14f9c5c9 9547/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9548 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9549const char *
9550ada_enum_name (const char *name)
14f9c5c9 9551{
4c4b4cd2
PH
9552 static char *result;
9553 static size_t result_len = 0;
e6a959d6 9554 const char *tmp;
14f9c5c9 9555
4c4b4cd2
PH
9556 /* First, unqualify the enumeration name:
9557 1. Search for the last '.' character. If we find one, then skip
177b42fe 9558 all the preceding characters, the unqualified name starts
76a01679 9559 right after that dot.
4c4b4cd2 9560 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9561 translates dots into "__". Search forward for double underscores,
9562 but stop searching when we hit an overloading suffix, which is
9563 of the form "__" followed by digits. */
4c4b4cd2 9564
c3e5cd34
PH
9565 tmp = strrchr (name, '.');
9566 if (tmp != NULL)
4c4b4cd2
PH
9567 name = tmp + 1;
9568 else
14f9c5c9 9569 {
4c4b4cd2
PH
9570 while ((tmp = strstr (name, "__")) != NULL)
9571 {
9572 if (isdigit (tmp[2]))
9573 break;
9574 else
9575 name = tmp + 2;
9576 }
14f9c5c9
AS
9577 }
9578
9579 if (name[0] == 'Q')
9580 {
14f9c5c9 9581 int v;
5b4ee69b 9582
14f9c5c9 9583 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9584 {
9585 if (sscanf (name + 2, "%x", &v) != 1)
9586 return name;
9587 }
14f9c5c9 9588 else
4c4b4cd2 9589 return name;
14f9c5c9 9590
4c4b4cd2 9591 GROW_VECT (result, result_len, 16);
14f9c5c9 9592 if (isascii (v) && isprint (v))
88c15c34 9593 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9594 else if (name[1] == 'U')
88c15c34 9595 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9596 else
88c15c34 9597 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9598
9599 return result;
9600 }
d2e4a39e 9601 else
4c4b4cd2 9602 {
c3e5cd34
PH
9603 tmp = strstr (name, "__");
9604 if (tmp == NULL)
9605 tmp = strstr (name, "$");
9606 if (tmp != NULL)
4c4b4cd2
PH
9607 {
9608 GROW_VECT (result, result_len, tmp - name + 1);
9609 strncpy (result, name, tmp - name);
9610 result[tmp - name] = '\0';
9611 return result;
9612 }
9613
9614 return name;
9615 }
14f9c5c9
AS
9616}
9617
14f9c5c9
AS
9618/* Evaluate the subexpression of EXP starting at *POS as for
9619 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9620 expression. */
14f9c5c9 9621
d2e4a39e
AS
9622static struct value *
9623evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9624{
4b27a620 9625 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9626}
9627
9628/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9629 value it wraps. */
14f9c5c9 9630
d2e4a39e
AS
9631static struct value *
9632unwrap_value (struct value *val)
14f9c5c9 9633{
df407dfe 9634 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9635
14f9c5c9
AS
9636 if (ada_is_aligner_type (type))
9637 {
de4d072f 9638 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9639 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9640
14f9c5c9 9641 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9642 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9643
9644 return unwrap_value (v);
9645 }
d2e4a39e 9646 else
14f9c5c9 9647 {
d2e4a39e 9648 struct type *raw_real_type =
61ee279c 9649 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9650
5bf03f13
JB
9651 /* If there is no parallel XVS or XVE type, then the value is
9652 already unwrapped. Return it without further modification. */
9653 if ((type == raw_real_type)
9654 && ada_find_parallel_type (type, "___XVE") == NULL)
9655 return val;
14f9c5c9 9656
d2e4a39e 9657 return
4c4b4cd2
PH
9658 coerce_unspec_val_to_type
9659 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9660 value_address (val),
1ed6ede0 9661 NULL, 1));
14f9c5c9
AS
9662 }
9663}
d2e4a39e
AS
9664
9665static struct value *
50eff16b 9666cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9667{
50eff16b
UW
9668 struct value *scale = ada_scaling_factor (value_type (arg));
9669 arg = value_cast (value_type (scale), arg);
14f9c5c9 9670
50eff16b
UW
9671 arg = value_binop (arg, scale, BINOP_MUL);
9672 return value_cast (type, arg);
14f9c5c9
AS
9673}
9674
d2e4a39e 9675static struct value *
50eff16b 9676cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9677{
50eff16b
UW
9678 if (type == value_type (arg))
9679 return arg;
5b4ee69b 9680
50eff16b
UW
9681 struct value *scale = ada_scaling_factor (type);
9682 if (ada_is_fixed_point_type (value_type (arg)))
9683 arg = cast_from_fixed (value_type (scale), arg);
9684 else
9685 arg = value_cast (value_type (scale), arg);
9686
9687 arg = value_binop (arg, scale, BINOP_DIV);
9688 return value_cast (type, arg);
14f9c5c9
AS
9689}
9690
d99dcf51
JB
9691/* Given two array types T1 and T2, return nonzero iff both arrays
9692 contain the same number of elements. */
9693
9694static int
9695ada_same_array_size_p (struct type *t1, struct type *t2)
9696{
9697 LONGEST lo1, hi1, lo2, hi2;
9698
9699 /* Get the array bounds in order to verify that the size of
9700 the two arrays match. */
9701 if (!get_array_bounds (t1, &lo1, &hi1)
9702 || !get_array_bounds (t2, &lo2, &hi2))
9703 error (_("unable to determine array bounds"));
9704
9705 /* To make things easier for size comparison, normalize a bit
9706 the case of empty arrays by making sure that the difference
9707 between upper bound and lower bound is always -1. */
9708 if (lo1 > hi1)
9709 hi1 = lo1 - 1;
9710 if (lo2 > hi2)
9711 hi2 = lo2 - 1;
9712
9713 return (hi1 - lo1 == hi2 - lo2);
9714}
9715
9716/* Assuming that VAL is an array of integrals, and TYPE represents
9717 an array with the same number of elements, but with wider integral
9718 elements, return an array "casted" to TYPE. In practice, this
9719 means that the returned array is built by casting each element
9720 of the original array into TYPE's (wider) element type. */
9721
9722static struct value *
9723ada_promote_array_of_integrals (struct type *type, struct value *val)
9724{
9725 struct type *elt_type = TYPE_TARGET_TYPE (type);
9726 LONGEST lo, hi;
9727 struct value *res;
9728 LONGEST i;
9729
9730 /* Verify that both val and type are arrays of scalars, and
9731 that the size of val's elements is smaller than the size
9732 of type's element. */
9733 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9734 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9735 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9736 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9737 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9738 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9739
9740 if (!get_array_bounds (type, &lo, &hi))
9741 error (_("unable to determine array bounds"));
9742
9743 res = allocate_value (type);
9744
9745 /* Promote each array element. */
9746 for (i = 0; i < hi - lo + 1; i++)
9747 {
9748 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9749
9750 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9751 value_contents_all (elt), TYPE_LENGTH (elt_type));
9752 }
9753
9754 return res;
9755}
9756
4c4b4cd2
PH
9757/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9758 return the converted value. */
9759
d2e4a39e
AS
9760static struct value *
9761coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9762{
df407dfe 9763 struct type *type2 = value_type (val);
5b4ee69b 9764
14f9c5c9
AS
9765 if (type == type2)
9766 return val;
9767
61ee279c
PH
9768 type2 = ada_check_typedef (type2);
9769 type = ada_check_typedef (type);
14f9c5c9 9770
d2e4a39e
AS
9771 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9772 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9773 {
9774 val = ada_value_ind (val);
df407dfe 9775 type2 = value_type (val);
14f9c5c9
AS
9776 }
9777
d2e4a39e 9778 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9779 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9780 {
d99dcf51
JB
9781 if (!ada_same_array_size_p (type, type2))
9782 error (_("cannot assign arrays of different length"));
9783
9784 if (is_integral_type (TYPE_TARGET_TYPE (type))
9785 && is_integral_type (TYPE_TARGET_TYPE (type2))
9786 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9787 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9788 {
9789 /* Allow implicit promotion of the array elements to
9790 a wider type. */
9791 return ada_promote_array_of_integrals (type, val);
9792 }
9793
9794 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9795 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9796 error (_("Incompatible types in assignment"));
04624583 9797 deprecated_set_value_type (val, type);
14f9c5c9 9798 }
d2e4a39e 9799 return val;
14f9c5c9
AS
9800}
9801
4c4b4cd2
PH
9802static struct value *
9803ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9804{
9805 struct value *val;
9806 struct type *type1, *type2;
9807 LONGEST v, v1, v2;
9808
994b9211
AC
9809 arg1 = coerce_ref (arg1);
9810 arg2 = coerce_ref (arg2);
18af8284
JB
9811 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9812 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9813
76a01679
JB
9814 if (TYPE_CODE (type1) != TYPE_CODE_INT
9815 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9816 return value_binop (arg1, arg2, op);
9817
76a01679 9818 switch (op)
4c4b4cd2
PH
9819 {
9820 case BINOP_MOD:
9821 case BINOP_DIV:
9822 case BINOP_REM:
9823 break;
9824 default:
9825 return value_binop (arg1, arg2, op);
9826 }
9827
9828 v2 = value_as_long (arg2);
9829 if (v2 == 0)
323e0a4a 9830 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9831
9832 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9833 return value_binop (arg1, arg2, op);
9834
9835 v1 = value_as_long (arg1);
9836 switch (op)
9837 {
9838 case BINOP_DIV:
9839 v = v1 / v2;
76a01679
JB
9840 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9841 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9842 break;
9843 case BINOP_REM:
9844 v = v1 % v2;
76a01679
JB
9845 if (v * v1 < 0)
9846 v -= v2;
4c4b4cd2
PH
9847 break;
9848 default:
9849 /* Should not reach this point. */
9850 v = 0;
9851 }
9852
9853 val = allocate_value (type1);
990a07ab 9854 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9855 TYPE_LENGTH (value_type (val)),
9856 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9857 return val;
9858}
9859
9860static int
9861ada_value_equal (struct value *arg1, struct value *arg2)
9862{
df407dfe
AC
9863 if (ada_is_direct_array_type (value_type (arg1))
9864 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9865 {
79e8fcaa
JB
9866 struct type *arg1_type, *arg2_type;
9867
f58b38bf
JB
9868 /* Automatically dereference any array reference before
9869 we attempt to perform the comparison. */
9870 arg1 = ada_coerce_ref (arg1);
9871 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9872
4c4b4cd2
PH
9873 arg1 = ada_coerce_to_simple_array (arg1);
9874 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9875
9876 arg1_type = ada_check_typedef (value_type (arg1));
9877 arg2_type = ada_check_typedef (value_type (arg2));
9878
9879 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9880 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9881 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9882 /* FIXME: The following works only for types whose
76a01679
JB
9883 representations use all bits (no padding or undefined bits)
9884 and do not have user-defined equality. */
79e8fcaa
JB
9885 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9886 && memcmp (value_contents (arg1), value_contents (arg2),
9887 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9888 }
9889 return value_equal (arg1, arg2);
9890}
9891
52ce6436
PH
9892/* Total number of component associations in the aggregate starting at
9893 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9894 OP_AGGREGATE. */
52ce6436
PH
9895
9896static int
9897num_component_specs (struct expression *exp, int pc)
9898{
9899 int n, m, i;
5b4ee69b 9900
52ce6436
PH
9901 m = exp->elts[pc + 1].longconst;
9902 pc += 3;
9903 n = 0;
9904 for (i = 0; i < m; i += 1)
9905 {
9906 switch (exp->elts[pc].opcode)
9907 {
9908 default:
9909 n += 1;
9910 break;
9911 case OP_CHOICES:
9912 n += exp->elts[pc + 1].longconst;
9913 break;
9914 }
9915 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9916 }
9917 return n;
9918}
9919
9920/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9921 component of LHS (a simple array or a record), updating *POS past
9922 the expression, assuming that LHS is contained in CONTAINER. Does
9923 not modify the inferior's memory, nor does it modify LHS (unless
9924 LHS == CONTAINER). */
9925
9926static void
9927assign_component (struct value *container, struct value *lhs, LONGEST index,
9928 struct expression *exp, int *pos)
9929{
9930 struct value *mark = value_mark ();
9931 struct value *elt;
0e2da9f0 9932 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9933
0e2da9f0 9934 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9935 {
22601c15
UW
9936 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9937 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9938
52ce6436
PH
9939 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9940 }
9941 else
9942 {
9943 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9944 elt = ada_to_fixed_value (elt);
52ce6436
PH
9945 }
9946
9947 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9948 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9949 else
9950 value_assign_to_component (container, elt,
9951 ada_evaluate_subexp (NULL, exp, pos,
9952 EVAL_NORMAL));
9953
9954 value_free_to_mark (mark);
9955}
9956
9957/* Assuming that LHS represents an lvalue having a record or array
9958 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9959 of that aggregate's value to LHS, advancing *POS past the
9960 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9961 lvalue containing LHS (possibly LHS itself). Does not modify
9962 the inferior's memory, nor does it modify the contents of
0963b4bd 9963 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9964
9965static struct value *
9966assign_aggregate (struct value *container,
9967 struct value *lhs, struct expression *exp,
9968 int *pos, enum noside noside)
9969{
9970 struct type *lhs_type;
9971 int n = exp->elts[*pos+1].longconst;
9972 LONGEST low_index, high_index;
9973 int num_specs;
9974 LONGEST *indices;
9975 int max_indices, num_indices;
52ce6436 9976 int i;
52ce6436
PH
9977
9978 *pos += 3;
9979 if (noside != EVAL_NORMAL)
9980 {
52ce6436
PH
9981 for (i = 0; i < n; i += 1)
9982 ada_evaluate_subexp (NULL, exp, pos, noside);
9983 return container;
9984 }
9985
9986 container = ada_coerce_ref (container);
9987 if (ada_is_direct_array_type (value_type (container)))
9988 container = ada_coerce_to_simple_array (container);
9989 lhs = ada_coerce_ref (lhs);
9990 if (!deprecated_value_modifiable (lhs))
9991 error (_("Left operand of assignment is not a modifiable lvalue."));
9992
0e2da9f0 9993 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9994 if (ada_is_direct_array_type (lhs_type))
9995 {
9996 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9997 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9998 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9999 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10000 }
10001 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10002 {
10003 low_index = 0;
10004 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10005 }
10006 else
10007 error (_("Left-hand side must be array or record."));
10008
10009 num_specs = num_component_specs (exp, *pos - 3);
10010 max_indices = 4 * num_specs + 4;
8d749320 10011 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10012 indices[0] = indices[1] = low_index - 1;
10013 indices[2] = indices[3] = high_index + 1;
10014 num_indices = 4;
10015
10016 for (i = 0; i < n; i += 1)
10017 {
10018 switch (exp->elts[*pos].opcode)
10019 {
1fbf5ada
JB
10020 case OP_CHOICES:
10021 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10022 &num_indices, max_indices,
10023 low_index, high_index);
10024 break;
10025 case OP_POSITIONAL:
10026 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10027 &num_indices, max_indices,
10028 low_index, high_index);
1fbf5ada
JB
10029 break;
10030 case OP_OTHERS:
10031 if (i != n-1)
10032 error (_("Misplaced 'others' clause"));
10033 aggregate_assign_others (container, lhs, exp, pos, indices,
10034 num_indices, low_index, high_index);
10035 break;
10036 default:
10037 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10038 }
10039 }
10040
10041 return container;
10042}
10043
10044/* Assign into the component of LHS indexed by the OP_POSITIONAL
10045 construct at *POS, updating *POS past the construct, given that
10046 the positions are relative to lower bound LOW, where HIGH is the
10047 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10048 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10049 assign_aggregate. */
52ce6436
PH
10050static void
10051aggregate_assign_positional (struct value *container,
10052 struct value *lhs, struct expression *exp,
10053 int *pos, LONGEST *indices, int *num_indices,
10054 int max_indices, LONGEST low, LONGEST high)
10055{
10056 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10057
10058 if (ind - 1 == high)
e1d5a0d2 10059 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10060 if (ind <= high)
10061 {
10062 add_component_interval (ind, ind, indices, num_indices, max_indices);
10063 *pos += 3;
10064 assign_component (container, lhs, ind, exp, pos);
10065 }
10066 else
10067 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10068}
10069
10070/* Assign into the components of LHS indexed by the OP_CHOICES
10071 construct at *POS, updating *POS past the construct, given that
10072 the allowable indices are LOW..HIGH. Record the indices assigned
10073 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10074 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10075static void
10076aggregate_assign_from_choices (struct value *container,
10077 struct value *lhs, struct expression *exp,
10078 int *pos, LONGEST *indices, int *num_indices,
10079 int max_indices, LONGEST low, LONGEST high)
10080{
10081 int j;
10082 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10083 int choice_pos, expr_pc;
10084 int is_array = ada_is_direct_array_type (value_type (lhs));
10085
10086 choice_pos = *pos += 3;
10087
10088 for (j = 0; j < n_choices; j += 1)
10089 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10090 expr_pc = *pos;
10091 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10092
10093 for (j = 0; j < n_choices; j += 1)
10094 {
10095 LONGEST lower, upper;
10096 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10097
52ce6436
PH
10098 if (op == OP_DISCRETE_RANGE)
10099 {
10100 choice_pos += 1;
10101 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10102 EVAL_NORMAL));
10103 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10104 EVAL_NORMAL));
10105 }
10106 else if (is_array)
10107 {
10108 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10109 EVAL_NORMAL));
10110 upper = lower;
10111 }
10112 else
10113 {
10114 int ind;
0d5cff50 10115 const char *name;
5b4ee69b 10116
52ce6436
PH
10117 switch (op)
10118 {
10119 case OP_NAME:
10120 name = &exp->elts[choice_pos + 2].string;
10121 break;
10122 case OP_VAR_VALUE:
10123 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10124 break;
10125 default:
10126 error (_("Invalid record component association."));
10127 }
10128 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10129 ind = 0;
10130 if (! find_struct_field (name, value_type (lhs), 0,
10131 NULL, NULL, NULL, NULL, &ind))
10132 error (_("Unknown component name: %s."), name);
10133 lower = upper = ind;
10134 }
10135
10136 if (lower <= upper && (lower < low || upper > high))
10137 error (_("Index in component association out of bounds."));
10138
10139 add_component_interval (lower, upper, indices, num_indices,
10140 max_indices);
10141 while (lower <= upper)
10142 {
10143 int pos1;
5b4ee69b 10144
52ce6436
PH
10145 pos1 = expr_pc;
10146 assign_component (container, lhs, lower, exp, &pos1);
10147 lower += 1;
10148 }
10149 }
10150}
10151
10152/* Assign the value of the expression in the OP_OTHERS construct in
10153 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10154 have not been previously assigned. The index intervals already assigned
10155 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10156 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10157static void
10158aggregate_assign_others (struct value *container,
10159 struct value *lhs, struct expression *exp,
10160 int *pos, LONGEST *indices, int num_indices,
10161 LONGEST low, LONGEST high)
10162{
10163 int i;
5ce64950 10164 int expr_pc = *pos + 1;
52ce6436
PH
10165
10166 for (i = 0; i < num_indices - 2; i += 2)
10167 {
10168 LONGEST ind;
5b4ee69b 10169
52ce6436
PH
10170 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10171 {
5ce64950 10172 int localpos;
5b4ee69b 10173
5ce64950
MS
10174 localpos = expr_pc;
10175 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10176 }
10177 }
10178 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10179}
10180
10181/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10182 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10183 modifying *SIZE as needed. It is an error if *SIZE exceeds
10184 MAX_SIZE. The resulting intervals do not overlap. */
10185static void
10186add_component_interval (LONGEST low, LONGEST high,
10187 LONGEST* indices, int *size, int max_size)
10188{
10189 int i, j;
5b4ee69b 10190
52ce6436
PH
10191 for (i = 0; i < *size; i += 2) {
10192 if (high >= indices[i] && low <= indices[i + 1])
10193 {
10194 int kh;
5b4ee69b 10195
52ce6436
PH
10196 for (kh = i + 2; kh < *size; kh += 2)
10197 if (high < indices[kh])
10198 break;
10199 if (low < indices[i])
10200 indices[i] = low;
10201 indices[i + 1] = indices[kh - 1];
10202 if (high > indices[i + 1])
10203 indices[i + 1] = high;
10204 memcpy (indices + i + 2, indices + kh, *size - kh);
10205 *size -= kh - i - 2;
10206 return;
10207 }
10208 else if (high < indices[i])
10209 break;
10210 }
10211
10212 if (*size == max_size)
10213 error (_("Internal error: miscounted aggregate components."));
10214 *size += 2;
10215 for (j = *size-1; j >= i+2; j -= 1)
10216 indices[j] = indices[j - 2];
10217 indices[i] = low;
10218 indices[i + 1] = high;
10219}
10220
6e48bd2c
JB
10221/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10222 is different. */
10223
10224static struct value *
b7e22850 10225ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10226{
10227 if (type == ada_check_typedef (value_type (arg2)))
10228 return arg2;
10229
10230 if (ada_is_fixed_point_type (type))
10231 return (cast_to_fixed (type, arg2));
10232
10233 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10234 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10235
10236 return value_cast (type, arg2);
10237}
10238
284614f0
JB
10239/* Evaluating Ada expressions, and printing their result.
10240 ------------------------------------------------------
10241
21649b50
JB
10242 1. Introduction:
10243 ----------------
10244
284614f0
JB
10245 We usually evaluate an Ada expression in order to print its value.
10246 We also evaluate an expression in order to print its type, which
10247 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10248 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10249 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10250 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10251 similar.
10252
10253 Evaluating expressions is a little more complicated for Ada entities
10254 than it is for entities in languages such as C. The main reason for
10255 this is that Ada provides types whose definition might be dynamic.
10256 One example of such types is variant records. Or another example
10257 would be an array whose bounds can only be known at run time.
10258
10259 The following description is a general guide as to what should be
10260 done (and what should NOT be done) in order to evaluate an expression
10261 involving such types, and when. This does not cover how the semantic
10262 information is encoded by GNAT as this is covered separatly. For the
10263 document used as the reference for the GNAT encoding, see exp_dbug.ads
10264 in the GNAT sources.
10265
10266 Ideally, we should embed each part of this description next to its
10267 associated code. Unfortunately, the amount of code is so vast right
10268 now that it's hard to see whether the code handling a particular
10269 situation might be duplicated or not. One day, when the code is
10270 cleaned up, this guide might become redundant with the comments
10271 inserted in the code, and we might want to remove it.
10272
21649b50
JB
10273 2. ``Fixing'' an Entity, the Simple Case:
10274 -----------------------------------------
10275
284614f0
JB
10276 When evaluating Ada expressions, the tricky issue is that they may
10277 reference entities whose type contents and size are not statically
10278 known. Consider for instance a variant record:
10279
10280 type Rec (Empty : Boolean := True) is record
10281 case Empty is
10282 when True => null;
10283 when False => Value : Integer;
10284 end case;
10285 end record;
10286 Yes : Rec := (Empty => False, Value => 1);
10287 No : Rec := (empty => True);
10288
10289 The size and contents of that record depends on the value of the
10290 descriminant (Rec.Empty). At this point, neither the debugging
10291 information nor the associated type structure in GDB are able to
10292 express such dynamic types. So what the debugger does is to create
10293 "fixed" versions of the type that applies to the specific object.
10294 We also informally refer to this opperation as "fixing" an object,
10295 which means creating its associated fixed type.
10296
10297 Example: when printing the value of variable "Yes" above, its fixed
10298 type would look like this:
10299
10300 type Rec is record
10301 Empty : Boolean;
10302 Value : Integer;
10303 end record;
10304
10305 On the other hand, if we printed the value of "No", its fixed type
10306 would become:
10307
10308 type Rec is record
10309 Empty : Boolean;
10310 end record;
10311
10312 Things become a little more complicated when trying to fix an entity
10313 with a dynamic type that directly contains another dynamic type,
10314 such as an array of variant records, for instance. There are
10315 two possible cases: Arrays, and records.
10316
21649b50
JB
10317 3. ``Fixing'' Arrays:
10318 ---------------------
10319
10320 The type structure in GDB describes an array in terms of its bounds,
10321 and the type of its elements. By design, all elements in the array
10322 have the same type and we cannot represent an array of variant elements
10323 using the current type structure in GDB. When fixing an array,
10324 we cannot fix the array element, as we would potentially need one
10325 fixed type per element of the array. As a result, the best we can do
10326 when fixing an array is to produce an array whose bounds and size
10327 are correct (allowing us to read it from memory), but without having
10328 touched its element type. Fixing each element will be done later,
10329 when (if) necessary.
10330
10331 Arrays are a little simpler to handle than records, because the same
10332 amount of memory is allocated for each element of the array, even if
1b536f04 10333 the amount of space actually used by each element differs from element
21649b50 10334 to element. Consider for instance the following array of type Rec:
284614f0
JB
10335
10336 type Rec_Array is array (1 .. 2) of Rec;
10337
1b536f04
JB
10338 The actual amount of memory occupied by each element might be different
10339 from element to element, depending on the value of their discriminant.
21649b50 10340 But the amount of space reserved for each element in the array remains
1b536f04 10341 fixed regardless. So we simply need to compute that size using
21649b50
JB
10342 the debugging information available, from which we can then determine
10343 the array size (we multiply the number of elements of the array by
10344 the size of each element).
10345
10346 The simplest case is when we have an array of a constrained element
10347 type. For instance, consider the following type declarations:
10348
10349 type Bounded_String (Max_Size : Integer) is
10350 Length : Integer;
10351 Buffer : String (1 .. Max_Size);
10352 end record;
10353 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10354
10355 In this case, the compiler describes the array as an array of
10356 variable-size elements (identified by its XVS suffix) for which
10357 the size can be read in the parallel XVZ variable.
10358
10359 In the case of an array of an unconstrained element type, the compiler
10360 wraps the array element inside a private PAD type. This type should not
10361 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10362 that we also use the adjective "aligner" in our code to designate
10363 these wrapper types.
10364
1b536f04 10365 In some cases, the size allocated for each element is statically
21649b50
JB
10366 known. In that case, the PAD type already has the correct size,
10367 and the array element should remain unfixed.
10368
10369 But there are cases when this size is not statically known.
10370 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10371
10372 type Dynamic is array (1 .. Five) of Integer;
10373 type Wrapper (Has_Length : Boolean := False) is record
10374 Data : Dynamic;
10375 case Has_Length is
10376 when True => Length : Integer;
10377 when False => null;
10378 end case;
10379 end record;
10380 type Wrapper_Array is array (1 .. 2) of Wrapper;
10381
10382 Hello : Wrapper_Array := (others => (Has_Length => True,
10383 Data => (others => 17),
10384 Length => 1));
10385
10386
10387 The debugging info would describe variable Hello as being an
10388 array of a PAD type. The size of that PAD type is not statically
10389 known, but can be determined using a parallel XVZ variable.
10390 In that case, a copy of the PAD type with the correct size should
10391 be used for the fixed array.
10392
21649b50
JB
10393 3. ``Fixing'' record type objects:
10394 ----------------------------------
10395
10396 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10397 record types. In this case, in order to compute the associated
10398 fixed type, we need to determine the size and offset of each of
10399 its components. This, in turn, requires us to compute the fixed
10400 type of each of these components.
10401
10402 Consider for instance the example:
10403
10404 type Bounded_String (Max_Size : Natural) is record
10405 Str : String (1 .. Max_Size);
10406 Length : Natural;
10407 end record;
10408 My_String : Bounded_String (Max_Size => 10);
10409
10410 In that case, the position of field "Length" depends on the size
10411 of field Str, which itself depends on the value of the Max_Size
21649b50 10412 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10413 we need to fix the type of field Str. Therefore, fixing a variant
10414 record requires us to fix each of its components.
10415
10416 However, if a component does not have a dynamic size, the component
10417 should not be fixed. In particular, fields that use a PAD type
10418 should not fixed. Here is an example where this might happen
10419 (assuming type Rec above):
10420
10421 type Container (Big : Boolean) is record
10422 First : Rec;
10423 After : Integer;
10424 case Big is
10425 when True => Another : Integer;
10426 when False => null;
10427 end case;
10428 end record;
10429 My_Container : Container := (Big => False,
10430 First => (Empty => True),
10431 After => 42);
10432
10433 In that example, the compiler creates a PAD type for component First,
10434 whose size is constant, and then positions the component After just
10435 right after it. The offset of component After is therefore constant
10436 in this case.
10437
10438 The debugger computes the position of each field based on an algorithm
10439 that uses, among other things, the actual position and size of the field
21649b50
JB
10440 preceding it. Let's now imagine that the user is trying to print
10441 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10442 end up computing the offset of field After based on the size of the
10443 fixed version of field First. And since in our example First has
10444 only one actual field, the size of the fixed type is actually smaller
10445 than the amount of space allocated to that field, and thus we would
10446 compute the wrong offset of field After.
10447
21649b50
JB
10448 To make things more complicated, we need to watch out for dynamic
10449 components of variant records (identified by the ___XVL suffix in
10450 the component name). Even if the target type is a PAD type, the size
10451 of that type might not be statically known. So the PAD type needs
10452 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10453 we might end up with the wrong size for our component. This can be
10454 observed with the following type declarations:
284614f0
JB
10455
10456 type Octal is new Integer range 0 .. 7;
10457 type Octal_Array is array (Positive range <>) of Octal;
10458 pragma Pack (Octal_Array);
10459
10460 type Octal_Buffer (Size : Positive) is record
10461 Buffer : Octal_Array (1 .. Size);
10462 Length : Integer;
10463 end record;
10464
10465 In that case, Buffer is a PAD type whose size is unset and needs
10466 to be computed by fixing the unwrapped type.
10467
21649b50
JB
10468 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10469 ----------------------------------------------------------
10470
10471 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10472 thus far, be actually fixed?
10473
10474 The answer is: Only when referencing that element. For instance
10475 when selecting one component of a record, this specific component
10476 should be fixed at that point in time. Or when printing the value
10477 of a record, each component should be fixed before its value gets
10478 printed. Similarly for arrays, the element of the array should be
10479 fixed when printing each element of the array, or when extracting
10480 one element out of that array. On the other hand, fixing should
10481 not be performed on the elements when taking a slice of an array!
10482
31432a67 10483 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10484 size of each field is that we end up also miscomputing the size
10485 of the containing type. This can have adverse results when computing
10486 the value of an entity. GDB fetches the value of an entity based
10487 on the size of its type, and thus a wrong size causes GDB to fetch
10488 the wrong amount of memory. In the case where the computed size is
10489 too small, GDB fetches too little data to print the value of our
31432a67 10490 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10491 past the buffer containing the data =:-o. */
10492
ced9779b
JB
10493/* Evaluate a subexpression of EXP, at index *POS, and return a value
10494 for that subexpression cast to TO_TYPE. Advance *POS over the
10495 subexpression. */
10496
10497static value *
10498ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10499 enum noside noside, struct type *to_type)
10500{
10501 int pc = *pos;
10502
10503 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10504 || exp->elts[pc].opcode == OP_VAR_VALUE)
10505 {
10506 (*pos) += 4;
10507
10508 value *val;
10509 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10510 {
10511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10512 return value_zero (to_type, not_lval);
10513
10514 val = evaluate_var_msym_value (noside,
10515 exp->elts[pc + 1].objfile,
10516 exp->elts[pc + 2].msymbol);
10517 }
10518 else
10519 val = evaluate_var_value (noside,
10520 exp->elts[pc + 1].block,
10521 exp->elts[pc + 2].symbol);
10522
10523 if (noside == EVAL_SKIP)
10524 return eval_skip_value (exp);
10525
10526 val = ada_value_cast (to_type, val);
10527
10528 /* Follow the Ada language semantics that do not allow taking
10529 an address of the result of a cast (view conversion in Ada). */
10530 if (VALUE_LVAL (val) == lval_memory)
10531 {
10532 if (value_lazy (val))
10533 value_fetch_lazy (val);
10534 VALUE_LVAL (val) = not_lval;
10535 }
10536 return val;
10537 }
10538
10539 value *val = evaluate_subexp (to_type, exp, pos, noside);
10540 if (noside == EVAL_SKIP)
10541 return eval_skip_value (exp);
10542 return ada_value_cast (to_type, val);
10543}
10544
284614f0
JB
10545/* Implement the evaluate_exp routine in the exp_descriptor structure
10546 for the Ada language. */
10547
52ce6436 10548static struct value *
ebf56fd3 10549ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10550 int *pos, enum noside noside)
14f9c5c9
AS
10551{
10552 enum exp_opcode op;
b5385fc0 10553 int tem;
14f9c5c9 10554 int pc;
5ec18f2b 10555 int preeval_pos;
14f9c5c9
AS
10556 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10557 struct type *type;
52ce6436 10558 int nargs, oplen;
d2e4a39e 10559 struct value **argvec;
14f9c5c9 10560
d2e4a39e
AS
10561 pc = *pos;
10562 *pos += 1;
14f9c5c9
AS
10563 op = exp->elts[pc].opcode;
10564
d2e4a39e 10565 switch (op)
14f9c5c9
AS
10566 {
10567 default:
10568 *pos -= 1;
6e48bd2c 10569 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10570
10571 if (noside == EVAL_NORMAL)
10572 arg1 = unwrap_value (arg1);
6e48bd2c 10573
edd079d9 10574 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10575 then we need to perform the conversion manually, because
10576 evaluate_subexp_standard doesn't do it. This conversion is
10577 necessary in Ada because the different kinds of float/fixed
10578 types in Ada have different representations.
10579
10580 Similarly, we need to perform the conversion from OP_LONG
10581 ourselves. */
edd079d9 10582 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10583 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10584
10585 return arg1;
4c4b4cd2
PH
10586
10587 case OP_STRING:
10588 {
76a01679 10589 struct value *result;
5b4ee69b 10590
76a01679
JB
10591 *pos -= 1;
10592 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10593 /* The result type will have code OP_STRING, bashed there from
10594 OP_ARRAY. Bash it back. */
df407dfe
AC
10595 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10596 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10597 return result;
4c4b4cd2 10598 }
14f9c5c9
AS
10599
10600 case UNOP_CAST:
10601 (*pos) += 2;
10602 type = exp->elts[pc + 1].type;
ced9779b 10603 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10604
4c4b4cd2
PH
10605 case UNOP_QUAL:
10606 (*pos) += 2;
10607 type = exp->elts[pc + 1].type;
10608 return ada_evaluate_subexp (type, exp, pos, noside);
10609
14f9c5c9
AS
10610 case BINOP_ASSIGN:
10611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10612 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10613 {
10614 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10615 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10616 return arg1;
10617 return ada_value_assign (arg1, arg1);
10618 }
003f3813
JB
10619 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10620 except if the lhs of our assignment is a convenience variable.
10621 In the case of assigning to a convenience variable, the lhs
10622 should be exactly the result of the evaluation of the rhs. */
10623 type = value_type (arg1);
10624 if (VALUE_LVAL (arg1) == lval_internalvar)
10625 type = NULL;
10626 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10627 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10628 return arg1;
df407dfe
AC
10629 if (ada_is_fixed_point_type (value_type (arg1)))
10630 arg2 = cast_to_fixed (value_type (arg1), arg2);
10631 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10632 error
323e0a4a 10633 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10634 else
df407dfe 10635 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10636 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10637
10638 case BINOP_ADD:
10639 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10640 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10641 if (noside == EVAL_SKIP)
4c4b4cd2 10642 goto nosideret;
2ac8a782
JB
10643 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10644 return (value_from_longest
10645 (value_type (arg1),
10646 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10647 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10648 return (value_from_longest
10649 (value_type (arg2),
10650 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10651 if ((ada_is_fixed_point_type (value_type (arg1))
10652 || ada_is_fixed_point_type (value_type (arg2)))
10653 && value_type (arg1) != value_type (arg2))
323e0a4a 10654 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10655 /* Do the addition, and cast the result to the type of the first
10656 argument. We cannot cast the result to a reference type, so if
10657 ARG1 is a reference type, find its underlying type. */
10658 type = value_type (arg1);
10659 while (TYPE_CODE (type) == TYPE_CODE_REF)
10660 type = TYPE_TARGET_TYPE (type);
f44316fa 10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10662 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10663
10664 case BINOP_SUB:
10665 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10666 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10667 if (noside == EVAL_SKIP)
4c4b4cd2 10668 goto nosideret;
2ac8a782
JB
10669 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10670 return (value_from_longest
10671 (value_type (arg1),
10672 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10673 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10674 return (value_from_longest
10675 (value_type (arg2),
10676 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10677 if ((ada_is_fixed_point_type (value_type (arg1))
10678 || ada_is_fixed_point_type (value_type (arg2)))
10679 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10680 error (_("Operands of fixed-point subtraction "
10681 "must have the same type"));
b7789565
JB
10682 /* Do the substraction, and cast the result to the type of the first
10683 argument. We cannot cast the result to a reference type, so if
10684 ARG1 is a reference type, find its underlying type. */
10685 type = value_type (arg1);
10686 while (TYPE_CODE (type) == TYPE_CODE_REF)
10687 type = TYPE_TARGET_TYPE (type);
f44316fa 10688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10689 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10690
10691 case BINOP_MUL:
10692 case BINOP_DIV:
e1578042
JB
10693 case BINOP_REM:
10694 case BINOP_MOD:
14f9c5c9
AS
10695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10697 if (noside == EVAL_SKIP)
4c4b4cd2 10698 goto nosideret;
e1578042 10699 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10700 {
10701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10702 return value_zero (value_type (arg1), not_lval);
10703 }
14f9c5c9 10704 else
4c4b4cd2 10705 {
a53b7a21 10706 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10707 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10708 arg1 = cast_from_fixed (type, arg1);
df407dfe 10709 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10710 arg2 = cast_from_fixed (type, arg2);
f44316fa 10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10712 return ada_value_binop (arg1, arg2, op);
10713 }
10714
4c4b4cd2
PH
10715 case BINOP_EQUAL:
10716 case BINOP_NOTEQUAL:
14f9c5c9 10717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10718 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10719 if (noside == EVAL_SKIP)
76a01679 10720 goto nosideret;
4c4b4cd2 10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10722 tem = 0;
4c4b4cd2 10723 else
f44316fa
UW
10724 {
10725 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10726 tem = ada_value_equal (arg1, arg2);
10727 }
4c4b4cd2 10728 if (op == BINOP_NOTEQUAL)
76a01679 10729 tem = !tem;
fbb06eb1
UW
10730 type = language_bool_type (exp->language_defn, exp->gdbarch);
10731 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10732
10733 case UNOP_NEG:
10734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
10736 goto nosideret;
df407dfe
AC
10737 else if (ada_is_fixed_point_type (value_type (arg1)))
10738 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10739 else
f44316fa
UW
10740 {
10741 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10742 return value_neg (arg1);
10743 }
4c4b4cd2 10744
2330c6c6
JB
10745 case BINOP_LOGICAL_AND:
10746 case BINOP_LOGICAL_OR:
10747 case UNOP_LOGICAL_NOT:
000d5124
JB
10748 {
10749 struct value *val;
10750
10751 *pos -= 1;
10752 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10753 type = language_bool_type (exp->language_defn, exp->gdbarch);
10754 return value_cast (type, val);
000d5124 10755 }
2330c6c6
JB
10756
10757 case BINOP_BITWISE_AND:
10758 case BINOP_BITWISE_IOR:
10759 case BINOP_BITWISE_XOR:
000d5124
JB
10760 {
10761 struct value *val;
10762
10763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10764 *pos = pc;
10765 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10766
10767 return value_cast (value_type (arg1), val);
10768 }
2330c6c6 10769
14f9c5c9
AS
10770 case OP_VAR_VALUE:
10771 *pos -= 1;
6799def4 10772
14f9c5c9 10773 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10774 {
10775 *pos += 4;
10776 goto nosideret;
10777 }
da5c522f
JB
10778
10779 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10780 /* Only encountered when an unresolved symbol occurs in a
10781 context other than a function call, in which case, it is
52ce6436 10782 invalid. */
323e0a4a 10783 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10784 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10785
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10787 {
0c1f74cf 10788 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10789 /* Check to see if this is a tagged type. We also need to handle
10790 the case where the type is a reference to a tagged type, but
10791 we have to be careful to exclude pointers to tagged types.
10792 The latter should be shown as usual (as a pointer), whereas
10793 a reference should mostly be transparent to the user. */
10794 if (ada_is_tagged_type (type, 0)
023db19c 10795 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10797 {
10798 /* Tagged types are a little special in the fact that the real
10799 type is dynamic and can only be determined by inspecting the
10800 object's tag. This means that we need to get the object's
10801 value first (EVAL_NORMAL) and then extract the actual object
10802 type from its tag.
10803
10804 Note that we cannot skip the final step where we extract
10805 the object type from its tag, because the EVAL_NORMAL phase
10806 results in dynamic components being resolved into fixed ones.
10807 This can cause problems when trying to print the type
10808 description of tagged types whose parent has a dynamic size:
10809 We use the type name of the "_parent" component in order
10810 to print the name of the ancestor type in the type description.
10811 If that component had a dynamic size, the resolution into
10812 a fixed type would result in the loss of that type name,
10813 thus preventing us from printing the name of the ancestor
10814 type in the type description. */
10815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10816
10817 if (TYPE_CODE (type) != TYPE_CODE_REF)
10818 {
10819 struct type *actual_type;
10820
10821 actual_type = type_from_tag (ada_value_tag (arg1));
10822 if (actual_type == NULL)
10823 /* If, for some reason, we were unable to determine
10824 the actual type from the tag, then use the static
10825 approximation that we just computed as a fallback.
10826 This can happen if the debugging information is
10827 incomplete, for instance. */
10828 actual_type = type;
10829 return value_zero (actual_type, not_lval);
10830 }
10831 else
10832 {
10833 /* In the case of a ref, ada_coerce_ref takes care
10834 of determining the actual type. But the evaluation
10835 should return a ref as it should be valid to ask
10836 for its address; so rebuild a ref after coerce. */
10837 arg1 = ada_coerce_ref (arg1);
a65cfae5 10838 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10839 }
10840 }
0c1f74cf 10841
84754697
JB
10842 /* Records and unions for which GNAT encodings have been
10843 generated need to be statically fixed as well.
10844 Otherwise, non-static fixing produces a type where
10845 all dynamic properties are removed, which prevents "ptype"
10846 from being able to completely describe the type.
10847 For instance, a case statement in a variant record would be
10848 replaced by the relevant components based on the actual
10849 value of the discriminants. */
10850 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10851 && dynamic_template_type (type) != NULL)
10852 || (TYPE_CODE (type) == TYPE_CODE_UNION
10853 && ada_find_parallel_type (type, "___XVU") != NULL))
10854 {
10855 *pos += 4;
10856 return value_zero (to_static_fixed_type (type), not_lval);
10857 }
4c4b4cd2 10858 }
da5c522f
JB
10859
10860 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10861 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10862
10863 case OP_FUNCALL:
10864 (*pos) += 2;
10865
10866 /* Allocate arg vector, including space for the function to be
10867 called in argvec[0] and a terminating NULL. */
10868 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10869 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10870
10871 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10872 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10873 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10874 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10875 else
10876 {
10877 for (tem = 0; tem <= nargs; tem += 1)
10878 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 argvec[tem] = 0;
10880
10881 if (noside == EVAL_SKIP)
10882 goto nosideret;
10883 }
10884
ad82864c
JB
10885 if (ada_is_constrained_packed_array_type
10886 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10887 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10888 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10889 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10890 /* This is a packed array that has already been fixed, and
10891 therefore already coerced to a simple array. Nothing further
10892 to do. */
10893 ;
e6c2c623
PMR
10894 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10895 {
10896 /* Make sure we dereference references so that all the code below
10897 feels like it's really handling the referenced value. Wrapping
10898 types (for alignment) may be there, so make sure we strip them as
10899 well. */
10900 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10901 }
10902 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10903 && VALUE_LVAL (argvec[0]) == lval_memory)
10904 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10905
df407dfe 10906 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10907
10908 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10909 them. So, if this is an array typedef (encoding use for array
10910 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10911 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10912 type = ada_typedef_target_type (type);
10913
4c4b4cd2
PH
10914 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10915 {
61ee279c 10916 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10917 {
10918 case TYPE_CODE_FUNC:
61ee279c 10919 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10920 break;
10921 case TYPE_CODE_ARRAY:
10922 break;
10923 case TYPE_CODE_STRUCT:
10924 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10925 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10926 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10927 break;
10928 default:
323e0a4a 10929 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10930 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10931 break;
10932 }
10933 }
10934
10935 switch (TYPE_CODE (type))
10936 {
10937 case TYPE_CODE_FUNC:
10938 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10939 {
7022349d
PA
10940 if (TYPE_TARGET_TYPE (type) == NULL)
10941 error_call_unknown_return_type (NULL);
10942 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10943 }
7022349d 10944 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10945 case TYPE_CODE_INTERNAL_FUNCTION:
10946 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10947 /* We don't know anything about what the internal
10948 function might return, but we have to return
10949 something. */
10950 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10951 not_lval);
10952 else
10953 return call_internal_function (exp->gdbarch, exp->language_defn,
10954 argvec[0], nargs, argvec + 1);
10955
4c4b4cd2
PH
10956 case TYPE_CODE_STRUCT:
10957 {
10958 int arity;
10959
4c4b4cd2
PH
10960 arity = ada_array_arity (type);
10961 type = ada_array_element_type (type, nargs);
10962 if (type == NULL)
323e0a4a 10963 error (_("cannot subscript or call a record"));
4c4b4cd2 10964 if (arity != nargs)
323e0a4a 10965 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10967 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10968 return
10969 unwrap_value (ada_value_subscript
10970 (argvec[0], nargs, argvec + 1));
10971 }
10972 case TYPE_CODE_ARRAY:
10973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10974 {
10975 type = ada_array_element_type (type, nargs);
10976 if (type == NULL)
323e0a4a 10977 error (_("element type of array unknown"));
4c4b4cd2 10978 else
0a07e705 10979 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10980 }
10981 return
10982 unwrap_value (ada_value_subscript
10983 (ada_coerce_to_simple_array (argvec[0]),
10984 nargs, argvec + 1));
10985 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10987 {
deede10c 10988 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10989 type = ada_array_element_type (type, nargs);
10990 if (type == NULL)
323e0a4a 10991 error (_("element type of array unknown"));
4c4b4cd2 10992 else
0a07e705 10993 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10994 }
10995 return
deede10c
JB
10996 unwrap_value (ada_value_ptr_subscript (argvec[0],
10997 nargs, argvec + 1));
4c4b4cd2
PH
10998
10999 default:
e1d5a0d2
PH
11000 error (_("Attempt to index or call something other than an "
11001 "array or function"));
4c4b4cd2
PH
11002 }
11003
11004 case TERNOP_SLICE:
11005 {
11006 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007 struct value *low_bound_val =
11008 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11009 struct value *high_bound_val =
11010 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11011 LONGEST low_bound;
11012 LONGEST high_bound;
5b4ee69b 11013
994b9211
AC
11014 low_bound_val = coerce_ref (low_bound_val);
11015 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11016 low_bound = value_as_long (low_bound_val);
11017 high_bound = value_as_long (high_bound_val);
963a6417 11018
4c4b4cd2
PH
11019 if (noside == EVAL_SKIP)
11020 goto nosideret;
11021
4c4b4cd2
PH
11022 /* If this is a reference to an aligner type, then remove all
11023 the aligners. */
df407dfe
AC
11024 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11025 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11026 TYPE_TARGET_TYPE (value_type (array)) =
11027 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11028
ad82864c 11029 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11030 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11031
11032 /* If this is a reference to an array or an array lvalue,
11033 convert to a pointer. */
df407dfe
AC
11034 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11035 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11036 && VALUE_LVAL (array) == lval_memory))
11037 array = value_addr (array);
11038
1265e4aa 11039 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11040 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11041 (value_type (array))))
0b5d8877 11042 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11043
11044 array = ada_coerce_to_simple_array_ptr (array);
11045
714e53ab
PH
11046 /* If we have more than one level of pointer indirection,
11047 dereference the value until we get only one level. */
df407dfe
AC
11048 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11049 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11050 == TYPE_CODE_PTR))
11051 array = value_ind (array);
11052
11053 /* Make sure we really do have an array type before going further,
11054 to avoid a SEGV when trying to get the index type or the target
11055 type later down the road if the debug info generated by
11056 the compiler is incorrect or incomplete. */
df407dfe 11057 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11058 error (_("cannot take slice of non-array"));
714e53ab 11059
828292f2
JB
11060 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11061 == TYPE_CODE_PTR)
4c4b4cd2 11062 {
828292f2
JB
11063 struct type *type0 = ada_check_typedef (value_type (array));
11064
0b5d8877 11065 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11066 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11067 else
11068 {
11069 struct type *arr_type0 =
828292f2 11070 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11071
f5938064
JG
11072 return ada_value_slice_from_ptr (array, arr_type0,
11073 longest_to_int (low_bound),
11074 longest_to_int (high_bound));
4c4b4cd2
PH
11075 }
11076 }
11077 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11078 return array;
11079 else if (high_bound < low_bound)
df407dfe 11080 return empty_array (value_type (array), low_bound);
4c4b4cd2 11081 else
529cad9c
PH
11082 return ada_value_slice (array, longest_to_int (low_bound),
11083 longest_to_int (high_bound));
4c4b4cd2 11084 }
14f9c5c9 11085
4c4b4cd2
PH
11086 case UNOP_IN_RANGE:
11087 (*pos) += 2;
11088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11089 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11090
14f9c5c9 11091 if (noside == EVAL_SKIP)
4c4b4cd2 11092 goto nosideret;
14f9c5c9 11093
4c4b4cd2
PH
11094 switch (TYPE_CODE (type))
11095 {
11096 default:
e1d5a0d2
PH
11097 lim_warning (_("Membership test incompletely implemented; "
11098 "always returns true"));
fbb06eb1
UW
11099 type = language_bool_type (exp->language_defn, exp->gdbarch);
11100 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11101
11102 case TYPE_CODE_RANGE:
030b4912
UW
11103 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11104 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11105 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11106 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11107 type = language_bool_type (exp->language_defn, exp->gdbarch);
11108 return
11109 value_from_longest (type,
4c4b4cd2
PH
11110 (value_less (arg1, arg3)
11111 || value_equal (arg1, arg3))
11112 && (value_less (arg2, arg1)
11113 || value_equal (arg2, arg1)));
11114 }
11115
11116 case BINOP_IN_BOUNDS:
14f9c5c9 11117 (*pos) += 2;
4c4b4cd2
PH
11118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11120
4c4b4cd2
PH
11121 if (noside == EVAL_SKIP)
11122 goto nosideret;
14f9c5c9 11123
4c4b4cd2 11124 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11125 {
11126 type = language_bool_type (exp->language_defn, exp->gdbarch);
11127 return value_zero (type, not_lval);
11128 }
14f9c5c9 11129
4c4b4cd2 11130 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11131
1eea4ebd
UW
11132 type = ada_index_type (value_type (arg2), tem, "range");
11133 if (!type)
11134 type = value_type (arg1);
14f9c5c9 11135
1eea4ebd
UW
11136 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11137 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11138
f44316fa
UW
11139 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11140 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11141 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11142 return
fbb06eb1 11143 value_from_longest (type,
4c4b4cd2
PH
11144 (value_less (arg1, arg3)
11145 || value_equal (arg1, arg3))
11146 && (value_less (arg2, arg1)
11147 || value_equal (arg2, arg1)));
11148
11149 case TERNOP_IN_RANGE:
11150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11153
11154 if (noside == EVAL_SKIP)
11155 goto nosideret;
11156
f44316fa
UW
11157 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11159 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11160 return
fbb06eb1 11161 value_from_longest (type,
4c4b4cd2
PH
11162 (value_less (arg1, arg3)
11163 || value_equal (arg1, arg3))
11164 && (value_less (arg2, arg1)
11165 || value_equal (arg2, arg1)));
11166
11167 case OP_ATR_FIRST:
11168 case OP_ATR_LAST:
11169 case OP_ATR_LENGTH:
11170 {
76a01679 11171 struct type *type_arg;
5b4ee69b 11172
76a01679
JB
11173 if (exp->elts[*pos].opcode == OP_TYPE)
11174 {
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176 arg1 = NULL;
5bc23cb3 11177 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11178 }
11179 else
11180 {
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 type_arg = NULL;
11183 }
11184
11185 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11186 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11187 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11188 *pos += 4;
11189
11190 if (noside == EVAL_SKIP)
11191 goto nosideret;
11192
11193 if (type_arg == NULL)
11194 {
11195 arg1 = ada_coerce_ref (arg1);
11196
ad82864c 11197 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11198 arg1 = ada_coerce_to_simple_array (arg1);
11199
aa4fb036 11200 if (op == OP_ATR_LENGTH)
1eea4ebd 11201 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11202 else
11203 {
11204 type = ada_index_type (value_type (arg1), tem,
11205 ada_attribute_name (op));
11206 if (type == NULL)
11207 type = builtin_type (exp->gdbarch)->builtin_int;
11208 }
76a01679
JB
11209
11210 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11211 return allocate_value (type);
76a01679
JB
11212
11213 switch (op)
11214 {
11215 default: /* Should never happen. */
323e0a4a 11216 error (_("unexpected attribute encountered"));
76a01679 11217 case OP_ATR_FIRST:
1eea4ebd
UW
11218 return value_from_longest
11219 (type, ada_array_bound (arg1, tem, 0));
76a01679 11220 case OP_ATR_LAST:
1eea4ebd
UW
11221 return value_from_longest
11222 (type, ada_array_bound (arg1, tem, 1));
76a01679 11223 case OP_ATR_LENGTH:
1eea4ebd
UW
11224 return value_from_longest
11225 (type, ada_array_length (arg1, tem));
76a01679
JB
11226 }
11227 }
11228 else if (discrete_type_p (type_arg))
11229 {
11230 struct type *range_type;
0d5cff50 11231 const char *name = ada_type_name (type_arg);
5b4ee69b 11232
76a01679
JB
11233 range_type = NULL;
11234 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11235 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11236 if (range_type == NULL)
11237 range_type = type_arg;
11238 switch (op)
11239 {
11240 default:
323e0a4a 11241 error (_("unexpected attribute encountered"));
76a01679 11242 case OP_ATR_FIRST:
690cc4eb 11243 return value_from_longest
43bbcdc2 11244 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11245 case OP_ATR_LAST:
690cc4eb 11246 return value_from_longest
43bbcdc2 11247 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11248 case OP_ATR_LENGTH:
323e0a4a 11249 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11250 }
11251 }
11252 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11253 error (_("unimplemented type attribute"));
76a01679
JB
11254 else
11255 {
11256 LONGEST low, high;
11257
ad82864c
JB
11258 if (ada_is_constrained_packed_array_type (type_arg))
11259 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11260
aa4fb036 11261 if (op == OP_ATR_LENGTH)
1eea4ebd 11262 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11263 else
11264 {
11265 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11266 if (type == NULL)
11267 type = builtin_type (exp->gdbarch)->builtin_int;
11268 }
1eea4ebd 11269
76a01679
JB
11270 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11271 return allocate_value (type);
11272
11273 switch (op)
11274 {
11275 default:
323e0a4a 11276 error (_("unexpected attribute encountered"));
76a01679 11277 case OP_ATR_FIRST:
1eea4ebd 11278 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11279 return value_from_longest (type, low);
11280 case OP_ATR_LAST:
1eea4ebd 11281 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11282 return value_from_longest (type, high);
11283 case OP_ATR_LENGTH:
1eea4ebd
UW
11284 low = ada_array_bound_from_type (type_arg, tem, 0);
11285 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11286 return value_from_longest (type, high - low + 1);
11287 }
11288 }
14f9c5c9
AS
11289 }
11290
4c4b4cd2
PH
11291 case OP_ATR_TAG:
11292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11293 if (noside == EVAL_SKIP)
76a01679 11294 goto nosideret;
4c4b4cd2
PH
11295
11296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11297 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11298
11299 return ada_value_tag (arg1);
11300
11301 case OP_ATR_MIN:
11302 case OP_ATR_MAX:
11303 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11305 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11306 if (noside == EVAL_SKIP)
76a01679 11307 goto nosideret;
d2e4a39e 11308 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11309 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11310 else
f44316fa
UW
11311 {
11312 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11313 return value_binop (arg1, arg2,
11314 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11315 }
14f9c5c9 11316
4c4b4cd2
PH
11317 case OP_ATR_MODULUS:
11318 {
31dedfee 11319 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11320
5b4ee69b 11321 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11322 if (noside == EVAL_SKIP)
11323 goto nosideret;
4c4b4cd2 11324
76a01679 11325 if (!ada_is_modular_type (type_arg))
323e0a4a 11326 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11327
76a01679
JB
11328 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11329 ada_modulus (type_arg));
4c4b4cd2
PH
11330 }
11331
11332
11333 case OP_ATR_POS:
11334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11336 if (noside == EVAL_SKIP)
76a01679 11337 goto nosideret;
3cb382c9
UW
11338 type = builtin_type (exp->gdbarch)->builtin_int;
11339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11340 return value_zero (type, not_lval);
14f9c5c9 11341 else
3cb382c9 11342 return value_pos_atr (type, arg1);
14f9c5c9 11343
4c4b4cd2
PH
11344 case OP_ATR_SIZE:
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11346 type = value_type (arg1);
11347
11348 /* If the argument is a reference, then dereference its type, since
11349 the user is really asking for the size of the actual object,
11350 not the size of the pointer. */
11351 if (TYPE_CODE (type) == TYPE_CODE_REF)
11352 type = TYPE_TARGET_TYPE (type);
11353
4c4b4cd2 11354 if (noside == EVAL_SKIP)
76a01679 11355 goto nosideret;
4c4b4cd2 11356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11357 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11358 else
22601c15 11359 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11360 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11361
11362 case OP_ATR_VAL:
11363 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11364 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11365 type = exp->elts[pc + 2].type;
14f9c5c9 11366 if (noside == EVAL_SKIP)
76a01679 11367 goto nosideret;
4c4b4cd2 11368 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11369 return value_zero (type, not_lval);
4c4b4cd2 11370 else
76a01679 11371 return value_val_atr (type, arg1);
4c4b4cd2
PH
11372
11373 case BINOP_EXP:
11374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11376 if (noside == EVAL_SKIP)
11377 goto nosideret;
11378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11379 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11380 else
f44316fa
UW
11381 {
11382 /* For integer exponentiation operations,
11383 only promote the first argument. */
11384 if (is_integral_type (value_type (arg2)))
11385 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11386 else
11387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11388
11389 return value_binop (arg1, arg2, op);
11390 }
4c4b4cd2
PH
11391
11392 case UNOP_PLUS:
11393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11394 if (noside == EVAL_SKIP)
11395 goto nosideret;
11396 else
11397 return arg1;
11398
11399 case UNOP_ABS:
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11401 if (noside == EVAL_SKIP)
11402 goto nosideret;
f44316fa 11403 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11404 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11405 return value_neg (arg1);
14f9c5c9 11406 else
4c4b4cd2 11407 return arg1;
14f9c5c9
AS
11408
11409 case UNOP_IND:
5ec18f2b 11410 preeval_pos = *pos;
6b0d7253 11411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11412 if (noside == EVAL_SKIP)
4c4b4cd2 11413 goto nosideret;
df407dfe 11414 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11415 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11416 {
11417 if (ada_is_array_descriptor_type (type))
11418 /* GDB allows dereferencing GNAT array descriptors. */
11419 {
11420 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11421
4c4b4cd2 11422 if (arrType == NULL)
323e0a4a 11423 error (_("Attempt to dereference null array pointer."));
00a4c844 11424 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11425 }
11426 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11427 || TYPE_CODE (type) == TYPE_CODE_REF
11428 /* In C you can dereference an array to get the 1st elt. */
11429 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11430 {
5ec18f2b
JG
11431 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11432 only be determined by inspecting the object's tag.
11433 This means that we need to evaluate completely the
11434 expression in order to get its type. */
11435
023db19c
JB
11436 if ((TYPE_CODE (type) == TYPE_CODE_REF
11437 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11438 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11439 {
11440 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11441 EVAL_NORMAL);
11442 type = value_type (ada_value_ind (arg1));
11443 }
11444 else
11445 {
11446 type = to_static_fixed_type
11447 (ada_aligned_type
11448 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11449 }
c1b5a1a6 11450 ada_ensure_varsize_limit (type);
714e53ab
PH
11451 return value_zero (type, lval_memory);
11452 }
4c4b4cd2 11453 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11454 {
11455 /* GDB allows dereferencing an int. */
11456 if (expect_type == NULL)
11457 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11458 lval_memory);
11459 else
11460 {
11461 expect_type =
11462 to_static_fixed_type (ada_aligned_type (expect_type));
11463 return value_zero (expect_type, lval_memory);
11464 }
11465 }
4c4b4cd2 11466 else
323e0a4a 11467 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11468 }
0963b4bd 11469 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11470 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11471
96967637
JB
11472 if (TYPE_CODE (type) == TYPE_CODE_INT)
11473 /* GDB allows dereferencing an int. If we were given
11474 the expect_type, then use that as the target type.
11475 Otherwise, assume that the target type is an int. */
11476 {
11477 if (expect_type != NULL)
11478 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11479 arg1));
11480 else
11481 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11482 (CORE_ADDR) value_as_address (arg1));
11483 }
6b0d7253 11484
4c4b4cd2
PH
11485 if (ada_is_array_descriptor_type (type))
11486 /* GDB allows dereferencing GNAT array descriptors. */
11487 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11488 else
4c4b4cd2 11489 return ada_value_ind (arg1);
14f9c5c9
AS
11490
11491 case STRUCTOP_STRUCT:
11492 tem = longest_to_int (exp->elts[pc + 1].longconst);
11493 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11494 preeval_pos = *pos;
14f9c5c9
AS
11495 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11496 if (noside == EVAL_SKIP)
4c4b4cd2 11497 goto nosideret;
14f9c5c9 11498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11499 {
df407dfe 11500 struct type *type1 = value_type (arg1);
5b4ee69b 11501
76a01679
JB
11502 if (ada_is_tagged_type (type1, 1))
11503 {
11504 type = ada_lookup_struct_elt_type (type1,
11505 &exp->elts[pc + 2].string,
988f6b3d 11506 1, 1);
5ec18f2b
JG
11507
11508 /* If the field is not found, check if it exists in the
11509 extension of this object's type. This means that we
11510 need to evaluate completely the expression. */
11511
76a01679 11512 if (type == NULL)
5ec18f2b
JG
11513 {
11514 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11515 EVAL_NORMAL);
11516 arg1 = ada_value_struct_elt (arg1,
11517 &exp->elts[pc + 2].string,
11518 0);
11519 arg1 = unwrap_value (arg1);
11520 type = value_type (ada_to_fixed_value (arg1));
11521 }
76a01679
JB
11522 }
11523 else
11524 type =
11525 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11526 0);
76a01679
JB
11527
11528 return value_zero (ada_aligned_type (type), lval_memory);
11529 }
14f9c5c9 11530 else
a579cd9a
MW
11531 {
11532 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11533 arg1 = unwrap_value (arg1);
11534 return ada_to_fixed_value (arg1);
11535 }
284614f0 11536
14f9c5c9 11537 case OP_TYPE:
4c4b4cd2
PH
11538 /* The value is not supposed to be used. This is here to make it
11539 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11540 (*pos) += 2;
11541 if (noside == EVAL_SKIP)
4c4b4cd2 11542 goto nosideret;
14f9c5c9 11543 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11544 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11545 else
323e0a4a 11546 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11547
11548 case OP_AGGREGATE:
11549 case OP_CHOICES:
11550 case OP_OTHERS:
11551 case OP_DISCRETE_RANGE:
11552 case OP_POSITIONAL:
11553 case OP_NAME:
11554 if (noside == EVAL_NORMAL)
11555 switch (op)
11556 {
11557 case OP_NAME:
11558 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11559 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11560 case OP_AGGREGATE:
11561 error (_("Aggregates only allowed on the right of an assignment"));
11562 default:
0963b4bd
MS
11563 internal_error (__FILE__, __LINE__,
11564 _("aggregate apparently mangled"));
52ce6436
PH
11565 }
11566
11567 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11568 *pos += oplen - 1;
11569 for (tem = 0; tem < nargs; tem += 1)
11570 ada_evaluate_subexp (NULL, exp, pos, noside);
11571 goto nosideret;
14f9c5c9
AS
11572 }
11573
11574nosideret:
ced9779b 11575 return eval_skip_value (exp);
14f9c5c9 11576}
14f9c5c9 11577\f
d2e4a39e 11578
4c4b4cd2 11579 /* Fixed point */
14f9c5c9
AS
11580
11581/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11582 type name that encodes the 'small and 'delta information.
4c4b4cd2 11583 Otherwise, return NULL. */
14f9c5c9 11584
d2e4a39e 11585static const char *
ebf56fd3 11586fixed_type_info (struct type *type)
14f9c5c9 11587{
d2e4a39e 11588 const char *name = ada_type_name (type);
14f9c5c9
AS
11589 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11590
d2e4a39e
AS
11591 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11592 {
14f9c5c9 11593 const char *tail = strstr (name, "___XF_");
5b4ee69b 11594
14f9c5c9 11595 if (tail == NULL)
4c4b4cd2 11596 return NULL;
d2e4a39e 11597 else
4c4b4cd2 11598 return tail + 5;
14f9c5c9
AS
11599 }
11600 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11601 return fixed_type_info (TYPE_TARGET_TYPE (type));
11602 else
11603 return NULL;
11604}
11605
4c4b4cd2 11606/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11607
11608int
ebf56fd3 11609ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11610{
11611 return fixed_type_info (type) != NULL;
11612}
11613
4c4b4cd2
PH
11614/* Return non-zero iff TYPE represents a System.Address type. */
11615
11616int
11617ada_is_system_address_type (struct type *type)
11618{
11619 return (TYPE_NAME (type)
11620 && strcmp (TYPE_NAME (type), "system__address") == 0);
11621}
11622
14f9c5c9 11623/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11624 type, return the target floating-point type to be used to represent
11625 of this type during internal computation. */
11626
11627static struct type *
11628ada_scaling_type (struct type *type)
11629{
11630 return builtin_type (get_type_arch (type))->builtin_long_double;
11631}
11632
11633/* Assuming that TYPE is the representation of an Ada fixed-point
11634 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11635 delta cannot be determined. */
14f9c5c9 11636
50eff16b 11637struct value *
ebf56fd3 11638ada_delta (struct type *type)
14f9c5c9
AS
11639{
11640 const char *encoding = fixed_type_info (type);
50eff16b
UW
11641 struct type *scale_type = ada_scaling_type (type);
11642
11643 long long num, den;
11644
11645 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11646 return nullptr;
d2e4a39e 11647 else
50eff16b
UW
11648 return value_binop (value_from_longest (scale_type, num),
11649 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11650}
11651
11652/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11653 factor ('SMALL value) associated with the type. */
14f9c5c9 11654
50eff16b
UW
11655struct value *
11656ada_scaling_factor (struct type *type)
14f9c5c9
AS
11657{
11658 const char *encoding = fixed_type_info (type);
50eff16b
UW
11659 struct type *scale_type = ada_scaling_type (type);
11660
11661 long long num0, den0, num1, den1;
14f9c5c9 11662 int n;
d2e4a39e 11663
50eff16b 11664 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11665 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11666
11667 if (n < 2)
50eff16b 11668 return value_from_longest (scale_type, 1);
14f9c5c9 11669 else if (n == 4)
50eff16b
UW
11670 return value_binop (value_from_longest (scale_type, num1),
11671 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11672 else
50eff16b
UW
11673 return value_binop (value_from_longest (scale_type, num0),
11674 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11675}
11676
14f9c5c9 11677\f
d2e4a39e 11678
4c4b4cd2 11679 /* Range types */
14f9c5c9
AS
11680
11681/* Scan STR beginning at position K for a discriminant name, and
11682 return the value of that discriminant field of DVAL in *PX. If
11683 PNEW_K is not null, put the position of the character beyond the
11684 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11685 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11686
11687static int
108d56a4 11688scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11689 int *pnew_k)
14f9c5c9
AS
11690{
11691 static char *bound_buffer = NULL;
11692 static size_t bound_buffer_len = 0;
5da1a4d3 11693 const char *pstart, *pend, *bound;
d2e4a39e 11694 struct value *bound_val;
14f9c5c9
AS
11695
11696 if (dval == NULL || str == NULL || str[k] == '\0')
11697 return 0;
11698
5da1a4d3
SM
11699 pstart = str + k;
11700 pend = strstr (pstart, "__");
14f9c5c9
AS
11701 if (pend == NULL)
11702 {
5da1a4d3 11703 bound = pstart;
14f9c5c9
AS
11704 k += strlen (bound);
11705 }
d2e4a39e 11706 else
14f9c5c9 11707 {
5da1a4d3
SM
11708 int len = pend - pstart;
11709
11710 /* Strip __ and beyond. */
11711 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11712 strncpy (bound_buffer, pstart, len);
11713 bound_buffer[len] = '\0';
11714
14f9c5c9 11715 bound = bound_buffer;
d2e4a39e 11716 k = pend - str;
14f9c5c9 11717 }
d2e4a39e 11718
df407dfe 11719 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11720 if (bound_val == NULL)
11721 return 0;
11722
11723 *px = value_as_long (bound_val);
11724 if (pnew_k != NULL)
11725 *pnew_k = k;
11726 return 1;
11727}
11728
11729/* Value of variable named NAME in the current environment. If
11730 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11731 otherwise causes an error with message ERR_MSG. */
11732
d2e4a39e 11733static struct value *
edb0c9cb 11734get_var_value (const char *name, const char *err_msg)
14f9c5c9 11735{
b5ec771e 11736 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11737
54d343a2 11738 std::vector<struct block_symbol> syms;
b5ec771e
PA
11739 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11740 get_selected_block (0),
11741 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11742
11743 if (nsyms != 1)
11744 {
11745 if (err_msg == NULL)
4c4b4cd2 11746 return 0;
14f9c5c9 11747 else
8a3fe4f8 11748 error (("%s"), err_msg);
14f9c5c9
AS
11749 }
11750
54d343a2 11751 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11752}
d2e4a39e 11753
edb0c9cb
PA
11754/* Value of integer variable named NAME in the current environment.
11755 If no such variable is found, returns false. Otherwise, sets VALUE
11756 to the variable's value and returns true. */
4c4b4cd2 11757
edb0c9cb
PA
11758bool
11759get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11760{
4c4b4cd2 11761 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11762
14f9c5c9 11763 if (var_val == 0)
edb0c9cb
PA
11764 return false;
11765
11766 value = value_as_long (var_val);
11767 return true;
14f9c5c9 11768}
d2e4a39e 11769
14f9c5c9
AS
11770
11771/* Return a range type whose base type is that of the range type named
11772 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11773 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11774 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11775 corresponding range type from debug information; fall back to using it
11776 if symbol lookup fails. If a new type must be created, allocate it
11777 like ORIG_TYPE was. The bounds information, in general, is encoded
11778 in NAME, the base type given in the named range type. */
14f9c5c9 11779
d2e4a39e 11780static struct type *
28c85d6c 11781to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11782{
0d5cff50 11783 const char *name;
14f9c5c9 11784 struct type *base_type;
108d56a4 11785 const char *subtype_info;
14f9c5c9 11786
28c85d6c
JB
11787 gdb_assert (raw_type != NULL);
11788 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11789
1ce677a4 11790 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11791 base_type = TYPE_TARGET_TYPE (raw_type);
11792 else
11793 base_type = raw_type;
11794
28c85d6c 11795 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11796 subtype_info = strstr (name, "___XD");
11797 if (subtype_info == NULL)
690cc4eb 11798 {
43bbcdc2
PH
11799 LONGEST L = ada_discrete_type_low_bound (raw_type);
11800 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11801
690cc4eb
PH
11802 if (L < INT_MIN || U > INT_MAX)
11803 return raw_type;
11804 else
0c9c3474
SA
11805 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11806 L, U);
690cc4eb 11807 }
14f9c5c9
AS
11808 else
11809 {
11810 static char *name_buf = NULL;
11811 static size_t name_len = 0;
11812 int prefix_len = subtype_info - name;
11813 LONGEST L, U;
11814 struct type *type;
108d56a4 11815 const char *bounds_str;
14f9c5c9
AS
11816 int n;
11817
11818 GROW_VECT (name_buf, name_len, prefix_len + 5);
11819 strncpy (name_buf, name, prefix_len);
11820 name_buf[prefix_len] = '\0';
11821
11822 subtype_info += 5;
11823 bounds_str = strchr (subtype_info, '_');
11824 n = 1;
11825
d2e4a39e 11826 if (*subtype_info == 'L')
4c4b4cd2
PH
11827 {
11828 if (!ada_scan_number (bounds_str, n, &L, &n)
11829 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11830 return raw_type;
11831 if (bounds_str[n] == '_')
11832 n += 2;
0963b4bd 11833 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11834 n += 1;
11835 subtype_info += 1;
11836 }
d2e4a39e 11837 else
4c4b4cd2 11838 {
4c4b4cd2 11839 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11840 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11841 {
323e0a4a 11842 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11843 L = 1;
11844 }
11845 }
14f9c5c9 11846
d2e4a39e 11847 if (*subtype_info == 'U')
4c4b4cd2
PH
11848 {
11849 if (!ada_scan_number (bounds_str, n, &U, &n)
11850 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11851 return raw_type;
11852 }
d2e4a39e 11853 else
4c4b4cd2 11854 {
4c4b4cd2 11855 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11856 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11857 {
323e0a4a 11858 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11859 U = L;
11860 }
11861 }
14f9c5c9 11862
0c9c3474
SA
11863 type = create_static_range_type (alloc_type_copy (raw_type),
11864 base_type, L, U);
f5a91472
JB
11865 /* create_static_range_type alters the resulting type's length
11866 to match the size of the base_type, which is not what we want.
11867 Set it back to the original range type's length. */
11868 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11869 TYPE_NAME (type) = name;
14f9c5c9
AS
11870 return type;
11871 }
11872}
11873
4c4b4cd2
PH
11874/* True iff NAME is the name of a range type. */
11875
14f9c5c9 11876int
d2e4a39e 11877ada_is_range_type_name (const char *name)
14f9c5c9
AS
11878{
11879 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11880}
14f9c5c9 11881\f
d2e4a39e 11882
4c4b4cd2
PH
11883 /* Modular types */
11884
11885/* True iff TYPE is an Ada modular type. */
14f9c5c9 11886
14f9c5c9 11887int
d2e4a39e 11888ada_is_modular_type (struct type *type)
14f9c5c9 11889{
18af8284 11890 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11891
11892 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11893 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11894 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11895}
11896
4c4b4cd2
PH
11897/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11898
61ee279c 11899ULONGEST
0056e4d5 11900ada_modulus (struct type *type)
14f9c5c9 11901{
43bbcdc2 11902 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11903}
d2e4a39e 11904\f
f7f9143b
JB
11905
11906/* Ada exception catchpoint support:
11907 ---------------------------------
11908
11909 We support 3 kinds of exception catchpoints:
11910 . catchpoints on Ada exceptions
11911 . catchpoints on unhandled Ada exceptions
11912 . catchpoints on failed assertions
11913
11914 Exceptions raised during failed assertions, or unhandled exceptions
11915 could perfectly be caught with the general catchpoint on Ada exceptions.
11916 However, we can easily differentiate these two special cases, and having
11917 the option to distinguish these two cases from the rest can be useful
11918 to zero-in on certain situations.
11919
11920 Exception catchpoints are a specialized form of breakpoint,
11921 since they rely on inserting breakpoints inside known routines
11922 of the GNAT runtime. The implementation therefore uses a standard
11923 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11924 of breakpoint_ops.
11925
0259addd
JB
11926 Support in the runtime for exception catchpoints have been changed
11927 a few times already, and these changes affect the implementation
11928 of these catchpoints. In order to be able to support several
11929 variants of the runtime, we use a sniffer that will determine
28010a5d 11930 the runtime variant used by the program being debugged. */
f7f9143b 11931
82eacd52
JB
11932/* Ada's standard exceptions.
11933
11934 The Ada 83 standard also defined Numeric_Error. But there so many
11935 situations where it was unclear from the Ada 83 Reference Manual
11936 (RM) whether Constraint_Error or Numeric_Error should be raised,
11937 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11938 Interpretation saying that anytime the RM says that Numeric_Error
11939 should be raised, the implementation may raise Constraint_Error.
11940 Ada 95 went one step further and pretty much removed Numeric_Error
11941 from the list of standard exceptions (it made it a renaming of
11942 Constraint_Error, to help preserve compatibility when compiling
11943 an Ada83 compiler). As such, we do not include Numeric_Error from
11944 this list of standard exceptions. */
3d0b0fa3 11945
a121b7c1 11946static const char *standard_exc[] = {
3d0b0fa3
JB
11947 "constraint_error",
11948 "program_error",
11949 "storage_error",
11950 "tasking_error"
11951};
11952
0259addd
JB
11953typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11954
11955/* A structure that describes how to support exception catchpoints
11956 for a given executable. */
11957
11958struct exception_support_info
11959{
11960 /* The name of the symbol to break on in order to insert
11961 a catchpoint on exceptions. */
11962 const char *catch_exception_sym;
11963
11964 /* The name of the symbol to break on in order to insert
11965 a catchpoint on unhandled exceptions. */
11966 const char *catch_exception_unhandled_sym;
11967
11968 /* The name of the symbol to break on in order to insert
11969 a catchpoint on failed assertions. */
11970 const char *catch_assert_sym;
11971
9f757bf7
XR
11972 /* The name of the symbol to break on in order to insert
11973 a catchpoint on exception handling. */
11974 const char *catch_handlers_sym;
11975
0259addd
JB
11976 /* Assuming that the inferior just triggered an unhandled exception
11977 catchpoint, this function is responsible for returning the address
11978 in inferior memory where the name of that exception is stored.
11979 Return zero if the address could not be computed. */
11980 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11981};
11982
11983static CORE_ADDR ada_unhandled_exception_name_addr (void);
11984static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11985
11986/* The following exception support info structure describes how to
11987 implement exception catchpoints with the latest version of the
11988 Ada runtime (as of 2007-03-06). */
11989
11990static const struct exception_support_info default_exception_support_info =
11991{
11992 "__gnat_debug_raise_exception", /* catch_exception_sym */
11993 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11994 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11995 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11996 ada_unhandled_exception_name_addr
11997};
11998
11999/* The following exception support info structure describes how to
12000 implement exception catchpoints with a slightly older version
12001 of the Ada runtime. */
12002
12003static const struct exception_support_info exception_support_info_fallback =
12004{
12005 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12006 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12007 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12008 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12009 ada_unhandled_exception_name_addr_from_raise
12010};
12011
f17011e0
JB
12012/* Return nonzero if we can detect the exception support routines
12013 described in EINFO.
12014
12015 This function errors out if an abnormal situation is detected
12016 (for instance, if we find the exception support routines, but
12017 that support is found to be incomplete). */
12018
12019static int
12020ada_has_this_exception_support (const struct exception_support_info *einfo)
12021{
12022 struct symbol *sym;
12023
12024 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12025 that should be compiled with debugging information. As a result, we
12026 expect to find that symbol in the symtabs. */
12027
12028 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12029 if (sym == NULL)
a6af7abe
JB
12030 {
12031 /* Perhaps we did not find our symbol because the Ada runtime was
12032 compiled without debugging info, or simply stripped of it.
12033 It happens on some GNU/Linux distributions for instance, where
12034 users have to install a separate debug package in order to get
12035 the runtime's debugging info. In that situation, let the user
12036 know why we cannot insert an Ada exception catchpoint.
12037
12038 Note: Just for the purpose of inserting our Ada exception
12039 catchpoint, we could rely purely on the associated minimal symbol.
12040 But we would be operating in degraded mode anyway, since we are
12041 still lacking the debugging info needed later on to extract
12042 the name of the exception being raised (this name is printed in
12043 the catchpoint message, and is also used when trying to catch
12044 a specific exception). We do not handle this case for now. */
3b7344d5 12045 struct bound_minimal_symbol msym
1c8e84b0
JB
12046 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12047
3b7344d5 12048 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12049 error (_("Your Ada runtime appears to be missing some debugging "
12050 "information.\nCannot insert Ada exception catchpoint "
12051 "in this configuration."));
12052
12053 return 0;
12054 }
f17011e0
JB
12055
12056 /* Make sure that the symbol we found corresponds to a function. */
12057
12058 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12059 error (_("Symbol \"%s\" is not a function (class = %d)"),
12060 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12061
12062 return 1;
12063}
12064
0259addd
JB
12065/* Inspect the Ada runtime and determine which exception info structure
12066 should be used to provide support for exception catchpoints.
12067
3eecfa55
JB
12068 This function will always set the per-inferior exception_info,
12069 or raise an error. */
0259addd
JB
12070
12071static void
12072ada_exception_support_info_sniffer (void)
12073{
3eecfa55 12074 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12075
12076 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12077 if (data->exception_info != NULL)
0259addd
JB
12078 return;
12079
12080 /* Check the latest (default) exception support info. */
f17011e0 12081 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12082 {
3eecfa55 12083 data->exception_info = &default_exception_support_info;
0259addd
JB
12084 return;
12085 }
12086
12087 /* Try our fallback exception suport info. */
f17011e0 12088 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12089 {
3eecfa55 12090 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12091 return;
12092 }
12093
12094 /* Sometimes, it is normal for us to not be able to find the routine
12095 we are looking for. This happens when the program is linked with
12096 the shared version of the GNAT runtime, and the program has not been
12097 started yet. Inform the user of these two possible causes if
12098 applicable. */
12099
ccefe4c4 12100 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12101 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12102
12103 /* If the symbol does not exist, then check that the program is
12104 already started, to make sure that shared libraries have been
12105 loaded. If it is not started, this may mean that the symbol is
12106 in a shared library. */
12107
e99b03dc 12108 if (inferior_ptid.pid () == 0)
0259addd
JB
12109 error (_("Unable to insert catchpoint. Try to start the program first."));
12110
12111 /* At this point, we know that we are debugging an Ada program and
12112 that the inferior has been started, but we still are not able to
0963b4bd 12113 find the run-time symbols. That can mean that we are in
0259addd
JB
12114 configurable run time mode, or that a-except as been optimized
12115 out by the linker... In any case, at this point it is not worth
12116 supporting this feature. */
12117
7dda8cff 12118 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12119}
12120
f7f9143b
JB
12121/* True iff FRAME is very likely to be that of a function that is
12122 part of the runtime system. This is all very heuristic, but is
12123 intended to be used as advice as to what frames are uninteresting
12124 to most users. */
12125
12126static int
12127is_known_support_routine (struct frame_info *frame)
12128{
692465f1 12129 enum language func_lang;
f7f9143b 12130 int i;
f35a17b5 12131 const char *fullname;
f7f9143b 12132
4ed6b5be
JB
12133 /* If this code does not have any debugging information (no symtab),
12134 This cannot be any user code. */
f7f9143b 12135
51abb421 12136 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12137 if (sal.symtab == NULL)
12138 return 1;
12139
4ed6b5be
JB
12140 /* If there is a symtab, but the associated source file cannot be
12141 located, then assume this is not user code: Selecting a frame
12142 for which we cannot display the code would not be very helpful
12143 for the user. This should also take care of case such as VxWorks
12144 where the kernel has some debugging info provided for a few units. */
f7f9143b 12145
f35a17b5
JK
12146 fullname = symtab_to_fullname (sal.symtab);
12147 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12148 return 1;
12149
4ed6b5be
JB
12150 /* Check the unit filename againt the Ada runtime file naming.
12151 We also check the name of the objfile against the name of some
12152 known system libraries that sometimes come with debugging info
12153 too. */
12154
f7f9143b
JB
12155 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12156 {
12157 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12158 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12159 return 1;
eb822aa6
DE
12160 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12161 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12162 return 1;
f7f9143b
JB
12163 }
12164
4ed6b5be 12165 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12166
c6dc63a1
TT
12167 gdb::unique_xmalloc_ptr<char> func_name
12168 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12169 if (func_name == NULL)
12170 return 1;
12171
12172 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12173 {
12174 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12175 if (re_exec (func_name.get ()))
12176 return 1;
f7f9143b
JB
12177 }
12178
12179 return 0;
12180}
12181
12182/* Find the first frame that contains debugging information and that is not
12183 part of the Ada run-time, starting from FI and moving upward. */
12184
0ef643c8 12185void
f7f9143b
JB
12186ada_find_printable_frame (struct frame_info *fi)
12187{
12188 for (; fi != NULL; fi = get_prev_frame (fi))
12189 {
12190 if (!is_known_support_routine (fi))
12191 {
12192 select_frame (fi);
12193 break;
12194 }
12195 }
12196
12197}
12198
12199/* Assuming that the inferior just triggered an unhandled exception
12200 catchpoint, return the address in inferior memory where the name
12201 of the exception is stored.
12202
12203 Return zero if the address could not be computed. */
12204
12205static CORE_ADDR
12206ada_unhandled_exception_name_addr (void)
0259addd
JB
12207{
12208 return parse_and_eval_address ("e.full_name");
12209}
12210
12211/* Same as ada_unhandled_exception_name_addr, except that this function
12212 should be used when the inferior uses an older version of the runtime,
12213 where the exception name needs to be extracted from a specific frame
12214 several frames up in the callstack. */
12215
12216static CORE_ADDR
12217ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12218{
12219 int frame_level;
12220 struct frame_info *fi;
3eecfa55 12221 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12222
12223 /* To determine the name of this exception, we need to select
12224 the frame corresponding to RAISE_SYM_NAME. This frame is
12225 at least 3 levels up, so we simply skip the first 3 frames
12226 without checking the name of their associated function. */
12227 fi = get_current_frame ();
12228 for (frame_level = 0; frame_level < 3; frame_level += 1)
12229 if (fi != NULL)
12230 fi = get_prev_frame (fi);
12231
12232 while (fi != NULL)
12233 {
692465f1
JB
12234 enum language func_lang;
12235
c6dc63a1
TT
12236 gdb::unique_xmalloc_ptr<char> func_name
12237 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12238 if (func_name != NULL)
12239 {
c6dc63a1 12240 if (strcmp (func_name.get (),
55b87a52
KS
12241 data->exception_info->catch_exception_sym) == 0)
12242 break; /* We found the frame we were looking for... */
12243 fi = get_prev_frame (fi);
12244 }
f7f9143b
JB
12245 }
12246
12247 if (fi == NULL)
12248 return 0;
12249
12250 select_frame (fi);
12251 return parse_and_eval_address ("id.full_name");
12252}
12253
12254/* Assuming the inferior just triggered an Ada exception catchpoint
12255 (of any type), return the address in inferior memory where the name
12256 of the exception is stored, if applicable.
12257
45db7c09
PA
12258 Assumes the selected frame is the current frame.
12259
f7f9143b
JB
12260 Return zero if the address could not be computed, or if not relevant. */
12261
12262static CORE_ADDR
761269c8 12263ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12264 struct breakpoint *b)
12265{
3eecfa55
JB
12266 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12267
f7f9143b
JB
12268 switch (ex)
12269 {
761269c8 12270 case ada_catch_exception:
f7f9143b
JB
12271 return (parse_and_eval_address ("e.full_name"));
12272 break;
12273
761269c8 12274 case ada_catch_exception_unhandled:
3eecfa55 12275 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12276 break;
9f757bf7
XR
12277
12278 case ada_catch_handlers:
12279 return 0; /* The runtimes does not provide access to the exception
12280 name. */
12281 break;
12282
761269c8 12283 case ada_catch_assert:
f7f9143b
JB
12284 return 0; /* Exception name is not relevant in this case. */
12285 break;
12286
12287 default:
12288 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12289 break;
12290 }
12291
12292 return 0; /* Should never be reached. */
12293}
12294
e547c119
JB
12295/* Assuming the inferior is stopped at an exception catchpoint,
12296 return the message which was associated to the exception, if
12297 available. Return NULL if the message could not be retrieved.
12298
e547c119
JB
12299 Note: The exception message can be associated to an exception
12300 either through the use of the Raise_Exception function, or
12301 more simply (Ada 2005 and later), via:
12302
12303 raise Exception_Name with "exception message";
12304
12305 */
12306
6f46ac85 12307static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12308ada_exception_message_1 (void)
12309{
12310 struct value *e_msg_val;
e547c119 12311 int e_msg_len;
e547c119
JB
12312
12313 /* For runtimes that support this feature, the exception message
12314 is passed as an unbounded string argument called "message". */
12315 e_msg_val = parse_and_eval ("message");
12316 if (e_msg_val == NULL)
12317 return NULL; /* Exception message not supported. */
12318
12319 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12320 gdb_assert (e_msg_val != NULL);
12321 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12322
12323 /* If the message string is empty, then treat it as if there was
12324 no exception message. */
12325 if (e_msg_len <= 0)
12326 return NULL;
12327
6f46ac85
TT
12328 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12329 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12330 e_msg.get ()[e_msg_len] = '\0';
e547c119 12331
e547c119
JB
12332 return e_msg;
12333}
12334
12335/* Same as ada_exception_message_1, except that all exceptions are
12336 contained here (returning NULL instead). */
12337
6f46ac85 12338static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12339ada_exception_message (void)
12340{
6f46ac85 12341 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12342
12343 TRY
12344 {
12345 e_msg = ada_exception_message_1 ();
12346 }
12347 CATCH (e, RETURN_MASK_ERROR)
12348 {
6f46ac85 12349 e_msg.reset (nullptr);
e547c119
JB
12350 }
12351 END_CATCH
12352
12353 return e_msg;
12354}
12355
f7f9143b
JB
12356/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12357 any error that ada_exception_name_addr_1 might cause to be thrown.
12358 When an error is intercepted, a warning with the error message is printed,
12359 and zero is returned. */
12360
12361static CORE_ADDR
761269c8 12362ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12363 struct breakpoint *b)
12364{
f7f9143b
JB
12365 CORE_ADDR result = 0;
12366
492d29ea 12367 TRY
f7f9143b
JB
12368 {
12369 result = ada_exception_name_addr_1 (ex, b);
12370 }
12371
492d29ea 12372 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12373 {
12374 warning (_("failed to get exception name: %s"), e.message);
12375 return 0;
12376 }
492d29ea 12377 END_CATCH
f7f9143b
JB
12378
12379 return result;
12380}
12381
cb7de75e 12382static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12383 (const char *excep_string,
12384 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12385
12386/* Ada catchpoints.
12387
12388 In the case of catchpoints on Ada exceptions, the catchpoint will
12389 stop the target on every exception the program throws. When a user
12390 specifies the name of a specific exception, we translate this
12391 request into a condition expression (in text form), and then parse
12392 it into an expression stored in each of the catchpoint's locations.
12393 We then use this condition to check whether the exception that was
12394 raised is the one the user is interested in. If not, then the
12395 target is resumed again. We store the name of the requested
12396 exception, in order to be able to re-set the condition expression
12397 when symbols change. */
12398
12399/* An instance of this type is used to represent an Ada catchpoint
5625a286 12400 breakpoint location. */
28010a5d 12401
5625a286 12402class ada_catchpoint_location : public bp_location
28010a5d 12403{
5625a286
PA
12404public:
12405 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12406 : bp_location (ops, owner)
12407 {}
28010a5d
PA
12408
12409 /* The condition that checks whether the exception that was raised
12410 is the specific exception the user specified on catchpoint
12411 creation. */
4d01a485 12412 expression_up excep_cond_expr;
28010a5d
PA
12413};
12414
12415/* Implement the DTOR method in the bp_location_ops structure for all
12416 Ada exception catchpoint kinds. */
12417
12418static void
12419ada_catchpoint_location_dtor (struct bp_location *bl)
12420{
12421 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12422
4d01a485 12423 al->excep_cond_expr.reset ();
28010a5d
PA
12424}
12425
12426/* The vtable to be used in Ada catchpoint locations. */
12427
12428static const struct bp_location_ops ada_catchpoint_location_ops =
12429{
12430 ada_catchpoint_location_dtor
12431};
12432
c1fc2657 12433/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12434
c1fc2657 12435struct ada_catchpoint : public breakpoint
28010a5d 12436{
28010a5d 12437 /* The name of the specific exception the user specified. */
bc18fbb5 12438 std::string excep_string;
28010a5d
PA
12439};
12440
12441/* Parse the exception condition string in the context of each of the
12442 catchpoint's locations, and store them for later evaluation. */
12443
12444static void
9f757bf7
XR
12445create_excep_cond_exprs (struct ada_catchpoint *c,
12446 enum ada_exception_catchpoint_kind ex)
28010a5d 12447{
28010a5d 12448 struct bp_location *bl;
28010a5d
PA
12449
12450 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12451 if (c->excep_string.empty ())
28010a5d
PA
12452 return;
12453
12454 /* Same if there are no locations... */
c1fc2657 12455 if (c->loc == NULL)
28010a5d
PA
12456 return;
12457
12458 /* Compute the condition expression in text form, from the specific
12459 expection we want to catch. */
cb7de75e 12460 std::string cond_string
bc18fbb5 12461 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12462
12463 /* Iterate over all the catchpoint's locations, and parse an
12464 expression for each. */
c1fc2657 12465 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12466 {
12467 struct ada_catchpoint_location *ada_loc
12468 = (struct ada_catchpoint_location *) bl;
4d01a485 12469 expression_up exp;
28010a5d
PA
12470
12471 if (!bl->shlib_disabled)
12472 {
bbc13ae3 12473 const char *s;
28010a5d 12474
cb7de75e 12475 s = cond_string.c_str ();
492d29ea 12476 TRY
28010a5d 12477 {
036e657b
JB
12478 exp = parse_exp_1 (&s, bl->address,
12479 block_for_pc (bl->address),
12480 0);
28010a5d 12481 }
492d29ea 12482 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12483 {
12484 warning (_("failed to reevaluate internal exception condition "
12485 "for catchpoint %d: %s"),
c1fc2657 12486 c->number, e.message);
849f2b52 12487 }
492d29ea 12488 END_CATCH
28010a5d
PA
12489 }
12490
b22e99fd 12491 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12492 }
28010a5d
PA
12493}
12494
28010a5d
PA
12495/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12496 structure for all exception catchpoint kinds. */
12497
12498static struct bp_location *
761269c8 12499allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12500 struct breakpoint *self)
12501{
5625a286 12502 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12503}
12504
12505/* Implement the RE_SET method in the breakpoint_ops structure for all
12506 exception catchpoint kinds. */
12507
12508static void
761269c8 12509re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12510{
12511 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12512
12513 /* Call the base class's method. This updates the catchpoint's
12514 locations. */
2060206e 12515 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12516
12517 /* Reparse the exception conditional expressions. One for each
12518 location. */
9f757bf7 12519 create_excep_cond_exprs (c, ex);
28010a5d
PA
12520}
12521
12522/* Returns true if we should stop for this breakpoint hit. If the
12523 user specified a specific exception, we only want to cause a stop
12524 if the program thrown that exception. */
12525
12526static int
12527should_stop_exception (const struct bp_location *bl)
12528{
12529 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12530 const struct ada_catchpoint_location *ada_loc
12531 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12532 int stop;
12533
12534 /* With no specific exception, should always stop. */
bc18fbb5 12535 if (c->excep_string.empty ())
28010a5d
PA
12536 return 1;
12537
12538 if (ada_loc->excep_cond_expr == NULL)
12539 {
12540 /* We will have a NULL expression if back when we were creating
12541 the expressions, this location's had failed to parse. */
12542 return 1;
12543 }
12544
12545 stop = 1;
492d29ea 12546 TRY
28010a5d
PA
12547 {
12548 struct value *mark;
12549
12550 mark = value_mark ();
4d01a485 12551 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12552 value_free_to_mark (mark);
12553 }
492d29ea
PA
12554 CATCH (ex, RETURN_MASK_ALL)
12555 {
12556 exception_fprintf (gdb_stderr, ex,
12557 _("Error in testing exception condition:\n"));
12558 }
12559 END_CATCH
12560
28010a5d
PA
12561 return stop;
12562}
12563
12564/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567static void
761269c8 12568check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12569{
12570 bs->stop = should_stop_exception (bs->bp_location_at);
12571}
12572
f7f9143b
JB
12573/* Implement the PRINT_IT method in the breakpoint_ops structure
12574 for all exception catchpoint kinds. */
12575
12576static enum print_stop_action
761269c8 12577print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12578{
79a45e25 12579 struct ui_out *uiout = current_uiout;
348d480f
PA
12580 struct breakpoint *b = bs->breakpoint_at;
12581
956a9fb9 12582 annotate_catchpoint (b->number);
f7f9143b 12583
112e8700 12584 if (uiout->is_mi_like_p ())
f7f9143b 12585 {
112e8700 12586 uiout->field_string ("reason",
956a9fb9 12587 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12588 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12589 }
12590
112e8700
SM
12591 uiout->text (b->disposition == disp_del
12592 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12593 uiout->field_int ("bkptno", b->number);
12594 uiout->text (", ");
f7f9143b 12595
45db7c09
PA
12596 /* ada_exception_name_addr relies on the selected frame being the
12597 current frame. Need to do this here because this function may be
12598 called more than once when printing a stop, and below, we'll
12599 select the first frame past the Ada run-time (see
12600 ada_find_printable_frame). */
12601 select_frame (get_current_frame ());
12602
f7f9143b
JB
12603 switch (ex)
12604 {
761269c8
JB
12605 case ada_catch_exception:
12606 case ada_catch_exception_unhandled:
9f757bf7 12607 case ada_catch_handlers:
956a9fb9
JB
12608 {
12609 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12610 char exception_name[256];
12611
12612 if (addr != 0)
12613 {
c714b426
PA
12614 read_memory (addr, (gdb_byte *) exception_name,
12615 sizeof (exception_name) - 1);
956a9fb9
JB
12616 exception_name [sizeof (exception_name) - 1] = '\0';
12617 }
12618 else
12619 {
12620 /* For some reason, we were unable to read the exception
12621 name. This could happen if the Runtime was compiled
12622 without debugging info, for instance. In that case,
12623 just replace the exception name by the generic string
12624 "exception" - it will read as "an exception" in the
12625 notification we are about to print. */
967cff16 12626 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12627 }
12628 /* In the case of unhandled exception breakpoints, we print
12629 the exception name as "unhandled EXCEPTION_NAME", to make
12630 it clearer to the user which kind of catchpoint just got
12631 hit. We used ui_out_text to make sure that this extra
12632 info does not pollute the exception name in the MI case. */
761269c8 12633 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12634 uiout->text ("unhandled ");
12635 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12636 }
12637 break;
761269c8 12638 case ada_catch_assert:
956a9fb9
JB
12639 /* In this case, the name of the exception is not really
12640 important. Just print "failed assertion" to make it clearer
12641 that his program just hit an assertion-failure catchpoint.
12642 We used ui_out_text because this info does not belong in
12643 the MI output. */
112e8700 12644 uiout->text ("failed assertion");
956a9fb9 12645 break;
f7f9143b 12646 }
e547c119 12647
6f46ac85 12648 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12649 if (exception_message != NULL)
12650 {
e547c119 12651 uiout->text (" (");
6f46ac85 12652 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12653 uiout->text (")");
e547c119
JB
12654 }
12655
112e8700 12656 uiout->text (" at ");
956a9fb9 12657 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12658
12659 return PRINT_SRC_AND_LOC;
12660}
12661
12662/* Implement the PRINT_ONE method in the breakpoint_ops structure
12663 for all exception catchpoint kinds. */
12664
12665static void
761269c8 12666print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12667 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12668{
79a45e25 12669 struct ui_out *uiout = current_uiout;
28010a5d 12670 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12671 struct value_print_options opts;
12672
12673 get_user_print_options (&opts);
12674 if (opts.addressprint)
f7f9143b
JB
12675 {
12676 annotate_field (4);
112e8700 12677 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12678 }
12679
12680 annotate_field (5);
a6d9a66e 12681 *last_loc = b->loc;
f7f9143b
JB
12682 switch (ex)
12683 {
761269c8 12684 case ada_catch_exception:
bc18fbb5 12685 if (!c->excep_string.empty ())
f7f9143b 12686 {
bc18fbb5
TT
12687 std::string msg = string_printf (_("`%s' Ada exception"),
12688 c->excep_string.c_str ());
28010a5d 12689
112e8700 12690 uiout->field_string ("what", msg);
f7f9143b
JB
12691 }
12692 else
112e8700 12693 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12694
12695 break;
12696
761269c8 12697 case ada_catch_exception_unhandled:
112e8700 12698 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12699 break;
12700
9f757bf7 12701 case ada_catch_handlers:
bc18fbb5 12702 if (!c->excep_string.empty ())
9f757bf7
XR
12703 {
12704 uiout->field_fmt ("what",
12705 _("`%s' Ada exception handlers"),
bc18fbb5 12706 c->excep_string.c_str ());
9f757bf7
XR
12707 }
12708 else
12709 uiout->field_string ("what", "all Ada exceptions handlers");
12710 break;
12711
761269c8 12712 case ada_catch_assert:
112e8700 12713 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12714 break;
12715
12716 default:
12717 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12718 break;
12719 }
12720}
12721
12722/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12723 for all exception catchpoint kinds. */
12724
12725static void
761269c8 12726print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12727 struct breakpoint *b)
12728{
28010a5d 12729 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12730 struct ui_out *uiout = current_uiout;
28010a5d 12731
112e8700 12732 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12733 : _("Catchpoint "));
112e8700
SM
12734 uiout->field_int ("bkptno", b->number);
12735 uiout->text (": ");
00eb2c4a 12736
f7f9143b
JB
12737 switch (ex)
12738 {
761269c8 12739 case ada_catch_exception:
bc18fbb5 12740 if (!c->excep_string.empty ())
00eb2c4a 12741 {
862d101a 12742 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12743 c->excep_string.c_str ());
862d101a 12744 uiout->text (info.c_str ());
00eb2c4a 12745 }
f7f9143b 12746 else
112e8700 12747 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12748 break;
12749
761269c8 12750 case ada_catch_exception_unhandled:
112e8700 12751 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12752 break;
9f757bf7
XR
12753
12754 case ada_catch_handlers:
bc18fbb5 12755 if (!c->excep_string.empty ())
9f757bf7
XR
12756 {
12757 std::string info
12758 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12759 c->excep_string.c_str ());
9f757bf7
XR
12760 uiout->text (info.c_str ());
12761 }
12762 else
12763 uiout->text (_("all Ada exceptions handlers"));
12764 break;
12765
761269c8 12766 case ada_catch_assert:
112e8700 12767 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12768 break;
12769
12770 default:
12771 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12772 break;
12773 }
12774}
12775
6149aea9
PA
12776/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12777 for all exception catchpoint kinds. */
12778
12779static void
761269c8 12780print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12781 struct breakpoint *b, struct ui_file *fp)
12782{
28010a5d
PA
12783 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12784
6149aea9
PA
12785 switch (ex)
12786 {
761269c8 12787 case ada_catch_exception:
6149aea9 12788 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12789 if (!c->excep_string.empty ())
12790 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12791 break;
12792
761269c8 12793 case ada_catch_exception_unhandled:
78076abc 12794 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12795 break;
12796
9f757bf7
XR
12797 case ada_catch_handlers:
12798 fprintf_filtered (fp, "catch handlers");
12799 break;
12800
761269c8 12801 case ada_catch_assert:
6149aea9
PA
12802 fprintf_filtered (fp, "catch assert");
12803 break;
12804
12805 default:
12806 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12807 }
d9b3f62e 12808 print_recreate_thread (b, fp);
6149aea9
PA
12809}
12810
f7f9143b
JB
12811/* Virtual table for "catch exception" breakpoints. */
12812
28010a5d
PA
12813static struct bp_location *
12814allocate_location_catch_exception (struct breakpoint *self)
12815{
761269c8 12816 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12817}
12818
12819static void
12820re_set_catch_exception (struct breakpoint *b)
12821{
761269c8 12822 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12823}
12824
12825static void
12826check_status_catch_exception (bpstat bs)
12827{
761269c8 12828 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12829}
12830
f7f9143b 12831static enum print_stop_action
348d480f 12832print_it_catch_exception (bpstat bs)
f7f9143b 12833{
761269c8 12834 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12835}
12836
12837static void
a6d9a66e 12838print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12839{
761269c8 12840 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12841}
12842
12843static void
12844print_mention_catch_exception (struct breakpoint *b)
12845{
761269c8 12846 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12847}
12848
6149aea9
PA
12849static void
12850print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12851{
761269c8 12852 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12853}
12854
2060206e 12855static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12856
12857/* Virtual table for "catch exception unhandled" breakpoints. */
12858
28010a5d
PA
12859static struct bp_location *
12860allocate_location_catch_exception_unhandled (struct breakpoint *self)
12861{
761269c8 12862 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12863}
12864
12865static void
12866re_set_catch_exception_unhandled (struct breakpoint *b)
12867{
761269c8 12868 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12869}
12870
12871static void
12872check_status_catch_exception_unhandled (bpstat bs)
12873{
761269c8 12874 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12875}
12876
f7f9143b 12877static enum print_stop_action
348d480f 12878print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12879{
761269c8 12880 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12881}
12882
12883static void
a6d9a66e
UW
12884print_one_catch_exception_unhandled (struct breakpoint *b,
12885 struct bp_location **last_loc)
f7f9143b 12886{
761269c8 12887 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12888}
12889
12890static void
12891print_mention_catch_exception_unhandled (struct breakpoint *b)
12892{
761269c8 12893 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12894}
12895
6149aea9
PA
12896static void
12897print_recreate_catch_exception_unhandled (struct breakpoint *b,
12898 struct ui_file *fp)
12899{
761269c8 12900 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12901}
12902
2060206e 12903static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12904
12905/* Virtual table for "catch assert" breakpoints. */
12906
28010a5d
PA
12907static struct bp_location *
12908allocate_location_catch_assert (struct breakpoint *self)
12909{
761269c8 12910 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12911}
12912
12913static void
12914re_set_catch_assert (struct breakpoint *b)
12915{
761269c8 12916 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12917}
12918
12919static void
12920check_status_catch_assert (bpstat bs)
12921{
761269c8 12922 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12923}
12924
f7f9143b 12925static enum print_stop_action
348d480f 12926print_it_catch_assert (bpstat bs)
f7f9143b 12927{
761269c8 12928 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12929}
12930
12931static void
a6d9a66e 12932print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12933{
761269c8 12934 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12935}
12936
12937static void
12938print_mention_catch_assert (struct breakpoint *b)
12939{
761269c8 12940 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12941}
12942
6149aea9
PA
12943static void
12944print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12945{
761269c8 12946 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12947}
12948
2060206e 12949static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12950
9f757bf7
XR
12951/* Virtual table for "catch handlers" breakpoints. */
12952
12953static struct bp_location *
12954allocate_location_catch_handlers (struct breakpoint *self)
12955{
12956 return allocate_location_exception (ada_catch_handlers, self);
12957}
12958
12959static void
12960re_set_catch_handlers (struct breakpoint *b)
12961{
12962 re_set_exception (ada_catch_handlers, b);
12963}
12964
12965static void
12966check_status_catch_handlers (bpstat bs)
12967{
12968 check_status_exception (ada_catch_handlers, bs);
12969}
12970
12971static enum print_stop_action
12972print_it_catch_handlers (bpstat bs)
12973{
12974 return print_it_exception (ada_catch_handlers, bs);
12975}
12976
12977static void
12978print_one_catch_handlers (struct breakpoint *b,
12979 struct bp_location **last_loc)
12980{
12981 print_one_exception (ada_catch_handlers, b, last_loc);
12982}
12983
12984static void
12985print_mention_catch_handlers (struct breakpoint *b)
12986{
12987 print_mention_exception (ada_catch_handlers, b);
12988}
12989
12990static void
12991print_recreate_catch_handlers (struct breakpoint *b,
12992 struct ui_file *fp)
12993{
12994 print_recreate_exception (ada_catch_handlers, b, fp);
12995}
12996
12997static struct breakpoint_ops catch_handlers_breakpoint_ops;
12998
f7f9143b
JB
12999/* Split the arguments specified in a "catch exception" command.
13000 Set EX to the appropriate catchpoint type.
28010a5d 13001 Set EXCEP_STRING to the name of the specific exception if
5845583d 13002 specified by the user.
9f757bf7
XR
13003 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13004 "catch handlers" command. False otherwise.
5845583d
JB
13005 If a condition is found at the end of the arguments, the condition
13006 expression is stored in COND_STRING (memory must be deallocated
13007 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13008
13009static void
a121b7c1 13010catch_ada_exception_command_split (const char *args,
9f757bf7 13011 bool is_catch_handlers_cmd,
761269c8 13012 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13013 std::string *excep_string,
13014 std::string *cond_string)
f7f9143b 13015{
bc18fbb5 13016 std::string exception_name;
f7f9143b 13017
bc18fbb5
TT
13018 exception_name = extract_arg (&args);
13019 if (exception_name == "if")
5845583d
JB
13020 {
13021 /* This is not an exception name; this is the start of a condition
13022 expression for a catchpoint on all exceptions. So, "un-get"
13023 this token, and set exception_name to NULL. */
bc18fbb5 13024 exception_name.clear ();
5845583d
JB
13025 args -= 2;
13026 }
f7f9143b 13027
5845583d 13028 /* Check to see if we have a condition. */
f7f9143b 13029
f1735a53 13030 args = skip_spaces (args);
61012eef 13031 if (startswith (args, "if")
5845583d
JB
13032 && (isspace (args[2]) || args[2] == '\0'))
13033 {
13034 args += 2;
f1735a53 13035 args = skip_spaces (args);
5845583d
JB
13036
13037 if (args[0] == '\0')
13038 error (_("Condition missing after `if' keyword"));
bc18fbb5 13039 *cond_string = args;
5845583d
JB
13040
13041 args += strlen (args);
13042 }
13043
13044 /* Check that we do not have any more arguments. Anything else
13045 is unexpected. */
f7f9143b
JB
13046
13047 if (args[0] != '\0')
13048 error (_("Junk at end of expression"));
13049
9f757bf7
XR
13050 if (is_catch_handlers_cmd)
13051 {
13052 /* Catch handling of exceptions. */
13053 *ex = ada_catch_handlers;
13054 *excep_string = exception_name;
13055 }
bc18fbb5 13056 else if (exception_name.empty ())
f7f9143b
JB
13057 {
13058 /* Catch all exceptions. */
761269c8 13059 *ex = ada_catch_exception;
bc18fbb5 13060 excep_string->clear ();
f7f9143b 13061 }
bc18fbb5 13062 else if (exception_name == "unhandled")
f7f9143b
JB
13063 {
13064 /* Catch unhandled exceptions. */
761269c8 13065 *ex = ada_catch_exception_unhandled;
bc18fbb5 13066 excep_string->clear ();
f7f9143b
JB
13067 }
13068 else
13069 {
13070 /* Catch a specific exception. */
761269c8 13071 *ex = ada_catch_exception;
28010a5d 13072 *excep_string = exception_name;
f7f9143b
JB
13073 }
13074}
13075
13076/* Return the name of the symbol on which we should break in order to
13077 implement a catchpoint of the EX kind. */
13078
13079static const char *
761269c8 13080ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13081{
3eecfa55
JB
13082 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13083
13084 gdb_assert (data->exception_info != NULL);
0259addd 13085
f7f9143b
JB
13086 switch (ex)
13087 {
761269c8 13088 case ada_catch_exception:
3eecfa55 13089 return (data->exception_info->catch_exception_sym);
f7f9143b 13090 break;
761269c8 13091 case ada_catch_exception_unhandled:
3eecfa55 13092 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13093 break;
761269c8 13094 case ada_catch_assert:
3eecfa55 13095 return (data->exception_info->catch_assert_sym);
f7f9143b 13096 break;
9f757bf7
XR
13097 case ada_catch_handlers:
13098 return (data->exception_info->catch_handlers_sym);
13099 break;
f7f9143b
JB
13100 default:
13101 internal_error (__FILE__, __LINE__,
13102 _("unexpected catchpoint kind (%d)"), ex);
13103 }
13104}
13105
13106/* Return the breakpoint ops "virtual table" used for catchpoints
13107 of the EX kind. */
13108
c0a91b2b 13109static const struct breakpoint_ops *
761269c8 13110ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13111{
13112 switch (ex)
13113 {
761269c8 13114 case ada_catch_exception:
f7f9143b
JB
13115 return (&catch_exception_breakpoint_ops);
13116 break;
761269c8 13117 case ada_catch_exception_unhandled:
f7f9143b
JB
13118 return (&catch_exception_unhandled_breakpoint_ops);
13119 break;
761269c8 13120 case ada_catch_assert:
f7f9143b
JB
13121 return (&catch_assert_breakpoint_ops);
13122 break;
9f757bf7
XR
13123 case ada_catch_handlers:
13124 return (&catch_handlers_breakpoint_ops);
13125 break;
f7f9143b
JB
13126 default:
13127 internal_error (__FILE__, __LINE__,
13128 _("unexpected catchpoint kind (%d)"), ex);
13129 }
13130}
13131
13132/* Return the condition that will be used to match the current exception
13133 being raised with the exception that the user wants to catch. This
13134 assumes that this condition is used when the inferior just triggered
13135 an exception catchpoint.
cb7de75e 13136 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13137
cb7de75e 13138static std::string
9f757bf7
XR
13139ada_exception_catchpoint_cond_string (const char *excep_string,
13140 enum ada_exception_catchpoint_kind ex)
f7f9143b 13141{
3d0b0fa3 13142 int i;
9f757bf7 13143 bool is_standard_exc = false;
cb7de75e 13144 std::string result;
9f757bf7
XR
13145
13146 if (ex == ada_catch_handlers)
13147 {
13148 /* For exception handlers catchpoints, the condition string does
13149 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13150 result = ("long_integer (GNAT_GCC_exception_Access"
13151 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13152 }
13153 else
cb7de75e 13154 result = "long_integer (e)";
3d0b0fa3 13155
0963b4bd 13156 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13157 runtime units that have been compiled without debugging info; if
28010a5d 13158 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13159 exception (e.g. "constraint_error") then, during the evaluation
13160 of the condition expression, the symbol lookup on this name would
0963b4bd 13161 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13162 may then be set only on user-defined exceptions which have the
13163 same not-fully-qualified name (e.g. my_package.constraint_error).
13164
13165 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13166 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13167 exception constraint_error" is rewritten into "catch exception
13168 standard.constraint_error".
13169
13170 If an exception named contraint_error is defined in another package of
13171 the inferior program, then the only way to specify this exception as a
13172 breakpoint condition is to use its fully-qualified named:
13173 e.g. my_package.constraint_error. */
13174
13175 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13176 {
28010a5d 13177 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13178 {
9f757bf7
XR
13179 is_standard_exc = true;
13180 break;
3d0b0fa3
JB
13181 }
13182 }
9f757bf7 13183
cb7de75e
TT
13184 result += " = ";
13185
9f757bf7 13186 if (is_standard_exc)
cb7de75e 13187 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13188 else
cb7de75e 13189 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13190
9f757bf7 13191 return result;
f7f9143b
JB
13192}
13193
13194/* Return the symtab_and_line that should be used to insert an exception
13195 catchpoint of the TYPE kind.
13196
28010a5d
PA
13197 ADDR_STRING returns the name of the function where the real
13198 breakpoint that implements the catchpoints is set, depending on the
13199 type of catchpoint we need to create. */
f7f9143b
JB
13200
13201static struct symtab_and_line
bc18fbb5 13202ada_exception_sal (enum ada_exception_catchpoint_kind ex,
f2fc3015 13203 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13204{
13205 const char *sym_name;
13206 struct symbol *sym;
f7f9143b 13207
0259addd
JB
13208 /* First, find out which exception support info to use. */
13209 ada_exception_support_info_sniffer ();
13210
13211 /* Then lookup the function on which we will break in order to catch
f7f9143b 13212 the Ada exceptions requested by the user. */
f7f9143b
JB
13213 sym_name = ada_exception_sym_name (ex);
13214 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13215
f17011e0
JB
13216 /* We can assume that SYM is not NULL at this stage. If the symbol
13217 did not exist, ada_exception_support_info_sniffer would have
13218 raised an exception.
f7f9143b 13219
f17011e0
JB
13220 Also, ada_exception_support_info_sniffer should have already
13221 verified that SYM is a function symbol. */
13222 gdb_assert (sym != NULL);
13223 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13224
13225 /* Set ADDR_STRING. */
f7f9143b
JB
13226 *addr_string = xstrdup (sym_name);
13227
f7f9143b 13228 /* Set OPS. */
4b9eee8c 13229 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13230
f17011e0 13231 return find_function_start_sal (sym, 1);
f7f9143b
JB
13232}
13233
b4a5b78b 13234/* Create an Ada exception catchpoint.
f7f9143b 13235
b4a5b78b 13236 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13237
bc18fbb5 13238 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13239 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13240 of the exception to which this catchpoint applies.
2df4d1d5 13241
bc18fbb5 13242 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13243
b4a5b78b
JB
13244 TEMPFLAG, if nonzero, means that the underlying breakpoint
13245 should be temporary.
28010a5d 13246
b4a5b78b 13247 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13248
349774ef 13249void
28010a5d 13250create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13251 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13252 const std::string &excep_string,
56ecd069 13253 const std::string &cond_string,
28010a5d 13254 int tempflag,
349774ef 13255 int disabled,
28010a5d
PA
13256 int from_tty)
13257{
f2fc3015 13258 const char *addr_string = NULL;
b4a5b78b 13259 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13260 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13261
b270e6f9
TT
13262 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13263 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13264 ops, tempflag, disabled, from_tty);
28010a5d 13265 c->excep_string = excep_string;
9f757bf7 13266 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13267 if (!cond_string.empty ())
13268 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13269 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13270}
13271
9ac4176b
PA
13272/* Implement the "catch exception" command. */
13273
13274static void
eb4c3f4a 13275catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13276 struct cmd_list_element *command)
13277{
a121b7c1 13278 const char *arg = arg_entry;
9ac4176b
PA
13279 struct gdbarch *gdbarch = get_current_arch ();
13280 int tempflag;
761269c8 13281 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13282 std::string excep_string;
56ecd069 13283 std::string cond_string;
9ac4176b
PA
13284
13285 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13286
13287 if (!arg)
13288 arg = "";
9f757bf7 13289 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13290 &cond_string);
9f757bf7
XR
13291 create_ada_exception_catchpoint (gdbarch, ex_kind,
13292 excep_string, cond_string,
13293 tempflag, 1 /* enabled */,
13294 from_tty);
13295}
13296
13297/* Implement the "catch handlers" command. */
13298
13299static void
13300catch_ada_handlers_command (const char *arg_entry, int from_tty,
13301 struct cmd_list_element *command)
13302{
13303 const char *arg = arg_entry;
13304 struct gdbarch *gdbarch = get_current_arch ();
13305 int tempflag;
13306 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13307 std::string excep_string;
56ecd069 13308 std::string cond_string;
9f757bf7
XR
13309
13310 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13311
13312 if (!arg)
13313 arg = "";
13314 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13315 &cond_string);
b4a5b78b
JB
13316 create_ada_exception_catchpoint (gdbarch, ex_kind,
13317 excep_string, cond_string,
349774ef
JB
13318 tempflag, 1 /* enabled */,
13319 from_tty);
9ac4176b
PA
13320}
13321
b4a5b78b 13322/* Split the arguments specified in a "catch assert" command.
5845583d 13323
b4a5b78b
JB
13324 ARGS contains the command's arguments (or the empty string if
13325 no arguments were passed).
5845583d
JB
13326
13327 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13328 (the memory needs to be deallocated after use). */
5845583d 13329
b4a5b78b 13330static void
56ecd069 13331catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13332{
f1735a53 13333 args = skip_spaces (args);
f7f9143b 13334
5845583d 13335 /* Check whether a condition was provided. */
61012eef 13336 if (startswith (args, "if")
5845583d 13337 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13338 {
5845583d 13339 args += 2;
f1735a53 13340 args = skip_spaces (args);
5845583d
JB
13341 if (args[0] == '\0')
13342 error (_("condition missing after `if' keyword"));
56ecd069 13343 cond_string.assign (args);
f7f9143b
JB
13344 }
13345
5845583d
JB
13346 /* Otherwise, there should be no other argument at the end of
13347 the command. */
13348 else if (args[0] != '\0')
13349 error (_("Junk at end of arguments."));
f7f9143b
JB
13350}
13351
9ac4176b
PA
13352/* Implement the "catch assert" command. */
13353
13354static void
eb4c3f4a 13355catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13356 struct cmd_list_element *command)
13357{
a121b7c1 13358 const char *arg = arg_entry;
9ac4176b
PA
13359 struct gdbarch *gdbarch = get_current_arch ();
13360 int tempflag;
56ecd069 13361 std::string cond_string;
9ac4176b
PA
13362
13363 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13364
13365 if (!arg)
13366 arg = "";
56ecd069 13367 catch_ada_assert_command_split (arg, cond_string);
761269c8 13368 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13369 "", cond_string,
349774ef
JB
13370 tempflag, 1 /* enabled */,
13371 from_tty);
9ac4176b 13372}
778865d3
JB
13373
13374/* Return non-zero if the symbol SYM is an Ada exception object. */
13375
13376static int
13377ada_is_exception_sym (struct symbol *sym)
13378{
a737d952 13379 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13380
13381 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13382 && SYMBOL_CLASS (sym) != LOC_BLOCK
13383 && SYMBOL_CLASS (sym) != LOC_CONST
13384 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13385 && type_name != NULL && strcmp (type_name, "exception") == 0);
13386}
13387
13388/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13389 Ada exception object. This matches all exceptions except the ones
13390 defined by the Ada language. */
13391
13392static int
13393ada_is_non_standard_exception_sym (struct symbol *sym)
13394{
13395 int i;
13396
13397 if (!ada_is_exception_sym (sym))
13398 return 0;
13399
13400 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13401 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13402 return 0; /* A standard exception. */
13403
13404 /* Numeric_Error is also a standard exception, so exclude it.
13405 See the STANDARD_EXC description for more details as to why
13406 this exception is not listed in that array. */
13407 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13408 return 0;
13409
13410 return 1;
13411}
13412
ab816a27 13413/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13414 objects.
13415
13416 The comparison is determined first by exception name, and then
13417 by exception address. */
13418
ab816a27 13419bool
cc536b21 13420ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13421{
778865d3
JB
13422 int result;
13423
ab816a27
TT
13424 result = strcmp (name, other.name);
13425 if (result < 0)
13426 return true;
13427 if (result == 0 && addr < other.addr)
13428 return true;
13429 return false;
13430}
778865d3 13431
ab816a27 13432bool
cc536b21 13433ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13434{
13435 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13436}
13437
13438/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13439 routine, but keeping the first SKIP elements untouched.
13440
13441 All duplicates are also removed. */
13442
13443static void
ab816a27 13444sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13445 int skip)
13446{
ab816a27
TT
13447 std::sort (exceptions->begin () + skip, exceptions->end ());
13448 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13449 exceptions->end ());
778865d3
JB
13450}
13451
778865d3
JB
13452/* Add all exceptions defined by the Ada standard whose name match
13453 a regular expression.
13454
13455 If PREG is not NULL, then this regexp_t object is used to
13456 perform the symbol name matching. Otherwise, no name-based
13457 filtering is performed.
13458
13459 EXCEPTIONS is a vector of exceptions to which matching exceptions
13460 gets pushed. */
13461
13462static void
2d7cc5c7 13463ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13464 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13465{
13466 int i;
13467
13468 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13469 {
13470 if (preg == NULL
2d7cc5c7 13471 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13472 {
13473 struct bound_minimal_symbol msymbol
13474 = ada_lookup_simple_minsym (standard_exc[i]);
13475
13476 if (msymbol.minsym != NULL)
13477 {
13478 struct ada_exc_info info
77e371c0 13479 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13480
ab816a27 13481 exceptions->push_back (info);
778865d3
JB
13482 }
13483 }
13484 }
13485}
13486
13487/* Add all Ada exceptions defined locally and accessible from the given
13488 FRAME.
13489
13490 If PREG is not NULL, then this regexp_t object is used to
13491 perform the symbol name matching. Otherwise, no name-based
13492 filtering is performed.
13493
13494 EXCEPTIONS is a vector of exceptions to which matching exceptions
13495 gets pushed. */
13496
13497static void
2d7cc5c7
PA
13498ada_add_exceptions_from_frame (compiled_regex *preg,
13499 struct frame_info *frame,
ab816a27 13500 std::vector<ada_exc_info> *exceptions)
778865d3 13501{
3977b71f 13502 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13503
13504 while (block != 0)
13505 {
13506 struct block_iterator iter;
13507 struct symbol *sym;
13508
13509 ALL_BLOCK_SYMBOLS (block, iter, sym)
13510 {
13511 switch (SYMBOL_CLASS (sym))
13512 {
13513 case LOC_TYPEDEF:
13514 case LOC_BLOCK:
13515 case LOC_CONST:
13516 break;
13517 default:
13518 if (ada_is_exception_sym (sym))
13519 {
13520 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13521 SYMBOL_VALUE_ADDRESS (sym)};
13522
ab816a27 13523 exceptions->push_back (info);
778865d3
JB
13524 }
13525 }
13526 }
13527 if (BLOCK_FUNCTION (block) != NULL)
13528 break;
13529 block = BLOCK_SUPERBLOCK (block);
13530 }
13531}
13532
14bc53a8
PA
13533/* Return true if NAME matches PREG or if PREG is NULL. */
13534
13535static bool
2d7cc5c7 13536name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13537{
13538 return (preg == NULL
2d7cc5c7 13539 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13540}
13541
778865d3
JB
13542/* Add all exceptions defined globally whose name name match
13543 a regular expression, excluding standard exceptions.
13544
13545 The reason we exclude standard exceptions is that they need
13546 to be handled separately: Standard exceptions are defined inside
13547 a runtime unit which is normally not compiled with debugging info,
13548 and thus usually do not show up in our symbol search. However,
13549 if the unit was in fact built with debugging info, we need to
13550 exclude them because they would duplicate the entry we found
13551 during the special loop that specifically searches for those
13552 standard exceptions.
13553
13554 If PREG is not NULL, then this regexp_t object is used to
13555 perform the symbol name matching. Otherwise, no name-based
13556 filtering is performed.
13557
13558 EXCEPTIONS is a vector of exceptions to which matching exceptions
13559 gets pushed. */
13560
13561static void
2d7cc5c7 13562ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13563 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13564{
13565 struct objfile *objfile;
43f3e411 13566 struct compunit_symtab *s;
778865d3 13567
14bc53a8
PA
13568 /* In Ada, the symbol "search name" is a linkage name, whereas the
13569 regular expression used to do the matching refers to the natural
13570 name. So match against the decoded name. */
13571 expand_symtabs_matching (NULL,
b5ec771e 13572 lookup_name_info::match_any (),
14bc53a8
PA
13573 [&] (const char *search_name)
13574 {
13575 const char *decoded = ada_decode (search_name);
13576 return name_matches_regex (decoded, preg);
13577 },
13578 NULL,
13579 VARIABLES_DOMAIN);
778865d3 13580
43f3e411 13581 ALL_COMPUNITS (objfile, s)
778865d3 13582 {
43f3e411 13583 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13584 int i;
13585
13586 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13587 {
13588 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13589 struct block_iterator iter;
13590 struct symbol *sym;
13591
13592 ALL_BLOCK_SYMBOLS (b, iter, sym)
13593 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13594 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13595 {
13596 struct ada_exc_info info
13597 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13598
ab816a27 13599 exceptions->push_back (info);
778865d3
JB
13600 }
13601 }
13602 }
13603}
13604
13605/* Implements ada_exceptions_list with the regular expression passed
13606 as a regex_t, rather than a string.
13607
13608 If not NULL, PREG is used to filter out exceptions whose names
13609 do not match. Otherwise, all exceptions are listed. */
13610
ab816a27 13611static std::vector<ada_exc_info>
2d7cc5c7 13612ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13613{
ab816a27 13614 std::vector<ada_exc_info> result;
778865d3
JB
13615 int prev_len;
13616
13617 /* First, list the known standard exceptions. These exceptions
13618 need to be handled separately, as they are usually defined in
13619 runtime units that have been compiled without debugging info. */
13620
13621 ada_add_standard_exceptions (preg, &result);
13622
13623 /* Next, find all exceptions whose scope is local and accessible
13624 from the currently selected frame. */
13625
13626 if (has_stack_frames ())
13627 {
ab816a27 13628 prev_len = result.size ();
778865d3
JB
13629 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13630 &result);
ab816a27 13631 if (result.size () > prev_len)
778865d3
JB
13632 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13633 }
13634
13635 /* Add all exceptions whose scope is global. */
13636
ab816a27 13637 prev_len = result.size ();
778865d3 13638 ada_add_global_exceptions (preg, &result);
ab816a27 13639 if (result.size () > prev_len)
778865d3
JB
13640 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13641
778865d3
JB
13642 return result;
13643}
13644
13645/* Return a vector of ada_exc_info.
13646
13647 If REGEXP is NULL, all exceptions are included in the result.
13648 Otherwise, it should contain a valid regular expression,
13649 and only the exceptions whose names match that regular expression
13650 are included in the result.
13651
13652 The exceptions are sorted in the following order:
13653 - Standard exceptions (defined by the Ada language), in
13654 alphabetical order;
13655 - Exceptions only visible from the current frame, in
13656 alphabetical order;
13657 - Exceptions whose scope is global, in alphabetical order. */
13658
ab816a27 13659std::vector<ada_exc_info>
778865d3
JB
13660ada_exceptions_list (const char *regexp)
13661{
2d7cc5c7
PA
13662 if (regexp == NULL)
13663 return ada_exceptions_list_1 (NULL);
778865d3 13664
2d7cc5c7
PA
13665 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13666 return ada_exceptions_list_1 (&reg);
778865d3
JB
13667}
13668
13669/* Implement the "info exceptions" command. */
13670
13671static void
1d12d88f 13672info_exceptions_command (const char *regexp, int from_tty)
778865d3 13673{
778865d3 13674 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13675
ab816a27 13676 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13677
13678 if (regexp != NULL)
13679 printf_filtered
13680 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13681 else
13682 printf_filtered (_("All defined Ada exceptions:\n"));
13683
ab816a27
TT
13684 for (const ada_exc_info &info : exceptions)
13685 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13686}
13687
4c4b4cd2
PH
13688 /* Operators */
13689/* Information about operators given special treatment in functions
13690 below. */
13691/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13692
13693#define ADA_OPERATORS \
13694 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13695 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13696 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13697 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13698 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13699 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13700 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13701 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13702 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13703 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13704 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13705 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13706 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13707 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13708 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13709 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13710 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13711 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13712 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13713
13714static void
554794dc
SDJ
13715ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13716 int *argsp)
4c4b4cd2
PH
13717{
13718 switch (exp->elts[pc - 1].opcode)
13719 {
76a01679 13720 default:
4c4b4cd2
PH
13721 operator_length_standard (exp, pc, oplenp, argsp);
13722 break;
13723
13724#define OP_DEFN(op, len, args, binop) \
13725 case op: *oplenp = len; *argsp = args; break;
13726 ADA_OPERATORS;
13727#undef OP_DEFN
52ce6436
PH
13728
13729 case OP_AGGREGATE:
13730 *oplenp = 3;
13731 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13732 break;
13733
13734 case OP_CHOICES:
13735 *oplenp = 3;
13736 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13737 break;
4c4b4cd2
PH
13738 }
13739}
13740
c0201579
JK
13741/* Implementation of the exp_descriptor method operator_check. */
13742
13743static int
13744ada_operator_check (struct expression *exp, int pos,
13745 int (*objfile_func) (struct objfile *objfile, void *data),
13746 void *data)
13747{
13748 const union exp_element *const elts = exp->elts;
13749 struct type *type = NULL;
13750
13751 switch (elts[pos].opcode)
13752 {
13753 case UNOP_IN_RANGE:
13754 case UNOP_QUAL:
13755 type = elts[pos + 1].type;
13756 break;
13757
13758 default:
13759 return operator_check_standard (exp, pos, objfile_func, data);
13760 }
13761
13762 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13763
13764 if (type && TYPE_OBJFILE (type)
13765 && (*objfile_func) (TYPE_OBJFILE (type), data))
13766 return 1;
13767
13768 return 0;
13769}
13770
a121b7c1 13771static const char *
4c4b4cd2
PH
13772ada_op_name (enum exp_opcode opcode)
13773{
13774 switch (opcode)
13775 {
76a01679 13776 default:
4c4b4cd2 13777 return op_name_standard (opcode);
52ce6436 13778
4c4b4cd2
PH
13779#define OP_DEFN(op, len, args, binop) case op: return #op;
13780 ADA_OPERATORS;
13781#undef OP_DEFN
52ce6436
PH
13782
13783 case OP_AGGREGATE:
13784 return "OP_AGGREGATE";
13785 case OP_CHOICES:
13786 return "OP_CHOICES";
13787 case OP_NAME:
13788 return "OP_NAME";
4c4b4cd2
PH
13789 }
13790}
13791
13792/* As for operator_length, but assumes PC is pointing at the first
13793 element of the operator, and gives meaningful results only for the
52ce6436 13794 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13795
13796static void
76a01679
JB
13797ada_forward_operator_length (struct expression *exp, int pc,
13798 int *oplenp, int *argsp)
4c4b4cd2 13799{
76a01679 13800 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13801 {
13802 default:
13803 *oplenp = *argsp = 0;
13804 break;
52ce6436 13805
4c4b4cd2
PH
13806#define OP_DEFN(op, len, args, binop) \
13807 case op: *oplenp = len; *argsp = args; break;
13808 ADA_OPERATORS;
13809#undef OP_DEFN
52ce6436
PH
13810
13811 case OP_AGGREGATE:
13812 *oplenp = 3;
13813 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13814 break;
13815
13816 case OP_CHOICES:
13817 *oplenp = 3;
13818 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13819 break;
13820
13821 case OP_STRING:
13822 case OP_NAME:
13823 {
13824 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13825
52ce6436
PH
13826 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13827 *argsp = 0;
13828 break;
13829 }
4c4b4cd2
PH
13830 }
13831}
13832
13833static int
13834ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13835{
13836 enum exp_opcode op = exp->elts[elt].opcode;
13837 int oplen, nargs;
13838 int pc = elt;
13839 int i;
76a01679 13840
4c4b4cd2
PH
13841 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13842
76a01679 13843 switch (op)
4c4b4cd2 13844 {
76a01679 13845 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13846 case OP_ATR_FIRST:
13847 case OP_ATR_LAST:
13848 case OP_ATR_LENGTH:
13849 case OP_ATR_IMAGE:
13850 case OP_ATR_MAX:
13851 case OP_ATR_MIN:
13852 case OP_ATR_MODULUS:
13853 case OP_ATR_POS:
13854 case OP_ATR_SIZE:
13855 case OP_ATR_TAG:
13856 case OP_ATR_VAL:
13857 break;
13858
13859 case UNOP_IN_RANGE:
13860 case UNOP_QUAL:
323e0a4a
AC
13861 /* XXX: gdb_sprint_host_address, type_sprint */
13862 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13863 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13864 fprintf_filtered (stream, " (");
13865 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13866 fprintf_filtered (stream, ")");
13867 break;
13868 case BINOP_IN_BOUNDS:
52ce6436
PH
13869 fprintf_filtered (stream, " (%d)",
13870 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13871 break;
13872 case TERNOP_IN_RANGE:
13873 break;
13874
52ce6436
PH
13875 case OP_AGGREGATE:
13876 case OP_OTHERS:
13877 case OP_DISCRETE_RANGE:
13878 case OP_POSITIONAL:
13879 case OP_CHOICES:
13880 break;
13881
13882 case OP_NAME:
13883 case OP_STRING:
13884 {
13885 char *name = &exp->elts[elt + 2].string;
13886 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13887
52ce6436
PH
13888 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13889 break;
13890 }
13891
4c4b4cd2
PH
13892 default:
13893 return dump_subexp_body_standard (exp, stream, elt);
13894 }
13895
13896 elt += oplen;
13897 for (i = 0; i < nargs; i += 1)
13898 elt = dump_subexp (exp, stream, elt);
13899
13900 return elt;
13901}
13902
13903/* The Ada extension of print_subexp (q.v.). */
13904
76a01679
JB
13905static void
13906ada_print_subexp (struct expression *exp, int *pos,
13907 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13908{
52ce6436 13909 int oplen, nargs, i;
4c4b4cd2
PH
13910 int pc = *pos;
13911 enum exp_opcode op = exp->elts[pc].opcode;
13912
13913 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13914
52ce6436 13915 *pos += oplen;
4c4b4cd2
PH
13916 switch (op)
13917 {
13918 default:
52ce6436 13919 *pos -= oplen;
4c4b4cd2
PH
13920 print_subexp_standard (exp, pos, stream, prec);
13921 return;
13922
13923 case OP_VAR_VALUE:
4c4b4cd2
PH
13924 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13925 return;
13926
13927 case BINOP_IN_BOUNDS:
323e0a4a 13928 /* XXX: sprint_subexp */
4c4b4cd2 13929 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13930 fputs_filtered (" in ", stream);
4c4b4cd2 13931 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13932 fputs_filtered ("'range", stream);
4c4b4cd2 13933 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13934 fprintf_filtered (stream, "(%ld)",
13935 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13936 return;
13937
13938 case TERNOP_IN_RANGE:
4c4b4cd2 13939 if (prec >= PREC_EQUAL)
76a01679 13940 fputs_filtered ("(", stream);
323e0a4a 13941 /* XXX: sprint_subexp */
4c4b4cd2 13942 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13943 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13944 print_subexp (exp, pos, stream, PREC_EQUAL);
13945 fputs_filtered (" .. ", stream);
13946 print_subexp (exp, pos, stream, PREC_EQUAL);
13947 if (prec >= PREC_EQUAL)
76a01679
JB
13948 fputs_filtered (")", stream);
13949 return;
4c4b4cd2
PH
13950
13951 case OP_ATR_FIRST:
13952 case OP_ATR_LAST:
13953 case OP_ATR_LENGTH:
13954 case OP_ATR_IMAGE:
13955 case OP_ATR_MAX:
13956 case OP_ATR_MIN:
13957 case OP_ATR_MODULUS:
13958 case OP_ATR_POS:
13959 case OP_ATR_SIZE:
13960 case OP_ATR_TAG:
13961 case OP_ATR_VAL:
4c4b4cd2 13962 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13963 {
13964 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13965 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13966 &type_print_raw_options);
76a01679
JB
13967 *pos += 3;
13968 }
4c4b4cd2 13969 else
76a01679 13970 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13971 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13972 if (nargs > 1)
76a01679
JB
13973 {
13974 int tem;
5b4ee69b 13975
76a01679
JB
13976 for (tem = 1; tem < nargs; tem += 1)
13977 {
13978 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13979 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13980 }
13981 fputs_filtered (")", stream);
13982 }
4c4b4cd2 13983 return;
14f9c5c9 13984
4c4b4cd2 13985 case UNOP_QUAL:
4c4b4cd2
PH
13986 type_print (exp->elts[pc + 1].type, "", stream, 0);
13987 fputs_filtered ("'(", stream);
13988 print_subexp (exp, pos, stream, PREC_PREFIX);
13989 fputs_filtered (")", stream);
13990 return;
14f9c5c9 13991
4c4b4cd2 13992 case UNOP_IN_RANGE:
323e0a4a 13993 /* XXX: sprint_subexp */
4c4b4cd2 13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13995 fputs_filtered (" in ", stream);
79d43c61
TT
13996 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13997 &type_print_raw_options);
4c4b4cd2 13998 return;
52ce6436
PH
13999
14000 case OP_DISCRETE_RANGE:
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 fputs_filtered ("..", stream);
14003 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 return;
14005
14006 case OP_OTHERS:
14007 fputs_filtered ("others => ", stream);
14008 print_subexp (exp, pos, stream, PREC_SUFFIX);
14009 return;
14010
14011 case OP_CHOICES:
14012 for (i = 0; i < nargs-1; i += 1)
14013 {
14014 if (i > 0)
14015 fputs_filtered ("|", stream);
14016 print_subexp (exp, pos, stream, PREC_SUFFIX);
14017 }
14018 fputs_filtered (" => ", stream);
14019 print_subexp (exp, pos, stream, PREC_SUFFIX);
14020 return;
14021
14022 case OP_POSITIONAL:
14023 print_subexp (exp, pos, stream, PREC_SUFFIX);
14024 return;
14025
14026 case OP_AGGREGATE:
14027 fputs_filtered ("(", stream);
14028 for (i = 0; i < nargs; i += 1)
14029 {
14030 if (i > 0)
14031 fputs_filtered (", ", stream);
14032 print_subexp (exp, pos, stream, PREC_SUFFIX);
14033 }
14034 fputs_filtered (")", stream);
14035 return;
4c4b4cd2
PH
14036 }
14037}
14f9c5c9
AS
14038
14039/* Table mapping opcodes into strings for printing operators
14040 and precedences of the operators. */
14041
d2e4a39e
AS
14042static const struct op_print ada_op_print_tab[] = {
14043 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14044 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14045 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14046 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14047 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14048 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14049 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14050 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14051 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14052 {">=", BINOP_GEQ, PREC_ORDER, 0},
14053 {">", BINOP_GTR, PREC_ORDER, 0},
14054 {"<", BINOP_LESS, PREC_ORDER, 0},
14055 {">>", BINOP_RSH, PREC_SHIFT, 0},
14056 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14057 {"+", BINOP_ADD, PREC_ADD, 0},
14058 {"-", BINOP_SUB, PREC_ADD, 0},
14059 {"&", BINOP_CONCAT, PREC_ADD, 0},
14060 {"*", BINOP_MUL, PREC_MUL, 0},
14061 {"/", BINOP_DIV, PREC_MUL, 0},
14062 {"rem", BINOP_REM, PREC_MUL, 0},
14063 {"mod", BINOP_MOD, PREC_MUL, 0},
14064 {"**", BINOP_EXP, PREC_REPEAT, 0},
14065 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14066 {"-", UNOP_NEG, PREC_PREFIX, 0},
14067 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14068 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14069 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14070 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14071 {".all", UNOP_IND, PREC_SUFFIX, 1},
14072 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14073 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14074 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14075};
14076\f
72d5681a
PH
14077enum ada_primitive_types {
14078 ada_primitive_type_int,
14079 ada_primitive_type_long,
14080 ada_primitive_type_short,
14081 ada_primitive_type_char,
14082 ada_primitive_type_float,
14083 ada_primitive_type_double,
14084 ada_primitive_type_void,
14085 ada_primitive_type_long_long,
14086 ada_primitive_type_long_double,
14087 ada_primitive_type_natural,
14088 ada_primitive_type_positive,
14089 ada_primitive_type_system_address,
08f49010 14090 ada_primitive_type_storage_offset,
72d5681a
PH
14091 nr_ada_primitive_types
14092};
6c038f32
PH
14093
14094static void
d4a9a881 14095ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14096 struct language_arch_info *lai)
14097{
d4a9a881 14098 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14099
72d5681a 14100 lai->primitive_type_vector
d4a9a881 14101 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14102 struct type *);
e9bb382b
UW
14103
14104 lai->primitive_type_vector [ada_primitive_type_int]
14105 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14106 0, "integer");
14107 lai->primitive_type_vector [ada_primitive_type_long]
14108 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14109 0, "long_integer");
14110 lai->primitive_type_vector [ada_primitive_type_short]
14111 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14112 0, "short_integer");
14113 lai->string_char_type
14114 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14115 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14116 lai->primitive_type_vector [ada_primitive_type_float]
14117 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14118 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14119 lai->primitive_type_vector [ada_primitive_type_double]
14120 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14121 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14122 lai->primitive_type_vector [ada_primitive_type_long_long]
14123 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14124 0, "long_long_integer");
14125 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14126 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14127 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14128 lai->primitive_type_vector [ada_primitive_type_natural]
14129 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14130 0, "natural");
14131 lai->primitive_type_vector [ada_primitive_type_positive]
14132 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14133 0, "positive");
14134 lai->primitive_type_vector [ada_primitive_type_void]
14135 = builtin->builtin_void;
14136
14137 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14138 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14139 "void"));
72d5681a
PH
14140 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14141 = "system__address";
fbb06eb1 14142
08f49010
XR
14143 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14144 type. This is a signed integral type whose size is the same as
14145 the size of addresses. */
14146 {
14147 unsigned int addr_length = TYPE_LENGTH
14148 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14149
14150 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14151 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14152 "storage_offset");
14153 }
14154
47e729a8 14155 lai->bool_type_symbol = NULL;
fbb06eb1 14156 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14157}
6c038f32
PH
14158\f
14159 /* Language vector */
14160
14161/* Not really used, but needed in the ada_language_defn. */
14162
14163static void
6c7a06a3 14164emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14165{
6c7a06a3 14166 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14167}
14168
14169static int
410a0ff2 14170parse (struct parser_state *ps)
6c038f32
PH
14171{
14172 warnings_issued = 0;
410a0ff2 14173 return ada_parse (ps);
6c038f32
PH
14174}
14175
14176static const struct exp_descriptor ada_exp_descriptor = {
14177 ada_print_subexp,
14178 ada_operator_length,
c0201579 14179 ada_operator_check,
6c038f32
PH
14180 ada_op_name,
14181 ada_dump_subexp_body,
14182 ada_evaluate_subexp
14183};
14184
b5ec771e
PA
14185/* symbol_name_matcher_ftype adapter for wild_match. */
14186
14187static bool
14188do_wild_match (const char *symbol_search_name,
14189 const lookup_name_info &lookup_name,
a207cff2 14190 completion_match_result *comp_match_res)
b5ec771e
PA
14191{
14192 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14193}
14194
14195/* symbol_name_matcher_ftype adapter for full_match. */
14196
14197static bool
14198do_full_match (const char *symbol_search_name,
14199 const lookup_name_info &lookup_name,
a207cff2 14200 completion_match_result *comp_match_res)
b5ec771e
PA
14201{
14202 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14203}
14204
14205/* Build the Ada lookup name for LOOKUP_NAME. */
14206
14207ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14208{
14209 const std::string &user_name = lookup_name.name ();
14210
14211 if (user_name[0] == '<')
14212 {
14213 if (user_name.back () == '>')
14214 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14215 else
14216 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14217 m_encoded_p = true;
14218 m_verbatim_p = true;
14219 m_wild_match_p = false;
14220 m_standard_p = false;
14221 }
14222 else
14223 {
14224 m_verbatim_p = false;
14225
14226 m_encoded_p = user_name.find ("__") != std::string::npos;
14227
14228 if (!m_encoded_p)
14229 {
14230 const char *folded = ada_fold_name (user_name.c_str ());
14231 const char *encoded = ada_encode_1 (folded, false);
14232 if (encoded != NULL)
14233 m_encoded_name = encoded;
14234 else
14235 m_encoded_name = user_name;
14236 }
14237 else
14238 m_encoded_name = user_name;
14239
14240 /* Handle the 'package Standard' special case. See description
14241 of m_standard_p. */
14242 if (startswith (m_encoded_name.c_str (), "standard__"))
14243 {
14244 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14245 m_standard_p = true;
14246 }
14247 else
14248 m_standard_p = false;
74ccd7f5 14249
b5ec771e
PA
14250 /* If the name contains a ".", then the user is entering a fully
14251 qualified entity name, and the match must not be done in wild
14252 mode. Similarly, if the user wants to complete what looks
14253 like an encoded name, the match must not be done in wild
14254 mode. Also, in the standard__ special case always do
14255 non-wild matching. */
14256 m_wild_match_p
14257 = (lookup_name.match_type () != symbol_name_match_type::FULL
14258 && !m_encoded_p
14259 && !m_standard_p
14260 && user_name.find ('.') == std::string::npos);
14261 }
14262}
14263
14264/* symbol_name_matcher_ftype method for Ada. This only handles
14265 completion mode. */
14266
14267static bool
14268ada_symbol_name_matches (const char *symbol_search_name,
14269 const lookup_name_info &lookup_name,
a207cff2 14270 completion_match_result *comp_match_res)
74ccd7f5 14271{
b5ec771e
PA
14272 return lookup_name.ada ().matches (symbol_search_name,
14273 lookup_name.match_type (),
a207cff2 14274 comp_match_res);
b5ec771e
PA
14275}
14276
de63c46b
PA
14277/* A name matcher that matches the symbol name exactly, with
14278 strcmp. */
14279
14280static bool
14281literal_symbol_name_matcher (const char *symbol_search_name,
14282 const lookup_name_info &lookup_name,
14283 completion_match_result *comp_match_res)
14284{
14285 const std::string &name = lookup_name.name ();
14286
14287 int cmp = (lookup_name.completion_mode ()
14288 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14289 : strcmp (symbol_search_name, name.c_str ()));
14290 if (cmp == 0)
14291 {
14292 if (comp_match_res != NULL)
14293 comp_match_res->set_match (symbol_search_name);
14294 return true;
14295 }
14296 else
14297 return false;
14298}
14299
b5ec771e
PA
14300/* Implement the "la_get_symbol_name_matcher" language_defn method for
14301 Ada. */
14302
14303static symbol_name_matcher_ftype *
14304ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14305{
de63c46b
PA
14306 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14307 return literal_symbol_name_matcher;
14308
b5ec771e
PA
14309 if (lookup_name.completion_mode ())
14310 return ada_symbol_name_matches;
74ccd7f5 14311 else
b5ec771e
PA
14312 {
14313 if (lookup_name.ada ().wild_match_p ())
14314 return do_wild_match;
14315 else
14316 return do_full_match;
14317 }
74ccd7f5
JB
14318}
14319
a5ee536b
JB
14320/* Implement the "la_read_var_value" language_defn method for Ada. */
14321
14322static struct value *
63e43d3a
PMR
14323ada_read_var_value (struct symbol *var, const struct block *var_block,
14324 struct frame_info *frame)
a5ee536b 14325{
3977b71f 14326 const struct block *frame_block = NULL;
a5ee536b
JB
14327 struct symbol *renaming_sym = NULL;
14328
14329 /* The only case where default_read_var_value is not sufficient
14330 is when VAR is a renaming... */
14331 if (frame)
14332 frame_block = get_frame_block (frame, NULL);
14333 if (frame_block)
14334 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14335 if (renaming_sym != NULL)
14336 return ada_read_renaming_var_value (renaming_sym, frame_block);
14337
14338 /* This is a typical case where we expect the default_read_var_value
14339 function to work. */
63e43d3a 14340 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14341}
14342
56618e20
TT
14343static const char *ada_extensions[] =
14344{
14345 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14346};
14347
47e77640 14348extern const struct language_defn ada_language_defn = {
6c038f32 14349 "ada", /* Language name */
6abde28f 14350 "Ada",
6c038f32 14351 language_ada,
6c038f32 14352 range_check_off,
6c038f32
PH
14353 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14354 that's not quite what this means. */
6c038f32 14355 array_row_major,
9a044a89 14356 macro_expansion_no,
56618e20 14357 ada_extensions,
6c038f32
PH
14358 &ada_exp_descriptor,
14359 parse,
6c038f32
PH
14360 resolve,
14361 ada_printchar, /* Print a character constant */
14362 ada_printstr, /* Function to print string constant */
14363 emit_char, /* Function to print single char (not used) */
6c038f32 14364 ada_print_type, /* Print a type using appropriate syntax */
be942545 14365 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14366 ada_val_print, /* Print a value using appropriate syntax */
14367 ada_value_print, /* Print a top-level value */
a5ee536b 14368 ada_read_var_value, /* la_read_var_value */
6c038f32 14369 NULL, /* Language specific skip_trampoline */
2b2d9e11 14370 NULL, /* name_of_this */
59cc4834 14371 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14372 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14373 basic_lookup_transparent_type, /* lookup_transparent_type */
14374 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14375 ada_sniff_from_mangled_name,
0963b4bd
MS
14376 NULL, /* Language specific
14377 class_name_from_physname */
6c038f32
PH
14378 ada_op_print_tab, /* expression operators for printing */
14379 0, /* c-style arrays */
14380 1, /* String lower bound */
6c038f32 14381 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14382 ada_collect_symbol_completion_matches,
72d5681a 14383 ada_language_arch_info,
e79af960 14384 ada_print_array_index,
41f1b697 14385 default_pass_by_reference,
ae6a3a4c 14386 c_get_string,
43cc5389 14387 c_watch_location_expression,
b5ec771e 14388 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14389 ada_iterate_over_symbols,
5ffa0793 14390 default_search_name_hash,
a53b64ea 14391 &ada_varobj_ops,
bb2ec1b3
TT
14392 NULL,
14393 NULL,
6c038f32
PH
14394 LANG_MAGIC
14395};
14396
5bf03f13
JB
14397/* Command-list for the "set/show ada" prefix command. */
14398static struct cmd_list_element *set_ada_list;
14399static struct cmd_list_element *show_ada_list;
14400
14401/* Implement the "set ada" prefix command. */
14402
14403static void
981a3fb3 14404set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14405{
14406 printf_unfiltered (_(\
14407"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14408 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14409}
14410
14411/* Implement the "show ada" prefix command. */
14412
14413static void
981a3fb3 14414show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14415{
14416 cmd_show_list (show_ada_list, from_tty, "");
14417}
14418
2060206e
PA
14419static void
14420initialize_ada_catchpoint_ops (void)
14421{
14422 struct breakpoint_ops *ops;
14423
14424 initialize_breakpoint_ops ();
14425
14426 ops = &catch_exception_breakpoint_ops;
14427 *ops = bkpt_breakpoint_ops;
2060206e
PA
14428 ops->allocate_location = allocate_location_catch_exception;
14429 ops->re_set = re_set_catch_exception;
14430 ops->check_status = check_status_catch_exception;
14431 ops->print_it = print_it_catch_exception;
14432 ops->print_one = print_one_catch_exception;
14433 ops->print_mention = print_mention_catch_exception;
14434 ops->print_recreate = print_recreate_catch_exception;
14435
14436 ops = &catch_exception_unhandled_breakpoint_ops;
14437 *ops = bkpt_breakpoint_ops;
2060206e
PA
14438 ops->allocate_location = allocate_location_catch_exception_unhandled;
14439 ops->re_set = re_set_catch_exception_unhandled;
14440 ops->check_status = check_status_catch_exception_unhandled;
14441 ops->print_it = print_it_catch_exception_unhandled;
14442 ops->print_one = print_one_catch_exception_unhandled;
14443 ops->print_mention = print_mention_catch_exception_unhandled;
14444 ops->print_recreate = print_recreate_catch_exception_unhandled;
14445
14446 ops = &catch_assert_breakpoint_ops;
14447 *ops = bkpt_breakpoint_ops;
2060206e
PA
14448 ops->allocate_location = allocate_location_catch_assert;
14449 ops->re_set = re_set_catch_assert;
14450 ops->check_status = check_status_catch_assert;
14451 ops->print_it = print_it_catch_assert;
14452 ops->print_one = print_one_catch_assert;
14453 ops->print_mention = print_mention_catch_assert;
14454 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14455
14456 ops = &catch_handlers_breakpoint_ops;
14457 *ops = bkpt_breakpoint_ops;
14458 ops->allocate_location = allocate_location_catch_handlers;
14459 ops->re_set = re_set_catch_handlers;
14460 ops->check_status = check_status_catch_handlers;
14461 ops->print_it = print_it_catch_handlers;
14462 ops->print_one = print_one_catch_handlers;
14463 ops->print_mention = print_mention_catch_handlers;
14464 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14465}
14466
3d9434b5
JB
14467/* This module's 'new_objfile' observer. */
14468
14469static void
14470ada_new_objfile_observer (struct objfile *objfile)
14471{
14472 ada_clear_symbol_cache ();
14473}
14474
14475/* This module's 'free_objfile' observer. */
14476
14477static void
14478ada_free_objfile_observer (struct objfile *objfile)
14479{
14480 ada_clear_symbol_cache ();
14481}
14482
d2e4a39e 14483void
6c038f32 14484_initialize_ada_language (void)
14f9c5c9 14485{
2060206e
PA
14486 initialize_ada_catchpoint_ops ();
14487
5bf03f13
JB
14488 add_prefix_cmd ("ada", no_class, set_ada_command,
14489 _("Prefix command for changing Ada-specfic settings"),
14490 &set_ada_list, "set ada ", 0, &setlist);
14491
14492 add_prefix_cmd ("ada", no_class, show_ada_command,
14493 _("Generic command for showing Ada-specific settings."),
14494 &show_ada_list, "show ada ", 0, &showlist);
14495
14496 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14497 &trust_pad_over_xvs, _("\
14498Enable or disable an optimization trusting PAD types over XVS types"), _("\
14499Show whether an optimization trusting PAD types over XVS types is activated"),
14500 _("\
14501This is related to the encoding used by the GNAT compiler. The debugger\n\
14502should normally trust the contents of PAD types, but certain older versions\n\
14503of GNAT have a bug that sometimes causes the information in the PAD type\n\
14504to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14505work around this bug. It is always safe to turn this option \"off\", but\n\
14506this incurs a slight performance penalty, so it is recommended to NOT change\n\
14507this option to \"off\" unless necessary."),
14508 NULL, NULL, &set_ada_list, &show_ada_list);
14509
d72413e6
PMR
14510 add_setshow_boolean_cmd ("print-signatures", class_vars,
14511 &print_signatures, _("\
14512Enable or disable the output of formal and return types for functions in the \
14513overloads selection menu"), _("\
14514Show whether the output of formal and return types for functions in the \
14515overloads selection menu is activated"),
14516 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14517
9ac4176b
PA
14518 add_catch_command ("exception", _("\
14519Catch Ada exceptions, when raised.\n\
14520With an argument, catch only exceptions with the given name."),
14521 catch_ada_exception_command,
14522 NULL,
14523 CATCH_PERMANENT,
14524 CATCH_TEMPORARY);
9f757bf7
XR
14525
14526 add_catch_command ("handlers", _("\
14527Catch Ada exceptions, when handled.\n\
14528With an argument, catch only exceptions with the given name."),
14529 catch_ada_handlers_command,
14530 NULL,
14531 CATCH_PERMANENT,
14532 CATCH_TEMPORARY);
9ac4176b
PA
14533 add_catch_command ("assert", _("\
14534Catch failed Ada assertions, when raised.\n\
14535With an argument, catch only exceptions with the given name."),
14536 catch_assert_command,
14537 NULL,
14538 CATCH_PERMANENT,
14539 CATCH_TEMPORARY);
14540
6c038f32 14541 varsize_limit = 65536;
3fcded8f
JB
14542 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14543 &varsize_limit, _("\
14544Set the maximum number of bytes allowed in a variable-size object."), _("\
14545Show the maximum number of bytes allowed in a variable-size object."), _("\
14546Attempts to access an object whose size is not a compile-time constant\n\
14547and exceeds this limit will cause an error."),
14548 NULL, NULL, &setlist, &showlist);
6c038f32 14549
778865d3
JB
14550 add_info ("exceptions", info_exceptions_command,
14551 _("\
14552List all Ada exception names.\n\
14553If a regular expression is passed as an argument, only those matching\n\
14554the regular expression are listed."));
14555
c6044dd1
JB
14556 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14557 _("Set Ada maintenance-related variables."),
14558 &maint_set_ada_cmdlist, "maintenance set ada ",
14559 0/*allow-unknown*/, &maintenance_set_cmdlist);
14560
14561 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14562 _("Show Ada maintenance-related variables"),
14563 &maint_show_ada_cmdlist, "maintenance show ada ",
14564 0/*allow-unknown*/, &maintenance_show_cmdlist);
14565
14566 add_setshow_boolean_cmd
14567 ("ignore-descriptive-types", class_maintenance,
14568 &ada_ignore_descriptive_types_p,
14569 _("Set whether descriptive types generated by GNAT should be ignored."),
14570 _("Show whether descriptive types generated by GNAT should be ignored."),
14571 _("\
14572When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14573DWARF attribute."),
14574 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14575
459a2e4c
TT
14576 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14577 NULL, xcalloc, xfree);
6b69afc4 14578
3d9434b5 14579 /* The ada-lang observers. */
76727919
TT
14580 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14581 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14582 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14583
14584 /* Setup various context-specific data. */
e802dbe0 14585 ada_inferior_data
8e260fc0 14586 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14587 ada_pspace_data_handle
14588 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14589}