]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
support for mips-irix on-stack trampolines
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
ccefe4c4 63
4c4b4cd2
PH
64/* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
76a01679 109 struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
4c4b4cd2 112static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 115 struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
119static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 120
4c4b4cd2 121static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 122 struct type *);
14f9c5c9 123
d2e4a39e 124static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 125 struct symbol *, struct block *);
14f9c5c9 126
d2e4a39e 127static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 128
4c4b4cd2
PH
129static char *ada_op_name (enum exp_opcode);
130
131static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 132
d2e4a39e 133static int numeric_type_p (struct type *);
14f9c5c9 134
d2e4a39e 135static int integer_type_p (struct type *);
14f9c5c9 136
d2e4a39e 137static int scalar_type_p (struct type *);
14f9c5c9 138
d2e4a39e 139static int discrete_type_p (struct type *);
14f9c5c9 140
aeb5907d
JB
141static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
4c4b4cd2 149static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 150 int, int, int *);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
50810684 187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
73589123
PH
200static int advance_wild_match (const char **, const char *, int);
201
202static int wild_match (const char *, const char *);
14f9c5c9 203
d2e4a39e 204static struct value *ada_coerce_ref (struct value *);
14f9c5c9 205
4c4b4cd2
PH
206static LONGEST pos_atr (struct value *);
207
3cb382c9 208static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 209
d2e4a39e 210static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
14f9c5c9 214
4c4b4cd2
PH
215static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
76a01679 221static int find_struct_field (char *, struct type *, int,
52ce6436 222 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
223
224static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231static struct value *ada_coerce_to_simple_array (struct value *);
232
233static int ada_is_direct_array_type (struct type *);
234
72d5681a
PH
235static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
714e53ab
PH
237
238static void check_size (const struct type *);
52ce6436
PH
239
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
4c4b4cd2
PH
270\f
271
76a01679 272
4c4b4cd2 273/* Maximum-sized dynamic type. */
14f9c5c9
AS
274static unsigned int varsize_limit;
275
4c4b4cd2
PH
276/* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278static char *ada_completer_word_break_characters =
279#ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281#else
14f9c5c9 282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 283#endif
14f9c5c9 284
4c4b4cd2 285/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 286static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 287 = "__gnat_ada_main_program_name";
14f9c5c9 288
4c4b4cd2
PH
289/* Limit on the number of warnings to raise per expression evaluation. */
290static int warning_limit = 2;
291
292/* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294static int warnings_issued = 0;
295
296static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298};
299
300static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302};
303
304/* Space for allocating results of ada_lookup_symbol_list. */
305static struct obstack symbol_list_obstack;
306
e802dbe0
JB
307 /* Inferior-specific data. */
308
309/* Per-inferior data for this module. */
310
311struct ada_inferior_data
312{
313 /* The ada__tags__type_specific_data type, which is used when decoding
314 tagged types. With older versions of GNAT, this type was directly
315 accessible through a component ("tsd") in the object tag. But this
316 is no longer the case, so we cache it for each inferior. */
317 struct type *tsd_type;
318};
319
320/* Our key to this module's inferior data. */
321static const struct inferior_data *ada_inferior_data;
322
323/* A cleanup routine for our inferior data. */
324static void
325ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326{
327 struct ada_inferior_data *data;
328
329 data = inferior_data (inf, ada_inferior_data);
330 if (data != NULL)
331 xfree (data);
332}
333
334/* Return our inferior data for the given inferior (INF).
335
336 This function always returns a valid pointer to an allocated
337 ada_inferior_data structure. If INF's inferior data has not
338 been previously set, this functions creates a new one with all
339 fields set to zero, sets INF's inferior to it, and then returns
340 a pointer to that newly allocated ada_inferior_data. */
341
342static struct ada_inferior_data *
343get_ada_inferior_data (struct inferior *inf)
344{
345 struct ada_inferior_data *data;
346
347 data = inferior_data (inf, ada_inferior_data);
348 if (data == NULL)
349 {
350 data = XZALLOC (struct ada_inferior_data);
351 set_inferior_data (inf, ada_inferior_data, data);
352 }
353
354 return data;
355}
356
357/* Perform all necessary cleanups regarding our module's inferior data
358 that is required after the inferior INF just exited. */
359
360static void
361ada_inferior_exit (struct inferior *inf)
362{
363 ada_inferior_data_cleanup (inf, NULL);
364 set_inferior_data (inf, ada_inferior_data, NULL);
365}
366
4c4b4cd2
PH
367 /* Utilities */
368
41d27058
JB
369/* Given DECODED_NAME a string holding a symbol name in its
370 decoded form (ie using the Ada dotted notation), returns
371 its unqualified name. */
372
373static const char *
374ada_unqualified_name (const char *decoded_name)
375{
376 const char *result = strrchr (decoded_name, '.');
377
378 if (result != NULL)
379 result++; /* Skip the dot... */
380 else
381 result = decoded_name;
382
383 return result;
384}
385
386/* Return a string starting with '<', followed by STR, and '>'.
387 The result is good until the next call. */
388
389static char *
390add_angle_brackets (const char *str)
391{
392 static char *result = NULL;
393
394 xfree (result);
88c15c34 395 result = xstrprintf ("<%s>", str);
41d27058
JB
396 return result;
397}
96d887e8 398
4c4b4cd2
PH
399static char *
400ada_get_gdb_completer_word_break_characters (void)
401{
402 return ada_completer_word_break_characters;
403}
404
e79af960
JB
405/* Print an array element index using the Ada syntax. */
406
407static void
408ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 409 const struct value_print_options *options)
e79af960 410{
79a45b7d 411 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
412 fprintf_filtered (stream, " => ");
413}
414
f27cf670 415/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 416 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 417 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 418
f27cf670
AS
419void *
420grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 421{
d2e4a39e
AS
422 if (*size < min_size)
423 {
424 *size *= 2;
425 if (*size < min_size)
4c4b4cd2 426 *size = min_size;
f27cf670 427 vect = xrealloc (vect, *size * element_size);
d2e4a39e 428 }
f27cf670 429 return vect;
14f9c5c9
AS
430}
431
432/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 433 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
434
435static int
ebf56fd3 436field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
437{
438 int len = strlen (target);
5b4ee69b 439
d2e4a39e 440 return
4c4b4cd2
PH
441 (strncmp (field_name, target, len) == 0
442 && (field_name[len] == '\0'
443 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
444 && strcmp (field_name + strlen (field_name) - 6,
445 "___XVN") != 0)));
14f9c5c9
AS
446}
447
448
872c8b51
JB
449/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
450 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
451 and return its index. This function also handles fields whose name
452 have ___ suffixes because the compiler sometimes alters their name
453 by adding such a suffix to represent fields with certain constraints.
454 If the field could not be found, return a negative number if
455 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
456
457int
458ada_get_field_index (const struct type *type, const char *field_name,
459 int maybe_missing)
460{
461 int fieldno;
872c8b51
JB
462 struct type *struct_type = check_typedef ((struct type *) type);
463
464 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
465 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
466 return fieldno;
467
468 if (!maybe_missing)
323e0a4a 469 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 470 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
471
472 return -1;
473}
474
475/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
476
477int
d2e4a39e 478ada_name_prefix_len (const char *name)
14f9c5c9
AS
479{
480 if (name == NULL)
481 return 0;
d2e4a39e 482 else
14f9c5c9 483 {
d2e4a39e 484 const char *p = strstr (name, "___");
5b4ee69b 485
14f9c5c9 486 if (p == NULL)
4c4b4cd2 487 return strlen (name);
14f9c5c9 488 else
4c4b4cd2 489 return p - name;
14f9c5c9
AS
490 }
491}
492
4c4b4cd2
PH
493/* Return non-zero if SUFFIX is a suffix of STR.
494 Return zero if STR is null. */
495
14f9c5c9 496static int
d2e4a39e 497is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
498{
499 int len1, len2;
5b4ee69b 500
14f9c5c9
AS
501 if (str == NULL)
502 return 0;
503 len1 = strlen (str);
504 len2 = strlen (suffix);
4c4b4cd2 505 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
506}
507
4c4b4cd2
PH
508/* The contents of value VAL, treated as a value of type TYPE. The
509 result is an lval in memory if VAL is. */
14f9c5c9 510
d2e4a39e 511static struct value *
4c4b4cd2 512coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 513{
61ee279c 514 type = ada_check_typedef (type);
df407dfe 515 if (value_type (val) == type)
4c4b4cd2 516 return val;
d2e4a39e 517 else
14f9c5c9 518 {
4c4b4cd2
PH
519 struct value *result;
520
521 /* Make sure that the object size is not unreasonable before
522 trying to allocate some memory for it. */
714e53ab 523 check_size (type);
4c4b4cd2
PH
524
525 result = allocate_value (type);
74bcbdf3 526 set_value_component_location (result, val);
9bbda503
AC
527 set_value_bitsize (result, value_bitsize (val));
528 set_value_bitpos (result, value_bitpos (val));
42ae5230 529 set_value_address (result, value_address (val));
d69fe07e 530 if (value_lazy (val)
df407dfe 531 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 532 set_value_lazy (result, 1);
d2e4a39e 533 else
0fd88904 534 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 535 TYPE_LENGTH (type));
14f9c5c9
AS
536 return result;
537 }
538}
539
fc1a4b47
AC
540static const gdb_byte *
541cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
542{
543 if (valaddr == NULL)
544 return NULL;
545 else
546 return valaddr + offset;
547}
548
549static CORE_ADDR
ebf56fd3 550cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
551{
552 if (address == 0)
553 return 0;
d2e4a39e 554 else
14f9c5c9
AS
555 return address + offset;
556}
557
4c4b4cd2
PH
558/* Issue a warning (as for the definition of warning in utils.c, but
559 with exactly one argument rather than ...), unless the limit on the
560 number of warnings has passed during the evaluation of the current
561 expression. */
a2249542 562
77109804
AC
563/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
564 provided by "complaint". */
a0b31db1 565static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 566
14f9c5c9 567static void
a2249542 568lim_warning (const char *format, ...)
14f9c5c9 569{
a2249542 570 va_list args;
a2249542 571
5b4ee69b 572 va_start (args, format);
4c4b4cd2
PH
573 warnings_issued += 1;
574 if (warnings_issued <= warning_limit)
a2249542
MK
575 vwarning (format, args);
576
577 va_end (args);
4c4b4cd2
PH
578}
579
714e53ab
PH
580/* Issue an error if the size of an object of type T is unreasonable,
581 i.e. if it would be a bad idea to allocate a value of this type in
582 GDB. */
583
584static void
585check_size (const struct type *type)
586{
587 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 588 error (_("object size is larger than varsize-limit"));
714e53ab
PH
589}
590
c3e5cd34 591/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 592static LONGEST
c3e5cd34 593max_of_size (int size)
4c4b4cd2 594{
76a01679 595 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 596
76a01679 597 return top_bit | (top_bit - 1);
4c4b4cd2
PH
598}
599
c3e5cd34 600/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 601static LONGEST
c3e5cd34 602min_of_size (int size)
4c4b4cd2 603{
c3e5cd34 604 return -max_of_size (size) - 1;
4c4b4cd2
PH
605}
606
c3e5cd34 607/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 608static ULONGEST
c3e5cd34 609umax_of_size (int size)
4c4b4cd2 610{
76a01679 611 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 612
76a01679 613 return top_bit | (top_bit - 1);
4c4b4cd2
PH
614}
615
c3e5cd34
PH
616/* Maximum value of integral type T, as a signed quantity. */
617static LONGEST
618max_of_type (struct type *t)
4c4b4cd2 619{
c3e5cd34
PH
620 if (TYPE_UNSIGNED (t))
621 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
622 else
623 return max_of_size (TYPE_LENGTH (t));
624}
625
626/* Minimum value of integral type T, as a signed quantity. */
627static LONGEST
628min_of_type (struct type *t)
629{
630 if (TYPE_UNSIGNED (t))
631 return 0;
632 else
633 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
634}
635
636/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
637LONGEST
638ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 639{
76a01679 640 switch (TYPE_CODE (type))
4c4b4cd2
PH
641 {
642 case TYPE_CODE_RANGE:
690cc4eb 643 return TYPE_HIGH_BOUND (type);
4c4b4cd2 644 case TYPE_CODE_ENUM:
690cc4eb
PH
645 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
646 case TYPE_CODE_BOOL:
647 return 1;
648 case TYPE_CODE_CHAR:
76a01679 649 case TYPE_CODE_INT:
690cc4eb 650 return max_of_type (type);
4c4b4cd2 651 default:
43bbcdc2 652 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
653 }
654}
655
656/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
657LONGEST
658ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 659{
76a01679 660 switch (TYPE_CODE (type))
4c4b4cd2
PH
661 {
662 case TYPE_CODE_RANGE:
690cc4eb 663 return TYPE_LOW_BOUND (type);
4c4b4cd2 664 case TYPE_CODE_ENUM:
690cc4eb
PH
665 return TYPE_FIELD_BITPOS (type, 0);
666 case TYPE_CODE_BOOL:
667 return 0;
668 case TYPE_CODE_CHAR:
76a01679 669 case TYPE_CODE_INT:
690cc4eb 670 return min_of_type (type);
4c4b4cd2 671 default:
43bbcdc2 672 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
673 }
674}
675
676/* The identity on non-range types. For range types, the underlying
76a01679 677 non-range scalar type. */
4c4b4cd2
PH
678
679static struct type *
680base_type (struct type *type)
681{
682 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
683 {
76a01679
JB
684 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
685 return type;
4c4b4cd2
PH
686 type = TYPE_TARGET_TYPE (type);
687 }
688 return type;
14f9c5c9 689}
4c4b4cd2 690\f
76a01679 691
4c4b4cd2 692 /* Language Selection */
14f9c5c9
AS
693
694/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 695 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 696
14f9c5c9 697enum language
ccefe4c4 698ada_update_initial_language (enum language lang)
14f9c5c9 699{
d2e4a39e 700 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
701 (struct objfile *) NULL) != NULL)
702 return language_ada;
14f9c5c9
AS
703
704 return lang;
705}
96d887e8
PH
706
707/* If the main procedure is written in Ada, then return its name.
708 The result is good until the next call. Return NULL if the main
709 procedure doesn't appear to be in Ada. */
710
711char *
712ada_main_name (void)
713{
714 struct minimal_symbol *msym;
f9bc20b9 715 static char *main_program_name = NULL;
6c038f32 716
96d887e8
PH
717 /* For Ada, the name of the main procedure is stored in a specific
718 string constant, generated by the binder. Look for that symbol,
719 extract its address, and then read that string. If we didn't find
720 that string, then most probably the main procedure is not written
721 in Ada. */
722 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
723
724 if (msym != NULL)
725 {
f9bc20b9
JB
726 CORE_ADDR main_program_name_addr;
727 int err_code;
728
96d887e8
PH
729 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
730 if (main_program_name_addr == 0)
323e0a4a 731 error (_("Invalid address for Ada main program name."));
96d887e8 732
f9bc20b9
JB
733 xfree (main_program_name);
734 target_read_string (main_program_name_addr, &main_program_name,
735 1024, &err_code);
736
737 if (err_code != 0)
738 return NULL;
96d887e8
PH
739 return main_program_name;
740 }
741
742 /* The main procedure doesn't seem to be in Ada. */
743 return NULL;
744}
14f9c5c9 745\f
4c4b4cd2 746 /* Symbols */
d2e4a39e 747
4c4b4cd2
PH
748/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
749 of NULLs. */
14f9c5c9 750
d2e4a39e
AS
751const struct ada_opname_map ada_opname_table[] = {
752 {"Oadd", "\"+\"", BINOP_ADD},
753 {"Osubtract", "\"-\"", BINOP_SUB},
754 {"Omultiply", "\"*\"", BINOP_MUL},
755 {"Odivide", "\"/\"", BINOP_DIV},
756 {"Omod", "\"mod\"", BINOP_MOD},
757 {"Orem", "\"rem\"", BINOP_REM},
758 {"Oexpon", "\"**\"", BINOP_EXP},
759 {"Olt", "\"<\"", BINOP_LESS},
760 {"Ole", "\"<=\"", BINOP_LEQ},
761 {"Ogt", "\">\"", BINOP_GTR},
762 {"Oge", "\">=\"", BINOP_GEQ},
763 {"Oeq", "\"=\"", BINOP_EQUAL},
764 {"One", "\"/=\"", BINOP_NOTEQUAL},
765 {"Oand", "\"and\"", BINOP_BITWISE_AND},
766 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
767 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
768 {"Oconcat", "\"&\"", BINOP_CONCAT},
769 {"Oabs", "\"abs\"", UNOP_ABS},
770 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
771 {"Oadd", "\"+\"", UNOP_PLUS},
772 {"Osubtract", "\"-\"", UNOP_NEG},
773 {NULL, NULL}
14f9c5c9
AS
774};
775
4c4b4cd2
PH
776/* The "encoded" form of DECODED, according to GNAT conventions.
777 The result is valid until the next call to ada_encode. */
778
14f9c5c9 779char *
4c4b4cd2 780ada_encode (const char *decoded)
14f9c5c9 781{
4c4b4cd2
PH
782 static char *encoding_buffer = NULL;
783 static size_t encoding_buffer_size = 0;
d2e4a39e 784 const char *p;
14f9c5c9 785 int k;
d2e4a39e 786
4c4b4cd2 787 if (decoded == NULL)
14f9c5c9
AS
788 return NULL;
789
4c4b4cd2
PH
790 GROW_VECT (encoding_buffer, encoding_buffer_size,
791 2 * strlen (decoded) + 10);
14f9c5c9
AS
792
793 k = 0;
4c4b4cd2 794 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 795 {
cdc7bb92 796 if (*p == '.')
4c4b4cd2
PH
797 {
798 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
799 k += 2;
800 }
14f9c5c9 801 else if (*p == '"')
4c4b4cd2
PH
802 {
803 const struct ada_opname_map *mapping;
804
805 for (mapping = ada_opname_table;
1265e4aa
JB
806 mapping->encoded != NULL
807 && strncmp (mapping->decoded, p,
808 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
809 ;
810 if (mapping->encoded == NULL)
323e0a4a 811 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
812 strcpy (encoding_buffer + k, mapping->encoded);
813 k += strlen (mapping->encoded);
814 break;
815 }
d2e4a39e 816 else
4c4b4cd2
PH
817 {
818 encoding_buffer[k] = *p;
819 k += 1;
820 }
14f9c5c9
AS
821 }
822
4c4b4cd2
PH
823 encoding_buffer[k] = '\0';
824 return encoding_buffer;
14f9c5c9
AS
825}
826
827/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
828 quotes, unfolded, but with the quotes stripped away. Result good
829 to next call. */
830
d2e4a39e
AS
831char *
832ada_fold_name (const char *name)
14f9c5c9 833{
d2e4a39e 834 static char *fold_buffer = NULL;
14f9c5c9
AS
835 static size_t fold_buffer_size = 0;
836
837 int len = strlen (name);
d2e4a39e 838 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
839
840 if (name[0] == '\'')
841 {
d2e4a39e
AS
842 strncpy (fold_buffer, name + 1, len - 2);
843 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
844 }
845 else
846 {
847 int i;
5b4ee69b 848
14f9c5c9 849 for (i = 0; i <= len; i += 1)
4c4b4cd2 850 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
851 }
852
853 return fold_buffer;
854}
855
529cad9c
PH
856/* Return nonzero if C is either a digit or a lowercase alphabet character. */
857
858static int
859is_lower_alphanum (const char c)
860{
861 return (isdigit (c) || (isalpha (c) && islower (c)));
862}
863
29480c32
JB
864/* Remove either of these suffixes:
865 . .{DIGIT}+
866 . ${DIGIT}+
867 . ___{DIGIT}+
868 . __{DIGIT}+.
869 These are suffixes introduced by the compiler for entities such as
870 nested subprogram for instance, in order to avoid name clashes.
871 They do not serve any purpose for the debugger. */
872
873static void
874ada_remove_trailing_digits (const char *encoded, int *len)
875{
876 if (*len > 1 && isdigit (encoded[*len - 1]))
877 {
878 int i = *len - 2;
5b4ee69b 879
29480c32
JB
880 while (i > 0 && isdigit (encoded[i]))
881 i--;
882 if (i >= 0 && encoded[i] == '.')
883 *len = i;
884 else if (i >= 0 && encoded[i] == '$')
885 *len = i;
886 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
887 *len = i - 2;
888 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
889 *len = i - 1;
890 }
891}
892
893/* Remove the suffix introduced by the compiler for protected object
894 subprograms. */
895
896static void
897ada_remove_po_subprogram_suffix (const char *encoded, int *len)
898{
899 /* Remove trailing N. */
900
901 /* Protected entry subprograms are broken into two
902 separate subprograms: The first one is unprotected, and has
903 a 'N' suffix; the second is the protected version, and has
904 the 'P' suffix. The second calls the first one after handling
905 the protection. Since the P subprograms are internally generated,
906 we leave these names undecoded, giving the user a clue that this
907 entity is internal. */
908
909 if (*len > 1
910 && encoded[*len - 1] == 'N'
911 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
912 *len = *len - 1;
913}
914
69fadcdf
JB
915/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
916
917static void
918ada_remove_Xbn_suffix (const char *encoded, int *len)
919{
920 int i = *len - 1;
921
922 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
923 i--;
924
925 if (encoded[i] != 'X')
926 return;
927
928 if (i == 0)
929 return;
930
931 if (isalnum (encoded[i-1]))
932 *len = i;
933}
934
29480c32
JB
935/* If ENCODED follows the GNAT entity encoding conventions, then return
936 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
937 replaced by ENCODED.
14f9c5c9 938
4c4b4cd2 939 The resulting string is valid until the next call of ada_decode.
29480c32 940 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
941 is returned. */
942
943const char *
944ada_decode (const char *encoded)
14f9c5c9
AS
945{
946 int i, j;
947 int len0;
d2e4a39e 948 const char *p;
4c4b4cd2 949 char *decoded;
14f9c5c9 950 int at_start_name;
4c4b4cd2
PH
951 static char *decoding_buffer = NULL;
952 static size_t decoding_buffer_size = 0;
d2e4a39e 953
29480c32
JB
954 /* The name of the Ada main procedure starts with "_ada_".
955 This prefix is not part of the decoded name, so skip this part
956 if we see this prefix. */
4c4b4cd2
PH
957 if (strncmp (encoded, "_ada_", 5) == 0)
958 encoded += 5;
14f9c5c9 959
29480c32
JB
960 /* If the name starts with '_', then it is not a properly encoded
961 name, so do not attempt to decode it. Similarly, if the name
962 starts with '<', the name should not be decoded. */
4c4b4cd2 963 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
964 goto Suppress;
965
4c4b4cd2 966 len0 = strlen (encoded);
4c4b4cd2 967
29480c32
JB
968 ada_remove_trailing_digits (encoded, &len0);
969 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 970
4c4b4cd2
PH
971 /* Remove the ___X.* suffix if present. Do not forget to verify that
972 the suffix is located before the current "end" of ENCODED. We want
973 to avoid re-matching parts of ENCODED that have previously been
974 marked as discarded (by decrementing LEN0). */
975 p = strstr (encoded, "___");
976 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
977 {
978 if (p[3] == 'X')
4c4b4cd2 979 len0 = p - encoded;
14f9c5c9 980 else
4c4b4cd2 981 goto Suppress;
14f9c5c9 982 }
4c4b4cd2 983
29480c32
JB
984 /* Remove any trailing TKB suffix. It tells us that this symbol
985 is for the body of a task, but that information does not actually
986 appear in the decoded name. */
987
4c4b4cd2 988 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 989 len0 -= 3;
76a01679 990
a10967fa
JB
991 /* Remove any trailing TB suffix. The TB suffix is slightly different
992 from the TKB suffix because it is used for non-anonymous task
993 bodies. */
994
995 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
996 len0 -= 2;
997
29480c32
JB
998 /* Remove trailing "B" suffixes. */
999 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1000
4c4b4cd2 1001 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1002 len0 -= 1;
1003
4c4b4cd2 1004 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1005
4c4b4cd2
PH
1006 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1007 decoded = decoding_buffer;
14f9c5c9 1008
29480c32
JB
1009 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1010
4c4b4cd2 1011 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1012 {
4c4b4cd2
PH
1013 i = len0 - 2;
1014 while ((i >= 0 && isdigit (encoded[i]))
1015 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1016 i -= 1;
1017 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1018 len0 = i - 1;
1019 else if (encoded[i] == '$')
1020 len0 = i;
d2e4a39e 1021 }
14f9c5c9 1022
29480c32
JB
1023 /* The first few characters that are not alphabetic are not part
1024 of any encoding we use, so we can copy them over verbatim. */
1025
4c4b4cd2
PH
1026 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1027 decoded[j] = encoded[i];
14f9c5c9
AS
1028
1029 at_start_name = 1;
1030 while (i < len0)
1031 {
29480c32 1032 /* Is this a symbol function? */
4c4b4cd2
PH
1033 if (at_start_name && encoded[i] == 'O')
1034 {
1035 int k;
5b4ee69b 1036
4c4b4cd2
PH
1037 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1038 {
1039 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1040 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1041 op_len - 1) == 0)
1042 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1043 {
1044 strcpy (decoded + j, ada_opname_table[k].decoded);
1045 at_start_name = 0;
1046 i += op_len;
1047 j += strlen (ada_opname_table[k].decoded);
1048 break;
1049 }
1050 }
1051 if (ada_opname_table[k].encoded != NULL)
1052 continue;
1053 }
14f9c5c9
AS
1054 at_start_name = 0;
1055
529cad9c
PH
1056 /* Replace "TK__" with "__", which will eventually be translated
1057 into "." (just below). */
1058
4c4b4cd2
PH
1059 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1060 i += 2;
529cad9c 1061
29480c32
JB
1062 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1063 be translated into "." (just below). These are internal names
1064 generated for anonymous blocks inside which our symbol is nested. */
1065
1066 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1067 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1068 && isdigit (encoded [i+4]))
1069 {
1070 int k = i + 5;
1071
1072 while (k < len0 && isdigit (encoded[k]))
1073 k++; /* Skip any extra digit. */
1074
1075 /* Double-check that the "__B_{DIGITS}+" sequence we found
1076 is indeed followed by "__". */
1077 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1078 i = k;
1079 }
1080
529cad9c
PH
1081 /* Remove _E{DIGITS}+[sb] */
1082
1083 /* Just as for protected object subprograms, there are 2 categories
1084 of subprograms created by the compiler for each entry. The first
1085 one implements the actual entry code, and has a suffix following
1086 the convention above; the second one implements the barrier and
1087 uses the same convention as above, except that the 'E' is replaced
1088 by a 'B'.
1089
1090 Just as above, we do not decode the name of barrier functions
1091 to give the user a clue that the code he is debugging has been
1092 internally generated. */
1093
1094 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1095 && isdigit (encoded[i+2]))
1096 {
1097 int k = i + 3;
1098
1099 while (k < len0 && isdigit (encoded[k]))
1100 k++;
1101
1102 if (k < len0
1103 && (encoded[k] == 'b' || encoded[k] == 's'))
1104 {
1105 k++;
1106 /* Just as an extra precaution, make sure that if this
1107 suffix is followed by anything else, it is a '_'.
1108 Otherwise, we matched this sequence by accident. */
1109 if (k == len0
1110 || (k < len0 && encoded[k] == '_'))
1111 i = k;
1112 }
1113 }
1114
1115 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1116 the GNAT front-end in protected object subprograms. */
1117
1118 if (i < len0 + 3
1119 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1120 {
1121 /* Backtrack a bit up until we reach either the begining of
1122 the encoded name, or "__". Make sure that we only find
1123 digits or lowercase characters. */
1124 const char *ptr = encoded + i - 1;
1125
1126 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1127 ptr--;
1128 if (ptr < encoded
1129 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1130 i++;
1131 }
1132
4c4b4cd2
PH
1133 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1134 {
29480c32
JB
1135 /* This is a X[bn]* sequence not separated from the previous
1136 part of the name with a non-alpha-numeric character (in other
1137 words, immediately following an alpha-numeric character), then
1138 verify that it is placed at the end of the encoded name. If
1139 not, then the encoding is not valid and we should abort the
1140 decoding. Otherwise, just skip it, it is used in body-nested
1141 package names. */
4c4b4cd2
PH
1142 do
1143 i += 1;
1144 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1145 if (i < len0)
1146 goto Suppress;
1147 }
cdc7bb92 1148 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1149 {
29480c32 1150 /* Replace '__' by '.'. */
4c4b4cd2
PH
1151 decoded[j] = '.';
1152 at_start_name = 1;
1153 i += 2;
1154 j += 1;
1155 }
14f9c5c9 1156 else
4c4b4cd2 1157 {
29480c32
JB
1158 /* It's a character part of the decoded name, so just copy it
1159 over. */
4c4b4cd2
PH
1160 decoded[j] = encoded[i];
1161 i += 1;
1162 j += 1;
1163 }
14f9c5c9 1164 }
4c4b4cd2 1165 decoded[j] = '\000';
14f9c5c9 1166
29480c32
JB
1167 /* Decoded names should never contain any uppercase character.
1168 Double-check this, and abort the decoding if we find one. */
1169
4c4b4cd2
PH
1170 for (i = 0; decoded[i] != '\0'; i += 1)
1171 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1172 goto Suppress;
1173
4c4b4cd2
PH
1174 if (strcmp (decoded, encoded) == 0)
1175 return encoded;
1176 else
1177 return decoded;
14f9c5c9
AS
1178
1179Suppress:
4c4b4cd2
PH
1180 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1181 decoded = decoding_buffer;
1182 if (encoded[0] == '<')
1183 strcpy (decoded, encoded);
14f9c5c9 1184 else
88c15c34 1185 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1186 return decoded;
1187
1188}
1189
1190/* Table for keeping permanent unique copies of decoded names. Once
1191 allocated, names in this table are never released. While this is a
1192 storage leak, it should not be significant unless there are massive
1193 changes in the set of decoded names in successive versions of a
1194 symbol table loaded during a single session. */
1195static struct htab *decoded_names_store;
1196
1197/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1198 in the language-specific part of GSYMBOL, if it has not been
1199 previously computed. Tries to save the decoded name in the same
1200 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1201 in any case, the decoded symbol has a lifetime at least that of
1202 GSYMBOL).
1203 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1204 const, but nevertheless modified to a semantically equivalent form
1205 when a decoded name is cached in it.
76a01679 1206*/
4c4b4cd2 1207
76a01679
JB
1208char *
1209ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1210{
76a01679 1211 char **resultp =
afa16725 1212 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1213
4c4b4cd2
PH
1214 if (*resultp == NULL)
1215 {
1216 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1217
714835d5 1218 if (gsymbol->obj_section != NULL)
76a01679 1219 {
714835d5 1220 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1221
714835d5
UW
1222 *resultp = obsavestring (decoded, strlen (decoded),
1223 &objf->objfile_obstack);
76a01679 1224 }
4c4b4cd2 1225 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1226 case, we put the result on the heap. Since we only decode
1227 when needed, we hope this usually does not cause a
1228 significant memory leak (FIXME). */
4c4b4cd2 1229 if (*resultp == NULL)
76a01679
JB
1230 {
1231 char **slot = (char **) htab_find_slot (decoded_names_store,
1232 decoded, INSERT);
5b4ee69b 1233
76a01679
JB
1234 if (*slot == NULL)
1235 *slot = xstrdup (decoded);
1236 *resultp = *slot;
1237 }
4c4b4cd2 1238 }
14f9c5c9 1239
4c4b4cd2
PH
1240 return *resultp;
1241}
76a01679 1242
2c0b251b 1243static char *
76a01679 1244ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1245{
1246 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1247}
1248
1249/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1250 suffixes that encode debugging information or leading _ada_ on
1251 SYM_NAME (see is_name_suffix commentary for the debugging
1252 information that is ignored). If WILD, then NAME need only match a
1253 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1254 either argument is NULL. */
14f9c5c9 1255
2c0b251b 1256static int
40658b94 1257match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1258{
1259 if (sym_name == NULL || name == NULL)
1260 return 0;
1261 else if (wild)
73589123 1262 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1263 else
1264 {
1265 int len_name = strlen (name);
5b4ee69b 1266
4c4b4cd2
PH
1267 return (strncmp (sym_name, name, len_name) == 0
1268 && is_name_suffix (sym_name + len_name))
1269 || (strncmp (sym_name, "_ada_", 5) == 0
1270 && strncmp (sym_name + 5, name, len_name) == 0
1271 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1272 }
14f9c5c9 1273}
14f9c5c9 1274\f
d2e4a39e 1275
4c4b4cd2 1276 /* Arrays */
14f9c5c9 1277
28c85d6c
JB
1278/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1279 generated by the GNAT compiler to describe the index type used
1280 for each dimension of an array, check whether it follows the latest
1281 known encoding. If not, fix it up to conform to the latest encoding.
1282 Otherwise, do nothing. This function also does nothing if
1283 INDEX_DESC_TYPE is NULL.
1284
1285 The GNAT encoding used to describle the array index type evolved a bit.
1286 Initially, the information would be provided through the name of each
1287 field of the structure type only, while the type of these fields was
1288 described as unspecified and irrelevant. The debugger was then expected
1289 to perform a global type lookup using the name of that field in order
1290 to get access to the full index type description. Because these global
1291 lookups can be very expensive, the encoding was later enhanced to make
1292 the global lookup unnecessary by defining the field type as being
1293 the full index type description.
1294
1295 The purpose of this routine is to allow us to support older versions
1296 of the compiler by detecting the use of the older encoding, and by
1297 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1298 we essentially replace each field's meaningless type by the associated
1299 index subtype). */
1300
1301void
1302ada_fixup_array_indexes_type (struct type *index_desc_type)
1303{
1304 int i;
1305
1306 if (index_desc_type == NULL)
1307 return;
1308 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1309
1310 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1311 to check one field only, no need to check them all). If not, return
1312 now.
1313
1314 If our INDEX_DESC_TYPE was generated using the older encoding,
1315 the field type should be a meaningless integer type whose name
1316 is not equal to the field name. */
1317 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1318 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1319 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1320 return;
1321
1322 /* Fixup each field of INDEX_DESC_TYPE. */
1323 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1324 {
1325 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1326 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1327
1328 if (raw_type)
1329 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1330 }
1331}
1332
4c4b4cd2 1333/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1334
d2e4a39e
AS
1335static char *bound_name[] = {
1336 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1337 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1338};
1339
1340/* Maximum number of array dimensions we are prepared to handle. */
1341
4c4b4cd2 1342#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1343
14f9c5c9 1344
4c4b4cd2
PH
1345/* The desc_* routines return primitive portions of array descriptors
1346 (fat pointers). */
14f9c5c9
AS
1347
1348/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1349 level of indirection, if needed. */
1350
d2e4a39e
AS
1351static struct type *
1352desc_base_type (struct type *type)
14f9c5c9
AS
1353{
1354 if (type == NULL)
1355 return NULL;
61ee279c 1356 type = ada_check_typedef (type);
1265e4aa
JB
1357 if (type != NULL
1358 && (TYPE_CODE (type) == TYPE_CODE_PTR
1359 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1360 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1361 else
1362 return type;
1363}
1364
4c4b4cd2
PH
1365/* True iff TYPE indicates a "thin" array pointer type. */
1366
14f9c5c9 1367static int
d2e4a39e 1368is_thin_pntr (struct type *type)
14f9c5c9 1369{
d2e4a39e 1370 return
14f9c5c9
AS
1371 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1372 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1373}
1374
4c4b4cd2
PH
1375/* The descriptor type for thin pointer type TYPE. */
1376
d2e4a39e
AS
1377static struct type *
1378thin_descriptor_type (struct type *type)
14f9c5c9 1379{
d2e4a39e 1380 struct type *base_type = desc_base_type (type);
5b4ee69b 1381
14f9c5c9
AS
1382 if (base_type == NULL)
1383 return NULL;
1384 if (is_suffix (ada_type_name (base_type), "___XVE"))
1385 return base_type;
d2e4a39e 1386 else
14f9c5c9 1387 {
d2e4a39e 1388 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1389
14f9c5c9 1390 if (alt_type == NULL)
4c4b4cd2 1391 return base_type;
14f9c5c9 1392 else
4c4b4cd2 1393 return alt_type;
14f9c5c9
AS
1394 }
1395}
1396
4c4b4cd2
PH
1397/* A pointer to the array data for thin-pointer value VAL. */
1398
d2e4a39e
AS
1399static struct value *
1400thin_data_pntr (struct value *val)
14f9c5c9 1401{
df407dfe 1402 struct type *type = value_type (val);
556bdfd4 1403 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1404
556bdfd4
UW
1405 data_type = lookup_pointer_type (data_type);
1406
14f9c5c9 1407 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1408 return value_cast (data_type, value_copy (val));
d2e4a39e 1409 else
42ae5230 1410 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1411}
1412
4c4b4cd2
PH
1413/* True iff TYPE indicates a "thick" array pointer type. */
1414
14f9c5c9 1415static int
d2e4a39e 1416is_thick_pntr (struct type *type)
14f9c5c9
AS
1417{
1418 type = desc_base_type (type);
1419 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1420 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1421}
1422
4c4b4cd2
PH
1423/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1424 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1425
d2e4a39e
AS
1426static struct type *
1427desc_bounds_type (struct type *type)
14f9c5c9 1428{
d2e4a39e 1429 struct type *r;
14f9c5c9
AS
1430
1431 type = desc_base_type (type);
1432
1433 if (type == NULL)
1434 return NULL;
1435 else if (is_thin_pntr (type))
1436 {
1437 type = thin_descriptor_type (type);
1438 if (type == NULL)
4c4b4cd2 1439 return NULL;
14f9c5c9
AS
1440 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1441 if (r != NULL)
61ee279c 1442 return ada_check_typedef (r);
14f9c5c9
AS
1443 }
1444 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1445 {
1446 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1447 if (r != NULL)
61ee279c 1448 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1449 }
1450 return NULL;
1451}
1452
1453/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1454 one, a pointer to its bounds data. Otherwise NULL. */
1455
d2e4a39e
AS
1456static struct value *
1457desc_bounds (struct value *arr)
14f9c5c9 1458{
df407dfe 1459 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1460
d2e4a39e 1461 if (is_thin_pntr (type))
14f9c5c9 1462 {
d2e4a39e 1463 struct type *bounds_type =
4c4b4cd2 1464 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1465 LONGEST addr;
1466
4cdfadb1 1467 if (bounds_type == NULL)
323e0a4a 1468 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1469
1470 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1471 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1472 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1473 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1474 addr = value_as_long (arr);
d2e4a39e 1475 else
42ae5230 1476 addr = value_address (arr);
14f9c5c9 1477
d2e4a39e 1478 return
4c4b4cd2
PH
1479 value_from_longest (lookup_pointer_type (bounds_type),
1480 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1481 }
1482
1483 else if (is_thick_pntr (type))
05e522ef
JB
1484 {
1485 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1486 _("Bad GNAT array descriptor"));
1487 struct type *p_bounds_type = value_type (p_bounds);
1488
1489 if (p_bounds_type
1490 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1491 {
1492 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1493
1494 if (TYPE_STUB (target_type))
1495 p_bounds = value_cast (lookup_pointer_type
1496 (ada_check_typedef (target_type)),
1497 p_bounds);
1498 }
1499 else
1500 error (_("Bad GNAT array descriptor"));
1501
1502 return p_bounds;
1503 }
14f9c5c9
AS
1504 else
1505 return NULL;
1506}
1507
4c4b4cd2
PH
1508/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1509 position of the field containing the address of the bounds data. */
1510
14f9c5c9 1511static int
d2e4a39e 1512fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1513{
1514 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1515}
1516
1517/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1518 size of the field containing the address of the bounds data. */
1519
14f9c5c9 1520static int
d2e4a39e 1521fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1522{
1523 type = desc_base_type (type);
1524
d2e4a39e 1525 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1526 return TYPE_FIELD_BITSIZE (type, 1);
1527 else
61ee279c 1528 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1529}
1530
4c4b4cd2 1531/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1532 pointer to one, the type of its array data (a array-with-no-bounds type);
1533 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1534 data. */
4c4b4cd2 1535
d2e4a39e 1536static struct type *
556bdfd4 1537desc_data_target_type (struct type *type)
14f9c5c9
AS
1538{
1539 type = desc_base_type (type);
1540
4c4b4cd2 1541 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1542 if (is_thin_pntr (type))
556bdfd4 1543 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1544 else if (is_thick_pntr (type))
556bdfd4
UW
1545 {
1546 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1547
1548 if (data_type
1549 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1550 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1551 }
1552
1553 return NULL;
14f9c5c9
AS
1554}
1555
1556/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1557 its array data. */
4c4b4cd2 1558
d2e4a39e
AS
1559static struct value *
1560desc_data (struct value *arr)
14f9c5c9 1561{
df407dfe 1562 struct type *type = value_type (arr);
5b4ee69b 1563
14f9c5c9
AS
1564 if (is_thin_pntr (type))
1565 return thin_data_pntr (arr);
1566 else if (is_thick_pntr (type))
d2e4a39e 1567 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1568 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1569 else
1570 return NULL;
1571}
1572
1573
1574/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1575 position of the field containing the address of the data. */
1576
14f9c5c9 1577static int
d2e4a39e 1578fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1579{
1580 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1581}
1582
1583/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1584 size of the field containing the address of the data. */
1585
14f9c5c9 1586static int
d2e4a39e 1587fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1588{
1589 type = desc_base_type (type);
1590
1591 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1592 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1593 else
14f9c5c9
AS
1594 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1595}
1596
4c4b4cd2 1597/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1598 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1599 bound, if WHICH is 1. The first bound is I=1. */
1600
d2e4a39e
AS
1601static struct value *
1602desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1603{
d2e4a39e 1604 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1605 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1606}
1607
1608/* If BOUNDS is an array-bounds structure type, return the bit position
1609 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1610 bound, if WHICH is 1. The first bound is I=1. */
1611
14f9c5c9 1612static int
d2e4a39e 1613desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1614{
d2e4a39e 1615 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1616}
1617
1618/* If BOUNDS is an array-bounds structure type, return the bit field size
1619 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1620 bound, if WHICH is 1. The first bound is I=1. */
1621
76a01679 1622static int
d2e4a39e 1623desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1624{
1625 type = desc_base_type (type);
1626
d2e4a39e
AS
1627 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1628 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1629 else
1630 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1631}
1632
1633/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1634 Ith bound (numbering from 1). Otherwise, NULL. */
1635
d2e4a39e
AS
1636static struct type *
1637desc_index_type (struct type *type, int i)
14f9c5c9
AS
1638{
1639 type = desc_base_type (type);
1640
1641 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1642 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1643 else
14f9c5c9
AS
1644 return NULL;
1645}
1646
4c4b4cd2
PH
1647/* The number of index positions in the array-bounds type TYPE.
1648 Return 0 if TYPE is NULL. */
1649
14f9c5c9 1650static int
d2e4a39e 1651desc_arity (struct type *type)
14f9c5c9
AS
1652{
1653 type = desc_base_type (type);
1654
1655 if (type != NULL)
1656 return TYPE_NFIELDS (type) / 2;
1657 return 0;
1658}
1659
4c4b4cd2
PH
1660/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1661 an array descriptor type (representing an unconstrained array
1662 type). */
1663
76a01679
JB
1664static int
1665ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1666{
1667 if (type == NULL)
1668 return 0;
61ee279c 1669 type = ada_check_typedef (type);
4c4b4cd2 1670 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1671 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1672}
1673
52ce6436
PH
1674/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1675 * to one. */
1676
2c0b251b 1677static int
52ce6436
PH
1678ada_is_array_type (struct type *type)
1679{
1680 while (type != NULL
1681 && (TYPE_CODE (type) == TYPE_CODE_PTR
1682 || TYPE_CODE (type) == TYPE_CODE_REF))
1683 type = TYPE_TARGET_TYPE (type);
1684 return ada_is_direct_array_type (type);
1685}
1686
4c4b4cd2 1687/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1688
14f9c5c9 1689int
4c4b4cd2 1690ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1691{
1692 if (type == NULL)
1693 return 0;
61ee279c 1694 type = ada_check_typedef (type);
14f9c5c9 1695 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1696 || (TYPE_CODE (type) == TYPE_CODE_PTR
1697 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1698}
1699
4c4b4cd2
PH
1700/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1701
14f9c5c9 1702int
4c4b4cd2 1703ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1704{
556bdfd4 1705 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1706
1707 if (type == NULL)
1708 return 0;
61ee279c 1709 type = ada_check_typedef (type);
556bdfd4
UW
1710 return (data_type != NULL
1711 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1712 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1713}
1714
1715/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1716 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1717 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1718 is still needed. */
1719
14f9c5c9 1720int
ebf56fd3 1721ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1722{
d2e4a39e 1723 return
14f9c5c9
AS
1724 type != NULL
1725 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1726 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1727 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1728 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1729}
1730
1731
4c4b4cd2 1732/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1733 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1734 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1735 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1736 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1737 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1738 a descriptor. */
d2e4a39e
AS
1739struct type *
1740ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1741{
ad82864c
JB
1742 if (ada_is_constrained_packed_array_type (value_type (arr)))
1743 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1744
df407dfe
AC
1745 if (!ada_is_array_descriptor_type (value_type (arr)))
1746 return value_type (arr);
d2e4a39e
AS
1747
1748 if (!bounds)
ad82864c
JB
1749 {
1750 struct type *array_type =
1751 ada_check_typedef (desc_data_target_type (value_type (arr)));
1752
1753 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1754 TYPE_FIELD_BITSIZE (array_type, 0) =
1755 decode_packed_array_bitsize (value_type (arr));
1756
1757 return array_type;
1758 }
14f9c5c9
AS
1759 else
1760 {
d2e4a39e 1761 struct type *elt_type;
14f9c5c9 1762 int arity;
d2e4a39e 1763 struct value *descriptor;
14f9c5c9 1764
df407dfe
AC
1765 elt_type = ada_array_element_type (value_type (arr), -1);
1766 arity = ada_array_arity (value_type (arr));
14f9c5c9 1767
d2e4a39e 1768 if (elt_type == NULL || arity == 0)
df407dfe 1769 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1770
1771 descriptor = desc_bounds (arr);
d2e4a39e 1772 if (value_as_long (descriptor) == 0)
4c4b4cd2 1773 return NULL;
d2e4a39e 1774 while (arity > 0)
4c4b4cd2 1775 {
e9bb382b
UW
1776 struct type *range_type = alloc_type_copy (value_type (arr));
1777 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1778 struct value *low = desc_one_bound (descriptor, arity, 0);
1779 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1780
5b4ee69b 1781 arity -= 1;
df407dfe 1782 create_range_type (range_type, value_type (low),
529cad9c
PH
1783 longest_to_int (value_as_long (low)),
1784 longest_to_int (value_as_long (high)));
4c4b4cd2 1785 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1786
1787 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1788 TYPE_FIELD_BITSIZE (elt_type, 0) =
1789 decode_packed_array_bitsize (value_type (arr));
4c4b4cd2 1790 }
14f9c5c9
AS
1791
1792 return lookup_pointer_type (elt_type);
1793 }
1794}
1795
1796/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1797 Otherwise, returns either a standard GDB array with bounds set
1798 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1799 GDB array. Returns NULL if ARR is a null fat pointer. */
1800
d2e4a39e
AS
1801struct value *
1802ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1803{
df407dfe 1804 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1805 {
d2e4a39e 1806 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1807
14f9c5c9 1808 if (arrType == NULL)
4c4b4cd2 1809 return NULL;
14f9c5c9
AS
1810 return value_cast (arrType, value_copy (desc_data (arr)));
1811 }
ad82864c
JB
1812 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1813 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1814 else
1815 return arr;
1816}
1817
1818/* If ARR does not represent an array, returns ARR unchanged.
1819 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1820 be ARR itself if it already is in the proper form). */
1821
1822static struct value *
d2e4a39e 1823ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1824{
df407dfe 1825 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1826 {
d2e4a39e 1827 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1828
14f9c5c9 1829 if (arrVal == NULL)
323e0a4a 1830 error (_("Bounds unavailable for null array pointer."));
529cad9c 1831 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1832 return value_ind (arrVal);
1833 }
ad82864c
JB
1834 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1835 return decode_constrained_packed_array (arr);
d2e4a39e 1836 else
14f9c5c9
AS
1837 return arr;
1838}
1839
1840/* If TYPE represents a GNAT array type, return it translated to an
1841 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1842 packing). For other types, is the identity. */
1843
d2e4a39e
AS
1844struct type *
1845ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1846{
ad82864c
JB
1847 if (ada_is_constrained_packed_array_type (type))
1848 return decode_constrained_packed_array_type (type);
17280b9f
UW
1849
1850 if (ada_is_array_descriptor_type (type))
556bdfd4 1851 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1852
1853 return type;
14f9c5c9
AS
1854}
1855
4c4b4cd2
PH
1856/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1857
ad82864c
JB
1858static int
1859ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1860{
1861 if (type == NULL)
1862 return 0;
4c4b4cd2 1863 type = desc_base_type (type);
61ee279c 1864 type = ada_check_typedef (type);
d2e4a39e 1865 return
14f9c5c9
AS
1866 ada_type_name (type) != NULL
1867 && strstr (ada_type_name (type), "___XP") != NULL;
1868}
1869
ad82864c
JB
1870/* Non-zero iff TYPE represents a standard GNAT constrained
1871 packed-array type. */
1872
1873int
1874ada_is_constrained_packed_array_type (struct type *type)
1875{
1876 return ada_is_packed_array_type (type)
1877 && !ada_is_array_descriptor_type (type);
1878}
1879
1880/* Non-zero iff TYPE represents an array descriptor for a
1881 unconstrained packed-array type. */
1882
1883static int
1884ada_is_unconstrained_packed_array_type (struct type *type)
1885{
1886 return ada_is_packed_array_type (type)
1887 && ada_is_array_descriptor_type (type);
1888}
1889
1890/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1891 return the size of its elements in bits. */
1892
1893static long
1894decode_packed_array_bitsize (struct type *type)
1895{
1896 char *raw_name = ada_type_name (ada_check_typedef (type));
1897 char *tail;
1898 long bits;
1899
1900 if (!raw_name)
1901 raw_name = ada_type_name (desc_base_type (type));
1902
1903 if (!raw_name)
1904 return 0;
1905
1906 tail = strstr (raw_name, "___XP");
1907
1908 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1909 {
1910 lim_warning
1911 (_("could not understand bit size information on packed array"));
1912 return 0;
1913 }
1914
1915 return bits;
1916}
1917
14f9c5c9
AS
1918/* Given that TYPE is a standard GDB array type with all bounds filled
1919 in, and that the element size of its ultimate scalar constituents
1920 (that is, either its elements, or, if it is an array of arrays, its
1921 elements' elements, etc.) is *ELT_BITS, return an identical type,
1922 but with the bit sizes of its elements (and those of any
1923 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1924 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1925 in bits. */
1926
d2e4a39e 1927static struct type *
ad82864c 1928constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1929{
d2e4a39e
AS
1930 struct type *new_elt_type;
1931 struct type *new_type;
14f9c5c9
AS
1932 LONGEST low_bound, high_bound;
1933
61ee279c 1934 type = ada_check_typedef (type);
14f9c5c9
AS
1935 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1936 return type;
1937
e9bb382b 1938 new_type = alloc_type_copy (type);
ad82864c
JB
1939 new_elt_type =
1940 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1941 elt_bits);
262452ec 1942 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1943 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1944 TYPE_NAME (new_type) = ada_type_name (type);
1945
262452ec 1946 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1947 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1948 low_bound = high_bound = 0;
1949 if (high_bound < low_bound)
1950 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1951 else
14f9c5c9
AS
1952 {
1953 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1954 TYPE_LENGTH (new_type) =
4c4b4cd2 1955 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1956 }
1957
876cecd0 1958 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1959 return new_type;
1960}
1961
ad82864c
JB
1962/* The array type encoded by TYPE, where
1963 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 1964
d2e4a39e 1965static struct type *
ad82864c 1966decode_constrained_packed_array_type (struct type *type)
d2e4a39e 1967{
727e3d2e
JB
1968 char *raw_name = ada_type_name (ada_check_typedef (type));
1969 char *name;
1970 char *tail;
d2e4a39e 1971 struct type *shadow_type;
14f9c5c9 1972 long bits;
14f9c5c9 1973
727e3d2e
JB
1974 if (!raw_name)
1975 raw_name = ada_type_name (desc_base_type (type));
1976
1977 if (!raw_name)
1978 return NULL;
1979
1980 name = (char *) alloca (strlen (raw_name) + 1);
1981 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1982 type = desc_base_type (type);
1983
14f9c5c9
AS
1984 memcpy (name, raw_name, tail - raw_name);
1985 name[tail - raw_name] = '\000';
1986
b4ba55a1
JB
1987 shadow_type = ada_find_parallel_type_with_name (type, name);
1988
1989 if (shadow_type == NULL)
14f9c5c9 1990 {
323e0a4a 1991 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1992 return NULL;
1993 }
cb249c71 1994 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1995
1996 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1997 {
323e0a4a 1998 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1999 return NULL;
2000 }
d2e4a39e 2001
ad82864c
JB
2002 bits = decode_packed_array_bitsize (type);
2003 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2004}
2005
ad82864c
JB
2006/* Given that ARR is a struct value *indicating a GNAT constrained packed
2007 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2008 standard GDB array type except that the BITSIZEs of the array
2009 target types are set to the number of bits in each element, and the
4c4b4cd2 2010 type length is set appropriately. */
14f9c5c9 2011
d2e4a39e 2012static struct value *
ad82864c 2013decode_constrained_packed_array (struct value *arr)
14f9c5c9 2014{
4c4b4cd2 2015 struct type *type;
14f9c5c9 2016
4c4b4cd2 2017 arr = ada_coerce_ref (arr);
284614f0
JB
2018
2019 /* If our value is a pointer, then dererence it. Make sure that
2020 this operation does not cause the target type to be fixed, as
2021 this would indirectly cause this array to be decoded. The rest
2022 of the routine assumes that the array hasn't been decoded yet,
2023 so we use the basic "value_ind" routine to perform the dereferencing,
2024 as opposed to using "ada_value_ind". */
df407dfe 2025 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 2026 arr = value_ind (arr);
4c4b4cd2 2027
ad82864c 2028 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2029 if (type == NULL)
2030 {
323e0a4a 2031 error (_("can't unpack array"));
14f9c5c9
AS
2032 return NULL;
2033 }
61ee279c 2034
50810684 2035 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2036 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2037 {
2038 /* This is a (right-justified) modular type representing a packed
2039 array with no wrapper. In order to interpret the value through
2040 the (left-justified) packed array type we just built, we must
2041 first left-justify it. */
2042 int bit_size, bit_pos;
2043 ULONGEST mod;
2044
df407dfe 2045 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2046 bit_size = 0;
2047 while (mod > 0)
2048 {
2049 bit_size += 1;
2050 mod >>= 1;
2051 }
df407dfe 2052 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2053 arr = ada_value_primitive_packed_val (arr, NULL,
2054 bit_pos / HOST_CHAR_BIT,
2055 bit_pos % HOST_CHAR_BIT,
2056 bit_size,
2057 type);
2058 }
2059
4c4b4cd2 2060 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2061}
2062
2063
2064/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2065 given in IND. ARR must be a simple array. */
14f9c5c9 2066
d2e4a39e
AS
2067static struct value *
2068value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2069{
2070 int i;
2071 int bits, elt_off, bit_off;
2072 long elt_total_bit_offset;
d2e4a39e
AS
2073 struct type *elt_type;
2074 struct value *v;
14f9c5c9
AS
2075
2076 bits = 0;
2077 elt_total_bit_offset = 0;
df407dfe 2078 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2079 for (i = 0; i < arity; i += 1)
14f9c5c9 2080 {
d2e4a39e 2081 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2082 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2083 error
323e0a4a 2084 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 2085 else
4c4b4cd2
PH
2086 {
2087 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2088 LONGEST lowerbound, upperbound;
2089 LONGEST idx;
2090
2091 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2092 {
323e0a4a 2093 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2094 lowerbound = upperbound = 0;
2095 }
2096
3cb382c9 2097 idx = pos_atr (ind[i]);
4c4b4cd2 2098 if (idx < lowerbound || idx > upperbound)
323e0a4a 2099 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
2100 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2101 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2102 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2103 }
14f9c5c9
AS
2104 }
2105 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2106 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2107
2108 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2109 bits, elt_type);
14f9c5c9
AS
2110 return v;
2111}
2112
4c4b4cd2 2113/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2114
2115static int
d2e4a39e 2116has_negatives (struct type *type)
14f9c5c9 2117{
d2e4a39e
AS
2118 switch (TYPE_CODE (type))
2119 {
2120 default:
2121 return 0;
2122 case TYPE_CODE_INT:
2123 return !TYPE_UNSIGNED (type);
2124 case TYPE_CODE_RANGE:
2125 return TYPE_LOW_BOUND (type) < 0;
2126 }
14f9c5c9 2127}
d2e4a39e 2128
14f9c5c9
AS
2129
2130/* Create a new value of type TYPE from the contents of OBJ starting
2131 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2132 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2133 assigning through the result will set the field fetched from.
2134 VALADDR is ignored unless OBJ is NULL, in which case,
2135 VALADDR+OFFSET must address the start of storage containing the
2136 packed value. The value returned in this case is never an lval.
2137 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2138
d2e4a39e 2139struct value *
fc1a4b47 2140ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2141 long offset, int bit_offset, int bit_size,
4c4b4cd2 2142 struct type *type)
14f9c5c9 2143{
d2e4a39e 2144 struct value *v;
4c4b4cd2
PH
2145 int src, /* Index into the source area */
2146 targ, /* Index into the target area */
2147 srcBitsLeft, /* Number of source bits left to move */
2148 nsrc, ntarg, /* Number of source and target bytes */
2149 unusedLS, /* Number of bits in next significant
2150 byte of source that are unused */
2151 accumSize; /* Number of meaningful bits in accum */
2152 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2153 unsigned char *unpacked;
4c4b4cd2 2154 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2155 unsigned char sign;
2156 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2157 /* Transmit bytes from least to most significant; delta is the direction
2158 the indices move. */
50810684 2159 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2160
61ee279c 2161 type = ada_check_typedef (type);
14f9c5c9
AS
2162
2163 if (obj == NULL)
2164 {
2165 v = allocate_value (type);
d2e4a39e 2166 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2167 }
9214ee5f 2168 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2169 {
2170 v = value_at (type,
42ae5230 2171 value_address (obj) + offset);
d2e4a39e 2172 bytes = (unsigned char *) alloca (len);
42ae5230 2173 read_memory (value_address (v), bytes, len);
14f9c5c9 2174 }
d2e4a39e 2175 else
14f9c5c9
AS
2176 {
2177 v = allocate_value (type);
0fd88904 2178 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2179 }
d2e4a39e
AS
2180
2181 if (obj != NULL)
14f9c5c9 2182 {
42ae5230 2183 CORE_ADDR new_addr;
5b4ee69b 2184
74bcbdf3 2185 set_value_component_location (v, obj);
42ae5230 2186 new_addr = value_address (obj) + offset;
9bbda503
AC
2187 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2188 set_value_bitsize (v, bit_size);
df407dfe 2189 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2190 {
42ae5230 2191 ++new_addr;
9bbda503 2192 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2193 }
42ae5230 2194 set_value_address (v, new_addr);
14f9c5c9
AS
2195 }
2196 else
9bbda503 2197 set_value_bitsize (v, bit_size);
0fd88904 2198 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2199
2200 srcBitsLeft = bit_size;
2201 nsrc = len;
2202 ntarg = TYPE_LENGTH (type);
2203 sign = 0;
2204 if (bit_size == 0)
2205 {
2206 memset (unpacked, 0, TYPE_LENGTH (type));
2207 return v;
2208 }
50810684 2209 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2210 {
d2e4a39e 2211 src = len - 1;
1265e4aa
JB
2212 if (has_negatives (type)
2213 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2214 sign = ~0;
d2e4a39e
AS
2215
2216 unusedLS =
4c4b4cd2
PH
2217 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2218 % HOST_CHAR_BIT;
14f9c5c9
AS
2219
2220 switch (TYPE_CODE (type))
4c4b4cd2
PH
2221 {
2222 case TYPE_CODE_ARRAY:
2223 case TYPE_CODE_UNION:
2224 case TYPE_CODE_STRUCT:
2225 /* Non-scalar values must be aligned at a byte boundary... */
2226 accumSize =
2227 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2228 /* ... And are placed at the beginning (most-significant) bytes
2229 of the target. */
529cad9c 2230 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2231 ntarg = targ + 1;
4c4b4cd2
PH
2232 break;
2233 default:
2234 accumSize = 0;
2235 targ = TYPE_LENGTH (type) - 1;
2236 break;
2237 }
14f9c5c9 2238 }
d2e4a39e 2239 else
14f9c5c9
AS
2240 {
2241 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2242
2243 src = targ = 0;
2244 unusedLS = bit_offset;
2245 accumSize = 0;
2246
d2e4a39e 2247 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2248 sign = ~0;
14f9c5c9 2249 }
d2e4a39e 2250
14f9c5c9
AS
2251 accum = 0;
2252 while (nsrc > 0)
2253 {
2254 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2255 part of the value. */
d2e4a39e 2256 unsigned int unusedMSMask =
4c4b4cd2
PH
2257 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2258 1;
2259 /* Sign-extend bits for this byte. */
14f9c5c9 2260 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2261
d2e4a39e 2262 accum |=
4c4b4cd2 2263 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2264 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2265 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2266 {
2267 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2268 accumSize -= HOST_CHAR_BIT;
2269 accum >>= HOST_CHAR_BIT;
2270 ntarg -= 1;
2271 targ += delta;
2272 }
14f9c5c9
AS
2273 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2274 unusedLS = 0;
2275 nsrc -= 1;
2276 src += delta;
2277 }
2278 while (ntarg > 0)
2279 {
2280 accum |= sign << accumSize;
2281 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2282 accumSize -= HOST_CHAR_BIT;
2283 accum >>= HOST_CHAR_BIT;
2284 ntarg -= 1;
2285 targ += delta;
2286 }
2287
2288 return v;
2289}
d2e4a39e 2290
14f9c5c9
AS
2291/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2292 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2293 not overlap. */
14f9c5c9 2294static void
fc1a4b47 2295move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2296 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2297{
2298 unsigned int accum, mask;
2299 int accum_bits, chunk_size;
2300
2301 target += targ_offset / HOST_CHAR_BIT;
2302 targ_offset %= HOST_CHAR_BIT;
2303 source += src_offset / HOST_CHAR_BIT;
2304 src_offset %= HOST_CHAR_BIT;
50810684 2305 if (bits_big_endian_p)
14f9c5c9
AS
2306 {
2307 accum = (unsigned char) *source;
2308 source += 1;
2309 accum_bits = HOST_CHAR_BIT - src_offset;
2310
d2e4a39e 2311 while (n > 0)
4c4b4cd2
PH
2312 {
2313 int unused_right;
5b4ee69b 2314
4c4b4cd2
PH
2315 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2316 accum_bits += HOST_CHAR_BIT;
2317 source += 1;
2318 chunk_size = HOST_CHAR_BIT - targ_offset;
2319 if (chunk_size > n)
2320 chunk_size = n;
2321 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2322 mask = ((1 << chunk_size) - 1) << unused_right;
2323 *target =
2324 (*target & ~mask)
2325 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2326 n -= chunk_size;
2327 accum_bits -= chunk_size;
2328 target += 1;
2329 targ_offset = 0;
2330 }
14f9c5c9
AS
2331 }
2332 else
2333 {
2334 accum = (unsigned char) *source >> src_offset;
2335 source += 1;
2336 accum_bits = HOST_CHAR_BIT - src_offset;
2337
d2e4a39e 2338 while (n > 0)
4c4b4cd2
PH
2339 {
2340 accum = accum + ((unsigned char) *source << accum_bits);
2341 accum_bits += HOST_CHAR_BIT;
2342 source += 1;
2343 chunk_size = HOST_CHAR_BIT - targ_offset;
2344 if (chunk_size > n)
2345 chunk_size = n;
2346 mask = ((1 << chunk_size) - 1) << targ_offset;
2347 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2348 n -= chunk_size;
2349 accum_bits -= chunk_size;
2350 accum >>= chunk_size;
2351 target += 1;
2352 targ_offset = 0;
2353 }
14f9c5c9
AS
2354 }
2355}
2356
14f9c5c9
AS
2357/* Store the contents of FROMVAL into the location of TOVAL.
2358 Return a new value with the location of TOVAL and contents of
2359 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2360 floating-point or non-scalar types. */
14f9c5c9 2361
d2e4a39e
AS
2362static struct value *
2363ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2364{
df407dfe
AC
2365 struct type *type = value_type (toval);
2366 int bits = value_bitsize (toval);
14f9c5c9 2367
52ce6436
PH
2368 toval = ada_coerce_ref (toval);
2369 fromval = ada_coerce_ref (fromval);
2370
2371 if (ada_is_direct_array_type (value_type (toval)))
2372 toval = ada_coerce_to_simple_array (toval);
2373 if (ada_is_direct_array_type (value_type (fromval)))
2374 fromval = ada_coerce_to_simple_array (fromval);
2375
88e3b34b 2376 if (!deprecated_value_modifiable (toval))
323e0a4a 2377 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2378
d2e4a39e 2379 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2380 && bits > 0
d2e4a39e 2381 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2382 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2383 {
df407dfe
AC
2384 int len = (value_bitpos (toval)
2385 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2386 int from_size;
d2e4a39e
AS
2387 char *buffer = (char *) alloca (len);
2388 struct value *val;
42ae5230 2389 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2390
2391 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2392 fromval = value_cast (type, fromval);
14f9c5c9 2393
52ce6436 2394 read_memory (to_addr, buffer, len);
aced2898
PH
2395 from_size = value_bitsize (fromval);
2396 if (from_size == 0)
2397 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2398 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2399 move_bits (buffer, value_bitpos (toval),
50810684 2400 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2401 else
50810684
UW
2402 move_bits (buffer, value_bitpos (toval),
2403 value_contents (fromval), 0, bits, 0);
52ce6436 2404 write_memory (to_addr, buffer, len);
8cebebb9
PP
2405 observer_notify_memory_changed (to_addr, len, buffer);
2406
14f9c5c9 2407 val = value_copy (toval);
0fd88904 2408 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2409 TYPE_LENGTH (type));
04624583 2410 deprecated_set_value_type (val, type);
d2e4a39e 2411
14f9c5c9
AS
2412 return val;
2413 }
2414
2415 return value_assign (toval, fromval);
2416}
2417
2418
52ce6436
PH
2419/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2420 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2421 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2422 * COMPONENT, and not the inferior's memory. The current contents
2423 * of COMPONENT are ignored. */
2424static void
2425value_assign_to_component (struct value *container, struct value *component,
2426 struct value *val)
2427{
2428 LONGEST offset_in_container =
42ae5230 2429 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2430 int bit_offset_in_container =
2431 value_bitpos (component) - value_bitpos (container);
2432 int bits;
2433
2434 val = value_cast (value_type (component), val);
2435
2436 if (value_bitsize (component) == 0)
2437 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2438 else
2439 bits = value_bitsize (component);
2440
50810684 2441 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2442 move_bits (value_contents_writeable (container) + offset_in_container,
2443 value_bitpos (container) + bit_offset_in_container,
2444 value_contents (val),
2445 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2446 bits, 1);
52ce6436
PH
2447 else
2448 move_bits (value_contents_writeable (container) + offset_in_container,
2449 value_bitpos (container) + bit_offset_in_container,
50810684 2450 value_contents (val), 0, bits, 0);
52ce6436
PH
2451}
2452
4c4b4cd2
PH
2453/* The value of the element of array ARR at the ARITY indices given in IND.
2454 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2455 thereto. */
2456
d2e4a39e
AS
2457struct value *
2458ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2459{
2460 int k;
d2e4a39e
AS
2461 struct value *elt;
2462 struct type *elt_type;
14f9c5c9
AS
2463
2464 elt = ada_coerce_to_simple_array (arr);
2465
df407dfe 2466 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2467 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2468 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2469 return value_subscript_packed (elt, arity, ind);
2470
2471 for (k = 0; k < arity; k += 1)
2472 {
2473 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2474 error (_("too many subscripts (%d expected)"), k);
2497b498 2475 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2476 }
2477 return elt;
2478}
2479
2480/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2481 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2482 IND. Does not read the entire array into memory. */
14f9c5c9 2483
2c0b251b 2484static struct value *
d2e4a39e 2485ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2486 struct value **ind)
14f9c5c9
AS
2487{
2488 int k;
2489
2490 for (k = 0; k < arity; k += 1)
2491 {
2492 LONGEST lwb, upb;
14f9c5c9
AS
2493
2494 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2495 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2496 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2497 value_copy (arr));
14f9c5c9 2498 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2499 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2500 type = TYPE_TARGET_TYPE (type);
2501 }
2502
2503 return value_ind (arr);
2504}
2505
0b5d8877 2506/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2507 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2508 elements starting at index LOW. The lower bound of this array is LOW, as
2509 per Ada rules. */
0b5d8877 2510static struct value *
f5938064
JG
2511ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2512 int low, int high)
0b5d8877 2513{
6c038f32 2514 CORE_ADDR base = value_as_address (array_ptr)
43bbcdc2 2515 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
0b5d8877 2516 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2517 struct type *index_type =
2518 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2519 low, high);
6c038f32 2520 struct type *slice_type =
0b5d8877 2521 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2522
f5938064 2523 return value_at_lazy (slice_type, base);
0b5d8877
PH
2524}
2525
2526
2527static struct value *
2528ada_value_slice (struct value *array, int low, int high)
2529{
df407dfe 2530 struct type *type = value_type (array);
6c038f32 2531 struct type *index_type =
0b5d8877 2532 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2533 struct type *slice_type =
0b5d8877 2534 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2535
6c038f32 2536 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2537}
2538
14f9c5c9
AS
2539/* If type is a record type in the form of a standard GNAT array
2540 descriptor, returns the number of dimensions for type. If arr is a
2541 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2542 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2543
2544int
d2e4a39e 2545ada_array_arity (struct type *type)
14f9c5c9
AS
2546{
2547 int arity;
2548
2549 if (type == NULL)
2550 return 0;
2551
2552 type = desc_base_type (type);
2553
2554 arity = 0;
d2e4a39e 2555 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2556 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2557 else
2558 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2559 {
4c4b4cd2 2560 arity += 1;
61ee279c 2561 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2562 }
d2e4a39e 2563
14f9c5c9
AS
2564 return arity;
2565}
2566
2567/* If TYPE is a record type in the form of a standard GNAT array
2568 descriptor or a simple array type, returns the element type for
2569 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2570 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2571
d2e4a39e
AS
2572struct type *
2573ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2574{
2575 type = desc_base_type (type);
2576
d2e4a39e 2577 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2578 {
2579 int k;
d2e4a39e 2580 struct type *p_array_type;
14f9c5c9 2581
556bdfd4 2582 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2583
2584 k = ada_array_arity (type);
2585 if (k == 0)
4c4b4cd2 2586 return NULL;
d2e4a39e 2587
4c4b4cd2 2588 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2589 if (nindices >= 0 && k > nindices)
4c4b4cd2 2590 k = nindices;
d2e4a39e 2591 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2592 {
61ee279c 2593 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2594 k -= 1;
2595 }
14f9c5c9
AS
2596 return p_array_type;
2597 }
2598 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2599 {
2600 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2601 {
2602 type = TYPE_TARGET_TYPE (type);
2603 nindices -= 1;
2604 }
14f9c5c9
AS
2605 return type;
2606 }
2607
2608 return NULL;
2609}
2610
4c4b4cd2 2611/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2612 Does not examine memory. Throws an error if N is invalid or TYPE
2613 is not an array type. NAME is the name of the Ada attribute being
2614 evaluated ('range, 'first, 'last, or 'length); it is used in building
2615 the error message. */
14f9c5c9 2616
1eea4ebd
UW
2617static struct type *
2618ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2619{
4c4b4cd2
PH
2620 struct type *result_type;
2621
14f9c5c9
AS
2622 type = desc_base_type (type);
2623
1eea4ebd
UW
2624 if (n < 0 || n > ada_array_arity (type))
2625 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2626
4c4b4cd2 2627 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2628 {
2629 int i;
2630
2631 for (i = 1; i < n; i += 1)
4c4b4cd2 2632 type = TYPE_TARGET_TYPE (type);
262452ec 2633 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2634 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2635 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2636 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2637 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2638 result_type = NULL;
14f9c5c9 2639 }
d2e4a39e 2640 else
1eea4ebd
UW
2641 {
2642 result_type = desc_index_type (desc_bounds_type (type), n);
2643 if (result_type == NULL)
2644 error (_("attempt to take bound of something that is not an array"));
2645 }
2646
2647 return result_type;
14f9c5c9
AS
2648}
2649
2650/* Given that arr is an array type, returns the lower bound of the
2651 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2652 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2653 array-descriptor type. It works for other arrays with bounds supplied
2654 by run-time quantities other than discriminants. */
14f9c5c9 2655
abb68b3e 2656static LONGEST
1eea4ebd 2657ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2658{
1ce677a4 2659 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2660 int i;
262452ec
JK
2661
2662 gdb_assert (which == 0 || which == 1);
14f9c5c9 2663
ad82864c
JB
2664 if (ada_is_constrained_packed_array_type (arr_type))
2665 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2666
4c4b4cd2 2667 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2668 return (LONGEST) - which;
14f9c5c9
AS
2669
2670 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2671 type = TYPE_TARGET_TYPE (arr_type);
2672 else
2673 type = arr_type;
2674
1ce677a4
UW
2675 elt_type = type;
2676 for (i = n; i > 1; i--)
2677 elt_type = TYPE_TARGET_TYPE (type);
2678
14f9c5c9 2679 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2680 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2681 if (index_type_desc != NULL)
28c85d6c
JB
2682 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2683 NULL);
262452ec 2684 else
1ce677a4 2685 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2686
43bbcdc2
PH
2687 return
2688 (LONGEST) (which == 0
2689 ? ada_discrete_type_low_bound (index_type)
2690 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2691}
2692
2693/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2694 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2695 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2696 supplied by run-time quantities other than discriminants. */
14f9c5c9 2697
1eea4ebd 2698static LONGEST
4dc81987 2699ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2700{
df407dfe 2701 struct type *arr_type = value_type (arr);
14f9c5c9 2702
ad82864c
JB
2703 if (ada_is_constrained_packed_array_type (arr_type))
2704 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2705 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2706 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2707 else
1eea4ebd 2708 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2709}
2710
2711/* Given that arr is an array value, returns the length of the
2712 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2713 supplied by run-time quantities other than discriminants.
2714 Does not work for arrays indexed by enumeration types with representation
2715 clauses at the moment. */
14f9c5c9 2716
1eea4ebd 2717static LONGEST
d2e4a39e 2718ada_array_length (struct value *arr, int n)
14f9c5c9 2719{
df407dfe 2720 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2721
ad82864c
JB
2722 if (ada_is_constrained_packed_array_type (arr_type))
2723 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2724
4c4b4cd2 2725 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2726 return (ada_array_bound_from_type (arr_type, n, 1)
2727 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2728 else
1eea4ebd
UW
2729 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2730 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2731}
2732
2733/* An empty array whose type is that of ARR_TYPE (an array type),
2734 with bounds LOW to LOW-1. */
2735
2736static struct value *
2737empty_array (struct type *arr_type, int low)
2738{
6c038f32 2739 struct type *index_type =
0b5d8877
PH
2740 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2741 low, low - 1);
2742 struct type *elt_type = ada_array_element_type (arr_type, 1);
5b4ee69b 2743
0b5d8877 2744 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2745}
14f9c5c9 2746\f
d2e4a39e 2747
4c4b4cd2 2748 /* Name resolution */
14f9c5c9 2749
4c4b4cd2
PH
2750/* The "decoded" name for the user-definable Ada operator corresponding
2751 to OP. */
14f9c5c9 2752
d2e4a39e 2753static const char *
4c4b4cd2 2754ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2755{
2756 int i;
2757
4c4b4cd2 2758 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2759 {
2760 if (ada_opname_table[i].op == op)
4c4b4cd2 2761 return ada_opname_table[i].decoded;
14f9c5c9 2762 }
323e0a4a 2763 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2764}
2765
2766
4c4b4cd2
PH
2767/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2768 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2769 undefined namespace) and converts operators that are
2770 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2771 non-null, it provides a preferred result type [at the moment, only
2772 type void has any effect---causing procedures to be preferred over
2773 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2774 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2775
4c4b4cd2
PH
2776static void
2777resolve (struct expression **expp, int void_context_p)
14f9c5c9 2778{
30b15541
UW
2779 struct type *context_type = NULL;
2780 int pc = 0;
2781
2782 if (void_context_p)
2783 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2784
2785 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2786}
2787
4c4b4cd2
PH
2788/* Resolve the operator of the subexpression beginning at
2789 position *POS of *EXPP. "Resolving" consists of replacing
2790 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2791 with their resolutions, replacing built-in operators with
2792 function calls to user-defined operators, where appropriate, and,
2793 when DEPROCEDURE_P is non-zero, converting function-valued variables
2794 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2795 are as in ada_resolve, above. */
14f9c5c9 2796
d2e4a39e 2797static struct value *
4c4b4cd2 2798resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2799 struct type *context_type)
14f9c5c9
AS
2800{
2801 int pc = *pos;
2802 int i;
4c4b4cd2 2803 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2804 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2805 struct value **argvec; /* Vector of operand types (alloca'ed). */
2806 int nargs; /* Number of operands. */
52ce6436 2807 int oplen;
14f9c5c9
AS
2808
2809 argvec = NULL;
2810 nargs = 0;
2811 exp = *expp;
2812
52ce6436
PH
2813 /* Pass one: resolve operands, saving their types and updating *pos,
2814 if needed. */
14f9c5c9
AS
2815 switch (op)
2816 {
4c4b4cd2
PH
2817 case OP_FUNCALL:
2818 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2819 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2820 *pos += 7;
4c4b4cd2
PH
2821 else
2822 {
2823 *pos += 3;
2824 resolve_subexp (expp, pos, 0, NULL);
2825 }
2826 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2827 break;
2828
14f9c5c9 2829 case UNOP_ADDR:
4c4b4cd2
PH
2830 *pos += 1;
2831 resolve_subexp (expp, pos, 0, NULL);
2832 break;
2833
52ce6436
PH
2834 case UNOP_QUAL:
2835 *pos += 3;
17466c1a 2836 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2837 break;
2838
52ce6436 2839 case OP_ATR_MODULUS:
4c4b4cd2
PH
2840 case OP_ATR_SIZE:
2841 case OP_ATR_TAG:
4c4b4cd2
PH
2842 case OP_ATR_FIRST:
2843 case OP_ATR_LAST:
2844 case OP_ATR_LENGTH:
2845 case OP_ATR_POS:
2846 case OP_ATR_VAL:
4c4b4cd2
PH
2847 case OP_ATR_MIN:
2848 case OP_ATR_MAX:
52ce6436
PH
2849 case TERNOP_IN_RANGE:
2850 case BINOP_IN_BOUNDS:
2851 case UNOP_IN_RANGE:
2852 case OP_AGGREGATE:
2853 case OP_OTHERS:
2854 case OP_CHOICES:
2855 case OP_POSITIONAL:
2856 case OP_DISCRETE_RANGE:
2857 case OP_NAME:
2858 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2859 *pos += oplen;
14f9c5c9
AS
2860 break;
2861
2862 case BINOP_ASSIGN:
2863 {
4c4b4cd2
PH
2864 struct value *arg1;
2865
2866 *pos += 1;
2867 arg1 = resolve_subexp (expp, pos, 0, NULL);
2868 if (arg1 == NULL)
2869 resolve_subexp (expp, pos, 1, NULL);
2870 else
df407dfe 2871 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2872 break;
14f9c5c9
AS
2873 }
2874
4c4b4cd2 2875 case UNOP_CAST:
4c4b4cd2
PH
2876 *pos += 3;
2877 nargs = 1;
2878 break;
14f9c5c9 2879
4c4b4cd2
PH
2880 case BINOP_ADD:
2881 case BINOP_SUB:
2882 case BINOP_MUL:
2883 case BINOP_DIV:
2884 case BINOP_REM:
2885 case BINOP_MOD:
2886 case BINOP_EXP:
2887 case BINOP_CONCAT:
2888 case BINOP_LOGICAL_AND:
2889 case BINOP_LOGICAL_OR:
2890 case BINOP_BITWISE_AND:
2891 case BINOP_BITWISE_IOR:
2892 case BINOP_BITWISE_XOR:
14f9c5c9 2893
4c4b4cd2
PH
2894 case BINOP_EQUAL:
2895 case BINOP_NOTEQUAL:
2896 case BINOP_LESS:
2897 case BINOP_GTR:
2898 case BINOP_LEQ:
2899 case BINOP_GEQ:
14f9c5c9 2900
4c4b4cd2
PH
2901 case BINOP_REPEAT:
2902 case BINOP_SUBSCRIPT:
2903 case BINOP_COMMA:
40c8aaa9
JB
2904 *pos += 1;
2905 nargs = 2;
2906 break;
14f9c5c9 2907
4c4b4cd2
PH
2908 case UNOP_NEG:
2909 case UNOP_PLUS:
2910 case UNOP_LOGICAL_NOT:
2911 case UNOP_ABS:
2912 case UNOP_IND:
2913 *pos += 1;
2914 nargs = 1;
2915 break;
14f9c5c9 2916
4c4b4cd2
PH
2917 case OP_LONG:
2918 case OP_DOUBLE:
2919 case OP_VAR_VALUE:
2920 *pos += 4;
2921 break;
14f9c5c9 2922
4c4b4cd2
PH
2923 case OP_TYPE:
2924 case OP_BOOL:
2925 case OP_LAST:
4c4b4cd2
PH
2926 case OP_INTERNALVAR:
2927 *pos += 3;
2928 break;
14f9c5c9 2929
4c4b4cd2
PH
2930 case UNOP_MEMVAL:
2931 *pos += 3;
2932 nargs = 1;
2933 break;
2934
67f3407f
DJ
2935 case OP_REGISTER:
2936 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2937 break;
2938
4c4b4cd2
PH
2939 case STRUCTOP_STRUCT:
2940 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2941 nargs = 1;
2942 break;
2943
4c4b4cd2 2944 case TERNOP_SLICE:
4c4b4cd2
PH
2945 *pos += 1;
2946 nargs = 3;
2947 break;
2948
52ce6436 2949 case OP_STRING:
14f9c5c9 2950 break;
4c4b4cd2
PH
2951
2952 default:
323e0a4a 2953 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2954 }
2955
76a01679 2956 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2957 for (i = 0; i < nargs; i += 1)
2958 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2959 argvec[i] = NULL;
2960 exp = *expp;
2961
2962 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2963 switch (op)
2964 {
2965 default:
2966 break;
2967
14f9c5c9 2968 case OP_VAR_VALUE:
4c4b4cd2 2969 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2970 {
2971 struct ada_symbol_info *candidates;
2972 int n_candidates;
2973
2974 n_candidates =
2975 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2976 (exp->elts[pc + 2].symbol),
2977 exp->elts[pc + 1].block, VAR_DOMAIN,
2978 &candidates);
2979
2980 if (n_candidates > 1)
2981 {
2982 /* Types tend to get re-introduced locally, so if there
2983 are any local symbols that are not types, first filter
2984 out all types. */
2985 int j;
2986 for (j = 0; j < n_candidates; j += 1)
2987 switch (SYMBOL_CLASS (candidates[j].sym))
2988 {
2989 case LOC_REGISTER:
2990 case LOC_ARG:
2991 case LOC_REF_ARG:
76a01679
JB
2992 case LOC_REGPARM_ADDR:
2993 case LOC_LOCAL:
76a01679 2994 case LOC_COMPUTED:
76a01679
JB
2995 goto FoundNonType;
2996 default:
2997 break;
2998 }
2999 FoundNonType:
3000 if (j < n_candidates)
3001 {
3002 j = 0;
3003 while (j < n_candidates)
3004 {
3005 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3006 {
3007 candidates[j] = candidates[n_candidates - 1];
3008 n_candidates -= 1;
3009 }
3010 else
3011 j += 1;
3012 }
3013 }
3014 }
3015
3016 if (n_candidates == 0)
323e0a4a 3017 error (_("No definition found for %s"),
76a01679
JB
3018 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3019 else if (n_candidates == 1)
3020 i = 0;
3021 else if (deprocedure_p
3022 && !is_nonfunction (candidates, n_candidates))
3023 {
06d5cf63
JB
3024 i = ada_resolve_function
3025 (candidates, n_candidates, NULL, 0,
3026 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3027 context_type);
76a01679 3028 if (i < 0)
323e0a4a 3029 error (_("Could not find a match for %s"),
76a01679
JB
3030 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3031 }
3032 else
3033 {
323e0a4a 3034 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3035 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3036 user_select_syms (candidates, n_candidates, 1);
3037 i = 0;
3038 }
3039
3040 exp->elts[pc + 1].block = candidates[i].block;
3041 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3042 if (innermost_block == NULL
3043 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3044 innermost_block = candidates[i].block;
3045 }
3046
3047 if (deprocedure_p
3048 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3049 == TYPE_CODE_FUNC))
3050 {
3051 replace_operator_with_call (expp, pc, 0, 0,
3052 exp->elts[pc + 2].symbol,
3053 exp->elts[pc + 1].block);
3054 exp = *expp;
3055 }
14f9c5c9
AS
3056 break;
3057
3058 case OP_FUNCALL:
3059 {
4c4b4cd2 3060 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3061 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3062 {
3063 struct ada_symbol_info *candidates;
3064 int n_candidates;
3065
3066 n_candidates =
76a01679
JB
3067 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3068 (exp->elts[pc + 5].symbol),
3069 exp->elts[pc + 4].block, VAR_DOMAIN,
3070 &candidates);
4c4b4cd2
PH
3071 if (n_candidates == 1)
3072 i = 0;
3073 else
3074 {
06d5cf63
JB
3075 i = ada_resolve_function
3076 (candidates, n_candidates,
3077 argvec, nargs,
3078 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3079 context_type);
4c4b4cd2 3080 if (i < 0)
323e0a4a 3081 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3082 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3083 }
3084
3085 exp->elts[pc + 4].block = candidates[i].block;
3086 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3087 if (innermost_block == NULL
3088 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3089 innermost_block = candidates[i].block;
3090 }
14f9c5c9
AS
3091 }
3092 break;
3093 case BINOP_ADD:
3094 case BINOP_SUB:
3095 case BINOP_MUL:
3096 case BINOP_DIV:
3097 case BINOP_REM:
3098 case BINOP_MOD:
3099 case BINOP_CONCAT:
3100 case BINOP_BITWISE_AND:
3101 case BINOP_BITWISE_IOR:
3102 case BINOP_BITWISE_XOR:
3103 case BINOP_EQUAL:
3104 case BINOP_NOTEQUAL:
3105 case BINOP_LESS:
3106 case BINOP_GTR:
3107 case BINOP_LEQ:
3108 case BINOP_GEQ:
3109 case BINOP_EXP:
3110 case UNOP_NEG:
3111 case UNOP_PLUS:
3112 case UNOP_LOGICAL_NOT:
3113 case UNOP_ABS:
3114 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3115 {
3116 struct ada_symbol_info *candidates;
3117 int n_candidates;
3118
3119 n_candidates =
3120 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3121 (struct block *) NULL, VAR_DOMAIN,
3122 &candidates);
3123 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3124 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3125 if (i < 0)
3126 break;
3127
76a01679
JB
3128 replace_operator_with_call (expp, pc, nargs, 1,
3129 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3130 exp = *expp;
3131 }
14f9c5c9 3132 break;
4c4b4cd2
PH
3133
3134 case OP_TYPE:
b3dbf008 3135 case OP_REGISTER:
4c4b4cd2 3136 return NULL;
14f9c5c9
AS
3137 }
3138
3139 *pos = pc;
3140 return evaluate_subexp_type (exp, pos);
3141}
3142
3143/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3144 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3145 a non-pointer. */
14f9c5c9 3146/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3147 liberal. */
14f9c5c9
AS
3148
3149static int
4dc81987 3150ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3151{
61ee279c
PH
3152 ftype = ada_check_typedef (ftype);
3153 atype = ada_check_typedef (atype);
14f9c5c9
AS
3154
3155 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3156 ftype = TYPE_TARGET_TYPE (ftype);
3157 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3158 atype = TYPE_TARGET_TYPE (atype);
3159
d2e4a39e 3160 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3161 {
3162 default:
5b3d5b7d 3163 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3164 case TYPE_CODE_PTR:
3165 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3166 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3167 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3168 else
1265e4aa
JB
3169 return (may_deref
3170 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3171 case TYPE_CODE_INT:
3172 case TYPE_CODE_ENUM:
3173 case TYPE_CODE_RANGE:
3174 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3175 {
3176 case TYPE_CODE_INT:
3177 case TYPE_CODE_ENUM:
3178 case TYPE_CODE_RANGE:
3179 return 1;
3180 default:
3181 return 0;
3182 }
14f9c5c9
AS
3183
3184 case TYPE_CODE_ARRAY:
d2e4a39e 3185 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3186 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3187
3188 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3189 if (ada_is_array_descriptor_type (ftype))
3190 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3191 || ada_is_array_descriptor_type (atype));
14f9c5c9 3192 else
4c4b4cd2
PH
3193 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3194 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3195
3196 case TYPE_CODE_UNION:
3197 case TYPE_CODE_FLT:
3198 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3199 }
3200}
3201
3202/* Return non-zero if the formals of FUNC "sufficiently match" the
3203 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3204 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3205 argument function. */
14f9c5c9
AS
3206
3207static int
d2e4a39e 3208ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3209{
3210 int i;
d2e4a39e 3211 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3212
1265e4aa
JB
3213 if (SYMBOL_CLASS (func) == LOC_CONST
3214 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3215 return (n_actuals == 0);
3216 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3217 return 0;
3218
3219 if (TYPE_NFIELDS (func_type) != n_actuals)
3220 return 0;
3221
3222 for (i = 0; i < n_actuals; i += 1)
3223 {
4c4b4cd2 3224 if (actuals[i] == NULL)
76a01679
JB
3225 return 0;
3226 else
3227 {
5b4ee69b
MS
3228 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3229 i));
df407dfe 3230 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3231
76a01679
JB
3232 if (!ada_type_match (ftype, atype, 1))
3233 return 0;
3234 }
14f9c5c9
AS
3235 }
3236 return 1;
3237}
3238
3239/* False iff function type FUNC_TYPE definitely does not produce a value
3240 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3241 FUNC_TYPE is not a valid function type with a non-null return type
3242 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3243
3244static int
d2e4a39e 3245return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3246{
d2e4a39e 3247 struct type *return_type;
14f9c5c9
AS
3248
3249 if (func_type == NULL)
3250 return 1;
3251
4c4b4cd2
PH
3252 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3253 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3254 else
3255 return_type = base_type (func_type);
14f9c5c9
AS
3256 if (return_type == NULL)
3257 return 1;
3258
4c4b4cd2 3259 context_type = base_type (context_type);
14f9c5c9
AS
3260
3261 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3262 return context_type == NULL || return_type == context_type;
3263 else if (context_type == NULL)
3264 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3265 else
3266 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3267}
3268
3269
4c4b4cd2 3270/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3271 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3272 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3273 that returns that type, then eliminate matches that don't. If
3274 CONTEXT_TYPE is void and there is at least one match that does not
3275 return void, eliminate all matches that do.
3276
14f9c5c9
AS
3277 Asks the user if there is more than one match remaining. Returns -1
3278 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3279 solely for messages. May re-arrange and modify SYMS in
3280 the process; the index returned is for the modified vector. */
14f9c5c9 3281
4c4b4cd2
PH
3282static int
3283ada_resolve_function (struct ada_symbol_info syms[],
3284 int nsyms, struct value **args, int nargs,
3285 const char *name, struct type *context_type)
14f9c5c9 3286{
30b15541 3287 int fallback;
14f9c5c9 3288 int k;
4c4b4cd2 3289 int m; /* Number of hits */
14f9c5c9 3290
d2e4a39e 3291 m = 0;
30b15541
UW
3292 /* In the first pass of the loop, we only accept functions matching
3293 context_type. If none are found, we add a second pass of the loop
3294 where every function is accepted. */
3295 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3296 {
3297 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3298 {
61ee279c 3299 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3300
3301 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3302 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3303 {
3304 syms[m] = syms[k];
3305 m += 1;
3306 }
3307 }
14f9c5c9
AS
3308 }
3309
3310 if (m == 0)
3311 return -1;
3312 else if (m > 1)
3313 {
323e0a4a 3314 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3315 user_select_syms (syms, m, 1);
14f9c5c9
AS
3316 return 0;
3317 }
3318 return 0;
3319}
3320
4c4b4cd2
PH
3321/* Returns true (non-zero) iff decoded name N0 should appear before N1
3322 in a listing of choices during disambiguation (see sort_choices, below).
3323 The idea is that overloadings of a subprogram name from the
3324 same package should sort in their source order. We settle for ordering
3325 such symbols by their trailing number (__N or $N). */
3326
14f9c5c9 3327static int
4c4b4cd2 3328encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3329{
3330 if (N1 == NULL)
3331 return 0;
3332 else if (N0 == NULL)
3333 return 1;
3334 else
3335 {
3336 int k0, k1;
5b4ee69b 3337
d2e4a39e 3338 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3339 ;
d2e4a39e 3340 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3341 ;
d2e4a39e 3342 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3343 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3344 {
3345 int n0, n1;
5b4ee69b 3346
4c4b4cd2
PH
3347 n0 = k0;
3348 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3349 n0 -= 1;
3350 n1 = k1;
3351 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3352 n1 -= 1;
3353 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3354 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3355 }
14f9c5c9
AS
3356 return (strcmp (N0, N1) < 0);
3357 }
3358}
d2e4a39e 3359
4c4b4cd2
PH
3360/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3361 encoded names. */
3362
d2e4a39e 3363static void
4c4b4cd2 3364sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3365{
4c4b4cd2 3366 int i;
5b4ee69b 3367
d2e4a39e 3368 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3369 {
4c4b4cd2 3370 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3371 int j;
3372
d2e4a39e 3373 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3374 {
3375 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3376 SYMBOL_LINKAGE_NAME (sym.sym)))
3377 break;
3378 syms[j + 1] = syms[j];
3379 }
d2e4a39e 3380 syms[j + 1] = sym;
14f9c5c9
AS
3381 }
3382}
3383
4c4b4cd2
PH
3384/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3385 by asking the user (if necessary), returning the number selected,
3386 and setting the first elements of SYMS items. Error if no symbols
3387 selected. */
14f9c5c9
AS
3388
3389/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3390 to be re-integrated one of these days. */
14f9c5c9
AS
3391
3392int
4c4b4cd2 3393user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3394{
3395 int i;
d2e4a39e 3396 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3397 int n_chosen;
3398 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3399 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3400
3401 if (max_results < 1)
323e0a4a 3402 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3403 if (nsyms <= 1)
3404 return nsyms;
3405
717d2f5a
JB
3406 if (select_mode == multiple_symbols_cancel)
3407 error (_("\
3408canceled because the command is ambiguous\n\
3409See set/show multiple-symbol."));
3410
3411 /* If select_mode is "all", then return all possible symbols.
3412 Only do that if more than one symbol can be selected, of course.
3413 Otherwise, display the menu as usual. */
3414 if (select_mode == multiple_symbols_all && max_results > 1)
3415 return nsyms;
3416
323e0a4a 3417 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3418 if (max_results > 1)
323e0a4a 3419 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3420
4c4b4cd2 3421 sort_choices (syms, nsyms);
14f9c5c9
AS
3422
3423 for (i = 0; i < nsyms; i += 1)
3424 {
4c4b4cd2
PH
3425 if (syms[i].sym == NULL)
3426 continue;
3427
3428 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3429 {
76a01679
JB
3430 struct symtab_and_line sal =
3431 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3432
323e0a4a
AC
3433 if (sal.symtab == NULL)
3434 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3435 i + first_choice,
3436 SYMBOL_PRINT_NAME (syms[i].sym),
3437 sal.line);
3438 else
3439 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3440 SYMBOL_PRINT_NAME (syms[i].sym),
3441 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3442 continue;
3443 }
d2e4a39e 3444 else
4c4b4cd2
PH
3445 {
3446 int is_enumeral =
3447 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3448 && SYMBOL_TYPE (syms[i].sym) != NULL
3449 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3450 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3451
3452 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3453 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3454 i + first_choice,
3455 SYMBOL_PRINT_NAME (syms[i].sym),
3456 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3457 else if (is_enumeral
3458 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3459 {
a3f17187 3460 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3461 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3462 gdb_stdout, -1, 0);
323e0a4a 3463 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3464 SYMBOL_PRINT_NAME (syms[i].sym));
3465 }
3466 else if (symtab != NULL)
3467 printf_unfiltered (is_enumeral
323e0a4a
AC
3468 ? _("[%d] %s in %s (enumeral)\n")
3469 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3470 i + first_choice,
3471 SYMBOL_PRINT_NAME (syms[i].sym),
3472 symtab->filename);
3473 else
3474 printf_unfiltered (is_enumeral
323e0a4a
AC
3475 ? _("[%d] %s (enumeral)\n")
3476 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3477 i + first_choice,
3478 SYMBOL_PRINT_NAME (syms[i].sym));
3479 }
14f9c5c9 3480 }
d2e4a39e 3481
14f9c5c9 3482 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3483 "overload-choice");
14f9c5c9
AS
3484
3485 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3486 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3487
3488 return n_chosen;
3489}
3490
3491/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3492 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3493 order in CHOICES[0 .. N-1], and return N.
3494
3495 The user types choices as a sequence of numbers on one line
3496 separated by blanks, encoding them as follows:
3497
4c4b4cd2 3498 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3499 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3500 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3501
4c4b4cd2 3502 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3503
3504 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3505 prompts (for use with the -f switch). */
14f9c5c9
AS
3506
3507int
d2e4a39e 3508get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3509 int is_all_choice, char *annotation_suffix)
14f9c5c9 3510{
d2e4a39e 3511 char *args;
0bcd0149 3512 char *prompt;
14f9c5c9
AS
3513 int n_chosen;
3514 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3515
14f9c5c9
AS
3516 prompt = getenv ("PS2");
3517 if (prompt == NULL)
0bcd0149 3518 prompt = "> ";
14f9c5c9 3519
0bcd0149 3520 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3521
14f9c5c9 3522 if (args == NULL)
323e0a4a 3523 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3524
3525 n_chosen = 0;
76a01679 3526
4c4b4cd2
PH
3527 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3528 order, as given in args. Choices are validated. */
14f9c5c9
AS
3529 while (1)
3530 {
d2e4a39e 3531 char *args2;
14f9c5c9
AS
3532 int choice, j;
3533
3534 while (isspace (*args))
4c4b4cd2 3535 args += 1;
14f9c5c9 3536 if (*args == '\0' && n_chosen == 0)
323e0a4a 3537 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3538 else if (*args == '\0')
4c4b4cd2 3539 break;
14f9c5c9
AS
3540
3541 choice = strtol (args, &args2, 10);
d2e4a39e 3542 if (args == args2 || choice < 0
4c4b4cd2 3543 || choice > n_choices + first_choice - 1)
323e0a4a 3544 error (_("Argument must be choice number"));
14f9c5c9
AS
3545 args = args2;
3546
d2e4a39e 3547 if (choice == 0)
323e0a4a 3548 error (_("cancelled"));
14f9c5c9
AS
3549
3550 if (choice < first_choice)
4c4b4cd2
PH
3551 {
3552 n_chosen = n_choices;
3553 for (j = 0; j < n_choices; j += 1)
3554 choices[j] = j;
3555 break;
3556 }
14f9c5c9
AS
3557 choice -= first_choice;
3558
d2e4a39e 3559 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3560 {
3561 }
14f9c5c9
AS
3562
3563 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3564 {
3565 int k;
5b4ee69b 3566
4c4b4cd2
PH
3567 for (k = n_chosen - 1; k > j; k -= 1)
3568 choices[k + 1] = choices[k];
3569 choices[j + 1] = choice;
3570 n_chosen += 1;
3571 }
14f9c5c9
AS
3572 }
3573
3574 if (n_chosen > max_results)
323e0a4a 3575 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3576
14f9c5c9
AS
3577 return n_chosen;
3578}
3579
4c4b4cd2
PH
3580/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3581 on the function identified by SYM and BLOCK, and taking NARGS
3582 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3583
3584static void
d2e4a39e 3585replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3586 int oplen, struct symbol *sym,
3587 struct block *block)
14f9c5c9
AS
3588{
3589 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3590 symbol, -oplen for operator being replaced). */
d2e4a39e 3591 struct expression *newexp = (struct expression *)
14f9c5c9 3592 xmalloc (sizeof (struct expression)
4c4b4cd2 3593 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3594 struct expression *exp = *expp;
14f9c5c9
AS
3595
3596 newexp->nelts = exp->nelts + 7 - oplen;
3597 newexp->language_defn = exp->language_defn;
3598 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3599 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3600 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3601
3602 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3603 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3604
3605 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3606 newexp->elts[pc + 4].block = block;
3607 newexp->elts[pc + 5].symbol = sym;
3608
3609 *expp = newexp;
aacb1f0a 3610 xfree (exp);
d2e4a39e 3611}
14f9c5c9
AS
3612
3613/* Type-class predicates */
3614
4c4b4cd2
PH
3615/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3616 or FLOAT). */
14f9c5c9
AS
3617
3618static int
d2e4a39e 3619numeric_type_p (struct type *type)
14f9c5c9
AS
3620{
3621 if (type == NULL)
3622 return 0;
d2e4a39e
AS
3623 else
3624 {
3625 switch (TYPE_CODE (type))
4c4b4cd2
PH
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_FLT:
3629 return 1;
3630 case TYPE_CODE_RANGE:
3631 return (type == TYPE_TARGET_TYPE (type)
3632 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3633 default:
3634 return 0;
3635 }
d2e4a39e 3636 }
14f9c5c9
AS
3637}
3638
4c4b4cd2 3639/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3640
3641static int
d2e4a39e 3642integer_type_p (struct type *type)
14f9c5c9
AS
3643{
3644 if (type == NULL)
3645 return 0;
d2e4a39e
AS
3646 else
3647 {
3648 switch (TYPE_CODE (type))
4c4b4cd2
PH
3649 {
3650 case TYPE_CODE_INT:
3651 return 1;
3652 case TYPE_CODE_RANGE:
3653 return (type == TYPE_TARGET_TYPE (type)
3654 || integer_type_p (TYPE_TARGET_TYPE (type)));
3655 default:
3656 return 0;
3657 }
d2e4a39e 3658 }
14f9c5c9
AS
3659}
3660
4c4b4cd2 3661/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3662
3663static int
d2e4a39e 3664scalar_type_p (struct type *type)
14f9c5c9
AS
3665{
3666 if (type == NULL)
3667 return 0;
d2e4a39e
AS
3668 else
3669 {
3670 switch (TYPE_CODE (type))
4c4b4cd2
PH
3671 {
3672 case TYPE_CODE_INT:
3673 case TYPE_CODE_RANGE:
3674 case TYPE_CODE_ENUM:
3675 case TYPE_CODE_FLT:
3676 return 1;
3677 default:
3678 return 0;
3679 }
d2e4a39e 3680 }
14f9c5c9
AS
3681}
3682
4c4b4cd2 3683/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3684
3685static int
d2e4a39e 3686discrete_type_p (struct type *type)
14f9c5c9
AS
3687{
3688 if (type == NULL)
3689 return 0;
d2e4a39e
AS
3690 else
3691 {
3692 switch (TYPE_CODE (type))
4c4b4cd2
PH
3693 {
3694 case TYPE_CODE_INT:
3695 case TYPE_CODE_RANGE:
3696 case TYPE_CODE_ENUM:
872f0337 3697 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3698 return 1;
3699 default:
3700 return 0;
3701 }
d2e4a39e 3702 }
14f9c5c9
AS
3703}
3704
4c4b4cd2
PH
3705/* Returns non-zero if OP with operands in the vector ARGS could be
3706 a user-defined function. Errs on the side of pre-defined operators
3707 (i.e., result 0). */
14f9c5c9
AS
3708
3709static int
d2e4a39e 3710possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3711{
76a01679 3712 struct type *type0 =
df407dfe 3713 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3714 struct type *type1 =
df407dfe 3715 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3716
4c4b4cd2
PH
3717 if (type0 == NULL)
3718 return 0;
3719
14f9c5c9
AS
3720 switch (op)
3721 {
3722 default:
3723 return 0;
3724
3725 case BINOP_ADD:
3726 case BINOP_SUB:
3727 case BINOP_MUL:
3728 case BINOP_DIV:
d2e4a39e 3729 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3730
3731 case BINOP_REM:
3732 case BINOP_MOD:
3733 case BINOP_BITWISE_AND:
3734 case BINOP_BITWISE_IOR:
3735 case BINOP_BITWISE_XOR:
d2e4a39e 3736 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3737
3738 case BINOP_EQUAL:
3739 case BINOP_NOTEQUAL:
3740 case BINOP_LESS:
3741 case BINOP_GTR:
3742 case BINOP_LEQ:
3743 case BINOP_GEQ:
d2e4a39e 3744 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3745
3746 case BINOP_CONCAT:
ee90b9ab 3747 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3748
3749 case BINOP_EXP:
d2e4a39e 3750 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3751
3752 case UNOP_NEG:
3753 case UNOP_PLUS:
3754 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3755 case UNOP_ABS:
3756 return (!numeric_type_p (type0));
14f9c5c9
AS
3757
3758 }
3759}
3760\f
4c4b4cd2 3761 /* Renaming */
14f9c5c9 3762
aeb5907d
JB
3763/* NOTES:
3764
3765 1. In the following, we assume that a renaming type's name may
3766 have an ___XD suffix. It would be nice if this went away at some
3767 point.
3768 2. We handle both the (old) purely type-based representation of
3769 renamings and the (new) variable-based encoding. At some point,
3770 it is devoutly to be hoped that the former goes away
3771 (FIXME: hilfinger-2007-07-09).
3772 3. Subprogram renamings are not implemented, although the XRS
3773 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3774
3775/* If SYM encodes a renaming,
3776
3777 <renaming> renames <renamed entity>,
3778
3779 sets *LEN to the length of the renamed entity's name,
3780 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3781 the string describing the subcomponent selected from the renamed
3782 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3783 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3784 are undefined). Otherwise, returns a value indicating the category
3785 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3786 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3787 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3788 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3789 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3790 may be NULL, in which case they are not assigned.
3791
3792 [Currently, however, GCC does not generate subprogram renamings.] */
3793
3794enum ada_renaming_category
3795ada_parse_renaming (struct symbol *sym,
3796 const char **renamed_entity, int *len,
3797 const char **renaming_expr)
3798{
3799 enum ada_renaming_category kind;
3800 const char *info;
3801 const char *suffix;
3802
3803 if (sym == NULL)
3804 return ADA_NOT_RENAMING;
3805 switch (SYMBOL_CLASS (sym))
14f9c5c9 3806 {
aeb5907d
JB
3807 default:
3808 return ADA_NOT_RENAMING;
3809 case LOC_TYPEDEF:
3810 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3811 renamed_entity, len, renaming_expr);
3812 case LOC_LOCAL:
3813 case LOC_STATIC:
3814 case LOC_COMPUTED:
3815 case LOC_OPTIMIZED_OUT:
3816 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3817 if (info == NULL)
3818 return ADA_NOT_RENAMING;
3819 switch (info[5])
3820 {
3821 case '_':
3822 kind = ADA_OBJECT_RENAMING;
3823 info += 6;
3824 break;
3825 case 'E':
3826 kind = ADA_EXCEPTION_RENAMING;
3827 info += 7;
3828 break;
3829 case 'P':
3830 kind = ADA_PACKAGE_RENAMING;
3831 info += 7;
3832 break;
3833 case 'S':
3834 kind = ADA_SUBPROGRAM_RENAMING;
3835 info += 7;
3836 break;
3837 default:
3838 return ADA_NOT_RENAMING;
3839 }
14f9c5c9 3840 }
4c4b4cd2 3841
aeb5907d
JB
3842 if (renamed_entity != NULL)
3843 *renamed_entity = info;
3844 suffix = strstr (info, "___XE");
3845 if (suffix == NULL || suffix == info)
3846 return ADA_NOT_RENAMING;
3847 if (len != NULL)
3848 *len = strlen (info) - strlen (suffix);
3849 suffix += 5;
3850 if (renaming_expr != NULL)
3851 *renaming_expr = suffix;
3852 return kind;
3853}
3854
3855/* Assuming TYPE encodes a renaming according to the old encoding in
3856 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3857 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3858 ADA_NOT_RENAMING otherwise. */
3859static enum ada_renaming_category
3860parse_old_style_renaming (struct type *type,
3861 const char **renamed_entity, int *len,
3862 const char **renaming_expr)
3863{
3864 enum ada_renaming_category kind;
3865 const char *name;
3866 const char *info;
3867 const char *suffix;
14f9c5c9 3868
aeb5907d
JB
3869 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3870 || TYPE_NFIELDS (type) != 1)
3871 return ADA_NOT_RENAMING;
14f9c5c9 3872
aeb5907d
JB
3873 name = type_name_no_tag (type);
3874 if (name == NULL)
3875 return ADA_NOT_RENAMING;
3876
3877 name = strstr (name, "___XR");
3878 if (name == NULL)
3879 return ADA_NOT_RENAMING;
3880 switch (name[5])
3881 {
3882 case '\0':
3883 case '_':
3884 kind = ADA_OBJECT_RENAMING;
3885 break;
3886 case 'E':
3887 kind = ADA_EXCEPTION_RENAMING;
3888 break;
3889 case 'P':
3890 kind = ADA_PACKAGE_RENAMING;
3891 break;
3892 case 'S':
3893 kind = ADA_SUBPROGRAM_RENAMING;
3894 break;
3895 default:
3896 return ADA_NOT_RENAMING;
3897 }
14f9c5c9 3898
aeb5907d
JB
3899 info = TYPE_FIELD_NAME (type, 0);
3900 if (info == NULL)
3901 return ADA_NOT_RENAMING;
3902 if (renamed_entity != NULL)
3903 *renamed_entity = info;
3904 suffix = strstr (info, "___XE");
3905 if (renaming_expr != NULL)
3906 *renaming_expr = suffix + 5;
3907 if (suffix == NULL || suffix == info)
3908 return ADA_NOT_RENAMING;
3909 if (len != NULL)
3910 *len = suffix - info;
3911 return kind;
3912}
52ce6436 3913
14f9c5c9 3914\f
d2e4a39e 3915
4c4b4cd2 3916 /* Evaluation: Function Calls */
14f9c5c9 3917
4c4b4cd2 3918/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
3919 lvalues, and otherwise has the side-effect of allocating memory
3920 in the inferior where a copy of the value contents is copied. */
14f9c5c9 3921
d2e4a39e 3922static struct value *
40bc484c 3923ensure_lval (struct value *val)
14f9c5c9 3924{
40bc484c
JB
3925 if (VALUE_LVAL (val) == not_lval
3926 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 3927 {
df407dfe 3928 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
3929 const CORE_ADDR addr =
3930 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 3931
40bc484c 3932 set_value_address (val, addr);
a84a8a0d 3933 VALUE_LVAL (val) = lval_memory;
40bc484c 3934 write_memory (addr, value_contents (val), len);
c3e5cd34 3935 }
14f9c5c9
AS
3936
3937 return val;
3938}
3939
3940/* Return the value ACTUAL, converted to be an appropriate value for a
3941 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3942 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3943 values not residing in memory, updating it as needed. */
14f9c5c9 3944
a93c0eb6 3945struct value *
40bc484c 3946ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 3947{
df407dfe 3948 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3949 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3950 struct type *formal_target =
3951 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3952 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3953 struct type *actual_target =
3954 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3955 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3956
4c4b4cd2 3957 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3958 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 3959 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
3960 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3961 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3962 {
a84a8a0d 3963 struct value *result;
5b4ee69b 3964
14f9c5c9 3965 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3966 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3967 result = desc_data (actual);
14f9c5c9 3968 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3969 {
3970 if (VALUE_LVAL (actual) != lval_memory)
3971 {
3972 struct value *val;
5b4ee69b 3973
df407dfe 3974 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3975 val = allocate_value (actual_type);
990a07ab 3976 memcpy ((char *) value_contents_raw (val),
0fd88904 3977 (char *) value_contents (actual),
4c4b4cd2 3978 TYPE_LENGTH (actual_type));
40bc484c 3979 actual = ensure_lval (val);
4c4b4cd2 3980 }
a84a8a0d 3981 result = value_addr (actual);
4c4b4cd2 3982 }
a84a8a0d
JB
3983 else
3984 return actual;
3985 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3986 }
3987 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3988 return ada_value_ind (actual);
3989
3990 return actual;
3991}
3992
438c98a1
JB
3993/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3994 type TYPE. This is usually an inefficient no-op except on some targets
3995 (such as AVR) where the representation of a pointer and an address
3996 differs. */
3997
3998static CORE_ADDR
3999value_pointer (struct value *value, struct type *type)
4000{
4001 struct gdbarch *gdbarch = get_type_arch (type);
4002 unsigned len = TYPE_LENGTH (type);
4003 gdb_byte *buf = alloca (len);
4004 CORE_ADDR addr;
4005
4006 addr = value_address (value);
4007 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4008 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4009 return addr;
4010}
4011
14f9c5c9 4012
4c4b4cd2
PH
4013/* Push a descriptor of type TYPE for array value ARR on the stack at
4014 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4015 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4016 to-descriptor type rather than a descriptor type), a struct value *
4017 representing a pointer to this descriptor. */
14f9c5c9 4018
d2e4a39e 4019static struct value *
40bc484c 4020make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4021{
d2e4a39e
AS
4022 struct type *bounds_type = desc_bounds_type (type);
4023 struct type *desc_type = desc_base_type (type);
4024 struct value *descriptor = allocate_value (desc_type);
4025 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4026 int i;
d2e4a39e 4027
df407dfe 4028 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 4029 {
19f220c3
JK
4030 modify_field (value_type (bounds), value_contents_writeable (bounds),
4031 ada_array_bound (arr, i, 0),
4032 desc_bound_bitpos (bounds_type, i, 0),
4033 desc_bound_bitsize (bounds_type, i, 0));
4034 modify_field (value_type (bounds), value_contents_writeable (bounds),
4035 ada_array_bound (arr, i, 1),
4036 desc_bound_bitpos (bounds_type, i, 1),
4037 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4038 }
d2e4a39e 4039
40bc484c 4040 bounds = ensure_lval (bounds);
d2e4a39e 4041
19f220c3
JK
4042 modify_field (value_type (descriptor),
4043 value_contents_writeable (descriptor),
4044 value_pointer (ensure_lval (arr),
4045 TYPE_FIELD_TYPE (desc_type, 0)),
4046 fat_pntr_data_bitpos (desc_type),
4047 fat_pntr_data_bitsize (desc_type));
4048
4049 modify_field (value_type (descriptor),
4050 value_contents_writeable (descriptor),
4051 value_pointer (bounds,
4052 TYPE_FIELD_TYPE (desc_type, 1)),
4053 fat_pntr_bounds_bitpos (desc_type),
4054 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4055
40bc484c 4056 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4057
4058 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4059 return value_addr (descriptor);
4060 else
4061 return descriptor;
4062}
14f9c5c9 4063\f
963a6417
PH
4064/* Dummy definitions for an experimental caching module that is not
4065 * used in the public sources. */
96d887e8 4066
96d887e8
PH
4067static int
4068lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4069 struct symbol **sym, struct block **block)
96d887e8
PH
4070{
4071 return 0;
4072}
4073
4074static void
4075cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4076 struct block *block)
96d887e8
PH
4077{
4078}
4c4b4cd2
PH
4079\f
4080 /* Symbol Lookup */
4081
4082/* Return the result of a standard (literal, C-like) lookup of NAME in
4083 given DOMAIN, visible from lexical block BLOCK. */
4084
4085static struct symbol *
4086standard_lookup (const char *name, const struct block *block,
4087 domain_enum domain)
4088{
4089 struct symbol *sym;
4c4b4cd2 4090
2570f2b7 4091 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4092 return sym;
2570f2b7
UW
4093 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4094 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4095 return sym;
4096}
4097
4098
4099/* Non-zero iff there is at least one non-function/non-enumeral symbol
4100 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4101 since they contend in overloading in the same way. */
4102static int
4103is_nonfunction (struct ada_symbol_info syms[], int n)
4104{
4105 int i;
4106
4107 for (i = 0; i < n; i += 1)
4108 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4109 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4110 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4111 return 1;
4112
4113 return 0;
4114}
4115
4116/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4117 struct types. Otherwise, they may not. */
14f9c5c9
AS
4118
4119static int
d2e4a39e 4120equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4121{
d2e4a39e 4122 if (type0 == type1)
14f9c5c9 4123 return 1;
d2e4a39e 4124 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4125 || TYPE_CODE (type0) != TYPE_CODE (type1))
4126 return 0;
d2e4a39e 4127 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4128 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4129 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4130 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4131 return 1;
d2e4a39e 4132
14f9c5c9
AS
4133 return 0;
4134}
4135
4136/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4137 no more defined than that of SYM1. */
14f9c5c9
AS
4138
4139static int
d2e4a39e 4140lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4141{
4142 if (sym0 == sym1)
4143 return 1;
176620f1 4144 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4145 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4146 return 0;
4147
d2e4a39e 4148 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4149 {
4150 case LOC_UNDEF:
4151 return 1;
4152 case LOC_TYPEDEF:
4153 {
4c4b4cd2
PH
4154 struct type *type0 = SYMBOL_TYPE (sym0);
4155 struct type *type1 = SYMBOL_TYPE (sym1);
4156 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4157 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4158 int len0 = strlen (name0);
5b4ee69b 4159
4c4b4cd2
PH
4160 return
4161 TYPE_CODE (type0) == TYPE_CODE (type1)
4162 && (equiv_types (type0, type1)
4163 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4164 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4165 }
4166 case LOC_CONST:
4167 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4168 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4169 default:
4170 return 0;
14f9c5c9
AS
4171 }
4172}
4173
4c4b4cd2
PH
4174/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4175 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4176
4177static void
76a01679
JB
4178add_defn_to_vec (struct obstack *obstackp,
4179 struct symbol *sym,
2570f2b7 4180 struct block *block)
14f9c5c9
AS
4181{
4182 int i;
4c4b4cd2 4183 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4184
529cad9c
PH
4185 /* Do not try to complete stub types, as the debugger is probably
4186 already scanning all symbols matching a certain name at the
4187 time when this function is called. Trying to replace the stub
4188 type by its associated full type will cause us to restart a scan
4189 which may lead to an infinite recursion. Instead, the client
4190 collecting the matching symbols will end up collecting several
4191 matches, with at least one of them complete. It can then filter
4192 out the stub ones if needed. */
4193
4c4b4cd2
PH
4194 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4195 {
4196 if (lesseq_defined_than (sym, prevDefns[i].sym))
4197 return;
4198 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4199 {
4200 prevDefns[i].sym = sym;
4201 prevDefns[i].block = block;
4c4b4cd2 4202 return;
76a01679 4203 }
4c4b4cd2
PH
4204 }
4205
4206 {
4207 struct ada_symbol_info info;
4208
4209 info.sym = sym;
4210 info.block = block;
4c4b4cd2
PH
4211 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4212 }
4213}
4214
4215/* Number of ada_symbol_info structures currently collected in
4216 current vector in *OBSTACKP. */
4217
76a01679
JB
4218static int
4219num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4220{
4221 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4222}
4223
4224/* Vector of ada_symbol_info structures currently collected in current
4225 vector in *OBSTACKP. If FINISH, close off the vector and return
4226 its final address. */
4227
76a01679 4228static struct ada_symbol_info *
4c4b4cd2
PH
4229defns_collected (struct obstack *obstackp, int finish)
4230{
4231 if (finish)
4232 return obstack_finish (obstackp);
4233 else
4234 return (struct ada_symbol_info *) obstack_base (obstackp);
4235}
4236
96d887e8
PH
4237/* Return a minimal symbol matching NAME according to Ada decoding
4238 rules. Returns NULL if there is no such minimal symbol. Names
4239 prefixed with "standard__" are handled specially: "standard__" is
4240 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4241
96d887e8
PH
4242struct minimal_symbol *
4243ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4244{
4c4b4cd2 4245 struct objfile *objfile;
96d887e8
PH
4246 struct minimal_symbol *msymbol;
4247 int wild_match;
4c4b4cd2 4248
96d887e8 4249 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4250 {
96d887e8 4251 name += sizeof ("standard__") - 1;
4c4b4cd2 4252 wild_match = 0;
4c4b4cd2
PH
4253 }
4254 else
96d887e8 4255 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4256
96d887e8
PH
4257 ALL_MSYMBOLS (objfile, msymbol)
4258 {
40658b94 4259 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4260 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4261 return msymbol;
4262 }
4c4b4cd2 4263
96d887e8
PH
4264 return NULL;
4265}
4c4b4cd2 4266
96d887e8
PH
4267/* For all subprograms that statically enclose the subprogram of the
4268 selected frame, add symbols matching identifier NAME in DOMAIN
4269 and their blocks to the list of data in OBSTACKP, as for
4270 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4271 wildcard prefix. */
4c4b4cd2 4272
96d887e8
PH
4273static void
4274add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4275 const char *name, domain_enum namespace,
96d887e8
PH
4276 int wild_match)
4277{
96d887e8 4278}
14f9c5c9 4279
96d887e8
PH
4280/* True if TYPE is definitely an artificial type supplied to a symbol
4281 for which no debugging information was given in the symbol file. */
14f9c5c9 4282
96d887e8
PH
4283static int
4284is_nondebugging_type (struct type *type)
4285{
4286 char *name = ada_type_name (type);
5b4ee69b 4287
96d887e8
PH
4288 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4289}
4c4b4cd2 4290
96d887e8
PH
4291/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4292 duplicate other symbols in the list (The only case I know of where
4293 this happens is when object files containing stabs-in-ecoff are
4294 linked with files containing ordinary ecoff debugging symbols (or no
4295 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4296 Returns the number of items in the modified list. */
4c4b4cd2 4297
96d887e8
PH
4298static int
4299remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4300{
4301 int i, j;
4c4b4cd2 4302
96d887e8
PH
4303 i = 0;
4304 while (i < nsyms)
4305 {
339c13b6
JB
4306 int remove = 0;
4307
4308 /* If two symbols have the same name and one of them is a stub type,
4309 the get rid of the stub. */
4310
4311 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4312 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4313 {
4314 for (j = 0; j < nsyms; j++)
4315 {
4316 if (j != i
4317 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4318 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4319 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4320 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4321 remove = 1;
4322 }
4323 }
4324
4325 /* Two symbols with the same name, same class and same address
4326 should be identical. */
4327
4328 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4329 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4330 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4331 {
4332 for (j = 0; j < nsyms; j += 1)
4333 {
4334 if (i != j
4335 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4336 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4337 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4338 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4339 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4340 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4341 remove = 1;
4c4b4cd2 4342 }
4c4b4cd2 4343 }
339c13b6
JB
4344
4345 if (remove)
4346 {
4347 for (j = i + 1; j < nsyms; j += 1)
4348 syms[j - 1] = syms[j];
4349 nsyms -= 1;
4350 }
4351
96d887e8 4352 i += 1;
14f9c5c9 4353 }
96d887e8 4354 return nsyms;
14f9c5c9
AS
4355}
4356
96d887e8
PH
4357/* Given a type that corresponds to a renaming entity, use the type name
4358 to extract the scope (package name or function name, fully qualified,
4359 and following the GNAT encoding convention) where this renaming has been
4360 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4361
96d887e8
PH
4362static char *
4363xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4364{
96d887e8
PH
4365 /* The renaming types adhere to the following convention:
4366 <scope>__<rename>___<XR extension>.
4367 So, to extract the scope, we search for the "___XR" extension,
4368 and then backtrack until we find the first "__". */
76a01679 4369
96d887e8
PH
4370 const char *name = type_name_no_tag (renaming_type);
4371 char *suffix = strstr (name, "___XR");
4372 char *last;
4373 int scope_len;
4374 char *scope;
14f9c5c9 4375
96d887e8
PH
4376 /* Now, backtrack a bit until we find the first "__". Start looking
4377 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4378
96d887e8
PH
4379 for (last = suffix - 3; last > name; last--)
4380 if (last[0] == '_' && last[1] == '_')
4381 break;
76a01679 4382
96d887e8 4383 /* Make a copy of scope and return it. */
14f9c5c9 4384
96d887e8
PH
4385 scope_len = last - name;
4386 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4387
96d887e8
PH
4388 strncpy (scope, name, scope_len);
4389 scope[scope_len] = '\0';
4c4b4cd2 4390
96d887e8 4391 return scope;
4c4b4cd2
PH
4392}
4393
96d887e8 4394/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4395
96d887e8
PH
4396static int
4397is_package_name (const char *name)
4c4b4cd2 4398{
96d887e8
PH
4399 /* Here, We take advantage of the fact that no symbols are generated
4400 for packages, while symbols are generated for each function.
4401 So the condition for NAME represent a package becomes equivalent
4402 to NAME not existing in our list of symbols. There is only one
4403 small complication with library-level functions (see below). */
4c4b4cd2 4404
96d887e8 4405 char *fun_name;
76a01679 4406
96d887e8
PH
4407 /* If it is a function that has not been defined at library level,
4408 then we should be able to look it up in the symbols. */
4409 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4410 return 0;
14f9c5c9 4411
96d887e8
PH
4412 /* Library-level function names start with "_ada_". See if function
4413 "_ada_" followed by NAME can be found. */
14f9c5c9 4414
96d887e8 4415 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4416 functions names cannot contain "__" in them. */
96d887e8
PH
4417 if (strstr (name, "__") != NULL)
4418 return 0;
4c4b4cd2 4419
b435e160 4420 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4421
96d887e8
PH
4422 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4423}
14f9c5c9 4424
96d887e8 4425/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4426 not visible from FUNCTION_NAME. */
14f9c5c9 4427
96d887e8 4428static int
aeb5907d 4429old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4430{
aeb5907d
JB
4431 char *scope;
4432
4433 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4434 return 0;
4435
4436 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4437
96d887e8 4438 make_cleanup (xfree, scope);
14f9c5c9 4439
96d887e8
PH
4440 /* If the rename has been defined in a package, then it is visible. */
4441 if (is_package_name (scope))
aeb5907d 4442 return 0;
14f9c5c9 4443
96d887e8
PH
4444 /* Check that the rename is in the current function scope by checking
4445 that its name starts with SCOPE. */
76a01679 4446
96d887e8
PH
4447 /* If the function name starts with "_ada_", it means that it is
4448 a library-level function. Strip this prefix before doing the
4449 comparison, as the encoding for the renaming does not contain
4450 this prefix. */
4451 if (strncmp (function_name, "_ada_", 5) == 0)
4452 function_name += 5;
f26caa11 4453
aeb5907d 4454 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4455}
4456
aeb5907d
JB
4457/* Remove entries from SYMS that corresponds to a renaming entity that
4458 is not visible from the function associated with CURRENT_BLOCK or
4459 that is superfluous due to the presence of more specific renaming
4460 information. Places surviving symbols in the initial entries of
4461 SYMS and returns the number of surviving symbols.
96d887e8
PH
4462
4463 Rationale:
aeb5907d
JB
4464 First, in cases where an object renaming is implemented as a
4465 reference variable, GNAT may produce both the actual reference
4466 variable and the renaming encoding. In this case, we discard the
4467 latter.
4468
4469 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4470 entity. Unfortunately, STABS currently does not support the definition
4471 of types that are local to a given lexical block, so all renamings types
4472 are emitted at library level. As a consequence, if an application
4473 contains two renaming entities using the same name, and a user tries to
4474 print the value of one of these entities, the result of the ada symbol
4475 lookup will also contain the wrong renaming type.
f26caa11 4476
96d887e8
PH
4477 This function partially covers for this limitation by attempting to
4478 remove from the SYMS list renaming symbols that should be visible
4479 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4480 method with the current information available. The implementation
4481 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4482
4483 - When the user tries to print a rename in a function while there
4484 is another rename entity defined in a package: Normally, the
4485 rename in the function has precedence over the rename in the
4486 package, so the latter should be removed from the list. This is
4487 currently not the case.
4488
4489 - This function will incorrectly remove valid renames if
4490 the CURRENT_BLOCK corresponds to a function which symbol name
4491 has been changed by an "Export" pragma. As a consequence,
4492 the user will be unable to print such rename entities. */
4c4b4cd2 4493
14f9c5c9 4494static int
aeb5907d
JB
4495remove_irrelevant_renamings (struct ada_symbol_info *syms,
4496 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4497{
4498 struct symbol *current_function;
4499 char *current_function_name;
4500 int i;
aeb5907d
JB
4501 int is_new_style_renaming;
4502
4503 /* If there is both a renaming foo___XR... encoded as a variable and
4504 a simple variable foo in the same block, discard the latter.
4505 First, zero out such symbols, then compress. */
4506 is_new_style_renaming = 0;
4507 for (i = 0; i < nsyms; i += 1)
4508 {
4509 struct symbol *sym = syms[i].sym;
4510 struct block *block = syms[i].block;
4511 const char *name;
4512 const char *suffix;
4513
4514 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4515 continue;
4516 name = SYMBOL_LINKAGE_NAME (sym);
4517 suffix = strstr (name, "___XR");
4518
4519 if (suffix != NULL)
4520 {
4521 int name_len = suffix - name;
4522 int j;
5b4ee69b 4523
aeb5907d
JB
4524 is_new_style_renaming = 1;
4525 for (j = 0; j < nsyms; j += 1)
4526 if (i != j && syms[j].sym != NULL
4527 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4528 name_len) == 0
4529 && block == syms[j].block)
4530 syms[j].sym = NULL;
4531 }
4532 }
4533 if (is_new_style_renaming)
4534 {
4535 int j, k;
4536
4537 for (j = k = 0; j < nsyms; j += 1)
4538 if (syms[j].sym != NULL)
4539 {
4540 syms[k] = syms[j];
4541 k += 1;
4542 }
4543 return k;
4544 }
4c4b4cd2
PH
4545
4546 /* Extract the function name associated to CURRENT_BLOCK.
4547 Abort if unable to do so. */
76a01679 4548
4c4b4cd2
PH
4549 if (current_block == NULL)
4550 return nsyms;
76a01679 4551
7f0df278 4552 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4553 if (current_function == NULL)
4554 return nsyms;
4555
4556 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4557 if (current_function_name == NULL)
4558 return nsyms;
4559
4560 /* Check each of the symbols, and remove it from the list if it is
4561 a type corresponding to a renaming that is out of the scope of
4562 the current block. */
4563
4564 i = 0;
4565 while (i < nsyms)
4566 {
aeb5907d
JB
4567 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4568 == ADA_OBJECT_RENAMING
4569 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4570 {
4571 int j;
5b4ee69b 4572
aeb5907d 4573 for (j = i + 1; j < nsyms; j += 1)
76a01679 4574 syms[j - 1] = syms[j];
4c4b4cd2
PH
4575 nsyms -= 1;
4576 }
4577 else
4578 i += 1;
4579 }
4580
4581 return nsyms;
4582}
4583
339c13b6
JB
4584/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4585 whose name and domain match NAME and DOMAIN respectively.
4586 If no match was found, then extend the search to "enclosing"
4587 routines (in other words, if we're inside a nested function,
4588 search the symbols defined inside the enclosing functions).
4589
4590 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4591
4592static void
4593ada_add_local_symbols (struct obstack *obstackp, const char *name,
4594 struct block *block, domain_enum domain,
4595 int wild_match)
4596{
4597 int block_depth = 0;
4598
4599 while (block != NULL)
4600 {
4601 block_depth += 1;
4602 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4603
4604 /* If we found a non-function match, assume that's the one. */
4605 if (is_nonfunction (defns_collected (obstackp, 0),
4606 num_defns_collected (obstackp)))
4607 return;
4608
4609 block = BLOCK_SUPERBLOCK (block);
4610 }
4611
4612 /* If no luck so far, try to find NAME as a local symbol in some lexically
4613 enclosing subprogram. */
4614 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4615 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4616}
4617
ccefe4c4 4618/* An object of this type is used as the user_data argument when
40658b94 4619 calling the map_matching_symbols method. */
ccefe4c4 4620
40658b94 4621struct match_data
ccefe4c4 4622{
40658b94 4623 struct objfile *objfile;
ccefe4c4 4624 struct obstack *obstackp;
40658b94
PH
4625 struct symbol *arg_sym;
4626 int found_sym;
ccefe4c4
TT
4627};
4628
40658b94
PH
4629/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4630 to a list of symbols. DATA0 is a pointer to a struct match_data *
4631 containing the obstack that collects the symbol list, the file that SYM
4632 must come from, a flag indicating whether a non-argument symbol has
4633 been found in the current block, and the last argument symbol
4634 passed in SYM within the current block (if any). When SYM is null,
4635 marking the end of a block, the argument symbol is added if no
4636 other has been found. */
ccefe4c4 4637
40658b94
PH
4638static int
4639aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4640{
40658b94
PH
4641 struct match_data *data = (struct match_data *) data0;
4642
4643 if (sym == NULL)
4644 {
4645 if (!data->found_sym && data->arg_sym != NULL)
4646 add_defn_to_vec (data->obstackp,
4647 fixup_symbol_section (data->arg_sym, data->objfile),
4648 block);
4649 data->found_sym = 0;
4650 data->arg_sym = NULL;
4651 }
4652 else
4653 {
4654 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4655 return 0;
4656 else if (SYMBOL_IS_ARGUMENT (sym))
4657 data->arg_sym = sym;
4658 else
4659 {
4660 data->found_sym = 1;
4661 add_defn_to_vec (data->obstackp,
4662 fixup_symbol_section (sym, data->objfile),
4663 block);
4664 }
4665 }
4666 return 0;
4667}
4668
4669/* Compare STRING1 to STRING2, with results as for strcmp.
4670 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4671 implies compare_names (STRING1, STRING2) (they may differ as to
4672 what symbols compare equal). */
5b4ee69b 4673
40658b94
PH
4674static int
4675compare_names (const char *string1, const char *string2)
4676{
4677 while (*string1 != '\0' && *string2 != '\0')
4678 {
4679 if (isspace (*string1) || isspace (*string2))
4680 return strcmp_iw_ordered (string1, string2);
4681 if (*string1 != *string2)
4682 break;
4683 string1 += 1;
4684 string2 += 1;
4685 }
4686 switch (*string1)
4687 {
4688 case '(':
4689 return strcmp_iw_ordered (string1, string2);
4690 case '_':
4691 if (*string2 == '\0')
4692 {
4693 if (is_name_suffix (string2))
4694 return 0;
4695 else
4696 return -1;
4697 }
4698 default:
4699 if (*string2 == '(')
4700 return strcmp_iw_ordered (string1, string2);
4701 else
4702 return *string1 - *string2;
4703 }
ccefe4c4
TT
4704}
4705
339c13b6
JB
4706/* Add to OBSTACKP all non-local symbols whose name and domain match
4707 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4708 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4709
4710static void
40658b94
PH
4711add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4712 domain_enum domain, int global,
4713 int is_wild_match)
339c13b6
JB
4714{
4715 struct objfile *objfile;
40658b94 4716 struct match_data data;
339c13b6 4717
ccefe4c4 4718 data.obstackp = obstackp;
40658b94 4719 data.arg_sym = NULL;
339c13b6 4720
ccefe4c4 4721 ALL_OBJFILES (objfile)
40658b94
PH
4722 {
4723 data.objfile = objfile;
4724
4725 if (is_wild_match)
4726 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4727 aux_add_nonlocal_symbols, &data,
4728 wild_match, NULL);
4729 else
4730 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4731 aux_add_nonlocal_symbols, &data,
4732 full_match, compare_names);
4733 }
4734
4735 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4736 {
4737 ALL_OBJFILES (objfile)
4738 {
4739 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4740 strcpy (name1, "_ada_");
4741 strcpy (name1 + sizeof ("_ada_") - 1, name);
4742 data.objfile = objfile;
4743 objfile->sf->qf->map_matching_symbols (name1, domain, objfile, global,
4744 aux_add_nonlocal_symbols, &data,
4745 full_match, compare_names);
4746 }
4747 }
339c13b6
JB
4748}
4749
4c4b4cd2
PH
4750/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4751 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4752 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4753 indicating the symbols found and the blocks and symbol tables (if
4754 any) in which they were found. This vector are transient---good only to
4755 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4756 symbol match within the nest of blocks whose innermost member is BLOCK0,
4757 is the one match returned (no other matches in that or
4758 enclosing blocks is returned). If there are any matches in or
4759 surrounding BLOCK0, then these alone are returned. Otherwise, the
4760 search extends to global and file-scope (static) symbol tables.
4761 Names prefixed with "standard__" are handled specially: "standard__"
4762 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4763
4764int
4c4b4cd2 4765ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4766 domain_enum namespace,
4767 struct ada_symbol_info **results)
14f9c5c9
AS
4768{
4769 struct symbol *sym;
14f9c5c9 4770 struct block *block;
4c4b4cd2 4771 const char *name;
4c4b4cd2 4772 int wild_match;
14f9c5c9 4773 int cacheIfUnique;
4c4b4cd2 4774 int ndefns;
14f9c5c9 4775
4c4b4cd2
PH
4776 obstack_free (&symbol_list_obstack, NULL);
4777 obstack_init (&symbol_list_obstack);
14f9c5c9 4778
14f9c5c9
AS
4779 cacheIfUnique = 0;
4780
4781 /* Search specified block and its superiors. */
4782
4c4b4cd2
PH
4783 wild_match = (strstr (name0, "__") == NULL);
4784 name = name0;
76a01679
JB
4785 block = (struct block *) block0; /* FIXME: No cast ought to be
4786 needed, but adding const will
4787 have a cascade effect. */
339c13b6
JB
4788
4789 /* Special case: If the user specifies a symbol name inside package
4790 Standard, do a non-wild matching of the symbol name without
4791 the "standard__" prefix. This was primarily introduced in order
4792 to allow the user to specifically access the standard exceptions
4793 using, for instance, Standard.Constraint_Error when Constraint_Error
4794 is ambiguous (due to the user defining its own Constraint_Error
4795 entity inside its program). */
4c4b4cd2
PH
4796 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4797 {
4798 wild_match = 0;
4799 block = NULL;
4800 name = name0 + sizeof ("standard__") - 1;
4801 }
4802
339c13b6 4803 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4804
339c13b6
JB
4805 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4806 wild_match);
4c4b4cd2 4807 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4808 goto done;
d2e4a39e 4809
339c13b6
JB
4810 /* No non-global symbols found. Check our cache to see if we have
4811 already performed this search before. If we have, then return
4812 the same result. */
4813
14f9c5c9 4814 cacheIfUnique = 1;
2570f2b7 4815 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4816 {
4817 if (sym != NULL)
2570f2b7 4818 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4819 goto done;
4820 }
14f9c5c9 4821
339c13b6
JB
4822 /* Search symbols from all global blocks. */
4823
40658b94
PH
4824 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4825 wild_match);
d2e4a39e 4826
4c4b4cd2 4827 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4828 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4829
4c4b4cd2 4830 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
4831 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4832 wild_match);
14f9c5c9 4833
4c4b4cd2
PH
4834done:
4835 ndefns = num_defns_collected (&symbol_list_obstack);
4836 *results = defns_collected (&symbol_list_obstack, 1);
4837
4838 ndefns = remove_extra_symbols (*results, ndefns);
4839
d2e4a39e 4840 if (ndefns == 0)
2570f2b7 4841 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4842
4c4b4cd2 4843 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4844 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4845
aeb5907d 4846 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4847
14f9c5c9
AS
4848 return ndefns;
4849}
4850
d2e4a39e 4851struct symbol *
aeb5907d 4852ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4853 domain_enum namespace, struct block **block_found)
14f9c5c9 4854{
4c4b4cd2 4855 struct ada_symbol_info *candidates;
14f9c5c9
AS
4856 int n_candidates;
4857
aeb5907d 4858 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4859
4860 if (n_candidates == 0)
4861 return NULL;
4c4b4cd2 4862
aeb5907d
JB
4863 if (block_found != NULL)
4864 *block_found = candidates[0].block;
4c4b4cd2 4865
21b556f4 4866 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4867}
4868
4869/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4870 scope and in global scopes, or NULL if none. NAME is folded and
4871 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4872 choosing the first symbol if there are multiple choices.
4873 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4874 table in which the symbol was found (in both cases, these
4875 assignments occur only if the pointers are non-null). */
4876struct symbol *
4877ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4878 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4879{
4880 if (is_a_field_of_this != NULL)
4881 *is_a_field_of_this = 0;
4882
4883 return
4884 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4885 block0, namespace, NULL);
4c4b4cd2 4886}
14f9c5c9 4887
4c4b4cd2
PH
4888static struct symbol *
4889ada_lookup_symbol_nonlocal (const char *name,
76a01679 4890 const struct block *block,
21b556f4 4891 const domain_enum domain)
4c4b4cd2 4892{
94af9270 4893 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4894}
4895
4896
4c4b4cd2
PH
4897/* True iff STR is a possible encoded suffix of a normal Ada name
4898 that is to be ignored for matching purposes. Suffixes of parallel
4899 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4900 are given by any of the regular expressions:
4c4b4cd2 4901
babe1480
JB
4902 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4903 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4904 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4905 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4906
4907 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4908 match is performed. This sequence is used to differentiate homonyms,
4909 is an optional part of a valid name suffix. */
4c4b4cd2 4910
14f9c5c9 4911static int
d2e4a39e 4912is_name_suffix (const char *str)
14f9c5c9
AS
4913{
4914 int k;
4c4b4cd2
PH
4915 const char *matching;
4916 const int len = strlen (str);
4917
babe1480
JB
4918 /* Skip optional leading __[0-9]+. */
4919
4c4b4cd2
PH
4920 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4921 {
babe1480
JB
4922 str += 3;
4923 while (isdigit (str[0]))
4924 str += 1;
4c4b4cd2 4925 }
babe1480
JB
4926
4927 /* [.$][0-9]+ */
4c4b4cd2 4928
babe1480 4929 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4930 {
babe1480 4931 matching = str + 1;
4c4b4cd2
PH
4932 while (isdigit (matching[0]))
4933 matching += 1;
4934 if (matching[0] == '\0')
4935 return 1;
4936 }
4937
4938 /* ___[0-9]+ */
babe1480 4939
4c4b4cd2
PH
4940 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4941 {
4942 matching = str + 3;
4943 while (isdigit (matching[0]))
4944 matching += 1;
4945 if (matching[0] == '\0')
4946 return 1;
4947 }
4948
529cad9c
PH
4949#if 0
4950 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4951 with a N at the end. Unfortunately, the compiler uses the same
4952 convention for other internal types it creates. So treating
4953 all entity names that end with an "N" as a name suffix causes
4954 some regressions. For instance, consider the case of an enumerated
4955 type. To support the 'Image attribute, it creates an array whose
4956 name ends with N.
4957 Having a single character like this as a suffix carrying some
4958 information is a bit risky. Perhaps we should change the encoding
4959 to be something like "_N" instead. In the meantime, do not do
4960 the following check. */
4961 /* Protected Object Subprograms */
4962 if (len == 1 && str [0] == 'N')
4963 return 1;
4964#endif
4965
4966 /* _E[0-9]+[bs]$ */
4967 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4968 {
4969 matching = str + 3;
4970 while (isdigit (matching[0]))
4971 matching += 1;
4972 if ((matching[0] == 'b' || matching[0] == 's')
4973 && matching [1] == '\0')
4974 return 1;
4975 }
4976
4c4b4cd2
PH
4977 /* ??? We should not modify STR directly, as we are doing below. This
4978 is fine in this case, but may become problematic later if we find
4979 that this alternative did not work, and want to try matching
4980 another one from the begining of STR. Since we modified it, we
4981 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4982 if (str[0] == 'X')
4983 {
4984 str += 1;
d2e4a39e 4985 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4986 {
4987 if (str[0] != 'n' && str[0] != 'b')
4988 return 0;
4989 str += 1;
4990 }
14f9c5c9 4991 }
babe1480 4992
14f9c5c9
AS
4993 if (str[0] == '\000')
4994 return 1;
babe1480 4995
d2e4a39e 4996 if (str[0] == '_')
14f9c5c9
AS
4997 {
4998 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4999 return 0;
d2e4a39e 5000 if (str[2] == '_')
4c4b4cd2 5001 {
61ee279c
PH
5002 if (strcmp (str + 3, "JM") == 0)
5003 return 1;
5004 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5005 the LJM suffix in favor of the JM one. But we will
5006 still accept LJM as a valid suffix for a reasonable
5007 amount of time, just to allow ourselves to debug programs
5008 compiled using an older version of GNAT. */
4c4b4cd2
PH
5009 if (strcmp (str + 3, "LJM") == 0)
5010 return 1;
5011 if (str[3] != 'X')
5012 return 0;
1265e4aa
JB
5013 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5014 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5015 return 1;
5016 if (str[4] == 'R' && str[5] != 'T')
5017 return 1;
5018 return 0;
5019 }
5020 if (!isdigit (str[2]))
5021 return 0;
5022 for (k = 3; str[k] != '\0'; k += 1)
5023 if (!isdigit (str[k]) && str[k] != '_')
5024 return 0;
14f9c5c9
AS
5025 return 1;
5026 }
4c4b4cd2 5027 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5028 {
4c4b4cd2
PH
5029 for (k = 2; str[k] != '\0'; k += 1)
5030 if (!isdigit (str[k]) && str[k] != '_')
5031 return 0;
14f9c5c9
AS
5032 return 1;
5033 }
5034 return 0;
5035}
d2e4a39e 5036
aeb5907d
JB
5037/* Return non-zero if the string starting at NAME and ending before
5038 NAME_END contains no capital letters. */
529cad9c
PH
5039
5040static int
5041is_valid_name_for_wild_match (const char *name0)
5042{
5043 const char *decoded_name = ada_decode (name0);
5044 int i;
5045
5823c3ef
JB
5046 /* If the decoded name starts with an angle bracket, it means that
5047 NAME0 does not follow the GNAT encoding format. It should then
5048 not be allowed as a possible wild match. */
5049 if (decoded_name[0] == '<')
5050 return 0;
5051
529cad9c
PH
5052 for (i=0; decoded_name[i] != '\0'; i++)
5053 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5054 return 0;
5055
5056 return 1;
5057}
5058
73589123
PH
5059/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5060 that could start a simple name. Assumes that *NAMEP points into
5061 the string beginning at NAME0. */
4c4b4cd2 5062
14f9c5c9 5063static int
73589123 5064advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5065{
73589123 5066 const char *name = *namep;
5b4ee69b 5067
5823c3ef 5068 while (1)
14f9c5c9 5069 {
aa27d0b3 5070 int t0, t1;
73589123
PH
5071
5072 t0 = *name;
5073 if (t0 == '_')
5074 {
5075 t1 = name[1];
5076 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5077 {
5078 name += 1;
5079 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5080 break;
5081 else
5082 name += 1;
5083 }
aa27d0b3
JB
5084 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5085 || name[2] == target0))
73589123
PH
5086 {
5087 name += 2;
5088 break;
5089 }
5090 else
5091 return 0;
5092 }
5093 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5094 name += 1;
5095 else
5823c3ef 5096 return 0;
73589123
PH
5097 }
5098
5099 *namep = name;
5100 return 1;
5101}
5102
5103/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5104 informational suffixes of NAME (i.e., for which is_name_suffix is
5105 true). Assumes that PATN is a lower-cased Ada simple name. */
5106
5107static int
5108wild_match (const char *name, const char *patn)
5109{
5110 const char *p, *n;
5111 const char *name0 = name;
5112
5113 while (1)
5114 {
5115 const char *match = name;
5116
5117 if (*name == *patn)
5118 {
5119 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5120 if (*p != *name)
5121 break;
5122 if (*p == '\0' && is_name_suffix (name))
5123 return match != name0 && !is_valid_name_for_wild_match (name0);
5124
5125 if (name[-1] == '_')
5126 name -= 1;
5127 }
5128 if (!advance_wild_match (&name, name0, *patn))
5129 return 1;
96d887e8 5130 }
96d887e8
PH
5131}
5132
40658b94
PH
5133/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5134 informational suffix. */
5135
c4d840bd
PH
5136static int
5137full_match (const char *sym_name, const char *search_name)
5138{
40658b94 5139 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5140}
5141
5142
96d887e8
PH
5143/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5144 vector *defn_symbols, updating the list of symbols in OBSTACKP
5145 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5146 OBJFILE is the section containing BLOCK.
5147 SYMTAB is recorded with each symbol added. */
5148
5149static void
5150ada_add_block_symbols (struct obstack *obstackp,
76a01679 5151 struct block *block, const char *name,
96d887e8 5152 domain_enum domain, struct objfile *objfile,
2570f2b7 5153 int wild)
96d887e8
PH
5154{
5155 struct dict_iterator iter;
5156 int name_len = strlen (name);
5157 /* A matching argument symbol, if any. */
5158 struct symbol *arg_sym;
5159 /* Set true when we find a matching non-argument symbol. */
5160 int found_sym;
5161 struct symbol *sym;
5162
5163 arg_sym = NULL;
5164 found_sym = 0;
5165 if (wild)
5166 {
c4d840bd
PH
5167 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5168 wild_match, &iter);
5169 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5170 {
5eeb2539
AR
5171 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5172 SYMBOL_DOMAIN (sym), domain)
73589123 5173 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5174 {
2a2d4dc3
AS
5175 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5176 continue;
5177 else if (SYMBOL_IS_ARGUMENT (sym))
5178 arg_sym = sym;
5179 else
5180 {
76a01679
JB
5181 found_sym = 1;
5182 add_defn_to_vec (obstackp,
5183 fixup_symbol_section (sym, objfile),
2570f2b7 5184 block);
76a01679
JB
5185 }
5186 }
5187 }
96d887e8
PH
5188 }
5189 else
5190 {
c4d840bd 5191 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5192 full_match, &iter);
c4d840bd 5193 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5194 {
5eeb2539
AR
5195 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5196 SYMBOL_DOMAIN (sym), domain))
76a01679 5197 {
c4d840bd
PH
5198 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5199 {
5200 if (SYMBOL_IS_ARGUMENT (sym))
5201 arg_sym = sym;
5202 else
2a2d4dc3 5203 {
c4d840bd
PH
5204 found_sym = 1;
5205 add_defn_to_vec (obstackp,
5206 fixup_symbol_section (sym, objfile),
5207 block);
2a2d4dc3 5208 }
c4d840bd 5209 }
76a01679
JB
5210 }
5211 }
96d887e8
PH
5212 }
5213
5214 if (!found_sym && arg_sym != NULL)
5215 {
76a01679
JB
5216 add_defn_to_vec (obstackp,
5217 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5218 block);
96d887e8
PH
5219 }
5220
5221 if (!wild)
5222 {
5223 arg_sym = NULL;
5224 found_sym = 0;
5225
5226 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5227 {
5eeb2539
AR
5228 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5229 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5230 {
5231 int cmp;
5232
5233 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5234 if (cmp == 0)
5235 {
5236 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5237 if (cmp == 0)
5238 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5239 name_len);
5240 }
5241
5242 if (cmp == 0
5243 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5244 {
2a2d4dc3
AS
5245 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5246 {
5247 if (SYMBOL_IS_ARGUMENT (sym))
5248 arg_sym = sym;
5249 else
5250 {
5251 found_sym = 1;
5252 add_defn_to_vec (obstackp,
5253 fixup_symbol_section (sym, objfile),
5254 block);
5255 }
5256 }
76a01679
JB
5257 }
5258 }
76a01679 5259 }
96d887e8
PH
5260
5261 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5262 They aren't parameters, right? */
5263 if (!found_sym && arg_sym != NULL)
5264 {
5265 add_defn_to_vec (obstackp,
76a01679 5266 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5267 block);
96d887e8
PH
5268 }
5269 }
5270}
5271\f
41d27058
JB
5272
5273 /* Symbol Completion */
5274
5275/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5276 name in a form that's appropriate for the completion. The result
5277 does not need to be deallocated, but is only good until the next call.
5278
5279 TEXT_LEN is equal to the length of TEXT.
5280 Perform a wild match if WILD_MATCH is set.
5281 ENCODED should be set if TEXT represents the start of a symbol name
5282 in its encoded form. */
5283
5284static const char *
5285symbol_completion_match (const char *sym_name,
5286 const char *text, int text_len,
5287 int wild_match, int encoded)
5288{
41d27058
JB
5289 const int verbatim_match = (text[0] == '<');
5290 int match = 0;
5291
5292 if (verbatim_match)
5293 {
5294 /* Strip the leading angle bracket. */
5295 text = text + 1;
5296 text_len--;
5297 }
5298
5299 /* First, test against the fully qualified name of the symbol. */
5300
5301 if (strncmp (sym_name, text, text_len) == 0)
5302 match = 1;
5303
5304 if (match && !encoded)
5305 {
5306 /* One needed check before declaring a positive match is to verify
5307 that iff we are doing a verbatim match, the decoded version
5308 of the symbol name starts with '<'. Otherwise, this symbol name
5309 is not a suitable completion. */
5310 const char *sym_name_copy = sym_name;
5311 int has_angle_bracket;
5312
5313 sym_name = ada_decode (sym_name);
5314 has_angle_bracket = (sym_name[0] == '<');
5315 match = (has_angle_bracket == verbatim_match);
5316 sym_name = sym_name_copy;
5317 }
5318
5319 if (match && !verbatim_match)
5320 {
5321 /* When doing non-verbatim match, another check that needs to
5322 be done is to verify that the potentially matching symbol name
5323 does not include capital letters, because the ada-mode would
5324 not be able to understand these symbol names without the
5325 angle bracket notation. */
5326 const char *tmp;
5327
5328 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5329 if (*tmp != '\0')
5330 match = 0;
5331 }
5332
5333 /* Second: Try wild matching... */
5334
5335 if (!match && wild_match)
5336 {
5337 /* Since we are doing wild matching, this means that TEXT
5338 may represent an unqualified symbol name. We therefore must
5339 also compare TEXT against the unqualified name of the symbol. */
5340 sym_name = ada_unqualified_name (ada_decode (sym_name));
5341
5342 if (strncmp (sym_name, text, text_len) == 0)
5343 match = 1;
5344 }
5345
5346 /* Finally: If we found a mach, prepare the result to return. */
5347
5348 if (!match)
5349 return NULL;
5350
5351 if (verbatim_match)
5352 sym_name = add_angle_brackets (sym_name);
5353
5354 if (!encoded)
5355 sym_name = ada_decode (sym_name);
5356
5357 return sym_name;
5358}
5359
2ba95b9b
JB
5360DEF_VEC_P (char_ptr);
5361
41d27058
JB
5362/* A companion function to ada_make_symbol_completion_list().
5363 Check if SYM_NAME represents a symbol which name would be suitable
5364 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5365 it is appended at the end of the given string vector SV.
5366
5367 ORIG_TEXT is the string original string from the user command
5368 that needs to be completed. WORD is the entire command on which
5369 completion should be performed. These two parameters are used to
5370 determine which part of the symbol name should be added to the
5371 completion vector.
5372 if WILD_MATCH is set, then wild matching is performed.
5373 ENCODED should be set if TEXT represents a symbol name in its
5374 encoded formed (in which case the completion should also be
5375 encoded). */
5376
5377static void
d6565258 5378symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5379 const char *sym_name,
5380 const char *text, int text_len,
5381 const char *orig_text, const char *word,
5382 int wild_match, int encoded)
5383{
5384 const char *match = symbol_completion_match (sym_name, text, text_len,
5385 wild_match, encoded);
5386 char *completion;
5387
5388 if (match == NULL)
5389 return;
5390
5391 /* We found a match, so add the appropriate completion to the given
5392 string vector. */
5393
5394 if (word == orig_text)
5395 {
5396 completion = xmalloc (strlen (match) + 5);
5397 strcpy (completion, match);
5398 }
5399 else if (word > orig_text)
5400 {
5401 /* Return some portion of sym_name. */
5402 completion = xmalloc (strlen (match) + 5);
5403 strcpy (completion, match + (word - orig_text));
5404 }
5405 else
5406 {
5407 /* Return some of ORIG_TEXT plus sym_name. */
5408 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5409 strncpy (completion, word, orig_text - word);
5410 completion[orig_text - word] = '\0';
5411 strcat (completion, match);
5412 }
5413
d6565258 5414 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5415}
5416
ccefe4c4
TT
5417/* An object of this type is passed as the user_data argument to the
5418 map_partial_symbol_names method. */
5419struct add_partial_datum
5420{
5421 VEC(char_ptr) **completions;
5422 char *text;
5423 int text_len;
5424 char *text0;
5425 char *word;
5426 int wild_match;
5427 int encoded;
5428};
5429
5430/* A callback for map_partial_symbol_names. */
5431static void
5432ada_add_partial_symbol_completions (const char *name, void *user_data)
5433{
5434 struct add_partial_datum *data = user_data;
5b4ee69b 5435
ccefe4c4
TT
5436 symbol_completion_add (data->completions, name,
5437 data->text, data->text_len, data->text0, data->word,
5438 data->wild_match, data->encoded);
5439}
5440
41d27058
JB
5441/* Return a list of possible symbol names completing TEXT0. The list
5442 is NULL terminated. WORD is the entire command on which completion
5443 is made. */
5444
5445static char **
5446ada_make_symbol_completion_list (char *text0, char *word)
5447{
5448 char *text;
5449 int text_len;
5450 int wild_match;
5451 int encoded;
2ba95b9b 5452 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5453 struct symbol *sym;
5454 struct symtab *s;
41d27058
JB
5455 struct minimal_symbol *msymbol;
5456 struct objfile *objfile;
5457 struct block *b, *surrounding_static_block = 0;
5458 int i;
5459 struct dict_iterator iter;
5460
5461 if (text0[0] == '<')
5462 {
5463 text = xstrdup (text0);
5464 make_cleanup (xfree, text);
5465 text_len = strlen (text);
5466 wild_match = 0;
5467 encoded = 1;
5468 }
5469 else
5470 {
5471 text = xstrdup (ada_encode (text0));
5472 make_cleanup (xfree, text);
5473 text_len = strlen (text);
5474 for (i = 0; i < text_len; i++)
5475 text[i] = tolower (text[i]);
5476
5477 encoded = (strstr (text0, "__") != NULL);
5478 /* If the name contains a ".", then the user is entering a fully
5479 qualified entity name, and the match must not be done in wild
5480 mode. Similarly, if the user wants to complete what looks like
5481 an encoded name, the match must not be done in wild mode. */
5482 wild_match = (strchr (text0, '.') == NULL && !encoded);
5483 }
5484
5485 /* First, look at the partial symtab symbols. */
41d27058 5486 {
ccefe4c4
TT
5487 struct add_partial_datum data;
5488
5489 data.completions = &completions;
5490 data.text = text;
5491 data.text_len = text_len;
5492 data.text0 = text0;
5493 data.word = word;
5494 data.wild_match = wild_match;
5495 data.encoded = encoded;
5496 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
41d27058
JB
5497 }
5498
5499 /* At this point scan through the misc symbol vectors and add each
5500 symbol you find to the list. Eventually we want to ignore
5501 anything that isn't a text symbol (everything else will be
5502 handled by the psymtab code above). */
5503
5504 ALL_MSYMBOLS (objfile, msymbol)
5505 {
5506 QUIT;
d6565258 5507 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5508 text, text_len, text0, word, wild_match, encoded);
5509 }
5510
5511 /* Search upwards from currently selected frame (so that we can
5512 complete on local vars. */
5513
5514 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5515 {
5516 if (!BLOCK_SUPERBLOCK (b))
5517 surrounding_static_block = b; /* For elmin of dups */
5518
5519 ALL_BLOCK_SYMBOLS (b, iter, sym)
5520 {
d6565258 5521 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5522 text, text_len, text0, word,
5523 wild_match, encoded);
5524 }
5525 }
5526
5527 /* Go through the symtabs and check the externs and statics for
5528 symbols which match. */
5529
5530 ALL_SYMTABS (objfile, s)
5531 {
5532 QUIT;
5533 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5534 ALL_BLOCK_SYMBOLS (b, iter, sym)
5535 {
d6565258 5536 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5537 text, text_len, text0, word,
5538 wild_match, encoded);
5539 }
5540 }
5541
5542 ALL_SYMTABS (objfile, s)
5543 {
5544 QUIT;
5545 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5546 /* Don't do this block twice. */
5547 if (b == surrounding_static_block)
5548 continue;
5549 ALL_BLOCK_SYMBOLS (b, iter, sym)
5550 {
d6565258 5551 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5552 text, text_len, text0, word,
5553 wild_match, encoded);
5554 }
5555 }
5556
5557 /* Append the closing NULL entry. */
2ba95b9b 5558 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5559
2ba95b9b
JB
5560 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5561 return the copy. It's unfortunate that we have to make a copy
5562 of an array that we're about to destroy, but there is nothing much
5563 we can do about it. Fortunately, it's typically not a very large
5564 array. */
5565 {
5566 const size_t completions_size =
5567 VEC_length (char_ptr, completions) * sizeof (char *);
5568 char **result = malloc (completions_size);
5569
5570 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5571
5572 VEC_free (char_ptr, completions);
5573 return result;
5574 }
41d27058
JB
5575}
5576
963a6417 5577 /* Field Access */
96d887e8 5578
73fb9985
JB
5579/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5580 for tagged types. */
5581
5582static int
5583ada_is_dispatch_table_ptr_type (struct type *type)
5584{
5585 char *name;
5586
5587 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5588 return 0;
5589
5590 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5591 if (name == NULL)
5592 return 0;
5593
5594 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5595}
5596
963a6417
PH
5597/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5598 to be invisible to users. */
96d887e8 5599
963a6417
PH
5600int
5601ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5602{
963a6417
PH
5603 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5604 return 1;
73fb9985
JB
5605
5606 /* Check the name of that field. */
5607 {
5608 const char *name = TYPE_FIELD_NAME (type, field_num);
5609
5610 /* Anonymous field names should not be printed.
5611 brobecker/2007-02-20: I don't think this can actually happen
5612 but we don't want to print the value of annonymous fields anyway. */
5613 if (name == NULL)
5614 return 1;
5615
5616 /* A field named "_parent" is internally generated by GNAT for
5617 tagged types, and should not be printed either. */
5618 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5619 return 1;
5620 }
5621
5622 /* If this is the dispatch table of a tagged type, then ignore. */
5623 if (ada_is_tagged_type (type, 1)
5624 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5625 return 1;
5626
5627 /* Not a special field, so it should not be ignored. */
5628 return 0;
963a6417 5629}
96d887e8 5630
963a6417
PH
5631/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5632 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5633
963a6417
PH
5634int
5635ada_is_tagged_type (struct type *type, int refok)
5636{
5637 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5638}
96d887e8 5639
963a6417 5640/* True iff TYPE represents the type of X'Tag */
96d887e8 5641
963a6417
PH
5642int
5643ada_is_tag_type (struct type *type)
5644{
5645 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5646 return 0;
5647 else
96d887e8 5648 {
963a6417 5649 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5650
963a6417
PH
5651 return (name != NULL
5652 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5653 }
96d887e8
PH
5654}
5655
963a6417 5656/* The type of the tag on VAL. */
76a01679 5657
963a6417
PH
5658struct type *
5659ada_tag_type (struct value *val)
96d887e8 5660{
df407dfe 5661 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5662}
96d887e8 5663
963a6417 5664/* The value of the tag on VAL. */
96d887e8 5665
963a6417
PH
5666struct value *
5667ada_value_tag (struct value *val)
5668{
03ee6b2e 5669 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5670}
5671
963a6417
PH
5672/* The value of the tag on the object of type TYPE whose contents are
5673 saved at VALADDR, if it is non-null, or is at memory address
5674 ADDRESS. */
96d887e8 5675
963a6417 5676static struct value *
10a2c479 5677value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5678 const gdb_byte *valaddr,
963a6417 5679 CORE_ADDR address)
96d887e8 5680{
b5385fc0 5681 int tag_byte_offset;
963a6417 5682 struct type *tag_type;
5b4ee69b 5683
963a6417 5684 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5685 NULL, NULL, NULL))
96d887e8 5686 {
fc1a4b47 5687 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5688 ? NULL
5689 : valaddr + tag_byte_offset);
963a6417 5690 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5691
963a6417 5692 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5693 }
963a6417
PH
5694 return NULL;
5695}
96d887e8 5696
963a6417
PH
5697static struct type *
5698type_from_tag (struct value *tag)
5699{
5700 const char *type_name = ada_tag_name (tag);
5b4ee69b 5701
963a6417
PH
5702 if (type_name != NULL)
5703 return ada_find_any_type (ada_encode (type_name));
5704 return NULL;
5705}
96d887e8 5706
963a6417
PH
5707struct tag_args
5708{
5709 struct value *tag;
5710 char *name;
5711};
4c4b4cd2 5712
529cad9c
PH
5713
5714static int ada_tag_name_1 (void *);
5715static int ada_tag_name_2 (struct tag_args *);
5716
4c4b4cd2
PH
5717/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5718 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5719 The value stored in ARGS->name is valid until the next call to
5720 ada_tag_name_1. */
5721
5722static int
5723ada_tag_name_1 (void *args0)
5724{
5725 struct tag_args *args = (struct tag_args *) args0;
5726 static char name[1024];
76a01679 5727 char *p;
4c4b4cd2 5728 struct value *val;
5b4ee69b 5729
4c4b4cd2 5730 args->name = NULL;
03ee6b2e 5731 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5732 if (val == NULL)
5733 return ada_tag_name_2 (args);
03ee6b2e 5734 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5735 if (val == NULL)
5736 return 0;
5737 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5738 for (p = name; *p != '\0'; p += 1)
5739 if (isalpha (*p))
5740 *p = tolower (*p);
5741 args->name = name;
5742 return 0;
5743}
5744
e802dbe0
JB
5745/* Return the "ada__tags__type_specific_data" type. */
5746
5747static struct type *
5748ada_get_tsd_type (struct inferior *inf)
5749{
5750 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5751
5752 if (data->tsd_type == 0)
5753 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5754 return data->tsd_type;
5755}
5756
529cad9c
PH
5757/* Utility function for ada_tag_name_1 that tries the second
5758 representation for the dispatch table (in which there is no
5759 explicit 'tsd' field in the referent of the tag pointer, and instead
5760 the tsd pointer is stored just before the dispatch table. */
5761
5762static int
5763ada_tag_name_2 (struct tag_args *args)
5764{
5765 struct type *info_type;
5766 static char name[1024];
5767 char *p;
5768 struct value *val, *valp;
5769
5770 args->name = NULL;
e802dbe0 5771 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
5772 if (info_type == NULL)
5773 return 0;
5774 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5775 valp = value_cast (info_type, args->tag);
5776 if (valp == NULL)
5777 return 0;
2497b498 5778 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5779 if (val == NULL)
5780 return 0;
03ee6b2e 5781 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5782 if (val == NULL)
5783 return 0;
5784 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5785 for (p = name; *p != '\0'; p += 1)
5786 if (isalpha (*p))
5787 *p = tolower (*p);
5788 args->name = name;
5789 return 0;
5790}
5791
5792/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 5793 a C string. */
4c4b4cd2
PH
5794
5795const char *
5796ada_tag_name (struct value *tag)
5797{
5798 struct tag_args args;
5b4ee69b 5799
df407dfe 5800 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5801 return NULL;
76a01679 5802 args.tag = tag;
4c4b4cd2
PH
5803 args.name = NULL;
5804 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5805 return args.name;
5806}
5807
5808/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5809
d2e4a39e 5810struct type *
ebf56fd3 5811ada_parent_type (struct type *type)
14f9c5c9
AS
5812{
5813 int i;
5814
61ee279c 5815 type = ada_check_typedef (type);
14f9c5c9
AS
5816
5817 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5818 return NULL;
5819
5820 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5821 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5822 {
5823 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5824
5825 /* If the _parent field is a pointer, then dereference it. */
5826 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5827 parent_type = TYPE_TARGET_TYPE (parent_type);
5828 /* If there is a parallel XVS type, get the actual base type. */
5829 parent_type = ada_get_base_type (parent_type);
5830
5831 return ada_check_typedef (parent_type);
5832 }
14f9c5c9
AS
5833
5834 return NULL;
5835}
5836
4c4b4cd2
PH
5837/* True iff field number FIELD_NUM of structure type TYPE contains the
5838 parent-type (inherited) fields of a derived type. Assumes TYPE is
5839 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5840
5841int
ebf56fd3 5842ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5843{
61ee279c 5844 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 5845
4c4b4cd2
PH
5846 return (name != NULL
5847 && (strncmp (name, "PARENT", 6) == 0
5848 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5849}
5850
4c4b4cd2 5851/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5852 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5853 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5854 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5855 structures. */
14f9c5c9
AS
5856
5857int
ebf56fd3 5858ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5859{
d2e4a39e 5860 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5861
d2e4a39e 5862 return (name != NULL
4c4b4cd2
PH
5863 && (strncmp (name, "PARENT", 6) == 0
5864 || strcmp (name, "REP") == 0
5865 || strncmp (name, "_parent", 7) == 0
5866 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5867}
5868
4c4b4cd2
PH
5869/* True iff field number FIELD_NUM of structure or union type TYPE
5870 is a variant wrapper. Assumes TYPE is a structure type with at least
5871 FIELD_NUM+1 fields. */
14f9c5c9
AS
5872
5873int
ebf56fd3 5874ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5875{
d2e4a39e 5876 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 5877
14f9c5c9 5878 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5879 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5880 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5881 == TYPE_CODE_UNION)));
14f9c5c9
AS
5882}
5883
5884/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5885 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5886 returns the type of the controlling discriminant for the variant.
5887 May return NULL if the type could not be found. */
14f9c5c9 5888
d2e4a39e 5889struct type *
ebf56fd3 5890ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5891{
d2e4a39e 5892 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 5893
7c964f07 5894 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5895}
5896
4c4b4cd2 5897/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5898 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5899 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5900
5901int
ebf56fd3 5902ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5903{
d2e4a39e 5904 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5905
14f9c5c9
AS
5906 return (name != NULL && name[0] == 'O');
5907}
5908
5909/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5910 returns the name of the discriminant controlling the variant.
5911 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5912
d2e4a39e 5913char *
ebf56fd3 5914ada_variant_discrim_name (struct type *type0)
14f9c5c9 5915{
d2e4a39e 5916 static char *result = NULL;
14f9c5c9 5917 static size_t result_len = 0;
d2e4a39e
AS
5918 struct type *type;
5919 const char *name;
5920 const char *discrim_end;
5921 const char *discrim_start;
14f9c5c9
AS
5922
5923 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5924 type = TYPE_TARGET_TYPE (type0);
5925 else
5926 type = type0;
5927
5928 name = ada_type_name (type);
5929
5930 if (name == NULL || name[0] == '\000')
5931 return "";
5932
5933 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5934 discrim_end -= 1)
5935 {
4c4b4cd2
PH
5936 if (strncmp (discrim_end, "___XVN", 6) == 0)
5937 break;
14f9c5c9
AS
5938 }
5939 if (discrim_end == name)
5940 return "";
5941
d2e4a39e 5942 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5943 discrim_start -= 1)
5944 {
d2e4a39e 5945 if (discrim_start == name + 1)
4c4b4cd2 5946 return "";
76a01679 5947 if ((discrim_start > name + 3
4c4b4cd2
PH
5948 && strncmp (discrim_start - 3, "___", 3) == 0)
5949 || discrim_start[-1] == '.')
5950 break;
14f9c5c9
AS
5951 }
5952
5953 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5954 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5955 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5956 return result;
5957}
5958
4c4b4cd2
PH
5959/* Scan STR for a subtype-encoded number, beginning at position K.
5960 Put the position of the character just past the number scanned in
5961 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5962 Return 1 if there was a valid number at the given position, and 0
5963 otherwise. A "subtype-encoded" number consists of the absolute value
5964 in decimal, followed by the letter 'm' to indicate a negative number.
5965 Assumes 0m does not occur. */
14f9c5c9
AS
5966
5967int
d2e4a39e 5968ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5969{
5970 ULONGEST RU;
5971
d2e4a39e 5972 if (!isdigit (str[k]))
14f9c5c9
AS
5973 return 0;
5974
4c4b4cd2 5975 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5976 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5977 LONGEST. */
14f9c5c9
AS
5978 RU = 0;
5979 while (isdigit (str[k]))
5980 {
d2e4a39e 5981 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5982 k += 1;
5983 }
5984
d2e4a39e 5985 if (str[k] == 'm')
14f9c5c9
AS
5986 {
5987 if (R != NULL)
4c4b4cd2 5988 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5989 k += 1;
5990 }
5991 else if (R != NULL)
5992 *R = (LONGEST) RU;
5993
4c4b4cd2 5994 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5995 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5996 number representable as a LONGEST (although either would probably work
5997 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5998 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5999
6000 if (new_k != NULL)
6001 *new_k = k;
6002 return 1;
6003}
6004
4c4b4cd2
PH
6005/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6006 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6007 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6008
d2e4a39e 6009int
ebf56fd3 6010ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6011{
d2e4a39e 6012 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6013 int p;
6014
6015 p = 0;
6016 while (1)
6017 {
d2e4a39e 6018 switch (name[p])
4c4b4cd2
PH
6019 {
6020 case '\0':
6021 return 0;
6022 case 'S':
6023 {
6024 LONGEST W;
5b4ee69b 6025
4c4b4cd2
PH
6026 if (!ada_scan_number (name, p + 1, &W, &p))
6027 return 0;
6028 if (val == W)
6029 return 1;
6030 break;
6031 }
6032 case 'R':
6033 {
6034 LONGEST L, U;
5b4ee69b 6035
4c4b4cd2
PH
6036 if (!ada_scan_number (name, p + 1, &L, &p)
6037 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6038 return 0;
6039 if (val >= L && val <= U)
6040 return 1;
6041 break;
6042 }
6043 case 'O':
6044 return 1;
6045 default:
6046 return 0;
6047 }
6048 }
6049}
6050
6051/* FIXME: Lots of redundancy below. Try to consolidate. */
6052
6053/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6054 ARG_TYPE, extract and return the value of one of its (non-static)
6055 fields. FIELDNO says which field. Differs from value_primitive_field
6056 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6057
4c4b4cd2 6058static struct value *
d2e4a39e 6059ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6060 struct type *arg_type)
14f9c5c9 6061{
14f9c5c9
AS
6062 struct type *type;
6063
61ee279c 6064 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6065 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6066
4c4b4cd2 6067 /* Handle packed fields. */
14f9c5c9
AS
6068
6069 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6070 {
6071 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6072 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6073
0fd88904 6074 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6075 offset + bit_pos / 8,
6076 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6077 }
6078 else
6079 return value_primitive_field (arg1, offset, fieldno, arg_type);
6080}
6081
52ce6436
PH
6082/* Find field with name NAME in object of type TYPE. If found,
6083 set the following for each argument that is non-null:
6084 - *FIELD_TYPE_P to the field's type;
6085 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6086 an object of that type;
6087 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6088 - *BIT_SIZE_P to its size in bits if the field is packed, and
6089 0 otherwise;
6090 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6091 fields up to but not including the desired field, or by the total
6092 number of fields if not found. A NULL value of NAME never
6093 matches; the function just counts visible fields in this case.
6094
6095 Returns 1 if found, 0 otherwise. */
6096
4c4b4cd2 6097static int
76a01679
JB
6098find_struct_field (char *name, struct type *type, int offset,
6099 struct type **field_type_p,
52ce6436
PH
6100 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6101 int *index_p)
4c4b4cd2
PH
6102{
6103 int i;
6104
61ee279c 6105 type = ada_check_typedef (type);
76a01679 6106
52ce6436
PH
6107 if (field_type_p != NULL)
6108 *field_type_p = NULL;
6109 if (byte_offset_p != NULL)
d5d6fca5 6110 *byte_offset_p = 0;
52ce6436
PH
6111 if (bit_offset_p != NULL)
6112 *bit_offset_p = 0;
6113 if (bit_size_p != NULL)
6114 *bit_size_p = 0;
6115
6116 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6117 {
6118 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6119 int fld_offset = offset + bit_pos / 8;
6120 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6121
4c4b4cd2
PH
6122 if (t_field_name == NULL)
6123 continue;
6124
52ce6436 6125 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6126 {
6127 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6128
52ce6436
PH
6129 if (field_type_p != NULL)
6130 *field_type_p = TYPE_FIELD_TYPE (type, i);
6131 if (byte_offset_p != NULL)
6132 *byte_offset_p = fld_offset;
6133 if (bit_offset_p != NULL)
6134 *bit_offset_p = bit_pos % 8;
6135 if (bit_size_p != NULL)
6136 *bit_size_p = bit_size;
76a01679
JB
6137 return 1;
6138 }
4c4b4cd2
PH
6139 else if (ada_is_wrapper_field (type, i))
6140 {
52ce6436
PH
6141 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6142 field_type_p, byte_offset_p, bit_offset_p,
6143 bit_size_p, index_p))
76a01679
JB
6144 return 1;
6145 }
4c4b4cd2
PH
6146 else if (ada_is_variant_part (type, i))
6147 {
52ce6436
PH
6148 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6149 fixed type?? */
4c4b4cd2 6150 int j;
52ce6436
PH
6151 struct type *field_type
6152 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6153
52ce6436 6154 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6155 {
76a01679
JB
6156 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6157 fld_offset
6158 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6159 field_type_p, byte_offset_p,
52ce6436 6160 bit_offset_p, bit_size_p, index_p))
76a01679 6161 return 1;
4c4b4cd2
PH
6162 }
6163 }
52ce6436
PH
6164 else if (index_p != NULL)
6165 *index_p += 1;
4c4b4cd2
PH
6166 }
6167 return 0;
6168}
6169
52ce6436 6170/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6171
52ce6436
PH
6172static int
6173num_visible_fields (struct type *type)
6174{
6175 int n;
5b4ee69b 6176
52ce6436
PH
6177 n = 0;
6178 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6179 return n;
6180}
14f9c5c9 6181
4c4b4cd2 6182/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6183 and search in it assuming it has (class) type TYPE.
6184 If found, return value, else return NULL.
6185
4c4b4cd2 6186 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6187
4c4b4cd2 6188static struct value *
d2e4a39e 6189ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6190 struct type *type)
14f9c5c9
AS
6191{
6192 int i;
14f9c5c9 6193
5b4ee69b 6194 type = ada_check_typedef (type);
52ce6436 6195 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6196 {
6197 char *t_field_name = TYPE_FIELD_NAME (type, i);
6198
6199 if (t_field_name == NULL)
4c4b4cd2 6200 continue;
14f9c5c9
AS
6201
6202 else if (field_name_match (t_field_name, name))
4c4b4cd2 6203 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6204
6205 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6206 {
06d5cf63
JB
6207 struct value *v = /* Do not let indent join lines here. */
6208 ada_search_struct_field (name, arg,
6209 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6210 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6211
4c4b4cd2
PH
6212 if (v != NULL)
6213 return v;
6214 }
14f9c5c9
AS
6215
6216 else if (ada_is_variant_part (type, i))
4c4b4cd2 6217 {
52ce6436 6218 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6219 int j;
5b4ee69b
MS
6220 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6221 i));
4c4b4cd2
PH
6222 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6223
52ce6436 6224 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6225 {
06d5cf63
JB
6226 struct value *v = ada_search_struct_field /* Force line break. */
6227 (name, arg,
6228 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6229 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6230
4c4b4cd2
PH
6231 if (v != NULL)
6232 return v;
6233 }
6234 }
14f9c5c9
AS
6235 }
6236 return NULL;
6237}
d2e4a39e 6238
52ce6436
PH
6239static struct value *ada_index_struct_field_1 (int *, struct value *,
6240 int, struct type *);
6241
6242
6243/* Return field #INDEX in ARG, where the index is that returned by
6244 * find_struct_field through its INDEX_P argument. Adjust the address
6245 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6246 * If found, return value, else return NULL. */
6247
6248static struct value *
6249ada_index_struct_field (int index, struct value *arg, int offset,
6250 struct type *type)
6251{
6252 return ada_index_struct_field_1 (&index, arg, offset, type);
6253}
6254
6255
6256/* Auxiliary function for ada_index_struct_field. Like
6257 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6258 * *INDEX_P. */
6259
6260static struct value *
6261ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6262 struct type *type)
6263{
6264 int i;
6265 type = ada_check_typedef (type);
6266
6267 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6268 {
6269 if (TYPE_FIELD_NAME (type, i) == NULL)
6270 continue;
6271 else if (ada_is_wrapper_field (type, i))
6272 {
6273 struct value *v = /* Do not let indent join lines here. */
6274 ada_index_struct_field_1 (index_p, arg,
6275 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6276 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6277
52ce6436
PH
6278 if (v != NULL)
6279 return v;
6280 }
6281
6282 else if (ada_is_variant_part (type, i))
6283 {
6284 /* PNH: Do we ever get here? See ada_search_struct_field,
6285 find_struct_field. */
6286 error (_("Cannot assign this kind of variant record"));
6287 }
6288 else if (*index_p == 0)
6289 return ada_value_primitive_field (arg, offset, i, type);
6290 else
6291 *index_p -= 1;
6292 }
6293 return NULL;
6294}
6295
4c4b4cd2
PH
6296/* Given ARG, a value of type (pointer or reference to a)*
6297 structure/union, extract the component named NAME from the ultimate
6298 target structure/union and return it as a value with its
f5938064 6299 appropriate type.
14f9c5c9 6300
4c4b4cd2
PH
6301 The routine searches for NAME among all members of the structure itself
6302 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6303 (e.g., '_parent').
6304
03ee6b2e
PH
6305 If NO_ERR, then simply return NULL in case of error, rather than
6306 calling error. */
14f9c5c9 6307
d2e4a39e 6308struct value *
03ee6b2e 6309ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6310{
4c4b4cd2 6311 struct type *t, *t1;
d2e4a39e 6312 struct value *v;
14f9c5c9 6313
4c4b4cd2 6314 v = NULL;
df407dfe 6315 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6316 if (TYPE_CODE (t) == TYPE_CODE_REF)
6317 {
6318 t1 = TYPE_TARGET_TYPE (t);
6319 if (t1 == NULL)
03ee6b2e 6320 goto BadValue;
61ee279c 6321 t1 = ada_check_typedef (t1);
4c4b4cd2 6322 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6323 {
994b9211 6324 arg = coerce_ref (arg);
76a01679
JB
6325 t = t1;
6326 }
4c4b4cd2 6327 }
14f9c5c9 6328
4c4b4cd2
PH
6329 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6330 {
6331 t1 = TYPE_TARGET_TYPE (t);
6332 if (t1 == NULL)
03ee6b2e 6333 goto BadValue;
61ee279c 6334 t1 = ada_check_typedef (t1);
4c4b4cd2 6335 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6336 {
6337 arg = value_ind (arg);
6338 t = t1;
6339 }
4c4b4cd2 6340 else
76a01679 6341 break;
4c4b4cd2 6342 }
14f9c5c9 6343
4c4b4cd2 6344 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6345 goto BadValue;
14f9c5c9 6346
4c4b4cd2
PH
6347 if (t1 == t)
6348 v = ada_search_struct_field (name, arg, 0, t);
6349 else
6350 {
6351 int bit_offset, bit_size, byte_offset;
6352 struct type *field_type;
6353 CORE_ADDR address;
6354
76a01679
JB
6355 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6356 address = value_as_address (arg);
4c4b4cd2 6357 else
0fd88904 6358 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6359
1ed6ede0 6360 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6361 if (find_struct_field (name, t1, 0,
6362 &field_type, &byte_offset, &bit_offset,
52ce6436 6363 &bit_size, NULL))
76a01679
JB
6364 {
6365 if (bit_size != 0)
6366 {
714e53ab
PH
6367 if (TYPE_CODE (t) == TYPE_CODE_REF)
6368 arg = ada_coerce_ref (arg);
6369 else
6370 arg = ada_value_ind (arg);
76a01679
JB
6371 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6372 bit_offset, bit_size,
6373 field_type);
6374 }
6375 else
f5938064 6376 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6377 }
6378 }
6379
03ee6b2e
PH
6380 if (v != NULL || no_err)
6381 return v;
6382 else
323e0a4a 6383 error (_("There is no member named %s."), name);
14f9c5c9 6384
03ee6b2e
PH
6385 BadValue:
6386 if (no_err)
6387 return NULL;
6388 else
6389 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6390}
6391
6392/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6393 If DISPP is non-null, add its byte displacement from the beginning of a
6394 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6395 work for packed fields).
6396
6397 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6398 followed by "___".
14f9c5c9 6399
4c4b4cd2
PH
6400 TYPE can be either a struct or union. If REFOK, TYPE may also
6401 be a (pointer or reference)+ to a struct or union, and the
6402 ultimate target type will be searched.
14f9c5c9
AS
6403
6404 Looks recursively into variant clauses and parent types.
6405
4c4b4cd2
PH
6406 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6407 TYPE is not a type of the right kind. */
14f9c5c9 6408
4c4b4cd2 6409static struct type *
76a01679
JB
6410ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6411 int noerr, int *dispp)
14f9c5c9
AS
6412{
6413 int i;
6414
6415 if (name == NULL)
6416 goto BadName;
6417
76a01679 6418 if (refok && type != NULL)
4c4b4cd2
PH
6419 while (1)
6420 {
61ee279c 6421 type = ada_check_typedef (type);
76a01679
JB
6422 if (TYPE_CODE (type) != TYPE_CODE_PTR
6423 && TYPE_CODE (type) != TYPE_CODE_REF)
6424 break;
6425 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6426 }
14f9c5c9 6427
76a01679 6428 if (type == NULL
1265e4aa
JB
6429 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6430 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6431 {
4c4b4cd2 6432 if (noerr)
76a01679 6433 return NULL;
4c4b4cd2 6434 else
76a01679
JB
6435 {
6436 target_terminal_ours ();
6437 gdb_flush (gdb_stdout);
323e0a4a
AC
6438 if (type == NULL)
6439 error (_("Type (null) is not a structure or union type"));
6440 else
6441 {
6442 /* XXX: type_sprint */
6443 fprintf_unfiltered (gdb_stderr, _("Type "));
6444 type_print (type, "", gdb_stderr, -1);
6445 error (_(" is not a structure or union type"));
6446 }
76a01679 6447 }
14f9c5c9
AS
6448 }
6449
6450 type = to_static_fixed_type (type);
6451
6452 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6453 {
6454 char *t_field_name = TYPE_FIELD_NAME (type, i);
6455 struct type *t;
6456 int disp;
d2e4a39e 6457
14f9c5c9 6458 if (t_field_name == NULL)
4c4b4cd2 6459 continue;
14f9c5c9
AS
6460
6461 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6462 {
6463 if (dispp != NULL)
6464 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6465 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6466 }
14f9c5c9
AS
6467
6468 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6469 {
6470 disp = 0;
6471 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6472 0, 1, &disp);
6473 if (t != NULL)
6474 {
6475 if (dispp != NULL)
6476 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6477 return t;
6478 }
6479 }
14f9c5c9
AS
6480
6481 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6482 {
6483 int j;
5b4ee69b
MS
6484 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6485 i));
4c4b4cd2
PH
6486
6487 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6488 {
b1f33ddd
JB
6489 /* FIXME pnh 2008/01/26: We check for a field that is
6490 NOT wrapped in a struct, since the compiler sometimes
6491 generates these for unchecked variant types. Revisit
6492 if the compiler changes this practice. */
6493 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6494 disp = 0;
b1f33ddd
JB
6495 if (v_field_name != NULL
6496 && field_name_match (v_field_name, name))
6497 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6498 else
6499 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6500 name, 0, 1, &disp);
6501
4c4b4cd2
PH
6502 if (t != NULL)
6503 {
6504 if (dispp != NULL)
6505 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6506 return t;
6507 }
6508 }
6509 }
14f9c5c9
AS
6510
6511 }
6512
6513BadName:
d2e4a39e 6514 if (!noerr)
14f9c5c9
AS
6515 {
6516 target_terminal_ours ();
6517 gdb_flush (gdb_stdout);
323e0a4a
AC
6518 if (name == NULL)
6519 {
6520 /* XXX: type_sprint */
6521 fprintf_unfiltered (gdb_stderr, _("Type "));
6522 type_print (type, "", gdb_stderr, -1);
6523 error (_(" has no component named <null>"));
6524 }
6525 else
6526 {
6527 /* XXX: type_sprint */
6528 fprintf_unfiltered (gdb_stderr, _("Type "));
6529 type_print (type, "", gdb_stderr, -1);
6530 error (_(" has no component named %s"), name);
6531 }
14f9c5c9
AS
6532 }
6533
6534 return NULL;
6535}
6536
b1f33ddd
JB
6537/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6538 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6539 represents an unchecked union (that is, the variant part of a
6540 record that is named in an Unchecked_Union pragma). */
6541
6542static int
6543is_unchecked_variant (struct type *var_type, struct type *outer_type)
6544{
6545 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6546
b1f33ddd
JB
6547 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6548 == NULL);
6549}
6550
6551
14f9c5c9
AS
6552/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6553 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6554 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6555 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6556
d2e4a39e 6557int
ebf56fd3 6558ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6559 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6560{
6561 int others_clause;
6562 int i;
d2e4a39e 6563 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6564 struct value *outer;
6565 struct value *discrim;
14f9c5c9
AS
6566 LONGEST discrim_val;
6567
0c281816
JB
6568 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6569 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6570 if (discrim == NULL)
14f9c5c9 6571 return -1;
0c281816 6572 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6573
6574 others_clause = -1;
6575 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6576 {
6577 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6578 others_clause = i;
14f9c5c9 6579 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6580 return i;
14f9c5c9
AS
6581 }
6582
6583 return others_clause;
6584}
d2e4a39e 6585\f
14f9c5c9
AS
6586
6587
4c4b4cd2 6588 /* Dynamic-Sized Records */
14f9c5c9
AS
6589
6590/* Strategy: The type ostensibly attached to a value with dynamic size
6591 (i.e., a size that is not statically recorded in the debugging
6592 data) does not accurately reflect the size or layout of the value.
6593 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6594 conventional types that are constructed on the fly. */
14f9c5c9
AS
6595
6596/* There is a subtle and tricky problem here. In general, we cannot
6597 determine the size of dynamic records without its data. However,
6598 the 'struct value' data structure, which GDB uses to represent
6599 quantities in the inferior process (the target), requires the size
6600 of the type at the time of its allocation in order to reserve space
6601 for GDB's internal copy of the data. That's why the
6602 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6603 rather than struct value*s.
14f9c5c9
AS
6604
6605 However, GDB's internal history variables ($1, $2, etc.) are
6606 struct value*s containing internal copies of the data that are not, in
6607 general, the same as the data at their corresponding addresses in
6608 the target. Fortunately, the types we give to these values are all
6609 conventional, fixed-size types (as per the strategy described
6610 above), so that we don't usually have to perform the
6611 'to_fixed_xxx_type' conversions to look at their values.
6612 Unfortunately, there is one exception: if one of the internal
6613 history variables is an array whose elements are unconstrained
6614 records, then we will need to create distinct fixed types for each
6615 element selected. */
6616
6617/* The upshot of all of this is that many routines take a (type, host
6618 address, target address) triple as arguments to represent a value.
6619 The host address, if non-null, is supposed to contain an internal
6620 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6621 target at the target address. */
14f9c5c9
AS
6622
6623/* Assuming that VAL0 represents a pointer value, the result of
6624 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6625 dynamic-sized types. */
14f9c5c9 6626
d2e4a39e
AS
6627struct value *
6628ada_value_ind (struct value *val0)
14f9c5c9 6629{
d2e4a39e 6630 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6631
4c4b4cd2 6632 return ada_to_fixed_value (val);
14f9c5c9
AS
6633}
6634
6635/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6636 qualifiers on VAL0. */
6637
d2e4a39e
AS
6638static struct value *
6639ada_coerce_ref (struct value *val0)
6640{
df407dfe 6641 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6642 {
6643 struct value *val = val0;
5b4ee69b 6644
994b9211 6645 val = coerce_ref (val);
d2e4a39e 6646 val = unwrap_value (val);
4c4b4cd2 6647 return ada_to_fixed_value (val);
d2e4a39e
AS
6648 }
6649 else
14f9c5c9
AS
6650 return val0;
6651}
6652
6653/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6654 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6655
6656static unsigned int
ebf56fd3 6657align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6658{
6659 return (off + alignment - 1) & ~(alignment - 1);
6660}
6661
4c4b4cd2 6662/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6663
6664static unsigned int
ebf56fd3 6665field_alignment (struct type *type, int f)
14f9c5c9 6666{
d2e4a39e 6667 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6668 int len;
14f9c5c9
AS
6669 int align_offset;
6670
64a1bf19
JB
6671 /* The field name should never be null, unless the debugging information
6672 is somehow malformed. In this case, we assume the field does not
6673 require any alignment. */
6674 if (name == NULL)
6675 return 1;
6676
6677 len = strlen (name);
6678
4c4b4cd2
PH
6679 if (!isdigit (name[len - 1]))
6680 return 1;
14f9c5c9 6681
d2e4a39e 6682 if (isdigit (name[len - 2]))
14f9c5c9
AS
6683 align_offset = len - 2;
6684 else
6685 align_offset = len - 1;
6686
4c4b4cd2 6687 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6688 return TARGET_CHAR_BIT;
6689
4c4b4cd2
PH
6690 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6691}
6692
6693/* Find a symbol named NAME. Ignores ambiguity. */
6694
6695struct symbol *
6696ada_find_any_symbol (const char *name)
6697{
6698 struct symbol *sym;
6699
6700 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6701 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6702 return sym;
6703
6704 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6705 return sym;
14f9c5c9
AS
6706}
6707
dddfab26
UW
6708/* Find a type named NAME. Ignores ambiguity. This routine will look
6709 solely for types defined by debug info, it will not search the GDB
6710 primitive types. */
4c4b4cd2 6711
d2e4a39e 6712struct type *
ebf56fd3 6713ada_find_any_type (const char *name)
14f9c5c9 6714{
4c4b4cd2 6715 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6716
14f9c5c9 6717 if (sym != NULL)
dddfab26 6718 return SYMBOL_TYPE (sym);
14f9c5c9 6719
dddfab26 6720 return NULL;
14f9c5c9
AS
6721}
6722
aeb5907d
JB
6723/* Given NAME and an associated BLOCK, search all symbols for
6724 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6725 associated to NAME. Return this symbol if found, return
6726 NULL otherwise. */
6727
6728struct symbol *
6729ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6730{
6731 struct symbol *sym;
6732
6733 sym = find_old_style_renaming_symbol (name, block);
6734
6735 if (sym != NULL)
6736 return sym;
6737
6738 /* Not right yet. FIXME pnh 7/20/2007. */
6739 sym = ada_find_any_symbol (name);
6740 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6741 return sym;
6742 else
6743 return NULL;
6744}
6745
6746static struct symbol *
6747find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6748{
7f0df278 6749 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6750 char *rename;
6751
6752 if (function_sym != NULL)
6753 {
6754 /* If the symbol is defined inside a function, NAME is not fully
6755 qualified. This means we need to prepend the function name
6756 as well as adding the ``___XR'' suffix to build the name of
6757 the associated renaming symbol. */
6758 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6759 /* Function names sometimes contain suffixes used
6760 for instance to qualify nested subprograms. When building
6761 the XR type name, we need to make sure that this suffix is
6762 not included. So do not include any suffix in the function
6763 name length below. */
69fadcdf 6764 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6765 const int rename_len = function_name_len + 2 /* "__" */
6766 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6767
529cad9c 6768 /* Strip the suffix if necessary. */
69fadcdf
JB
6769 ada_remove_trailing_digits (function_name, &function_name_len);
6770 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6771 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6772
4c4b4cd2
PH
6773 /* Library-level functions are a special case, as GNAT adds
6774 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6775 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6776 have this prefix, so we need to skip this prefix if present. */
6777 if (function_name_len > 5 /* "_ada_" */
6778 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6779 {
6780 function_name += 5;
6781 function_name_len -= 5;
6782 }
4c4b4cd2
PH
6783
6784 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6785 strncpy (rename, function_name, function_name_len);
6786 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6787 "__%s___XR", name);
4c4b4cd2
PH
6788 }
6789 else
6790 {
6791 const int rename_len = strlen (name) + 6;
5b4ee69b 6792
4c4b4cd2 6793 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6794 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6795 }
6796
6797 return ada_find_any_symbol (rename);
6798}
6799
14f9c5c9 6800/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6801 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6802 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6803 otherwise return 0. */
6804
14f9c5c9 6805int
d2e4a39e 6806ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6807{
6808 if (type1 == NULL)
6809 return 1;
6810 else if (type0 == NULL)
6811 return 0;
6812 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6813 return 1;
6814 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6815 return 0;
4c4b4cd2
PH
6816 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6817 return 1;
ad82864c 6818 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6819 return 1;
4c4b4cd2
PH
6820 else if (ada_is_array_descriptor_type (type0)
6821 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6822 return 1;
aeb5907d
JB
6823 else
6824 {
6825 const char *type0_name = type_name_no_tag (type0);
6826 const char *type1_name = type_name_no_tag (type1);
6827
6828 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6829 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6830 return 1;
6831 }
14f9c5c9
AS
6832 return 0;
6833}
6834
6835/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6836 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6837
d2e4a39e
AS
6838char *
6839ada_type_name (struct type *type)
14f9c5c9 6840{
d2e4a39e 6841 if (type == NULL)
14f9c5c9
AS
6842 return NULL;
6843 else if (TYPE_NAME (type) != NULL)
6844 return TYPE_NAME (type);
6845 else
6846 return TYPE_TAG_NAME (type);
6847}
6848
b4ba55a1
JB
6849/* Search the list of "descriptive" types associated to TYPE for a type
6850 whose name is NAME. */
6851
6852static struct type *
6853find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6854{
6855 struct type *result;
6856
6857 /* If there no descriptive-type info, then there is no parallel type
6858 to be found. */
6859 if (!HAVE_GNAT_AUX_INFO (type))
6860 return NULL;
6861
6862 result = TYPE_DESCRIPTIVE_TYPE (type);
6863 while (result != NULL)
6864 {
6865 char *result_name = ada_type_name (result);
6866
6867 if (result_name == NULL)
6868 {
6869 warning (_("unexpected null name on descriptive type"));
6870 return NULL;
6871 }
6872
6873 /* If the names match, stop. */
6874 if (strcmp (result_name, name) == 0)
6875 break;
6876
6877 /* Otherwise, look at the next item on the list, if any. */
6878 if (HAVE_GNAT_AUX_INFO (result))
6879 result = TYPE_DESCRIPTIVE_TYPE (result);
6880 else
6881 result = NULL;
6882 }
6883
6884 /* If we didn't find a match, see whether this is a packed array. With
6885 older compilers, the descriptive type information is either absent or
6886 irrelevant when it comes to packed arrays so the above lookup fails.
6887 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6888 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6889 return ada_find_any_type (name);
6890
6891 return result;
6892}
6893
6894/* Find a parallel type to TYPE with the specified NAME, using the
6895 descriptive type taken from the debugging information, if available,
6896 and otherwise using the (slower) name-based method. */
6897
6898static struct type *
6899ada_find_parallel_type_with_name (struct type *type, const char *name)
6900{
6901 struct type *result = NULL;
6902
6903 if (HAVE_GNAT_AUX_INFO (type))
6904 result = find_parallel_type_by_descriptive_type (type, name);
6905 else
6906 result = ada_find_any_type (name);
6907
6908 return result;
6909}
6910
6911/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6912 SUFFIX to the name of TYPE. */
14f9c5c9 6913
d2e4a39e 6914struct type *
ebf56fd3 6915ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6916{
b4ba55a1 6917 char *name, *typename = ada_type_name (type);
14f9c5c9 6918 int len;
d2e4a39e 6919
14f9c5c9
AS
6920 if (typename == NULL)
6921 return NULL;
6922
6923 len = strlen (typename);
6924
b4ba55a1 6925 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
6926
6927 strcpy (name, typename);
6928 strcpy (name + len, suffix);
6929
b4ba55a1 6930 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
6931}
6932
14f9c5c9 6933/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6934 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6935
d2e4a39e
AS
6936static struct type *
6937dynamic_template_type (struct type *type)
14f9c5c9 6938{
61ee279c 6939 type = ada_check_typedef (type);
14f9c5c9
AS
6940
6941 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6942 || ada_type_name (type) == NULL)
14f9c5c9 6943 return NULL;
d2e4a39e 6944 else
14f9c5c9
AS
6945 {
6946 int len = strlen (ada_type_name (type));
5b4ee69b 6947
4c4b4cd2
PH
6948 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6949 return type;
14f9c5c9 6950 else
4c4b4cd2 6951 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6952 }
6953}
6954
6955/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6956 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6957
d2e4a39e
AS
6958static int
6959is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6960{
6961 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 6962
d2e4a39e 6963 return name != NULL
14f9c5c9
AS
6964 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6965 && strstr (name, "___XVL") != NULL;
6966}
6967
4c4b4cd2
PH
6968/* The index of the variant field of TYPE, or -1 if TYPE does not
6969 represent a variant record type. */
14f9c5c9 6970
d2e4a39e 6971static int
4c4b4cd2 6972variant_field_index (struct type *type)
14f9c5c9
AS
6973{
6974 int f;
6975
4c4b4cd2
PH
6976 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6977 return -1;
6978
6979 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6980 {
6981 if (ada_is_variant_part (type, f))
6982 return f;
6983 }
6984 return -1;
14f9c5c9
AS
6985}
6986
4c4b4cd2
PH
6987/* A record type with no fields. */
6988
d2e4a39e 6989static struct type *
e9bb382b 6990empty_record (struct type *template)
14f9c5c9 6991{
e9bb382b 6992 struct type *type = alloc_type_copy (template);
5b4ee69b 6993
14f9c5c9
AS
6994 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6995 TYPE_NFIELDS (type) = 0;
6996 TYPE_FIELDS (type) = NULL;
b1f33ddd 6997 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6998 TYPE_NAME (type) = "<empty>";
6999 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7000 TYPE_LENGTH (type) = 0;
7001 return type;
7002}
7003
7004/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7005 the value of type TYPE at VALADDR or ADDRESS (see comments at
7006 the beginning of this section) VAL according to GNAT conventions.
7007 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7008 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7009 an outer-level type (i.e., as opposed to a branch of a variant.) A
7010 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7011 of the variant.
14f9c5c9 7012
4c4b4cd2
PH
7013 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7014 length are not statically known are discarded. As a consequence,
7015 VALADDR, ADDRESS and DVAL0 are ignored.
7016
7017 NOTE: Limitations: For now, we assume that dynamic fields and
7018 variants occupy whole numbers of bytes. However, they need not be
7019 byte-aligned. */
7020
7021struct type *
10a2c479 7022ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7023 const gdb_byte *valaddr,
4c4b4cd2
PH
7024 CORE_ADDR address, struct value *dval0,
7025 int keep_dynamic_fields)
14f9c5c9 7026{
d2e4a39e
AS
7027 struct value *mark = value_mark ();
7028 struct value *dval;
7029 struct type *rtype;
14f9c5c9 7030 int nfields, bit_len;
4c4b4cd2 7031 int variant_field;
14f9c5c9 7032 long off;
4c4b4cd2 7033 int fld_bit_len, bit_incr;
14f9c5c9
AS
7034 int f;
7035
4c4b4cd2
PH
7036 /* Compute the number of fields in this record type that are going
7037 to be processed: unless keep_dynamic_fields, this includes only
7038 fields whose position and length are static will be processed. */
7039 if (keep_dynamic_fields)
7040 nfields = TYPE_NFIELDS (type);
7041 else
7042 {
7043 nfields = 0;
76a01679 7044 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7045 && !ada_is_variant_part (type, nfields)
7046 && !is_dynamic_field (type, nfields))
7047 nfields++;
7048 }
7049
e9bb382b 7050 rtype = alloc_type_copy (type);
14f9c5c9
AS
7051 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7052 INIT_CPLUS_SPECIFIC (rtype);
7053 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7054 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7055 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7056 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7057 TYPE_NAME (rtype) = ada_type_name (type);
7058 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7059 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7060
d2e4a39e
AS
7061 off = 0;
7062 bit_len = 0;
4c4b4cd2
PH
7063 variant_field = -1;
7064
14f9c5c9
AS
7065 for (f = 0; f < nfields; f += 1)
7066 {
6c038f32
PH
7067 off = align_value (off, field_alignment (type, f))
7068 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7069 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7070 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7071
d2e4a39e 7072 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7073 {
7074 variant_field = f;
7075 fld_bit_len = bit_incr = 0;
7076 }
14f9c5c9 7077 else if (is_dynamic_field (type, f))
4c4b4cd2 7078 {
284614f0
JB
7079 const gdb_byte *field_valaddr = valaddr;
7080 CORE_ADDR field_address = address;
7081 struct type *field_type =
7082 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7083
4c4b4cd2 7084 if (dval0 == NULL)
b5304971
JG
7085 {
7086 /* rtype's length is computed based on the run-time
7087 value of discriminants. If the discriminants are not
7088 initialized, the type size may be completely bogus and
7089 GDB may fail to allocate a value for it. So check the
7090 size first before creating the value. */
7091 check_size (rtype);
7092 dval = value_from_contents_and_address (rtype, valaddr, address);
7093 }
4c4b4cd2
PH
7094 else
7095 dval = dval0;
7096
284614f0
JB
7097 /* If the type referenced by this field is an aligner type, we need
7098 to unwrap that aligner type, because its size might not be set.
7099 Keeping the aligner type would cause us to compute the wrong
7100 size for this field, impacting the offset of the all the fields
7101 that follow this one. */
7102 if (ada_is_aligner_type (field_type))
7103 {
7104 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7105
7106 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7107 field_address = cond_offset_target (field_address, field_offset);
7108 field_type = ada_aligned_type (field_type);
7109 }
7110
7111 field_valaddr = cond_offset_host (field_valaddr,
7112 off / TARGET_CHAR_BIT);
7113 field_address = cond_offset_target (field_address,
7114 off / TARGET_CHAR_BIT);
7115
7116 /* Get the fixed type of the field. Note that, in this case,
7117 we do not want to get the real type out of the tag: if
7118 the current field is the parent part of a tagged record,
7119 we will get the tag of the object. Clearly wrong: the real
7120 type of the parent is not the real type of the child. We
7121 would end up in an infinite loop. */
7122 field_type = ada_get_base_type (field_type);
7123 field_type = ada_to_fixed_type (field_type, field_valaddr,
7124 field_address, dval, 0);
7125
7126 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7127 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7128 bit_incr = fld_bit_len =
7129 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7130 }
14f9c5c9 7131 else
4c4b4cd2 7132 {
9f0dec2d
JB
7133 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7134
7135 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7136 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7137 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7138 bit_incr = fld_bit_len =
7139 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7140 else
7141 bit_incr = fld_bit_len =
9f0dec2d 7142 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7143 }
14f9c5c9 7144 if (off + fld_bit_len > bit_len)
4c4b4cd2 7145 bit_len = off + fld_bit_len;
14f9c5c9 7146 off += bit_incr;
4c4b4cd2
PH
7147 TYPE_LENGTH (rtype) =
7148 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7149 }
4c4b4cd2
PH
7150
7151 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7152 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7153 the record. This can happen in the presence of representation
7154 clauses. */
7155 if (variant_field >= 0)
7156 {
7157 struct type *branch_type;
7158
7159 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7160
7161 if (dval0 == NULL)
7162 dval = value_from_contents_and_address (rtype, valaddr, address);
7163 else
7164 dval = dval0;
7165
7166 branch_type =
7167 to_fixed_variant_branch_type
7168 (TYPE_FIELD_TYPE (type, variant_field),
7169 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7170 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7171 if (branch_type == NULL)
7172 {
7173 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7174 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7175 TYPE_NFIELDS (rtype) -= 1;
7176 }
7177 else
7178 {
7179 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7180 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7181 fld_bit_len =
7182 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7183 TARGET_CHAR_BIT;
7184 if (off + fld_bit_len > bit_len)
7185 bit_len = off + fld_bit_len;
7186 TYPE_LENGTH (rtype) =
7187 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7188 }
7189 }
7190
714e53ab
PH
7191 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7192 should contain the alignment of that record, which should be a strictly
7193 positive value. If null or negative, then something is wrong, most
7194 probably in the debug info. In that case, we don't round up the size
7195 of the resulting type. If this record is not part of another structure,
7196 the current RTYPE length might be good enough for our purposes. */
7197 if (TYPE_LENGTH (type) <= 0)
7198 {
323e0a4a
AC
7199 if (TYPE_NAME (rtype))
7200 warning (_("Invalid type size for `%s' detected: %d."),
7201 TYPE_NAME (rtype), TYPE_LENGTH (type));
7202 else
7203 warning (_("Invalid type size for <unnamed> detected: %d."),
7204 TYPE_LENGTH (type));
714e53ab
PH
7205 }
7206 else
7207 {
7208 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7209 TYPE_LENGTH (type));
7210 }
14f9c5c9
AS
7211
7212 value_free_to_mark (mark);
d2e4a39e 7213 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7214 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7215 return rtype;
7216}
7217
4c4b4cd2
PH
7218/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7219 of 1. */
14f9c5c9 7220
d2e4a39e 7221static struct type *
fc1a4b47 7222template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7223 CORE_ADDR address, struct value *dval0)
7224{
7225 return ada_template_to_fixed_record_type_1 (type, valaddr,
7226 address, dval0, 1);
7227}
7228
7229/* An ordinary record type in which ___XVL-convention fields and
7230 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7231 static approximations, containing all possible fields. Uses
7232 no runtime values. Useless for use in values, but that's OK,
7233 since the results are used only for type determinations. Works on both
7234 structs and unions. Representation note: to save space, we memorize
7235 the result of this function in the TYPE_TARGET_TYPE of the
7236 template type. */
7237
7238static struct type *
7239template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7240{
7241 struct type *type;
7242 int nfields;
7243 int f;
7244
4c4b4cd2
PH
7245 if (TYPE_TARGET_TYPE (type0) != NULL)
7246 return TYPE_TARGET_TYPE (type0);
7247
7248 nfields = TYPE_NFIELDS (type0);
7249 type = type0;
14f9c5c9
AS
7250
7251 for (f = 0; f < nfields; f += 1)
7252 {
61ee279c 7253 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7254 struct type *new_type;
14f9c5c9 7255
4c4b4cd2
PH
7256 if (is_dynamic_field (type0, f))
7257 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7258 else
f192137b 7259 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7260 if (type == type0 && new_type != field_type)
7261 {
e9bb382b 7262 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7263 TYPE_CODE (type) = TYPE_CODE (type0);
7264 INIT_CPLUS_SPECIFIC (type);
7265 TYPE_NFIELDS (type) = nfields;
7266 TYPE_FIELDS (type) = (struct field *)
7267 TYPE_ALLOC (type, nfields * sizeof (struct field));
7268 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7269 sizeof (struct field) * nfields);
7270 TYPE_NAME (type) = ada_type_name (type0);
7271 TYPE_TAG_NAME (type) = NULL;
876cecd0 7272 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7273 TYPE_LENGTH (type) = 0;
7274 }
7275 TYPE_FIELD_TYPE (type, f) = new_type;
7276 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7277 }
14f9c5c9
AS
7278 return type;
7279}
7280
4c4b4cd2 7281/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7282 whose address in memory is ADDRESS, returns a revision of TYPE,
7283 which should be a non-dynamic-sized record, in which the variant
7284 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7285 for discriminant values in DVAL0, which can be NULL if the record
7286 contains the necessary discriminant values. */
7287
d2e4a39e 7288static struct type *
fc1a4b47 7289to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7290 CORE_ADDR address, struct value *dval0)
14f9c5c9 7291{
d2e4a39e 7292 struct value *mark = value_mark ();
4c4b4cd2 7293 struct value *dval;
d2e4a39e 7294 struct type *rtype;
14f9c5c9
AS
7295 struct type *branch_type;
7296 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7297 int variant_field = variant_field_index (type);
14f9c5c9 7298
4c4b4cd2 7299 if (variant_field == -1)
14f9c5c9
AS
7300 return type;
7301
4c4b4cd2
PH
7302 if (dval0 == NULL)
7303 dval = value_from_contents_and_address (type, valaddr, address);
7304 else
7305 dval = dval0;
7306
e9bb382b 7307 rtype = alloc_type_copy (type);
14f9c5c9 7308 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7309 INIT_CPLUS_SPECIFIC (rtype);
7310 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7311 TYPE_FIELDS (rtype) =
7312 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7313 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7314 sizeof (struct field) * nfields);
14f9c5c9
AS
7315 TYPE_NAME (rtype) = ada_type_name (type);
7316 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7317 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7318 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7319
4c4b4cd2
PH
7320 branch_type = to_fixed_variant_branch_type
7321 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7322 cond_offset_host (valaddr,
4c4b4cd2
PH
7323 TYPE_FIELD_BITPOS (type, variant_field)
7324 / TARGET_CHAR_BIT),
d2e4a39e 7325 cond_offset_target (address,
4c4b4cd2
PH
7326 TYPE_FIELD_BITPOS (type, variant_field)
7327 / TARGET_CHAR_BIT), dval);
d2e4a39e 7328 if (branch_type == NULL)
14f9c5c9 7329 {
4c4b4cd2 7330 int f;
5b4ee69b 7331
4c4b4cd2
PH
7332 for (f = variant_field + 1; f < nfields; f += 1)
7333 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7334 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7335 }
7336 else
7337 {
4c4b4cd2
PH
7338 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7339 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7340 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7341 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7342 }
4c4b4cd2 7343 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7344
4c4b4cd2 7345 value_free_to_mark (mark);
14f9c5c9
AS
7346 return rtype;
7347}
7348
7349/* An ordinary record type (with fixed-length fields) that describes
7350 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7351 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7352 should be in DVAL, a record value; it may be NULL if the object
7353 at ADDR itself contains any necessary discriminant values.
7354 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7355 values from the record are needed. Except in the case that DVAL,
7356 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7357 unchecked) is replaced by a particular branch of the variant.
7358
7359 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7360 is questionable and may be removed. It can arise during the
7361 processing of an unconstrained-array-of-record type where all the
7362 variant branches have exactly the same size. This is because in
7363 such cases, the compiler does not bother to use the XVS convention
7364 when encoding the record. I am currently dubious of this
7365 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7366
d2e4a39e 7367static struct type *
fc1a4b47 7368to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7369 CORE_ADDR address, struct value *dval)
14f9c5c9 7370{
d2e4a39e 7371 struct type *templ_type;
14f9c5c9 7372
876cecd0 7373 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7374 return type0;
7375
d2e4a39e 7376 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7377
7378 if (templ_type != NULL)
7379 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7380 else if (variant_field_index (type0) >= 0)
7381 {
7382 if (dval == NULL && valaddr == NULL && address == 0)
7383 return type0;
7384 return to_record_with_fixed_variant_part (type0, valaddr, address,
7385 dval);
7386 }
14f9c5c9
AS
7387 else
7388 {
876cecd0 7389 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7390 return type0;
7391 }
7392
7393}
7394
7395/* An ordinary record type (with fixed-length fields) that describes
7396 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7397 union type. Any necessary discriminants' values should be in DVAL,
7398 a record value. That is, this routine selects the appropriate
7399 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7400 indicated in the union's type name. Returns VAR_TYPE0 itself if
7401 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7402
d2e4a39e 7403static struct type *
fc1a4b47 7404to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7405 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7406{
7407 int which;
d2e4a39e
AS
7408 struct type *templ_type;
7409 struct type *var_type;
14f9c5c9
AS
7410
7411 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7412 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7413 else
14f9c5c9
AS
7414 var_type = var_type0;
7415
7416 templ_type = ada_find_parallel_type (var_type, "___XVU");
7417
7418 if (templ_type != NULL)
7419 var_type = templ_type;
7420
b1f33ddd
JB
7421 if (is_unchecked_variant (var_type, value_type (dval)))
7422 return var_type0;
d2e4a39e
AS
7423 which =
7424 ada_which_variant_applies (var_type,
0fd88904 7425 value_type (dval), value_contents (dval));
14f9c5c9
AS
7426
7427 if (which < 0)
e9bb382b 7428 return empty_record (var_type);
14f9c5c9 7429 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7430 return to_fixed_record_type
d2e4a39e
AS
7431 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7432 valaddr, address, dval);
4c4b4cd2 7433 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7434 return
7435 to_fixed_record_type
7436 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7437 else
7438 return TYPE_FIELD_TYPE (var_type, which);
7439}
7440
7441/* Assuming that TYPE0 is an array type describing the type of a value
7442 at ADDR, and that DVAL describes a record containing any
7443 discriminants used in TYPE0, returns a type for the value that
7444 contains no dynamic components (that is, no components whose sizes
7445 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7446 true, gives an error message if the resulting type's size is over
4c4b4cd2 7447 varsize_limit. */
14f9c5c9 7448
d2e4a39e
AS
7449static struct type *
7450to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7451 int ignore_too_big)
14f9c5c9 7452{
d2e4a39e
AS
7453 struct type *index_type_desc;
7454 struct type *result;
ad82864c 7455 int constrained_packed_array_p;
14f9c5c9 7456
284614f0 7457 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7458 return type0;
14f9c5c9 7459
ad82864c
JB
7460 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7461 if (constrained_packed_array_p)
7462 type0 = decode_constrained_packed_array_type (type0);
284614f0 7463
14f9c5c9 7464 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7465 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7466 if (index_type_desc == NULL)
7467 {
61ee279c 7468 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7469
14f9c5c9 7470 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7471 depend on the contents of the array in properly constructed
7472 debugging data. */
529cad9c
PH
7473 /* Create a fixed version of the array element type.
7474 We're not providing the address of an element here,
e1d5a0d2 7475 and thus the actual object value cannot be inspected to do
529cad9c
PH
7476 the conversion. This should not be a problem, since arrays of
7477 unconstrained objects are not allowed. In particular, all
7478 the elements of an array of a tagged type should all be of
7479 the same type specified in the debugging info. No need to
7480 consult the object tag. */
1ed6ede0 7481 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7482
284614f0
JB
7483 /* Make sure we always create a new array type when dealing with
7484 packed array types, since we're going to fix-up the array
7485 type length and element bitsize a little further down. */
ad82864c 7486 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7487 result = type0;
14f9c5c9 7488 else
e9bb382b 7489 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7490 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7491 }
7492 else
7493 {
7494 int i;
7495 struct type *elt_type0;
7496
7497 elt_type0 = type0;
7498 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7499 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7500
7501 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7502 depend on the contents of the array in properly constructed
7503 debugging data. */
529cad9c
PH
7504 /* Create a fixed version of the array element type.
7505 We're not providing the address of an element here,
e1d5a0d2 7506 and thus the actual object value cannot be inspected to do
529cad9c
PH
7507 the conversion. This should not be a problem, since arrays of
7508 unconstrained objects are not allowed. In particular, all
7509 the elements of an array of a tagged type should all be of
7510 the same type specified in the debugging info. No need to
7511 consult the object tag. */
1ed6ede0
JB
7512 result =
7513 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7514
7515 elt_type0 = type0;
14f9c5c9 7516 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7517 {
7518 struct type *range_type =
28c85d6c 7519 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7520
e9bb382b 7521 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7522 result, range_type);
1ce677a4 7523 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7524 }
d2e4a39e 7525 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7526 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7527 }
7528
ad82864c 7529 if (constrained_packed_array_p)
284614f0
JB
7530 {
7531 /* So far, the resulting type has been created as if the original
7532 type was a regular (non-packed) array type. As a result, the
7533 bitsize of the array elements needs to be set again, and the array
7534 length needs to be recomputed based on that bitsize. */
7535 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7536 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7537
7538 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7539 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7540 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7541 TYPE_LENGTH (result)++;
7542 }
7543
876cecd0 7544 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7545 return result;
d2e4a39e 7546}
14f9c5c9
AS
7547
7548
7549/* A standard type (containing no dynamically sized components)
7550 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7551 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7552 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7553 ADDRESS or in VALADDR contains these discriminants.
7554
1ed6ede0
JB
7555 If CHECK_TAG is not null, in the case of tagged types, this function
7556 attempts to locate the object's tag and use it to compute the actual
7557 type. However, when ADDRESS is null, we cannot use it to determine the
7558 location of the tag, and therefore compute the tagged type's actual type.
7559 So we return the tagged type without consulting the tag. */
529cad9c 7560
f192137b
JB
7561static struct type *
7562ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7563 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7564{
61ee279c 7565 type = ada_check_typedef (type);
d2e4a39e
AS
7566 switch (TYPE_CODE (type))
7567 {
7568 default:
14f9c5c9 7569 return type;
d2e4a39e 7570 case TYPE_CODE_STRUCT:
4c4b4cd2 7571 {
76a01679 7572 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7573 struct type *fixed_record_type =
7574 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7575
529cad9c
PH
7576 /* If STATIC_TYPE is a tagged type and we know the object's address,
7577 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7578 type from there. Note that we have to use the fixed record
7579 type (the parent part of the record may have dynamic fields
7580 and the way the location of _tag is expressed may depend on
7581 them). */
529cad9c 7582
1ed6ede0 7583 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7584 {
7585 struct type *real_type =
1ed6ede0
JB
7586 type_from_tag (value_tag_from_contents_and_address
7587 (fixed_record_type,
7588 valaddr,
7589 address));
5b4ee69b 7590
76a01679 7591 if (real_type != NULL)
1ed6ede0 7592 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7593 }
4af88198
JB
7594
7595 /* Check to see if there is a parallel ___XVZ variable.
7596 If there is, then it provides the actual size of our type. */
7597 else if (ada_type_name (fixed_record_type) != NULL)
7598 {
7599 char *name = ada_type_name (fixed_record_type);
7600 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7601 int xvz_found = 0;
7602 LONGEST size;
7603
88c15c34 7604 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7605 size = get_int_var_value (xvz_name, &xvz_found);
7606 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7607 {
7608 fixed_record_type = copy_type (fixed_record_type);
7609 TYPE_LENGTH (fixed_record_type) = size;
7610
7611 /* The FIXED_RECORD_TYPE may have be a stub. We have
7612 observed this when the debugging info is STABS, and
7613 apparently it is something that is hard to fix.
7614
7615 In practice, we don't need the actual type definition
7616 at all, because the presence of the XVZ variable allows us
7617 to assume that there must be a XVS type as well, which we
7618 should be able to use later, when we need the actual type
7619 definition.
7620
7621 In the meantime, pretend that the "fixed" type we are
7622 returning is NOT a stub, because this can cause trouble
7623 when using this type to create new types targeting it.
7624 Indeed, the associated creation routines often check
7625 whether the target type is a stub and will try to replace
7626 it, thus using a type with the wrong size. This, in turn,
7627 might cause the new type to have the wrong size too.
7628 Consider the case of an array, for instance, where the size
7629 of the array is computed from the number of elements in
7630 our array multiplied by the size of its element. */
7631 TYPE_STUB (fixed_record_type) = 0;
7632 }
7633 }
1ed6ede0 7634 return fixed_record_type;
4c4b4cd2 7635 }
d2e4a39e 7636 case TYPE_CODE_ARRAY:
4c4b4cd2 7637 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7638 case TYPE_CODE_UNION:
7639 if (dval == NULL)
4c4b4cd2 7640 return type;
d2e4a39e 7641 else
4c4b4cd2 7642 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7643 }
14f9c5c9
AS
7644}
7645
f192137b
JB
7646/* The same as ada_to_fixed_type_1, except that it preserves the type
7647 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7648 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7649
7650struct type *
7651ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7652 CORE_ADDR address, struct value *dval, int check_tag)
7653
7654{
7655 struct type *fixed_type =
7656 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7657
7658 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7659 && TYPE_TARGET_TYPE (type) == fixed_type)
7660 return type;
7661
7662 return fixed_type;
7663}
7664
14f9c5c9 7665/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7666 TYPE0, but based on no runtime data. */
14f9c5c9 7667
d2e4a39e
AS
7668static struct type *
7669to_static_fixed_type (struct type *type0)
14f9c5c9 7670{
d2e4a39e 7671 struct type *type;
14f9c5c9
AS
7672
7673 if (type0 == NULL)
7674 return NULL;
7675
876cecd0 7676 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7677 return type0;
7678
61ee279c 7679 type0 = ada_check_typedef (type0);
d2e4a39e 7680
14f9c5c9
AS
7681 switch (TYPE_CODE (type0))
7682 {
7683 default:
7684 return type0;
7685 case TYPE_CODE_STRUCT:
7686 type = dynamic_template_type (type0);
d2e4a39e 7687 if (type != NULL)
4c4b4cd2
PH
7688 return template_to_static_fixed_type (type);
7689 else
7690 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7691 case TYPE_CODE_UNION:
7692 type = ada_find_parallel_type (type0, "___XVU");
7693 if (type != NULL)
4c4b4cd2
PH
7694 return template_to_static_fixed_type (type);
7695 else
7696 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7697 }
7698}
7699
4c4b4cd2
PH
7700/* A static approximation of TYPE with all type wrappers removed. */
7701
d2e4a39e
AS
7702static struct type *
7703static_unwrap_type (struct type *type)
14f9c5c9
AS
7704{
7705 if (ada_is_aligner_type (type))
7706 {
61ee279c 7707 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7708 if (ada_type_name (type1) == NULL)
4c4b4cd2 7709 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7710
7711 return static_unwrap_type (type1);
7712 }
d2e4a39e 7713 else
14f9c5c9 7714 {
d2e4a39e 7715 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 7716
d2e4a39e 7717 if (raw_real_type == type)
4c4b4cd2 7718 return type;
14f9c5c9 7719 else
4c4b4cd2 7720 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7721 }
7722}
7723
7724/* In some cases, incomplete and private types require
4c4b4cd2 7725 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7726 type Foo;
7727 type FooP is access Foo;
7728 V: FooP;
7729 type Foo is array ...;
4c4b4cd2 7730 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7731 cross-references to such types, we instead substitute for FooP a
7732 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7733 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7734
7735/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7736 exists, otherwise TYPE. */
7737
d2e4a39e 7738struct type *
61ee279c 7739ada_check_typedef (struct type *type)
14f9c5c9 7740{
727e3d2e
JB
7741 if (type == NULL)
7742 return NULL;
7743
14f9c5c9
AS
7744 CHECK_TYPEDEF (type);
7745 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7746 || !TYPE_STUB (type)
14f9c5c9
AS
7747 || TYPE_TAG_NAME (type) == NULL)
7748 return type;
d2e4a39e 7749 else
14f9c5c9 7750 {
d2e4a39e
AS
7751 char *name = TYPE_TAG_NAME (type);
7752 struct type *type1 = ada_find_any_type (name);
5b4ee69b 7753
05e522ef
JB
7754 if (type1 == NULL)
7755 return type;
7756
7757 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7758 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
7759 types, only for the typedef-to-array types). If that's the case,
7760 strip the typedef layer. */
7761 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7762 type1 = ada_check_typedef (type1);
7763
7764 return type1;
14f9c5c9
AS
7765 }
7766}
7767
7768/* A value representing the data at VALADDR/ADDRESS as described by
7769 type TYPE0, but with a standard (static-sized) type that correctly
7770 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7771 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7772 creation of struct values]. */
14f9c5c9 7773
4c4b4cd2
PH
7774static struct value *
7775ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7776 struct value *val0)
14f9c5c9 7777{
1ed6ede0 7778 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 7779
14f9c5c9
AS
7780 if (type == type0 && val0 != NULL)
7781 return val0;
d2e4a39e 7782 else
4c4b4cd2
PH
7783 return value_from_contents_and_address (type, 0, address);
7784}
7785
7786/* A value representing VAL, but with a standard (static-sized) type
7787 that correctly describes it. Does not necessarily create a new
7788 value. */
7789
0c3acc09 7790struct value *
4c4b4cd2
PH
7791ada_to_fixed_value (struct value *val)
7792{
df407dfe 7793 return ada_to_fixed_value_create (value_type (val),
42ae5230 7794 value_address (val),
4c4b4cd2 7795 val);
14f9c5c9 7796}
d2e4a39e 7797\f
14f9c5c9 7798
14f9c5c9
AS
7799/* Attributes */
7800
4c4b4cd2
PH
7801/* Table mapping attribute numbers to names.
7802 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7803
d2e4a39e 7804static const char *attribute_names[] = {
14f9c5c9
AS
7805 "<?>",
7806
d2e4a39e 7807 "first",
14f9c5c9
AS
7808 "last",
7809 "length",
7810 "image",
14f9c5c9
AS
7811 "max",
7812 "min",
4c4b4cd2
PH
7813 "modulus",
7814 "pos",
7815 "size",
7816 "tag",
14f9c5c9 7817 "val",
14f9c5c9
AS
7818 0
7819};
7820
d2e4a39e 7821const char *
4c4b4cd2 7822ada_attribute_name (enum exp_opcode n)
14f9c5c9 7823{
4c4b4cd2
PH
7824 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7825 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7826 else
7827 return attribute_names[0];
7828}
7829
4c4b4cd2 7830/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7831
4c4b4cd2
PH
7832static LONGEST
7833pos_atr (struct value *arg)
14f9c5c9 7834{
24209737
PH
7835 struct value *val = coerce_ref (arg);
7836 struct type *type = value_type (val);
14f9c5c9 7837
d2e4a39e 7838 if (!discrete_type_p (type))
323e0a4a 7839 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7840
7841 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7842 {
7843 int i;
24209737 7844 LONGEST v = value_as_long (val);
14f9c5c9 7845
d2e4a39e 7846 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7847 {
7848 if (v == TYPE_FIELD_BITPOS (type, i))
7849 return i;
7850 }
323e0a4a 7851 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7852 }
7853 else
24209737 7854 return value_as_long (val);
4c4b4cd2
PH
7855}
7856
7857static struct value *
3cb382c9 7858value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7859{
3cb382c9 7860 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7861}
7862
4c4b4cd2 7863/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7864
d2e4a39e
AS
7865static struct value *
7866value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7867{
d2e4a39e 7868 if (!discrete_type_p (type))
323e0a4a 7869 error (_("'VAL only defined on discrete types"));
df407dfe 7870 if (!integer_type_p (value_type (arg)))
323e0a4a 7871 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7872
7873 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7874 {
7875 long pos = value_as_long (arg);
5b4ee69b 7876
14f9c5c9 7877 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7878 error (_("argument to 'VAL out of range"));
d2e4a39e 7879 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7880 }
7881 else
7882 return value_from_longest (type, value_as_long (arg));
7883}
14f9c5c9 7884\f
d2e4a39e 7885
4c4b4cd2 7886 /* Evaluation */
14f9c5c9 7887
4c4b4cd2
PH
7888/* True if TYPE appears to be an Ada character type.
7889 [At the moment, this is true only for Character and Wide_Character;
7890 It is a heuristic test that could stand improvement]. */
14f9c5c9 7891
d2e4a39e
AS
7892int
7893ada_is_character_type (struct type *type)
14f9c5c9 7894{
7b9f71f2
JB
7895 const char *name;
7896
7897 /* If the type code says it's a character, then assume it really is,
7898 and don't check any further. */
7899 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7900 return 1;
7901
7902 /* Otherwise, assume it's a character type iff it is a discrete type
7903 with a known character type name. */
7904 name = ada_type_name (type);
7905 return (name != NULL
7906 && (TYPE_CODE (type) == TYPE_CODE_INT
7907 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7908 && (strcmp (name, "character") == 0
7909 || strcmp (name, "wide_character") == 0
5a517ebd 7910 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7911 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7912}
7913
4c4b4cd2 7914/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7915
7916int
ebf56fd3 7917ada_is_string_type (struct type *type)
14f9c5c9 7918{
61ee279c 7919 type = ada_check_typedef (type);
d2e4a39e 7920 if (type != NULL
14f9c5c9 7921 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7922 && (ada_is_simple_array_type (type)
7923 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7924 && ada_array_arity (type) == 1)
7925 {
7926 struct type *elttype = ada_array_element_type (type, 1);
7927
7928 return ada_is_character_type (elttype);
7929 }
d2e4a39e 7930 else
14f9c5c9
AS
7931 return 0;
7932}
7933
5bf03f13
JB
7934/* The compiler sometimes provides a parallel XVS type for a given
7935 PAD type. Normally, it is safe to follow the PAD type directly,
7936 but older versions of the compiler have a bug that causes the offset
7937 of its "F" field to be wrong. Following that field in that case
7938 would lead to incorrect results, but this can be worked around
7939 by ignoring the PAD type and using the associated XVS type instead.
7940
7941 Set to True if the debugger should trust the contents of PAD types.
7942 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7943static int trust_pad_over_xvs = 1;
14f9c5c9
AS
7944
7945/* True if TYPE is a struct type introduced by the compiler to force the
7946 alignment of a value. Such types have a single field with a
4c4b4cd2 7947 distinctive name. */
14f9c5c9
AS
7948
7949int
ebf56fd3 7950ada_is_aligner_type (struct type *type)
14f9c5c9 7951{
61ee279c 7952 type = ada_check_typedef (type);
714e53ab 7953
5bf03f13 7954 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
7955 return 0;
7956
14f9c5c9 7957 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7958 && TYPE_NFIELDS (type) == 1
7959 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7960}
7961
7962/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7963 the parallel type. */
14f9c5c9 7964
d2e4a39e
AS
7965struct type *
7966ada_get_base_type (struct type *raw_type)
14f9c5c9 7967{
d2e4a39e
AS
7968 struct type *real_type_namer;
7969 struct type *raw_real_type;
14f9c5c9
AS
7970
7971 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7972 return raw_type;
7973
284614f0
JB
7974 if (ada_is_aligner_type (raw_type))
7975 /* The encoding specifies that we should always use the aligner type.
7976 So, even if this aligner type has an associated XVS type, we should
7977 simply ignore it.
7978
7979 According to the compiler gurus, an XVS type parallel to an aligner
7980 type may exist because of a stabs limitation. In stabs, aligner
7981 types are empty because the field has a variable-sized type, and
7982 thus cannot actually be used as an aligner type. As a result,
7983 we need the associated parallel XVS type to decode the type.
7984 Since the policy in the compiler is to not change the internal
7985 representation based on the debugging info format, we sometimes
7986 end up having a redundant XVS type parallel to the aligner type. */
7987 return raw_type;
7988
14f9c5c9 7989 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7990 if (real_type_namer == NULL
14f9c5c9
AS
7991 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7992 || TYPE_NFIELDS (real_type_namer) != 1)
7993 return raw_type;
7994
f80d3ff2
JB
7995 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7996 {
7997 /* This is an older encoding form where the base type needs to be
7998 looked up by name. We prefer the newer enconding because it is
7999 more efficient. */
8000 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8001 if (raw_real_type == NULL)
8002 return raw_type;
8003 else
8004 return raw_real_type;
8005 }
8006
8007 /* The field in our XVS type is a reference to the base type. */
8008 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8009}
14f9c5c9 8010
4c4b4cd2 8011/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8012
d2e4a39e
AS
8013struct type *
8014ada_aligned_type (struct type *type)
14f9c5c9
AS
8015{
8016 if (ada_is_aligner_type (type))
8017 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8018 else
8019 return ada_get_base_type (type);
8020}
8021
8022
8023/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8024 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8025
fc1a4b47
AC
8026const gdb_byte *
8027ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8028{
d2e4a39e 8029 if (ada_is_aligner_type (type))
14f9c5c9 8030 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8031 valaddr +
8032 TYPE_FIELD_BITPOS (type,
8033 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8034 else
8035 return valaddr;
8036}
8037
4c4b4cd2
PH
8038
8039
14f9c5c9 8040/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8041 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8042const char *
8043ada_enum_name (const char *name)
14f9c5c9 8044{
4c4b4cd2
PH
8045 static char *result;
8046 static size_t result_len = 0;
d2e4a39e 8047 char *tmp;
14f9c5c9 8048
4c4b4cd2
PH
8049 /* First, unqualify the enumeration name:
8050 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
8051 all the preceeding characters, the unqualified name starts
8052 right after that dot.
4c4b4cd2 8053 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8054 translates dots into "__". Search forward for double underscores,
8055 but stop searching when we hit an overloading suffix, which is
8056 of the form "__" followed by digits. */
4c4b4cd2 8057
c3e5cd34
PH
8058 tmp = strrchr (name, '.');
8059 if (tmp != NULL)
4c4b4cd2
PH
8060 name = tmp + 1;
8061 else
14f9c5c9 8062 {
4c4b4cd2
PH
8063 while ((tmp = strstr (name, "__")) != NULL)
8064 {
8065 if (isdigit (tmp[2]))
8066 break;
8067 else
8068 name = tmp + 2;
8069 }
14f9c5c9
AS
8070 }
8071
8072 if (name[0] == 'Q')
8073 {
14f9c5c9 8074 int v;
5b4ee69b 8075
14f9c5c9 8076 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8077 {
8078 if (sscanf (name + 2, "%x", &v) != 1)
8079 return name;
8080 }
14f9c5c9 8081 else
4c4b4cd2 8082 return name;
14f9c5c9 8083
4c4b4cd2 8084 GROW_VECT (result, result_len, 16);
14f9c5c9 8085 if (isascii (v) && isprint (v))
88c15c34 8086 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8087 else if (name[1] == 'U')
88c15c34 8088 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8089 else
88c15c34 8090 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8091
8092 return result;
8093 }
d2e4a39e 8094 else
4c4b4cd2 8095 {
c3e5cd34
PH
8096 tmp = strstr (name, "__");
8097 if (tmp == NULL)
8098 tmp = strstr (name, "$");
8099 if (tmp != NULL)
4c4b4cd2
PH
8100 {
8101 GROW_VECT (result, result_len, tmp - name + 1);
8102 strncpy (result, name, tmp - name);
8103 result[tmp - name] = '\0';
8104 return result;
8105 }
8106
8107 return name;
8108 }
14f9c5c9
AS
8109}
8110
14f9c5c9
AS
8111/* Evaluate the subexpression of EXP starting at *POS as for
8112 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8113 expression. */
14f9c5c9 8114
d2e4a39e
AS
8115static struct value *
8116evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8117{
4b27a620 8118 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8119}
8120
8121/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8122 value it wraps. */
14f9c5c9 8123
d2e4a39e
AS
8124static struct value *
8125unwrap_value (struct value *val)
14f9c5c9 8126{
df407dfe 8127 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8128
14f9c5c9
AS
8129 if (ada_is_aligner_type (type))
8130 {
de4d072f 8131 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8132 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8133
14f9c5c9 8134 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8135 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8136
8137 return unwrap_value (v);
8138 }
d2e4a39e 8139 else
14f9c5c9 8140 {
d2e4a39e 8141 struct type *raw_real_type =
61ee279c 8142 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8143
5bf03f13
JB
8144 /* If there is no parallel XVS or XVE type, then the value is
8145 already unwrapped. Return it without further modification. */
8146 if ((type == raw_real_type)
8147 && ada_find_parallel_type (type, "___XVE") == NULL)
8148 return val;
14f9c5c9 8149
d2e4a39e 8150 return
4c4b4cd2
PH
8151 coerce_unspec_val_to_type
8152 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8153 value_address (val),
1ed6ede0 8154 NULL, 1));
14f9c5c9
AS
8155 }
8156}
d2e4a39e
AS
8157
8158static struct value *
8159cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8160{
8161 LONGEST val;
8162
df407dfe 8163 if (type == value_type (arg))
14f9c5c9 8164 return arg;
df407dfe 8165 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8166 val = ada_float_to_fixed (type,
df407dfe 8167 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8168 value_as_long (arg)));
d2e4a39e 8169 else
14f9c5c9 8170 {
a53b7a21 8171 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8172
14f9c5c9
AS
8173 val = ada_float_to_fixed (type, argd);
8174 }
8175
8176 return value_from_longest (type, val);
8177}
8178
d2e4a39e 8179static struct value *
a53b7a21 8180cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8181{
df407dfe 8182 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8183 value_as_long (arg));
5b4ee69b 8184
a53b7a21 8185 return value_from_double (type, val);
14f9c5c9
AS
8186}
8187
4c4b4cd2
PH
8188/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8189 return the converted value. */
8190
d2e4a39e
AS
8191static struct value *
8192coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8193{
df407dfe 8194 struct type *type2 = value_type (val);
5b4ee69b 8195
14f9c5c9
AS
8196 if (type == type2)
8197 return val;
8198
61ee279c
PH
8199 type2 = ada_check_typedef (type2);
8200 type = ada_check_typedef (type);
14f9c5c9 8201
d2e4a39e
AS
8202 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8203 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8204 {
8205 val = ada_value_ind (val);
df407dfe 8206 type2 = value_type (val);
14f9c5c9
AS
8207 }
8208
d2e4a39e 8209 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8210 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8211 {
8212 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8213 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8214 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8215 error (_("Incompatible types in assignment"));
04624583 8216 deprecated_set_value_type (val, type);
14f9c5c9 8217 }
d2e4a39e 8218 return val;
14f9c5c9
AS
8219}
8220
4c4b4cd2
PH
8221static struct value *
8222ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8223{
8224 struct value *val;
8225 struct type *type1, *type2;
8226 LONGEST v, v1, v2;
8227
994b9211
AC
8228 arg1 = coerce_ref (arg1);
8229 arg2 = coerce_ref (arg2);
df407dfe
AC
8230 type1 = base_type (ada_check_typedef (value_type (arg1)));
8231 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8232
76a01679
JB
8233 if (TYPE_CODE (type1) != TYPE_CODE_INT
8234 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8235 return value_binop (arg1, arg2, op);
8236
76a01679 8237 switch (op)
4c4b4cd2
PH
8238 {
8239 case BINOP_MOD:
8240 case BINOP_DIV:
8241 case BINOP_REM:
8242 break;
8243 default:
8244 return value_binop (arg1, arg2, op);
8245 }
8246
8247 v2 = value_as_long (arg2);
8248 if (v2 == 0)
323e0a4a 8249 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8250
8251 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8252 return value_binop (arg1, arg2, op);
8253
8254 v1 = value_as_long (arg1);
8255 switch (op)
8256 {
8257 case BINOP_DIV:
8258 v = v1 / v2;
76a01679
JB
8259 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8260 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8261 break;
8262 case BINOP_REM:
8263 v = v1 % v2;
76a01679
JB
8264 if (v * v1 < 0)
8265 v -= v2;
4c4b4cd2
PH
8266 break;
8267 default:
8268 /* Should not reach this point. */
8269 v = 0;
8270 }
8271
8272 val = allocate_value (type1);
990a07ab 8273 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8274 TYPE_LENGTH (value_type (val)),
8275 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8276 return val;
8277}
8278
8279static int
8280ada_value_equal (struct value *arg1, struct value *arg2)
8281{
df407dfe
AC
8282 if (ada_is_direct_array_type (value_type (arg1))
8283 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8284 {
f58b38bf
JB
8285 /* Automatically dereference any array reference before
8286 we attempt to perform the comparison. */
8287 arg1 = ada_coerce_ref (arg1);
8288 arg2 = ada_coerce_ref (arg2);
8289
4c4b4cd2
PH
8290 arg1 = ada_coerce_to_simple_array (arg1);
8291 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8292 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8293 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8294 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8295 /* FIXME: The following works only for types whose
76a01679
JB
8296 representations use all bits (no padding or undefined bits)
8297 and do not have user-defined equality. */
8298 return
df407dfe 8299 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8300 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8301 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8302 }
8303 return value_equal (arg1, arg2);
8304}
8305
52ce6436
PH
8306/* Total number of component associations in the aggregate starting at
8307 index PC in EXP. Assumes that index PC is the start of an
8308 OP_AGGREGATE. */
8309
8310static int
8311num_component_specs (struct expression *exp, int pc)
8312{
8313 int n, m, i;
5b4ee69b 8314
52ce6436
PH
8315 m = exp->elts[pc + 1].longconst;
8316 pc += 3;
8317 n = 0;
8318 for (i = 0; i < m; i += 1)
8319 {
8320 switch (exp->elts[pc].opcode)
8321 {
8322 default:
8323 n += 1;
8324 break;
8325 case OP_CHOICES:
8326 n += exp->elts[pc + 1].longconst;
8327 break;
8328 }
8329 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8330 }
8331 return n;
8332}
8333
8334/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8335 component of LHS (a simple array or a record), updating *POS past
8336 the expression, assuming that LHS is contained in CONTAINER. Does
8337 not modify the inferior's memory, nor does it modify LHS (unless
8338 LHS == CONTAINER). */
8339
8340static void
8341assign_component (struct value *container, struct value *lhs, LONGEST index,
8342 struct expression *exp, int *pos)
8343{
8344 struct value *mark = value_mark ();
8345 struct value *elt;
5b4ee69b 8346
52ce6436
PH
8347 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8348 {
22601c15
UW
8349 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8350 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8351
52ce6436
PH
8352 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8353 }
8354 else
8355 {
8356 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8357 elt = ada_to_fixed_value (unwrap_value (elt));
8358 }
8359
8360 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8361 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8362 else
8363 value_assign_to_component (container, elt,
8364 ada_evaluate_subexp (NULL, exp, pos,
8365 EVAL_NORMAL));
8366
8367 value_free_to_mark (mark);
8368}
8369
8370/* Assuming that LHS represents an lvalue having a record or array
8371 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8372 of that aggregate's value to LHS, advancing *POS past the
8373 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8374 lvalue containing LHS (possibly LHS itself). Does not modify
8375 the inferior's memory, nor does it modify the contents of
8376 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8377
8378static struct value *
8379assign_aggregate (struct value *container,
8380 struct value *lhs, struct expression *exp,
8381 int *pos, enum noside noside)
8382{
8383 struct type *lhs_type;
8384 int n = exp->elts[*pos+1].longconst;
8385 LONGEST low_index, high_index;
8386 int num_specs;
8387 LONGEST *indices;
8388 int max_indices, num_indices;
8389 int is_array_aggregate;
8390 int i;
52ce6436
PH
8391
8392 *pos += 3;
8393 if (noside != EVAL_NORMAL)
8394 {
8395 int i;
5b4ee69b 8396
52ce6436
PH
8397 for (i = 0; i < n; i += 1)
8398 ada_evaluate_subexp (NULL, exp, pos, noside);
8399 return container;
8400 }
8401
8402 container = ada_coerce_ref (container);
8403 if (ada_is_direct_array_type (value_type (container)))
8404 container = ada_coerce_to_simple_array (container);
8405 lhs = ada_coerce_ref (lhs);
8406 if (!deprecated_value_modifiable (lhs))
8407 error (_("Left operand of assignment is not a modifiable lvalue."));
8408
8409 lhs_type = value_type (lhs);
8410 if (ada_is_direct_array_type (lhs_type))
8411 {
8412 lhs = ada_coerce_to_simple_array (lhs);
8413 lhs_type = value_type (lhs);
8414 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8415 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8416 is_array_aggregate = 1;
8417 }
8418 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8419 {
8420 low_index = 0;
8421 high_index = num_visible_fields (lhs_type) - 1;
8422 is_array_aggregate = 0;
8423 }
8424 else
8425 error (_("Left-hand side must be array or record."));
8426
8427 num_specs = num_component_specs (exp, *pos - 3);
8428 max_indices = 4 * num_specs + 4;
8429 indices = alloca (max_indices * sizeof (indices[0]));
8430 indices[0] = indices[1] = low_index - 1;
8431 indices[2] = indices[3] = high_index + 1;
8432 num_indices = 4;
8433
8434 for (i = 0; i < n; i += 1)
8435 {
8436 switch (exp->elts[*pos].opcode)
8437 {
8438 case OP_CHOICES:
8439 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8440 &num_indices, max_indices,
8441 low_index, high_index);
8442 break;
8443 case OP_POSITIONAL:
8444 aggregate_assign_positional (container, lhs, exp, pos, indices,
8445 &num_indices, max_indices,
8446 low_index, high_index);
8447 break;
8448 case OP_OTHERS:
8449 if (i != n-1)
8450 error (_("Misplaced 'others' clause"));
8451 aggregate_assign_others (container, lhs, exp, pos, indices,
8452 num_indices, low_index, high_index);
8453 break;
8454 default:
8455 error (_("Internal error: bad aggregate clause"));
8456 }
8457 }
8458
8459 return container;
8460}
8461
8462/* Assign into the component of LHS indexed by the OP_POSITIONAL
8463 construct at *POS, updating *POS past the construct, given that
8464 the positions are relative to lower bound LOW, where HIGH is the
8465 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8466 updating *NUM_INDICES as needed. CONTAINER is as for
8467 assign_aggregate. */
8468static void
8469aggregate_assign_positional (struct value *container,
8470 struct value *lhs, struct expression *exp,
8471 int *pos, LONGEST *indices, int *num_indices,
8472 int max_indices, LONGEST low, LONGEST high)
8473{
8474 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8475
8476 if (ind - 1 == high)
e1d5a0d2 8477 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8478 if (ind <= high)
8479 {
8480 add_component_interval (ind, ind, indices, num_indices, max_indices);
8481 *pos += 3;
8482 assign_component (container, lhs, ind, exp, pos);
8483 }
8484 else
8485 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8486}
8487
8488/* Assign into the components of LHS indexed by the OP_CHOICES
8489 construct at *POS, updating *POS past the construct, given that
8490 the allowable indices are LOW..HIGH. Record the indices assigned
8491 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8492 needed. CONTAINER is as for assign_aggregate. */
8493static void
8494aggregate_assign_from_choices (struct value *container,
8495 struct value *lhs, struct expression *exp,
8496 int *pos, LONGEST *indices, int *num_indices,
8497 int max_indices, LONGEST low, LONGEST high)
8498{
8499 int j;
8500 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8501 int choice_pos, expr_pc;
8502 int is_array = ada_is_direct_array_type (value_type (lhs));
8503
8504 choice_pos = *pos += 3;
8505
8506 for (j = 0; j < n_choices; j += 1)
8507 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8508 expr_pc = *pos;
8509 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8510
8511 for (j = 0; j < n_choices; j += 1)
8512 {
8513 LONGEST lower, upper;
8514 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8515
52ce6436
PH
8516 if (op == OP_DISCRETE_RANGE)
8517 {
8518 choice_pos += 1;
8519 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8520 EVAL_NORMAL));
8521 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8522 EVAL_NORMAL));
8523 }
8524 else if (is_array)
8525 {
8526 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8527 EVAL_NORMAL));
8528 upper = lower;
8529 }
8530 else
8531 {
8532 int ind;
8533 char *name;
5b4ee69b 8534
52ce6436
PH
8535 switch (op)
8536 {
8537 case OP_NAME:
8538 name = &exp->elts[choice_pos + 2].string;
8539 break;
8540 case OP_VAR_VALUE:
8541 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8542 break;
8543 default:
8544 error (_("Invalid record component association."));
8545 }
8546 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8547 ind = 0;
8548 if (! find_struct_field (name, value_type (lhs), 0,
8549 NULL, NULL, NULL, NULL, &ind))
8550 error (_("Unknown component name: %s."), name);
8551 lower = upper = ind;
8552 }
8553
8554 if (lower <= upper && (lower < low || upper > high))
8555 error (_("Index in component association out of bounds."));
8556
8557 add_component_interval (lower, upper, indices, num_indices,
8558 max_indices);
8559 while (lower <= upper)
8560 {
8561 int pos1;
5b4ee69b 8562
52ce6436
PH
8563 pos1 = expr_pc;
8564 assign_component (container, lhs, lower, exp, &pos1);
8565 lower += 1;
8566 }
8567 }
8568}
8569
8570/* Assign the value of the expression in the OP_OTHERS construct in
8571 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8572 have not been previously assigned. The index intervals already assigned
8573 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8574 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8575static void
8576aggregate_assign_others (struct value *container,
8577 struct value *lhs, struct expression *exp,
8578 int *pos, LONGEST *indices, int num_indices,
8579 LONGEST low, LONGEST high)
8580{
8581 int i;
8582 int expr_pc = *pos+1;
8583
8584 for (i = 0; i < num_indices - 2; i += 2)
8585 {
8586 LONGEST ind;
5b4ee69b 8587
52ce6436
PH
8588 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8589 {
8590 int pos;
5b4ee69b 8591
52ce6436
PH
8592 pos = expr_pc;
8593 assign_component (container, lhs, ind, exp, &pos);
8594 }
8595 }
8596 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8597}
8598
8599/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8600 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8601 modifying *SIZE as needed. It is an error if *SIZE exceeds
8602 MAX_SIZE. The resulting intervals do not overlap. */
8603static void
8604add_component_interval (LONGEST low, LONGEST high,
8605 LONGEST* indices, int *size, int max_size)
8606{
8607 int i, j;
5b4ee69b 8608
52ce6436
PH
8609 for (i = 0; i < *size; i += 2) {
8610 if (high >= indices[i] && low <= indices[i + 1])
8611 {
8612 int kh;
5b4ee69b 8613
52ce6436
PH
8614 for (kh = i + 2; kh < *size; kh += 2)
8615 if (high < indices[kh])
8616 break;
8617 if (low < indices[i])
8618 indices[i] = low;
8619 indices[i + 1] = indices[kh - 1];
8620 if (high > indices[i + 1])
8621 indices[i + 1] = high;
8622 memcpy (indices + i + 2, indices + kh, *size - kh);
8623 *size -= kh - i - 2;
8624 return;
8625 }
8626 else if (high < indices[i])
8627 break;
8628 }
8629
8630 if (*size == max_size)
8631 error (_("Internal error: miscounted aggregate components."));
8632 *size += 2;
8633 for (j = *size-1; j >= i+2; j -= 1)
8634 indices[j] = indices[j - 2];
8635 indices[i] = low;
8636 indices[i + 1] = high;
8637}
8638
6e48bd2c
JB
8639/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8640 is different. */
8641
8642static struct value *
8643ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8644{
8645 if (type == ada_check_typedef (value_type (arg2)))
8646 return arg2;
8647
8648 if (ada_is_fixed_point_type (type))
8649 return (cast_to_fixed (type, arg2));
8650
8651 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8652 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8653
8654 return value_cast (type, arg2);
8655}
8656
284614f0
JB
8657/* Evaluating Ada expressions, and printing their result.
8658 ------------------------------------------------------
8659
21649b50
JB
8660 1. Introduction:
8661 ----------------
8662
284614f0
JB
8663 We usually evaluate an Ada expression in order to print its value.
8664 We also evaluate an expression in order to print its type, which
8665 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8666 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8667 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8668 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8669 similar.
8670
8671 Evaluating expressions is a little more complicated for Ada entities
8672 than it is for entities in languages such as C. The main reason for
8673 this is that Ada provides types whose definition might be dynamic.
8674 One example of such types is variant records. Or another example
8675 would be an array whose bounds can only be known at run time.
8676
8677 The following description is a general guide as to what should be
8678 done (and what should NOT be done) in order to evaluate an expression
8679 involving such types, and when. This does not cover how the semantic
8680 information is encoded by GNAT as this is covered separatly. For the
8681 document used as the reference for the GNAT encoding, see exp_dbug.ads
8682 in the GNAT sources.
8683
8684 Ideally, we should embed each part of this description next to its
8685 associated code. Unfortunately, the amount of code is so vast right
8686 now that it's hard to see whether the code handling a particular
8687 situation might be duplicated or not. One day, when the code is
8688 cleaned up, this guide might become redundant with the comments
8689 inserted in the code, and we might want to remove it.
8690
21649b50
JB
8691 2. ``Fixing'' an Entity, the Simple Case:
8692 -----------------------------------------
8693
284614f0
JB
8694 When evaluating Ada expressions, the tricky issue is that they may
8695 reference entities whose type contents and size are not statically
8696 known. Consider for instance a variant record:
8697
8698 type Rec (Empty : Boolean := True) is record
8699 case Empty is
8700 when True => null;
8701 when False => Value : Integer;
8702 end case;
8703 end record;
8704 Yes : Rec := (Empty => False, Value => 1);
8705 No : Rec := (empty => True);
8706
8707 The size and contents of that record depends on the value of the
8708 descriminant (Rec.Empty). At this point, neither the debugging
8709 information nor the associated type structure in GDB are able to
8710 express such dynamic types. So what the debugger does is to create
8711 "fixed" versions of the type that applies to the specific object.
8712 We also informally refer to this opperation as "fixing" an object,
8713 which means creating its associated fixed type.
8714
8715 Example: when printing the value of variable "Yes" above, its fixed
8716 type would look like this:
8717
8718 type Rec is record
8719 Empty : Boolean;
8720 Value : Integer;
8721 end record;
8722
8723 On the other hand, if we printed the value of "No", its fixed type
8724 would become:
8725
8726 type Rec is record
8727 Empty : Boolean;
8728 end record;
8729
8730 Things become a little more complicated when trying to fix an entity
8731 with a dynamic type that directly contains another dynamic type,
8732 such as an array of variant records, for instance. There are
8733 two possible cases: Arrays, and records.
8734
21649b50
JB
8735 3. ``Fixing'' Arrays:
8736 ---------------------
8737
8738 The type structure in GDB describes an array in terms of its bounds,
8739 and the type of its elements. By design, all elements in the array
8740 have the same type and we cannot represent an array of variant elements
8741 using the current type structure in GDB. When fixing an array,
8742 we cannot fix the array element, as we would potentially need one
8743 fixed type per element of the array. As a result, the best we can do
8744 when fixing an array is to produce an array whose bounds and size
8745 are correct (allowing us to read it from memory), but without having
8746 touched its element type. Fixing each element will be done later,
8747 when (if) necessary.
8748
8749 Arrays are a little simpler to handle than records, because the same
8750 amount of memory is allocated for each element of the array, even if
1b536f04 8751 the amount of space actually used by each element differs from element
21649b50 8752 to element. Consider for instance the following array of type Rec:
284614f0
JB
8753
8754 type Rec_Array is array (1 .. 2) of Rec;
8755
1b536f04
JB
8756 The actual amount of memory occupied by each element might be different
8757 from element to element, depending on the value of their discriminant.
21649b50 8758 But the amount of space reserved for each element in the array remains
1b536f04 8759 fixed regardless. So we simply need to compute that size using
21649b50
JB
8760 the debugging information available, from which we can then determine
8761 the array size (we multiply the number of elements of the array by
8762 the size of each element).
8763
8764 The simplest case is when we have an array of a constrained element
8765 type. For instance, consider the following type declarations:
8766
8767 type Bounded_String (Max_Size : Integer) is
8768 Length : Integer;
8769 Buffer : String (1 .. Max_Size);
8770 end record;
8771 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8772
8773 In this case, the compiler describes the array as an array of
8774 variable-size elements (identified by its XVS suffix) for which
8775 the size can be read in the parallel XVZ variable.
8776
8777 In the case of an array of an unconstrained element type, the compiler
8778 wraps the array element inside a private PAD type. This type should not
8779 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8780 that we also use the adjective "aligner" in our code to designate
8781 these wrapper types.
8782
1b536f04 8783 In some cases, the size allocated for each element is statically
21649b50
JB
8784 known. In that case, the PAD type already has the correct size,
8785 and the array element should remain unfixed.
8786
8787 But there are cases when this size is not statically known.
8788 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8789
8790 type Dynamic is array (1 .. Five) of Integer;
8791 type Wrapper (Has_Length : Boolean := False) is record
8792 Data : Dynamic;
8793 case Has_Length is
8794 when True => Length : Integer;
8795 when False => null;
8796 end case;
8797 end record;
8798 type Wrapper_Array is array (1 .. 2) of Wrapper;
8799
8800 Hello : Wrapper_Array := (others => (Has_Length => True,
8801 Data => (others => 17),
8802 Length => 1));
8803
8804
8805 The debugging info would describe variable Hello as being an
8806 array of a PAD type. The size of that PAD type is not statically
8807 known, but can be determined using a parallel XVZ variable.
8808 In that case, a copy of the PAD type with the correct size should
8809 be used for the fixed array.
8810
21649b50
JB
8811 3. ``Fixing'' record type objects:
8812 ----------------------------------
8813
8814 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8815 record types. In this case, in order to compute the associated
8816 fixed type, we need to determine the size and offset of each of
8817 its components. This, in turn, requires us to compute the fixed
8818 type of each of these components.
8819
8820 Consider for instance the example:
8821
8822 type Bounded_String (Max_Size : Natural) is record
8823 Str : String (1 .. Max_Size);
8824 Length : Natural;
8825 end record;
8826 My_String : Bounded_String (Max_Size => 10);
8827
8828 In that case, the position of field "Length" depends on the size
8829 of field Str, which itself depends on the value of the Max_Size
21649b50 8830 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8831 we need to fix the type of field Str. Therefore, fixing a variant
8832 record requires us to fix each of its components.
8833
8834 However, if a component does not have a dynamic size, the component
8835 should not be fixed. In particular, fields that use a PAD type
8836 should not fixed. Here is an example where this might happen
8837 (assuming type Rec above):
8838
8839 type Container (Big : Boolean) is record
8840 First : Rec;
8841 After : Integer;
8842 case Big is
8843 when True => Another : Integer;
8844 when False => null;
8845 end case;
8846 end record;
8847 My_Container : Container := (Big => False,
8848 First => (Empty => True),
8849 After => 42);
8850
8851 In that example, the compiler creates a PAD type for component First,
8852 whose size is constant, and then positions the component After just
8853 right after it. The offset of component After is therefore constant
8854 in this case.
8855
8856 The debugger computes the position of each field based on an algorithm
8857 that uses, among other things, the actual position and size of the field
21649b50
JB
8858 preceding it. Let's now imagine that the user is trying to print
8859 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8860 end up computing the offset of field After based on the size of the
8861 fixed version of field First. And since in our example First has
8862 only one actual field, the size of the fixed type is actually smaller
8863 than the amount of space allocated to that field, and thus we would
8864 compute the wrong offset of field After.
8865
21649b50
JB
8866 To make things more complicated, we need to watch out for dynamic
8867 components of variant records (identified by the ___XVL suffix in
8868 the component name). Even if the target type is a PAD type, the size
8869 of that type might not be statically known. So the PAD type needs
8870 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8871 we might end up with the wrong size for our component. This can be
8872 observed with the following type declarations:
284614f0
JB
8873
8874 type Octal is new Integer range 0 .. 7;
8875 type Octal_Array is array (Positive range <>) of Octal;
8876 pragma Pack (Octal_Array);
8877
8878 type Octal_Buffer (Size : Positive) is record
8879 Buffer : Octal_Array (1 .. Size);
8880 Length : Integer;
8881 end record;
8882
8883 In that case, Buffer is a PAD type whose size is unset and needs
8884 to be computed by fixing the unwrapped type.
8885
21649b50
JB
8886 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8887 ----------------------------------------------------------
8888
8889 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
8890 thus far, be actually fixed?
8891
8892 The answer is: Only when referencing that element. For instance
8893 when selecting one component of a record, this specific component
8894 should be fixed at that point in time. Or when printing the value
8895 of a record, each component should be fixed before its value gets
8896 printed. Similarly for arrays, the element of the array should be
8897 fixed when printing each element of the array, or when extracting
8898 one element out of that array. On the other hand, fixing should
8899 not be performed on the elements when taking a slice of an array!
8900
8901 Note that one of the side-effects of miscomputing the offset and
8902 size of each field is that we end up also miscomputing the size
8903 of the containing type. This can have adverse results when computing
8904 the value of an entity. GDB fetches the value of an entity based
8905 on the size of its type, and thus a wrong size causes GDB to fetch
8906 the wrong amount of memory. In the case where the computed size is
8907 too small, GDB fetches too little data to print the value of our
8908 entiry. Results in this case as unpredicatble, as we usually read
8909 past the buffer containing the data =:-o. */
8910
8911/* Implement the evaluate_exp routine in the exp_descriptor structure
8912 for the Ada language. */
8913
52ce6436 8914static struct value *
ebf56fd3 8915ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8916 int *pos, enum noside noside)
14f9c5c9
AS
8917{
8918 enum exp_opcode op;
b5385fc0 8919 int tem;
14f9c5c9
AS
8920 int pc;
8921 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8922 struct type *type;
52ce6436 8923 int nargs, oplen;
d2e4a39e 8924 struct value **argvec;
14f9c5c9 8925
d2e4a39e
AS
8926 pc = *pos;
8927 *pos += 1;
14f9c5c9
AS
8928 op = exp->elts[pc].opcode;
8929
d2e4a39e 8930 switch (op)
14f9c5c9
AS
8931 {
8932 default:
8933 *pos -= 1;
6e48bd2c
JB
8934 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8935 arg1 = unwrap_value (arg1);
8936
8937 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8938 then we need to perform the conversion manually, because
8939 evaluate_subexp_standard doesn't do it. This conversion is
8940 necessary in Ada because the different kinds of float/fixed
8941 types in Ada have different representations.
8942
8943 Similarly, we need to perform the conversion from OP_LONG
8944 ourselves. */
8945 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8946 arg1 = ada_value_cast (expect_type, arg1, noside);
8947
8948 return arg1;
4c4b4cd2
PH
8949
8950 case OP_STRING:
8951 {
76a01679 8952 struct value *result;
5b4ee69b 8953
76a01679
JB
8954 *pos -= 1;
8955 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8956 /* The result type will have code OP_STRING, bashed there from
8957 OP_ARRAY. Bash it back. */
df407dfe
AC
8958 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8959 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8960 return result;
4c4b4cd2 8961 }
14f9c5c9
AS
8962
8963 case UNOP_CAST:
8964 (*pos) += 2;
8965 type = exp->elts[pc + 1].type;
8966 arg1 = evaluate_subexp (type, exp, pos, noside);
8967 if (noside == EVAL_SKIP)
4c4b4cd2 8968 goto nosideret;
6e48bd2c 8969 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8970 return arg1;
8971
4c4b4cd2
PH
8972 case UNOP_QUAL:
8973 (*pos) += 2;
8974 type = exp->elts[pc + 1].type;
8975 return ada_evaluate_subexp (type, exp, pos, noside);
8976
14f9c5c9
AS
8977 case BINOP_ASSIGN:
8978 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8979 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8980 {
8981 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8982 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8983 return arg1;
8984 return ada_value_assign (arg1, arg1);
8985 }
003f3813
JB
8986 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8987 except if the lhs of our assignment is a convenience variable.
8988 In the case of assigning to a convenience variable, the lhs
8989 should be exactly the result of the evaluation of the rhs. */
8990 type = value_type (arg1);
8991 if (VALUE_LVAL (arg1) == lval_internalvar)
8992 type = NULL;
8993 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8994 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8995 return arg1;
df407dfe
AC
8996 if (ada_is_fixed_point_type (value_type (arg1)))
8997 arg2 = cast_to_fixed (value_type (arg1), arg2);
8998 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8999 error
323e0a4a 9000 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9001 else
df407dfe 9002 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9003 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9004
9005 case BINOP_ADD:
9006 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9007 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9008 if (noside == EVAL_SKIP)
4c4b4cd2 9009 goto nosideret;
2ac8a782
JB
9010 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9011 return (value_from_longest
9012 (value_type (arg1),
9013 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9014 if ((ada_is_fixed_point_type (value_type (arg1))
9015 || ada_is_fixed_point_type (value_type (arg2)))
9016 && value_type (arg1) != value_type (arg2))
323e0a4a 9017 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9018 /* Do the addition, and cast the result to the type of the first
9019 argument. We cannot cast the result to a reference type, so if
9020 ARG1 is a reference type, find its underlying type. */
9021 type = value_type (arg1);
9022 while (TYPE_CODE (type) == TYPE_CODE_REF)
9023 type = TYPE_TARGET_TYPE (type);
f44316fa 9024 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9025 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9026
9027 case BINOP_SUB:
9028 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9029 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9030 if (noside == EVAL_SKIP)
4c4b4cd2 9031 goto nosideret;
2ac8a782
JB
9032 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9033 return (value_from_longest
9034 (value_type (arg1),
9035 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9036 if ((ada_is_fixed_point_type (value_type (arg1))
9037 || ada_is_fixed_point_type (value_type (arg2)))
9038 && value_type (arg1) != value_type (arg2))
323e0a4a 9039 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
9040 /* Do the substraction, and cast the result to the type of the first
9041 argument. We cannot cast the result to a reference type, so if
9042 ARG1 is a reference type, find its underlying type. */
9043 type = value_type (arg1);
9044 while (TYPE_CODE (type) == TYPE_CODE_REF)
9045 type = TYPE_TARGET_TYPE (type);
f44316fa 9046 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9047 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9048
9049 case BINOP_MUL:
9050 case BINOP_DIV:
e1578042
JB
9051 case BINOP_REM:
9052 case BINOP_MOD:
14f9c5c9
AS
9053 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9054 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9055 if (noside == EVAL_SKIP)
4c4b4cd2 9056 goto nosideret;
e1578042 9057 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9058 {
9059 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9060 return value_zero (value_type (arg1), not_lval);
9061 }
14f9c5c9 9062 else
4c4b4cd2 9063 {
a53b7a21 9064 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9065 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9066 arg1 = cast_from_fixed (type, arg1);
df407dfe 9067 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9068 arg2 = cast_from_fixed (type, arg2);
f44316fa 9069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9070 return ada_value_binop (arg1, arg2, op);
9071 }
9072
4c4b4cd2
PH
9073 case BINOP_EQUAL:
9074 case BINOP_NOTEQUAL:
14f9c5c9 9075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9076 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9077 if (noside == EVAL_SKIP)
76a01679 9078 goto nosideret;
4c4b4cd2 9079 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9080 tem = 0;
4c4b4cd2 9081 else
f44316fa
UW
9082 {
9083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9084 tem = ada_value_equal (arg1, arg2);
9085 }
4c4b4cd2 9086 if (op == BINOP_NOTEQUAL)
76a01679 9087 tem = !tem;
fbb06eb1
UW
9088 type = language_bool_type (exp->language_defn, exp->gdbarch);
9089 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9090
9091 case UNOP_NEG:
9092 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9093 if (noside == EVAL_SKIP)
9094 goto nosideret;
df407dfe
AC
9095 else if (ada_is_fixed_point_type (value_type (arg1)))
9096 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9097 else
f44316fa
UW
9098 {
9099 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9100 return value_neg (arg1);
9101 }
4c4b4cd2 9102
2330c6c6
JB
9103 case BINOP_LOGICAL_AND:
9104 case BINOP_LOGICAL_OR:
9105 case UNOP_LOGICAL_NOT:
000d5124
JB
9106 {
9107 struct value *val;
9108
9109 *pos -= 1;
9110 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9111 type = language_bool_type (exp->language_defn, exp->gdbarch);
9112 return value_cast (type, val);
000d5124 9113 }
2330c6c6
JB
9114
9115 case BINOP_BITWISE_AND:
9116 case BINOP_BITWISE_IOR:
9117 case BINOP_BITWISE_XOR:
000d5124
JB
9118 {
9119 struct value *val;
9120
9121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9122 *pos = pc;
9123 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9124
9125 return value_cast (value_type (arg1), val);
9126 }
2330c6c6 9127
14f9c5c9
AS
9128 case OP_VAR_VALUE:
9129 *pos -= 1;
6799def4 9130
14f9c5c9 9131 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9132 {
9133 *pos += 4;
9134 goto nosideret;
9135 }
9136 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9137 /* Only encountered when an unresolved symbol occurs in a
9138 context other than a function call, in which case, it is
52ce6436 9139 invalid. */
323e0a4a 9140 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9141 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9142 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9143 {
0c1f74cf 9144 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9145 /* Check to see if this is a tagged type. We also need to handle
9146 the case where the type is a reference to a tagged type, but
9147 we have to be careful to exclude pointers to tagged types.
9148 The latter should be shown as usual (as a pointer), whereas
9149 a reference should mostly be transparent to the user. */
9150 if (ada_is_tagged_type (type, 0)
9151 || (TYPE_CODE(type) == TYPE_CODE_REF
9152 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9153 {
9154 /* Tagged types are a little special in the fact that the real
9155 type is dynamic and can only be determined by inspecting the
9156 object's tag. This means that we need to get the object's
9157 value first (EVAL_NORMAL) and then extract the actual object
9158 type from its tag.
9159
9160 Note that we cannot skip the final step where we extract
9161 the object type from its tag, because the EVAL_NORMAL phase
9162 results in dynamic components being resolved into fixed ones.
9163 This can cause problems when trying to print the type
9164 description of tagged types whose parent has a dynamic size:
9165 We use the type name of the "_parent" component in order
9166 to print the name of the ancestor type in the type description.
9167 If that component had a dynamic size, the resolution into
9168 a fixed type would result in the loss of that type name,
9169 thus preventing us from printing the name of the ancestor
9170 type in the type description. */
b79819ba
JB
9171 struct type *actual_type;
9172
0c1f74cf 9173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9174 actual_type = type_from_tag (ada_value_tag (arg1));
9175 if (actual_type == NULL)
9176 /* If, for some reason, we were unable to determine
9177 the actual type from the tag, then use the static
9178 approximation that we just computed as a fallback.
9179 This can happen if the debugging information is
9180 incomplete, for instance. */
9181 actual_type = type;
9182
9183 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9184 }
9185
4c4b4cd2
PH
9186 *pos += 4;
9187 return value_zero
9188 (to_static_fixed_type
9189 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9190 not_lval);
9191 }
d2e4a39e 9192 else
4c4b4cd2 9193 {
284614f0
JB
9194 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9195 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9196 return ada_to_fixed_value (arg1);
9197 }
9198
9199 case OP_FUNCALL:
9200 (*pos) += 2;
9201
9202 /* Allocate arg vector, including space for the function to be
9203 called in argvec[0] and a terminating NULL. */
9204 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9205 argvec =
9206 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9207
9208 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9209 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9210 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9211 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9212 else
9213 {
9214 for (tem = 0; tem <= nargs; tem += 1)
9215 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9216 argvec[tem] = 0;
9217
9218 if (noside == EVAL_SKIP)
9219 goto nosideret;
9220 }
9221
ad82864c
JB
9222 if (ada_is_constrained_packed_array_type
9223 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9224 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9225 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9226 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9227 /* This is a packed array that has already been fixed, and
9228 therefore already coerced to a simple array. Nothing further
9229 to do. */
9230 ;
df407dfe
AC
9231 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9232 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9233 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9234 argvec[0] = value_addr (argvec[0]);
9235
df407dfe 9236 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
9237 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9238 {
61ee279c 9239 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9240 {
9241 case TYPE_CODE_FUNC:
61ee279c 9242 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9243 break;
9244 case TYPE_CODE_ARRAY:
9245 break;
9246 case TYPE_CODE_STRUCT:
9247 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9248 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9249 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9250 break;
9251 default:
323e0a4a 9252 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9253 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9254 break;
9255 }
9256 }
9257
9258 switch (TYPE_CODE (type))
9259 {
9260 case TYPE_CODE_FUNC:
9261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9262 return allocate_value (TYPE_TARGET_TYPE (type));
9263 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9264 case TYPE_CODE_STRUCT:
9265 {
9266 int arity;
9267
4c4b4cd2
PH
9268 arity = ada_array_arity (type);
9269 type = ada_array_element_type (type, nargs);
9270 if (type == NULL)
323e0a4a 9271 error (_("cannot subscript or call a record"));
4c4b4cd2 9272 if (arity != nargs)
323e0a4a 9273 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9274 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9275 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9276 return
9277 unwrap_value (ada_value_subscript
9278 (argvec[0], nargs, argvec + 1));
9279 }
9280 case TYPE_CODE_ARRAY:
9281 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9282 {
9283 type = ada_array_element_type (type, nargs);
9284 if (type == NULL)
323e0a4a 9285 error (_("element type of array unknown"));
4c4b4cd2 9286 else
0a07e705 9287 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9288 }
9289 return
9290 unwrap_value (ada_value_subscript
9291 (ada_coerce_to_simple_array (argvec[0]),
9292 nargs, argvec + 1));
9293 case TYPE_CODE_PTR: /* Pointer to array */
9294 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9296 {
9297 type = ada_array_element_type (type, nargs);
9298 if (type == NULL)
323e0a4a 9299 error (_("element type of array unknown"));
4c4b4cd2 9300 else
0a07e705 9301 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9302 }
9303 return
9304 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9305 nargs, argvec + 1));
9306
9307 default:
e1d5a0d2
PH
9308 error (_("Attempt to index or call something other than an "
9309 "array or function"));
4c4b4cd2
PH
9310 }
9311
9312 case TERNOP_SLICE:
9313 {
9314 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9315 struct value *low_bound_val =
9316 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9317 struct value *high_bound_val =
9318 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9319 LONGEST low_bound;
9320 LONGEST high_bound;
5b4ee69b 9321
994b9211
AC
9322 low_bound_val = coerce_ref (low_bound_val);
9323 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9324 low_bound = pos_atr (low_bound_val);
9325 high_bound = pos_atr (high_bound_val);
963a6417 9326
4c4b4cd2
PH
9327 if (noside == EVAL_SKIP)
9328 goto nosideret;
9329
4c4b4cd2
PH
9330 /* If this is a reference to an aligner type, then remove all
9331 the aligners. */
df407dfe
AC
9332 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9333 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9334 TYPE_TARGET_TYPE (value_type (array)) =
9335 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9336
ad82864c 9337 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9338 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9339
9340 /* If this is a reference to an array or an array lvalue,
9341 convert to a pointer. */
df407dfe
AC
9342 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9343 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9344 && VALUE_LVAL (array) == lval_memory))
9345 array = value_addr (array);
9346
1265e4aa 9347 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9348 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9349 (value_type (array))))
0b5d8877 9350 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9351
9352 array = ada_coerce_to_simple_array_ptr (array);
9353
714e53ab
PH
9354 /* If we have more than one level of pointer indirection,
9355 dereference the value until we get only one level. */
df407dfe
AC
9356 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9357 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9358 == TYPE_CODE_PTR))
9359 array = value_ind (array);
9360
9361 /* Make sure we really do have an array type before going further,
9362 to avoid a SEGV when trying to get the index type or the target
9363 type later down the road if the debug info generated by
9364 the compiler is incorrect or incomplete. */
df407dfe 9365 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9366 error (_("cannot take slice of non-array"));
714e53ab 9367
df407dfe 9368 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9369 {
0b5d8877 9370 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9371 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9372 low_bound);
9373 else
9374 {
9375 struct type *arr_type0 =
df407dfe 9376 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9377 NULL, 1);
5b4ee69b 9378
f5938064
JG
9379 return ada_value_slice_from_ptr (array, arr_type0,
9380 longest_to_int (low_bound),
9381 longest_to_int (high_bound));
4c4b4cd2
PH
9382 }
9383 }
9384 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9385 return array;
9386 else if (high_bound < low_bound)
df407dfe 9387 return empty_array (value_type (array), low_bound);
4c4b4cd2 9388 else
529cad9c
PH
9389 return ada_value_slice (array, longest_to_int (low_bound),
9390 longest_to_int (high_bound));
4c4b4cd2 9391 }
14f9c5c9 9392
4c4b4cd2
PH
9393 case UNOP_IN_RANGE:
9394 (*pos) += 2;
9395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9396 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9397
14f9c5c9 9398 if (noside == EVAL_SKIP)
4c4b4cd2 9399 goto nosideret;
14f9c5c9 9400
4c4b4cd2
PH
9401 switch (TYPE_CODE (type))
9402 {
9403 default:
e1d5a0d2
PH
9404 lim_warning (_("Membership test incompletely implemented; "
9405 "always returns true"));
fbb06eb1
UW
9406 type = language_bool_type (exp->language_defn, exp->gdbarch);
9407 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9408
9409 case TYPE_CODE_RANGE:
030b4912
UW
9410 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9411 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9412 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9413 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9414 type = language_bool_type (exp->language_defn, exp->gdbarch);
9415 return
9416 value_from_longest (type,
4c4b4cd2
PH
9417 (value_less (arg1, arg3)
9418 || value_equal (arg1, arg3))
9419 && (value_less (arg2, arg1)
9420 || value_equal (arg2, arg1)));
9421 }
9422
9423 case BINOP_IN_BOUNDS:
14f9c5c9 9424 (*pos) += 2;
4c4b4cd2
PH
9425 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9426 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9427
4c4b4cd2
PH
9428 if (noside == EVAL_SKIP)
9429 goto nosideret;
14f9c5c9 9430
4c4b4cd2 9431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9432 {
9433 type = language_bool_type (exp->language_defn, exp->gdbarch);
9434 return value_zero (type, not_lval);
9435 }
14f9c5c9 9436
4c4b4cd2 9437 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9438
1eea4ebd
UW
9439 type = ada_index_type (value_type (arg2), tem, "range");
9440 if (!type)
9441 type = value_type (arg1);
14f9c5c9 9442
1eea4ebd
UW
9443 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9444 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9445
f44316fa
UW
9446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9447 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9448 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9449 return
fbb06eb1 9450 value_from_longest (type,
4c4b4cd2
PH
9451 (value_less (arg1, arg3)
9452 || value_equal (arg1, arg3))
9453 && (value_less (arg2, arg1)
9454 || value_equal (arg2, arg1)));
9455
9456 case TERNOP_IN_RANGE:
9457 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9458 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9459 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9460
9461 if (noside == EVAL_SKIP)
9462 goto nosideret;
9463
f44316fa
UW
9464 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9466 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9467 return
fbb06eb1 9468 value_from_longest (type,
4c4b4cd2
PH
9469 (value_less (arg1, arg3)
9470 || value_equal (arg1, arg3))
9471 && (value_less (arg2, arg1)
9472 || value_equal (arg2, arg1)));
9473
9474 case OP_ATR_FIRST:
9475 case OP_ATR_LAST:
9476 case OP_ATR_LENGTH:
9477 {
76a01679 9478 struct type *type_arg;
5b4ee69b 9479
76a01679
JB
9480 if (exp->elts[*pos].opcode == OP_TYPE)
9481 {
9482 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9483 arg1 = NULL;
5bc23cb3 9484 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9485 }
9486 else
9487 {
9488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9489 type_arg = NULL;
9490 }
9491
9492 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9493 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9494 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9495 *pos += 4;
9496
9497 if (noside == EVAL_SKIP)
9498 goto nosideret;
9499
9500 if (type_arg == NULL)
9501 {
9502 arg1 = ada_coerce_ref (arg1);
9503
ad82864c 9504 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9505 arg1 = ada_coerce_to_simple_array (arg1);
9506
1eea4ebd
UW
9507 type = ada_index_type (value_type (arg1), tem,
9508 ada_attribute_name (op));
9509 if (type == NULL)
9510 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9511
9512 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9513 return allocate_value (type);
76a01679
JB
9514
9515 switch (op)
9516 {
9517 default: /* Should never happen. */
323e0a4a 9518 error (_("unexpected attribute encountered"));
76a01679 9519 case OP_ATR_FIRST:
1eea4ebd
UW
9520 return value_from_longest
9521 (type, ada_array_bound (arg1, tem, 0));
76a01679 9522 case OP_ATR_LAST:
1eea4ebd
UW
9523 return value_from_longest
9524 (type, ada_array_bound (arg1, tem, 1));
76a01679 9525 case OP_ATR_LENGTH:
1eea4ebd
UW
9526 return value_from_longest
9527 (type, ada_array_length (arg1, tem));
76a01679
JB
9528 }
9529 }
9530 else if (discrete_type_p (type_arg))
9531 {
9532 struct type *range_type;
9533 char *name = ada_type_name (type_arg);
5b4ee69b 9534
76a01679
JB
9535 range_type = NULL;
9536 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9537 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9538 if (range_type == NULL)
9539 range_type = type_arg;
9540 switch (op)
9541 {
9542 default:
323e0a4a 9543 error (_("unexpected attribute encountered"));
76a01679 9544 case OP_ATR_FIRST:
690cc4eb 9545 return value_from_longest
43bbcdc2 9546 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9547 case OP_ATR_LAST:
690cc4eb 9548 return value_from_longest
43bbcdc2 9549 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9550 case OP_ATR_LENGTH:
323e0a4a 9551 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9552 }
9553 }
9554 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9555 error (_("unimplemented type attribute"));
76a01679
JB
9556 else
9557 {
9558 LONGEST low, high;
9559
ad82864c
JB
9560 if (ada_is_constrained_packed_array_type (type_arg))
9561 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9562
1eea4ebd 9563 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9564 if (type == NULL)
1eea4ebd
UW
9565 type = builtin_type (exp->gdbarch)->builtin_int;
9566
76a01679
JB
9567 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9568 return allocate_value (type);
9569
9570 switch (op)
9571 {
9572 default:
323e0a4a 9573 error (_("unexpected attribute encountered"));
76a01679 9574 case OP_ATR_FIRST:
1eea4ebd 9575 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9576 return value_from_longest (type, low);
9577 case OP_ATR_LAST:
1eea4ebd 9578 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9579 return value_from_longest (type, high);
9580 case OP_ATR_LENGTH:
1eea4ebd
UW
9581 low = ada_array_bound_from_type (type_arg, tem, 0);
9582 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9583 return value_from_longest (type, high - low + 1);
9584 }
9585 }
14f9c5c9
AS
9586 }
9587
4c4b4cd2
PH
9588 case OP_ATR_TAG:
9589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9590 if (noside == EVAL_SKIP)
76a01679 9591 goto nosideret;
4c4b4cd2
PH
9592
9593 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9594 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9595
9596 return ada_value_tag (arg1);
9597
9598 case OP_ATR_MIN:
9599 case OP_ATR_MAX:
9600 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9601 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9602 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9603 if (noside == EVAL_SKIP)
76a01679 9604 goto nosideret;
d2e4a39e 9605 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9606 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9607 else
f44316fa
UW
9608 {
9609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9610 return value_binop (arg1, arg2,
9611 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9612 }
14f9c5c9 9613
4c4b4cd2
PH
9614 case OP_ATR_MODULUS:
9615 {
31dedfee 9616 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9617
5b4ee69b 9618 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9619 if (noside == EVAL_SKIP)
9620 goto nosideret;
4c4b4cd2 9621
76a01679 9622 if (!ada_is_modular_type (type_arg))
323e0a4a 9623 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9624
76a01679
JB
9625 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9626 ada_modulus (type_arg));
4c4b4cd2
PH
9627 }
9628
9629
9630 case OP_ATR_POS:
9631 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9633 if (noside == EVAL_SKIP)
76a01679 9634 goto nosideret;
3cb382c9
UW
9635 type = builtin_type (exp->gdbarch)->builtin_int;
9636 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9637 return value_zero (type, not_lval);
14f9c5c9 9638 else
3cb382c9 9639 return value_pos_atr (type, arg1);
14f9c5c9 9640
4c4b4cd2
PH
9641 case OP_ATR_SIZE:
9642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9643 type = value_type (arg1);
9644
9645 /* If the argument is a reference, then dereference its type, since
9646 the user is really asking for the size of the actual object,
9647 not the size of the pointer. */
9648 if (TYPE_CODE (type) == TYPE_CODE_REF)
9649 type = TYPE_TARGET_TYPE (type);
9650
4c4b4cd2 9651 if (noside == EVAL_SKIP)
76a01679 9652 goto nosideret;
4c4b4cd2 9653 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9654 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9655 else
22601c15 9656 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9657 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9658
9659 case OP_ATR_VAL:
9660 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9661 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9662 type = exp->elts[pc + 2].type;
14f9c5c9 9663 if (noside == EVAL_SKIP)
76a01679 9664 goto nosideret;
4c4b4cd2 9665 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9666 return value_zero (type, not_lval);
4c4b4cd2 9667 else
76a01679 9668 return value_val_atr (type, arg1);
4c4b4cd2
PH
9669
9670 case BINOP_EXP:
9671 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9672 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9673 if (noside == EVAL_SKIP)
9674 goto nosideret;
9675 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9676 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9677 else
f44316fa
UW
9678 {
9679 /* For integer exponentiation operations,
9680 only promote the first argument. */
9681 if (is_integral_type (value_type (arg2)))
9682 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9683 else
9684 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9685
9686 return value_binop (arg1, arg2, op);
9687 }
4c4b4cd2
PH
9688
9689 case UNOP_PLUS:
9690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9691 if (noside == EVAL_SKIP)
9692 goto nosideret;
9693 else
9694 return arg1;
9695
9696 case UNOP_ABS:
9697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9698 if (noside == EVAL_SKIP)
9699 goto nosideret;
f44316fa 9700 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9701 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9702 return value_neg (arg1);
14f9c5c9 9703 else
4c4b4cd2 9704 return arg1;
14f9c5c9
AS
9705
9706 case UNOP_IND:
6b0d7253 9707 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9708 if (noside == EVAL_SKIP)
4c4b4cd2 9709 goto nosideret;
df407dfe 9710 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9711 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9712 {
9713 if (ada_is_array_descriptor_type (type))
9714 /* GDB allows dereferencing GNAT array descriptors. */
9715 {
9716 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 9717
4c4b4cd2 9718 if (arrType == NULL)
323e0a4a 9719 error (_("Attempt to dereference null array pointer."));
00a4c844 9720 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9721 }
9722 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9723 || TYPE_CODE (type) == TYPE_CODE_REF
9724 /* In C you can dereference an array to get the 1st elt. */
9725 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9726 {
9727 type = to_static_fixed_type
9728 (ada_aligned_type
9729 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9730 check_size (type);
9731 return value_zero (type, lval_memory);
9732 }
4c4b4cd2 9733 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9734 {
9735 /* GDB allows dereferencing an int. */
9736 if (expect_type == NULL)
9737 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9738 lval_memory);
9739 else
9740 {
9741 expect_type =
9742 to_static_fixed_type (ada_aligned_type (expect_type));
9743 return value_zero (expect_type, lval_memory);
9744 }
9745 }
4c4b4cd2 9746 else
323e0a4a 9747 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9748 }
76a01679 9749 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9750 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9751
96967637
JB
9752 if (TYPE_CODE (type) == TYPE_CODE_INT)
9753 /* GDB allows dereferencing an int. If we were given
9754 the expect_type, then use that as the target type.
9755 Otherwise, assume that the target type is an int. */
9756 {
9757 if (expect_type != NULL)
9758 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9759 arg1));
9760 else
9761 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9762 (CORE_ADDR) value_as_address (arg1));
9763 }
6b0d7253 9764
4c4b4cd2
PH
9765 if (ada_is_array_descriptor_type (type))
9766 /* GDB allows dereferencing GNAT array descriptors. */
9767 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9768 else
4c4b4cd2 9769 return ada_value_ind (arg1);
14f9c5c9
AS
9770
9771 case STRUCTOP_STRUCT:
9772 tem = longest_to_int (exp->elts[pc + 1].longconst);
9773 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9774 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9775 if (noside == EVAL_SKIP)
4c4b4cd2 9776 goto nosideret;
14f9c5c9 9777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9778 {
df407dfe 9779 struct type *type1 = value_type (arg1);
5b4ee69b 9780
76a01679
JB
9781 if (ada_is_tagged_type (type1, 1))
9782 {
9783 type = ada_lookup_struct_elt_type (type1,
9784 &exp->elts[pc + 2].string,
9785 1, 1, NULL);
9786 if (type == NULL)
9787 /* In this case, we assume that the field COULD exist
9788 in some extension of the type. Return an object of
9789 "type" void, which will match any formal
9790 (see ada_type_match). */
30b15541
UW
9791 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9792 lval_memory);
76a01679
JB
9793 }
9794 else
9795 type =
9796 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9797 0, NULL);
9798
9799 return value_zero (ada_aligned_type (type), lval_memory);
9800 }
14f9c5c9 9801 else
284614f0
JB
9802 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9803 arg1 = unwrap_value (arg1);
9804 return ada_to_fixed_value (arg1);
9805
14f9c5c9 9806 case OP_TYPE:
4c4b4cd2
PH
9807 /* The value is not supposed to be used. This is here to make it
9808 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9809 (*pos) += 2;
9810 if (noside == EVAL_SKIP)
4c4b4cd2 9811 goto nosideret;
14f9c5c9 9812 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9813 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9814 else
323e0a4a 9815 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9816
9817 case OP_AGGREGATE:
9818 case OP_CHOICES:
9819 case OP_OTHERS:
9820 case OP_DISCRETE_RANGE:
9821 case OP_POSITIONAL:
9822 case OP_NAME:
9823 if (noside == EVAL_NORMAL)
9824 switch (op)
9825 {
9826 case OP_NAME:
9827 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9828 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9829 case OP_AGGREGATE:
9830 error (_("Aggregates only allowed on the right of an assignment"));
9831 default:
e1d5a0d2 9832 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9833 }
9834
9835 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9836 *pos += oplen - 1;
9837 for (tem = 0; tem < nargs; tem += 1)
9838 ada_evaluate_subexp (NULL, exp, pos, noside);
9839 goto nosideret;
14f9c5c9
AS
9840 }
9841
9842nosideret:
22601c15 9843 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9844}
14f9c5c9 9845\f
d2e4a39e 9846
4c4b4cd2 9847 /* Fixed point */
14f9c5c9
AS
9848
9849/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9850 type name that encodes the 'small and 'delta information.
4c4b4cd2 9851 Otherwise, return NULL. */
14f9c5c9 9852
d2e4a39e 9853static const char *
ebf56fd3 9854fixed_type_info (struct type *type)
14f9c5c9 9855{
d2e4a39e 9856 const char *name = ada_type_name (type);
14f9c5c9
AS
9857 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9858
d2e4a39e
AS
9859 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9860 {
14f9c5c9 9861 const char *tail = strstr (name, "___XF_");
5b4ee69b 9862
14f9c5c9 9863 if (tail == NULL)
4c4b4cd2 9864 return NULL;
d2e4a39e 9865 else
4c4b4cd2 9866 return tail + 5;
14f9c5c9
AS
9867 }
9868 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9869 return fixed_type_info (TYPE_TARGET_TYPE (type));
9870 else
9871 return NULL;
9872}
9873
4c4b4cd2 9874/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9875
9876int
ebf56fd3 9877ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9878{
9879 return fixed_type_info (type) != NULL;
9880}
9881
4c4b4cd2
PH
9882/* Return non-zero iff TYPE represents a System.Address type. */
9883
9884int
9885ada_is_system_address_type (struct type *type)
9886{
9887 return (TYPE_NAME (type)
9888 && strcmp (TYPE_NAME (type), "system__address") == 0);
9889}
9890
14f9c5c9
AS
9891/* Assuming that TYPE is the representation of an Ada fixed-point
9892 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9893 delta cannot be determined. */
14f9c5c9
AS
9894
9895DOUBLEST
ebf56fd3 9896ada_delta (struct type *type)
14f9c5c9
AS
9897{
9898 const char *encoding = fixed_type_info (type);
facc390f 9899 DOUBLEST num, den;
14f9c5c9 9900
facc390f
JB
9901 /* Strictly speaking, num and den are encoded as integer. However,
9902 they may not fit into a long, and they will have to be converted
9903 to DOUBLEST anyway. So scan them as DOUBLEST. */
9904 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9905 &num, &den) < 2)
14f9c5c9 9906 return -1.0;
d2e4a39e 9907 else
facc390f 9908 return num / den;
14f9c5c9
AS
9909}
9910
9911/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9912 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9913
9914static DOUBLEST
ebf56fd3 9915scaling_factor (struct type *type)
14f9c5c9
AS
9916{
9917 const char *encoding = fixed_type_info (type);
facc390f 9918 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9919 int n;
d2e4a39e 9920
facc390f
JB
9921 /* Strictly speaking, num's and den's are encoded as integer. However,
9922 they may not fit into a long, and they will have to be converted
9923 to DOUBLEST anyway. So scan them as DOUBLEST. */
9924 n = sscanf (encoding,
9925 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9926 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9927 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9928
9929 if (n < 2)
9930 return 1.0;
9931 else if (n == 4)
facc390f 9932 return num1 / den1;
d2e4a39e 9933 else
facc390f 9934 return num0 / den0;
14f9c5c9
AS
9935}
9936
9937
9938/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9939 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9940
9941DOUBLEST
ebf56fd3 9942ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9943{
d2e4a39e 9944 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9945}
9946
4c4b4cd2
PH
9947/* The representation of a fixed-point value of type TYPE
9948 corresponding to the value X. */
14f9c5c9
AS
9949
9950LONGEST
ebf56fd3 9951ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9952{
9953 return (LONGEST) (x / scaling_factor (type) + 0.5);
9954}
9955
14f9c5c9 9956\f
d2e4a39e 9957
4c4b4cd2 9958 /* Range types */
14f9c5c9
AS
9959
9960/* Scan STR beginning at position K for a discriminant name, and
9961 return the value of that discriminant field of DVAL in *PX. If
9962 PNEW_K is not null, put the position of the character beyond the
9963 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9964 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9965
9966static int
07d8f827 9967scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9968 int *pnew_k)
14f9c5c9
AS
9969{
9970 static char *bound_buffer = NULL;
9971 static size_t bound_buffer_len = 0;
9972 char *bound;
9973 char *pend;
d2e4a39e 9974 struct value *bound_val;
14f9c5c9
AS
9975
9976 if (dval == NULL || str == NULL || str[k] == '\0')
9977 return 0;
9978
d2e4a39e 9979 pend = strstr (str + k, "__");
14f9c5c9
AS
9980 if (pend == NULL)
9981 {
d2e4a39e 9982 bound = str + k;
14f9c5c9
AS
9983 k += strlen (bound);
9984 }
d2e4a39e 9985 else
14f9c5c9 9986 {
d2e4a39e 9987 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9988 bound = bound_buffer;
d2e4a39e
AS
9989 strncpy (bound_buffer, str + k, pend - (str + k));
9990 bound[pend - (str + k)] = '\0';
9991 k = pend - str;
14f9c5c9 9992 }
d2e4a39e 9993
df407dfe 9994 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9995 if (bound_val == NULL)
9996 return 0;
9997
9998 *px = value_as_long (bound_val);
9999 if (pnew_k != NULL)
10000 *pnew_k = k;
10001 return 1;
10002}
10003
10004/* Value of variable named NAME in the current environment. If
10005 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10006 otherwise causes an error with message ERR_MSG. */
10007
d2e4a39e
AS
10008static struct value *
10009get_var_value (char *name, char *err_msg)
14f9c5c9 10010{
4c4b4cd2 10011 struct ada_symbol_info *syms;
14f9c5c9
AS
10012 int nsyms;
10013
4c4b4cd2
PH
10014 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10015 &syms);
14f9c5c9
AS
10016
10017 if (nsyms != 1)
10018 {
10019 if (err_msg == NULL)
4c4b4cd2 10020 return 0;
14f9c5c9 10021 else
8a3fe4f8 10022 error (("%s"), err_msg);
14f9c5c9
AS
10023 }
10024
4c4b4cd2 10025 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10026}
d2e4a39e 10027
14f9c5c9 10028/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10029 no such variable found, returns 0, and sets *FLAG to 0. If
10030 successful, sets *FLAG to 1. */
10031
14f9c5c9 10032LONGEST
4c4b4cd2 10033get_int_var_value (char *name, int *flag)
14f9c5c9 10034{
4c4b4cd2 10035 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10036
14f9c5c9
AS
10037 if (var_val == 0)
10038 {
10039 if (flag != NULL)
4c4b4cd2 10040 *flag = 0;
14f9c5c9
AS
10041 return 0;
10042 }
10043 else
10044 {
10045 if (flag != NULL)
4c4b4cd2 10046 *flag = 1;
14f9c5c9
AS
10047 return value_as_long (var_val);
10048 }
10049}
d2e4a39e 10050
14f9c5c9
AS
10051
10052/* Return a range type whose base type is that of the range type named
10053 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10054 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10055 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10056 corresponding range type from debug information; fall back to using it
10057 if symbol lookup fails. If a new type must be created, allocate it
10058 like ORIG_TYPE was. The bounds information, in general, is encoded
10059 in NAME, the base type given in the named range type. */
14f9c5c9 10060
d2e4a39e 10061static struct type *
28c85d6c 10062to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10063{
28c85d6c 10064 char *name;
14f9c5c9 10065 struct type *base_type;
d2e4a39e 10066 char *subtype_info;
14f9c5c9 10067
28c85d6c
JB
10068 gdb_assert (raw_type != NULL);
10069 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10070
1ce677a4 10071 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10072 base_type = TYPE_TARGET_TYPE (raw_type);
10073 else
10074 base_type = raw_type;
10075
28c85d6c 10076 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10077 subtype_info = strstr (name, "___XD");
10078 if (subtype_info == NULL)
690cc4eb 10079 {
43bbcdc2
PH
10080 LONGEST L = ada_discrete_type_low_bound (raw_type);
10081 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10082
690cc4eb
PH
10083 if (L < INT_MIN || U > INT_MAX)
10084 return raw_type;
10085 else
28c85d6c 10086 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10087 ada_discrete_type_low_bound (raw_type),
10088 ada_discrete_type_high_bound (raw_type));
690cc4eb 10089 }
14f9c5c9
AS
10090 else
10091 {
10092 static char *name_buf = NULL;
10093 static size_t name_len = 0;
10094 int prefix_len = subtype_info - name;
10095 LONGEST L, U;
10096 struct type *type;
10097 char *bounds_str;
10098 int n;
10099
10100 GROW_VECT (name_buf, name_len, prefix_len + 5);
10101 strncpy (name_buf, name, prefix_len);
10102 name_buf[prefix_len] = '\0';
10103
10104 subtype_info += 5;
10105 bounds_str = strchr (subtype_info, '_');
10106 n = 1;
10107
d2e4a39e 10108 if (*subtype_info == 'L')
4c4b4cd2
PH
10109 {
10110 if (!ada_scan_number (bounds_str, n, &L, &n)
10111 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10112 return raw_type;
10113 if (bounds_str[n] == '_')
10114 n += 2;
10115 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10116 n += 1;
10117 subtype_info += 1;
10118 }
d2e4a39e 10119 else
4c4b4cd2
PH
10120 {
10121 int ok;
5b4ee69b 10122
4c4b4cd2
PH
10123 strcpy (name_buf + prefix_len, "___L");
10124 L = get_int_var_value (name_buf, &ok);
10125 if (!ok)
10126 {
323e0a4a 10127 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10128 L = 1;
10129 }
10130 }
14f9c5c9 10131
d2e4a39e 10132 if (*subtype_info == 'U')
4c4b4cd2
PH
10133 {
10134 if (!ada_scan_number (bounds_str, n, &U, &n)
10135 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10136 return raw_type;
10137 }
d2e4a39e 10138 else
4c4b4cd2
PH
10139 {
10140 int ok;
5b4ee69b 10141
4c4b4cd2
PH
10142 strcpy (name_buf + prefix_len, "___U");
10143 U = get_int_var_value (name_buf, &ok);
10144 if (!ok)
10145 {
323e0a4a 10146 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10147 U = L;
10148 }
10149 }
14f9c5c9 10150
28c85d6c 10151 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10152 TYPE_NAME (type) = name;
14f9c5c9
AS
10153 return type;
10154 }
10155}
10156
4c4b4cd2
PH
10157/* True iff NAME is the name of a range type. */
10158
14f9c5c9 10159int
d2e4a39e 10160ada_is_range_type_name (const char *name)
14f9c5c9
AS
10161{
10162 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10163}
14f9c5c9 10164\f
d2e4a39e 10165
4c4b4cd2
PH
10166 /* Modular types */
10167
10168/* True iff TYPE is an Ada modular type. */
14f9c5c9 10169
14f9c5c9 10170int
d2e4a39e 10171ada_is_modular_type (struct type *type)
14f9c5c9 10172{
4c4b4cd2 10173 struct type *subranged_type = base_type (type);
14f9c5c9
AS
10174
10175 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10176 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10177 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10178}
10179
0056e4d5
JB
10180/* Try to determine the lower and upper bounds of the given modular type
10181 using the type name only. Return non-zero and set L and U as the lower
10182 and upper bounds (respectively) if successful. */
10183
10184int
10185ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10186{
10187 char *name = ada_type_name (type);
10188 char *suffix;
10189 int k;
10190 LONGEST U;
10191
10192 if (name == NULL)
10193 return 0;
10194
10195 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10196 we are looking for static bounds, which means an __XDLU suffix.
10197 Moreover, we know that the lower bound of modular types is always
10198 zero, so the actual suffix should start with "__XDLU_0__", and
10199 then be followed by the upper bound value. */
10200 suffix = strstr (name, "__XDLU_0__");
10201 if (suffix == NULL)
10202 return 0;
10203 k = 10;
10204 if (!ada_scan_number (suffix, k, &U, NULL))
10205 return 0;
10206
10207 *modulus = (ULONGEST) U + 1;
10208 return 1;
10209}
10210
4c4b4cd2
PH
10211/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10212
61ee279c 10213ULONGEST
0056e4d5 10214ada_modulus (struct type *type)
14f9c5c9 10215{
43bbcdc2 10216 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10217}
d2e4a39e 10218\f
f7f9143b
JB
10219
10220/* Ada exception catchpoint support:
10221 ---------------------------------
10222
10223 We support 3 kinds of exception catchpoints:
10224 . catchpoints on Ada exceptions
10225 . catchpoints on unhandled Ada exceptions
10226 . catchpoints on failed assertions
10227
10228 Exceptions raised during failed assertions, or unhandled exceptions
10229 could perfectly be caught with the general catchpoint on Ada exceptions.
10230 However, we can easily differentiate these two special cases, and having
10231 the option to distinguish these two cases from the rest can be useful
10232 to zero-in on certain situations.
10233
10234 Exception catchpoints are a specialized form of breakpoint,
10235 since they rely on inserting breakpoints inside known routines
10236 of the GNAT runtime. The implementation therefore uses a standard
10237 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10238 of breakpoint_ops.
10239
0259addd
JB
10240 Support in the runtime for exception catchpoints have been changed
10241 a few times already, and these changes affect the implementation
10242 of these catchpoints. In order to be able to support several
10243 variants of the runtime, we use a sniffer that will determine
10244 the runtime variant used by the program being debugged.
10245
f7f9143b
JB
10246 At this time, we do not support the use of conditions on Ada exception
10247 catchpoints. The COND and COND_STRING fields are therefore set
10248 to NULL (most of the time, see below).
10249
10250 Conditions where EXP_STRING, COND, and COND_STRING are used:
10251
10252 When a user specifies the name of a specific exception in the case
10253 of catchpoints on Ada exceptions, we store the name of that exception
10254 in the EXP_STRING. We then translate this request into an actual
10255 condition stored in COND_STRING, and then parse it into an expression
10256 stored in COND. */
10257
10258/* The different types of catchpoints that we introduced for catching
10259 Ada exceptions. */
10260
10261enum exception_catchpoint_kind
10262{
10263 ex_catch_exception,
10264 ex_catch_exception_unhandled,
10265 ex_catch_assert
10266};
10267
3d0b0fa3
JB
10268/* Ada's standard exceptions. */
10269
10270static char *standard_exc[] = {
10271 "constraint_error",
10272 "program_error",
10273 "storage_error",
10274 "tasking_error"
10275};
10276
0259addd
JB
10277typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10278
10279/* A structure that describes how to support exception catchpoints
10280 for a given executable. */
10281
10282struct exception_support_info
10283{
10284 /* The name of the symbol to break on in order to insert
10285 a catchpoint on exceptions. */
10286 const char *catch_exception_sym;
10287
10288 /* The name of the symbol to break on in order to insert
10289 a catchpoint on unhandled exceptions. */
10290 const char *catch_exception_unhandled_sym;
10291
10292 /* The name of the symbol to break on in order to insert
10293 a catchpoint on failed assertions. */
10294 const char *catch_assert_sym;
10295
10296 /* Assuming that the inferior just triggered an unhandled exception
10297 catchpoint, this function is responsible for returning the address
10298 in inferior memory where the name of that exception is stored.
10299 Return zero if the address could not be computed. */
10300 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10301};
10302
10303static CORE_ADDR ada_unhandled_exception_name_addr (void);
10304static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10305
10306/* The following exception support info structure describes how to
10307 implement exception catchpoints with the latest version of the
10308 Ada runtime (as of 2007-03-06). */
10309
10310static const struct exception_support_info default_exception_support_info =
10311{
10312 "__gnat_debug_raise_exception", /* catch_exception_sym */
10313 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10314 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10315 ada_unhandled_exception_name_addr
10316};
10317
10318/* The following exception support info structure describes how to
10319 implement exception catchpoints with a slightly older version
10320 of the Ada runtime. */
10321
10322static const struct exception_support_info exception_support_info_fallback =
10323{
10324 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10325 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10326 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10327 ada_unhandled_exception_name_addr_from_raise
10328};
10329
10330/* For each executable, we sniff which exception info structure to use
10331 and cache it in the following global variable. */
10332
10333static const struct exception_support_info *exception_info = NULL;
10334
10335/* Inspect the Ada runtime and determine which exception info structure
10336 should be used to provide support for exception catchpoints.
10337
10338 This function will always set exception_info, or raise an error. */
10339
10340static void
10341ada_exception_support_info_sniffer (void)
10342{
10343 struct symbol *sym;
10344
10345 /* If the exception info is already known, then no need to recompute it. */
10346 if (exception_info != NULL)
10347 return;
10348
10349 /* Check the latest (default) exception support info. */
10350 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10351 NULL, VAR_DOMAIN);
10352 if (sym != NULL)
10353 {
10354 exception_info = &default_exception_support_info;
10355 return;
10356 }
10357
10358 /* Try our fallback exception suport info. */
10359 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10360 NULL, VAR_DOMAIN);
10361 if (sym != NULL)
10362 {
10363 exception_info = &exception_support_info_fallback;
10364 return;
10365 }
10366
10367 /* Sometimes, it is normal for us to not be able to find the routine
10368 we are looking for. This happens when the program is linked with
10369 the shared version of the GNAT runtime, and the program has not been
10370 started yet. Inform the user of these two possible causes if
10371 applicable. */
10372
ccefe4c4 10373 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10374 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10375
10376 /* If the symbol does not exist, then check that the program is
10377 already started, to make sure that shared libraries have been
10378 loaded. If it is not started, this may mean that the symbol is
10379 in a shared library. */
10380
10381 if (ptid_get_pid (inferior_ptid) == 0)
10382 error (_("Unable to insert catchpoint. Try to start the program first."));
10383
10384 /* At this point, we know that we are debugging an Ada program and
10385 that the inferior has been started, but we still are not able to
10386 find the run-time symbols. That can mean that we are in
10387 configurable run time mode, or that a-except as been optimized
10388 out by the linker... In any case, at this point it is not worth
10389 supporting this feature. */
10390
10391 error (_("Cannot insert catchpoints in this configuration."));
10392}
10393
10394/* An observer of "executable_changed" events.
10395 Its role is to clear certain cached values that need to be recomputed
10396 each time a new executable is loaded by GDB. */
10397
10398static void
781b42b0 10399ada_executable_changed_observer (void)
0259addd
JB
10400{
10401 /* If the executable changed, then it is possible that the Ada runtime
10402 is different. So we need to invalidate the exception support info
10403 cache. */
10404 exception_info = NULL;
10405}
10406
f7f9143b
JB
10407/* True iff FRAME is very likely to be that of a function that is
10408 part of the runtime system. This is all very heuristic, but is
10409 intended to be used as advice as to what frames are uninteresting
10410 to most users. */
10411
10412static int
10413is_known_support_routine (struct frame_info *frame)
10414{
4ed6b5be 10415 struct symtab_and_line sal;
f7f9143b 10416 char *func_name;
692465f1 10417 enum language func_lang;
f7f9143b 10418 int i;
f7f9143b 10419
4ed6b5be
JB
10420 /* If this code does not have any debugging information (no symtab),
10421 This cannot be any user code. */
f7f9143b 10422
4ed6b5be 10423 find_frame_sal (frame, &sal);
f7f9143b
JB
10424 if (sal.symtab == NULL)
10425 return 1;
10426
4ed6b5be
JB
10427 /* If there is a symtab, but the associated source file cannot be
10428 located, then assume this is not user code: Selecting a frame
10429 for which we cannot display the code would not be very helpful
10430 for the user. This should also take care of case such as VxWorks
10431 where the kernel has some debugging info provided for a few units. */
f7f9143b 10432
9bbc9174 10433 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10434 return 1;
10435
4ed6b5be
JB
10436 /* Check the unit filename againt the Ada runtime file naming.
10437 We also check the name of the objfile against the name of some
10438 known system libraries that sometimes come with debugging info
10439 too. */
10440
f7f9143b
JB
10441 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10442 {
10443 re_comp (known_runtime_file_name_patterns[i]);
10444 if (re_exec (sal.symtab->filename))
10445 return 1;
4ed6b5be
JB
10446 if (sal.symtab->objfile != NULL
10447 && re_exec (sal.symtab->objfile->name))
10448 return 1;
f7f9143b
JB
10449 }
10450
4ed6b5be 10451 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10452
e9e07ba6 10453 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10454 if (func_name == NULL)
10455 return 1;
10456
10457 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10458 {
10459 re_comp (known_auxiliary_function_name_patterns[i]);
10460 if (re_exec (func_name))
10461 return 1;
10462 }
10463
10464 return 0;
10465}
10466
10467/* Find the first frame that contains debugging information and that is not
10468 part of the Ada run-time, starting from FI and moving upward. */
10469
0ef643c8 10470void
f7f9143b
JB
10471ada_find_printable_frame (struct frame_info *fi)
10472{
10473 for (; fi != NULL; fi = get_prev_frame (fi))
10474 {
10475 if (!is_known_support_routine (fi))
10476 {
10477 select_frame (fi);
10478 break;
10479 }
10480 }
10481
10482}
10483
10484/* Assuming that the inferior just triggered an unhandled exception
10485 catchpoint, return the address in inferior memory where the name
10486 of the exception is stored.
10487
10488 Return zero if the address could not be computed. */
10489
10490static CORE_ADDR
10491ada_unhandled_exception_name_addr (void)
0259addd
JB
10492{
10493 return parse_and_eval_address ("e.full_name");
10494}
10495
10496/* Same as ada_unhandled_exception_name_addr, except that this function
10497 should be used when the inferior uses an older version of the runtime,
10498 where the exception name needs to be extracted from a specific frame
10499 several frames up in the callstack. */
10500
10501static CORE_ADDR
10502ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10503{
10504 int frame_level;
10505 struct frame_info *fi;
10506
10507 /* To determine the name of this exception, we need to select
10508 the frame corresponding to RAISE_SYM_NAME. This frame is
10509 at least 3 levels up, so we simply skip the first 3 frames
10510 without checking the name of their associated function. */
10511 fi = get_current_frame ();
10512 for (frame_level = 0; frame_level < 3; frame_level += 1)
10513 if (fi != NULL)
10514 fi = get_prev_frame (fi);
10515
10516 while (fi != NULL)
10517 {
692465f1
JB
10518 char *func_name;
10519 enum language func_lang;
10520
e9e07ba6 10521 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10522 if (func_name != NULL
0259addd 10523 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10524 break; /* We found the frame we were looking for... */
10525 fi = get_prev_frame (fi);
10526 }
10527
10528 if (fi == NULL)
10529 return 0;
10530
10531 select_frame (fi);
10532 return parse_and_eval_address ("id.full_name");
10533}
10534
10535/* Assuming the inferior just triggered an Ada exception catchpoint
10536 (of any type), return the address in inferior memory where the name
10537 of the exception is stored, if applicable.
10538
10539 Return zero if the address could not be computed, or if not relevant. */
10540
10541static CORE_ADDR
10542ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10543 struct breakpoint *b)
10544{
10545 switch (ex)
10546 {
10547 case ex_catch_exception:
10548 return (parse_and_eval_address ("e.full_name"));
10549 break;
10550
10551 case ex_catch_exception_unhandled:
0259addd 10552 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10553 break;
10554
10555 case ex_catch_assert:
10556 return 0; /* Exception name is not relevant in this case. */
10557 break;
10558
10559 default:
10560 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10561 break;
10562 }
10563
10564 return 0; /* Should never be reached. */
10565}
10566
10567/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10568 any error that ada_exception_name_addr_1 might cause to be thrown.
10569 When an error is intercepted, a warning with the error message is printed,
10570 and zero is returned. */
10571
10572static CORE_ADDR
10573ada_exception_name_addr (enum exception_catchpoint_kind ex,
10574 struct breakpoint *b)
10575{
10576 struct gdb_exception e;
10577 CORE_ADDR result = 0;
10578
10579 TRY_CATCH (e, RETURN_MASK_ERROR)
10580 {
10581 result = ada_exception_name_addr_1 (ex, b);
10582 }
10583
10584 if (e.reason < 0)
10585 {
10586 warning (_("failed to get exception name: %s"), e.message);
10587 return 0;
10588 }
10589
10590 return result;
10591}
10592
10593/* Implement the PRINT_IT method in the breakpoint_ops structure
10594 for all exception catchpoint kinds. */
10595
10596static enum print_stop_action
10597print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10598{
10599 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10600 char exception_name[256];
10601
10602 if (addr != 0)
10603 {
10604 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10605 exception_name [sizeof (exception_name) - 1] = '\0';
10606 }
10607
10608 ada_find_printable_frame (get_current_frame ());
10609
10610 annotate_catchpoint (b->number);
10611 switch (ex)
10612 {
10613 case ex_catch_exception:
10614 if (addr != 0)
10615 printf_filtered (_("\nCatchpoint %d, %s at "),
10616 b->number, exception_name);
10617 else
10618 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10619 break;
10620 case ex_catch_exception_unhandled:
10621 if (addr != 0)
10622 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10623 b->number, exception_name);
10624 else
10625 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10626 b->number);
10627 break;
10628 case ex_catch_assert:
10629 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10630 b->number);
10631 break;
10632 }
10633
10634 return PRINT_SRC_AND_LOC;
10635}
10636
10637/* Implement the PRINT_ONE method in the breakpoint_ops structure
10638 for all exception catchpoint kinds. */
10639
10640static void
10641print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10642 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10643{
79a45b7d
TT
10644 struct value_print_options opts;
10645
10646 get_user_print_options (&opts);
10647 if (opts.addressprint)
f7f9143b
JB
10648 {
10649 annotate_field (4);
5af949e3 10650 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10651 }
10652
10653 annotate_field (5);
a6d9a66e 10654 *last_loc = b->loc;
f7f9143b
JB
10655 switch (ex)
10656 {
10657 case ex_catch_exception:
10658 if (b->exp_string != NULL)
10659 {
10660 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10661
10662 ui_out_field_string (uiout, "what", msg);
10663 xfree (msg);
10664 }
10665 else
10666 ui_out_field_string (uiout, "what", "all Ada exceptions");
10667
10668 break;
10669
10670 case ex_catch_exception_unhandled:
10671 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10672 break;
10673
10674 case ex_catch_assert:
10675 ui_out_field_string (uiout, "what", "failed Ada assertions");
10676 break;
10677
10678 default:
10679 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10680 break;
10681 }
10682}
10683
10684/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10685 for all exception catchpoint kinds. */
10686
10687static void
10688print_mention_exception (enum exception_catchpoint_kind ex,
10689 struct breakpoint *b)
10690{
10691 switch (ex)
10692 {
10693 case ex_catch_exception:
10694 if (b->exp_string != NULL)
10695 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10696 b->number, b->exp_string);
10697 else
10698 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10699
10700 break;
10701
10702 case ex_catch_exception_unhandled:
10703 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10704 b->number);
10705 break;
10706
10707 case ex_catch_assert:
10708 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10709 break;
10710
10711 default:
10712 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10713 break;
10714 }
10715}
10716
6149aea9
PA
10717/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10718 for all exception catchpoint kinds. */
10719
10720static void
10721print_recreate_exception (enum exception_catchpoint_kind ex,
10722 struct breakpoint *b, struct ui_file *fp)
10723{
10724 switch (ex)
10725 {
10726 case ex_catch_exception:
10727 fprintf_filtered (fp, "catch exception");
10728 if (b->exp_string != NULL)
10729 fprintf_filtered (fp, " %s", b->exp_string);
10730 break;
10731
10732 case ex_catch_exception_unhandled:
78076abc 10733 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
10734 break;
10735
10736 case ex_catch_assert:
10737 fprintf_filtered (fp, "catch assert");
10738 break;
10739
10740 default:
10741 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10742 }
10743}
10744
f7f9143b
JB
10745/* Virtual table for "catch exception" breakpoints. */
10746
10747static enum print_stop_action
10748print_it_catch_exception (struct breakpoint *b)
10749{
10750 return print_it_exception (ex_catch_exception, b);
10751}
10752
10753static void
a6d9a66e 10754print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10755{
a6d9a66e 10756 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10757}
10758
10759static void
10760print_mention_catch_exception (struct breakpoint *b)
10761{
10762 print_mention_exception (ex_catch_exception, b);
10763}
10764
6149aea9
PA
10765static void
10766print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10767{
10768 print_recreate_exception (ex_catch_exception, b, fp);
10769}
10770
f7f9143b
JB
10771static struct breakpoint_ops catch_exception_breakpoint_ops =
10772{
ce78b96d
JB
10773 NULL, /* insert */
10774 NULL, /* remove */
10775 NULL, /* breakpoint_hit */
f7f9143b
JB
10776 print_it_catch_exception,
10777 print_one_catch_exception,
6149aea9
PA
10778 print_mention_catch_exception,
10779 print_recreate_catch_exception
f7f9143b
JB
10780};
10781
10782/* Virtual table for "catch exception unhandled" breakpoints. */
10783
10784static enum print_stop_action
10785print_it_catch_exception_unhandled (struct breakpoint *b)
10786{
10787 return print_it_exception (ex_catch_exception_unhandled, b);
10788}
10789
10790static void
a6d9a66e
UW
10791print_one_catch_exception_unhandled (struct breakpoint *b,
10792 struct bp_location **last_loc)
f7f9143b 10793{
a6d9a66e 10794 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10795}
10796
10797static void
10798print_mention_catch_exception_unhandled (struct breakpoint *b)
10799{
10800 print_mention_exception (ex_catch_exception_unhandled, b);
10801}
10802
6149aea9
PA
10803static void
10804print_recreate_catch_exception_unhandled (struct breakpoint *b,
10805 struct ui_file *fp)
10806{
10807 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10808}
10809
f7f9143b 10810static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10811 NULL, /* insert */
10812 NULL, /* remove */
10813 NULL, /* breakpoint_hit */
f7f9143b
JB
10814 print_it_catch_exception_unhandled,
10815 print_one_catch_exception_unhandled,
6149aea9
PA
10816 print_mention_catch_exception_unhandled,
10817 print_recreate_catch_exception_unhandled
f7f9143b
JB
10818};
10819
10820/* Virtual table for "catch assert" breakpoints. */
10821
10822static enum print_stop_action
10823print_it_catch_assert (struct breakpoint *b)
10824{
10825 return print_it_exception (ex_catch_assert, b);
10826}
10827
10828static void
a6d9a66e 10829print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10830{
a6d9a66e 10831 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10832}
10833
10834static void
10835print_mention_catch_assert (struct breakpoint *b)
10836{
10837 print_mention_exception (ex_catch_assert, b);
10838}
10839
6149aea9
PA
10840static void
10841print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10842{
10843 print_recreate_exception (ex_catch_assert, b, fp);
10844}
10845
f7f9143b 10846static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10847 NULL, /* insert */
10848 NULL, /* remove */
10849 NULL, /* breakpoint_hit */
f7f9143b
JB
10850 print_it_catch_assert,
10851 print_one_catch_assert,
6149aea9
PA
10852 print_mention_catch_assert,
10853 print_recreate_catch_assert
f7f9143b
JB
10854};
10855
10856/* Return non-zero if B is an Ada exception catchpoint. */
10857
10858int
10859ada_exception_catchpoint_p (struct breakpoint *b)
10860{
10861 return (b->ops == &catch_exception_breakpoint_ops
10862 || b->ops == &catch_exception_unhandled_breakpoint_ops
10863 || b->ops == &catch_assert_breakpoint_ops);
10864}
10865
f7f9143b
JB
10866/* Return a newly allocated copy of the first space-separated token
10867 in ARGSP, and then adjust ARGSP to point immediately after that
10868 token.
10869
10870 Return NULL if ARGPS does not contain any more tokens. */
10871
10872static char *
10873ada_get_next_arg (char **argsp)
10874{
10875 char *args = *argsp;
10876 char *end;
10877 char *result;
10878
10879 /* Skip any leading white space. */
10880
10881 while (isspace (*args))
10882 args++;
10883
10884 if (args[0] == '\0')
10885 return NULL; /* No more arguments. */
10886
10887 /* Find the end of the current argument. */
10888
10889 end = args;
10890 while (*end != '\0' && !isspace (*end))
10891 end++;
10892
10893 /* Adjust ARGSP to point to the start of the next argument. */
10894
10895 *argsp = end;
10896
10897 /* Make a copy of the current argument and return it. */
10898
10899 result = xmalloc (end - args + 1);
10900 strncpy (result, args, end - args);
10901 result[end - args] = '\0';
10902
10903 return result;
10904}
10905
10906/* Split the arguments specified in a "catch exception" command.
10907 Set EX to the appropriate catchpoint type.
10908 Set EXP_STRING to the name of the specific exception if
10909 specified by the user. */
10910
10911static void
10912catch_ada_exception_command_split (char *args,
10913 enum exception_catchpoint_kind *ex,
10914 char **exp_string)
10915{
10916 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10917 char *exception_name;
10918
10919 exception_name = ada_get_next_arg (&args);
10920 make_cleanup (xfree, exception_name);
10921
10922 /* Check that we do not have any more arguments. Anything else
10923 is unexpected. */
10924
10925 while (isspace (*args))
10926 args++;
10927
10928 if (args[0] != '\0')
10929 error (_("Junk at end of expression"));
10930
10931 discard_cleanups (old_chain);
10932
10933 if (exception_name == NULL)
10934 {
10935 /* Catch all exceptions. */
10936 *ex = ex_catch_exception;
10937 *exp_string = NULL;
10938 }
10939 else if (strcmp (exception_name, "unhandled") == 0)
10940 {
10941 /* Catch unhandled exceptions. */
10942 *ex = ex_catch_exception_unhandled;
10943 *exp_string = NULL;
10944 }
10945 else
10946 {
10947 /* Catch a specific exception. */
10948 *ex = ex_catch_exception;
10949 *exp_string = exception_name;
10950 }
10951}
10952
10953/* Return the name of the symbol on which we should break in order to
10954 implement a catchpoint of the EX kind. */
10955
10956static const char *
10957ada_exception_sym_name (enum exception_catchpoint_kind ex)
10958{
0259addd
JB
10959 gdb_assert (exception_info != NULL);
10960
f7f9143b
JB
10961 switch (ex)
10962 {
10963 case ex_catch_exception:
0259addd 10964 return (exception_info->catch_exception_sym);
f7f9143b
JB
10965 break;
10966 case ex_catch_exception_unhandled:
0259addd 10967 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10968 break;
10969 case ex_catch_assert:
0259addd 10970 return (exception_info->catch_assert_sym);
f7f9143b
JB
10971 break;
10972 default:
10973 internal_error (__FILE__, __LINE__,
10974 _("unexpected catchpoint kind (%d)"), ex);
10975 }
10976}
10977
10978/* Return the breakpoint ops "virtual table" used for catchpoints
10979 of the EX kind. */
10980
10981static struct breakpoint_ops *
4b9eee8c 10982ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10983{
10984 switch (ex)
10985 {
10986 case ex_catch_exception:
10987 return (&catch_exception_breakpoint_ops);
10988 break;
10989 case ex_catch_exception_unhandled:
10990 return (&catch_exception_unhandled_breakpoint_ops);
10991 break;
10992 case ex_catch_assert:
10993 return (&catch_assert_breakpoint_ops);
10994 break;
10995 default:
10996 internal_error (__FILE__, __LINE__,
10997 _("unexpected catchpoint kind (%d)"), ex);
10998 }
10999}
11000
11001/* Return the condition that will be used to match the current exception
11002 being raised with the exception that the user wants to catch. This
11003 assumes that this condition is used when the inferior just triggered
11004 an exception catchpoint.
11005
11006 The string returned is a newly allocated string that needs to be
11007 deallocated later. */
11008
11009static char *
11010ada_exception_catchpoint_cond_string (const char *exp_string)
11011{
3d0b0fa3
JB
11012 int i;
11013
11014 /* The standard exceptions are a special case. They are defined in
11015 runtime units that have been compiled without debugging info; if
11016 EXP_STRING is the not-fully-qualified name of a standard
11017 exception (e.g. "constraint_error") then, during the evaluation
11018 of the condition expression, the symbol lookup on this name would
11019 *not* return this standard exception. The catchpoint condition
11020 may then be set only on user-defined exceptions which have the
11021 same not-fully-qualified name (e.g. my_package.constraint_error).
11022
11023 To avoid this unexcepted behavior, these standard exceptions are
11024 systematically prefixed by "standard". This means that "catch
11025 exception constraint_error" is rewritten into "catch exception
11026 standard.constraint_error".
11027
11028 If an exception named contraint_error is defined in another package of
11029 the inferior program, then the only way to specify this exception as a
11030 breakpoint condition is to use its fully-qualified named:
11031 e.g. my_package.constraint_error. */
11032
11033 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11034 {
11035 if (strcmp (standard_exc [i], exp_string) == 0)
11036 {
11037 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11038 exp_string);
11039 }
11040 }
f7f9143b
JB
11041 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11042}
11043
11044/* Return the expression corresponding to COND_STRING evaluated at SAL. */
11045
11046static struct expression *
11047ada_parse_catchpoint_condition (char *cond_string,
11048 struct symtab_and_line sal)
11049{
11050 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11051}
11052
11053/* Return the symtab_and_line that should be used to insert an exception
11054 catchpoint of the TYPE kind.
11055
11056 EX_STRING should contain the name of a specific exception
11057 that the catchpoint should catch, or NULL otherwise.
11058
11059 The idea behind all the remaining parameters is that their names match
11060 the name of certain fields in the breakpoint structure that are used to
11061 handle exception catchpoints. This function returns the value to which
11062 these fields should be set, depending on the type of catchpoint we need
11063 to create.
11064
11065 If COND and COND_STRING are both non-NULL, any value they might
11066 hold will be free'ed, and then replaced by newly allocated ones.
11067 These parameters are left untouched otherwise. */
11068
11069static struct symtab_and_line
11070ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11071 char **addr_string, char **cond_string,
11072 struct expression **cond, struct breakpoint_ops **ops)
11073{
11074 const char *sym_name;
11075 struct symbol *sym;
11076 struct symtab_and_line sal;
11077
0259addd
JB
11078 /* First, find out which exception support info to use. */
11079 ada_exception_support_info_sniffer ();
11080
11081 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
11082 the Ada exceptions requested by the user. */
11083
11084 sym_name = ada_exception_sym_name (ex);
11085 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11086
11087 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11088 that should be compiled with debugging information. As a result, we
11089 expect to find that symbol in the symtabs. If we don't find it, then
11090 the target most likely does not support Ada exceptions, or we cannot
11091 insert exception breakpoints yet, because the GNAT runtime hasn't been
11092 loaded yet. */
11093
11094 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11095 in such a way that no debugging information is produced for the symbol
11096 we are looking for. In this case, we could search the minimal symbols
11097 as a fall-back mechanism. This would still be operating in degraded
11098 mode, however, as we would still be missing the debugging information
11099 that is needed in order to extract the name of the exception being
11100 raised (this name is printed in the catchpoint message, and is also
11101 used when trying to catch a specific exception). We do not handle
11102 this case for now. */
11103
11104 if (sym == NULL)
0259addd 11105 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
11106
11107 /* Make sure that the symbol we found corresponds to a function. */
11108 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11109 error (_("Symbol \"%s\" is not a function (class = %d)"),
11110 sym_name, SYMBOL_CLASS (sym));
11111
11112 sal = find_function_start_sal (sym, 1);
11113
11114 /* Set ADDR_STRING. */
11115
11116 *addr_string = xstrdup (sym_name);
11117
11118 /* Set the COND and COND_STRING (if not NULL). */
11119
11120 if (cond_string != NULL && cond != NULL)
11121 {
11122 if (*cond_string != NULL)
11123 {
11124 xfree (*cond_string);
11125 *cond_string = NULL;
11126 }
11127 if (*cond != NULL)
11128 {
11129 xfree (*cond);
11130 *cond = NULL;
11131 }
11132 if (exp_string != NULL)
11133 {
11134 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11135 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11136 }
11137 }
11138
11139 /* Set OPS. */
4b9eee8c 11140 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
11141
11142 return sal;
11143}
11144
11145/* Parse the arguments (ARGS) of the "catch exception" command.
11146
11147 Set TYPE to the appropriate exception catchpoint type.
11148 If the user asked the catchpoint to catch only a specific
11149 exception, then save the exception name in ADDR_STRING.
11150
11151 See ada_exception_sal for a description of all the remaining
11152 function arguments of this function. */
11153
11154struct symtab_and_line
11155ada_decode_exception_location (char *args, char **addr_string,
11156 char **exp_string, char **cond_string,
11157 struct expression **cond,
11158 struct breakpoint_ops **ops)
11159{
11160 enum exception_catchpoint_kind ex;
11161
11162 catch_ada_exception_command_split (args, &ex, exp_string);
11163 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11164 cond, ops);
11165}
11166
11167struct symtab_and_line
11168ada_decode_assert_location (char *args, char **addr_string,
11169 struct breakpoint_ops **ops)
11170{
11171 /* Check that no argument where provided at the end of the command. */
11172
11173 if (args != NULL)
11174 {
11175 while (isspace (*args))
11176 args++;
11177 if (*args != '\0')
11178 error (_("Junk at end of arguments."));
11179 }
11180
11181 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11182 ops);
11183}
11184
4c4b4cd2
PH
11185 /* Operators */
11186/* Information about operators given special treatment in functions
11187 below. */
11188/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11189
11190#define ADA_OPERATORS \
11191 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11192 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11193 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11194 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11195 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11196 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11197 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11198 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11199 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11200 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11201 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11202 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11203 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11204 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11205 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11206 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11207 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11208 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11209 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11210
11211static void
554794dc
SDJ
11212ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11213 int *argsp)
4c4b4cd2
PH
11214{
11215 switch (exp->elts[pc - 1].opcode)
11216 {
76a01679 11217 default:
4c4b4cd2
PH
11218 operator_length_standard (exp, pc, oplenp, argsp);
11219 break;
11220
11221#define OP_DEFN(op, len, args, binop) \
11222 case op: *oplenp = len; *argsp = args; break;
11223 ADA_OPERATORS;
11224#undef OP_DEFN
52ce6436
PH
11225
11226 case OP_AGGREGATE:
11227 *oplenp = 3;
11228 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11229 break;
11230
11231 case OP_CHOICES:
11232 *oplenp = 3;
11233 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11234 break;
4c4b4cd2
PH
11235 }
11236}
11237
c0201579
JK
11238/* Implementation of the exp_descriptor method operator_check. */
11239
11240static int
11241ada_operator_check (struct expression *exp, int pos,
11242 int (*objfile_func) (struct objfile *objfile, void *data),
11243 void *data)
11244{
11245 const union exp_element *const elts = exp->elts;
11246 struct type *type = NULL;
11247
11248 switch (elts[pos].opcode)
11249 {
11250 case UNOP_IN_RANGE:
11251 case UNOP_QUAL:
11252 type = elts[pos + 1].type;
11253 break;
11254
11255 default:
11256 return operator_check_standard (exp, pos, objfile_func, data);
11257 }
11258
11259 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11260
11261 if (type && TYPE_OBJFILE (type)
11262 && (*objfile_func) (TYPE_OBJFILE (type), data))
11263 return 1;
11264
11265 return 0;
11266}
11267
4c4b4cd2
PH
11268static char *
11269ada_op_name (enum exp_opcode opcode)
11270{
11271 switch (opcode)
11272 {
76a01679 11273 default:
4c4b4cd2 11274 return op_name_standard (opcode);
52ce6436 11275
4c4b4cd2
PH
11276#define OP_DEFN(op, len, args, binop) case op: return #op;
11277 ADA_OPERATORS;
11278#undef OP_DEFN
52ce6436
PH
11279
11280 case OP_AGGREGATE:
11281 return "OP_AGGREGATE";
11282 case OP_CHOICES:
11283 return "OP_CHOICES";
11284 case OP_NAME:
11285 return "OP_NAME";
4c4b4cd2
PH
11286 }
11287}
11288
11289/* As for operator_length, but assumes PC is pointing at the first
11290 element of the operator, and gives meaningful results only for the
52ce6436 11291 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11292
11293static void
76a01679
JB
11294ada_forward_operator_length (struct expression *exp, int pc,
11295 int *oplenp, int *argsp)
4c4b4cd2 11296{
76a01679 11297 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11298 {
11299 default:
11300 *oplenp = *argsp = 0;
11301 break;
52ce6436 11302
4c4b4cd2
PH
11303#define OP_DEFN(op, len, args, binop) \
11304 case op: *oplenp = len; *argsp = args; break;
11305 ADA_OPERATORS;
11306#undef OP_DEFN
52ce6436
PH
11307
11308 case OP_AGGREGATE:
11309 *oplenp = 3;
11310 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11311 break;
11312
11313 case OP_CHOICES:
11314 *oplenp = 3;
11315 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11316 break;
11317
11318 case OP_STRING:
11319 case OP_NAME:
11320 {
11321 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11322
52ce6436
PH
11323 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11324 *argsp = 0;
11325 break;
11326 }
4c4b4cd2
PH
11327 }
11328}
11329
11330static int
11331ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11332{
11333 enum exp_opcode op = exp->elts[elt].opcode;
11334 int oplen, nargs;
11335 int pc = elt;
11336 int i;
76a01679 11337
4c4b4cd2
PH
11338 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11339
76a01679 11340 switch (op)
4c4b4cd2 11341 {
76a01679 11342 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11343 case OP_ATR_FIRST:
11344 case OP_ATR_LAST:
11345 case OP_ATR_LENGTH:
11346 case OP_ATR_IMAGE:
11347 case OP_ATR_MAX:
11348 case OP_ATR_MIN:
11349 case OP_ATR_MODULUS:
11350 case OP_ATR_POS:
11351 case OP_ATR_SIZE:
11352 case OP_ATR_TAG:
11353 case OP_ATR_VAL:
11354 break;
11355
11356 case UNOP_IN_RANGE:
11357 case UNOP_QUAL:
323e0a4a
AC
11358 /* XXX: gdb_sprint_host_address, type_sprint */
11359 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11360 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11361 fprintf_filtered (stream, " (");
11362 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11363 fprintf_filtered (stream, ")");
11364 break;
11365 case BINOP_IN_BOUNDS:
52ce6436
PH
11366 fprintf_filtered (stream, " (%d)",
11367 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11368 break;
11369 case TERNOP_IN_RANGE:
11370 break;
11371
52ce6436
PH
11372 case OP_AGGREGATE:
11373 case OP_OTHERS:
11374 case OP_DISCRETE_RANGE:
11375 case OP_POSITIONAL:
11376 case OP_CHOICES:
11377 break;
11378
11379 case OP_NAME:
11380 case OP_STRING:
11381 {
11382 char *name = &exp->elts[elt + 2].string;
11383 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 11384
52ce6436
PH
11385 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11386 break;
11387 }
11388
4c4b4cd2
PH
11389 default:
11390 return dump_subexp_body_standard (exp, stream, elt);
11391 }
11392
11393 elt += oplen;
11394 for (i = 0; i < nargs; i += 1)
11395 elt = dump_subexp (exp, stream, elt);
11396
11397 return elt;
11398}
11399
11400/* The Ada extension of print_subexp (q.v.). */
11401
76a01679
JB
11402static void
11403ada_print_subexp (struct expression *exp, int *pos,
11404 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11405{
52ce6436 11406 int oplen, nargs, i;
4c4b4cd2
PH
11407 int pc = *pos;
11408 enum exp_opcode op = exp->elts[pc].opcode;
11409
11410 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11411
52ce6436 11412 *pos += oplen;
4c4b4cd2
PH
11413 switch (op)
11414 {
11415 default:
52ce6436 11416 *pos -= oplen;
4c4b4cd2
PH
11417 print_subexp_standard (exp, pos, stream, prec);
11418 return;
11419
11420 case OP_VAR_VALUE:
4c4b4cd2
PH
11421 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11422 return;
11423
11424 case BINOP_IN_BOUNDS:
323e0a4a 11425 /* XXX: sprint_subexp */
4c4b4cd2 11426 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11427 fputs_filtered (" in ", stream);
4c4b4cd2 11428 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11429 fputs_filtered ("'range", stream);
4c4b4cd2 11430 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11431 fprintf_filtered (stream, "(%ld)",
11432 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11433 return;
11434
11435 case TERNOP_IN_RANGE:
4c4b4cd2 11436 if (prec >= PREC_EQUAL)
76a01679 11437 fputs_filtered ("(", stream);
323e0a4a 11438 /* XXX: sprint_subexp */
4c4b4cd2 11439 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11440 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11441 print_subexp (exp, pos, stream, PREC_EQUAL);
11442 fputs_filtered (" .. ", stream);
11443 print_subexp (exp, pos, stream, PREC_EQUAL);
11444 if (prec >= PREC_EQUAL)
76a01679
JB
11445 fputs_filtered (")", stream);
11446 return;
4c4b4cd2
PH
11447
11448 case OP_ATR_FIRST:
11449 case OP_ATR_LAST:
11450 case OP_ATR_LENGTH:
11451 case OP_ATR_IMAGE:
11452 case OP_ATR_MAX:
11453 case OP_ATR_MIN:
11454 case OP_ATR_MODULUS:
11455 case OP_ATR_POS:
11456 case OP_ATR_SIZE:
11457 case OP_ATR_TAG:
11458 case OP_ATR_VAL:
4c4b4cd2 11459 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11460 {
11461 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11462 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11463 *pos += 3;
11464 }
4c4b4cd2 11465 else
76a01679 11466 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11467 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11468 if (nargs > 1)
76a01679
JB
11469 {
11470 int tem;
5b4ee69b 11471
76a01679
JB
11472 for (tem = 1; tem < nargs; tem += 1)
11473 {
11474 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11475 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11476 }
11477 fputs_filtered (")", stream);
11478 }
4c4b4cd2 11479 return;
14f9c5c9 11480
4c4b4cd2 11481 case UNOP_QUAL:
4c4b4cd2
PH
11482 type_print (exp->elts[pc + 1].type, "", stream, 0);
11483 fputs_filtered ("'(", stream);
11484 print_subexp (exp, pos, stream, PREC_PREFIX);
11485 fputs_filtered (")", stream);
11486 return;
14f9c5c9 11487
4c4b4cd2 11488 case UNOP_IN_RANGE:
323e0a4a 11489 /* XXX: sprint_subexp */
4c4b4cd2 11490 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11491 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11492 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11493 return;
52ce6436
PH
11494
11495 case OP_DISCRETE_RANGE:
11496 print_subexp (exp, pos, stream, PREC_SUFFIX);
11497 fputs_filtered ("..", stream);
11498 print_subexp (exp, pos, stream, PREC_SUFFIX);
11499 return;
11500
11501 case OP_OTHERS:
11502 fputs_filtered ("others => ", stream);
11503 print_subexp (exp, pos, stream, PREC_SUFFIX);
11504 return;
11505
11506 case OP_CHOICES:
11507 for (i = 0; i < nargs-1; i += 1)
11508 {
11509 if (i > 0)
11510 fputs_filtered ("|", stream);
11511 print_subexp (exp, pos, stream, PREC_SUFFIX);
11512 }
11513 fputs_filtered (" => ", stream);
11514 print_subexp (exp, pos, stream, PREC_SUFFIX);
11515 return;
11516
11517 case OP_POSITIONAL:
11518 print_subexp (exp, pos, stream, PREC_SUFFIX);
11519 return;
11520
11521 case OP_AGGREGATE:
11522 fputs_filtered ("(", stream);
11523 for (i = 0; i < nargs; i += 1)
11524 {
11525 if (i > 0)
11526 fputs_filtered (", ", stream);
11527 print_subexp (exp, pos, stream, PREC_SUFFIX);
11528 }
11529 fputs_filtered (")", stream);
11530 return;
4c4b4cd2
PH
11531 }
11532}
14f9c5c9
AS
11533
11534/* Table mapping opcodes into strings for printing operators
11535 and precedences of the operators. */
11536
d2e4a39e
AS
11537static const struct op_print ada_op_print_tab[] = {
11538 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11539 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11540 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11541 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11542 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11543 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11544 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11545 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11546 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11547 {">=", BINOP_GEQ, PREC_ORDER, 0},
11548 {">", BINOP_GTR, PREC_ORDER, 0},
11549 {"<", BINOP_LESS, PREC_ORDER, 0},
11550 {">>", BINOP_RSH, PREC_SHIFT, 0},
11551 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11552 {"+", BINOP_ADD, PREC_ADD, 0},
11553 {"-", BINOP_SUB, PREC_ADD, 0},
11554 {"&", BINOP_CONCAT, PREC_ADD, 0},
11555 {"*", BINOP_MUL, PREC_MUL, 0},
11556 {"/", BINOP_DIV, PREC_MUL, 0},
11557 {"rem", BINOP_REM, PREC_MUL, 0},
11558 {"mod", BINOP_MOD, PREC_MUL, 0},
11559 {"**", BINOP_EXP, PREC_REPEAT, 0},
11560 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11561 {"-", UNOP_NEG, PREC_PREFIX, 0},
11562 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11563 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11564 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11565 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11566 {".all", UNOP_IND, PREC_SUFFIX, 1},
11567 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11568 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11569 {NULL, 0, 0, 0}
14f9c5c9
AS
11570};
11571\f
72d5681a
PH
11572enum ada_primitive_types {
11573 ada_primitive_type_int,
11574 ada_primitive_type_long,
11575 ada_primitive_type_short,
11576 ada_primitive_type_char,
11577 ada_primitive_type_float,
11578 ada_primitive_type_double,
11579 ada_primitive_type_void,
11580 ada_primitive_type_long_long,
11581 ada_primitive_type_long_double,
11582 ada_primitive_type_natural,
11583 ada_primitive_type_positive,
11584 ada_primitive_type_system_address,
11585 nr_ada_primitive_types
11586};
6c038f32
PH
11587
11588static void
d4a9a881 11589ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11590 struct language_arch_info *lai)
11591{
d4a9a881 11592 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 11593
72d5681a 11594 lai->primitive_type_vector
d4a9a881 11595 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11596 struct type *);
e9bb382b
UW
11597
11598 lai->primitive_type_vector [ada_primitive_type_int]
11599 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11600 0, "integer");
11601 lai->primitive_type_vector [ada_primitive_type_long]
11602 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11603 0, "long_integer");
11604 lai->primitive_type_vector [ada_primitive_type_short]
11605 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11606 0, "short_integer");
11607 lai->string_char_type
11608 = lai->primitive_type_vector [ada_primitive_type_char]
11609 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11610 lai->primitive_type_vector [ada_primitive_type_float]
11611 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11612 "float", NULL);
11613 lai->primitive_type_vector [ada_primitive_type_double]
11614 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11615 "long_float", NULL);
11616 lai->primitive_type_vector [ada_primitive_type_long_long]
11617 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11618 0, "long_long_integer");
11619 lai->primitive_type_vector [ada_primitive_type_long_double]
11620 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11621 "long_long_float", NULL);
11622 lai->primitive_type_vector [ada_primitive_type_natural]
11623 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11624 0, "natural");
11625 lai->primitive_type_vector [ada_primitive_type_positive]
11626 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11627 0, "positive");
11628 lai->primitive_type_vector [ada_primitive_type_void]
11629 = builtin->builtin_void;
11630
11631 lai->primitive_type_vector [ada_primitive_type_system_address]
11632 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11633 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11634 = "system__address";
fbb06eb1 11635
47e729a8 11636 lai->bool_type_symbol = NULL;
fbb06eb1 11637 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11638}
6c038f32
PH
11639\f
11640 /* Language vector */
11641
11642/* Not really used, but needed in the ada_language_defn. */
11643
11644static void
6c7a06a3 11645emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11646{
6c7a06a3 11647 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11648}
11649
11650static int
11651parse (void)
11652{
11653 warnings_issued = 0;
11654 return ada_parse ();
11655}
11656
11657static const struct exp_descriptor ada_exp_descriptor = {
11658 ada_print_subexp,
11659 ada_operator_length,
c0201579 11660 ada_operator_check,
6c038f32
PH
11661 ada_op_name,
11662 ada_dump_subexp_body,
11663 ada_evaluate_subexp
11664};
11665
11666const struct language_defn ada_language_defn = {
11667 "ada", /* Language name */
11668 language_ada,
6c038f32
PH
11669 range_check_off,
11670 type_check_off,
11671 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11672 that's not quite what this means. */
6c038f32 11673 array_row_major,
9a044a89 11674 macro_expansion_no,
6c038f32
PH
11675 &ada_exp_descriptor,
11676 parse,
11677 ada_error,
11678 resolve,
11679 ada_printchar, /* Print a character constant */
11680 ada_printstr, /* Function to print string constant */
11681 emit_char, /* Function to print single char (not used) */
6c038f32 11682 ada_print_type, /* Print a type using appropriate syntax */
be942545 11683 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11684 ada_val_print, /* Print a value using appropriate syntax */
11685 ada_value_print, /* Print a top-level value */
11686 NULL, /* Language specific skip_trampoline */
2b2d9e11 11687 NULL, /* name_of_this */
6c038f32
PH
11688 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11689 basic_lookup_transparent_type, /* lookup_transparent_type */
11690 ada_la_decode, /* Language specific symbol demangler */
11691 NULL, /* Language specific class_name_from_physname */
11692 ada_op_print_tab, /* expression operators for printing */
11693 0, /* c-style arrays */
11694 1, /* String lower bound */
6c038f32 11695 ada_get_gdb_completer_word_break_characters,
41d27058 11696 ada_make_symbol_completion_list,
72d5681a 11697 ada_language_arch_info,
e79af960 11698 ada_print_array_index,
41f1b697 11699 default_pass_by_reference,
ae6a3a4c 11700 c_get_string,
6c038f32
PH
11701 LANG_MAGIC
11702};
11703
2c0b251b
PA
11704/* Provide a prototype to silence -Wmissing-prototypes. */
11705extern initialize_file_ftype _initialize_ada_language;
11706
5bf03f13
JB
11707/* Command-list for the "set/show ada" prefix command. */
11708static struct cmd_list_element *set_ada_list;
11709static struct cmd_list_element *show_ada_list;
11710
11711/* Implement the "set ada" prefix command. */
11712
11713static void
11714set_ada_command (char *arg, int from_tty)
11715{
11716 printf_unfiltered (_(\
11717"\"set ada\" must be followed by the name of a setting.\n"));
11718 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11719}
11720
11721/* Implement the "show ada" prefix command. */
11722
11723static void
11724show_ada_command (char *args, int from_tty)
11725{
11726 cmd_show_list (show_ada_list, from_tty, "");
11727}
11728
d2e4a39e 11729void
6c038f32 11730_initialize_ada_language (void)
14f9c5c9 11731{
6c038f32
PH
11732 add_language (&ada_language_defn);
11733
5bf03f13
JB
11734 add_prefix_cmd ("ada", no_class, set_ada_command,
11735 _("Prefix command for changing Ada-specfic settings"),
11736 &set_ada_list, "set ada ", 0, &setlist);
11737
11738 add_prefix_cmd ("ada", no_class, show_ada_command,
11739 _("Generic command for showing Ada-specific settings."),
11740 &show_ada_list, "show ada ", 0, &showlist);
11741
11742 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11743 &trust_pad_over_xvs, _("\
11744Enable or disable an optimization trusting PAD types over XVS types"), _("\
11745Show whether an optimization trusting PAD types over XVS types is activated"),
11746 _("\
11747This is related to the encoding used by the GNAT compiler. The debugger\n\
11748should normally trust the contents of PAD types, but certain older versions\n\
11749of GNAT have a bug that sometimes causes the information in the PAD type\n\
11750to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11751work around this bug. It is always safe to turn this option \"off\", but\n\
11752this incurs a slight performance penalty, so it is recommended to NOT change\n\
11753this option to \"off\" unless necessary."),
11754 NULL, NULL, &set_ada_list, &show_ada_list);
11755
6c038f32 11756 varsize_limit = 65536;
6c038f32
PH
11757
11758 obstack_init (&symbol_list_obstack);
11759
11760 decoded_names_store = htab_create_alloc
11761 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11762 NULL, xcalloc, xfree);
6b69afc4
JB
11763
11764 observer_attach_executable_changed (ada_executable_changed_observer);
e802dbe0
JB
11765
11766 /* Setup per-inferior data. */
11767 observer_attach_inferior_exit (ada_inferior_exit);
11768 ada_inferior_data
11769 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 11770}