]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* expression.h (parse_expression_for_completion): Rename
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
79d43c61 61#include "typeprint.h"
14f9c5c9 62
ccefe4c4 63#include "psymtab.h"
40bc484c 64#include "value.h"
956a9fb9 65#include "mi/mi-common.h"
9ac4176b 66#include "arch-utils.h"
28010a5d 67#include "exceptions.h"
0fcd72ba 68#include "cli/cli-utils.h"
ccefe4c4 69
4c4b4cd2 70/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 71 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
72 Copied from valarith.c. */
73
74#ifndef TRUNCATION_TOWARDS_ZERO
75#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76#endif
77
d2e4a39e 78static struct type *desc_base_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct type *desc_bounds_type (struct type *);
14f9c5c9 81
d2e4a39e 82static struct value *desc_bounds (struct value *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 87
556bdfd4 88static struct type *desc_data_target_type (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_data (struct value *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 93
d2e4a39e 94static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 95
d2e4a39e 96static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 101
d2e4a39e 102static struct type *desc_index_type (struct type *, int);
14f9c5c9 103
d2e4a39e 104static int desc_arity (struct type *);
14f9c5c9 105
d2e4a39e 106static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 107
d2e4a39e 108static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 109
40658b94
PH
110static int full_match (const char *, const char *);
111
40bc484c 112static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 113
4c4b4cd2 114static void ada_add_block_symbols (struct obstack *,
76a01679 115 struct block *, const char *,
2570f2b7 116 domain_enum, struct objfile *, int);
14f9c5c9 117
4c4b4cd2 118static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 121 struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
125static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
4c4b4cd2
PH
135static char *ada_op_name (enum exp_opcode);
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
4c4b4cd2 155static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 156 int, int, int *);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static struct value *get_var_value (char *, char *);
14f9c5c9 199
d2e4a39e 200static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 201
d2e4a39e 202static int equiv_types (struct type *, struct type *);
14f9c5c9 203
d2e4a39e 204static int is_name_suffix (const char *);
14f9c5c9 205
73589123
PH
206static int advance_wild_match (const char **, const char *, int);
207
208static int wild_match (const char *, const char *);
14f9c5c9 209
d2e4a39e 210static struct value *ada_coerce_ref (struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static LONGEST pos_atr (struct value *);
213
3cb382c9 214static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 215
d2e4a39e 216static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 217
4c4b4cd2
PH
218static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
14f9c5c9 220
4c4b4cd2
PH
221static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
0d5cff50 227static int find_struct_field (const char *, struct type *, int,
52ce6436 228 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
229
230static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
4c4b4cd2
PH
233static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
4c4b4cd2
PH
237static int ada_is_direct_array_type (struct type *);
238
72d5681a
PH
239static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
714e53ab
PH
241
242static void check_size (const struct type *);
52ce6436
PH
243
244static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
248 struct expression *,
249 int *, enum noside);
52ce6436
PH
250
251static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
852dff6c
JB
275
276static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
277\f
278
76a01679 279
4c4b4cd2 280/* Maximum-sized dynamic type. */
14f9c5c9
AS
281static unsigned int varsize_limit;
282
4c4b4cd2
PH
283/* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285static char *ada_completer_word_break_characters =
286#ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288#else
14f9c5c9 289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 290#endif
14f9c5c9 291
4c4b4cd2 292/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 293static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 294 = "__gnat_ada_main_program_name";
14f9c5c9 295
4c4b4cd2
PH
296/* Limit on the number of warnings to raise per expression evaluation. */
297static int warning_limit = 2;
298
299/* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301static int warnings_issued = 0;
302
303static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305};
306
307static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309};
310
311/* Space for allocating results of ada_lookup_symbol_list. */
312static struct obstack symbol_list_obstack;
313
e802dbe0
JB
314 /* Inferior-specific data. */
315
316/* Per-inferior data for this module. */
317
318struct ada_inferior_data
319{
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
3eecfa55
JB
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
e802dbe0
JB
330};
331
332/* Our key to this module's inferior data. */
333static const struct inferior_data *ada_inferior_data;
334
335/* A cleanup routine for our inferior data. */
336static void
337ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338{
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344}
345
346/* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354static struct ada_inferior_data *
355get_ada_inferior_data (struct inferior *inf)
356{
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367}
368
369/* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372static void
373ada_inferior_exit (struct inferior *inf)
374{
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377}
378
4c4b4cd2
PH
379 /* Utilities */
380
720d1a40 381/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 382 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408static struct type *
409ada_typedef_target_type (struct type *type)
410{
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414}
415
41d27058
JB
416/* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420static const char *
421ada_unqualified_name (const char *decoded_name)
422{
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431}
432
433/* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436static char *
437add_angle_brackets (const char *str)
438{
439 static char *result = NULL;
440
441 xfree (result);
88c15c34 442 result = xstrprintf ("<%s>", str);
41d27058
JB
443 return result;
444}
96d887e8 445
4c4b4cd2
PH
446static char *
447ada_get_gdb_completer_word_break_characters (void)
448{
449 return ada_completer_word_break_characters;
450}
451
e79af960
JB
452/* Print an array element index using the Ada syntax. */
453
454static void
455ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 456 const struct value_print_options *options)
e79af960 457{
79a45b7d 458 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
459 fprintf_filtered (stream, " => ");
460}
461
f27cf670 462/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 464 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 465
f27cf670
AS
466void *
467grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 468{
d2e4a39e
AS
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
4c4b4cd2 473 *size = min_size;
f27cf670 474 vect = xrealloc (vect, *size * element_size);
d2e4a39e 475 }
f27cf670 476 return vect;
14f9c5c9
AS
477}
478
479/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 480 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
481
482static int
ebf56fd3 483field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
484{
485 int len = strlen (target);
5b4ee69b 486
d2e4a39e 487 return
4c4b4cd2
PH
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
14f9c5c9
AS
493}
494
495
872c8b51
JB
496/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
503
504int
505ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507{
508 int fieldno;
872c8b51
JB
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
513 return fieldno;
514
515 if (!maybe_missing)
323e0a4a 516 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 517 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
518
519 return -1;
520}
521
522/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
523
524int
d2e4a39e 525ada_name_prefix_len (const char *name)
14f9c5c9
AS
526{
527 if (name == NULL)
528 return 0;
d2e4a39e 529 else
14f9c5c9 530 {
d2e4a39e 531 const char *p = strstr (name, "___");
5b4ee69b 532
14f9c5c9 533 if (p == NULL)
4c4b4cd2 534 return strlen (name);
14f9c5c9 535 else
4c4b4cd2 536 return p - name;
14f9c5c9
AS
537 }
538}
539
4c4b4cd2
PH
540/* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
14f9c5c9 543static int
d2e4a39e 544is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
545{
546 int len1, len2;
5b4ee69b 547
14f9c5c9
AS
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
4c4b4cd2 552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
553}
554
4c4b4cd2
PH
555/* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
14f9c5c9 557
d2e4a39e 558static struct value *
4c4b4cd2 559coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 560{
61ee279c 561 type = ada_check_typedef (type);
df407dfe 562 if (value_type (val) == type)
4c4b4cd2 563 return val;
d2e4a39e 564 else
14f9c5c9 565 {
4c4b4cd2
PH
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
714e53ab 570 check_size (type);
4c4b4cd2 571
41e8491f
JK
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
74bcbdf3 581 set_value_component_location (result, val);
9bbda503
AC
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
42ae5230 584 set_value_address (result, value_address (val));
2fa15f23 585 set_value_optimized_out (result, value_optimized_out (val));
14f9c5c9
AS
586 return result;
587 }
588}
589
fc1a4b47
AC
590static const gdb_byte *
591cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
592{
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597}
598
599static CORE_ADDR
ebf56fd3 600cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
601{
602 if (address == 0)
603 return 0;
d2e4a39e 604 else
14f9c5c9
AS
605 return address + offset;
606}
607
4c4b4cd2
PH
608/* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
a2249542 612
77109804
AC
613/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
a0b31db1 615static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 616
14f9c5c9 617static void
a2249542 618lim_warning (const char *format, ...)
14f9c5c9 619{
a2249542 620 va_list args;
a2249542 621
5b4ee69b 622 va_start (args, format);
4c4b4cd2
PH
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
a2249542
MK
625 vwarning (format, args);
626
627 va_end (args);
4c4b4cd2
PH
628}
629
714e53ab
PH
630/* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634static void
635check_size (const struct type *type)
636{
637 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 638 error (_("object size is larger than varsize-limit"));
714e53ab
PH
639}
640
0963b4bd 641/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 642static LONGEST
c3e5cd34 643max_of_size (int size)
4c4b4cd2 644{
76a01679 645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 646
76a01679 647 return top_bit | (top_bit - 1);
4c4b4cd2
PH
648}
649
0963b4bd 650/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 651static LONGEST
c3e5cd34 652min_of_size (int size)
4c4b4cd2 653{
c3e5cd34 654 return -max_of_size (size) - 1;
4c4b4cd2
PH
655}
656
0963b4bd 657/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 658static ULONGEST
c3e5cd34 659umax_of_size (int size)
4c4b4cd2 660{
76a01679 661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 662
76a01679 663 return top_bit | (top_bit - 1);
4c4b4cd2
PH
664}
665
0963b4bd 666/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
667static LONGEST
668max_of_type (struct type *t)
4c4b4cd2 669{
c3e5cd34
PH
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674}
675
0963b4bd 676/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
677static LONGEST
678min_of_type (struct type *t)
679{
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
684}
685
686/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
687LONGEST
688ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 689{
76a01679 690 switch (TYPE_CODE (type))
4c4b4cd2
PH
691 {
692 case TYPE_CODE_RANGE:
690cc4eb 693 return TYPE_HIGH_BOUND (type);
4c4b4cd2 694 case TYPE_CODE_ENUM:
14e75d8e 695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
76a01679 699 case TYPE_CODE_INT:
690cc4eb 700 return max_of_type (type);
4c4b4cd2 701 default:
43bbcdc2 702 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
703 }
704}
705
14e75d8e 706/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
707LONGEST
708ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 709{
76a01679 710 switch (TYPE_CODE (type))
4c4b4cd2
PH
711 {
712 case TYPE_CODE_RANGE:
690cc4eb 713 return TYPE_LOW_BOUND (type);
4c4b4cd2 714 case TYPE_CODE_ENUM:
14e75d8e 715 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
76a01679 719 case TYPE_CODE_INT:
690cc4eb 720 return min_of_type (type);
4c4b4cd2 721 default:
43bbcdc2 722 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
723 }
724}
725
726/* The identity on non-range types. For range types, the underlying
76a01679 727 non-range scalar type. */
4c4b4cd2
PH
728
729static struct type *
18af8284 730get_base_type (struct type *type)
4c4b4cd2
PH
731{
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
76a01679
JB
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
4c4b4cd2
PH
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
14f9c5c9 739}
41246937
JB
740
741/* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746struct value *
747ada_get_decoded_value (struct value *value)
748{
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764}
765
766/* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771struct type *
772ada_get_decoded_type (struct type *type)
773{
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778}
779
4c4b4cd2 780\f
76a01679 781
4c4b4cd2 782 /* Language Selection */
14f9c5c9
AS
783
784/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 785 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 786
14f9c5c9 787enum language
ccefe4c4 788ada_update_initial_language (enum language lang)
14f9c5c9 789{
d2e4a39e 790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
14f9c5c9
AS
793
794 return lang;
795}
96d887e8
PH
796
797/* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801char *
802ada_main_name (void)
803{
804 struct minimal_symbol *msym;
f9bc20b9 805 static char *main_program_name = NULL;
6c038f32 806
96d887e8
PH
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
f9bc20b9
JB
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
96d887e8
PH
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
323e0a4a 821 error (_("Invalid address for Ada main program name."));
96d887e8 822
f9bc20b9
JB
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
96d887e8
PH
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834}
14f9c5c9 835\f
4c4b4cd2 836 /* Symbols */
d2e4a39e 837
4c4b4cd2
PH
838/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
14f9c5c9 840
d2e4a39e
AS
841const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
14f9c5c9
AS
864};
865
4c4b4cd2
PH
866/* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
14f9c5c9 869char *
4c4b4cd2 870ada_encode (const char *decoded)
14f9c5c9 871{
4c4b4cd2
PH
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
d2e4a39e 874 const char *p;
14f9c5c9 875 int k;
d2e4a39e 876
4c4b4cd2 877 if (decoded == NULL)
14f9c5c9
AS
878 return NULL;
879
4c4b4cd2
PH
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
14f9c5c9
AS
882
883 k = 0;
4c4b4cd2 884 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 885 {
cdc7bb92 886 if (*p == '.')
4c4b4cd2
PH
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
14f9c5c9 891 else if (*p == '"')
4c4b4cd2
PH
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
1265e4aa
JB
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
899 ;
900 if (mapping->encoded == NULL)
323e0a4a 901 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
d2e4a39e 906 else
4c4b4cd2
PH
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
14f9c5c9
AS
911 }
912
4c4b4cd2
PH
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
14f9c5c9
AS
915}
916
917/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
d2e4a39e
AS
921char *
922ada_fold_name (const char *name)
14f9c5c9 923{
d2e4a39e 924 static char *fold_buffer = NULL;
14f9c5c9
AS
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
d2e4a39e 928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
929
930 if (name[0] == '\'')
931 {
d2e4a39e
AS
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
934 }
935 else
936 {
937 int i;
5b4ee69b 938
14f9c5c9 939 for (i = 0; i <= len; i += 1)
4c4b4cd2 940 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
941 }
942
943 return fold_buffer;
944}
945
529cad9c
PH
946/* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948static int
949is_lower_alphanum (const char c)
950{
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952}
953
c90092fe
JB
954/* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
29480c32
JB
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
c90092fe 961
29480c32
JB
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966static void
967ada_remove_trailing_digits (const char *encoded, int *len)
968{
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
5b4ee69b 972
29480c32
JB
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984}
985
986/* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989static void
990ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991{
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
0963b4bd 997 the 'P' suffix. The second calls the first one after handling
29480c32
JB
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006}
1007
69fadcdf
JB
1008/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010static void
1011ada_remove_Xbn_suffix (const char *encoded, int *len)
1012{
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026}
1027
29480c32
JB
1028/* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
14f9c5c9 1031
4c4b4cd2 1032 The resulting string is valid until the next call of ada_decode.
29480c32 1033 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1034 is returned. */
1035
1036const char *
1037ada_decode (const char *encoded)
14f9c5c9
AS
1038{
1039 int i, j;
1040 int len0;
d2e4a39e 1041 const char *p;
4c4b4cd2 1042 char *decoded;
14f9c5c9 1043 int at_start_name;
4c4b4cd2
PH
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
d2e4a39e 1046
29480c32
JB
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
4c4b4cd2
PH
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
14f9c5c9 1052
29480c32
JB
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
4c4b4cd2 1056 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1057 goto Suppress;
1058
4c4b4cd2 1059 len0 = strlen (encoded);
4c4b4cd2 1060
29480c32
JB
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1063
4c4b4cd2
PH
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1070 {
1071 if (p[3] == 'X')
4c4b4cd2 1072 len0 = p - encoded;
14f9c5c9 1073 else
4c4b4cd2 1074 goto Suppress;
14f9c5c9 1075 }
4c4b4cd2 1076
29480c32
JB
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
4c4b4cd2 1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1082 len0 -= 3;
76a01679 1083
a10967fa
JB
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
29480c32
JB
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
4c4b4cd2 1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1095 len0 -= 1;
1096
4c4b4cd2 1097 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1098
4c4b4cd2
PH
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
14f9c5c9 1101
29480c32
JB
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
4c4b4cd2 1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1105 {
4c4b4cd2
PH
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
d2e4a39e 1114 }
14f9c5c9 1115
29480c32
JB
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
4c4b4cd2
PH
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
14f9c5c9
AS
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
29480c32 1125 /* Is this a symbol function? */
4c4b4cd2
PH
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
5b4ee69b 1129
4c4b4cd2
PH
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
14f9c5c9
AS
1147 at_start_name = 0;
1148
529cad9c
PH
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
4c4b4cd2
PH
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
529cad9c 1154
29480c32
JB
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
529cad9c
PH
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1177 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
4c4b4cd2
PH
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
29480c32
JB
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
4c4b4cd2
PH
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
cdc7bb92 1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1242 {
29480c32 1243 /* Replace '__' by '.'. */
4c4b4cd2
PH
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
14f9c5c9 1249 else
4c4b4cd2 1250 {
29480c32
JB
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
4c4b4cd2
PH
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
14f9c5c9 1257 }
4c4b4cd2 1258 decoded[j] = '\000';
14f9c5c9 1259
29480c32
JB
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
4c4b4cd2
PH
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1265 goto Suppress;
1266
4c4b4cd2
PH
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
14f9c5c9
AS
1271
1272Suppress:
4c4b4cd2
PH
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
14f9c5c9 1277 else
88c15c34 1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1279 return decoded;
1280
1281}
1282
1283/* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288static struct htab *decoded_names_store;
1289
1290/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1295 GSYMBOL).
4c4b4cd2
PH
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1298 when a decoded name is cached in it. */
4c4b4cd2 1299
76a01679
JB
1300char *
1301ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1302{
76a01679 1303 char **resultp =
afa16725 1304 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1305
4c4b4cd2
PH
1306 if (*resultp == NULL)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1309
714835d5 1310 if (gsymbol->obj_section != NULL)
76a01679 1311 {
714835d5 1312 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1313
714835d5
UW
1314 *resultp = obsavestring (decoded, strlen (decoded),
1315 &objf->objfile_obstack);
76a01679 1316 }
4c4b4cd2 1317 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1318 case, we put the result on the heap. Since we only decode
1319 when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
4c4b4cd2 1321 if (*resultp == NULL)
76a01679
JB
1322 {
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
5b4ee69b 1325
76a01679
JB
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
4c4b4cd2 1330 }
14f9c5c9 1331
4c4b4cd2
PH
1332 return *resultp;
1333}
76a01679 1334
2c0b251b 1335static char *
76a01679 1336ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1337{
1338 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1339}
1340
1341/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
14f9c5c9 1347
2c0b251b 1348static int
40658b94 1349match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1350{
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
73589123 1354 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1355 else
1356 {
1357 int len_name = strlen (name);
5b4ee69b 1358
4c4b4cd2
PH
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1364 }
14f9c5c9 1365}
14f9c5c9 1366\f
d2e4a39e 1367
4c4b4cd2 1368 /* Arrays */
14f9c5c9 1369
28c85d6c
JB
1370/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393void
1394ada_fixup_array_indexes_type (struct type *index_desc_type)
1395{
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
0d5cff50 1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423}
1424
4c4b4cd2 1425/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1426
d2e4a39e
AS
1427static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430};
1431
1432/* Maximum number of array dimensions we are prepared to handle. */
1433
4c4b4cd2 1434#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1435
14f9c5c9 1436
4c4b4cd2
PH
1437/* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
14f9c5c9
AS
1439
1440/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1441 level of indirection, if needed. */
1442
d2e4a39e
AS
1443static struct type *
1444desc_base_type (struct type *type)
14f9c5c9
AS
1445{
1446 if (type == NULL)
1447 return NULL;
61ee279c 1448 type = ada_check_typedef (type);
720d1a40
JB
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1265e4aa
JB
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1456 else
1457 return type;
1458}
1459
4c4b4cd2
PH
1460/* True iff TYPE indicates a "thin" array pointer type. */
1461
14f9c5c9 1462static int
d2e4a39e 1463is_thin_pntr (struct type *type)
14f9c5c9 1464{
d2e4a39e 1465 return
14f9c5c9
AS
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468}
1469
4c4b4cd2
PH
1470/* The descriptor type for thin pointer type TYPE. */
1471
d2e4a39e
AS
1472static struct type *
1473thin_descriptor_type (struct type *type)
14f9c5c9 1474{
d2e4a39e 1475 struct type *base_type = desc_base_type (type);
5b4ee69b 1476
14f9c5c9
AS
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
d2e4a39e 1481 else
14f9c5c9 1482 {
d2e4a39e 1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1484
14f9c5c9 1485 if (alt_type == NULL)
4c4b4cd2 1486 return base_type;
14f9c5c9 1487 else
4c4b4cd2 1488 return alt_type;
14f9c5c9
AS
1489 }
1490}
1491
4c4b4cd2
PH
1492/* A pointer to the array data for thin-pointer value VAL. */
1493
d2e4a39e
AS
1494static struct value *
1495thin_data_pntr (struct value *val)
14f9c5c9 1496{
828292f2 1497 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1499
556bdfd4
UW
1500 data_type = lookup_pointer_type (data_type);
1501
14f9c5c9 1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1503 return value_cast (data_type, value_copy (val));
d2e4a39e 1504 else
42ae5230 1505 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1506}
1507
4c4b4cd2
PH
1508/* True iff TYPE indicates a "thick" array pointer type. */
1509
14f9c5c9 1510static int
d2e4a39e 1511is_thick_pntr (struct type *type)
14f9c5c9
AS
1512{
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1516}
1517
4c4b4cd2
PH
1518/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1520
d2e4a39e
AS
1521static struct type *
1522desc_bounds_type (struct type *type)
14f9c5c9 1523{
d2e4a39e 1524 struct type *r;
14f9c5c9
AS
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
4c4b4cd2 1534 return NULL;
14f9c5c9
AS
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
61ee279c 1537 return ada_check_typedef (r);
14f9c5c9
AS
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
61ee279c 1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1544 }
1545 return NULL;
1546}
1547
1548/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
d2e4a39e
AS
1551static struct value *
1552desc_bounds (struct value *arr)
14f9c5c9 1553{
df407dfe 1554 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1555
d2e4a39e 1556 if (is_thin_pntr (type))
14f9c5c9 1557 {
d2e4a39e 1558 struct type *bounds_type =
4c4b4cd2 1559 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1560 LONGEST addr;
1561
4cdfadb1 1562 if (bounds_type == NULL)
323e0a4a 1563 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1564
1565 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1566 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1567 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1569 addr = value_as_long (arr);
d2e4a39e 1570 else
42ae5230 1571 addr = value_address (arr);
14f9c5c9 1572
d2e4a39e 1573 return
4c4b4cd2
PH
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1576 }
1577
1578 else if (is_thick_pntr (type))
05e522ef
JB
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
14f9c5c9
AS
1599 else
1600 return NULL;
1601}
1602
4c4b4cd2
PH
1603/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
14f9c5c9 1606static int
d2e4a39e 1607fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1608{
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610}
1611
1612/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1613 size of the field containing the address of the bounds data. */
1614
14f9c5c9 1615static int
d2e4a39e 1616fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1617{
1618 type = desc_base_type (type);
1619
d2e4a39e 1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
61ee279c 1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1624}
1625
4c4b4cd2 1626/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
4c4b4cd2 1630
d2e4a39e 1631static struct type *
556bdfd4 1632desc_data_target_type (struct type *type)
14f9c5c9
AS
1633{
1634 type = desc_base_type (type);
1635
4c4b4cd2 1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1637 if (is_thin_pntr (type))
556bdfd4 1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1639 else if (is_thick_pntr (type))
556bdfd4
UW
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1646 }
1647
1648 return NULL;
14f9c5c9
AS
1649}
1650
1651/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
4c4b4cd2 1653
d2e4a39e
AS
1654static struct value *
1655desc_data (struct value *arr)
14f9c5c9 1656{
df407dfe 1657 struct type *type = value_type (arr);
5b4ee69b 1658
14f9c5c9
AS
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
d2e4a39e 1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1663 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1664 else
1665 return NULL;
1666}
1667
1668
1669/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1670 position of the field containing the address of the data. */
1671
14f9c5c9 1672static int
d2e4a39e 1673fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1674{
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676}
1677
1678/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1679 size of the field containing the address of the data. */
1680
14f9c5c9 1681static int
d2e4a39e 1682fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1683{
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1688 else
14f9c5c9
AS
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690}
1691
4c4b4cd2 1692/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
d2e4a39e
AS
1696static struct value *
1697desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1698{
d2e4a39e 1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1700 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1701}
1702
1703/* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
14f9c5c9 1707static int
d2e4a39e 1708desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1709{
d2e4a39e 1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1711}
1712
1713/* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
76a01679 1717static int
d2e4a39e 1718desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1719{
1720 type = desc_base_type (type);
1721
d2e4a39e
AS
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1726}
1727
1728/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
d2e4a39e
AS
1731static struct type *
1732desc_index_type (struct type *type, int i)
14f9c5c9
AS
1733{
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
14f9c5c9
AS
1739 return NULL;
1740}
1741
4c4b4cd2
PH
1742/* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
14f9c5c9 1745static int
d2e4a39e 1746desc_arity (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753}
1754
4c4b4cd2
PH
1755/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
76a01679
JB
1759static int
1760ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1761{
1762 if (type == NULL)
1763 return 0;
61ee279c 1764 type = ada_check_typedef (type);
4c4b4cd2 1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1766 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1767}
1768
52ce6436 1769/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1770 * to one. */
52ce6436 1771
2c0b251b 1772static int
52ce6436
PH
1773ada_is_array_type (struct type *type)
1774{
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780}
1781
4c4b4cd2 1782/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1783
14f9c5c9 1784int
4c4b4cd2 1785ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1786{
1787 if (type == NULL)
1788 return 0;
61ee279c 1789 type = ada_check_typedef (type);
14f9c5c9 1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1794}
1795
4c4b4cd2
PH
1796/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
14f9c5c9 1798int
4c4b4cd2 1799ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1800{
556bdfd4 1801 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1802
1803 if (type == NULL)
1804 return 0;
61ee279c 1805 type = ada_check_typedef (type);
556bdfd4
UW
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1809}
1810
1811/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1812 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1813 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1814 is still needed. */
1815
14f9c5c9 1816int
ebf56fd3 1817ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1818{
d2e4a39e 1819 return
14f9c5c9
AS
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1825}
1826
1827
4c4b4cd2 1828/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1829 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1831 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1834 a descriptor. */
d2e4a39e
AS
1835struct type *
1836ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1837{
ad82864c
JB
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1840
df407dfe
AC
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
d2e4a39e
AS
1843
1844 if (!bounds)
ad82864c
JB
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
14f9c5c9
AS
1855 else
1856 {
d2e4a39e 1857 struct type *elt_type;
14f9c5c9 1858 int arity;
d2e4a39e 1859 struct value *descriptor;
14f9c5c9 1860
df407dfe
AC
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
14f9c5c9 1863
d2e4a39e 1864 if (elt_type == NULL || arity == 0)
df407dfe 1865 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1866
1867 descriptor = desc_bounds (arr);
d2e4a39e 1868 if (value_as_long (descriptor) == 0)
4c4b4cd2 1869 return NULL;
d2e4a39e 1870 while (arity > 0)
4c4b4cd2 1871 {
e9bb382b
UW
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1876
5b4ee69b 1877 arity -= 1;
df407dfe 1878 create_range_type (range_type, value_type (low),
529cad9c
PH
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
4c4b4cd2 1881 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
4c4b4cd2 1903 }
14f9c5c9
AS
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907}
1908
1909/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
d2e4a39e
AS
1914struct value *
1915ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1916{
df407dfe 1917 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1918 {
d2e4a39e 1919 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1920
14f9c5c9 1921 if (arrType == NULL)
4c4b4cd2 1922 return NULL;
14f9c5c9
AS
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
ad82864c
JB
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1927 else
1928 return arr;
1929}
1930
1931/* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1933 be ARR itself if it already is in the proper form). */
1934
720d1a40 1935struct value *
d2e4a39e 1936ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1937{
df407dfe 1938 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1939 {
d2e4a39e 1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1941
14f9c5c9 1942 if (arrVal == NULL)
323e0a4a 1943 error (_("Bounds unavailable for null array pointer."));
529cad9c 1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1945 return value_ind (arrVal);
1946 }
ad82864c
JB
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
d2e4a39e 1949 else
14f9c5c9
AS
1950 return arr;
1951}
1952
1953/* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1955 packing). For other types, is the identity. */
1956
d2e4a39e
AS
1957struct type *
1958ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1959{
ad82864c
JB
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
17280b9f
UW
1962
1963 if (ada_is_array_descriptor_type (type))
556bdfd4 1964 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1965
1966 return type;
14f9c5c9
AS
1967}
1968
4c4b4cd2
PH
1969/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
ad82864c
JB
1971static int
1972ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1973{
1974 if (type == NULL)
1975 return 0;
4c4b4cd2 1976 type = desc_base_type (type);
61ee279c 1977 type = ada_check_typedef (type);
d2e4a39e 1978 return
14f9c5c9
AS
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981}
1982
ad82864c
JB
1983/* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986int
1987ada_is_constrained_packed_array_type (struct type *type)
1988{
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991}
1992
1993/* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996static int
1997ada_is_unconstrained_packed_array_type (struct type *type)
1998{
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001}
2002
2003/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006static long
2007decode_packed_array_bitsize (struct type *type)
2008{
0d5cff50
DE
2009 const char *raw_name;
2010 const char *tail;
ad82864c
JB
2011 long bits;
2012
720d1a40
JB
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
720d1a40 2027 gdb_assert (tail != NULL);
ad82864c
JB
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037}
2038
14f9c5c9
AS
2039/* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
d2e4a39e 2048static struct type *
ad82864c 2049constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2050{
d2e4a39e
AS
2051 struct type *new_elt_type;
2052 struct type *new_type;
99b1c762
JB
2053 struct type *index_type_desc;
2054 struct type *index_type;
14f9c5c9
AS
2055 LONGEST low_bound, high_bound;
2056
61ee279c 2057 type = ada_check_typedef (type);
14f9c5c9
AS
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
99b1c762
JB
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
e9bb382b 2068 new_type = alloc_type_copy (type);
ad82864c
JB
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
99b1c762 2072 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
99b1c762 2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2080 else
14f9c5c9
AS
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2083 TYPE_LENGTH (new_type) =
4c4b4cd2 2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2085 }
2086
876cecd0 2087 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2088 return new_type;
2089}
2090
ad82864c
JB
2091/* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2093
d2e4a39e 2094static struct type *
ad82864c 2095decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2096{
0d5cff50 2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2098 char *name;
0d5cff50 2099 const char *tail;
d2e4a39e 2100 struct type *shadow_type;
14f9c5c9 2101 long bits;
14f9c5c9 2102
727e3d2e
JB
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2111 type = desc_base_type (type);
2112
14f9c5c9
AS
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
b4ba55a1
JB
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
14f9c5c9 2119 {
323e0a4a 2120 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2121 return NULL;
2122 }
cb249c71 2123 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
0963b4bd
MS
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
14f9c5c9
AS
2129 return NULL;
2130 }
d2e4a39e 2131
ad82864c
JB
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2134}
2135
ad82864c
JB
2136/* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
4c4b4cd2 2140 type length is set appropriately. */
14f9c5c9 2141
d2e4a39e 2142static struct value *
ad82864c 2143decode_constrained_packed_array (struct value *arr)
14f9c5c9 2144{
4c4b4cd2 2145 struct type *type;
14f9c5c9 2146
4c4b4cd2 2147 arr = ada_coerce_ref (arr);
284614f0
JB
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
828292f2 2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2156 arr = value_ind (arr);
4c4b4cd2 2157
ad82864c 2158 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2159 if (type == NULL)
2160 {
323e0a4a 2161 error (_("can't unpack array"));
14f9c5c9
AS
2162 return NULL;
2163 }
61ee279c 2164
50810684 2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2166 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
df407dfe 2175 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
df407dfe 2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
4c4b4cd2 2190 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2191}
2192
2193
2194/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2195 given in IND. ARR must be a simple array. */
14f9c5c9 2196
d2e4a39e
AS
2197static struct value *
2198value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2199{
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
d2e4a39e
AS
2203 struct type *elt_type;
2204 struct value *v;
14f9c5c9
AS
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
df407dfe 2208 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2209 for (i = 0; i < arity; i += 1)
14f9c5c9 2210 {
d2e4a39e 2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
0963b4bd
MS
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
14f9c5c9 2216 else
4c4b4cd2
PH
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
323e0a4a 2224 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2225 lowerbound = upperbound = 0;
2226 }
2227
3cb382c9 2228 idx = pos_atr (ind[i]);
4c4b4cd2 2229 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
4c4b4cd2
PH
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2235 }
14f9c5c9
AS
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2241 bits, elt_type);
14f9c5c9
AS
2242 return v;
2243}
2244
4c4b4cd2 2245/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2246
2247static int
d2e4a39e 2248has_negatives (struct type *type)
14f9c5c9 2249{
d2e4a39e
AS
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
14f9c5c9 2259}
d2e4a39e 2260
14f9c5c9
AS
2261
2262/* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2265 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2270
d2e4a39e 2271struct value *
fc1a4b47 2272ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2273 long offset, int bit_offset, int bit_size,
4c4b4cd2 2274 struct type *type)
14f9c5c9 2275{
d2e4a39e 2276 struct value *v;
4c4b4cd2
PH
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2285 unsigned char *unpacked;
4c4b4cd2 2286 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
50810684 2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2292
61ee279c 2293 type = ada_check_typedef (type);
14f9c5c9
AS
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
d2e4a39e 2298 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2299 }
9214ee5f 2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2301 {
53ba8333 2302 v = value_at (type, value_address (obj));
d2e4a39e 2303 bytes = (unsigned char *) alloca (len);
53ba8333 2304 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2305 }
d2e4a39e 2306 else
14f9c5c9
AS
2307 {
2308 v = allocate_value (type);
0fd88904 2309 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2310 }
d2e4a39e
AS
2311
2312 if (obj != NULL)
14f9c5c9 2313 {
53ba8333 2314 long new_offset = offset;
5b4ee69b 2315
74bcbdf3 2316 set_value_component_location (v, obj);
9bbda503
AC
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
df407dfe 2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2320 {
53ba8333 2321 ++new_offset;
9bbda503 2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2323 }
53ba8333
JB
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 value_incref (obj);
14f9c5c9
AS
2330 }
2331 else
9bbda503 2332 set_value_bitsize (v, bit_size);
0fd88904 2333 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2334
2335 srcBitsLeft = bit_size;
2336 nsrc = len;
2337 ntarg = TYPE_LENGTH (type);
2338 sign = 0;
2339 if (bit_size == 0)
2340 {
2341 memset (unpacked, 0, TYPE_LENGTH (type));
2342 return v;
2343 }
50810684 2344 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2345 {
d2e4a39e 2346 src = len - 1;
1265e4aa
JB
2347 if (has_negatives (type)
2348 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2349 sign = ~0;
d2e4a39e
AS
2350
2351 unusedLS =
4c4b4cd2
PH
2352 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2353 % HOST_CHAR_BIT;
14f9c5c9
AS
2354
2355 switch (TYPE_CODE (type))
4c4b4cd2
PH
2356 {
2357 case TYPE_CODE_ARRAY:
2358 case TYPE_CODE_UNION:
2359 case TYPE_CODE_STRUCT:
2360 /* Non-scalar values must be aligned at a byte boundary... */
2361 accumSize =
2362 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2363 /* ... And are placed at the beginning (most-significant) bytes
2364 of the target. */
529cad9c 2365 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2366 ntarg = targ + 1;
4c4b4cd2
PH
2367 break;
2368 default:
2369 accumSize = 0;
2370 targ = TYPE_LENGTH (type) - 1;
2371 break;
2372 }
14f9c5c9 2373 }
d2e4a39e 2374 else
14f9c5c9
AS
2375 {
2376 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2377
2378 src = targ = 0;
2379 unusedLS = bit_offset;
2380 accumSize = 0;
2381
d2e4a39e 2382 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2383 sign = ~0;
14f9c5c9 2384 }
d2e4a39e 2385
14f9c5c9
AS
2386 accum = 0;
2387 while (nsrc > 0)
2388 {
2389 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2390 part of the value. */
d2e4a39e 2391 unsigned int unusedMSMask =
4c4b4cd2
PH
2392 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 1;
2394 /* Sign-extend bits for this byte. */
14f9c5c9 2395 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2396
d2e4a39e 2397 accum |=
4c4b4cd2 2398 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2399 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2400 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2401 {
2402 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2403 accumSize -= HOST_CHAR_BIT;
2404 accum >>= HOST_CHAR_BIT;
2405 ntarg -= 1;
2406 targ += delta;
2407 }
14f9c5c9
AS
2408 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2409 unusedLS = 0;
2410 nsrc -= 1;
2411 src += delta;
2412 }
2413 while (ntarg > 0)
2414 {
2415 accum |= sign << accumSize;
2416 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 ntarg -= 1;
2420 targ += delta;
2421 }
2422
2423 return v;
2424}
d2e4a39e 2425
14f9c5c9
AS
2426/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2427 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2428 not overlap. */
14f9c5c9 2429static void
fc1a4b47 2430move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2431 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2432{
2433 unsigned int accum, mask;
2434 int accum_bits, chunk_size;
2435
2436 target += targ_offset / HOST_CHAR_BIT;
2437 targ_offset %= HOST_CHAR_BIT;
2438 source += src_offset / HOST_CHAR_BIT;
2439 src_offset %= HOST_CHAR_BIT;
50810684 2440 if (bits_big_endian_p)
14f9c5c9
AS
2441 {
2442 accum = (unsigned char) *source;
2443 source += 1;
2444 accum_bits = HOST_CHAR_BIT - src_offset;
2445
d2e4a39e 2446 while (n > 0)
4c4b4cd2
PH
2447 {
2448 int unused_right;
5b4ee69b 2449
4c4b4cd2
PH
2450 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2451 accum_bits += HOST_CHAR_BIT;
2452 source += 1;
2453 chunk_size = HOST_CHAR_BIT - targ_offset;
2454 if (chunk_size > n)
2455 chunk_size = n;
2456 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2457 mask = ((1 << chunk_size) - 1) << unused_right;
2458 *target =
2459 (*target & ~mask)
2460 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 n -= chunk_size;
2462 accum_bits -= chunk_size;
2463 target += 1;
2464 targ_offset = 0;
2465 }
14f9c5c9
AS
2466 }
2467 else
2468 {
2469 accum = (unsigned char) *source >> src_offset;
2470 source += 1;
2471 accum_bits = HOST_CHAR_BIT - src_offset;
2472
d2e4a39e 2473 while (n > 0)
4c4b4cd2
PH
2474 {
2475 accum = accum + ((unsigned char) *source << accum_bits);
2476 accum_bits += HOST_CHAR_BIT;
2477 source += 1;
2478 chunk_size = HOST_CHAR_BIT - targ_offset;
2479 if (chunk_size > n)
2480 chunk_size = n;
2481 mask = ((1 << chunk_size) - 1) << targ_offset;
2482 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 n -= chunk_size;
2484 accum_bits -= chunk_size;
2485 accum >>= chunk_size;
2486 target += 1;
2487 targ_offset = 0;
2488 }
14f9c5c9
AS
2489 }
2490}
2491
14f9c5c9
AS
2492/* Store the contents of FROMVAL into the location of TOVAL.
2493 Return a new value with the location of TOVAL and contents of
2494 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2495 floating-point or non-scalar types. */
14f9c5c9 2496
d2e4a39e
AS
2497static struct value *
2498ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2499{
df407dfe
AC
2500 struct type *type = value_type (toval);
2501 int bits = value_bitsize (toval);
14f9c5c9 2502
52ce6436
PH
2503 toval = ada_coerce_ref (toval);
2504 fromval = ada_coerce_ref (fromval);
2505
2506 if (ada_is_direct_array_type (value_type (toval)))
2507 toval = ada_coerce_to_simple_array (toval);
2508 if (ada_is_direct_array_type (value_type (fromval)))
2509 fromval = ada_coerce_to_simple_array (fromval);
2510
88e3b34b 2511 if (!deprecated_value_modifiable (toval))
323e0a4a 2512 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2513
d2e4a39e 2514 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2515 && bits > 0
d2e4a39e 2516 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2517 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2518 {
df407dfe
AC
2519 int len = (value_bitpos (toval)
2520 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2521 int from_size;
d2e4a39e
AS
2522 char *buffer = (char *) alloca (len);
2523 struct value *val;
42ae5230 2524 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2525
2526 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2527 fromval = value_cast (type, fromval);
14f9c5c9 2528
52ce6436 2529 read_memory (to_addr, buffer, len);
aced2898
PH
2530 from_size = value_bitsize (fromval);
2531 if (from_size == 0)
2532 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2533 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2534 move_bits (buffer, value_bitpos (toval),
50810684 2535 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2536 else
50810684
UW
2537 move_bits (buffer, value_bitpos (toval),
2538 value_contents (fromval), 0, bits, 0);
972daa01 2539 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2540
14f9c5c9 2541 val = value_copy (toval);
0fd88904 2542 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2543 TYPE_LENGTH (type));
04624583 2544 deprecated_set_value_type (val, type);
d2e4a39e 2545
14f9c5c9
AS
2546 return val;
2547 }
2548
2549 return value_assign (toval, fromval);
2550}
2551
2552
52ce6436
PH
2553/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2554 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2555 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2556 * COMPONENT, and not the inferior's memory. The current contents
2557 * of COMPONENT are ignored. */
2558static void
2559value_assign_to_component (struct value *container, struct value *component,
2560 struct value *val)
2561{
2562 LONGEST offset_in_container =
42ae5230 2563 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2564 int bit_offset_in_container =
2565 value_bitpos (component) - value_bitpos (container);
2566 int bits;
2567
2568 val = value_cast (value_type (component), val);
2569
2570 if (value_bitsize (component) == 0)
2571 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 else
2573 bits = value_bitsize (component);
2574
50810684 2575 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
2578 value_contents (val),
2579 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2580 bits, 1);
52ce6436
PH
2581 else
2582 move_bits (value_contents_writeable (container) + offset_in_container,
2583 value_bitpos (container) + bit_offset_in_container,
50810684 2584 value_contents (val), 0, bits, 0);
52ce6436
PH
2585}
2586
4c4b4cd2
PH
2587/* The value of the element of array ARR at the ARITY indices given in IND.
2588 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2589 thereto. */
2590
d2e4a39e
AS
2591struct value *
2592ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2593{
2594 int k;
d2e4a39e
AS
2595 struct value *elt;
2596 struct type *elt_type;
14f9c5c9
AS
2597
2598 elt = ada_coerce_to_simple_array (arr);
2599
df407dfe 2600 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2601 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2602 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2603 return value_subscript_packed (elt, arity, ind);
2604
2605 for (k = 0; k < arity; k += 1)
2606 {
2607 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2608 error (_("too many subscripts (%d expected)"), k);
2497b498 2609 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2610 }
2611 return elt;
2612}
2613
2614/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2615 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2616 IND. Does not read the entire array into memory. */
14f9c5c9 2617
2c0b251b 2618static struct value *
d2e4a39e 2619ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2620 struct value **ind)
14f9c5c9
AS
2621{
2622 int k;
2623
2624 for (k = 0; k < arity; k += 1)
2625 {
2626 LONGEST lwb, upb;
14f9c5c9
AS
2627
2628 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2629 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2630 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2631 value_copy (arr));
14f9c5c9 2632 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2633 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2634 type = TYPE_TARGET_TYPE (type);
2635 }
2636
2637 return value_ind (arr);
2638}
2639
0b5d8877 2640/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2641 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2642 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2643 per Ada rules. */
0b5d8877 2644static struct value *
f5938064
JG
2645ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2646 int low, int high)
0b5d8877 2647{
b0dd7688 2648 struct type *type0 = ada_check_typedef (type);
6c038f32 2649 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2650 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2651 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2652 struct type *index_type =
b0dd7688 2653 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2654 low, high);
6c038f32 2655 struct type *slice_type =
b0dd7688 2656 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2657
f5938064 2658 return value_at_lazy (slice_type, base);
0b5d8877
PH
2659}
2660
2661
2662static struct value *
2663ada_value_slice (struct value *array, int low, int high)
2664{
b0dd7688 2665 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2666 struct type *index_type =
0b5d8877 2667 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2668 struct type *slice_type =
0b5d8877 2669 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2670
6c038f32 2671 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2672}
2673
14f9c5c9
AS
2674/* If type is a record type in the form of a standard GNAT array
2675 descriptor, returns the number of dimensions for type. If arr is a
2676 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2677 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2678
2679int
d2e4a39e 2680ada_array_arity (struct type *type)
14f9c5c9
AS
2681{
2682 int arity;
2683
2684 if (type == NULL)
2685 return 0;
2686
2687 type = desc_base_type (type);
2688
2689 arity = 0;
d2e4a39e 2690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2691 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2692 else
2693 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2694 {
4c4b4cd2 2695 arity += 1;
61ee279c 2696 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2697 }
d2e4a39e 2698
14f9c5c9
AS
2699 return arity;
2700}
2701
2702/* If TYPE is a record type in the form of a standard GNAT array
2703 descriptor or a simple array type, returns the element type for
2704 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2705 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2706
d2e4a39e
AS
2707struct type *
2708ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2709{
2710 type = desc_base_type (type);
2711
d2e4a39e 2712 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2713 {
2714 int k;
d2e4a39e 2715 struct type *p_array_type;
14f9c5c9 2716
556bdfd4 2717 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2718
2719 k = ada_array_arity (type);
2720 if (k == 0)
4c4b4cd2 2721 return NULL;
d2e4a39e 2722
4c4b4cd2 2723 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2724 if (nindices >= 0 && k > nindices)
4c4b4cd2 2725 k = nindices;
d2e4a39e 2726 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2727 {
61ee279c 2728 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2729 k -= 1;
2730 }
14f9c5c9
AS
2731 return p_array_type;
2732 }
2733 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2736 {
2737 type = TYPE_TARGET_TYPE (type);
2738 nindices -= 1;
2739 }
14f9c5c9
AS
2740 return type;
2741 }
2742
2743 return NULL;
2744}
2745
4c4b4cd2 2746/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2747 Does not examine memory. Throws an error if N is invalid or TYPE
2748 is not an array type. NAME is the name of the Ada attribute being
2749 evaluated ('range, 'first, 'last, or 'length); it is used in building
2750 the error message. */
14f9c5c9 2751
1eea4ebd
UW
2752static struct type *
2753ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2754{
4c4b4cd2
PH
2755 struct type *result_type;
2756
14f9c5c9
AS
2757 type = desc_base_type (type);
2758
1eea4ebd
UW
2759 if (n < 0 || n > ada_array_arity (type))
2760 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2761
4c4b4cd2 2762 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2763 {
2764 int i;
2765
2766 for (i = 1; i < n; i += 1)
4c4b4cd2 2767 type = TYPE_TARGET_TYPE (type);
262452ec 2768 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2769 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2770 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2771 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2772 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2773 result_type = NULL;
14f9c5c9 2774 }
d2e4a39e 2775 else
1eea4ebd
UW
2776 {
2777 result_type = desc_index_type (desc_bounds_type (type), n);
2778 if (result_type == NULL)
2779 error (_("attempt to take bound of something that is not an array"));
2780 }
2781
2782 return result_type;
14f9c5c9
AS
2783}
2784
2785/* Given that arr is an array type, returns the lower bound of the
2786 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2787 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2788 array-descriptor type. It works for other arrays with bounds supplied
2789 by run-time quantities other than discriminants. */
14f9c5c9 2790
abb68b3e 2791static LONGEST
1eea4ebd 2792ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2793{
1ce677a4 2794 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2795 int i;
262452ec
JK
2796
2797 gdb_assert (which == 0 || which == 1);
14f9c5c9 2798
ad82864c
JB
2799 if (ada_is_constrained_packed_array_type (arr_type))
2800 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2801
4c4b4cd2 2802 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2803 return (LONGEST) - which;
14f9c5c9
AS
2804
2805 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2806 type = TYPE_TARGET_TYPE (arr_type);
2807 else
2808 type = arr_type;
2809
1ce677a4
UW
2810 elt_type = type;
2811 for (i = n; i > 1; i--)
2812 elt_type = TYPE_TARGET_TYPE (type);
2813
14f9c5c9 2814 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2815 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2816 if (index_type_desc != NULL)
28c85d6c
JB
2817 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2818 NULL);
262452ec 2819 else
1ce677a4 2820 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2821
43bbcdc2
PH
2822 return
2823 (LONGEST) (which == 0
2824 ? ada_discrete_type_low_bound (index_type)
2825 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2826}
2827
2828/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2829 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2830 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2831 supplied by run-time quantities other than discriminants. */
14f9c5c9 2832
1eea4ebd 2833static LONGEST
4dc81987 2834ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2835{
df407dfe 2836 struct type *arr_type = value_type (arr);
14f9c5c9 2837
ad82864c
JB
2838 if (ada_is_constrained_packed_array_type (arr_type))
2839 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2840 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2841 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2842 else
1eea4ebd 2843 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2844}
2845
2846/* Given that arr is an array value, returns the length of the
2847 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2848 supplied by run-time quantities other than discriminants.
2849 Does not work for arrays indexed by enumeration types with representation
2850 clauses at the moment. */
14f9c5c9 2851
1eea4ebd 2852static LONGEST
d2e4a39e 2853ada_array_length (struct value *arr, int n)
14f9c5c9 2854{
df407dfe 2855 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2856
ad82864c
JB
2857 if (ada_is_constrained_packed_array_type (arr_type))
2858 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2859
4c4b4cd2 2860 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2861 return (ada_array_bound_from_type (arr_type, n, 1)
2862 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2863 else
1eea4ebd
UW
2864 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2865 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2866}
2867
2868/* An empty array whose type is that of ARR_TYPE (an array type),
2869 with bounds LOW to LOW-1. */
2870
2871static struct value *
2872empty_array (struct type *arr_type, int low)
2873{
b0dd7688 2874 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2875 struct type *index_type =
b0dd7688 2876 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2877 low, low - 1);
b0dd7688 2878 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2879
0b5d8877 2880 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2881}
14f9c5c9 2882\f
d2e4a39e 2883
4c4b4cd2 2884 /* Name resolution */
14f9c5c9 2885
4c4b4cd2
PH
2886/* The "decoded" name for the user-definable Ada operator corresponding
2887 to OP. */
14f9c5c9 2888
d2e4a39e 2889static const char *
4c4b4cd2 2890ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2891{
2892 int i;
2893
4c4b4cd2 2894 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2895 {
2896 if (ada_opname_table[i].op == op)
4c4b4cd2 2897 return ada_opname_table[i].decoded;
14f9c5c9 2898 }
323e0a4a 2899 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2900}
2901
2902
4c4b4cd2
PH
2903/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2904 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2905 undefined namespace) and converts operators that are
2906 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2907 non-null, it provides a preferred result type [at the moment, only
2908 type void has any effect---causing procedures to be preferred over
2909 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2910 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2911
4c4b4cd2
PH
2912static void
2913resolve (struct expression **expp, int void_context_p)
14f9c5c9 2914{
30b15541
UW
2915 struct type *context_type = NULL;
2916 int pc = 0;
2917
2918 if (void_context_p)
2919 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920
2921 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2922}
2923
4c4b4cd2
PH
2924/* Resolve the operator of the subexpression beginning at
2925 position *POS of *EXPP. "Resolving" consists of replacing
2926 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2927 with their resolutions, replacing built-in operators with
2928 function calls to user-defined operators, where appropriate, and,
2929 when DEPROCEDURE_P is non-zero, converting function-valued variables
2930 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2931 are as in ada_resolve, above. */
14f9c5c9 2932
d2e4a39e 2933static struct value *
4c4b4cd2 2934resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2935 struct type *context_type)
14f9c5c9
AS
2936{
2937 int pc = *pos;
2938 int i;
4c4b4cd2 2939 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2940 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2941 struct value **argvec; /* Vector of operand types (alloca'ed). */
2942 int nargs; /* Number of operands. */
52ce6436 2943 int oplen;
14f9c5c9
AS
2944
2945 argvec = NULL;
2946 nargs = 0;
2947 exp = *expp;
2948
52ce6436
PH
2949 /* Pass one: resolve operands, saving their types and updating *pos,
2950 if needed. */
14f9c5c9
AS
2951 switch (op)
2952 {
4c4b4cd2
PH
2953 case OP_FUNCALL:
2954 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2955 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2956 *pos += 7;
4c4b4cd2
PH
2957 else
2958 {
2959 *pos += 3;
2960 resolve_subexp (expp, pos, 0, NULL);
2961 }
2962 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2963 break;
2964
14f9c5c9 2965 case UNOP_ADDR:
4c4b4cd2
PH
2966 *pos += 1;
2967 resolve_subexp (expp, pos, 0, NULL);
2968 break;
2969
52ce6436
PH
2970 case UNOP_QUAL:
2971 *pos += 3;
17466c1a 2972 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2973 break;
2974
52ce6436 2975 case OP_ATR_MODULUS:
4c4b4cd2
PH
2976 case OP_ATR_SIZE:
2977 case OP_ATR_TAG:
4c4b4cd2
PH
2978 case OP_ATR_FIRST:
2979 case OP_ATR_LAST:
2980 case OP_ATR_LENGTH:
2981 case OP_ATR_POS:
2982 case OP_ATR_VAL:
4c4b4cd2
PH
2983 case OP_ATR_MIN:
2984 case OP_ATR_MAX:
52ce6436
PH
2985 case TERNOP_IN_RANGE:
2986 case BINOP_IN_BOUNDS:
2987 case UNOP_IN_RANGE:
2988 case OP_AGGREGATE:
2989 case OP_OTHERS:
2990 case OP_CHOICES:
2991 case OP_POSITIONAL:
2992 case OP_DISCRETE_RANGE:
2993 case OP_NAME:
2994 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2995 *pos += oplen;
14f9c5c9
AS
2996 break;
2997
2998 case BINOP_ASSIGN:
2999 {
4c4b4cd2
PH
3000 struct value *arg1;
3001
3002 *pos += 1;
3003 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 if (arg1 == NULL)
3005 resolve_subexp (expp, pos, 1, NULL);
3006 else
df407dfe 3007 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3008 break;
14f9c5c9
AS
3009 }
3010
4c4b4cd2 3011 case UNOP_CAST:
4c4b4cd2
PH
3012 *pos += 3;
3013 nargs = 1;
3014 break;
14f9c5c9 3015
4c4b4cd2
PH
3016 case BINOP_ADD:
3017 case BINOP_SUB:
3018 case BINOP_MUL:
3019 case BINOP_DIV:
3020 case BINOP_REM:
3021 case BINOP_MOD:
3022 case BINOP_EXP:
3023 case BINOP_CONCAT:
3024 case BINOP_LOGICAL_AND:
3025 case BINOP_LOGICAL_OR:
3026 case BINOP_BITWISE_AND:
3027 case BINOP_BITWISE_IOR:
3028 case BINOP_BITWISE_XOR:
14f9c5c9 3029
4c4b4cd2
PH
3030 case BINOP_EQUAL:
3031 case BINOP_NOTEQUAL:
3032 case BINOP_LESS:
3033 case BINOP_GTR:
3034 case BINOP_LEQ:
3035 case BINOP_GEQ:
14f9c5c9 3036
4c4b4cd2
PH
3037 case BINOP_REPEAT:
3038 case BINOP_SUBSCRIPT:
3039 case BINOP_COMMA:
40c8aaa9
JB
3040 *pos += 1;
3041 nargs = 2;
3042 break;
14f9c5c9 3043
4c4b4cd2
PH
3044 case UNOP_NEG:
3045 case UNOP_PLUS:
3046 case UNOP_LOGICAL_NOT:
3047 case UNOP_ABS:
3048 case UNOP_IND:
3049 *pos += 1;
3050 nargs = 1;
3051 break;
14f9c5c9 3052
4c4b4cd2
PH
3053 case OP_LONG:
3054 case OP_DOUBLE:
3055 case OP_VAR_VALUE:
3056 *pos += 4;
3057 break;
14f9c5c9 3058
4c4b4cd2
PH
3059 case OP_TYPE:
3060 case OP_BOOL:
3061 case OP_LAST:
4c4b4cd2
PH
3062 case OP_INTERNALVAR:
3063 *pos += 3;
3064 break;
14f9c5c9 3065
4c4b4cd2
PH
3066 case UNOP_MEMVAL:
3067 *pos += 3;
3068 nargs = 1;
3069 break;
3070
67f3407f
DJ
3071 case OP_REGISTER:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 break;
3074
4c4b4cd2
PH
3075 case STRUCTOP_STRUCT:
3076 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3077 nargs = 1;
3078 break;
3079
4c4b4cd2 3080 case TERNOP_SLICE:
4c4b4cd2
PH
3081 *pos += 1;
3082 nargs = 3;
3083 break;
3084
52ce6436 3085 case OP_STRING:
14f9c5c9 3086 break;
4c4b4cd2
PH
3087
3088 default:
323e0a4a 3089 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3090 }
3091
76a01679 3092 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3093 for (i = 0; i < nargs; i += 1)
3094 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3095 argvec[i] = NULL;
3096 exp = *expp;
3097
3098 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3099 switch (op)
3100 {
3101 default:
3102 break;
3103
14f9c5c9 3104 case OP_VAR_VALUE:
4c4b4cd2 3105 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3106 {
3107 struct ada_symbol_info *candidates;
3108 int n_candidates;
3109
3110 n_candidates =
3111 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3112 (exp->elts[pc + 2].symbol),
3113 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3114 &candidates, 1);
76a01679
JB
3115
3116 if (n_candidates > 1)
3117 {
3118 /* Types tend to get re-introduced locally, so if there
3119 are any local symbols that are not types, first filter
3120 out all types. */
3121 int j;
3122 for (j = 0; j < n_candidates; j += 1)
3123 switch (SYMBOL_CLASS (candidates[j].sym))
3124 {
3125 case LOC_REGISTER:
3126 case LOC_ARG:
3127 case LOC_REF_ARG:
76a01679
JB
3128 case LOC_REGPARM_ADDR:
3129 case LOC_LOCAL:
76a01679 3130 case LOC_COMPUTED:
76a01679
JB
3131 goto FoundNonType;
3132 default:
3133 break;
3134 }
3135 FoundNonType:
3136 if (j < n_candidates)
3137 {
3138 j = 0;
3139 while (j < n_candidates)
3140 {
3141 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 {
3143 candidates[j] = candidates[n_candidates - 1];
3144 n_candidates -= 1;
3145 }
3146 else
3147 j += 1;
3148 }
3149 }
3150 }
3151
3152 if (n_candidates == 0)
323e0a4a 3153 error (_("No definition found for %s"),
76a01679
JB
3154 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3155 else if (n_candidates == 1)
3156 i = 0;
3157 else if (deprocedure_p
3158 && !is_nonfunction (candidates, n_candidates))
3159 {
06d5cf63
JB
3160 i = ada_resolve_function
3161 (candidates, n_candidates, NULL, 0,
3162 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3163 context_type);
76a01679 3164 if (i < 0)
323e0a4a 3165 error (_("Could not find a match for %s"),
76a01679
JB
3166 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3167 }
3168 else
3169 {
323e0a4a 3170 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3171 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3172 user_select_syms (candidates, n_candidates, 1);
3173 i = 0;
3174 }
3175
3176 exp->elts[pc + 1].block = candidates[i].block;
3177 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3178 if (innermost_block == NULL
3179 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3180 innermost_block = candidates[i].block;
3181 }
3182
3183 if (deprocedure_p
3184 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3185 == TYPE_CODE_FUNC))
3186 {
3187 replace_operator_with_call (expp, pc, 0, 0,
3188 exp->elts[pc + 2].symbol,
3189 exp->elts[pc + 1].block);
3190 exp = *expp;
3191 }
14f9c5c9
AS
3192 break;
3193
3194 case OP_FUNCALL:
3195 {
4c4b4cd2 3196 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3197 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3198 {
3199 struct ada_symbol_info *candidates;
3200 int n_candidates;
3201
3202 n_candidates =
76a01679
JB
3203 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3204 (exp->elts[pc + 5].symbol),
3205 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3206 &candidates, 1);
4c4b4cd2
PH
3207 if (n_candidates == 1)
3208 i = 0;
3209 else
3210 {
06d5cf63
JB
3211 i = ada_resolve_function
3212 (candidates, n_candidates,
3213 argvec, nargs,
3214 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3215 context_type);
4c4b4cd2 3216 if (i < 0)
323e0a4a 3217 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3218 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3219 }
3220
3221 exp->elts[pc + 4].block = candidates[i].block;
3222 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3223 if (innermost_block == NULL
3224 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3225 innermost_block = candidates[i].block;
3226 }
14f9c5c9
AS
3227 }
3228 break;
3229 case BINOP_ADD:
3230 case BINOP_SUB:
3231 case BINOP_MUL:
3232 case BINOP_DIV:
3233 case BINOP_REM:
3234 case BINOP_MOD:
3235 case BINOP_CONCAT:
3236 case BINOP_BITWISE_AND:
3237 case BINOP_BITWISE_IOR:
3238 case BINOP_BITWISE_XOR:
3239 case BINOP_EQUAL:
3240 case BINOP_NOTEQUAL:
3241 case BINOP_LESS:
3242 case BINOP_GTR:
3243 case BINOP_LEQ:
3244 case BINOP_GEQ:
3245 case BINOP_EXP:
3246 case UNOP_NEG:
3247 case UNOP_PLUS:
3248 case UNOP_LOGICAL_NOT:
3249 case UNOP_ABS:
3250 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3251 {
3252 struct ada_symbol_info *candidates;
3253 int n_candidates;
3254
3255 n_candidates =
3256 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3257 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3258 &candidates, 1);
4c4b4cd2 3259 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3260 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3261 if (i < 0)
3262 break;
3263
76a01679
JB
3264 replace_operator_with_call (expp, pc, nargs, 1,
3265 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3266 exp = *expp;
3267 }
14f9c5c9 3268 break;
4c4b4cd2
PH
3269
3270 case OP_TYPE:
b3dbf008 3271 case OP_REGISTER:
4c4b4cd2 3272 return NULL;
14f9c5c9
AS
3273 }
3274
3275 *pos = pc;
3276 return evaluate_subexp_type (exp, pos);
3277}
3278
3279/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3280 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3281 a non-pointer. */
14f9c5c9 3282/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3283 liberal. */
14f9c5c9
AS
3284
3285static int
4dc81987 3286ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3287{
61ee279c
PH
3288 ftype = ada_check_typedef (ftype);
3289 atype = ada_check_typedef (atype);
14f9c5c9
AS
3290
3291 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3292 ftype = TYPE_TARGET_TYPE (ftype);
3293 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3294 atype = TYPE_TARGET_TYPE (atype);
3295
d2e4a39e 3296 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3297 {
3298 default:
5b3d5b7d 3299 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3300 case TYPE_CODE_PTR:
3301 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3302 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3303 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3304 else
1265e4aa
JB
3305 return (may_deref
3306 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3307 case TYPE_CODE_INT:
3308 case TYPE_CODE_ENUM:
3309 case TYPE_CODE_RANGE:
3310 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3311 {
3312 case TYPE_CODE_INT:
3313 case TYPE_CODE_ENUM:
3314 case TYPE_CODE_RANGE:
3315 return 1;
3316 default:
3317 return 0;
3318 }
14f9c5c9
AS
3319
3320 case TYPE_CODE_ARRAY:
d2e4a39e 3321 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3322 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3323
3324 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3325 if (ada_is_array_descriptor_type (ftype))
3326 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3327 || ada_is_array_descriptor_type (atype));
14f9c5c9 3328 else
4c4b4cd2
PH
3329 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3330 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3331
3332 case TYPE_CODE_UNION:
3333 case TYPE_CODE_FLT:
3334 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3335 }
3336}
3337
3338/* Return non-zero if the formals of FUNC "sufficiently match" the
3339 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3340 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3341 argument function. */
14f9c5c9
AS
3342
3343static int
d2e4a39e 3344ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3345{
3346 int i;
d2e4a39e 3347 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3348
1265e4aa
JB
3349 if (SYMBOL_CLASS (func) == LOC_CONST
3350 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3351 return (n_actuals == 0);
3352 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3353 return 0;
3354
3355 if (TYPE_NFIELDS (func_type) != n_actuals)
3356 return 0;
3357
3358 for (i = 0; i < n_actuals; i += 1)
3359 {
4c4b4cd2 3360 if (actuals[i] == NULL)
76a01679
JB
3361 return 0;
3362 else
3363 {
5b4ee69b
MS
3364 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 i));
df407dfe 3366 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3367
76a01679
JB
3368 if (!ada_type_match (ftype, atype, 1))
3369 return 0;
3370 }
14f9c5c9
AS
3371 }
3372 return 1;
3373}
3374
3375/* False iff function type FUNC_TYPE definitely does not produce a value
3376 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3377 FUNC_TYPE is not a valid function type with a non-null return type
3378 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3379
3380static int
d2e4a39e 3381return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3382{
d2e4a39e 3383 struct type *return_type;
14f9c5c9
AS
3384
3385 if (func_type == NULL)
3386 return 1;
3387
4c4b4cd2 3388 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3389 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3390 else
18af8284 3391 return_type = get_base_type (func_type);
14f9c5c9
AS
3392 if (return_type == NULL)
3393 return 1;
3394
18af8284 3395 context_type = get_base_type (context_type);
14f9c5c9
AS
3396
3397 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3398 return context_type == NULL || return_type == context_type;
3399 else if (context_type == NULL)
3400 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 else
3402 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3403}
3404
3405
4c4b4cd2 3406/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3407 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3408 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3409 that returns that type, then eliminate matches that don't. If
3410 CONTEXT_TYPE is void and there is at least one match that does not
3411 return void, eliminate all matches that do.
3412
14f9c5c9
AS
3413 Asks the user if there is more than one match remaining. Returns -1
3414 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3415 solely for messages. May re-arrange and modify SYMS in
3416 the process; the index returned is for the modified vector. */
14f9c5c9 3417
4c4b4cd2
PH
3418static int
3419ada_resolve_function (struct ada_symbol_info syms[],
3420 int nsyms, struct value **args, int nargs,
3421 const char *name, struct type *context_type)
14f9c5c9 3422{
30b15541 3423 int fallback;
14f9c5c9 3424 int k;
4c4b4cd2 3425 int m; /* Number of hits */
14f9c5c9 3426
d2e4a39e 3427 m = 0;
30b15541
UW
3428 /* In the first pass of the loop, we only accept functions matching
3429 context_type. If none are found, we add a second pass of the loop
3430 where every function is accepted. */
3431 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3432 {
3433 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3434 {
61ee279c 3435 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3436
3437 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3438 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3439 {
3440 syms[m] = syms[k];
3441 m += 1;
3442 }
3443 }
14f9c5c9
AS
3444 }
3445
3446 if (m == 0)
3447 return -1;
3448 else if (m > 1)
3449 {
323e0a4a 3450 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3451 user_select_syms (syms, m, 1);
14f9c5c9
AS
3452 return 0;
3453 }
3454 return 0;
3455}
3456
4c4b4cd2
PH
3457/* Returns true (non-zero) iff decoded name N0 should appear before N1
3458 in a listing of choices during disambiguation (see sort_choices, below).
3459 The idea is that overloadings of a subprogram name from the
3460 same package should sort in their source order. We settle for ordering
3461 such symbols by their trailing number (__N or $N). */
3462
14f9c5c9 3463static int
0d5cff50 3464encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3465{
3466 if (N1 == NULL)
3467 return 0;
3468 else if (N0 == NULL)
3469 return 1;
3470 else
3471 {
3472 int k0, k1;
5b4ee69b 3473
d2e4a39e 3474 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3475 ;
d2e4a39e 3476 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3477 ;
d2e4a39e 3478 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3479 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3480 {
3481 int n0, n1;
5b4ee69b 3482
4c4b4cd2
PH
3483 n0 = k0;
3484 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3485 n0 -= 1;
3486 n1 = k1;
3487 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 n1 -= 1;
3489 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3490 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 }
14f9c5c9
AS
3492 return (strcmp (N0, N1) < 0);
3493 }
3494}
d2e4a39e 3495
4c4b4cd2
PH
3496/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3497 encoded names. */
3498
d2e4a39e 3499static void
4c4b4cd2 3500sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3501{
4c4b4cd2 3502 int i;
5b4ee69b 3503
d2e4a39e 3504 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3505 {
4c4b4cd2 3506 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3507 int j;
3508
d2e4a39e 3509 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3510 {
3511 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3512 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 break;
3514 syms[j + 1] = syms[j];
3515 }
d2e4a39e 3516 syms[j + 1] = sym;
14f9c5c9
AS
3517 }
3518}
3519
4c4b4cd2
PH
3520/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3521 by asking the user (if necessary), returning the number selected,
3522 and setting the first elements of SYMS items. Error if no symbols
3523 selected. */
14f9c5c9
AS
3524
3525/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3526 to be re-integrated one of these days. */
14f9c5c9
AS
3527
3528int
4c4b4cd2 3529user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3530{
3531 int i;
d2e4a39e 3532 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3533 int n_chosen;
3534 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3535 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3536
3537 if (max_results < 1)
323e0a4a 3538 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3539 if (nsyms <= 1)
3540 return nsyms;
3541
717d2f5a
JB
3542 if (select_mode == multiple_symbols_cancel)
3543 error (_("\
3544canceled because the command is ambiguous\n\
3545See set/show multiple-symbol."));
3546
3547 /* If select_mode is "all", then return all possible symbols.
3548 Only do that if more than one symbol can be selected, of course.
3549 Otherwise, display the menu as usual. */
3550 if (select_mode == multiple_symbols_all && max_results > 1)
3551 return nsyms;
3552
323e0a4a 3553 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3554 if (max_results > 1)
323e0a4a 3555 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3556
4c4b4cd2 3557 sort_choices (syms, nsyms);
14f9c5c9
AS
3558
3559 for (i = 0; i < nsyms; i += 1)
3560 {
4c4b4cd2
PH
3561 if (syms[i].sym == NULL)
3562 continue;
3563
3564 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 {
76a01679
JB
3566 struct symtab_and_line sal =
3567 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3568
323e0a4a
AC
3569 if (sal.symtab == NULL)
3570 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.line);
3574 else
3575 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3576 SYMBOL_PRINT_NAME (syms[i].sym),
3577 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3578 continue;
3579 }
d2e4a39e 3580 else
4c4b4cd2
PH
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3595 {
a3f17187 3596 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3598 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
323e0a4a
AC
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab->filename);
3609 else
3610 printf_unfiltered (is_enumeral
323e0a4a
AC
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
14f9c5c9 3616 }
d2e4a39e 3617
14f9c5c9 3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3619 "overload-choice");
14f9c5c9
AS
3620
3621 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3622 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3623
3624 return n_chosen;
3625}
3626
3627/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3628 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
4c4b4cd2 3634 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
4c4b4cd2 3638 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3641 prompts (for use with the -f switch). */
14f9c5c9
AS
3642
3643int
d2e4a39e 3644get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3645 int is_all_choice, char *annotation_suffix)
14f9c5c9 3646{
d2e4a39e 3647 char *args;
0bcd0149 3648 char *prompt;
14f9c5c9
AS
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3651
14f9c5c9
AS
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
0bcd0149 3654 prompt = "> ";
14f9c5c9 3655
0bcd0149 3656 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3657
14f9c5c9 3658 if (args == NULL)
323e0a4a 3659 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3660
3661 n_chosen = 0;
76a01679 3662
4c4b4cd2
PH
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
14f9c5c9
AS
3665 while (1)
3666 {
d2e4a39e 3667 char *args2;
14f9c5c9
AS
3668 int choice, j;
3669
0fcd72ba 3670 args = skip_spaces (args);
14f9c5c9 3671 if (*args == '\0' && n_chosen == 0)
323e0a4a 3672 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3673 else if (*args == '\0')
4c4b4cd2 3674 break;
14f9c5c9
AS
3675
3676 choice = strtol (args, &args2, 10);
d2e4a39e 3677 if (args == args2 || choice < 0
4c4b4cd2 3678 || choice > n_choices + first_choice - 1)
323e0a4a 3679 error (_("Argument must be choice number"));
14f9c5c9
AS
3680 args = args2;
3681
d2e4a39e 3682 if (choice == 0)
323e0a4a 3683 error (_("cancelled"));
14f9c5c9
AS
3684
3685 if (choice < first_choice)
4c4b4cd2
PH
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
14f9c5c9
AS
3692 choice -= first_choice;
3693
d2e4a39e 3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3695 {
3696 }
14f9c5c9
AS
3697
3698 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3699 {
3700 int k;
5b4ee69b 3701
4c4b4cd2
PH
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
14f9c5c9
AS
3707 }
3708
3709 if (n_chosen > max_results)
323e0a4a 3710 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3711
14f9c5c9
AS
3712 return n_chosen;
3713}
3714
4c4b4cd2
PH
3715/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3718
3719static void
d2e4a39e 3720replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3721 int oplen, struct symbol *sym,
270140bd 3722 const struct block *block)
14f9c5c9
AS
3723{
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3725 symbol, -oplen for operator being replaced). */
d2e4a39e 3726 struct expression *newexp = (struct expression *)
8c1a34e7 3727 xzalloc (sizeof (struct expression)
4c4b4cd2 3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3729 struct expression *exp = *expp;
14f9c5c9
AS
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3489610d 3733 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
aacb1f0a 3746 xfree (exp);
d2e4a39e 3747}
14f9c5c9
AS
3748
3749/* Type-class predicates */
3750
4c4b4cd2
PH
3751/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
14f9c5c9
AS
3753
3754static int
d2e4a39e 3755numeric_type_p (struct type *type)
14f9c5c9
AS
3756{
3757 if (type == NULL)
3758 return 0;
d2e4a39e
AS
3759 else
3760 {
3761 switch (TYPE_CODE (type))
4c4b4cd2
PH
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
d2e4a39e 3772 }
14f9c5c9
AS
3773}
3774
4c4b4cd2 3775/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3776
3777static int
d2e4a39e 3778integer_type_p (struct type *type)
14f9c5c9
AS
3779{
3780 if (type == NULL)
3781 return 0;
d2e4a39e
AS
3782 else
3783 {
3784 switch (TYPE_CODE (type))
4c4b4cd2
PH
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
d2e4a39e 3794 }
14f9c5c9
AS
3795}
3796
4c4b4cd2 3797/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3798
3799static int
d2e4a39e 3800scalar_type_p (struct type *type)
14f9c5c9
AS
3801{
3802 if (type == NULL)
3803 return 0;
d2e4a39e
AS
3804 else
3805 {
3806 switch (TYPE_CODE (type))
4c4b4cd2
PH
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
d2e4a39e 3816 }
14f9c5c9
AS
3817}
3818
4c4b4cd2 3819/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3820
3821static int
d2e4a39e 3822discrete_type_p (struct type *type)
14f9c5c9
AS
3823{
3824 if (type == NULL)
3825 return 0;
d2e4a39e
AS
3826 else
3827 {
3828 switch (TYPE_CODE (type))
4c4b4cd2
PH
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
872f0337 3833 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3834 return 1;
3835 default:
3836 return 0;
3837 }
d2e4a39e 3838 }
14f9c5c9
AS
3839}
3840
4c4b4cd2
PH
3841/* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
14f9c5c9
AS
3844
3845static int
d2e4a39e 3846possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3847{
76a01679 3848 struct type *type0 =
df407dfe 3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3850 struct type *type1 =
df407dfe 3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3852
4c4b4cd2
PH
3853 if (type0 == NULL)
3854 return 0;
3855
14f9c5c9
AS
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
d2e4a39e 3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
d2e4a39e 3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
d2e4a39e 3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3881
3882 case BINOP_CONCAT:
ee90b9ab 3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3884
3885 case BINOP_EXP:
d2e4a39e 3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
14f9c5c9
AS
3893
3894 }
3895}
3896\f
4c4b4cd2 3897 /* Renaming */
14f9c5c9 3898
aeb5907d
JB
3899/* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911/* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
0963b4bd 3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930enum ada_renaming_category
3931ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934{
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
14f9c5c9 3942 {
aeb5907d
JB
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
14f9c5c9 3976 }
4c4b4cd2 3977
aeb5907d
JB
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989}
3990
3991/* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995static enum ada_renaming_category
3996parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999{
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
14f9c5c9 4004
aeb5907d
JB
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
14f9c5c9 4008
aeb5907d
JB
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
14f9c5c9 4034
aeb5907d
JB
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
a5ee536b
JB
4048}
4049
4050/* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
52ce6436 4053
a5ee536b
JB
4054static struct value *
4055ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057{
4058 char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4064 old_chain = make_cleanup (xfree, sym_name);
1bb9788d 4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
a5ee536b
JB
4066 make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071}
14f9c5c9 4072\f
d2e4a39e 4073
4c4b4cd2 4074 /* Evaluation: Function Calls */
14f9c5c9 4075
4c4b4cd2 4076/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4079
d2e4a39e 4080static struct value *
40bc484c 4081ensure_lval (struct value *val)
14f9c5c9 4082{
40bc484c
JB
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4085 {
df407dfe 4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4089
40bc484c 4090 set_value_address (val, addr);
a84a8a0d 4091 VALUE_LVAL (val) = lval_memory;
40bc484c 4092 write_memory (addr, value_contents (val), len);
c3e5cd34 4093 }
14f9c5c9
AS
4094
4095 return val;
4096}
4097
4098/* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4101 values not residing in memory, updating it as needed. */
14f9c5c9 4102
a93c0eb6 4103struct value *
40bc484c 4104ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4105{
df407dfe 4106 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4107 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4114
4c4b4cd2 4115 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4117 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4120 {
a84a8a0d 4121 struct value *result;
5b4ee69b 4122
14f9c5c9 4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4124 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4125 result = desc_data (actual);
14f9c5c9 4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
5b4ee69b 4131
df407dfe 4132 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4133 val = allocate_value (actual_type);
990a07ab 4134 memcpy ((char *) value_contents_raw (val),
0fd88904 4135 (char *) value_contents (actual),
4c4b4cd2 4136 TYPE_LENGTH (actual_type));
40bc484c 4137 actual = ensure_lval (val);
4c4b4cd2 4138 }
a84a8a0d 4139 result = value_addr (actual);
4c4b4cd2 4140 }
a84a8a0d
JB
4141 else
4142 return actual;
b1af9e97 4143 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149}
4150
438c98a1
JB
4151/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156static CORE_ADDR
4157value_pointer (struct value *value, struct type *type)
4158{
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168}
4169
14f9c5c9 4170
4c4b4cd2
PH
4171/* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
14f9c5c9 4176
d2e4a39e 4177static struct value *
40bc484c 4178make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4179{
d2e4a39e
AS
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4184 int i;
d2e4a39e 4185
0963b4bd
MS
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
14f9c5c9 4188 {
19f220c3
JK
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4197 }
d2e4a39e 4198
40bc484c 4199 bounds = ensure_lval (bounds);
d2e4a39e 4200
19f220c3
JK
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4214
40bc484c 4215 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221}
14f9c5c9 4222\f
963a6417 4223/* Dummy definitions for an experimental caching module that is not
0963b4bd 4224 * used in the public sources. */
96d887e8 4225
96d887e8
PH
4226static int
4227lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4228 struct symbol **sym, struct block **block)
96d887e8
PH
4229{
4230 return 0;
4231}
4232
4233static void
4234cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4235 const struct block *block)
96d887e8
PH
4236{
4237}
4c4b4cd2
PH
4238\f
4239 /* Symbol Lookup */
4240
c0431670
JB
4241/* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247static int
4248should_use_wild_match (const char *lookup_name)
4249{
4250 return (strstr (lookup_name, "__") == NULL);
4251}
4252
4c4b4cd2
PH
4253/* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256static struct symbol *
4257standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259{
acbd605d
MGD
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4c4b4cd2 4262
2570f2b7 4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4264 return sym;
2570f2b7
UW
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4267 return sym;
4268}
4269
4270
4271/* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274static int
4275is_nonfunction (struct ada_symbol_info syms[], int n)
4276{
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4283 return 1;
4284
4285 return 0;
4286}
4287
4288/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4289 struct types. Otherwise, they may not. */
14f9c5c9
AS
4290
4291static int
d2e4a39e 4292equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4293{
d2e4a39e 4294 if (type0 == type1)
14f9c5c9 4295 return 1;
d2e4a39e 4296 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
d2e4a39e 4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4303 return 1;
d2e4a39e 4304
14f9c5c9
AS
4305 return 0;
4306}
4307
4308/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4309 no more defined than that of SYM1. */
14f9c5c9
AS
4310
4311static int
d2e4a39e 4312lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4313{
4314 if (sym0 == sym1)
4315 return 1;
176620f1 4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
d2e4a39e 4320 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4c4b4cd2
PH
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4330 int len0 = strlen (name0);
5b4ee69b 4331
4c4b4cd2
PH
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4341 default:
4342 return 0;
14f9c5c9
AS
4343 }
4344}
4345
4c4b4cd2
PH
4346/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4348
4349static void
76a01679
JB
4350add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
2570f2b7 4352 struct block *block)
14f9c5c9
AS
4353{
4354 int i;
4c4b4cd2 4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4356
529cad9c
PH
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4c4b4cd2
PH
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4c4b4cd2 4374 return;
76a01679 4375 }
4c4b4cd2
PH
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4c4b4cd2
PH
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385}
4386
4387/* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
76a01679
JB
4390static int
4391num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4392{
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394}
4395
4396/* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
76a01679 4400static struct ada_symbol_info *
4c4b4cd2
PH
4401defns_collected (struct obstack *obstackp, int finish)
4402{
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407}
4408
96d887e8 4409/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4412 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4413
96d887e8
PH
4414struct minimal_symbol *
4415ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4416{
4c4b4cd2 4417 struct objfile *objfile;
96d887e8 4418 struct minimal_symbol *msymbol;
dc4024cd 4419 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4420
c0431670
JB
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
96d887e8 4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4429 name += sizeof ("standard__") - 1;
4c4b4cd2 4430
96d887e8
PH
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
dc4024cd 4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4c4b4cd2 4437
96d887e8
PH
4438 return NULL;
4439}
4c4b4cd2 4440
96d887e8
PH
4441/* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4c4b4cd2 4446
96d887e8
PH
4447static void
4448add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4449 const char *name, domain_enum namespace,
48b78332 4450 int wild_match_p)
96d887e8 4451{
96d887e8 4452}
14f9c5c9 4453
96d887e8
PH
4454/* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
14f9c5c9 4456
96d887e8
PH
4457static int
4458is_nondebugging_type (struct type *type)
4459{
0d5cff50 4460 const char *name = ada_type_name (type);
5b4ee69b 4461
96d887e8
PH
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463}
4c4b4cd2 4464
8f17729f
JB
4465/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472static int
4473ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474{
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
0d5cff50
DE
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506}
4507
4508/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528static int
4529symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530{
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565}
4566
96d887e8
PH
4567/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4c4b4cd2 4573
96d887e8
PH
4574static int
4575remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576{
4577 int i, j;
4c4b4cd2 4578
8f17729f
JB
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
96d887e8
PH
4585 i = 0;
4586 while (i < nsyms)
4587 {
a35ddb44 4588 int remove_p = 0;
339c13b6
JB
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4603 remove_p = 1;
339c13b6
JB
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4623 remove_p = 1;
4c4b4cd2 4624 }
4c4b4cd2 4625 }
339c13b6 4626
a35ddb44 4627 if (remove_p)
339c13b6
JB
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
96d887e8 4634 i += 1;
14f9c5c9 4635 }
8f17729f
JB
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
96d887e8 4652 return nsyms;
14f9c5c9
AS
4653}
4654
96d887e8
PH
4655/* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4659
96d887e8
PH
4660static char *
4661xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4662{
96d887e8 4663 /* The renaming types adhere to the following convention:
0963b4bd 4664 <scope>__<rename>___<XR extension>.
96d887e8
PH
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
76a01679 4667
96d887e8
PH
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
14f9c5c9 4673
96d887e8
PH
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4676
96d887e8
PH
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
76a01679 4680
96d887e8 4681 /* Make a copy of scope and return it. */
14f9c5c9 4682
96d887e8
PH
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4685
96d887e8
PH
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4c4b4cd2 4688
96d887e8 4689 return scope;
4c4b4cd2
PH
4690}
4691
96d887e8 4692/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4693
96d887e8
PH
4694static int
4695is_package_name (const char *name)
4c4b4cd2 4696{
96d887e8
PH
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4c4b4cd2 4702
96d887e8 4703 char *fun_name;
76a01679 4704
96d887e8
PH
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
14f9c5c9 4709
96d887e8
PH
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
14f9c5c9 4712
96d887e8 4713 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4714 functions names cannot contain "__" in them. */
96d887e8
PH
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4c4b4cd2 4717
b435e160 4718 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4719
96d887e8
PH
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721}
14f9c5c9 4722
96d887e8 4723/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4724 not visible from FUNCTION_NAME. */
14f9c5c9 4725
96d887e8 4726static int
0d5cff50 4727old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4728{
aeb5907d
JB
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4735
96d887e8 4736 make_cleanup (xfree, scope);
14f9c5c9 4737
96d887e8
PH
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
aeb5907d 4740 return 0;
14f9c5c9 4741
96d887e8
PH
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
76a01679 4744
96d887e8
PH
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
f26caa11 4751
aeb5907d 4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4753}
4754
aeb5907d
JB
4755/* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
96d887e8
PH
4760
4761 Rationale:
aeb5907d
JB
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
f26caa11 4774
96d887e8
PH
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4c4b4cd2 4791
14f9c5c9 4792static int
aeb5907d
JB
4793remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4795{
4796 struct symbol *current_function;
0d5cff50 4797 const char *current_function_name;
4c4b4cd2 4798 int i;
aeb5907d
JB
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
0963b4bd 4803 First, zero out such symbols, then compress. */
aeb5907d
JB
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
270140bd 4808 const struct block *block = syms[i].block;
aeb5907d
JB
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
5b4ee69b 4821
aeb5907d
JB
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4c4b4cd2
PH
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
76a01679 4846
4c4b4cd2
PH
4847 if (current_block == NULL)
4848 return nsyms;
76a01679 4849
7f0df278 4850 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
aeb5907d
JB
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4868 {
4869 int j;
5b4ee69b 4870
aeb5907d 4871 for (j = i + 1; j < nsyms; j += 1)
76a01679 4872 syms[j - 1] = syms[j];
4c4b4cd2
PH
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880}
4881
339c13b6
JB
4882/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892static void
4893ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
d0a8ab18 4895 int wild_match_p)
339c13b6
JB
4896{
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
d0a8ab18
JB
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
339c13b6
JB
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4917}
4918
ccefe4c4 4919/* An object of this type is used as the user_data argument when
40658b94 4920 calling the map_matching_symbols method. */
ccefe4c4 4921
40658b94 4922struct match_data
ccefe4c4 4923{
40658b94 4924 struct objfile *objfile;
ccefe4c4 4925 struct obstack *obstackp;
40658b94
PH
4926 struct symbol *arg_sym;
4927 int found_sym;
ccefe4c4
TT
4928};
4929
40658b94
PH
4930/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
ccefe4c4 4938
40658b94
PH
4939static int
4940aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4941{
40658b94
PH
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968}
4969
4970/* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
5b4ee69b 4974
40658b94
PH
4975static int
4976compare_names (const char *string1, const char *string2)
4977{
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
052874e8 4994 if (is_name_suffix (string1))
40658b94
PH
4995 return 0;
4996 else
1a1d5513 4997 return 1;
40658b94 4998 }
dbb8534f 4999 /* FALLTHROUGH */
40658b94
PH
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
ccefe4c4
TT
5006}
5007
339c13b6
JB
5008/* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012static void
40658b94
PH
5013add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
339c13b6
JB
5016{
5017 struct objfile *objfile;
40658b94 5018 struct match_data data;
339c13b6 5019
6475f2fe 5020 memset (&data, 0, sizeof data);
ccefe4c4 5021 data.obstackp = obstackp;
339c13b6 5022
ccefe4c4 5023 ALL_OBJFILES (objfile)
40658b94
PH
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
0963b4bd
MS
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
40658b94
PH
5049 full_match, compare_names);
5050 }
5051 }
339c13b6
JB
5052}
5053
4c4b4cd2 5054/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
9f88c959
JB
5055 scope and in global scopes, returning the number of matches.
5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5057 indicating the symbols found and the blocks and symbol tables (if
9f88c959
JB
5058 any) in which they were found. This vector are transient---good only to
5059 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4c4b4cd2
PH
5060 symbol match within the nest of blocks whose innermost member is BLOCK0,
5061 is the one match returned (no other matches in that or
d9680e73
TT
5062 enclosing blocks is returned). If there are any matches in or
5063 surrounding BLOCK0, then these alone are returned. Otherwise, if
5064 FULL_SEARCH is non-zero, then the search extends to global and
5065 file-scope (static) symbol tables.
9f88c959 5066 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5067 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5068
5069int
4c4b4cd2 5070ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5071 domain_enum namespace,
5072 struct ada_symbol_info **results,
5073 int full_search)
14f9c5c9
AS
5074{
5075 struct symbol *sym;
14f9c5c9 5076 struct block *block;
4c4b4cd2 5077 const char *name;
82ccd55e 5078 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5079 int cacheIfUnique;
4c4b4cd2 5080 int ndefns;
14f9c5c9 5081
4c4b4cd2
PH
5082 obstack_free (&symbol_list_obstack, NULL);
5083 obstack_init (&symbol_list_obstack);
14f9c5c9 5084
14f9c5c9
AS
5085 cacheIfUnique = 0;
5086
5087 /* Search specified block and its superiors. */
5088
4c4b4cd2 5089 name = name0;
76a01679
JB
5090 block = (struct block *) block0; /* FIXME: No cast ought to be
5091 needed, but adding const will
5092 have a cascade effect. */
339c13b6
JB
5093
5094 /* Special case: If the user specifies a symbol name inside package
5095 Standard, do a non-wild matching of the symbol name without
5096 the "standard__" prefix. This was primarily introduced in order
5097 to allow the user to specifically access the standard exceptions
5098 using, for instance, Standard.Constraint_Error when Constraint_Error
5099 is ambiguous (due to the user defining its own Constraint_Error
5100 entity inside its program). */
4c4b4cd2
PH
5101 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5102 {
4c4b4cd2
PH
5103 block = NULL;
5104 name = name0 + sizeof ("standard__") - 1;
5105 }
5106
339c13b6 5107 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5108
339c13b6 5109 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
82ccd55e 5110 wild_match_p);
d9680e73 5111 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5112 goto done;
d2e4a39e 5113
339c13b6
JB
5114 /* No non-global symbols found. Check our cache to see if we have
5115 already performed this search before. If we have, then return
5116 the same result. */
5117
14f9c5c9 5118 cacheIfUnique = 1;
2570f2b7 5119 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5120 {
5121 if (sym != NULL)
2570f2b7 5122 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5123 goto done;
5124 }
14f9c5c9 5125
339c13b6
JB
5126 /* Search symbols from all global blocks. */
5127
40658b94 5128 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5129 wild_match_p);
d2e4a39e 5130
4c4b4cd2 5131 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5132 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5133
4c4b4cd2 5134 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5135 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5136 wild_match_p);
14f9c5c9 5137
4c4b4cd2
PH
5138done:
5139 ndefns = num_defns_collected (&symbol_list_obstack);
5140 *results = defns_collected (&symbol_list_obstack, 1);
5141
5142 ndefns = remove_extra_symbols (*results, ndefns);
5143
2ad01556 5144 if (ndefns == 0 && full_search)
2570f2b7 5145 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5146
2ad01556 5147 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5148 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5149
aeb5907d 5150 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5151
14f9c5c9
AS
5152 return ndefns;
5153}
5154
f8eba3c6
TT
5155/* If NAME is the name of an entity, return a string that should
5156 be used to look that entity up in Ada units. This string should
5157 be deallocated after use using xfree.
5158
5159 NAME can have any form that the "break" or "print" commands might
5160 recognize. In other words, it does not have to be the "natural"
5161 name, or the "encoded" name. */
5162
5163char *
5164ada_name_for_lookup (const char *name)
5165{
5166 char *canon;
5167 int nlen = strlen (name);
5168
5169 if (name[0] == '<' && name[nlen - 1] == '>')
5170 {
5171 canon = xmalloc (nlen - 1);
5172 memcpy (canon, name + 1, nlen - 2);
5173 canon[nlen - 2] = '\0';
5174 }
5175 else
5176 canon = xstrdup (ada_encode (ada_fold_name (name)));
5177 return canon;
5178}
5179
5180/* Implementation of the la_iterate_over_symbols method. */
5181
5182static void
5183ada_iterate_over_symbols (const struct block *block,
5184 const char *name, domain_enum domain,
8e704927 5185 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5186 void *data)
5187{
5188 int ndefs, i;
5189 struct ada_symbol_info *results;
5190
d9680e73 5191 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5192 for (i = 0; i < ndefs; ++i)
5193 {
5194 if (! (*callback) (results[i].sym, data))
5195 break;
5196 }
5197}
5198
4e5c77fe
JB
5199/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5200 to 1, but choosing the first symbol found if there are multiple
5201 choices.
5202
5e2336be
JB
5203 The result is stored in *INFO, which must be non-NULL.
5204 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5205
5206void
5207ada_lookup_encoded_symbol (const char *name, const struct block *block,
5208 domain_enum namespace,
5e2336be 5209 struct ada_symbol_info *info)
14f9c5c9 5210{
4c4b4cd2 5211 struct ada_symbol_info *candidates;
14f9c5c9
AS
5212 int n_candidates;
5213
5e2336be
JB
5214 gdb_assert (info != NULL);
5215 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe
JB
5216
5217 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
d9680e73 5218 1);
14f9c5c9
AS
5219
5220 if (n_candidates == 0)
4e5c77fe 5221 return;
4c4b4cd2 5222
5e2336be
JB
5223 *info = candidates[0];
5224 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5225}
aeb5907d
JB
5226
5227/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5228 scope and in global scopes, or NULL if none. NAME is folded and
5229 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5230 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5231 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5232
aeb5907d
JB
5233struct symbol *
5234ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5235 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5236{
5e2336be 5237 struct ada_symbol_info info;
4e5c77fe 5238
aeb5907d
JB
5239 if (is_a_field_of_this != NULL)
5240 *is_a_field_of_this = 0;
5241
4e5c77fe 5242 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5243 block0, namespace, &info);
5244 return info.sym;
4c4b4cd2 5245}
14f9c5c9 5246
4c4b4cd2
PH
5247static struct symbol *
5248ada_lookup_symbol_nonlocal (const char *name,
76a01679 5249 const struct block *block,
21b556f4 5250 const domain_enum domain)
4c4b4cd2 5251{
94af9270 5252 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5253}
5254
5255
4c4b4cd2
PH
5256/* True iff STR is a possible encoded suffix of a normal Ada name
5257 that is to be ignored for matching purposes. Suffixes of parallel
5258 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5259 are given by any of the regular expressions:
4c4b4cd2 5260
babe1480
JB
5261 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5262 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5263 TKB [subprogram suffix for task bodies]
babe1480 5264 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5265 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5266
5267 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5268 match is performed. This sequence is used to differentiate homonyms,
5269 is an optional part of a valid name suffix. */
4c4b4cd2 5270
14f9c5c9 5271static int
d2e4a39e 5272is_name_suffix (const char *str)
14f9c5c9
AS
5273{
5274 int k;
4c4b4cd2
PH
5275 const char *matching;
5276 const int len = strlen (str);
5277
babe1480
JB
5278 /* Skip optional leading __[0-9]+. */
5279
4c4b4cd2
PH
5280 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5281 {
babe1480
JB
5282 str += 3;
5283 while (isdigit (str[0]))
5284 str += 1;
4c4b4cd2 5285 }
babe1480
JB
5286
5287 /* [.$][0-9]+ */
4c4b4cd2 5288
babe1480 5289 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5290 {
babe1480 5291 matching = str + 1;
4c4b4cd2
PH
5292 while (isdigit (matching[0]))
5293 matching += 1;
5294 if (matching[0] == '\0')
5295 return 1;
5296 }
5297
5298 /* ___[0-9]+ */
babe1480 5299
4c4b4cd2
PH
5300 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5301 {
5302 matching = str + 3;
5303 while (isdigit (matching[0]))
5304 matching += 1;
5305 if (matching[0] == '\0')
5306 return 1;
5307 }
5308
9ac7f98e
JB
5309 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5310
5311 if (strcmp (str, "TKB") == 0)
5312 return 1;
5313
529cad9c
PH
5314#if 0
5315 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5316 with a N at the end. Unfortunately, the compiler uses the same
5317 convention for other internal types it creates. So treating
529cad9c 5318 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5319 some regressions. For instance, consider the case of an enumerated
5320 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5321 name ends with N.
5322 Having a single character like this as a suffix carrying some
0963b4bd 5323 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5324 to be something like "_N" instead. In the meantime, do not do
5325 the following check. */
5326 /* Protected Object Subprograms */
5327 if (len == 1 && str [0] == 'N')
5328 return 1;
5329#endif
5330
5331 /* _E[0-9]+[bs]$ */
5332 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5333 {
5334 matching = str + 3;
5335 while (isdigit (matching[0]))
5336 matching += 1;
5337 if ((matching[0] == 'b' || matching[0] == 's')
5338 && matching [1] == '\0')
5339 return 1;
5340 }
5341
4c4b4cd2
PH
5342 /* ??? We should not modify STR directly, as we are doing below. This
5343 is fine in this case, but may become problematic later if we find
5344 that this alternative did not work, and want to try matching
5345 another one from the begining of STR. Since we modified it, we
5346 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5347 if (str[0] == 'X')
5348 {
5349 str += 1;
d2e4a39e 5350 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5351 {
5352 if (str[0] != 'n' && str[0] != 'b')
5353 return 0;
5354 str += 1;
5355 }
14f9c5c9 5356 }
babe1480 5357
14f9c5c9
AS
5358 if (str[0] == '\000')
5359 return 1;
babe1480 5360
d2e4a39e 5361 if (str[0] == '_')
14f9c5c9
AS
5362 {
5363 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5364 return 0;
d2e4a39e 5365 if (str[2] == '_')
4c4b4cd2 5366 {
61ee279c
PH
5367 if (strcmp (str + 3, "JM") == 0)
5368 return 1;
5369 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5370 the LJM suffix in favor of the JM one. But we will
5371 still accept LJM as a valid suffix for a reasonable
5372 amount of time, just to allow ourselves to debug programs
5373 compiled using an older version of GNAT. */
4c4b4cd2
PH
5374 if (strcmp (str + 3, "LJM") == 0)
5375 return 1;
5376 if (str[3] != 'X')
5377 return 0;
1265e4aa
JB
5378 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5379 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5380 return 1;
5381 if (str[4] == 'R' && str[5] != 'T')
5382 return 1;
5383 return 0;
5384 }
5385 if (!isdigit (str[2]))
5386 return 0;
5387 for (k = 3; str[k] != '\0'; k += 1)
5388 if (!isdigit (str[k]) && str[k] != '_')
5389 return 0;
14f9c5c9
AS
5390 return 1;
5391 }
4c4b4cd2 5392 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5393 {
4c4b4cd2
PH
5394 for (k = 2; str[k] != '\0'; k += 1)
5395 if (!isdigit (str[k]) && str[k] != '_')
5396 return 0;
14f9c5c9
AS
5397 return 1;
5398 }
5399 return 0;
5400}
d2e4a39e 5401
aeb5907d
JB
5402/* Return non-zero if the string starting at NAME and ending before
5403 NAME_END contains no capital letters. */
529cad9c
PH
5404
5405static int
5406is_valid_name_for_wild_match (const char *name0)
5407{
5408 const char *decoded_name = ada_decode (name0);
5409 int i;
5410
5823c3ef
JB
5411 /* If the decoded name starts with an angle bracket, it means that
5412 NAME0 does not follow the GNAT encoding format. It should then
5413 not be allowed as a possible wild match. */
5414 if (decoded_name[0] == '<')
5415 return 0;
5416
529cad9c
PH
5417 for (i=0; decoded_name[i] != '\0'; i++)
5418 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5419 return 0;
5420
5421 return 1;
5422}
5423
73589123
PH
5424/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5425 that could start a simple name. Assumes that *NAMEP points into
5426 the string beginning at NAME0. */
4c4b4cd2 5427
14f9c5c9 5428static int
73589123 5429advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5430{
73589123 5431 const char *name = *namep;
5b4ee69b 5432
5823c3ef 5433 while (1)
14f9c5c9 5434 {
aa27d0b3 5435 int t0, t1;
73589123
PH
5436
5437 t0 = *name;
5438 if (t0 == '_')
5439 {
5440 t1 = name[1];
5441 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5442 {
5443 name += 1;
5444 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5445 break;
5446 else
5447 name += 1;
5448 }
aa27d0b3
JB
5449 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5450 || name[2] == target0))
73589123
PH
5451 {
5452 name += 2;
5453 break;
5454 }
5455 else
5456 return 0;
5457 }
5458 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5459 name += 1;
5460 else
5823c3ef 5461 return 0;
73589123
PH
5462 }
5463
5464 *namep = name;
5465 return 1;
5466}
5467
5468/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5469 informational suffixes of NAME (i.e., for which is_name_suffix is
5470 true). Assumes that PATN is a lower-cased Ada simple name. */
5471
5472static int
5473wild_match (const char *name, const char *patn)
5474{
22e048c9 5475 const char *p;
73589123
PH
5476 const char *name0 = name;
5477
5478 while (1)
5479 {
5480 const char *match = name;
5481
5482 if (*name == *patn)
5483 {
5484 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5485 if (*p != *name)
5486 break;
5487 if (*p == '\0' && is_name_suffix (name))
5488 return match != name0 && !is_valid_name_for_wild_match (name0);
5489
5490 if (name[-1] == '_')
5491 name -= 1;
5492 }
5493 if (!advance_wild_match (&name, name0, *patn))
5494 return 1;
96d887e8 5495 }
96d887e8
PH
5496}
5497
40658b94
PH
5498/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5499 informational suffix. */
5500
c4d840bd
PH
5501static int
5502full_match (const char *sym_name, const char *search_name)
5503{
40658b94 5504 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5505}
5506
5507
96d887e8
PH
5508/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5509 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5510 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5511 OBJFILE is the section containing BLOCK.
5512 SYMTAB is recorded with each symbol added. */
5513
5514static void
5515ada_add_block_symbols (struct obstack *obstackp,
76a01679 5516 struct block *block, const char *name,
96d887e8 5517 domain_enum domain, struct objfile *objfile,
2570f2b7 5518 int wild)
96d887e8 5519{
8157b174 5520 struct block_iterator iter;
96d887e8
PH
5521 int name_len = strlen (name);
5522 /* A matching argument symbol, if any. */
5523 struct symbol *arg_sym;
5524 /* Set true when we find a matching non-argument symbol. */
5525 int found_sym;
5526 struct symbol *sym;
5527
5528 arg_sym = NULL;
5529 found_sym = 0;
5530 if (wild)
5531 {
8157b174
TT
5532 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5533 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5534 {
5eeb2539
AR
5535 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5536 SYMBOL_DOMAIN (sym), domain)
73589123 5537 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5538 {
2a2d4dc3
AS
5539 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5540 continue;
5541 else if (SYMBOL_IS_ARGUMENT (sym))
5542 arg_sym = sym;
5543 else
5544 {
76a01679
JB
5545 found_sym = 1;
5546 add_defn_to_vec (obstackp,
5547 fixup_symbol_section (sym, objfile),
2570f2b7 5548 block);
76a01679
JB
5549 }
5550 }
5551 }
96d887e8
PH
5552 }
5553 else
5554 {
8157b174
TT
5555 for (sym = block_iter_match_first (block, name, full_match, &iter);
5556 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5557 {
5eeb2539
AR
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
76a01679 5560 {
c4d840bd
PH
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
2a2d4dc3 5566 {
c4d840bd
PH
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
2a2d4dc3 5571 }
c4d840bd 5572 }
76a01679
JB
5573 }
5574 }
96d887e8
PH
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
76a01679
JB
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5581 block);
96d887e8
PH
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5590 {
5eeb2539
AR
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
2a2d4dc3
AS
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
76a01679
JB
5620 }
5621 }
76a01679 5622 }
96d887e8
PH
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
76a01679 5629 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5630 block);
96d887e8
PH
5631 }
5632 }
5633}
5634\f
41d27058
JB
5635
5636 /* Symbol Completion */
5637
5638/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5643 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5644 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5645 in its encoded form. */
5646
5647static const char *
5648symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
6ea35997 5650 int wild_match_p, int encoded_p)
41d27058 5651{
41d27058
JB
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
6ea35997 5667 if (match && !encoded_p)
41d27058
JB
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
e701b3c0 5698 if (!match && wild_match_p)
41d27058
JB
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
6ea35997 5717 if (!encoded_p)
41d27058
JB
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721}
5722
5723/* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
c0af1706 5733 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5734 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738static void
d6565258 5739symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
cb8e9b97 5743 int wild_match_p, int encoded_p)
41d27058
JB
5744{
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5746 wild_match_p, encoded_p);
41d27058
JB
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
d6565258 5775 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5776}
5777
ccefe4c4 5778/* An object of this type is passed as the user_data argument to the
7b08b9eb 5779 expand_partial_symbol_names method. */
ccefe4c4
TT
5780struct add_partial_datum
5781{
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789};
5790
7b08b9eb
JK
5791/* A callback for expand_partial_symbol_names. */
5792static int
e078317b 5793ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5794{
5795 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5799}
5800
49c4e619
TT
5801/* Return a list of possible symbol names completing TEXT0. WORD is
5802 the entire command on which completion is made. */
41d27058 5803
49c4e619 5804static VEC (char_ptr) *
41d27058
JB
5805ada_make_symbol_completion_list (char *text0, char *word)
5806{
5807 char *text;
5808 int text_len;
b1ed564a
JB
5809 int wild_match_p;
5810 int encoded_p;
2ba95b9b 5811 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5812 struct symbol *sym;
5813 struct symtab *s;
41d27058
JB
5814 struct minimal_symbol *msymbol;
5815 struct objfile *objfile;
5816 struct block *b, *surrounding_static_block = 0;
5817 int i;
8157b174 5818 struct block_iterator iter;
41d27058
JB
5819
5820 if (text0[0] == '<')
5821 {
5822 text = xstrdup (text0);
5823 make_cleanup (xfree, text);
5824 text_len = strlen (text);
b1ed564a
JB
5825 wild_match_p = 0;
5826 encoded_p = 1;
41d27058
JB
5827 }
5828 else
5829 {
5830 text = xstrdup (ada_encode (text0));
5831 make_cleanup (xfree, text);
5832 text_len = strlen (text);
5833 for (i = 0; i < text_len; i++)
5834 text[i] = tolower (text[i]);
5835
b1ed564a 5836 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5837 /* If the name contains a ".", then the user is entering a fully
5838 qualified entity name, and the match must not be done in wild
5839 mode. Similarly, if the user wants to complete what looks like
5840 an encoded name, the match must not be done in wild mode. */
b1ed564a 5841 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5842 }
5843
5844 /* First, look at the partial symtab symbols. */
41d27058 5845 {
ccefe4c4
TT
5846 struct add_partial_datum data;
5847
5848 data.completions = &completions;
5849 data.text = text;
5850 data.text_len = text_len;
5851 data.text0 = text0;
5852 data.word = word;
b1ed564a
JB
5853 data.wild_match = wild_match_p;
5854 data.encoded = encoded_p;
7b08b9eb 5855 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5856 }
5857
5858 /* At this point scan through the misc symbol vectors and add each
5859 symbol you find to the list. Eventually we want to ignore
5860 anything that isn't a text symbol (everything else will be
5861 handled by the psymtab code above). */
5862
5863 ALL_MSYMBOLS (objfile, msymbol)
5864 {
5865 QUIT;
d6565258 5866 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5867 text, text_len, text0, word, wild_match_p,
5868 encoded_p);
41d27058
JB
5869 }
5870
5871 /* Search upwards from currently selected frame (so that we can
5872 complete on local vars. */
5873
5874 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5875 {
5876 if (!BLOCK_SUPERBLOCK (b))
5877 surrounding_static_block = b; /* For elmin of dups */
5878
5879 ALL_BLOCK_SYMBOLS (b, iter, sym)
5880 {
d6565258 5881 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5882 text, text_len, text0, word,
b1ed564a 5883 wild_match_p, encoded_p);
41d27058
JB
5884 }
5885 }
5886
5887 /* Go through the symtabs and check the externs and statics for
5888 symbols which match. */
5889
5890 ALL_SYMTABS (objfile, s)
5891 {
5892 QUIT;
5893 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5894 ALL_BLOCK_SYMBOLS (b, iter, sym)
5895 {
d6565258 5896 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5897 text, text_len, text0, word,
b1ed564a 5898 wild_match_p, encoded_p);
41d27058
JB
5899 }
5900 }
5901
5902 ALL_SYMTABS (objfile, s)
5903 {
5904 QUIT;
5905 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5906 /* Don't do this block twice. */
5907 if (b == surrounding_static_block)
5908 continue;
5909 ALL_BLOCK_SYMBOLS (b, iter, sym)
5910 {
d6565258 5911 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5912 text, text_len, text0, word,
b1ed564a 5913 wild_match_p, encoded_p);
41d27058
JB
5914 }
5915 }
5916
49c4e619 5917 return completions;
41d27058
JB
5918}
5919
963a6417 5920 /* Field Access */
96d887e8 5921
73fb9985
JB
5922/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5923 for tagged types. */
5924
5925static int
5926ada_is_dispatch_table_ptr_type (struct type *type)
5927{
0d5cff50 5928 const char *name;
73fb9985
JB
5929
5930 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5931 return 0;
5932
5933 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5934 if (name == NULL)
5935 return 0;
5936
5937 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5938}
5939
ac4a2da4
JG
5940/* Return non-zero if TYPE is an interface tag. */
5941
5942static int
5943ada_is_interface_tag (struct type *type)
5944{
5945 const char *name = TYPE_NAME (type);
5946
5947 if (name == NULL)
5948 return 0;
5949
5950 return (strcmp (name, "ada__tags__interface_tag") == 0);
5951}
5952
963a6417
PH
5953/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5954 to be invisible to users. */
96d887e8 5955
963a6417
PH
5956int
5957ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5958{
963a6417
PH
5959 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5960 return 1;
ffde82bf 5961
73fb9985
JB
5962 /* Check the name of that field. */
5963 {
5964 const char *name = TYPE_FIELD_NAME (type, field_num);
5965
5966 /* Anonymous field names should not be printed.
5967 brobecker/2007-02-20: I don't think this can actually happen
5968 but we don't want to print the value of annonymous fields anyway. */
5969 if (name == NULL)
5970 return 1;
5971
ffde82bf
JB
5972 /* Normally, fields whose name start with an underscore ("_")
5973 are fields that have been internally generated by the compiler,
5974 and thus should not be printed. The "_parent" field is special,
5975 however: This is a field internally generated by the compiler
5976 for tagged types, and it contains the components inherited from
5977 the parent type. This field should not be printed as is, but
5978 should not be ignored either. */
73fb9985
JB
5979 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5980 return 1;
5981 }
5982
ac4a2da4
JG
5983 /* If this is the dispatch table of a tagged type or an interface tag,
5984 then ignore. */
73fb9985 5985 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
5986 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
5987 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
5988 return 1;
5989
5990 /* Not a special field, so it should not be ignored. */
5991 return 0;
963a6417 5992}
96d887e8 5993
963a6417 5994/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5995 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5996
963a6417
PH
5997int
5998ada_is_tagged_type (struct type *type, int refok)
5999{
6000 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6001}
96d887e8 6002
963a6417 6003/* True iff TYPE represents the type of X'Tag */
96d887e8 6004
963a6417
PH
6005int
6006ada_is_tag_type (struct type *type)
6007{
6008 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6009 return 0;
6010 else
96d887e8 6011 {
963a6417 6012 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6013
963a6417
PH
6014 return (name != NULL
6015 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6016 }
96d887e8
PH
6017}
6018
963a6417 6019/* The type of the tag on VAL. */
76a01679 6020
963a6417
PH
6021struct type *
6022ada_tag_type (struct value *val)
96d887e8 6023{
df407dfe 6024 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6025}
96d887e8 6026
b50d69b5
JG
6027/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6028 retired at Ada 05). */
6029
6030static int
6031is_ada95_tag (struct value *tag)
6032{
6033 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6034}
6035
963a6417 6036/* The value of the tag on VAL. */
96d887e8 6037
963a6417
PH
6038struct value *
6039ada_value_tag (struct value *val)
6040{
03ee6b2e 6041 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6042}
6043
963a6417
PH
6044/* The value of the tag on the object of type TYPE whose contents are
6045 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6046 ADDRESS. */
96d887e8 6047
963a6417 6048static struct value *
10a2c479 6049value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6050 const gdb_byte *valaddr,
963a6417 6051 CORE_ADDR address)
96d887e8 6052{
b5385fc0 6053 int tag_byte_offset;
963a6417 6054 struct type *tag_type;
5b4ee69b 6055
963a6417 6056 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6057 NULL, NULL, NULL))
96d887e8 6058 {
fc1a4b47 6059 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6060 ? NULL
6061 : valaddr + tag_byte_offset);
963a6417 6062 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6063
963a6417 6064 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6065 }
963a6417
PH
6066 return NULL;
6067}
96d887e8 6068
963a6417
PH
6069static struct type *
6070type_from_tag (struct value *tag)
6071{
6072 const char *type_name = ada_tag_name (tag);
5b4ee69b 6073
963a6417
PH
6074 if (type_name != NULL)
6075 return ada_find_any_type (ada_encode (type_name));
6076 return NULL;
6077}
96d887e8 6078
b50d69b5
JG
6079/* Given a value OBJ of a tagged type, return a value of this
6080 type at the base address of the object. The base address, as
6081 defined in Ada.Tags, it is the address of the primary tag of
6082 the object, and therefore where the field values of its full
6083 view can be fetched. */
6084
6085struct value *
6086ada_tag_value_at_base_address (struct value *obj)
6087{
6088 volatile struct gdb_exception e;
6089 struct value *val;
6090 LONGEST offset_to_top = 0;
6091 struct type *ptr_type, *obj_type;
6092 struct value *tag;
6093 CORE_ADDR base_address;
6094
6095 obj_type = value_type (obj);
6096
6097 /* It is the responsability of the caller to deref pointers. */
6098
6099 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6100 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6101 return obj;
6102
6103 tag = ada_value_tag (obj);
6104 if (!tag)
6105 return obj;
6106
6107 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6108
6109 if (is_ada95_tag (tag))
6110 return obj;
6111
6112 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6113 ptr_type = lookup_pointer_type (ptr_type);
6114 val = value_cast (ptr_type, tag);
6115 if (!val)
6116 return obj;
6117
6118 /* It is perfectly possible that an exception be raised while
6119 trying to determine the base address, just like for the tag;
6120 see ada_tag_name for more details. We do not print the error
6121 message for the same reason. */
6122
6123 TRY_CATCH (e, RETURN_MASK_ERROR)
6124 {
6125 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6126 }
6127
6128 if (e.reason < 0)
6129 return obj;
6130
6131 /* If offset is null, nothing to do. */
6132
6133 if (offset_to_top == 0)
6134 return obj;
6135
6136 /* -1 is a special case in Ada.Tags; however, what should be done
6137 is not quite clear from the documentation. So do nothing for
6138 now. */
6139
6140 if (offset_to_top == -1)
6141 return obj;
6142
6143 base_address = value_address (obj) - offset_to_top;
6144 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6145
6146 /* Make sure that we have a proper tag at the new address.
6147 Otherwise, offset_to_top is bogus (which can happen when
6148 the object is not initialized yet). */
6149
6150 if (!tag)
6151 return obj;
6152
6153 obj_type = type_from_tag (tag);
6154
6155 if (!obj_type)
6156 return obj;
6157
6158 return value_from_contents_and_address (obj_type, NULL, base_address);
6159}
6160
1b611343
JB
6161/* Return the "ada__tags__type_specific_data" type. */
6162
6163static struct type *
6164ada_get_tsd_type (struct inferior *inf)
963a6417 6165{
1b611343 6166 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6167
1b611343
JB
6168 if (data->tsd_type == 0)
6169 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6170 return data->tsd_type;
6171}
529cad9c 6172
1b611343
JB
6173/* Return the TSD (type-specific data) associated to the given TAG.
6174 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6175
1b611343 6176 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6177
1b611343
JB
6178static struct value *
6179ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6180{
4c4b4cd2 6181 struct value *val;
1b611343 6182 struct type *type;
5b4ee69b 6183
1b611343
JB
6184 /* First option: The TSD is simply stored as a field of our TAG.
6185 Only older versions of GNAT would use this format, but we have
6186 to test it first, because there are no visible markers for
6187 the current approach except the absence of that field. */
529cad9c 6188
1b611343
JB
6189 val = ada_value_struct_elt (tag, "tsd", 1);
6190 if (val)
6191 return val;
e802dbe0 6192
1b611343
JB
6193 /* Try the second representation for the dispatch table (in which
6194 there is no explicit 'tsd' field in the referent of the tag pointer,
6195 and instead the tsd pointer is stored just before the dispatch
6196 table. */
e802dbe0 6197
1b611343
JB
6198 type = ada_get_tsd_type (current_inferior());
6199 if (type == NULL)
6200 return NULL;
6201 type = lookup_pointer_type (lookup_pointer_type (type));
6202 val = value_cast (type, tag);
6203 if (val == NULL)
6204 return NULL;
6205 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6206}
6207
1b611343
JB
6208/* Given the TSD of a tag (type-specific data), return a string
6209 containing the name of the associated type.
6210
6211 The returned value is good until the next call. May return NULL
6212 if we are unable to determine the tag name. */
6213
6214static char *
6215ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6216{
529cad9c
PH
6217 static char name[1024];
6218 char *p;
1b611343 6219 struct value *val;
529cad9c 6220
1b611343 6221 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6222 if (val == NULL)
1b611343 6223 return NULL;
4c4b4cd2
PH
6224 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6225 for (p = name; *p != '\0'; p += 1)
6226 if (isalpha (*p))
6227 *p = tolower (*p);
1b611343 6228 return name;
4c4b4cd2
PH
6229}
6230
6231/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6232 a C string.
6233
6234 Return NULL if the TAG is not an Ada tag, or if we were unable to
6235 determine the name of that tag. The result is good until the next
6236 call. */
4c4b4cd2
PH
6237
6238const char *
6239ada_tag_name (struct value *tag)
6240{
1b611343
JB
6241 volatile struct gdb_exception e;
6242 char *name = NULL;
5b4ee69b 6243
df407dfe 6244 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6245 return NULL;
1b611343
JB
6246
6247 /* It is perfectly possible that an exception be raised while trying
6248 to determine the TAG's name, even under normal circumstances:
6249 The associated variable may be uninitialized or corrupted, for
6250 instance. We do not let any exception propagate past this point.
6251 instead we return NULL.
6252
6253 We also do not print the error message either (which often is very
6254 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6255 the caller print a more meaningful message if necessary. */
6256 TRY_CATCH (e, RETURN_MASK_ERROR)
6257 {
6258 struct value *tsd = ada_get_tsd_from_tag (tag);
6259
6260 if (tsd != NULL)
6261 name = ada_tag_name_from_tsd (tsd);
6262 }
6263
6264 return name;
4c4b4cd2
PH
6265}
6266
6267/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6268
d2e4a39e 6269struct type *
ebf56fd3 6270ada_parent_type (struct type *type)
14f9c5c9
AS
6271{
6272 int i;
6273
61ee279c 6274 type = ada_check_typedef (type);
14f9c5c9
AS
6275
6276 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6277 return NULL;
6278
6279 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6280 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6281 {
6282 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6283
6284 /* If the _parent field is a pointer, then dereference it. */
6285 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6286 parent_type = TYPE_TARGET_TYPE (parent_type);
6287 /* If there is a parallel XVS type, get the actual base type. */
6288 parent_type = ada_get_base_type (parent_type);
6289
6290 return ada_check_typedef (parent_type);
6291 }
14f9c5c9
AS
6292
6293 return NULL;
6294}
6295
4c4b4cd2
PH
6296/* True iff field number FIELD_NUM of structure type TYPE contains the
6297 parent-type (inherited) fields of a derived type. Assumes TYPE is
6298 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6299
6300int
ebf56fd3 6301ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6302{
61ee279c 6303 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6304
4c4b4cd2
PH
6305 return (name != NULL
6306 && (strncmp (name, "PARENT", 6) == 0
6307 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6308}
6309
4c4b4cd2 6310/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6311 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6312 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6313 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6314 structures. */
14f9c5c9
AS
6315
6316int
ebf56fd3 6317ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6318{
d2e4a39e 6319 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6320
d2e4a39e 6321 return (name != NULL
4c4b4cd2
PH
6322 && (strncmp (name, "PARENT", 6) == 0
6323 || strcmp (name, "REP") == 0
6324 || strncmp (name, "_parent", 7) == 0
6325 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6326}
6327
4c4b4cd2
PH
6328/* True iff field number FIELD_NUM of structure or union type TYPE
6329 is a variant wrapper. Assumes TYPE is a structure type with at least
6330 FIELD_NUM+1 fields. */
14f9c5c9
AS
6331
6332int
ebf56fd3 6333ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6334{
d2e4a39e 6335 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6336
14f9c5c9 6337 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6338 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6339 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6340 == TYPE_CODE_UNION)));
14f9c5c9
AS
6341}
6342
6343/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6344 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6345 returns the type of the controlling discriminant for the variant.
6346 May return NULL if the type could not be found. */
14f9c5c9 6347
d2e4a39e 6348struct type *
ebf56fd3 6349ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6350{
d2e4a39e 6351 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6352
7c964f07 6353 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6354}
6355
4c4b4cd2 6356/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6357 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6358 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6359
6360int
ebf56fd3 6361ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6362{
d2e4a39e 6363 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6364
14f9c5c9
AS
6365 return (name != NULL && name[0] == 'O');
6366}
6367
6368/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6369 returns the name of the discriminant controlling the variant.
6370 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6371
d2e4a39e 6372char *
ebf56fd3 6373ada_variant_discrim_name (struct type *type0)
14f9c5c9 6374{
d2e4a39e 6375 static char *result = NULL;
14f9c5c9 6376 static size_t result_len = 0;
d2e4a39e
AS
6377 struct type *type;
6378 const char *name;
6379 const char *discrim_end;
6380 const char *discrim_start;
14f9c5c9
AS
6381
6382 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6383 type = TYPE_TARGET_TYPE (type0);
6384 else
6385 type = type0;
6386
6387 name = ada_type_name (type);
6388
6389 if (name == NULL || name[0] == '\000')
6390 return "";
6391
6392 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6393 discrim_end -= 1)
6394 {
4c4b4cd2
PH
6395 if (strncmp (discrim_end, "___XVN", 6) == 0)
6396 break;
14f9c5c9
AS
6397 }
6398 if (discrim_end == name)
6399 return "";
6400
d2e4a39e 6401 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6402 discrim_start -= 1)
6403 {
d2e4a39e 6404 if (discrim_start == name + 1)
4c4b4cd2 6405 return "";
76a01679 6406 if ((discrim_start > name + 3
4c4b4cd2
PH
6407 && strncmp (discrim_start - 3, "___", 3) == 0)
6408 || discrim_start[-1] == '.')
6409 break;
14f9c5c9
AS
6410 }
6411
6412 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6413 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6414 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6415 return result;
6416}
6417
4c4b4cd2
PH
6418/* Scan STR for a subtype-encoded number, beginning at position K.
6419 Put the position of the character just past the number scanned in
6420 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6421 Return 1 if there was a valid number at the given position, and 0
6422 otherwise. A "subtype-encoded" number consists of the absolute value
6423 in decimal, followed by the letter 'm' to indicate a negative number.
6424 Assumes 0m does not occur. */
14f9c5c9
AS
6425
6426int
d2e4a39e 6427ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6428{
6429 ULONGEST RU;
6430
d2e4a39e 6431 if (!isdigit (str[k]))
14f9c5c9
AS
6432 return 0;
6433
4c4b4cd2 6434 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6435 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6436 LONGEST. */
14f9c5c9
AS
6437 RU = 0;
6438 while (isdigit (str[k]))
6439 {
d2e4a39e 6440 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6441 k += 1;
6442 }
6443
d2e4a39e 6444 if (str[k] == 'm')
14f9c5c9
AS
6445 {
6446 if (R != NULL)
4c4b4cd2 6447 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6448 k += 1;
6449 }
6450 else if (R != NULL)
6451 *R = (LONGEST) RU;
6452
4c4b4cd2 6453 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6454 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6455 number representable as a LONGEST (although either would probably work
6456 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6457 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6458
6459 if (new_k != NULL)
6460 *new_k = k;
6461 return 1;
6462}
6463
4c4b4cd2
PH
6464/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6465 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6466 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6467
d2e4a39e 6468int
ebf56fd3 6469ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6470{
d2e4a39e 6471 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6472 int p;
6473
6474 p = 0;
6475 while (1)
6476 {
d2e4a39e 6477 switch (name[p])
4c4b4cd2
PH
6478 {
6479 case '\0':
6480 return 0;
6481 case 'S':
6482 {
6483 LONGEST W;
5b4ee69b 6484
4c4b4cd2
PH
6485 if (!ada_scan_number (name, p + 1, &W, &p))
6486 return 0;
6487 if (val == W)
6488 return 1;
6489 break;
6490 }
6491 case 'R':
6492 {
6493 LONGEST L, U;
5b4ee69b 6494
4c4b4cd2
PH
6495 if (!ada_scan_number (name, p + 1, &L, &p)
6496 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6497 return 0;
6498 if (val >= L && val <= U)
6499 return 1;
6500 break;
6501 }
6502 case 'O':
6503 return 1;
6504 default:
6505 return 0;
6506 }
6507 }
6508}
6509
0963b4bd 6510/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6511
6512/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6513 ARG_TYPE, extract and return the value of one of its (non-static)
6514 fields. FIELDNO says which field. Differs from value_primitive_field
6515 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6516
4c4b4cd2 6517static struct value *
d2e4a39e 6518ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6519 struct type *arg_type)
14f9c5c9 6520{
14f9c5c9
AS
6521 struct type *type;
6522
61ee279c 6523 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6524 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6525
4c4b4cd2 6526 /* Handle packed fields. */
14f9c5c9
AS
6527
6528 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6529 {
6530 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6531 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6532
0fd88904 6533 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6534 offset + bit_pos / 8,
6535 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6536 }
6537 else
6538 return value_primitive_field (arg1, offset, fieldno, arg_type);
6539}
6540
52ce6436
PH
6541/* Find field with name NAME in object of type TYPE. If found,
6542 set the following for each argument that is non-null:
6543 - *FIELD_TYPE_P to the field's type;
6544 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6545 an object of that type;
6546 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6547 - *BIT_SIZE_P to its size in bits if the field is packed, and
6548 0 otherwise;
6549 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6550 fields up to but not including the desired field, or by the total
6551 number of fields if not found. A NULL value of NAME never
6552 matches; the function just counts visible fields in this case.
6553
0963b4bd 6554 Returns 1 if found, 0 otherwise. */
52ce6436 6555
4c4b4cd2 6556static int
0d5cff50 6557find_struct_field (const char *name, struct type *type, int offset,
76a01679 6558 struct type **field_type_p,
52ce6436
PH
6559 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6560 int *index_p)
4c4b4cd2
PH
6561{
6562 int i;
6563
61ee279c 6564 type = ada_check_typedef (type);
76a01679 6565
52ce6436
PH
6566 if (field_type_p != NULL)
6567 *field_type_p = NULL;
6568 if (byte_offset_p != NULL)
d5d6fca5 6569 *byte_offset_p = 0;
52ce6436
PH
6570 if (bit_offset_p != NULL)
6571 *bit_offset_p = 0;
6572 if (bit_size_p != NULL)
6573 *bit_size_p = 0;
6574
6575 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6576 {
6577 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6578 int fld_offset = offset + bit_pos / 8;
0d5cff50 6579 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6580
4c4b4cd2
PH
6581 if (t_field_name == NULL)
6582 continue;
6583
52ce6436 6584 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6585 {
6586 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6587
52ce6436
PH
6588 if (field_type_p != NULL)
6589 *field_type_p = TYPE_FIELD_TYPE (type, i);
6590 if (byte_offset_p != NULL)
6591 *byte_offset_p = fld_offset;
6592 if (bit_offset_p != NULL)
6593 *bit_offset_p = bit_pos % 8;
6594 if (bit_size_p != NULL)
6595 *bit_size_p = bit_size;
76a01679
JB
6596 return 1;
6597 }
4c4b4cd2
PH
6598 else if (ada_is_wrapper_field (type, i))
6599 {
52ce6436
PH
6600 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6601 field_type_p, byte_offset_p, bit_offset_p,
6602 bit_size_p, index_p))
76a01679
JB
6603 return 1;
6604 }
4c4b4cd2
PH
6605 else if (ada_is_variant_part (type, i))
6606 {
52ce6436
PH
6607 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6608 fixed type?? */
4c4b4cd2 6609 int j;
52ce6436
PH
6610 struct type *field_type
6611 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6612
52ce6436 6613 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6614 {
76a01679
JB
6615 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6616 fld_offset
6617 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6618 field_type_p, byte_offset_p,
52ce6436 6619 bit_offset_p, bit_size_p, index_p))
76a01679 6620 return 1;
4c4b4cd2
PH
6621 }
6622 }
52ce6436
PH
6623 else if (index_p != NULL)
6624 *index_p += 1;
4c4b4cd2
PH
6625 }
6626 return 0;
6627}
6628
0963b4bd 6629/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6630
52ce6436
PH
6631static int
6632num_visible_fields (struct type *type)
6633{
6634 int n;
5b4ee69b 6635
52ce6436
PH
6636 n = 0;
6637 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6638 return n;
6639}
14f9c5c9 6640
4c4b4cd2 6641/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6642 and search in it assuming it has (class) type TYPE.
6643 If found, return value, else return NULL.
6644
4c4b4cd2 6645 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6646
4c4b4cd2 6647static struct value *
d2e4a39e 6648ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6649 struct type *type)
14f9c5c9
AS
6650{
6651 int i;
14f9c5c9 6652
5b4ee69b 6653 type = ada_check_typedef (type);
52ce6436 6654 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6655 {
0d5cff50 6656 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6657
6658 if (t_field_name == NULL)
4c4b4cd2 6659 continue;
14f9c5c9
AS
6660
6661 else if (field_name_match (t_field_name, name))
4c4b4cd2 6662 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6663
6664 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6665 {
0963b4bd 6666 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6667 ada_search_struct_field (name, arg,
6668 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6669 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6670
4c4b4cd2
PH
6671 if (v != NULL)
6672 return v;
6673 }
14f9c5c9
AS
6674
6675 else if (ada_is_variant_part (type, i))
4c4b4cd2 6676 {
0963b4bd 6677 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6678 int j;
5b4ee69b
MS
6679 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6680 i));
4c4b4cd2
PH
6681 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6682
52ce6436 6683 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6684 {
0963b4bd
MS
6685 struct value *v = ada_search_struct_field /* Force line
6686 break. */
06d5cf63
JB
6687 (name, arg,
6688 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6689 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6690
4c4b4cd2
PH
6691 if (v != NULL)
6692 return v;
6693 }
6694 }
14f9c5c9
AS
6695 }
6696 return NULL;
6697}
d2e4a39e 6698
52ce6436
PH
6699static struct value *ada_index_struct_field_1 (int *, struct value *,
6700 int, struct type *);
6701
6702
6703/* Return field #INDEX in ARG, where the index is that returned by
6704 * find_struct_field through its INDEX_P argument. Adjust the address
6705 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6706 * If found, return value, else return NULL. */
52ce6436
PH
6707
6708static struct value *
6709ada_index_struct_field (int index, struct value *arg, int offset,
6710 struct type *type)
6711{
6712 return ada_index_struct_field_1 (&index, arg, offset, type);
6713}
6714
6715
6716/* Auxiliary function for ada_index_struct_field. Like
6717 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6718 * *INDEX_P. */
52ce6436
PH
6719
6720static struct value *
6721ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6722 struct type *type)
6723{
6724 int i;
6725 type = ada_check_typedef (type);
6726
6727 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6728 {
6729 if (TYPE_FIELD_NAME (type, i) == NULL)
6730 continue;
6731 else if (ada_is_wrapper_field (type, i))
6732 {
0963b4bd 6733 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6734 ada_index_struct_field_1 (index_p, arg,
6735 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6736 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6737
52ce6436
PH
6738 if (v != NULL)
6739 return v;
6740 }
6741
6742 else if (ada_is_variant_part (type, i))
6743 {
6744 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6745 find_struct_field. */
52ce6436
PH
6746 error (_("Cannot assign this kind of variant record"));
6747 }
6748 else if (*index_p == 0)
6749 return ada_value_primitive_field (arg, offset, i, type);
6750 else
6751 *index_p -= 1;
6752 }
6753 return NULL;
6754}
6755
4c4b4cd2
PH
6756/* Given ARG, a value of type (pointer or reference to a)*
6757 structure/union, extract the component named NAME from the ultimate
6758 target structure/union and return it as a value with its
f5938064 6759 appropriate type.
14f9c5c9 6760
4c4b4cd2
PH
6761 The routine searches for NAME among all members of the structure itself
6762 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6763 (e.g., '_parent').
6764
03ee6b2e
PH
6765 If NO_ERR, then simply return NULL in case of error, rather than
6766 calling error. */
14f9c5c9 6767
d2e4a39e 6768struct value *
03ee6b2e 6769ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6770{
4c4b4cd2 6771 struct type *t, *t1;
d2e4a39e 6772 struct value *v;
14f9c5c9 6773
4c4b4cd2 6774 v = NULL;
df407dfe 6775 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6776 if (TYPE_CODE (t) == TYPE_CODE_REF)
6777 {
6778 t1 = TYPE_TARGET_TYPE (t);
6779 if (t1 == NULL)
03ee6b2e 6780 goto BadValue;
61ee279c 6781 t1 = ada_check_typedef (t1);
4c4b4cd2 6782 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6783 {
994b9211 6784 arg = coerce_ref (arg);
76a01679
JB
6785 t = t1;
6786 }
4c4b4cd2 6787 }
14f9c5c9 6788
4c4b4cd2
PH
6789 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6790 {
6791 t1 = TYPE_TARGET_TYPE (t);
6792 if (t1 == NULL)
03ee6b2e 6793 goto BadValue;
61ee279c 6794 t1 = ada_check_typedef (t1);
4c4b4cd2 6795 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6796 {
6797 arg = value_ind (arg);
6798 t = t1;
6799 }
4c4b4cd2 6800 else
76a01679 6801 break;
4c4b4cd2 6802 }
14f9c5c9 6803
4c4b4cd2 6804 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6805 goto BadValue;
14f9c5c9 6806
4c4b4cd2
PH
6807 if (t1 == t)
6808 v = ada_search_struct_field (name, arg, 0, t);
6809 else
6810 {
6811 int bit_offset, bit_size, byte_offset;
6812 struct type *field_type;
6813 CORE_ADDR address;
6814
76a01679 6815 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6816 address = value_address (ada_value_ind (arg));
4c4b4cd2 6817 else
b50d69b5 6818 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6819
1ed6ede0 6820 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6821 if (find_struct_field (name, t1, 0,
6822 &field_type, &byte_offset, &bit_offset,
52ce6436 6823 &bit_size, NULL))
76a01679
JB
6824 {
6825 if (bit_size != 0)
6826 {
714e53ab
PH
6827 if (TYPE_CODE (t) == TYPE_CODE_REF)
6828 arg = ada_coerce_ref (arg);
6829 else
6830 arg = ada_value_ind (arg);
76a01679
JB
6831 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6832 bit_offset, bit_size,
6833 field_type);
6834 }
6835 else
f5938064 6836 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6837 }
6838 }
6839
03ee6b2e
PH
6840 if (v != NULL || no_err)
6841 return v;
6842 else
323e0a4a 6843 error (_("There is no member named %s."), name);
14f9c5c9 6844
03ee6b2e
PH
6845 BadValue:
6846 if (no_err)
6847 return NULL;
6848 else
0963b4bd
MS
6849 error (_("Attempt to extract a component of "
6850 "a value that is not a record."));
14f9c5c9
AS
6851}
6852
6853/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6854 If DISPP is non-null, add its byte displacement from the beginning of a
6855 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6856 work for packed fields).
6857
6858 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6859 followed by "___".
14f9c5c9 6860
0963b4bd 6861 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6862 be a (pointer or reference)+ to a struct or union, and the
6863 ultimate target type will be searched.
14f9c5c9
AS
6864
6865 Looks recursively into variant clauses and parent types.
6866
4c4b4cd2
PH
6867 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6868 TYPE is not a type of the right kind. */
14f9c5c9 6869
4c4b4cd2 6870static struct type *
76a01679
JB
6871ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6872 int noerr, int *dispp)
14f9c5c9
AS
6873{
6874 int i;
6875
6876 if (name == NULL)
6877 goto BadName;
6878
76a01679 6879 if (refok && type != NULL)
4c4b4cd2
PH
6880 while (1)
6881 {
61ee279c 6882 type = ada_check_typedef (type);
76a01679
JB
6883 if (TYPE_CODE (type) != TYPE_CODE_PTR
6884 && TYPE_CODE (type) != TYPE_CODE_REF)
6885 break;
6886 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6887 }
14f9c5c9 6888
76a01679 6889 if (type == NULL
1265e4aa
JB
6890 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6891 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6892 {
4c4b4cd2 6893 if (noerr)
76a01679 6894 return NULL;
4c4b4cd2 6895 else
76a01679
JB
6896 {
6897 target_terminal_ours ();
6898 gdb_flush (gdb_stdout);
323e0a4a
AC
6899 if (type == NULL)
6900 error (_("Type (null) is not a structure or union type"));
6901 else
6902 {
6903 /* XXX: type_sprint */
6904 fprintf_unfiltered (gdb_stderr, _("Type "));
6905 type_print (type, "", gdb_stderr, -1);
6906 error (_(" is not a structure or union type"));
6907 }
76a01679 6908 }
14f9c5c9
AS
6909 }
6910
6911 type = to_static_fixed_type (type);
6912
6913 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6914 {
0d5cff50 6915 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6916 struct type *t;
6917 int disp;
d2e4a39e 6918
14f9c5c9 6919 if (t_field_name == NULL)
4c4b4cd2 6920 continue;
14f9c5c9
AS
6921
6922 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6923 {
6924 if (dispp != NULL)
6925 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6926 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6927 }
14f9c5c9
AS
6928
6929 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6930 {
6931 disp = 0;
6932 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6933 0, 1, &disp);
6934 if (t != NULL)
6935 {
6936 if (dispp != NULL)
6937 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6938 return t;
6939 }
6940 }
14f9c5c9
AS
6941
6942 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6943 {
6944 int j;
5b4ee69b
MS
6945 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6946 i));
4c4b4cd2
PH
6947
6948 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6949 {
b1f33ddd
JB
6950 /* FIXME pnh 2008/01/26: We check for a field that is
6951 NOT wrapped in a struct, since the compiler sometimes
6952 generates these for unchecked variant types. Revisit
0963b4bd 6953 if the compiler changes this practice. */
0d5cff50 6954 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6955 disp = 0;
b1f33ddd
JB
6956 if (v_field_name != NULL
6957 && field_name_match (v_field_name, name))
6958 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6959 else
0963b4bd
MS
6960 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6961 j),
b1f33ddd
JB
6962 name, 0, 1, &disp);
6963
4c4b4cd2
PH
6964 if (t != NULL)
6965 {
6966 if (dispp != NULL)
6967 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6968 return t;
6969 }
6970 }
6971 }
14f9c5c9
AS
6972
6973 }
6974
6975BadName:
d2e4a39e 6976 if (!noerr)
14f9c5c9
AS
6977 {
6978 target_terminal_ours ();
6979 gdb_flush (gdb_stdout);
323e0a4a
AC
6980 if (name == NULL)
6981 {
6982 /* XXX: type_sprint */
6983 fprintf_unfiltered (gdb_stderr, _("Type "));
6984 type_print (type, "", gdb_stderr, -1);
6985 error (_(" has no component named <null>"));
6986 }
6987 else
6988 {
6989 /* XXX: type_sprint */
6990 fprintf_unfiltered (gdb_stderr, _("Type "));
6991 type_print (type, "", gdb_stderr, -1);
6992 error (_(" has no component named %s"), name);
6993 }
14f9c5c9
AS
6994 }
6995
6996 return NULL;
6997}
6998
b1f33ddd
JB
6999/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7000 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7001 represents an unchecked union (that is, the variant part of a
0963b4bd 7002 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7003
7004static int
7005is_unchecked_variant (struct type *var_type, struct type *outer_type)
7006{
7007 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7008
b1f33ddd
JB
7009 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7010 == NULL);
7011}
7012
7013
14f9c5c9
AS
7014/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7015 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7016 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7017 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7018
d2e4a39e 7019int
ebf56fd3 7020ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7021 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7022{
7023 int others_clause;
7024 int i;
d2e4a39e 7025 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7026 struct value *outer;
7027 struct value *discrim;
14f9c5c9
AS
7028 LONGEST discrim_val;
7029
0c281816
JB
7030 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7031 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7032 if (discrim == NULL)
14f9c5c9 7033 return -1;
0c281816 7034 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7035
7036 others_clause = -1;
7037 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7038 {
7039 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7040 others_clause = i;
14f9c5c9 7041 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7042 return i;
14f9c5c9
AS
7043 }
7044
7045 return others_clause;
7046}
d2e4a39e 7047\f
14f9c5c9
AS
7048
7049
4c4b4cd2 7050 /* Dynamic-Sized Records */
14f9c5c9
AS
7051
7052/* Strategy: The type ostensibly attached to a value with dynamic size
7053 (i.e., a size that is not statically recorded in the debugging
7054 data) does not accurately reflect the size or layout of the value.
7055 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7056 conventional types that are constructed on the fly. */
14f9c5c9
AS
7057
7058/* There is a subtle and tricky problem here. In general, we cannot
7059 determine the size of dynamic records without its data. However,
7060 the 'struct value' data structure, which GDB uses to represent
7061 quantities in the inferior process (the target), requires the size
7062 of the type at the time of its allocation in order to reserve space
7063 for GDB's internal copy of the data. That's why the
7064 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7065 rather than struct value*s.
14f9c5c9
AS
7066
7067 However, GDB's internal history variables ($1, $2, etc.) are
7068 struct value*s containing internal copies of the data that are not, in
7069 general, the same as the data at their corresponding addresses in
7070 the target. Fortunately, the types we give to these values are all
7071 conventional, fixed-size types (as per the strategy described
7072 above), so that we don't usually have to perform the
7073 'to_fixed_xxx_type' conversions to look at their values.
7074 Unfortunately, there is one exception: if one of the internal
7075 history variables is an array whose elements are unconstrained
7076 records, then we will need to create distinct fixed types for each
7077 element selected. */
7078
7079/* The upshot of all of this is that many routines take a (type, host
7080 address, target address) triple as arguments to represent a value.
7081 The host address, if non-null, is supposed to contain an internal
7082 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7083 target at the target address. */
14f9c5c9
AS
7084
7085/* Assuming that VAL0 represents a pointer value, the result of
7086 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7087 dynamic-sized types. */
14f9c5c9 7088
d2e4a39e
AS
7089struct value *
7090ada_value_ind (struct value *val0)
14f9c5c9 7091{
c48db5ca 7092 struct value *val = value_ind (val0);
5b4ee69b 7093
b50d69b5
JG
7094 if (ada_is_tagged_type (value_type (val), 0))
7095 val = ada_tag_value_at_base_address (val);
7096
4c4b4cd2 7097 return ada_to_fixed_value (val);
14f9c5c9
AS
7098}
7099
7100/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7101 qualifiers on VAL0. */
7102
d2e4a39e
AS
7103static struct value *
7104ada_coerce_ref (struct value *val0)
7105{
df407dfe 7106 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7107 {
7108 struct value *val = val0;
5b4ee69b 7109
994b9211 7110 val = coerce_ref (val);
b50d69b5
JG
7111
7112 if (ada_is_tagged_type (value_type (val), 0))
7113 val = ada_tag_value_at_base_address (val);
7114
4c4b4cd2 7115 return ada_to_fixed_value (val);
d2e4a39e
AS
7116 }
7117 else
14f9c5c9
AS
7118 return val0;
7119}
7120
7121/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7122 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7123
7124static unsigned int
ebf56fd3 7125align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7126{
7127 return (off + alignment - 1) & ~(alignment - 1);
7128}
7129
4c4b4cd2 7130/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7131
7132static unsigned int
ebf56fd3 7133field_alignment (struct type *type, int f)
14f9c5c9 7134{
d2e4a39e 7135 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7136 int len;
14f9c5c9
AS
7137 int align_offset;
7138
64a1bf19
JB
7139 /* The field name should never be null, unless the debugging information
7140 is somehow malformed. In this case, we assume the field does not
7141 require any alignment. */
7142 if (name == NULL)
7143 return 1;
7144
7145 len = strlen (name);
7146
4c4b4cd2
PH
7147 if (!isdigit (name[len - 1]))
7148 return 1;
14f9c5c9 7149
d2e4a39e 7150 if (isdigit (name[len - 2]))
14f9c5c9
AS
7151 align_offset = len - 2;
7152 else
7153 align_offset = len - 1;
7154
4c4b4cd2 7155 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7156 return TARGET_CHAR_BIT;
7157
4c4b4cd2
PH
7158 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7159}
7160
852dff6c 7161/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7162
852dff6c
JB
7163static struct symbol *
7164ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7165{
7166 struct symbol *sym;
7167
7168 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7169 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7170 return sym;
7171
7172 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7173 return sym;
14f9c5c9
AS
7174}
7175
dddfab26
UW
7176/* Find a type named NAME. Ignores ambiguity. This routine will look
7177 solely for types defined by debug info, it will not search the GDB
7178 primitive types. */
4c4b4cd2 7179
852dff6c 7180static struct type *
ebf56fd3 7181ada_find_any_type (const char *name)
14f9c5c9 7182{
852dff6c 7183 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7184
14f9c5c9 7185 if (sym != NULL)
dddfab26 7186 return SYMBOL_TYPE (sym);
14f9c5c9 7187
dddfab26 7188 return NULL;
14f9c5c9
AS
7189}
7190
739593e0
JB
7191/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7192 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7193 symbol, in which case it is returned. Otherwise, this looks for
7194 symbols whose name is that of NAME_SYM suffixed with "___XR".
7195 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7196
7197struct symbol *
270140bd 7198ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7199{
739593e0 7200 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7201 struct symbol *sym;
7202
739593e0
JB
7203 if (strstr (name, "___XR") != NULL)
7204 return name_sym;
7205
aeb5907d
JB
7206 sym = find_old_style_renaming_symbol (name, block);
7207
7208 if (sym != NULL)
7209 return sym;
7210
0963b4bd 7211 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7212 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7213 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7214 return sym;
7215 else
7216 return NULL;
7217}
7218
7219static struct symbol *
270140bd 7220find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7221{
7f0df278 7222 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7223 char *rename;
7224
7225 if (function_sym != NULL)
7226 {
7227 /* If the symbol is defined inside a function, NAME is not fully
7228 qualified. This means we need to prepend the function name
7229 as well as adding the ``___XR'' suffix to build the name of
7230 the associated renaming symbol. */
0d5cff50 7231 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7232 /* Function names sometimes contain suffixes used
7233 for instance to qualify nested subprograms. When building
7234 the XR type name, we need to make sure that this suffix is
7235 not included. So do not include any suffix in the function
7236 name length below. */
69fadcdf 7237 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7238 const int rename_len = function_name_len + 2 /* "__" */
7239 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7240
529cad9c 7241 /* Strip the suffix if necessary. */
69fadcdf
JB
7242 ada_remove_trailing_digits (function_name, &function_name_len);
7243 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7244 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7245
4c4b4cd2
PH
7246 /* Library-level functions are a special case, as GNAT adds
7247 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7248 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7249 have this prefix, so we need to skip this prefix if present. */
7250 if (function_name_len > 5 /* "_ada_" */
7251 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7252 {
7253 function_name += 5;
7254 function_name_len -= 5;
7255 }
4c4b4cd2
PH
7256
7257 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7258 strncpy (rename, function_name, function_name_len);
7259 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7260 "__%s___XR", name);
4c4b4cd2
PH
7261 }
7262 else
7263 {
7264 const int rename_len = strlen (name) + 6;
5b4ee69b 7265
4c4b4cd2 7266 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7267 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7268 }
7269
852dff6c 7270 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7271}
7272
14f9c5c9 7273/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7274 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7275 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7276 otherwise return 0. */
7277
14f9c5c9 7278int
d2e4a39e 7279ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7280{
7281 if (type1 == NULL)
7282 return 1;
7283 else if (type0 == NULL)
7284 return 0;
7285 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7286 return 1;
7287 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7288 return 0;
4c4b4cd2
PH
7289 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7290 return 1;
ad82864c 7291 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7292 return 1;
4c4b4cd2
PH
7293 else if (ada_is_array_descriptor_type (type0)
7294 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7295 return 1;
aeb5907d
JB
7296 else
7297 {
7298 const char *type0_name = type_name_no_tag (type0);
7299 const char *type1_name = type_name_no_tag (type1);
7300
7301 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7302 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7303 return 1;
7304 }
14f9c5c9
AS
7305 return 0;
7306}
7307
7308/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7309 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7310
0d5cff50 7311const char *
d2e4a39e 7312ada_type_name (struct type *type)
14f9c5c9 7313{
d2e4a39e 7314 if (type == NULL)
14f9c5c9
AS
7315 return NULL;
7316 else if (TYPE_NAME (type) != NULL)
7317 return TYPE_NAME (type);
7318 else
7319 return TYPE_TAG_NAME (type);
7320}
7321
b4ba55a1
JB
7322/* Search the list of "descriptive" types associated to TYPE for a type
7323 whose name is NAME. */
7324
7325static struct type *
7326find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7327{
7328 struct type *result;
7329
7330 /* If there no descriptive-type info, then there is no parallel type
7331 to be found. */
7332 if (!HAVE_GNAT_AUX_INFO (type))
7333 return NULL;
7334
7335 result = TYPE_DESCRIPTIVE_TYPE (type);
7336 while (result != NULL)
7337 {
0d5cff50 7338 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7339
7340 if (result_name == NULL)
7341 {
7342 warning (_("unexpected null name on descriptive type"));
7343 return NULL;
7344 }
7345
7346 /* If the names match, stop. */
7347 if (strcmp (result_name, name) == 0)
7348 break;
7349
7350 /* Otherwise, look at the next item on the list, if any. */
7351 if (HAVE_GNAT_AUX_INFO (result))
7352 result = TYPE_DESCRIPTIVE_TYPE (result);
7353 else
7354 result = NULL;
7355 }
7356
7357 /* If we didn't find a match, see whether this is a packed array. With
7358 older compilers, the descriptive type information is either absent or
7359 irrelevant when it comes to packed arrays so the above lookup fails.
7360 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7361 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7362 return ada_find_any_type (name);
7363
7364 return result;
7365}
7366
7367/* Find a parallel type to TYPE with the specified NAME, using the
7368 descriptive type taken from the debugging information, if available,
7369 and otherwise using the (slower) name-based method. */
7370
7371static struct type *
7372ada_find_parallel_type_with_name (struct type *type, const char *name)
7373{
7374 struct type *result = NULL;
7375
7376 if (HAVE_GNAT_AUX_INFO (type))
7377 result = find_parallel_type_by_descriptive_type (type, name);
7378 else
7379 result = ada_find_any_type (name);
7380
7381 return result;
7382}
7383
7384/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7385 SUFFIX to the name of TYPE. */
14f9c5c9 7386
d2e4a39e 7387struct type *
ebf56fd3 7388ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7389{
0d5cff50
DE
7390 char *name;
7391 const char *typename = ada_type_name (type);
14f9c5c9 7392 int len;
d2e4a39e 7393
14f9c5c9
AS
7394 if (typename == NULL)
7395 return NULL;
7396
7397 len = strlen (typename);
7398
b4ba55a1 7399 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7400
7401 strcpy (name, typename);
7402 strcpy (name + len, suffix);
7403
b4ba55a1 7404 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7405}
7406
14f9c5c9 7407/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7408 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7409
d2e4a39e
AS
7410static struct type *
7411dynamic_template_type (struct type *type)
14f9c5c9 7412{
61ee279c 7413 type = ada_check_typedef (type);
14f9c5c9
AS
7414
7415 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7416 || ada_type_name (type) == NULL)
14f9c5c9 7417 return NULL;
d2e4a39e 7418 else
14f9c5c9
AS
7419 {
7420 int len = strlen (ada_type_name (type));
5b4ee69b 7421
4c4b4cd2
PH
7422 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7423 return type;
14f9c5c9 7424 else
4c4b4cd2 7425 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7426 }
7427}
7428
7429/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7430 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7431
d2e4a39e
AS
7432static int
7433is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7434{
7435 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7436
d2e4a39e 7437 return name != NULL
14f9c5c9
AS
7438 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7439 && strstr (name, "___XVL") != NULL;
7440}
7441
4c4b4cd2
PH
7442/* The index of the variant field of TYPE, or -1 if TYPE does not
7443 represent a variant record type. */
14f9c5c9 7444
d2e4a39e 7445static int
4c4b4cd2 7446variant_field_index (struct type *type)
14f9c5c9
AS
7447{
7448 int f;
7449
4c4b4cd2
PH
7450 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7451 return -1;
7452
7453 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7454 {
7455 if (ada_is_variant_part (type, f))
7456 return f;
7457 }
7458 return -1;
14f9c5c9
AS
7459}
7460
4c4b4cd2
PH
7461/* A record type with no fields. */
7462
d2e4a39e 7463static struct type *
e9bb382b 7464empty_record (struct type *template)
14f9c5c9 7465{
e9bb382b 7466 struct type *type = alloc_type_copy (template);
5b4ee69b 7467
14f9c5c9
AS
7468 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7469 TYPE_NFIELDS (type) = 0;
7470 TYPE_FIELDS (type) = NULL;
b1f33ddd 7471 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7472 TYPE_NAME (type) = "<empty>";
7473 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7474 TYPE_LENGTH (type) = 0;
7475 return type;
7476}
7477
7478/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7479 the value of type TYPE at VALADDR or ADDRESS (see comments at
7480 the beginning of this section) VAL according to GNAT conventions.
7481 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7482 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7483 an outer-level type (i.e., as opposed to a branch of a variant.) A
7484 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7485 of the variant.
14f9c5c9 7486
4c4b4cd2
PH
7487 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7488 length are not statically known are discarded. As a consequence,
7489 VALADDR, ADDRESS and DVAL0 are ignored.
7490
7491 NOTE: Limitations: For now, we assume that dynamic fields and
7492 variants occupy whole numbers of bytes. However, they need not be
7493 byte-aligned. */
7494
7495struct type *
10a2c479 7496ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7497 const gdb_byte *valaddr,
4c4b4cd2
PH
7498 CORE_ADDR address, struct value *dval0,
7499 int keep_dynamic_fields)
14f9c5c9 7500{
d2e4a39e
AS
7501 struct value *mark = value_mark ();
7502 struct value *dval;
7503 struct type *rtype;
14f9c5c9 7504 int nfields, bit_len;
4c4b4cd2 7505 int variant_field;
14f9c5c9 7506 long off;
d94e4f4f 7507 int fld_bit_len;
14f9c5c9
AS
7508 int f;
7509
4c4b4cd2
PH
7510 /* Compute the number of fields in this record type that are going
7511 to be processed: unless keep_dynamic_fields, this includes only
7512 fields whose position and length are static will be processed. */
7513 if (keep_dynamic_fields)
7514 nfields = TYPE_NFIELDS (type);
7515 else
7516 {
7517 nfields = 0;
76a01679 7518 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7519 && !ada_is_variant_part (type, nfields)
7520 && !is_dynamic_field (type, nfields))
7521 nfields++;
7522 }
7523
e9bb382b 7524 rtype = alloc_type_copy (type);
14f9c5c9
AS
7525 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7526 INIT_CPLUS_SPECIFIC (rtype);
7527 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7528 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7529 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7530 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7531 TYPE_NAME (rtype) = ada_type_name (type);
7532 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7533 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7534
d2e4a39e
AS
7535 off = 0;
7536 bit_len = 0;
4c4b4cd2
PH
7537 variant_field = -1;
7538
14f9c5c9
AS
7539 for (f = 0; f < nfields; f += 1)
7540 {
6c038f32
PH
7541 off = align_value (off, field_alignment (type, f))
7542 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7543 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7544 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7545
d2e4a39e 7546 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7547 {
7548 variant_field = f;
d94e4f4f 7549 fld_bit_len = 0;
4c4b4cd2 7550 }
14f9c5c9 7551 else if (is_dynamic_field (type, f))
4c4b4cd2 7552 {
284614f0
JB
7553 const gdb_byte *field_valaddr = valaddr;
7554 CORE_ADDR field_address = address;
7555 struct type *field_type =
7556 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7557
4c4b4cd2 7558 if (dval0 == NULL)
b5304971
JG
7559 {
7560 /* rtype's length is computed based on the run-time
7561 value of discriminants. If the discriminants are not
7562 initialized, the type size may be completely bogus and
0963b4bd 7563 GDB may fail to allocate a value for it. So check the
b5304971
JG
7564 size first before creating the value. */
7565 check_size (rtype);
7566 dval = value_from_contents_and_address (rtype, valaddr, address);
7567 }
4c4b4cd2
PH
7568 else
7569 dval = dval0;
7570
284614f0
JB
7571 /* If the type referenced by this field is an aligner type, we need
7572 to unwrap that aligner type, because its size might not be set.
7573 Keeping the aligner type would cause us to compute the wrong
7574 size for this field, impacting the offset of the all the fields
7575 that follow this one. */
7576 if (ada_is_aligner_type (field_type))
7577 {
7578 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7579
7580 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7581 field_address = cond_offset_target (field_address, field_offset);
7582 field_type = ada_aligned_type (field_type);
7583 }
7584
7585 field_valaddr = cond_offset_host (field_valaddr,
7586 off / TARGET_CHAR_BIT);
7587 field_address = cond_offset_target (field_address,
7588 off / TARGET_CHAR_BIT);
7589
7590 /* Get the fixed type of the field. Note that, in this case,
7591 we do not want to get the real type out of the tag: if
7592 the current field is the parent part of a tagged record,
7593 we will get the tag of the object. Clearly wrong: the real
7594 type of the parent is not the real type of the child. We
7595 would end up in an infinite loop. */
7596 field_type = ada_get_base_type (field_type);
7597 field_type = ada_to_fixed_type (field_type, field_valaddr,
7598 field_address, dval, 0);
27f2a97b
JB
7599 /* If the field size is already larger than the maximum
7600 object size, then the record itself will necessarily
7601 be larger than the maximum object size. We need to make
7602 this check now, because the size might be so ridiculously
7603 large (due to an uninitialized variable in the inferior)
7604 that it would cause an overflow when adding it to the
7605 record size. */
7606 check_size (field_type);
284614f0
JB
7607
7608 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7609 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7610 /* The multiplication can potentially overflow. But because
7611 the field length has been size-checked just above, and
7612 assuming that the maximum size is a reasonable value,
7613 an overflow should not happen in practice. So rather than
7614 adding overflow recovery code to this already complex code,
7615 we just assume that it's not going to happen. */
d94e4f4f 7616 fld_bit_len =
4c4b4cd2
PH
7617 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7618 }
14f9c5c9 7619 else
4c4b4cd2 7620 {
5ded5331
JB
7621 /* Note: If this field's type is a typedef, it is important
7622 to preserve the typedef layer.
7623
7624 Otherwise, we might be transforming a typedef to a fat
7625 pointer (encoding a pointer to an unconstrained array),
7626 into a basic fat pointer (encoding an unconstrained
7627 array). As both types are implemented using the same
7628 structure, the typedef is the only clue which allows us
7629 to distinguish between the two options. Stripping it
7630 would prevent us from printing this field appropriately. */
7631 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7632 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7633 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7634 fld_bit_len =
4c4b4cd2
PH
7635 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7636 else
5ded5331
JB
7637 {
7638 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7639
7640 /* We need to be careful of typedefs when computing
7641 the length of our field. If this is a typedef,
7642 get the length of the target type, not the length
7643 of the typedef. */
7644 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7645 field_type = ada_typedef_target_type (field_type);
7646
7647 fld_bit_len =
7648 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7649 }
4c4b4cd2 7650 }
14f9c5c9 7651 if (off + fld_bit_len > bit_len)
4c4b4cd2 7652 bit_len = off + fld_bit_len;
d94e4f4f 7653 off += fld_bit_len;
4c4b4cd2
PH
7654 TYPE_LENGTH (rtype) =
7655 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7656 }
4c4b4cd2
PH
7657
7658 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7659 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7660 the record. This can happen in the presence of representation
7661 clauses. */
7662 if (variant_field >= 0)
7663 {
7664 struct type *branch_type;
7665
7666 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7667
7668 if (dval0 == NULL)
7669 dval = value_from_contents_and_address (rtype, valaddr, address);
7670 else
7671 dval = dval0;
7672
7673 branch_type =
7674 to_fixed_variant_branch_type
7675 (TYPE_FIELD_TYPE (type, variant_field),
7676 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7677 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7678 if (branch_type == NULL)
7679 {
7680 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7681 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7682 TYPE_NFIELDS (rtype) -= 1;
7683 }
7684 else
7685 {
7686 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7687 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7688 fld_bit_len =
7689 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7690 TARGET_CHAR_BIT;
7691 if (off + fld_bit_len > bit_len)
7692 bit_len = off + fld_bit_len;
7693 TYPE_LENGTH (rtype) =
7694 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7695 }
7696 }
7697
714e53ab
PH
7698 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7699 should contain the alignment of that record, which should be a strictly
7700 positive value. If null or negative, then something is wrong, most
7701 probably in the debug info. In that case, we don't round up the size
0963b4bd 7702 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7703 the current RTYPE length might be good enough for our purposes. */
7704 if (TYPE_LENGTH (type) <= 0)
7705 {
323e0a4a
AC
7706 if (TYPE_NAME (rtype))
7707 warning (_("Invalid type size for `%s' detected: %d."),
7708 TYPE_NAME (rtype), TYPE_LENGTH (type));
7709 else
7710 warning (_("Invalid type size for <unnamed> detected: %d."),
7711 TYPE_LENGTH (type));
714e53ab
PH
7712 }
7713 else
7714 {
7715 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7716 TYPE_LENGTH (type));
7717 }
14f9c5c9
AS
7718
7719 value_free_to_mark (mark);
d2e4a39e 7720 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7721 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7722 return rtype;
7723}
7724
4c4b4cd2
PH
7725/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7726 of 1. */
14f9c5c9 7727
d2e4a39e 7728static struct type *
fc1a4b47 7729template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7730 CORE_ADDR address, struct value *dval0)
7731{
7732 return ada_template_to_fixed_record_type_1 (type, valaddr,
7733 address, dval0, 1);
7734}
7735
7736/* An ordinary record type in which ___XVL-convention fields and
7737 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7738 static approximations, containing all possible fields. Uses
7739 no runtime values. Useless for use in values, but that's OK,
7740 since the results are used only for type determinations. Works on both
7741 structs and unions. Representation note: to save space, we memorize
7742 the result of this function in the TYPE_TARGET_TYPE of the
7743 template type. */
7744
7745static struct type *
7746template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7747{
7748 struct type *type;
7749 int nfields;
7750 int f;
7751
4c4b4cd2
PH
7752 if (TYPE_TARGET_TYPE (type0) != NULL)
7753 return TYPE_TARGET_TYPE (type0);
7754
7755 nfields = TYPE_NFIELDS (type0);
7756 type = type0;
14f9c5c9
AS
7757
7758 for (f = 0; f < nfields; f += 1)
7759 {
61ee279c 7760 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7761 struct type *new_type;
14f9c5c9 7762
4c4b4cd2
PH
7763 if (is_dynamic_field (type0, f))
7764 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7765 else
f192137b 7766 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7767 if (type == type0 && new_type != field_type)
7768 {
e9bb382b 7769 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7770 TYPE_CODE (type) = TYPE_CODE (type0);
7771 INIT_CPLUS_SPECIFIC (type);
7772 TYPE_NFIELDS (type) = nfields;
7773 TYPE_FIELDS (type) = (struct field *)
7774 TYPE_ALLOC (type, nfields * sizeof (struct field));
7775 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7776 sizeof (struct field) * nfields);
7777 TYPE_NAME (type) = ada_type_name (type0);
7778 TYPE_TAG_NAME (type) = NULL;
876cecd0 7779 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7780 TYPE_LENGTH (type) = 0;
7781 }
7782 TYPE_FIELD_TYPE (type, f) = new_type;
7783 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7784 }
14f9c5c9
AS
7785 return type;
7786}
7787
4c4b4cd2 7788/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7789 whose address in memory is ADDRESS, returns a revision of TYPE,
7790 which should be a non-dynamic-sized record, in which the variant
7791 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7792 for discriminant values in DVAL0, which can be NULL if the record
7793 contains the necessary discriminant values. */
7794
d2e4a39e 7795static struct type *
fc1a4b47 7796to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7797 CORE_ADDR address, struct value *dval0)
14f9c5c9 7798{
d2e4a39e 7799 struct value *mark = value_mark ();
4c4b4cd2 7800 struct value *dval;
d2e4a39e 7801 struct type *rtype;
14f9c5c9
AS
7802 struct type *branch_type;
7803 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7804 int variant_field = variant_field_index (type);
14f9c5c9 7805
4c4b4cd2 7806 if (variant_field == -1)
14f9c5c9
AS
7807 return type;
7808
4c4b4cd2
PH
7809 if (dval0 == NULL)
7810 dval = value_from_contents_and_address (type, valaddr, address);
7811 else
7812 dval = dval0;
7813
e9bb382b 7814 rtype = alloc_type_copy (type);
14f9c5c9 7815 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7816 INIT_CPLUS_SPECIFIC (rtype);
7817 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7818 TYPE_FIELDS (rtype) =
7819 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7820 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7821 sizeof (struct field) * nfields);
14f9c5c9
AS
7822 TYPE_NAME (rtype) = ada_type_name (type);
7823 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7824 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7825 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7826
4c4b4cd2
PH
7827 branch_type = to_fixed_variant_branch_type
7828 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7829 cond_offset_host (valaddr,
4c4b4cd2
PH
7830 TYPE_FIELD_BITPOS (type, variant_field)
7831 / TARGET_CHAR_BIT),
d2e4a39e 7832 cond_offset_target (address,
4c4b4cd2
PH
7833 TYPE_FIELD_BITPOS (type, variant_field)
7834 / TARGET_CHAR_BIT), dval);
d2e4a39e 7835 if (branch_type == NULL)
14f9c5c9 7836 {
4c4b4cd2 7837 int f;
5b4ee69b 7838
4c4b4cd2
PH
7839 for (f = variant_field + 1; f < nfields; f += 1)
7840 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7841 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7842 }
7843 else
7844 {
4c4b4cd2
PH
7845 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7846 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7847 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7848 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7849 }
4c4b4cd2 7850 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7851
4c4b4cd2 7852 value_free_to_mark (mark);
14f9c5c9
AS
7853 return rtype;
7854}
7855
7856/* An ordinary record type (with fixed-length fields) that describes
7857 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7858 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7859 should be in DVAL, a record value; it may be NULL if the object
7860 at ADDR itself contains any necessary discriminant values.
7861 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7862 values from the record are needed. Except in the case that DVAL,
7863 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7864 unchecked) is replaced by a particular branch of the variant.
7865
7866 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7867 is questionable and may be removed. It can arise during the
7868 processing of an unconstrained-array-of-record type where all the
7869 variant branches have exactly the same size. This is because in
7870 such cases, the compiler does not bother to use the XVS convention
7871 when encoding the record. I am currently dubious of this
7872 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7873
d2e4a39e 7874static struct type *
fc1a4b47 7875to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7876 CORE_ADDR address, struct value *dval)
14f9c5c9 7877{
d2e4a39e 7878 struct type *templ_type;
14f9c5c9 7879
876cecd0 7880 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7881 return type0;
7882
d2e4a39e 7883 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7884
7885 if (templ_type != NULL)
7886 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7887 else if (variant_field_index (type0) >= 0)
7888 {
7889 if (dval == NULL && valaddr == NULL && address == 0)
7890 return type0;
7891 return to_record_with_fixed_variant_part (type0, valaddr, address,
7892 dval);
7893 }
14f9c5c9
AS
7894 else
7895 {
876cecd0 7896 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7897 return type0;
7898 }
7899
7900}
7901
7902/* An ordinary record type (with fixed-length fields) that describes
7903 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7904 union type. Any necessary discriminants' values should be in DVAL,
7905 a record value. That is, this routine selects the appropriate
7906 branch of the union at ADDR according to the discriminant value
b1f33ddd 7907 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7908 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7909
d2e4a39e 7910static struct type *
fc1a4b47 7911to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7912 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7913{
7914 int which;
d2e4a39e
AS
7915 struct type *templ_type;
7916 struct type *var_type;
14f9c5c9
AS
7917
7918 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7919 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7920 else
14f9c5c9
AS
7921 var_type = var_type0;
7922
7923 templ_type = ada_find_parallel_type (var_type, "___XVU");
7924
7925 if (templ_type != NULL)
7926 var_type = templ_type;
7927
b1f33ddd
JB
7928 if (is_unchecked_variant (var_type, value_type (dval)))
7929 return var_type0;
d2e4a39e
AS
7930 which =
7931 ada_which_variant_applies (var_type,
0fd88904 7932 value_type (dval), value_contents (dval));
14f9c5c9
AS
7933
7934 if (which < 0)
e9bb382b 7935 return empty_record (var_type);
14f9c5c9 7936 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7937 return to_fixed_record_type
d2e4a39e
AS
7938 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7939 valaddr, address, dval);
4c4b4cd2 7940 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7941 return
7942 to_fixed_record_type
7943 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7944 else
7945 return TYPE_FIELD_TYPE (var_type, which);
7946}
7947
7948/* Assuming that TYPE0 is an array type describing the type of a value
7949 at ADDR, and that DVAL describes a record containing any
7950 discriminants used in TYPE0, returns a type for the value that
7951 contains no dynamic components (that is, no components whose sizes
7952 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7953 true, gives an error message if the resulting type's size is over
4c4b4cd2 7954 varsize_limit. */
14f9c5c9 7955
d2e4a39e
AS
7956static struct type *
7957to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7958 int ignore_too_big)
14f9c5c9 7959{
d2e4a39e
AS
7960 struct type *index_type_desc;
7961 struct type *result;
ad82864c 7962 int constrained_packed_array_p;
14f9c5c9 7963
b0dd7688 7964 type0 = ada_check_typedef (type0);
284614f0 7965 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7966 return type0;
14f9c5c9 7967
ad82864c
JB
7968 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7969 if (constrained_packed_array_p)
7970 type0 = decode_constrained_packed_array_type (type0);
284614f0 7971
14f9c5c9 7972 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7973 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7974 if (index_type_desc == NULL)
7975 {
61ee279c 7976 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7977
14f9c5c9 7978 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7979 depend on the contents of the array in properly constructed
7980 debugging data. */
529cad9c
PH
7981 /* Create a fixed version of the array element type.
7982 We're not providing the address of an element here,
e1d5a0d2 7983 and thus the actual object value cannot be inspected to do
529cad9c
PH
7984 the conversion. This should not be a problem, since arrays of
7985 unconstrained objects are not allowed. In particular, all
7986 the elements of an array of a tagged type should all be of
7987 the same type specified in the debugging info. No need to
7988 consult the object tag. */
1ed6ede0 7989 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7990
284614f0
JB
7991 /* Make sure we always create a new array type when dealing with
7992 packed array types, since we're going to fix-up the array
7993 type length and element bitsize a little further down. */
ad82864c 7994 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7995 result = type0;
14f9c5c9 7996 else
e9bb382b 7997 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7998 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7999 }
8000 else
8001 {
8002 int i;
8003 struct type *elt_type0;
8004
8005 elt_type0 = type0;
8006 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8007 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8008
8009 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8010 depend on the contents of the array in properly constructed
8011 debugging data. */
529cad9c
PH
8012 /* Create a fixed version of the array element type.
8013 We're not providing the address of an element here,
e1d5a0d2 8014 and thus the actual object value cannot be inspected to do
529cad9c
PH
8015 the conversion. This should not be a problem, since arrays of
8016 unconstrained objects are not allowed. In particular, all
8017 the elements of an array of a tagged type should all be of
8018 the same type specified in the debugging info. No need to
8019 consult the object tag. */
1ed6ede0
JB
8020 result =
8021 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8022
8023 elt_type0 = type0;
14f9c5c9 8024 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8025 {
8026 struct type *range_type =
28c85d6c 8027 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8028
e9bb382b 8029 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8030 result, range_type);
1ce677a4 8031 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8032 }
d2e4a39e 8033 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8034 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8035 }
8036
2e6fda7d
JB
8037 /* We want to preserve the type name. This can be useful when
8038 trying to get the type name of a value that has already been
8039 printed (for instance, if the user did "print VAR; whatis $". */
8040 TYPE_NAME (result) = TYPE_NAME (type0);
8041
ad82864c 8042 if (constrained_packed_array_p)
284614f0
JB
8043 {
8044 /* So far, the resulting type has been created as if the original
8045 type was a regular (non-packed) array type. As a result, the
8046 bitsize of the array elements needs to be set again, and the array
8047 length needs to be recomputed based on that bitsize. */
8048 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8049 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8050
8051 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8052 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8053 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8054 TYPE_LENGTH (result)++;
8055 }
8056
876cecd0 8057 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8058 return result;
d2e4a39e 8059}
14f9c5c9
AS
8060
8061
8062/* A standard type (containing no dynamically sized components)
8063 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8064 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8065 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8066 ADDRESS or in VALADDR contains these discriminants.
8067
1ed6ede0
JB
8068 If CHECK_TAG is not null, in the case of tagged types, this function
8069 attempts to locate the object's tag and use it to compute the actual
8070 type. However, when ADDRESS is null, we cannot use it to determine the
8071 location of the tag, and therefore compute the tagged type's actual type.
8072 So we return the tagged type without consulting the tag. */
529cad9c 8073
f192137b
JB
8074static struct type *
8075ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8076 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8077{
61ee279c 8078 type = ada_check_typedef (type);
d2e4a39e
AS
8079 switch (TYPE_CODE (type))
8080 {
8081 default:
14f9c5c9 8082 return type;
d2e4a39e 8083 case TYPE_CODE_STRUCT:
4c4b4cd2 8084 {
76a01679 8085 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8086 struct type *fixed_record_type =
8087 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8088
529cad9c
PH
8089 /* If STATIC_TYPE is a tagged type and we know the object's address,
8090 then we can determine its tag, and compute the object's actual
0963b4bd 8091 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8092 type (the parent part of the record may have dynamic fields
8093 and the way the location of _tag is expressed may depend on
8094 them). */
529cad9c 8095
1ed6ede0 8096 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8097 {
b50d69b5
JG
8098 struct value *tag =
8099 value_tag_from_contents_and_address
8100 (fixed_record_type,
8101 valaddr,
8102 address);
8103 struct type *real_type = type_from_tag (tag);
8104 struct value *obj =
8105 value_from_contents_and_address (fixed_record_type,
8106 valaddr,
8107 address);
76a01679 8108 if (real_type != NULL)
b50d69b5
JG
8109 return to_fixed_record_type
8110 (real_type, NULL,
8111 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8112 }
4af88198
JB
8113
8114 /* Check to see if there is a parallel ___XVZ variable.
8115 If there is, then it provides the actual size of our type. */
8116 else if (ada_type_name (fixed_record_type) != NULL)
8117 {
0d5cff50 8118 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8119 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8120 int xvz_found = 0;
8121 LONGEST size;
8122
88c15c34 8123 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8124 size = get_int_var_value (xvz_name, &xvz_found);
8125 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8126 {
8127 fixed_record_type = copy_type (fixed_record_type);
8128 TYPE_LENGTH (fixed_record_type) = size;
8129
8130 /* The FIXED_RECORD_TYPE may have be a stub. We have
8131 observed this when the debugging info is STABS, and
8132 apparently it is something that is hard to fix.
8133
8134 In practice, we don't need the actual type definition
8135 at all, because the presence of the XVZ variable allows us
8136 to assume that there must be a XVS type as well, which we
8137 should be able to use later, when we need the actual type
8138 definition.
8139
8140 In the meantime, pretend that the "fixed" type we are
8141 returning is NOT a stub, because this can cause trouble
8142 when using this type to create new types targeting it.
8143 Indeed, the associated creation routines often check
8144 whether the target type is a stub and will try to replace
0963b4bd 8145 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8146 might cause the new type to have the wrong size too.
8147 Consider the case of an array, for instance, where the size
8148 of the array is computed from the number of elements in
8149 our array multiplied by the size of its element. */
8150 TYPE_STUB (fixed_record_type) = 0;
8151 }
8152 }
1ed6ede0 8153 return fixed_record_type;
4c4b4cd2 8154 }
d2e4a39e 8155 case TYPE_CODE_ARRAY:
4c4b4cd2 8156 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8157 case TYPE_CODE_UNION:
8158 if (dval == NULL)
4c4b4cd2 8159 return type;
d2e4a39e 8160 else
4c4b4cd2 8161 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8162 }
14f9c5c9
AS
8163}
8164
f192137b
JB
8165/* The same as ada_to_fixed_type_1, except that it preserves the type
8166 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8167
8168 The typedef layer needs be preserved in order to differentiate between
8169 arrays and array pointers when both types are implemented using the same
8170 fat pointer. In the array pointer case, the pointer is encoded as
8171 a typedef of the pointer type. For instance, considering:
8172
8173 type String_Access is access String;
8174 S1 : String_Access := null;
8175
8176 To the debugger, S1 is defined as a typedef of type String. But
8177 to the user, it is a pointer. So if the user tries to print S1,
8178 we should not dereference the array, but print the array address
8179 instead.
8180
8181 If we didn't preserve the typedef layer, we would lose the fact that
8182 the type is to be presented as a pointer (needs de-reference before
8183 being printed). And we would also use the source-level type name. */
f192137b
JB
8184
8185struct type *
8186ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8187 CORE_ADDR address, struct value *dval, int check_tag)
8188
8189{
8190 struct type *fixed_type =
8191 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8192
96dbd2c1
JB
8193 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8194 then preserve the typedef layer.
8195
8196 Implementation note: We can only check the main-type portion of
8197 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8198 from TYPE now returns a type that has the same instance flags
8199 as TYPE. For instance, if TYPE is a "typedef const", and its
8200 target type is a "struct", then the typedef elimination will return
8201 a "const" version of the target type. See check_typedef for more
8202 details about how the typedef layer elimination is done.
8203
8204 brobecker/2010-11-19: It seems to me that the only case where it is
8205 useful to preserve the typedef layer is when dealing with fat pointers.
8206 Perhaps, we could add a check for that and preserve the typedef layer
8207 only in that situation. But this seems unecessary so far, probably
8208 because we call check_typedef/ada_check_typedef pretty much everywhere.
8209 */
f192137b 8210 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8211 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8212 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8213 return type;
8214
8215 return fixed_type;
8216}
8217
14f9c5c9 8218/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8219 TYPE0, but based on no runtime data. */
14f9c5c9 8220
d2e4a39e
AS
8221static struct type *
8222to_static_fixed_type (struct type *type0)
14f9c5c9 8223{
d2e4a39e 8224 struct type *type;
14f9c5c9
AS
8225
8226 if (type0 == NULL)
8227 return NULL;
8228
876cecd0 8229 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8230 return type0;
8231
61ee279c 8232 type0 = ada_check_typedef (type0);
d2e4a39e 8233
14f9c5c9
AS
8234 switch (TYPE_CODE (type0))
8235 {
8236 default:
8237 return type0;
8238 case TYPE_CODE_STRUCT:
8239 type = dynamic_template_type (type0);
d2e4a39e 8240 if (type != NULL)
4c4b4cd2
PH
8241 return template_to_static_fixed_type (type);
8242 else
8243 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8244 case TYPE_CODE_UNION:
8245 type = ada_find_parallel_type (type0, "___XVU");
8246 if (type != NULL)
4c4b4cd2
PH
8247 return template_to_static_fixed_type (type);
8248 else
8249 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8250 }
8251}
8252
4c4b4cd2
PH
8253/* A static approximation of TYPE with all type wrappers removed. */
8254
d2e4a39e
AS
8255static struct type *
8256static_unwrap_type (struct type *type)
14f9c5c9
AS
8257{
8258 if (ada_is_aligner_type (type))
8259 {
61ee279c 8260 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8261 if (ada_type_name (type1) == NULL)
4c4b4cd2 8262 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8263
8264 return static_unwrap_type (type1);
8265 }
d2e4a39e 8266 else
14f9c5c9 8267 {
d2e4a39e 8268 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8269
d2e4a39e 8270 if (raw_real_type == type)
4c4b4cd2 8271 return type;
14f9c5c9 8272 else
4c4b4cd2 8273 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8274 }
8275}
8276
8277/* In some cases, incomplete and private types require
4c4b4cd2 8278 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8279 type Foo;
8280 type FooP is access Foo;
8281 V: FooP;
8282 type Foo is array ...;
4c4b4cd2 8283 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8284 cross-references to such types, we instead substitute for FooP a
8285 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8286 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8287
8288/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8289 exists, otherwise TYPE. */
8290
d2e4a39e 8291struct type *
61ee279c 8292ada_check_typedef (struct type *type)
14f9c5c9 8293{
727e3d2e
JB
8294 if (type == NULL)
8295 return NULL;
8296
720d1a40
JB
8297 /* If our type is a typedef type of a fat pointer, then we're done.
8298 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8299 what allows us to distinguish between fat pointers that represent
8300 array types, and fat pointers that represent array access types
8301 (in both cases, the compiler implements them as fat pointers). */
8302 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8303 && is_thick_pntr (ada_typedef_target_type (type)))
8304 return type;
8305
14f9c5c9
AS
8306 CHECK_TYPEDEF (type);
8307 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8308 || !TYPE_STUB (type)
14f9c5c9
AS
8309 || TYPE_TAG_NAME (type) == NULL)
8310 return type;
d2e4a39e 8311 else
14f9c5c9 8312 {
0d5cff50 8313 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8314 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8315
05e522ef
JB
8316 if (type1 == NULL)
8317 return type;
8318
8319 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8320 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8321 types, only for the typedef-to-array types). If that's the case,
8322 strip the typedef layer. */
8323 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8324 type1 = ada_check_typedef (type1);
8325
8326 return type1;
14f9c5c9
AS
8327 }
8328}
8329
8330/* A value representing the data at VALADDR/ADDRESS as described by
8331 type TYPE0, but with a standard (static-sized) type that correctly
8332 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8333 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8334 creation of struct values]. */
14f9c5c9 8335
4c4b4cd2
PH
8336static struct value *
8337ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8338 struct value *val0)
14f9c5c9 8339{
1ed6ede0 8340 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8341
14f9c5c9
AS
8342 if (type == type0 && val0 != NULL)
8343 return val0;
d2e4a39e 8344 else
4c4b4cd2
PH
8345 return value_from_contents_and_address (type, 0, address);
8346}
8347
8348/* A value representing VAL, but with a standard (static-sized) type
8349 that correctly describes it. Does not necessarily create a new
8350 value. */
8351
0c3acc09 8352struct value *
4c4b4cd2
PH
8353ada_to_fixed_value (struct value *val)
8354{
c48db5ca
JB
8355 val = unwrap_value (val);
8356 val = ada_to_fixed_value_create (value_type (val),
8357 value_address (val),
8358 val);
8359 return val;
14f9c5c9 8360}
d2e4a39e 8361\f
14f9c5c9 8362
14f9c5c9
AS
8363/* Attributes */
8364
4c4b4cd2
PH
8365/* Table mapping attribute numbers to names.
8366 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8367
d2e4a39e 8368static const char *attribute_names[] = {
14f9c5c9
AS
8369 "<?>",
8370
d2e4a39e 8371 "first",
14f9c5c9
AS
8372 "last",
8373 "length",
8374 "image",
14f9c5c9
AS
8375 "max",
8376 "min",
4c4b4cd2
PH
8377 "modulus",
8378 "pos",
8379 "size",
8380 "tag",
14f9c5c9 8381 "val",
14f9c5c9
AS
8382 0
8383};
8384
d2e4a39e 8385const char *
4c4b4cd2 8386ada_attribute_name (enum exp_opcode n)
14f9c5c9 8387{
4c4b4cd2
PH
8388 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8389 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8390 else
8391 return attribute_names[0];
8392}
8393
4c4b4cd2 8394/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8395
4c4b4cd2
PH
8396static LONGEST
8397pos_atr (struct value *arg)
14f9c5c9 8398{
24209737
PH
8399 struct value *val = coerce_ref (arg);
8400 struct type *type = value_type (val);
14f9c5c9 8401
d2e4a39e 8402 if (!discrete_type_p (type))
323e0a4a 8403 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8404
8405 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8406 {
8407 int i;
24209737 8408 LONGEST v = value_as_long (val);
14f9c5c9 8409
d2e4a39e 8410 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8411 {
14e75d8e 8412 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8413 return i;
8414 }
323e0a4a 8415 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8416 }
8417 else
24209737 8418 return value_as_long (val);
4c4b4cd2
PH
8419}
8420
8421static struct value *
3cb382c9 8422value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8423{
3cb382c9 8424 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8425}
8426
4c4b4cd2 8427/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8428
d2e4a39e
AS
8429static struct value *
8430value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8431{
d2e4a39e 8432 if (!discrete_type_p (type))
323e0a4a 8433 error (_("'VAL only defined on discrete types"));
df407dfe 8434 if (!integer_type_p (value_type (arg)))
323e0a4a 8435 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8436
8437 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8438 {
8439 long pos = value_as_long (arg);
5b4ee69b 8440
14f9c5c9 8441 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8442 error (_("argument to 'VAL out of range"));
14e75d8e 8443 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8444 }
8445 else
8446 return value_from_longest (type, value_as_long (arg));
8447}
14f9c5c9 8448\f
d2e4a39e 8449
4c4b4cd2 8450 /* Evaluation */
14f9c5c9 8451
4c4b4cd2
PH
8452/* True if TYPE appears to be an Ada character type.
8453 [At the moment, this is true only for Character and Wide_Character;
8454 It is a heuristic test that could stand improvement]. */
14f9c5c9 8455
d2e4a39e
AS
8456int
8457ada_is_character_type (struct type *type)
14f9c5c9 8458{
7b9f71f2
JB
8459 const char *name;
8460
8461 /* If the type code says it's a character, then assume it really is,
8462 and don't check any further. */
8463 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8464 return 1;
8465
8466 /* Otherwise, assume it's a character type iff it is a discrete type
8467 with a known character type name. */
8468 name = ada_type_name (type);
8469 return (name != NULL
8470 && (TYPE_CODE (type) == TYPE_CODE_INT
8471 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8472 && (strcmp (name, "character") == 0
8473 || strcmp (name, "wide_character") == 0
5a517ebd 8474 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8475 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8476}
8477
4c4b4cd2 8478/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8479
8480int
ebf56fd3 8481ada_is_string_type (struct type *type)
14f9c5c9 8482{
61ee279c 8483 type = ada_check_typedef (type);
d2e4a39e 8484 if (type != NULL
14f9c5c9 8485 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8486 && (ada_is_simple_array_type (type)
8487 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8488 && ada_array_arity (type) == 1)
8489 {
8490 struct type *elttype = ada_array_element_type (type, 1);
8491
8492 return ada_is_character_type (elttype);
8493 }
d2e4a39e 8494 else
14f9c5c9
AS
8495 return 0;
8496}
8497
5bf03f13
JB
8498/* The compiler sometimes provides a parallel XVS type for a given
8499 PAD type. Normally, it is safe to follow the PAD type directly,
8500 but older versions of the compiler have a bug that causes the offset
8501 of its "F" field to be wrong. Following that field in that case
8502 would lead to incorrect results, but this can be worked around
8503 by ignoring the PAD type and using the associated XVS type instead.
8504
8505 Set to True if the debugger should trust the contents of PAD types.
8506 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8507static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8508
8509/* True if TYPE is a struct type introduced by the compiler to force the
8510 alignment of a value. Such types have a single field with a
4c4b4cd2 8511 distinctive name. */
14f9c5c9
AS
8512
8513int
ebf56fd3 8514ada_is_aligner_type (struct type *type)
14f9c5c9 8515{
61ee279c 8516 type = ada_check_typedef (type);
714e53ab 8517
5bf03f13 8518 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8519 return 0;
8520
14f9c5c9 8521 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8522 && TYPE_NFIELDS (type) == 1
8523 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8524}
8525
8526/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8527 the parallel type. */
14f9c5c9 8528
d2e4a39e
AS
8529struct type *
8530ada_get_base_type (struct type *raw_type)
14f9c5c9 8531{
d2e4a39e
AS
8532 struct type *real_type_namer;
8533 struct type *raw_real_type;
14f9c5c9
AS
8534
8535 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8536 return raw_type;
8537
284614f0
JB
8538 if (ada_is_aligner_type (raw_type))
8539 /* The encoding specifies that we should always use the aligner type.
8540 So, even if this aligner type has an associated XVS type, we should
8541 simply ignore it.
8542
8543 According to the compiler gurus, an XVS type parallel to an aligner
8544 type may exist because of a stabs limitation. In stabs, aligner
8545 types are empty because the field has a variable-sized type, and
8546 thus cannot actually be used as an aligner type. As a result,
8547 we need the associated parallel XVS type to decode the type.
8548 Since the policy in the compiler is to not change the internal
8549 representation based on the debugging info format, we sometimes
8550 end up having a redundant XVS type parallel to the aligner type. */
8551 return raw_type;
8552
14f9c5c9 8553 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8554 if (real_type_namer == NULL
14f9c5c9
AS
8555 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8556 || TYPE_NFIELDS (real_type_namer) != 1)
8557 return raw_type;
8558
f80d3ff2
JB
8559 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8560 {
8561 /* This is an older encoding form where the base type needs to be
8562 looked up by name. We prefer the newer enconding because it is
8563 more efficient. */
8564 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8565 if (raw_real_type == NULL)
8566 return raw_type;
8567 else
8568 return raw_real_type;
8569 }
8570
8571 /* The field in our XVS type is a reference to the base type. */
8572 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8573}
14f9c5c9 8574
4c4b4cd2 8575/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8576
d2e4a39e
AS
8577struct type *
8578ada_aligned_type (struct type *type)
14f9c5c9
AS
8579{
8580 if (ada_is_aligner_type (type))
8581 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8582 else
8583 return ada_get_base_type (type);
8584}
8585
8586
8587/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8588 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8589
fc1a4b47
AC
8590const gdb_byte *
8591ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8592{
d2e4a39e 8593 if (ada_is_aligner_type (type))
14f9c5c9 8594 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8595 valaddr +
8596 TYPE_FIELD_BITPOS (type,
8597 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8598 else
8599 return valaddr;
8600}
8601
4c4b4cd2
PH
8602
8603
14f9c5c9 8604/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8605 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8606const char *
8607ada_enum_name (const char *name)
14f9c5c9 8608{
4c4b4cd2
PH
8609 static char *result;
8610 static size_t result_len = 0;
d2e4a39e 8611 char *tmp;
14f9c5c9 8612
4c4b4cd2
PH
8613 /* First, unqualify the enumeration name:
8614 1. Search for the last '.' character. If we find one, then skip
177b42fe 8615 all the preceding characters, the unqualified name starts
76a01679 8616 right after that dot.
4c4b4cd2 8617 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8618 translates dots into "__". Search forward for double underscores,
8619 but stop searching when we hit an overloading suffix, which is
8620 of the form "__" followed by digits. */
4c4b4cd2 8621
c3e5cd34
PH
8622 tmp = strrchr (name, '.');
8623 if (tmp != NULL)
4c4b4cd2
PH
8624 name = tmp + 1;
8625 else
14f9c5c9 8626 {
4c4b4cd2
PH
8627 while ((tmp = strstr (name, "__")) != NULL)
8628 {
8629 if (isdigit (tmp[2]))
8630 break;
8631 else
8632 name = tmp + 2;
8633 }
14f9c5c9
AS
8634 }
8635
8636 if (name[0] == 'Q')
8637 {
14f9c5c9 8638 int v;
5b4ee69b 8639
14f9c5c9 8640 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8641 {
8642 if (sscanf (name + 2, "%x", &v) != 1)
8643 return name;
8644 }
14f9c5c9 8645 else
4c4b4cd2 8646 return name;
14f9c5c9 8647
4c4b4cd2 8648 GROW_VECT (result, result_len, 16);
14f9c5c9 8649 if (isascii (v) && isprint (v))
88c15c34 8650 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8651 else if (name[1] == 'U')
88c15c34 8652 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8653 else
88c15c34 8654 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8655
8656 return result;
8657 }
d2e4a39e 8658 else
4c4b4cd2 8659 {
c3e5cd34
PH
8660 tmp = strstr (name, "__");
8661 if (tmp == NULL)
8662 tmp = strstr (name, "$");
8663 if (tmp != NULL)
4c4b4cd2
PH
8664 {
8665 GROW_VECT (result, result_len, tmp - name + 1);
8666 strncpy (result, name, tmp - name);
8667 result[tmp - name] = '\0';
8668 return result;
8669 }
8670
8671 return name;
8672 }
14f9c5c9
AS
8673}
8674
14f9c5c9
AS
8675/* Evaluate the subexpression of EXP starting at *POS as for
8676 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8677 expression. */
14f9c5c9 8678
d2e4a39e
AS
8679static struct value *
8680evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8681{
4b27a620 8682 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8683}
8684
8685/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8686 value it wraps. */
14f9c5c9 8687
d2e4a39e
AS
8688static struct value *
8689unwrap_value (struct value *val)
14f9c5c9 8690{
df407dfe 8691 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8692
14f9c5c9
AS
8693 if (ada_is_aligner_type (type))
8694 {
de4d072f 8695 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8696 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8697
14f9c5c9 8698 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8699 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8700
8701 return unwrap_value (v);
8702 }
d2e4a39e 8703 else
14f9c5c9 8704 {
d2e4a39e 8705 struct type *raw_real_type =
61ee279c 8706 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8707
5bf03f13
JB
8708 /* If there is no parallel XVS or XVE type, then the value is
8709 already unwrapped. Return it without further modification. */
8710 if ((type == raw_real_type)
8711 && ada_find_parallel_type (type, "___XVE") == NULL)
8712 return val;
14f9c5c9 8713
d2e4a39e 8714 return
4c4b4cd2
PH
8715 coerce_unspec_val_to_type
8716 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8717 value_address (val),
1ed6ede0 8718 NULL, 1));
14f9c5c9
AS
8719 }
8720}
d2e4a39e
AS
8721
8722static struct value *
8723cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8724{
8725 LONGEST val;
8726
df407dfe 8727 if (type == value_type (arg))
14f9c5c9 8728 return arg;
df407dfe 8729 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8730 val = ada_float_to_fixed (type,
df407dfe 8731 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8732 value_as_long (arg)));
d2e4a39e 8733 else
14f9c5c9 8734 {
a53b7a21 8735 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8736
14f9c5c9
AS
8737 val = ada_float_to_fixed (type, argd);
8738 }
8739
8740 return value_from_longest (type, val);
8741}
8742
d2e4a39e 8743static struct value *
a53b7a21 8744cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8745{
df407dfe 8746 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8747 value_as_long (arg));
5b4ee69b 8748
a53b7a21 8749 return value_from_double (type, val);
14f9c5c9
AS
8750}
8751
d99dcf51
JB
8752/* Given two array types T1 and T2, return nonzero iff both arrays
8753 contain the same number of elements. */
8754
8755static int
8756ada_same_array_size_p (struct type *t1, struct type *t2)
8757{
8758 LONGEST lo1, hi1, lo2, hi2;
8759
8760 /* Get the array bounds in order to verify that the size of
8761 the two arrays match. */
8762 if (!get_array_bounds (t1, &lo1, &hi1)
8763 || !get_array_bounds (t2, &lo2, &hi2))
8764 error (_("unable to determine array bounds"));
8765
8766 /* To make things easier for size comparison, normalize a bit
8767 the case of empty arrays by making sure that the difference
8768 between upper bound and lower bound is always -1. */
8769 if (lo1 > hi1)
8770 hi1 = lo1 - 1;
8771 if (lo2 > hi2)
8772 hi2 = lo2 - 1;
8773
8774 return (hi1 - lo1 == hi2 - lo2);
8775}
8776
8777/* Assuming that VAL is an array of integrals, and TYPE represents
8778 an array with the same number of elements, but with wider integral
8779 elements, return an array "casted" to TYPE. In practice, this
8780 means that the returned array is built by casting each element
8781 of the original array into TYPE's (wider) element type. */
8782
8783static struct value *
8784ada_promote_array_of_integrals (struct type *type, struct value *val)
8785{
8786 struct type *elt_type = TYPE_TARGET_TYPE (type);
8787 LONGEST lo, hi;
8788 struct value *res;
8789 LONGEST i;
8790
8791 /* Verify that both val and type are arrays of scalars, and
8792 that the size of val's elements is smaller than the size
8793 of type's element. */
8794 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8795 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8796 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8797 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8798 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8799 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8800
8801 if (!get_array_bounds (type, &lo, &hi))
8802 error (_("unable to determine array bounds"));
8803
8804 res = allocate_value (type);
8805
8806 /* Promote each array element. */
8807 for (i = 0; i < hi - lo + 1; i++)
8808 {
8809 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8810
8811 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8812 value_contents_all (elt), TYPE_LENGTH (elt_type));
8813 }
8814
8815 return res;
8816}
8817
4c4b4cd2
PH
8818/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8819 return the converted value. */
8820
d2e4a39e
AS
8821static struct value *
8822coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8823{
df407dfe 8824 struct type *type2 = value_type (val);
5b4ee69b 8825
14f9c5c9
AS
8826 if (type == type2)
8827 return val;
8828
61ee279c
PH
8829 type2 = ada_check_typedef (type2);
8830 type = ada_check_typedef (type);
14f9c5c9 8831
d2e4a39e
AS
8832 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8833 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8834 {
8835 val = ada_value_ind (val);
df407dfe 8836 type2 = value_type (val);
14f9c5c9
AS
8837 }
8838
d2e4a39e 8839 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8840 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8841 {
d99dcf51
JB
8842 if (!ada_same_array_size_p (type, type2))
8843 error (_("cannot assign arrays of different length"));
8844
8845 if (is_integral_type (TYPE_TARGET_TYPE (type))
8846 && is_integral_type (TYPE_TARGET_TYPE (type2))
8847 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8848 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8849 {
8850 /* Allow implicit promotion of the array elements to
8851 a wider type. */
8852 return ada_promote_array_of_integrals (type, val);
8853 }
8854
8855 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8856 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8857 error (_("Incompatible types in assignment"));
04624583 8858 deprecated_set_value_type (val, type);
14f9c5c9 8859 }
d2e4a39e 8860 return val;
14f9c5c9
AS
8861}
8862
4c4b4cd2
PH
8863static struct value *
8864ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8865{
8866 struct value *val;
8867 struct type *type1, *type2;
8868 LONGEST v, v1, v2;
8869
994b9211
AC
8870 arg1 = coerce_ref (arg1);
8871 arg2 = coerce_ref (arg2);
18af8284
JB
8872 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8873 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8874
76a01679
JB
8875 if (TYPE_CODE (type1) != TYPE_CODE_INT
8876 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8877 return value_binop (arg1, arg2, op);
8878
76a01679 8879 switch (op)
4c4b4cd2
PH
8880 {
8881 case BINOP_MOD:
8882 case BINOP_DIV:
8883 case BINOP_REM:
8884 break;
8885 default:
8886 return value_binop (arg1, arg2, op);
8887 }
8888
8889 v2 = value_as_long (arg2);
8890 if (v2 == 0)
323e0a4a 8891 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8892
8893 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8894 return value_binop (arg1, arg2, op);
8895
8896 v1 = value_as_long (arg1);
8897 switch (op)
8898 {
8899 case BINOP_DIV:
8900 v = v1 / v2;
76a01679
JB
8901 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8902 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8903 break;
8904 case BINOP_REM:
8905 v = v1 % v2;
76a01679
JB
8906 if (v * v1 < 0)
8907 v -= v2;
4c4b4cd2
PH
8908 break;
8909 default:
8910 /* Should not reach this point. */
8911 v = 0;
8912 }
8913
8914 val = allocate_value (type1);
990a07ab 8915 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8916 TYPE_LENGTH (value_type (val)),
8917 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8918 return val;
8919}
8920
8921static int
8922ada_value_equal (struct value *arg1, struct value *arg2)
8923{
df407dfe
AC
8924 if (ada_is_direct_array_type (value_type (arg1))
8925 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8926 {
f58b38bf
JB
8927 /* Automatically dereference any array reference before
8928 we attempt to perform the comparison. */
8929 arg1 = ada_coerce_ref (arg1);
8930 arg2 = ada_coerce_ref (arg2);
8931
4c4b4cd2
PH
8932 arg1 = ada_coerce_to_simple_array (arg1);
8933 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8934 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8935 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8936 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8937 /* FIXME: The following works only for types whose
76a01679
JB
8938 representations use all bits (no padding or undefined bits)
8939 and do not have user-defined equality. */
8940 return
df407dfe 8941 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8942 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8943 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8944 }
8945 return value_equal (arg1, arg2);
8946}
8947
52ce6436
PH
8948/* Total number of component associations in the aggregate starting at
8949 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8950 OP_AGGREGATE. */
52ce6436
PH
8951
8952static int
8953num_component_specs (struct expression *exp, int pc)
8954{
8955 int n, m, i;
5b4ee69b 8956
52ce6436
PH
8957 m = exp->elts[pc + 1].longconst;
8958 pc += 3;
8959 n = 0;
8960 for (i = 0; i < m; i += 1)
8961 {
8962 switch (exp->elts[pc].opcode)
8963 {
8964 default:
8965 n += 1;
8966 break;
8967 case OP_CHOICES:
8968 n += exp->elts[pc + 1].longconst;
8969 break;
8970 }
8971 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8972 }
8973 return n;
8974}
8975
8976/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8977 component of LHS (a simple array or a record), updating *POS past
8978 the expression, assuming that LHS is contained in CONTAINER. Does
8979 not modify the inferior's memory, nor does it modify LHS (unless
8980 LHS == CONTAINER). */
8981
8982static void
8983assign_component (struct value *container, struct value *lhs, LONGEST index,
8984 struct expression *exp, int *pos)
8985{
8986 struct value *mark = value_mark ();
8987 struct value *elt;
5b4ee69b 8988
52ce6436
PH
8989 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8990 {
22601c15
UW
8991 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8992 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8993
52ce6436
PH
8994 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8995 }
8996 else
8997 {
8998 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 8999 elt = ada_to_fixed_value (elt);
52ce6436
PH
9000 }
9001
9002 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9003 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9004 else
9005 value_assign_to_component (container, elt,
9006 ada_evaluate_subexp (NULL, exp, pos,
9007 EVAL_NORMAL));
9008
9009 value_free_to_mark (mark);
9010}
9011
9012/* Assuming that LHS represents an lvalue having a record or array
9013 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9014 of that aggregate's value to LHS, advancing *POS past the
9015 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9016 lvalue containing LHS (possibly LHS itself). Does not modify
9017 the inferior's memory, nor does it modify the contents of
0963b4bd 9018 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9019
9020static struct value *
9021assign_aggregate (struct value *container,
9022 struct value *lhs, struct expression *exp,
9023 int *pos, enum noside noside)
9024{
9025 struct type *lhs_type;
9026 int n = exp->elts[*pos+1].longconst;
9027 LONGEST low_index, high_index;
9028 int num_specs;
9029 LONGEST *indices;
9030 int max_indices, num_indices;
9031 int is_array_aggregate;
9032 int i;
52ce6436
PH
9033
9034 *pos += 3;
9035 if (noside != EVAL_NORMAL)
9036 {
52ce6436
PH
9037 for (i = 0; i < n; i += 1)
9038 ada_evaluate_subexp (NULL, exp, pos, noside);
9039 return container;
9040 }
9041
9042 container = ada_coerce_ref (container);
9043 if (ada_is_direct_array_type (value_type (container)))
9044 container = ada_coerce_to_simple_array (container);
9045 lhs = ada_coerce_ref (lhs);
9046 if (!deprecated_value_modifiable (lhs))
9047 error (_("Left operand of assignment is not a modifiable lvalue."));
9048
9049 lhs_type = value_type (lhs);
9050 if (ada_is_direct_array_type (lhs_type))
9051 {
9052 lhs = ada_coerce_to_simple_array (lhs);
9053 lhs_type = value_type (lhs);
9054 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9055 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9056 is_array_aggregate = 1;
9057 }
9058 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9059 {
9060 low_index = 0;
9061 high_index = num_visible_fields (lhs_type) - 1;
9062 is_array_aggregate = 0;
9063 }
9064 else
9065 error (_("Left-hand side must be array or record."));
9066
9067 num_specs = num_component_specs (exp, *pos - 3);
9068 max_indices = 4 * num_specs + 4;
9069 indices = alloca (max_indices * sizeof (indices[0]));
9070 indices[0] = indices[1] = low_index - 1;
9071 indices[2] = indices[3] = high_index + 1;
9072 num_indices = 4;
9073
9074 for (i = 0; i < n; i += 1)
9075 {
9076 switch (exp->elts[*pos].opcode)
9077 {
1fbf5ada
JB
9078 case OP_CHOICES:
9079 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9080 &num_indices, max_indices,
9081 low_index, high_index);
9082 break;
9083 case OP_POSITIONAL:
9084 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9085 &num_indices, max_indices,
9086 low_index, high_index);
1fbf5ada
JB
9087 break;
9088 case OP_OTHERS:
9089 if (i != n-1)
9090 error (_("Misplaced 'others' clause"));
9091 aggregate_assign_others (container, lhs, exp, pos, indices,
9092 num_indices, low_index, high_index);
9093 break;
9094 default:
9095 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9096 }
9097 }
9098
9099 return container;
9100}
9101
9102/* Assign into the component of LHS indexed by the OP_POSITIONAL
9103 construct at *POS, updating *POS past the construct, given that
9104 the positions are relative to lower bound LOW, where HIGH is the
9105 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9106 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9107 assign_aggregate. */
52ce6436
PH
9108static void
9109aggregate_assign_positional (struct value *container,
9110 struct value *lhs, struct expression *exp,
9111 int *pos, LONGEST *indices, int *num_indices,
9112 int max_indices, LONGEST low, LONGEST high)
9113{
9114 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9115
9116 if (ind - 1 == high)
e1d5a0d2 9117 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9118 if (ind <= high)
9119 {
9120 add_component_interval (ind, ind, indices, num_indices, max_indices);
9121 *pos += 3;
9122 assign_component (container, lhs, ind, exp, pos);
9123 }
9124 else
9125 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9126}
9127
9128/* Assign into the components of LHS indexed by the OP_CHOICES
9129 construct at *POS, updating *POS past the construct, given that
9130 the allowable indices are LOW..HIGH. Record the indices assigned
9131 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9132 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9133static void
9134aggregate_assign_from_choices (struct value *container,
9135 struct value *lhs, struct expression *exp,
9136 int *pos, LONGEST *indices, int *num_indices,
9137 int max_indices, LONGEST low, LONGEST high)
9138{
9139 int j;
9140 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9141 int choice_pos, expr_pc;
9142 int is_array = ada_is_direct_array_type (value_type (lhs));
9143
9144 choice_pos = *pos += 3;
9145
9146 for (j = 0; j < n_choices; j += 1)
9147 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9148 expr_pc = *pos;
9149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9150
9151 for (j = 0; j < n_choices; j += 1)
9152 {
9153 LONGEST lower, upper;
9154 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9155
52ce6436
PH
9156 if (op == OP_DISCRETE_RANGE)
9157 {
9158 choice_pos += 1;
9159 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9160 EVAL_NORMAL));
9161 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9162 EVAL_NORMAL));
9163 }
9164 else if (is_array)
9165 {
9166 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9167 EVAL_NORMAL));
9168 upper = lower;
9169 }
9170 else
9171 {
9172 int ind;
0d5cff50 9173 const char *name;
5b4ee69b 9174
52ce6436
PH
9175 switch (op)
9176 {
9177 case OP_NAME:
9178 name = &exp->elts[choice_pos + 2].string;
9179 break;
9180 case OP_VAR_VALUE:
9181 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9182 break;
9183 default:
9184 error (_("Invalid record component association."));
9185 }
9186 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9187 ind = 0;
9188 if (! find_struct_field (name, value_type (lhs), 0,
9189 NULL, NULL, NULL, NULL, &ind))
9190 error (_("Unknown component name: %s."), name);
9191 lower = upper = ind;
9192 }
9193
9194 if (lower <= upper && (lower < low || upper > high))
9195 error (_("Index in component association out of bounds."));
9196
9197 add_component_interval (lower, upper, indices, num_indices,
9198 max_indices);
9199 while (lower <= upper)
9200 {
9201 int pos1;
5b4ee69b 9202
52ce6436
PH
9203 pos1 = expr_pc;
9204 assign_component (container, lhs, lower, exp, &pos1);
9205 lower += 1;
9206 }
9207 }
9208}
9209
9210/* Assign the value of the expression in the OP_OTHERS construct in
9211 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9212 have not been previously assigned. The index intervals already assigned
9213 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9214 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9215static void
9216aggregate_assign_others (struct value *container,
9217 struct value *lhs, struct expression *exp,
9218 int *pos, LONGEST *indices, int num_indices,
9219 LONGEST low, LONGEST high)
9220{
9221 int i;
5ce64950 9222 int expr_pc = *pos + 1;
52ce6436
PH
9223
9224 for (i = 0; i < num_indices - 2; i += 2)
9225 {
9226 LONGEST ind;
5b4ee69b 9227
52ce6436
PH
9228 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9229 {
5ce64950 9230 int localpos;
5b4ee69b 9231
5ce64950
MS
9232 localpos = expr_pc;
9233 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9234 }
9235 }
9236 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9237}
9238
9239/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9240 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9241 modifying *SIZE as needed. It is an error if *SIZE exceeds
9242 MAX_SIZE. The resulting intervals do not overlap. */
9243static void
9244add_component_interval (LONGEST low, LONGEST high,
9245 LONGEST* indices, int *size, int max_size)
9246{
9247 int i, j;
5b4ee69b 9248
52ce6436
PH
9249 for (i = 0; i < *size; i += 2) {
9250 if (high >= indices[i] && low <= indices[i + 1])
9251 {
9252 int kh;
5b4ee69b 9253
52ce6436
PH
9254 for (kh = i + 2; kh < *size; kh += 2)
9255 if (high < indices[kh])
9256 break;
9257 if (low < indices[i])
9258 indices[i] = low;
9259 indices[i + 1] = indices[kh - 1];
9260 if (high > indices[i + 1])
9261 indices[i + 1] = high;
9262 memcpy (indices + i + 2, indices + kh, *size - kh);
9263 *size -= kh - i - 2;
9264 return;
9265 }
9266 else if (high < indices[i])
9267 break;
9268 }
9269
9270 if (*size == max_size)
9271 error (_("Internal error: miscounted aggregate components."));
9272 *size += 2;
9273 for (j = *size-1; j >= i+2; j -= 1)
9274 indices[j] = indices[j - 2];
9275 indices[i] = low;
9276 indices[i + 1] = high;
9277}
9278
6e48bd2c
JB
9279/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9280 is different. */
9281
9282static struct value *
9283ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9284{
9285 if (type == ada_check_typedef (value_type (arg2)))
9286 return arg2;
9287
9288 if (ada_is_fixed_point_type (type))
9289 return (cast_to_fixed (type, arg2));
9290
9291 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9292 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9293
9294 return value_cast (type, arg2);
9295}
9296
284614f0
JB
9297/* Evaluating Ada expressions, and printing their result.
9298 ------------------------------------------------------
9299
21649b50
JB
9300 1. Introduction:
9301 ----------------
9302
284614f0
JB
9303 We usually evaluate an Ada expression in order to print its value.
9304 We also evaluate an expression in order to print its type, which
9305 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9306 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9307 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9308 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9309 similar.
9310
9311 Evaluating expressions is a little more complicated for Ada entities
9312 than it is for entities in languages such as C. The main reason for
9313 this is that Ada provides types whose definition might be dynamic.
9314 One example of such types is variant records. Or another example
9315 would be an array whose bounds can only be known at run time.
9316
9317 The following description is a general guide as to what should be
9318 done (and what should NOT be done) in order to evaluate an expression
9319 involving such types, and when. This does not cover how the semantic
9320 information is encoded by GNAT as this is covered separatly. For the
9321 document used as the reference for the GNAT encoding, see exp_dbug.ads
9322 in the GNAT sources.
9323
9324 Ideally, we should embed each part of this description next to its
9325 associated code. Unfortunately, the amount of code is so vast right
9326 now that it's hard to see whether the code handling a particular
9327 situation might be duplicated or not. One day, when the code is
9328 cleaned up, this guide might become redundant with the comments
9329 inserted in the code, and we might want to remove it.
9330
21649b50
JB
9331 2. ``Fixing'' an Entity, the Simple Case:
9332 -----------------------------------------
9333
284614f0
JB
9334 When evaluating Ada expressions, the tricky issue is that they may
9335 reference entities whose type contents and size are not statically
9336 known. Consider for instance a variant record:
9337
9338 type Rec (Empty : Boolean := True) is record
9339 case Empty is
9340 when True => null;
9341 when False => Value : Integer;
9342 end case;
9343 end record;
9344 Yes : Rec := (Empty => False, Value => 1);
9345 No : Rec := (empty => True);
9346
9347 The size and contents of that record depends on the value of the
9348 descriminant (Rec.Empty). At this point, neither the debugging
9349 information nor the associated type structure in GDB are able to
9350 express such dynamic types. So what the debugger does is to create
9351 "fixed" versions of the type that applies to the specific object.
9352 We also informally refer to this opperation as "fixing" an object,
9353 which means creating its associated fixed type.
9354
9355 Example: when printing the value of variable "Yes" above, its fixed
9356 type would look like this:
9357
9358 type Rec is record
9359 Empty : Boolean;
9360 Value : Integer;
9361 end record;
9362
9363 On the other hand, if we printed the value of "No", its fixed type
9364 would become:
9365
9366 type Rec is record
9367 Empty : Boolean;
9368 end record;
9369
9370 Things become a little more complicated when trying to fix an entity
9371 with a dynamic type that directly contains another dynamic type,
9372 such as an array of variant records, for instance. There are
9373 two possible cases: Arrays, and records.
9374
21649b50
JB
9375 3. ``Fixing'' Arrays:
9376 ---------------------
9377
9378 The type structure in GDB describes an array in terms of its bounds,
9379 and the type of its elements. By design, all elements in the array
9380 have the same type and we cannot represent an array of variant elements
9381 using the current type structure in GDB. When fixing an array,
9382 we cannot fix the array element, as we would potentially need one
9383 fixed type per element of the array. As a result, the best we can do
9384 when fixing an array is to produce an array whose bounds and size
9385 are correct (allowing us to read it from memory), but without having
9386 touched its element type. Fixing each element will be done later,
9387 when (if) necessary.
9388
9389 Arrays are a little simpler to handle than records, because the same
9390 amount of memory is allocated for each element of the array, even if
1b536f04 9391 the amount of space actually used by each element differs from element
21649b50 9392 to element. Consider for instance the following array of type Rec:
284614f0
JB
9393
9394 type Rec_Array is array (1 .. 2) of Rec;
9395
1b536f04
JB
9396 The actual amount of memory occupied by each element might be different
9397 from element to element, depending on the value of their discriminant.
21649b50 9398 But the amount of space reserved for each element in the array remains
1b536f04 9399 fixed regardless. So we simply need to compute that size using
21649b50
JB
9400 the debugging information available, from which we can then determine
9401 the array size (we multiply the number of elements of the array by
9402 the size of each element).
9403
9404 The simplest case is when we have an array of a constrained element
9405 type. For instance, consider the following type declarations:
9406
9407 type Bounded_String (Max_Size : Integer) is
9408 Length : Integer;
9409 Buffer : String (1 .. Max_Size);
9410 end record;
9411 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9412
9413 In this case, the compiler describes the array as an array of
9414 variable-size elements (identified by its XVS suffix) for which
9415 the size can be read in the parallel XVZ variable.
9416
9417 In the case of an array of an unconstrained element type, the compiler
9418 wraps the array element inside a private PAD type. This type should not
9419 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9420 that we also use the adjective "aligner" in our code to designate
9421 these wrapper types.
9422
1b536f04 9423 In some cases, the size allocated for each element is statically
21649b50
JB
9424 known. In that case, the PAD type already has the correct size,
9425 and the array element should remain unfixed.
9426
9427 But there are cases when this size is not statically known.
9428 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9429
9430 type Dynamic is array (1 .. Five) of Integer;
9431 type Wrapper (Has_Length : Boolean := False) is record
9432 Data : Dynamic;
9433 case Has_Length is
9434 when True => Length : Integer;
9435 when False => null;
9436 end case;
9437 end record;
9438 type Wrapper_Array is array (1 .. 2) of Wrapper;
9439
9440 Hello : Wrapper_Array := (others => (Has_Length => True,
9441 Data => (others => 17),
9442 Length => 1));
9443
9444
9445 The debugging info would describe variable Hello as being an
9446 array of a PAD type. The size of that PAD type is not statically
9447 known, but can be determined using a parallel XVZ variable.
9448 In that case, a copy of the PAD type with the correct size should
9449 be used for the fixed array.
9450
21649b50
JB
9451 3. ``Fixing'' record type objects:
9452 ----------------------------------
9453
9454 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9455 record types. In this case, in order to compute the associated
9456 fixed type, we need to determine the size and offset of each of
9457 its components. This, in turn, requires us to compute the fixed
9458 type of each of these components.
9459
9460 Consider for instance the example:
9461
9462 type Bounded_String (Max_Size : Natural) is record
9463 Str : String (1 .. Max_Size);
9464 Length : Natural;
9465 end record;
9466 My_String : Bounded_String (Max_Size => 10);
9467
9468 In that case, the position of field "Length" depends on the size
9469 of field Str, which itself depends on the value of the Max_Size
21649b50 9470 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9471 we need to fix the type of field Str. Therefore, fixing a variant
9472 record requires us to fix each of its components.
9473
9474 However, if a component does not have a dynamic size, the component
9475 should not be fixed. In particular, fields that use a PAD type
9476 should not fixed. Here is an example where this might happen
9477 (assuming type Rec above):
9478
9479 type Container (Big : Boolean) is record
9480 First : Rec;
9481 After : Integer;
9482 case Big is
9483 when True => Another : Integer;
9484 when False => null;
9485 end case;
9486 end record;
9487 My_Container : Container := (Big => False,
9488 First => (Empty => True),
9489 After => 42);
9490
9491 In that example, the compiler creates a PAD type for component First,
9492 whose size is constant, and then positions the component After just
9493 right after it. The offset of component After is therefore constant
9494 in this case.
9495
9496 The debugger computes the position of each field based on an algorithm
9497 that uses, among other things, the actual position and size of the field
21649b50
JB
9498 preceding it. Let's now imagine that the user is trying to print
9499 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9500 end up computing the offset of field After based on the size of the
9501 fixed version of field First. And since in our example First has
9502 only one actual field, the size of the fixed type is actually smaller
9503 than the amount of space allocated to that field, and thus we would
9504 compute the wrong offset of field After.
9505
21649b50
JB
9506 To make things more complicated, we need to watch out for dynamic
9507 components of variant records (identified by the ___XVL suffix in
9508 the component name). Even if the target type is a PAD type, the size
9509 of that type might not be statically known. So the PAD type needs
9510 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9511 we might end up with the wrong size for our component. This can be
9512 observed with the following type declarations:
284614f0
JB
9513
9514 type Octal is new Integer range 0 .. 7;
9515 type Octal_Array is array (Positive range <>) of Octal;
9516 pragma Pack (Octal_Array);
9517
9518 type Octal_Buffer (Size : Positive) is record
9519 Buffer : Octal_Array (1 .. Size);
9520 Length : Integer;
9521 end record;
9522
9523 In that case, Buffer is a PAD type whose size is unset and needs
9524 to be computed by fixing the unwrapped type.
9525
21649b50
JB
9526 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9527 ----------------------------------------------------------
9528
9529 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9530 thus far, be actually fixed?
9531
9532 The answer is: Only when referencing that element. For instance
9533 when selecting one component of a record, this specific component
9534 should be fixed at that point in time. Or when printing the value
9535 of a record, each component should be fixed before its value gets
9536 printed. Similarly for arrays, the element of the array should be
9537 fixed when printing each element of the array, or when extracting
9538 one element out of that array. On the other hand, fixing should
9539 not be performed on the elements when taking a slice of an array!
9540
9541 Note that one of the side-effects of miscomputing the offset and
9542 size of each field is that we end up also miscomputing the size
9543 of the containing type. This can have adverse results when computing
9544 the value of an entity. GDB fetches the value of an entity based
9545 on the size of its type, and thus a wrong size causes GDB to fetch
9546 the wrong amount of memory. In the case where the computed size is
9547 too small, GDB fetches too little data to print the value of our
9548 entiry. Results in this case as unpredicatble, as we usually read
9549 past the buffer containing the data =:-o. */
9550
9551/* Implement the evaluate_exp routine in the exp_descriptor structure
9552 for the Ada language. */
9553
52ce6436 9554static struct value *
ebf56fd3 9555ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9556 int *pos, enum noside noside)
14f9c5c9
AS
9557{
9558 enum exp_opcode op;
b5385fc0 9559 int tem;
14f9c5c9
AS
9560 int pc;
9561 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9562 struct type *type;
52ce6436 9563 int nargs, oplen;
d2e4a39e 9564 struct value **argvec;
14f9c5c9 9565
d2e4a39e
AS
9566 pc = *pos;
9567 *pos += 1;
14f9c5c9
AS
9568 op = exp->elts[pc].opcode;
9569
d2e4a39e 9570 switch (op)
14f9c5c9
AS
9571 {
9572 default:
9573 *pos -= 1;
6e48bd2c 9574 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9575
9576 if (noside == EVAL_NORMAL)
9577 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9578
9579 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9580 then we need to perform the conversion manually, because
9581 evaluate_subexp_standard doesn't do it. This conversion is
9582 necessary in Ada because the different kinds of float/fixed
9583 types in Ada have different representations.
9584
9585 Similarly, we need to perform the conversion from OP_LONG
9586 ourselves. */
9587 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9588 arg1 = ada_value_cast (expect_type, arg1, noside);
9589
9590 return arg1;
4c4b4cd2
PH
9591
9592 case OP_STRING:
9593 {
76a01679 9594 struct value *result;
5b4ee69b 9595
76a01679
JB
9596 *pos -= 1;
9597 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9598 /* The result type will have code OP_STRING, bashed there from
9599 OP_ARRAY. Bash it back. */
df407dfe
AC
9600 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9601 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9602 return result;
4c4b4cd2 9603 }
14f9c5c9
AS
9604
9605 case UNOP_CAST:
9606 (*pos) += 2;
9607 type = exp->elts[pc + 1].type;
9608 arg1 = evaluate_subexp (type, exp, pos, noside);
9609 if (noside == EVAL_SKIP)
4c4b4cd2 9610 goto nosideret;
6e48bd2c 9611 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9612 return arg1;
9613
4c4b4cd2
PH
9614 case UNOP_QUAL:
9615 (*pos) += 2;
9616 type = exp->elts[pc + 1].type;
9617 return ada_evaluate_subexp (type, exp, pos, noside);
9618
14f9c5c9
AS
9619 case BINOP_ASSIGN:
9620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9621 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9622 {
9623 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9624 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9625 return arg1;
9626 return ada_value_assign (arg1, arg1);
9627 }
003f3813
JB
9628 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9629 except if the lhs of our assignment is a convenience variable.
9630 In the case of assigning to a convenience variable, the lhs
9631 should be exactly the result of the evaluation of the rhs. */
9632 type = value_type (arg1);
9633 if (VALUE_LVAL (arg1) == lval_internalvar)
9634 type = NULL;
9635 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9636 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9637 return arg1;
df407dfe
AC
9638 if (ada_is_fixed_point_type (value_type (arg1)))
9639 arg2 = cast_to_fixed (value_type (arg1), arg2);
9640 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9641 error
323e0a4a 9642 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9643 else
df407dfe 9644 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9645 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9646
9647 case BINOP_ADD:
9648 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9649 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9650 if (noside == EVAL_SKIP)
4c4b4cd2 9651 goto nosideret;
2ac8a782
JB
9652 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9653 return (value_from_longest
9654 (value_type (arg1),
9655 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9656 if ((ada_is_fixed_point_type (value_type (arg1))
9657 || ada_is_fixed_point_type (value_type (arg2)))
9658 && value_type (arg1) != value_type (arg2))
323e0a4a 9659 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9660 /* Do the addition, and cast the result to the type of the first
9661 argument. We cannot cast the result to a reference type, so if
9662 ARG1 is a reference type, find its underlying type. */
9663 type = value_type (arg1);
9664 while (TYPE_CODE (type) == TYPE_CODE_REF)
9665 type = TYPE_TARGET_TYPE (type);
f44316fa 9666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9667 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9668
9669 case BINOP_SUB:
9670 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9671 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9672 if (noside == EVAL_SKIP)
4c4b4cd2 9673 goto nosideret;
2ac8a782
JB
9674 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9675 return (value_from_longest
9676 (value_type (arg1),
9677 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9678 if ((ada_is_fixed_point_type (value_type (arg1))
9679 || ada_is_fixed_point_type (value_type (arg2)))
9680 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9681 error (_("Operands of fixed-point subtraction "
9682 "must have the same type"));
b7789565
JB
9683 /* Do the substraction, and cast the result to the type of the first
9684 argument. We cannot cast the result to a reference type, so if
9685 ARG1 is a reference type, find its underlying type. */
9686 type = value_type (arg1);
9687 while (TYPE_CODE (type) == TYPE_CODE_REF)
9688 type = TYPE_TARGET_TYPE (type);
f44316fa 9689 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9690 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9691
9692 case BINOP_MUL:
9693 case BINOP_DIV:
e1578042
JB
9694 case BINOP_REM:
9695 case BINOP_MOD:
14f9c5c9
AS
9696 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9697 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9698 if (noside == EVAL_SKIP)
4c4b4cd2 9699 goto nosideret;
e1578042 9700 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9701 {
9702 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9703 return value_zero (value_type (arg1), not_lval);
9704 }
14f9c5c9 9705 else
4c4b4cd2 9706 {
a53b7a21 9707 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9708 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9709 arg1 = cast_from_fixed (type, arg1);
df407dfe 9710 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9711 arg2 = cast_from_fixed (type, arg2);
f44316fa 9712 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9713 return ada_value_binop (arg1, arg2, op);
9714 }
9715
4c4b4cd2
PH
9716 case BINOP_EQUAL:
9717 case BINOP_NOTEQUAL:
14f9c5c9 9718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9719 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9720 if (noside == EVAL_SKIP)
76a01679 9721 goto nosideret;
4c4b4cd2 9722 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9723 tem = 0;
4c4b4cd2 9724 else
f44316fa
UW
9725 {
9726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9727 tem = ada_value_equal (arg1, arg2);
9728 }
4c4b4cd2 9729 if (op == BINOP_NOTEQUAL)
76a01679 9730 tem = !tem;
fbb06eb1
UW
9731 type = language_bool_type (exp->language_defn, exp->gdbarch);
9732 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9733
9734 case UNOP_NEG:
9735 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9736 if (noside == EVAL_SKIP)
9737 goto nosideret;
df407dfe
AC
9738 else if (ada_is_fixed_point_type (value_type (arg1)))
9739 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9740 else
f44316fa
UW
9741 {
9742 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9743 return value_neg (arg1);
9744 }
4c4b4cd2 9745
2330c6c6
JB
9746 case BINOP_LOGICAL_AND:
9747 case BINOP_LOGICAL_OR:
9748 case UNOP_LOGICAL_NOT:
000d5124
JB
9749 {
9750 struct value *val;
9751
9752 *pos -= 1;
9753 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9754 type = language_bool_type (exp->language_defn, exp->gdbarch);
9755 return value_cast (type, val);
000d5124 9756 }
2330c6c6
JB
9757
9758 case BINOP_BITWISE_AND:
9759 case BINOP_BITWISE_IOR:
9760 case BINOP_BITWISE_XOR:
000d5124
JB
9761 {
9762 struct value *val;
9763
9764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9765 *pos = pc;
9766 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9767
9768 return value_cast (value_type (arg1), val);
9769 }
2330c6c6 9770
14f9c5c9
AS
9771 case OP_VAR_VALUE:
9772 *pos -= 1;
6799def4 9773
14f9c5c9 9774 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9775 {
9776 *pos += 4;
9777 goto nosideret;
9778 }
9779 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9780 /* Only encountered when an unresolved symbol occurs in a
9781 context other than a function call, in which case, it is
52ce6436 9782 invalid. */
323e0a4a 9783 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9784 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9785 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9786 {
0c1f74cf 9787 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9788 /* Check to see if this is a tagged type. We also need to handle
9789 the case where the type is a reference to a tagged type, but
9790 we have to be careful to exclude pointers to tagged types.
9791 The latter should be shown as usual (as a pointer), whereas
9792 a reference should mostly be transparent to the user. */
9793 if (ada_is_tagged_type (type, 0)
9794 || (TYPE_CODE(type) == TYPE_CODE_REF
9795 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9796 {
9797 /* Tagged types are a little special in the fact that the real
9798 type is dynamic and can only be determined by inspecting the
9799 object's tag. This means that we need to get the object's
9800 value first (EVAL_NORMAL) and then extract the actual object
9801 type from its tag.
9802
9803 Note that we cannot skip the final step where we extract
9804 the object type from its tag, because the EVAL_NORMAL phase
9805 results in dynamic components being resolved into fixed ones.
9806 This can cause problems when trying to print the type
9807 description of tagged types whose parent has a dynamic size:
9808 We use the type name of the "_parent" component in order
9809 to print the name of the ancestor type in the type description.
9810 If that component had a dynamic size, the resolution into
9811 a fixed type would result in the loss of that type name,
9812 thus preventing us from printing the name of the ancestor
9813 type in the type description. */
9814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9815
9816 if (TYPE_CODE (type) != TYPE_CODE_REF)
9817 {
9818 struct type *actual_type;
9819
9820 actual_type = type_from_tag (ada_value_tag (arg1));
9821 if (actual_type == NULL)
9822 /* If, for some reason, we were unable to determine
9823 the actual type from the tag, then use the static
9824 approximation that we just computed as a fallback.
9825 This can happen if the debugging information is
9826 incomplete, for instance. */
9827 actual_type = type;
9828 return value_zero (actual_type, not_lval);
9829 }
9830 else
9831 {
9832 /* In the case of a ref, ada_coerce_ref takes care
9833 of determining the actual type. But the evaluation
9834 should return a ref as it should be valid to ask
9835 for its address; so rebuild a ref after coerce. */
9836 arg1 = ada_coerce_ref (arg1);
9837 return value_ref (arg1);
9838 }
0c1f74cf
JB
9839 }
9840
4c4b4cd2
PH
9841 *pos += 4;
9842 return value_zero
9843 (to_static_fixed_type
9844 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9845 not_lval);
9846 }
d2e4a39e 9847 else
4c4b4cd2 9848 {
284614f0 9849 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9850 return ada_to_fixed_value (arg1);
9851 }
9852
9853 case OP_FUNCALL:
9854 (*pos) += 2;
9855
9856 /* Allocate arg vector, including space for the function to be
9857 called in argvec[0] and a terminating NULL. */
9858 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9859 argvec =
9860 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9861
9862 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9863 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9864 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9865 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9866 else
9867 {
9868 for (tem = 0; tem <= nargs; tem += 1)
9869 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9870 argvec[tem] = 0;
9871
9872 if (noside == EVAL_SKIP)
9873 goto nosideret;
9874 }
9875
ad82864c
JB
9876 if (ada_is_constrained_packed_array_type
9877 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9878 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9879 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9880 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9881 /* This is a packed array that has already been fixed, and
9882 therefore already coerced to a simple array. Nothing further
9883 to do. */
9884 ;
df407dfe
AC
9885 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9886 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9887 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9888 argvec[0] = value_addr (argvec[0]);
9889
df407dfe 9890 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9891
9892 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9893 them. So, if this is an array typedef (encoding use for array
9894 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9895 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9896 type = ada_typedef_target_type (type);
9897
4c4b4cd2
PH
9898 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9899 {
61ee279c 9900 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9901 {
9902 case TYPE_CODE_FUNC:
61ee279c 9903 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9904 break;
9905 case TYPE_CODE_ARRAY:
9906 break;
9907 case TYPE_CODE_STRUCT:
9908 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9909 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9910 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9911 break;
9912 default:
323e0a4a 9913 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9914 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9915 break;
9916 }
9917 }
9918
9919 switch (TYPE_CODE (type))
9920 {
9921 case TYPE_CODE_FUNC:
9922 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9923 {
9924 struct type *rtype = TYPE_TARGET_TYPE (type);
9925
9926 if (TYPE_GNU_IFUNC (type))
9927 return allocate_value (TYPE_TARGET_TYPE (rtype));
9928 return allocate_value (rtype);
9929 }
4c4b4cd2 9930 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9931 case TYPE_CODE_INTERNAL_FUNCTION:
9932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 /* We don't know anything about what the internal
9934 function might return, but we have to return
9935 something. */
9936 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9937 not_lval);
9938 else
9939 return call_internal_function (exp->gdbarch, exp->language_defn,
9940 argvec[0], nargs, argvec + 1);
9941
4c4b4cd2
PH
9942 case TYPE_CODE_STRUCT:
9943 {
9944 int arity;
9945
4c4b4cd2
PH
9946 arity = ada_array_arity (type);
9947 type = ada_array_element_type (type, nargs);
9948 if (type == NULL)
323e0a4a 9949 error (_("cannot subscript or call a record"));
4c4b4cd2 9950 if (arity != nargs)
323e0a4a 9951 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9952 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9953 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9954 return
9955 unwrap_value (ada_value_subscript
9956 (argvec[0], nargs, argvec + 1));
9957 }
9958 case TYPE_CODE_ARRAY:
9959 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9960 {
9961 type = ada_array_element_type (type, nargs);
9962 if (type == NULL)
323e0a4a 9963 error (_("element type of array unknown"));
4c4b4cd2 9964 else
0a07e705 9965 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9966 }
9967 return
9968 unwrap_value (ada_value_subscript
9969 (ada_coerce_to_simple_array (argvec[0]),
9970 nargs, argvec + 1));
9971 case TYPE_CODE_PTR: /* Pointer to array */
9972 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9974 {
9975 type = ada_array_element_type (type, nargs);
9976 if (type == NULL)
323e0a4a 9977 error (_("element type of array unknown"));
4c4b4cd2 9978 else
0a07e705 9979 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9980 }
9981 return
9982 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9983 nargs, argvec + 1));
9984
9985 default:
e1d5a0d2
PH
9986 error (_("Attempt to index or call something other than an "
9987 "array or function"));
4c4b4cd2
PH
9988 }
9989
9990 case TERNOP_SLICE:
9991 {
9992 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9993 struct value *low_bound_val =
9994 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9995 struct value *high_bound_val =
9996 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9997 LONGEST low_bound;
9998 LONGEST high_bound;
5b4ee69b 9999
994b9211
AC
10000 low_bound_val = coerce_ref (low_bound_val);
10001 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10002 low_bound = pos_atr (low_bound_val);
10003 high_bound = pos_atr (high_bound_val);
963a6417 10004
4c4b4cd2
PH
10005 if (noside == EVAL_SKIP)
10006 goto nosideret;
10007
4c4b4cd2
PH
10008 /* If this is a reference to an aligner type, then remove all
10009 the aligners. */
df407dfe
AC
10010 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10011 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10012 TYPE_TARGET_TYPE (value_type (array)) =
10013 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10014
ad82864c 10015 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10016 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10017
10018 /* If this is a reference to an array or an array lvalue,
10019 convert to a pointer. */
df407dfe
AC
10020 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10021 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10022 && VALUE_LVAL (array) == lval_memory))
10023 array = value_addr (array);
10024
1265e4aa 10025 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10026 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10027 (value_type (array))))
0b5d8877 10028 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10029
10030 array = ada_coerce_to_simple_array_ptr (array);
10031
714e53ab
PH
10032 /* If we have more than one level of pointer indirection,
10033 dereference the value until we get only one level. */
df407dfe
AC
10034 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10035 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10036 == TYPE_CODE_PTR))
10037 array = value_ind (array);
10038
10039 /* Make sure we really do have an array type before going further,
10040 to avoid a SEGV when trying to get the index type or the target
10041 type later down the road if the debug info generated by
10042 the compiler is incorrect or incomplete. */
df407dfe 10043 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10044 error (_("cannot take slice of non-array"));
714e53ab 10045
828292f2
JB
10046 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10047 == TYPE_CODE_PTR)
4c4b4cd2 10048 {
828292f2
JB
10049 struct type *type0 = ada_check_typedef (value_type (array));
10050
0b5d8877 10051 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10052 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10053 else
10054 {
10055 struct type *arr_type0 =
828292f2 10056 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10057
f5938064
JG
10058 return ada_value_slice_from_ptr (array, arr_type0,
10059 longest_to_int (low_bound),
10060 longest_to_int (high_bound));
4c4b4cd2
PH
10061 }
10062 }
10063 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10064 return array;
10065 else if (high_bound < low_bound)
df407dfe 10066 return empty_array (value_type (array), low_bound);
4c4b4cd2 10067 else
529cad9c
PH
10068 return ada_value_slice (array, longest_to_int (low_bound),
10069 longest_to_int (high_bound));
4c4b4cd2 10070 }
14f9c5c9 10071
4c4b4cd2
PH
10072 case UNOP_IN_RANGE:
10073 (*pos) += 2;
10074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10075 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10076
14f9c5c9 10077 if (noside == EVAL_SKIP)
4c4b4cd2 10078 goto nosideret;
14f9c5c9 10079
4c4b4cd2
PH
10080 switch (TYPE_CODE (type))
10081 {
10082 default:
e1d5a0d2
PH
10083 lim_warning (_("Membership test incompletely implemented; "
10084 "always returns true"));
fbb06eb1
UW
10085 type = language_bool_type (exp->language_defn, exp->gdbarch);
10086 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10087
10088 case TYPE_CODE_RANGE:
030b4912
UW
10089 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10090 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10091 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10092 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10093 type = language_bool_type (exp->language_defn, exp->gdbarch);
10094 return
10095 value_from_longest (type,
4c4b4cd2
PH
10096 (value_less (arg1, arg3)
10097 || value_equal (arg1, arg3))
10098 && (value_less (arg2, arg1)
10099 || value_equal (arg2, arg1)));
10100 }
10101
10102 case BINOP_IN_BOUNDS:
14f9c5c9 10103 (*pos) += 2;
4c4b4cd2
PH
10104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10105 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10106
4c4b4cd2
PH
10107 if (noside == EVAL_SKIP)
10108 goto nosideret;
14f9c5c9 10109
4c4b4cd2 10110 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10111 {
10112 type = language_bool_type (exp->language_defn, exp->gdbarch);
10113 return value_zero (type, not_lval);
10114 }
14f9c5c9 10115
4c4b4cd2 10116 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10117
1eea4ebd
UW
10118 type = ada_index_type (value_type (arg2), tem, "range");
10119 if (!type)
10120 type = value_type (arg1);
14f9c5c9 10121
1eea4ebd
UW
10122 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10123 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10124
f44316fa
UW
10125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10127 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10128 return
fbb06eb1 10129 value_from_longest (type,
4c4b4cd2
PH
10130 (value_less (arg1, arg3)
10131 || value_equal (arg1, arg3))
10132 && (value_less (arg2, arg1)
10133 || value_equal (arg2, arg1)));
10134
10135 case TERNOP_IN_RANGE:
10136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10137 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10138 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139
10140 if (noside == EVAL_SKIP)
10141 goto nosideret;
10142
f44316fa
UW
10143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10145 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10146 return
fbb06eb1 10147 value_from_longest (type,
4c4b4cd2
PH
10148 (value_less (arg1, arg3)
10149 || value_equal (arg1, arg3))
10150 && (value_less (arg2, arg1)
10151 || value_equal (arg2, arg1)));
10152
10153 case OP_ATR_FIRST:
10154 case OP_ATR_LAST:
10155 case OP_ATR_LENGTH:
10156 {
76a01679 10157 struct type *type_arg;
5b4ee69b 10158
76a01679
JB
10159 if (exp->elts[*pos].opcode == OP_TYPE)
10160 {
10161 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10162 arg1 = NULL;
5bc23cb3 10163 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10164 }
10165 else
10166 {
10167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10168 type_arg = NULL;
10169 }
10170
10171 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10172 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10173 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10174 *pos += 4;
10175
10176 if (noside == EVAL_SKIP)
10177 goto nosideret;
10178
10179 if (type_arg == NULL)
10180 {
10181 arg1 = ada_coerce_ref (arg1);
10182
ad82864c 10183 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10184 arg1 = ada_coerce_to_simple_array (arg1);
10185
1eea4ebd
UW
10186 type = ada_index_type (value_type (arg1), tem,
10187 ada_attribute_name (op));
10188 if (type == NULL)
10189 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10190
10191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10192 return allocate_value (type);
76a01679
JB
10193
10194 switch (op)
10195 {
10196 default: /* Should never happen. */
323e0a4a 10197 error (_("unexpected attribute encountered"));
76a01679 10198 case OP_ATR_FIRST:
1eea4ebd
UW
10199 return value_from_longest
10200 (type, ada_array_bound (arg1, tem, 0));
76a01679 10201 case OP_ATR_LAST:
1eea4ebd
UW
10202 return value_from_longest
10203 (type, ada_array_bound (arg1, tem, 1));
76a01679 10204 case OP_ATR_LENGTH:
1eea4ebd
UW
10205 return value_from_longest
10206 (type, ada_array_length (arg1, tem));
76a01679
JB
10207 }
10208 }
10209 else if (discrete_type_p (type_arg))
10210 {
10211 struct type *range_type;
0d5cff50 10212 const char *name = ada_type_name (type_arg);
5b4ee69b 10213
76a01679
JB
10214 range_type = NULL;
10215 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10216 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10217 if (range_type == NULL)
10218 range_type = type_arg;
10219 switch (op)
10220 {
10221 default:
323e0a4a 10222 error (_("unexpected attribute encountered"));
76a01679 10223 case OP_ATR_FIRST:
690cc4eb 10224 return value_from_longest
43bbcdc2 10225 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10226 case OP_ATR_LAST:
690cc4eb 10227 return value_from_longest
43bbcdc2 10228 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10229 case OP_ATR_LENGTH:
323e0a4a 10230 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10231 }
10232 }
10233 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10234 error (_("unimplemented type attribute"));
76a01679
JB
10235 else
10236 {
10237 LONGEST low, high;
10238
ad82864c
JB
10239 if (ada_is_constrained_packed_array_type (type_arg))
10240 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10241
1eea4ebd 10242 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10243 if (type == NULL)
1eea4ebd
UW
10244 type = builtin_type (exp->gdbarch)->builtin_int;
10245
76a01679
JB
10246 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10247 return allocate_value (type);
10248
10249 switch (op)
10250 {
10251 default:
323e0a4a 10252 error (_("unexpected attribute encountered"));
76a01679 10253 case OP_ATR_FIRST:
1eea4ebd 10254 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10255 return value_from_longest (type, low);
10256 case OP_ATR_LAST:
1eea4ebd 10257 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10258 return value_from_longest (type, high);
10259 case OP_ATR_LENGTH:
1eea4ebd
UW
10260 low = ada_array_bound_from_type (type_arg, tem, 0);
10261 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10262 return value_from_longest (type, high - low + 1);
10263 }
10264 }
14f9c5c9
AS
10265 }
10266
4c4b4cd2
PH
10267 case OP_ATR_TAG:
10268 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10269 if (noside == EVAL_SKIP)
76a01679 10270 goto nosideret;
4c4b4cd2
PH
10271
10272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10273 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10274
10275 return ada_value_tag (arg1);
10276
10277 case OP_ATR_MIN:
10278 case OP_ATR_MAX:
10279 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10281 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10282 if (noside == EVAL_SKIP)
76a01679 10283 goto nosideret;
d2e4a39e 10284 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10285 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10286 else
f44316fa
UW
10287 {
10288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10289 return value_binop (arg1, arg2,
10290 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10291 }
14f9c5c9 10292
4c4b4cd2
PH
10293 case OP_ATR_MODULUS:
10294 {
31dedfee 10295 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10296
5b4ee69b 10297 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10298 if (noside == EVAL_SKIP)
10299 goto nosideret;
4c4b4cd2 10300
76a01679 10301 if (!ada_is_modular_type (type_arg))
323e0a4a 10302 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10303
76a01679
JB
10304 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10305 ada_modulus (type_arg));
4c4b4cd2
PH
10306 }
10307
10308
10309 case OP_ATR_POS:
10310 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10312 if (noside == EVAL_SKIP)
76a01679 10313 goto nosideret;
3cb382c9
UW
10314 type = builtin_type (exp->gdbarch)->builtin_int;
10315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10316 return value_zero (type, not_lval);
14f9c5c9 10317 else
3cb382c9 10318 return value_pos_atr (type, arg1);
14f9c5c9 10319
4c4b4cd2
PH
10320 case OP_ATR_SIZE:
10321 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10322 type = value_type (arg1);
10323
10324 /* If the argument is a reference, then dereference its type, since
10325 the user is really asking for the size of the actual object,
10326 not the size of the pointer. */
10327 if (TYPE_CODE (type) == TYPE_CODE_REF)
10328 type = TYPE_TARGET_TYPE (type);
10329
4c4b4cd2 10330 if (noside == EVAL_SKIP)
76a01679 10331 goto nosideret;
4c4b4cd2 10332 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10333 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10334 else
22601c15 10335 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10336 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10337
10338 case OP_ATR_VAL:
10339 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10340 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10341 type = exp->elts[pc + 2].type;
14f9c5c9 10342 if (noside == EVAL_SKIP)
76a01679 10343 goto nosideret;
4c4b4cd2 10344 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10345 return value_zero (type, not_lval);
4c4b4cd2 10346 else
76a01679 10347 return value_val_atr (type, arg1);
4c4b4cd2
PH
10348
10349 case BINOP_EXP:
10350 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10351 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10352 if (noside == EVAL_SKIP)
10353 goto nosideret;
10354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10355 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10356 else
f44316fa
UW
10357 {
10358 /* For integer exponentiation operations,
10359 only promote the first argument. */
10360 if (is_integral_type (value_type (arg2)))
10361 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10362 else
10363 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10364
10365 return value_binop (arg1, arg2, op);
10366 }
4c4b4cd2
PH
10367
10368 case UNOP_PLUS:
10369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10370 if (noside == EVAL_SKIP)
10371 goto nosideret;
10372 else
10373 return arg1;
10374
10375 case UNOP_ABS:
10376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10377 if (noside == EVAL_SKIP)
10378 goto nosideret;
f44316fa 10379 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10380 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10381 return value_neg (arg1);
14f9c5c9 10382 else
4c4b4cd2 10383 return arg1;
14f9c5c9
AS
10384
10385 case UNOP_IND:
6b0d7253 10386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10387 if (noside == EVAL_SKIP)
4c4b4cd2 10388 goto nosideret;
df407dfe 10389 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10390 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10391 {
10392 if (ada_is_array_descriptor_type (type))
10393 /* GDB allows dereferencing GNAT array descriptors. */
10394 {
10395 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10396
4c4b4cd2 10397 if (arrType == NULL)
323e0a4a 10398 error (_("Attempt to dereference null array pointer."));
00a4c844 10399 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10400 }
10401 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10402 || TYPE_CODE (type) == TYPE_CODE_REF
10403 /* In C you can dereference an array to get the 1st elt. */
10404 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10405 {
10406 type = to_static_fixed_type
10407 (ada_aligned_type
10408 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10409 check_size (type);
10410 return value_zero (type, lval_memory);
10411 }
4c4b4cd2 10412 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10413 {
10414 /* GDB allows dereferencing an int. */
10415 if (expect_type == NULL)
10416 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10417 lval_memory);
10418 else
10419 {
10420 expect_type =
10421 to_static_fixed_type (ada_aligned_type (expect_type));
10422 return value_zero (expect_type, lval_memory);
10423 }
10424 }
4c4b4cd2 10425 else
323e0a4a 10426 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10427 }
0963b4bd 10428 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10429 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10430
96967637
JB
10431 if (TYPE_CODE (type) == TYPE_CODE_INT)
10432 /* GDB allows dereferencing an int. If we were given
10433 the expect_type, then use that as the target type.
10434 Otherwise, assume that the target type is an int. */
10435 {
10436 if (expect_type != NULL)
10437 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10438 arg1));
10439 else
10440 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10441 (CORE_ADDR) value_as_address (arg1));
10442 }
6b0d7253 10443
4c4b4cd2
PH
10444 if (ada_is_array_descriptor_type (type))
10445 /* GDB allows dereferencing GNAT array descriptors. */
10446 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10447 else
4c4b4cd2 10448 return ada_value_ind (arg1);
14f9c5c9
AS
10449
10450 case STRUCTOP_STRUCT:
10451 tem = longest_to_int (exp->elts[pc + 1].longconst);
10452 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10454 if (noside == EVAL_SKIP)
4c4b4cd2 10455 goto nosideret;
14f9c5c9 10456 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10457 {
df407dfe 10458 struct type *type1 = value_type (arg1);
5b4ee69b 10459
76a01679
JB
10460 if (ada_is_tagged_type (type1, 1))
10461 {
10462 type = ada_lookup_struct_elt_type (type1,
10463 &exp->elts[pc + 2].string,
10464 1, 1, NULL);
10465 if (type == NULL)
10466 /* In this case, we assume that the field COULD exist
10467 in some extension of the type. Return an object of
10468 "type" void, which will match any formal
0963b4bd 10469 (see ada_type_match). */
30b15541
UW
10470 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10471 lval_memory);
76a01679
JB
10472 }
10473 else
10474 type =
10475 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10476 0, NULL);
10477
10478 return value_zero (ada_aligned_type (type), lval_memory);
10479 }
14f9c5c9 10480 else
284614f0
JB
10481 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10482 arg1 = unwrap_value (arg1);
10483 return ada_to_fixed_value (arg1);
10484
14f9c5c9 10485 case OP_TYPE:
4c4b4cd2
PH
10486 /* The value is not supposed to be used. This is here to make it
10487 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10488 (*pos) += 2;
10489 if (noside == EVAL_SKIP)
4c4b4cd2 10490 goto nosideret;
14f9c5c9 10491 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10492 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10493 else
323e0a4a 10494 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10495
10496 case OP_AGGREGATE:
10497 case OP_CHOICES:
10498 case OP_OTHERS:
10499 case OP_DISCRETE_RANGE:
10500 case OP_POSITIONAL:
10501 case OP_NAME:
10502 if (noside == EVAL_NORMAL)
10503 switch (op)
10504 {
10505 case OP_NAME:
10506 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10507 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10508 case OP_AGGREGATE:
10509 error (_("Aggregates only allowed on the right of an assignment"));
10510 default:
0963b4bd
MS
10511 internal_error (__FILE__, __LINE__,
10512 _("aggregate apparently mangled"));
52ce6436
PH
10513 }
10514
10515 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10516 *pos += oplen - 1;
10517 for (tem = 0; tem < nargs; tem += 1)
10518 ada_evaluate_subexp (NULL, exp, pos, noside);
10519 goto nosideret;
14f9c5c9
AS
10520 }
10521
10522nosideret:
22601c15 10523 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10524}
14f9c5c9 10525\f
d2e4a39e 10526
4c4b4cd2 10527 /* Fixed point */
14f9c5c9
AS
10528
10529/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10530 type name that encodes the 'small and 'delta information.
4c4b4cd2 10531 Otherwise, return NULL. */
14f9c5c9 10532
d2e4a39e 10533static const char *
ebf56fd3 10534fixed_type_info (struct type *type)
14f9c5c9 10535{
d2e4a39e 10536 const char *name = ada_type_name (type);
14f9c5c9
AS
10537 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10538
d2e4a39e
AS
10539 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10540 {
14f9c5c9 10541 const char *tail = strstr (name, "___XF_");
5b4ee69b 10542
14f9c5c9 10543 if (tail == NULL)
4c4b4cd2 10544 return NULL;
d2e4a39e 10545 else
4c4b4cd2 10546 return tail + 5;
14f9c5c9
AS
10547 }
10548 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10549 return fixed_type_info (TYPE_TARGET_TYPE (type));
10550 else
10551 return NULL;
10552}
10553
4c4b4cd2 10554/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10555
10556int
ebf56fd3 10557ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10558{
10559 return fixed_type_info (type) != NULL;
10560}
10561
4c4b4cd2
PH
10562/* Return non-zero iff TYPE represents a System.Address type. */
10563
10564int
10565ada_is_system_address_type (struct type *type)
10566{
10567 return (TYPE_NAME (type)
10568 && strcmp (TYPE_NAME (type), "system__address") == 0);
10569}
10570
14f9c5c9
AS
10571/* Assuming that TYPE is the representation of an Ada fixed-point
10572 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10573 delta cannot be determined. */
14f9c5c9
AS
10574
10575DOUBLEST
ebf56fd3 10576ada_delta (struct type *type)
14f9c5c9
AS
10577{
10578 const char *encoding = fixed_type_info (type);
facc390f 10579 DOUBLEST num, den;
14f9c5c9 10580
facc390f
JB
10581 /* Strictly speaking, num and den are encoded as integer. However,
10582 they may not fit into a long, and they will have to be converted
10583 to DOUBLEST anyway. So scan them as DOUBLEST. */
10584 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10585 &num, &den) < 2)
14f9c5c9 10586 return -1.0;
d2e4a39e 10587 else
facc390f 10588 return num / den;
14f9c5c9
AS
10589}
10590
10591/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10592 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10593
10594static DOUBLEST
ebf56fd3 10595scaling_factor (struct type *type)
14f9c5c9
AS
10596{
10597 const char *encoding = fixed_type_info (type);
facc390f 10598 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10599 int n;
d2e4a39e 10600
facc390f
JB
10601 /* Strictly speaking, num's and den's are encoded as integer. However,
10602 they may not fit into a long, and they will have to be converted
10603 to DOUBLEST anyway. So scan them as DOUBLEST. */
10604 n = sscanf (encoding,
10605 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10606 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10607 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10608
10609 if (n < 2)
10610 return 1.0;
10611 else if (n == 4)
facc390f 10612 return num1 / den1;
d2e4a39e 10613 else
facc390f 10614 return num0 / den0;
14f9c5c9
AS
10615}
10616
10617
10618/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10619 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10620
10621DOUBLEST
ebf56fd3 10622ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10623{
d2e4a39e 10624 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10625}
10626
4c4b4cd2
PH
10627/* The representation of a fixed-point value of type TYPE
10628 corresponding to the value X. */
14f9c5c9
AS
10629
10630LONGEST
ebf56fd3 10631ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10632{
10633 return (LONGEST) (x / scaling_factor (type) + 0.5);
10634}
10635
14f9c5c9 10636\f
d2e4a39e 10637
4c4b4cd2 10638 /* Range types */
14f9c5c9
AS
10639
10640/* Scan STR beginning at position K for a discriminant name, and
10641 return the value of that discriminant field of DVAL in *PX. If
10642 PNEW_K is not null, put the position of the character beyond the
10643 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10644 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10645
10646static int
07d8f827 10647scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10648 int *pnew_k)
14f9c5c9
AS
10649{
10650 static char *bound_buffer = NULL;
10651 static size_t bound_buffer_len = 0;
10652 char *bound;
10653 char *pend;
d2e4a39e 10654 struct value *bound_val;
14f9c5c9
AS
10655
10656 if (dval == NULL || str == NULL || str[k] == '\0')
10657 return 0;
10658
d2e4a39e 10659 pend = strstr (str + k, "__");
14f9c5c9
AS
10660 if (pend == NULL)
10661 {
d2e4a39e 10662 bound = str + k;
14f9c5c9
AS
10663 k += strlen (bound);
10664 }
d2e4a39e 10665 else
14f9c5c9 10666 {
d2e4a39e 10667 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10668 bound = bound_buffer;
d2e4a39e
AS
10669 strncpy (bound_buffer, str + k, pend - (str + k));
10670 bound[pend - (str + k)] = '\0';
10671 k = pend - str;
14f9c5c9 10672 }
d2e4a39e 10673
df407dfe 10674 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10675 if (bound_val == NULL)
10676 return 0;
10677
10678 *px = value_as_long (bound_val);
10679 if (pnew_k != NULL)
10680 *pnew_k = k;
10681 return 1;
10682}
10683
10684/* Value of variable named NAME in the current environment. If
10685 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10686 otherwise causes an error with message ERR_MSG. */
10687
d2e4a39e
AS
10688static struct value *
10689get_var_value (char *name, char *err_msg)
14f9c5c9 10690{
4c4b4cd2 10691 struct ada_symbol_info *syms;
14f9c5c9
AS
10692 int nsyms;
10693
4c4b4cd2 10694 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10695 &syms, 1);
14f9c5c9
AS
10696
10697 if (nsyms != 1)
10698 {
10699 if (err_msg == NULL)
4c4b4cd2 10700 return 0;
14f9c5c9 10701 else
8a3fe4f8 10702 error (("%s"), err_msg);
14f9c5c9
AS
10703 }
10704
4c4b4cd2 10705 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10706}
d2e4a39e 10707
14f9c5c9 10708/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10709 no such variable found, returns 0, and sets *FLAG to 0. If
10710 successful, sets *FLAG to 1. */
10711
14f9c5c9 10712LONGEST
4c4b4cd2 10713get_int_var_value (char *name, int *flag)
14f9c5c9 10714{
4c4b4cd2 10715 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10716
14f9c5c9
AS
10717 if (var_val == 0)
10718 {
10719 if (flag != NULL)
4c4b4cd2 10720 *flag = 0;
14f9c5c9
AS
10721 return 0;
10722 }
10723 else
10724 {
10725 if (flag != NULL)
4c4b4cd2 10726 *flag = 1;
14f9c5c9
AS
10727 return value_as_long (var_val);
10728 }
10729}
d2e4a39e 10730
14f9c5c9
AS
10731
10732/* Return a range type whose base type is that of the range type named
10733 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10734 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10735 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10736 corresponding range type from debug information; fall back to using it
10737 if symbol lookup fails. If a new type must be created, allocate it
10738 like ORIG_TYPE was. The bounds information, in general, is encoded
10739 in NAME, the base type given in the named range type. */
14f9c5c9 10740
d2e4a39e 10741static struct type *
28c85d6c 10742to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10743{
0d5cff50 10744 const char *name;
14f9c5c9 10745 struct type *base_type;
d2e4a39e 10746 char *subtype_info;
14f9c5c9 10747
28c85d6c
JB
10748 gdb_assert (raw_type != NULL);
10749 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10750
1ce677a4 10751 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10752 base_type = TYPE_TARGET_TYPE (raw_type);
10753 else
10754 base_type = raw_type;
10755
28c85d6c 10756 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10757 subtype_info = strstr (name, "___XD");
10758 if (subtype_info == NULL)
690cc4eb 10759 {
43bbcdc2
PH
10760 LONGEST L = ada_discrete_type_low_bound (raw_type);
10761 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10762
690cc4eb
PH
10763 if (L < INT_MIN || U > INT_MAX)
10764 return raw_type;
10765 else
28c85d6c 10766 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10767 ada_discrete_type_low_bound (raw_type),
10768 ada_discrete_type_high_bound (raw_type));
690cc4eb 10769 }
14f9c5c9
AS
10770 else
10771 {
10772 static char *name_buf = NULL;
10773 static size_t name_len = 0;
10774 int prefix_len = subtype_info - name;
10775 LONGEST L, U;
10776 struct type *type;
10777 char *bounds_str;
10778 int n;
10779
10780 GROW_VECT (name_buf, name_len, prefix_len + 5);
10781 strncpy (name_buf, name, prefix_len);
10782 name_buf[prefix_len] = '\0';
10783
10784 subtype_info += 5;
10785 bounds_str = strchr (subtype_info, '_');
10786 n = 1;
10787
d2e4a39e 10788 if (*subtype_info == 'L')
4c4b4cd2
PH
10789 {
10790 if (!ada_scan_number (bounds_str, n, &L, &n)
10791 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10792 return raw_type;
10793 if (bounds_str[n] == '_')
10794 n += 2;
0963b4bd 10795 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10796 n += 1;
10797 subtype_info += 1;
10798 }
d2e4a39e 10799 else
4c4b4cd2
PH
10800 {
10801 int ok;
5b4ee69b 10802
4c4b4cd2
PH
10803 strcpy (name_buf + prefix_len, "___L");
10804 L = get_int_var_value (name_buf, &ok);
10805 if (!ok)
10806 {
323e0a4a 10807 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10808 L = 1;
10809 }
10810 }
14f9c5c9 10811
d2e4a39e 10812 if (*subtype_info == 'U')
4c4b4cd2
PH
10813 {
10814 if (!ada_scan_number (bounds_str, n, &U, &n)
10815 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10816 return raw_type;
10817 }
d2e4a39e 10818 else
4c4b4cd2
PH
10819 {
10820 int ok;
5b4ee69b 10821
4c4b4cd2
PH
10822 strcpy (name_buf + prefix_len, "___U");
10823 U = get_int_var_value (name_buf, &ok);
10824 if (!ok)
10825 {
323e0a4a 10826 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10827 U = L;
10828 }
10829 }
14f9c5c9 10830
28c85d6c 10831 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10832 TYPE_NAME (type) = name;
14f9c5c9
AS
10833 return type;
10834 }
10835}
10836
4c4b4cd2
PH
10837/* True iff NAME is the name of a range type. */
10838
14f9c5c9 10839int
d2e4a39e 10840ada_is_range_type_name (const char *name)
14f9c5c9
AS
10841{
10842 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10843}
14f9c5c9 10844\f
d2e4a39e 10845
4c4b4cd2
PH
10846 /* Modular types */
10847
10848/* True iff TYPE is an Ada modular type. */
14f9c5c9 10849
14f9c5c9 10850int
d2e4a39e 10851ada_is_modular_type (struct type *type)
14f9c5c9 10852{
18af8284 10853 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10854
10855 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10856 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10857 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10858}
10859
4c4b4cd2
PH
10860/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10861
61ee279c 10862ULONGEST
0056e4d5 10863ada_modulus (struct type *type)
14f9c5c9 10864{
43bbcdc2 10865 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10866}
d2e4a39e 10867\f
f7f9143b
JB
10868
10869/* Ada exception catchpoint support:
10870 ---------------------------------
10871
10872 We support 3 kinds of exception catchpoints:
10873 . catchpoints on Ada exceptions
10874 . catchpoints on unhandled Ada exceptions
10875 . catchpoints on failed assertions
10876
10877 Exceptions raised during failed assertions, or unhandled exceptions
10878 could perfectly be caught with the general catchpoint on Ada exceptions.
10879 However, we can easily differentiate these two special cases, and having
10880 the option to distinguish these two cases from the rest can be useful
10881 to zero-in on certain situations.
10882
10883 Exception catchpoints are a specialized form of breakpoint,
10884 since they rely on inserting breakpoints inside known routines
10885 of the GNAT runtime. The implementation therefore uses a standard
10886 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10887 of breakpoint_ops.
10888
0259addd
JB
10889 Support in the runtime for exception catchpoints have been changed
10890 a few times already, and these changes affect the implementation
10891 of these catchpoints. In order to be able to support several
10892 variants of the runtime, we use a sniffer that will determine
28010a5d 10893 the runtime variant used by the program being debugged. */
f7f9143b
JB
10894
10895/* The different types of catchpoints that we introduced for catching
10896 Ada exceptions. */
10897
10898enum exception_catchpoint_kind
10899{
10900 ex_catch_exception,
10901 ex_catch_exception_unhandled,
10902 ex_catch_assert
10903};
10904
3d0b0fa3
JB
10905/* Ada's standard exceptions. */
10906
10907static char *standard_exc[] = {
10908 "constraint_error",
10909 "program_error",
10910 "storage_error",
10911 "tasking_error"
10912};
10913
0259addd
JB
10914typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10915
10916/* A structure that describes how to support exception catchpoints
10917 for a given executable. */
10918
10919struct exception_support_info
10920{
10921 /* The name of the symbol to break on in order to insert
10922 a catchpoint on exceptions. */
10923 const char *catch_exception_sym;
10924
10925 /* The name of the symbol to break on in order to insert
10926 a catchpoint on unhandled exceptions. */
10927 const char *catch_exception_unhandled_sym;
10928
10929 /* The name of the symbol to break on in order to insert
10930 a catchpoint on failed assertions. */
10931 const char *catch_assert_sym;
10932
10933 /* Assuming that the inferior just triggered an unhandled exception
10934 catchpoint, this function is responsible for returning the address
10935 in inferior memory where the name of that exception is stored.
10936 Return zero if the address could not be computed. */
10937 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10938};
10939
10940static CORE_ADDR ada_unhandled_exception_name_addr (void);
10941static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10942
10943/* The following exception support info structure describes how to
10944 implement exception catchpoints with the latest version of the
10945 Ada runtime (as of 2007-03-06). */
10946
10947static const struct exception_support_info default_exception_support_info =
10948{
10949 "__gnat_debug_raise_exception", /* catch_exception_sym */
10950 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10951 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10952 ada_unhandled_exception_name_addr
10953};
10954
10955/* The following exception support info structure describes how to
10956 implement exception catchpoints with a slightly older version
10957 of the Ada runtime. */
10958
10959static const struct exception_support_info exception_support_info_fallback =
10960{
10961 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10962 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10963 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10964 ada_unhandled_exception_name_addr_from_raise
10965};
10966
f17011e0
JB
10967/* Return nonzero if we can detect the exception support routines
10968 described in EINFO.
10969
10970 This function errors out if an abnormal situation is detected
10971 (for instance, if we find the exception support routines, but
10972 that support is found to be incomplete). */
10973
10974static int
10975ada_has_this_exception_support (const struct exception_support_info *einfo)
10976{
10977 struct symbol *sym;
10978
10979 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10980 that should be compiled with debugging information. As a result, we
10981 expect to find that symbol in the symtabs. */
10982
10983 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10984 if (sym == NULL)
a6af7abe
JB
10985 {
10986 /* Perhaps we did not find our symbol because the Ada runtime was
10987 compiled without debugging info, or simply stripped of it.
10988 It happens on some GNU/Linux distributions for instance, where
10989 users have to install a separate debug package in order to get
10990 the runtime's debugging info. In that situation, let the user
10991 know why we cannot insert an Ada exception catchpoint.
10992
10993 Note: Just for the purpose of inserting our Ada exception
10994 catchpoint, we could rely purely on the associated minimal symbol.
10995 But we would be operating in degraded mode anyway, since we are
10996 still lacking the debugging info needed later on to extract
10997 the name of the exception being raised (this name is printed in
10998 the catchpoint message, and is also used when trying to catch
10999 a specific exception). We do not handle this case for now. */
11000 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11001 error (_("Your Ada runtime appears to be missing some debugging "
11002 "information.\nCannot insert Ada exception catchpoint "
11003 "in this configuration."));
11004
11005 return 0;
11006 }
f17011e0
JB
11007
11008 /* Make sure that the symbol we found corresponds to a function. */
11009
11010 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11011 error (_("Symbol \"%s\" is not a function (class = %d)"),
11012 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11013
11014 return 1;
11015}
11016
0259addd
JB
11017/* Inspect the Ada runtime and determine which exception info structure
11018 should be used to provide support for exception catchpoints.
11019
3eecfa55
JB
11020 This function will always set the per-inferior exception_info,
11021 or raise an error. */
0259addd
JB
11022
11023static void
11024ada_exception_support_info_sniffer (void)
11025{
3eecfa55 11026 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11027
11028 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11029 if (data->exception_info != NULL)
0259addd
JB
11030 return;
11031
11032 /* Check the latest (default) exception support info. */
f17011e0 11033 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11034 {
3eecfa55 11035 data->exception_info = &default_exception_support_info;
0259addd
JB
11036 return;
11037 }
11038
11039 /* Try our fallback exception suport info. */
f17011e0 11040 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11041 {
3eecfa55 11042 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11043 return;
11044 }
11045
11046 /* Sometimes, it is normal for us to not be able to find the routine
11047 we are looking for. This happens when the program is linked with
11048 the shared version of the GNAT runtime, and the program has not been
11049 started yet. Inform the user of these two possible causes if
11050 applicable. */
11051
ccefe4c4 11052 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11053 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11054
11055 /* If the symbol does not exist, then check that the program is
11056 already started, to make sure that shared libraries have been
11057 loaded. If it is not started, this may mean that the symbol is
11058 in a shared library. */
11059
11060 if (ptid_get_pid (inferior_ptid) == 0)
11061 error (_("Unable to insert catchpoint. Try to start the program first."));
11062
11063 /* At this point, we know that we are debugging an Ada program and
11064 that the inferior has been started, but we still are not able to
0963b4bd 11065 find the run-time symbols. That can mean that we are in
0259addd
JB
11066 configurable run time mode, or that a-except as been optimized
11067 out by the linker... In any case, at this point it is not worth
11068 supporting this feature. */
11069
7dda8cff 11070 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11071}
11072
f7f9143b
JB
11073/* True iff FRAME is very likely to be that of a function that is
11074 part of the runtime system. This is all very heuristic, but is
11075 intended to be used as advice as to what frames are uninteresting
11076 to most users. */
11077
11078static int
11079is_known_support_routine (struct frame_info *frame)
11080{
4ed6b5be 11081 struct symtab_and_line sal;
0d5cff50 11082 const char *func_name;
692465f1 11083 enum language func_lang;
f7f9143b 11084 int i;
f7f9143b 11085
4ed6b5be
JB
11086 /* If this code does not have any debugging information (no symtab),
11087 This cannot be any user code. */
f7f9143b 11088
4ed6b5be 11089 find_frame_sal (frame, &sal);
f7f9143b
JB
11090 if (sal.symtab == NULL)
11091 return 1;
11092
4ed6b5be
JB
11093 /* If there is a symtab, but the associated source file cannot be
11094 located, then assume this is not user code: Selecting a frame
11095 for which we cannot display the code would not be very helpful
11096 for the user. This should also take care of case such as VxWorks
11097 where the kernel has some debugging info provided for a few units. */
f7f9143b 11098
9bbc9174 11099 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
11100 return 1;
11101
4ed6b5be
JB
11102 /* Check the unit filename againt the Ada runtime file naming.
11103 We also check the name of the objfile against the name of some
11104 known system libraries that sometimes come with debugging info
11105 too. */
11106
f7f9143b
JB
11107 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11108 {
11109 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11110 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11111 return 1;
4ed6b5be
JB
11112 if (sal.symtab->objfile != NULL
11113 && re_exec (sal.symtab->objfile->name))
11114 return 1;
f7f9143b
JB
11115 }
11116
4ed6b5be 11117 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11118
e9e07ba6 11119 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11120 if (func_name == NULL)
11121 return 1;
11122
11123 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11124 {
11125 re_comp (known_auxiliary_function_name_patterns[i]);
11126 if (re_exec (func_name))
11127 return 1;
11128 }
11129
11130 return 0;
11131}
11132
11133/* Find the first frame that contains debugging information and that is not
11134 part of the Ada run-time, starting from FI and moving upward. */
11135
0ef643c8 11136void
f7f9143b
JB
11137ada_find_printable_frame (struct frame_info *fi)
11138{
11139 for (; fi != NULL; fi = get_prev_frame (fi))
11140 {
11141 if (!is_known_support_routine (fi))
11142 {
11143 select_frame (fi);
11144 break;
11145 }
11146 }
11147
11148}
11149
11150/* Assuming that the inferior just triggered an unhandled exception
11151 catchpoint, return the address in inferior memory where the name
11152 of the exception is stored.
11153
11154 Return zero if the address could not be computed. */
11155
11156static CORE_ADDR
11157ada_unhandled_exception_name_addr (void)
0259addd
JB
11158{
11159 return parse_and_eval_address ("e.full_name");
11160}
11161
11162/* Same as ada_unhandled_exception_name_addr, except that this function
11163 should be used when the inferior uses an older version of the runtime,
11164 where the exception name needs to be extracted from a specific frame
11165 several frames up in the callstack. */
11166
11167static CORE_ADDR
11168ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11169{
11170 int frame_level;
11171 struct frame_info *fi;
3eecfa55 11172 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11173
11174 /* To determine the name of this exception, we need to select
11175 the frame corresponding to RAISE_SYM_NAME. This frame is
11176 at least 3 levels up, so we simply skip the first 3 frames
11177 without checking the name of their associated function. */
11178 fi = get_current_frame ();
11179 for (frame_level = 0; frame_level < 3; frame_level += 1)
11180 if (fi != NULL)
11181 fi = get_prev_frame (fi);
11182
11183 while (fi != NULL)
11184 {
0d5cff50 11185 const char *func_name;
692465f1
JB
11186 enum language func_lang;
11187
e9e07ba6 11188 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 11189 if (func_name != NULL
3eecfa55 11190 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
11191 break; /* We found the frame we were looking for... */
11192 fi = get_prev_frame (fi);
11193 }
11194
11195 if (fi == NULL)
11196 return 0;
11197
11198 select_frame (fi);
11199 return parse_and_eval_address ("id.full_name");
11200}
11201
11202/* Assuming the inferior just triggered an Ada exception catchpoint
11203 (of any type), return the address in inferior memory where the name
11204 of the exception is stored, if applicable.
11205
11206 Return zero if the address could not be computed, or if not relevant. */
11207
11208static CORE_ADDR
11209ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11210 struct breakpoint *b)
11211{
3eecfa55
JB
11212 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11213
f7f9143b
JB
11214 switch (ex)
11215 {
11216 case ex_catch_exception:
11217 return (parse_and_eval_address ("e.full_name"));
11218 break;
11219
11220 case ex_catch_exception_unhandled:
3eecfa55 11221 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11222 break;
11223
11224 case ex_catch_assert:
11225 return 0; /* Exception name is not relevant in this case. */
11226 break;
11227
11228 default:
11229 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11230 break;
11231 }
11232
11233 return 0; /* Should never be reached. */
11234}
11235
11236/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11237 any error that ada_exception_name_addr_1 might cause to be thrown.
11238 When an error is intercepted, a warning with the error message is printed,
11239 and zero is returned. */
11240
11241static CORE_ADDR
11242ada_exception_name_addr (enum exception_catchpoint_kind ex,
11243 struct breakpoint *b)
11244{
bfd189b1 11245 volatile struct gdb_exception e;
f7f9143b
JB
11246 CORE_ADDR result = 0;
11247
11248 TRY_CATCH (e, RETURN_MASK_ERROR)
11249 {
11250 result = ada_exception_name_addr_1 (ex, b);
11251 }
11252
11253 if (e.reason < 0)
11254 {
11255 warning (_("failed to get exception name: %s"), e.message);
11256 return 0;
11257 }
11258
11259 return result;
11260}
11261
28010a5d
PA
11262static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11263 char *, char **,
c0a91b2b 11264 const struct breakpoint_ops **);
28010a5d
PA
11265static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11266
11267/* Ada catchpoints.
11268
11269 In the case of catchpoints on Ada exceptions, the catchpoint will
11270 stop the target on every exception the program throws. When a user
11271 specifies the name of a specific exception, we translate this
11272 request into a condition expression (in text form), and then parse
11273 it into an expression stored in each of the catchpoint's locations.
11274 We then use this condition to check whether the exception that was
11275 raised is the one the user is interested in. If not, then the
11276 target is resumed again. We store the name of the requested
11277 exception, in order to be able to re-set the condition expression
11278 when symbols change. */
11279
11280/* An instance of this type is used to represent an Ada catchpoint
11281 breakpoint location. It includes a "struct bp_location" as a kind
11282 of base class; users downcast to "struct bp_location *" when
11283 needed. */
11284
11285struct ada_catchpoint_location
11286{
11287 /* The base class. */
11288 struct bp_location base;
11289
11290 /* The condition that checks whether the exception that was raised
11291 is the specific exception the user specified on catchpoint
11292 creation. */
11293 struct expression *excep_cond_expr;
11294};
11295
11296/* Implement the DTOR method in the bp_location_ops structure for all
11297 Ada exception catchpoint kinds. */
11298
11299static void
11300ada_catchpoint_location_dtor (struct bp_location *bl)
11301{
11302 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11303
11304 xfree (al->excep_cond_expr);
11305}
11306
11307/* The vtable to be used in Ada catchpoint locations. */
11308
11309static const struct bp_location_ops ada_catchpoint_location_ops =
11310{
11311 ada_catchpoint_location_dtor
11312};
11313
11314/* An instance of this type is used to represent an Ada catchpoint.
11315 It includes a "struct breakpoint" as a kind of base class; users
11316 downcast to "struct breakpoint *" when needed. */
11317
11318struct ada_catchpoint
11319{
11320 /* The base class. */
11321 struct breakpoint base;
11322
11323 /* The name of the specific exception the user specified. */
11324 char *excep_string;
11325};
11326
11327/* Parse the exception condition string in the context of each of the
11328 catchpoint's locations, and store them for later evaluation. */
11329
11330static void
11331create_excep_cond_exprs (struct ada_catchpoint *c)
11332{
11333 struct cleanup *old_chain;
11334 struct bp_location *bl;
11335 char *cond_string;
11336
11337 /* Nothing to do if there's no specific exception to catch. */
11338 if (c->excep_string == NULL)
11339 return;
11340
11341 /* Same if there are no locations... */
11342 if (c->base.loc == NULL)
11343 return;
11344
11345 /* Compute the condition expression in text form, from the specific
11346 expection we want to catch. */
11347 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11348 old_chain = make_cleanup (xfree, cond_string);
11349
11350 /* Iterate over all the catchpoint's locations, and parse an
11351 expression for each. */
11352 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11353 {
11354 struct ada_catchpoint_location *ada_loc
11355 = (struct ada_catchpoint_location *) bl;
11356 struct expression *exp = NULL;
11357
11358 if (!bl->shlib_disabled)
11359 {
11360 volatile struct gdb_exception e;
11361 char *s;
11362
11363 s = cond_string;
11364 TRY_CATCH (e, RETURN_MASK_ERROR)
11365 {
1bb9788d
TT
11366 exp = parse_exp_1 (&s, bl->address,
11367 block_for_pc (bl->address), 0);
28010a5d
PA
11368 }
11369 if (e.reason < 0)
11370 warning (_("failed to reevaluate internal exception condition "
11371 "for catchpoint %d: %s"),
11372 c->base.number, e.message);
11373 }
11374
11375 ada_loc->excep_cond_expr = exp;
11376 }
11377
11378 do_cleanups (old_chain);
11379}
11380
11381/* Implement the DTOR method in the breakpoint_ops structure for all
11382 exception catchpoint kinds. */
11383
11384static void
11385dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11386{
11387 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11388
11389 xfree (c->excep_string);
348d480f 11390
2060206e 11391 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11392}
11393
11394/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11395 structure for all exception catchpoint kinds. */
11396
11397static struct bp_location *
11398allocate_location_exception (enum exception_catchpoint_kind ex,
11399 struct breakpoint *self)
11400{
11401 struct ada_catchpoint_location *loc;
11402
11403 loc = XNEW (struct ada_catchpoint_location);
11404 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11405 loc->excep_cond_expr = NULL;
11406 return &loc->base;
11407}
11408
11409/* Implement the RE_SET method in the breakpoint_ops structure for all
11410 exception catchpoint kinds. */
11411
11412static void
11413re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11414{
11415 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11416
11417 /* Call the base class's method. This updates the catchpoint's
11418 locations. */
2060206e 11419 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11420
11421 /* Reparse the exception conditional expressions. One for each
11422 location. */
11423 create_excep_cond_exprs (c);
11424}
11425
11426/* Returns true if we should stop for this breakpoint hit. If the
11427 user specified a specific exception, we only want to cause a stop
11428 if the program thrown that exception. */
11429
11430static int
11431should_stop_exception (const struct bp_location *bl)
11432{
11433 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11434 const struct ada_catchpoint_location *ada_loc
11435 = (const struct ada_catchpoint_location *) bl;
11436 volatile struct gdb_exception ex;
11437 int stop;
11438
11439 /* With no specific exception, should always stop. */
11440 if (c->excep_string == NULL)
11441 return 1;
11442
11443 if (ada_loc->excep_cond_expr == NULL)
11444 {
11445 /* We will have a NULL expression if back when we were creating
11446 the expressions, this location's had failed to parse. */
11447 return 1;
11448 }
11449
11450 stop = 1;
11451 TRY_CATCH (ex, RETURN_MASK_ALL)
11452 {
11453 struct value *mark;
11454
11455 mark = value_mark ();
11456 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11457 value_free_to_mark (mark);
11458 }
11459 if (ex.reason < 0)
11460 exception_fprintf (gdb_stderr, ex,
11461 _("Error in testing exception condition:\n"));
11462 return stop;
11463}
11464
11465/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11466 for all exception catchpoint kinds. */
11467
11468static void
11469check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11470{
11471 bs->stop = should_stop_exception (bs->bp_location_at);
11472}
11473
f7f9143b
JB
11474/* Implement the PRINT_IT method in the breakpoint_ops structure
11475 for all exception catchpoint kinds. */
11476
11477static enum print_stop_action
348d480f 11478print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11479{
79a45e25 11480 struct ui_out *uiout = current_uiout;
348d480f
PA
11481 struct breakpoint *b = bs->breakpoint_at;
11482
956a9fb9 11483 annotate_catchpoint (b->number);
f7f9143b 11484
956a9fb9 11485 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11486 {
956a9fb9
JB
11487 ui_out_field_string (uiout, "reason",
11488 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11489 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11490 }
11491
00eb2c4a
JB
11492 ui_out_text (uiout,
11493 b->disposition == disp_del ? "\nTemporary catchpoint "
11494 : "\nCatchpoint ");
956a9fb9
JB
11495 ui_out_field_int (uiout, "bkptno", b->number);
11496 ui_out_text (uiout, ", ");
f7f9143b 11497
f7f9143b
JB
11498 switch (ex)
11499 {
11500 case ex_catch_exception:
f7f9143b 11501 case ex_catch_exception_unhandled:
956a9fb9
JB
11502 {
11503 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11504 char exception_name[256];
11505
11506 if (addr != 0)
11507 {
11508 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11509 exception_name [sizeof (exception_name) - 1] = '\0';
11510 }
11511 else
11512 {
11513 /* For some reason, we were unable to read the exception
11514 name. This could happen if the Runtime was compiled
11515 without debugging info, for instance. In that case,
11516 just replace the exception name by the generic string
11517 "exception" - it will read as "an exception" in the
11518 notification we are about to print. */
967cff16 11519 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11520 }
11521 /* In the case of unhandled exception breakpoints, we print
11522 the exception name as "unhandled EXCEPTION_NAME", to make
11523 it clearer to the user which kind of catchpoint just got
11524 hit. We used ui_out_text to make sure that this extra
11525 info does not pollute the exception name in the MI case. */
11526 if (ex == ex_catch_exception_unhandled)
11527 ui_out_text (uiout, "unhandled ");
11528 ui_out_field_string (uiout, "exception-name", exception_name);
11529 }
11530 break;
f7f9143b 11531 case ex_catch_assert:
956a9fb9
JB
11532 /* In this case, the name of the exception is not really
11533 important. Just print "failed assertion" to make it clearer
11534 that his program just hit an assertion-failure catchpoint.
11535 We used ui_out_text because this info does not belong in
11536 the MI output. */
11537 ui_out_text (uiout, "failed assertion");
11538 break;
f7f9143b 11539 }
956a9fb9
JB
11540 ui_out_text (uiout, " at ");
11541 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11542
11543 return PRINT_SRC_AND_LOC;
11544}
11545
11546/* Implement the PRINT_ONE method in the breakpoint_ops structure
11547 for all exception catchpoint kinds. */
11548
11549static void
11550print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11551 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11552{
79a45e25 11553 struct ui_out *uiout = current_uiout;
28010a5d 11554 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11555 struct value_print_options opts;
11556
11557 get_user_print_options (&opts);
11558 if (opts.addressprint)
f7f9143b
JB
11559 {
11560 annotate_field (4);
5af949e3 11561 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11562 }
11563
11564 annotate_field (5);
a6d9a66e 11565 *last_loc = b->loc;
f7f9143b
JB
11566 switch (ex)
11567 {
11568 case ex_catch_exception:
28010a5d 11569 if (c->excep_string != NULL)
f7f9143b 11570 {
28010a5d
PA
11571 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11572
f7f9143b
JB
11573 ui_out_field_string (uiout, "what", msg);
11574 xfree (msg);
11575 }
11576 else
11577 ui_out_field_string (uiout, "what", "all Ada exceptions");
11578
11579 break;
11580
11581 case ex_catch_exception_unhandled:
11582 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11583 break;
11584
11585 case ex_catch_assert:
11586 ui_out_field_string (uiout, "what", "failed Ada assertions");
11587 break;
11588
11589 default:
11590 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11591 break;
11592 }
11593}
11594
11595/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11596 for all exception catchpoint kinds. */
11597
11598static void
11599print_mention_exception (enum exception_catchpoint_kind ex,
11600 struct breakpoint *b)
11601{
28010a5d 11602 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11603 struct ui_out *uiout = current_uiout;
28010a5d 11604
00eb2c4a
JB
11605 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11606 : _("Catchpoint "));
11607 ui_out_field_int (uiout, "bkptno", b->number);
11608 ui_out_text (uiout, ": ");
11609
f7f9143b
JB
11610 switch (ex)
11611 {
11612 case ex_catch_exception:
28010a5d 11613 if (c->excep_string != NULL)
00eb2c4a
JB
11614 {
11615 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11616 struct cleanup *old_chain = make_cleanup (xfree, info);
11617
11618 ui_out_text (uiout, info);
11619 do_cleanups (old_chain);
11620 }
f7f9143b 11621 else
00eb2c4a 11622 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11623 break;
11624
11625 case ex_catch_exception_unhandled:
00eb2c4a 11626 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11627 break;
11628
11629 case ex_catch_assert:
00eb2c4a 11630 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11631 break;
11632
11633 default:
11634 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11635 break;
11636 }
11637}
11638
6149aea9
PA
11639/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11640 for all exception catchpoint kinds. */
11641
11642static void
11643print_recreate_exception (enum exception_catchpoint_kind ex,
11644 struct breakpoint *b, struct ui_file *fp)
11645{
28010a5d
PA
11646 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11647
6149aea9
PA
11648 switch (ex)
11649 {
11650 case ex_catch_exception:
11651 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11652 if (c->excep_string != NULL)
11653 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11654 break;
11655
11656 case ex_catch_exception_unhandled:
78076abc 11657 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11658 break;
11659
11660 case ex_catch_assert:
11661 fprintf_filtered (fp, "catch assert");
11662 break;
11663
11664 default:
11665 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11666 }
d9b3f62e 11667 print_recreate_thread (b, fp);
6149aea9
PA
11668}
11669
f7f9143b
JB
11670/* Virtual table for "catch exception" breakpoints. */
11671
28010a5d
PA
11672static void
11673dtor_catch_exception (struct breakpoint *b)
11674{
11675 dtor_exception (ex_catch_exception, b);
11676}
11677
11678static struct bp_location *
11679allocate_location_catch_exception (struct breakpoint *self)
11680{
11681 return allocate_location_exception (ex_catch_exception, self);
11682}
11683
11684static void
11685re_set_catch_exception (struct breakpoint *b)
11686{
11687 re_set_exception (ex_catch_exception, b);
11688}
11689
11690static void
11691check_status_catch_exception (bpstat bs)
11692{
11693 check_status_exception (ex_catch_exception, bs);
11694}
11695
f7f9143b 11696static enum print_stop_action
348d480f 11697print_it_catch_exception (bpstat bs)
f7f9143b 11698{
348d480f 11699 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11700}
11701
11702static void
a6d9a66e 11703print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11704{
a6d9a66e 11705 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11706}
11707
11708static void
11709print_mention_catch_exception (struct breakpoint *b)
11710{
11711 print_mention_exception (ex_catch_exception, b);
11712}
11713
6149aea9
PA
11714static void
11715print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11716{
11717 print_recreate_exception (ex_catch_exception, b, fp);
11718}
11719
2060206e 11720static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11721
11722/* Virtual table for "catch exception unhandled" breakpoints. */
11723
28010a5d
PA
11724static void
11725dtor_catch_exception_unhandled (struct breakpoint *b)
11726{
11727 dtor_exception (ex_catch_exception_unhandled, b);
11728}
11729
11730static struct bp_location *
11731allocate_location_catch_exception_unhandled (struct breakpoint *self)
11732{
11733 return allocate_location_exception (ex_catch_exception_unhandled, self);
11734}
11735
11736static void
11737re_set_catch_exception_unhandled (struct breakpoint *b)
11738{
11739 re_set_exception (ex_catch_exception_unhandled, b);
11740}
11741
11742static void
11743check_status_catch_exception_unhandled (bpstat bs)
11744{
11745 check_status_exception (ex_catch_exception_unhandled, bs);
11746}
11747
f7f9143b 11748static enum print_stop_action
348d480f 11749print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11750{
348d480f 11751 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11752}
11753
11754static void
a6d9a66e
UW
11755print_one_catch_exception_unhandled (struct breakpoint *b,
11756 struct bp_location **last_loc)
f7f9143b 11757{
a6d9a66e 11758 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11759}
11760
11761static void
11762print_mention_catch_exception_unhandled (struct breakpoint *b)
11763{
11764 print_mention_exception (ex_catch_exception_unhandled, b);
11765}
11766
6149aea9
PA
11767static void
11768print_recreate_catch_exception_unhandled (struct breakpoint *b,
11769 struct ui_file *fp)
11770{
11771 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11772}
11773
2060206e 11774static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11775
11776/* Virtual table for "catch assert" breakpoints. */
11777
28010a5d
PA
11778static void
11779dtor_catch_assert (struct breakpoint *b)
11780{
11781 dtor_exception (ex_catch_assert, b);
11782}
11783
11784static struct bp_location *
11785allocate_location_catch_assert (struct breakpoint *self)
11786{
11787 return allocate_location_exception (ex_catch_assert, self);
11788}
11789
11790static void
11791re_set_catch_assert (struct breakpoint *b)
11792{
11793 return re_set_exception (ex_catch_assert, b);
11794}
11795
11796static void
11797check_status_catch_assert (bpstat bs)
11798{
11799 check_status_exception (ex_catch_assert, bs);
11800}
11801
f7f9143b 11802static enum print_stop_action
348d480f 11803print_it_catch_assert (bpstat bs)
f7f9143b 11804{
348d480f 11805 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11806}
11807
11808static void
a6d9a66e 11809print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11810{
a6d9a66e 11811 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11812}
11813
11814static void
11815print_mention_catch_assert (struct breakpoint *b)
11816{
11817 print_mention_exception (ex_catch_assert, b);
11818}
11819
6149aea9
PA
11820static void
11821print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11822{
11823 print_recreate_exception (ex_catch_assert, b, fp);
11824}
11825
2060206e 11826static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11827
f7f9143b
JB
11828/* Return a newly allocated copy of the first space-separated token
11829 in ARGSP, and then adjust ARGSP to point immediately after that
11830 token.
11831
11832 Return NULL if ARGPS does not contain any more tokens. */
11833
11834static char *
11835ada_get_next_arg (char **argsp)
11836{
11837 char *args = *argsp;
11838 char *end;
11839 char *result;
11840
0fcd72ba 11841 args = skip_spaces (args);
f7f9143b
JB
11842 if (args[0] == '\0')
11843 return NULL; /* No more arguments. */
11844
11845 /* Find the end of the current argument. */
11846
0fcd72ba 11847 end = skip_to_space (args);
f7f9143b
JB
11848
11849 /* Adjust ARGSP to point to the start of the next argument. */
11850
11851 *argsp = end;
11852
11853 /* Make a copy of the current argument and return it. */
11854
11855 result = xmalloc (end - args + 1);
11856 strncpy (result, args, end - args);
11857 result[end - args] = '\0';
11858
11859 return result;
11860}
11861
11862/* Split the arguments specified in a "catch exception" command.
11863 Set EX to the appropriate catchpoint type.
28010a5d 11864 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11865 specified by the user.
11866 If a condition is found at the end of the arguments, the condition
11867 expression is stored in COND_STRING (memory must be deallocated
11868 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11869
11870static void
11871catch_ada_exception_command_split (char *args,
11872 enum exception_catchpoint_kind *ex,
5845583d
JB
11873 char **excep_string,
11874 char **cond_string)
f7f9143b
JB
11875{
11876 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11877 char *exception_name;
5845583d 11878 char *cond = NULL;
f7f9143b
JB
11879
11880 exception_name = ada_get_next_arg (&args);
5845583d
JB
11881 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11882 {
11883 /* This is not an exception name; this is the start of a condition
11884 expression for a catchpoint on all exceptions. So, "un-get"
11885 this token, and set exception_name to NULL. */
11886 xfree (exception_name);
11887 exception_name = NULL;
11888 args -= 2;
11889 }
f7f9143b
JB
11890 make_cleanup (xfree, exception_name);
11891
5845583d 11892 /* Check to see if we have a condition. */
f7f9143b 11893
0fcd72ba 11894 args = skip_spaces (args);
5845583d
JB
11895 if (strncmp (args, "if", 2) == 0
11896 && (isspace (args[2]) || args[2] == '\0'))
11897 {
11898 args += 2;
11899 args = skip_spaces (args);
11900
11901 if (args[0] == '\0')
11902 error (_("Condition missing after `if' keyword"));
11903 cond = xstrdup (args);
11904 make_cleanup (xfree, cond);
11905
11906 args += strlen (args);
11907 }
11908
11909 /* Check that we do not have any more arguments. Anything else
11910 is unexpected. */
f7f9143b
JB
11911
11912 if (args[0] != '\0')
11913 error (_("Junk at end of expression"));
11914
11915 discard_cleanups (old_chain);
11916
11917 if (exception_name == NULL)
11918 {
11919 /* Catch all exceptions. */
11920 *ex = ex_catch_exception;
28010a5d 11921 *excep_string = NULL;
f7f9143b
JB
11922 }
11923 else if (strcmp (exception_name, "unhandled") == 0)
11924 {
11925 /* Catch unhandled exceptions. */
11926 *ex = ex_catch_exception_unhandled;
28010a5d 11927 *excep_string = NULL;
f7f9143b
JB
11928 }
11929 else
11930 {
11931 /* Catch a specific exception. */
11932 *ex = ex_catch_exception;
28010a5d 11933 *excep_string = exception_name;
f7f9143b 11934 }
5845583d 11935 *cond_string = cond;
f7f9143b
JB
11936}
11937
11938/* Return the name of the symbol on which we should break in order to
11939 implement a catchpoint of the EX kind. */
11940
11941static const char *
11942ada_exception_sym_name (enum exception_catchpoint_kind ex)
11943{
3eecfa55
JB
11944 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11945
11946 gdb_assert (data->exception_info != NULL);
0259addd 11947
f7f9143b
JB
11948 switch (ex)
11949 {
11950 case ex_catch_exception:
3eecfa55 11951 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11952 break;
11953 case ex_catch_exception_unhandled:
3eecfa55 11954 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11955 break;
11956 case ex_catch_assert:
3eecfa55 11957 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11958 break;
11959 default:
11960 internal_error (__FILE__, __LINE__,
11961 _("unexpected catchpoint kind (%d)"), ex);
11962 }
11963}
11964
11965/* Return the breakpoint ops "virtual table" used for catchpoints
11966 of the EX kind. */
11967
c0a91b2b 11968static const struct breakpoint_ops *
4b9eee8c 11969ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11970{
11971 switch (ex)
11972 {
11973 case ex_catch_exception:
11974 return (&catch_exception_breakpoint_ops);
11975 break;
11976 case ex_catch_exception_unhandled:
11977 return (&catch_exception_unhandled_breakpoint_ops);
11978 break;
11979 case ex_catch_assert:
11980 return (&catch_assert_breakpoint_ops);
11981 break;
11982 default:
11983 internal_error (__FILE__, __LINE__,
11984 _("unexpected catchpoint kind (%d)"), ex);
11985 }
11986}
11987
11988/* Return the condition that will be used to match the current exception
11989 being raised with the exception that the user wants to catch. This
11990 assumes that this condition is used when the inferior just triggered
11991 an exception catchpoint.
11992
11993 The string returned is a newly allocated string that needs to be
11994 deallocated later. */
11995
11996static char *
28010a5d 11997ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11998{
3d0b0fa3
JB
11999 int i;
12000
0963b4bd 12001 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12002 runtime units that have been compiled without debugging info; if
28010a5d 12003 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12004 exception (e.g. "constraint_error") then, during the evaluation
12005 of the condition expression, the symbol lookup on this name would
0963b4bd 12006 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12007 may then be set only on user-defined exceptions which have the
12008 same not-fully-qualified name (e.g. my_package.constraint_error).
12009
12010 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12011 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12012 exception constraint_error" is rewritten into "catch exception
12013 standard.constraint_error".
12014
12015 If an exception named contraint_error is defined in another package of
12016 the inferior program, then the only way to specify this exception as a
12017 breakpoint condition is to use its fully-qualified named:
12018 e.g. my_package.constraint_error. */
12019
12020 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12021 {
28010a5d 12022 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12023 {
12024 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12025 excep_string);
3d0b0fa3
JB
12026 }
12027 }
28010a5d 12028 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12029}
12030
12031/* Return the symtab_and_line that should be used to insert an exception
12032 catchpoint of the TYPE kind.
12033
28010a5d
PA
12034 EXCEP_STRING should contain the name of a specific exception that
12035 the catchpoint should catch, or NULL otherwise.
f7f9143b 12036
28010a5d
PA
12037 ADDR_STRING returns the name of the function where the real
12038 breakpoint that implements the catchpoints is set, depending on the
12039 type of catchpoint we need to create. */
f7f9143b
JB
12040
12041static struct symtab_and_line
28010a5d 12042ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12043 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12044{
12045 const char *sym_name;
12046 struct symbol *sym;
f7f9143b 12047
0259addd
JB
12048 /* First, find out which exception support info to use. */
12049 ada_exception_support_info_sniffer ();
12050
12051 /* Then lookup the function on which we will break in order to catch
f7f9143b 12052 the Ada exceptions requested by the user. */
f7f9143b
JB
12053 sym_name = ada_exception_sym_name (ex);
12054 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12055
f17011e0
JB
12056 /* We can assume that SYM is not NULL at this stage. If the symbol
12057 did not exist, ada_exception_support_info_sniffer would have
12058 raised an exception.
f7f9143b 12059
f17011e0
JB
12060 Also, ada_exception_support_info_sniffer should have already
12061 verified that SYM is a function symbol. */
12062 gdb_assert (sym != NULL);
12063 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12064
12065 /* Set ADDR_STRING. */
f7f9143b
JB
12066 *addr_string = xstrdup (sym_name);
12067
f7f9143b 12068 /* Set OPS. */
4b9eee8c 12069 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12070
f17011e0 12071 return find_function_start_sal (sym, 1);
f7f9143b
JB
12072}
12073
12074/* Parse the arguments (ARGS) of the "catch exception" command.
12075
f7f9143b
JB
12076 If the user asked the catchpoint to catch only a specific
12077 exception, then save the exception name in ADDR_STRING.
12078
5845583d
JB
12079 If the user provided a condition, then set COND_STRING to
12080 that condition expression (the memory must be deallocated
12081 after use). Otherwise, set COND_STRING to NULL.
12082
f7f9143b
JB
12083 See ada_exception_sal for a description of all the remaining
12084 function arguments of this function. */
12085
9ac4176b 12086static struct symtab_and_line
f7f9143b 12087ada_decode_exception_location (char *args, char **addr_string,
28010a5d 12088 char **excep_string,
5845583d 12089 char **cond_string,
c0a91b2b 12090 const struct breakpoint_ops **ops)
f7f9143b
JB
12091{
12092 enum exception_catchpoint_kind ex;
12093
5845583d 12094 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
12095 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12096}
12097
12098/* Create an Ada exception catchpoint. */
12099
12100static void
12101create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12102 struct symtab_and_line sal,
12103 char *addr_string,
12104 char *excep_string,
5845583d 12105 char *cond_string,
c0a91b2b 12106 const struct breakpoint_ops *ops,
28010a5d
PA
12107 int tempflag,
12108 int from_tty)
12109{
12110 struct ada_catchpoint *c;
12111
12112 c = XNEW (struct ada_catchpoint);
12113 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12114 ops, tempflag, from_tty);
12115 c->excep_string = excep_string;
12116 create_excep_cond_exprs (c);
5845583d
JB
12117 if (cond_string != NULL)
12118 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12119 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12120}
12121
9ac4176b
PA
12122/* Implement the "catch exception" command. */
12123
12124static void
12125catch_ada_exception_command (char *arg, int from_tty,
12126 struct cmd_list_element *command)
12127{
12128 struct gdbarch *gdbarch = get_current_arch ();
12129 int tempflag;
12130 struct symtab_and_line sal;
12131 char *addr_string = NULL;
28010a5d 12132 char *excep_string = NULL;
5845583d 12133 char *cond_string = NULL;
c0a91b2b 12134 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12135
12136 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12137
12138 if (!arg)
12139 arg = "";
5845583d
JB
12140 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12141 &cond_string, &ops);
28010a5d 12142 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12143 excep_string, cond_string, ops,
12144 tempflag, from_tty);
9ac4176b
PA
12145}
12146
5845583d
JB
12147/* Assuming that ARGS contains the arguments of a "catch assert"
12148 command, parse those arguments and return a symtab_and_line object
12149 for a failed assertion catchpoint.
12150
12151 Set ADDR_STRING to the name of the function where the real
12152 breakpoint that implements the catchpoint is set.
12153
12154 If ARGS contains a condition, set COND_STRING to that condition
12155 (the memory needs to be deallocated after use). Otherwise, set
12156 COND_STRING to NULL. */
12157
9ac4176b 12158static struct symtab_and_line
f7f9143b 12159ada_decode_assert_location (char *args, char **addr_string,
5845583d 12160 char **cond_string,
c0a91b2b 12161 const struct breakpoint_ops **ops)
f7f9143b 12162{
5845583d 12163 args = skip_spaces (args);
f7f9143b 12164
5845583d
JB
12165 /* Check whether a condition was provided. */
12166 if (strncmp (args, "if", 2) == 0
12167 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12168 {
5845583d 12169 args += 2;
0fcd72ba 12170 args = skip_spaces (args);
5845583d
JB
12171 if (args[0] == '\0')
12172 error (_("condition missing after `if' keyword"));
12173 *cond_string = xstrdup (args);
f7f9143b
JB
12174 }
12175
5845583d
JB
12176 /* Otherwise, there should be no other argument at the end of
12177 the command. */
12178 else if (args[0] != '\0')
12179 error (_("Junk at end of arguments."));
12180
28010a5d 12181 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12182}
12183
9ac4176b
PA
12184/* Implement the "catch assert" command. */
12185
12186static void
12187catch_assert_command (char *arg, int from_tty,
12188 struct cmd_list_element *command)
12189{
12190 struct gdbarch *gdbarch = get_current_arch ();
12191 int tempflag;
12192 struct symtab_and_line sal;
12193 char *addr_string = NULL;
5845583d 12194 char *cond_string = NULL;
c0a91b2b 12195 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12196
12197 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12198
12199 if (!arg)
12200 arg = "";
5845583d 12201 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12202 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12203 NULL, cond_string, ops, tempflag,
12204 from_tty);
9ac4176b 12205}
4c4b4cd2
PH
12206 /* Operators */
12207/* Information about operators given special treatment in functions
12208 below. */
12209/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12210
12211#define ADA_OPERATORS \
12212 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12213 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12214 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12215 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12216 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12217 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12218 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12219 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12220 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12221 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12222 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12223 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12224 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12225 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12226 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12227 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12228 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12229 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12230 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12231
12232static void
554794dc
SDJ
12233ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12234 int *argsp)
4c4b4cd2
PH
12235{
12236 switch (exp->elts[pc - 1].opcode)
12237 {
76a01679 12238 default:
4c4b4cd2
PH
12239 operator_length_standard (exp, pc, oplenp, argsp);
12240 break;
12241
12242#define OP_DEFN(op, len, args, binop) \
12243 case op: *oplenp = len; *argsp = args; break;
12244 ADA_OPERATORS;
12245#undef OP_DEFN
52ce6436
PH
12246
12247 case OP_AGGREGATE:
12248 *oplenp = 3;
12249 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12250 break;
12251
12252 case OP_CHOICES:
12253 *oplenp = 3;
12254 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12255 break;
4c4b4cd2
PH
12256 }
12257}
12258
c0201579
JK
12259/* Implementation of the exp_descriptor method operator_check. */
12260
12261static int
12262ada_operator_check (struct expression *exp, int pos,
12263 int (*objfile_func) (struct objfile *objfile, void *data),
12264 void *data)
12265{
12266 const union exp_element *const elts = exp->elts;
12267 struct type *type = NULL;
12268
12269 switch (elts[pos].opcode)
12270 {
12271 case UNOP_IN_RANGE:
12272 case UNOP_QUAL:
12273 type = elts[pos + 1].type;
12274 break;
12275
12276 default:
12277 return operator_check_standard (exp, pos, objfile_func, data);
12278 }
12279
12280 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12281
12282 if (type && TYPE_OBJFILE (type)
12283 && (*objfile_func) (TYPE_OBJFILE (type), data))
12284 return 1;
12285
12286 return 0;
12287}
12288
4c4b4cd2
PH
12289static char *
12290ada_op_name (enum exp_opcode opcode)
12291{
12292 switch (opcode)
12293 {
76a01679 12294 default:
4c4b4cd2 12295 return op_name_standard (opcode);
52ce6436 12296
4c4b4cd2
PH
12297#define OP_DEFN(op, len, args, binop) case op: return #op;
12298 ADA_OPERATORS;
12299#undef OP_DEFN
52ce6436
PH
12300
12301 case OP_AGGREGATE:
12302 return "OP_AGGREGATE";
12303 case OP_CHOICES:
12304 return "OP_CHOICES";
12305 case OP_NAME:
12306 return "OP_NAME";
4c4b4cd2
PH
12307 }
12308}
12309
12310/* As for operator_length, but assumes PC is pointing at the first
12311 element of the operator, and gives meaningful results only for the
52ce6436 12312 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12313
12314static void
76a01679
JB
12315ada_forward_operator_length (struct expression *exp, int pc,
12316 int *oplenp, int *argsp)
4c4b4cd2 12317{
76a01679 12318 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12319 {
12320 default:
12321 *oplenp = *argsp = 0;
12322 break;
52ce6436 12323
4c4b4cd2
PH
12324#define OP_DEFN(op, len, args, binop) \
12325 case op: *oplenp = len; *argsp = args; break;
12326 ADA_OPERATORS;
12327#undef OP_DEFN
52ce6436
PH
12328
12329 case OP_AGGREGATE:
12330 *oplenp = 3;
12331 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12332 break;
12333
12334 case OP_CHOICES:
12335 *oplenp = 3;
12336 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12337 break;
12338
12339 case OP_STRING:
12340 case OP_NAME:
12341 {
12342 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12343
52ce6436
PH
12344 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12345 *argsp = 0;
12346 break;
12347 }
4c4b4cd2
PH
12348 }
12349}
12350
12351static int
12352ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12353{
12354 enum exp_opcode op = exp->elts[elt].opcode;
12355 int oplen, nargs;
12356 int pc = elt;
12357 int i;
76a01679 12358
4c4b4cd2
PH
12359 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12360
76a01679 12361 switch (op)
4c4b4cd2 12362 {
76a01679 12363 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12364 case OP_ATR_FIRST:
12365 case OP_ATR_LAST:
12366 case OP_ATR_LENGTH:
12367 case OP_ATR_IMAGE:
12368 case OP_ATR_MAX:
12369 case OP_ATR_MIN:
12370 case OP_ATR_MODULUS:
12371 case OP_ATR_POS:
12372 case OP_ATR_SIZE:
12373 case OP_ATR_TAG:
12374 case OP_ATR_VAL:
12375 break;
12376
12377 case UNOP_IN_RANGE:
12378 case UNOP_QUAL:
323e0a4a
AC
12379 /* XXX: gdb_sprint_host_address, type_sprint */
12380 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12381 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12382 fprintf_filtered (stream, " (");
12383 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12384 fprintf_filtered (stream, ")");
12385 break;
12386 case BINOP_IN_BOUNDS:
52ce6436
PH
12387 fprintf_filtered (stream, " (%d)",
12388 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12389 break;
12390 case TERNOP_IN_RANGE:
12391 break;
12392
52ce6436
PH
12393 case OP_AGGREGATE:
12394 case OP_OTHERS:
12395 case OP_DISCRETE_RANGE:
12396 case OP_POSITIONAL:
12397 case OP_CHOICES:
12398 break;
12399
12400 case OP_NAME:
12401 case OP_STRING:
12402 {
12403 char *name = &exp->elts[elt + 2].string;
12404 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12405
52ce6436
PH
12406 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12407 break;
12408 }
12409
4c4b4cd2
PH
12410 default:
12411 return dump_subexp_body_standard (exp, stream, elt);
12412 }
12413
12414 elt += oplen;
12415 for (i = 0; i < nargs; i += 1)
12416 elt = dump_subexp (exp, stream, elt);
12417
12418 return elt;
12419}
12420
12421/* The Ada extension of print_subexp (q.v.). */
12422
76a01679
JB
12423static void
12424ada_print_subexp (struct expression *exp, int *pos,
12425 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12426{
52ce6436 12427 int oplen, nargs, i;
4c4b4cd2
PH
12428 int pc = *pos;
12429 enum exp_opcode op = exp->elts[pc].opcode;
12430
12431 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12432
52ce6436 12433 *pos += oplen;
4c4b4cd2
PH
12434 switch (op)
12435 {
12436 default:
52ce6436 12437 *pos -= oplen;
4c4b4cd2
PH
12438 print_subexp_standard (exp, pos, stream, prec);
12439 return;
12440
12441 case OP_VAR_VALUE:
4c4b4cd2
PH
12442 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12443 return;
12444
12445 case BINOP_IN_BOUNDS:
323e0a4a 12446 /* XXX: sprint_subexp */
4c4b4cd2 12447 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12448 fputs_filtered (" in ", stream);
4c4b4cd2 12449 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12450 fputs_filtered ("'range", stream);
4c4b4cd2 12451 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12452 fprintf_filtered (stream, "(%ld)",
12453 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12454 return;
12455
12456 case TERNOP_IN_RANGE:
4c4b4cd2 12457 if (prec >= PREC_EQUAL)
76a01679 12458 fputs_filtered ("(", stream);
323e0a4a 12459 /* XXX: sprint_subexp */
4c4b4cd2 12460 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12461 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12462 print_subexp (exp, pos, stream, PREC_EQUAL);
12463 fputs_filtered (" .. ", stream);
12464 print_subexp (exp, pos, stream, PREC_EQUAL);
12465 if (prec >= PREC_EQUAL)
76a01679
JB
12466 fputs_filtered (")", stream);
12467 return;
4c4b4cd2
PH
12468
12469 case OP_ATR_FIRST:
12470 case OP_ATR_LAST:
12471 case OP_ATR_LENGTH:
12472 case OP_ATR_IMAGE:
12473 case OP_ATR_MAX:
12474 case OP_ATR_MIN:
12475 case OP_ATR_MODULUS:
12476 case OP_ATR_POS:
12477 case OP_ATR_SIZE:
12478 case OP_ATR_TAG:
12479 case OP_ATR_VAL:
4c4b4cd2 12480 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12481 {
12482 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12483 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12484 &type_print_raw_options);
76a01679
JB
12485 *pos += 3;
12486 }
4c4b4cd2 12487 else
76a01679 12488 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12489 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12490 if (nargs > 1)
76a01679
JB
12491 {
12492 int tem;
5b4ee69b 12493
76a01679
JB
12494 for (tem = 1; tem < nargs; tem += 1)
12495 {
12496 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12497 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12498 }
12499 fputs_filtered (")", stream);
12500 }
4c4b4cd2 12501 return;
14f9c5c9 12502
4c4b4cd2 12503 case UNOP_QUAL:
4c4b4cd2
PH
12504 type_print (exp->elts[pc + 1].type, "", stream, 0);
12505 fputs_filtered ("'(", stream);
12506 print_subexp (exp, pos, stream, PREC_PREFIX);
12507 fputs_filtered (")", stream);
12508 return;
14f9c5c9 12509
4c4b4cd2 12510 case UNOP_IN_RANGE:
323e0a4a 12511 /* XXX: sprint_subexp */
4c4b4cd2 12512 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12513 fputs_filtered (" in ", stream);
79d43c61
TT
12514 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12515 &type_print_raw_options);
4c4b4cd2 12516 return;
52ce6436
PH
12517
12518 case OP_DISCRETE_RANGE:
12519 print_subexp (exp, pos, stream, PREC_SUFFIX);
12520 fputs_filtered ("..", stream);
12521 print_subexp (exp, pos, stream, PREC_SUFFIX);
12522 return;
12523
12524 case OP_OTHERS:
12525 fputs_filtered ("others => ", stream);
12526 print_subexp (exp, pos, stream, PREC_SUFFIX);
12527 return;
12528
12529 case OP_CHOICES:
12530 for (i = 0; i < nargs-1; i += 1)
12531 {
12532 if (i > 0)
12533 fputs_filtered ("|", stream);
12534 print_subexp (exp, pos, stream, PREC_SUFFIX);
12535 }
12536 fputs_filtered (" => ", stream);
12537 print_subexp (exp, pos, stream, PREC_SUFFIX);
12538 return;
12539
12540 case OP_POSITIONAL:
12541 print_subexp (exp, pos, stream, PREC_SUFFIX);
12542 return;
12543
12544 case OP_AGGREGATE:
12545 fputs_filtered ("(", stream);
12546 for (i = 0; i < nargs; i += 1)
12547 {
12548 if (i > 0)
12549 fputs_filtered (", ", stream);
12550 print_subexp (exp, pos, stream, PREC_SUFFIX);
12551 }
12552 fputs_filtered (")", stream);
12553 return;
4c4b4cd2
PH
12554 }
12555}
14f9c5c9
AS
12556
12557/* Table mapping opcodes into strings for printing operators
12558 and precedences of the operators. */
12559
d2e4a39e
AS
12560static const struct op_print ada_op_print_tab[] = {
12561 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12562 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12563 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12564 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12565 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12566 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12567 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12568 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12569 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12570 {">=", BINOP_GEQ, PREC_ORDER, 0},
12571 {">", BINOP_GTR, PREC_ORDER, 0},
12572 {"<", BINOP_LESS, PREC_ORDER, 0},
12573 {">>", BINOP_RSH, PREC_SHIFT, 0},
12574 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12575 {"+", BINOP_ADD, PREC_ADD, 0},
12576 {"-", BINOP_SUB, PREC_ADD, 0},
12577 {"&", BINOP_CONCAT, PREC_ADD, 0},
12578 {"*", BINOP_MUL, PREC_MUL, 0},
12579 {"/", BINOP_DIV, PREC_MUL, 0},
12580 {"rem", BINOP_REM, PREC_MUL, 0},
12581 {"mod", BINOP_MOD, PREC_MUL, 0},
12582 {"**", BINOP_EXP, PREC_REPEAT, 0},
12583 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12584 {"-", UNOP_NEG, PREC_PREFIX, 0},
12585 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12586 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12587 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12588 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12589 {".all", UNOP_IND, PREC_SUFFIX, 1},
12590 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12591 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12592 {NULL, 0, 0, 0}
14f9c5c9
AS
12593};
12594\f
72d5681a
PH
12595enum ada_primitive_types {
12596 ada_primitive_type_int,
12597 ada_primitive_type_long,
12598 ada_primitive_type_short,
12599 ada_primitive_type_char,
12600 ada_primitive_type_float,
12601 ada_primitive_type_double,
12602 ada_primitive_type_void,
12603 ada_primitive_type_long_long,
12604 ada_primitive_type_long_double,
12605 ada_primitive_type_natural,
12606 ada_primitive_type_positive,
12607 ada_primitive_type_system_address,
12608 nr_ada_primitive_types
12609};
6c038f32
PH
12610
12611static void
d4a9a881 12612ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12613 struct language_arch_info *lai)
12614{
d4a9a881 12615 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12616
72d5681a 12617 lai->primitive_type_vector
d4a9a881 12618 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12619 struct type *);
e9bb382b
UW
12620
12621 lai->primitive_type_vector [ada_primitive_type_int]
12622 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12623 0, "integer");
12624 lai->primitive_type_vector [ada_primitive_type_long]
12625 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12626 0, "long_integer");
12627 lai->primitive_type_vector [ada_primitive_type_short]
12628 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12629 0, "short_integer");
12630 lai->string_char_type
12631 = lai->primitive_type_vector [ada_primitive_type_char]
12632 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12633 lai->primitive_type_vector [ada_primitive_type_float]
12634 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12635 "float", NULL);
12636 lai->primitive_type_vector [ada_primitive_type_double]
12637 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12638 "long_float", NULL);
12639 lai->primitive_type_vector [ada_primitive_type_long_long]
12640 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12641 0, "long_long_integer");
12642 lai->primitive_type_vector [ada_primitive_type_long_double]
12643 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12644 "long_long_float", NULL);
12645 lai->primitive_type_vector [ada_primitive_type_natural]
12646 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12647 0, "natural");
12648 lai->primitive_type_vector [ada_primitive_type_positive]
12649 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12650 0, "positive");
12651 lai->primitive_type_vector [ada_primitive_type_void]
12652 = builtin->builtin_void;
12653
12654 lai->primitive_type_vector [ada_primitive_type_system_address]
12655 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12656 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12657 = "system__address";
fbb06eb1 12658
47e729a8 12659 lai->bool_type_symbol = NULL;
fbb06eb1 12660 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12661}
6c038f32
PH
12662\f
12663 /* Language vector */
12664
12665/* Not really used, but needed in the ada_language_defn. */
12666
12667static void
6c7a06a3 12668emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12669{
6c7a06a3 12670 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12671}
12672
12673static int
12674parse (void)
12675{
12676 warnings_issued = 0;
12677 return ada_parse ();
12678}
12679
12680static const struct exp_descriptor ada_exp_descriptor = {
12681 ada_print_subexp,
12682 ada_operator_length,
c0201579 12683 ada_operator_check,
6c038f32
PH
12684 ada_op_name,
12685 ada_dump_subexp_body,
12686 ada_evaluate_subexp
12687};
12688
1a119f36 12689/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12690 for Ada. */
12691
1a119f36
JB
12692static symbol_name_cmp_ftype
12693ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12694{
12695 if (should_use_wild_match (lookup_name))
12696 return wild_match;
12697 else
12698 return compare_names;
12699}
12700
a5ee536b
JB
12701/* Implement the "la_read_var_value" language_defn method for Ada. */
12702
12703static struct value *
12704ada_read_var_value (struct symbol *var, struct frame_info *frame)
12705{
12706 struct block *frame_block = NULL;
12707 struct symbol *renaming_sym = NULL;
12708
12709 /* The only case where default_read_var_value is not sufficient
12710 is when VAR is a renaming... */
12711 if (frame)
12712 frame_block = get_frame_block (frame, NULL);
12713 if (frame_block)
12714 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12715 if (renaming_sym != NULL)
12716 return ada_read_renaming_var_value (renaming_sym, frame_block);
12717
12718 /* This is a typical case where we expect the default_read_var_value
12719 function to work. */
12720 return default_read_var_value (var, frame);
12721}
12722
6c038f32
PH
12723const struct language_defn ada_language_defn = {
12724 "ada", /* Language name */
12725 language_ada,
6c038f32 12726 range_check_off,
6c038f32
PH
12727 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12728 that's not quite what this means. */
6c038f32 12729 array_row_major,
9a044a89 12730 macro_expansion_no,
6c038f32
PH
12731 &ada_exp_descriptor,
12732 parse,
12733 ada_error,
12734 resolve,
12735 ada_printchar, /* Print a character constant */
12736 ada_printstr, /* Function to print string constant */
12737 emit_char, /* Function to print single char (not used) */
6c038f32 12738 ada_print_type, /* Print a type using appropriate syntax */
be942545 12739 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12740 ada_val_print, /* Print a value using appropriate syntax */
12741 ada_value_print, /* Print a top-level value */
a5ee536b 12742 ada_read_var_value, /* la_read_var_value */
6c038f32 12743 NULL, /* Language specific skip_trampoline */
2b2d9e11 12744 NULL, /* name_of_this */
6c038f32
PH
12745 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12746 basic_lookup_transparent_type, /* lookup_transparent_type */
12747 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12748 NULL, /* Language specific
12749 class_name_from_physname */
6c038f32
PH
12750 ada_op_print_tab, /* expression operators for printing */
12751 0, /* c-style arrays */
12752 1, /* String lower bound */
6c038f32 12753 ada_get_gdb_completer_word_break_characters,
41d27058 12754 ada_make_symbol_completion_list,
72d5681a 12755 ada_language_arch_info,
e79af960 12756 ada_print_array_index,
41f1b697 12757 default_pass_by_reference,
ae6a3a4c 12758 c_get_string,
1a119f36 12759 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12760 ada_iterate_over_symbols,
6c038f32
PH
12761 LANG_MAGIC
12762};
12763
2c0b251b
PA
12764/* Provide a prototype to silence -Wmissing-prototypes. */
12765extern initialize_file_ftype _initialize_ada_language;
12766
5bf03f13
JB
12767/* Command-list for the "set/show ada" prefix command. */
12768static struct cmd_list_element *set_ada_list;
12769static struct cmd_list_element *show_ada_list;
12770
12771/* Implement the "set ada" prefix command. */
12772
12773static void
12774set_ada_command (char *arg, int from_tty)
12775{
12776 printf_unfiltered (_(\
12777"\"set ada\" must be followed by the name of a setting.\n"));
12778 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12779}
12780
12781/* Implement the "show ada" prefix command. */
12782
12783static void
12784show_ada_command (char *args, int from_tty)
12785{
12786 cmd_show_list (show_ada_list, from_tty, "");
12787}
12788
2060206e
PA
12789static void
12790initialize_ada_catchpoint_ops (void)
12791{
12792 struct breakpoint_ops *ops;
12793
12794 initialize_breakpoint_ops ();
12795
12796 ops = &catch_exception_breakpoint_ops;
12797 *ops = bkpt_breakpoint_ops;
12798 ops->dtor = dtor_catch_exception;
12799 ops->allocate_location = allocate_location_catch_exception;
12800 ops->re_set = re_set_catch_exception;
12801 ops->check_status = check_status_catch_exception;
12802 ops->print_it = print_it_catch_exception;
12803 ops->print_one = print_one_catch_exception;
12804 ops->print_mention = print_mention_catch_exception;
12805 ops->print_recreate = print_recreate_catch_exception;
12806
12807 ops = &catch_exception_unhandled_breakpoint_ops;
12808 *ops = bkpt_breakpoint_ops;
12809 ops->dtor = dtor_catch_exception_unhandled;
12810 ops->allocate_location = allocate_location_catch_exception_unhandled;
12811 ops->re_set = re_set_catch_exception_unhandled;
12812 ops->check_status = check_status_catch_exception_unhandled;
12813 ops->print_it = print_it_catch_exception_unhandled;
12814 ops->print_one = print_one_catch_exception_unhandled;
12815 ops->print_mention = print_mention_catch_exception_unhandled;
12816 ops->print_recreate = print_recreate_catch_exception_unhandled;
12817
12818 ops = &catch_assert_breakpoint_ops;
12819 *ops = bkpt_breakpoint_ops;
12820 ops->dtor = dtor_catch_assert;
12821 ops->allocate_location = allocate_location_catch_assert;
12822 ops->re_set = re_set_catch_assert;
12823 ops->check_status = check_status_catch_assert;
12824 ops->print_it = print_it_catch_assert;
12825 ops->print_one = print_one_catch_assert;
12826 ops->print_mention = print_mention_catch_assert;
12827 ops->print_recreate = print_recreate_catch_assert;
12828}
12829
d2e4a39e 12830void
6c038f32 12831_initialize_ada_language (void)
14f9c5c9 12832{
6c038f32
PH
12833 add_language (&ada_language_defn);
12834
2060206e
PA
12835 initialize_ada_catchpoint_ops ();
12836
5bf03f13
JB
12837 add_prefix_cmd ("ada", no_class, set_ada_command,
12838 _("Prefix command for changing Ada-specfic settings"),
12839 &set_ada_list, "set ada ", 0, &setlist);
12840
12841 add_prefix_cmd ("ada", no_class, show_ada_command,
12842 _("Generic command for showing Ada-specific settings."),
12843 &show_ada_list, "show ada ", 0, &showlist);
12844
12845 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12846 &trust_pad_over_xvs, _("\
12847Enable or disable an optimization trusting PAD types over XVS types"), _("\
12848Show whether an optimization trusting PAD types over XVS types is activated"),
12849 _("\
12850This is related to the encoding used by the GNAT compiler. The debugger\n\
12851should normally trust the contents of PAD types, but certain older versions\n\
12852of GNAT have a bug that sometimes causes the information in the PAD type\n\
12853to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12854work around this bug. It is always safe to turn this option \"off\", but\n\
12855this incurs a slight performance penalty, so it is recommended to NOT change\n\
12856this option to \"off\" unless necessary."),
12857 NULL, NULL, &set_ada_list, &show_ada_list);
12858
9ac4176b
PA
12859 add_catch_command ("exception", _("\
12860Catch Ada exceptions, when raised.\n\
12861With an argument, catch only exceptions with the given name."),
12862 catch_ada_exception_command,
12863 NULL,
12864 CATCH_PERMANENT,
12865 CATCH_TEMPORARY);
12866 add_catch_command ("assert", _("\
12867Catch failed Ada assertions, when raised.\n\
12868With an argument, catch only exceptions with the given name."),
12869 catch_assert_command,
12870 NULL,
12871 CATCH_PERMANENT,
12872 CATCH_TEMPORARY);
12873
6c038f32 12874 varsize_limit = 65536;
6c038f32
PH
12875
12876 obstack_init (&symbol_list_obstack);
12877
12878 decoded_names_store = htab_create_alloc
12879 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12880 NULL, xcalloc, xfree);
6b69afc4 12881
e802dbe0
JB
12882 /* Setup per-inferior data. */
12883 observer_attach_inferior_exit (ada_inferior_exit);
12884 ada_inferior_data
8e260fc0 12885 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12886}