]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab 234
52ce6436
PH
235static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
239 struct expression *,
240 int *, enum noside);
52ce6436
PH
241
242static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
852dff6c
JB
266
267static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
268\f
269
ee01b665
JB
270/* The result of a symbol lookup to be stored in our symbol cache. */
271
272struct cache_entry
273{
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum namespace;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286};
287
288/* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297#define HASH_SIZE 1009
298
299struct ada_symbol_cache
300{
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306};
307
308static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 309
4c4b4cd2 310/* Maximum-sized dynamic type. */
14f9c5c9
AS
311static unsigned int varsize_limit;
312
4c4b4cd2
PH
313/* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315static char *ada_completer_word_break_characters =
316#ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318#else
14f9c5c9 319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 320#endif
14f9c5c9 321
4c4b4cd2 322/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 323static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 324 = "__gnat_ada_main_program_name";
14f9c5c9 325
4c4b4cd2
PH
326/* Limit on the number of warnings to raise per expression evaluation. */
327static int warning_limit = 2;
328
329/* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331static int warnings_issued = 0;
332
333static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335};
336
337static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339};
340
341/* Space for allocating results of ada_lookup_symbol_list. */
342static struct obstack symbol_list_obstack;
343
c6044dd1
JB
344/* Maintenance-related settings for this module. */
345
346static struct cmd_list_element *maint_set_ada_cmdlist;
347static struct cmd_list_element *maint_show_ada_cmdlist;
348
349/* Implement the "maintenance set ada" (prefix) command. */
350
351static void
352maint_set_ada_cmd (char *args, int from_tty)
353{
635c7e8a
TT
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
c6044dd1
JB
356}
357
358/* Implement the "maintenance show ada" (prefix) command. */
359
360static void
361maint_show_ada_cmd (char *args, int from_tty)
362{
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364}
365
366/* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368static int ada_ignore_descriptive_types_p = 0;
369
e802dbe0
JB
370 /* Inferior-specific data. */
371
372/* Per-inferior data for this module. */
373
374struct ada_inferior_data
375{
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
3eecfa55
JB
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
e802dbe0
JB
386};
387
388/* Our key to this module's inferior data. */
389static const struct inferior_data *ada_inferior_data;
390
391/* A cleanup routine for our inferior data. */
392static void
393ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394{
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400}
401
402/* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410static struct ada_inferior_data *
411get_ada_inferior_data (struct inferior *inf)
412{
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
41bf6aca 418 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423}
424
425/* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428static void
429ada_inferior_exit (struct inferior *inf)
430{
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433}
434
ee01b665
JB
435
436 /* program-space-specific data. */
437
438/* This module's per-program-space data. */
439struct ada_pspace_data
440{
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443};
444
445/* Key to our per-program-space data. */
446static const struct program_space_data *ada_pspace_data_handle;
447
448/* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453static struct ada_pspace_data *
454get_ada_pspace_data (struct program_space *pspace)
455{
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466}
467
468/* The cleanup callback for this module's per-program-space data. */
469
470static void
471ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472{
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478}
479
4c4b4cd2
PH
480 /* Utilities */
481
720d1a40 482/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 483 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509static struct type *
510ada_typedef_target_type (struct type *type)
511{
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515}
516
41d27058
JB
517/* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521static const char *
522ada_unqualified_name (const char *decoded_name)
523{
2b0f535a
JB
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
41d27058
JB
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540}
541
542/* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545static char *
546add_angle_brackets (const char *str)
547{
548 static char *result = NULL;
549
550 xfree (result);
88c15c34 551 result = xstrprintf ("<%s>", str);
41d27058
JB
552 return result;
553}
96d887e8 554
4c4b4cd2
PH
555static char *
556ada_get_gdb_completer_word_break_characters (void)
557{
558 return ada_completer_word_break_characters;
559}
560
e79af960
JB
561/* Print an array element index using the Ada syntax. */
562
563static void
564ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 565 const struct value_print_options *options)
e79af960 566{
79a45b7d 567 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
568 fprintf_filtered (stream, " => ");
569}
570
f27cf670 571/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 573 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 574
f27cf670
AS
575void *
576grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 577{
d2e4a39e
AS
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
4c4b4cd2 582 *size = min_size;
f27cf670 583 vect = xrealloc (vect, *size * element_size);
d2e4a39e 584 }
f27cf670 585 return vect;
14f9c5c9
AS
586}
587
588/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 589 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
590
591static int
ebf56fd3 592field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
593{
594 int len = strlen (target);
5b4ee69b 595
d2e4a39e 596 return
4c4b4cd2
PH
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
14f9c5c9
AS
602}
603
604
872c8b51
JB
605/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
612
613int
614ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616{
617 int fieldno;
872c8b51
JB
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
622 return fieldno;
623
624 if (!maybe_missing)
323e0a4a 625 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 626 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
627
628 return -1;
629}
630
631/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
632
633int
d2e4a39e 634ada_name_prefix_len (const char *name)
14f9c5c9
AS
635{
636 if (name == NULL)
637 return 0;
d2e4a39e 638 else
14f9c5c9 639 {
d2e4a39e 640 const char *p = strstr (name, "___");
5b4ee69b 641
14f9c5c9 642 if (p == NULL)
4c4b4cd2 643 return strlen (name);
14f9c5c9 644 else
4c4b4cd2 645 return p - name;
14f9c5c9
AS
646 }
647}
648
4c4b4cd2
PH
649/* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
14f9c5c9 652static int
d2e4a39e 653is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
654{
655 int len1, len2;
5b4ee69b 656
14f9c5c9
AS
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
4c4b4cd2 661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
662}
663
4c4b4cd2
PH
664/* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
14f9c5c9 666
d2e4a39e 667static struct value *
4c4b4cd2 668coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 669{
61ee279c 670 type = ada_check_typedef (type);
df407dfe 671 if (value_type (val) == type)
4c4b4cd2 672 return val;
d2e4a39e 673 else
14f9c5c9 674 {
4c4b4cd2
PH
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
c1b5a1a6 679 ada_ensure_varsize_limit (type);
4c4b4cd2 680
41e8491f
JK
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
9a0dc9e3 687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 688 }
74bcbdf3 689 set_value_component_location (result, val);
9bbda503
AC
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
42ae5230 692 set_value_address (result, value_address (val));
14f9c5c9
AS
693 return result;
694 }
695}
696
fc1a4b47
AC
697static const gdb_byte *
698cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
699{
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704}
705
706static CORE_ADDR
ebf56fd3 707cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
708{
709 if (address == 0)
710 return 0;
d2e4a39e 711 else
14f9c5c9
AS
712 return address + offset;
713}
714
4c4b4cd2
PH
715/* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
a2249542 719
77109804
AC
720/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
a0b31db1 722static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 723
14f9c5c9 724static void
a2249542 725lim_warning (const char *format, ...)
14f9c5c9 726{
a2249542 727 va_list args;
a2249542 728
5b4ee69b 729 va_start (args, format);
4c4b4cd2
PH
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
a2249542
MK
732 vwarning (format, args);
733
734 va_end (args);
4c4b4cd2
PH
735}
736
714e53ab
PH
737/* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
c1b5a1a6
JB
741void
742ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
743{
744 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 745 error (_("object size is larger than varsize-limit"));
714e53ab
PH
746}
747
0963b4bd 748/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 749static LONGEST
c3e5cd34 750max_of_size (int size)
4c4b4cd2 751{
76a01679 752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 753
76a01679 754 return top_bit | (top_bit - 1);
4c4b4cd2
PH
755}
756
0963b4bd 757/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 758static LONGEST
c3e5cd34 759min_of_size (int size)
4c4b4cd2 760{
c3e5cd34 761 return -max_of_size (size) - 1;
4c4b4cd2
PH
762}
763
0963b4bd 764/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 765static ULONGEST
c3e5cd34 766umax_of_size (int size)
4c4b4cd2 767{
76a01679 768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 769
76a01679 770 return top_bit | (top_bit - 1);
4c4b4cd2
PH
771}
772
0963b4bd 773/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
774static LONGEST
775max_of_type (struct type *t)
4c4b4cd2 776{
c3e5cd34
PH
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781}
782
0963b4bd 783/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
784static LONGEST
785min_of_type (struct type *t)
786{
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
791}
792
793/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
794LONGEST
795ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 796{
8739bc53 797 type = resolve_dynamic_type (type, 0);
76a01679 798 switch (TYPE_CODE (type))
4c4b4cd2
PH
799 {
800 case TYPE_CODE_RANGE:
690cc4eb 801 return TYPE_HIGH_BOUND (type);
4c4b4cd2 802 case TYPE_CODE_ENUM:
14e75d8e 803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
76a01679 807 case TYPE_CODE_INT:
690cc4eb 808 return max_of_type (type);
4c4b4cd2 809 default:
43bbcdc2 810 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
811 }
812}
813
14e75d8e 814/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
815LONGEST
816ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 817{
8739bc53 818 type = resolve_dynamic_type (type, 0);
76a01679 819 switch (TYPE_CODE (type))
4c4b4cd2
PH
820 {
821 case TYPE_CODE_RANGE:
690cc4eb 822 return TYPE_LOW_BOUND (type);
4c4b4cd2 823 case TYPE_CODE_ENUM:
14e75d8e 824 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
76a01679 828 case TYPE_CODE_INT:
690cc4eb 829 return min_of_type (type);
4c4b4cd2 830 default:
43bbcdc2 831 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
832 }
833}
834
835/* The identity on non-range types. For range types, the underlying
76a01679 836 non-range scalar type. */
4c4b4cd2
PH
837
838static struct type *
18af8284 839get_base_type (struct type *type)
4c4b4cd2
PH
840{
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
76a01679
JB
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
4c4b4cd2
PH
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
14f9c5c9 848}
41246937
JB
849
850/* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855struct value *
856ada_get_decoded_value (struct value *value)
857{
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873}
874
875/* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880struct type *
881ada_get_decoded_type (struct type *type)
882{
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887}
888
4c4b4cd2 889\f
76a01679 890
4c4b4cd2 891 /* Language Selection */
14f9c5c9
AS
892
893/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 894 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 895
14f9c5c9 896enum language
ccefe4c4 897ada_update_initial_language (enum language lang)
14f9c5c9 898{
d2e4a39e 899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 900 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 901 return language_ada;
14f9c5c9
AS
902
903 return lang;
904}
96d887e8
PH
905
906/* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910char *
911ada_main_name (void)
912{
3b7344d5 913 struct bound_minimal_symbol msym;
f9bc20b9 914 static char *main_program_name = NULL;
6c038f32 915
96d887e8
PH
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
3b7344d5 923 if (msym.minsym != NULL)
96d887e8 924 {
f9bc20b9
JB
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
77e371c0 928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 929 if (main_program_name_addr == 0)
323e0a4a 930 error (_("Invalid address for Ada main program name."));
96d887e8 931
f9bc20b9
JB
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
96d887e8
PH
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943}
14f9c5c9 944\f
4c4b4cd2 945 /* Symbols */
d2e4a39e 946
4c4b4cd2
PH
947/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
14f9c5c9 949
d2e4a39e
AS
950const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
14f9c5c9
AS
973};
974
4c4b4cd2
PH
975/* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
14f9c5c9 978char *
4c4b4cd2 979ada_encode (const char *decoded)
14f9c5c9 980{
4c4b4cd2
PH
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
d2e4a39e 983 const char *p;
14f9c5c9 984 int k;
d2e4a39e 985
4c4b4cd2 986 if (decoded == NULL)
14f9c5c9
AS
987 return NULL;
988
4c4b4cd2
PH
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
14f9c5c9
AS
991
992 k = 0;
4c4b4cd2 993 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 994 {
cdc7bb92 995 if (*p == '.')
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
14f9c5c9 1000 else if (*p == '"')
4c4b4cd2
PH
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1265e4aa
JB
1005 mapping->encoded != NULL
1006 && strncmp (mapping->decoded, p,
1007 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1008 ;
1009 if (mapping->encoded == NULL)
323e0a4a 1010 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1011 strcpy (encoding_buffer + k, mapping->encoded);
1012 k += strlen (mapping->encoded);
1013 break;
1014 }
d2e4a39e 1015 else
4c4b4cd2
PH
1016 {
1017 encoding_buffer[k] = *p;
1018 k += 1;
1019 }
14f9c5c9
AS
1020 }
1021
4c4b4cd2
PH
1022 encoding_buffer[k] = '\0';
1023 return encoding_buffer;
14f9c5c9
AS
1024}
1025
1026/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1027 quotes, unfolded, but with the quotes stripped away. Result good
1028 to next call. */
1029
d2e4a39e
AS
1030char *
1031ada_fold_name (const char *name)
14f9c5c9 1032{
d2e4a39e 1033 static char *fold_buffer = NULL;
14f9c5c9
AS
1034 static size_t fold_buffer_size = 0;
1035
1036 int len = strlen (name);
d2e4a39e 1037 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1038
1039 if (name[0] == '\'')
1040 {
d2e4a39e
AS
1041 strncpy (fold_buffer, name + 1, len - 2);
1042 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1043 }
1044 else
1045 {
1046 int i;
5b4ee69b 1047
14f9c5c9 1048 for (i = 0; i <= len; i += 1)
4c4b4cd2 1049 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1050 }
1051
1052 return fold_buffer;
1053}
1054
529cad9c
PH
1055/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1056
1057static int
1058is_lower_alphanum (const char c)
1059{
1060 return (isdigit (c) || (isalpha (c) && islower (c)));
1061}
1062
c90092fe
JB
1063/* ENCODED is the linkage name of a symbol and LEN contains its length.
1064 This function saves in LEN the length of that same symbol name but
1065 without either of these suffixes:
29480c32
JB
1066 . .{DIGIT}+
1067 . ${DIGIT}+
1068 . ___{DIGIT}+
1069 . __{DIGIT}+.
c90092fe 1070
29480c32
JB
1071 These are suffixes introduced by the compiler for entities such as
1072 nested subprogram for instance, in order to avoid name clashes.
1073 They do not serve any purpose for the debugger. */
1074
1075static void
1076ada_remove_trailing_digits (const char *encoded, int *len)
1077{
1078 if (*len > 1 && isdigit (encoded[*len - 1]))
1079 {
1080 int i = *len - 2;
5b4ee69b 1081
29480c32
JB
1082 while (i > 0 && isdigit (encoded[i]))
1083 i--;
1084 if (i >= 0 && encoded[i] == '.')
1085 *len = i;
1086 else if (i >= 0 && encoded[i] == '$')
1087 *len = i;
1088 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1089 *len = i - 2;
1090 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1091 *len = i - 1;
1092 }
1093}
1094
1095/* Remove the suffix introduced by the compiler for protected object
1096 subprograms. */
1097
1098static void
1099ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1100{
1101 /* Remove trailing N. */
1102
1103 /* Protected entry subprograms are broken into two
1104 separate subprograms: The first one is unprotected, and has
1105 a 'N' suffix; the second is the protected version, and has
0963b4bd 1106 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1107 the protection. Since the P subprograms are internally generated,
1108 we leave these names undecoded, giving the user a clue that this
1109 entity is internal. */
1110
1111 if (*len > 1
1112 && encoded[*len - 1] == 'N'
1113 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1114 *len = *len - 1;
1115}
1116
69fadcdf
JB
1117/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1118
1119static void
1120ada_remove_Xbn_suffix (const char *encoded, int *len)
1121{
1122 int i = *len - 1;
1123
1124 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1125 i--;
1126
1127 if (encoded[i] != 'X')
1128 return;
1129
1130 if (i == 0)
1131 return;
1132
1133 if (isalnum (encoded[i-1]))
1134 *len = i;
1135}
1136
29480c32
JB
1137/* If ENCODED follows the GNAT entity encoding conventions, then return
1138 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1139 replaced by ENCODED.
14f9c5c9 1140
4c4b4cd2 1141 The resulting string is valid until the next call of ada_decode.
29480c32 1142 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1143 is returned. */
1144
1145const char *
1146ada_decode (const char *encoded)
14f9c5c9
AS
1147{
1148 int i, j;
1149 int len0;
d2e4a39e 1150 const char *p;
4c4b4cd2 1151 char *decoded;
14f9c5c9 1152 int at_start_name;
4c4b4cd2
PH
1153 static char *decoding_buffer = NULL;
1154 static size_t decoding_buffer_size = 0;
d2e4a39e 1155
29480c32
JB
1156 /* The name of the Ada main procedure starts with "_ada_".
1157 This prefix is not part of the decoded name, so skip this part
1158 if we see this prefix. */
4c4b4cd2
PH
1159 if (strncmp (encoded, "_ada_", 5) == 0)
1160 encoded += 5;
14f9c5c9 1161
29480c32
JB
1162 /* If the name starts with '_', then it is not a properly encoded
1163 name, so do not attempt to decode it. Similarly, if the name
1164 starts with '<', the name should not be decoded. */
4c4b4cd2 1165 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1166 goto Suppress;
1167
4c4b4cd2 1168 len0 = strlen (encoded);
4c4b4cd2 1169
29480c32
JB
1170 ada_remove_trailing_digits (encoded, &len0);
1171 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1172
4c4b4cd2
PH
1173 /* Remove the ___X.* suffix if present. Do not forget to verify that
1174 the suffix is located before the current "end" of ENCODED. We want
1175 to avoid re-matching parts of ENCODED that have previously been
1176 marked as discarded (by decrementing LEN0). */
1177 p = strstr (encoded, "___");
1178 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1179 {
1180 if (p[3] == 'X')
4c4b4cd2 1181 len0 = p - encoded;
14f9c5c9 1182 else
4c4b4cd2 1183 goto Suppress;
14f9c5c9 1184 }
4c4b4cd2 1185
29480c32
JB
1186 /* Remove any trailing TKB suffix. It tells us that this symbol
1187 is for the body of a task, but that information does not actually
1188 appear in the decoded name. */
1189
4c4b4cd2 1190 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1191 len0 -= 3;
76a01679 1192
a10967fa
JB
1193 /* Remove any trailing TB suffix. The TB suffix is slightly different
1194 from the TKB suffix because it is used for non-anonymous task
1195 bodies. */
1196
1197 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1198 len0 -= 2;
1199
29480c32
JB
1200 /* Remove trailing "B" suffixes. */
1201 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1202
4c4b4cd2 1203 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1204 len0 -= 1;
1205
4c4b4cd2 1206 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1207
4c4b4cd2
PH
1208 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1209 decoded = decoding_buffer;
14f9c5c9 1210
29480c32
JB
1211 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1212
4c4b4cd2 1213 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1214 {
4c4b4cd2
PH
1215 i = len0 - 2;
1216 while ((i >= 0 && isdigit (encoded[i]))
1217 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1218 i -= 1;
1219 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1220 len0 = i - 1;
1221 else if (encoded[i] == '$')
1222 len0 = i;
d2e4a39e 1223 }
14f9c5c9 1224
29480c32
JB
1225 /* The first few characters that are not alphabetic are not part
1226 of any encoding we use, so we can copy them over verbatim. */
1227
4c4b4cd2
PH
1228 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1229 decoded[j] = encoded[i];
14f9c5c9
AS
1230
1231 at_start_name = 1;
1232 while (i < len0)
1233 {
29480c32 1234 /* Is this a symbol function? */
4c4b4cd2
PH
1235 if (at_start_name && encoded[i] == 'O')
1236 {
1237 int k;
5b4ee69b 1238
4c4b4cd2
PH
1239 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1240 {
1241 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1242 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1243 op_len - 1) == 0)
1244 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1245 {
1246 strcpy (decoded + j, ada_opname_table[k].decoded);
1247 at_start_name = 0;
1248 i += op_len;
1249 j += strlen (ada_opname_table[k].decoded);
1250 break;
1251 }
1252 }
1253 if (ada_opname_table[k].encoded != NULL)
1254 continue;
1255 }
14f9c5c9
AS
1256 at_start_name = 0;
1257
529cad9c
PH
1258 /* Replace "TK__" with "__", which will eventually be translated
1259 into "." (just below). */
1260
4c4b4cd2
PH
1261 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1262 i += 2;
529cad9c 1263
29480c32
JB
1264 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1265 be translated into "." (just below). These are internal names
1266 generated for anonymous blocks inside which our symbol is nested. */
1267
1268 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1269 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1270 && isdigit (encoded [i+4]))
1271 {
1272 int k = i + 5;
1273
1274 while (k < len0 && isdigit (encoded[k]))
1275 k++; /* Skip any extra digit. */
1276
1277 /* Double-check that the "__B_{DIGITS}+" sequence we found
1278 is indeed followed by "__". */
1279 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1280 i = k;
1281 }
1282
529cad9c
PH
1283 /* Remove _E{DIGITS}+[sb] */
1284
1285 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1286 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1287 one implements the actual entry code, and has a suffix following
1288 the convention above; the second one implements the barrier and
1289 uses the same convention as above, except that the 'E' is replaced
1290 by a 'B'.
1291
1292 Just as above, we do not decode the name of barrier functions
1293 to give the user a clue that the code he is debugging has been
1294 internally generated. */
1295
1296 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1297 && isdigit (encoded[i+2]))
1298 {
1299 int k = i + 3;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++;
1303
1304 if (k < len0
1305 && (encoded[k] == 'b' || encoded[k] == 's'))
1306 {
1307 k++;
1308 /* Just as an extra precaution, make sure that if this
1309 suffix is followed by anything else, it is a '_'.
1310 Otherwise, we matched this sequence by accident. */
1311 if (k == len0
1312 || (k < len0 && encoded[k] == '_'))
1313 i = k;
1314 }
1315 }
1316
1317 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1318 the GNAT front-end in protected object subprograms. */
1319
1320 if (i < len0 + 3
1321 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1322 {
1323 /* Backtrack a bit up until we reach either the begining of
1324 the encoded name, or "__". Make sure that we only find
1325 digits or lowercase characters. */
1326 const char *ptr = encoded + i - 1;
1327
1328 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1329 ptr--;
1330 if (ptr < encoded
1331 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1332 i++;
1333 }
1334
4c4b4cd2
PH
1335 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1336 {
29480c32
JB
1337 /* This is a X[bn]* sequence not separated from the previous
1338 part of the name with a non-alpha-numeric character (in other
1339 words, immediately following an alpha-numeric character), then
1340 verify that it is placed at the end of the encoded name. If
1341 not, then the encoding is not valid and we should abort the
1342 decoding. Otherwise, just skip it, it is used in body-nested
1343 package names. */
4c4b4cd2
PH
1344 do
1345 i += 1;
1346 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1347 if (i < len0)
1348 goto Suppress;
1349 }
cdc7bb92 1350 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1351 {
29480c32 1352 /* Replace '__' by '.'. */
4c4b4cd2
PH
1353 decoded[j] = '.';
1354 at_start_name = 1;
1355 i += 2;
1356 j += 1;
1357 }
14f9c5c9 1358 else
4c4b4cd2 1359 {
29480c32
JB
1360 /* It's a character part of the decoded name, so just copy it
1361 over. */
4c4b4cd2
PH
1362 decoded[j] = encoded[i];
1363 i += 1;
1364 j += 1;
1365 }
14f9c5c9 1366 }
4c4b4cd2 1367 decoded[j] = '\000';
14f9c5c9 1368
29480c32
JB
1369 /* Decoded names should never contain any uppercase character.
1370 Double-check this, and abort the decoding if we find one. */
1371
4c4b4cd2
PH
1372 for (i = 0; decoded[i] != '\0'; i += 1)
1373 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1374 goto Suppress;
1375
4c4b4cd2
PH
1376 if (strcmp (decoded, encoded) == 0)
1377 return encoded;
1378 else
1379 return decoded;
14f9c5c9
AS
1380
1381Suppress:
4c4b4cd2
PH
1382 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1383 decoded = decoding_buffer;
1384 if (encoded[0] == '<')
1385 strcpy (decoded, encoded);
14f9c5c9 1386 else
88c15c34 1387 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1388 return decoded;
1389
1390}
1391
1392/* Table for keeping permanent unique copies of decoded names. Once
1393 allocated, names in this table are never released. While this is a
1394 storage leak, it should not be significant unless there are massive
1395 changes in the set of decoded names in successive versions of a
1396 symbol table loaded during a single session. */
1397static struct htab *decoded_names_store;
1398
1399/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1400 in the language-specific part of GSYMBOL, if it has not been
1401 previously computed. Tries to save the decoded name in the same
1402 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1403 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1404 GSYMBOL).
4c4b4cd2
PH
1405 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1406 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1407 when a decoded name is cached in it. */
4c4b4cd2 1408
45e6c716 1409const char *
f85f34ed 1410ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1411{
f85f34ed
TT
1412 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1413 const char **resultp =
1414 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1415
f85f34ed 1416 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1417 {
1418 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1419 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1420
f85f34ed 1421 gsymbol->ada_mangled = 1;
5b4ee69b 1422
f85f34ed
TT
1423 if (obstack != NULL)
1424 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1425 else
76a01679 1426 {
f85f34ed
TT
1427 /* Sometimes, we can't find a corresponding objfile, in
1428 which case, we put the result on the heap. Since we only
1429 decode when needed, we hope this usually does not cause a
1430 significant memory leak (FIXME). */
1431
76a01679
JB
1432 char **slot = (char **) htab_find_slot (decoded_names_store,
1433 decoded, INSERT);
5b4ee69b 1434
76a01679
JB
1435 if (*slot == NULL)
1436 *slot = xstrdup (decoded);
1437 *resultp = *slot;
1438 }
4c4b4cd2 1439 }
14f9c5c9 1440
4c4b4cd2
PH
1441 return *resultp;
1442}
76a01679 1443
2c0b251b 1444static char *
76a01679 1445ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1446{
1447 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1448}
1449
1450/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1451 suffixes that encode debugging information or leading _ada_ on
1452 SYM_NAME (see is_name_suffix commentary for the debugging
1453 information that is ignored). If WILD, then NAME need only match a
1454 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1455 either argument is NULL. */
14f9c5c9 1456
2c0b251b 1457static int
40658b94 1458match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1459{
1460 if (sym_name == NULL || name == NULL)
1461 return 0;
1462 else if (wild)
73589123 1463 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1464 else
1465 {
1466 int len_name = strlen (name);
5b4ee69b 1467
4c4b4cd2
PH
1468 return (strncmp (sym_name, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name))
1470 || (strncmp (sym_name, "_ada_", 5) == 0
1471 && strncmp (sym_name + 5, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1473 }
14f9c5c9 1474}
14f9c5c9 1475\f
d2e4a39e 1476
4c4b4cd2 1477 /* Arrays */
14f9c5c9 1478
28c85d6c
JB
1479/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1480 generated by the GNAT compiler to describe the index type used
1481 for each dimension of an array, check whether it follows the latest
1482 known encoding. If not, fix it up to conform to the latest encoding.
1483 Otherwise, do nothing. This function also does nothing if
1484 INDEX_DESC_TYPE is NULL.
1485
1486 The GNAT encoding used to describle the array index type evolved a bit.
1487 Initially, the information would be provided through the name of each
1488 field of the structure type only, while the type of these fields was
1489 described as unspecified and irrelevant. The debugger was then expected
1490 to perform a global type lookup using the name of that field in order
1491 to get access to the full index type description. Because these global
1492 lookups can be very expensive, the encoding was later enhanced to make
1493 the global lookup unnecessary by defining the field type as being
1494 the full index type description.
1495
1496 The purpose of this routine is to allow us to support older versions
1497 of the compiler by detecting the use of the older encoding, and by
1498 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1499 we essentially replace each field's meaningless type by the associated
1500 index subtype). */
1501
1502void
1503ada_fixup_array_indexes_type (struct type *index_desc_type)
1504{
1505 int i;
1506
1507 if (index_desc_type == NULL)
1508 return;
1509 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1510
1511 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1512 to check one field only, no need to check them all). If not, return
1513 now.
1514
1515 If our INDEX_DESC_TYPE was generated using the older encoding,
1516 the field type should be a meaningless integer type whose name
1517 is not equal to the field name. */
1518 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1519 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1520 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1521 return;
1522
1523 /* Fixup each field of INDEX_DESC_TYPE. */
1524 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1525 {
0d5cff50 1526 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1527 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1528
1529 if (raw_type)
1530 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1531 }
1532}
1533
4c4b4cd2 1534/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1535
d2e4a39e
AS
1536static char *bound_name[] = {
1537 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1538 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1539};
1540
1541/* Maximum number of array dimensions we are prepared to handle. */
1542
4c4b4cd2 1543#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1544
14f9c5c9 1545
4c4b4cd2
PH
1546/* The desc_* routines return primitive portions of array descriptors
1547 (fat pointers). */
14f9c5c9
AS
1548
1549/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1550 level of indirection, if needed. */
1551
d2e4a39e
AS
1552static struct type *
1553desc_base_type (struct type *type)
14f9c5c9
AS
1554{
1555 if (type == NULL)
1556 return NULL;
61ee279c 1557 type = ada_check_typedef (type);
720d1a40
JB
1558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1559 type = ada_typedef_target_type (type);
1560
1265e4aa
JB
1561 if (type != NULL
1562 && (TYPE_CODE (type) == TYPE_CODE_PTR
1563 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1564 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1565 else
1566 return type;
1567}
1568
4c4b4cd2
PH
1569/* True iff TYPE indicates a "thin" array pointer type. */
1570
14f9c5c9 1571static int
d2e4a39e 1572is_thin_pntr (struct type *type)
14f9c5c9 1573{
d2e4a39e 1574 return
14f9c5c9
AS
1575 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1576 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1577}
1578
4c4b4cd2
PH
1579/* The descriptor type for thin pointer type TYPE. */
1580
d2e4a39e
AS
1581static struct type *
1582thin_descriptor_type (struct type *type)
14f9c5c9 1583{
d2e4a39e 1584 struct type *base_type = desc_base_type (type);
5b4ee69b 1585
14f9c5c9
AS
1586 if (base_type == NULL)
1587 return NULL;
1588 if (is_suffix (ada_type_name (base_type), "___XVE"))
1589 return base_type;
d2e4a39e 1590 else
14f9c5c9 1591 {
d2e4a39e 1592 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1593
14f9c5c9 1594 if (alt_type == NULL)
4c4b4cd2 1595 return base_type;
14f9c5c9 1596 else
4c4b4cd2 1597 return alt_type;
14f9c5c9
AS
1598 }
1599}
1600
4c4b4cd2
PH
1601/* A pointer to the array data for thin-pointer value VAL. */
1602
d2e4a39e
AS
1603static struct value *
1604thin_data_pntr (struct value *val)
14f9c5c9 1605{
828292f2 1606 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1607 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1608
556bdfd4
UW
1609 data_type = lookup_pointer_type (data_type);
1610
14f9c5c9 1611 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1612 return value_cast (data_type, value_copy (val));
d2e4a39e 1613 else
42ae5230 1614 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1615}
1616
4c4b4cd2
PH
1617/* True iff TYPE indicates a "thick" array pointer type. */
1618
14f9c5c9 1619static int
d2e4a39e 1620is_thick_pntr (struct type *type)
14f9c5c9
AS
1621{
1622 type = desc_base_type (type);
1623 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1624 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1625}
1626
4c4b4cd2
PH
1627/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1628 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1629
d2e4a39e
AS
1630static struct type *
1631desc_bounds_type (struct type *type)
14f9c5c9 1632{
d2e4a39e 1633 struct type *r;
14f9c5c9
AS
1634
1635 type = desc_base_type (type);
1636
1637 if (type == NULL)
1638 return NULL;
1639 else if (is_thin_pntr (type))
1640 {
1641 type = thin_descriptor_type (type);
1642 if (type == NULL)
4c4b4cd2 1643 return NULL;
14f9c5c9
AS
1644 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1645 if (r != NULL)
61ee279c 1646 return ada_check_typedef (r);
14f9c5c9
AS
1647 }
1648 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1649 {
1650 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1651 if (r != NULL)
61ee279c 1652 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1653 }
1654 return NULL;
1655}
1656
1657/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1658 one, a pointer to its bounds data. Otherwise NULL. */
1659
d2e4a39e
AS
1660static struct value *
1661desc_bounds (struct value *arr)
14f9c5c9 1662{
df407dfe 1663 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1664
d2e4a39e 1665 if (is_thin_pntr (type))
14f9c5c9 1666 {
d2e4a39e 1667 struct type *bounds_type =
4c4b4cd2 1668 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1669 LONGEST addr;
1670
4cdfadb1 1671 if (bounds_type == NULL)
323e0a4a 1672 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1673
1674 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1675 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1676 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1677 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1678 addr = value_as_long (arr);
d2e4a39e 1679 else
42ae5230 1680 addr = value_address (arr);
14f9c5c9 1681
d2e4a39e 1682 return
4c4b4cd2
PH
1683 value_from_longest (lookup_pointer_type (bounds_type),
1684 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1685 }
1686
1687 else if (is_thick_pntr (type))
05e522ef
JB
1688 {
1689 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1690 _("Bad GNAT array descriptor"));
1691 struct type *p_bounds_type = value_type (p_bounds);
1692
1693 if (p_bounds_type
1694 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1695 {
1696 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1697
1698 if (TYPE_STUB (target_type))
1699 p_bounds = value_cast (lookup_pointer_type
1700 (ada_check_typedef (target_type)),
1701 p_bounds);
1702 }
1703 else
1704 error (_("Bad GNAT array descriptor"));
1705
1706 return p_bounds;
1707 }
14f9c5c9
AS
1708 else
1709 return NULL;
1710}
1711
4c4b4cd2
PH
1712/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1713 position of the field containing the address of the bounds data. */
1714
14f9c5c9 1715static int
d2e4a39e 1716fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1717{
1718 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1719}
1720
1721/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1722 size of the field containing the address of the bounds data. */
1723
14f9c5c9 1724static int
d2e4a39e 1725fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1726{
1727 type = desc_base_type (type);
1728
d2e4a39e 1729 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1730 return TYPE_FIELD_BITSIZE (type, 1);
1731 else
61ee279c 1732 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1733}
1734
4c4b4cd2 1735/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1736 pointer to one, the type of its array data (a array-with-no-bounds type);
1737 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1738 data. */
4c4b4cd2 1739
d2e4a39e 1740static struct type *
556bdfd4 1741desc_data_target_type (struct type *type)
14f9c5c9
AS
1742{
1743 type = desc_base_type (type);
1744
4c4b4cd2 1745 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1746 if (is_thin_pntr (type))
556bdfd4 1747 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1748 else if (is_thick_pntr (type))
556bdfd4
UW
1749 {
1750 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1751
1752 if (data_type
1753 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1754 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1755 }
1756
1757 return NULL;
14f9c5c9
AS
1758}
1759
1760/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1761 its array data. */
4c4b4cd2 1762
d2e4a39e
AS
1763static struct value *
1764desc_data (struct value *arr)
14f9c5c9 1765{
df407dfe 1766 struct type *type = value_type (arr);
5b4ee69b 1767
14f9c5c9
AS
1768 if (is_thin_pntr (type))
1769 return thin_data_pntr (arr);
1770 else if (is_thick_pntr (type))
d2e4a39e 1771 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1772 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1773 else
1774 return NULL;
1775}
1776
1777
1778/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1779 position of the field containing the address of the data. */
1780
14f9c5c9 1781static int
d2e4a39e 1782fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1783{
1784 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1785}
1786
1787/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1788 size of the field containing the address of the data. */
1789
14f9c5c9 1790static int
d2e4a39e 1791fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1792{
1793 type = desc_base_type (type);
1794
1795 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1796 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1797 else
14f9c5c9
AS
1798 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1799}
1800
4c4b4cd2 1801/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1802 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
d2e4a39e
AS
1805static struct value *
1806desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1807{
d2e4a39e 1808 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1809 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1810}
1811
1812/* If BOUNDS is an array-bounds structure type, return the bit position
1813 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1814 bound, if WHICH is 1. The first bound is I=1. */
1815
14f9c5c9 1816static int
d2e4a39e 1817desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1818{
d2e4a39e 1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1820}
1821
1822/* If BOUNDS is an array-bounds structure type, return the bit field size
1823 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1824 bound, if WHICH is 1. The first bound is I=1. */
1825
76a01679 1826static int
d2e4a39e 1827desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1828{
1829 type = desc_base_type (type);
1830
d2e4a39e
AS
1831 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1832 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1833 else
1834 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1835}
1836
1837/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1838 Ith bound (numbering from 1). Otherwise, NULL. */
1839
d2e4a39e
AS
1840static struct type *
1841desc_index_type (struct type *type, int i)
14f9c5c9
AS
1842{
1843 type = desc_base_type (type);
1844
1845 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1846 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1847 else
14f9c5c9
AS
1848 return NULL;
1849}
1850
4c4b4cd2
PH
1851/* The number of index positions in the array-bounds type TYPE.
1852 Return 0 if TYPE is NULL. */
1853
14f9c5c9 1854static int
d2e4a39e 1855desc_arity (struct type *type)
14f9c5c9
AS
1856{
1857 type = desc_base_type (type);
1858
1859 if (type != NULL)
1860 return TYPE_NFIELDS (type) / 2;
1861 return 0;
1862}
1863
4c4b4cd2
PH
1864/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1865 an array descriptor type (representing an unconstrained array
1866 type). */
1867
76a01679
JB
1868static int
1869ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1870{
1871 if (type == NULL)
1872 return 0;
61ee279c 1873 type = ada_check_typedef (type);
4c4b4cd2 1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1875 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1876}
1877
52ce6436 1878/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1879 * to one. */
52ce6436 1880
2c0b251b 1881static int
52ce6436
PH
1882ada_is_array_type (struct type *type)
1883{
1884 while (type != NULL
1885 && (TYPE_CODE (type) == TYPE_CODE_PTR
1886 || TYPE_CODE (type) == TYPE_CODE_REF))
1887 type = TYPE_TARGET_TYPE (type);
1888 return ada_is_direct_array_type (type);
1889}
1890
4c4b4cd2 1891/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1892
14f9c5c9 1893int
4c4b4cd2 1894ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1895{
1896 if (type == NULL)
1897 return 0;
61ee279c 1898 type = ada_check_typedef (type);
14f9c5c9 1899 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1900 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1901 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1902 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1903}
1904
4c4b4cd2
PH
1905/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1906
14f9c5c9 1907int
4c4b4cd2 1908ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1909{
556bdfd4 1910 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1911
1912 if (type == NULL)
1913 return 0;
61ee279c 1914 type = ada_check_typedef (type);
556bdfd4
UW
1915 return (data_type != NULL
1916 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1917 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1918}
1919
1920/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1921 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1922 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1923 is still needed. */
1924
14f9c5c9 1925int
ebf56fd3 1926ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1927{
d2e4a39e 1928 return
14f9c5c9
AS
1929 type != NULL
1930 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1931 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1932 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1933 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1934}
1935
1936
4c4b4cd2 1937/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1938 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1939 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1940 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1941 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1942 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1943 a descriptor. */
d2e4a39e
AS
1944struct type *
1945ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1946{
ad82864c
JB
1947 if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1949
df407dfe
AC
1950 if (!ada_is_array_descriptor_type (value_type (arr)))
1951 return value_type (arr);
d2e4a39e
AS
1952
1953 if (!bounds)
ad82864c
JB
1954 {
1955 struct type *array_type =
1956 ada_check_typedef (desc_data_target_type (value_type (arr)));
1957
1958 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1959 TYPE_FIELD_BITSIZE (array_type, 0) =
1960 decode_packed_array_bitsize (value_type (arr));
1961
1962 return array_type;
1963 }
14f9c5c9
AS
1964 else
1965 {
d2e4a39e 1966 struct type *elt_type;
14f9c5c9 1967 int arity;
d2e4a39e 1968 struct value *descriptor;
14f9c5c9 1969
df407dfe
AC
1970 elt_type = ada_array_element_type (value_type (arr), -1);
1971 arity = ada_array_arity (value_type (arr));
14f9c5c9 1972
d2e4a39e 1973 if (elt_type == NULL || arity == 0)
df407dfe 1974 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1975
1976 descriptor = desc_bounds (arr);
d2e4a39e 1977 if (value_as_long (descriptor) == 0)
4c4b4cd2 1978 return NULL;
d2e4a39e 1979 while (arity > 0)
4c4b4cd2 1980 {
e9bb382b
UW
1981 struct type *range_type = alloc_type_copy (value_type (arr));
1982 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1983 struct value *low = desc_one_bound (descriptor, arity, 0);
1984 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1985
5b4ee69b 1986 arity -= 1;
0c9c3474
SA
1987 create_static_range_type (range_type, value_type (low),
1988 longest_to_int (value_as_long (low)),
1989 longest_to_int (value_as_long (high)));
4c4b4cd2 1990 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1991
1992 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1993 {
1994 /* We need to store the element packed bitsize, as well as
1995 recompute the array size, because it was previously
1996 computed based on the unpacked element size. */
1997 LONGEST lo = value_as_long (low);
1998 LONGEST hi = value_as_long (high);
1999
2000 TYPE_FIELD_BITSIZE (elt_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002 /* If the array has no element, then the size is already
2003 zero, and does not need to be recomputed. */
2004 if (lo < hi)
2005 {
2006 int array_bitsize =
2007 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2008
2009 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2010 }
2011 }
4c4b4cd2 2012 }
14f9c5c9
AS
2013
2014 return lookup_pointer_type (elt_type);
2015 }
2016}
2017
2018/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2019 Otherwise, returns either a standard GDB array with bounds set
2020 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2021 GDB array. Returns NULL if ARR is a null fat pointer. */
2022
d2e4a39e
AS
2023struct value *
2024ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2025{
df407dfe 2026 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2027 {
d2e4a39e 2028 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2029
14f9c5c9 2030 if (arrType == NULL)
4c4b4cd2 2031 return NULL;
14f9c5c9
AS
2032 return value_cast (arrType, value_copy (desc_data (arr)));
2033 }
ad82864c
JB
2034 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2035 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2036 else
2037 return arr;
2038}
2039
2040/* If ARR does not represent an array, returns ARR unchanged.
2041 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2042 be ARR itself if it already is in the proper form). */
2043
720d1a40 2044struct value *
d2e4a39e 2045ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2046{
df407dfe 2047 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2048 {
d2e4a39e 2049 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2050
14f9c5c9 2051 if (arrVal == NULL)
323e0a4a 2052 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2053 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2054 return value_ind (arrVal);
2055 }
ad82864c
JB
2056 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2057 return decode_constrained_packed_array (arr);
d2e4a39e 2058 else
14f9c5c9
AS
2059 return arr;
2060}
2061
2062/* If TYPE represents a GNAT array type, return it translated to an
2063 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2064 packing). For other types, is the identity. */
2065
d2e4a39e
AS
2066struct type *
2067ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2068{
ad82864c
JB
2069 if (ada_is_constrained_packed_array_type (type))
2070 return decode_constrained_packed_array_type (type);
17280b9f
UW
2071
2072 if (ada_is_array_descriptor_type (type))
556bdfd4 2073 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2074
2075 return type;
14f9c5c9
AS
2076}
2077
4c4b4cd2
PH
2078/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2079
ad82864c
JB
2080static int
2081ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2082{
2083 if (type == NULL)
2084 return 0;
4c4b4cd2 2085 type = desc_base_type (type);
61ee279c 2086 type = ada_check_typedef (type);
d2e4a39e 2087 return
14f9c5c9
AS
2088 ada_type_name (type) != NULL
2089 && strstr (ada_type_name (type), "___XP") != NULL;
2090}
2091
ad82864c
JB
2092/* Non-zero iff TYPE represents a standard GNAT constrained
2093 packed-array type. */
2094
2095int
2096ada_is_constrained_packed_array_type (struct type *type)
2097{
2098 return ada_is_packed_array_type (type)
2099 && !ada_is_array_descriptor_type (type);
2100}
2101
2102/* Non-zero iff TYPE represents an array descriptor for a
2103 unconstrained packed-array type. */
2104
2105static int
2106ada_is_unconstrained_packed_array_type (struct type *type)
2107{
2108 return ada_is_packed_array_type (type)
2109 && ada_is_array_descriptor_type (type);
2110}
2111
2112/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2113 return the size of its elements in bits. */
2114
2115static long
2116decode_packed_array_bitsize (struct type *type)
2117{
0d5cff50
DE
2118 const char *raw_name;
2119 const char *tail;
ad82864c
JB
2120 long bits;
2121
720d1a40
JB
2122 /* Access to arrays implemented as fat pointers are encoded as a typedef
2123 of the fat pointer type. We need the name of the fat pointer type
2124 to do the decoding, so strip the typedef layer. */
2125 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2126 type = ada_typedef_target_type (type);
2127
2128 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2129 if (!raw_name)
2130 raw_name = ada_type_name (desc_base_type (type));
2131
2132 if (!raw_name)
2133 return 0;
2134
2135 tail = strstr (raw_name, "___XP");
720d1a40 2136 gdb_assert (tail != NULL);
ad82864c
JB
2137
2138 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2139 {
2140 lim_warning
2141 (_("could not understand bit size information on packed array"));
2142 return 0;
2143 }
2144
2145 return bits;
2146}
2147
14f9c5c9
AS
2148/* Given that TYPE is a standard GDB array type with all bounds filled
2149 in, and that the element size of its ultimate scalar constituents
2150 (that is, either its elements, or, if it is an array of arrays, its
2151 elements' elements, etc.) is *ELT_BITS, return an identical type,
2152 but with the bit sizes of its elements (and those of any
2153 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2154 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2155 in bits.
2156
2157 Note that, for arrays whose index type has an XA encoding where
2158 a bound references a record discriminant, getting that discriminant,
2159 and therefore the actual value of that bound, is not possible
2160 because none of the given parameters gives us access to the record.
2161 This function assumes that it is OK in the context where it is being
2162 used to return an array whose bounds are still dynamic and where
2163 the length is arbitrary. */
4c4b4cd2 2164
d2e4a39e 2165static struct type *
ad82864c 2166constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2167{
d2e4a39e
AS
2168 struct type *new_elt_type;
2169 struct type *new_type;
99b1c762
JB
2170 struct type *index_type_desc;
2171 struct type *index_type;
14f9c5c9
AS
2172 LONGEST low_bound, high_bound;
2173
61ee279c 2174 type = ada_check_typedef (type);
14f9c5c9
AS
2175 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2176 return type;
2177
99b1c762
JB
2178 index_type_desc = ada_find_parallel_type (type, "___XA");
2179 if (index_type_desc)
2180 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2181 NULL);
2182 else
2183 index_type = TYPE_INDEX_TYPE (type);
2184
e9bb382b 2185 new_type = alloc_type_copy (type);
ad82864c
JB
2186 new_elt_type =
2187 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2188 elt_bits);
99b1c762 2189 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2190 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2191 TYPE_NAME (new_type) = ada_type_name (type);
2192
4a46959e
JB
2193 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2194 && is_dynamic_type (check_typedef (index_type)))
2195 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2196 low_bound = high_bound = 0;
2197 if (high_bound < low_bound)
2198 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2199 else
14f9c5c9
AS
2200 {
2201 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2202 TYPE_LENGTH (new_type) =
4c4b4cd2 2203 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2204 }
2205
876cecd0 2206 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2207 return new_type;
2208}
2209
ad82864c
JB
2210/* The array type encoded by TYPE, where
2211 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2212
d2e4a39e 2213static struct type *
ad82864c 2214decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2215{
0d5cff50 2216 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2217 char *name;
0d5cff50 2218 const char *tail;
d2e4a39e 2219 struct type *shadow_type;
14f9c5c9 2220 long bits;
14f9c5c9 2221
727e3d2e
JB
2222 if (!raw_name)
2223 raw_name = ada_type_name (desc_base_type (type));
2224
2225 if (!raw_name)
2226 return NULL;
2227
2228 name = (char *) alloca (strlen (raw_name) + 1);
2229 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2230 type = desc_base_type (type);
2231
14f9c5c9
AS
2232 memcpy (name, raw_name, tail - raw_name);
2233 name[tail - raw_name] = '\000';
2234
b4ba55a1
JB
2235 shadow_type = ada_find_parallel_type_with_name (type, name);
2236
2237 if (shadow_type == NULL)
14f9c5c9 2238 {
323e0a4a 2239 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2240 return NULL;
2241 }
cb249c71 2242 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2243
2244 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2245 {
0963b4bd
MS
2246 lim_warning (_("could not understand bounds "
2247 "information on packed array"));
14f9c5c9
AS
2248 return NULL;
2249 }
d2e4a39e 2250
ad82864c
JB
2251 bits = decode_packed_array_bitsize (type);
2252 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2253}
2254
ad82864c
JB
2255/* Given that ARR is a struct value *indicating a GNAT constrained packed
2256 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2257 standard GDB array type except that the BITSIZEs of the array
2258 target types are set to the number of bits in each element, and the
4c4b4cd2 2259 type length is set appropriately. */
14f9c5c9 2260
d2e4a39e 2261static struct value *
ad82864c 2262decode_constrained_packed_array (struct value *arr)
14f9c5c9 2263{
4c4b4cd2 2264 struct type *type;
14f9c5c9 2265
11aa919a
PMR
2266 /* If our value is a pointer, then dereference it. Likewise if
2267 the value is a reference. Make sure that this operation does not
2268 cause the target type to be fixed, as this would indirectly cause
2269 this array to be decoded. The rest of the routine assumes that
2270 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2271 and "value_ind" routines to perform the dereferencing, as opposed
2272 to using "ada_coerce_ref" or "ada_value_ind". */
2273 arr = coerce_ref (arr);
828292f2 2274 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2275 arr = value_ind (arr);
4c4b4cd2 2276
ad82864c 2277 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2278 if (type == NULL)
2279 {
323e0a4a 2280 error (_("can't unpack array"));
14f9c5c9
AS
2281 return NULL;
2282 }
61ee279c 2283
50810684 2284 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2285 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2286 {
2287 /* This is a (right-justified) modular type representing a packed
2288 array with no wrapper. In order to interpret the value through
2289 the (left-justified) packed array type we just built, we must
2290 first left-justify it. */
2291 int bit_size, bit_pos;
2292 ULONGEST mod;
2293
df407dfe 2294 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2295 bit_size = 0;
2296 while (mod > 0)
2297 {
2298 bit_size += 1;
2299 mod >>= 1;
2300 }
df407dfe 2301 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2302 arr = ada_value_primitive_packed_val (arr, NULL,
2303 bit_pos / HOST_CHAR_BIT,
2304 bit_pos % HOST_CHAR_BIT,
2305 bit_size,
2306 type);
2307 }
2308
4c4b4cd2 2309 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2310}
2311
2312
2313/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2314 given in IND. ARR must be a simple array. */
14f9c5c9 2315
d2e4a39e
AS
2316static struct value *
2317value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2318{
2319 int i;
2320 int bits, elt_off, bit_off;
2321 long elt_total_bit_offset;
d2e4a39e
AS
2322 struct type *elt_type;
2323 struct value *v;
14f9c5c9
AS
2324
2325 bits = 0;
2326 elt_total_bit_offset = 0;
df407dfe 2327 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2328 for (i = 0; i < arity; i += 1)
14f9c5c9 2329 {
d2e4a39e 2330 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2331 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2332 error
0963b4bd
MS
2333 (_("attempt to do packed indexing of "
2334 "something other than a packed array"));
14f9c5c9 2335 else
4c4b4cd2
PH
2336 {
2337 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2338 LONGEST lowerbound, upperbound;
2339 LONGEST idx;
2340
2341 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2342 {
323e0a4a 2343 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2344 lowerbound = upperbound = 0;
2345 }
2346
3cb382c9 2347 idx = pos_atr (ind[i]);
4c4b4cd2 2348 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2349 lim_warning (_("packed array index %ld out of bounds"),
2350 (long) idx);
4c4b4cd2
PH
2351 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2352 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2353 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2354 }
14f9c5c9
AS
2355 }
2356 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2357 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2358
2359 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2360 bits, elt_type);
14f9c5c9
AS
2361 return v;
2362}
2363
4c4b4cd2 2364/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2365
2366static int
d2e4a39e 2367has_negatives (struct type *type)
14f9c5c9 2368{
d2e4a39e
AS
2369 switch (TYPE_CODE (type))
2370 {
2371 default:
2372 return 0;
2373 case TYPE_CODE_INT:
2374 return !TYPE_UNSIGNED (type);
2375 case TYPE_CODE_RANGE:
2376 return TYPE_LOW_BOUND (type) < 0;
2377 }
14f9c5c9 2378}
d2e4a39e 2379
14f9c5c9
AS
2380
2381/* Create a new value of type TYPE from the contents of OBJ starting
2382 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2383 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2384 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2385 VALADDR is ignored unless OBJ is NULL, in which case,
2386 VALADDR+OFFSET must address the start of storage containing the
2387 packed value. The value returned in this case is never an lval.
2388 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2389
d2e4a39e 2390struct value *
fc1a4b47 2391ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2392 long offset, int bit_offset, int bit_size,
4c4b4cd2 2393 struct type *type)
14f9c5c9 2394{
d2e4a39e 2395 struct value *v;
4c4b4cd2
PH
2396 int src, /* Index into the source area */
2397 targ, /* Index into the target area */
2398 srcBitsLeft, /* Number of source bits left to move */
2399 nsrc, ntarg, /* Number of source and target bytes */
2400 unusedLS, /* Number of bits in next significant
2401 byte of source that are unused */
2402 accumSize; /* Number of meaningful bits in accum */
2403 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2404 unsigned char *unpacked;
4c4b4cd2 2405 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2406 unsigned char sign;
2407 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2408 /* Transmit bytes from least to most significant; delta is the direction
2409 the indices move. */
50810684 2410 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2411
61ee279c 2412 type = ada_check_typedef (type);
14f9c5c9
AS
2413
2414 if (obj == NULL)
2415 {
2416 v = allocate_value (type);
d2e4a39e 2417 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2418 }
9214ee5f 2419 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2420 {
53ba8333 2421 v = value_at (type, value_address (obj));
9f1f738a 2422 type = value_type (v);
d2e4a39e 2423 bytes = (unsigned char *) alloca (len);
53ba8333 2424 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2425 }
d2e4a39e 2426 else
14f9c5c9
AS
2427 {
2428 v = allocate_value (type);
0fd88904 2429 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2430 }
d2e4a39e
AS
2431
2432 if (obj != NULL)
14f9c5c9 2433 {
53ba8333 2434 long new_offset = offset;
5b4ee69b 2435
74bcbdf3 2436 set_value_component_location (v, obj);
9bbda503
AC
2437 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2438 set_value_bitsize (v, bit_size);
df407dfe 2439 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2440 {
53ba8333 2441 ++new_offset;
9bbda503 2442 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2443 }
53ba8333
JB
2444 set_value_offset (v, new_offset);
2445
2446 /* Also set the parent value. This is needed when trying to
2447 assign a new value (in inferior memory). */
2448 set_value_parent (v, obj);
14f9c5c9
AS
2449 }
2450 else
9bbda503 2451 set_value_bitsize (v, bit_size);
0fd88904 2452 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2453
2454 srcBitsLeft = bit_size;
2455 nsrc = len;
2456 ntarg = TYPE_LENGTH (type);
2457 sign = 0;
2458 if (bit_size == 0)
2459 {
2460 memset (unpacked, 0, TYPE_LENGTH (type));
2461 return v;
2462 }
50810684 2463 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2464 {
d2e4a39e 2465 src = len - 1;
1265e4aa
JB
2466 if (has_negatives (type)
2467 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2468 sign = ~0;
d2e4a39e
AS
2469
2470 unusedLS =
4c4b4cd2
PH
2471 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2472 % HOST_CHAR_BIT;
14f9c5c9
AS
2473
2474 switch (TYPE_CODE (type))
4c4b4cd2
PH
2475 {
2476 case TYPE_CODE_ARRAY:
2477 case TYPE_CODE_UNION:
2478 case TYPE_CODE_STRUCT:
2479 /* Non-scalar values must be aligned at a byte boundary... */
2480 accumSize =
2481 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2482 /* ... And are placed at the beginning (most-significant) bytes
2483 of the target. */
529cad9c 2484 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2485 ntarg = targ + 1;
4c4b4cd2
PH
2486 break;
2487 default:
2488 accumSize = 0;
2489 targ = TYPE_LENGTH (type) - 1;
2490 break;
2491 }
14f9c5c9 2492 }
d2e4a39e 2493 else
14f9c5c9
AS
2494 {
2495 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2496
2497 src = targ = 0;
2498 unusedLS = bit_offset;
2499 accumSize = 0;
2500
d2e4a39e 2501 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2502 sign = ~0;
14f9c5c9 2503 }
d2e4a39e 2504
14f9c5c9
AS
2505 accum = 0;
2506 while (nsrc > 0)
2507 {
2508 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2509 part of the value. */
d2e4a39e 2510 unsigned int unusedMSMask =
4c4b4cd2
PH
2511 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2512 1;
2513 /* Sign-extend bits for this byte. */
14f9c5c9 2514 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2515
d2e4a39e 2516 accum |=
4c4b4cd2 2517 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2518 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2519 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2520 {
2521 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2522 accumSize -= HOST_CHAR_BIT;
2523 accum >>= HOST_CHAR_BIT;
2524 ntarg -= 1;
2525 targ += delta;
2526 }
14f9c5c9
AS
2527 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2528 unusedLS = 0;
2529 nsrc -= 1;
2530 src += delta;
2531 }
2532 while (ntarg > 0)
2533 {
2534 accum |= sign << accumSize;
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
2541
2542 return v;
2543}
d2e4a39e 2544
14f9c5c9
AS
2545/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2546 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2547 not overlap. */
14f9c5c9 2548static void
fc1a4b47 2549move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2550 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2551{
2552 unsigned int accum, mask;
2553 int accum_bits, chunk_size;
2554
2555 target += targ_offset / HOST_CHAR_BIT;
2556 targ_offset %= HOST_CHAR_BIT;
2557 source += src_offset / HOST_CHAR_BIT;
2558 src_offset %= HOST_CHAR_BIT;
50810684 2559 if (bits_big_endian_p)
14f9c5c9
AS
2560 {
2561 accum = (unsigned char) *source;
2562 source += 1;
2563 accum_bits = HOST_CHAR_BIT - src_offset;
2564
d2e4a39e 2565 while (n > 0)
4c4b4cd2
PH
2566 {
2567 int unused_right;
5b4ee69b 2568
4c4b4cd2
PH
2569 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2570 accum_bits += HOST_CHAR_BIT;
2571 source += 1;
2572 chunk_size = HOST_CHAR_BIT - targ_offset;
2573 if (chunk_size > n)
2574 chunk_size = n;
2575 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2576 mask = ((1 << chunk_size) - 1) << unused_right;
2577 *target =
2578 (*target & ~mask)
2579 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2580 n -= chunk_size;
2581 accum_bits -= chunk_size;
2582 target += 1;
2583 targ_offset = 0;
2584 }
14f9c5c9
AS
2585 }
2586 else
2587 {
2588 accum = (unsigned char) *source >> src_offset;
2589 source += 1;
2590 accum_bits = HOST_CHAR_BIT - src_offset;
2591
d2e4a39e 2592 while (n > 0)
4c4b4cd2
PH
2593 {
2594 accum = accum + ((unsigned char) *source << accum_bits);
2595 accum_bits += HOST_CHAR_BIT;
2596 source += 1;
2597 chunk_size = HOST_CHAR_BIT - targ_offset;
2598 if (chunk_size > n)
2599 chunk_size = n;
2600 mask = ((1 << chunk_size) - 1) << targ_offset;
2601 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2602 n -= chunk_size;
2603 accum_bits -= chunk_size;
2604 accum >>= chunk_size;
2605 target += 1;
2606 targ_offset = 0;
2607 }
14f9c5c9
AS
2608 }
2609}
2610
14f9c5c9
AS
2611/* Store the contents of FROMVAL into the location of TOVAL.
2612 Return a new value with the location of TOVAL and contents of
2613 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2614 floating-point or non-scalar types. */
14f9c5c9 2615
d2e4a39e
AS
2616static struct value *
2617ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2618{
df407dfe
AC
2619 struct type *type = value_type (toval);
2620 int bits = value_bitsize (toval);
14f9c5c9 2621
52ce6436
PH
2622 toval = ada_coerce_ref (toval);
2623 fromval = ada_coerce_ref (fromval);
2624
2625 if (ada_is_direct_array_type (value_type (toval)))
2626 toval = ada_coerce_to_simple_array (toval);
2627 if (ada_is_direct_array_type (value_type (fromval)))
2628 fromval = ada_coerce_to_simple_array (fromval);
2629
88e3b34b 2630 if (!deprecated_value_modifiable (toval))
323e0a4a 2631 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2632
d2e4a39e 2633 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2634 && bits > 0
d2e4a39e 2635 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2636 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2637 {
df407dfe
AC
2638 int len = (value_bitpos (toval)
2639 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2640 int from_size;
948f8e3d 2641 gdb_byte *buffer = alloca (len);
d2e4a39e 2642 struct value *val;
42ae5230 2643 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2644
2645 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2646 fromval = value_cast (type, fromval);
14f9c5c9 2647
52ce6436 2648 read_memory (to_addr, buffer, len);
aced2898
PH
2649 from_size = value_bitsize (fromval);
2650 if (from_size == 0)
2651 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2652 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2653 move_bits (buffer, value_bitpos (toval),
50810684 2654 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2655 else
50810684
UW
2656 move_bits (buffer, value_bitpos (toval),
2657 value_contents (fromval), 0, bits, 0);
972daa01 2658 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2659
14f9c5c9 2660 val = value_copy (toval);
0fd88904 2661 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2662 TYPE_LENGTH (type));
04624583 2663 deprecated_set_value_type (val, type);
d2e4a39e 2664
14f9c5c9
AS
2665 return val;
2666 }
2667
2668 return value_assign (toval, fromval);
2669}
2670
2671
52ce6436
PH
2672/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2673 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2674 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2675 * COMPONENT, and not the inferior's memory. The current contents
2676 * of COMPONENT are ignored. */
2677static void
2678value_assign_to_component (struct value *container, struct value *component,
2679 struct value *val)
2680{
2681 LONGEST offset_in_container =
42ae5230 2682 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2683 int bit_offset_in_container =
2684 value_bitpos (component) - value_bitpos (container);
2685 int bits;
2686
2687 val = value_cast (value_type (component), val);
2688
2689 if (value_bitsize (component) == 0)
2690 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2691 else
2692 bits = value_bitsize (component);
2693
50810684 2694 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2695 move_bits (value_contents_writeable (container) + offset_in_container,
2696 value_bitpos (container) + bit_offset_in_container,
2697 value_contents (val),
2698 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2699 bits, 1);
52ce6436
PH
2700 else
2701 move_bits (value_contents_writeable (container) + offset_in_container,
2702 value_bitpos (container) + bit_offset_in_container,
50810684 2703 value_contents (val), 0, bits, 0);
52ce6436
PH
2704}
2705
4c4b4cd2
PH
2706/* The value of the element of array ARR at the ARITY indices given in IND.
2707 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2708 thereto. */
2709
d2e4a39e
AS
2710struct value *
2711ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2712{
2713 int k;
d2e4a39e
AS
2714 struct value *elt;
2715 struct type *elt_type;
14f9c5c9
AS
2716
2717 elt = ada_coerce_to_simple_array (arr);
2718
df407dfe 2719 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2720 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2721 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2722 return value_subscript_packed (elt, arity, ind);
2723
2724 for (k = 0; k < arity; k += 1)
2725 {
2726 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2727 error (_("too many subscripts (%d expected)"), k);
2497b498 2728 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2729 }
2730 return elt;
2731}
2732
deede10c
JB
2733/* Assuming ARR is a pointer to a GDB array, the value of the element
2734 of *ARR at the ARITY indices given in IND.
2735 Does not read the entire array into memory. */
14f9c5c9 2736
2c0b251b 2737static struct value *
deede10c 2738ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2739{
2740 int k;
deede10c
JB
2741 struct type *type
2742 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 LONGEST lwb, upb;
14f9c5c9
AS
2747
2748 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2749 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2750 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2751 value_copy (arr));
14f9c5c9 2752 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2753 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2754 type = TYPE_TARGET_TYPE (type);
2755 }
2756
2757 return value_ind (arr);
2758}
2759
0b5d8877 2760/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2761 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2762 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2763 per Ada rules. */
0b5d8877 2764static struct value *
f5938064
JG
2765ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2766 int low, int high)
0b5d8877 2767{
b0dd7688 2768 struct type *type0 = ada_check_typedef (type);
6c038f32 2769 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2770 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2772 struct type *index_type
2773 = create_static_range_type (NULL,
2774 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2775 low, high);
6c038f32 2776 struct type *slice_type =
b0dd7688 2777 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2778
f5938064 2779 return value_at_lazy (slice_type, base);
0b5d8877
PH
2780}
2781
2782
2783static struct value *
2784ada_value_slice (struct value *array, int low, int high)
2785{
b0dd7688 2786 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2787 struct type *index_type
2788 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2789 struct type *slice_type =
0b5d8877 2790 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2791
6c038f32 2792 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2793}
2794
14f9c5c9
AS
2795/* If type is a record type in the form of a standard GNAT array
2796 descriptor, returns the number of dimensions for type. If arr is a
2797 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2798 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2799
2800int
d2e4a39e 2801ada_array_arity (struct type *type)
14f9c5c9
AS
2802{
2803 int arity;
2804
2805 if (type == NULL)
2806 return 0;
2807
2808 type = desc_base_type (type);
2809
2810 arity = 0;
d2e4a39e 2811 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2812 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2813 else
2814 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2815 {
4c4b4cd2 2816 arity += 1;
61ee279c 2817 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2818 }
d2e4a39e 2819
14f9c5c9
AS
2820 return arity;
2821}
2822
2823/* If TYPE is a record type in the form of a standard GNAT array
2824 descriptor or a simple array type, returns the element type for
2825 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2826 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2827
d2e4a39e
AS
2828struct type *
2829ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2830{
2831 type = desc_base_type (type);
2832
d2e4a39e 2833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2834 {
2835 int k;
d2e4a39e 2836 struct type *p_array_type;
14f9c5c9 2837
556bdfd4 2838 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2839
2840 k = ada_array_arity (type);
2841 if (k == 0)
4c4b4cd2 2842 return NULL;
d2e4a39e 2843
4c4b4cd2 2844 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2845 if (nindices >= 0 && k > nindices)
4c4b4cd2 2846 k = nindices;
d2e4a39e 2847 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2848 {
61ee279c 2849 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2850 k -= 1;
2851 }
14f9c5c9
AS
2852 return p_array_type;
2853 }
2854 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2855 {
2856 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2857 {
2858 type = TYPE_TARGET_TYPE (type);
2859 nindices -= 1;
2860 }
14f9c5c9
AS
2861 return type;
2862 }
2863
2864 return NULL;
2865}
2866
4c4b4cd2 2867/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2868 Does not examine memory. Throws an error if N is invalid or TYPE
2869 is not an array type. NAME is the name of the Ada attribute being
2870 evaluated ('range, 'first, 'last, or 'length); it is used in building
2871 the error message. */
14f9c5c9 2872
1eea4ebd
UW
2873static struct type *
2874ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2875{
4c4b4cd2
PH
2876 struct type *result_type;
2877
14f9c5c9
AS
2878 type = desc_base_type (type);
2879
1eea4ebd
UW
2880 if (n < 0 || n > ada_array_arity (type))
2881 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2882
4c4b4cd2 2883 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2884 {
2885 int i;
2886
2887 for (i = 1; i < n; i += 1)
4c4b4cd2 2888 type = TYPE_TARGET_TYPE (type);
262452ec 2889 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2890 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2891 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2892 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2893 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2894 result_type = NULL;
14f9c5c9 2895 }
d2e4a39e 2896 else
1eea4ebd
UW
2897 {
2898 result_type = desc_index_type (desc_bounds_type (type), n);
2899 if (result_type == NULL)
2900 error (_("attempt to take bound of something that is not an array"));
2901 }
2902
2903 return result_type;
14f9c5c9
AS
2904}
2905
2906/* Given that arr is an array type, returns the lower bound of the
2907 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2908 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2909 array-descriptor type. It works for other arrays with bounds supplied
2910 by run-time quantities other than discriminants. */
14f9c5c9 2911
abb68b3e 2912static LONGEST
fb5e3d5c 2913ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2914{
8a48ac95 2915 struct type *type, *index_type_desc, *index_type;
1ce677a4 2916 int i;
262452ec
JK
2917
2918 gdb_assert (which == 0 || which == 1);
14f9c5c9 2919
ad82864c
JB
2920 if (ada_is_constrained_packed_array_type (arr_type))
2921 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2922
4c4b4cd2 2923 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2924 return (LONGEST) - which;
14f9c5c9
AS
2925
2926 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2927 type = TYPE_TARGET_TYPE (arr_type);
2928 else
2929 type = arr_type;
2930
2931 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2932 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2933 if (index_type_desc != NULL)
28c85d6c
JB
2934 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2935 NULL);
262452ec 2936 else
8a48ac95
JB
2937 {
2938 struct type *elt_type = check_typedef (type);
2939
2940 for (i = 1; i < n; i++)
2941 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2942
2943 index_type = TYPE_INDEX_TYPE (elt_type);
2944 }
262452ec 2945
43bbcdc2
PH
2946 return
2947 (LONGEST) (which == 0
2948 ? ada_discrete_type_low_bound (index_type)
2949 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2950}
2951
2952/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2953 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2954 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2955 supplied by run-time quantities other than discriminants. */
14f9c5c9 2956
1eea4ebd 2957static LONGEST
4dc81987 2958ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2959{
eb479039
JB
2960 struct type *arr_type;
2961
2962 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2963 arr = value_ind (arr);
2964 arr_type = value_enclosing_type (arr);
14f9c5c9 2965
ad82864c
JB
2966 if (ada_is_constrained_packed_array_type (arr_type))
2967 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2968 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2969 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2970 else
1eea4ebd 2971 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2972}
2973
2974/* Given that arr is an array value, returns the length of the
2975 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2976 supplied by run-time quantities other than discriminants.
2977 Does not work for arrays indexed by enumeration types with representation
2978 clauses at the moment. */
14f9c5c9 2979
1eea4ebd 2980static LONGEST
d2e4a39e 2981ada_array_length (struct value *arr, int n)
14f9c5c9 2982{
eb479039
JB
2983 struct type *arr_type;
2984
2985 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2986 arr = value_ind (arr);
2987 arr_type = value_enclosing_type (arr);
14f9c5c9 2988
ad82864c
JB
2989 if (ada_is_constrained_packed_array_type (arr_type))
2990 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2991
4c4b4cd2 2992 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2993 return (ada_array_bound_from_type (arr_type, n, 1)
2994 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2995 else
1eea4ebd
UW
2996 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2997 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2998}
2999
3000/* An empty array whose type is that of ARR_TYPE (an array type),
3001 with bounds LOW to LOW-1. */
3002
3003static struct value *
3004empty_array (struct type *arr_type, int low)
3005{
b0dd7688 3006 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3007 struct type *index_type
3008 = create_static_range_type
3009 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3010 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3011
0b5d8877 3012 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3013}
14f9c5c9 3014\f
d2e4a39e 3015
4c4b4cd2 3016 /* Name resolution */
14f9c5c9 3017
4c4b4cd2
PH
3018/* The "decoded" name for the user-definable Ada operator corresponding
3019 to OP. */
14f9c5c9 3020
d2e4a39e 3021static const char *
4c4b4cd2 3022ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3023{
3024 int i;
3025
4c4b4cd2 3026 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3027 {
3028 if (ada_opname_table[i].op == op)
4c4b4cd2 3029 return ada_opname_table[i].decoded;
14f9c5c9 3030 }
323e0a4a 3031 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3032}
3033
3034
4c4b4cd2
PH
3035/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3036 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3037 undefined namespace) and converts operators that are
3038 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3039 non-null, it provides a preferred result type [at the moment, only
3040 type void has any effect---causing procedures to be preferred over
3041 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3042 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3043
4c4b4cd2
PH
3044static void
3045resolve (struct expression **expp, int void_context_p)
14f9c5c9 3046{
30b15541
UW
3047 struct type *context_type = NULL;
3048 int pc = 0;
3049
3050 if (void_context_p)
3051 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3052
3053 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3054}
3055
4c4b4cd2
PH
3056/* Resolve the operator of the subexpression beginning at
3057 position *POS of *EXPP. "Resolving" consists of replacing
3058 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3059 with their resolutions, replacing built-in operators with
3060 function calls to user-defined operators, where appropriate, and,
3061 when DEPROCEDURE_P is non-zero, converting function-valued variables
3062 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3063 are as in ada_resolve, above. */
14f9c5c9 3064
d2e4a39e 3065static struct value *
4c4b4cd2 3066resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3067 struct type *context_type)
14f9c5c9
AS
3068{
3069 int pc = *pos;
3070 int i;
4c4b4cd2 3071 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3072 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3073 struct value **argvec; /* Vector of operand types (alloca'ed). */
3074 int nargs; /* Number of operands. */
52ce6436 3075 int oplen;
14f9c5c9
AS
3076
3077 argvec = NULL;
3078 nargs = 0;
3079 exp = *expp;
3080
52ce6436
PH
3081 /* Pass one: resolve operands, saving their types and updating *pos,
3082 if needed. */
14f9c5c9
AS
3083 switch (op)
3084 {
4c4b4cd2
PH
3085 case OP_FUNCALL:
3086 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3087 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3088 *pos += 7;
4c4b4cd2
PH
3089 else
3090 {
3091 *pos += 3;
3092 resolve_subexp (expp, pos, 0, NULL);
3093 }
3094 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3095 break;
3096
14f9c5c9 3097 case UNOP_ADDR:
4c4b4cd2
PH
3098 *pos += 1;
3099 resolve_subexp (expp, pos, 0, NULL);
3100 break;
3101
52ce6436
PH
3102 case UNOP_QUAL:
3103 *pos += 3;
17466c1a 3104 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3105 break;
3106
52ce6436 3107 case OP_ATR_MODULUS:
4c4b4cd2
PH
3108 case OP_ATR_SIZE:
3109 case OP_ATR_TAG:
4c4b4cd2
PH
3110 case OP_ATR_FIRST:
3111 case OP_ATR_LAST:
3112 case OP_ATR_LENGTH:
3113 case OP_ATR_POS:
3114 case OP_ATR_VAL:
4c4b4cd2
PH
3115 case OP_ATR_MIN:
3116 case OP_ATR_MAX:
52ce6436
PH
3117 case TERNOP_IN_RANGE:
3118 case BINOP_IN_BOUNDS:
3119 case UNOP_IN_RANGE:
3120 case OP_AGGREGATE:
3121 case OP_OTHERS:
3122 case OP_CHOICES:
3123 case OP_POSITIONAL:
3124 case OP_DISCRETE_RANGE:
3125 case OP_NAME:
3126 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3127 *pos += oplen;
14f9c5c9
AS
3128 break;
3129
3130 case BINOP_ASSIGN:
3131 {
4c4b4cd2
PH
3132 struct value *arg1;
3133
3134 *pos += 1;
3135 arg1 = resolve_subexp (expp, pos, 0, NULL);
3136 if (arg1 == NULL)
3137 resolve_subexp (expp, pos, 1, NULL);
3138 else
df407dfe 3139 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3140 break;
14f9c5c9
AS
3141 }
3142
4c4b4cd2 3143 case UNOP_CAST:
4c4b4cd2
PH
3144 *pos += 3;
3145 nargs = 1;
3146 break;
14f9c5c9 3147
4c4b4cd2
PH
3148 case BINOP_ADD:
3149 case BINOP_SUB:
3150 case BINOP_MUL:
3151 case BINOP_DIV:
3152 case BINOP_REM:
3153 case BINOP_MOD:
3154 case BINOP_EXP:
3155 case BINOP_CONCAT:
3156 case BINOP_LOGICAL_AND:
3157 case BINOP_LOGICAL_OR:
3158 case BINOP_BITWISE_AND:
3159 case BINOP_BITWISE_IOR:
3160 case BINOP_BITWISE_XOR:
14f9c5c9 3161
4c4b4cd2
PH
3162 case BINOP_EQUAL:
3163 case BINOP_NOTEQUAL:
3164 case BINOP_LESS:
3165 case BINOP_GTR:
3166 case BINOP_LEQ:
3167 case BINOP_GEQ:
14f9c5c9 3168
4c4b4cd2
PH
3169 case BINOP_REPEAT:
3170 case BINOP_SUBSCRIPT:
3171 case BINOP_COMMA:
40c8aaa9
JB
3172 *pos += 1;
3173 nargs = 2;
3174 break;
14f9c5c9 3175
4c4b4cd2
PH
3176 case UNOP_NEG:
3177 case UNOP_PLUS:
3178 case UNOP_LOGICAL_NOT:
3179 case UNOP_ABS:
3180 case UNOP_IND:
3181 *pos += 1;
3182 nargs = 1;
3183 break;
14f9c5c9 3184
4c4b4cd2
PH
3185 case OP_LONG:
3186 case OP_DOUBLE:
3187 case OP_VAR_VALUE:
3188 *pos += 4;
3189 break;
14f9c5c9 3190
4c4b4cd2
PH
3191 case OP_TYPE:
3192 case OP_BOOL:
3193 case OP_LAST:
4c4b4cd2
PH
3194 case OP_INTERNALVAR:
3195 *pos += 3;
3196 break;
14f9c5c9 3197
4c4b4cd2
PH
3198 case UNOP_MEMVAL:
3199 *pos += 3;
3200 nargs = 1;
3201 break;
3202
67f3407f
DJ
3203 case OP_REGISTER:
3204 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3205 break;
3206
4c4b4cd2
PH
3207 case STRUCTOP_STRUCT:
3208 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3209 nargs = 1;
3210 break;
3211
4c4b4cd2 3212 case TERNOP_SLICE:
4c4b4cd2
PH
3213 *pos += 1;
3214 nargs = 3;
3215 break;
3216
52ce6436 3217 case OP_STRING:
14f9c5c9 3218 break;
4c4b4cd2
PH
3219
3220 default:
323e0a4a 3221 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3222 }
3223
76a01679 3224 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3225 for (i = 0; i < nargs; i += 1)
3226 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3227 argvec[i] = NULL;
3228 exp = *expp;
3229
3230 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3231 switch (op)
3232 {
3233 default:
3234 break;
3235
14f9c5c9 3236 case OP_VAR_VALUE:
4c4b4cd2 3237 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3238 {
3239 struct ada_symbol_info *candidates;
3240 int n_candidates;
3241
3242 n_candidates =
3243 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3244 (exp->elts[pc + 2].symbol),
3245 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3246 &candidates);
76a01679
JB
3247
3248 if (n_candidates > 1)
3249 {
3250 /* Types tend to get re-introduced locally, so if there
3251 are any local symbols that are not types, first filter
3252 out all types. */
3253 int j;
3254 for (j = 0; j < n_candidates; j += 1)
3255 switch (SYMBOL_CLASS (candidates[j].sym))
3256 {
3257 case LOC_REGISTER:
3258 case LOC_ARG:
3259 case LOC_REF_ARG:
76a01679
JB
3260 case LOC_REGPARM_ADDR:
3261 case LOC_LOCAL:
76a01679 3262 case LOC_COMPUTED:
76a01679
JB
3263 goto FoundNonType;
3264 default:
3265 break;
3266 }
3267 FoundNonType:
3268 if (j < n_candidates)
3269 {
3270 j = 0;
3271 while (j < n_candidates)
3272 {
3273 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3274 {
3275 candidates[j] = candidates[n_candidates - 1];
3276 n_candidates -= 1;
3277 }
3278 else
3279 j += 1;
3280 }
3281 }
3282 }
3283
3284 if (n_candidates == 0)
323e0a4a 3285 error (_("No definition found for %s"),
76a01679
JB
3286 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3287 else if (n_candidates == 1)
3288 i = 0;
3289 else if (deprocedure_p
3290 && !is_nonfunction (candidates, n_candidates))
3291 {
06d5cf63
JB
3292 i = ada_resolve_function
3293 (candidates, n_candidates, NULL, 0,
3294 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3295 context_type);
76a01679 3296 if (i < 0)
323e0a4a 3297 error (_("Could not find a match for %s"),
76a01679
JB
3298 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3299 }
3300 else
3301 {
323e0a4a 3302 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3303 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3304 user_select_syms (candidates, n_candidates, 1);
3305 i = 0;
3306 }
3307
3308 exp->elts[pc + 1].block = candidates[i].block;
3309 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3310 if (innermost_block == NULL
3311 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3312 innermost_block = candidates[i].block;
3313 }
3314
3315 if (deprocedure_p
3316 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3317 == TYPE_CODE_FUNC))
3318 {
3319 replace_operator_with_call (expp, pc, 0, 0,
3320 exp->elts[pc + 2].symbol,
3321 exp->elts[pc + 1].block);
3322 exp = *expp;
3323 }
14f9c5c9
AS
3324 break;
3325
3326 case OP_FUNCALL:
3327 {
4c4b4cd2 3328 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3329 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3330 {
3331 struct ada_symbol_info *candidates;
3332 int n_candidates;
3333
3334 n_candidates =
76a01679
JB
3335 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3336 (exp->elts[pc + 5].symbol),
3337 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3338 &candidates);
4c4b4cd2
PH
3339 if (n_candidates == 1)
3340 i = 0;
3341 else
3342 {
06d5cf63
JB
3343 i = ada_resolve_function
3344 (candidates, n_candidates,
3345 argvec, nargs,
3346 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3347 context_type);
4c4b4cd2 3348 if (i < 0)
323e0a4a 3349 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3350 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3351 }
3352
3353 exp->elts[pc + 4].block = candidates[i].block;
3354 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3355 if (innermost_block == NULL
3356 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3357 innermost_block = candidates[i].block;
3358 }
14f9c5c9
AS
3359 }
3360 break;
3361 case BINOP_ADD:
3362 case BINOP_SUB:
3363 case BINOP_MUL:
3364 case BINOP_DIV:
3365 case BINOP_REM:
3366 case BINOP_MOD:
3367 case BINOP_CONCAT:
3368 case BINOP_BITWISE_AND:
3369 case BINOP_BITWISE_IOR:
3370 case BINOP_BITWISE_XOR:
3371 case BINOP_EQUAL:
3372 case BINOP_NOTEQUAL:
3373 case BINOP_LESS:
3374 case BINOP_GTR:
3375 case BINOP_LEQ:
3376 case BINOP_GEQ:
3377 case BINOP_EXP:
3378 case UNOP_NEG:
3379 case UNOP_PLUS:
3380 case UNOP_LOGICAL_NOT:
3381 case UNOP_ABS:
3382 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3383 {
3384 struct ada_symbol_info *candidates;
3385 int n_candidates;
3386
3387 n_candidates =
3388 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3389 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3390 &candidates);
4c4b4cd2 3391 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3392 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3393 if (i < 0)
3394 break;
3395
76a01679
JB
3396 replace_operator_with_call (expp, pc, nargs, 1,
3397 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3398 exp = *expp;
3399 }
14f9c5c9 3400 break;
4c4b4cd2
PH
3401
3402 case OP_TYPE:
b3dbf008 3403 case OP_REGISTER:
4c4b4cd2 3404 return NULL;
14f9c5c9
AS
3405 }
3406
3407 *pos = pc;
3408 return evaluate_subexp_type (exp, pos);
3409}
3410
3411/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3412 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3413 a non-pointer. */
14f9c5c9 3414/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3415 liberal. */
14f9c5c9
AS
3416
3417static int
4dc81987 3418ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3419{
61ee279c
PH
3420 ftype = ada_check_typedef (ftype);
3421 atype = ada_check_typedef (atype);
14f9c5c9
AS
3422
3423 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3424 ftype = TYPE_TARGET_TYPE (ftype);
3425 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3426 atype = TYPE_TARGET_TYPE (atype);
3427
d2e4a39e 3428 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3429 {
3430 default:
5b3d5b7d 3431 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3432 case TYPE_CODE_PTR:
3433 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3434 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3435 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3436 else
1265e4aa
JB
3437 return (may_deref
3438 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3439 case TYPE_CODE_INT:
3440 case TYPE_CODE_ENUM:
3441 case TYPE_CODE_RANGE:
3442 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3443 {
3444 case TYPE_CODE_INT:
3445 case TYPE_CODE_ENUM:
3446 case TYPE_CODE_RANGE:
3447 return 1;
3448 default:
3449 return 0;
3450 }
14f9c5c9
AS
3451
3452 case TYPE_CODE_ARRAY:
d2e4a39e 3453 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3454 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3455
3456 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3457 if (ada_is_array_descriptor_type (ftype))
3458 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3459 || ada_is_array_descriptor_type (atype));
14f9c5c9 3460 else
4c4b4cd2
PH
3461 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3462 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3463
3464 case TYPE_CODE_UNION:
3465 case TYPE_CODE_FLT:
3466 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3467 }
3468}
3469
3470/* Return non-zero if the formals of FUNC "sufficiently match" the
3471 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3472 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3473 argument function. */
14f9c5c9
AS
3474
3475static int
d2e4a39e 3476ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3477{
3478 int i;
d2e4a39e 3479 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3480
1265e4aa
JB
3481 if (SYMBOL_CLASS (func) == LOC_CONST
3482 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3483 return (n_actuals == 0);
3484 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3485 return 0;
3486
3487 if (TYPE_NFIELDS (func_type) != n_actuals)
3488 return 0;
3489
3490 for (i = 0; i < n_actuals; i += 1)
3491 {
4c4b4cd2 3492 if (actuals[i] == NULL)
76a01679
JB
3493 return 0;
3494 else
3495 {
5b4ee69b
MS
3496 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3497 i));
df407dfe 3498 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3499
76a01679
JB
3500 if (!ada_type_match (ftype, atype, 1))
3501 return 0;
3502 }
14f9c5c9
AS
3503 }
3504 return 1;
3505}
3506
3507/* False iff function type FUNC_TYPE definitely does not produce a value
3508 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3509 FUNC_TYPE is not a valid function type with a non-null return type
3510 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3511
3512static int
d2e4a39e 3513return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3514{
d2e4a39e 3515 struct type *return_type;
14f9c5c9
AS
3516
3517 if (func_type == NULL)
3518 return 1;
3519
4c4b4cd2 3520 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3521 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3522 else
18af8284 3523 return_type = get_base_type (func_type);
14f9c5c9
AS
3524 if (return_type == NULL)
3525 return 1;
3526
18af8284 3527 context_type = get_base_type (context_type);
14f9c5c9
AS
3528
3529 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3530 return context_type == NULL || return_type == context_type;
3531 else if (context_type == NULL)
3532 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3533 else
3534 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3535}
3536
3537
4c4b4cd2 3538/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3539 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3540 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3541 that returns that type, then eliminate matches that don't. If
3542 CONTEXT_TYPE is void and there is at least one match that does not
3543 return void, eliminate all matches that do.
3544
14f9c5c9
AS
3545 Asks the user if there is more than one match remaining. Returns -1
3546 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3547 solely for messages. May re-arrange and modify SYMS in
3548 the process; the index returned is for the modified vector. */
14f9c5c9 3549
4c4b4cd2
PH
3550static int
3551ada_resolve_function (struct ada_symbol_info syms[],
3552 int nsyms, struct value **args, int nargs,
3553 const char *name, struct type *context_type)
14f9c5c9 3554{
30b15541 3555 int fallback;
14f9c5c9 3556 int k;
4c4b4cd2 3557 int m; /* Number of hits */
14f9c5c9 3558
d2e4a39e 3559 m = 0;
30b15541
UW
3560 /* In the first pass of the loop, we only accept functions matching
3561 context_type. If none are found, we add a second pass of the loop
3562 where every function is accepted. */
3563 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3564 {
3565 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3566 {
61ee279c 3567 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3568
3569 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3570 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3571 {
3572 syms[m] = syms[k];
3573 m += 1;
3574 }
3575 }
14f9c5c9
AS
3576 }
3577
3578 if (m == 0)
3579 return -1;
3580 else if (m > 1)
3581 {
323e0a4a 3582 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3583 user_select_syms (syms, m, 1);
14f9c5c9
AS
3584 return 0;
3585 }
3586 return 0;
3587}
3588
4c4b4cd2
PH
3589/* Returns true (non-zero) iff decoded name N0 should appear before N1
3590 in a listing of choices during disambiguation (see sort_choices, below).
3591 The idea is that overloadings of a subprogram name from the
3592 same package should sort in their source order. We settle for ordering
3593 such symbols by their trailing number (__N or $N). */
3594
14f9c5c9 3595static int
0d5cff50 3596encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3597{
3598 if (N1 == NULL)
3599 return 0;
3600 else if (N0 == NULL)
3601 return 1;
3602 else
3603 {
3604 int k0, k1;
5b4ee69b 3605
d2e4a39e 3606 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3607 ;
d2e4a39e 3608 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3609 ;
d2e4a39e 3610 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3611 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3612 {
3613 int n0, n1;
5b4ee69b 3614
4c4b4cd2
PH
3615 n0 = k0;
3616 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3617 n0 -= 1;
3618 n1 = k1;
3619 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3620 n1 -= 1;
3621 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3622 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3623 }
14f9c5c9
AS
3624 return (strcmp (N0, N1) < 0);
3625 }
3626}
d2e4a39e 3627
4c4b4cd2
PH
3628/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3629 encoded names. */
3630
d2e4a39e 3631static void
4c4b4cd2 3632sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3633{
4c4b4cd2 3634 int i;
5b4ee69b 3635
d2e4a39e 3636 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3637 {
4c4b4cd2 3638 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3639 int j;
3640
d2e4a39e 3641 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3642 {
3643 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3644 SYMBOL_LINKAGE_NAME (sym.sym)))
3645 break;
3646 syms[j + 1] = syms[j];
3647 }
d2e4a39e 3648 syms[j + 1] = sym;
14f9c5c9
AS
3649 }
3650}
3651
4c4b4cd2
PH
3652/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3653 by asking the user (if necessary), returning the number selected,
3654 and setting the first elements of SYMS items. Error if no symbols
3655 selected. */
14f9c5c9
AS
3656
3657/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3658 to be re-integrated one of these days. */
14f9c5c9
AS
3659
3660int
4c4b4cd2 3661user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3662{
3663 int i;
d2e4a39e 3664 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3665 int n_chosen;
3666 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3667 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3668
3669 if (max_results < 1)
323e0a4a 3670 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3671 if (nsyms <= 1)
3672 return nsyms;
3673
717d2f5a
JB
3674 if (select_mode == multiple_symbols_cancel)
3675 error (_("\
3676canceled because the command is ambiguous\n\
3677See set/show multiple-symbol."));
3678
3679 /* If select_mode is "all", then return all possible symbols.
3680 Only do that if more than one symbol can be selected, of course.
3681 Otherwise, display the menu as usual. */
3682 if (select_mode == multiple_symbols_all && max_results > 1)
3683 return nsyms;
3684
323e0a4a 3685 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3686 if (max_results > 1)
323e0a4a 3687 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3688
4c4b4cd2 3689 sort_choices (syms, nsyms);
14f9c5c9
AS
3690
3691 for (i = 0; i < nsyms; i += 1)
3692 {
4c4b4cd2
PH
3693 if (syms[i].sym == NULL)
3694 continue;
3695
3696 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3697 {
76a01679
JB
3698 struct symtab_and_line sal =
3699 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3700
323e0a4a
AC
3701 if (sal.symtab == NULL)
3702 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3703 i + first_choice,
3704 SYMBOL_PRINT_NAME (syms[i].sym),
3705 sal.line);
3706 else
3707 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3709 symtab_to_filename_for_display (sal.symtab),
3710 sal.line);
4c4b4cd2
PH
3711 continue;
3712 }
d2e4a39e 3713 else
4c4b4cd2
PH
3714 {
3715 int is_enumeral =
3716 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3717 && SYMBOL_TYPE (syms[i].sym) != NULL
3718 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
1994afbf
DE
3719 struct symtab *symtab = NULL;
3720
3721 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3722 symtab = symbol_symtab (syms[i].sym);
4c4b4cd2
PH
3723
3724 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3725 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3726 i + first_choice,
3727 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3728 symtab_to_filename_for_display (symtab),
3729 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3730 else if (is_enumeral
3731 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3732 {
a3f17187 3733 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3734 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3735 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3736 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3737 SYMBOL_PRINT_NAME (syms[i].sym));
3738 }
3739 else if (symtab != NULL)
3740 printf_unfiltered (is_enumeral
323e0a4a
AC
3741 ? _("[%d] %s in %s (enumeral)\n")
3742 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3743 i + first_choice,
3744 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3745 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3746 else
3747 printf_unfiltered (is_enumeral
323e0a4a
AC
3748 ? _("[%d] %s (enumeral)\n")
3749 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3750 i + first_choice,
3751 SYMBOL_PRINT_NAME (syms[i].sym));
3752 }
14f9c5c9 3753 }
d2e4a39e 3754
14f9c5c9 3755 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3756 "overload-choice");
14f9c5c9
AS
3757
3758 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3759 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3760
3761 return n_chosen;
3762}
3763
3764/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3765 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3766 order in CHOICES[0 .. N-1], and return N.
3767
3768 The user types choices as a sequence of numbers on one line
3769 separated by blanks, encoding them as follows:
3770
4c4b4cd2 3771 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3772 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3773 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3774
4c4b4cd2 3775 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3776
3777 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3778 prompts (for use with the -f switch). */
14f9c5c9
AS
3779
3780int
d2e4a39e 3781get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3782 int is_all_choice, char *annotation_suffix)
14f9c5c9 3783{
d2e4a39e 3784 char *args;
0bcd0149 3785 char *prompt;
14f9c5c9
AS
3786 int n_chosen;
3787 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3788
14f9c5c9
AS
3789 prompt = getenv ("PS2");
3790 if (prompt == NULL)
0bcd0149 3791 prompt = "> ";
14f9c5c9 3792
0bcd0149 3793 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3794
14f9c5c9 3795 if (args == NULL)
323e0a4a 3796 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3797
3798 n_chosen = 0;
76a01679 3799
4c4b4cd2
PH
3800 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3801 order, as given in args. Choices are validated. */
14f9c5c9
AS
3802 while (1)
3803 {
d2e4a39e 3804 char *args2;
14f9c5c9
AS
3805 int choice, j;
3806
0fcd72ba 3807 args = skip_spaces (args);
14f9c5c9 3808 if (*args == '\0' && n_chosen == 0)
323e0a4a 3809 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3810 else if (*args == '\0')
4c4b4cd2 3811 break;
14f9c5c9
AS
3812
3813 choice = strtol (args, &args2, 10);
d2e4a39e 3814 if (args == args2 || choice < 0
4c4b4cd2 3815 || choice > n_choices + first_choice - 1)
323e0a4a 3816 error (_("Argument must be choice number"));
14f9c5c9
AS
3817 args = args2;
3818
d2e4a39e 3819 if (choice == 0)
323e0a4a 3820 error (_("cancelled"));
14f9c5c9
AS
3821
3822 if (choice < first_choice)
4c4b4cd2
PH
3823 {
3824 n_chosen = n_choices;
3825 for (j = 0; j < n_choices; j += 1)
3826 choices[j] = j;
3827 break;
3828 }
14f9c5c9
AS
3829 choice -= first_choice;
3830
d2e4a39e 3831 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3832 {
3833 }
14f9c5c9
AS
3834
3835 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3836 {
3837 int k;
5b4ee69b 3838
4c4b4cd2
PH
3839 for (k = n_chosen - 1; k > j; k -= 1)
3840 choices[k + 1] = choices[k];
3841 choices[j + 1] = choice;
3842 n_chosen += 1;
3843 }
14f9c5c9
AS
3844 }
3845
3846 if (n_chosen > max_results)
323e0a4a 3847 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3848
14f9c5c9
AS
3849 return n_chosen;
3850}
3851
4c4b4cd2
PH
3852/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3853 on the function identified by SYM and BLOCK, and taking NARGS
3854 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3855
3856static void
d2e4a39e 3857replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3858 int oplen, struct symbol *sym,
270140bd 3859 const struct block *block)
14f9c5c9
AS
3860{
3861 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3862 symbol, -oplen for operator being replaced). */
d2e4a39e 3863 struct expression *newexp = (struct expression *)
8c1a34e7 3864 xzalloc (sizeof (struct expression)
4c4b4cd2 3865 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3866 struct expression *exp = *expp;
14f9c5c9
AS
3867
3868 newexp->nelts = exp->nelts + 7 - oplen;
3869 newexp->language_defn = exp->language_defn;
3489610d 3870 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3871 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3872 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3873 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3874
3875 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3876 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3877
3878 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3879 newexp->elts[pc + 4].block = block;
3880 newexp->elts[pc + 5].symbol = sym;
3881
3882 *expp = newexp;
aacb1f0a 3883 xfree (exp);
d2e4a39e 3884}
14f9c5c9
AS
3885
3886/* Type-class predicates */
3887
4c4b4cd2
PH
3888/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3889 or FLOAT). */
14f9c5c9
AS
3890
3891static int
d2e4a39e 3892numeric_type_p (struct type *type)
14f9c5c9
AS
3893{
3894 if (type == NULL)
3895 return 0;
d2e4a39e
AS
3896 else
3897 {
3898 switch (TYPE_CODE (type))
4c4b4cd2
PH
3899 {
3900 case TYPE_CODE_INT:
3901 case TYPE_CODE_FLT:
3902 return 1;
3903 case TYPE_CODE_RANGE:
3904 return (type == TYPE_TARGET_TYPE (type)
3905 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3906 default:
3907 return 0;
3908 }
d2e4a39e 3909 }
14f9c5c9
AS
3910}
3911
4c4b4cd2 3912/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3913
3914static int
d2e4a39e 3915integer_type_p (struct type *type)
14f9c5c9
AS
3916{
3917 if (type == NULL)
3918 return 0;
d2e4a39e
AS
3919 else
3920 {
3921 switch (TYPE_CODE (type))
4c4b4cd2
PH
3922 {
3923 case TYPE_CODE_INT:
3924 return 1;
3925 case TYPE_CODE_RANGE:
3926 return (type == TYPE_TARGET_TYPE (type)
3927 || integer_type_p (TYPE_TARGET_TYPE (type)));
3928 default:
3929 return 0;
3930 }
d2e4a39e 3931 }
14f9c5c9
AS
3932}
3933
4c4b4cd2 3934/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3935
3936static int
d2e4a39e 3937scalar_type_p (struct type *type)
14f9c5c9
AS
3938{
3939 if (type == NULL)
3940 return 0;
d2e4a39e
AS
3941 else
3942 {
3943 switch (TYPE_CODE (type))
4c4b4cd2
PH
3944 {
3945 case TYPE_CODE_INT:
3946 case TYPE_CODE_RANGE:
3947 case TYPE_CODE_ENUM:
3948 case TYPE_CODE_FLT:
3949 return 1;
3950 default:
3951 return 0;
3952 }
d2e4a39e 3953 }
14f9c5c9
AS
3954}
3955
4c4b4cd2 3956/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3957
3958static int
d2e4a39e 3959discrete_type_p (struct type *type)
14f9c5c9
AS
3960{
3961 if (type == NULL)
3962 return 0;
d2e4a39e
AS
3963 else
3964 {
3965 switch (TYPE_CODE (type))
4c4b4cd2
PH
3966 {
3967 case TYPE_CODE_INT:
3968 case TYPE_CODE_RANGE:
3969 case TYPE_CODE_ENUM:
872f0337 3970 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3971 return 1;
3972 default:
3973 return 0;
3974 }
d2e4a39e 3975 }
14f9c5c9
AS
3976}
3977
4c4b4cd2
PH
3978/* Returns non-zero if OP with operands in the vector ARGS could be
3979 a user-defined function. Errs on the side of pre-defined operators
3980 (i.e., result 0). */
14f9c5c9
AS
3981
3982static int
d2e4a39e 3983possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3984{
76a01679 3985 struct type *type0 =
df407dfe 3986 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3987 struct type *type1 =
df407dfe 3988 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3989
4c4b4cd2
PH
3990 if (type0 == NULL)
3991 return 0;
3992
14f9c5c9
AS
3993 switch (op)
3994 {
3995 default:
3996 return 0;
3997
3998 case BINOP_ADD:
3999 case BINOP_SUB:
4000 case BINOP_MUL:
4001 case BINOP_DIV:
d2e4a39e 4002 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4003
4004 case BINOP_REM:
4005 case BINOP_MOD:
4006 case BINOP_BITWISE_AND:
4007 case BINOP_BITWISE_IOR:
4008 case BINOP_BITWISE_XOR:
d2e4a39e 4009 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4010
4011 case BINOP_EQUAL:
4012 case BINOP_NOTEQUAL:
4013 case BINOP_LESS:
4014 case BINOP_GTR:
4015 case BINOP_LEQ:
4016 case BINOP_GEQ:
d2e4a39e 4017 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4018
4019 case BINOP_CONCAT:
ee90b9ab 4020 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4021
4022 case BINOP_EXP:
d2e4a39e 4023 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4024
4025 case UNOP_NEG:
4026 case UNOP_PLUS:
4027 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4028 case UNOP_ABS:
4029 return (!numeric_type_p (type0));
14f9c5c9
AS
4030
4031 }
4032}
4033\f
4c4b4cd2 4034 /* Renaming */
14f9c5c9 4035
aeb5907d
JB
4036/* NOTES:
4037
4038 1. In the following, we assume that a renaming type's name may
4039 have an ___XD suffix. It would be nice if this went away at some
4040 point.
4041 2. We handle both the (old) purely type-based representation of
4042 renamings and the (new) variable-based encoding. At some point,
4043 it is devoutly to be hoped that the former goes away
4044 (FIXME: hilfinger-2007-07-09).
4045 3. Subprogram renamings are not implemented, although the XRS
4046 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4047
4048/* If SYM encodes a renaming,
4049
4050 <renaming> renames <renamed entity>,
4051
4052 sets *LEN to the length of the renamed entity's name,
4053 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4054 the string describing the subcomponent selected from the renamed
0963b4bd 4055 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4056 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4057 are undefined). Otherwise, returns a value indicating the category
4058 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4059 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4060 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4061 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4062 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4063 may be NULL, in which case they are not assigned.
4064
4065 [Currently, however, GCC does not generate subprogram renamings.] */
4066
4067enum ada_renaming_category
4068ada_parse_renaming (struct symbol *sym,
4069 const char **renamed_entity, int *len,
4070 const char **renaming_expr)
4071{
4072 enum ada_renaming_category kind;
4073 const char *info;
4074 const char *suffix;
4075
4076 if (sym == NULL)
4077 return ADA_NOT_RENAMING;
4078 switch (SYMBOL_CLASS (sym))
14f9c5c9 4079 {
aeb5907d
JB
4080 default:
4081 return ADA_NOT_RENAMING;
4082 case LOC_TYPEDEF:
4083 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4084 renamed_entity, len, renaming_expr);
4085 case LOC_LOCAL:
4086 case LOC_STATIC:
4087 case LOC_COMPUTED:
4088 case LOC_OPTIMIZED_OUT:
4089 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4090 if (info == NULL)
4091 return ADA_NOT_RENAMING;
4092 switch (info[5])
4093 {
4094 case '_':
4095 kind = ADA_OBJECT_RENAMING;
4096 info += 6;
4097 break;
4098 case 'E':
4099 kind = ADA_EXCEPTION_RENAMING;
4100 info += 7;
4101 break;
4102 case 'P':
4103 kind = ADA_PACKAGE_RENAMING;
4104 info += 7;
4105 break;
4106 case 'S':
4107 kind = ADA_SUBPROGRAM_RENAMING;
4108 info += 7;
4109 break;
4110 default:
4111 return ADA_NOT_RENAMING;
4112 }
14f9c5c9 4113 }
4c4b4cd2 4114
aeb5907d
JB
4115 if (renamed_entity != NULL)
4116 *renamed_entity = info;
4117 suffix = strstr (info, "___XE");
4118 if (suffix == NULL || suffix == info)
4119 return ADA_NOT_RENAMING;
4120 if (len != NULL)
4121 *len = strlen (info) - strlen (suffix);
4122 suffix += 5;
4123 if (renaming_expr != NULL)
4124 *renaming_expr = suffix;
4125 return kind;
4126}
4127
4128/* Assuming TYPE encodes a renaming according to the old encoding in
4129 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4130 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4131 ADA_NOT_RENAMING otherwise. */
4132static enum ada_renaming_category
4133parse_old_style_renaming (struct type *type,
4134 const char **renamed_entity, int *len,
4135 const char **renaming_expr)
4136{
4137 enum ada_renaming_category kind;
4138 const char *name;
4139 const char *info;
4140 const char *suffix;
14f9c5c9 4141
aeb5907d
JB
4142 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4143 || TYPE_NFIELDS (type) != 1)
4144 return ADA_NOT_RENAMING;
14f9c5c9 4145
aeb5907d
JB
4146 name = type_name_no_tag (type);
4147 if (name == NULL)
4148 return ADA_NOT_RENAMING;
4149
4150 name = strstr (name, "___XR");
4151 if (name == NULL)
4152 return ADA_NOT_RENAMING;
4153 switch (name[5])
4154 {
4155 case '\0':
4156 case '_':
4157 kind = ADA_OBJECT_RENAMING;
4158 break;
4159 case 'E':
4160 kind = ADA_EXCEPTION_RENAMING;
4161 break;
4162 case 'P':
4163 kind = ADA_PACKAGE_RENAMING;
4164 break;
4165 case 'S':
4166 kind = ADA_SUBPROGRAM_RENAMING;
4167 break;
4168 default:
4169 return ADA_NOT_RENAMING;
4170 }
14f9c5c9 4171
aeb5907d
JB
4172 info = TYPE_FIELD_NAME (type, 0);
4173 if (info == NULL)
4174 return ADA_NOT_RENAMING;
4175 if (renamed_entity != NULL)
4176 *renamed_entity = info;
4177 suffix = strstr (info, "___XE");
4178 if (renaming_expr != NULL)
4179 *renaming_expr = suffix + 5;
4180 if (suffix == NULL || suffix == info)
4181 return ADA_NOT_RENAMING;
4182 if (len != NULL)
4183 *len = suffix - info;
4184 return kind;
a5ee536b
JB
4185}
4186
4187/* Compute the value of the given RENAMING_SYM, which is expected to
4188 be a symbol encoding a renaming expression. BLOCK is the block
4189 used to evaluate the renaming. */
52ce6436 4190
a5ee536b
JB
4191static struct value *
4192ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4193 const struct block *block)
a5ee536b 4194{
bbc13ae3 4195 const char *sym_name;
a5ee536b
JB
4196 struct expression *expr;
4197 struct value *value;
4198 struct cleanup *old_chain = NULL;
4199
bbc13ae3 4200 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4201 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4202 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4203 value = evaluate_expression (expr);
4204
4205 do_cleanups (old_chain);
4206 return value;
4207}
14f9c5c9 4208\f
d2e4a39e 4209
4c4b4cd2 4210 /* Evaluation: Function Calls */
14f9c5c9 4211
4c4b4cd2 4212/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4213 lvalues, and otherwise has the side-effect of allocating memory
4214 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4215
d2e4a39e 4216static struct value *
40bc484c 4217ensure_lval (struct value *val)
14f9c5c9 4218{
40bc484c
JB
4219 if (VALUE_LVAL (val) == not_lval
4220 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4221 {
df407dfe 4222 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4223 const CORE_ADDR addr =
4224 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4225
40bc484c 4226 set_value_address (val, addr);
a84a8a0d 4227 VALUE_LVAL (val) = lval_memory;
40bc484c 4228 write_memory (addr, value_contents (val), len);
c3e5cd34 4229 }
14f9c5c9
AS
4230
4231 return val;
4232}
4233
4234/* Return the value ACTUAL, converted to be an appropriate value for a
4235 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4236 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4237 values not residing in memory, updating it as needed. */
14f9c5c9 4238
a93c0eb6 4239struct value *
40bc484c 4240ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4241{
df407dfe 4242 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4243 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4244 struct type *formal_target =
4245 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4246 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4247 struct type *actual_target =
4248 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4249 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4250
4c4b4cd2 4251 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4252 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4253 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4254 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4255 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4256 {
a84a8a0d 4257 struct value *result;
5b4ee69b 4258
14f9c5c9 4259 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4260 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4261 result = desc_data (actual);
14f9c5c9 4262 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4263 {
4264 if (VALUE_LVAL (actual) != lval_memory)
4265 {
4266 struct value *val;
5b4ee69b 4267
df407dfe 4268 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4269 val = allocate_value (actual_type);
990a07ab 4270 memcpy ((char *) value_contents_raw (val),
0fd88904 4271 (char *) value_contents (actual),
4c4b4cd2 4272 TYPE_LENGTH (actual_type));
40bc484c 4273 actual = ensure_lval (val);
4c4b4cd2 4274 }
a84a8a0d 4275 result = value_addr (actual);
4c4b4cd2 4276 }
a84a8a0d
JB
4277 else
4278 return actual;
b1af9e97 4279 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4280 }
4281 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4282 return ada_value_ind (actual);
4283
4284 return actual;
4285}
4286
438c98a1
JB
4287/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4288 type TYPE. This is usually an inefficient no-op except on some targets
4289 (such as AVR) where the representation of a pointer and an address
4290 differs. */
4291
4292static CORE_ADDR
4293value_pointer (struct value *value, struct type *type)
4294{
4295 struct gdbarch *gdbarch = get_type_arch (type);
4296 unsigned len = TYPE_LENGTH (type);
4297 gdb_byte *buf = alloca (len);
4298 CORE_ADDR addr;
4299
4300 addr = value_address (value);
4301 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4302 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4303 return addr;
4304}
4305
14f9c5c9 4306
4c4b4cd2
PH
4307/* Push a descriptor of type TYPE for array value ARR on the stack at
4308 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4309 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4310 to-descriptor type rather than a descriptor type), a struct value *
4311 representing a pointer to this descriptor. */
14f9c5c9 4312
d2e4a39e 4313static struct value *
40bc484c 4314make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4315{
d2e4a39e
AS
4316 struct type *bounds_type = desc_bounds_type (type);
4317 struct type *desc_type = desc_base_type (type);
4318 struct value *descriptor = allocate_value (desc_type);
4319 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4320 int i;
d2e4a39e 4321
0963b4bd
MS
4322 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4323 i > 0; i -= 1)
14f9c5c9 4324 {
19f220c3
JK
4325 modify_field (value_type (bounds), value_contents_writeable (bounds),
4326 ada_array_bound (arr, i, 0),
4327 desc_bound_bitpos (bounds_type, i, 0),
4328 desc_bound_bitsize (bounds_type, i, 0));
4329 modify_field (value_type (bounds), value_contents_writeable (bounds),
4330 ada_array_bound (arr, i, 1),
4331 desc_bound_bitpos (bounds_type, i, 1),
4332 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4333 }
d2e4a39e 4334
40bc484c 4335 bounds = ensure_lval (bounds);
d2e4a39e 4336
19f220c3
JK
4337 modify_field (value_type (descriptor),
4338 value_contents_writeable (descriptor),
4339 value_pointer (ensure_lval (arr),
4340 TYPE_FIELD_TYPE (desc_type, 0)),
4341 fat_pntr_data_bitpos (desc_type),
4342 fat_pntr_data_bitsize (desc_type));
4343
4344 modify_field (value_type (descriptor),
4345 value_contents_writeable (descriptor),
4346 value_pointer (bounds,
4347 TYPE_FIELD_TYPE (desc_type, 1)),
4348 fat_pntr_bounds_bitpos (desc_type),
4349 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4350
40bc484c 4351 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4352
4353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4354 return value_addr (descriptor);
4355 else
4356 return descriptor;
4357}
14f9c5c9 4358\f
3d9434b5
JB
4359 /* Symbol Cache Module */
4360
3d9434b5 4361/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4362 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4363 on the type of entity being printed, the cache can make it as much
4364 as an order of magnitude faster than without it.
4365
4366 The descriptive type DWARF extension has significantly reduced
4367 the need for this cache, at least when DWARF is being used. However,
4368 even in this case, some expensive name-based symbol searches are still
4369 sometimes necessary - to find an XVZ variable, mostly. */
4370
ee01b665 4371/* Initialize the contents of SYM_CACHE. */
3d9434b5 4372
ee01b665
JB
4373static void
4374ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4375{
4376 obstack_init (&sym_cache->cache_space);
4377 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4378}
3d9434b5 4379
ee01b665
JB
4380/* Free the memory used by SYM_CACHE. */
4381
4382static void
4383ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4384{
ee01b665
JB
4385 obstack_free (&sym_cache->cache_space, NULL);
4386 xfree (sym_cache);
4387}
3d9434b5 4388
ee01b665
JB
4389/* Return the symbol cache associated to the given program space PSPACE.
4390 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4391
ee01b665
JB
4392static struct ada_symbol_cache *
4393ada_get_symbol_cache (struct program_space *pspace)
4394{
4395 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4396 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4397
4398 if (sym_cache == NULL)
4399 {
4400 sym_cache = XCNEW (struct ada_symbol_cache);
4401 ada_init_symbol_cache (sym_cache);
4402 }
4403
4404 return sym_cache;
4405}
3d9434b5
JB
4406
4407/* Clear all entries from the symbol cache. */
4408
4409static void
4410ada_clear_symbol_cache (void)
4411{
ee01b665
JB
4412 struct ada_symbol_cache *sym_cache
4413 = ada_get_symbol_cache (current_program_space);
4414
4415 obstack_free (&sym_cache->cache_space, NULL);
4416 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4417}
4418
4419/* Search our cache for an entry matching NAME and NAMESPACE.
4420 Return it if found, or NULL otherwise. */
4421
4422static struct cache_entry **
4423find_entry (const char *name, domain_enum namespace)
4424{
ee01b665
JB
4425 struct ada_symbol_cache *sym_cache
4426 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4427 int h = msymbol_hash (name) % HASH_SIZE;
4428 struct cache_entry **e;
4429
ee01b665 4430 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4431 {
4432 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4433 return e;
4434 }
4435 return NULL;
4436}
4437
4438/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4439 Return 1 if found, 0 otherwise.
4440
4441 If an entry was found and SYM is not NULL, set *SYM to the entry's
4442 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4443
96d887e8
PH
4444static int
4445lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4446 struct symbol **sym, const struct block **block)
96d887e8 4447{
3d9434b5
JB
4448 struct cache_entry **e = find_entry (name, namespace);
4449
4450 if (e == NULL)
4451 return 0;
4452 if (sym != NULL)
4453 *sym = (*e)->sym;
4454 if (block != NULL)
4455 *block = (*e)->block;
4456 return 1;
96d887e8
PH
4457}
4458
3d9434b5
JB
4459/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4460 in domain NAMESPACE, save this result in our symbol cache. */
4461
96d887e8
PH
4462static void
4463cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4464 const struct block *block)
96d887e8 4465{
ee01b665
JB
4466 struct ada_symbol_cache *sym_cache
4467 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4468 int h;
4469 char *copy;
4470 struct cache_entry *e;
4471
1994afbf
DE
4472 /* Symbols for builtin types don't have a block.
4473 For now don't cache such symbols. */
4474 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4475 return;
4476
3d9434b5
JB
4477 /* If the symbol is a local symbol, then do not cache it, as a search
4478 for that symbol depends on the context. To determine whether
4479 the symbol is local or not, we check the block where we found it
4480 against the global and static blocks of its associated symtab. */
4481 if (sym
08be3fe3 4482 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4483 GLOBAL_BLOCK) != block
08be3fe3 4484 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4485 STATIC_BLOCK) != block)
3d9434b5
JB
4486 return;
4487
4488 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4489 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4490 sizeof (*e));
4491 e->next = sym_cache->root[h];
4492 sym_cache->root[h] = e;
4493 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4494 strcpy (copy, name);
4495 e->sym = sym;
4496 e->namespace = namespace;
4497 e->block = block;
96d887e8 4498}
4c4b4cd2
PH
4499\f
4500 /* Symbol Lookup */
4501
c0431670
JB
4502/* Return nonzero if wild matching should be used when searching for
4503 all symbols matching LOOKUP_NAME.
4504
4505 LOOKUP_NAME is expected to be a symbol name after transformation
4506 for Ada lookups (see ada_name_for_lookup). */
4507
4508static int
4509should_use_wild_match (const char *lookup_name)
4510{
4511 return (strstr (lookup_name, "__") == NULL);
4512}
4513
4c4b4cd2
PH
4514/* Return the result of a standard (literal, C-like) lookup of NAME in
4515 given DOMAIN, visible from lexical block BLOCK. */
4516
4517static struct symbol *
4518standard_lookup (const char *name, const struct block *block,
4519 domain_enum domain)
4520{
acbd605d
MGD
4521 /* Initialize it just to avoid a GCC false warning. */
4522 struct symbol *sym = NULL;
4c4b4cd2 4523
2570f2b7 4524 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4525 return sym;
2570f2b7
UW
4526 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4527 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4528 return sym;
4529}
4530
4531
4532/* Non-zero iff there is at least one non-function/non-enumeral symbol
4533 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4534 since they contend in overloading in the same way. */
4535static int
4536is_nonfunction (struct ada_symbol_info syms[], int n)
4537{
4538 int i;
4539
4540 for (i = 0; i < n; i += 1)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4542 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4543 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4544 return 1;
4545
4546 return 0;
4547}
4548
4549/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4550 struct types. Otherwise, they may not. */
14f9c5c9
AS
4551
4552static int
d2e4a39e 4553equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4554{
d2e4a39e 4555 if (type0 == type1)
14f9c5c9 4556 return 1;
d2e4a39e 4557 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4558 || TYPE_CODE (type0) != TYPE_CODE (type1))
4559 return 0;
d2e4a39e 4560 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4561 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4562 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4563 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4564 return 1;
d2e4a39e 4565
14f9c5c9
AS
4566 return 0;
4567}
4568
4569/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4570 no more defined than that of SYM1. */
14f9c5c9
AS
4571
4572static int
d2e4a39e 4573lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4574{
4575 if (sym0 == sym1)
4576 return 1;
176620f1 4577 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4578 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4579 return 0;
4580
d2e4a39e 4581 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4582 {
4583 case LOC_UNDEF:
4584 return 1;
4585 case LOC_TYPEDEF:
4586 {
4c4b4cd2
PH
4587 struct type *type0 = SYMBOL_TYPE (sym0);
4588 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4589 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4590 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4591 int len0 = strlen (name0);
5b4ee69b 4592
4c4b4cd2
PH
4593 return
4594 TYPE_CODE (type0) == TYPE_CODE (type1)
4595 && (equiv_types (type0, type1)
4596 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4597 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4598 }
4599 case LOC_CONST:
4600 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4601 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4602 default:
4603 return 0;
14f9c5c9
AS
4604 }
4605}
4606
4c4b4cd2
PH
4607/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4608 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4609
4610static void
76a01679
JB
4611add_defn_to_vec (struct obstack *obstackp,
4612 struct symbol *sym,
f0c5f9b2 4613 const struct block *block)
14f9c5c9
AS
4614{
4615 int i;
4c4b4cd2 4616 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4617
529cad9c
PH
4618 /* Do not try to complete stub types, as the debugger is probably
4619 already scanning all symbols matching a certain name at the
4620 time when this function is called. Trying to replace the stub
4621 type by its associated full type will cause us to restart a scan
4622 which may lead to an infinite recursion. Instead, the client
4623 collecting the matching symbols will end up collecting several
4624 matches, with at least one of them complete. It can then filter
4625 out the stub ones if needed. */
4626
4c4b4cd2
PH
4627 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4628 {
4629 if (lesseq_defined_than (sym, prevDefns[i].sym))
4630 return;
4631 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4632 {
4633 prevDefns[i].sym = sym;
4634 prevDefns[i].block = block;
4c4b4cd2 4635 return;
76a01679 4636 }
4c4b4cd2
PH
4637 }
4638
4639 {
4640 struct ada_symbol_info info;
4641
4642 info.sym = sym;
4643 info.block = block;
4c4b4cd2
PH
4644 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4645 }
4646}
4647
4648/* Number of ada_symbol_info structures currently collected in
4649 current vector in *OBSTACKP. */
4650
76a01679
JB
4651static int
4652num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4653{
4654 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4655}
4656
4657/* Vector of ada_symbol_info structures currently collected in current
4658 vector in *OBSTACKP. If FINISH, close off the vector and return
4659 its final address. */
4660
76a01679 4661static struct ada_symbol_info *
4c4b4cd2
PH
4662defns_collected (struct obstack *obstackp, int finish)
4663{
4664 if (finish)
4665 return obstack_finish (obstackp);
4666 else
4667 return (struct ada_symbol_info *) obstack_base (obstackp);
4668}
4669
7c7b6655
TT
4670/* Return a bound minimal symbol matching NAME according to Ada
4671 decoding rules. Returns an invalid symbol if there is no such
4672 minimal symbol. Names prefixed with "standard__" are handled
4673 specially: "standard__" is first stripped off, and only static and
4674 global symbols are searched. */
4c4b4cd2 4675
7c7b6655 4676struct bound_minimal_symbol
96d887e8 4677ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4678{
7c7b6655 4679 struct bound_minimal_symbol result;
4c4b4cd2 4680 struct objfile *objfile;
96d887e8 4681 struct minimal_symbol *msymbol;
dc4024cd 4682 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4683
7c7b6655
TT
4684 memset (&result, 0, sizeof (result));
4685
c0431670
JB
4686 /* Special case: If the user specifies a symbol name inside package
4687 Standard, do a non-wild matching of the symbol name without
4688 the "standard__" prefix. This was primarily introduced in order
4689 to allow the user to specifically access the standard exceptions
4690 using, for instance, Standard.Constraint_Error when Constraint_Error
4691 is ambiguous (due to the user defining its own Constraint_Error
4692 entity inside its program). */
96d887e8 4693 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4694 name += sizeof ("standard__") - 1;
4c4b4cd2 4695
96d887e8
PH
4696 ALL_MSYMBOLS (objfile, msymbol)
4697 {
efd66ac6 4698 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4699 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4700 {
4701 result.minsym = msymbol;
4702 result.objfile = objfile;
4703 break;
4704 }
96d887e8 4705 }
4c4b4cd2 4706
7c7b6655 4707 return result;
96d887e8 4708}
4c4b4cd2 4709
96d887e8
PH
4710/* For all subprograms that statically enclose the subprogram of the
4711 selected frame, add symbols matching identifier NAME in DOMAIN
4712 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4713 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4714 with a wildcard prefix. */
4c4b4cd2 4715
96d887e8
PH
4716static void
4717add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4718 const char *name, domain_enum namespace,
48b78332 4719 int wild_match_p)
96d887e8 4720{
96d887e8 4721}
14f9c5c9 4722
96d887e8
PH
4723/* True if TYPE is definitely an artificial type supplied to a symbol
4724 for which no debugging information was given in the symbol file. */
14f9c5c9 4725
96d887e8
PH
4726static int
4727is_nondebugging_type (struct type *type)
4728{
0d5cff50 4729 const char *name = ada_type_name (type);
5b4ee69b 4730
96d887e8
PH
4731 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4732}
4c4b4cd2 4733
8f17729f
JB
4734/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4735 that are deemed "identical" for practical purposes.
4736
4737 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4738 types and that their number of enumerals is identical (in other
4739 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4740
4741static int
4742ada_identical_enum_types_p (struct type *type1, struct type *type2)
4743{
4744 int i;
4745
4746 /* The heuristic we use here is fairly conservative. We consider
4747 that 2 enumerate types are identical if they have the same
4748 number of enumerals and that all enumerals have the same
4749 underlying value and name. */
4750
4751 /* All enums in the type should have an identical underlying value. */
4752 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4753 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4754 return 0;
4755
4756 /* All enumerals should also have the same name (modulo any numerical
4757 suffix). */
4758 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4759 {
0d5cff50
DE
4760 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4761 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4762 int len_1 = strlen (name_1);
4763 int len_2 = strlen (name_2);
4764
4765 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4766 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4767 if (len_1 != len_2
4768 || strncmp (TYPE_FIELD_NAME (type1, i),
4769 TYPE_FIELD_NAME (type2, i),
4770 len_1) != 0)
4771 return 0;
4772 }
4773
4774 return 1;
4775}
4776
4777/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4778 that are deemed "identical" for practical purposes. Sometimes,
4779 enumerals are not strictly identical, but their types are so similar
4780 that they can be considered identical.
4781
4782 For instance, consider the following code:
4783
4784 type Color is (Black, Red, Green, Blue, White);
4785 type RGB_Color is new Color range Red .. Blue;
4786
4787 Type RGB_Color is a subrange of an implicit type which is a copy
4788 of type Color. If we call that implicit type RGB_ColorB ("B" is
4789 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4790 As a result, when an expression references any of the enumeral
4791 by name (Eg. "print green"), the expression is technically
4792 ambiguous and the user should be asked to disambiguate. But
4793 doing so would only hinder the user, since it wouldn't matter
4794 what choice he makes, the outcome would always be the same.
4795 So, for practical purposes, we consider them as the same. */
4796
4797static int
4798symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4799{
4800 int i;
4801
4802 /* Before performing a thorough comparison check of each type,
4803 we perform a series of inexpensive checks. We expect that these
4804 checks will quickly fail in the vast majority of cases, and thus
4805 help prevent the unnecessary use of a more expensive comparison.
4806 Said comparison also expects us to make some of these checks
4807 (see ada_identical_enum_types_p). */
4808
4809 /* Quick check: All symbols should have an enum type. */
4810 for (i = 0; i < nsyms; i++)
4811 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4812 return 0;
4813
4814 /* Quick check: They should all have the same value. */
4815 for (i = 1; i < nsyms; i++)
4816 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4817 return 0;
4818
4819 /* Quick check: They should all have the same number of enumerals. */
4820 for (i = 1; i < nsyms; i++)
4821 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4822 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4823 return 0;
4824
4825 /* All the sanity checks passed, so we might have a set of
4826 identical enumeration types. Perform a more complete
4827 comparison of the type of each symbol. */
4828 for (i = 1; i < nsyms; i++)
4829 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4830 SYMBOL_TYPE (syms[0].sym)))
4831 return 0;
4832
4833 return 1;
4834}
4835
96d887e8
PH
4836/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4837 duplicate other symbols in the list (The only case I know of where
4838 this happens is when object files containing stabs-in-ecoff are
4839 linked with files containing ordinary ecoff debugging symbols (or no
4840 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4841 Returns the number of items in the modified list. */
4c4b4cd2 4842
96d887e8
PH
4843static int
4844remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4845{
4846 int i, j;
4c4b4cd2 4847
8f17729f
JB
4848 /* We should never be called with less than 2 symbols, as there
4849 cannot be any extra symbol in that case. But it's easy to
4850 handle, since we have nothing to do in that case. */
4851 if (nsyms < 2)
4852 return nsyms;
4853
96d887e8
PH
4854 i = 0;
4855 while (i < nsyms)
4856 {
a35ddb44 4857 int remove_p = 0;
339c13b6
JB
4858
4859 /* If two symbols have the same name and one of them is a stub type,
4860 the get rid of the stub. */
4861
4862 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4863 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4864 {
4865 for (j = 0; j < nsyms; j++)
4866 {
4867 if (j != i
4868 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4869 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4870 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4871 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4872 remove_p = 1;
339c13b6
JB
4873 }
4874 }
4875
4876 /* Two symbols with the same name, same class and same address
4877 should be identical. */
4878
4879 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4880 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4881 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4882 {
4883 for (j = 0; j < nsyms; j += 1)
4884 {
4885 if (i != j
4886 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4887 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4888 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4889 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4890 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4891 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4892 remove_p = 1;
4c4b4cd2 4893 }
4c4b4cd2 4894 }
339c13b6 4895
a35ddb44 4896 if (remove_p)
339c13b6
JB
4897 {
4898 for (j = i + 1; j < nsyms; j += 1)
4899 syms[j - 1] = syms[j];
4900 nsyms -= 1;
4901 }
4902
96d887e8 4903 i += 1;
14f9c5c9 4904 }
8f17729f
JB
4905
4906 /* If all the remaining symbols are identical enumerals, then
4907 just keep the first one and discard the rest.
4908
4909 Unlike what we did previously, we do not discard any entry
4910 unless they are ALL identical. This is because the symbol
4911 comparison is not a strict comparison, but rather a practical
4912 comparison. If all symbols are considered identical, then
4913 we can just go ahead and use the first one and discard the rest.
4914 But if we cannot reduce the list to a single element, we have
4915 to ask the user to disambiguate anyways. And if we have to
4916 present a multiple-choice menu, it's less confusing if the list
4917 isn't missing some choices that were identical and yet distinct. */
4918 if (symbols_are_identical_enums (syms, nsyms))
4919 nsyms = 1;
4920
96d887e8 4921 return nsyms;
14f9c5c9
AS
4922}
4923
96d887e8
PH
4924/* Given a type that corresponds to a renaming entity, use the type name
4925 to extract the scope (package name or function name, fully qualified,
4926 and following the GNAT encoding convention) where this renaming has been
4927 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4928
96d887e8
PH
4929static char *
4930xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4931{
96d887e8 4932 /* The renaming types adhere to the following convention:
0963b4bd 4933 <scope>__<rename>___<XR extension>.
96d887e8
PH
4934 So, to extract the scope, we search for the "___XR" extension,
4935 and then backtrack until we find the first "__". */
76a01679 4936
96d887e8
PH
4937 const char *name = type_name_no_tag (renaming_type);
4938 char *suffix = strstr (name, "___XR");
4939 char *last;
4940 int scope_len;
4941 char *scope;
14f9c5c9 4942
96d887e8
PH
4943 /* Now, backtrack a bit until we find the first "__". Start looking
4944 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4945
96d887e8
PH
4946 for (last = suffix - 3; last > name; last--)
4947 if (last[0] == '_' && last[1] == '_')
4948 break;
76a01679 4949
96d887e8 4950 /* Make a copy of scope and return it. */
14f9c5c9 4951
96d887e8
PH
4952 scope_len = last - name;
4953 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4954
96d887e8
PH
4955 strncpy (scope, name, scope_len);
4956 scope[scope_len] = '\0';
4c4b4cd2 4957
96d887e8 4958 return scope;
4c4b4cd2
PH
4959}
4960
96d887e8 4961/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4962
96d887e8
PH
4963static int
4964is_package_name (const char *name)
4c4b4cd2 4965{
96d887e8
PH
4966 /* Here, We take advantage of the fact that no symbols are generated
4967 for packages, while symbols are generated for each function.
4968 So the condition for NAME represent a package becomes equivalent
4969 to NAME not existing in our list of symbols. There is only one
4970 small complication with library-level functions (see below). */
4c4b4cd2 4971
96d887e8 4972 char *fun_name;
76a01679 4973
96d887e8
PH
4974 /* If it is a function that has not been defined at library level,
4975 then we should be able to look it up in the symbols. */
4976 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4977 return 0;
14f9c5c9 4978
96d887e8
PH
4979 /* Library-level function names start with "_ada_". See if function
4980 "_ada_" followed by NAME can be found. */
14f9c5c9 4981
96d887e8 4982 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4983 functions names cannot contain "__" in them. */
96d887e8
PH
4984 if (strstr (name, "__") != NULL)
4985 return 0;
4c4b4cd2 4986
b435e160 4987 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4988
96d887e8
PH
4989 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4990}
14f9c5c9 4991
96d887e8 4992/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4993 not visible from FUNCTION_NAME. */
14f9c5c9 4994
96d887e8 4995static int
0d5cff50 4996old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4997{
aeb5907d 4998 char *scope;
1509e573 4999 struct cleanup *old_chain;
aeb5907d
JB
5000
5001 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5002 return 0;
5003
5004 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5005 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5006
96d887e8
PH
5007 /* If the rename has been defined in a package, then it is visible. */
5008 if (is_package_name (scope))
1509e573
JB
5009 {
5010 do_cleanups (old_chain);
5011 return 0;
5012 }
14f9c5c9 5013
96d887e8
PH
5014 /* Check that the rename is in the current function scope by checking
5015 that its name starts with SCOPE. */
76a01679 5016
96d887e8
PH
5017 /* If the function name starts with "_ada_", it means that it is
5018 a library-level function. Strip this prefix before doing the
5019 comparison, as the encoding for the renaming does not contain
5020 this prefix. */
5021 if (strncmp (function_name, "_ada_", 5) == 0)
5022 function_name += 5;
f26caa11 5023
1509e573
JB
5024 {
5025 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5026
5027 do_cleanups (old_chain);
5028 return is_invisible;
5029 }
f26caa11
PH
5030}
5031
aeb5907d
JB
5032/* Remove entries from SYMS that corresponds to a renaming entity that
5033 is not visible from the function associated with CURRENT_BLOCK or
5034 that is superfluous due to the presence of more specific renaming
5035 information. Places surviving symbols in the initial entries of
5036 SYMS and returns the number of surviving symbols.
96d887e8
PH
5037
5038 Rationale:
aeb5907d
JB
5039 First, in cases where an object renaming is implemented as a
5040 reference variable, GNAT may produce both the actual reference
5041 variable and the renaming encoding. In this case, we discard the
5042 latter.
5043
5044 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5045 entity. Unfortunately, STABS currently does not support the definition
5046 of types that are local to a given lexical block, so all renamings types
5047 are emitted at library level. As a consequence, if an application
5048 contains two renaming entities using the same name, and a user tries to
5049 print the value of one of these entities, the result of the ada symbol
5050 lookup will also contain the wrong renaming type.
f26caa11 5051
96d887e8
PH
5052 This function partially covers for this limitation by attempting to
5053 remove from the SYMS list renaming symbols that should be visible
5054 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5055 method with the current information available. The implementation
5056 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5057
5058 - When the user tries to print a rename in a function while there
5059 is another rename entity defined in a package: Normally, the
5060 rename in the function has precedence over the rename in the
5061 package, so the latter should be removed from the list. This is
5062 currently not the case.
5063
5064 - This function will incorrectly remove valid renames if
5065 the CURRENT_BLOCK corresponds to a function which symbol name
5066 has been changed by an "Export" pragma. As a consequence,
5067 the user will be unable to print such rename entities. */
4c4b4cd2 5068
14f9c5c9 5069static int
aeb5907d
JB
5070remove_irrelevant_renamings (struct ada_symbol_info *syms,
5071 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5072{
5073 struct symbol *current_function;
0d5cff50 5074 const char *current_function_name;
4c4b4cd2 5075 int i;
aeb5907d
JB
5076 int is_new_style_renaming;
5077
5078 /* If there is both a renaming foo___XR... encoded as a variable and
5079 a simple variable foo in the same block, discard the latter.
0963b4bd 5080 First, zero out such symbols, then compress. */
aeb5907d
JB
5081 is_new_style_renaming = 0;
5082 for (i = 0; i < nsyms; i += 1)
5083 {
5084 struct symbol *sym = syms[i].sym;
270140bd 5085 const struct block *block = syms[i].block;
aeb5907d
JB
5086 const char *name;
5087 const char *suffix;
5088
5089 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5090 continue;
5091 name = SYMBOL_LINKAGE_NAME (sym);
5092 suffix = strstr (name, "___XR");
5093
5094 if (suffix != NULL)
5095 {
5096 int name_len = suffix - name;
5097 int j;
5b4ee69b 5098
aeb5907d
JB
5099 is_new_style_renaming = 1;
5100 for (j = 0; j < nsyms; j += 1)
5101 if (i != j && syms[j].sym != NULL
5102 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5103 name_len) == 0
5104 && block == syms[j].block)
5105 syms[j].sym = NULL;
5106 }
5107 }
5108 if (is_new_style_renaming)
5109 {
5110 int j, k;
5111
5112 for (j = k = 0; j < nsyms; j += 1)
5113 if (syms[j].sym != NULL)
5114 {
5115 syms[k] = syms[j];
5116 k += 1;
5117 }
5118 return k;
5119 }
4c4b4cd2
PH
5120
5121 /* Extract the function name associated to CURRENT_BLOCK.
5122 Abort if unable to do so. */
76a01679 5123
4c4b4cd2
PH
5124 if (current_block == NULL)
5125 return nsyms;
76a01679 5126
7f0df278 5127 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5128 if (current_function == NULL)
5129 return nsyms;
5130
5131 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5132 if (current_function_name == NULL)
5133 return nsyms;
5134
5135 /* Check each of the symbols, and remove it from the list if it is
5136 a type corresponding to a renaming that is out of the scope of
5137 the current block. */
5138
5139 i = 0;
5140 while (i < nsyms)
5141 {
aeb5907d
JB
5142 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5143 == ADA_OBJECT_RENAMING
5144 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5145 {
5146 int j;
5b4ee69b 5147
aeb5907d 5148 for (j = i + 1; j < nsyms; j += 1)
76a01679 5149 syms[j - 1] = syms[j];
4c4b4cd2
PH
5150 nsyms -= 1;
5151 }
5152 else
5153 i += 1;
5154 }
5155
5156 return nsyms;
5157}
5158
339c13b6
JB
5159/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5160 whose name and domain match NAME and DOMAIN respectively.
5161 If no match was found, then extend the search to "enclosing"
5162 routines (in other words, if we're inside a nested function,
5163 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5164 If WILD_MATCH_P is nonzero, perform the naming matching in
5165 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5166
5167 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5168
5169static void
5170ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5171 const struct block *block, domain_enum domain,
d0a8ab18 5172 int wild_match_p)
339c13b6
JB
5173{
5174 int block_depth = 0;
5175
5176 while (block != NULL)
5177 {
5178 block_depth += 1;
d0a8ab18
JB
5179 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5180 wild_match_p);
339c13b6
JB
5181
5182 /* If we found a non-function match, assume that's the one. */
5183 if (is_nonfunction (defns_collected (obstackp, 0),
5184 num_defns_collected (obstackp)))
5185 return;
5186
5187 block = BLOCK_SUPERBLOCK (block);
5188 }
5189
5190 /* If no luck so far, try to find NAME as a local symbol in some lexically
5191 enclosing subprogram. */
5192 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5193 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5194}
5195
ccefe4c4 5196/* An object of this type is used as the user_data argument when
40658b94 5197 calling the map_matching_symbols method. */
ccefe4c4 5198
40658b94 5199struct match_data
ccefe4c4 5200{
40658b94 5201 struct objfile *objfile;
ccefe4c4 5202 struct obstack *obstackp;
40658b94
PH
5203 struct symbol *arg_sym;
5204 int found_sym;
ccefe4c4
TT
5205};
5206
40658b94
PH
5207/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5208 to a list of symbols. DATA0 is a pointer to a struct match_data *
5209 containing the obstack that collects the symbol list, the file that SYM
5210 must come from, a flag indicating whether a non-argument symbol has
5211 been found in the current block, and the last argument symbol
5212 passed in SYM within the current block (if any). When SYM is null,
5213 marking the end of a block, the argument symbol is added if no
5214 other has been found. */
ccefe4c4 5215
40658b94
PH
5216static int
5217aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5218{
40658b94
PH
5219 struct match_data *data = (struct match_data *) data0;
5220
5221 if (sym == NULL)
5222 {
5223 if (!data->found_sym && data->arg_sym != NULL)
5224 add_defn_to_vec (data->obstackp,
5225 fixup_symbol_section (data->arg_sym, data->objfile),
5226 block);
5227 data->found_sym = 0;
5228 data->arg_sym = NULL;
5229 }
5230 else
5231 {
5232 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5233 return 0;
5234 else if (SYMBOL_IS_ARGUMENT (sym))
5235 data->arg_sym = sym;
5236 else
5237 {
5238 data->found_sym = 1;
5239 add_defn_to_vec (data->obstackp,
5240 fixup_symbol_section (sym, data->objfile),
5241 block);
5242 }
5243 }
5244 return 0;
5245}
5246
db230ce3
JB
5247/* Implements compare_names, but only applying the comparision using
5248 the given CASING. */
5b4ee69b 5249
40658b94 5250static int
db230ce3
JB
5251compare_names_with_case (const char *string1, const char *string2,
5252 enum case_sensitivity casing)
40658b94
PH
5253{
5254 while (*string1 != '\0' && *string2 != '\0')
5255 {
db230ce3
JB
5256 char c1, c2;
5257
40658b94
PH
5258 if (isspace (*string1) || isspace (*string2))
5259 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5260
5261 if (casing == case_sensitive_off)
5262 {
5263 c1 = tolower (*string1);
5264 c2 = tolower (*string2);
5265 }
5266 else
5267 {
5268 c1 = *string1;
5269 c2 = *string2;
5270 }
5271 if (c1 != c2)
40658b94 5272 break;
db230ce3 5273
40658b94
PH
5274 string1 += 1;
5275 string2 += 1;
5276 }
db230ce3 5277
40658b94
PH
5278 switch (*string1)
5279 {
5280 case '(':
5281 return strcmp_iw_ordered (string1, string2);
5282 case '_':
5283 if (*string2 == '\0')
5284 {
052874e8 5285 if (is_name_suffix (string1))
40658b94
PH
5286 return 0;
5287 else
1a1d5513 5288 return 1;
40658b94 5289 }
dbb8534f 5290 /* FALLTHROUGH */
40658b94
PH
5291 default:
5292 if (*string2 == '(')
5293 return strcmp_iw_ordered (string1, string2);
5294 else
db230ce3
JB
5295 {
5296 if (casing == case_sensitive_off)
5297 return tolower (*string1) - tolower (*string2);
5298 else
5299 return *string1 - *string2;
5300 }
40658b94 5301 }
ccefe4c4
TT
5302}
5303
db230ce3
JB
5304/* Compare STRING1 to STRING2, with results as for strcmp.
5305 Compatible with strcmp_iw_ordered in that...
5306
5307 strcmp_iw_ordered (STRING1, STRING2) <= 0
5308
5309 ... implies...
5310
5311 compare_names (STRING1, STRING2) <= 0
5312
5313 (they may differ as to what symbols compare equal). */
5314
5315static int
5316compare_names (const char *string1, const char *string2)
5317{
5318 int result;
5319
5320 /* Similar to what strcmp_iw_ordered does, we need to perform
5321 a case-insensitive comparison first, and only resort to
5322 a second, case-sensitive, comparison if the first one was
5323 not sufficient to differentiate the two strings. */
5324
5325 result = compare_names_with_case (string1, string2, case_sensitive_off);
5326 if (result == 0)
5327 result = compare_names_with_case (string1, string2, case_sensitive_on);
5328
5329 return result;
5330}
5331
339c13b6
JB
5332/* Add to OBSTACKP all non-local symbols whose name and domain match
5333 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5334 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5335
5336static void
40658b94
PH
5337add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5338 domain_enum domain, int global,
5339 int is_wild_match)
339c13b6
JB
5340{
5341 struct objfile *objfile;
40658b94 5342 struct match_data data;
339c13b6 5343
6475f2fe 5344 memset (&data, 0, sizeof data);
ccefe4c4 5345 data.obstackp = obstackp;
339c13b6 5346
ccefe4c4 5347 ALL_OBJFILES (objfile)
40658b94
PH
5348 {
5349 data.objfile = objfile;
5350
5351 if (is_wild_match)
4186eb54
KS
5352 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5353 aux_add_nonlocal_symbols, &data,
5354 wild_match, NULL);
40658b94 5355 else
4186eb54
KS
5356 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5357 aux_add_nonlocal_symbols, &data,
5358 full_match, compare_names);
40658b94
PH
5359 }
5360
5361 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5362 {
5363 ALL_OBJFILES (objfile)
5364 {
5365 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5366 strcpy (name1, "_ada_");
5367 strcpy (name1 + sizeof ("_ada_") - 1, name);
5368 data.objfile = objfile;
ade7ed9e
DE
5369 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5370 global,
0963b4bd
MS
5371 aux_add_nonlocal_symbols,
5372 &data,
40658b94
PH
5373 full_match, compare_names);
5374 }
5375 }
339c13b6
JB
5376}
5377
4eeaa230
DE
5378/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5379 non-zero, enclosing scope and in global scopes, returning the number of
5380 matches.
9f88c959 5381 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5382 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5383 any) in which they were found. This vector is transient---good only to
5384 the next call of ada_lookup_symbol_list.
5385
5386 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5387 symbol match within the nest of blocks whose innermost member is BLOCK0,
5388 is the one match returned (no other matches in that or
d9680e73 5389 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5390 surrounding BLOCK0, then these alone are returned.
5391
9f88c959 5392 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5393 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5394
4eeaa230
DE
5395static int
5396ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5397 domain_enum namespace,
5398 struct ada_symbol_info **results,
5399 int full_search)
14f9c5c9
AS
5400{
5401 struct symbol *sym;
f0c5f9b2 5402 const struct block *block;
4c4b4cd2 5403 const char *name;
82ccd55e 5404 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5405 int cacheIfUnique;
4c4b4cd2 5406 int ndefns;
14f9c5c9 5407
4c4b4cd2
PH
5408 obstack_free (&symbol_list_obstack, NULL);
5409 obstack_init (&symbol_list_obstack);
14f9c5c9 5410
14f9c5c9
AS
5411 cacheIfUnique = 0;
5412
5413 /* Search specified block and its superiors. */
5414
4c4b4cd2 5415 name = name0;
f0c5f9b2 5416 block = block0;
339c13b6
JB
5417
5418 /* Special case: If the user specifies a symbol name inside package
5419 Standard, do a non-wild matching of the symbol name without
5420 the "standard__" prefix. This was primarily introduced in order
5421 to allow the user to specifically access the standard exceptions
5422 using, for instance, Standard.Constraint_Error when Constraint_Error
5423 is ambiguous (due to the user defining its own Constraint_Error
5424 entity inside its program). */
4c4b4cd2
PH
5425 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5426 {
4c4b4cd2
PH
5427 block = NULL;
5428 name = name0 + sizeof ("standard__") - 1;
5429 }
5430
339c13b6 5431 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5432
4eeaa230
DE
5433 if (block != NULL)
5434 {
5435 if (full_search)
5436 {
5437 ada_add_local_symbols (&symbol_list_obstack, name, block,
5438 namespace, wild_match_p);
5439 }
5440 else
5441 {
5442 /* In the !full_search case we're are being called by
5443 ada_iterate_over_symbols, and we don't want to search
5444 superblocks. */
5445 ada_add_block_symbols (&symbol_list_obstack, block, name,
5446 namespace, NULL, wild_match_p);
5447 }
5448 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5449 goto done;
5450 }
d2e4a39e 5451
339c13b6
JB
5452 /* No non-global symbols found. Check our cache to see if we have
5453 already performed this search before. If we have, then return
5454 the same result. */
5455
14f9c5c9 5456 cacheIfUnique = 1;
2570f2b7 5457 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5458 {
5459 if (sym != NULL)
2570f2b7 5460 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5461 goto done;
5462 }
14f9c5c9 5463
339c13b6
JB
5464 /* Search symbols from all global blocks. */
5465
40658b94 5466 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5467 wild_match_p);
d2e4a39e 5468
4c4b4cd2 5469 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5470 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5471
4c4b4cd2 5472 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5473 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5474 wild_match_p);
14f9c5c9 5475
4c4b4cd2
PH
5476done:
5477 ndefns = num_defns_collected (&symbol_list_obstack);
5478 *results = defns_collected (&symbol_list_obstack, 1);
5479
5480 ndefns = remove_extra_symbols (*results, ndefns);
5481
2ad01556 5482 if (ndefns == 0 && full_search)
2570f2b7 5483 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5484
2ad01556 5485 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5486 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5487
aeb5907d 5488 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5489
14f9c5c9
AS
5490 return ndefns;
5491}
5492
4eeaa230
DE
5493/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5494 in global scopes, returning the number of matches, and setting *RESULTS
5495 to a vector of (SYM,BLOCK) tuples.
5496 See ada_lookup_symbol_list_worker for further details. */
5497
5498int
5499ada_lookup_symbol_list (const char *name0, const struct block *block0,
5500 domain_enum domain, struct ada_symbol_info **results)
5501{
5502 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5503}
5504
5505/* Implementation of the la_iterate_over_symbols method. */
5506
5507static void
5508ada_iterate_over_symbols (const struct block *block,
5509 const char *name, domain_enum domain,
5510 symbol_found_callback_ftype *callback,
5511 void *data)
5512{
5513 int ndefs, i;
5514 struct ada_symbol_info *results;
5515
5516 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5517 for (i = 0; i < ndefs; ++i)
5518 {
5519 if (! (*callback) (results[i].sym, data))
5520 break;
5521 }
5522}
5523
f8eba3c6
TT
5524/* If NAME is the name of an entity, return a string that should
5525 be used to look that entity up in Ada units. This string should
5526 be deallocated after use using xfree.
5527
5528 NAME can have any form that the "break" or "print" commands might
5529 recognize. In other words, it does not have to be the "natural"
5530 name, or the "encoded" name. */
5531
5532char *
5533ada_name_for_lookup (const char *name)
5534{
5535 char *canon;
5536 int nlen = strlen (name);
5537
5538 if (name[0] == '<' && name[nlen - 1] == '>')
5539 {
5540 canon = xmalloc (nlen - 1);
5541 memcpy (canon, name + 1, nlen - 2);
5542 canon[nlen - 2] = '\0';
5543 }
5544 else
5545 canon = xstrdup (ada_encode (ada_fold_name (name)));
5546 return canon;
5547}
5548
4e5c77fe
JB
5549/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5550 to 1, but choosing the first symbol found if there are multiple
5551 choices.
5552
5e2336be
JB
5553 The result is stored in *INFO, which must be non-NULL.
5554 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5555
5556void
5557ada_lookup_encoded_symbol (const char *name, const struct block *block,
5558 domain_enum namespace,
5e2336be 5559 struct ada_symbol_info *info)
14f9c5c9 5560{
4c4b4cd2 5561 struct ada_symbol_info *candidates;
14f9c5c9
AS
5562 int n_candidates;
5563
5e2336be
JB
5564 gdb_assert (info != NULL);
5565 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5566
4eeaa230 5567 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5568 if (n_candidates == 0)
4e5c77fe 5569 return;
4c4b4cd2 5570
5e2336be
JB
5571 *info = candidates[0];
5572 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5573}
aeb5907d
JB
5574
5575/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5576 scope and in global scopes, or NULL if none. NAME is folded and
5577 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5578 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5579 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5580
aeb5907d
JB
5581struct symbol *
5582ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5583 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5584{
5e2336be 5585 struct ada_symbol_info info;
4e5c77fe 5586
aeb5907d
JB
5587 if (is_a_field_of_this != NULL)
5588 *is_a_field_of_this = 0;
5589
4e5c77fe 5590 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5591 block0, namespace, &info);
5592 return info.sym;
4c4b4cd2 5593}
14f9c5c9 5594
4c4b4cd2 5595static struct symbol *
f606139a
DE
5596ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5597 const char *name,
76a01679 5598 const struct block *block,
21b556f4 5599 const domain_enum domain)
4c4b4cd2 5600{
94af9270 5601 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5602}
5603
5604
4c4b4cd2
PH
5605/* True iff STR is a possible encoded suffix of a normal Ada name
5606 that is to be ignored for matching purposes. Suffixes of parallel
5607 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5608 are given by any of the regular expressions:
4c4b4cd2 5609
babe1480
JB
5610 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5611 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5612 TKB [subprogram suffix for task bodies]
babe1480 5613 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5614 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5615
5616 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5617 match is performed. This sequence is used to differentiate homonyms,
5618 is an optional part of a valid name suffix. */
4c4b4cd2 5619
14f9c5c9 5620static int
d2e4a39e 5621is_name_suffix (const char *str)
14f9c5c9
AS
5622{
5623 int k;
4c4b4cd2
PH
5624 const char *matching;
5625 const int len = strlen (str);
5626
babe1480
JB
5627 /* Skip optional leading __[0-9]+. */
5628
4c4b4cd2
PH
5629 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5630 {
babe1480
JB
5631 str += 3;
5632 while (isdigit (str[0]))
5633 str += 1;
4c4b4cd2 5634 }
babe1480
JB
5635
5636 /* [.$][0-9]+ */
4c4b4cd2 5637
babe1480 5638 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5639 {
babe1480 5640 matching = str + 1;
4c4b4cd2
PH
5641 while (isdigit (matching[0]))
5642 matching += 1;
5643 if (matching[0] == '\0')
5644 return 1;
5645 }
5646
5647 /* ___[0-9]+ */
babe1480 5648
4c4b4cd2
PH
5649 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5650 {
5651 matching = str + 3;
5652 while (isdigit (matching[0]))
5653 matching += 1;
5654 if (matching[0] == '\0')
5655 return 1;
5656 }
5657
9ac7f98e
JB
5658 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5659
5660 if (strcmp (str, "TKB") == 0)
5661 return 1;
5662
529cad9c
PH
5663#if 0
5664 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5665 with a N at the end. Unfortunately, the compiler uses the same
5666 convention for other internal types it creates. So treating
529cad9c 5667 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5668 some regressions. For instance, consider the case of an enumerated
5669 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5670 name ends with N.
5671 Having a single character like this as a suffix carrying some
0963b4bd 5672 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5673 to be something like "_N" instead. In the meantime, do not do
5674 the following check. */
5675 /* Protected Object Subprograms */
5676 if (len == 1 && str [0] == 'N')
5677 return 1;
5678#endif
5679
5680 /* _E[0-9]+[bs]$ */
5681 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5682 {
5683 matching = str + 3;
5684 while (isdigit (matching[0]))
5685 matching += 1;
5686 if ((matching[0] == 'b' || matching[0] == 's')
5687 && matching [1] == '\0')
5688 return 1;
5689 }
5690
4c4b4cd2
PH
5691 /* ??? We should not modify STR directly, as we are doing below. This
5692 is fine in this case, but may become problematic later if we find
5693 that this alternative did not work, and want to try matching
5694 another one from the begining of STR. Since we modified it, we
5695 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5696 if (str[0] == 'X')
5697 {
5698 str += 1;
d2e4a39e 5699 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5700 {
5701 if (str[0] != 'n' && str[0] != 'b')
5702 return 0;
5703 str += 1;
5704 }
14f9c5c9 5705 }
babe1480 5706
14f9c5c9
AS
5707 if (str[0] == '\000')
5708 return 1;
babe1480 5709
d2e4a39e 5710 if (str[0] == '_')
14f9c5c9
AS
5711 {
5712 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5713 return 0;
d2e4a39e 5714 if (str[2] == '_')
4c4b4cd2 5715 {
61ee279c
PH
5716 if (strcmp (str + 3, "JM") == 0)
5717 return 1;
5718 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5719 the LJM suffix in favor of the JM one. But we will
5720 still accept LJM as a valid suffix for a reasonable
5721 amount of time, just to allow ourselves to debug programs
5722 compiled using an older version of GNAT. */
4c4b4cd2
PH
5723 if (strcmp (str + 3, "LJM") == 0)
5724 return 1;
5725 if (str[3] != 'X')
5726 return 0;
1265e4aa
JB
5727 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5728 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5729 return 1;
5730 if (str[4] == 'R' && str[5] != 'T')
5731 return 1;
5732 return 0;
5733 }
5734 if (!isdigit (str[2]))
5735 return 0;
5736 for (k = 3; str[k] != '\0'; k += 1)
5737 if (!isdigit (str[k]) && str[k] != '_')
5738 return 0;
14f9c5c9
AS
5739 return 1;
5740 }
4c4b4cd2 5741 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5742 {
4c4b4cd2
PH
5743 for (k = 2; str[k] != '\0'; k += 1)
5744 if (!isdigit (str[k]) && str[k] != '_')
5745 return 0;
14f9c5c9
AS
5746 return 1;
5747 }
5748 return 0;
5749}
d2e4a39e 5750
aeb5907d
JB
5751/* Return non-zero if the string starting at NAME and ending before
5752 NAME_END contains no capital letters. */
529cad9c
PH
5753
5754static int
5755is_valid_name_for_wild_match (const char *name0)
5756{
5757 const char *decoded_name = ada_decode (name0);
5758 int i;
5759
5823c3ef
JB
5760 /* If the decoded name starts with an angle bracket, it means that
5761 NAME0 does not follow the GNAT encoding format. It should then
5762 not be allowed as a possible wild match. */
5763 if (decoded_name[0] == '<')
5764 return 0;
5765
529cad9c
PH
5766 for (i=0; decoded_name[i] != '\0'; i++)
5767 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5768 return 0;
5769
5770 return 1;
5771}
5772
73589123
PH
5773/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5774 that could start a simple name. Assumes that *NAMEP points into
5775 the string beginning at NAME0. */
4c4b4cd2 5776
14f9c5c9 5777static int
73589123 5778advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5779{
73589123 5780 const char *name = *namep;
5b4ee69b 5781
5823c3ef 5782 while (1)
14f9c5c9 5783 {
aa27d0b3 5784 int t0, t1;
73589123
PH
5785
5786 t0 = *name;
5787 if (t0 == '_')
5788 {
5789 t1 = name[1];
5790 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5791 {
5792 name += 1;
5793 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5794 break;
5795 else
5796 name += 1;
5797 }
aa27d0b3
JB
5798 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5799 || name[2] == target0))
73589123
PH
5800 {
5801 name += 2;
5802 break;
5803 }
5804 else
5805 return 0;
5806 }
5807 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5808 name += 1;
5809 else
5823c3ef 5810 return 0;
73589123
PH
5811 }
5812
5813 *namep = name;
5814 return 1;
5815}
5816
5817/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5818 informational suffixes of NAME (i.e., for which is_name_suffix is
5819 true). Assumes that PATN is a lower-cased Ada simple name. */
5820
5821static int
5822wild_match (const char *name, const char *patn)
5823{
22e048c9 5824 const char *p;
73589123
PH
5825 const char *name0 = name;
5826
5827 while (1)
5828 {
5829 const char *match = name;
5830
5831 if (*name == *patn)
5832 {
5833 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5834 if (*p != *name)
5835 break;
5836 if (*p == '\0' && is_name_suffix (name))
5837 return match != name0 && !is_valid_name_for_wild_match (name0);
5838
5839 if (name[-1] == '_')
5840 name -= 1;
5841 }
5842 if (!advance_wild_match (&name, name0, *patn))
5843 return 1;
96d887e8 5844 }
96d887e8
PH
5845}
5846
40658b94
PH
5847/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5848 informational suffix. */
5849
c4d840bd
PH
5850static int
5851full_match (const char *sym_name, const char *search_name)
5852{
40658b94 5853 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5854}
5855
5856
96d887e8
PH
5857/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5858 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5859 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5860 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5861
5862static void
5863ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5864 const struct block *block, const char *name,
96d887e8 5865 domain_enum domain, struct objfile *objfile,
2570f2b7 5866 int wild)
96d887e8 5867{
8157b174 5868 struct block_iterator iter;
96d887e8
PH
5869 int name_len = strlen (name);
5870 /* A matching argument symbol, if any. */
5871 struct symbol *arg_sym;
5872 /* Set true when we find a matching non-argument symbol. */
5873 int found_sym;
5874 struct symbol *sym;
5875
5876 arg_sym = NULL;
5877 found_sym = 0;
5878 if (wild)
5879 {
8157b174
TT
5880 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5881 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5882 {
4186eb54
KS
5883 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5884 SYMBOL_DOMAIN (sym), domain)
73589123 5885 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5886 {
2a2d4dc3
AS
5887 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5888 continue;
5889 else if (SYMBOL_IS_ARGUMENT (sym))
5890 arg_sym = sym;
5891 else
5892 {
76a01679
JB
5893 found_sym = 1;
5894 add_defn_to_vec (obstackp,
5895 fixup_symbol_section (sym, objfile),
2570f2b7 5896 block);
76a01679
JB
5897 }
5898 }
5899 }
96d887e8
PH
5900 }
5901 else
5902 {
8157b174
TT
5903 for (sym = block_iter_match_first (block, name, full_match, &iter);
5904 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5905 {
4186eb54
KS
5906 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5907 SYMBOL_DOMAIN (sym), domain))
76a01679 5908 {
c4d840bd
PH
5909 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5910 {
5911 if (SYMBOL_IS_ARGUMENT (sym))
5912 arg_sym = sym;
5913 else
2a2d4dc3 5914 {
c4d840bd
PH
5915 found_sym = 1;
5916 add_defn_to_vec (obstackp,
5917 fixup_symbol_section (sym, objfile),
5918 block);
2a2d4dc3 5919 }
c4d840bd 5920 }
76a01679
JB
5921 }
5922 }
96d887e8
PH
5923 }
5924
5925 if (!found_sym && arg_sym != NULL)
5926 {
76a01679
JB
5927 add_defn_to_vec (obstackp,
5928 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5929 block);
96d887e8
PH
5930 }
5931
5932 if (!wild)
5933 {
5934 arg_sym = NULL;
5935 found_sym = 0;
5936
5937 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5938 {
4186eb54
KS
5939 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5940 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5941 {
5942 int cmp;
5943
5944 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5945 if (cmp == 0)
5946 {
5947 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5948 if (cmp == 0)
5949 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5950 name_len);
5951 }
5952
5953 if (cmp == 0
5954 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5955 {
2a2d4dc3
AS
5956 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5957 {
5958 if (SYMBOL_IS_ARGUMENT (sym))
5959 arg_sym = sym;
5960 else
5961 {
5962 found_sym = 1;
5963 add_defn_to_vec (obstackp,
5964 fixup_symbol_section (sym, objfile),
5965 block);
5966 }
5967 }
76a01679
JB
5968 }
5969 }
76a01679 5970 }
96d887e8
PH
5971
5972 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5973 They aren't parameters, right? */
5974 if (!found_sym && arg_sym != NULL)
5975 {
5976 add_defn_to_vec (obstackp,
76a01679 5977 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5978 block);
96d887e8
PH
5979 }
5980 }
5981}
5982\f
41d27058
JB
5983
5984 /* Symbol Completion */
5985
5986/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5987 name in a form that's appropriate for the completion. The result
5988 does not need to be deallocated, but is only good until the next call.
5989
5990 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5991 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5992 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5993 in its encoded form. */
5994
5995static const char *
5996symbol_completion_match (const char *sym_name,
5997 const char *text, int text_len,
6ea35997 5998 int wild_match_p, int encoded_p)
41d27058 5999{
41d27058
JB
6000 const int verbatim_match = (text[0] == '<');
6001 int match = 0;
6002
6003 if (verbatim_match)
6004 {
6005 /* Strip the leading angle bracket. */
6006 text = text + 1;
6007 text_len--;
6008 }
6009
6010 /* First, test against the fully qualified name of the symbol. */
6011
6012 if (strncmp (sym_name, text, text_len) == 0)
6013 match = 1;
6014
6ea35997 6015 if (match && !encoded_p)
41d27058
JB
6016 {
6017 /* One needed check before declaring a positive match is to verify
6018 that iff we are doing a verbatim match, the decoded version
6019 of the symbol name starts with '<'. Otherwise, this symbol name
6020 is not a suitable completion. */
6021 const char *sym_name_copy = sym_name;
6022 int has_angle_bracket;
6023
6024 sym_name = ada_decode (sym_name);
6025 has_angle_bracket = (sym_name[0] == '<');
6026 match = (has_angle_bracket == verbatim_match);
6027 sym_name = sym_name_copy;
6028 }
6029
6030 if (match && !verbatim_match)
6031 {
6032 /* When doing non-verbatim match, another check that needs to
6033 be done is to verify that the potentially matching symbol name
6034 does not include capital letters, because the ada-mode would
6035 not be able to understand these symbol names without the
6036 angle bracket notation. */
6037 const char *tmp;
6038
6039 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6040 if (*tmp != '\0')
6041 match = 0;
6042 }
6043
6044 /* Second: Try wild matching... */
6045
e701b3c0 6046 if (!match && wild_match_p)
41d27058
JB
6047 {
6048 /* Since we are doing wild matching, this means that TEXT
6049 may represent an unqualified symbol name. We therefore must
6050 also compare TEXT against the unqualified name of the symbol. */
6051 sym_name = ada_unqualified_name (ada_decode (sym_name));
6052
6053 if (strncmp (sym_name, text, text_len) == 0)
6054 match = 1;
6055 }
6056
6057 /* Finally: If we found a mach, prepare the result to return. */
6058
6059 if (!match)
6060 return NULL;
6061
6062 if (verbatim_match)
6063 sym_name = add_angle_brackets (sym_name);
6064
6ea35997 6065 if (!encoded_p)
41d27058
JB
6066 sym_name = ada_decode (sym_name);
6067
6068 return sym_name;
6069}
6070
6071/* A companion function to ada_make_symbol_completion_list().
6072 Check if SYM_NAME represents a symbol which name would be suitable
6073 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6074 it is appended at the end of the given string vector SV.
6075
6076 ORIG_TEXT is the string original string from the user command
6077 that needs to be completed. WORD is the entire command on which
6078 completion should be performed. These two parameters are used to
6079 determine which part of the symbol name should be added to the
6080 completion vector.
c0af1706 6081 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6082 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6083 encoded formed (in which case the completion should also be
6084 encoded). */
6085
6086static void
d6565258 6087symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6088 const char *sym_name,
6089 const char *text, int text_len,
6090 const char *orig_text, const char *word,
cb8e9b97 6091 int wild_match_p, int encoded_p)
41d27058
JB
6092{
6093 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6094 wild_match_p, encoded_p);
41d27058
JB
6095 char *completion;
6096
6097 if (match == NULL)
6098 return;
6099
6100 /* We found a match, so add the appropriate completion to the given
6101 string vector. */
6102
6103 if (word == orig_text)
6104 {
6105 completion = xmalloc (strlen (match) + 5);
6106 strcpy (completion, match);
6107 }
6108 else if (word > orig_text)
6109 {
6110 /* Return some portion of sym_name. */
6111 completion = xmalloc (strlen (match) + 5);
6112 strcpy (completion, match + (word - orig_text));
6113 }
6114 else
6115 {
6116 /* Return some of ORIG_TEXT plus sym_name. */
6117 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6118 strncpy (completion, word, orig_text - word);
6119 completion[orig_text - word] = '\0';
6120 strcat (completion, match);
6121 }
6122
d6565258 6123 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6124}
6125
ccefe4c4 6126/* An object of this type is passed as the user_data argument to the
bb4142cf 6127 expand_symtabs_matching method. */
ccefe4c4
TT
6128struct add_partial_datum
6129{
6130 VEC(char_ptr) **completions;
6f937416 6131 const char *text;
ccefe4c4 6132 int text_len;
6f937416
PA
6133 const char *text0;
6134 const char *word;
ccefe4c4
TT
6135 int wild_match;
6136 int encoded;
6137};
6138
bb4142cf
DE
6139/* A callback for expand_symtabs_matching. */
6140
7b08b9eb 6141static int
bb4142cf 6142ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6143{
6144 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6145
6146 return symbol_completion_match (name, data->text, data->text_len,
6147 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6148}
6149
49c4e619
TT
6150/* Return a list of possible symbol names completing TEXT0. WORD is
6151 the entire command on which completion is made. */
41d27058 6152
49c4e619 6153static VEC (char_ptr) *
6f937416
PA
6154ada_make_symbol_completion_list (const char *text0, const char *word,
6155 enum type_code code)
41d27058
JB
6156{
6157 char *text;
6158 int text_len;
b1ed564a
JB
6159 int wild_match_p;
6160 int encoded_p;
2ba95b9b 6161 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6162 struct symbol *sym;
43f3e411 6163 struct compunit_symtab *s;
41d27058
JB
6164 struct minimal_symbol *msymbol;
6165 struct objfile *objfile;
3977b71f 6166 const struct block *b, *surrounding_static_block = 0;
41d27058 6167 int i;
8157b174 6168 struct block_iterator iter;
b8fea896 6169 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6170
2f68a895
TT
6171 gdb_assert (code == TYPE_CODE_UNDEF);
6172
41d27058
JB
6173 if (text0[0] == '<')
6174 {
6175 text = xstrdup (text0);
6176 make_cleanup (xfree, text);
6177 text_len = strlen (text);
b1ed564a
JB
6178 wild_match_p = 0;
6179 encoded_p = 1;
41d27058
JB
6180 }
6181 else
6182 {
6183 text = xstrdup (ada_encode (text0));
6184 make_cleanup (xfree, text);
6185 text_len = strlen (text);
6186 for (i = 0; i < text_len; i++)
6187 text[i] = tolower (text[i]);
6188
b1ed564a 6189 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6190 /* If the name contains a ".", then the user is entering a fully
6191 qualified entity name, and the match must not be done in wild
6192 mode. Similarly, if the user wants to complete what looks like
6193 an encoded name, the match must not be done in wild mode. */
b1ed564a 6194 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6195 }
6196
6197 /* First, look at the partial symtab symbols. */
41d27058 6198 {
ccefe4c4
TT
6199 struct add_partial_datum data;
6200
6201 data.completions = &completions;
6202 data.text = text;
6203 data.text_len = text_len;
6204 data.text0 = text0;
6205 data.word = word;
b1ed564a
JB
6206 data.wild_match = wild_match_p;
6207 data.encoded = encoded_p;
bb4142cf
DE
6208 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6209 &data);
41d27058
JB
6210 }
6211
6212 /* At this point scan through the misc symbol vectors and add each
6213 symbol you find to the list. Eventually we want to ignore
6214 anything that isn't a text symbol (everything else will be
6215 handled by the psymtab code above). */
6216
6217 ALL_MSYMBOLS (objfile, msymbol)
6218 {
6219 QUIT;
efd66ac6 6220 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6221 text, text_len, text0, word, wild_match_p,
6222 encoded_p);
41d27058
JB
6223 }
6224
6225 /* Search upwards from currently selected frame (so that we can
6226 complete on local vars. */
6227
6228 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6229 {
6230 if (!BLOCK_SUPERBLOCK (b))
6231 surrounding_static_block = b; /* For elmin of dups */
6232
6233 ALL_BLOCK_SYMBOLS (b, iter, sym)
6234 {
d6565258 6235 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6236 text, text_len, text0, word,
b1ed564a 6237 wild_match_p, encoded_p);
41d27058
JB
6238 }
6239 }
6240
6241 /* Go through the symtabs and check the externs and statics for
43f3e411 6242 symbols which match. */
41d27058 6243
43f3e411 6244 ALL_COMPUNITS (objfile, s)
41d27058
JB
6245 {
6246 QUIT;
43f3e411 6247 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6248 ALL_BLOCK_SYMBOLS (b, iter, sym)
6249 {
d6565258 6250 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6251 text, text_len, text0, word,
b1ed564a 6252 wild_match_p, encoded_p);
41d27058
JB
6253 }
6254 }
6255
43f3e411 6256 ALL_COMPUNITS (objfile, s)
41d27058
JB
6257 {
6258 QUIT;
43f3e411 6259 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6260 /* Don't do this block twice. */
6261 if (b == surrounding_static_block)
6262 continue;
6263 ALL_BLOCK_SYMBOLS (b, iter, sym)
6264 {
d6565258 6265 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6266 text, text_len, text0, word,
b1ed564a 6267 wild_match_p, encoded_p);
41d27058
JB
6268 }
6269 }
6270
b8fea896 6271 do_cleanups (old_chain);
49c4e619 6272 return completions;
41d27058
JB
6273}
6274
963a6417 6275 /* Field Access */
96d887e8 6276
73fb9985
JB
6277/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6278 for tagged types. */
6279
6280static int
6281ada_is_dispatch_table_ptr_type (struct type *type)
6282{
0d5cff50 6283 const char *name;
73fb9985
JB
6284
6285 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6286 return 0;
6287
6288 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6289 if (name == NULL)
6290 return 0;
6291
6292 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6293}
6294
ac4a2da4
JG
6295/* Return non-zero if TYPE is an interface tag. */
6296
6297static int
6298ada_is_interface_tag (struct type *type)
6299{
6300 const char *name = TYPE_NAME (type);
6301
6302 if (name == NULL)
6303 return 0;
6304
6305 return (strcmp (name, "ada__tags__interface_tag") == 0);
6306}
6307
963a6417
PH
6308/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6309 to be invisible to users. */
96d887e8 6310
963a6417
PH
6311int
6312ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6313{
963a6417
PH
6314 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6315 return 1;
ffde82bf 6316
73fb9985
JB
6317 /* Check the name of that field. */
6318 {
6319 const char *name = TYPE_FIELD_NAME (type, field_num);
6320
6321 /* Anonymous field names should not be printed.
6322 brobecker/2007-02-20: I don't think this can actually happen
6323 but we don't want to print the value of annonymous fields anyway. */
6324 if (name == NULL)
6325 return 1;
6326
ffde82bf
JB
6327 /* Normally, fields whose name start with an underscore ("_")
6328 are fields that have been internally generated by the compiler,
6329 and thus should not be printed. The "_parent" field is special,
6330 however: This is a field internally generated by the compiler
6331 for tagged types, and it contains the components inherited from
6332 the parent type. This field should not be printed as is, but
6333 should not be ignored either. */
73fb9985
JB
6334 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6335 return 1;
6336 }
6337
ac4a2da4
JG
6338 /* If this is the dispatch table of a tagged type or an interface tag,
6339 then ignore. */
73fb9985 6340 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6341 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6342 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6343 return 1;
6344
6345 /* Not a special field, so it should not be ignored. */
6346 return 0;
963a6417 6347}
96d887e8 6348
963a6417 6349/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6350 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6351
963a6417
PH
6352int
6353ada_is_tagged_type (struct type *type, int refok)
6354{
6355 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6356}
96d887e8 6357
963a6417 6358/* True iff TYPE represents the type of X'Tag */
96d887e8 6359
963a6417
PH
6360int
6361ada_is_tag_type (struct type *type)
6362{
6363 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6364 return 0;
6365 else
96d887e8 6366 {
963a6417 6367 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6368
963a6417
PH
6369 return (name != NULL
6370 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6371 }
96d887e8
PH
6372}
6373
963a6417 6374/* The type of the tag on VAL. */
76a01679 6375
963a6417
PH
6376struct type *
6377ada_tag_type (struct value *val)
96d887e8 6378{
df407dfe 6379 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6380}
96d887e8 6381
b50d69b5
JG
6382/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6383 retired at Ada 05). */
6384
6385static int
6386is_ada95_tag (struct value *tag)
6387{
6388 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6389}
6390
963a6417 6391/* The value of the tag on VAL. */
96d887e8 6392
963a6417
PH
6393struct value *
6394ada_value_tag (struct value *val)
6395{
03ee6b2e 6396 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6397}
6398
963a6417
PH
6399/* The value of the tag on the object of type TYPE whose contents are
6400 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6401 ADDRESS. */
96d887e8 6402
963a6417 6403static struct value *
10a2c479 6404value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6405 const gdb_byte *valaddr,
963a6417 6406 CORE_ADDR address)
96d887e8 6407{
b5385fc0 6408 int tag_byte_offset;
963a6417 6409 struct type *tag_type;
5b4ee69b 6410
963a6417 6411 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6412 NULL, NULL, NULL))
96d887e8 6413 {
fc1a4b47 6414 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6415 ? NULL
6416 : valaddr + tag_byte_offset);
963a6417 6417 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6418
963a6417 6419 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6420 }
963a6417
PH
6421 return NULL;
6422}
96d887e8 6423
963a6417
PH
6424static struct type *
6425type_from_tag (struct value *tag)
6426{
6427 const char *type_name = ada_tag_name (tag);
5b4ee69b 6428
963a6417
PH
6429 if (type_name != NULL)
6430 return ada_find_any_type (ada_encode (type_name));
6431 return NULL;
6432}
96d887e8 6433
b50d69b5
JG
6434/* Given a value OBJ of a tagged type, return a value of this
6435 type at the base address of the object. The base address, as
6436 defined in Ada.Tags, it is the address of the primary tag of
6437 the object, and therefore where the field values of its full
6438 view can be fetched. */
6439
6440struct value *
6441ada_tag_value_at_base_address (struct value *obj)
6442{
6443 volatile struct gdb_exception e;
6444 struct value *val;
6445 LONGEST offset_to_top = 0;
6446 struct type *ptr_type, *obj_type;
6447 struct value *tag;
6448 CORE_ADDR base_address;
6449
6450 obj_type = value_type (obj);
6451
6452 /* It is the responsability of the caller to deref pointers. */
6453
6454 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6455 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6456 return obj;
6457
6458 tag = ada_value_tag (obj);
6459 if (!tag)
6460 return obj;
6461
6462 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6463
6464 if (is_ada95_tag (tag))
6465 return obj;
6466
6467 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6468 ptr_type = lookup_pointer_type (ptr_type);
6469 val = value_cast (ptr_type, tag);
6470 if (!val)
6471 return obj;
6472
6473 /* It is perfectly possible that an exception be raised while
6474 trying to determine the base address, just like for the tag;
6475 see ada_tag_name for more details. We do not print the error
6476 message for the same reason. */
6477
6478 TRY_CATCH (e, RETURN_MASK_ERROR)
6479 {
6480 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6481 }
6482
6483 if (e.reason < 0)
6484 return obj;
6485
6486 /* If offset is null, nothing to do. */
6487
6488 if (offset_to_top == 0)
6489 return obj;
6490
6491 /* -1 is a special case in Ada.Tags; however, what should be done
6492 is not quite clear from the documentation. So do nothing for
6493 now. */
6494
6495 if (offset_to_top == -1)
6496 return obj;
6497
6498 base_address = value_address (obj) - offset_to_top;
6499 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6500
6501 /* Make sure that we have a proper tag at the new address.
6502 Otherwise, offset_to_top is bogus (which can happen when
6503 the object is not initialized yet). */
6504
6505 if (!tag)
6506 return obj;
6507
6508 obj_type = type_from_tag (tag);
6509
6510 if (!obj_type)
6511 return obj;
6512
6513 return value_from_contents_and_address (obj_type, NULL, base_address);
6514}
6515
1b611343
JB
6516/* Return the "ada__tags__type_specific_data" type. */
6517
6518static struct type *
6519ada_get_tsd_type (struct inferior *inf)
963a6417 6520{
1b611343 6521 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6522
1b611343
JB
6523 if (data->tsd_type == 0)
6524 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6525 return data->tsd_type;
6526}
529cad9c 6527
1b611343
JB
6528/* Return the TSD (type-specific data) associated to the given TAG.
6529 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6530
1b611343 6531 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6532
1b611343
JB
6533static struct value *
6534ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6535{
4c4b4cd2 6536 struct value *val;
1b611343 6537 struct type *type;
5b4ee69b 6538
1b611343
JB
6539 /* First option: The TSD is simply stored as a field of our TAG.
6540 Only older versions of GNAT would use this format, but we have
6541 to test it first, because there are no visible markers for
6542 the current approach except the absence of that field. */
529cad9c 6543
1b611343
JB
6544 val = ada_value_struct_elt (tag, "tsd", 1);
6545 if (val)
6546 return val;
e802dbe0 6547
1b611343
JB
6548 /* Try the second representation for the dispatch table (in which
6549 there is no explicit 'tsd' field in the referent of the tag pointer,
6550 and instead the tsd pointer is stored just before the dispatch
6551 table. */
e802dbe0 6552
1b611343
JB
6553 type = ada_get_tsd_type (current_inferior());
6554 if (type == NULL)
6555 return NULL;
6556 type = lookup_pointer_type (lookup_pointer_type (type));
6557 val = value_cast (type, tag);
6558 if (val == NULL)
6559 return NULL;
6560 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6561}
6562
1b611343
JB
6563/* Given the TSD of a tag (type-specific data), return a string
6564 containing the name of the associated type.
6565
6566 The returned value is good until the next call. May return NULL
6567 if we are unable to determine the tag name. */
6568
6569static char *
6570ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6571{
529cad9c
PH
6572 static char name[1024];
6573 char *p;
1b611343 6574 struct value *val;
529cad9c 6575
1b611343 6576 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6577 if (val == NULL)
1b611343 6578 return NULL;
4c4b4cd2
PH
6579 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6580 for (p = name; *p != '\0'; p += 1)
6581 if (isalpha (*p))
6582 *p = tolower (*p);
1b611343 6583 return name;
4c4b4cd2
PH
6584}
6585
6586/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6587 a C string.
6588
6589 Return NULL if the TAG is not an Ada tag, or if we were unable to
6590 determine the name of that tag. The result is good until the next
6591 call. */
4c4b4cd2
PH
6592
6593const char *
6594ada_tag_name (struct value *tag)
6595{
1b611343
JB
6596 volatile struct gdb_exception e;
6597 char *name = NULL;
5b4ee69b 6598
df407dfe 6599 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6600 return NULL;
1b611343
JB
6601
6602 /* It is perfectly possible that an exception be raised while trying
6603 to determine the TAG's name, even under normal circumstances:
6604 The associated variable may be uninitialized or corrupted, for
6605 instance. We do not let any exception propagate past this point.
6606 instead we return NULL.
6607
6608 We also do not print the error message either (which often is very
6609 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6610 the caller print a more meaningful message if necessary. */
6611 TRY_CATCH (e, RETURN_MASK_ERROR)
6612 {
6613 struct value *tsd = ada_get_tsd_from_tag (tag);
6614
6615 if (tsd != NULL)
6616 name = ada_tag_name_from_tsd (tsd);
6617 }
6618
6619 return name;
4c4b4cd2
PH
6620}
6621
6622/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6623
d2e4a39e 6624struct type *
ebf56fd3 6625ada_parent_type (struct type *type)
14f9c5c9
AS
6626{
6627 int i;
6628
61ee279c 6629 type = ada_check_typedef (type);
14f9c5c9
AS
6630
6631 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6632 return NULL;
6633
6634 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6635 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6636 {
6637 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6638
6639 /* If the _parent field is a pointer, then dereference it. */
6640 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6641 parent_type = TYPE_TARGET_TYPE (parent_type);
6642 /* If there is a parallel XVS type, get the actual base type. */
6643 parent_type = ada_get_base_type (parent_type);
6644
6645 return ada_check_typedef (parent_type);
6646 }
14f9c5c9
AS
6647
6648 return NULL;
6649}
6650
4c4b4cd2
PH
6651/* True iff field number FIELD_NUM of structure type TYPE contains the
6652 parent-type (inherited) fields of a derived type. Assumes TYPE is
6653 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6654
6655int
ebf56fd3 6656ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6657{
61ee279c 6658 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6659
4c4b4cd2
PH
6660 return (name != NULL
6661 && (strncmp (name, "PARENT", 6) == 0
6662 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6663}
6664
4c4b4cd2 6665/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6666 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6667 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6668 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6669 structures. */
14f9c5c9
AS
6670
6671int
ebf56fd3 6672ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6673{
d2e4a39e 6674 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6675
d2e4a39e 6676 return (name != NULL
4c4b4cd2
PH
6677 && (strncmp (name, "PARENT", 6) == 0
6678 || strcmp (name, "REP") == 0
6679 || strncmp (name, "_parent", 7) == 0
6680 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6681}
6682
4c4b4cd2
PH
6683/* True iff field number FIELD_NUM of structure or union type TYPE
6684 is a variant wrapper. Assumes TYPE is a structure type with at least
6685 FIELD_NUM+1 fields. */
14f9c5c9
AS
6686
6687int
ebf56fd3 6688ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6689{
d2e4a39e 6690 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6691
14f9c5c9 6692 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6693 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6694 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6695 == TYPE_CODE_UNION)));
14f9c5c9
AS
6696}
6697
6698/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6699 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6700 returns the type of the controlling discriminant for the variant.
6701 May return NULL if the type could not be found. */
14f9c5c9 6702
d2e4a39e 6703struct type *
ebf56fd3 6704ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6705{
d2e4a39e 6706 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6707
7c964f07 6708 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6709}
6710
4c4b4cd2 6711/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6712 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6713 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6714
6715int
ebf56fd3 6716ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6717{
d2e4a39e 6718 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6719
14f9c5c9
AS
6720 return (name != NULL && name[0] == 'O');
6721}
6722
6723/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6724 returns the name of the discriminant controlling the variant.
6725 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6726
d2e4a39e 6727char *
ebf56fd3 6728ada_variant_discrim_name (struct type *type0)
14f9c5c9 6729{
d2e4a39e 6730 static char *result = NULL;
14f9c5c9 6731 static size_t result_len = 0;
d2e4a39e
AS
6732 struct type *type;
6733 const char *name;
6734 const char *discrim_end;
6735 const char *discrim_start;
14f9c5c9
AS
6736
6737 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6738 type = TYPE_TARGET_TYPE (type0);
6739 else
6740 type = type0;
6741
6742 name = ada_type_name (type);
6743
6744 if (name == NULL || name[0] == '\000')
6745 return "";
6746
6747 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6748 discrim_end -= 1)
6749 {
4c4b4cd2
PH
6750 if (strncmp (discrim_end, "___XVN", 6) == 0)
6751 break;
14f9c5c9
AS
6752 }
6753 if (discrim_end == name)
6754 return "";
6755
d2e4a39e 6756 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6757 discrim_start -= 1)
6758 {
d2e4a39e 6759 if (discrim_start == name + 1)
4c4b4cd2 6760 return "";
76a01679 6761 if ((discrim_start > name + 3
4c4b4cd2
PH
6762 && strncmp (discrim_start - 3, "___", 3) == 0)
6763 || discrim_start[-1] == '.')
6764 break;
14f9c5c9
AS
6765 }
6766
6767 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6768 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6769 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6770 return result;
6771}
6772
4c4b4cd2
PH
6773/* Scan STR for a subtype-encoded number, beginning at position K.
6774 Put the position of the character just past the number scanned in
6775 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6776 Return 1 if there was a valid number at the given position, and 0
6777 otherwise. A "subtype-encoded" number consists of the absolute value
6778 in decimal, followed by the letter 'm' to indicate a negative number.
6779 Assumes 0m does not occur. */
14f9c5c9
AS
6780
6781int
d2e4a39e 6782ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6783{
6784 ULONGEST RU;
6785
d2e4a39e 6786 if (!isdigit (str[k]))
14f9c5c9
AS
6787 return 0;
6788
4c4b4cd2 6789 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6790 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6791 LONGEST. */
14f9c5c9
AS
6792 RU = 0;
6793 while (isdigit (str[k]))
6794 {
d2e4a39e 6795 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6796 k += 1;
6797 }
6798
d2e4a39e 6799 if (str[k] == 'm')
14f9c5c9
AS
6800 {
6801 if (R != NULL)
4c4b4cd2 6802 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6803 k += 1;
6804 }
6805 else if (R != NULL)
6806 *R = (LONGEST) RU;
6807
4c4b4cd2 6808 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6809 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6810 number representable as a LONGEST (although either would probably work
6811 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6812 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6813
6814 if (new_k != NULL)
6815 *new_k = k;
6816 return 1;
6817}
6818
4c4b4cd2
PH
6819/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6820 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6821 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6822
d2e4a39e 6823int
ebf56fd3 6824ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6825{
d2e4a39e 6826 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6827 int p;
6828
6829 p = 0;
6830 while (1)
6831 {
d2e4a39e 6832 switch (name[p])
4c4b4cd2
PH
6833 {
6834 case '\0':
6835 return 0;
6836 case 'S':
6837 {
6838 LONGEST W;
5b4ee69b 6839
4c4b4cd2
PH
6840 if (!ada_scan_number (name, p + 1, &W, &p))
6841 return 0;
6842 if (val == W)
6843 return 1;
6844 break;
6845 }
6846 case 'R':
6847 {
6848 LONGEST L, U;
5b4ee69b 6849
4c4b4cd2
PH
6850 if (!ada_scan_number (name, p + 1, &L, &p)
6851 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6852 return 0;
6853 if (val >= L && val <= U)
6854 return 1;
6855 break;
6856 }
6857 case 'O':
6858 return 1;
6859 default:
6860 return 0;
6861 }
6862 }
6863}
6864
0963b4bd 6865/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6866
6867/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6868 ARG_TYPE, extract and return the value of one of its (non-static)
6869 fields. FIELDNO says which field. Differs from value_primitive_field
6870 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6871
4c4b4cd2 6872static struct value *
d2e4a39e 6873ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6874 struct type *arg_type)
14f9c5c9 6875{
14f9c5c9
AS
6876 struct type *type;
6877
61ee279c 6878 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6879 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6880
4c4b4cd2 6881 /* Handle packed fields. */
14f9c5c9
AS
6882
6883 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6884 {
6885 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6886 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6887
0fd88904 6888 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6889 offset + bit_pos / 8,
6890 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6891 }
6892 else
6893 return value_primitive_field (arg1, offset, fieldno, arg_type);
6894}
6895
52ce6436
PH
6896/* Find field with name NAME in object of type TYPE. If found,
6897 set the following for each argument that is non-null:
6898 - *FIELD_TYPE_P to the field's type;
6899 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6900 an object of that type;
6901 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6902 - *BIT_SIZE_P to its size in bits if the field is packed, and
6903 0 otherwise;
6904 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6905 fields up to but not including the desired field, or by the total
6906 number of fields if not found. A NULL value of NAME never
6907 matches; the function just counts visible fields in this case.
6908
0963b4bd 6909 Returns 1 if found, 0 otherwise. */
52ce6436 6910
4c4b4cd2 6911static int
0d5cff50 6912find_struct_field (const char *name, struct type *type, int offset,
76a01679 6913 struct type **field_type_p,
52ce6436
PH
6914 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6915 int *index_p)
4c4b4cd2
PH
6916{
6917 int i;
6918
61ee279c 6919 type = ada_check_typedef (type);
76a01679 6920
52ce6436
PH
6921 if (field_type_p != NULL)
6922 *field_type_p = NULL;
6923 if (byte_offset_p != NULL)
d5d6fca5 6924 *byte_offset_p = 0;
52ce6436
PH
6925 if (bit_offset_p != NULL)
6926 *bit_offset_p = 0;
6927 if (bit_size_p != NULL)
6928 *bit_size_p = 0;
6929
6930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6931 {
6932 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6933 int fld_offset = offset + bit_pos / 8;
0d5cff50 6934 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6935
4c4b4cd2
PH
6936 if (t_field_name == NULL)
6937 continue;
6938
52ce6436 6939 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6940 {
6941 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6942
52ce6436
PH
6943 if (field_type_p != NULL)
6944 *field_type_p = TYPE_FIELD_TYPE (type, i);
6945 if (byte_offset_p != NULL)
6946 *byte_offset_p = fld_offset;
6947 if (bit_offset_p != NULL)
6948 *bit_offset_p = bit_pos % 8;
6949 if (bit_size_p != NULL)
6950 *bit_size_p = bit_size;
76a01679
JB
6951 return 1;
6952 }
4c4b4cd2
PH
6953 else if (ada_is_wrapper_field (type, i))
6954 {
52ce6436
PH
6955 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6956 field_type_p, byte_offset_p, bit_offset_p,
6957 bit_size_p, index_p))
76a01679
JB
6958 return 1;
6959 }
4c4b4cd2
PH
6960 else if (ada_is_variant_part (type, i))
6961 {
52ce6436
PH
6962 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6963 fixed type?? */
4c4b4cd2 6964 int j;
52ce6436
PH
6965 struct type *field_type
6966 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6967
52ce6436 6968 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6969 {
76a01679
JB
6970 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6971 fld_offset
6972 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6973 field_type_p, byte_offset_p,
52ce6436 6974 bit_offset_p, bit_size_p, index_p))
76a01679 6975 return 1;
4c4b4cd2
PH
6976 }
6977 }
52ce6436
PH
6978 else if (index_p != NULL)
6979 *index_p += 1;
4c4b4cd2
PH
6980 }
6981 return 0;
6982}
6983
0963b4bd 6984/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6985
52ce6436
PH
6986static int
6987num_visible_fields (struct type *type)
6988{
6989 int n;
5b4ee69b 6990
52ce6436
PH
6991 n = 0;
6992 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6993 return n;
6994}
14f9c5c9 6995
4c4b4cd2 6996/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6997 and search in it assuming it has (class) type TYPE.
6998 If found, return value, else return NULL.
6999
4c4b4cd2 7000 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7001
4c4b4cd2 7002static struct value *
d2e4a39e 7003ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 7004 struct type *type)
14f9c5c9
AS
7005{
7006 int i;
14f9c5c9 7007
5b4ee69b 7008 type = ada_check_typedef (type);
52ce6436 7009 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7010 {
0d5cff50 7011 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7012
7013 if (t_field_name == NULL)
4c4b4cd2 7014 continue;
14f9c5c9
AS
7015
7016 else if (field_name_match (t_field_name, name))
4c4b4cd2 7017 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7018
7019 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7020 {
0963b4bd 7021 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7022 ada_search_struct_field (name, arg,
7023 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7024 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7025
4c4b4cd2
PH
7026 if (v != NULL)
7027 return v;
7028 }
14f9c5c9
AS
7029
7030 else if (ada_is_variant_part (type, i))
4c4b4cd2 7031 {
0963b4bd 7032 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7033 int j;
5b4ee69b
MS
7034 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7035 i));
4c4b4cd2
PH
7036 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7037
52ce6436 7038 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7039 {
0963b4bd
MS
7040 struct value *v = ada_search_struct_field /* Force line
7041 break. */
06d5cf63
JB
7042 (name, arg,
7043 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7044 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7045
4c4b4cd2
PH
7046 if (v != NULL)
7047 return v;
7048 }
7049 }
14f9c5c9
AS
7050 }
7051 return NULL;
7052}
d2e4a39e 7053
52ce6436
PH
7054static struct value *ada_index_struct_field_1 (int *, struct value *,
7055 int, struct type *);
7056
7057
7058/* Return field #INDEX in ARG, where the index is that returned by
7059 * find_struct_field through its INDEX_P argument. Adjust the address
7060 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7061 * If found, return value, else return NULL. */
52ce6436
PH
7062
7063static struct value *
7064ada_index_struct_field (int index, struct value *arg, int offset,
7065 struct type *type)
7066{
7067 return ada_index_struct_field_1 (&index, arg, offset, type);
7068}
7069
7070
7071/* Auxiliary function for ada_index_struct_field. Like
7072 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7073 * *INDEX_P. */
52ce6436
PH
7074
7075static struct value *
7076ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7077 struct type *type)
7078{
7079 int i;
7080 type = ada_check_typedef (type);
7081
7082 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7083 {
7084 if (TYPE_FIELD_NAME (type, i) == NULL)
7085 continue;
7086 else if (ada_is_wrapper_field (type, i))
7087 {
0963b4bd 7088 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7089 ada_index_struct_field_1 (index_p, arg,
7090 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7091 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7092
52ce6436
PH
7093 if (v != NULL)
7094 return v;
7095 }
7096
7097 else if (ada_is_variant_part (type, i))
7098 {
7099 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7100 find_struct_field. */
52ce6436
PH
7101 error (_("Cannot assign this kind of variant record"));
7102 }
7103 else if (*index_p == 0)
7104 return ada_value_primitive_field (arg, offset, i, type);
7105 else
7106 *index_p -= 1;
7107 }
7108 return NULL;
7109}
7110
4c4b4cd2
PH
7111/* Given ARG, a value of type (pointer or reference to a)*
7112 structure/union, extract the component named NAME from the ultimate
7113 target structure/union and return it as a value with its
f5938064 7114 appropriate type.
14f9c5c9 7115
4c4b4cd2
PH
7116 The routine searches for NAME among all members of the structure itself
7117 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7118 (e.g., '_parent').
7119
03ee6b2e
PH
7120 If NO_ERR, then simply return NULL in case of error, rather than
7121 calling error. */
14f9c5c9 7122
d2e4a39e 7123struct value *
03ee6b2e 7124ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7125{
4c4b4cd2 7126 struct type *t, *t1;
d2e4a39e 7127 struct value *v;
14f9c5c9 7128
4c4b4cd2 7129 v = NULL;
df407dfe 7130 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7131 if (TYPE_CODE (t) == TYPE_CODE_REF)
7132 {
7133 t1 = TYPE_TARGET_TYPE (t);
7134 if (t1 == NULL)
03ee6b2e 7135 goto BadValue;
61ee279c 7136 t1 = ada_check_typedef (t1);
4c4b4cd2 7137 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7138 {
994b9211 7139 arg = coerce_ref (arg);
76a01679
JB
7140 t = t1;
7141 }
4c4b4cd2 7142 }
14f9c5c9 7143
4c4b4cd2
PH
7144 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7145 {
7146 t1 = TYPE_TARGET_TYPE (t);
7147 if (t1 == NULL)
03ee6b2e 7148 goto BadValue;
61ee279c 7149 t1 = ada_check_typedef (t1);
4c4b4cd2 7150 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7151 {
7152 arg = value_ind (arg);
7153 t = t1;
7154 }
4c4b4cd2 7155 else
76a01679 7156 break;
4c4b4cd2 7157 }
14f9c5c9 7158
4c4b4cd2 7159 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7160 goto BadValue;
14f9c5c9 7161
4c4b4cd2
PH
7162 if (t1 == t)
7163 v = ada_search_struct_field (name, arg, 0, t);
7164 else
7165 {
7166 int bit_offset, bit_size, byte_offset;
7167 struct type *field_type;
7168 CORE_ADDR address;
7169
76a01679 7170 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7171 address = value_address (ada_value_ind (arg));
4c4b4cd2 7172 else
b50d69b5 7173 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7174
1ed6ede0 7175 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7176 if (find_struct_field (name, t1, 0,
7177 &field_type, &byte_offset, &bit_offset,
52ce6436 7178 &bit_size, NULL))
76a01679
JB
7179 {
7180 if (bit_size != 0)
7181 {
714e53ab
PH
7182 if (TYPE_CODE (t) == TYPE_CODE_REF)
7183 arg = ada_coerce_ref (arg);
7184 else
7185 arg = ada_value_ind (arg);
76a01679
JB
7186 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7187 bit_offset, bit_size,
7188 field_type);
7189 }
7190 else
f5938064 7191 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7192 }
7193 }
7194
03ee6b2e
PH
7195 if (v != NULL || no_err)
7196 return v;
7197 else
323e0a4a 7198 error (_("There is no member named %s."), name);
14f9c5c9 7199
03ee6b2e
PH
7200 BadValue:
7201 if (no_err)
7202 return NULL;
7203 else
0963b4bd
MS
7204 error (_("Attempt to extract a component of "
7205 "a value that is not a record."));
14f9c5c9
AS
7206}
7207
7208/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7209 If DISPP is non-null, add its byte displacement from the beginning of a
7210 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7211 work for packed fields).
7212
7213 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7214 followed by "___".
14f9c5c9 7215
0963b4bd 7216 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7217 be a (pointer or reference)+ to a struct or union, and the
7218 ultimate target type will be searched.
14f9c5c9
AS
7219
7220 Looks recursively into variant clauses and parent types.
7221
4c4b4cd2
PH
7222 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7223 TYPE is not a type of the right kind. */
14f9c5c9 7224
4c4b4cd2 7225static struct type *
76a01679
JB
7226ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7227 int noerr, int *dispp)
14f9c5c9
AS
7228{
7229 int i;
7230
7231 if (name == NULL)
7232 goto BadName;
7233
76a01679 7234 if (refok && type != NULL)
4c4b4cd2
PH
7235 while (1)
7236 {
61ee279c 7237 type = ada_check_typedef (type);
76a01679
JB
7238 if (TYPE_CODE (type) != TYPE_CODE_PTR
7239 && TYPE_CODE (type) != TYPE_CODE_REF)
7240 break;
7241 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7242 }
14f9c5c9 7243
76a01679 7244 if (type == NULL
1265e4aa
JB
7245 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7246 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7247 {
4c4b4cd2 7248 if (noerr)
76a01679 7249 return NULL;
4c4b4cd2 7250 else
76a01679
JB
7251 {
7252 target_terminal_ours ();
7253 gdb_flush (gdb_stdout);
323e0a4a
AC
7254 if (type == NULL)
7255 error (_("Type (null) is not a structure or union type"));
7256 else
7257 {
7258 /* XXX: type_sprint */
7259 fprintf_unfiltered (gdb_stderr, _("Type "));
7260 type_print (type, "", gdb_stderr, -1);
7261 error (_(" is not a structure or union type"));
7262 }
76a01679 7263 }
14f9c5c9
AS
7264 }
7265
7266 type = to_static_fixed_type (type);
7267
7268 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7269 {
0d5cff50 7270 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7271 struct type *t;
7272 int disp;
d2e4a39e 7273
14f9c5c9 7274 if (t_field_name == NULL)
4c4b4cd2 7275 continue;
14f9c5c9
AS
7276
7277 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7278 {
7279 if (dispp != NULL)
7280 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7281 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7282 }
14f9c5c9
AS
7283
7284 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7285 {
7286 disp = 0;
7287 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7288 0, 1, &disp);
7289 if (t != NULL)
7290 {
7291 if (dispp != NULL)
7292 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7293 return t;
7294 }
7295 }
14f9c5c9
AS
7296
7297 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7298 {
7299 int j;
5b4ee69b
MS
7300 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7301 i));
4c4b4cd2
PH
7302
7303 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7304 {
b1f33ddd
JB
7305 /* FIXME pnh 2008/01/26: We check for a field that is
7306 NOT wrapped in a struct, since the compiler sometimes
7307 generates these for unchecked variant types. Revisit
0963b4bd 7308 if the compiler changes this practice. */
0d5cff50 7309 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7310 disp = 0;
b1f33ddd
JB
7311 if (v_field_name != NULL
7312 && field_name_match (v_field_name, name))
7313 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7314 else
0963b4bd
MS
7315 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7316 j),
b1f33ddd
JB
7317 name, 0, 1, &disp);
7318
4c4b4cd2
PH
7319 if (t != NULL)
7320 {
7321 if (dispp != NULL)
7322 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7323 return t;
7324 }
7325 }
7326 }
14f9c5c9
AS
7327
7328 }
7329
7330BadName:
d2e4a39e 7331 if (!noerr)
14f9c5c9
AS
7332 {
7333 target_terminal_ours ();
7334 gdb_flush (gdb_stdout);
323e0a4a
AC
7335 if (name == NULL)
7336 {
7337 /* XXX: type_sprint */
7338 fprintf_unfiltered (gdb_stderr, _("Type "));
7339 type_print (type, "", gdb_stderr, -1);
7340 error (_(" has no component named <null>"));
7341 }
7342 else
7343 {
7344 /* XXX: type_sprint */
7345 fprintf_unfiltered (gdb_stderr, _("Type "));
7346 type_print (type, "", gdb_stderr, -1);
7347 error (_(" has no component named %s"), name);
7348 }
14f9c5c9
AS
7349 }
7350
7351 return NULL;
7352}
7353
b1f33ddd
JB
7354/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7355 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7356 represents an unchecked union (that is, the variant part of a
0963b4bd 7357 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7358
7359static int
7360is_unchecked_variant (struct type *var_type, struct type *outer_type)
7361{
7362 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7363
b1f33ddd
JB
7364 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7365 == NULL);
7366}
7367
7368
14f9c5c9
AS
7369/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7370 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7371 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7372 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7373
d2e4a39e 7374int
ebf56fd3 7375ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7376 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7377{
7378 int others_clause;
7379 int i;
d2e4a39e 7380 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7381 struct value *outer;
7382 struct value *discrim;
14f9c5c9
AS
7383 LONGEST discrim_val;
7384
012370f6
TT
7385 /* Using plain value_from_contents_and_address here causes problems
7386 because we will end up trying to resolve a type that is currently
7387 being constructed. */
7388 outer = value_from_contents_and_address_unresolved (outer_type,
7389 outer_valaddr, 0);
0c281816
JB
7390 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7391 if (discrim == NULL)
14f9c5c9 7392 return -1;
0c281816 7393 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7394
7395 others_clause = -1;
7396 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7397 {
7398 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7399 others_clause = i;
14f9c5c9 7400 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7401 return i;
14f9c5c9
AS
7402 }
7403
7404 return others_clause;
7405}
d2e4a39e 7406\f
14f9c5c9
AS
7407
7408
4c4b4cd2 7409 /* Dynamic-Sized Records */
14f9c5c9
AS
7410
7411/* Strategy: The type ostensibly attached to a value with dynamic size
7412 (i.e., a size that is not statically recorded in the debugging
7413 data) does not accurately reflect the size or layout of the value.
7414 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7415 conventional types that are constructed on the fly. */
14f9c5c9
AS
7416
7417/* There is a subtle and tricky problem here. In general, we cannot
7418 determine the size of dynamic records without its data. However,
7419 the 'struct value' data structure, which GDB uses to represent
7420 quantities in the inferior process (the target), requires the size
7421 of the type at the time of its allocation in order to reserve space
7422 for GDB's internal copy of the data. That's why the
7423 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7424 rather than struct value*s.
14f9c5c9
AS
7425
7426 However, GDB's internal history variables ($1, $2, etc.) are
7427 struct value*s containing internal copies of the data that are not, in
7428 general, the same as the data at their corresponding addresses in
7429 the target. Fortunately, the types we give to these values are all
7430 conventional, fixed-size types (as per the strategy described
7431 above), so that we don't usually have to perform the
7432 'to_fixed_xxx_type' conversions to look at their values.
7433 Unfortunately, there is one exception: if one of the internal
7434 history variables is an array whose elements are unconstrained
7435 records, then we will need to create distinct fixed types for each
7436 element selected. */
7437
7438/* The upshot of all of this is that many routines take a (type, host
7439 address, target address) triple as arguments to represent a value.
7440 The host address, if non-null, is supposed to contain an internal
7441 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7442 target at the target address. */
14f9c5c9
AS
7443
7444/* Assuming that VAL0 represents a pointer value, the result of
7445 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7446 dynamic-sized types. */
14f9c5c9 7447
d2e4a39e
AS
7448struct value *
7449ada_value_ind (struct value *val0)
14f9c5c9 7450{
c48db5ca 7451 struct value *val = value_ind (val0);
5b4ee69b 7452
b50d69b5
JG
7453 if (ada_is_tagged_type (value_type (val), 0))
7454 val = ada_tag_value_at_base_address (val);
7455
4c4b4cd2 7456 return ada_to_fixed_value (val);
14f9c5c9
AS
7457}
7458
7459/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7460 qualifiers on VAL0. */
7461
d2e4a39e
AS
7462static struct value *
7463ada_coerce_ref (struct value *val0)
7464{
df407dfe 7465 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7466 {
7467 struct value *val = val0;
5b4ee69b 7468
994b9211 7469 val = coerce_ref (val);
b50d69b5
JG
7470
7471 if (ada_is_tagged_type (value_type (val), 0))
7472 val = ada_tag_value_at_base_address (val);
7473
4c4b4cd2 7474 return ada_to_fixed_value (val);
d2e4a39e
AS
7475 }
7476 else
14f9c5c9
AS
7477 return val0;
7478}
7479
7480/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7481 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7482
7483static unsigned int
ebf56fd3 7484align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7485{
7486 return (off + alignment - 1) & ~(alignment - 1);
7487}
7488
4c4b4cd2 7489/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7490
7491static unsigned int
ebf56fd3 7492field_alignment (struct type *type, int f)
14f9c5c9 7493{
d2e4a39e 7494 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7495 int len;
14f9c5c9
AS
7496 int align_offset;
7497
64a1bf19
JB
7498 /* The field name should never be null, unless the debugging information
7499 is somehow malformed. In this case, we assume the field does not
7500 require any alignment. */
7501 if (name == NULL)
7502 return 1;
7503
7504 len = strlen (name);
7505
4c4b4cd2
PH
7506 if (!isdigit (name[len - 1]))
7507 return 1;
14f9c5c9 7508
d2e4a39e 7509 if (isdigit (name[len - 2]))
14f9c5c9
AS
7510 align_offset = len - 2;
7511 else
7512 align_offset = len - 1;
7513
4c4b4cd2 7514 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7515 return TARGET_CHAR_BIT;
7516
4c4b4cd2
PH
7517 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7518}
7519
852dff6c 7520/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7521
852dff6c
JB
7522static struct symbol *
7523ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7524{
7525 struct symbol *sym;
7526
7527 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7528 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7529 return sym;
7530
4186eb54
KS
7531 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7532 return sym;
14f9c5c9
AS
7533}
7534
dddfab26
UW
7535/* Find a type named NAME. Ignores ambiguity. This routine will look
7536 solely for types defined by debug info, it will not search the GDB
7537 primitive types. */
4c4b4cd2 7538
852dff6c 7539static struct type *
ebf56fd3 7540ada_find_any_type (const char *name)
14f9c5c9 7541{
852dff6c 7542 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7543
14f9c5c9 7544 if (sym != NULL)
dddfab26 7545 return SYMBOL_TYPE (sym);
14f9c5c9 7546
dddfab26 7547 return NULL;
14f9c5c9
AS
7548}
7549
739593e0
JB
7550/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7551 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7552 symbol, in which case it is returned. Otherwise, this looks for
7553 symbols whose name is that of NAME_SYM suffixed with "___XR".
7554 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7555
7556struct symbol *
270140bd 7557ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7558{
739593e0 7559 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7560 struct symbol *sym;
7561
739593e0
JB
7562 if (strstr (name, "___XR") != NULL)
7563 return name_sym;
7564
aeb5907d
JB
7565 sym = find_old_style_renaming_symbol (name, block);
7566
7567 if (sym != NULL)
7568 return sym;
7569
0963b4bd 7570 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7571 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7572 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7573 return sym;
7574 else
7575 return NULL;
7576}
7577
7578static struct symbol *
270140bd 7579find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7580{
7f0df278 7581 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7582 char *rename;
7583
7584 if (function_sym != NULL)
7585 {
7586 /* If the symbol is defined inside a function, NAME is not fully
7587 qualified. This means we need to prepend the function name
7588 as well as adding the ``___XR'' suffix to build the name of
7589 the associated renaming symbol. */
0d5cff50 7590 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7591 /* Function names sometimes contain suffixes used
7592 for instance to qualify nested subprograms. When building
7593 the XR type name, we need to make sure that this suffix is
7594 not included. So do not include any suffix in the function
7595 name length below. */
69fadcdf 7596 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7597 const int rename_len = function_name_len + 2 /* "__" */
7598 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7599
529cad9c 7600 /* Strip the suffix if necessary. */
69fadcdf
JB
7601 ada_remove_trailing_digits (function_name, &function_name_len);
7602 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7603 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7604
4c4b4cd2
PH
7605 /* Library-level functions are a special case, as GNAT adds
7606 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7607 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7608 have this prefix, so we need to skip this prefix if present. */
7609 if (function_name_len > 5 /* "_ada_" */
7610 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7611 {
7612 function_name += 5;
7613 function_name_len -= 5;
7614 }
4c4b4cd2
PH
7615
7616 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7617 strncpy (rename, function_name, function_name_len);
7618 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7619 "__%s___XR", name);
4c4b4cd2
PH
7620 }
7621 else
7622 {
7623 const int rename_len = strlen (name) + 6;
5b4ee69b 7624
4c4b4cd2 7625 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7626 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7627 }
7628
852dff6c 7629 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7630}
7631
14f9c5c9 7632/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7633 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7634 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7635 otherwise return 0. */
7636
14f9c5c9 7637int
d2e4a39e 7638ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7639{
7640 if (type1 == NULL)
7641 return 1;
7642 else if (type0 == NULL)
7643 return 0;
7644 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7645 return 1;
7646 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7647 return 0;
4c4b4cd2
PH
7648 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7649 return 1;
ad82864c 7650 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7651 return 1;
4c4b4cd2
PH
7652 else if (ada_is_array_descriptor_type (type0)
7653 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7654 return 1;
aeb5907d
JB
7655 else
7656 {
7657 const char *type0_name = type_name_no_tag (type0);
7658 const char *type1_name = type_name_no_tag (type1);
7659
7660 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7661 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7662 return 1;
7663 }
14f9c5c9
AS
7664 return 0;
7665}
7666
7667/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7668 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7669
0d5cff50 7670const char *
d2e4a39e 7671ada_type_name (struct type *type)
14f9c5c9 7672{
d2e4a39e 7673 if (type == NULL)
14f9c5c9
AS
7674 return NULL;
7675 else if (TYPE_NAME (type) != NULL)
7676 return TYPE_NAME (type);
7677 else
7678 return TYPE_TAG_NAME (type);
7679}
7680
b4ba55a1
JB
7681/* Search the list of "descriptive" types associated to TYPE for a type
7682 whose name is NAME. */
7683
7684static struct type *
7685find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7686{
7687 struct type *result;
7688
c6044dd1
JB
7689 if (ada_ignore_descriptive_types_p)
7690 return NULL;
7691
b4ba55a1
JB
7692 /* If there no descriptive-type info, then there is no parallel type
7693 to be found. */
7694 if (!HAVE_GNAT_AUX_INFO (type))
7695 return NULL;
7696
7697 result = TYPE_DESCRIPTIVE_TYPE (type);
7698 while (result != NULL)
7699 {
0d5cff50 7700 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7701
7702 if (result_name == NULL)
7703 {
7704 warning (_("unexpected null name on descriptive type"));
7705 return NULL;
7706 }
7707
7708 /* If the names match, stop. */
7709 if (strcmp (result_name, name) == 0)
7710 break;
7711
7712 /* Otherwise, look at the next item on the list, if any. */
7713 if (HAVE_GNAT_AUX_INFO (result))
7714 result = TYPE_DESCRIPTIVE_TYPE (result);
7715 else
7716 result = NULL;
7717 }
7718
7719 /* If we didn't find a match, see whether this is a packed array. With
7720 older compilers, the descriptive type information is either absent or
7721 irrelevant when it comes to packed arrays so the above lookup fails.
7722 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7723 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7724 return ada_find_any_type (name);
7725
7726 return result;
7727}
7728
7729/* Find a parallel type to TYPE with the specified NAME, using the
7730 descriptive type taken from the debugging information, if available,
7731 and otherwise using the (slower) name-based method. */
7732
7733static struct type *
7734ada_find_parallel_type_with_name (struct type *type, const char *name)
7735{
7736 struct type *result = NULL;
7737
7738 if (HAVE_GNAT_AUX_INFO (type))
7739 result = find_parallel_type_by_descriptive_type (type, name);
7740 else
7741 result = ada_find_any_type (name);
7742
7743 return result;
7744}
7745
7746/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7747 SUFFIX to the name of TYPE. */
14f9c5c9 7748
d2e4a39e 7749struct type *
ebf56fd3 7750ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7751{
0d5cff50
DE
7752 char *name;
7753 const char *typename = ada_type_name (type);
14f9c5c9 7754 int len;
d2e4a39e 7755
14f9c5c9
AS
7756 if (typename == NULL)
7757 return NULL;
7758
7759 len = strlen (typename);
7760
b4ba55a1 7761 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7762
7763 strcpy (name, typename);
7764 strcpy (name + len, suffix);
7765
b4ba55a1 7766 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7767}
7768
14f9c5c9 7769/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7770 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7771
d2e4a39e
AS
7772static struct type *
7773dynamic_template_type (struct type *type)
14f9c5c9 7774{
61ee279c 7775 type = ada_check_typedef (type);
14f9c5c9
AS
7776
7777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7778 || ada_type_name (type) == NULL)
14f9c5c9 7779 return NULL;
d2e4a39e 7780 else
14f9c5c9
AS
7781 {
7782 int len = strlen (ada_type_name (type));
5b4ee69b 7783
4c4b4cd2
PH
7784 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7785 return type;
14f9c5c9 7786 else
4c4b4cd2 7787 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7788 }
7789}
7790
7791/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7792 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7793
d2e4a39e
AS
7794static int
7795is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7796{
7797 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7798
d2e4a39e 7799 return name != NULL
14f9c5c9
AS
7800 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7801 && strstr (name, "___XVL") != NULL;
7802}
7803
4c4b4cd2
PH
7804/* The index of the variant field of TYPE, or -1 if TYPE does not
7805 represent a variant record type. */
14f9c5c9 7806
d2e4a39e 7807static int
4c4b4cd2 7808variant_field_index (struct type *type)
14f9c5c9
AS
7809{
7810 int f;
7811
4c4b4cd2
PH
7812 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7813 return -1;
7814
7815 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7816 {
7817 if (ada_is_variant_part (type, f))
7818 return f;
7819 }
7820 return -1;
14f9c5c9
AS
7821}
7822
4c4b4cd2
PH
7823/* A record type with no fields. */
7824
d2e4a39e 7825static struct type *
e9bb382b 7826empty_record (struct type *template)
14f9c5c9 7827{
e9bb382b 7828 struct type *type = alloc_type_copy (template);
5b4ee69b 7829
14f9c5c9
AS
7830 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7831 TYPE_NFIELDS (type) = 0;
7832 TYPE_FIELDS (type) = NULL;
b1f33ddd 7833 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7834 TYPE_NAME (type) = "<empty>";
7835 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7836 TYPE_LENGTH (type) = 0;
7837 return type;
7838}
7839
7840/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7841 the value of type TYPE at VALADDR or ADDRESS (see comments at
7842 the beginning of this section) VAL according to GNAT conventions.
7843 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7844 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7845 an outer-level type (i.e., as opposed to a branch of a variant.) A
7846 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7847 of the variant.
14f9c5c9 7848
4c4b4cd2
PH
7849 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7850 length are not statically known are discarded. As a consequence,
7851 VALADDR, ADDRESS and DVAL0 are ignored.
7852
7853 NOTE: Limitations: For now, we assume that dynamic fields and
7854 variants occupy whole numbers of bytes. However, they need not be
7855 byte-aligned. */
7856
7857struct type *
10a2c479 7858ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7859 const gdb_byte *valaddr,
4c4b4cd2
PH
7860 CORE_ADDR address, struct value *dval0,
7861 int keep_dynamic_fields)
14f9c5c9 7862{
d2e4a39e
AS
7863 struct value *mark = value_mark ();
7864 struct value *dval;
7865 struct type *rtype;
14f9c5c9 7866 int nfields, bit_len;
4c4b4cd2 7867 int variant_field;
14f9c5c9 7868 long off;
d94e4f4f 7869 int fld_bit_len;
14f9c5c9
AS
7870 int f;
7871
4c4b4cd2
PH
7872 /* Compute the number of fields in this record type that are going
7873 to be processed: unless keep_dynamic_fields, this includes only
7874 fields whose position and length are static will be processed. */
7875 if (keep_dynamic_fields)
7876 nfields = TYPE_NFIELDS (type);
7877 else
7878 {
7879 nfields = 0;
76a01679 7880 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7881 && !ada_is_variant_part (type, nfields)
7882 && !is_dynamic_field (type, nfields))
7883 nfields++;
7884 }
7885
e9bb382b 7886 rtype = alloc_type_copy (type);
14f9c5c9
AS
7887 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7888 INIT_CPLUS_SPECIFIC (rtype);
7889 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7890 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7891 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7892 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7893 TYPE_NAME (rtype) = ada_type_name (type);
7894 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7895 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7896
d2e4a39e
AS
7897 off = 0;
7898 bit_len = 0;
4c4b4cd2
PH
7899 variant_field = -1;
7900
14f9c5c9
AS
7901 for (f = 0; f < nfields; f += 1)
7902 {
6c038f32
PH
7903 off = align_value (off, field_alignment (type, f))
7904 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7905 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7906 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7907
d2e4a39e 7908 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7909 {
7910 variant_field = f;
d94e4f4f 7911 fld_bit_len = 0;
4c4b4cd2 7912 }
14f9c5c9 7913 else if (is_dynamic_field (type, f))
4c4b4cd2 7914 {
284614f0
JB
7915 const gdb_byte *field_valaddr = valaddr;
7916 CORE_ADDR field_address = address;
7917 struct type *field_type =
7918 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7919
4c4b4cd2 7920 if (dval0 == NULL)
b5304971
JG
7921 {
7922 /* rtype's length is computed based on the run-time
7923 value of discriminants. If the discriminants are not
7924 initialized, the type size may be completely bogus and
0963b4bd 7925 GDB may fail to allocate a value for it. So check the
b5304971 7926 size first before creating the value. */
c1b5a1a6 7927 ada_ensure_varsize_limit (rtype);
012370f6
TT
7928 /* Using plain value_from_contents_and_address here
7929 causes problems because we will end up trying to
7930 resolve a type that is currently being
7931 constructed. */
7932 dval = value_from_contents_and_address_unresolved (rtype,
7933 valaddr,
7934 address);
9f1f738a 7935 rtype = value_type (dval);
b5304971 7936 }
4c4b4cd2
PH
7937 else
7938 dval = dval0;
7939
284614f0
JB
7940 /* If the type referenced by this field is an aligner type, we need
7941 to unwrap that aligner type, because its size might not be set.
7942 Keeping the aligner type would cause us to compute the wrong
7943 size for this field, impacting the offset of the all the fields
7944 that follow this one. */
7945 if (ada_is_aligner_type (field_type))
7946 {
7947 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7948
7949 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7950 field_address = cond_offset_target (field_address, field_offset);
7951 field_type = ada_aligned_type (field_type);
7952 }
7953
7954 field_valaddr = cond_offset_host (field_valaddr,
7955 off / TARGET_CHAR_BIT);
7956 field_address = cond_offset_target (field_address,
7957 off / TARGET_CHAR_BIT);
7958
7959 /* Get the fixed type of the field. Note that, in this case,
7960 we do not want to get the real type out of the tag: if
7961 the current field is the parent part of a tagged record,
7962 we will get the tag of the object. Clearly wrong: the real
7963 type of the parent is not the real type of the child. We
7964 would end up in an infinite loop. */
7965 field_type = ada_get_base_type (field_type);
7966 field_type = ada_to_fixed_type (field_type, field_valaddr,
7967 field_address, dval, 0);
27f2a97b
JB
7968 /* If the field size is already larger than the maximum
7969 object size, then the record itself will necessarily
7970 be larger than the maximum object size. We need to make
7971 this check now, because the size might be so ridiculously
7972 large (due to an uninitialized variable in the inferior)
7973 that it would cause an overflow when adding it to the
7974 record size. */
c1b5a1a6 7975 ada_ensure_varsize_limit (field_type);
284614f0
JB
7976
7977 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7978 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7979 /* The multiplication can potentially overflow. But because
7980 the field length has been size-checked just above, and
7981 assuming that the maximum size is a reasonable value,
7982 an overflow should not happen in practice. So rather than
7983 adding overflow recovery code to this already complex code,
7984 we just assume that it's not going to happen. */
d94e4f4f 7985 fld_bit_len =
4c4b4cd2
PH
7986 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7987 }
14f9c5c9 7988 else
4c4b4cd2 7989 {
5ded5331
JB
7990 /* Note: If this field's type is a typedef, it is important
7991 to preserve the typedef layer.
7992
7993 Otherwise, we might be transforming a typedef to a fat
7994 pointer (encoding a pointer to an unconstrained array),
7995 into a basic fat pointer (encoding an unconstrained
7996 array). As both types are implemented using the same
7997 structure, the typedef is the only clue which allows us
7998 to distinguish between the two options. Stripping it
7999 would prevent us from printing this field appropriately. */
8000 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8001 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8002 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8003 fld_bit_len =
4c4b4cd2
PH
8004 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8005 else
5ded5331
JB
8006 {
8007 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8008
8009 /* We need to be careful of typedefs when computing
8010 the length of our field. If this is a typedef,
8011 get the length of the target type, not the length
8012 of the typedef. */
8013 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8014 field_type = ada_typedef_target_type (field_type);
8015
8016 fld_bit_len =
8017 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8018 }
4c4b4cd2 8019 }
14f9c5c9 8020 if (off + fld_bit_len > bit_len)
4c4b4cd2 8021 bit_len = off + fld_bit_len;
d94e4f4f 8022 off += fld_bit_len;
4c4b4cd2
PH
8023 TYPE_LENGTH (rtype) =
8024 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8025 }
4c4b4cd2
PH
8026
8027 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8028 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8029 the record. This can happen in the presence of representation
8030 clauses. */
8031 if (variant_field >= 0)
8032 {
8033 struct type *branch_type;
8034
8035 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8036
8037 if (dval0 == NULL)
9f1f738a 8038 {
012370f6
TT
8039 /* Using plain value_from_contents_and_address here causes
8040 problems because we will end up trying to resolve a type
8041 that is currently being constructed. */
8042 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8043 address);
9f1f738a
SA
8044 rtype = value_type (dval);
8045 }
4c4b4cd2
PH
8046 else
8047 dval = dval0;
8048
8049 branch_type =
8050 to_fixed_variant_branch_type
8051 (TYPE_FIELD_TYPE (type, variant_field),
8052 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8053 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8054 if (branch_type == NULL)
8055 {
8056 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8057 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8058 TYPE_NFIELDS (rtype) -= 1;
8059 }
8060 else
8061 {
8062 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8063 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8064 fld_bit_len =
8065 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8066 TARGET_CHAR_BIT;
8067 if (off + fld_bit_len > bit_len)
8068 bit_len = off + fld_bit_len;
8069 TYPE_LENGTH (rtype) =
8070 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8071 }
8072 }
8073
714e53ab
PH
8074 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8075 should contain the alignment of that record, which should be a strictly
8076 positive value. If null or negative, then something is wrong, most
8077 probably in the debug info. In that case, we don't round up the size
0963b4bd 8078 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8079 the current RTYPE length might be good enough for our purposes. */
8080 if (TYPE_LENGTH (type) <= 0)
8081 {
323e0a4a
AC
8082 if (TYPE_NAME (rtype))
8083 warning (_("Invalid type size for `%s' detected: %d."),
8084 TYPE_NAME (rtype), TYPE_LENGTH (type));
8085 else
8086 warning (_("Invalid type size for <unnamed> detected: %d."),
8087 TYPE_LENGTH (type));
714e53ab
PH
8088 }
8089 else
8090 {
8091 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8092 TYPE_LENGTH (type));
8093 }
14f9c5c9
AS
8094
8095 value_free_to_mark (mark);
d2e4a39e 8096 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8097 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8098 return rtype;
8099}
8100
4c4b4cd2
PH
8101/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8102 of 1. */
14f9c5c9 8103
d2e4a39e 8104static struct type *
fc1a4b47 8105template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8106 CORE_ADDR address, struct value *dval0)
8107{
8108 return ada_template_to_fixed_record_type_1 (type, valaddr,
8109 address, dval0, 1);
8110}
8111
8112/* An ordinary record type in which ___XVL-convention fields and
8113 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8114 static approximations, containing all possible fields. Uses
8115 no runtime values. Useless for use in values, but that's OK,
8116 since the results are used only for type determinations. Works on both
8117 structs and unions. Representation note: to save space, we memorize
8118 the result of this function in the TYPE_TARGET_TYPE of the
8119 template type. */
8120
8121static struct type *
8122template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8123{
8124 struct type *type;
8125 int nfields;
8126 int f;
8127
4c4b4cd2
PH
8128 if (TYPE_TARGET_TYPE (type0) != NULL)
8129 return TYPE_TARGET_TYPE (type0);
8130
8131 nfields = TYPE_NFIELDS (type0);
8132 type = type0;
14f9c5c9
AS
8133
8134 for (f = 0; f < nfields; f += 1)
8135 {
61ee279c 8136 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8137 struct type *new_type;
14f9c5c9 8138
4c4b4cd2
PH
8139 if (is_dynamic_field (type0, f))
8140 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8141 else
f192137b 8142 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8143 if (type == type0 && new_type != field_type)
8144 {
e9bb382b 8145 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8146 TYPE_CODE (type) = TYPE_CODE (type0);
8147 INIT_CPLUS_SPECIFIC (type);
8148 TYPE_NFIELDS (type) = nfields;
8149 TYPE_FIELDS (type) = (struct field *)
8150 TYPE_ALLOC (type, nfields * sizeof (struct field));
8151 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8152 sizeof (struct field) * nfields);
8153 TYPE_NAME (type) = ada_type_name (type0);
8154 TYPE_TAG_NAME (type) = NULL;
876cecd0 8155 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8156 TYPE_LENGTH (type) = 0;
8157 }
8158 TYPE_FIELD_TYPE (type, f) = new_type;
8159 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8160 }
14f9c5c9
AS
8161 return type;
8162}
8163
4c4b4cd2 8164/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8165 whose address in memory is ADDRESS, returns a revision of TYPE,
8166 which should be a non-dynamic-sized record, in which the variant
8167 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8168 for discriminant values in DVAL0, which can be NULL if the record
8169 contains the necessary discriminant values. */
8170
d2e4a39e 8171static struct type *
fc1a4b47 8172to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8173 CORE_ADDR address, struct value *dval0)
14f9c5c9 8174{
d2e4a39e 8175 struct value *mark = value_mark ();
4c4b4cd2 8176 struct value *dval;
d2e4a39e 8177 struct type *rtype;
14f9c5c9
AS
8178 struct type *branch_type;
8179 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8180 int variant_field = variant_field_index (type);
14f9c5c9 8181
4c4b4cd2 8182 if (variant_field == -1)
14f9c5c9
AS
8183 return type;
8184
4c4b4cd2 8185 if (dval0 == NULL)
9f1f738a
SA
8186 {
8187 dval = value_from_contents_and_address (type, valaddr, address);
8188 type = value_type (dval);
8189 }
4c4b4cd2
PH
8190 else
8191 dval = dval0;
8192
e9bb382b 8193 rtype = alloc_type_copy (type);
14f9c5c9 8194 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8195 INIT_CPLUS_SPECIFIC (rtype);
8196 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8197 TYPE_FIELDS (rtype) =
8198 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8199 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8200 sizeof (struct field) * nfields);
14f9c5c9
AS
8201 TYPE_NAME (rtype) = ada_type_name (type);
8202 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8203 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8204 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8205
4c4b4cd2
PH
8206 branch_type = to_fixed_variant_branch_type
8207 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8208 cond_offset_host (valaddr,
4c4b4cd2
PH
8209 TYPE_FIELD_BITPOS (type, variant_field)
8210 / TARGET_CHAR_BIT),
d2e4a39e 8211 cond_offset_target (address,
4c4b4cd2
PH
8212 TYPE_FIELD_BITPOS (type, variant_field)
8213 / TARGET_CHAR_BIT), dval);
d2e4a39e 8214 if (branch_type == NULL)
14f9c5c9 8215 {
4c4b4cd2 8216 int f;
5b4ee69b 8217
4c4b4cd2
PH
8218 for (f = variant_field + 1; f < nfields; f += 1)
8219 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8220 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8221 }
8222 else
8223 {
4c4b4cd2
PH
8224 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8225 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8226 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8227 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8228 }
4c4b4cd2 8229 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8230
4c4b4cd2 8231 value_free_to_mark (mark);
14f9c5c9
AS
8232 return rtype;
8233}
8234
8235/* An ordinary record type (with fixed-length fields) that describes
8236 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8237 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8238 should be in DVAL, a record value; it may be NULL if the object
8239 at ADDR itself contains any necessary discriminant values.
8240 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8241 values from the record are needed. Except in the case that DVAL,
8242 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8243 unchecked) is replaced by a particular branch of the variant.
8244
8245 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8246 is questionable and may be removed. It can arise during the
8247 processing of an unconstrained-array-of-record type where all the
8248 variant branches have exactly the same size. This is because in
8249 such cases, the compiler does not bother to use the XVS convention
8250 when encoding the record. I am currently dubious of this
8251 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8252
d2e4a39e 8253static struct type *
fc1a4b47 8254to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8255 CORE_ADDR address, struct value *dval)
14f9c5c9 8256{
d2e4a39e 8257 struct type *templ_type;
14f9c5c9 8258
876cecd0 8259 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8260 return type0;
8261
d2e4a39e 8262 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8263
8264 if (templ_type != NULL)
8265 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8266 else if (variant_field_index (type0) >= 0)
8267 {
8268 if (dval == NULL && valaddr == NULL && address == 0)
8269 return type0;
8270 return to_record_with_fixed_variant_part (type0, valaddr, address,
8271 dval);
8272 }
14f9c5c9
AS
8273 else
8274 {
876cecd0 8275 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8276 return type0;
8277 }
8278
8279}
8280
8281/* An ordinary record type (with fixed-length fields) that describes
8282 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8283 union type. Any necessary discriminants' values should be in DVAL,
8284 a record value. That is, this routine selects the appropriate
8285 branch of the union at ADDR according to the discriminant value
b1f33ddd 8286 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8287 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8288
d2e4a39e 8289static struct type *
fc1a4b47 8290to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8291 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8292{
8293 int which;
d2e4a39e
AS
8294 struct type *templ_type;
8295 struct type *var_type;
14f9c5c9
AS
8296
8297 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8298 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8299 else
14f9c5c9
AS
8300 var_type = var_type0;
8301
8302 templ_type = ada_find_parallel_type (var_type, "___XVU");
8303
8304 if (templ_type != NULL)
8305 var_type = templ_type;
8306
b1f33ddd
JB
8307 if (is_unchecked_variant (var_type, value_type (dval)))
8308 return var_type0;
d2e4a39e
AS
8309 which =
8310 ada_which_variant_applies (var_type,
0fd88904 8311 value_type (dval), value_contents (dval));
14f9c5c9
AS
8312
8313 if (which < 0)
e9bb382b 8314 return empty_record (var_type);
14f9c5c9 8315 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8316 return to_fixed_record_type
d2e4a39e
AS
8317 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8318 valaddr, address, dval);
4c4b4cd2 8319 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8320 return
8321 to_fixed_record_type
8322 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8323 else
8324 return TYPE_FIELD_TYPE (var_type, which);
8325}
8326
8908fca5
JB
8327/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8328 ENCODING_TYPE, a type following the GNAT conventions for discrete
8329 type encodings, only carries redundant information. */
8330
8331static int
8332ada_is_redundant_range_encoding (struct type *range_type,
8333 struct type *encoding_type)
8334{
8335 struct type *fixed_range_type;
8336 char *bounds_str;
8337 int n;
8338 LONGEST lo, hi;
8339
8340 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8341
005e2509
JB
8342 if (TYPE_CODE (get_base_type (range_type))
8343 != TYPE_CODE (get_base_type (encoding_type)))
8344 {
8345 /* The compiler probably used a simple base type to describe
8346 the range type instead of the range's actual base type,
8347 expecting us to get the real base type from the encoding
8348 anyway. In this situation, the encoding cannot be ignored
8349 as redundant. */
8350 return 0;
8351 }
8352
8908fca5
JB
8353 if (is_dynamic_type (range_type))
8354 return 0;
8355
8356 if (TYPE_NAME (encoding_type) == NULL)
8357 return 0;
8358
8359 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8360 if (bounds_str == NULL)
8361 return 0;
8362
8363 n = 8; /* Skip "___XDLU_". */
8364 if (!ada_scan_number (bounds_str, n, &lo, &n))
8365 return 0;
8366 if (TYPE_LOW_BOUND (range_type) != lo)
8367 return 0;
8368
8369 n += 2; /* Skip the "__" separator between the two bounds. */
8370 if (!ada_scan_number (bounds_str, n, &hi, &n))
8371 return 0;
8372 if (TYPE_HIGH_BOUND (range_type) != hi)
8373 return 0;
8374
8375 return 1;
8376}
8377
8378/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8379 a type following the GNAT encoding for describing array type
8380 indices, only carries redundant information. */
8381
8382static int
8383ada_is_redundant_index_type_desc (struct type *array_type,
8384 struct type *desc_type)
8385{
8386 struct type *this_layer = check_typedef (array_type);
8387 int i;
8388
8389 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8390 {
8391 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8392 TYPE_FIELD_TYPE (desc_type, i)))
8393 return 0;
8394 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8395 }
8396
8397 return 1;
8398}
8399
14f9c5c9
AS
8400/* Assuming that TYPE0 is an array type describing the type of a value
8401 at ADDR, and that DVAL describes a record containing any
8402 discriminants used in TYPE0, returns a type for the value that
8403 contains no dynamic components (that is, no components whose sizes
8404 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8405 true, gives an error message if the resulting type's size is over
4c4b4cd2 8406 varsize_limit. */
14f9c5c9 8407
d2e4a39e
AS
8408static struct type *
8409to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8410 int ignore_too_big)
14f9c5c9 8411{
d2e4a39e
AS
8412 struct type *index_type_desc;
8413 struct type *result;
ad82864c 8414 int constrained_packed_array_p;
14f9c5c9 8415
b0dd7688 8416 type0 = ada_check_typedef (type0);
284614f0 8417 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8418 return type0;
14f9c5c9 8419
ad82864c
JB
8420 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8421 if (constrained_packed_array_p)
8422 type0 = decode_constrained_packed_array_type (type0);
284614f0 8423
14f9c5c9 8424 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8425 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8426 if (index_type_desc != NULL
8427 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8428 {
8429 /* Ignore this ___XA parallel type, as it does not bring any
8430 useful information. This allows us to avoid creating fixed
8431 versions of the array's index types, which would be identical
8432 to the original ones. This, in turn, can also help avoid
8433 the creation of fixed versions of the array itself. */
8434 index_type_desc = NULL;
8435 }
8436
14f9c5c9
AS
8437 if (index_type_desc == NULL)
8438 {
61ee279c 8439 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8440
14f9c5c9 8441 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8442 depend on the contents of the array in properly constructed
8443 debugging data. */
529cad9c
PH
8444 /* Create a fixed version of the array element type.
8445 We're not providing the address of an element here,
e1d5a0d2 8446 and thus the actual object value cannot be inspected to do
529cad9c
PH
8447 the conversion. This should not be a problem, since arrays of
8448 unconstrained objects are not allowed. In particular, all
8449 the elements of an array of a tagged type should all be of
8450 the same type specified in the debugging info. No need to
8451 consult the object tag. */
1ed6ede0 8452 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8453
284614f0
JB
8454 /* Make sure we always create a new array type when dealing with
8455 packed array types, since we're going to fix-up the array
8456 type length and element bitsize a little further down. */
ad82864c 8457 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8458 result = type0;
14f9c5c9 8459 else
e9bb382b 8460 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8461 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8462 }
8463 else
8464 {
8465 int i;
8466 struct type *elt_type0;
8467
8468 elt_type0 = type0;
8469 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8470 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8471
8472 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8473 depend on the contents of the array in properly constructed
8474 debugging data. */
529cad9c
PH
8475 /* Create a fixed version of the array element type.
8476 We're not providing the address of an element here,
e1d5a0d2 8477 and thus the actual object value cannot be inspected to do
529cad9c
PH
8478 the conversion. This should not be a problem, since arrays of
8479 unconstrained objects are not allowed. In particular, all
8480 the elements of an array of a tagged type should all be of
8481 the same type specified in the debugging info. No need to
8482 consult the object tag. */
1ed6ede0
JB
8483 result =
8484 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8485
8486 elt_type0 = type0;
14f9c5c9 8487 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8488 {
8489 struct type *range_type =
28c85d6c 8490 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8491
e9bb382b 8492 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8493 result, range_type);
1ce677a4 8494 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8495 }
d2e4a39e 8496 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8497 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8498 }
8499
2e6fda7d
JB
8500 /* We want to preserve the type name. This can be useful when
8501 trying to get the type name of a value that has already been
8502 printed (for instance, if the user did "print VAR; whatis $". */
8503 TYPE_NAME (result) = TYPE_NAME (type0);
8504
ad82864c 8505 if (constrained_packed_array_p)
284614f0
JB
8506 {
8507 /* So far, the resulting type has been created as if the original
8508 type was a regular (non-packed) array type. As a result, the
8509 bitsize of the array elements needs to be set again, and the array
8510 length needs to be recomputed based on that bitsize. */
8511 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8512 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8513
8514 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8515 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8516 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8517 TYPE_LENGTH (result)++;
8518 }
8519
876cecd0 8520 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8521 return result;
d2e4a39e 8522}
14f9c5c9
AS
8523
8524
8525/* A standard type (containing no dynamically sized components)
8526 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8527 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8528 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8529 ADDRESS or in VALADDR contains these discriminants.
8530
1ed6ede0
JB
8531 If CHECK_TAG is not null, in the case of tagged types, this function
8532 attempts to locate the object's tag and use it to compute the actual
8533 type. However, when ADDRESS is null, we cannot use it to determine the
8534 location of the tag, and therefore compute the tagged type's actual type.
8535 So we return the tagged type without consulting the tag. */
529cad9c 8536
f192137b
JB
8537static struct type *
8538ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8539 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8540{
61ee279c 8541 type = ada_check_typedef (type);
d2e4a39e
AS
8542 switch (TYPE_CODE (type))
8543 {
8544 default:
14f9c5c9 8545 return type;
d2e4a39e 8546 case TYPE_CODE_STRUCT:
4c4b4cd2 8547 {
76a01679 8548 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8549 struct type *fixed_record_type =
8550 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8551
529cad9c
PH
8552 /* If STATIC_TYPE is a tagged type and we know the object's address,
8553 then we can determine its tag, and compute the object's actual
0963b4bd 8554 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8555 type (the parent part of the record may have dynamic fields
8556 and the way the location of _tag is expressed may depend on
8557 them). */
529cad9c 8558
1ed6ede0 8559 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8560 {
b50d69b5
JG
8561 struct value *tag =
8562 value_tag_from_contents_and_address
8563 (fixed_record_type,
8564 valaddr,
8565 address);
8566 struct type *real_type = type_from_tag (tag);
8567 struct value *obj =
8568 value_from_contents_and_address (fixed_record_type,
8569 valaddr,
8570 address);
9f1f738a 8571 fixed_record_type = value_type (obj);
76a01679 8572 if (real_type != NULL)
b50d69b5
JG
8573 return to_fixed_record_type
8574 (real_type, NULL,
8575 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8576 }
4af88198
JB
8577
8578 /* Check to see if there is a parallel ___XVZ variable.
8579 If there is, then it provides the actual size of our type. */
8580 else if (ada_type_name (fixed_record_type) != NULL)
8581 {
0d5cff50 8582 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8583 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8584 int xvz_found = 0;
8585 LONGEST size;
8586
88c15c34 8587 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8588 size = get_int_var_value (xvz_name, &xvz_found);
8589 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8590 {
8591 fixed_record_type = copy_type (fixed_record_type);
8592 TYPE_LENGTH (fixed_record_type) = size;
8593
8594 /* The FIXED_RECORD_TYPE may have be a stub. We have
8595 observed this when the debugging info is STABS, and
8596 apparently it is something that is hard to fix.
8597
8598 In practice, we don't need the actual type definition
8599 at all, because the presence of the XVZ variable allows us
8600 to assume that there must be a XVS type as well, which we
8601 should be able to use later, when we need the actual type
8602 definition.
8603
8604 In the meantime, pretend that the "fixed" type we are
8605 returning is NOT a stub, because this can cause trouble
8606 when using this type to create new types targeting it.
8607 Indeed, the associated creation routines often check
8608 whether the target type is a stub and will try to replace
0963b4bd 8609 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8610 might cause the new type to have the wrong size too.
8611 Consider the case of an array, for instance, where the size
8612 of the array is computed from the number of elements in
8613 our array multiplied by the size of its element. */
8614 TYPE_STUB (fixed_record_type) = 0;
8615 }
8616 }
1ed6ede0 8617 return fixed_record_type;
4c4b4cd2 8618 }
d2e4a39e 8619 case TYPE_CODE_ARRAY:
4c4b4cd2 8620 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8621 case TYPE_CODE_UNION:
8622 if (dval == NULL)
4c4b4cd2 8623 return type;
d2e4a39e 8624 else
4c4b4cd2 8625 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8626 }
14f9c5c9
AS
8627}
8628
f192137b
JB
8629/* The same as ada_to_fixed_type_1, except that it preserves the type
8630 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8631
8632 The typedef layer needs be preserved in order to differentiate between
8633 arrays and array pointers when both types are implemented using the same
8634 fat pointer. In the array pointer case, the pointer is encoded as
8635 a typedef of the pointer type. For instance, considering:
8636
8637 type String_Access is access String;
8638 S1 : String_Access := null;
8639
8640 To the debugger, S1 is defined as a typedef of type String. But
8641 to the user, it is a pointer. So if the user tries to print S1,
8642 we should not dereference the array, but print the array address
8643 instead.
8644
8645 If we didn't preserve the typedef layer, we would lose the fact that
8646 the type is to be presented as a pointer (needs de-reference before
8647 being printed). And we would also use the source-level type name. */
f192137b
JB
8648
8649struct type *
8650ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8651 CORE_ADDR address, struct value *dval, int check_tag)
8652
8653{
8654 struct type *fixed_type =
8655 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8656
96dbd2c1
JB
8657 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8658 then preserve the typedef layer.
8659
8660 Implementation note: We can only check the main-type portion of
8661 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8662 from TYPE now returns a type that has the same instance flags
8663 as TYPE. For instance, if TYPE is a "typedef const", and its
8664 target type is a "struct", then the typedef elimination will return
8665 a "const" version of the target type. See check_typedef for more
8666 details about how the typedef layer elimination is done.
8667
8668 brobecker/2010-11-19: It seems to me that the only case where it is
8669 useful to preserve the typedef layer is when dealing with fat pointers.
8670 Perhaps, we could add a check for that and preserve the typedef layer
8671 only in that situation. But this seems unecessary so far, probably
8672 because we call check_typedef/ada_check_typedef pretty much everywhere.
8673 */
f192137b 8674 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8675 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8676 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8677 return type;
8678
8679 return fixed_type;
8680}
8681
14f9c5c9 8682/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8683 TYPE0, but based on no runtime data. */
14f9c5c9 8684
d2e4a39e
AS
8685static struct type *
8686to_static_fixed_type (struct type *type0)
14f9c5c9 8687{
d2e4a39e 8688 struct type *type;
14f9c5c9
AS
8689
8690 if (type0 == NULL)
8691 return NULL;
8692
876cecd0 8693 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8694 return type0;
8695
61ee279c 8696 type0 = ada_check_typedef (type0);
d2e4a39e 8697
14f9c5c9
AS
8698 switch (TYPE_CODE (type0))
8699 {
8700 default:
8701 return type0;
8702 case TYPE_CODE_STRUCT:
8703 type = dynamic_template_type (type0);
d2e4a39e 8704 if (type != NULL)
4c4b4cd2
PH
8705 return template_to_static_fixed_type (type);
8706 else
8707 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8708 case TYPE_CODE_UNION:
8709 type = ada_find_parallel_type (type0, "___XVU");
8710 if (type != NULL)
4c4b4cd2
PH
8711 return template_to_static_fixed_type (type);
8712 else
8713 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8714 }
8715}
8716
4c4b4cd2
PH
8717/* A static approximation of TYPE with all type wrappers removed. */
8718
d2e4a39e
AS
8719static struct type *
8720static_unwrap_type (struct type *type)
14f9c5c9
AS
8721{
8722 if (ada_is_aligner_type (type))
8723 {
61ee279c 8724 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8725 if (ada_type_name (type1) == NULL)
4c4b4cd2 8726 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8727
8728 return static_unwrap_type (type1);
8729 }
d2e4a39e 8730 else
14f9c5c9 8731 {
d2e4a39e 8732 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8733
d2e4a39e 8734 if (raw_real_type == type)
4c4b4cd2 8735 return type;
14f9c5c9 8736 else
4c4b4cd2 8737 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8738 }
8739}
8740
8741/* In some cases, incomplete and private types require
4c4b4cd2 8742 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8743 type Foo;
8744 type FooP is access Foo;
8745 V: FooP;
8746 type Foo is array ...;
4c4b4cd2 8747 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8748 cross-references to such types, we instead substitute for FooP a
8749 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8750 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8751
8752/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8753 exists, otherwise TYPE. */
8754
d2e4a39e 8755struct type *
61ee279c 8756ada_check_typedef (struct type *type)
14f9c5c9 8757{
727e3d2e
JB
8758 if (type == NULL)
8759 return NULL;
8760
720d1a40
JB
8761 /* If our type is a typedef type of a fat pointer, then we're done.
8762 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8763 what allows us to distinguish between fat pointers that represent
8764 array types, and fat pointers that represent array access types
8765 (in both cases, the compiler implements them as fat pointers). */
8766 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8767 && is_thick_pntr (ada_typedef_target_type (type)))
8768 return type;
8769
14f9c5c9
AS
8770 CHECK_TYPEDEF (type);
8771 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8772 || !TYPE_STUB (type)
14f9c5c9
AS
8773 || TYPE_TAG_NAME (type) == NULL)
8774 return type;
d2e4a39e 8775 else
14f9c5c9 8776 {
0d5cff50 8777 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8778 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8779
05e522ef
JB
8780 if (type1 == NULL)
8781 return type;
8782
8783 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8784 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8785 types, only for the typedef-to-array types). If that's the case,
8786 strip the typedef layer. */
8787 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8788 type1 = ada_check_typedef (type1);
8789
8790 return type1;
14f9c5c9
AS
8791 }
8792}
8793
8794/* A value representing the data at VALADDR/ADDRESS as described by
8795 type TYPE0, but with a standard (static-sized) type that correctly
8796 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8797 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8798 creation of struct values]. */
14f9c5c9 8799
4c4b4cd2
PH
8800static struct value *
8801ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8802 struct value *val0)
14f9c5c9 8803{
1ed6ede0 8804 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8805
14f9c5c9
AS
8806 if (type == type0 && val0 != NULL)
8807 return val0;
d2e4a39e 8808 else
4c4b4cd2
PH
8809 return value_from_contents_and_address (type, 0, address);
8810}
8811
8812/* A value representing VAL, but with a standard (static-sized) type
8813 that correctly describes it. Does not necessarily create a new
8814 value. */
8815
0c3acc09 8816struct value *
4c4b4cd2
PH
8817ada_to_fixed_value (struct value *val)
8818{
c48db5ca
JB
8819 val = unwrap_value (val);
8820 val = ada_to_fixed_value_create (value_type (val),
8821 value_address (val),
8822 val);
8823 return val;
14f9c5c9 8824}
d2e4a39e 8825\f
14f9c5c9 8826
14f9c5c9
AS
8827/* Attributes */
8828
4c4b4cd2
PH
8829/* Table mapping attribute numbers to names.
8830 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8831
d2e4a39e 8832static const char *attribute_names[] = {
14f9c5c9
AS
8833 "<?>",
8834
d2e4a39e 8835 "first",
14f9c5c9
AS
8836 "last",
8837 "length",
8838 "image",
14f9c5c9
AS
8839 "max",
8840 "min",
4c4b4cd2
PH
8841 "modulus",
8842 "pos",
8843 "size",
8844 "tag",
14f9c5c9 8845 "val",
14f9c5c9
AS
8846 0
8847};
8848
d2e4a39e 8849const char *
4c4b4cd2 8850ada_attribute_name (enum exp_opcode n)
14f9c5c9 8851{
4c4b4cd2
PH
8852 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8853 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8854 else
8855 return attribute_names[0];
8856}
8857
4c4b4cd2 8858/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8859
4c4b4cd2
PH
8860static LONGEST
8861pos_atr (struct value *arg)
14f9c5c9 8862{
24209737
PH
8863 struct value *val = coerce_ref (arg);
8864 struct type *type = value_type (val);
14f9c5c9 8865
d2e4a39e 8866 if (!discrete_type_p (type))
323e0a4a 8867 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8868
8869 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8870 {
8871 int i;
24209737 8872 LONGEST v = value_as_long (val);
14f9c5c9 8873
d2e4a39e 8874 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8875 {
14e75d8e 8876 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8877 return i;
8878 }
323e0a4a 8879 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8880 }
8881 else
24209737 8882 return value_as_long (val);
4c4b4cd2
PH
8883}
8884
8885static struct value *
3cb382c9 8886value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8887{
3cb382c9 8888 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8889}
8890
4c4b4cd2 8891/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8892
d2e4a39e
AS
8893static struct value *
8894value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8895{
d2e4a39e 8896 if (!discrete_type_p (type))
323e0a4a 8897 error (_("'VAL only defined on discrete types"));
df407dfe 8898 if (!integer_type_p (value_type (arg)))
323e0a4a 8899 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8900
8901 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8902 {
8903 long pos = value_as_long (arg);
5b4ee69b 8904
14f9c5c9 8905 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8906 error (_("argument to 'VAL out of range"));
14e75d8e 8907 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8908 }
8909 else
8910 return value_from_longest (type, value_as_long (arg));
8911}
14f9c5c9 8912\f
d2e4a39e 8913
4c4b4cd2 8914 /* Evaluation */
14f9c5c9 8915
4c4b4cd2
PH
8916/* True if TYPE appears to be an Ada character type.
8917 [At the moment, this is true only for Character and Wide_Character;
8918 It is a heuristic test that could stand improvement]. */
14f9c5c9 8919
d2e4a39e
AS
8920int
8921ada_is_character_type (struct type *type)
14f9c5c9 8922{
7b9f71f2
JB
8923 const char *name;
8924
8925 /* If the type code says it's a character, then assume it really is,
8926 and don't check any further. */
8927 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8928 return 1;
8929
8930 /* Otherwise, assume it's a character type iff it is a discrete type
8931 with a known character type name. */
8932 name = ada_type_name (type);
8933 return (name != NULL
8934 && (TYPE_CODE (type) == TYPE_CODE_INT
8935 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8936 && (strcmp (name, "character") == 0
8937 || strcmp (name, "wide_character") == 0
5a517ebd 8938 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8939 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8940}
8941
4c4b4cd2 8942/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8943
8944int
ebf56fd3 8945ada_is_string_type (struct type *type)
14f9c5c9 8946{
61ee279c 8947 type = ada_check_typedef (type);
d2e4a39e 8948 if (type != NULL
14f9c5c9 8949 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8950 && (ada_is_simple_array_type (type)
8951 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8952 && ada_array_arity (type) == 1)
8953 {
8954 struct type *elttype = ada_array_element_type (type, 1);
8955
8956 return ada_is_character_type (elttype);
8957 }
d2e4a39e 8958 else
14f9c5c9
AS
8959 return 0;
8960}
8961
5bf03f13
JB
8962/* The compiler sometimes provides a parallel XVS type for a given
8963 PAD type. Normally, it is safe to follow the PAD type directly,
8964 but older versions of the compiler have a bug that causes the offset
8965 of its "F" field to be wrong. Following that field in that case
8966 would lead to incorrect results, but this can be worked around
8967 by ignoring the PAD type and using the associated XVS type instead.
8968
8969 Set to True if the debugger should trust the contents of PAD types.
8970 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8971static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8972
8973/* True if TYPE is a struct type introduced by the compiler to force the
8974 alignment of a value. Such types have a single field with a
4c4b4cd2 8975 distinctive name. */
14f9c5c9
AS
8976
8977int
ebf56fd3 8978ada_is_aligner_type (struct type *type)
14f9c5c9 8979{
61ee279c 8980 type = ada_check_typedef (type);
714e53ab 8981
5bf03f13 8982 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8983 return 0;
8984
14f9c5c9 8985 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8986 && TYPE_NFIELDS (type) == 1
8987 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8988}
8989
8990/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8991 the parallel type. */
14f9c5c9 8992
d2e4a39e
AS
8993struct type *
8994ada_get_base_type (struct type *raw_type)
14f9c5c9 8995{
d2e4a39e
AS
8996 struct type *real_type_namer;
8997 struct type *raw_real_type;
14f9c5c9
AS
8998
8999 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9000 return raw_type;
9001
284614f0
JB
9002 if (ada_is_aligner_type (raw_type))
9003 /* The encoding specifies that we should always use the aligner type.
9004 So, even if this aligner type has an associated XVS type, we should
9005 simply ignore it.
9006
9007 According to the compiler gurus, an XVS type parallel to an aligner
9008 type may exist because of a stabs limitation. In stabs, aligner
9009 types are empty because the field has a variable-sized type, and
9010 thus cannot actually be used as an aligner type. As a result,
9011 we need the associated parallel XVS type to decode the type.
9012 Since the policy in the compiler is to not change the internal
9013 representation based on the debugging info format, we sometimes
9014 end up having a redundant XVS type parallel to the aligner type. */
9015 return raw_type;
9016
14f9c5c9 9017 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9018 if (real_type_namer == NULL
14f9c5c9
AS
9019 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9020 || TYPE_NFIELDS (real_type_namer) != 1)
9021 return raw_type;
9022
f80d3ff2
JB
9023 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9024 {
9025 /* This is an older encoding form where the base type needs to be
9026 looked up by name. We prefer the newer enconding because it is
9027 more efficient. */
9028 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9029 if (raw_real_type == NULL)
9030 return raw_type;
9031 else
9032 return raw_real_type;
9033 }
9034
9035 /* The field in our XVS type is a reference to the base type. */
9036 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9037}
14f9c5c9 9038
4c4b4cd2 9039/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9040
d2e4a39e
AS
9041struct type *
9042ada_aligned_type (struct type *type)
14f9c5c9
AS
9043{
9044 if (ada_is_aligner_type (type))
9045 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9046 else
9047 return ada_get_base_type (type);
9048}
9049
9050
9051/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9052 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9053
fc1a4b47
AC
9054const gdb_byte *
9055ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9056{
d2e4a39e 9057 if (ada_is_aligner_type (type))
14f9c5c9 9058 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9059 valaddr +
9060 TYPE_FIELD_BITPOS (type,
9061 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9062 else
9063 return valaddr;
9064}
9065
4c4b4cd2
PH
9066
9067
14f9c5c9 9068/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9069 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9070const char *
9071ada_enum_name (const char *name)
14f9c5c9 9072{
4c4b4cd2
PH
9073 static char *result;
9074 static size_t result_len = 0;
d2e4a39e 9075 char *tmp;
14f9c5c9 9076
4c4b4cd2
PH
9077 /* First, unqualify the enumeration name:
9078 1. Search for the last '.' character. If we find one, then skip
177b42fe 9079 all the preceding characters, the unqualified name starts
76a01679 9080 right after that dot.
4c4b4cd2 9081 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9082 translates dots into "__". Search forward for double underscores,
9083 but stop searching when we hit an overloading suffix, which is
9084 of the form "__" followed by digits. */
4c4b4cd2 9085
c3e5cd34
PH
9086 tmp = strrchr (name, '.');
9087 if (tmp != NULL)
4c4b4cd2
PH
9088 name = tmp + 1;
9089 else
14f9c5c9 9090 {
4c4b4cd2
PH
9091 while ((tmp = strstr (name, "__")) != NULL)
9092 {
9093 if (isdigit (tmp[2]))
9094 break;
9095 else
9096 name = tmp + 2;
9097 }
14f9c5c9
AS
9098 }
9099
9100 if (name[0] == 'Q')
9101 {
14f9c5c9 9102 int v;
5b4ee69b 9103
14f9c5c9 9104 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9105 {
9106 if (sscanf (name + 2, "%x", &v) != 1)
9107 return name;
9108 }
14f9c5c9 9109 else
4c4b4cd2 9110 return name;
14f9c5c9 9111
4c4b4cd2 9112 GROW_VECT (result, result_len, 16);
14f9c5c9 9113 if (isascii (v) && isprint (v))
88c15c34 9114 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9115 else if (name[1] == 'U')
88c15c34 9116 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9117 else
88c15c34 9118 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9119
9120 return result;
9121 }
d2e4a39e 9122 else
4c4b4cd2 9123 {
c3e5cd34
PH
9124 tmp = strstr (name, "__");
9125 if (tmp == NULL)
9126 tmp = strstr (name, "$");
9127 if (tmp != NULL)
4c4b4cd2
PH
9128 {
9129 GROW_VECT (result, result_len, tmp - name + 1);
9130 strncpy (result, name, tmp - name);
9131 result[tmp - name] = '\0';
9132 return result;
9133 }
9134
9135 return name;
9136 }
14f9c5c9
AS
9137}
9138
14f9c5c9
AS
9139/* Evaluate the subexpression of EXP starting at *POS as for
9140 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9141 expression. */
14f9c5c9 9142
d2e4a39e
AS
9143static struct value *
9144evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9145{
4b27a620 9146 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9147}
9148
9149/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9150 value it wraps. */
14f9c5c9 9151
d2e4a39e
AS
9152static struct value *
9153unwrap_value (struct value *val)
14f9c5c9 9154{
df407dfe 9155 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9156
14f9c5c9
AS
9157 if (ada_is_aligner_type (type))
9158 {
de4d072f 9159 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9160 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9161
14f9c5c9 9162 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9163 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9164
9165 return unwrap_value (v);
9166 }
d2e4a39e 9167 else
14f9c5c9 9168 {
d2e4a39e 9169 struct type *raw_real_type =
61ee279c 9170 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9171
5bf03f13
JB
9172 /* If there is no parallel XVS or XVE type, then the value is
9173 already unwrapped. Return it without further modification. */
9174 if ((type == raw_real_type)
9175 && ada_find_parallel_type (type, "___XVE") == NULL)
9176 return val;
14f9c5c9 9177
d2e4a39e 9178 return
4c4b4cd2
PH
9179 coerce_unspec_val_to_type
9180 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9181 value_address (val),
1ed6ede0 9182 NULL, 1));
14f9c5c9
AS
9183 }
9184}
d2e4a39e
AS
9185
9186static struct value *
9187cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9188{
9189 LONGEST val;
9190
df407dfe 9191 if (type == value_type (arg))
14f9c5c9 9192 return arg;
df407dfe 9193 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9194 val = ada_float_to_fixed (type,
df407dfe 9195 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9196 value_as_long (arg)));
d2e4a39e 9197 else
14f9c5c9 9198 {
a53b7a21 9199 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9200
14f9c5c9
AS
9201 val = ada_float_to_fixed (type, argd);
9202 }
9203
9204 return value_from_longest (type, val);
9205}
9206
d2e4a39e 9207static struct value *
a53b7a21 9208cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9209{
df407dfe 9210 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9211 value_as_long (arg));
5b4ee69b 9212
a53b7a21 9213 return value_from_double (type, val);
14f9c5c9
AS
9214}
9215
d99dcf51
JB
9216/* Given two array types T1 and T2, return nonzero iff both arrays
9217 contain the same number of elements. */
9218
9219static int
9220ada_same_array_size_p (struct type *t1, struct type *t2)
9221{
9222 LONGEST lo1, hi1, lo2, hi2;
9223
9224 /* Get the array bounds in order to verify that the size of
9225 the two arrays match. */
9226 if (!get_array_bounds (t1, &lo1, &hi1)
9227 || !get_array_bounds (t2, &lo2, &hi2))
9228 error (_("unable to determine array bounds"));
9229
9230 /* To make things easier for size comparison, normalize a bit
9231 the case of empty arrays by making sure that the difference
9232 between upper bound and lower bound is always -1. */
9233 if (lo1 > hi1)
9234 hi1 = lo1 - 1;
9235 if (lo2 > hi2)
9236 hi2 = lo2 - 1;
9237
9238 return (hi1 - lo1 == hi2 - lo2);
9239}
9240
9241/* Assuming that VAL is an array of integrals, and TYPE represents
9242 an array with the same number of elements, but with wider integral
9243 elements, return an array "casted" to TYPE. In practice, this
9244 means that the returned array is built by casting each element
9245 of the original array into TYPE's (wider) element type. */
9246
9247static struct value *
9248ada_promote_array_of_integrals (struct type *type, struct value *val)
9249{
9250 struct type *elt_type = TYPE_TARGET_TYPE (type);
9251 LONGEST lo, hi;
9252 struct value *res;
9253 LONGEST i;
9254
9255 /* Verify that both val and type are arrays of scalars, and
9256 that the size of val's elements is smaller than the size
9257 of type's element. */
9258 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9259 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9260 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9261 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9262 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9263 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9264
9265 if (!get_array_bounds (type, &lo, &hi))
9266 error (_("unable to determine array bounds"));
9267
9268 res = allocate_value (type);
9269
9270 /* Promote each array element. */
9271 for (i = 0; i < hi - lo + 1; i++)
9272 {
9273 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9274
9275 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9276 value_contents_all (elt), TYPE_LENGTH (elt_type));
9277 }
9278
9279 return res;
9280}
9281
4c4b4cd2
PH
9282/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9283 return the converted value. */
9284
d2e4a39e
AS
9285static struct value *
9286coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9287{
df407dfe 9288 struct type *type2 = value_type (val);
5b4ee69b 9289
14f9c5c9
AS
9290 if (type == type2)
9291 return val;
9292
61ee279c
PH
9293 type2 = ada_check_typedef (type2);
9294 type = ada_check_typedef (type);
14f9c5c9 9295
d2e4a39e
AS
9296 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9297 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9298 {
9299 val = ada_value_ind (val);
df407dfe 9300 type2 = value_type (val);
14f9c5c9
AS
9301 }
9302
d2e4a39e 9303 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9304 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9305 {
d99dcf51
JB
9306 if (!ada_same_array_size_p (type, type2))
9307 error (_("cannot assign arrays of different length"));
9308
9309 if (is_integral_type (TYPE_TARGET_TYPE (type))
9310 && is_integral_type (TYPE_TARGET_TYPE (type2))
9311 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9312 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9313 {
9314 /* Allow implicit promotion of the array elements to
9315 a wider type. */
9316 return ada_promote_array_of_integrals (type, val);
9317 }
9318
9319 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9320 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9321 error (_("Incompatible types in assignment"));
04624583 9322 deprecated_set_value_type (val, type);
14f9c5c9 9323 }
d2e4a39e 9324 return val;
14f9c5c9
AS
9325}
9326
4c4b4cd2
PH
9327static struct value *
9328ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9329{
9330 struct value *val;
9331 struct type *type1, *type2;
9332 LONGEST v, v1, v2;
9333
994b9211
AC
9334 arg1 = coerce_ref (arg1);
9335 arg2 = coerce_ref (arg2);
18af8284
JB
9336 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9337 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9338
76a01679
JB
9339 if (TYPE_CODE (type1) != TYPE_CODE_INT
9340 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9341 return value_binop (arg1, arg2, op);
9342
76a01679 9343 switch (op)
4c4b4cd2
PH
9344 {
9345 case BINOP_MOD:
9346 case BINOP_DIV:
9347 case BINOP_REM:
9348 break;
9349 default:
9350 return value_binop (arg1, arg2, op);
9351 }
9352
9353 v2 = value_as_long (arg2);
9354 if (v2 == 0)
323e0a4a 9355 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9356
9357 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9358 return value_binop (arg1, arg2, op);
9359
9360 v1 = value_as_long (arg1);
9361 switch (op)
9362 {
9363 case BINOP_DIV:
9364 v = v1 / v2;
76a01679
JB
9365 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9366 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9367 break;
9368 case BINOP_REM:
9369 v = v1 % v2;
76a01679
JB
9370 if (v * v1 < 0)
9371 v -= v2;
4c4b4cd2
PH
9372 break;
9373 default:
9374 /* Should not reach this point. */
9375 v = 0;
9376 }
9377
9378 val = allocate_value (type1);
990a07ab 9379 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9380 TYPE_LENGTH (value_type (val)),
9381 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9382 return val;
9383}
9384
9385static int
9386ada_value_equal (struct value *arg1, struct value *arg2)
9387{
df407dfe
AC
9388 if (ada_is_direct_array_type (value_type (arg1))
9389 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9390 {
f58b38bf
JB
9391 /* Automatically dereference any array reference before
9392 we attempt to perform the comparison. */
9393 arg1 = ada_coerce_ref (arg1);
9394 arg2 = ada_coerce_ref (arg2);
9395
4c4b4cd2
PH
9396 arg1 = ada_coerce_to_simple_array (arg1);
9397 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9398 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9399 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9400 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9401 /* FIXME: The following works only for types whose
76a01679
JB
9402 representations use all bits (no padding or undefined bits)
9403 and do not have user-defined equality. */
9404 return
df407dfe 9405 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9406 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9407 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9408 }
9409 return value_equal (arg1, arg2);
9410}
9411
52ce6436
PH
9412/* Total number of component associations in the aggregate starting at
9413 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9414 OP_AGGREGATE. */
52ce6436
PH
9415
9416static int
9417num_component_specs (struct expression *exp, int pc)
9418{
9419 int n, m, i;
5b4ee69b 9420
52ce6436
PH
9421 m = exp->elts[pc + 1].longconst;
9422 pc += 3;
9423 n = 0;
9424 for (i = 0; i < m; i += 1)
9425 {
9426 switch (exp->elts[pc].opcode)
9427 {
9428 default:
9429 n += 1;
9430 break;
9431 case OP_CHOICES:
9432 n += exp->elts[pc + 1].longconst;
9433 break;
9434 }
9435 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9436 }
9437 return n;
9438}
9439
9440/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9441 component of LHS (a simple array or a record), updating *POS past
9442 the expression, assuming that LHS is contained in CONTAINER. Does
9443 not modify the inferior's memory, nor does it modify LHS (unless
9444 LHS == CONTAINER). */
9445
9446static void
9447assign_component (struct value *container, struct value *lhs, LONGEST index,
9448 struct expression *exp, int *pos)
9449{
9450 struct value *mark = value_mark ();
9451 struct value *elt;
5b4ee69b 9452
52ce6436
PH
9453 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9454 {
22601c15
UW
9455 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9456 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9457
52ce6436
PH
9458 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9459 }
9460 else
9461 {
9462 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9463 elt = ada_to_fixed_value (elt);
52ce6436
PH
9464 }
9465
9466 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9467 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9468 else
9469 value_assign_to_component (container, elt,
9470 ada_evaluate_subexp (NULL, exp, pos,
9471 EVAL_NORMAL));
9472
9473 value_free_to_mark (mark);
9474}
9475
9476/* Assuming that LHS represents an lvalue having a record or array
9477 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9478 of that aggregate's value to LHS, advancing *POS past the
9479 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9480 lvalue containing LHS (possibly LHS itself). Does not modify
9481 the inferior's memory, nor does it modify the contents of
0963b4bd 9482 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9483
9484static struct value *
9485assign_aggregate (struct value *container,
9486 struct value *lhs, struct expression *exp,
9487 int *pos, enum noside noside)
9488{
9489 struct type *lhs_type;
9490 int n = exp->elts[*pos+1].longconst;
9491 LONGEST low_index, high_index;
9492 int num_specs;
9493 LONGEST *indices;
9494 int max_indices, num_indices;
52ce6436 9495 int i;
52ce6436
PH
9496
9497 *pos += 3;
9498 if (noside != EVAL_NORMAL)
9499 {
52ce6436
PH
9500 for (i = 0; i < n; i += 1)
9501 ada_evaluate_subexp (NULL, exp, pos, noside);
9502 return container;
9503 }
9504
9505 container = ada_coerce_ref (container);
9506 if (ada_is_direct_array_type (value_type (container)))
9507 container = ada_coerce_to_simple_array (container);
9508 lhs = ada_coerce_ref (lhs);
9509 if (!deprecated_value_modifiable (lhs))
9510 error (_("Left operand of assignment is not a modifiable lvalue."));
9511
9512 lhs_type = value_type (lhs);
9513 if (ada_is_direct_array_type (lhs_type))
9514 {
9515 lhs = ada_coerce_to_simple_array (lhs);
9516 lhs_type = value_type (lhs);
9517 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9518 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9519 }
9520 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9521 {
9522 low_index = 0;
9523 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9524 }
9525 else
9526 error (_("Left-hand side must be array or record."));
9527
9528 num_specs = num_component_specs (exp, *pos - 3);
9529 max_indices = 4 * num_specs + 4;
9530 indices = alloca (max_indices * sizeof (indices[0]));
9531 indices[0] = indices[1] = low_index - 1;
9532 indices[2] = indices[3] = high_index + 1;
9533 num_indices = 4;
9534
9535 for (i = 0; i < n; i += 1)
9536 {
9537 switch (exp->elts[*pos].opcode)
9538 {
1fbf5ada
JB
9539 case OP_CHOICES:
9540 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9541 &num_indices, max_indices,
9542 low_index, high_index);
9543 break;
9544 case OP_POSITIONAL:
9545 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9546 &num_indices, max_indices,
9547 low_index, high_index);
1fbf5ada
JB
9548 break;
9549 case OP_OTHERS:
9550 if (i != n-1)
9551 error (_("Misplaced 'others' clause"));
9552 aggregate_assign_others (container, lhs, exp, pos, indices,
9553 num_indices, low_index, high_index);
9554 break;
9555 default:
9556 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9557 }
9558 }
9559
9560 return container;
9561}
9562
9563/* Assign into the component of LHS indexed by the OP_POSITIONAL
9564 construct at *POS, updating *POS past the construct, given that
9565 the positions are relative to lower bound LOW, where HIGH is the
9566 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9567 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9568 assign_aggregate. */
52ce6436
PH
9569static void
9570aggregate_assign_positional (struct value *container,
9571 struct value *lhs, struct expression *exp,
9572 int *pos, LONGEST *indices, int *num_indices,
9573 int max_indices, LONGEST low, LONGEST high)
9574{
9575 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9576
9577 if (ind - 1 == high)
e1d5a0d2 9578 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9579 if (ind <= high)
9580 {
9581 add_component_interval (ind, ind, indices, num_indices, max_indices);
9582 *pos += 3;
9583 assign_component (container, lhs, ind, exp, pos);
9584 }
9585 else
9586 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9587}
9588
9589/* Assign into the components of LHS indexed by the OP_CHOICES
9590 construct at *POS, updating *POS past the construct, given that
9591 the allowable indices are LOW..HIGH. Record the indices assigned
9592 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9593 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9594static void
9595aggregate_assign_from_choices (struct value *container,
9596 struct value *lhs, struct expression *exp,
9597 int *pos, LONGEST *indices, int *num_indices,
9598 int max_indices, LONGEST low, LONGEST high)
9599{
9600 int j;
9601 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9602 int choice_pos, expr_pc;
9603 int is_array = ada_is_direct_array_type (value_type (lhs));
9604
9605 choice_pos = *pos += 3;
9606
9607 for (j = 0; j < n_choices; j += 1)
9608 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9609 expr_pc = *pos;
9610 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9611
9612 for (j = 0; j < n_choices; j += 1)
9613 {
9614 LONGEST lower, upper;
9615 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9616
52ce6436
PH
9617 if (op == OP_DISCRETE_RANGE)
9618 {
9619 choice_pos += 1;
9620 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9621 EVAL_NORMAL));
9622 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9623 EVAL_NORMAL));
9624 }
9625 else if (is_array)
9626 {
9627 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9628 EVAL_NORMAL));
9629 upper = lower;
9630 }
9631 else
9632 {
9633 int ind;
0d5cff50 9634 const char *name;
5b4ee69b 9635
52ce6436
PH
9636 switch (op)
9637 {
9638 case OP_NAME:
9639 name = &exp->elts[choice_pos + 2].string;
9640 break;
9641 case OP_VAR_VALUE:
9642 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9643 break;
9644 default:
9645 error (_("Invalid record component association."));
9646 }
9647 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9648 ind = 0;
9649 if (! find_struct_field (name, value_type (lhs), 0,
9650 NULL, NULL, NULL, NULL, &ind))
9651 error (_("Unknown component name: %s."), name);
9652 lower = upper = ind;
9653 }
9654
9655 if (lower <= upper && (lower < low || upper > high))
9656 error (_("Index in component association out of bounds."));
9657
9658 add_component_interval (lower, upper, indices, num_indices,
9659 max_indices);
9660 while (lower <= upper)
9661 {
9662 int pos1;
5b4ee69b 9663
52ce6436
PH
9664 pos1 = expr_pc;
9665 assign_component (container, lhs, lower, exp, &pos1);
9666 lower += 1;
9667 }
9668 }
9669}
9670
9671/* Assign the value of the expression in the OP_OTHERS construct in
9672 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9673 have not been previously assigned. The index intervals already assigned
9674 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9675 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9676static void
9677aggregate_assign_others (struct value *container,
9678 struct value *lhs, struct expression *exp,
9679 int *pos, LONGEST *indices, int num_indices,
9680 LONGEST low, LONGEST high)
9681{
9682 int i;
5ce64950 9683 int expr_pc = *pos + 1;
52ce6436
PH
9684
9685 for (i = 0; i < num_indices - 2; i += 2)
9686 {
9687 LONGEST ind;
5b4ee69b 9688
52ce6436
PH
9689 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9690 {
5ce64950 9691 int localpos;
5b4ee69b 9692
5ce64950
MS
9693 localpos = expr_pc;
9694 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9695 }
9696 }
9697 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9698}
9699
9700/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9701 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9702 modifying *SIZE as needed. It is an error if *SIZE exceeds
9703 MAX_SIZE. The resulting intervals do not overlap. */
9704static void
9705add_component_interval (LONGEST low, LONGEST high,
9706 LONGEST* indices, int *size, int max_size)
9707{
9708 int i, j;
5b4ee69b 9709
52ce6436
PH
9710 for (i = 0; i < *size; i += 2) {
9711 if (high >= indices[i] && low <= indices[i + 1])
9712 {
9713 int kh;
5b4ee69b 9714
52ce6436
PH
9715 for (kh = i + 2; kh < *size; kh += 2)
9716 if (high < indices[kh])
9717 break;
9718 if (low < indices[i])
9719 indices[i] = low;
9720 indices[i + 1] = indices[kh - 1];
9721 if (high > indices[i + 1])
9722 indices[i + 1] = high;
9723 memcpy (indices + i + 2, indices + kh, *size - kh);
9724 *size -= kh - i - 2;
9725 return;
9726 }
9727 else if (high < indices[i])
9728 break;
9729 }
9730
9731 if (*size == max_size)
9732 error (_("Internal error: miscounted aggregate components."));
9733 *size += 2;
9734 for (j = *size-1; j >= i+2; j -= 1)
9735 indices[j] = indices[j - 2];
9736 indices[i] = low;
9737 indices[i + 1] = high;
9738}
9739
6e48bd2c
JB
9740/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9741 is different. */
9742
9743static struct value *
9744ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9745{
9746 if (type == ada_check_typedef (value_type (arg2)))
9747 return arg2;
9748
9749 if (ada_is_fixed_point_type (type))
9750 return (cast_to_fixed (type, arg2));
9751
9752 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9753 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9754
9755 return value_cast (type, arg2);
9756}
9757
284614f0
JB
9758/* Evaluating Ada expressions, and printing their result.
9759 ------------------------------------------------------
9760
21649b50
JB
9761 1. Introduction:
9762 ----------------
9763
284614f0
JB
9764 We usually evaluate an Ada expression in order to print its value.
9765 We also evaluate an expression in order to print its type, which
9766 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9767 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9768 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9769 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9770 similar.
9771
9772 Evaluating expressions is a little more complicated for Ada entities
9773 than it is for entities in languages such as C. The main reason for
9774 this is that Ada provides types whose definition might be dynamic.
9775 One example of such types is variant records. Or another example
9776 would be an array whose bounds can only be known at run time.
9777
9778 The following description is a general guide as to what should be
9779 done (and what should NOT be done) in order to evaluate an expression
9780 involving such types, and when. This does not cover how the semantic
9781 information is encoded by GNAT as this is covered separatly. For the
9782 document used as the reference for the GNAT encoding, see exp_dbug.ads
9783 in the GNAT sources.
9784
9785 Ideally, we should embed each part of this description next to its
9786 associated code. Unfortunately, the amount of code is so vast right
9787 now that it's hard to see whether the code handling a particular
9788 situation might be duplicated or not. One day, when the code is
9789 cleaned up, this guide might become redundant with the comments
9790 inserted in the code, and we might want to remove it.
9791
21649b50
JB
9792 2. ``Fixing'' an Entity, the Simple Case:
9793 -----------------------------------------
9794
284614f0
JB
9795 When evaluating Ada expressions, the tricky issue is that they may
9796 reference entities whose type contents and size are not statically
9797 known. Consider for instance a variant record:
9798
9799 type Rec (Empty : Boolean := True) is record
9800 case Empty is
9801 when True => null;
9802 when False => Value : Integer;
9803 end case;
9804 end record;
9805 Yes : Rec := (Empty => False, Value => 1);
9806 No : Rec := (empty => True);
9807
9808 The size and contents of that record depends on the value of the
9809 descriminant (Rec.Empty). At this point, neither the debugging
9810 information nor the associated type structure in GDB are able to
9811 express such dynamic types. So what the debugger does is to create
9812 "fixed" versions of the type that applies to the specific object.
9813 We also informally refer to this opperation as "fixing" an object,
9814 which means creating its associated fixed type.
9815
9816 Example: when printing the value of variable "Yes" above, its fixed
9817 type would look like this:
9818
9819 type Rec is record
9820 Empty : Boolean;
9821 Value : Integer;
9822 end record;
9823
9824 On the other hand, if we printed the value of "No", its fixed type
9825 would become:
9826
9827 type Rec is record
9828 Empty : Boolean;
9829 end record;
9830
9831 Things become a little more complicated when trying to fix an entity
9832 with a dynamic type that directly contains another dynamic type,
9833 such as an array of variant records, for instance. There are
9834 two possible cases: Arrays, and records.
9835
21649b50
JB
9836 3. ``Fixing'' Arrays:
9837 ---------------------
9838
9839 The type structure in GDB describes an array in terms of its bounds,
9840 and the type of its elements. By design, all elements in the array
9841 have the same type and we cannot represent an array of variant elements
9842 using the current type structure in GDB. When fixing an array,
9843 we cannot fix the array element, as we would potentially need one
9844 fixed type per element of the array. As a result, the best we can do
9845 when fixing an array is to produce an array whose bounds and size
9846 are correct (allowing us to read it from memory), but without having
9847 touched its element type. Fixing each element will be done later,
9848 when (if) necessary.
9849
9850 Arrays are a little simpler to handle than records, because the same
9851 amount of memory is allocated for each element of the array, even if
1b536f04 9852 the amount of space actually used by each element differs from element
21649b50 9853 to element. Consider for instance the following array of type Rec:
284614f0
JB
9854
9855 type Rec_Array is array (1 .. 2) of Rec;
9856
1b536f04
JB
9857 The actual amount of memory occupied by each element might be different
9858 from element to element, depending on the value of their discriminant.
21649b50 9859 But the amount of space reserved for each element in the array remains
1b536f04 9860 fixed regardless. So we simply need to compute that size using
21649b50
JB
9861 the debugging information available, from which we can then determine
9862 the array size (we multiply the number of elements of the array by
9863 the size of each element).
9864
9865 The simplest case is when we have an array of a constrained element
9866 type. For instance, consider the following type declarations:
9867
9868 type Bounded_String (Max_Size : Integer) is
9869 Length : Integer;
9870 Buffer : String (1 .. Max_Size);
9871 end record;
9872 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9873
9874 In this case, the compiler describes the array as an array of
9875 variable-size elements (identified by its XVS suffix) for which
9876 the size can be read in the parallel XVZ variable.
9877
9878 In the case of an array of an unconstrained element type, the compiler
9879 wraps the array element inside a private PAD type. This type should not
9880 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9881 that we also use the adjective "aligner" in our code to designate
9882 these wrapper types.
9883
1b536f04 9884 In some cases, the size allocated for each element is statically
21649b50
JB
9885 known. In that case, the PAD type already has the correct size,
9886 and the array element should remain unfixed.
9887
9888 But there are cases when this size is not statically known.
9889 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9890
9891 type Dynamic is array (1 .. Five) of Integer;
9892 type Wrapper (Has_Length : Boolean := False) is record
9893 Data : Dynamic;
9894 case Has_Length is
9895 when True => Length : Integer;
9896 when False => null;
9897 end case;
9898 end record;
9899 type Wrapper_Array is array (1 .. 2) of Wrapper;
9900
9901 Hello : Wrapper_Array := (others => (Has_Length => True,
9902 Data => (others => 17),
9903 Length => 1));
9904
9905
9906 The debugging info would describe variable Hello as being an
9907 array of a PAD type. The size of that PAD type is not statically
9908 known, but can be determined using a parallel XVZ variable.
9909 In that case, a copy of the PAD type with the correct size should
9910 be used for the fixed array.
9911
21649b50
JB
9912 3. ``Fixing'' record type objects:
9913 ----------------------------------
9914
9915 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9916 record types. In this case, in order to compute the associated
9917 fixed type, we need to determine the size and offset of each of
9918 its components. This, in turn, requires us to compute the fixed
9919 type of each of these components.
9920
9921 Consider for instance the example:
9922
9923 type Bounded_String (Max_Size : Natural) is record
9924 Str : String (1 .. Max_Size);
9925 Length : Natural;
9926 end record;
9927 My_String : Bounded_String (Max_Size => 10);
9928
9929 In that case, the position of field "Length" depends on the size
9930 of field Str, which itself depends on the value of the Max_Size
21649b50 9931 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9932 we need to fix the type of field Str. Therefore, fixing a variant
9933 record requires us to fix each of its components.
9934
9935 However, if a component does not have a dynamic size, the component
9936 should not be fixed. In particular, fields that use a PAD type
9937 should not fixed. Here is an example where this might happen
9938 (assuming type Rec above):
9939
9940 type Container (Big : Boolean) is record
9941 First : Rec;
9942 After : Integer;
9943 case Big is
9944 when True => Another : Integer;
9945 when False => null;
9946 end case;
9947 end record;
9948 My_Container : Container := (Big => False,
9949 First => (Empty => True),
9950 After => 42);
9951
9952 In that example, the compiler creates a PAD type for component First,
9953 whose size is constant, and then positions the component After just
9954 right after it. The offset of component After is therefore constant
9955 in this case.
9956
9957 The debugger computes the position of each field based on an algorithm
9958 that uses, among other things, the actual position and size of the field
21649b50
JB
9959 preceding it. Let's now imagine that the user is trying to print
9960 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9961 end up computing the offset of field After based on the size of the
9962 fixed version of field First. And since in our example First has
9963 only one actual field, the size of the fixed type is actually smaller
9964 than the amount of space allocated to that field, and thus we would
9965 compute the wrong offset of field After.
9966
21649b50
JB
9967 To make things more complicated, we need to watch out for dynamic
9968 components of variant records (identified by the ___XVL suffix in
9969 the component name). Even if the target type is a PAD type, the size
9970 of that type might not be statically known. So the PAD type needs
9971 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9972 we might end up with the wrong size for our component. This can be
9973 observed with the following type declarations:
284614f0
JB
9974
9975 type Octal is new Integer range 0 .. 7;
9976 type Octal_Array is array (Positive range <>) of Octal;
9977 pragma Pack (Octal_Array);
9978
9979 type Octal_Buffer (Size : Positive) is record
9980 Buffer : Octal_Array (1 .. Size);
9981 Length : Integer;
9982 end record;
9983
9984 In that case, Buffer is a PAD type whose size is unset and needs
9985 to be computed by fixing the unwrapped type.
9986
21649b50
JB
9987 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9988 ----------------------------------------------------------
9989
9990 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9991 thus far, be actually fixed?
9992
9993 The answer is: Only when referencing that element. For instance
9994 when selecting one component of a record, this specific component
9995 should be fixed at that point in time. Or when printing the value
9996 of a record, each component should be fixed before its value gets
9997 printed. Similarly for arrays, the element of the array should be
9998 fixed when printing each element of the array, or when extracting
9999 one element out of that array. On the other hand, fixing should
10000 not be performed on the elements when taking a slice of an array!
10001
10002 Note that one of the side-effects of miscomputing the offset and
10003 size of each field is that we end up also miscomputing the size
10004 of the containing type. This can have adverse results when computing
10005 the value of an entity. GDB fetches the value of an entity based
10006 on the size of its type, and thus a wrong size causes GDB to fetch
10007 the wrong amount of memory. In the case where the computed size is
10008 too small, GDB fetches too little data to print the value of our
10009 entiry. Results in this case as unpredicatble, as we usually read
10010 past the buffer containing the data =:-o. */
10011
10012/* Implement the evaluate_exp routine in the exp_descriptor structure
10013 for the Ada language. */
10014
52ce6436 10015static struct value *
ebf56fd3 10016ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10017 int *pos, enum noside noside)
14f9c5c9
AS
10018{
10019 enum exp_opcode op;
b5385fc0 10020 int tem;
14f9c5c9 10021 int pc;
5ec18f2b 10022 int preeval_pos;
14f9c5c9
AS
10023 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10024 struct type *type;
52ce6436 10025 int nargs, oplen;
d2e4a39e 10026 struct value **argvec;
14f9c5c9 10027
d2e4a39e
AS
10028 pc = *pos;
10029 *pos += 1;
14f9c5c9
AS
10030 op = exp->elts[pc].opcode;
10031
d2e4a39e 10032 switch (op)
14f9c5c9
AS
10033 {
10034 default:
10035 *pos -= 1;
6e48bd2c 10036 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10037
10038 if (noside == EVAL_NORMAL)
10039 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10040
10041 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10042 then we need to perform the conversion manually, because
10043 evaluate_subexp_standard doesn't do it. This conversion is
10044 necessary in Ada because the different kinds of float/fixed
10045 types in Ada have different representations.
10046
10047 Similarly, we need to perform the conversion from OP_LONG
10048 ourselves. */
10049 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10050 arg1 = ada_value_cast (expect_type, arg1, noside);
10051
10052 return arg1;
4c4b4cd2
PH
10053
10054 case OP_STRING:
10055 {
76a01679 10056 struct value *result;
5b4ee69b 10057
76a01679
JB
10058 *pos -= 1;
10059 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10060 /* The result type will have code OP_STRING, bashed there from
10061 OP_ARRAY. Bash it back. */
df407dfe
AC
10062 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10063 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10064 return result;
4c4b4cd2 10065 }
14f9c5c9
AS
10066
10067 case UNOP_CAST:
10068 (*pos) += 2;
10069 type = exp->elts[pc + 1].type;
10070 arg1 = evaluate_subexp (type, exp, pos, noside);
10071 if (noside == EVAL_SKIP)
4c4b4cd2 10072 goto nosideret;
6e48bd2c 10073 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10074 return arg1;
10075
4c4b4cd2
PH
10076 case UNOP_QUAL:
10077 (*pos) += 2;
10078 type = exp->elts[pc + 1].type;
10079 return ada_evaluate_subexp (type, exp, pos, noside);
10080
14f9c5c9
AS
10081 case BINOP_ASSIGN:
10082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10083 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10084 {
10085 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10086 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10087 return arg1;
10088 return ada_value_assign (arg1, arg1);
10089 }
003f3813
JB
10090 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10091 except if the lhs of our assignment is a convenience variable.
10092 In the case of assigning to a convenience variable, the lhs
10093 should be exactly the result of the evaluation of the rhs. */
10094 type = value_type (arg1);
10095 if (VALUE_LVAL (arg1) == lval_internalvar)
10096 type = NULL;
10097 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10098 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10099 return arg1;
df407dfe
AC
10100 if (ada_is_fixed_point_type (value_type (arg1)))
10101 arg2 = cast_to_fixed (value_type (arg1), arg2);
10102 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10103 error
323e0a4a 10104 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10105 else
df407dfe 10106 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10107 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10108
10109 case BINOP_ADD:
10110 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10111 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10112 if (noside == EVAL_SKIP)
4c4b4cd2 10113 goto nosideret;
2ac8a782
JB
10114 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10115 return (value_from_longest
10116 (value_type (arg1),
10117 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10118 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10119 return (value_from_longest
10120 (value_type (arg2),
10121 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10122 if ((ada_is_fixed_point_type (value_type (arg1))
10123 || ada_is_fixed_point_type (value_type (arg2)))
10124 && value_type (arg1) != value_type (arg2))
323e0a4a 10125 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10126 /* Do the addition, and cast the result to the type of the first
10127 argument. We cannot cast the result to a reference type, so if
10128 ARG1 is a reference type, find its underlying type. */
10129 type = value_type (arg1);
10130 while (TYPE_CODE (type) == TYPE_CODE_REF)
10131 type = TYPE_TARGET_TYPE (type);
f44316fa 10132 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10133 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10134
10135 case BINOP_SUB:
10136 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10137 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10138 if (noside == EVAL_SKIP)
4c4b4cd2 10139 goto nosideret;
2ac8a782
JB
10140 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10141 return (value_from_longest
10142 (value_type (arg1),
10143 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10144 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10145 return (value_from_longest
10146 (value_type (arg2),
10147 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10148 if ((ada_is_fixed_point_type (value_type (arg1))
10149 || ada_is_fixed_point_type (value_type (arg2)))
10150 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10151 error (_("Operands of fixed-point subtraction "
10152 "must have the same type"));
b7789565
JB
10153 /* Do the substraction, and cast the result to the type of the first
10154 argument. We cannot cast the result to a reference type, so if
10155 ARG1 is a reference type, find its underlying type. */
10156 type = value_type (arg1);
10157 while (TYPE_CODE (type) == TYPE_CODE_REF)
10158 type = TYPE_TARGET_TYPE (type);
f44316fa 10159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10160 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10161
10162 case BINOP_MUL:
10163 case BINOP_DIV:
e1578042
JB
10164 case BINOP_REM:
10165 case BINOP_MOD:
14f9c5c9
AS
10166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10167 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10168 if (noside == EVAL_SKIP)
4c4b4cd2 10169 goto nosideret;
e1578042 10170 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10171 {
10172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10173 return value_zero (value_type (arg1), not_lval);
10174 }
14f9c5c9 10175 else
4c4b4cd2 10176 {
a53b7a21 10177 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10178 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10179 arg1 = cast_from_fixed (type, arg1);
df407dfe 10180 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10181 arg2 = cast_from_fixed (type, arg2);
f44316fa 10182 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10183 return ada_value_binop (arg1, arg2, op);
10184 }
10185
4c4b4cd2
PH
10186 case BINOP_EQUAL:
10187 case BINOP_NOTEQUAL:
14f9c5c9 10188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10189 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10190 if (noside == EVAL_SKIP)
76a01679 10191 goto nosideret;
4c4b4cd2 10192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10193 tem = 0;
4c4b4cd2 10194 else
f44316fa
UW
10195 {
10196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10197 tem = ada_value_equal (arg1, arg2);
10198 }
4c4b4cd2 10199 if (op == BINOP_NOTEQUAL)
76a01679 10200 tem = !tem;
fbb06eb1
UW
10201 type = language_bool_type (exp->language_defn, exp->gdbarch);
10202 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10203
10204 case UNOP_NEG:
10205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10206 if (noside == EVAL_SKIP)
10207 goto nosideret;
df407dfe
AC
10208 else if (ada_is_fixed_point_type (value_type (arg1)))
10209 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10210 else
f44316fa
UW
10211 {
10212 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10213 return value_neg (arg1);
10214 }
4c4b4cd2 10215
2330c6c6
JB
10216 case BINOP_LOGICAL_AND:
10217 case BINOP_LOGICAL_OR:
10218 case UNOP_LOGICAL_NOT:
000d5124
JB
10219 {
10220 struct value *val;
10221
10222 *pos -= 1;
10223 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10224 type = language_bool_type (exp->language_defn, exp->gdbarch);
10225 return value_cast (type, val);
000d5124 10226 }
2330c6c6
JB
10227
10228 case BINOP_BITWISE_AND:
10229 case BINOP_BITWISE_IOR:
10230 case BINOP_BITWISE_XOR:
000d5124
JB
10231 {
10232 struct value *val;
10233
10234 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10235 *pos = pc;
10236 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10237
10238 return value_cast (value_type (arg1), val);
10239 }
2330c6c6 10240
14f9c5c9
AS
10241 case OP_VAR_VALUE:
10242 *pos -= 1;
6799def4 10243
14f9c5c9 10244 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10245 {
10246 *pos += 4;
10247 goto nosideret;
10248 }
da5c522f
JB
10249
10250 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10251 /* Only encountered when an unresolved symbol occurs in a
10252 context other than a function call, in which case, it is
52ce6436 10253 invalid. */
323e0a4a 10254 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10255 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10256
10257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10258 {
0c1f74cf 10259 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10260 /* Check to see if this is a tagged type. We also need to handle
10261 the case where the type is a reference to a tagged type, but
10262 we have to be careful to exclude pointers to tagged types.
10263 The latter should be shown as usual (as a pointer), whereas
10264 a reference should mostly be transparent to the user. */
10265 if (ada_is_tagged_type (type, 0)
023db19c 10266 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10267 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10268 {
10269 /* Tagged types are a little special in the fact that the real
10270 type is dynamic and can only be determined by inspecting the
10271 object's tag. This means that we need to get the object's
10272 value first (EVAL_NORMAL) and then extract the actual object
10273 type from its tag.
10274
10275 Note that we cannot skip the final step where we extract
10276 the object type from its tag, because the EVAL_NORMAL phase
10277 results in dynamic components being resolved into fixed ones.
10278 This can cause problems when trying to print the type
10279 description of tagged types whose parent has a dynamic size:
10280 We use the type name of the "_parent" component in order
10281 to print the name of the ancestor type in the type description.
10282 If that component had a dynamic size, the resolution into
10283 a fixed type would result in the loss of that type name,
10284 thus preventing us from printing the name of the ancestor
10285 type in the type description. */
10286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10287
10288 if (TYPE_CODE (type) != TYPE_CODE_REF)
10289 {
10290 struct type *actual_type;
10291
10292 actual_type = type_from_tag (ada_value_tag (arg1));
10293 if (actual_type == NULL)
10294 /* If, for some reason, we were unable to determine
10295 the actual type from the tag, then use the static
10296 approximation that we just computed as a fallback.
10297 This can happen if the debugging information is
10298 incomplete, for instance. */
10299 actual_type = type;
10300 return value_zero (actual_type, not_lval);
10301 }
10302 else
10303 {
10304 /* In the case of a ref, ada_coerce_ref takes care
10305 of determining the actual type. But the evaluation
10306 should return a ref as it should be valid to ask
10307 for its address; so rebuild a ref after coerce. */
10308 arg1 = ada_coerce_ref (arg1);
10309 return value_ref (arg1);
10310 }
10311 }
0c1f74cf 10312
84754697
JB
10313 /* Records and unions for which GNAT encodings have been
10314 generated need to be statically fixed as well.
10315 Otherwise, non-static fixing produces a type where
10316 all dynamic properties are removed, which prevents "ptype"
10317 from being able to completely describe the type.
10318 For instance, a case statement in a variant record would be
10319 replaced by the relevant components based on the actual
10320 value of the discriminants. */
10321 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10322 && dynamic_template_type (type) != NULL)
10323 || (TYPE_CODE (type) == TYPE_CODE_UNION
10324 && ada_find_parallel_type (type, "___XVU") != NULL))
10325 {
10326 *pos += 4;
10327 return value_zero (to_static_fixed_type (type), not_lval);
10328 }
4c4b4cd2 10329 }
da5c522f
JB
10330
10331 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10332 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10333
10334 case OP_FUNCALL:
10335 (*pos) += 2;
10336
10337 /* Allocate arg vector, including space for the function to be
10338 called in argvec[0] and a terminating NULL. */
10339 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10340 argvec =
10341 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10342
10343 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10344 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10345 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10346 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10347 else
10348 {
10349 for (tem = 0; tem <= nargs; tem += 1)
10350 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10351 argvec[tem] = 0;
10352
10353 if (noside == EVAL_SKIP)
10354 goto nosideret;
10355 }
10356
ad82864c
JB
10357 if (ada_is_constrained_packed_array_type
10358 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10359 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10360 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10361 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10362 /* This is a packed array that has already been fixed, and
10363 therefore already coerced to a simple array. Nothing further
10364 to do. */
10365 ;
df407dfe
AC
10366 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10367 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10368 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10369 argvec[0] = value_addr (argvec[0]);
10370
df407dfe 10371 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10372
10373 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10374 them. So, if this is an array typedef (encoding use for array
10375 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10376 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10377 type = ada_typedef_target_type (type);
10378
4c4b4cd2
PH
10379 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10380 {
61ee279c 10381 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10382 {
10383 case TYPE_CODE_FUNC:
61ee279c 10384 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10385 break;
10386 case TYPE_CODE_ARRAY:
10387 break;
10388 case TYPE_CODE_STRUCT:
10389 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10390 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10391 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10392 break;
10393 default:
323e0a4a 10394 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10395 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10396 break;
10397 }
10398 }
10399
10400 switch (TYPE_CODE (type))
10401 {
10402 case TYPE_CODE_FUNC:
10403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10404 {
10405 struct type *rtype = TYPE_TARGET_TYPE (type);
10406
10407 if (TYPE_GNU_IFUNC (type))
10408 return allocate_value (TYPE_TARGET_TYPE (rtype));
10409 return allocate_value (rtype);
10410 }
4c4b4cd2 10411 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10412 case TYPE_CODE_INTERNAL_FUNCTION:
10413 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10414 /* We don't know anything about what the internal
10415 function might return, but we have to return
10416 something. */
10417 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10418 not_lval);
10419 else
10420 return call_internal_function (exp->gdbarch, exp->language_defn,
10421 argvec[0], nargs, argvec + 1);
10422
4c4b4cd2
PH
10423 case TYPE_CODE_STRUCT:
10424 {
10425 int arity;
10426
4c4b4cd2
PH
10427 arity = ada_array_arity (type);
10428 type = ada_array_element_type (type, nargs);
10429 if (type == NULL)
323e0a4a 10430 error (_("cannot subscript or call a record"));
4c4b4cd2 10431 if (arity != nargs)
323e0a4a 10432 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10434 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10435 return
10436 unwrap_value (ada_value_subscript
10437 (argvec[0], nargs, argvec + 1));
10438 }
10439 case TYPE_CODE_ARRAY:
10440 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10441 {
10442 type = ada_array_element_type (type, nargs);
10443 if (type == NULL)
323e0a4a 10444 error (_("element type of array unknown"));
4c4b4cd2 10445 else
0a07e705 10446 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10447 }
10448 return
10449 unwrap_value (ada_value_subscript
10450 (ada_coerce_to_simple_array (argvec[0]),
10451 nargs, argvec + 1));
10452 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10454 {
deede10c 10455 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10456 type = ada_array_element_type (type, nargs);
10457 if (type == NULL)
323e0a4a 10458 error (_("element type of array unknown"));
4c4b4cd2 10459 else
0a07e705 10460 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10461 }
10462 return
deede10c
JB
10463 unwrap_value (ada_value_ptr_subscript (argvec[0],
10464 nargs, argvec + 1));
4c4b4cd2
PH
10465
10466 default:
e1d5a0d2
PH
10467 error (_("Attempt to index or call something other than an "
10468 "array or function"));
4c4b4cd2
PH
10469 }
10470
10471 case TERNOP_SLICE:
10472 {
10473 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10474 struct value *low_bound_val =
10475 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10476 struct value *high_bound_val =
10477 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10478 LONGEST low_bound;
10479 LONGEST high_bound;
5b4ee69b 10480
994b9211
AC
10481 low_bound_val = coerce_ref (low_bound_val);
10482 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10483 low_bound = pos_atr (low_bound_val);
10484 high_bound = pos_atr (high_bound_val);
963a6417 10485
4c4b4cd2
PH
10486 if (noside == EVAL_SKIP)
10487 goto nosideret;
10488
4c4b4cd2
PH
10489 /* If this is a reference to an aligner type, then remove all
10490 the aligners. */
df407dfe
AC
10491 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10492 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10493 TYPE_TARGET_TYPE (value_type (array)) =
10494 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10495
ad82864c 10496 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10497 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10498
10499 /* If this is a reference to an array or an array lvalue,
10500 convert to a pointer. */
df407dfe
AC
10501 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10502 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10503 && VALUE_LVAL (array) == lval_memory))
10504 array = value_addr (array);
10505
1265e4aa 10506 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10507 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10508 (value_type (array))))
0b5d8877 10509 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10510
10511 array = ada_coerce_to_simple_array_ptr (array);
10512
714e53ab
PH
10513 /* If we have more than one level of pointer indirection,
10514 dereference the value until we get only one level. */
df407dfe
AC
10515 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10516 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10517 == TYPE_CODE_PTR))
10518 array = value_ind (array);
10519
10520 /* Make sure we really do have an array type before going further,
10521 to avoid a SEGV when trying to get the index type or the target
10522 type later down the road if the debug info generated by
10523 the compiler is incorrect or incomplete. */
df407dfe 10524 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10525 error (_("cannot take slice of non-array"));
714e53ab 10526
828292f2
JB
10527 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10528 == TYPE_CODE_PTR)
4c4b4cd2 10529 {
828292f2
JB
10530 struct type *type0 = ada_check_typedef (value_type (array));
10531
0b5d8877 10532 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10533 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10534 else
10535 {
10536 struct type *arr_type0 =
828292f2 10537 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10538
f5938064
JG
10539 return ada_value_slice_from_ptr (array, arr_type0,
10540 longest_to_int (low_bound),
10541 longest_to_int (high_bound));
4c4b4cd2
PH
10542 }
10543 }
10544 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10545 return array;
10546 else if (high_bound < low_bound)
df407dfe 10547 return empty_array (value_type (array), low_bound);
4c4b4cd2 10548 else
529cad9c
PH
10549 return ada_value_slice (array, longest_to_int (low_bound),
10550 longest_to_int (high_bound));
4c4b4cd2 10551 }
14f9c5c9 10552
4c4b4cd2
PH
10553 case UNOP_IN_RANGE:
10554 (*pos) += 2;
10555 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10556 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10557
14f9c5c9 10558 if (noside == EVAL_SKIP)
4c4b4cd2 10559 goto nosideret;
14f9c5c9 10560
4c4b4cd2
PH
10561 switch (TYPE_CODE (type))
10562 {
10563 default:
e1d5a0d2
PH
10564 lim_warning (_("Membership test incompletely implemented; "
10565 "always returns true"));
fbb06eb1
UW
10566 type = language_bool_type (exp->language_defn, exp->gdbarch);
10567 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10568
10569 case TYPE_CODE_RANGE:
030b4912
UW
10570 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10571 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10572 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10573 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10574 type = language_bool_type (exp->language_defn, exp->gdbarch);
10575 return
10576 value_from_longest (type,
4c4b4cd2
PH
10577 (value_less (arg1, arg3)
10578 || value_equal (arg1, arg3))
10579 && (value_less (arg2, arg1)
10580 || value_equal (arg2, arg1)));
10581 }
10582
10583 case BINOP_IN_BOUNDS:
14f9c5c9 10584 (*pos) += 2;
4c4b4cd2
PH
10585 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10586 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10587
4c4b4cd2
PH
10588 if (noside == EVAL_SKIP)
10589 goto nosideret;
14f9c5c9 10590
4c4b4cd2 10591 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10592 {
10593 type = language_bool_type (exp->language_defn, exp->gdbarch);
10594 return value_zero (type, not_lval);
10595 }
14f9c5c9 10596
4c4b4cd2 10597 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10598
1eea4ebd
UW
10599 type = ada_index_type (value_type (arg2), tem, "range");
10600 if (!type)
10601 type = value_type (arg1);
14f9c5c9 10602
1eea4ebd
UW
10603 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10604 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10605
f44316fa
UW
10606 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10607 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10608 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10609 return
fbb06eb1 10610 value_from_longest (type,
4c4b4cd2
PH
10611 (value_less (arg1, arg3)
10612 || value_equal (arg1, arg3))
10613 && (value_less (arg2, arg1)
10614 || value_equal (arg2, arg1)));
10615
10616 case TERNOP_IN_RANGE:
10617 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10618 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10619 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10620
10621 if (noside == EVAL_SKIP)
10622 goto nosideret;
10623
f44316fa
UW
10624 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10625 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10626 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10627 return
fbb06eb1 10628 value_from_longest (type,
4c4b4cd2
PH
10629 (value_less (arg1, arg3)
10630 || value_equal (arg1, arg3))
10631 && (value_less (arg2, arg1)
10632 || value_equal (arg2, arg1)));
10633
10634 case OP_ATR_FIRST:
10635 case OP_ATR_LAST:
10636 case OP_ATR_LENGTH:
10637 {
76a01679 10638 struct type *type_arg;
5b4ee69b 10639
76a01679
JB
10640 if (exp->elts[*pos].opcode == OP_TYPE)
10641 {
10642 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10643 arg1 = NULL;
5bc23cb3 10644 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10645 }
10646 else
10647 {
10648 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10649 type_arg = NULL;
10650 }
10651
10652 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10653 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10654 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10655 *pos += 4;
10656
10657 if (noside == EVAL_SKIP)
10658 goto nosideret;
10659
10660 if (type_arg == NULL)
10661 {
10662 arg1 = ada_coerce_ref (arg1);
10663
ad82864c 10664 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10665 arg1 = ada_coerce_to_simple_array (arg1);
10666
aa4fb036 10667 if (op == OP_ATR_LENGTH)
1eea4ebd 10668 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10669 else
10670 {
10671 type = ada_index_type (value_type (arg1), tem,
10672 ada_attribute_name (op));
10673 if (type == NULL)
10674 type = builtin_type (exp->gdbarch)->builtin_int;
10675 }
76a01679
JB
10676
10677 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10678 return allocate_value (type);
76a01679
JB
10679
10680 switch (op)
10681 {
10682 default: /* Should never happen. */
323e0a4a 10683 error (_("unexpected attribute encountered"));
76a01679 10684 case OP_ATR_FIRST:
1eea4ebd
UW
10685 return value_from_longest
10686 (type, ada_array_bound (arg1, tem, 0));
76a01679 10687 case OP_ATR_LAST:
1eea4ebd
UW
10688 return value_from_longest
10689 (type, ada_array_bound (arg1, tem, 1));
76a01679 10690 case OP_ATR_LENGTH:
1eea4ebd
UW
10691 return value_from_longest
10692 (type, ada_array_length (arg1, tem));
76a01679
JB
10693 }
10694 }
10695 else if (discrete_type_p (type_arg))
10696 {
10697 struct type *range_type;
0d5cff50 10698 const char *name = ada_type_name (type_arg);
5b4ee69b 10699
76a01679
JB
10700 range_type = NULL;
10701 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10702 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10703 if (range_type == NULL)
10704 range_type = type_arg;
10705 switch (op)
10706 {
10707 default:
323e0a4a 10708 error (_("unexpected attribute encountered"));
76a01679 10709 case OP_ATR_FIRST:
690cc4eb 10710 return value_from_longest
43bbcdc2 10711 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10712 case OP_ATR_LAST:
690cc4eb 10713 return value_from_longest
43bbcdc2 10714 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10715 case OP_ATR_LENGTH:
323e0a4a 10716 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10717 }
10718 }
10719 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10720 error (_("unimplemented type attribute"));
76a01679
JB
10721 else
10722 {
10723 LONGEST low, high;
10724
ad82864c
JB
10725 if (ada_is_constrained_packed_array_type (type_arg))
10726 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10727
aa4fb036 10728 if (op == OP_ATR_LENGTH)
1eea4ebd 10729 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10730 else
10731 {
10732 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10733 if (type == NULL)
10734 type = builtin_type (exp->gdbarch)->builtin_int;
10735 }
1eea4ebd 10736
76a01679
JB
10737 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10738 return allocate_value (type);
10739
10740 switch (op)
10741 {
10742 default:
323e0a4a 10743 error (_("unexpected attribute encountered"));
76a01679 10744 case OP_ATR_FIRST:
1eea4ebd 10745 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10746 return value_from_longest (type, low);
10747 case OP_ATR_LAST:
1eea4ebd 10748 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10749 return value_from_longest (type, high);
10750 case OP_ATR_LENGTH:
1eea4ebd
UW
10751 low = ada_array_bound_from_type (type_arg, tem, 0);
10752 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10753 return value_from_longest (type, high - low + 1);
10754 }
10755 }
14f9c5c9
AS
10756 }
10757
4c4b4cd2
PH
10758 case OP_ATR_TAG:
10759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10760 if (noside == EVAL_SKIP)
76a01679 10761 goto nosideret;
4c4b4cd2
PH
10762
10763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10764 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10765
10766 return ada_value_tag (arg1);
10767
10768 case OP_ATR_MIN:
10769 case OP_ATR_MAX:
10770 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10772 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10773 if (noside == EVAL_SKIP)
76a01679 10774 goto nosideret;
d2e4a39e 10775 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10776 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10777 else
f44316fa
UW
10778 {
10779 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10780 return value_binop (arg1, arg2,
10781 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10782 }
14f9c5c9 10783
4c4b4cd2
PH
10784 case OP_ATR_MODULUS:
10785 {
31dedfee 10786 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10787
5b4ee69b 10788 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10789 if (noside == EVAL_SKIP)
10790 goto nosideret;
4c4b4cd2 10791
76a01679 10792 if (!ada_is_modular_type (type_arg))
323e0a4a 10793 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10794
76a01679
JB
10795 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10796 ada_modulus (type_arg));
4c4b4cd2
PH
10797 }
10798
10799
10800 case OP_ATR_POS:
10801 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10803 if (noside == EVAL_SKIP)
76a01679 10804 goto nosideret;
3cb382c9
UW
10805 type = builtin_type (exp->gdbarch)->builtin_int;
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 return value_zero (type, not_lval);
14f9c5c9 10808 else
3cb382c9 10809 return value_pos_atr (type, arg1);
14f9c5c9 10810
4c4b4cd2
PH
10811 case OP_ATR_SIZE:
10812 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10813 type = value_type (arg1);
10814
10815 /* If the argument is a reference, then dereference its type, since
10816 the user is really asking for the size of the actual object,
10817 not the size of the pointer. */
10818 if (TYPE_CODE (type) == TYPE_CODE_REF)
10819 type = TYPE_TARGET_TYPE (type);
10820
4c4b4cd2 10821 if (noside == EVAL_SKIP)
76a01679 10822 goto nosideret;
4c4b4cd2 10823 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10824 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10825 else
22601c15 10826 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10827 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10828
10829 case OP_ATR_VAL:
10830 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10831 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10832 type = exp->elts[pc + 2].type;
14f9c5c9 10833 if (noside == EVAL_SKIP)
76a01679 10834 goto nosideret;
4c4b4cd2 10835 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10836 return value_zero (type, not_lval);
4c4b4cd2 10837 else
76a01679 10838 return value_val_atr (type, arg1);
4c4b4cd2
PH
10839
10840 case BINOP_EXP:
10841 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10842 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10843 if (noside == EVAL_SKIP)
10844 goto nosideret;
10845 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10846 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10847 else
f44316fa
UW
10848 {
10849 /* For integer exponentiation operations,
10850 only promote the first argument. */
10851 if (is_integral_type (value_type (arg2)))
10852 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10853 else
10854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10855
10856 return value_binop (arg1, arg2, op);
10857 }
4c4b4cd2
PH
10858
10859 case UNOP_PLUS:
10860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 if (noside == EVAL_SKIP)
10862 goto nosideret;
10863 else
10864 return arg1;
10865
10866 case UNOP_ABS:
10867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10868 if (noside == EVAL_SKIP)
10869 goto nosideret;
f44316fa 10870 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10871 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10872 return value_neg (arg1);
14f9c5c9 10873 else
4c4b4cd2 10874 return arg1;
14f9c5c9
AS
10875
10876 case UNOP_IND:
5ec18f2b 10877 preeval_pos = *pos;
6b0d7253 10878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10879 if (noside == EVAL_SKIP)
4c4b4cd2 10880 goto nosideret;
df407dfe 10881 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10882 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10883 {
10884 if (ada_is_array_descriptor_type (type))
10885 /* GDB allows dereferencing GNAT array descriptors. */
10886 {
10887 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10888
4c4b4cd2 10889 if (arrType == NULL)
323e0a4a 10890 error (_("Attempt to dereference null array pointer."));
00a4c844 10891 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10892 }
10893 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10894 || TYPE_CODE (type) == TYPE_CODE_REF
10895 /* In C you can dereference an array to get the 1st elt. */
10896 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10897 {
5ec18f2b
JG
10898 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10899 only be determined by inspecting the object's tag.
10900 This means that we need to evaluate completely the
10901 expression in order to get its type. */
10902
023db19c
JB
10903 if ((TYPE_CODE (type) == TYPE_CODE_REF
10904 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10905 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10906 {
10907 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10908 EVAL_NORMAL);
10909 type = value_type (ada_value_ind (arg1));
10910 }
10911 else
10912 {
10913 type = to_static_fixed_type
10914 (ada_aligned_type
10915 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10916 }
c1b5a1a6 10917 ada_ensure_varsize_limit (type);
714e53ab
PH
10918 return value_zero (type, lval_memory);
10919 }
4c4b4cd2 10920 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10921 {
10922 /* GDB allows dereferencing an int. */
10923 if (expect_type == NULL)
10924 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10925 lval_memory);
10926 else
10927 {
10928 expect_type =
10929 to_static_fixed_type (ada_aligned_type (expect_type));
10930 return value_zero (expect_type, lval_memory);
10931 }
10932 }
4c4b4cd2 10933 else
323e0a4a 10934 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10935 }
0963b4bd 10936 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10937 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10938
96967637
JB
10939 if (TYPE_CODE (type) == TYPE_CODE_INT)
10940 /* GDB allows dereferencing an int. If we were given
10941 the expect_type, then use that as the target type.
10942 Otherwise, assume that the target type is an int. */
10943 {
10944 if (expect_type != NULL)
10945 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10946 arg1));
10947 else
10948 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10949 (CORE_ADDR) value_as_address (arg1));
10950 }
6b0d7253 10951
4c4b4cd2
PH
10952 if (ada_is_array_descriptor_type (type))
10953 /* GDB allows dereferencing GNAT array descriptors. */
10954 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10955 else
4c4b4cd2 10956 return ada_value_ind (arg1);
14f9c5c9
AS
10957
10958 case STRUCTOP_STRUCT:
10959 tem = longest_to_int (exp->elts[pc + 1].longconst);
10960 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10961 preeval_pos = *pos;
14f9c5c9
AS
10962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10963 if (noside == EVAL_SKIP)
4c4b4cd2 10964 goto nosideret;
14f9c5c9 10965 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10966 {
df407dfe 10967 struct type *type1 = value_type (arg1);
5b4ee69b 10968
76a01679
JB
10969 if (ada_is_tagged_type (type1, 1))
10970 {
10971 type = ada_lookup_struct_elt_type (type1,
10972 &exp->elts[pc + 2].string,
10973 1, 1, NULL);
5ec18f2b
JG
10974
10975 /* If the field is not found, check if it exists in the
10976 extension of this object's type. This means that we
10977 need to evaluate completely the expression. */
10978
76a01679 10979 if (type == NULL)
5ec18f2b
JG
10980 {
10981 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10982 EVAL_NORMAL);
10983 arg1 = ada_value_struct_elt (arg1,
10984 &exp->elts[pc + 2].string,
10985 0);
10986 arg1 = unwrap_value (arg1);
10987 type = value_type (ada_to_fixed_value (arg1));
10988 }
76a01679
JB
10989 }
10990 else
10991 type =
10992 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10993 0, NULL);
10994
10995 return value_zero (ada_aligned_type (type), lval_memory);
10996 }
14f9c5c9 10997 else
284614f0
JB
10998 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10999 arg1 = unwrap_value (arg1);
11000 return ada_to_fixed_value (arg1);
11001
14f9c5c9 11002 case OP_TYPE:
4c4b4cd2
PH
11003 /* The value is not supposed to be used. This is here to make it
11004 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11005 (*pos) += 2;
11006 if (noside == EVAL_SKIP)
4c4b4cd2 11007 goto nosideret;
14f9c5c9 11008 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11009 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11010 else
323e0a4a 11011 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11012
11013 case OP_AGGREGATE:
11014 case OP_CHOICES:
11015 case OP_OTHERS:
11016 case OP_DISCRETE_RANGE:
11017 case OP_POSITIONAL:
11018 case OP_NAME:
11019 if (noside == EVAL_NORMAL)
11020 switch (op)
11021 {
11022 case OP_NAME:
11023 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11024 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11025 case OP_AGGREGATE:
11026 error (_("Aggregates only allowed on the right of an assignment"));
11027 default:
0963b4bd
MS
11028 internal_error (__FILE__, __LINE__,
11029 _("aggregate apparently mangled"));
52ce6436
PH
11030 }
11031
11032 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11033 *pos += oplen - 1;
11034 for (tem = 0; tem < nargs; tem += 1)
11035 ada_evaluate_subexp (NULL, exp, pos, noside);
11036 goto nosideret;
14f9c5c9
AS
11037 }
11038
11039nosideret:
22601c15 11040 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11041}
14f9c5c9 11042\f
d2e4a39e 11043
4c4b4cd2 11044 /* Fixed point */
14f9c5c9
AS
11045
11046/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11047 type name that encodes the 'small and 'delta information.
4c4b4cd2 11048 Otherwise, return NULL. */
14f9c5c9 11049
d2e4a39e 11050static const char *
ebf56fd3 11051fixed_type_info (struct type *type)
14f9c5c9 11052{
d2e4a39e 11053 const char *name = ada_type_name (type);
14f9c5c9
AS
11054 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11055
d2e4a39e
AS
11056 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11057 {
14f9c5c9 11058 const char *tail = strstr (name, "___XF_");
5b4ee69b 11059
14f9c5c9 11060 if (tail == NULL)
4c4b4cd2 11061 return NULL;
d2e4a39e 11062 else
4c4b4cd2 11063 return tail + 5;
14f9c5c9
AS
11064 }
11065 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11066 return fixed_type_info (TYPE_TARGET_TYPE (type));
11067 else
11068 return NULL;
11069}
11070
4c4b4cd2 11071/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11072
11073int
ebf56fd3 11074ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11075{
11076 return fixed_type_info (type) != NULL;
11077}
11078
4c4b4cd2
PH
11079/* Return non-zero iff TYPE represents a System.Address type. */
11080
11081int
11082ada_is_system_address_type (struct type *type)
11083{
11084 return (TYPE_NAME (type)
11085 && strcmp (TYPE_NAME (type), "system__address") == 0);
11086}
11087
14f9c5c9
AS
11088/* Assuming that TYPE is the representation of an Ada fixed-point
11089 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11090 delta cannot be determined. */
14f9c5c9
AS
11091
11092DOUBLEST
ebf56fd3 11093ada_delta (struct type *type)
14f9c5c9
AS
11094{
11095 const char *encoding = fixed_type_info (type);
facc390f 11096 DOUBLEST num, den;
14f9c5c9 11097
facc390f
JB
11098 /* Strictly speaking, num and den are encoded as integer. However,
11099 they may not fit into a long, and they will have to be converted
11100 to DOUBLEST anyway. So scan them as DOUBLEST. */
11101 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11102 &num, &den) < 2)
14f9c5c9 11103 return -1.0;
d2e4a39e 11104 else
facc390f 11105 return num / den;
14f9c5c9
AS
11106}
11107
11108/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11109 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11110
11111static DOUBLEST
ebf56fd3 11112scaling_factor (struct type *type)
14f9c5c9
AS
11113{
11114 const char *encoding = fixed_type_info (type);
facc390f 11115 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11116 int n;
d2e4a39e 11117
facc390f
JB
11118 /* Strictly speaking, num's and den's are encoded as integer. However,
11119 they may not fit into a long, and they will have to be converted
11120 to DOUBLEST anyway. So scan them as DOUBLEST. */
11121 n = sscanf (encoding,
11122 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11123 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11124 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11125
11126 if (n < 2)
11127 return 1.0;
11128 else if (n == 4)
facc390f 11129 return num1 / den1;
d2e4a39e 11130 else
facc390f 11131 return num0 / den0;
14f9c5c9
AS
11132}
11133
11134
11135/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11136 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11137
11138DOUBLEST
ebf56fd3 11139ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11140{
d2e4a39e 11141 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11142}
11143
4c4b4cd2
PH
11144/* The representation of a fixed-point value of type TYPE
11145 corresponding to the value X. */
14f9c5c9
AS
11146
11147LONGEST
ebf56fd3 11148ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11149{
11150 return (LONGEST) (x / scaling_factor (type) + 0.5);
11151}
11152
14f9c5c9 11153\f
d2e4a39e 11154
4c4b4cd2 11155 /* Range types */
14f9c5c9
AS
11156
11157/* Scan STR beginning at position K for a discriminant name, and
11158 return the value of that discriminant field of DVAL in *PX. If
11159 PNEW_K is not null, put the position of the character beyond the
11160 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11161 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11162
11163static int
07d8f827 11164scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11165 int *pnew_k)
14f9c5c9
AS
11166{
11167 static char *bound_buffer = NULL;
11168 static size_t bound_buffer_len = 0;
11169 char *bound;
11170 char *pend;
d2e4a39e 11171 struct value *bound_val;
14f9c5c9
AS
11172
11173 if (dval == NULL || str == NULL || str[k] == '\0')
11174 return 0;
11175
d2e4a39e 11176 pend = strstr (str + k, "__");
14f9c5c9
AS
11177 if (pend == NULL)
11178 {
d2e4a39e 11179 bound = str + k;
14f9c5c9
AS
11180 k += strlen (bound);
11181 }
d2e4a39e 11182 else
14f9c5c9 11183 {
d2e4a39e 11184 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11185 bound = bound_buffer;
d2e4a39e
AS
11186 strncpy (bound_buffer, str + k, pend - (str + k));
11187 bound[pend - (str + k)] = '\0';
11188 k = pend - str;
14f9c5c9 11189 }
d2e4a39e 11190
df407dfe 11191 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11192 if (bound_val == NULL)
11193 return 0;
11194
11195 *px = value_as_long (bound_val);
11196 if (pnew_k != NULL)
11197 *pnew_k = k;
11198 return 1;
11199}
11200
11201/* Value of variable named NAME in the current environment. If
11202 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11203 otherwise causes an error with message ERR_MSG. */
11204
d2e4a39e
AS
11205static struct value *
11206get_var_value (char *name, char *err_msg)
14f9c5c9 11207{
4c4b4cd2 11208 struct ada_symbol_info *syms;
14f9c5c9
AS
11209 int nsyms;
11210
4c4b4cd2 11211 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11212 &syms);
14f9c5c9
AS
11213
11214 if (nsyms != 1)
11215 {
11216 if (err_msg == NULL)
4c4b4cd2 11217 return 0;
14f9c5c9 11218 else
8a3fe4f8 11219 error (("%s"), err_msg);
14f9c5c9
AS
11220 }
11221
4c4b4cd2 11222 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11223}
d2e4a39e 11224
14f9c5c9 11225/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11226 no such variable found, returns 0, and sets *FLAG to 0. If
11227 successful, sets *FLAG to 1. */
11228
14f9c5c9 11229LONGEST
4c4b4cd2 11230get_int_var_value (char *name, int *flag)
14f9c5c9 11231{
4c4b4cd2 11232 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11233
14f9c5c9
AS
11234 if (var_val == 0)
11235 {
11236 if (flag != NULL)
4c4b4cd2 11237 *flag = 0;
14f9c5c9
AS
11238 return 0;
11239 }
11240 else
11241 {
11242 if (flag != NULL)
4c4b4cd2 11243 *flag = 1;
14f9c5c9
AS
11244 return value_as_long (var_val);
11245 }
11246}
d2e4a39e 11247
14f9c5c9
AS
11248
11249/* Return a range type whose base type is that of the range type named
11250 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11251 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11252 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11253 corresponding range type from debug information; fall back to using it
11254 if symbol lookup fails. If a new type must be created, allocate it
11255 like ORIG_TYPE was. The bounds information, in general, is encoded
11256 in NAME, the base type given in the named range type. */
14f9c5c9 11257
d2e4a39e 11258static struct type *
28c85d6c 11259to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11260{
0d5cff50 11261 const char *name;
14f9c5c9 11262 struct type *base_type;
d2e4a39e 11263 char *subtype_info;
14f9c5c9 11264
28c85d6c
JB
11265 gdb_assert (raw_type != NULL);
11266 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11267
1ce677a4 11268 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11269 base_type = TYPE_TARGET_TYPE (raw_type);
11270 else
11271 base_type = raw_type;
11272
28c85d6c 11273 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11274 subtype_info = strstr (name, "___XD");
11275 if (subtype_info == NULL)
690cc4eb 11276 {
43bbcdc2
PH
11277 LONGEST L = ada_discrete_type_low_bound (raw_type);
11278 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11279
690cc4eb
PH
11280 if (L < INT_MIN || U > INT_MAX)
11281 return raw_type;
11282 else
0c9c3474
SA
11283 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11284 L, U);
690cc4eb 11285 }
14f9c5c9
AS
11286 else
11287 {
11288 static char *name_buf = NULL;
11289 static size_t name_len = 0;
11290 int prefix_len = subtype_info - name;
11291 LONGEST L, U;
11292 struct type *type;
11293 char *bounds_str;
11294 int n;
11295
11296 GROW_VECT (name_buf, name_len, prefix_len + 5);
11297 strncpy (name_buf, name, prefix_len);
11298 name_buf[prefix_len] = '\0';
11299
11300 subtype_info += 5;
11301 bounds_str = strchr (subtype_info, '_');
11302 n = 1;
11303
d2e4a39e 11304 if (*subtype_info == 'L')
4c4b4cd2
PH
11305 {
11306 if (!ada_scan_number (bounds_str, n, &L, &n)
11307 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11308 return raw_type;
11309 if (bounds_str[n] == '_')
11310 n += 2;
0963b4bd 11311 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11312 n += 1;
11313 subtype_info += 1;
11314 }
d2e4a39e 11315 else
4c4b4cd2
PH
11316 {
11317 int ok;
5b4ee69b 11318
4c4b4cd2
PH
11319 strcpy (name_buf + prefix_len, "___L");
11320 L = get_int_var_value (name_buf, &ok);
11321 if (!ok)
11322 {
323e0a4a 11323 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11324 L = 1;
11325 }
11326 }
14f9c5c9 11327
d2e4a39e 11328 if (*subtype_info == 'U')
4c4b4cd2
PH
11329 {
11330 if (!ada_scan_number (bounds_str, n, &U, &n)
11331 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11332 return raw_type;
11333 }
d2e4a39e 11334 else
4c4b4cd2
PH
11335 {
11336 int ok;
5b4ee69b 11337
4c4b4cd2
PH
11338 strcpy (name_buf + prefix_len, "___U");
11339 U = get_int_var_value (name_buf, &ok);
11340 if (!ok)
11341 {
323e0a4a 11342 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11343 U = L;
11344 }
11345 }
14f9c5c9 11346
0c9c3474
SA
11347 type = create_static_range_type (alloc_type_copy (raw_type),
11348 base_type, L, U);
d2e4a39e 11349 TYPE_NAME (type) = name;
14f9c5c9
AS
11350 return type;
11351 }
11352}
11353
4c4b4cd2
PH
11354/* True iff NAME is the name of a range type. */
11355
14f9c5c9 11356int
d2e4a39e 11357ada_is_range_type_name (const char *name)
14f9c5c9
AS
11358{
11359 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11360}
14f9c5c9 11361\f
d2e4a39e 11362
4c4b4cd2
PH
11363 /* Modular types */
11364
11365/* True iff TYPE is an Ada modular type. */
14f9c5c9 11366
14f9c5c9 11367int
d2e4a39e 11368ada_is_modular_type (struct type *type)
14f9c5c9 11369{
18af8284 11370 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11371
11372 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11373 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11374 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11375}
11376
4c4b4cd2
PH
11377/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11378
61ee279c 11379ULONGEST
0056e4d5 11380ada_modulus (struct type *type)
14f9c5c9 11381{
43bbcdc2 11382 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11383}
d2e4a39e 11384\f
f7f9143b
JB
11385
11386/* Ada exception catchpoint support:
11387 ---------------------------------
11388
11389 We support 3 kinds of exception catchpoints:
11390 . catchpoints on Ada exceptions
11391 . catchpoints on unhandled Ada exceptions
11392 . catchpoints on failed assertions
11393
11394 Exceptions raised during failed assertions, or unhandled exceptions
11395 could perfectly be caught with the general catchpoint on Ada exceptions.
11396 However, we can easily differentiate these two special cases, and having
11397 the option to distinguish these two cases from the rest can be useful
11398 to zero-in on certain situations.
11399
11400 Exception catchpoints are a specialized form of breakpoint,
11401 since they rely on inserting breakpoints inside known routines
11402 of the GNAT runtime. The implementation therefore uses a standard
11403 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11404 of breakpoint_ops.
11405
0259addd
JB
11406 Support in the runtime for exception catchpoints have been changed
11407 a few times already, and these changes affect the implementation
11408 of these catchpoints. In order to be able to support several
11409 variants of the runtime, we use a sniffer that will determine
28010a5d 11410 the runtime variant used by the program being debugged. */
f7f9143b 11411
82eacd52
JB
11412/* Ada's standard exceptions.
11413
11414 The Ada 83 standard also defined Numeric_Error. But there so many
11415 situations where it was unclear from the Ada 83 Reference Manual
11416 (RM) whether Constraint_Error or Numeric_Error should be raised,
11417 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11418 Interpretation saying that anytime the RM says that Numeric_Error
11419 should be raised, the implementation may raise Constraint_Error.
11420 Ada 95 went one step further and pretty much removed Numeric_Error
11421 from the list of standard exceptions (it made it a renaming of
11422 Constraint_Error, to help preserve compatibility when compiling
11423 an Ada83 compiler). As such, we do not include Numeric_Error from
11424 this list of standard exceptions. */
3d0b0fa3
JB
11425
11426static char *standard_exc[] = {
11427 "constraint_error",
11428 "program_error",
11429 "storage_error",
11430 "tasking_error"
11431};
11432
0259addd
JB
11433typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11434
11435/* A structure that describes how to support exception catchpoints
11436 for a given executable. */
11437
11438struct exception_support_info
11439{
11440 /* The name of the symbol to break on in order to insert
11441 a catchpoint on exceptions. */
11442 const char *catch_exception_sym;
11443
11444 /* The name of the symbol to break on in order to insert
11445 a catchpoint on unhandled exceptions. */
11446 const char *catch_exception_unhandled_sym;
11447
11448 /* The name of the symbol to break on in order to insert
11449 a catchpoint on failed assertions. */
11450 const char *catch_assert_sym;
11451
11452 /* Assuming that the inferior just triggered an unhandled exception
11453 catchpoint, this function is responsible for returning the address
11454 in inferior memory where the name of that exception is stored.
11455 Return zero if the address could not be computed. */
11456 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11457};
11458
11459static CORE_ADDR ada_unhandled_exception_name_addr (void);
11460static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11461
11462/* The following exception support info structure describes how to
11463 implement exception catchpoints with the latest version of the
11464 Ada runtime (as of 2007-03-06). */
11465
11466static const struct exception_support_info default_exception_support_info =
11467{
11468 "__gnat_debug_raise_exception", /* catch_exception_sym */
11469 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11470 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11471 ada_unhandled_exception_name_addr
11472};
11473
11474/* The following exception support info structure describes how to
11475 implement exception catchpoints with a slightly older version
11476 of the Ada runtime. */
11477
11478static const struct exception_support_info exception_support_info_fallback =
11479{
11480 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11481 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11482 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11483 ada_unhandled_exception_name_addr_from_raise
11484};
11485
f17011e0
JB
11486/* Return nonzero if we can detect the exception support routines
11487 described in EINFO.
11488
11489 This function errors out if an abnormal situation is detected
11490 (for instance, if we find the exception support routines, but
11491 that support is found to be incomplete). */
11492
11493static int
11494ada_has_this_exception_support (const struct exception_support_info *einfo)
11495{
11496 struct symbol *sym;
11497
11498 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11499 that should be compiled with debugging information. As a result, we
11500 expect to find that symbol in the symtabs. */
11501
11502 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11503 if (sym == NULL)
a6af7abe
JB
11504 {
11505 /* Perhaps we did not find our symbol because the Ada runtime was
11506 compiled without debugging info, or simply stripped of it.
11507 It happens on some GNU/Linux distributions for instance, where
11508 users have to install a separate debug package in order to get
11509 the runtime's debugging info. In that situation, let the user
11510 know why we cannot insert an Ada exception catchpoint.
11511
11512 Note: Just for the purpose of inserting our Ada exception
11513 catchpoint, we could rely purely on the associated minimal symbol.
11514 But we would be operating in degraded mode anyway, since we are
11515 still lacking the debugging info needed later on to extract
11516 the name of the exception being raised (this name is printed in
11517 the catchpoint message, and is also used when trying to catch
11518 a specific exception). We do not handle this case for now. */
3b7344d5 11519 struct bound_minimal_symbol msym
1c8e84b0
JB
11520 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11521
3b7344d5 11522 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11523 error (_("Your Ada runtime appears to be missing some debugging "
11524 "information.\nCannot insert Ada exception catchpoint "
11525 "in this configuration."));
11526
11527 return 0;
11528 }
f17011e0
JB
11529
11530 /* Make sure that the symbol we found corresponds to a function. */
11531
11532 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11533 error (_("Symbol \"%s\" is not a function (class = %d)"),
11534 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11535
11536 return 1;
11537}
11538
0259addd
JB
11539/* Inspect the Ada runtime and determine which exception info structure
11540 should be used to provide support for exception catchpoints.
11541
3eecfa55
JB
11542 This function will always set the per-inferior exception_info,
11543 or raise an error. */
0259addd
JB
11544
11545static void
11546ada_exception_support_info_sniffer (void)
11547{
3eecfa55 11548 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11549
11550 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11551 if (data->exception_info != NULL)
0259addd
JB
11552 return;
11553
11554 /* Check the latest (default) exception support info. */
f17011e0 11555 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11556 {
3eecfa55 11557 data->exception_info = &default_exception_support_info;
0259addd
JB
11558 return;
11559 }
11560
11561 /* Try our fallback exception suport info. */
f17011e0 11562 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11563 {
3eecfa55 11564 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11565 return;
11566 }
11567
11568 /* Sometimes, it is normal for us to not be able to find the routine
11569 we are looking for. This happens when the program is linked with
11570 the shared version of the GNAT runtime, and the program has not been
11571 started yet. Inform the user of these two possible causes if
11572 applicable. */
11573
ccefe4c4 11574 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11575 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11576
11577 /* If the symbol does not exist, then check that the program is
11578 already started, to make sure that shared libraries have been
11579 loaded. If it is not started, this may mean that the symbol is
11580 in a shared library. */
11581
11582 if (ptid_get_pid (inferior_ptid) == 0)
11583 error (_("Unable to insert catchpoint. Try to start the program first."));
11584
11585 /* At this point, we know that we are debugging an Ada program and
11586 that the inferior has been started, but we still are not able to
0963b4bd 11587 find the run-time symbols. That can mean that we are in
0259addd
JB
11588 configurable run time mode, or that a-except as been optimized
11589 out by the linker... In any case, at this point it is not worth
11590 supporting this feature. */
11591
7dda8cff 11592 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11593}
11594
f7f9143b
JB
11595/* True iff FRAME is very likely to be that of a function that is
11596 part of the runtime system. This is all very heuristic, but is
11597 intended to be used as advice as to what frames are uninteresting
11598 to most users. */
11599
11600static int
11601is_known_support_routine (struct frame_info *frame)
11602{
4ed6b5be 11603 struct symtab_and_line sal;
55b87a52 11604 char *func_name;
692465f1 11605 enum language func_lang;
f7f9143b 11606 int i;
f35a17b5 11607 const char *fullname;
f7f9143b 11608
4ed6b5be
JB
11609 /* If this code does not have any debugging information (no symtab),
11610 This cannot be any user code. */
f7f9143b 11611
4ed6b5be 11612 find_frame_sal (frame, &sal);
f7f9143b
JB
11613 if (sal.symtab == NULL)
11614 return 1;
11615
4ed6b5be
JB
11616 /* If there is a symtab, but the associated source file cannot be
11617 located, then assume this is not user code: Selecting a frame
11618 for which we cannot display the code would not be very helpful
11619 for the user. This should also take care of case such as VxWorks
11620 where the kernel has some debugging info provided for a few units. */
f7f9143b 11621
f35a17b5
JK
11622 fullname = symtab_to_fullname (sal.symtab);
11623 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11624 return 1;
11625
4ed6b5be
JB
11626 /* Check the unit filename againt the Ada runtime file naming.
11627 We also check the name of the objfile against the name of some
11628 known system libraries that sometimes come with debugging info
11629 too. */
11630
f7f9143b
JB
11631 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11632 {
11633 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11634 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11635 return 1;
eb822aa6
DE
11636 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11637 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11638 return 1;
f7f9143b
JB
11639 }
11640
4ed6b5be 11641 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11642
e9e07ba6 11643 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11644 if (func_name == NULL)
11645 return 1;
11646
11647 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11648 {
11649 re_comp (known_auxiliary_function_name_patterns[i]);
11650 if (re_exec (func_name))
55b87a52
KS
11651 {
11652 xfree (func_name);
11653 return 1;
11654 }
f7f9143b
JB
11655 }
11656
55b87a52 11657 xfree (func_name);
f7f9143b
JB
11658 return 0;
11659}
11660
11661/* Find the first frame that contains debugging information and that is not
11662 part of the Ada run-time, starting from FI and moving upward. */
11663
0ef643c8 11664void
f7f9143b
JB
11665ada_find_printable_frame (struct frame_info *fi)
11666{
11667 for (; fi != NULL; fi = get_prev_frame (fi))
11668 {
11669 if (!is_known_support_routine (fi))
11670 {
11671 select_frame (fi);
11672 break;
11673 }
11674 }
11675
11676}
11677
11678/* Assuming that the inferior just triggered an unhandled exception
11679 catchpoint, return the address in inferior memory where the name
11680 of the exception is stored.
11681
11682 Return zero if the address could not be computed. */
11683
11684static CORE_ADDR
11685ada_unhandled_exception_name_addr (void)
0259addd
JB
11686{
11687 return parse_and_eval_address ("e.full_name");
11688}
11689
11690/* Same as ada_unhandled_exception_name_addr, except that this function
11691 should be used when the inferior uses an older version of the runtime,
11692 where the exception name needs to be extracted from a specific frame
11693 several frames up in the callstack. */
11694
11695static CORE_ADDR
11696ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11697{
11698 int frame_level;
11699 struct frame_info *fi;
3eecfa55 11700 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11701 struct cleanup *old_chain;
f7f9143b
JB
11702
11703 /* To determine the name of this exception, we need to select
11704 the frame corresponding to RAISE_SYM_NAME. This frame is
11705 at least 3 levels up, so we simply skip the first 3 frames
11706 without checking the name of their associated function. */
11707 fi = get_current_frame ();
11708 for (frame_level = 0; frame_level < 3; frame_level += 1)
11709 if (fi != NULL)
11710 fi = get_prev_frame (fi);
11711
55b87a52 11712 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11713 while (fi != NULL)
11714 {
55b87a52 11715 char *func_name;
692465f1
JB
11716 enum language func_lang;
11717
e9e07ba6 11718 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11719 if (func_name != NULL)
11720 {
11721 make_cleanup (xfree, func_name);
11722
11723 if (strcmp (func_name,
11724 data->exception_info->catch_exception_sym) == 0)
11725 break; /* We found the frame we were looking for... */
11726 fi = get_prev_frame (fi);
11727 }
f7f9143b 11728 }
55b87a52 11729 do_cleanups (old_chain);
f7f9143b
JB
11730
11731 if (fi == NULL)
11732 return 0;
11733
11734 select_frame (fi);
11735 return parse_and_eval_address ("id.full_name");
11736}
11737
11738/* Assuming the inferior just triggered an Ada exception catchpoint
11739 (of any type), return the address in inferior memory where the name
11740 of the exception is stored, if applicable.
11741
11742 Return zero if the address could not be computed, or if not relevant. */
11743
11744static CORE_ADDR
761269c8 11745ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11746 struct breakpoint *b)
11747{
3eecfa55
JB
11748 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11749
f7f9143b
JB
11750 switch (ex)
11751 {
761269c8 11752 case ada_catch_exception:
f7f9143b
JB
11753 return (parse_and_eval_address ("e.full_name"));
11754 break;
11755
761269c8 11756 case ada_catch_exception_unhandled:
3eecfa55 11757 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11758 break;
11759
761269c8 11760 case ada_catch_assert:
f7f9143b
JB
11761 return 0; /* Exception name is not relevant in this case. */
11762 break;
11763
11764 default:
11765 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11766 break;
11767 }
11768
11769 return 0; /* Should never be reached. */
11770}
11771
11772/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11773 any error that ada_exception_name_addr_1 might cause to be thrown.
11774 When an error is intercepted, a warning with the error message is printed,
11775 and zero is returned. */
11776
11777static CORE_ADDR
761269c8 11778ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11779 struct breakpoint *b)
11780{
bfd189b1 11781 volatile struct gdb_exception e;
f7f9143b
JB
11782 CORE_ADDR result = 0;
11783
11784 TRY_CATCH (e, RETURN_MASK_ERROR)
11785 {
11786 result = ada_exception_name_addr_1 (ex, b);
11787 }
11788
11789 if (e.reason < 0)
11790 {
11791 warning (_("failed to get exception name: %s"), e.message);
11792 return 0;
11793 }
11794
11795 return result;
11796}
11797
28010a5d
PA
11798static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11799
11800/* Ada catchpoints.
11801
11802 In the case of catchpoints on Ada exceptions, the catchpoint will
11803 stop the target on every exception the program throws. When a user
11804 specifies the name of a specific exception, we translate this
11805 request into a condition expression (in text form), and then parse
11806 it into an expression stored in each of the catchpoint's locations.
11807 We then use this condition to check whether the exception that was
11808 raised is the one the user is interested in. If not, then the
11809 target is resumed again. We store the name of the requested
11810 exception, in order to be able to re-set the condition expression
11811 when symbols change. */
11812
11813/* An instance of this type is used to represent an Ada catchpoint
11814 breakpoint location. It includes a "struct bp_location" as a kind
11815 of base class; users downcast to "struct bp_location *" when
11816 needed. */
11817
11818struct ada_catchpoint_location
11819{
11820 /* The base class. */
11821 struct bp_location base;
11822
11823 /* The condition that checks whether the exception that was raised
11824 is the specific exception the user specified on catchpoint
11825 creation. */
11826 struct expression *excep_cond_expr;
11827};
11828
11829/* Implement the DTOR method in the bp_location_ops structure for all
11830 Ada exception catchpoint kinds. */
11831
11832static void
11833ada_catchpoint_location_dtor (struct bp_location *bl)
11834{
11835 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11836
11837 xfree (al->excep_cond_expr);
11838}
11839
11840/* The vtable to be used in Ada catchpoint locations. */
11841
11842static const struct bp_location_ops ada_catchpoint_location_ops =
11843{
11844 ada_catchpoint_location_dtor
11845};
11846
11847/* An instance of this type is used to represent an Ada catchpoint.
11848 It includes a "struct breakpoint" as a kind of base class; users
11849 downcast to "struct breakpoint *" when needed. */
11850
11851struct ada_catchpoint
11852{
11853 /* The base class. */
11854 struct breakpoint base;
11855
11856 /* The name of the specific exception the user specified. */
11857 char *excep_string;
11858};
11859
11860/* Parse the exception condition string in the context of each of the
11861 catchpoint's locations, and store them for later evaluation. */
11862
11863static void
11864create_excep_cond_exprs (struct ada_catchpoint *c)
11865{
11866 struct cleanup *old_chain;
11867 struct bp_location *bl;
11868 char *cond_string;
11869
11870 /* Nothing to do if there's no specific exception to catch. */
11871 if (c->excep_string == NULL)
11872 return;
11873
11874 /* Same if there are no locations... */
11875 if (c->base.loc == NULL)
11876 return;
11877
11878 /* Compute the condition expression in text form, from the specific
11879 expection we want to catch. */
11880 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11881 old_chain = make_cleanup (xfree, cond_string);
11882
11883 /* Iterate over all the catchpoint's locations, and parse an
11884 expression for each. */
11885 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11886 {
11887 struct ada_catchpoint_location *ada_loc
11888 = (struct ada_catchpoint_location *) bl;
11889 struct expression *exp = NULL;
11890
11891 if (!bl->shlib_disabled)
11892 {
11893 volatile struct gdb_exception e;
bbc13ae3 11894 const char *s;
28010a5d
PA
11895
11896 s = cond_string;
11897 TRY_CATCH (e, RETURN_MASK_ERROR)
11898 {
1bb9788d
TT
11899 exp = parse_exp_1 (&s, bl->address,
11900 block_for_pc (bl->address), 0);
28010a5d
PA
11901 }
11902 if (e.reason < 0)
849f2b52
JB
11903 {
11904 warning (_("failed to reevaluate internal exception condition "
11905 "for catchpoint %d: %s"),
11906 c->base.number, e.message);
11907 /* There is a bug in GCC on sparc-solaris when building with
11908 optimization which causes EXP to change unexpectedly
11909 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11910 The problem should be fixed starting with GCC 4.9.
11911 In the meantime, work around it by forcing EXP back
11912 to NULL. */
11913 exp = NULL;
11914 }
28010a5d
PA
11915 }
11916
11917 ada_loc->excep_cond_expr = exp;
11918 }
11919
11920 do_cleanups (old_chain);
11921}
11922
11923/* Implement the DTOR method in the breakpoint_ops structure for all
11924 exception catchpoint kinds. */
11925
11926static void
761269c8 11927dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11928{
11929 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11930
11931 xfree (c->excep_string);
348d480f 11932
2060206e 11933 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11934}
11935
11936/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11937 structure for all exception catchpoint kinds. */
11938
11939static struct bp_location *
761269c8 11940allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11941 struct breakpoint *self)
11942{
11943 struct ada_catchpoint_location *loc;
11944
11945 loc = XNEW (struct ada_catchpoint_location);
11946 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11947 loc->excep_cond_expr = NULL;
11948 return &loc->base;
11949}
11950
11951/* Implement the RE_SET method in the breakpoint_ops structure for all
11952 exception catchpoint kinds. */
11953
11954static void
761269c8 11955re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11956{
11957 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11958
11959 /* Call the base class's method. This updates the catchpoint's
11960 locations. */
2060206e 11961 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11962
11963 /* Reparse the exception conditional expressions. One for each
11964 location. */
11965 create_excep_cond_exprs (c);
11966}
11967
11968/* Returns true if we should stop for this breakpoint hit. If the
11969 user specified a specific exception, we only want to cause a stop
11970 if the program thrown that exception. */
11971
11972static int
11973should_stop_exception (const struct bp_location *bl)
11974{
11975 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11976 const struct ada_catchpoint_location *ada_loc
11977 = (const struct ada_catchpoint_location *) bl;
11978 volatile struct gdb_exception ex;
11979 int stop;
11980
11981 /* With no specific exception, should always stop. */
11982 if (c->excep_string == NULL)
11983 return 1;
11984
11985 if (ada_loc->excep_cond_expr == NULL)
11986 {
11987 /* We will have a NULL expression if back when we were creating
11988 the expressions, this location's had failed to parse. */
11989 return 1;
11990 }
11991
11992 stop = 1;
11993 TRY_CATCH (ex, RETURN_MASK_ALL)
11994 {
11995 struct value *mark;
11996
11997 mark = value_mark ();
11998 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11999 value_free_to_mark (mark);
12000 }
12001 if (ex.reason < 0)
12002 exception_fprintf (gdb_stderr, ex,
12003 _("Error in testing exception condition:\n"));
12004 return stop;
12005}
12006
12007/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12008 for all exception catchpoint kinds. */
12009
12010static void
761269c8 12011check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12012{
12013 bs->stop = should_stop_exception (bs->bp_location_at);
12014}
12015
f7f9143b
JB
12016/* Implement the PRINT_IT method in the breakpoint_ops structure
12017 for all exception catchpoint kinds. */
12018
12019static enum print_stop_action
761269c8 12020print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12021{
79a45e25 12022 struct ui_out *uiout = current_uiout;
348d480f
PA
12023 struct breakpoint *b = bs->breakpoint_at;
12024
956a9fb9 12025 annotate_catchpoint (b->number);
f7f9143b 12026
956a9fb9 12027 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12028 {
956a9fb9
JB
12029 ui_out_field_string (uiout, "reason",
12030 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12031 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12032 }
12033
00eb2c4a
JB
12034 ui_out_text (uiout,
12035 b->disposition == disp_del ? "\nTemporary catchpoint "
12036 : "\nCatchpoint ");
956a9fb9
JB
12037 ui_out_field_int (uiout, "bkptno", b->number);
12038 ui_out_text (uiout, ", ");
f7f9143b 12039
f7f9143b
JB
12040 switch (ex)
12041 {
761269c8
JB
12042 case ada_catch_exception:
12043 case ada_catch_exception_unhandled:
956a9fb9
JB
12044 {
12045 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12046 char exception_name[256];
12047
12048 if (addr != 0)
12049 {
c714b426
PA
12050 read_memory (addr, (gdb_byte *) exception_name,
12051 sizeof (exception_name) - 1);
956a9fb9
JB
12052 exception_name [sizeof (exception_name) - 1] = '\0';
12053 }
12054 else
12055 {
12056 /* For some reason, we were unable to read the exception
12057 name. This could happen if the Runtime was compiled
12058 without debugging info, for instance. In that case,
12059 just replace the exception name by the generic string
12060 "exception" - it will read as "an exception" in the
12061 notification we are about to print. */
967cff16 12062 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12063 }
12064 /* In the case of unhandled exception breakpoints, we print
12065 the exception name as "unhandled EXCEPTION_NAME", to make
12066 it clearer to the user which kind of catchpoint just got
12067 hit. We used ui_out_text to make sure that this extra
12068 info does not pollute the exception name in the MI case. */
761269c8 12069 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12070 ui_out_text (uiout, "unhandled ");
12071 ui_out_field_string (uiout, "exception-name", exception_name);
12072 }
12073 break;
761269c8 12074 case ada_catch_assert:
956a9fb9
JB
12075 /* In this case, the name of the exception is not really
12076 important. Just print "failed assertion" to make it clearer
12077 that his program just hit an assertion-failure catchpoint.
12078 We used ui_out_text because this info does not belong in
12079 the MI output. */
12080 ui_out_text (uiout, "failed assertion");
12081 break;
f7f9143b 12082 }
956a9fb9
JB
12083 ui_out_text (uiout, " at ");
12084 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12085
12086 return PRINT_SRC_AND_LOC;
12087}
12088
12089/* Implement the PRINT_ONE method in the breakpoint_ops structure
12090 for all exception catchpoint kinds. */
12091
12092static void
761269c8 12093print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12094 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12095{
79a45e25 12096 struct ui_out *uiout = current_uiout;
28010a5d 12097 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12098 struct value_print_options opts;
12099
12100 get_user_print_options (&opts);
12101 if (opts.addressprint)
f7f9143b
JB
12102 {
12103 annotate_field (4);
5af949e3 12104 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12105 }
12106
12107 annotate_field (5);
a6d9a66e 12108 *last_loc = b->loc;
f7f9143b
JB
12109 switch (ex)
12110 {
761269c8 12111 case ada_catch_exception:
28010a5d 12112 if (c->excep_string != NULL)
f7f9143b 12113 {
28010a5d
PA
12114 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12115
f7f9143b
JB
12116 ui_out_field_string (uiout, "what", msg);
12117 xfree (msg);
12118 }
12119 else
12120 ui_out_field_string (uiout, "what", "all Ada exceptions");
12121
12122 break;
12123
761269c8 12124 case ada_catch_exception_unhandled:
f7f9143b
JB
12125 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12126 break;
12127
761269c8 12128 case ada_catch_assert:
f7f9143b
JB
12129 ui_out_field_string (uiout, "what", "failed Ada assertions");
12130 break;
12131
12132 default:
12133 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12134 break;
12135 }
12136}
12137
12138/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12139 for all exception catchpoint kinds. */
12140
12141static void
761269c8 12142print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12143 struct breakpoint *b)
12144{
28010a5d 12145 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12146 struct ui_out *uiout = current_uiout;
28010a5d 12147
00eb2c4a
JB
12148 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12149 : _("Catchpoint "));
12150 ui_out_field_int (uiout, "bkptno", b->number);
12151 ui_out_text (uiout, ": ");
12152
f7f9143b
JB
12153 switch (ex)
12154 {
761269c8 12155 case ada_catch_exception:
28010a5d 12156 if (c->excep_string != NULL)
00eb2c4a
JB
12157 {
12158 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12159 struct cleanup *old_chain = make_cleanup (xfree, info);
12160
12161 ui_out_text (uiout, info);
12162 do_cleanups (old_chain);
12163 }
f7f9143b 12164 else
00eb2c4a 12165 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12166 break;
12167
761269c8 12168 case ada_catch_exception_unhandled:
00eb2c4a 12169 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12170 break;
12171
761269c8 12172 case ada_catch_assert:
00eb2c4a 12173 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12174 break;
12175
12176 default:
12177 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12178 break;
12179 }
12180}
12181
6149aea9
PA
12182/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12183 for all exception catchpoint kinds. */
12184
12185static void
761269c8 12186print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12187 struct breakpoint *b, struct ui_file *fp)
12188{
28010a5d
PA
12189 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12190
6149aea9
PA
12191 switch (ex)
12192 {
761269c8 12193 case ada_catch_exception:
6149aea9 12194 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12195 if (c->excep_string != NULL)
12196 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12197 break;
12198
761269c8 12199 case ada_catch_exception_unhandled:
78076abc 12200 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12201 break;
12202
761269c8 12203 case ada_catch_assert:
6149aea9
PA
12204 fprintf_filtered (fp, "catch assert");
12205 break;
12206
12207 default:
12208 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12209 }
d9b3f62e 12210 print_recreate_thread (b, fp);
6149aea9
PA
12211}
12212
f7f9143b
JB
12213/* Virtual table for "catch exception" breakpoints. */
12214
28010a5d
PA
12215static void
12216dtor_catch_exception (struct breakpoint *b)
12217{
761269c8 12218 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12219}
12220
12221static struct bp_location *
12222allocate_location_catch_exception (struct breakpoint *self)
12223{
761269c8 12224 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12225}
12226
12227static void
12228re_set_catch_exception (struct breakpoint *b)
12229{
761269c8 12230 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12231}
12232
12233static void
12234check_status_catch_exception (bpstat bs)
12235{
761269c8 12236 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12237}
12238
f7f9143b 12239static enum print_stop_action
348d480f 12240print_it_catch_exception (bpstat bs)
f7f9143b 12241{
761269c8 12242 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12243}
12244
12245static void
a6d9a66e 12246print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12247{
761269c8 12248 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12249}
12250
12251static void
12252print_mention_catch_exception (struct breakpoint *b)
12253{
761269c8 12254 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12255}
12256
6149aea9
PA
12257static void
12258print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12259{
761269c8 12260 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12261}
12262
2060206e 12263static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12264
12265/* Virtual table for "catch exception unhandled" breakpoints. */
12266
28010a5d
PA
12267static void
12268dtor_catch_exception_unhandled (struct breakpoint *b)
12269{
761269c8 12270 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12271}
12272
12273static struct bp_location *
12274allocate_location_catch_exception_unhandled (struct breakpoint *self)
12275{
761269c8 12276 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12277}
12278
12279static void
12280re_set_catch_exception_unhandled (struct breakpoint *b)
12281{
761269c8 12282 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12283}
12284
12285static void
12286check_status_catch_exception_unhandled (bpstat bs)
12287{
761269c8 12288 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12289}
12290
f7f9143b 12291static enum print_stop_action
348d480f 12292print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12293{
761269c8 12294 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12295}
12296
12297static void
a6d9a66e
UW
12298print_one_catch_exception_unhandled (struct breakpoint *b,
12299 struct bp_location **last_loc)
f7f9143b 12300{
761269c8 12301 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12302}
12303
12304static void
12305print_mention_catch_exception_unhandled (struct breakpoint *b)
12306{
761269c8 12307 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12308}
12309
6149aea9
PA
12310static void
12311print_recreate_catch_exception_unhandled (struct breakpoint *b,
12312 struct ui_file *fp)
12313{
761269c8 12314 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12315}
12316
2060206e 12317static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12318
12319/* Virtual table for "catch assert" breakpoints. */
12320
28010a5d
PA
12321static void
12322dtor_catch_assert (struct breakpoint *b)
12323{
761269c8 12324 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12325}
12326
12327static struct bp_location *
12328allocate_location_catch_assert (struct breakpoint *self)
12329{
761269c8 12330 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12331}
12332
12333static void
12334re_set_catch_assert (struct breakpoint *b)
12335{
761269c8 12336 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12337}
12338
12339static void
12340check_status_catch_assert (bpstat bs)
12341{
761269c8 12342 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12343}
12344
f7f9143b 12345static enum print_stop_action
348d480f 12346print_it_catch_assert (bpstat bs)
f7f9143b 12347{
761269c8 12348 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12349}
12350
12351static void
a6d9a66e 12352print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12353{
761269c8 12354 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12355}
12356
12357static void
12358print_mention_catch_assert (struct breakpoint *b)
12359{
761269c8 12360 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12361}
12362
6149aea9
PA
12363static void
12364print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12365{
761269c8 12366 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12367}
12368
2060206e 12369static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12370
f7f9143b
JB
12371/* Return a newly allocated copy of the first space-separated token
12372 in ARGSP, and then adjust ARGSP to point immediately after that
12373 token.
12374
12375 Return NULL if ARGPS does not contain any more tokens. */
12376
12377static char *
12378ada_get_next_arg (char **argsp)
12379{
12380 char *args = *argsp;
12381 char *end;
12382 char *result;
12383
0fcd72ba 12384 args = skip_spaces (args);
f7f9143b
JB
12385 if (args[0] == '\0')
12386 return NULL; /* No more arguments. */
12387
12388 /* Find the end of the current argument. */
12389
0fcd72ba 12390 end = skip_to_space (args);
f7f9143b
JB
12391
12392 /* Adjust ARGSP to point to the start of the next argument. */
12393
12394 *argsp = end;
12395
12396 /* Make a copy of the current argument and return it. */
12397
12398 result = xmalloc (end - args + 1);
12399 strncpy (result, args, end - args);
12400 result[end - args] = '\0';
12401
12402 return result;
12403}
12404
12405/* Split the arguments specified in a "catch exception" command.
12406 Set EX to the appropriate catchpoint type.
28010a5d 12407 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12408 specified by the user.
12409 If a condition is found at the end of the arguments, the condition
12410 expression is stored in COND_STRING (memory must be deallocated
12411 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12412
12413static void
12414catch_ada_exception_command_split (char *args,
761269c8 12415 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12416 char **excep_string,
12417 char **cond_string)
f7f9143b
JB
12418{
12419 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12420 char *exception_name;
5845583d 12421 char *cond = NULL;
f7f9143b
JB
12422
12423 exception_name = ada_get_next_arg (&args);
5845583d
JB
12424 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12425 {
12426 /* This is not an exception name; this is the start of a condition
12427 expression for a catchpoint on all exceptions. So, "un-get"
12428 this token, and set exception_name to NULL. */
12429 xfree (exception_name);
12430 exception_name = NULL;
12431 args -= 2;
12432 }
f7f9143b
JB
12433 make_cleanup (xfree, exception_name);
12434
5845583d 12435 /* Check to see if we have a condition. */
f7f9143b 12436
0fcd72ba 12437 args = skip_spaces (args);
5845583d
JB
12438 if (strncmp (args, "if", 2) == 0
12439 && (isspace (args[2]) || args[2] == '\0'))
12440 {
12441 args += 2;
12442 args = skip_spaces (args);
12443
12444 if (args[0] == '\0')
12445 error (_("Condition missing after `if' keyword"));
12446 cond = xstrdup (args);
12447 make_cleanup (xfree, cond);
12448
12449 args += strlen (args);
12450 }
12451
12452 /* Check that we do not have any more arguments. Anything else
12453 is unexpected. */
f7f9143b
JB
12454
12455 if (args[0] != '\0')
12456 error (_("Junk at end of expression"));
12457
12458 discard_cleanups (old_chain);
12459
12460 if (exception_name == NULL)
12461 {
12462 /* Catch all exceptions. */
761269c8 12463 *ex = ada_catch_exception;
28010a5d 12464 *excep_string = NULL;
f7f9143b
JB
12465 }
12466 else if (strcmp (exception_name, "unhandled") == 0)
12467 {
12468 /* Catch unhandled exceptions. */
761269c8 12469 *ex = ada_catch_exception_unhandled;
28010a5d 12470 *excep_string = NULL;
f7f9143b
JB
12471 }
12472 else
12473 {
12474 /* Catch a specific exception. */
761269c8 12475 *ex = ada_catch_exception;
28010a5d 12476 *excep_string = exception_name;
f7f9143b 12477 }
5845583d 12478 *cond_string = cond;
f7f9143b
JB
12479}
12480
12481/* Return the name of the symbol on which we should break in order to
12482 implement a catchpoint of the EX kind. */
12483
12484static const char *
761269c8 12485ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12486{
3eecfa55
JB
12487 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12488
12489 gdb_assert (data->exception_info != NULL);
0259addd 12490
f7f9143b
JB
12491 switch (ex)
12492 {
761269c8 12493 case ada_catch_exception:
3eecfa55 12494 return (data->exception_info->catch_exception_sym);
f7f9143b 12495 break;
761269c8 12496 case ada_catch_exception_unhandled:
3eecfa55 12497 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12498 break;
761269c8 12499 case ada_catch_assert:
3eecfa55 12500 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12501 break;
12502 default:
12503 internal_error (__FILE__, __LINE__,
12504 _("unexpected catchpoint kind (%d)"), ex);
12505 }
12506}
12507
12508/* Return the breakpoint ops "virtual table" used for catchpoints
12509 of the EX kind. */
12510
c0a91b2b 12511static const struct breakpoint_ops *
761269c8 12512ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12513{
12514 switch (ex)
12515 {
761269c8 12516 case ada_catch_exception:
f7f9143b
JB
12517 return (&catch_exception_breakpoint_ops);
12518 break;
761269c8 12519 case ada_catch_exception_unhandled:
f7f9143b
JB
12520 return (&catch_exception_unhandled_breakpoint_ops);
12521 break;
761269c8 12522 case ada_catch_assert:
f7f9143b
JB
12523 return (&catch_assert_breakpoint_ops);
12524 break;
12525 default:
12526 internal_error (__FILE__, __LINE__,
12527 _("unexpected catchpoint kind (%d)"), ex);
12528 }
12529}
12530
12531/* Return the condition that will be used to match the current exception
12532 being raised with the exception that the user wants to catch. This
12533 assumes that this condition is used when the inferior just triggered
12534 an exception catchpoint.
12535
12536 The string returned is a newly allocated string that needs to be
12537 deallocated later. */
12538
12539static char *
28010a5d 12540ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12541{
3d0b0fa3
JB
12542 int i;
12543
0963b4bd 12544 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12545 runtime units that have been compiled without debugging info; if
28010a5d 12546 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12547 exception (e.g. "constraint_error") then, during the evaluation
12548 of the condition expression, the symbol lookup on this name would
0963b4bd 12549 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12550 may then be set only on user-defined exceptions which have the
12551 same not-fully-qualified name (e.g. my_package.constraint_error).
12552
12553 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12554 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12555 exception constraint_error" is rewritten into "catch exception
12556 standard.constraint_error".
12557
12558 If an exception named contraint_error is defined in another package of
12559 the inferior program, then the only way to specify this exception as a
12560 breakpoint condition is to use its fully-qualified named:
12561 e.g. my_package.constraint_error. */
12562
12563 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12564 {
28010a5d 12565 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12566 {
12567 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12568 excep_string);
3d0b0fa3
JB
12569 }
12570 }
28010a5d 12571 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12572}
12573
12574/* Return the symtab_and_line that should be used to insert an exception
12575 catchpoint of the TYPE kind.
12576
28010a5d
PA
12577 EXCEP_STRING should contain the name of a specific exception that
12578 the catchpoint should catch, or NULL otherwise.
f7f9143b 12579
28010a5d
PA
12580 ADDR_STRING returns the name of the function where the real
12581 breakpoint that implements the catchpoints is set, depending on the
12582 type of catchpoint we need to create. */
f7f9143b
JB
12583
12584static struct symtab_and_line
761269c8 12585ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12586 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12587{
12588 const char *sym_name;
12589 struct symbol *sym;
f7f9143b 12590
0259addd
JB
12591 /* First, find out which exception support info to use. */
12592 ada_exception_support_info_sniffer ();
12593
12594 /* Then lookup the function on which we will break in order to catch
f7f9143b 12595 the Ada exceptions requested by the user. */
f7f9143b
JB
12596 sym_name = ada_exception_sym_name (ex);
12597 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12598
f17011e0
JB
12599 /* We can assume that SYM is not NULL at this stage. If the symbol
12600 did not exist, ada_exception_support_info_sniffer would have
12601 raised an exception.
f7f9143b 12602
f17011e0
JB
12603 Also, ada_exception_support_info_sniffer should have already
12604 verified that SYM is a function symbol. */
12605 gdb_assert (sym != NULL);
12606 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12607
12608 /* Set ADDR_STRING. */
f7f9143b
JB
12609 *addr_string = xstrdup (sym_name);
12610
f7f9143b 12611 /* Set OPS. */
4b9eee8c 12612 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12613
f17011e0 12614 return find_function_start_sal (sym, 1);
f7f9143b
JB
12615}
12616
b4a5b78b 12617/* Create an Ada exception catchpoint.
f7f9143b 12618
b4a5b78b 12619 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12620
2df4d1d5
JB
12621 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12622 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12623 of the exception to which this catchpoint applies. When not NULL,
12624 the string must be allocated on the heap, and its deallocation
12625 is no longer the responsibility of the caller.
12626
12627 COND_STRING, if not NULL, is the catchpoint condition. This string
12628 must be allocated on the heap, and its deallocation is no longer
12629 the responsibility of the caller.
f7f9143b 12630
b4a5b78b
JB
12631 TEMPFLAG, if nonzero, means that the underlying breakpoint
12632 should be temporary.
28010a5d 12633
b4a5b78b 12634 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12635
349774ef 12636void
28010a5d 12637create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12638 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12639 char *excep_string,
5845583d 12640 char *cond_string,
28010a5d 12641 int tempflag,
349774ef 12642 int disabled,
28010a5d
PA
12643 int from_tty)
12644{
12645 struct ada_catchpoint *c;
b4a5b78b
JB
12646 char *addr_string = NULL;
12647 const struct breakpoint_ops *ops = NULL;
12648 struct symtab_and_line sal
12649 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12650
12651 c = XNEW (struct ada_catchpoint);
12652 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12653 ops, tempflag, disabled, from_tty);
28010a5d
PA
12654 c->excep_string = excep_string;
12655 create_excep_cond_exprs (c);
5845583d
JB
12656 if (cond_string != NULL)
12657 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12658 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12659}
12660
9ac4176b
PA
12661/* Implement the "catch exception" command. */
12662
12663static void
12664catch_ada_exception_command (char *arg, int from_tty,
12665 struct cmd_list_element *command)
12666{
12667 struct gdbarch *gdbarch = get_current_arch ();
12668 int tempflag;
761269c8 12669 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12670 char *excep_string = NULL;
5845583d 12671 char *cond_string = NULL;
9ac4176b
PA
12672
12673 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12674
12675 if (!arg)
12676 arg = "";
b4a5b78b
JB
12677 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12678 &cond_string);
12679 create_ada_exception_catchpoint (gdbarch, ex_kind,
12680 excep_string, cond_string,
349774ef
JB
12681 tempflag, 1 /* enabled */,
12682 from_tty);
9ac4176b
PA
12683}
12684
b4a5b78b 12685/* Split the arguments specified in a "catch assert" command.
5845583d 12686
b4a5b78b
JB
12687 ARGS contains the command's arguments (or the empty string if
12688 no arguments were passed).
5845583d
JB
12689
12690 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12691 (the memory needs to be deallocated after use). */
5845583d 12692
b4a5b78b
JB
12693static void
12694catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12695{
5845583d 12696 args = skip_spaces (args);
f7f9143b 12697
5845583d
JB
12698 /* Check whether a condition was provided. */
12699 if (strncmp (args, "if", 2) == 0
12700 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12701 {
5845583d 12702 args += 2;
0fcd72ba 12703 args = skip_spaces (args);
5845583d
JB
12704 if (args[0] == '\0')
12705 error (_("condition missing after `if' keyword"));
12706 *cond_string = xstrdup (args);
f7f9143b
JB
12707 }
12708
5845583d
JB
12709 /* Otherwise, there should be no other argument at the end of
12710 the command. */
12711 else if (args[0] != '\0')
12712 error (_("Junk at end of arguments."));
f7f9143b
JB
12713}
12714
9ac4176b
PA
12715/* Implement the "catch assert" command. */
12716
12717static void
12718catch_assert_command (char *arg, int from_tty,
12719 struct cmd_list_element *command)
12720{
12721 struct gdbarch *gdbarch = get_current_arch ();
12722 int tempflag;
5845583d 12723 char *cond_string = NULL;
9ac4176b
PA
12724
12725 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12726
12727 if (!arg)
12728 arg = "";
b4a5b78b 12729 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12730 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12731 NULL, cond_string,
349774ef
JB
12732 tempflag, 1 /* enabled */,
12733 from_tty);
9ac4176b 12734}
778865d3
JB
12735
12736/* Return non-zero if the symbol SYM is an Ada exception object. */
12737
12738static int
12739ada_is_exception_sym (struct symbol *sym)
12740{
12741 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12742
12743 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12744 && SYMBOL_CLASS (sym) != LOC_BLOCK
12745 && SYMBOL_CLASS (sym) != LOC_CONST
12746 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12747 && type_name != NULL && strcmp (type_name, "exception") == 0);
12748}
12749
12750/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12751 Ada exception object. This matches all exceptions except the ones
12752 defined by the Ada language. */
12753
12754static int
12755ada_is_non_standard_exception_sym (struct symbol *sym)
12756{
12757 int i;
12758
12759 if (!ada_is_exception_sym (sym))
12760 return 0;
12761
12762 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12763 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12764 return 0; /* A standard exception. */
12765
12766 /* Numeric_Error is also a standard exception, so exclude it.
12767 See the STANDARD_EXC description for more details as to why
12768 this exception is not listed in that array. */
12769 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12770 return 0;
12771
12772 return 1;
12773}
12774
12775/* A helper function for qsort, comparing two struct ada_exc_info
12776 objects.
12777
12778 The comparison is determined first by exception name, and then
12779 by exception address. */
12780
12781static int
12782compare_ada_exception_info (const void *a, const void *b)
12783{
12784 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12785 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12786 int result;
12787
12788 result = strcmp (exc_a->name, exc_b->name);
12789 if (result != 0)
12790 return result;
12791
12792 if (exc_a->addr < exc_b->addr)
12793 return -1;
12794 if (exc_a->addr > exc_b->addr)
12795 return 1;
12796
12797 return 0;
12798}
12799
12800/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12801 routine, but keeping the first SKIP elements untouched.
12802
12803 All duplicates are also removed. */
12804
12805static void
12806sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12807 int skip)
12808{
12809 struct ada_exc_info *to_sort
12810 = VEC_address (ada_exc_info, *exceptions) + skip;
12811 int to_sort_len
12812 = VEC_length (ada_exc_info, *exceptions) - skip;
12813 int i, j;
12814
12815 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12816 compare_ada_exception_info);
12817
12818 for (i = 1, j = 1; i < to_sort_len; i++)
12819 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12820 to_sort[j++] = to_sort[i];
12821 to_sort_len = j;
12822 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12823}
12824
12825/* A function intended as the "name_matcher" callback in the struct
12826 quick_symbol_functions' expand_symtabs_matching method.
12827
12828 SEARCH_NAME is the symbol's search name.
12829
12830 If USER_DATA is not NULL, it is a pointer to a regext_t object
12831 used to match the symbol (by natural name). Otherwise, when USER_DATA
12832 is null, no filtering is performed, and all symbols are a positive
12833 match. */
12834
12835static int
12836ada_exc_search_name_matches (const char *search_name, void *user_data)
12837{
12838 regex_t *preg = user_data;
12839
12840 if (preg == NULL)
12841 return 1;
12842
12843 /* In Ada, the symbol "search name" is a linkage name, whereas
12844 the regular expression used to do the matching refers to
12845 the natural name. So match against the decoded name. */
12846 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12847}
12848
12849/* Add all exceptions defined by the Ada standard whose name match
12850 a regular expression.
12851
12852 If PREG is not NULL, then this regexp_t object is used to
12853 perform the symbol name matching. Otherwise, no name-based
12854 filtering is performed.
12855
12856 EXCEPTIONS is a vector of exceptions to which matching exceptions
12857 gets pushed. */
12858
12859static void
12860ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12861{
12862 int i;
12863
12864 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12865 {
12866 if (preg == NULL
12867 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12868 {
12869 struct bound_minimal_symbol msymbol
12870 = ada_lookup_simple_minsym (standard_exc[i]);
12871
12872 if (msymbol.minsym != NULL)
12873 {
12874 struct ada_exc_info info
77e371c0 12875 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12876
12877 VEC_safe_push (ada_exc_info, *exceptions, &info);
12878 }
12879 }
12880 }
12881}
12882
12883/* Add all Ada exceptions defined locally and accessible from the given
12884 FRAME.
12885
12886 If PREG is not NULL, then this regexp_t object is used to
12887 perform the symbol name matching. Otherwise, no name-based
12888 filtering is performed.
12889
12890 EXCEPTIONS is a vector of exceptions to which matching exceptions
12891 gets pushed. */
12892
12893static void
12894ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12895 VEC(ada_exc_info) **exceptions)
12896{
3977b71f 12897 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12898
12899 while (block != 0)
12900 {
12901 struct block_iterator iter;
12902 struct symbol *sym;
12903
12904 ALL_BLOCK_SYMBOLS (block, iter, sym)
12905 {
12906 switch (SYMBOL_CLASS (sym))
12907 {
12908 case LOC_TYPEDEF:
12909 case LOC_BLOCK:
12910 case LOC_CONST:
12911 break;
12912 default:
12913 if (ada_is_exception_sym (sym))
12914 {
12915 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12916 SYMBOL_VALUE_ADDRESS (sym)};
12917
12918 VEC_safe_push (ada_exc_info, *exceptions, &info);
12919 }
12920 }
12921 }
12922 if (BLOCK_FUNCTION (block) != NULL)
12923 break;
12924 block = BLOCK_SUPERBLOCK (block);
12925 }
12926}
12927
12928/* Add all exceptions defined globally whose name name match
12929 a regular expression, excluding standard exceptions.
12930
12931 The reason we exclude standard exceptions is that they need
12932 to be handled separately: Standard exceptions are defined inside
12933 a runtime unit which is normally not compiled with debugging info,
12934 and thus usually do not show up in our symbol search. However,
12935 if the unit was in fact built with debugging info, we need to
12936 exclude them because they would duplicate the entry we found
12937 during the special loop that specifically searches for those
12938 standard exceptions.
12939
12940 If PREG is not NULL, then this regexp_t object is used to
12941 perform the symbol name matching. Otherwise, no name-based
12942 filtering is performed.
12943
12944 EXCEPTIONS is a vector of exceptions to which matching exceptions
12945 gets pushed. */
12946
12947static void
12948ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12949{
12950 struct objfile *objfile;
43f3e411 12951 struct compunit_symtab *s;
778865d3 12952
bb4142cf
DE
12953 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12954 VARIABLES_DOMAIN, preg);
778865d3 12955
43f3e411 12956 ALL_COMPUNITS (objfile, s)
778865d3 12957 {
43f3e411 12958 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
12959 int i;
12960
12961 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12962 {
12963 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12964 struct block_iterator iter;
12965 struct symbol *sym;
12966
12967 ALL_BLOCK_SYMBOLS (b, iter, sym)
12968 if (ada_is_non_standard_exception_sym (sym)
12969 && (preg == NULL
12970 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12971 0, NULL, 0) == 0))
12972 {
12973 struct ada_exc_info info
12974 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12975
12976 VEC_safe_push (ada_exc_info, *exceptions, &info);
12977 }
12978 }
12979 }
12980}
12981
12982/* Implements ada_exceptions_list with the regular expression passed
12983 as a regex_t, rather than a string.
12984
12985 If not NULL, PREG is used to filter out exceptions whose names
12986 do not match. Otherwise, all exceptions are listed. */
12987
12988static VEC(ada_exc_info) *
12989ada_exceptions_list_1 (regex_t *preg)
12990{
12991 VEC(ada_exc_info) *result = NULL;
12992 struct cleanup *old_chain
12993 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12994 int prev_len;
12995
12996 /* First, list the known standard exceptions. These exceptions
12997 need to be handled separately, as they are usually defined in
12998 runtime units that have been compiled without debugging info. */
12999
13000 ada_add_standard_exceptions (preg, &result);
13001
13002 /* Next, find all exceptions whose scope is local and accessible
13003 from the currently selected frame. */
13004
13005 if (has_stack_frames ())
13006 {
13007 prev_len = VEC_length (ada_exc_info, result);
13008 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13009 &result);
13010 if (VEC_length (ada_exc_info, result) > prev_len)
13011 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13012 }
13013
13014 /* Add all exceptions whose scope is global. */
13015
13016 prev_len = VEC_length (ada_exc_info, result);
13017 ada_add_global_exceptions (preg, &result);
13018 if (VEC_length (ada_exc_info, result) > prev_len)
13019 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13020
13021 discard_cleanups (old_chain);
13022 return result;
13023}
13024
13025/* Return a vector of ada_exc_info.
13026
13027 If REGEXP is NULL, all exceptions are included in the result.
13028 Otherwise, it should contain a valid regular expression,
13029 and only the exceptions whose names match that regular expression
13030 are included in the result.
13031
13032 The exceptions are sorted in the following order:
13033 - Standard exceptions (defined by the Ada language), in
13034 alphabetical order;
13035 - Exceptions only visible from the current frame, in
13036 alphabetical order;
13037 - Exceptions whose scope is global, in alphabetical order. */
13038
13039VEC(ada_exc_info) *
13040ada_exceptions_list (const char *regexp)
13041{
13042 VEC(ada_exc_info) *result = NULL;
13043 struct cleanup *old_chain = NULL;
13044 regex_t reg;
13045
13046 if (regexp != NULL)
13047 old_chain = compile_rx_or_error (&reg, regexp,
13048 _("invalid regular expression"));
13049
13050 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13051
13052 if (old_chain != NULL)
13053 do_cleanups (old_chain);
13054 return result;
13055}
13056
13057/* Implement the "info exceptions" command. */
13058
13059static void
13060info_exceptions_command (char *regexp, int from_tty)
13061{
13062 VEC(ada_exc_info) *exceptions;
13063 struct cleanup *cleanup;
13064 struct gdbarch *gdbarch = get_current_arch ();
13065 int ix;
13066 struct ada_exc_info *info;
13067
13068 exceptions = ada_exceptions_list (regexp);
13069 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13070
13071 if (regexp != NULL)
13072 printf_filtered
13073 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13074 else
13075 printf_filtered (_("All defined Ada exceptions:\n"));
13076
13077 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13078 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13079
13080 do_cleanups (cleanup);
13081}
13082
4c4b4cd2
PH
13083 /* Operators */
13084/* Information about operators given special treatment in functions
13085 below. */
13086/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13087
13088#define ADA_OPERATORS \
13089 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13090 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13091 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13092 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13093 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13094 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13095 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13096 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13097 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13098 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13099 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13100 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13101 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13102 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13103 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13104 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13105 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13106 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13107 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13108
13109static void
554794dc
SDJ
13110ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13111 int *argsp)
4c4b4cd2
PH
13112{
13113 switch (exp->elts[pc - 1].opcode)
13114 {
76a01679 13115 default:
4c4b4cd2
PH
13116 operator_length_standard (exp, pc, oplenp, argsp);
13117 break;
13118
13119#define OP_DEFN(op, len, args, binop) \
13120 case op: *oplenp = len; *argsp = args; break;
13121 ADA_OPERATORS;
13122#undef OP_DEFN
52ce6436
PH
13123
13124 case OP_AGGREGATE:
13125 *oplenp = 3;
13126 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13127 break;
13128
13129 case OP_CHOICES:
13130 *oplenp = 3;
13131 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13132 break;
4c4b4cd2
PH
13133 }
13134}
13135
c0201579
JK
13136/* Implementation of the exp_descriptor method operator_check. */
13137
13138static int
13139ada_operator_check (struct expression *exp, int pos,
13140 int (*objfile_func) (struct objfile *objfile, void *data),
13141 void *data)
13142{
13143 const union exp_element *const elts = exp->elts;
13144 struct type *type = NULL;
13145
13146 switch (elts[pos].opcode)
13147 {
13148 case UNOP_IN_RANGE:
13149 case UNOP_QUAL:
13150 type = elts[pos + 1].type;
13151 break;
13152
13153 default:
13154 return operator_check_standard (exp, pos, objfile_func, data);
13155 }
13156
13157 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13158
13159 if (type && TYPE_OBJFILE (type)
13160 && (*objfile_func) (TYPE_OBJFILE (type), data))
13161 return 1;
13162
13163 return 0;
13164}
13165
4c4b4cd2
PH
13166static char *
13167ada_op_name (enum exp_opcode opcode)
13168{
13169 switch (opcode)
13170 {
76a01679 13171 default:
4c4b4cd2 13172 return op_name_standard (opcode);
52ce6436 13173
4c4b4cd2
PH
13174#define OP_DEFN(op, len, args, binop) case op: return #op;
13175 ADA_OPERATORS;
13176#undef OP_DEFN
52ce6436
PH
13177
13178 case OP_AGGREGATE:
13179 return "OP_AGGREGATE";
13180 case OP_CHOICES:
13181 return "OP_CHOICES";
13182 case OP_NAME:
13183 return "OP_NAME";
4c4b4cd2
PH
13184 }
13185}
13186
13187/* As for operator_length, but assumes PC is pointing at the first
13188 element of the operator, and gives meaningful results only for the
52ce6436 13189 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13190
13191static void
76a01679
JB
13192ada_forward_operator_length (struct expression *exp, int pc,
13193 int *oplenp, int *argsp)
4c4b4cd2 13194{
76a01679 13195 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13196 {
13197 default:
13198 *oplenp = *argsp = 0;
13199 break;
52ce6436 13200
4c4b4cd2
PH
13201#define OP_DEFN(op, len, args, binop) \
13202 case op: *oplenp = len; *argsp = args; break;
13203 ADA_OPERATORS;
13204#undef OP_DEFN
52ce6436
PH
13205
13206 case OP_AGGREGATE:
13207 *oplenp = 3;
13208 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13209 break;
13210
13211 case OP_CHOICES:
13212 *oplenp = 3;
13213 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13214 break;
13215
13216 case OP_STRING:
13217 case OP_NAME:
13218 {
13219 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13220
52ce6436
PH
13221 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13222 *argsp = 0;
13223 break;
13224 }
4c4b4cd2
PH
13225 }
13226}
13227
13228static int
13229ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13230{
13231 enum exp_opcode op = exp->elts[elt].opcode;
13232 int oplen, nargs;
13233 int pc = elt;
13234 int i;
76a01679 13235
4c4b4cd2
PH
13236 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13237
76a01679 13238 switch (op)
4c4b4cd2 13239 {
76a01679 13240 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13241 case OP_ATR_FIRST:
13242 case OP_ATR_LAST:
13243 case OP_ATR_LENGTH:
13244 case OP_ATR_IMAGE:
13245 case OP_ATR_MAX:
13246 case OP_ATR_MIN:
13247 case OP_ATR_MODULUS:
13248 case OP_ATR_POS:
13249 case OP_ATR_SIZE:
13250 case OP_ATR_TAG:
13251 case OP_ATR_VAL:
13252 break;
13253
13254 case UNOP_IN_RANGE:
13255 case UNOP_QUAL:
323e0a4a
AC
13256 /* XXX: gdb_sprint_host_address, type_sprint */
13257 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13258 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13259 fprintf_filtered (stream, " (");
13260 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13261 fprintf_filtered (stream, ")");
13262 break;
13263 case BINOP_IN_BOUNDS:
52ce6436
PH
13264 fprintf_filtered (stream, " (%d)",
13265 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13266 break;
13267 case TERNOP_IN_RANGE:
13268 break;
13269
52ce6436
PH
13270 case OP_AGGREGATE:
13271 case OP_OTHERS:
13272 case OP_DISCRETE_RANGE:
13273 case OP_POSITIONAL:
13274 case OP_CHOICES:
13275 break;
13276
13277 case OP_NAME:
13278 case OP_STRING:
13279 {
13280 char *name = &exp->elts[elt + 2].string;
13281 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13282
52ce6436
PH
13283 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13284 break;
13285 }
13286
4c4b4cd2
PH
13287 default:
13288 return dump_subexp_body_standard (exp, stream, elt);
13289 }
13290
13291 elt += oplen;
13292 for (i = 0; i < nargs; i += 1)
13293 elt = dump_subexp (exp, stream, elt);
13294
13295 return elt;
13296}
13297
13298/* The Ada extension of print_subexp (q.v.). */
13299
76a01679
JB
13300static void
13301ada_print_subexp (struct expression *exp, int *pos,
13302 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13303{
52ce6436 13304 int oplen, nargs, i;
4c4b4cd2
PH
13305 int pc = *pos;
13306 enum exp_opcode op = exp->elts[pc].opcode;
13307
13308 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13309
52ce6436 13310 *pos += oplen;
4c4b4cd2
PH
13311 switch (op)
13312 {
13313 default:
52ce6436 13314 *pos -= oplen;
4c4b4cd2
PH
13315 print_subexp_standard (exp, pos, stream, prec);
13316 return;
13317
13318 case OP_VAR_VALUE:
4c4b4cd2
PH
13319 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13320 return;
13321
13322 case BINOP_IN_BOUNDS:
323e0a4a 13323 /* XXX: sprint_subexp */
4c4b4cd2 13324 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13325 fputs_filtered (" in ", stream);
4c4b4cd2 13326 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13327 fputs_filtered ("'range", stream);
4c4b4cd2 13328 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13329 fprintf_filtered (stream, "(%ld)",
13330 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13331 return;
13332
13333 case TERNOP_IN_RANGE:
4c4b4cd2 13334 if (prec >= PREC_EQUAL)
76a01679 13335 fputs_filtered ("(", stream);
323e0a4a 13336 /* XXX: sprint_subexp */
4c4b4cd2 13337 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13338 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13339 print_subexp (exp, pos, stream, PREC_EQUAL);
13340 fputs_filtered (" .. ", stream);
13341 print_subexp (exp, pos, stream, PREC_EQUAL);
13342 if (prec >= PREC_EQUAL)
76a01679
JB
13343 fputs_filtered (")", stream);
13344 return;
4c4b4cd2
PH
13345
13346 case OP_ATR_FIRST:
13347 case OP_ATR_LAST:
13348 case OP_ATR_LENGTH:
13349 case OP_ATR_IMAGE:
13350 case OP_ATR_MAX:
13351 case OP_ATR_MIN:
13352 case OP_ATR_MODULUS:
13353 case OP_ATR_POS:
13354 case OP_ATR_SIZE:
13355 case OP_ATR_TAG:
13356 case OP_ATR_VAL:
4c4b4cd2 13357 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13358 {
13359 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13360 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13361 &type_print_raw_options);
76a01679
JB
13362 *pos += 3;
13363 }
4c4b4cd2 13364 else
76a01679 13365 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13366 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13367 if (nargs > 1)
76a01679
JB
13368 {
13369 int tem;
5b4ee69b 13370
76a01679
JB
13371 for (tem = 1; tem < nargs; tem += 1)
13372 {
13373 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13374 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13375 }
13376 fputs_filtered (")", stream);
13377 }
4c4b4cd2 13378 return;
14f9c5c9 13379
4c4b4cd2 13380 case UNOP_QUAL:
4c4b4cd2
PH
13381 type_print (exp->elts[pc + 1].type, "", stream, 0);
13382 fputs_filtered ("'(", stream);
13383 print_subexp (exp, pos, stream, PREC_PREFIX);
13384 fputs_filtered (")", stream);
13385 return;
14f9c5c9 13386
4c4b4cd2 13387 case UNOP_IN_RANGE:
323e0a4a 13388 /* XXX: sprint_subexp */
4c4b4cd2 13389 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13390 fputs_filtered (" in ", stream);
79d43c61
TT
13391 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13392 &type_print_raw_options);
4c4b4cd2 13393 return;
52ce6436
PH
13394
13395 case OP_DISCRETE_RANGE:
13396 print_subexp (exp, pos, stream, PREC_SUFFIX);
13397 fputs_filtered ("..", stream);
13398 print_subexp (exp, pos, stream, PREC_SUFFIX);
13399 return;
13400
13401 case OP_OTHERS:
13402 fputs_filtered ("others => ", stream);
13403 print_subexp (exp, pos, stream, PREC_SUFFIX);
13404 return;
13405
13406 case OP_CHOICES:
13407 for (i = 0; i < nargs-1; i += 1)
13408 {
13409 if (i > 0)
13410 fputs_filtered ("|", stream);
13411 print_subexp (exp, pos, stream, PREC_SUFFIX);
13412 }
13413 fputs_filtered (" => ", stream);
13414 print_subexp (exp, pos, stream, PREC_SUFFIX);
13415 return;
13416
13417 case OP_POSITIONAL:
13418 print_subexp (exp, pos, stream, PREC_SUFFIX);
13419 return;
13420
13421 case OP_AGGREGATE:
13422 fputs_filtered ("(", stream);
13423 for (i = 0; i < nargs; i += 1)
13424 {
13425 if (i > 0)
13426 fputs_filtered (", ", stream);
13427 print_subexp (exp, pos, stream, PREC_SUFFIX);
13428 }
13429 fputs_filtered (")", stream);
13430 return;
4c4b4cd2
PH
13431 }
13432}
14f9c5c9
AS
13433
13434/* Table mapping opcodes into strings for printing operators
13435 and precedences of the operators. */
13436
d2e4a39e
AS
13437static const struct op_print ada_op_print_tab[] = {
13438 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13439 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13440 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13441 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13442 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13443 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13444 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13445 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13446 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13447 {">=", BINOP_GEQ, PREC_ORDER, 0},
13448 {">", BINOP_GTR, PREC_ORDER, 0},
13449 {"<", BINOP_LESS, PREC_ORDER, 0},
13450 {">>", BINOP_RSH, PREC_SHIFT, 0},
13451 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13452 {"+", BINOP_ADD, PREC_ADD, 0},
13453 {"-", BINOP_SUB, PREC_ADD, 0},
13454 {"&", BINOP_CONCAT, PREC_ADD, 0},
13455 {"*", BINOP_MUL, PREC_MUL, 0},
13456 {"/", BINOP_DIV, PREC_MUL, 0},
13457 {"rem", BINOP_REM, PREC_MUL, 0},
13458 {"mod", BINOP_MOD, PREC_MUL, 0},
13459 {"**", BINOP_EXP, PREC_REPEAT, 0},
13460 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13461 {"-", UNOP_NEG, PREC_PREFIX, 0},
13462 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13463 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13464 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13465 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13466 {".all", UNOP_IND, PREC_SUFFIX, 1},
13467 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13468 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13469 {NULL, 0, 0, 0}
14f9c5c9
AS
13470};
13471\f
72d5681a
PH
13472enum ada_primitive_types {
13473 ada_primitive_type_int,
13474 ada_primitive_type_long,
13475 ada_primitive_type_short,
13476 ada_primitive_type_char,
13477 ada_primitive_type_float,
13478 ada_primitive_type_double,
13479 ada_primitive_type_void,
13480 ada_primitive_type_long_long,
13481 ada_primitive_type_long_double,
13482 ada_primitive_type_natural,
13483 ada_primitive_type_positive,
13484 ada_primitive_type_system_address,
13485 nr_ada_primitive_types
13486};
6c038f32
PH
13487
13488static void
d4a9a881 13489ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13490 struct language_arch_info *lai)
13491{
d4a9a881 13492 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13493
72d5681a 13494 lai->primitive_type_vector
d4a9a881 13495 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13496 struct type *);
e9bb382b
UW
13497
13498 lai->primitive_type_vector [ada_primitive_type_int]
13499 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13500 0, "integer");
13501 lai->primitive_type_vector [ada_primitive_type_long]
13502 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13503 0, "long_integer");
13504 lai->primitive_type_vector [ada_primitive_type_short]
13505 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13506 0, "short_integer");
13507 lai->string_char_type
13508 = lai->primitive_type_vector [ada_primitive_type_char]
13509 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13510 lai->primitive_type_vector [ada_primitive_type_float]
13511 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13512 "float", NULL);
13513 lai->primitive_type_vector [ada_primitive_type_double]
13514 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13515 "long_float", NULL);
13516 lai->primitive_type_vector [ada_primitive_type_long_long]
13517 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13518 0, "long_long_integer");
13519 lai->primitive_type_vector [ada_primitive_type_long_double]
13520 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13521 "long_long_float", NULL);
13522 lai->primitive_type_vector [ada_primitive_type_natural]
13523 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13524 0, "natural");
13525 lai->primitive_type_vector [ada_primitive_type_positive]
13526 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13527 0, "positive");
13528 lai->primitive_type_vector [ada_primitive_type_void]
13529 = builtin->builtin_void;
13530
13531 lai->primitive_type_vector [ada_primitive_type_system_address]
13532 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13533 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13534 = "system__address";
fbb06eb1 13535
47e729a8 13536 lai->bool_type_symbol = NULL;
fbb06eb1 13537 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13538}
6c038f32
PH
13539\f
13540 /* Language vector */
13541
13542/* Not really used, but needed in the ada_language_defn. */
13543
13544static void
6c7a06a3 13545emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13546{
6c7a06a3 13547 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13548}
13549
13550static int
410a0ff2 13551parse (struct parser_state *ps)
6c038f32
PH
13552{
13553 warnings_issued = 0;
410a0ff2 13554 return ada_parse (ps);
6c038f32
PH
13555}
13556
13557static const struct exp_descriptor ada_exp_descriptor = {
13558 ada_print_subexp,
13559 ada_operator_length,
c0201579 13560 ada_operator_check,
6c038f32
PH
13561 ada_op_name,
13562 ada_dump_subexp_body,
13563 ada_evaluate_subexp
13564};
13565
1a119f36 13566/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13567 for Ada. */
13568
1a119f36
JB
13569static symbol_name_cmp_ftype
13570ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13571{
13572 if (should_use_wild_match (lookup_name))
13573 return wild_match;
13574 else
13575 return compare_names;
13576}
13577
a5ee536b
JB
13578/* Implement the "la_read_var_value" language_defn method for Ada. */
13579
13580static struct value *
13581ada_read_var_value (struct symbol *var, struct frame_info *frame)
13582{
3977b71f 13583 const struct block *frame_block = NULL;
a5ee536b
JB
13584 struct symbol *renaming_sym = NULL;
13585
13586 /* The only case where default_read_var_value is not sufficient
13587 is when VAR is a renaming... */
13588 if (frame)
13589 frame_block = get_frame_block (frame, NULL);
13590 if (frame_block)
13591 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13592 if (renaming_sym != NULL)
13593 return ada_read_renaming_var_value (renaming_sym, frame_block);
13594
13595 /* This is a typical case where we expect the default_read_var_value
13596 function to work. */
13597 return default_read_var_value (var, frame);
13598}
13599
6c038f32
PH
13600const struct language_defn ada_language_defn = {
13601 "ada", /* Language name */
6abde28f 13602 "Ada",
6c038f32 13603 language_ada,
6c038f32 13604 range_check_off,
6c038f32
PH
13605 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13606 that's not quite what this means. */
6c038f32 13607 array_row_major,
9a044a89 13608 macro_expansion_no,
6c038f32
PH
13609 &ada_exp_descriptor,
13610 parse,
13611 ada_error,
13612 resolve,
13613 ada_printchar, /* Print a character constant */
13614 ada_printstr, /* Function to print string constant */
13615 emit_char, /* Function to print single char (not used) */
6c038f32 13616 ada_print_type, /* Print a type using appropriate syntax */
be942545 13617 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13618 ada_val_print, /* Print a value using appropriate syntax */
13619 ada_value_print, /* Print a top-level value */
a5ee536b 13620 ada_read_var_value, /* la_read_var_value */
6c038f32 13621 NULL, /* Language specific skip_trampoline */
2b2d9e11 13622 NULL, /* name_of_this */
6c038f32
PH
13623 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13624 basic_lookup_transparent_type, /* lookup_transparent_type */
13625 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13626 NULL, /* Language specific
13627 class_name_from_physname */
6c038f32
PH
13628 ada_op_print_tab, /* expression operators for printing */
13629 0, /* c-style arrays */
13630 1, /* String lower bound */
6c038f32 13631 ada_get_gdb_completer_word_break_characters,
41d27058 13632 ada_make_symbol_completion_list,
72d5681a 13633 ada_language_arch_info,
e79af960 13634 ada_print_array_index,
41f1b697 13635 default_pass_by_reference,
ae6a3a4c 13636 c_get_string,
1a119f36 13637 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13638 ada_iterate_over_symbols,
a53b64ea 13639 &ada_varobj_ops,
bb2ec1b3
TT
13640 NULL,
13641 NULL,
6c038f32
PH
13642 LANG_MAGIC
13643};
13644
2c0b251b
PA
13645/* Provide a prototype to silence -Wmissing-prototypes. */
13646extern initialize_file_ftype _initialize_ada_language;
13647
5bf03f13
JB
13648/* Command-list for the "set/show ada" prefix command. */
13649static struct cmd_list_element *set_ada_list;
13650static struct cmd_list_element *show_ada_list;
13651
13652/* Implement the "set ada" prefix command. */
13653
13654static void
13655set_ada_command (char *arg, int from_tty)
13656{
13657 printf_unfiltered (_(\
13658"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13659 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13660}
13661
13662/* Implement the "show ada" prefix command. */
13663
13664static void
13665show_ada_command (char *args, int from_tty)
13666{
13667 cmd_show_list (show_ada_list, from_tty, "");
13668}
13669
2060206e
PA
13670static void
13671initialize_ada_catchpoint_ops (void)
13672{
13673 struct breakpoint_ops *ops;
13674
13675 initialize_breakpoint_ops ();
13676
13677 ops = &catch_exception_breakpoint_ops;
13678 *ops = bkpt_breakpoint_ops;
13679 ops->dtor = dtor_catch_exception;
13680 ops->allocate_location = allocate_location_catch_exception;
13681 ops->re_set = re_set_catch_exception;
13682 ops->check_status = check_status_catch_exception;
13683 ops->print_it = print_it_catch_exception;
13684 ops->print_one = print_one_catch_exception;
13685 ops->print_mention = print_mention_catch_exception;
13686 ops->print_recreate = print_recreate_catch_exception;
13687
13688 ops = &catch_exception_unhandled_breakpoint_ops;
13689 *ops = bkpt_breakpoint_ops;
13690 ops->dtor = dtor_catch_exception_unhandled;
13691 ops->allocate_location = allocate_location_catch_exception_unhandled;
13692 ops->re_set = re_set_catch_exception_unhandled;
13693 ops->check_status = check_status_catch_exception_unhandled;
13694 ops->print_it = print_it_catch_exception_unhandled;
13695 ops->print_one = print_one_catch_exception_unhandled;
13696 ops->print_mention = print_mention_catch_exception_unhandled;
13697 ops->print_recreate = print_recreate_catch_exception_unhandled;
13698
13699 ops = &catch_assert_breakpoint_ops;
13700 *ops = bkpt_breakpoint_ops;
13701 ops->dtor = dtor_catch_assert;
13702 ops->allocate_location = allocate_location_catch_assert;
13703 ops->re_set = re_set_catch_assert;
13704 ops->check_status = check_status_catch_assert;
13705 ops->print_it = print_it_catch_assert;
13706 ops->print_one = print_one_catch_assert;
13707 ops->print_mention = print_mention_catch_assert;
13708 ops->print_recreate = print_recreate_catch_assert;
13709}
13710
3d9434b5
JB
13711/* This module's 'new_objfile' observer. */
13712
13713static void
13714ada_new_objfile_observer (struct objfile *objfile)
13715{
13716 ada_clear_symbol_cache ();
13717}
13718
13719/* This module's 'free_objfile' observer. */
13720
13721static void
13722ada_free_objfile_observer (struct objfile *objfile)
13723{
13724 ada_clear_symbol_cache ();
13725}
13726
d2e4a39e 13727void
6c038f32 13728_initialize_ada_language (void)
14f9c5c9 13729{
6c038f32
PH
13730 add_language (&ada_language_defn);
13731
2060206e
PA
13732 initialize_ada_catchpoint_ops ();
13733
5bf03f13
JB
13734 add_prefix_cmd ("ada", no_class, set_ada_command,
13735 _("Prefix command for changing Ada-specfic settings"),
13736 &set_ada_list, "set ada ", 0, &setlist);
13737
13738 add_prefix_cmd ("ada", no_class, show_ada_command,
13739 _("Generic command for showing Ada-specific settings."),
13740 &show_ada_list, "show ada ", 0, &showlist);
13741
13742 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13743 &trust_pad_over_xvs, _("\
13744Enable or disable an optimization trusting PAD types over XVS types"), _("\
13745Show whether an optimization trusting PAD types over XVS types is activated"),
13746 _("\
13747This is related to the encoding used by the GNAT compiler. The debugger\n\
13748should normally trust the contents of PAD types, but certain older versions\n\
13749of GNAT have a bug that sometimes causes the information in the PAD type\n\
13750to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13751work around this bug. It is always safe to turn this option \"off\", but\n\
13752this incurs a slight performance penalty, so it is recommended to NOT change\n\
13753this option to \"off\" unless necessary."),
13754 NULL, NULL, &set_ada_list, &show_ada_list);
13755
9ac4176b
PA
13756 add_catch_command ("exception", _("\
13757Catch Ada exceptions, when raised.\n\
13758With an argument, catch only exceptions with the given name."),
13759 catch_ada_exception_command,
13760 NULL,
13761 CATCH_PERMANENT,
13762 CATCH_TEMPORARY);
13763 add_catch_command ("assert", _("\
13764Catch failed Ada assertions, when raised.\n\
13765With an argument, catch only exceptions with the given name."),
13766 catch_assert_command,
13767 NULL,
13768 CATCH_PERMANENT,
13769 CATCH_TEMPORARY);
13770
6c038f32 13771 varsize_limit = 65536;
6c038f32 13772
778865d3
JB
13773 add_info ("exceptions", info_exceptions_command,
13774 _("\
13775List all Ada exception names.\n\
13776If a regular expression is passed as an argument, only those matching\n\
13777the regular expression are listed."));
13778
c6044dd1
JB
13779 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13780 _("Set Ada maintenance-related variables."),
13781 &maint_set_ada_cmdlist, "maintenance set ada ",
13782 0/*allow-unknown*/, &maintenance_set_cmdlist);
13783
13784 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13785 _("Show Ada maintenance-related variables"),
13786 &maint_show_ada_cmdlist, "maintenance show ada ",
13787 0/*allow-unknown*/, &maintenance_show_cmdlist);
13788
13789 add_setshow_boolean_cmd
13790 ("ignore-descriptive-types", class_maintenance,
13791 &ada_ignore_descriptive_types_p,
13792 _("Set whether descriptive types generated by GNAT should be ignored."),
13793 _("Show whether descriptive types generated by GNAT should be ignored."),
13794 _("\
13795When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13796DWARF attribute."),
13797 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13798
6c038f32
PH
13799 obstack_init (&symbol_list_obstack);
13800
13801 decoded_names_store = htab_create_alloc
13802 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13803 NULL, xcalloc, xfree);
6b69afc4 13804
3d9434b5
JB
13805 /* The ada-lang observers. */
13806 observer_attach_new_objfile (ada_new_objfile_observer);
13807 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13808 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13809
13810 /* Setup various context-specific data. */
e802dbe0 13811 ada_inferior_data
8e260fc0 13812 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13813 ada_pspace_data_handle
13814 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13815}